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Preface to “Sustainable Agriculture and Advances of

Remote Sensing

Volume 1: In Earth Observation”

This Special Issue on “Sustainable Agriculture and Advances of Remote Sensing” falls within the

scope of current efforts to mitigate and adapt to the changing climate. It has been launched with the

aim of collecting and promoting recent scientific studies proposing and evaluating advances in remote

sensing technology and agricultural engineering leading to sustainable agriculture. It is mainly

addressed to the policy makers, entrepreneurs and academicians engaged in the fight against climate

change, in zero hunger initiatives, in natural resource management and in environment protection

research. A special thanks is addressed to the authors who submitted their manuscripts to contribute

to these initiatives.

Dimitrios S. Paraforos, Anselme Muzirafuti, Giovanni Randazzo, and Stefania Lanza
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Abstract: Crop identification is key to global food security. Due to the large scale of crop estimation,
the science of remote sensing was able to do well in this field. The purpose of this study is to study
the shortcomings and strengths of combined radar data and optical images to identify the type of
crops in Tarom region (Iran). For this purpose, Sentinel 1 and Sentinel 2 images were used to create a
map in the study area. The Sentinel 1 data came from Google Earth Engine’s (GEE) Level-1 Ground
Range Detected (GRD) Interferometric Wide Swath (IW) product. Sentinel 1 radar observations were
projected onto a standard 10-m grid in GRD output. The Sen2Cor method was used to mask for
clouds and cloud shadows, and the Sentinel 2 Level-1C data was sourced from the Copernicus Open
Access Hub. To estimate the purpose of classification, stochastic forest classification method was
used to predict classification accuracy. Using seven types of crops, the classification map of the 2020
growth season in Tarom was prepared using 10-day Sentinel 2 smooth mosaic NDVI and 12-day
Sentinel 1 back mosaic. Kappa coefficient of 0.75 and a maximum accuracy of 85% were reported in
this study. To achieve maximum classification accuracy, it is recommended to use a combination of
radar and optical data, as this combination increases the chances of examining the details compared
to the single-sensor classification method and achieves more reliable information.

Keywords: Sentinel 1 and 2; Copernicus Sentinels; crop classification; food security; agricultural
monitoring; remote sensing; data analysis; SAR; random forest

1. Introduction

To ensure food security, each region must produce high-consumption agricultural
crops on time and in sufficient quantities [1]. Plant inventories of the crop season as one of
the important components of agricultural statistics and estimation of crop fertility [2], as
well as recognizing the region’s capabilities for production, information about the type of
crop, depending on the existing conditions, is one of the main preconditions for controlling
anomalies benefit the agricultural and insurance industries as a private sector, as well as the
public sector. Remote sensing [3] is one of the more advanced methods for mapping crops
from various regions. The most common method for classifying crops in remote sensing is
with optical images. With advances in remote sensing and spatial, temporal, and spectral
separations, classification results became more professional [4]. Sentinel 2A was launched

Appl. Sci. 2021, 11, 10104. https://doi.org/10.3390/app112110104 https://www.mdpi.com/journal/applsci1
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into orbit on 23 June 2015 as part of the Copernicus Sentinels mission. Sentinel 2 is made up
of two satellites, Sentinel 2A and Sentinel 2B, which are very similar to each other. Sentinel
2 has a revisit time of 5 days, rather than 10 days, because of these 2 satellites (2A and
2B). Short-infrared, near-infrared, and visible wavelengths are among the electromagnetic
spectrum parties of 13 bands of Sentinel 2’s multispectral device.

Sentinel 2 was used in a variety of research fields for product classification due to
its unique and advanced specifications [5]. However, the presence of clouds is one of the
drawbacks of using optical sensors. Because light rays cannot penetrate the cloud, there is
a gap in visual images due to the presence of clouds and cloud shadows, and this lack of
influence is a significant problem in classification and monitoring of crops. The technique
of combining multiple sensors is used to solve the problem of the cloud and its shadow; this
technique can effectively use different parts of the electromagnetic spectrum [6]. The size of
cloud particles, for example, is smaller than the wavelength of microwave radiation in the
C band, allowing it to influence the cloud. With radar sensors, satellites emit energy and
measure its reflection, allowing them to benefit from various parts of the electromagnetic
spectrum due to these sensors. A synthetic aperture radar (SAR) [7] can be defined as
a system that uses tool movement to achieve acceptable ground resolution. Despite the
fact that SAR data from space is now widely available to the public, it used to necessitate
special procedures [8]. Following the launch of the Sentinel 1 mission, SAR data became
freely available for a limited time [9]. Sentinel 1A and Sentinel 1B satellites have a six-day
recurring frequency. Because of the overlap and combination of ascending and descending
orbits, this period is repeated every two days for Sentinel 1 in Europe. Because SAR images
determine plant structure and moisture content, and visual images specify vegetation
biophysical processes, the combination of optical and SAR images provides a source of
supplementary data.

Figure 1 shows the radar backscatter and NDVI (Normal Difference Vegetation Index)
profiles from the Sentinel 1 and Sentinel 2 satellites. Radar data will be used to determine
the structural development of the wheat plant, and it will show a significant decrease in VV
during the vertical increase stage of the plant stem. Useful information is used to examine
crops that exist in SAR backscatter amplitudes [10] to achieve classification, especially for
rice and forest mapping. The merging of data from optical and radar references, as well as
the development of software’ ability to perform classification methods, is what makes SAR
data so important in integrated land classification [11].

Figure 1. Example of profiles of (upper panel) Sentinel 2 normalized difference vegetation index (NDVI) and (lower panel)
Sigma0 VV and VH backscatter intensities for a winter wheat field.

McNairn et al. [12] reported successful results by integrating optical and SAR images
to provide annual crop inventories. Soria–Ruiz et al. [13] applied radar and optical im-
agery in cloudy areas of Mexico to provide acceptable accuracy for land use classification.

2



Appl. Sci. 2021, 11, 10104

Inglada et al. [14] shared the use of high-resolution optical image and SAR time series;
using Landsat 8 and Sentinel 1 combined data to improve early detection of crop type, they
proposed the integration of Sentinel 2 images for initial crop identification. The results
of a recent study using Sentinel 1 and Sentinel 2 data to assess groundwater and identify
irrigation crops in southern India, that mainly use Sentinel 1 data, showed that when used
in the monsoon season, they have a good ability to identify a variety of irrigated crops [15].
Torbick et al. [6] used real-time close-up images of the Sentinel 1, Sentinel 2, and Landsat 8
by combining intermediate-resolution ground observations to map seasonal crop types in
the United States.

Joshi et al. [16] in a study of 112 different land use areas to investigate the integration
of optical and radar data concluded that optical and radar data as complementary data
are also effective in determining the details of land use map with high accuracy. Aiming
to evaluate different methods of integrating optical and multipolar radar data for land
mapping in Brazil, Pereira et al. [17] concluded that radar information improves user
accuracy, while the polarization data of HH (horizontal transmission and reception) more
than horizontal polarization (HV) (horizontal transmission and vertical reception) leads
to the differentiation of different land use classes, but the integration of radar and optical
data had the best statistical results for land mapping. Zhou et al. [18] used SAR images,
optical images and the integration of both data types to evaluate the possibility of winter
wheat mapping. The classification map was performed using a combination of Sentinel 1
information and optical images using a random forest method. The best results (F1 = 98%)
were obtained by combining SAR and optical images for winter wheat mapping. Campus-
Taberner et al. [19] used a multitemporal algorithm to combine Sentinel 2 and Landsat
8 data. Their results showed that there is a high consistency between ground estimates
and measurements, and a high correlation and accuracy ((RMSE < 0.83, RMSEm < 23.6%
and RMSEr < 16.6%)) as a result of the performance of Sentinel 2 and Landsat 8 images
were reported.

As mentioned above, many studies examined the performance of the optical and radar
image combination method to identify the type of crop. So far, these studies were limited
to the following:

i. Combine Sentinel 1 and Sentinel 2 time series data;
ii. Classification of the majority of strategic national crops;
iii. Provide crop classification data with acceptable accuracy.

The aim of this research is to scrutinize the deficiency and strength of the combined
radar data and optical images to identify the type of crops. This research was conducted in
2020 in the (Iranian) region and, to achieve the purpose of researching data and images
of time series, Sentinel 1 and Sentinel 2 were used to answer the following questions
with Tarom help of the obtained results: (i) how can acceptable classification accuracy
be achieved given the changes in plant growth during the growing season? (ii) What is
the contribution of each data set used in this study in estimating the research objectives?
(iii) How can the accuracy of the information be measured for acceptable classification?

2. Materials and Methods

2.1. Study Area

This research was carried out in Tarom City (Zanjan Province), Iran, which has a wide
range of climates (Figure 2). The semiarid cold climate, which occupies about 34% of the
city area and, unlike the cold and humid climate, has the lowest location, is the driest. The
region’s lowest point is 300 m above sea level, and the region’s highest point is 2700 m in
the northeastern mountainous areas. Tarom receives 450 mm of annual rainfall on average,
ranging from 200 mm in the lowlands to 1050 mm in the northern highlands. The average
annual temperature is 17.3 degrees Celsius, with lows of 11 degrees Celsius and highs of
45 degrees Celsius. Autumn and spring are the rainiest seasons.

3
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Figure 2. Location of the study area.

2.2. Field Data

Separately from agricultural and horticultural crops, the area under cultivation and
the type of crop harvested were extracted from statistics from the Ministry of Jihad Agri-
culture and the Agricultural Jihad Organization of Zanjan region, as well as face-to-face
interviews with Jihad Agricultural experts. More than 92,000 hectares of agrarian land
will be covered by the agricultural sector with the cultivation of 68 types of crops and
21 types of horticultural crops in the region, and the volume of runoff produced by the
region amounting to 2.2 billion cubic meters, which was constructed by several large and
small dams or is under construction soon.

2.3. Sentinel 1 Data

The Sentinel 1 data came from Google Earth Engine’s (GEE) Level 1 Ground Range
Detected (GRD) Interferometric Wide Swath (IW) product [20]. Sentinel 1 radar observa-
tions were projected onto a standard 10-m grid in GRD output. GEE preprocessed the data
with the Sentinel 1 toolbox. Thermal noise reduction, radiometric calibration, and terrain
correction were all part of the preprocessing. Sentinel 1’s key characteristics were the VV
and VH polarized backscatter readings (in decibels, dB). The orientation of the transmitted
radar beam has a significant impact on backscatter. Because of the considerably varied
viewing orientations of the ascending and descending satellite overpasses, these were split
and treated as supplementary observations. We used an improved Lee filter (Lee, 1981)
with a damping value of 1 and a kernel size of 7 × 7 to minimize radar speckle in the
pictures (Figure 3). To avoid the influence of changes in the angle of incidence on the return
values, we employed two methods:

Ignore any observations with incidence angles less than 32◦ or greater than 42◦ because
their geometries differed too much from the average incidence angle in our region of 37◦.
According to Equation (1), the remaining backscatter values observed at the angle of
incidence θ are converted to backscatter values viewed at a reference angle θre f (1).

σ0
θre f

−
σ0

θ cos2
(

θre f

)
cos2(θ)

(1)

In this equation, σ0
θ is the measured incidence angle θ backscatter intensity, and σ0

θre is
the predicted backscatter intensity under a reference angle θre f of 37 ◦C. This simplified
adjustment was based on Lambert’s law of optics and assumed scattering processes. Ac-
cording to Lambert’s law, an ideal Lambert’s reflector reflects the quantity of light equal to
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the cosine of the angle of incidence of the radiation source in any direction; hence, according
to this rule and for our categorization, the earth’s surface is not an ideal Lambert’s reflector.
After the severe incidence angle was covered, two to five statements were recorded for
each location over 12 days, resulting in a 12-day return mosaic from the combined visits of
Sentinel 1A and Sentinel 1B. Because each satellite has a 12-month repeat visit, after the
severe incidence angle was covered, two to five statements were recorded for each location
over 12 days. All recorded backscatter values inside the 12-day window for each pixel were
transformed from their dB values to the original values, averaged, and converted back to
the 12-day mosaic backscatter values in dB.

Figure 3. Sentinel 1 VH backscatter mosaics from 12 days in RGB composite. Dates are 1–13 March
2020 (red), 17–29 June 2020 (green), and 16–28 August 2020 (blue).

2.4. Sentinel 2 Data

The Sen2Cor method [21] was used to mask for clouds and cloud shadows the
Sentinel 2 Level-1C data from the Copernicus Open Access Hub, and then the iCOR
atmospheric correction scheme [22] was used to atmospherically correct the data. An
extra geometric adjustment based on manually determined ground control points was
performed on Sentinel 2 scenes that were badly coregistered (i.e., had a multitemporal
coregistration error of >0.5 pixels). At a spatial resolution of 10-m, we utilized the NDVI
value derived from the red (B4) and near-infrared (B8) bands [23]. The NDVI measure was
chosen as a typical optical descriptor because of its past effectiveness in crop categorization
studies [20]. While NDVI was reported to saturate during the most productive parts of the
growing season [24], utilizing this index in time series rather than single-date images was
proven to overcome this problem. The categorization algorithm used these NDVI values as
input. However, crop categorization over a wide area encompassing many image tiles is
complicated by frequent and uniform cloud cover. An improved version of a pixel-wise
weighted least-squares smoothing of the NDVI data over time [25] was used to eliminate
cloud blockage. Between 1 March 2020, and 31 August 2020, smoothed NDVI images were
created at 10-day intervals.
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2.5. Classification of Hierarchical Random Forest

The decision tree is one of the most effective tools for estimating target variables or
classifying patterns. A decision tree divides the input space into sections and assigns a
response value to each section [25]. In simple terms, the average of the target values related
to the patterns in each area can be used to determine the answer in regression problems, or,
in other words, the responsibilities assigned to each area based on the average of the target
values corresponds to the learning patterns in each area. RF is a new development method
for decision trees that uses grounded rules to combine the predictions of several single
algorithms. To create each tree, a different set of existing patterns is chosen, with each fixed
design being replaced. The total number of available ways [26] will be used to determine
the size of this chosen category. Because it performs better in research with extensive
input data and various features, and estimates the purposes required for mapping, the RF
algorithm is much more efficient than other classification models, such as neural networks.
We use a unique process called bootstrapping in the random forest method. Each tree
in this method represents one of the training samples that is chosen at random, and sub-
branches in each of these trees are treated as a random set of input features. As can be seen
in Figure 4, the classification method was broken down into two stages. The first stage
involved creating classes, determining water and forest crop classes, and the second stage
involved classifying the crops studied in this study. The appropriate network parameters
are determined by the search in the random forest method. The minimum sample size
required for a leaf node, the minimum sample size required to divide a node, the impurity
criterion, and the number of trees are examples of these parameters.

Figure 4. Schematic overview of two-step hierarchical classification procedure.

The RF algorithm falls under the ensemble learning methods, in which multiple
decision trees (forming a random forest) are built during training, after which the mode of
the predicted classes of the individual trees forms the output class of the forest. The RF
classifier usually outperforms simple decision trees due to less over-fitting. The random
forest is constructed using a bootstrapping technique in which each tree is fitted based on
a random subset of training samples with replacement, while at each split in this tree, a
random subset of the input features is also selected. The classification method was divided
into two different stages, the first stage including classes made, and water and forest with
crop classes were determined, and in the second stage, the classification of crops studied in
this research was done. In the random forest method, the appropriate parameters of the
network are determined by the search. These parameters can be defined as the minimum
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sample size needed for a leaf node, the minimum sample size required to divide a node,
the impurity criterion, and the number of trees [27].

2.6. Calibration and Validation Data

The data in the database were randomly divided into a set of 80% validity and 20%
calibration, the purpose of which was to examine the percentage of data calibration and
validation, and it was also considered that the final value in this range is not much different
from the actual amount of data. For water-based, human-made, and forest-created classes,
manual and training sets are generated, and the 20–80 division rule is used to capture all
data. Subsets were considered in plots over 2 ha. In this study, both validation methods,
calibration, and classification were based on pixels, and the buffer operation was not
performed on validation. Due to the omission of small strings in training and different field
sizes, a marked difference was observed between the pixel ratio and the initial verification
and calibration ratio with the independent validation sample (Table 1).

Table 1. Calibration and validation parcels and pixels per class.

Code Class Calibration Parcels Validation Parcels Calibration Pixels Validation Pixels

1 Potatoes 613 5522 121,884 3,867,261
2 Barley 175 1590 31,189 1,333,238
3 Rapeseed 10 77 1520 50,159
4 Maize 1894 17,063 293,880 15,614,296
5 Wheat 848 7652 171,864 5,700,540
6 Alfalfa 352 3179 73,059 1,913,304
7 Grassland 2614 23,549 322,425 21,200,420

- Total 7567 67,481 1,426,520 56,515,322

2.7. Classification Schemes

The main goal of this study was to determine the stock of individual and composite
optical and SAR pictures in terms of classification accuracy. Furthermore, objective insight
into the evolution of classification accuracy throughout the course of the growing season
gives important information about the predicted accuracy of a classification during a certain
phase of the growth season. One of the essential goals of this research is to compare SAR
and optical images alone and the combination of these two in the classification process,
and during the growing season we will find out the accuracy of classification with the help
of these two images, and we can even comment on the accuracy of the classification with
the help of these images in a certain period. According to Table 2, 18 classification designs
were determined. Sentinel 1 SAR images were used only for the first six designs, Sentinel 2
NDVI images for the second six designs, and Sentinel 1 and Sentinel 2 composite images
for the third six designs. In all 18 classification schemes, the performance estimators were
OA classification and Kappa Cohen (K) agreement coefficient. The following equation
represents the OA calculation:

OA =
∑ correct predictions

total number o f predictions
(2)

In the Equation (2), the predictions are presented for all validation examples, the
expected and real cases are comparable, and the following equation representing the K
calculation is also used:

K =
p0 − pe

1 − pe
(3)

where p0 is the relative observed agreement among raters, and pe is the hypothetical
probability of chance agreement.
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Table 2. Overall accuracy (OA) and kappa coefficient (k) of various categorization plans.

Sentinel 2 Sentinel 1

# March April May June July August March April May June July August OA κ

1 X 0.44 0.33
2 X X 0.60 0.52
3 X X X 0.72 0.61
4 X X X X 0.73 0.70
5 X X X X X 0.72 0.64
6 X X X X X X 0.78 0.70
7 X 0.42 0.30
8 X X 0.56 0.42
9 X X X 0.70 0.57

10 X X X X 0.73 0.65
11 X X X X X 0.74 0.72
12 X X X X X X 0.80 0.73
13 X X 0.55 0.42
14 X X X X 0.67 0.57
15 X X X X X X 0.74 0.67
16 X X X X X X X X 0.81 0.74
17 X X X X X X X X X X 0.83 0.80
18 X X X X X X X X X X X X 0.84 0.79

2.8. Classification Accuracy

Estimating the purpose of the classification, the random forest classification method is
also used to predict the classification accuracy, and the average probability of the expected
class of trees in the forest about the possibilities of the predicted class is an input sample.
The probability of a winning class is defined based on the classification certainty for a
particular instance. More reliable classification and strong agreement between different
trees indicate high accuracy, but disagreement between trees reduces the likelihood of
predicting a reliable classification. The prediction result will be shown at the pixel- or
sample-level [28].

3. Result

The trend of changes in the two variables kappa and OA in the classification methods
in this study is shown in the following table (Table 2). The table shows that as the number
of images used as input values grows, so do the values of the two variables kappa and OA.
Controlling the degree of resolution of the categories and the differences between the types
of crops can be used to investigate this increase. The differences between Sentinel 1 and
Sentinel 2 and optical classification versus SAR classification can be analyzed by examining
the results.

Sentinel 1 classification performed better than Sentinel 2 classification in March. More-
over, the optical-only classification performed better than the SAR-only classification
throughout the growing season (kappa of 0.69 vs. 0.67, OA of 77 percent vs. 75 percent).
According to these findings, different crops in early growth have different characteristics
that can be detected and compared with the light spectrum, but this conclusion can only
be applied to the crops studied in this study, such as winter cereals. Optical and radar
signatures for crops grown in April and May, such as potatoes and corn, reveal the type
of management method used and reflect the winter plant cover, which is difficult to dis-
tinguish between optical and radar studies. A combination of Sentinel 1 and Sentinel 2
images performs better than using a single sensor for classification. The maximum accuracy
obtained in the last days of July was 81 percent, which could not be increased by combining
with August images. Figure 5 depicts the final classification as of the last day of August
2020. For this purpose, no filtration was used, and the image’s recognizability is the result
of the classification packages in the crop area’s landscape. Due to the similarity between
alfalfa and potatoes at the start of the growing season, all crops were classified as potatoes
at first, but with time and growth evolution, this error was eliminated in the last days of
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August, and the distinction between alfalfa and potato was evident in the crop classification.

Figure 5. Final categorization result based on Sentinel 1 and 2 inputs through August 2020.

Figure 6 shows the results, where certain within-field zones in the center field, which
is part of the validation dataset, were incorrectly classified as alfalfa in the early mapping
stage (taken here in June 2020) but were correctly identified as potato by the end of August.
Figure 6 was specified to eliminate this ambiguity with two letters (a) and (b). At the
beginning of June 2020, the whole crop was identified as alfalfa in the study area due to
the phenological similarities between the two crops of alfalfa and potatoes and the lack
of development of plant growth, but at the end of August, due to full plant growth and
obvious phenological differences, it was possible to distinguish between the two crops
(purple represents alfalfa, and green represents potatoes).

Figure 6. Zones in middle field were misclassified as alfalfa in June (a) but were correctly labeled as
potato in August (b).

Figure 7 depicts the classification result’s dependability. Because the side pixels are
due to the integration with the signals of the surrounding terrain, the data have low validity
along the considered boundaries. Figure 7 shows the results for the high data invalidity at
the pixel boundary, which is close to the central packet. Wheats were the crops grown in
this package, but the data uncertainty can be seen in the central portion of the packages,
which can be attributed to the inconsistency created in the pixels’ background.
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Figure 7. Classification confidence defined as random forest predicted class probability of majority
class for each pixel at end of August 2020.

To ensure classification performance, which is a function of classification reliability,
the method of quantifying classification accuracy was used. To accomplish this, all samples
will be used, all data will be validated, the RF classifier will be used, and all samples will
be averaged at a certain level. In terms of Gini, this function calculates the characteristics of
the input data. The significance of the two radar and optical input sources’ characteristics
must be examined in the data [29]. We use the Gini significance feature as a reduction of
impurities when using the random forest classifier, which is used for all forest trees. Gini’s
personality is extremely valuable. Its high importance indicates that it plays a key role
in the forecasting process; on the other hand, if the feature’s importance is low, it means
that, according to Sentinel 1 sensor data, this information was limited for prediction before
May, despite being consistent with plant structure. Early April and May play a critical role
in the longitudinal development of winter crops and the ability to distinguish summer
crops from one another. Plant development shows a difference in their NDVI values
over time and during the growing season. Changes in the amount of NDVI will cause
plants to differentiate due to differences in their phenological structure. This distinction is
particularly noticeable between July and August, when the crops are distinguishable from
one another due to growth and development.

4. Discussion

If we want to correctly classify crops in a region, we need to concentrate on the
uniformity of all available inputs. If the data is related to Sentinel 1 data, 12-day return
mosaics can be created. It is crucial to be cautious when it comes to reducing the impact of
angles on the output data. We need to use a filter to get high-quality and high-resolution
radar images. The Lee filter is one of the most comprehensive filters for this situation. The
sharpness of radar images is reduced due to blurry effects. Twelve-day return mosaics and
time series can be used to compensate for this flaw, and this annoying effect can be easily
removed or reduced using this technique. However, because the classification was not the
main criterion in terms of time, this disorder will not cause a primary problem, according
to the method used in this study. Quegan et al. [30] used a special time filter in their study
that could be considered a new method, but using their method was not a priority in this
study. For Sentinel 2 data, this method was used to smooth out all cloud effects in NDVI
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images, and 10-day NDVI mosaics were considered without cloud and fog coverage. When
all predicting classes in one step lead to a 1.5 percent increase in the OA index in Tarom for
mapping crops using random forest hierarchical and time-series model inputs, the results
showed that the method of two-step hierarchical use of the method is nonhierarchical.

The first classification step was completed in August, with an OA index of around
84 percent due to differences in radar and optical effects for three different crops (forest,
construction, water). The random forest method can be used in the second stage to identify
more specialized differences between classes. During rejection, significant increases in both
kappa and OA were reported, though by the end of May, summer crops (potatoes and corn)
had grown significantly, but winter crops had also grown significantly. Increased classifi-
cation accuracy will result from increased awareness of crop phenological development
stages. Previous research has demonstrated that the use of optical time series improves
the principles of classification by allowing for the separation of crops [31]. Separation of
crops, such as cereals and vegetable crops, as well as winter and summer crops, is strongly
recommended to improve the quality of classification work, despite the difficulties that
such separation poses due to the similarity of crops such as winter wheat and winter barley.
To solve the problem, it is suggested that winter crops be classified alongside summer
crops. It is difficult to separate grasslands from winter crops (cereals) and winter crops
from summer crops. Making a classification error between grassland and winter crops can
be explained by the fact that both of these crops grow well in the months of April and May,
and the green mass is visible on both crops, making it difficult to distinguish between them.
Furthermore, vegetable crops such as potatoes and corn are very similar to one another
until the end of plant growth, making it difficult to separate them by the end of April in
practice. This can be thought of as a drawback to using remote sensing for such purposes.

Given the high values of the two kappa and OA indices during the study period
(growth season), the items obtained as a result become more citational over time, but the
results cannot be obtained in a specific time frame. As a result, it is important to remember
that we will have to wait a certain amount of time to get the desired and required results
from the crops for classification, because the variables in this study are crops that require
time, and a set of observations takes time to evolve. One of the study’s most important
findings is that the difference in the OA variable for the classification process at the start of
the growing season using two sensors, Sentinel 1 and Sentinel 2, revealed that this index
(OA) was higher in studies using Sentinel 1. The difference between the use of Sentinel
1 and Sentinel 2 sensors will be determined after 30 days of the growing season, so that
the data as predictor variables from these two sensors will be significantly different. The
characteristics of the input data can be attributed to the greater validity of radar data for
the crop classification process. The values of the OA variable were 35 percent lower when
the analyses were done solely with VH backscatter, which was even lower than when the
analyses were done with Sentinel 2 NDVI. On the basis of this evidence, it is impossible
to say with certainty that the radar results differ from the optical classification of the first
months of the growing season.

One of the issues with classifications that rely solely on optical methods is the use
of a predictor variable, which is frequently the NDVI predictor. Previous research [31]
focused on this factor, but it was later determined that NDVI could not provide a complete
view of Sentinel 2 optical images, so it is recommended that more bands be used to
achieve a more comprehensive view of optical images [32]. The method described in
Section 2.5 does not apply to the NDVI index or single spectral bands. Although the use
of different optical indices is recommended for future research, the focus of this study
is on the use of a valid vegetation index (10-m resolution NDVI). The use of radar data,
such as interferometry coherence stacks [33], can improve the validity of the classification
process. Future research should consider whether classification based on radar data is
more accurate than classification based on optical data. In the growing season, this case
can answer the research hypothesis that radar data is more efficient than cloud position.
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This study found that two periods are more important for classification when using
the NDVI predictor variable. Winter crops grew the most longitudinally in May and April,
and it was during this time that summer crops began to grow, making it possible to classify
bare soil and other plants with summer crops. Due to the clear sky and lack of clouds
during this time, optical images can be obtained in greater detail. August and July are the
two most important months for making more use of sunlight. The winter grain harvest
season and greater access to summer crops in the summer are two other factors that aid in
the sorting process. According to Zhou et al. [18], the VV index takes precedence over the
HV index when classifying crops, but we found no difference in the classification process
between the two variables in this study.

NDVI is the most important predictor when considering the characteristics of Sentinel 1
and Sentinel 2, as well as their ability to estimate forecasts. The most important crop classifi-
cation predictions are made using a combination of radar and optical features. The accuracy
of classification in areas close to the center is greater than the accuracy of classification
at pixel borders when it comes to crop classification at the pixel level. The data are all
qualitative, indicating a close relationship between classification accuracy and classification
reliability, but statistical probability cannot be used to estimate the percentage of reliability,
and statistics was ineffective in this study when it came to crop classification.

The results of this study showed that using Sentinel 2 optical data as a supplement to
Sentinel 1 SAR data provided comprehensive information on plant structure [34]. Further-
more, by using time-series images rather than single images, the problem of determining
the date of the images is eliminated [35]. High-accuracy results were reported in several
studies that used a combined method of optical and radar images. The reason for this is
that in some studies, the classification performed was related to the level [36], or filtration
was used in the classification [31], but in this study, the unfiltered method of classification
in pixels was used in addition to a small amount of OA. It is difficult to group similar crops
together, but if we look into several specific classes of different crops, the accuracy of crop
classification will improve. This obvious difference in the structure of plants will facilitate
classification if the plants are classified in terms of structure and family [37,38], such as
the classification of horticultural and agricultural crops [39], paddy and grassland. The
findings of our study are in line with those of previous studies. Data and their properties
can be prioritized over pixels in such studies, allowing the data from the two sensors
Sentinel 1 and Sentinel 2 to be used as input. Closed space can also be used with the
classification method, which has the advantage of lowering the signal-to-noise ratio. We
can look into the differences between radar and optical data, spectroscopic interference,
optical image SWIR bands, and plant phenological differences as one of the input factors
for classification in the future.

5. Conclusions

The need to feed the population is prioritized as a result of population growth. Identi-
fication of high-consumption crops and their alternative varieties is one of the main issues
in future planning to meet the nutritional needs of large-scale crop cultivation. Supplying
the cultivated crop’s fertilizer needs, awareness of water needs, and early detection of
anomalies are all critical in the second stage. These issues were largely solved by new
technologies such as remote sensing and the use of satellite imagery. When compared to
that of traditional classification methods, the Copernicus program develops the potential
for classification through the simultaneous use of multiple sensors. The classification
accuracy was said to improve with the combination of radar data and optical signals in
previous studies because one of the benefits of combining these data is that the cloud effect
is reduced. We used 10-day Sentinel 2 smoothed NDVI mosaics and 12-day Sentinel 1 back
mosaics to create a classification map for the 2020 growing season in Tarom. The random
forest method was used for classification purposes. This study reported a kappa coefficient
of 0.75 and a maximum accuracy of 85 percent. It is recommended to use a combination
of radar and optical data to achieve maximum classification accuracy, as this combination
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will increase the chances of examining the details compared to a single-sensor classification
method and provide more reliable information. This study found that combining optical
and radar data was the most important factor in predicting the final classification, and
that using optical data alone produced acceptable results. Finally, because the level of
reliability is low in areas such as closed border areas, it is much more difficult to predict
the classification than to give a general conclusion using such methods. It is also necessary
to compare the results of various sensors to better assess their ability to classify crops and
to assess the potential of various sensors for such research.
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Abstract: The increasing need for food in recent years means that environmental protection and
sustainable agriculture are necessary. For this, smart agricultural systems and autonomous robots
have become widespread. One of the most significant and persistent problems related to robots is
3D path planning, which is an NP-hard problem, for mobile robots. In this paper, efficient methods
are proposed by two metaheuristic algorithms (Incremental Gray Wolf Optimization (I-GWO) and
Expanded Gray Wolf Optimization (Ex-GWO)). The proposed methods try to find collision-free
optimal paths between two points for robots without human intervention in an acceptable time
with the lowest process costs and efficient use of resources in large-scale and crowded farmlands.
Thanks to the methods proposed in this study, various tasks such as tracking crops can be performed
efficiently by autonomous robots. The simulations are carried out using three methods, and the
obtained results are compared with each other and analyzed. The relevant results show that in the
proposed methods, the mobile robots avoid the obstacles successfully and obtain the optimal path
cost from source to destination. According to the simulation results, the proposed method based on
the Ex-GWO algorithm has a better success rate of 55.56% in optimal path cost.

Keywords: autonomous robots; remote sensing; smart agriculture; climate change; environmental
protection; drone; photogrammetry; path planning; internet of things; environmental monitoring

1. Introduction

In recent years, environmental protection and sustainability have become fundamental
needs. Environmental sustainability is the conservation of natural resources and meeting
the needs of future generations to avoid potential hazards, and for this purpose, it is vital
to interact with the planet responsibly. In this situation, it is necessary to provide future
generations with a lifestyle at least an equal in quality to the current generations, and in this
direction, it is necessary to use existing natural resources efficiently [1]. In recent times, one
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of the most popular areas of sustainability is agriculture. In the last few years, researchers
have made traditional agriculture more efficient and functional with new technologies,
concepts, and methods within the scope of smart agriculture. In this context, sustainable
agriculture can be achieved, and resources such as human and natural resources will be
used more efficiently. On the other hand, with the prediction that the world population
will reach 9 billion people by 2050, agricultural products should be increased by 70% [2].
Currently, the food industry is responsible for 30% of the world’s energy consumed and
22% of greenhouse gas emissions. In addition, if a product variety is not suitable for
certain regional conditions and the planning in planting and harvesting is wrong, it causes
the overconsumption of resources, crop culling, and consequent food shortages. These
problems may even cause forced migration in some regions [3]. Therefore, the agricultural
sector has to address serious issues such as climate change issues, limited arable land,
and increasing demand for freshwater. In this regard, it is essential that the development
policies of states for agriculture are in a sustainable framework [4].

The role of smart systems in sustainable agriculture is increasing day by day. In
this direction, many technological methods are used and recommended. One of them is
to use autonomous robots’ technology, but in an environment with many autonomous
robots and obstacles, one of the most critical tasks is to transfer these robots safely between
two points without them colliding with each other or with obstacles. For an autonomous
robot, the problem of searching for a safe path from a source to a destination is called
path planning [5,6]. This issue can be addressed using various new technologies (e.g.,
Wireless Sensor Networks (WSNs) and Internet of Things (IoT)) that have a wide range of
applications [7–9] since they can be designed with heterogeneous or homogeneous devices
in distributed, central, or Peer-to-Peer (P2P) architectures. One of the application areas of
these technologies which has become popular in recent years is agriculture [10–13]. This
field has a wide range of smart applications and systems from the cultivation of agricultural
products to their logistics [14–17]. Although there are many agricultural studies in the
literature, the design of smart and autonomous devices and applications that use effective
and efficient resources have not been developed. One of them is the proposal of efficient
3D path planning algorithms for mobile devices used in large-scale farmlands, which has
many obstacles.

It is important to consider the environment in three dimensions in order for it to be
applicable to real-world applications and projects in complex environments. Furthermore,
when it comes to mobile robots, three-dimensional movements and areas seem more
acceptable. In real application areas, considering the resources of mobile robots, such
as energy, finding the optimal path is important. Optimal path planning means that the
shortest path length, where the selected path is as far as possible from obstacles, must be
smooth without sharp turns and must consider motion constraints. Finding an optimal
3D path planning is a Non-deterministic Polynomial-time (NP-hard) problem [5,6]. This
makes metaheuristic algorithms a good choice for designing a solution to such a problem.
Considering that large-scale environments in 3D environments increase the applicability of
this study in real applications, as such, one of the fundamental problems related to robots
from past to present is 3D path planning for aerial robots. This problem can become even
more complex in large-scale agricultural areas with many obstacles.

In this study, we focused on Gray Wolf Optimizer (GWO)-based algorithms to solve
the mentioned problem. In general, GWO-based algorithms have a balanced behavior
transition between discovery and use phases because they use the hierarchical group work-
ing mechanism of wolves, and they also use a minimum number of control mathematical
parameters. In this way, the chance of finding the optimal solution in a short time is
high; in addition, the use of resources is also efficient. On the other hand, a GWO-based
method was proposed in [18] for solving the mentioned problem, and they proved it was
better than other metaheuristic-based algorithms. In this study, two methods, inspired by
Incremental Gray Wolf Optimization (I-GWO) [19] and Expanded Gray Wolf Optimization
(Ex-GWO) [19], are proposed to address the above issue. The classical GWO algorithm can
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behave more stably in normal situations (for a somewhat standard environment without
many obstacles). The Ex-GWO-based path planning method may be performed more suc-
cessfully in larger and more crowded environments with larger populations and iterations,
and the I-GWO-based path planning method may give good results in medium and smaller,
less populated environments. However, the I-GWO is faster than other algorithms.

These methods can be applied in different and diverse agricultural application areas
and thus can be useful work for farming and smart agriculture. This paper presents opti-
mized, reliable, and shortest pathfinding mechanisms for smart agricultural robots (e.g.,
autonomous tractors and agricultural drones) that track crops on large-scale farmlands
without the need for the intervention of any human using distributed IoT [20] and WSN
technologies. Thanks to the algorithms proposed in this study, efficient resource consump-
tion and product growth rate can be achieved with low risk and cost. On the other hand,
avoiding obstacles in the path planning of agricultural areas is more complex than in other
path planning areas because of a dense population of objects that can serve as obstacles
such as trees, plants, and buildings. As mentioned above, the most critical problem these
mobile robots face is the efficient use of resources such as energy, so this issue is given
importance in this paper. In other words, the management of resources with minimal
loss is the aim of the paper. In addition, a smooth and efficient pathfinding mechanism
is very important for robots; because of this, the system must showcase a sustainable
performance. Therefore, the method used with the mobile robots must deliver them to
the destination point using the best path. To achieve all these purposes, two different
algorithms based on metaheuristic algorithms are presented for each autonomous mobile
robot. Indeed, the proposed methods find collision-free optimal paths in an acceptable
time with the lowest process costs in different environments containing various obstacles.
In this study, it is assumed that there are many obstacles in agricultural land in order to
ensure that environmental conditions are realistic. Therefore, the proposed algorithms are
simulated and evaluated in a similar environment. The mobile robots in this farmland
try to find the optimal paths while bypassing possible obstacles in the farmland with our
proposed methods. In addition, in a developed application by the authors for farmers,
these employed robots can be monitored and controlled.

In Section 2 of this paper, the literature studies are presented. The proposed algorithms
and their related applications are explained in Section 3. In Section 4, the simulation results
and performances of each method are evaluated. The last section of the paper includes the
conclusions and possible further studies.

2. Literature Review

2.1. Unmanned Aerial Robots’ Applications in Agriculture

IoT and similar technologies such as WSN, which have become popular in recent years,
are used to meet the needs in the agriculture fields. Along with the IoT, the widespread use
of autonomous robots such as Unmanned Aerial Robots (UAVs) increases productivity in
agriculture. In recent years, studies related to this subject have gained acceleration [21–24].
In [25], the authors used UAVs to detect possible drainage pipes. Often, farmers need
to repair or construct drain lines to efficiently remove water from soil. Therefore, in this
study, they wanted to increase resource consumption and productivity in agriculture by
focusing on this issue. In [26], the combined application of UAV and Unmanned Ground
Robot (UGV) was proposed to monitor and manage crops. The authors proposed a system
that can periodically monitor the condition of crops, capture multiple images of them, and
determine the state of the crops. In addition to many UAV-based studies and products,
recently, the concepts of IoT and autonomous robots have begun to be presented together.
In this way, the data detected by the UAVs or each autonomous robot reach the place
where they need to be sent instantly, the necessary actions can be taken on this data,
and it can quickly provide a decision mechanism to the farmer or other technological
devices. For example, in [27], the authors presented a farm monitoring system via UAV,
IoT, and Long-Range Wide Area Network (LoRAWAN) technologies for efficient resource
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management and data delivery. In this regard, they monitored water quality. In [28], the
authors proposed a new model to minimize the post-disaster inspection cost to serve a
disaster-affected area. In this study, battery charging costs, service costs, drone hovering,
turning, acceleration, cruise, and deceleration costs were considered. In this regard, the
authors used two heuristics (not meta-heuristics) algorithms, but it was not possible to avoid
the fundamental problems of heuristics [19]. In [29], the study aimed to deliver to a number
of customers by UAVs, namely drones. Here, it focused on three issues. One was the
launch points of the drones, the second was the launch points of the customers, and the
third was the distance between the customer and the drone. The proposed method goal
was to minimize the total operational cost, including an explicit calculation of the energy
consumption of the drone as a function of the drone speed.

The most common role of drones in agriculture is to assess and monitor crops. For this,
remote sensing is carried out, but this task is not enough when agricultural applications
become more widespread. For this, autonomous mobile robots such as drones and other
UAVs with technologically different features are designed for various agricultural purposes.
In [30], the authors used satellite images to crop mapping. They used the remote sensing
feature and utilized advantages of combined radar data and optical images to identify the
type of crops. The authors claim that this combination provides an increased chance of
examining details and provides more reliable information compared to a single-sensor
classification method. We can generally categorize UAV/drone-based agricultural appli-
cations into three categories: Monitoring Applications, (b) Spraying Applications, and (c)
Multi-robots Applications. In the first category, crops are tracked, and certain appropriate
information and vegetation indices are extracted. For this, it is necessary to provide the
imaging data that are processed later. Thus, we can identify problem areas in the crop
that suffer from various diseases and pests. The data received by UAVs sensors can be
characterized based on their spectral, spatial, and temporal properties. The selection of
suitable sensors and data depends on the nature of their applications. There are many
studies in the literature related to this [31–33]. Most studies in the second category have
focused on applications that can spray pesticides and fertilizers in appropriate and correct
amounts. Most of the papers reviewed install a spray device and take into account various
conditions that can affect this process, such as weather [34–36]. We should not forget that
these agricultural chemical products can cause various problems such as environmental
disasters and human diseases such as cancer. Currently, most of the existing studies in the
literature generally focus on a single autonomous, mobile robot performing a monitoring
operation. For example, in some cases such as large crops, a single mobile device (e.g.,
UAV) cannot complete the monitoring process as it is characterized by limited power
sources (limited battery). On the contrary, a multi-robot application can overcome this
difficulty by dividing the area into multiple sub-areas corresponding to the number of
UAVs/drones [37–39]. In addition, different purposes and applications are carried out on a
single drone. However, the need for more than one mobile robot to work is increasing day
by day. In particular, parallel processing is very important in terms of performance and
process speed. In this regard, one of the most important issues is that these autonomous
mobile robots can work together as soon as possible and use fewer resources without col-
liding with each other. The situation becomes even more difficult, especially in large-scale
agricultural land, which consists of various barriers. Thus, the problem of path planning
seems to be quite important, and an efficient mechanism can be used in many various
agricultural applications; it can also be coded and embedded with different hardware
devices. Therefore, in the next subsection, the topic of three-dimensional path planning in
the literature is discussed.

2.2. Path Planning in Agricultural Applications

It is very important that autonomous robots used in smart agriculture perform their
duties efficiently and that resources are used efficiently. In this regard, a vital issue is that
these robots do their tasks with the most optimum mechanism. Therefore, it is necessary

18



Appl. Sci. 2022, 12, 943

to focus on the NP-hard type of 3D path planning problem. A general classification of
3D path planning consists of four types, as shown in Figure 1. These types are sampling-
based algorithms [40], node-based algorithms [41], mathematical-based algorithms [42],
and nature-based algorithms [43]. The methods in the first three categories suffer from
high time complexity and local minima trap, especially when mobile robots face multiple
constraints when planning a path. Metaheuristic algorithms, a set of nature-inspired algo-
rithms, are the fourth category in this taxonomy that imitate natural, biological, interactive
behaviors or physical events [44,45]. These methods try to find an almost optimal path by
eliminating the process of creating complex environment models based on stochastic ap-
proaches. The stochastic approaches can be efficient and fast in solving large and complex
optimization problems, especially in non-differentiable, multi-objective, and multimodal
problems [20,46].

 

Figure 1. 3D path planning algorithms taxonomy [5,47].

Finding the best shortest path entails some problems such as the existence of many
possible obstacles in its route. In addition, this path should be smooth without sharp turns
and must consider movement restrictions. These problems may be even more cumbersome
when considering large land areas and similar agricultural environments. Solution tech-
niques in path planning algorithms for mobile autonomous mobile robots may include
a visibility graph [48], probable road maps [49], and random exploring algorithms [50].
However, judging from the results of numerous studies in the literature, metaheuristic
methods may be better overall [51–53]. Metaheuristic methods try to find an almost op-
timal path by eliminating the process of creating complex environment models based on
stochastic approaches. These methods are among the most appropriate approaches to
solve unifying and nonlinear global optimization problems [54]. Worth mentioning here
is the No-Free-Lunch (NFL) [55] theorem. It asserts that there is no specific metaheuristic
algorithm that provides the best solution for every optimization problem. This means that
if one algorithm can solve a kind of problem effectively, then it may not be effective to
solve another kind of problem. As such, there is a considerable demand to develop new
metaheuristic algorithms that can be used in various problems.

As previously stated, the path planning problem has become popular in recent years
and the metaheuristic algorithms can be the most appropriate solution for it, but in the liter-
ature, there are not many works that study agricultural lands for various purposes. Many
agricultural studies in the literature have focused on issues such as the farmer’s income
from harvest, the variety of land use, the type and amount of employment, labor productiv-
ity, biodiversity indices based on landscape ecological measures, and soil erosion [56–58].
In the literature, although there are some studies on path planning in agricultures [59,60],
they have generally not focused either on 3D path planning or on the problem of having
many obstacles in the real environment farmlands and how to detect them.

In [61], the authors addressed the coverage path problem in a particular region with
many known obstacles for mobile robots in agriculture. The study proposed a practical
method, considering the geometry properties and obstacles of the area. It used an obstacle
avoidance mechanism to find a coverage path for agricultural drones. However, optimal
pathfinding and its usability in a 3D space were not taken into account. Additionally,
the complexity time and space of their proposed method are not efficient in comparison
with metaheuristic-based algorithms. In [59], the authors showed the simulation results of
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an algorithm designed to autonomously perform the path planning process for UAVs in
agricultural lands. The purpose of this study was to provide the appropriate conditions
to automate the process and carry out further audit activities. The algorithm considers
photogrammetric parameters such as ground sample distance (GSD) and overlap between
photos. For this, image processing techniques were used. In [62], the authors used au-
tonomously acting ground robots for various agricultural applications. They researched
different applications for path planning techniques to various agricultural contexts and
applied land coverage and point-to-point navigation techniques. They used the D* to
find the optimal path in a partial environment. However, this method is not very effi-
cient since it uses a node-based algorithm (D* algorithm), and it is also designed for 2D
areas [63]. As mentioned before, among the 3D path planning methods, metaheuristics
may be the most efficient method. In [64], the authors proposed a custom model to navi-
gate semi-autonomous agricultural robots with trailer. However, the geometry features
were considered in 2D. In addition, the authors did not focus on finding the optimal path.
Therefore, mobile devices moving on the non-optimal path map may not be successful in
using their resources efficiently.

In [65], the authors proposed a path planning method inspired by the Ant Colony
Optimization (ACO) algorithm to multipoint measurements in potato ridge cultivation.
However, the related method did not perform successfully in finding optimal paths and
is also useful for 2D areas. It may be unlikely to be implemented on real robots due
to the fact that they did not focus on the recognition of obstacles and the avoidance of
mechanisms of them. In [57], three local search metaheuristic algorithms, which were
simulated by annealing and tabu search references, were used to calculate annual crop
planning with a new irrigation mechanism. The objective function of this study was to
maximize the gross benefits associated with the allocation of crops. The authors claimed
that the tabu search method gave the best results in comparisons. In [66], an evolutionary
algorithm was used for a complex strategic land use problem based on the management
of a farming system. This study aimed to pursue a multi-purpose strategy that fulfilled
spatial constraints in the 50-year planning management of the farm. Although the study is
comprehensive, the metaheuristic method used and proposed may not be a very performant
and efficient solution.

3. Materials and Methods

With the increase in the world population, the need for agricultural and food products
has also increased. At the same time, the importance and need for smart agricultural sys-
tems and methods have also increased. Therefore, it is very important to plan optimal paths
without harming objects (barriers) such as plants and trees in agricultural areas. Thanks to
the methods proposed in this study, various tasks such as tracking crops in large farmlands
can be performed efficiently by autonomous robots. Accordingly, it is necessary to find
the optimal path between two points for robots without human intervention. Therefore,
in this paper, two adaptive 3D path planning methods were presented for autonomous
agricultural UAVs to find collision-free optimal paths in an acceptable time with the lowest
process costs in different environments, containing various obstacles. These methods were
developed, inspired by two metaheuristic algorithms (I-GWO and Ex-GWO). In addition,
many obstacles were assumed to be present in the field in order to prove that the proposed
methods are functional, and robots had to find their paths in relation to these obstacles.
In addition, this study also used a mechanism for obstacle management. The studies in
the literature either do not mention how to detect and prevent obstacles or they used the
features of an existing device and did not suggest an algorithm or technique [20,64]. This
mechanism can be embedded in various sensors and IoT devices.

3.1. Definitions

Before describing the proposed algorithms, the problem must be defined. The main
purpose of 3D path planning is to find an optimum (or nearly optimal) path between the
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source (start) and the destination (target) stations. The path planning function is defined as
outlined in Equation (1).

f (source, destination) → Trajectory (1)

Source and destination denote the relative coordinates of the source and destination
positions on the map. Each path has a cost during movement from source to destination.
There are different parameters used to define a cost between two points. In most studies,
the cost is considered as the consumption of energy, Euclidean distance, and velocity [20,21].
For example, the position matrix determines how many stations robots travel from the
source to destination. This matrix is defined using Equation (2).

Positions = [p1 , p2, p3, p4 . . . pD] (2)

where pi represents the position coordinates of each station that our robot takes on the
map. In order to find an optimized trajectory, the proposed algorithms try to minimize
cost (length of trajectory in our experiment). The cost of the trajectories is calculated using
Equation (3), where i and j denote the current and next stations.

Cost(i,j) =
j=D

∑
i=s

distancei,j + CurrentPoweri (3)

Based on Equation (3), the cost of each founded path is obtained by the sum of distances
between tuples from source to destination. Drones can be blended with metaheuristics so
they can carry out their mission efficiently. In this regard, not only the distance parameters
of the drones but also the remaining power amounts of drones are taken into account in
the fitness function, which is defined to be more realistic. Therefore, the result from the
metaheuristic algorithm can be used in real environments when applied to mobile robots.
Random and optimized trajectories are used for UAV movement from source to destination,
as shown in Figure 2. Here, the UAV moved through different stations. In path planning
methods, usually, either the robots randomly move or costly processes are undertaken in
finding an optimized path, but in this study, we tried to find the most efficient optimized
path. This process is performed gradually between both stations. In this way, the UAV tries
to find a path between two points. To optimize randomly created paths and to find the best
possible trajectory, a method is proposed in this section with a minimum computational
cost. Thanks to this method, robots can also actively avoid obstacles. In the final phase, the
sum of all tuples’ costs is calculated, and the cost of the path is obtained. The purpose of
this study was to find the best path between the start and target stations of each UAV.

Figure 2. The randomly created and optimized trajectory. (a) Randomly Created Path; (b) Optimized
Created Path.

Typically, the first step in path planning is to represent the workspace as a map. In
the maps, many obstacles were used to make the mobile robots’ tasks of finding the path
realistic and complex. The challenge was to avoid various obstacles and to reach the
position of the destination. In this study, a large-scale map was prepared to evaluate
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the proposed algorithms. The boundary of this map is shown in Figure 3a. In addition,
three mobile robots with different start and destination stations were used, and their three-
dimension points are given in Figure 3b. In this paper, it was assumed that the number of
obstacles was quite high in order to make our proposed methods applicable in real areas.
The number of obstacles was considered to be 150. Therefore, the coordination of some of
the obstacles is presented in Figure 3c, and the full list is presented in Supplementary File
1. The problem of avoiding and managing obstacles is one of the most important aspects
of path planning. The used mechanism includes two main steps and algorithms that take
place sequentially, which were inspired by [47].

 

Figure 3. Land map (a), UAVs’ positions (b) and obstacles coordinates (c).

3.2. GWO-Based Path Planning

In this paper, the path planning for autonomous agricultural robots was realized
using the proposed method, inspired by Incremental Gray Wolf Optimization (I-GWO) and
Expanded Gray Wolf Optimization (Ex-GWO) algorithms. These algorithms are inspired
by gray wolves in nature. The natural behaviors of gray wolves such as encircling, hunting,
and attacking prey have been modeled mathematically. Encircling in the I-GWO and Ex-
GWO are calculated based on Equations (4) and (5). The hunting and attacking mechanism
in the I-GWO can be obtained by Equations (9)–(11), and in the Ex-GWO, this is based on
Equations (12)–(14). There are four types of wolves in each pack; alpha, beta, delta, and
omega wolves. Each wolf has different responsibilities in the pack. Alpha, beta, and delta
wolves are involved in encircling the prey, and omega wolves update their own positions
based on them to attack the prey. The I-GWO algorithm is based on leader wolf’s behavior.
Other wolves in the pack update their own positions based on all the wolves selected before
themselves. This may result in these wolves being present in similar regions. Thus, they
only search for prey (solution) in a particular and similar area, which may be a missing
point. The nth wolf in the pack updates its own position based on the n−1 wolf before
it. This algorithm is completely dependent on the alpha wolf. In the I-GWO algorithm,
all relative operations are addressed according to Equations (4)–(11), where t indicates

the current iteration, T demonstrates maximum iteration number,
⇀
X indicates the position
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vector of a wolf, and
→
Xp is the position vector of the prey. Additionally, D is a vector that

depends on the location of the target.

→
D =

∣∣∣∣→C · →Xp −
→
Xt

∣∣∣∣ (4)

→
X(t + 1) =

→
Xt −

→
A·→D (5)

→
A = 2

→
a ·→r1 −→

a (6)
→
C = 2·→r2 (7)

→
a = 2

(
1 − t2

T2

)
(8)

→
Dα =

∣∣∣∣→Cα·
→
Xα −

→
X
∣∣∣∣ (9)

→
Xα =

→
Xα −

→
Aα·

→
Dα (10)

→
Xn(t + 1) =

1
n − 1

n−1

∑
i=1

Xi(t); n = 2, 3, . . . m (11)

Another metaheuristic algorithm (Ex-GWO) is based on the first three hierarchies of
the wolves (alpha, beta, and delta) in a pack. The fourth level of the wolves in a pack
update their positions based on the leading three wolves. Generally, the nth wolf updates
its own position relative to the prey according to the previous and the first three wolves
(Equations (12)–(14)). In the Ex-GWO algorithm, the attacking mechanism is used to avoid
the prey from escaping.

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, →Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣, →Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (12)

→
X1 =

→
Xα −

→
A1·

→
Dα,

→
X2 =

→
Xβ −

→
A2·

→
Dβ,

→
X3 =

→
Xδ −

→
A3·

→
Dδ (13)

→
Xn(t + 1) =

1
n − 1

n−1

∑
i=1

Xi(t); n = 4, 5, . . . m (14)

It is assumed that the coefficient vectors
⇀
A and

⇀
C lead to encircle the prey. The

parameter
→
a decreases from 2 to 0 relative to the iteration number. It is used to improve

the convergence speed of the algorithm. These parameters control the tradeoff between
exploration and exploitation phases. It is used to get closer to the solution range.

→
r1 and

→
r2

are the random vectors in a range of [0, 1]. In every algorithm, the leader encircles the prey,

then hunts the prey, and finally attacks the prey based on the
⇀
A value. If

∣∣∣∣⇀A∣∣∣∣ < 1, the wolf

is attacking the prey; otherwise, it is busy trying to find prey (solution). Figure 4 depicts
the working of the proposed algorithms, considering exploration and exploitation phases.
Thanks to these features, the proposed 3D path planning methods were able to act in a
balance between the two phases and try to find the most appropriate path without falling
into any local optima trap.
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Figure 4. Working mechanism of the proposed method in UAV-based agricultural applications.
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3.3. Working Mechanism of the Method

One of the most commonly applied methods of 3D path planning is to provide a
robot with a defined number of static stations and to allow an algorithm to discover the
most appropriate path. These types of algorithms are easier to apply mathematically, but
generally, their time and space complexity is relatively higher. Here, a pool of stations
is assumed so that these stations can be created randomly. Since the station selection in
our methods is based on metaheuristic algorithms, it works appropriately with fewer
parameters, and therefore, it can work efficiently by consuming resources in an acceptable
time. Mathematically, this pool has been described in the structure of the 3xn matrix. The
elements of search space represent distances between stations. Each station in the pool is
a possible position that a mobile robot can choose as the next station. This pool is used
to control the mobile robot’s movement in the area. In addition, by using the information
of this pool, it may be possible to help to avoid obstacles. The station selection process
used in our methods is presented in Algorithm 1. In this study, the number and positions
of stations (mobile robot stopovers) and obstacles are predefined similar to other studies
in the literature [5,6,15,20,53]. On the other hand, obstacle avoidance is one of the many
challenges that exist in the path planning problem. In this study, a method was used to
avoid the collision of the UAVs with obstacles (objects or other robots), which benefits from
geometric and calculus-based formulae. It was inspired by [47].

Algorithm 1. Pseudocode of station selection

1. State is array of candidate stations
2. w = distance obtained from metaheuristics //Equations (10) and (13)
3. d = The list of distances
4. For each station (i) in pool
5. di = distance between current and next stations + distance between next and

destination stations
6. End For

7. MinDist = Min(d) //Min function indicates minimum distance in the list
8. if (MinDist < w)
9. Select station with minimum distance as next station
10. Else

11. Select station by metaheuristics as next station
12. End if

Primarily, the proposed methods initialize the random position matrix. Each row of
the position matrix defines the path, and the columns represent the number of steps in
the path to the destination. These number of stations are denoted as p. The (xm

n , ym
n , zm

n )
presents a coordinate of each station, where m is the aforementioned index of stations and
n is the number of search agents in each method (Figure 5a). The search agents are the
configuration parameter of the metaheuristic algorithms. Then, for each metaheuristic
algorithm, a search space, based on the position matrix, is initialized. The search space
is shown in Figure 5b, which represents the distance between tuples. In this table, each
row represents a path length. Each element of the row shows the distance between two
points as dn

(i,j), where i is the current state and j is the previous state. Furthermore, n is in
the number of search agents. In addition, in the proposed methods, the path cost based on
a fitness function that was presented in Equation (3) is calculated.
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Figure 5. The working mechanism of the method. (a) The position matrix of each path; (b) the search
space that represents distance between tuples.

In the next step, the proposed methods calculate the distance between each tuple for
each station in the pool. In this case, we have a distance cost (d) between the current station
and candidate next stations. The d includes two values: first is the distance between the
current and next states, and the second is the distance between next and destination states.
However, the metaheuristic algorithms find the best solution for the next station of each
current station. If the distance of the possible next stations is smaller than the obtained
value from metaheuristic algorithms (w), the relevant station with the minimum value is
selected as the elected next station. Otherwise, the UAV chooses the achieved solution of
the metaheuristic algorithms as the next station (Algorithm 1). The proposed method’s aim
is to reduce the cost of each path and try to find the optimal path with minimum cost for
multi-UAVs. In this study, three UAVs were used that had dissimilar start (source) and final
(destination) stations. The results obtained from this method are explained in the analysis
and results section. The pseudocode and flowchart of the proposed path planning can be
found in Algorithm 2 and Figure 6.

Algorithm 2. Pseudocode of proposed path planning

1. Initialize the grey wolf population Xi (i = 1, 2, . . . .., n)
2. Initialize A, C and a //Equations(6)–(8)
3. Initialize positions matrix and search space
4. Calculate fitness of each agent //Equation (3)
5. While (t < Max number of iterations)
6. For each search agent
7. Update the position of current search agent //Algorithm 1.
8. End For

9. Update a, A and C
10. Calculate the fitness of all search agents
11. Update position //Equation (11) or Equation (14)
12. Update the search space matrix
13. t = t +1
14. End While
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Figure 6. Proposed path planning method flowchart.

3.4. Other Possible Features: Applicability in Farmlands

Based on the functionality of farmland, farmers can analyze the data to increase
productivity before the agricultural year begins. Most farmers fertilize their farmland based
on the experimental information. Modern agriculture tries to use the source efficiently
and encourages farmers to use new technologies in cultivation to increase productivity
along with their income. While data that have been collected are stored in a light server
to serve the clients, peer-to-peer communication can be held between monitoring devices
with the robots via the Global System for Mobile communications (GSM). In precision
agriculture, farmers are able to increase productivity by using the previous data analysis.
As the connections are bidirectional, exchanging urgent commands such as changing
tasks, terminating current tasks, and more can be performed. A tiny unit of computers of
robots provides a mid-layer infrastructure to receive commands and to respond to requests.
Thanks to the proposed algorithms, the farmer is able to lunch a UAV with predetermined
states to monitor and control their land. Farmers can track the whole of their agricultural
land and their crops remotely, and they can also meet their needs such as irrigation and
harvesting using the related autonomous UAV and agricultural robot robots on an optimal
path and minimum costs. In addition, the proposed methods can be used to find optimal
routes for multiple UAVs at the same time in parallel or concurrently. In this case, each
UAV perceives the other UAV as an obstacle andso, the relevant UAV can continue its
mission without colliding with our obstacle management mechanism. In addition, thanks
to this mechanism, it will be possible for the proposed methods to work successfully in
dynamic or uncertain environments.

4. Results and Discussion

This section presents the performance of the proposed methods, which is analyzed
and compared with the GWO-based 3D path planning method [20]. The authors used
the Gray Wolf optimizer (GWO) algorithm to find an optimal path with minimal cost
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in 3D environments. According to the results of the study, in path planning, the GWO-
based method is better than Dijkstra, A*, D*, and several famous metaheuristic-based
methods. They proved that the GWO-based method presents a more balanced and better
performance in similar problems. In addition, GWO-based algorithms are sought after
in many research and application areas due to their balanced behavior amongst various
metaheuristic algorithms [19,20]. Therefore, we selected this method for the comparison
of results and performance. The implantation and analysis presentation was performed
in Java and MATLAB. The algorithms proposed in this study were performed on a Core
i7-5500 U 2.4 processor with 8GB of RAM.

4.1. Simulation Setting

In the simulation, large-scale, agricultural land was considered. The size of the
environment was 1000 m ∗ 1000 m ∗ 1000 m. In addition, 150 obstacles were also placed in
this area. Three UAVs with different start and endpoints were considered in each simulation
of the used methods. The map boundaries, UAVs, and obstacle positions were assumed
based on Figure 3. Each used algorithm was run 15 times. Furthermore, simulation
parameters are presented in Table 1. The best, worst, and average costs (distance traveled
in meters), execution times and complexity, and finally, convergence curve analysis for each
UAV in each algorithm was applied by different population sizes and iteration numbers.

Table 1. The simulation parameters.

Parameter Value

Population size 30, 50, 100

Maximum iteration 50, 100, 200

Farmland Square 1000 m ∗ 1000 m ∗ 1000 m

r1, r2 Rand [0,1]

a linearly decreased from 2 to 0 over

A [−2a, 2a]

C Rand [0, 2]

4.2. Analysis and Evaluation (Cost of Paths)

In this section, the proposed path planning methods are analyzed based on the cost
function, introduced in Equation (3). The results obtained are presented in Table 2. The
starting and ending points of UAVs are assumed to be different from each other. In this
table, the costs for these autonomous robots were obtained from a set of various populations
and iterations. This process was evaluated for all algorithms used. According to the results
obtained, the Ex-GWO-based method achieved the best result compared to other used
path planning methods. The Ex-GWO-based method gave the best solution in five of the
assumed nine scenarios and ranked first among the three methods with a 55.56% success
rate. In the ranking, the I-GWO-based method was second with 38.88% and the GWO-based
method was third with 5.56%. These results are presented in Table 3.

28



Appl. Sci. 2022, 12, 943

Table 2. Simulation results for each path planning algorithm on crowded large-scale map.

Algorithm Pop Iter

UAV1

(Cost-m)

UAV2

(Cost-m)

UAV3

(Cost-m) Overall Simulation Time

(s)
Best Ave Worst Best Ave Worst Best Ave Worst

GWO 30 50 2199 2645 3385 2019 2328 2566 2148 2611 3526 8.416

I-GWO 30 50 2199 2736 3290 2087 2378 2579 2107 2446 2723 11.747
EX-GWO 30 50 2250 2649 3205 1996 2314 2655 2156 2713 4195 9.910
GWO 50 100 2145 2573 3295 1955 2234 2497 2095 2526 3469 15.040

I-GWO 50 100 2181 2558 3119 1993 2321 2520 2090 2361 2662 17.654
EX-GWO 50 100 2128 2621 3121 1918 2238 2593 2102 2638 4139 16.686
GWO 100 200 2070 2522 3202 1870 2136 2403 2026 2453 3417 23.378

I-GWO 100 200 2045 2537 3047 1936 2223 2466 2016 2261 2588 26.659
EX-GWO 100 200 2088 2479 2983 1858 2186 2528 2007 2568 4065 24.794

* The best values are bold.

Table 3. Ranking summary of metaheuristic algorithms in cost parameter.

Algorithm Success Rate (Percent) Rank

GWO 5.56 3

I-GWO 38.88 2

Ex-GWO 55.56 1

Based on the obtained results, it is determined that the Ex-GWO-based method exhibits
good performance in large-scale and complex farmland with a high number of obstacles.
This is because the Ex-GWO-based method finds the best solution according to the alpha,
beta, delta wolves, and whole pack. The wolves use the whole pack’s location knowledge to
update their positions, so for experiments with larger population sizes and more iterations,
the Ex-GWO-based method has a better chance of reaching the best solution. Therefore,
the wolves in the pack minimize the escape paths of the hunt (prey), and hence, the prey
can be caught faster. The fact that this mechanism can be better than other methods can be
seen more clearly in large and crowded environments. On the other hand, another method
proposed in this study, the I-GWO-based path planning method, outperforms good results
in smaller and less populated environments. The basic update process in this method
is very dependent on the alpha setup. Therefore, the speed of growth and the selection
of the right places for the first wolf is of great importance. In this method, there is the
possibility of finding problem solutions (prey) much faster in fewer iterations. For this
reason, our proposed methods may be the most appropriate choices in various real-life
application areas of mobile autonomous systems such as the use of UAVs for different
and varied purposes and environments. In general, the GWO-based method has good
performance in medium, small-sized, and not too crowded environments. In fact, the
usage capacity of it may be between our two methods, but its success rate is not considered
good according to the results. Briefly, the Ex-GWO-based path planning method may be
performed more successfully in larger and crowded environments with larger populations
and more iterations, and the I-GWO-based path planning method may give good results in
medium and smaller, less populated environments.

Additionally, in Figure 7, the movements of UAVs for each algorithm are also shown
on the defined map based on the obtained simulation results in various population sizes
and iterations. In this figure, the circles show the start state of each UAV, and the star
symbols show the destination state of each UAV.
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----- UAV1  ----- UAV2   -----UAV3 

  

(a) GWO I-GWO Ex-GWO 

  

(b) GWO I-GWO 

 

(c) GWO I-GWO 

Figure 7. The movement of UAVs on the generated paths in each method. (a) population of 30,
50 iterations; (b) population of 50, 100 iterations; (c) population of 100, 200 iterations.

4.3. Analysis and Evaluation (Taken Times and Complexity)

The execution times of the proposed methods are also taken into consideration. The
best execution time analyses for each method are presented in Figure 8 for various popula-
tion sizes and iterations. The GWO has the best overall-time performance, while Ex-GWO
and I-GWO rank second and third, respectively. Indeed, the GWO-based path planning for
three UAVs in the parallel periods consumes the minimum time to reach its destination.
The reason for this may be due to the fact that it depends on the three first wolves. In the
I-GWO, the incorrect position or the wrong movement of the alpha wolf can move the
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whole pack away from the target or cause them to catch the prey late. At the Ex-GWO, each
pack member has more roles and contributions than the other two methods, which means
that this algorithm may need a longer execution time. However, the Ex-GWO may not be
the worst in terms of time, as seen with its better performance in crowded environments.
The results show that in the crowded map scenarios with many barriers, the I-GWO-based
method does not perform well with regard to the overall time and optimum path cost. The
fact that the GWO had the best overall time does not mean that the other two methods were
bad, because these two methods could be concluded in an acceptable time. In addition, the
time complexity analysis of the proposed methods is O(n2).

 
Figure 8. Taken time for each method on the relevant map.

4.4. Analysis and Evaluation (Convergence Curve)

Figure 9 presents the convergence curve of each proposed path planning algorithm.
As mentioned before, the number of obstacles and the boundary sizes of the map are
listed in Figure 3. The three metaheuristic algorithms used have different structures
in the exploration and exploitation phases. Figure 9 illustrates the convergence curve
of each method with various iterations and population sizes. In the I-GWO algorithm,
the transition from exploration to the exploitation phase is faster than the other two
metaheuristic algorithms (GWO and Ex-GWO). As a result of the observations, it was
concluded that 50 iterations were enough to analyze of convergence rate because the results
achieved did not display remarkable differences [20].
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Figure 9. Convergence analysis for each UAV on the relevant map in population of 30 and 50 iterations.

In Figure 10, the statistical results of the path planning methods with the boxplot
graph are presented. Boxplots are a standard method for displaying data distribution based
on statistical indicators such as minimum, first quartile (Q1), median, third quartile (Q3),
and maximum. This diagram also provides information regarding the existence of outlier
data. In addition, the symmetry ratio in the data can be analyzed from this graph. The
values were obtained from three metaheuristic algorithms with a population size of 30
and 50 iterations after 15 runs. The box plot graph analysis describes the maximum and
minimum values of the obtained best cost and the frequency of the values. The x-axis of
each figure indicates the name of the respective algorithm, whereas the y-axis indicates the
average of best cost obtained. From Figure 10, it can be observed that the results obtained
using the Ex-GWO algorithm are near to the best solution, whilst the algorithm tries to
find the best solution. As well as this, after initial iterations in the exploitation phase the
Ex-GWO obtained results near to the best cost.

Figure 10. Boxplot graph analysis for each UAV in population of 30 and 50 iterations.

Figure 11 illustrates the distributions of costs in 15 runs. While the UAV2 has an
almost uniform distribution, both UAV1 and UAV3 have lower cost densities. Note that
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obstacles are employed as a marker for these metaheuristic algorithms, and paths with an
appropriate number of obstacles help to improve the performances. For this purpose, a
Student’s t-test was applied for all combinations of UAVs. The p-value of UAV1 and UAV2
for all combinations of algorithms, population, and iterations count in 15 runs is 9.3 × 10–12,
the p-value of UAV1, and UAV3 is 0.201, and the p-value of UAV2 and UAV3 is 9.8 × 10–6.
Generally, p-values less than 0.05 are accepted for hypothesis rejection. The null hypothesis
is that all UAV s do not have a meaningful relationship. The significant difference between
UAV2 with both UAV1 and UAV3 is proved. Therefore, the null hypothesis is rejected.

Figure 11. Distributions of costs in 15 runs for each UAV in population of 30 and 50 iterations.

5. Conclusions

The focus of the paper was to solve the NP-hard problem of efficient crop harvesting
by finding the most suitable and optimal paths for UAVs. This study presented adaptive
3D path planning methods using metaheuristic algorithms (I-GWO and Ex-GWO) for
autonomous agricultural UAVs. Therefore, in this study, maximum profit was achieved
by consuming the least energy by harvesting the most crops in the shortest possible time.
In addition, the use of resources such as human and natural resources was carried out
efficiently by creating sustainable and smart agriculture. In other words, the method allows
farmers to monitor crop variability and stress conditions continuously and harvest the
best crops, resulting in efficient resource consumption and an increase in profits. The
proposed methods tried to find the best solution in an acceptable time without falling
into any local optima trap. The proposed method’s aim was to reduce the cost of each
path and try to find the optimal path with the minimum cost for multi-UAVs. In addition,
this study also proposed a mechanism for obstacle management. In this study, a large-
scale farmland map with many various obstacles was considered. From the results, it can
be concluded that in terms of the minimum execution time parameter, the GWO-based
method did the best, whereas in finding the optimal path with the minimum cost, the
Ex-GWO-based method was better. The proposed method based on the Ex-GWO attained
a 55.56% success rate, the I-GWO, and the GWO-based method attained 38.88% and 5.56%
success rates in optimal path costs, respectively. In addition, in the analysis of convergence
curve behavior for metaheuristic algorithms, the proposed I-GWO-based method was
observed to offer the best solution. Thanks to the algorithms proposed in this study,
efficient resource consumption and product growth rate can be achieved with low risk and
cost. They can also be used in real agricultural applications. In addition, the consideration
and installation of specific mechanical and hardware devices to mobile robots and farmland
can play an important role. In this regard, information about the mission environment can
be gathered by other types of sensors (e.g., laser spot), which are mounted on mobile UAVs.
These sensors can provide information about the shape, size, and location of an obstacle.
Using sensory information, robots may advance towards a target without colliding with an
obstacle or coming under enemy radars. On the other hand, various sensor devices are used
to collect information on parameters such as humidity, temperature, etc. in agricultural
land for different applications. Briefly, since the map information and the starting and
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destination points of each mobile device are certain, the developed method can be easily
embedded on these devices. Thanks to the obstacle and object detection feature used of the
method, the supposed parameters in the defined fitness function, and the station selection
feature on the map, method can be applicable in the real world as well. It can also be even
more useful when combined with special equipment used in farmland and mobile devices.

In future studies, we would like to explain our roadmap below with a focus on smart
and sustainable agriculture. Alongside mobile robots, it will focus on a method that tracks
and harvests crops in large-scale farmland with Internet of Vehicles (IoVs). In such a
scenario, the mobile robots would only be tasked with monitoring the farmland. In this
case, a blended mechanism with image processing methods will be presented. It will then
use the results from these autonomous robots as an input matrix for the IoVs. Since a
complex and NP-hard type of problem will arise here, metaheuristic-based algorithms
will again come into play. In this regard, hybrid or new algorithms will be presented. On
the other hand, the 3D path planning methods proposed in this study can be applied to
IoT systems such as smart cities, industries, and agriculture in hybrid form with machine
learning algorithms such as reinforcement-learning- or game-theory-based algorithms.

Supplementary Materials: The supporting information about maps can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12030943/s1.
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Abstract: Within an E.U.-funded project, BESS (Pocket Beach Management and Remote Surveillance Sys-
tem), the notion of a geographic information system is an indispensable tool for managing the dynamics
of georeferenced data and information for any form of territorial planning. This notion was further
explored with the creation of a WebGIS portal that will allow local and regional stakeholders/authorities
obtain an easy remote access tool to monitor the status of pocket beaches (PB) in the Maltese Archipelago
and Sicily. In this paper, we provide a methodological approach for the implementation of a WebGIS
necessary for very detailed dynamic mapping and visualization of geospatial coastal data; the descrip-
tion of the dataset necessary for the monitoring of coastal areas, especially the PBs; and a demonstration
of a case study for the PBs of Sicily and Malta by using the methodology and the dataset used during
the BESS project. Detailed steps involved in the creation of the WebGIS are presented. These include
data preparation, data storage, and data publication and transformation into geo-services. With the help
of different Open Geospatial Consortium protocols, the WebGIS displays different layers of information
for 134 PBs including orthophotos, sedimentological/geomorphological beach characteristics, shoreline
evolution, geometric and morphological parameters, shallow water bathymetry, and photographs of
pocket beaches. The WebGIS allows not only for identifying, evaluating, and directing potential solutions
to present and arising issues, but also enables public access and involvement. It reflects a platform
for future local and regional coastal zone monitoring and management, by promoting public/private
involvement in addressing coastal issues and providing local public administrations with an improved
technology to monitor coastal changes and help better plan suitable interventions.
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1. Introduction

The numerous fields of application of geographic information systems (GISs) have
now become an effective and irreplaceable element in the study of anthropogenic activities
and natural phenomena, thanks to sophisticated technologies and the growing interest
generated by the science of geographic information [1]. Geospatial data gathered on natural
phenomena are required to construct maps and they are increasingly being used in GISs.
These are systems that can capture, store, analyze, manage, and share data that are linked
to geographical locations [2]. Over the years, GISs have become more dynamic, flexible,
and accessible to users [3]. Once a GIS project has been prepared, web publishers can
create and publish interactive web pages characterized by a high level of customization in
the form of a WebGIS. It allows the information, including access to the maps published
online, to be available to end users, such as citizens, tourists, and regional administrations,
by using a common web browser by connecting from remote Internet locations [4]. The
WebGIS combines two powerful technologies: GIS and the Internet, providing connectivity
at the global level [5]; the result of this synergy results in greater ease in finding data,
sharing analytical tools, and reaching a larger number of users [6,7]. Opdam [7] has
argued that communication between science and society constitutes a relevant tool to
optimize any planning and management. Veenendaal et al. [8] discussed the development
of web mapping and presented a timeline of major web mapping events starting just after
the creation of the World Wide Web with the publication of online maps in 1993 to the
development of real-time services in 2017.

Examples of WebGISs have been developed in various fields, including radon risk
management [9] and a risk assessment system for heavy metal pollution [10], georeferenced
bibliographies [11], wastewater treatments [12] and water environment monitoring and
management systems [13], planning and emergency phases in case of floods [14], transport
infrastructure management [15], management of abandoned mines [16], civic education on
peace and conflict [17], and as a landslide early warning system [18].

In the coastal field, examples of WebGISs have been utilized for visualizing coastal
flooding vulnerability and planning for resiliency [19] and as a support to the management
of coastal areas [20–22].

Application and interface servers have been used in WebGISs already consolidated by
important public administrations, such as, for example, the Province of Belluno [23], Arpa
Puglia [24], and the Metropolitan City of Venice [25].

The WebGIS approach can be defined as a set of geographic information services for
the internet, based on a network that uses different forms of internet access to provide
geographic information, analytical tools, and different GIS services [26]. The WebGIS is a
GIS that uses web technology to communicate between the web application server and the
end user client [19,27,28]. While incredibly powerful, the adoption of desktop GIS software
has often lagged, due to several reasons, such as the expense of site licenses and higher-end
computer hardware and the complexity of GIS software requiring high levels of training
and expertise. With WebGISs, users do not need to purchase and install expensive GIS
software to access and work with maps and databases [29]. Also, users do not need to
become experts in sophisticated GIS applications, since the functionality is made available
through a regular web browser and an integrated viewer with a simple, user-friendly
interface. Otherwise, GIS tools and data are often beyond the reach of ordinary citizens
with an interest in a particular place-based decision problems [19].

Implementation of WebGISs applied on pocket beaches (PBs) of Sicily, Malta, Gozo,
and Comino represents one of the outputs of the Pocket Beach Management and Remote
Surveillance System project (BESS), co-financed by the European Union (European Regional
Development Fund, within the Operative Program Italy—Malta 2014–2020), coordinated
by the Department of Mathematical and Computer Sciences, Physical Sciences, and Earth
Sciences (MIFT) of the University of Messina (UNIME). The Maltese partners included the
Ministry for Gozo and University of Malta (represented by the Euro-Mediterranean Center
on Insular Coastal Dynamics (ICoD)); the Sicilian partners included the Department of
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Earth Sciences (DiSTeM) of the University of Palermo (UNIPA) and the National Institute of
Geophysics and Volcanology (INGV).The aim of the BESS project was to achieve, following
a large number of studies, a coastal monitoring platform that contained geological and
morphological data, biological and sedimentological analysis, bathymetric information,
and aerial photogrammetric and anemometric data. This platform was developed to allow
the management of these input data within a WebGIS to study the evolution of 134 PBs in
Sicily and Malta.

PBs represent coastal features characterized by their evolving shape, their geomorpho-
logical influence on sedimentary input, and their ecological value. These enclosed beaches
are small beaches set between headlands that diffract or refract incoming waves [30–32].
The term “pocket beach” describes a beach controlled by a geological structure or a hu-
man structure, such as a groin or jetty [33–35] and they are common along rocky coasts
throughout the world [36,37].

Detailed studies of PBs have previously been conducted [35,37–42], PBs are widespread
throughout the entire coastline [42–44] and the characteristics of their exceptional natural
landscape make them very attractive to tourists. Natural and man-made PBs are frequent
elements of the Sicilian and Maltese coast and are often the most attractive segments of
rocky coasts, forming a hub for tourist activity.

The main contributions of this paper are to provide:

- A methodological approach for the implementation of a WebGIS necessary for a very
detailed dynamic mapping and visualization of geospatial coastal data.

- The description of the dataset necessary for the monitoring of coastal areas, especially
the PBs.

- A demonstration of a case study for the PBs of Sicily and Malta by using the method-
ology and the dataset used during the BESS project.

In this paper, the process followed during the implementation of the BESS WebGIS
is presented. The WebGIS contains the dataset obtained from a series of monitoring
procedures carried out with a holistic approach during the BESS project. The project was
adopted in the aim of reaching a turning point in terms of management of the geological and
naturalistic heritage represented by the PBs, by considering, above all, implications of the
well-being of society that arise from the protection of highly valued tourist sites. This paper
describes how WebGIS technology was employed for geospatial data representation and
dynamic mapping of the PBs. It further demonstrates the process of the implementation
of a WebGIS, which is considered to be useful in terms of mapping, monitoring, and
sensitization of coastal geomorphological peculiarities, namely the PBs.

2. Materials and Methods

2.1. Study Area

The islands of Malta and Sicily are characterized by distinctive environmental and cli-
matic similarities, as they are both located in the center of the Mediterranean Sea (Figure 1).
They have, in fact, many geological similarities since they form a spur on the northern edge
of the African continental plate that includes Malta, SE Sicily, the Pelagian Islands, eastern
Tunisia, and the northwestern Libyan shelf [45].

During the last one million years, following eustatic variations, both islands have
alternately been physically linked to each other and to the Italian peninsula [45–47]. In
particular, during the Last Glacial Maximum they were physically connected by an isthmus
and formed a territorial unicum, located in the center of the Mediterranean, acquiring the
shape of the three-legged island [48].
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Figure 1. Geographical framework of the study area (map adapted from ESRI, GEBCO, NOAA, National Geographic,
Garmin, HERE, Geonames.org, and other contributors).

Despite this, while Sicily shows a great geodiversity, due to the geologically complex
history dating from the Paleozoic to Pleistocene periods, involving metamorphic, magmatic,
and sedimentary outcrops, the geology of the Maltese Islands are predominantly composed
of marine sedimentary rocks, mainly limestone with subsidiary marls and clays [49,50],
deposited in shallow marine conditions between the late Oligocene and Miocene age [49],
with sporadic occurrences of quaternary deposits in some areas (Figure 2).

Sicily is the second largest island in the Mediterranean Sea, with a 1623 km coastal
length, divided into 26% of rocky coasts and 74% of sandy and/or pebbly beaches [51,52];
among them 110 PBs consist of both natural and artificial features, having different dimen-
sions and various planform geometries, differently exposed to incident wave energy and
with limited sediment sourcing by drainage basins.

The Maltese Archipelago consists of the three main islands of Malta, Gozo, and
Comino and a number of other minor islands and rocks [53,54]. The entire coastline
measures 272 km [55], with the predominant shore type being rocky (90.5%); sand and
shingle shores only comprise 2.4% of the remaining coastline [56]. The coastal morphology
of the Maltese Islands has been largely determined by tectonic activity, primarily in the
Holocene period, which has been uninterrupted to present day [57].

The PBs of the Maltese islands (22 PBs) are exclusively small (the largest, Ghadira, is
only 1 km long), flanked between rocky headlands or anthropogenic infrastructures, and
there is limited sediment exchange between beaches located at various spatial scales [58,59].
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Figure 2. Lithological framework of Sicily and the Maltese Archipelago. (Revised from Geologic Map of Sicily—Lentini and
Carbone, 2014).

2.2. Dataset Preparation and Data Description

The data loaded into the BESS GIS are diverse (Table A1) and concern all the parame-
ters that allow a detailed geo-characterization of the PBs present in Sicily, Malta, Gozo, and
Comino. A synthesis of these data fed the WebGIS, opening the project results to a wide
stakeholder audience.

Two flight surveys were conducted using different DJI (Mavic 2, 210 RTK, 600 Pro)
drones during the Spring–Summer season of 2019 and Autumn–Winter season of 2019/2020.
These types of drones were chosen due to their size, flight time, flight safety, stability, and
the payload of sensors they can carry.

DJI Mavic 2 is a small UAV equipped with an excellent Hasselblad camera, with a
one-inch sensor. It has a collapsible frame and two powerful landing lights, plus collision
sensors on all sides. This drone combines the high technology of stability, flight safety,
and miniaturization of electronics. DJI 210 RTK is a large UAV equipped with a flight
terminator and parachute. It has upper, lower, and front anti-collision sensors and a
sophisticated system (DJI Airsense) for signaling proximity to traditional aircrafts. The
drone is waterproof and is equipped with an RTK (real-time kinematic) system. DJI 600 Pro
is a large UAV equipped with a flight terminator and parachute. It has 3 GPS and 3 inertial
attitude and altitude systems (IMU). It is powered by 6 batteries, can carry a maximum of
5 kg payload, and has a flight range of about 30 min without any payload.

The acquired images were processed with Pix4D mapper software to build very-
high-resolution orthophotos of 1.6 cm spatial resolution. In addition, satellite images
and historical maps were also used. Based on these drone orthophotos, satellite images,
historical maps, data related to geomorphological-sedimentological, geometric param-
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eters, lithology, bathymetry, land-use/land-cover mapping of Sicilian and Maltese PBs
were extracted.

The drone orthophotos were geo-referenced through on-ground placement of markers
whose locations were acquired using GPS RTK (GNSS TOPCON Hiper HR composed
of base + rover) [60,61]. Following Bowman et al. [42], Storlazzi and Field [62], and
Narcross et al. [63], the orthophotos were also used to define the geometry and morpho-
logical characteristics of PBs.

The next step, considering the various ground control points (GCPs), was to build
the digital surface models (DSMs) of the PBs and then derive the slopes expressed as a
percentage with linear interpolation (to express the details at a better resolution), finally
classified into 4 categories (0–5–10–15%). Beaches that were difficult to reach, such as nature
reserves and private beaches or those too close to airports or military installations, were
analyzed using both free (Sentinel-2 with 10 m pixel spatial resolution) and commercial
(WorldView-2, 50 cm pixel spatial resolution) satellite images.

The satellite images were also used to derive the bathymetry [64–66], processed by
the ENVI software and then reclassified by QGIS version 3.4 (Open Source Geospatial
Foundation, Chicago, USA). The reclassification was necessary to differentiate each beach
because of different degrees of resolution, depending on multiple factors, such as presence
of Posidonia oceanica, clouds, sun, and quality of previous bathymetric data. Using this
bathymetry, submerged beach closure depth was calculated, following Lisi et al. [67], and
the mapping of the Posidonia oceanica was performed for the whole number of PBs following
Tomasello et al. [68]; Ventura et al. [69] and Rende et al. [70].

Beach sediment samples were collected along 3 shore-perpendicular transects on
beaches with a shoreline length > 300 m (and along 1 transect for < 300 m). During the
first field survey, sediments at backshore, shoreline, and −1 m were collected; this was
restricted to a shoreline sample in a second survey. The samples were then transported to
the laboratory and subjected to particle size analysis.

Land use/land cover [71] and lithology were surveyed from different sources (maps,
drones, and satellite); a buffer of 0.5 km for land use and 1 km for lithology was used.

An additional project output involved the establishment of a Wi-Fi-connected remote
surveillance network of ten sites, with a central control room feeding a specific sector of the
GIS. Each site was equipped with one or more cameras and with an anemometer powered
by solar panels. In three of these sites, the Italian National Institute of Geophysics and
Volcanology (INGV) placed a monitoring system composed of accelerometric/velocimetric
devices aimed at detecting the microseismicity induced by sea waves in three selected PBs.

The data ordered within the GIS were uploaded within the WebGIS, dividing them
into two macro areas: raster and vector file format. Raster images are those with variable
resolution, depending on the object they show and the degree of detail they intend to
represent, including orthophotos, satellite images, and bathymetry. Vectors are instead
points, lines, and polygons, imported by GIS, which contain an attribute table with all the
element details within the shapefile—sediment samples, in situ photo collections, remote
surveillance systems (points), geometric and morphological parameters (points, lines, and
polygons) and lithology, land use, Posidonia oceanica (polygons). The coordinate system
chosen was WGS84 33N (EPSG: 32633). The data uploaded to WebGIS amounted to about
200 GB.

2.3. Methodology

The WebGIS platform allows the display of geospatial data on the website with Open
Geospatial Consortium (OGC) protocols such Web Map Service (WMS), Web Feature
Service (WFS) and Web Feature Service with transactions (WFS-T), and Web Coverage
Service (WCS) and allows displays on a web page both from PC and smartphone. The
creation of the maps of the layer components, the organization, and the preparation of the
data was carried out through the QGIS Desktop program version 3.4 and, subsequently,
following various operations including the management of the scales, basic levels, meta-
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data, preparation for QGIS server, and additional function settings, these were displayed
within the Lizmap web client application (Figure 3). The various geographic data, once
obtained and stored in GIS, were published and transformed into geo-services into WebGIS.
A geo-service allows the consultation, the processing, and the return of geographic data
through the internet. OGC defines the common aspects of the OpenGIS Web Service (OWS)
and provides a software interface through which other applications’ clients can access and
use geospatial data located remotely. This communication is based on extensible markup
language (XML) through the HTTP communication protocol; so that the service that is
made available is independent to the platform and operating system. The publication of
geo-services can take place in two different ways:

- WebGIS: publication of geographic information data through an interactive web page
that does not require the use of specific GIS software for their use.

- Geo web service: a particular architecture that allows the return of geographic data
located remotely through specific protocols, following a request made either through
a simple web browser or through specific client applications.

 

Figure 3. Chart flow methodology of BESS WebGIS implementation.

Both these approaches were used for the BESS project to allow data visualization
both remotely (GIS desktop) and via WebGIS. The OWS services used for the usability of
the data were WMS, for raster data, and WFS, for vector data. The database was made
usable as a geo-service through the QGIS Server application and was subsequently made
accessible online through the Lizmap client interface. This application was chosen because
it uses the same libraries as the QGIS Desktop application and, therefore, it allows maps
with complex graphical representations to be published with the same characteristics as the
Desktop application, while keeping all the parameters defined in QGIS desktop unchanged.
The main advantage of QGIS Server is undoubtedly the integration with QGIS Desktop
itself; it also does not require specific skills in the field of publishing web services and
significantly shortens processing times. Once QGIS Server has created the standard geo-
services (WMS/WFS), the Lizmap client interface can publish data online. This interface
was chosen as it can be configured from a plugin (Lizmap) within QGIS Desktop and does
not require special knowledge of programming languages. While in the present study, a
dataset with data of different spatial resolutions was used, the BESS WebGIS allows the
visualization of information at the scale of 1:2257. This is in accordance with the Open
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Street Map basemap included. However, this scale can be improved and reach 1:1128 by
disactivating the underlying basemap.

3. Results

3.1. WebGIS Visualization and Mapping

By accessing the WebGIS platform via the following link (http://51.38.247.246/
mylizmap/lizmap/www/index.php/view/map/?repository=bess&project=bess (accessed
on 8 February 2021)), a screen will appear where it will be possible to manage the func-
tions of the service (Figure 4); the left part represents the toolbar and the various layers
present, while the central and right part is dedicated to navigation. While the default
language is in Italian, a user can choose the name of the various layers and then put it in
any convenient language.

 

Figure 4. WebGIS home screen with yellow letters indicating the main default functions.

The defaults functions and features indicated in the WebGIS home screen (Figure 5)
are illustrated below:

A. Title of the web window reflecting the container of all the information relating to the
project.

B. Initial map with the default scale set
C. Tool that allows for activating or deactivating of a basemap layer from the map back-

ground. In this study, OpenStreetMap was used due to the amount of information it
contains.

D. The legend lists the various data layers (raster and vector) in order of overlap,
inserted within the map; both single and multi-layers may be accessed. Some layers
can be grouped according to the composition of the project. By clicking on the

small triangle
g

 on the left of each layer, the relative symbol will appear, opening
the data related to the information layer. By selecting a specific layer, it will be
possible to obtain relevant information, like its spatial extension, or to modify, with
various levels, its degree of opacity. Once any layer is activated, it will appear in the
map according to a presentation style previously created in QGIS. By clicking with
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the left mouse button on any vector element, a popup window will appear on the
right containing the information of the objects positioned in that particular point
(Figure 5).

E. This tool allows navigation of the map through various buttons:

(1).  Pan—the horizontal shift (the hand sign symbol) allows movement
around the map by clicking and holding the left mouse button. It is also
possible to use the mouse wheel, both forwards and backwards, thus activat-
ing the modification of the scale, keeping the mouse cursor in the center of
the map;

(2).  Zoom window (red plus symbol), which allows a specific zoom by
dragging the pointer in order to draw a rectangle, which then defines the area
of interest to be scaled;

(3).  Zoom to initial map extension’s symbol allows zoom of the starting map;

(4).  Zoom in—zoom out’s symbol allows selection of the zoom level through
a scale bar;

(5).  Previous and next zoom: these two indicators allow one to scroll through
the zoom history.

F. The panel displaying the map overview uses a blue square highlight to indicate
the current surface shown on the map. Furthermore, a scale bar and coordinates of
the cursor point position based on the reference system set are also shown inside
this panel, in this case UTM WGS84 33N. It is possible to change the map view by
moving the blue square on the overview. In the lower right corner, there is also the
exact geographical position. Finally, a small drop-down menu also allows choosing
the unit of measurement (meters/degrees/degrees and minutes/degrees, minutes,
and seconds).

G. The location tool allows a specific position to be reached, based on any categorized
item of the project, in this case, an individual PB under study. These actions are
initially carried out by identifying the area in which the various PBs are grouped,
for example, the Sicilian Provinces (Messina, Palermo, Catania, Syracuse, Ragusa,
Agrigento, and Trapani), Malta, Gozo, and Comino. Once this parameter has been
identified, the beaches discriminated for that area will appear in the second window;
by selecting the latter, it will appear on the map to the same extent as the selected
geometric object (Figure 6). The activated layer corresponds to the orthophoto.

H. Toolbar

1.  Layer symbol activates or deactivates the layer management panel and
its legend (D)

2. Information allows obtaining information relating to the map description,
set properties, contacts of the person responsible for the published data, and
other features.

3.  Star tool allows selecting and filtering the geometries of a single layer
into the map using various tools, and, subsequently, displays in the attributes
table.

4.  Localization symbol activates or deactivates the localization tool (G).
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5.  By clicking Ruler tool it is possible to choose the type of the activated
measure (length, area, and perimeter).

6.  Permalink allows users to obtain an external link that will allow them to
save the map in the exact extension, projection, and scale of that moment.

7.  Table attribute symbol activates the attribute tables of the vector layers
present in the project, with the possibility to sort and select the fields, as well as
to filter them in order to make comparisons.

8.  Popup (message) symbol represents the pop-up window for the infor-
mation of the selected data.

9.  Atlas (globe) symbol represents the atlas, or a sequential display of a
given layer. In this case the single PBs layer was chosen for display. It is also
possible to automatically reproduce the sequence of the beaches using the
“play” button.

 

Figure 5. Display of the platform with the opening of a popup relative to the grain size information about the shoreline
sample of Capo Milazzo’s PB.
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Figure 6. Visualization on the WebGIS platform of the PB of Ramla Bay (Gozo).

Starting from these instruments WebGIS can be used to investigate the different
layers of the project, crossing queries and comparing information. This platform offers the
possibility of turning on and off layers of different or the same areas, as well as of different
time intervals; this, in both cases, shows, in detail, the characteristics of the PBs and their
evolution over time.

3.2. Examples of Comparison

Regarding the orthophotos, there is a possibility to view and overlap them in order, to
visually notice the differences, in particular by playing on the opacity of one of the two to
compare them more clearly. To make the comparison between orthophotos more effective,
it is also possible to activate the layers relating to the respective shorelines (Figure 7). For
example, certain geomorphological differences have also been digitized and shown within
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the layers concerning the geomorphological parameters, which can be interrogated to view
their characteristics.

  
(a) (b) 

Figure 7. The figure shows a comparison of the pocket beach of Rais Gerbi (Palermo) in two different time intervals through
the management of opacity: (a) Spring-Summer Season; (b) overlap of Autumn-Winter season on Spring-Summer season.
The respective shorelines are highlighted in orange.

Among the various combination that can be made by switching different layers on or
off, it may be useful to combine lithology, samples and photo collections. Thanks to this
overlap, it is possible to query the map in order to notice an affinities or differences at the
mesoscale. The following example (Figure 8) shows how, by clicking on the photographic
icon, the popups relating to both the latter and the underlying lithology layer will open
simultaneously. In Figure 9, on the other hand, by clicking on the nearby shoreline sample,
the popup will show its characteristics.

 

Figure 8. WebGIS platform that shows the overlap between samples, lithology, and photo collection of the pocket beach of
Palma di Montechiaro (Agrigento). On the right, the popup between the last two obtained by clicking on the photo collection.
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Figure 9. WebGIS platform that shows the overlap between samples, lithology, and photo collection of the pocket beach
of Palma di Montechiaro (Agrigento). On the right, the pop-up of the shoreline sample obtained by clicking on the
photo collection.

It is evident, through these simple steps, how it is possible to notice the similarities
between the lithological characteristics of the outcrop, in this case metamorphic, and the
respective photographs of the study area and the nearby beach sediments.

Another comparison can be made with regard to the sedimentological analysis, in
order to learn the differences between the grain size and other statistical parameters
(Figure 10). To compare samples related to the same vector layer, the selection tool should
be used to click the geometries to study. By clicking the filter button, the attribute table of
the selected geometries may be viewed.

It may be useful to compare the surfaces of the beaches of successive surveys. Figure 11
shows how, by activating the respective layers and clicking on them in the map, the user
can view both the visual and area differences by observing the popup.

One of the layers present in the WebGIS consists of the mapping of Posidonia oceanica
proximal to the PBs; through this platform, it is possible to observe its distribution according
to the various bathymetric zones. In Figure 12, for example, it emerged that Posidonia
oceanica develops mainly between 5 and 20 m deep.
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Figure 10. Example of comparison between beach sediments for three different transepts taken along the PB of Ce-
falù (Palermo).

 

1st Survey 

2ndSurvey 

Figure 11. Example of comparison between beach surfaces of two successive surveys made in the PB
of Tindari (Messina).
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Figure 12. Distribution of Posidonia oceanica according to the various bathymetric zones on the PB of Capo Milazzo (Messina).

4. Discussion

While many of the beaches in the Maltese islands are subject to some form of man-
agement of varying degrees, (the most established being primarily based on management
indicated in the achievement of the Blue Flag beach quality status), there is still a need for an
overall holistic management policy and strategy. In Sicily, there is a lack of coastal planning,
where coastal management has been focused on local or sectorial erosional rates, which had
previously caused severe damage to the natural and archaeological cultural heritage [52].
A very large amount of public funds has been expended on coastal protection without
prior consideration of coastal planning to better understand the needs of each individual
beach and the interaction of the specific interventions with natural system processes.

The importance of developing (within the BESS project) a monitoring system sup-
ported by a surveillance network that specifically targets pocket beaches, is supported by
a widespread concern that climate change may be disrupting the stability of otherwise
natural systems [72]. Pocket beaches have been defined as ones that have, in their evolution,
achieved a sediment balance or a state of equilibrium; they have also been referred to as
‘sediment tight’ systems. However, with an increasing influence of climate change on
natural processes that influence either the arrival of sediments to a pocket beach (such as
that via precipitation influenced watersheds) or the potential loss of sediments (such as the
wave climate influencing a pocket beach embayment), it is paramount that such potential
changes are clearly identified and monitored.

Considering the multiplicity of parameters involved in the study of PBs, and con-
sidering their small size, these micro-beaches can be considered as a sentinel system in
which, changes in the shape or grain size of the deposit or in the composition of the fauna
and flora, could give an indication of the global trend imposed by the effects of climate
change. A geospatial database is a fundamental key for the creation of the GIS of the BESS
project. All geospatial information acquired at different locations highlighted naturalistic
and ecological details of particular interest. Then, they allowed modelling of the beach
evolution and the definition of hazard levels in each PB. Such a work on a specific aspect
of the much wider coast is clearly highly useful in contributing to a more holistic coastal
zone management approach. The relevance of this work is also borne out by the acceptance
by the E.U.’s Interreg Italia–Malta funding mechanism to support this initiative aimed at
developing a WebGIS for mapping and visualization of coastal data.

In fact, the GIS plays an important and useful role in managing a large amount of
parametric data describing PBs. It is, thus, necessary to create a comprehensive data
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management system that allows cross-referencing of information related to different fields
interacting in the driving of coastal dynamics processes. WebGIS is an online-distributed
system that allows users to access geographic information data by processing services
available through a web browser; it has a strong interactivity and dynamics. Compared
with traditional GIS software (or online GIS mapping), WebGIS has a wider application
range, more timely data updates, lower construction costs, and higher security. Many
large internet companies, such as Google, Baidu, and Tencent, recently developed online
maps that are based on WebGIS technology for public use [10]. The work described
in this paper illustrates the strong potential of such a WebGIS in the manipulation and
presentation of a wide set of territorial and marine datasets that may be utilized for more
effective understanding and management purposes. Additionally, the WebGIS developed
by the BESS project is a particularly useful tool to allow a wider user audience to better
appreciate pocket beaches not just visually but also in terms of their functioning and overall
complexity; the WebGIS system presents technical data in a manner that will, however,
allow both expert and non-expert use, facilitating different levels of manipulation and
understanding. The raising of such awareness in the general public has been shown
to initiate a process that transforms their initial curiosity into a role of controller and
stimulus/driver. On a wider scope, not limited to the PBs, the utility of such a system as
WebGIS is much greater.

The lack of interest that is often demonstrated on public items may be countered
by increasing interaction with such amenities. The BESS project describes 134 PBs as a
territorial database, the evolution of which will hence forth become more visible through
the developed website and, in particular, a remote surveillance system; this will allow
public monitoring of the evolution of these systems, not only in the territorial sense, but
also in terms of the actions taken by local politicians and stakeholders.

The results demonstrate that through the development of the BESS WebGIS, (dedi-
cated only to PBs), it is possible to clearly describe all the geometric and morphological
characteristics supported by geological, sedimentological, and bathymetric data. This
simple and immediate online geo-database allows a variety of users to access the platform
to view and draw as much information as possible. Unlike Desktop GIS, the use of which
is limited to a personal computer that contains all the data of a specific project, a WebGIS is
accessible remotely via a server, with no restrictions on the place or number of users who
access it. WebGIS has the advantage of combining the potential of GIS with the usefulness
of the Internet in showing interactive maps and spatial data, as well as any subsequent
updates; this clearly makes WebGIS the cheapest and easiest way to distribute geospatial
data. The results highlighted how simple and immediate it can be to view the results of
related field campaigns once uploaded to a WebGIS platform.

The numerous examples listed demonstrate the effectiveness of WebGIS in comparing
the various levels present, which helps to better understand its scientific value and to
encourage research in this field. While the knowledge of dynamic evolution of a given
layer describes the temporal trend, it is when different types of data are crossed that the
potential of the WebGIS grows and multiplies the research ideas. While the BESS WebGIS
is undoubtedly useful for those involved in research in this field, its usefulness can be
extended to tourism, civil protection, and land-use purposes. Additionally, the BESS
WebGIS portal allows:

(1) The creation of a management model extended to a sufficiently large area.
(2) Ensuring that planning is functional to the defense of the natural asset and its con-

scious and sustainable use.
(3) Making the model implementable continuously, wherever possible involving local

administrations, and available to public and private users, using state of the art
technologies.

Through the developed WebGIS it will be possible to create a management system for
these specific territorial niches, based on an active monitoring plan, at low cost, and with a
high technological component. This monitoring–management model is in line with the
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scenarios of future management plans, which will provide for a detailed mapping of the
environments concerned, so that protection systems can be created, not necessarily those
that are structural, but rather systems based on good continuous management practice
exploiting the intrinsic resilience of the system rather than weakening it. The challenge lies
precisely in identifying the coastal management systems that make it possible to enhance
the intrinsic characteristics of resilience of the beaches. Such systems will allow users to
counter the effects of the changes that occur with the sea level rise, as well as with the
worsening of marine weather conditions.

GIS has been improving rapidly over the years, but the use and technology develop-
ment of the Internet still remain the key factors in the development of WebGIS. Only in this
way, through a complete involvement of users, will it be possible to aim for an important
information and awareness campaign linked to PBs. This will allow for the PBs, ecological
pearls, to be monitored and preserved.

5. Conclusions

A WebGIS portal including various pocket-beach-related data and models in different
temporal and spatial scales was created to present the results of the Interreg project, BESS,
to a wider group of people. It is an effective way to share information about Sicilian and
Maltese PBs, acquired by the project, and to compare coastal data with each other. The
development process suggested that the ease of use, combined with a negligible realization
cost, provides an opportunity for replicability and scalability in other geographical and
administrative contexts, and also for different purposes. It also proposes that the barriers
that limit end-user targets may be addressed though this mechanism, allowing a much
wider audience to interact with geographic information data, requiring only an internet
service for access; in this manner, not only experts but also those with less informatics skills
and less high-performing computers, such as the general public, may interact with this
database. The current BESS WebGIS was presented not as a point of arrival, but as a starting
point: a platform that must be implemented for the overall management of all coastal data
necessary for constant active monitoring. This project suggests that data management
will be useful, above all, in predictive terms of the coastal morphological trend, as an
effective tool that will support future planning, no longer local, but increasingly on a
regional scale. To assist in addressing the project’s development toward these directions, a
video surveillance system was created, allowing a network of mayors and stakeholders
involved with pocket beaches in their territories to become more directly involved with the
project and its extensive data. Bringing together various public and private entities in the
same direction increases the possibility of giving greater emphasis to coastal problems and
identifying solutions. The portal and its further development at a regional level should
improve beach-user choices by providing useful data, such as traffic conditions, services,
and the quality of each location. The portal should also facilitate the process of initiating
Integrated Coastal Zone Management at the local level. This is particularly so in Sicily,
where the results of the project and the structure and methodology followed in the BESS
project has already been integrated within the Regional Plan Against the Coastal Erosion,
which is intended to become the official instrument to manage the coastal area in Sicily.

In addition, various entities will be given the opportunity to actively participate in a
process of continuous study and monitoring. End users will have the possibility to view a
familiar basemap namely OpenStreetMap, to help them explore the portal by following the
specific guidelines. Local public administrations will be able to see the effects of changes
in the coastline and, where necessary, plan interventions aimed at the conservation of
the coast, which represents a heritage of great importance from a naturalistic and tourist
point of view. Probably, defining GIS is a more complex challenge than naming it because
the field itself is continually evolving and morphing. It is important to note that the
results of the BESS project have been used for implementing the Regional Plan Against the
Coastal Erosion (PRCEC with the Italian acronym) and they also contributed to scientific
discussions about coastal area management as well.
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Appendix A

Table A1. Summary table of the layers/data present in the GIS.

Layer Description

Orthophotos and satellite images
• Acquisition of orthophotos through APR. (two field surveys: Spring–Summer 2019,

Autumn–Winter 2019/2020)
• Sentinel-2 and Worldview-2 satellite images (Spring–Summer 2019)

Beach sediment samples Sedimentological parameters (Folk and Ward [73]).

Geometric and
geomorphological parameters

• Ro—length of the control line/headland spacing/entrance of embayment
• a—bay indentation (“depth” of the bay)
• am—bay indentation max (m)
• S1—Length of embayed shoreline (m)
• S1E—External length of embayed shoreline (m)
• S2—Length of embayed beach (m)
• S2e—Shoreline internal perimeter
• S2p—Maximum beach width
• S3—linear distance between the edges of the beach
• Sp—Beach surface
• CD—closure depth

Lithology Within a 1 km buffer from the shoreline
Land use Extracted from Sentinel-2 images for 500 m surface from the shoreline.

Bathymetry By satellite images (the degree of precision is related to the quality images)
Posidonia oceanica Mapping of the shallow water Posidonia oceanica, extracted from the clearest orthophotos

In situ photo collection Pictures of the beaches from different point of view

Remote surveillance system Two types of monitoring systems: photographic/climatic stations and stations with
accelerometer and velocimetric devices
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Abstract: The growth of the global population coupled with a decline in natural resources, farmland,
and the increase in unpredictable environmental conditions leads to food security is becoming a major
concern for all nations worldwide. These problems are motivators that are driving the agricultural
industry to transition to smart agriculture with the application of the Internet of Things (IoT) and
big data solutions to improve operational efficiency and productivity. The IoT integrates a series
of existing state-of-the-art solutions and technologies, such as wireless sensor networks, cognitive
radio ad hoc networks, cloud computing, big data, and end-user applications. This study presents
a survey of IoT solutions and demonstrates how IoT can be integrated into the smart agriculture
sector. To achieve this objective, we discuss the vision of IoT-enabled smart agriculture ecosystems
by evaluating their architecture (IoT devices, communication technologies, big data storage, and
processing), their applications, and research timeline. In addition, we discuss trends and opportunities
of IoT applications for smart agriculture and also indicate the open issues and challenges of IoT
application in smart agriculture. We hope that the findings of this study will constitute important
guidelines in research and promotion of IoT solutions aiming to improve the productivity and quality
of the agriculture sector as well as facilitating the transition towards a future sustainable environment
with an agroecological approach.

Keywords: sustainable agriculture; food security; green technologies; Internet of Things; natural
resources; sustainable environment; IoT ecosystem

1. Introduction

In order to meet the current global needs of humanity, new solutions and technologies
are constantly being proposed and implemented. This has led to the advent of the Inter-
net of Things (IoT) [1,2]. IoT is defined as the network of all objects that are embedded
within devices, sensors, machines, software and people through the Internet environment
to communicate, exchange information and interact in order to provide a comprehen-
sive solution between the real world and the virtual world [3]. In recent years, IoT has
been applied in a series of domains, such as smart homes [4,5], smart cities [6,7], smart
energy [8,9], autonomous vehicles [10,11], smart agriculture [12–15], campus manage-
ment [16,17], healthcare [18,19], and logistics [20,21]. Series of other IoT applications have
been described by Shafique et al. [22]. An illustration of rich and diverse IoT applications
for smart agriculture is provided in Figure 1.
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Figure 1. An illustration of IoT applications for smart agriculture.

According to the United Nations’ (UN 2019) statistics, the world population is esti-
mated to grow to 10 billion by 2050 [23]. As a consequence, the requirements of agricultural
products are continually increasing. However, farmlands are declining, natural resources
are increasingly depleted, and the rise of unpredictable nature challenges, such as global
warming, salinization, and flooding, make food security the most concerning problem for
all nations worldwide.

In recent years, with the aim of increasing agricultural production, new solutions and
technologies have been introduced in the agriculture sector [24]. An emerging trend is the
application of the IoT and big data. A significant number of studies have been focused on
research, experiments, and applications [25,26]. According to the Cisco forecast, over 500
billion IoT devices will be connected to the Internet by 2030 [27]. The use of IoT and big data
will enable smart agriculture and is expected to enhance efficiency and productivity [28].

Over the years, wireless sensor networks (WSN) have been strongly applied in the agri-
cultural sector, building the foundation for developing smart agriculture [29]. The unique
characteristics of WSN, such as the ability to self-organize, self-configure, self-establish,
and self-recover, make it suitable for smart agriculture [30]. The sensor device consists of a
radio frequency (RF) transceiver, sensor, microcontroller, and battery power [31]. The WSN
focuses on applications such as environmental monitoring, machine control automation,
and traceability [32–35].

Along with the development of science and technology, the urgent requirement for
breakthrough solutions and technologies aiming at improving productivity and efficiency
in the agriculture sector has led to adoption of the IoT. The primary motivation for their
applications is the breakthrough progress of smart agriculture and its inevitable role as
the future of smart and sustainable environment management. IoT integrates a series of
existing solutions and technologies, such as WSN, cognitive radio, ad hoc networks, cloud
computing, and end-user applications [36]. In the smart agricultural sector, automation
solutions and technologies, mechanical machines, knowledge, decision-making tools, ser-
vices, and software are integrated seamlessly to help farmers improve productivity, product
quality, and profitability [37].

In this work, a comprehensive survey of IoT applications for smart agriculture is
conducted. An analysis of 135 relevant works published between 2017 and 2022 was con-
ducted. Firstly, relevant 550 papers published in the period of (2017–2022) were retrieved
from major scientific databases, namely IEEE Xplore Digital Library, Science Direct, MDPI,
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and Springer, by using keywords such as IoT-enabled smart agriculture, smart agriculture,
Internet of Things, aquaponics, monitoring forestry based on IoT, tracking and tracing,
smart precision farming, greenhouse production, Sigfox, LoRa, Wi-Fi, LoRaWAN, and
IoT ecosystems. In the next step, we excluded papers that were published in low-repute
conferences and journals, and then we conducted the content analysis for the obtained
paper. Finally, 135 papers were selected for the preparation of the present work.

In addition, we analyzed and discussed the benefits and challenges, open issues,
trends, and opportunities of IoT in the smart agriculture sector. This work is organized
as follows: Section 1 introduces our work, and in Section 2, we present an IoT ecosystem
architecture for smart agriculture that consists of three main components: IoT devices,
communication technology, and data storage and big data processes. Section 3 presents
the IoT applications in agriculture, including (1) monitoring, (2) tracking and traceability,
(3) precision agriculture, and (4) greenhouses. Section 4 introduces some open issues and
future research challenges of IoT for smart agriculture. Issues are discussed for two main
directions: business and technology. In Section 5, we present the main conclusions of this
work.

2. IoT Ecosystem Architecture for Smart Agriculture

In this section, we present a common framework of an IoT ecosystem for smart agri-
culture based on three main components, including (1) IoT devices, (2) communication
technologies, and (3) data process and storage solutions. An illustration of the IoT ecosys-
tem for smart agriculture is presented in Figure 2.

Figure 2. An illustration of IoT ecosystems’ architecture for smart agriculture.

2.1. IoT Devices

The common architecture of an IoT device consists of sensors to collect information
from the environment, actuators based on wired or wireless connections, and an embedded
system that has a processor, memory, communication modules, input–output interfaces,
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and battery power [38,39]. The common architecture of a typical IoT device for smart
agriculture is shown in Figure 3.

 

Figure 3. An illustration of the common architecture of an IoT device.

Embedded systems are programmable interactive modules, namely FPGAs (field
programmable gate arrays). Sensor devices are specially designed to operate in open
environments, in nature, in soil, water, and air to measure and collect environmental
parameters that affect production, such as soil nutrients, humidity, temperature, etc. Smart
farming solutions are agricultural operations that are often deployed on large farmlands,
outdoors, so the devices that support solutions need some unique characteristics, such
as the ability to withstand the effects of weather, humidity, and temperature instability
throughout their service lifecycle. Some of their main features, as shown in Figure 4, make
IoT devices suitable for smart agriculture solutions [40–42].

 

Figure 4. The main characteristics of IoT devices.

Depending on the required operation, there are several typical sensors applied in the
smart agriculture sector. Sensors can be divided into several typical categories, such as
(1) location sensor, (2) optical sensor, (3) mechanical sensor, (4) electrochemical sensor, and
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(5) air flow sensor. These sensors are used to collect information such as air temperature,
soil temperature, air humidity, soil moisture, leaf moisture, precipitation, wind speed, wind
direction, and solar radiation, and barometric pressure [21,24,36].

2.2. Communication Technology

The survey of communication technologies for IoT [43,44] indicated that to integrate
IoT into the smart agriculture sector, communication technologies must progressively
improve the evolution of IoT devices. They play an important role in the development of
IoT systems. The existing communication solutions can be classified as: protocol, spectrum,
and topology.

Protocols: many wireless communication protocols have been proposed for the smart
agriculture sector. Based on these protocols, devices in a smart agricultural system can
interact, exchange information, and make decisions to monitor and control farming condi-
tions and improve yields and production efficiency. The typical, low-power communication
protocol numbers commonly used in smart agriculture can be divided into short-range and
long-range categories based on the communication range.

- Short-range: NFMI (near-field magnetic induction) [45], Bluetooth [46], ZigBee [47],
terahertz (Z-Wave) [48,49], and RFID [50].

- Long-range: LoRa [51], Sigfox [52], and NB-IoT (Narrowband IoT) [53].

Table 1 presents some typical communication technologies for the smart agriculture
sector. The values in Table 1 indicate that short-range communication technologies have
a transmission distance of less than 20 (m), high energy efficiency, and low data rate.
These protocols are often employed in sensor networks, while long-range communication
technologies have transmission distances of up to several tens of kilometres, consume more
energy, and are installed for backhaul device-to-device communications. A diverse survey
of low-power communication technologies for IoT that presents solutions, challenges, and
some open issues is described by Sundaram et al. [54].

Table 1. Some typical communication technologies for smart agriculture.

Type Spectrum
Transmission

Distance
Type of Network Frequency Data Rate

802.11a/b/g/n/ac Unlicensed 100 m WLAN 2.4–5 GHz 2–700 Mbps
802.11ah Unlicensed 1000 m WLAN Several Sub-GHz 78 Mbps
802.11p Licensed 1 km WLAN 5.9 GHz 3–27 Mbps
802.11af Licensed 1 km WLAN 54–790 25–550 Mbps

SigFox Licensed Rural: 50 km
Urban:10 km LPWA Zwave 100–600 bps

LoRaWAN Licensed 20 km LPWA Several Sub-GHz 0.3–100 kbps
NB-IoT Licensed 35 km LPWA Zwave 250 kbps

LTE-3GPP Licensed 5 km WWAN 1.4 MHz 200 kbps
EC-GPRS Licensed 5 m WWAN GSM bands 240 kbps
WiMAX Hybrid 50–80 km WWAN Several Sub-GHz 70 Mbps

Bluetooth Unlicensed 100 m WPAN 2.4 GHz 2–26 Mbps
ZigBee Unlicensed 1 km WHAN 2.4 GHz 250 kbps
Z-Wave Unlicensed 100 m WHAN 900 MHz 100 kbps

6LoWPAN Unlicensed 30 m WHAN Zwave 250 kbps
NFC Unlicensed 20 cm D2D 13.56 MHz 424 kbps

Spectrum: Each radio device uses certain frequency bands for communication. The
FCC (Federal Communications Commission) has defined unlicensed spectrum bands for
unlicensed operations in scientific, industrial, and medical purposes [55]. These spectrum
bands are often applied for low-power levels and short-range applications. Consequently, a
series of common technologies for the smart agriculture sector, from wireless machine con-
trol and UAVs to communication technologies such as Wi-Fi and Bluetooth, use unlicensed

65



Appl. Sci. 2022, 12, 3396

spectrum bands [56]. However, the use of unlicensed spectra faces several challenges, such
as the quality of service guarantee, the cost of setting up the initial infrastructure, and the
interference generated by the huge number of IoT devices [57,58].

A licensed spectrum usually is allocated to mobile networks. It provides more efficient
network traffic, more reliability, enhances the quality of service (QoS), offers security,
provides extensive coverage, and involves lower initialization infrastructure costs for users.
However, the use of licensed spectrum bands has faced some limitations, such as high data
transmission costs and the low energy efficiency of IoT devices [59].

Several recent studies have demonstrated the efficiency of unlicensed spectrum bands
in the mm wave range. It uses extremely low power but provides large transmission
distances and high data rates [60,61]. One limitation of the mm wave spectrum is that the
data rate is strongly affected by weather conditions, especially rain [62].

Topology: The establishment of the communication spectrum band and operation pro-
tocol of IoT devices depends on the structure that deploys IoT devices for smart agriculture
applications. Network structures for smart agriculture usually have two main types of
nodes: sensor and backhaul nodes [63]. The common characteristics of IoT sensor nodes
are short communication distance, low data rate, and high energy efficiency. In contrast,
IoT backhaul nodes often require large transmission distances, high throughput, and data
rates. Therefore, based on the role of each IoT network node, the sensor node or backhaul
node selects and installs appropriate communication technologies [64]. Figure 5 presents a
typical low-power network topology designed for measuring and monitoring factors in a
smart farm. The system includes:

(1) IoT sensor nodes collect information from the farming environment, such as soil
moisture, air humidity, temperature, nutrient ingredients of soil, pest images, and
water quality, then transmit collected data to IoT backhaul devices. Depending on
the operation purpose and installation location, IoT sensor nodes can be installed as
RFDs (reduced-function devices), which only communicate with FFDs (full-function
devices). These nodes cannot communicate with the other RFDs, aiming to save
energy and decrease investment costs.

(2) IoT backhaul nodes, besides having the role of an IoT sensor node, also play a role as
intermediate nodes to receive information from other IoT nodes and transmit it to the
control centre. IoT backhaul nodes are often installed as an FFD device, which can
connect to other FDD and RFD devices.

Figure 5. An illustration of the common IoT-based smart agriculture topology.
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2.3. Data Analytics and Storage Solutions

In the smart agriculture domain, besides the main problems of sensing, collecting
data, and controlling devices to respond to the real farming environment, data storage and
processing are also important problems and face some challenges [26,28]. In reality, the
number of collected data is huge, and traditional data storage, organization, and processing
solutions are not feasible. Therefore, big data processing solutions need to be researched
and applied for smart agriculture [65,66].

The complexity of data storage and processing is due to the unique characteristics
of the smart agriculture field, including unstructured data and various formats, such
as text, images, audio and video, economic figures, and market information. Recent
solutions and technologies have introduced the use of cloud platforms for storage and
data analytics, which are collected from farms [36,67]. In addition, cloud-assisted big data
analytic solutions, such as edge computing [68] or fog computing [69], are also proposed to
reduce latency and costs and support QoS.

The survey results demonstrate that, in recent years, many management information
systems for smart agriculture have been proposed [70–72]. Nowadays, possible solutions
have been developed and commercialized, providing solutions and services for farmers
to manage farms and fields, aiming to increase productivity, reduce human labour, and
enhance farming efficiency, as follows:

- OnFarm [73]: It is part of the SWIM family, which specializes in providing solutions
and technology for smart agriculture. OnFarm is a technology platform that allows
farmers to manage and use data in the simplest way. It is also a comprehensive
solution for managing, using, and controlling water on smart farms.

- Farmobile [74]: It is a commercialized online platform to manage smart farms that
allows farmers, traders, scientists, and insurance companies to operate and communi-
cate centrally on an online platform.

- Silent Herdsman Plat f orm [75]: It is a platform that allows monitoring of the activities
of cow colonies and predicting their milk production.

- CropX [76]: It is a platform that will enable monitor and control nutrients of farming
soil based on a sensor system and big data analytic solutions.

- FarmX [77]: It is an all-in-one platform for tree crops. FarmX provides a series
of diverse farming management solutions, including irrigation, fertilizer, cropland
management systems, environmental monitoring, and crop production forecasting.

- Easy f arm [78]: It is a platform that provides software to help farmers manage and
account for figures of farms. Easyfarm provides visual figures, including input and
output supplies management, production forecasting, and market connectivity, to
help farmers fully manage their farms.

- KAA [79]: It is a cloud-based IoT platform that aims to provide comprehensive, end-
to-end solutions for farmers, including: (1) connecting and managing IoT devices in
farms or fields; and (2) monitoring and controlling behaviours of devices based on
data analysis results.

- Farmlogs [80]: It is a platform that provides tools and solutions for: (1) automating
the production cost calculation process; (2) managing the day-to-day activities of the
farm in real-time; and (3) supporting marketing and increasing sales of products.

3. Typical Applications of IoT in Smart Agriculture

In recent years, a series of IoT applications for agriculture have been introduced.
According to survey results, we divided these applications into categories based on their
purpose, including monitoring, tracking and traceability, and greenhouse production. The
detailed results are presented in the following subsection.

3.1. Monitoring

In the agriculture sector, factors affecting the farming and production process can be
monitored and collected, such as soil moisture, air humidity, temperature, pH level, etc.
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These factors depend on the considered agricultural sector. Some smart agricultural sectors
are applying the following monitoring solutions:

Crop Farming: In this sector, some vital factors that affect the farming process and
production efficiency include air temperature, precipitation, air humidity, soil moisture,
salinity, solar radiation, pest status, soil nutrient ingredients, etc. In [81], the authors
designed an IoT device called FarmFox. This device allows real-time collection and analysis
of the composition of the farming soil and transmits the information to farmers/owners
via the Internet. The results demonstrate the health of the soil is monitored in real time to
provide timely recommendations to farmers aiming to increase productivity and farming
efficiency.

Furthermore, in [82], the authors proposed an IoT device to allow intelligent control
of temperature and humidity factors, called a weather radar. This device will automatically
turn on the warning mode using the light signal and send messages to the farmer when the
temperature or humidity exceeds a pre-installed threshold. In [83], the authors introduced
an IoT system based on Web GIS to monitor pest status and provide early warnings. In
addition, this study also proposes a predictive model based on monitoring the habitat of
pests and diseases. The efficiency of the proposed system was indicated, based on the
predicted figures of the locust epidemic, to have a high accuracy rate (over 87%) in 2019
(China).

Monitoring information, such as soil condition, moisture, and temperature, and the
prediction of natural factors, such as rainfall and weather, support the control of growing
conditions of crops, helping farmers plan and make irrigation decisions to optimize pro-
duction and reduce labour costs. In addition, the collected data, combined with big data
processing technology, can provide recommendations for implementing preventive and
remedial solutions against pests and diseases in farming.

Aquaponics: It is an integration of aquaculture and hydroponics. Aquaponics is a
farming technique where fish waste becomes a source of nutrients needed by plants. One of
the most important issues in such farms is constantly monitoring water quality, water level,
temperature, salinity, pH, sunlight, etc. [84]. According to this research direction, in [85],
the authors designed an IoT system to monitor the temperature and pH value of water for
aquaponics farms. Moreover, this system is also equipped with a control system of water
metrics to keep the fish habitat stable and an automatic fish feeding function to increase
the productivity of the fish. The results show that the IoT system had stable operation and
provided real-time monitoring parameters. The authors of [86] designed an aquaponics
farm for households/urban areas based on IoT. This system recommends the proper ratio
of fish and plants.

Consequently, the system decreases feed consumption as well as reduces carbon
emissions into the environment. The primary purpose of this proposal aims to balance the
self-sustaining ability of the aquaponics system. The experimental results demonstrate the
number of fish decreases from 30 to 15, and the number of plants increases from 20 to 30,
but the crop production will increase by more than 50%. A detailed and diverse survey of
the IoT systems and devices for control and monitoring of aquaponics farms is introduced
in [87]. Based on the obtained data, monitoring can improve the production of fish and
plants through the control, supplementation, and regulation of nutritional ingredients in
the water. The collected data were also used to automate the management of aquaponics
farms to reduce labour costs.

Forestry: Humans depend on forests for survival. Moreover, forests play a vital
role in the carbon cycle and provide a habitat for more than two-thirds of animal species
in the world. Forests also have the effect of protecting watersheds, limiting floods, and
mitigating climate change. The main factors that need to be monitored in a forest include
soil ingredients, air temperature, humidity, and concentration of several different gases,
such as oxygen, methane, ammonia, and hydrogen sulphide. A series of forest control
systems and solutions are presented in [88,89] based on IoT and big data analytics.
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In [90], the authors designed a peatland forest environmental monitoring system.
This forest area plays a very vital role in the rainforest ecosystem of Brunei. However,
the peatland forest type is very burnt. This work designed an IoT system to monitor
environmental conditions, such as temperature, humidity, wind direction, barometric
pressure, and manage possible disasters. For the purpose of enhancing feasibility, IoT
devices use the solar-powered system and communicate with the monitoring centre based
on the LoRa network. In [91], the authors proposed a solution to control forest changes
and vitality by using high-resolution RapidEye satellite imagery. This solution has been
deployed commercially in several states in Germany and has detected leaf diseases in a
pine forest affected by pests. Survey results indicate that monitoring in forestry focuses on
providing early warning systems against forest fires, pest control, or deforestation.

Livestock Farming: It is defined as the process of raising domesticated animals, such as
cows, pigs, sheep, and goats, chickens, etc., in an agricultural environment to obtain traction,
serve production, and obtain products such as meat, eggs, milk, fur, leather, etc. In this
area, the factors to be monitored depend on the type and number of farming animals [92].
In [93], the authors designed a support system for the diagnosis, prevention, and treatment
of diseases for livestock called VetLink. This system can provide recommendations for
animal health for farmers in rural areas where it is difficult to access veterinary doctors
immediately. In [94], the authors proposed a noncontact temperature measurement system
and monitoring of animals to ensure early detection of diseases and animal health. This
system can be used for remote monitoring of animal health and timely anomaly detection.
In [95], the authors introduced a monitoring system for large-scale pig farms based on IoT.
The specific solution is to attach an IC tag on each pig to monitor the behaviour of each pig,
such as their period of feeding and resting and exercise. Data from sensors are collected
and combined with data analytics solutions that can make recommendations for pig health.

The monitoring data of water, feed, and animal health for livestock in the farming
process helps farmers set up livestock plans, reduce labour costs, and enhance production
efficiency. While a series of solutions has been provided for monitoring large-scale farms,
their application in small and medium-sized farms is very limited, especially in developing
countries. This can be attributed to the high cost and the lack of knowledge needed to
set up, manage, and operate IoT systems. Therefore, effective and low-cost solutions for
agricultural IoT have much potential.

3.2. Tracking and Tracing

In order to meet the needs of consumers and increase profit value, in the future, farms
need to demonstrate that products offered to the market are clean products and can be
tracked and traced conveniently, thereby enhancing the trust of consumers in product
safety and health-related issues. In order to solve this problem, a series of tracking- and
tracing-based problems for the smart agricultural sector has been proposed, specifically as
follows:

In [96], the authors designed an information system that allows tracking and tracing
of agricultural products and foods such as dairy and vegetables, called SISTABENE. This
system helps suppliers track the production process and errors arising in the supply chain,
and helps end-users trace the origin of food. In [97], the authors proposed a food supply
chain traceability system based on blockchain technology. It helps to track and trace agri-
food supply chains’ production process and trace the origin of agricultural products. This
solution has been employed at Shanwei Lvfengyuan Modern Agricultural Development
Co., Ltd. (Shanwei, China). Although there are still limitations, the results demonstrate
that this solution has successfully supported the tracing of food and agricultural prod-
ucts through QR codes, improving product quality and ensuring the clear traceability of
products. In [98,99], the authors proposed smart agricultural solutions to tracking and
tracing agricultural products, thereby allowing consumers to know the product’s entire
history. These solutions enable tracking and tracing some of the data collected along the
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supply chain, ensuring that consumers and other stakeholders can identify products’ origin,
location, and history.

3.3. Smart Precision Farming

The advent of the GPS (global positioning system) has created breakthrough advances
in many fields of science and technology. The GPS provides the most important parameters
for locating a device, such as location and time. GPS systems have been successfully
deployed in many fields, such as smartphones, vehicles, and IoT ecosystems. However,
GPS is only good support for outdoor systems and the sky. Meanwhile, the demand
for the locating and navigating systems in the home and on the streets of smart cities is
growing rapidly. Aiming to solve this problem, an advanced global navigation satellite
system (GNSS) is being deployed [100]. Based on GPS and GNSS systems, suitable farming
maps have been established for fields and farms. As a result, agricultural machinery and
equipment can be operated autonomously [101]. Figure 6 presents an illustration of the
typical cloud-assisted, IoT-based precision agriculture platform.

 

Figure 6. Cloud-assisted IoT-based precision agriculture platform.

In smart precision farming, one of the most important applications is the use of drones
in monitoring and farming activities. Some common farming tasks using UAVs include
spraying pesticides, fertilizing, sowing seeds, evaluating and mapping, and monitoring
crop growth. In [102], the authors presented a detailed survey of drone applications for
smart agriculture, including applications, control technology, and future trends of the UAV
application for smart agriculture. In [103], the authors designed an automatic agricultural
product classification system based on camera systems, image processing algorithms, and
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mechanical actuators. The experimental results for agriculture products such as oranges
and tomatoes present a classification success rate of over 95%, and the sorting time for each
product is less than 1(s). This solution can be adapted and applied to the classification of
different agricultural products. In [104], the authors proposed a solution to estimate grape
production. The proposed solution combines an RGB-D camera mounted on a mobile robot
platform and size estimation algorithm for a bunch of grapes. The experimental results
present an average error in the range of [2.8–3.5] (cm). The results demonstrate this solution
is a feasible method for evaluating the productivity of large-scale grape farms.

The survey results show that smart precision agricultural equipment, such as irriga-
tion systems, unmanned aerial vehicles (UAV), and smart agricultural equipment, etc.,
are configurable in an autonomous-control mode based on certain conditions or can be
controlled remotely by the farmer via the Internet [105,106]. Smart precision farming helps
to improve productivity and production efficiency and is suitable for large-scale farms.
Nowadays, suppliers of precision agricultural equipment have IoT modules built into their
machines, allowing machines to operate autonomously and remotely via the Internet [107].

3.4. Greenhouse Production

A greenhouse consists of walls and a roof, which are usually made from transparent
materials, such as plastic or glass. In a greenhouse, plants are grown in a controlled
environment, including controlling for moisture, nutrient ingredients of the soil, light,
temperature, etc. Consequently, greenhouse technology makes it possible for humans to
grow any plant, at any time, by providing suitable environmental conditions [108]. Figure 7
illustrates a smart agriculture IoT system for monitoring greenhouse farming factors based
on IoT ecosystems.

Figure 7. An illustration of IoT application for monitoring farming conditions in a greenhouse.

In [109], the authors introduced an IoT-based greenhouse environmental monitoring
system for multipoint monitoring in large greenhouses. Instead of using multiple sensors
at different locations, this solution involves a drive system that allows the sensor system
to move to different locations in the greenhouse. The experimental results show that the
proposed system can effectively monitor multiple points in large greenhouses. In [110], the
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authors introduced an energy-saving temperature control technology for smart greenhouses.
This study proposed two intelligent control methods: active disturbance rejection control
and fuzzy active disturbance rejection control. The experimental results demonstrate
that the proposed technology saves over 15% of the total energy consumption of the
greenhouse. In [111], the authors designed an intelligent IoT system to monitor and
control greenhouse temperature for energy efficiency and improve crop productivity. The
experimental results for the Kingdom of Saudi Arabia, where daytime temperatures can be
above 50 ◦C, demonstrate the efficiency of the proposed solution, including saving energy
and predicting the rate of plant growth.

Recent studies indicated that solutions integrating IoT, big data processing, and artifi-
cial intelligence could be applied in greenhouses to reduce labour and energy efficiency.
Moreover, it also provides direct connections between the greenhouse farms and the cus-
tomer [112–115].

4. Challenges and Open Research Directions

The survey results indicate that IoT components for the smart agriculture sector,
including hardware and software, have been focused on research and achieved many
breakthrough results. Several IoT solutions have been deployed on large-scale farms/fields.
However, the widespread deployment of IoT in the agricultural sector still presents some
challenges. We have present two main problems: economic efficiency and technical prob-
lems. We consider these issues coupled with policies that will drive the integration of IoT
technologies in agriculture.

4.1. Economic Efficiency

In agricultural economics, one of the most important characteristics is a low rate of
profit of an investment project, which presents many risks from natural conditions. The
benefit–cost of a new technology seeking deployment in agriculture should be carefully
calculated to ensure a trade-off between the cost of technology implementation and the
profit potential. Therefore, we discuss the economic aspects related to IoT implementation
in smart agriculture.

There are several types of costs related to the implementation of IoT in agriculture.
We divided them into categories, including (1) the system initialization cost and (2) the
system operating cost. The system initialization cost includes hardware purchases (IoT
devices, gateways, base station infrastructure). The system operating cost includes service
registration cost and the cost of labour to manage IoT devices. Furthermore, additional op-
erating costs include incurred costs from energy consumption, maintenance, data exchange
among IoT devices, gateways and cloud servers. According to the opinion of Turgut and
Boloni [116], the successful deployment of the IoT technologies will only happen if the
customer benefits (customers need to know the benefits and potential) that IoT systems
provide exceed their physical value and privacy costs. The businesses participating in the
IoT domain will profit and achieve success. We can describe this process using these two
conditions, as follows:

Success o f IoT Applications=
{

Vservice > Cpri + Cuser
h + Cpay, Farmer Bene f its (1)

Vin f o + Rpay > Cbusiness
h , Businesses Bene f its (2)

where
Vservice is the expected value received by the IoT service users.
Cpri is the cost of the loss of privacy.
Cuser

h is the equipment and hardware costs the user pays.
Cpay is the payment for the service fee.
Vin f o is the received information value.
Rpay is the received direct payment.
Cbusiness

h is the share of the hardware and maintenance costs of the business.
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According to the opinion of the service user (farmers or the owner of the farm),
Equation (1) shows that the perceived value of the service for the user (Vservice) must be
higher than the total of costs, including: the cost of the loss of privacy (Cpri), the equipment
and hardware costs the user pays (Cuser

h ), and the payments for the service fee (Cpay), while
the opinion of the service provider, as shown in Equation (2), shows that the received
information value (Vin f o) and the received direct payments (Rpay) must be higher than the
share of the hardware and maintenance costs of the business (Cbusiness

h ).
There is still a gap between service providers and service users (farmers or the owner

of the farm), leading to the slow deployment of IoT applications in smart agriculture. In
terms of the economic aspect, the analyzed results show that the need for a support policy
from regulatory agencies and governments to allow service providers and service users
to use IoT-based smart agriculture applications in their infancy can be met. As discussed
in [117], to promote smart agriculture, the European Union has issued supportive economic
policies, the so-called the European CAP (Common Agricultural Policy), whose annual
budget amounts to approximately EUR 59 billion and is paid for by the nations of the EU.

In our view, to be able to apply IoT in the field of smart agriculture, service costs
(Cpay) and the operating and system initialization cost of IoT (Cuser

h ) needs to constantly be
improved and optimized to reduce the cost of the IoT services for farmers. In addition, IoT
businesses (service providers) also need to maximize the value of information obtained
(Vin f o) to improve the profitability of the service providers.

In reality, service providers may commercially exploit the information received (Vin f o)
in the period of providing services for farms, aiming to encourage the deployment of
IoT applications in smart agriculture. Nowadays, several IoT platform providers allow
free registration and use of services with some limitation conditions regarding services’
functionality and ability processing; the number of connected IoT devices; and the number
of data stored while premium functions and services charge users a fee.

In addition, one of the significant factors slowing down IoT adoption in agriculture
is farmers’ knowledge and ability to use IoT devices. In developed countries, this issue
can be easily solved due to the accessibility of new technologies of farmers. Otherwise, in
developing countries, where the majority of farmers in rural areas have very limited access
to advanced technologies, this issue is a significant challenge [118,119].

4.2. Technical Problems

Interference: Deploying a huge number of IoT devices for smart agriculture can
cause interference to different network systems, especially some IoT networks using short
spectrum bands such as ZigBee, Wi-Fi, Sigfox, and LoRa (See Table 1). Interference can
degrade system performance as well as reduce the reliability of IoT ecosystems. IoT
networks that use cognitive technology to reuse unlicensed spectra increase the cost of the
device. In our opinion, the advent of the 6G network [120] will allow a huge number of
devices to connect to the Internet with an extremely high access speed and extremely large
bandwidth. The full interference problem of IoT networks will be solved.

Security and Privacy: One of the most important problems of applying IoT in smart
agriculture is the security problem, including the protection of data and systems from
attacks on the Internet. In regard to system security, IoT devices’ limited capacity and
ability led to complex encryption algorithms that are impossible to implement on IoT
devices. As a result, IoT systems can be attacked using the Internet to gain system control
rights; IoT gateways are also attacked via denial of service [121–123]. In addition, cloud
servers can be attacked by data spoofing to perform unauthorized tasks that affect the
autonomous farming processes of farms. Cloud infrastructures can also be controlled by
attackers [124,125]. Several issues of detailed IoT data privacy and security measures have
been discussed in [126–128]. According to Neshenko et al., the IoT data security issue is one
of the biggest problems slowing down IoT adoption in smart agriculture [129].

Regarding data security, the obtained information from IoT systems in farms is col-
lected, processed, and commercially exploited by service providers to varying degrees.
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Therefore, one of the most important problems of policies regards the validity and legal
status of farm data [130]. In reality, these data are of great value when aggregated and
analyzed for large-scale agricultural activities. Consequently, without policies, the data
privacy and security of farms can affect the competitive advantage of farmers/farm owners.
In our opinion, using cryptography coupled with access keys is a possible solution to
solve this problem. Keys could be made available based on a regional user group and
to those who contributed to the database. For further complex cases, secure multiparty
computation can be used, where the homomorphic encryption method [131,132], or this
method combined with the blockchain [133], can be applied for the purpose of balancing
privacy and data utility.

In our opinion, the security problems of IoT systems will be an exciting research topic
and garner attention for both academia and industry research. An in-depth survey of
threats and solutions to improve robustness, trust, and privacy for future IoT systems is
presented in [134].

Reliability: Most IoT devices are expected to be deployed outdoors (in fields and
farms). Harsh work environments lead to the rapid degradation of IoT devices’ quality and
can lead to unexpected manufacturer failures. The mechanical safety of IoT devices and
systems must be ensured so they can withstand extremes of weather, such as temperature,
humidity, rainstorms, and floods [135]. In our opinion, new materials and technologies
need to continue to be studied to improve the durability of devices.

The open problems and challenges discussed in this section indicate that for IoT
to be widely deployed in the smart agriculture sector, there are still many issues to be
solved. Service providers need to reduce the service costs, more effectively exploiting
the information collected from the farm. On the other hand, farmers need to improve
their skills to be able to apply IoT solutions on their farm to enhance productivity and
farming efficiency. Researchers need to continually study and propose optimal solutions
and technologies to ensure IoT systems’ privacy and security and improve the durability of
IoT devices. These are really major challenges and exciting research topics in the future so
IoT can be widely applied in the smart agriculture sector.

5. Conclusions

In this study, we presented an overview of IoT and big data for the smart agriculture
sector. Several issues related to promoting IoT deployment in the agriculture sector have
been discussed in detail. Survey results indicate that many studies have been performed
to apply IoT for smart agriculture, aiming to enhance productivity, reduce human labour,
and improve production efficiency. The benefits of applying IoT and big data in agriculture
were discussed. In addition, we also pointed out the challenges we need to overcome
to be able to accelerate the deployment of IoT in smart agriculture. However, there are
still some challenges that need to be addressed for IoT solutions to be affordable for the
majority of farmers, including small- and medium-scale farm owners. In addition, security
technologies need to be continuously improved, but in our opinion, the application of
IoT solutions for smart agriculture is inevitable and will enhance productivity, provide
clean and green foods, support food traceability, reduce human labour, and improve
production efficiency. On the other hand, this survey also points out some interesting
research directions for security and communication technologies for IoT. We think that
these will be very exciting research directions in the future.
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Abstract: Land use and land cover (LULC) change has become an important research topic for
global environmental change and sustainable development. As an important part of worldwide land
conservation, sustainable development and management of water resources, developing countries
must ensure the use of innovative technology and tools that support their various decision making
systems. This study provides the most recent LULC change analysis for the last six years (2015–2021)
of Coatzacoalcos, Veracruz, Mexico, one of the most important petrochemical cities in the world
and host of the ongoing Interoceanic Corridor project. The analysis was carried out using Landsat 8
Operational Land Imager (OLI) satellite images, ancillary data and ground-based surveys and the
Normalized Difference Vegetation Index (NDVI) to identify and to ameliorate the discrimination
between four main macro-classes and fourteen classes. The LULC classification was performed
using the maximum likelihood classifier (MLC) to produce maps for each year, as it was found to
be the best approach when compared to minimum distance (MDM) and spectral angle mapping
(SAM) methods. The macro-classes were water, built-up, vegetation and bare soil, whereas the classes
were an improved classification within those. Our study achieved both user accuracy (UA) and
producer accuracy (PA) above 90% for the proposed macro-classes and classes. The average Kappa
coefficient for macro-classes was 0.93, while for classes it was 0.96, both comparable to previous
studies. The results from the LULC analysis show that residential, industry and commercial areas
slowed down their growth throughout the study period. These changes were associated with socio-
economical drivers such as insecurity and lack of economic investments. Groves and trees presented
steady behaviors, with small increments during the five-year period. Swamps, on the other hand,
significantly degraded, being about 2% of the study area in 2015 and 0.93% in 2021. Dunes and
medium and high vegetation densities (∼ 80%) transitioned mostly to low vegetation densities. This
behavior is associated with rainfall below the annual reference and increments of surface runoff
due to the loss of vegetation cover. Lastly, the present study seeks to highlight the importance of
remote sensing for a better understanding of the dynamics between human–nature interactions and to
provide information to assist planners and decision-makers for more sustainable land development.

Keywords: remote sensing; land use classification; GIS; Coatzacoalcos

1. Introduction

Land use and land cover (LULC) changes are among the research topics more re-
current in remote sensing [1–4]. Remote sensing provides comprehensive and extensive
information to understand the interaction between terrestrial ecosystems and their re-
sponses to environmental factors [5–11]. This technology is considered a powerful source
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to obtain information from terrestrial surface characteristics at different temporal and
spatial scales [12–16]. For more than half a century, scientists have used several types of
remote sensing data. From those, the most commonly used source is the Landsat satellite
based-data [17]. One of main uses of the Landsat-based satellite images is the identification
or classification of LULC changes [18–22]. Some interesting conclusions have been driven
through the use of remote sensing in LULC changes. It has been observed that changes in
land uses are dynamic, non-linear interactions between humans and nature and are driven
by complex stochastic processes [23]; worldwide changes in LULC for the last 300 years
have shown gains in agriculture and losses in forest [24]; rapid population growth in Africa
has been identified as the main driving force for the expansion of agricultural land, whereas
in developing countries, urbanization dynamics are attributed to demographic factors [25]
and transitions from cropland to urban and water bodies areas have been identified as an
important trend in Europe [26].

Some of the more remarkable research found in literature is the work conducted by
Yuan et al. [27]. Their research consists of the use of multi-temporal Landsat Thematic
Mapper data to map and quantify the LULC changes in seven counties of the Twin Cities
located in the metropolitan area of the state of Minnesota, United States. They used satellite
images corresponding to the years 1986, 1991, 1998 and 2002. Yuan et al. demonstrated an
urban zone increment from 23.7 to 32.8% in the study area. Surfaces such as rural areas,
croplands, forests and wetlands decreased from 69.6 to 60.5%. Another unique example
is the work carried out by Demissie et al. [28], where Landsat satellite data from 1973 to
2015 were classified to study land use change and its possible causes in Gonder, Ethiopia.
The study showed that about 60.1% of the area experienced land use changes within the
study period.

In Mexico, little research related to the quantification of LULC changes has been found
within the literary review. One of the few works found was carried out by Colditz et al. [29].
Their research presents a methodology to develop a land use map in Mexico for the
year 2005. The scheme was based on time series from a Moderate Resolution Imaging
Spectroradiometer (MODIS) with a 250 m resolution and an extensive sampling of data
for the different geographic zones of the Mexican surface. The results showed a map
with an overall precision of 82.5% (Kappa statistic = 0.79). A further evaluation with 780
randomly generated samples within the classes with referenced field data indicated a
precision equal to 83.4% (Kappa statistic = 0.80). Another study found in the literature
includes the generation of a land use map of the Latin American and Caribbean zone for
the year 2008. This project was developed within the framework of the project of the Latina
American Network for Monitoring and Studying of Natural Resources (SERENA) [30].
Similar to Colditz et al. [29], time series and decision trees with MODIS data (250 m) were
used for the classification of land use changes. The discrete SERENA model showed an
overall accuracy of 84%. Other uses of remote sensing in Mexico include the detection of
chinampas in the Xaltocan area in the Northern Basin of Mexico [31], the evolution of sea
temperature on the west coast of Baja California [32] and/or hydropower assessment [33].

Due to the limitations observed in the use of remote sensing in Mexico, such as limited
research using remote sensing and map course resolution, this study has integrated remote
sensing, Geographic Information Systems (GIS) analysis, field sampling and image revision
to assess the potential of the use of Landsat 8 satellite data to assess and monitor land use
changes and coverage changes in the southeastern region of the state of Veracruz, Mexico,
located in the southern coastal area of the Gulf of Mexico. Three widely used classification
methods are explored to select the more appropriate algorithm for LULC classification
under the same level of information previously extracted from field data, digital maps and
ancillary data. This comparison allows for conclusions on the advantages and drawbacks of
current classification algorithms. The analysis encompasses the definitions of macro-classes
of land use and their derived classes. The Normalized Difference Vegetation Index, also
known as NDVI, was used to identify and improve discrimination between macro-classes
and classes within the study area. A supervised classification method, the Maximum
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Likelihood Classification (MLC), was applied in this study due to its availability within the
GIS applications in addition to it not requiring an extensive training process [34,35]. The
most important advantage of the MLC as a parametric classifier is that it takes into account
the variance within the selected classes and that, for normally distributed data, the MLC
method performs a better qualification than other methods, namely, decision trees [34,36].

Additionally, this study proposes a methodology to obtain updated temporal infor-
mation of the change in land use and land cover for the Coatzacoalcos area using Landsat
8 satellite imagery, which has a higher resolution with the available MODIS maps. The
mapping of land use and its changes are critical and important factors for sustainable
development as well as the monitoring of environmental impacts. The final product of
this research will help government agencies to make decisions on urban development and
preservation of available natural resources, since one of the emblematic projects in Mexico
known as the Interoceanic Corridor is being executed in the present year. Lastly, this piece
of research is going to serve as the baseline for additional contributions on LULC change
prediction with more complex analyses of the drivers forcing these landscape modifications.

2. Materials and Methods

2.1. Study Area

The study area is the southeastern region of the state of Veracruz, Mexico, in which
one of the most important pretrochemical ports of the country is located at the city of
Coatzacoalcos. This city is surrounded by the Coatzacoalcos and Tonalá rivers and extends
between latitudes 18.06◦ and 18.21◦ and longitudes −94.22◦ and −94.64◦ (Figure 1). The
area of study extends over an area about 220 km2. The port of Coatzacoalcos is dominated
by the petrochemical sector [37]. Four of the petrochemical complexes located near the
city make the city one of the most important oil areas in the world [38]. Coatzacoalcos
has been a transportation hub for hundreds of years; it is connected by air, land, sea and
railroad to the rest of the world. Currently, the Mexican government is working on a
project called the Interoceanic Corridor of the Isthmus of Tehuantepec, which represents
the modernization and installation of industrial parks inside the industrial areas of the
ports of Coatzacoalcos and Salina Cruz, Mexico [39]. This project will represent economic
and population growth within the city. As a result, land use assessments and projections
have become priorities to help both state and federal government make decisions for the
projected economical growth.

Physiographically, the study area has an average elevation of 10 meters above sea level.
The soils found in the region are clayey lateritic Acrisol and Luvisol in high elevations and
Gleysol, Cambisol, Vertisol and Nitosol in plains [40]. The vegetation consists of riparian
vegetation, swamps and wetlands in floodable areas, mesophilic mountain pine oak forests
in high areas and high evergreen forests in hills and acahual areas in abandoned and
cultivated pastures. The climate of the region is a warm humid climate with abundant
rains in summer. The average annual temperature varies between 24 and 25 °C, while the
average annual precipitation varies between 1500 and 2500 mm [41].
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Figure 1. Location of Coatzacoalcos city in Veracruz, Mexico.

2.2. Data Acquisition and Processing

The images used in this study were obtained from the Landsat 8 satellite, which
captures multispectral images of 30 m resolution sampled with the OLI (Operational Land
Imager) sensor. The Landsat 8 satellite also provides a 15 m panchromatic band, allowing
for a greater spatial resolution. All images were geometrically corrected and acquired in
level 1 (L1). The images can be directly downloaded from the EarthExplorer gateway of
the United States Geological Survey (USGS) [17]. Table 1 displays the details of the images
used in this study.

Table 1. Images of Landsat 8 OLI used in the present study.

Satellite Acquisition Date Bands
Spectral

Resolution
Path/Row Cloudiness

Landsat 8 OLI 14/06/2015 2–7 30 m 023/047 30%
Landsat 8 OLI 26/06/2016 2–7 30 m 023/047 25%
Landsat 8 OLI 02/06/2017 2–7 30 m 023/047 9%
Landsat 8 OLI 23/06/2018 2–7 30 m 023/047 13%
Landsat 8 OLI 10/06/2019 2–7 30 m 023/047 0%
Landsat 8 OLI 12/06/2020 2–7 30 m 023/047 5%
Landsat 8 OLI 23/06/2021 2–7 30 m 023/047 0%

The Landsat 8 OLI products used consist of band 2 (0.45–0.51 μm), band 3 (0.53–0.59 μm),
band 4 (0.64–0.67 μm), band 5 (0.85–0.88 μm), band 6 (1.57–1.65 μm) and band 7 (2.11–
2.29 μm) [42]. All images were processed using the free software Quantum GIS (QGIS)
version 3.14.16. Atmospheric correction was performed through the Semi-Automatic Clas-
sification Plugin (SCP) tool based on the Dark Object Subtraction (DOS1) algorithm [43].
The panchromatic band was used to provide higher spatial resolution. This is achieved
using Gram–Schmidt Pan-Sharpening to produce a high-resolution color image that im-
proves the training set and the classification process. Google Earth images were acquired
according to acquisition dates (Table 1) and geoferenced using QGIS. The closest dates to
the acquisition date were selected. Field data included collection of georeferenced points
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and their corresponding land use for the last two years of the analyzed periods. Figure 2
shows the methodology used for the study.

Figure 2. Flow diagram of the LULC classification methodology implemented in the SCP tool.

The DOS1 atmospheric correction method was selected, as it is the most widely used
method for LULC change detection [42]. This method uses the properties of the images. For
instance, pixels conforming elements such as shadows, water or forests are considered dark
objects when the magnitude of the reflectance is close to zero, namely, when the reflectance
is less than or equal to 1%, and all the analyzed pixels are assumed dark elements. This
assumption indicates that pixels receiving low values of solar radiation (∼100% shade)
registered by the satellite correspond to atmospheric dispersion, which generally is caused
by effects of the topography [44]. Once a dark object is found in the image, the minimum
reflectance value of the total Digital Number (DN) histogram is assigned to the object.
This minimum is then modified by the effects of atmospheric correction [45]. The surface
reflectance is calculated using the following expression:

ρs =
π(Lλ − Lp)d2

ESUNλ cos θs
(1)

where ρs is the surface reflectance, d is the distance to the sun, ESUNλ is the mean solar
exo-atmospheric irradiance, Lλ is the solar spectral radiance to the satellite, θs is the zenith
angle and λp is the path radiance given by [46]

Lp = Lmin − LDO1% (2)
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where Lmin is the radiance corresponding to a digital count value for which the sum of all
the pixels with digital counts lower than or equal to this value is equal to 0.01% of all the
pixels from the image considered [46] and LDO1% is the radiance of Dark Object assumed
to have reflectance value of 0.01.

2.3. NDVI Classification

Based on the interpretation of the Normalized Difference Vegetation Index (NDVI), the
analysis of Google-Earth-extracted images, RGB (red, green, blue) images, panchromatic
bands and ground-based georeferenced information, NDVI thresholds were proposed to
classify the area of study into four macro-classes during the analysis period (2015–2021), as
shown in Table 2.

Table 2. Suitable NDVI ranges identified for the LULC macro-classes.

Macro-Class NDVI Range

Water −0.010–−0.133
Built-up 0.040–0.232
Bare soil 0.145–0.259

Vegetation 0.694–0.895

The NDVI thresholds implemented in the proposed classification were selected after
an extensive literature review of previous studies where the NDVI was used as the spectral
index of diverse land covers [47–52]. The NDVI values were calculated by the equation
proposed in [53,54]:

NDVI =
φnir − φred
φnir + φred

(3)

where φnir is the near-infrared reflectance and φred is the red-band reflectance. Band 4 (0.64–
0.67 μm) and band 5 (0.85–0.88 μm) represent φnir and φred, respectively, in the Landsat
products. The NDVI values vary from −1 to 1. Values close to 1 represent vegetation in
optimal environmental conditions, whereas low values of NDVI indicate low vegetation
density or a different land use. After the macro-class definition, a second classification was
performed to refine the LULC characteristics through a more extensive discrimination of
pixels. These new classes were defined according to the CORINE land cover inventory
proposed by the European Environmental Agency [55]. This classification process required
the use of the ancillary data and field data to assign new information to the training set.
This assignation was repeated until a suitable spatial distribution was obtained. This new
classification consisted of 14 classes, as shown in Table 3.

2.4. Classifier Comparison

In addition to its social and environmental objectives, this study seeks to evaluate
the potential and the drawbacks of the minimum distance classifier [56], the spectral
angle mapping classifier [57] and the maximum likelihood classifier [34,35,58] in deriving
information on LULC. Although there are more classifications, such as artificial neural
networks [34] and parallelepiped classification [56], the comparison was limited to the
three selected methods because they are often used to classify LULC. However, limited
information exists when the same training input and ancillary data are used to perform the
classification process. Here, the comparison was set under the assumption that the same
amount of information was available.
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Table 3. Land use and land cover (LULC) classes and descriptions.

LULC Type Description

Water
Sea Area of salt water that surrounds landmasses
Water courses Natural or artificial water courses serving as water drainage channels

Water bodies Natural or artificial water bodies with presence of standing water surface
during most of the year

Built-up
Industry Any factory processing of raw materials and manufacture of goods
Residence Land use in which housing predominates
Commercial Areas for retail sales, services, offices, etc.
Roads Roads of any artificial paved surface material (asphalt or concrete)

Vegetation

Mixed forest Vegetation formation composed principally of trees, including shrub and
bush understorey

Shrub A shrub or clump of shrubs with stems of moderate length
Wetland Areas of low-lying, uncultivated ground where water collects

Bare soil
Dune A mound of sand or other loose sediment formed by the wind
Bare surfaces Soil with low vegetation density
Sparse vegetation Soil with a mix of low and high vegetation densities
Grassland Soil with high vegetation density, such as grasslands

2.4.1. Minimum Distance Classifier

The minimum distance method (MDM) calculates the Euclidean distance d(x, y) be-
tween the spectral signatures given in the training data set and the spectral signatures of
the image pixels. The spectral distance is calculated through the following expression:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (4)

where x is the spectral signature vector of an image, y is the spectral signature vector of
the training area and n is the number of bands of the image. Once the spectral distance is
computed for every pixel, the class with the closest spectral signature to the training set is
assigned according to the following discrimination function [56]:

xεCk ⇐⇒ d(x, yk) < d(x, yj) (5)

where Ck is the land cover macro-class or class, yk is the spectral signature of class k and yj
is the spectral signature of class j. This equation is valid when k �= j.

2.4.2. Spectral Angle Mapping Classifier

The spectral angle mapping (SAM) algorithm computes the spectral angle between
the spectral signatures of the image pixels and the training spectral signatures. The spectral
angle θ is given by

θ(x, y) = arccos

⎛⎝ ∑n
i=1 xiyi√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

⎞⎠ (6)

Thus, a pixel resides in the macro-class or class that has the lowest spectral angle, as
provided by

xεCk ⇐⇒ θ(x, yk) < θ(x, yj) (7)

where k �= j.
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2.4.3. Maximum Likelihood Classifier

The maximum likelihood classifier (MLC) is based on the probability that a pixel
belongs to or is within macro-classes or a particular class [59,60].

The MLC algorithm calculates the weighted distance or probability D that an unknown
value in the vector Mp belongs to one of the macro-classes or classes Mc. This likelihood is
based on the Bayesian equation [61]:

D = ln (ac)− ln(|Covc|)
2

− (Mp − Mc)T(Covc − 1)(Mp − Mc)

2
(8)

where D is the weighted distance or probability, c is a particular macro-class or class, Mp
is the measurement vector of the candidate pixel, Mc is the mean vector of the sample
of macro-class or class c, ac is the percentage probability of any pixel belonging to the
macro-class or class c, Covc is the covariance matrix of the pixels in the sampled macro-class
or class c, |Covc| is the determinant of the matrix Covc, Covc−1 is the inverse of Covc and T
is the transposition function.

2.5. Precision Assessment

The analysis of the accuracy is an important step for the evaluation of the resulting
classification because the users of the information, once the classification is performed,
need to know how accurate the result is in order to use the data in their decision making.
A minimum level of overall precision for a selected macro-class or class of at least 85%,
according to the recommendations found in similar works [49,60,62,63], was proposed in
this study. The selected ratio between a training set and validation set was 70/30. This
means that 70% of the available information was used for training purposes, whereas 30%
was used for validation. Acceptable precision measurements used in this work included
producer precision (PA > 85%), user precision (UA > 85%), overall precision (OA > 85%)
and the Kappa coefficient (K) [49,64,65]. The reference values of the Kappa coefficient
proposed by Viera and Garrett [66] are shown in Table 4.

Table 4. Possible ranges of map comparison and level of agreement of Kappa coefficient (K).

Level Value Range

1 <0 Poor
2 0.01–0.40 Fair
3 0.41–0.60 Acceptable
4 0.61–0.80 Good
5 0.81–1.00 Excellent

For precision evaluation, a set of verification points are required. The sample should
be designed to achieve low standard errors in precision estimates, and this is generally
achieved by random selection of points. The number of samples should be calculated by

N =

(
∑N

i=0(Wi − Si)

So

)2

(9)

where N is the sample size, Wi is the mapped area proportion of the class i, Si is the
standard deviation of the stratum i and So is the expected standard deviation of overall
accuracy, often valued at 0.01 [67–69].

2.6. Validation Point Estimation

The number of samples calculated with Equation (9) is shown in Table 5. The assump-
tion of this expression claims that randomly generated validation points are proportional to
the size of the selected class. In other words, the larger the class is, the more sample points
are needed to verify the correct LULC assignation. For instance, as vegetation represented
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the larger area of the city and its surroundings, more points were needed to validate the
land use classification. This behavior can be seen in Table 5 for the macro-classes in ques-
tion. Similarly, the number of samples required to validate the classes presents the same
behavior; the classes representing mixed forest (vegetation) and bare surfaces (bare soil)
needed 79 and 88 samples, respectively, as they are the largest land uses in the study area.

Table 5. Average number of samples for macro-class and class validation. Units in pixels.

Macro-class Water Built-Up Vegetation Bare soil

Samples
(pixel) 128 111 122 123

Class Sea W. C W. B. Industry Residential Commercial Roads
Mixed
forest

Shrubland Wetland Dune B. S. S. V. Grassland

Samples
(pixel) 83 41 28 30 56 23 36 79 37 26 29 88 27 24

It is important to mention that pixels representing the sea area were not counted, as
they did not change significantly during this period of time and we found no factor for any
small increment of decrease that suggested any environmental effect on ties. However, it
was taken into consideration to illustrate the applicability of the classification algorithm.
On the other hand, rivers and water bodies might be subjected to changes due to water
availability or variations in hydrologic processes.

3. Results

This section is divided into four main subsections: First, the analysis of the land use
and its spatial distribution at macro-class level is presented. Second, an analysis at class
level is performed, similar to the one conducted in the first section. Third, an assessment of
the land use change from 2015 to 2021 is carried out as a study case, and, lastly, a discussion
of the possible drivers forcing land use change is established.

3.1. LULC Classifier Assessment and Selection

The three classification methods were run for the seven-year period proposed in this
analysis. Results show a similar behavior for extracting LULC information using the same
level of ancillary data. This condition allowed a fair comparison between the classification
algorithms. Figure 3 shows the macro-class classification for the year 2017, which was the
year which presented higher discrepancy among LULC classification methods. Graphically,
one can observe that algorithms performed comparably. Significant variations were found
within the clusters sharing bare soil and and built-up zones, whereas a more accurate defi-
nition was found for those composed of built-up vegetation and bare soil vegetation. These
variations were attributed mostly to the spectral signature dispersion and departure within
the pixels defining each class and the nearby areas. Bare soil and vegetation areas, being
those mostly distributed over the west and east parts of the city, respectively, presented
similar spatial distributions.

Numerically, all the classification methods presented good behavior for both overall
precision and Kappa values, all being above 85% and 0.85, respectively (Table 6). The
spectral angle mapping (SAM) was the method that showed the smallest overall preci-
sion and Kappa values, 89% and 0.86, respectively. The highest accuracy was obtained
using the maximum likelihood classifier (MLC), which presented overall precision above
90% and Kappa coefficients above 0.90 for all the years in the study period. It was ob-
served that the MLC required less field data to obtain accuracy compared to the other
classification methods.
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Figure 3. Maps of the macro-class-based classification for three classification methods for 2017: Top:
minimum distance. Middle: spectral angle mapping. Bottom: maximum likelihood. Units: meters.
Projection: WGS84 / UTM Zone 15N.

Table 6. Precision assessment of the macro-class-based classification for 2017 under three classification
methods.

MDM SAM MLC
Year OP K OP K OP K

2015 89.12 0.85 88.89 0.85 93.28 0.91
2016 88.91 0.85 88.91 0.85 90.72 0.88
2017 89.31 0.86 89.28 0.86 95.36 0.94
2018 89.53 0.86 89.27 0.87 98.14 0.98
2019 90.13 0.87 89.90 0.86 90.02 0.87
2020 90.13 0.87 89.87 0.86 99.34 0.99
2021 89.67 0.86 89.43 0.86 96.95 0.96

The three classification methods showed the advantages of a perfect decision boundary
to distinguish the macro-classes and a consistent mathematical expression based on the
decision boundary for further classifications. However, these methods might overtrain
the decision tree, as the training set needs several examples to cover all the possible cases
within a specific class. Lastly, training tends to require significant computational time to be
effective. As the MLC presented the highest level of accuracy under the same training set,
it was selected as the main classification method for this study.

3.2. Macro-Class-Based LULC Classification

The classification based on macro-classes represented a course scheme to generate
four of the main land uses found in Coatzacoalcos. These macro-classes are water, built-up,
vegetation and bare soil. The spatial distribution of them can be observed in Figure 4.
Graphically, one can see that the terrestrial surface is proportionally divided into three
land uses without considering water. Most of the urbanization or built-up areas are in the
north and south of the city near the river, as they were sites of the first settlers since the
foundation of the city. However, the south potential flood areas and their development
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have been delayed, and small changes can be observed. It can also be seen that both north
and south areas contain significant patches of vegetation, which, including the creation of
green areas, is a good practice in urbanization development. However, urbanization in the
west area of the city seemed to increment over the study period, but no vegetation buffers
were observed in those zones. This indicates the absence of good practices in urbanization
and government decisions in terms of territorial planning as well as the economic, social,
cultural and environmental unconsciousness of new developers [70]. These zones may
provoke a higher temperature sensation or heat islands, which might translate into health
problems for the inhabitants [71]. Additionally, bare soil areas seemed to increase over
time and were more prominent in the west area of the study. As seen in Figure 4, bare soil
replaced areas of vegetation and also increased close to developed areas. These changes
can be attributed to water availability during the growing season and afforestation during
the development of urbanization.

Figure 4. Maps of the macro-class-based classification for the study period (2015-2021). Units: meters.
Projection: WGS84 / UTM Zone 15N.

In terms of vegetation, the east part of the city seemed to remain unaltered, except for
zones near Allende Village in the northeastern and southeastern parts of the city, where
the industries and petrochemical complexes are located and trigger the soil degradation.
Numerically, Table 7 supports the claim observed on the above maps. Pixels representing
water show small variations attributed to possible changes in the surface water balance,
but a more refined classification is needed to understand how these variations occurred.
The maximum percentage of water land use was 28.58% in 2017, whereas its minimum
was 28.43% in 2019. Urbanization or man-made construction increased from 19.88% in
2015 to 20.21% in 2021. This increment can be explained by the trend observed in Figure 5,
which shows the last six 5-year censuses. Coatzacoalcos had a mean population growth
rate from 1995 to 2015 equal to 2.68%. However, we can observe that a rate equal −0.54%
was shown in 2020. This means that population growth decreased in the last census.
This variation can be illustrated with the reported built-up information, where man-made
construction showed similar increments on a year-to-year basis. Nonetheless, the growth
from 2019 to 2020 was its minimum, and no change was seen in 2021. This decrease in
population and the variation within estimated in this study have socio-economic drivers.
The city of Coatzalcoalcos was the second most dangerous city in 2019 [72]. This fact

91



Appl. Sci. 2022, 12, 1882

provoked serious economic and social issues due to extortion, racketeering and kidnapping.
People moved to nearby cities to feel safe, and big companies closed their services; as a
result, unemployment rate grew and investments in the city slowed down, which, in turn,
decelerated urbanization and industry development.

Table 7. Percentage area estimated for the macro-class-based classification.

Macro-Class 2015 2016 2017 2018 2019 2020 2021

Water 28.45 28.44 28.50 28.47 28.43 28.44 28.44
Built-up 19.88 19.92 19.99 20.03 20.12 20.15 20.21

Vegetation 26.00 25.98 25.74 25.56 25.46 25.18 24.96
Bare soil 25.67 25.66 25.77 25.94 25.99 26.24 26.37

Figure 5. Last six five-year censuses in Coatzacoalcos, Veracruz. Source: National Institute of Statistics
and Geography (INEGI) [73].

Bare soil also seems to increase visually in Figure 4 and is confirmed in Table 7. Bare
soil variations are linked to a decrease in vegetation. These two variables are highly
dependent on water availability, droughts and weather fluctuations. We can see that, in
2015, the area of study was 25.67% of bare soil, while, in 2021, it increased up to 26.37%.
On the other hand, vegetation presented the inverse behavior, being 26% and 24.96% in
2015 and 2021, respectively. Analyzing the water availability, which is proportional to the
precipitation, one can see in Figure 6 that rainfall tended to fluctuate from a minimum of
1107.6 mm in 2015 to a maximum of 1730.90 mm in 2017. This fluctuation, in general, tells
us that, of the last three years of the period of analysis studied here, precipitation reduced
drastically in 2019, which can explain the cause of the bare soil increment.

Additionally, Figure 7 shows that although minimum temperature tended to be steady
from 2013 to 2021, mean temperature and maximum temperature increased during the
study period. For instance, mean temperature was 26.60 ◦C in 2018, whereas the maximum
temperature increased from 28.20 to 30.20 ◦C in 2018 and 2020, respectively. Increments
in temperature increases soil evaporation and plant transpiration. If the latter is limited
due to lack of water, water stress occurs in plants and they do not reach maturity, which
might explain changes in pixel color and the move from vegetation to bare soil. It can be
seen that the use of remote sensing for LULC evolution can be related and explained with
inland information. This not only promotes the use of remote sensing but also validates its
implementation. All the macro-class-based classification showed average user accuracy
(UA) and producer accuracy (PA) higher than 90% (Table 8).
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Figure 6. Annual precipitation in Coatzacoalcos, Veracruz. Source: Comision Nacional del Agua
(CONAGUA) [74].

Figure 7. Annual precipitation in Coatzacoalcos, Veracruz. Source: Comision Nacional del Agua
(CONAGUA) [74].

Table 8. Overall precision and Kappa coefficient (K) for macro-class-based classification.

Measure 2015 2016 2017 2018 2019 2020 2021

UA 93.50 91.00 95.50 98.00 90.20 99.25 96.68
PA 93.06 91.45 96.04 98.06 90.32 99.36 96.60

Overall
precision 93.38 90.72 95.36 98.14 90.02 99.34 96.75

K 0.91 0.88 0.94 0.98 0.87 0.99 0.96

This means that both producers and users of these maps can rely on this classification
with at least 90% confidence. These values are comparable to the ones found in [47,48]. The
mean overall precision for the study period is 94.81%. The Kappa coefficients for all the
studied years are located in an excellent range, as they all are higher than 0.81, according
to Viera and Garret [66]. Although this classification was appropriate for the proposed
macro-classes, a more refined algorithm was implemented to understand more about the
evolution of the LULC of Coatzacoalcos, as it is necessary for decision making purposes.
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3.3. Class-Based LULC Classification

A class-based LULC classification was conducted to identify a more discrete evolution
of the land use within the study period. This identification will help prioritize the location
of areas that require ecological attention, the inclusion of best management practices (BMP)
for water and soil conservation as well as a more appropriate location of the upcoming
urbanization due to the Interoceanic Corridor project execution. At this level, we identified
that pixels representing the sea did not change significantly. This behavior can be observed
in Figure 8 and Table 9, in which the percentage area representing the sea is about 20.1%
for the entire period. However, water courses and water bodies seemed to change over
time. Although these changes might not be significant, these changes can be confusing. We
observed in Figure 6 that the annual precipitation throughout the study period decreased.
As a result, bare soil area increased due to lack of water. One could assume that water
bodies and water courses cannot increase in area. Nonetheless, this claim might not be
entirely true, as increments of bare soil decrease infiltration and enhance the overland flow
of the areas draining to the closest water courses. For that reason, water courses and water
bodies in western areas increased due to increment of overland runoff in areas classified
into bare soil with different vegetation densities (i.e., bare surfaces, sparse vegetation or
grassland) and some over-flooded wetlands (i.e., swamps).

Man-made construction was divided into industry, residential, commercial and roads
classes. Industry shows a constant percentage from 2016 to 2021. The only change occurred
in 2015. The industrial area called Etileno XXI, the largest petrochemical complex in Latin
America, concluded 99.2% of its construction in 2015 [75]. This, once again, confirms the
accuracy of the generated map. Residence land use increased from 11.85% in 2015 to 12.24%
in 2019 and maintained a steady value in 2021 (Table 9). This, once again, matches the
period of violence described above that eventually provoked a decrease in population, as
seen in Figure 5, which means that residence land use remained as it was in the previous
years. Commercial areas showed fluctuations due to the city’s economical variation. It can
be observed that, in 2018, commercial areas reached their maximum of 0.55%. However, the
value decreased at the end of the study period (0.43%). A small increment was observed in
2021, when commercial areas increased to 0.50%. The city experienced transitions from high
commercial zones to abandoned places due to the socio-economical problems previously
described. These areas transformed either to low density vegetation areas or abandoned
buildings. Lastly, in this class, roads were the most difficult to identify due to the Landsat
satellite image resolution equaling 30 m. Roads close to the coast line and main avenues
crossing from north to south and west to east were detected easily. However, narrow
streets were not characterized as roads and they were either characterized as residence,
commercial or industry classes. For that reason, although roads showed increments due to
increase in population and urbanization development, no claim is expressed in order to
avoid confusion in this class.

Vegetation plays an important role in our natural ecosystem and also holds up the
biosphere in various ways. Vegetation helps to regulate the flow of numerous biogeo-
chemical cycles, most importantly those of nitrogen, carbon and water. It also contributes
to the local and global energy balances. In this study, the classes within vegetation in-
cluded mixed forest, shrubland, wetland and dune. Figure 8 shows that mixed forest is the
largest extension of the study area. One can see that the eastern and southwestern areas
are dominated by this class, especially for those areas where no urbanization is present.
Mixed forest occupied about 18% of city and its metropolitan area for the analyzed period,
reaching its minimum in 2019 when the precipitation reached its lowest value (Figure 6).
As previously mentioned, at this point, one can confirm that vegetation established in
the urban areas were mostly mixed forest, having more pixels where the city was initially
developed than where the more recent residential areas in the west of the city have been
developed. Shrublands, in general, showed an increment over time. They reached their
maximum percentage area, equal to 5.31%, in 2020 with some fluctuations in 2017, a year
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preceded by annual precipitation below 1500 mm, which represents the driest year of the
analyzed period.

Figure 8. Maps of the class-based classification for the study period (2015–2021). Units: meters.
Projection: WGS84 / UTM Zone 15N.

Table 9. Percentage area estimated for the class-based classification.

Class 2015 2016 2017 2018 2019 2020 2021

Sea 20.10 20.1 20.1 20.09 20.1 20.1 20.1
Water courses 6.10 6.31 6.31 6.31 6.32 6.33 6.34
Water bodies 1.91 1.96 2.00 1.98 1.93 2.01 2.00

Industry 2.74 2.76 2.76 2.76 2.76 2.76 2.76
Residential 11.85 11.86 12.16 12.07 12.24 12.24 12.20
Commercial 0.52 0.51 0.46 0.55 0.45 0.44 0.50

Roads 4.77 4.78 4.84 4.84 4.81 4.83 4.87
Mixed forest 18.56 18.60 19.02 18.68 18.14 18.67 18.60
Shrubland 5.15 5.21 4.82 5.18 5.16 5.31 5.28
Wetland 1.86 1.40 1.10 1.13 1.13 0.93 0.92

Dune 2.83 2.79 2.28 2.30 2.15 1.96 1.96
Bare surfaces 19.31 20.71 22.12 22.02 22.61 23.19 23.20

Sparse vegetation 2.79 2.19 1.31 1.36 1.72 0.79 0.84
Grassland 1.51 0.81 0.64 0.66 0.41 0.41 0.42

One of the most representative classes in this classification is wetland (i.e, swamps)
because it represents multiple biological, economic and social values. Swamps provide
services to ecological well-being, such as groundwater recharge, water purification, micro-
climate regulation, food resources, biodiversity and carbon storage [76–78]. In the last
decades, in Coatzacoalcos, urbanization has degraded swamps indiscriminately through
industrial development or residential areas. These developments followed the erroneous
idea that swamps were areas with dangerous species, such as snakes, alligators, mosquitoes,
etc., which represented risks to the nearby areas [79]. This study evidences how wetland or
swamp degradation continues. Visually, swamps located south and southeast of the city
have mostly transitioned to some degree of vegetation density, either from water stress or
landfill. In 2015, swamps represented about 2% of the study area, whereas, in 2021, this
fraction reached 0.92%. This fact makes this study a good indicator to prevent and preserve
swamps and wetlands within Coatzacoalcos and its metropolitan area due to the important
ecological services that they represent.

Dunes, in Figure 8, are located along the coastline of the study area. In addition,
there are some banks utilized by the industry (sandblasting) in the east area across the
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Coatzacoalcos river. One can see that dunes were replaced mainly by residential areas in
the northwest part of the city. In 2015, dunes occupied almost 3% of the area in question.
However, this area declined to 1.96% in 2021. The most significant evolution of urbanization
occurred from 2017 to 2019. Additionally, the western coastline presented a transition from
dunes to bare surfaces because that area is naturally preserved and the absence of tourism
has improved the growth of native vegetation. Lastly, bare surfaces are the dominant land
use along with mixed forest and residential areas (Figure 8). This land use increased from
19.31 to 23.19% through the study period in Table 9. Visually, most of the transitions were
from sparse vegetation and high grassland to bare surfaces. This might have occurred
because of the decrease in infiltration and precipitation previously mentioned and explored
in Figures 6 and 7. Sparse vegetation decreased from 2.79% to 0.79% and increased to 0.84%
in 2021, whereas grasslands reduced from 1.51% to 0.42%.

Table A1 shows the UA, PA and K values from each class throughout the analyzed
period. User accuracy and producer accuracy show remarkable performance, with values
within 90–100% and 80.48–100%, respectively. These individual accuracies, PA and UA,
represent how well referenced pixels of the ground cover class are classified and the
probability that a pixel classified into a given category actually represents that category on
the ground, respectively. As expected, water and its classes showed the best performance,
as it is the macro-class that presented the least variation while the other classes presented
more significant variability. The Kappa coefficient shown for all classes was located in the
range of excellent, according to the suggested values by Viera and Garret [66]. One can
expect from these results that all the classes provide at least 90% confidence to the users of
this information. The mean UA and PA values are presented in Table 10. Both UA and PA
also are greater than 90%, as shown in each of the selected classes. The overall precision
of the maps is also above 90%, which indicates that more than 90% of the reference pixels
were correctly classified, and the K values validate the quality of this study, as they are all
above 0.95.

Table 10. Overall precision and Kappa coefficient (K) for class-based classification.

Measure 2015 2016 2017 2018 2019 2020 2021

UA 96.48 96.13 96.46 97.11 97.33 96.82 95.13
PA 94.45 96.97 97.05 97.38 94.57 97.59 90.41

Overall precision 96.18 96.64 96.28 97.22 97.59 97.03 95.19
K 0.95 0.96 0.96 0.97 0.97 0.95 0.94

3.4. Land Use and Land Cover Change through LULC Transition Matrix

The last part of the analysis of these results includes the generation of the LULC
transition matrix (Table A2), which indicates the transitions of each of the classes with
respect to each other, for instance, how much area of the dunes converted to low vegetation
density areas [69]. This matrix summarizes the changes already validated by the precision
matrix but in terms of actual surface area. One disadvantage of this analysis is that it does
not consider what happened throughout the two isolated years. However, it brings up an
excellent tool for studies where LULC changes want to be predicted for future scenarios
along with the possible drivers forcing those changes. The main diagonal contains the
reference areas of the classes between the analyzed years. Columns named loss and gain
represent the area lost or gained, respectively, for a particular class. Total gain or loss are
calculated by adding up columns or rows of the reference area for each class. Particularly,
this study selected the ends of the period, the years 2015 and 2021. The analysis of this
matrix is straightforward. For instance, the water bodies gained 0.24 km2 but lost 0.0297
km2. Gains were associated with transitions of wetland (0.22 km2), shrubland (0.0063
km2), mixed forest (0.0009 km2) and bare surfaces (0.0081 km2) to water bodies. On the
other hand, losses are due to a mixture of transitions, including sparse vegetation (0.009
km2), bare surfaces (0.009 km2) and wetlands (0.00117 km2). All these transitions occurred
between the two selected classifications.
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For the sake of simplicity, only the most significant changes are discussed here. Resi-
dential land use grew only 0.88 km2 during the last six years, which reflects a very small
growth in comparison with that of industrial cities in Mexico, which has been character-
ized as about 5% per year [80], while Coatzacoalcos only grew 1% per year. Commercial
areas reduced by 0.16 km2, resulting in abandoned areas due to the previous mentioned
socio-economic issues. One of the prominent changes was in areas of mixed forest, which
gained 0.52 km2 and lost 0.43 km2, indicating reforestation practices and more sustainable
urbanization development in some new residential, industrial and commercial areas but
some activities of deforestation. Swamps, on the other hand, lost 2.09 km2. This loss warns
us of the possible future loss of ecological services provided by wetlands and their habitat,
which are essential for biochemical processes and water purification because some of the
non-point pollution in the city is contained by them. Lastly, vegetation densities fluctuated
the most among them, namely, grassland and sparse vegetation density areas transitioned
to bare surfaces. The latter gained 9.12 km2, whereas the former two lost 2.48 and 4.66 km2,
respectively, which represents 80% of the bare surfaces gain.

4. Discussion

LULC changes measure the transitions of different land uses in complex interactions
between humans and the physical environment [81,82]. Analysing LULC changes helps
facilitate sustainable land use planning to protect and conserve the natural habitat and
resources. The present study applied available remote sensing technology to classified
course land uses, similarly to what has been presented in several studies [23,81,83–86].
The macro-classes identified were water, built-up, vegetation and bare soil. This first
division allowed us to discriminate NDVI spectral indexes to improve a latter classification.
Fractions of the area of study divided into macro-classes help us to observe the evolution of
the city and its metropolitan area development and to explore the possible drivers forcing
the changes in this initial classification. Broadly, some socio-economic factors, climate and
topography were proposed as possible drivers. These drivers have also been identified
as important factors for land use evolution [23,87–89]. This paper identified that security,
precipitation, climate and topography were the main drivers causing LULC changes.
Measurements such as producer accuracy (PA) and user accuracy (UA) showed high
confidence, since they were higher than 90% for most of the macro-classes. These values are
comparable and even superior to previous studies found in literature [49,84,89,90]. One can
observe that the maximum likelihood classifier (MLC) is a suitable classification method to
obtain acceptable results, as cited by several scientific contributions [34,35,58]. After the
analysis of the macro-classes, 14 classes were exhaustively found to analyze and identify
the land use in detail. Among those classes, some discussions are driven. Industry has
experienced no change since the last petrochemical complex opened in 2015. Commercial
areas have declined and residential zones present a slow increment due to the above-
mentioned socio-economic drivers, which served to confirm the proposed hypothesis.
Mixed forest and bare surfaces with low vegetation density tended to increase in surface
area because reforestation programs and vegetation implemented in the coastline by the
government have been a priority, as wind erosion has provoked much damage to the city’s
infrastructure [91]. Swamps (i.e., wetlands) also showed an important decrease in spatial
contribution, losing about 2 km2. This, in turn, might become an important environmental
issue, since swamps are seen as important regulators of water pollution, carbon storage
and habitat of species [92–95]. For that reason, actions need to be considered to avoid
the continuous degradation of local wetlands and swamps. Additionally, it was observed
that about 80% of the bare surface areas came from sparse vegetation and grassland areas.
Associated changes in precipitation and high temperatures throughout the assessment
period were responsible for these changes, as shown in results section. As a result of
increments of bare surfaces, infiltration decreases and overland flow is exacerbated because
soil properties such density, porosity and hydraulic conductivity depend on the level of
established vegetation [96,97]. Lastly, a LULC transition matrix reflected the changes in
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surface area for each of the classes identified in this study. This is the baseline for future
research that involves local problems in the city of Coatzacoalcos. A subsequent prediction
of the land use using more extended spatial information of the drivers forcing the changes
observed here will be proposed as an extension of this work. Additionally, the city is facing
an issue with the relocation of solid residues, which naturally correlated with the actual
land use. As a result, this study and methodology using higher-resolution imagery (i.e.,
sentinel satellite) help to study possible and suitable landfill sites.

5. Conclusions

This paper determined land use and land cover (LULC) over the period 2015–2021
for the city of Coatzacoalcos and its metropolitan area, located in the state of Veracruz,
Mexico. Based on images from Landsat 8, MLC, Geographic Information Systems (GIS),
NVDI spectral index and field data, the annual land use variability was produced up-to-
date as reliable information for decision making and ecosystem preservation during the
execution of the ongoing project called the Interoceanic Corridor. This project represents
Mexico’s narrowest stretch between the Pacific and Atlantic oceans and the expansion and
modernization of Coatzacoalcos and Salina Cruz ports.

The objective of this study was to provide the most recent information on land use
spatial distribution that Coatzacoalcos experienced in the last six years and to improve the
current available course resolution maps. The satisfactory results can be summarized in
four main aspects: (1) built-up areas, including industry, residential and commercial areas,
have slowed down their growth due to socio-economical drivers such as security and null
monetary investments; (2) vegetation such as mixed forest and low density vegetation (bare
surfaces, sparse vegetation and grassland) has been sustained and increased over time
due to reforestation or migration from other classes; (3) swamps experienced considerable
degradation over the past five years and (4) high and medium vegetation densities have
transformed mostly to low vegetation densities due to climate drives such as low precipita-
tion and possible high soil evaporation, which might also increase the overland flow for
those areas.

Lastly, this study demonstrated the use of free available Landsat data and their pro-
cessing by open source tools. It provided an accurate approach to mapping and assessing
LULC changes over time. This methodology can be applied similarly for longer periods of
time and other satellite products and contributes to improving the number of applications
of remote sensing and research in Mexico and other developing countries.
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Abstract: Flooding in urban areas is counted as a significant disaster that must be correctly mitigated
due to the huge amount of affected people, material losses, hampered economic activity, and flood-
related diseases. One of the technologies available for disaster mitigation and prevention is satellites
providing image data on previously flooded areas. In most cases, floods occur in conjunction with
heavy rain. Thus, from a satellite’s optical sensor, the flood area is mostly covered with clouds
which indicates ineffective observation. One solution to this problem is to use Synthetic Aperture
Radar (SAR) sensors by observing backscatter differences before and after flood events. This research
proposes mapping the flood-prone areas using machine learning to classify the areas using the 3D
CNN method. The method was applied on a combination of co-polarized and cross-polarized SAR
multi-temporal image datasets covering Jakarta City and the coastal area of Bekasi Regency. Testing
with multiple combinations of training/testing data proportion split and a different number of epochs
gave the optimum performance at an 80/20 split with 150 epochs achieving an overall accuracy of
0.71 after training in 283 min.

Keywords: urban flood; Sentinel-1a; Synthetic Aperture Radar (SAR); 3D Convolutional Neural
Network; multi-temporal data

1. Introduction

Flooding is one of the most detrimental disasters, especially in cities such as Jakarta,
because it affects a large number of residents in ways such as material losses resulting from
damaged properties due to flood inundation and diseases caused by degraded sanitation
in the flooded area. A major flood in Jakarta results in 8.7 trillion IDR or 625 million USD
of losses and recovery efforts [1]. At present, most of the flood mapping in Indonesia has
not fully utilized satellite spatial data because it still relies on data reported by the local
government in the form of numerical data [2]. The visualization of the flood map is based
on tabulated data in the area map that does not represent the actual conditions, resulting
in a discrepancy between the reported flood area and the actual area. This difference will
affect the handling of floods, such as calculating the impact of damage, the number of
residents affected by the flood, and the inefficient distribution of aid. Problems that arise
due to limited spatial information regarding floods can be solved by using multi-sensor
remote sensing satellite data. Many technologies have been developed to predict, prevent
and mitigate flood disasters more accurately, including remote sensing technology using
images obtained from airborne and spaceborne platforms [3–5]. The earlier and most
common form of remote sensing is optical photography, with overhead images providing
information on the affected area.
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When a disaster occurs, urban floods usually coincide with rain, so when observed us-
ing optical sensors on remote sensing satellites, the area is covered with clouds. With this oc-
clusion, satellite optical sensors are not effectively used for flood observation. One solution
to observing floods in cloud-covered areas is to use Synthetic Aperture Radar (SAR) sen-
sors such as Sentinel-1, ALOS PALSAR, TerraSAR-X, and other radar sensors. The image
produced by SAR is a monochromatic image containing reflectance information from the
observation area by observing the difference in the backscatter before and after the incident
to identify the flooded area [6].

Wide-scale Earth monitoring satellites begin with the Landsat program (Land Satellite)
to monitor the Earth’s surface. At present, many optical satellite systems operate at high
resolution. The most widely used images are from QuickBird, SPOT-5, and Worldview
Series. Despite having the ability to detect very sharp objects, optical satellite systems have
the potential to be unable to detect objects on the Earth’s surface due to cloud cover. Until
recently, SAR data processing was mostly used for rural areas rather than in urban areas. For
urban areas, SAR data has its problems, namely speckle noise, because, in urban areas, many
buildings cause radar waves to experience much scattering, and the reading of the reflected
waves is disturbed by multipath interference [7,8]. The double-bounce characteristic of
radar signals caused by buildings is a challenge related to its contribution to SAR image
speckle noise. However, it can be used to detect the presence of buildings and distinguish
them from other surfaces such as soil, vegetation, and water [9–11]. The solution to detect
the presence of floods through SAR images is multi-temporal filtering, which is filtering
based on changes in the backscattering characteristics of SAR images taken at different
times. The method used to identify and distinguish the occurrence of flood from SAR data is
generally divided into two groups, namely polarization and interference. The polarization
method detects the presence of water, based on changes in backscatter polarization caused
by specular reflections from the water surface [10,12–14], while the interference method
detects water based on changes of coherence due to changes in the spatial distribution
pattern of the object that produces the backscatter [10,15–17].

Several studies related to floods in settlements used SAR and Light Detection and
Ranging (LiDAR) data for small towns located on one side of a river and areas with
homogeneous slopes [18–20]. Another study used the Decision Tree Classifier (DTC) to
differentiate surface types based on light reflection [21,22], a condition that is difficult to
meet because flooding occurs with cloudy skies. A seasonal disaster mapping system
based on field observations is practical for generating initial data [23,24] but impractical
for periodic events. Research on radar satellites for disaster management to date still has
elevation resolution in the range of 2 m [6,7,25,26]. For Jakarta, especially in the city center
to the northern coast, which often experiences floods, this is not appropriate because the
flood depth is less than 2 m [27].

To map floods, previous methods were initially dominated by thresholding [6,11,13,14,28],
Probability Density Function (PDF) [9,10], and more recently, Logistic Regression [29] and
the Storm Water Management Model (SWMM) [30]. More specifically, in remote sensing im-
age segmentation applications, some researchers use the Normalized Difference Vegetation
Index (NDVI) to classify vegetation, classify water levels with the Normalized Difference
Water Index (NDWI), and the classification of floods using Normalized Difference Flood
Index (NDFI) [31,32]. Other researchers detected changes in land surface with radar images
using the principle of interferometry to find coherence between images [15,16,33]. Research
in the last three years has led to the use of Machine Learning (ML) in order to segment and
classify increasingly complex datasets, such as the Adaptive Neuro-fuzzy Inference Sys-
tem (ANFIS) [34], Support Vector Machine (SVM) [35,36], Convolutional Neural Network
(CNN) [36–38], and more recently with various Swarm Intelligence (SI) variants such as
Particle Swarm Optimization (PSO) [39,40]. Sameen and Pradhan used a Residual Neural
Network to detect the potential for landslides, where this method is intended to detect
changes in soil texture as the initiation of landslides [38]. The CNN model with this residual
block is used to process LiDAR data. The neurons on CNN are activated using the Rectified
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Linear Unit (ReLU). This study proposes three-dimensional CNN in mapping flood areas
to filter and weigh neurons and map the potential flood areas in urban areas with better
accuracy and fewer number of images.

Yu Li et al. proposed an Active Self Learning method on CNN to detect floods in urban
areas from the SAR image ensemble [37]. The dataset used is four TerraSAR-X images of
HH polarization with the composition of one pre-event image, one co-event image, and two
post-event images. Linyi Li et al. proposed a high-resolution urban flood mapping method
(Super-Resolution Mapping of Urban Flood, SMUF) with the fusion of the Support Vector
Machine and General Regression Neural Network (FSVM-GRNN) [35]. Because the urban
flood area in the observation area is not very dense, the accuracy of this FSVM-GRNN
is 80.2%.

Shen et al. proposed a machine learning process to make corrections to the mapping
of flood inundation areas in near-real-time (NRT) using SAR, where the observation area
is an open area without many obstacles on the surface [41]. At the time of segmentation,
there are difficulties in classifying areas that are flooded with areas that have surface
reflection properties similar to those of the water surface. ML is performed to correct speckle
noise and another scattering, which can interfere with data reading and classification.
The filtering method is used in most SAR image processing but its effect is to reduce the
effective resolution and change the signal statistics and cannot completely remove noise.
To overcome this, Shen et al. used the Logistic Binary Classifier (LBC) in a correction step
to practice detecting the presence of water in the pixels contained in the water bodies and
the surrounding buffer areas.

The objective of this work is to investigate the mapping of flood potential in Jakarta
and nearby coastal areas using three-dimensional CNN on co-polarized (VV) and cross-
polarized (VH) Sentinel-1a SAR images. A three-dimensional classification combines
the two-dimensional image and one-dimension multi-temporal processes into a single
convolution. The images are then pre-processed into grayscale images to be converted
into a vector data format. The 2 January 2020 images were also sampled as flood and
non-flood target sub-images, along with the corresponding locations from other images, to
form the multi-temporal value changes of the flooded locations along with the consistency
of the non-flooded locations. The CNN training is performed with training/test percentage
values of 70/30; 80/20; and 90/10 with varying epochs between 100 and 160 iterations to
obtain the best combination with the highest accuracy and the shortest processing time.

2. Materials and Methods

2.1. Location and Data

A radar image is generated from the reflection of active microwaves emitted from
the radar vehicle (airplane or satellite). The transmitter in a radar system is an antenna
array consisting of a waveguide and emitting a very narrow beam of microwave waves.
The radar sensor moves along a trajectory, and the area highlighted by the radar moves
(known as the footprint) along the surface being swept to form an image. A digital radar
image consists of many pixel dots representing the backscatter or backscatter of a point
on the surface. Figure 1 shows an example of a SAR image from 2 January 2020 that is
free from cloud cover with the bright dots showing high backscattering while the dark
dots represent low backscattering, while Figure 2 is the optical image from the same date
showing cloud cover.

The radar system generally has a wavelength undisturbed by interference from water
particles and water vapor in the air (clouds and rain). Because they are not dependent
on illumination (irradiation) from the sun or other sources, the radar system can function
day and night and in all weather. Synthetic Aperture Radar (SAR) works by detecting
the phase-change of reflected signal caused by the movement of the platform to obtain
the surface image with good resolution (i.e., visually discernible). The SAR system is
generally divided into two wavelengths, namely short (C-band and X-band) and long
(L-band and P-band) waves. Early SAR satellite systems use a single platform such as
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Radarsat. Currently, the most commonly used are satellite constellation systems such as
TerraSAR-X and TanDEM-X pair, four-satellites Cosmo-SkyMed in X-band, three-satellites
Radarsat Constellation Mission, and Sentinel 1 satellite pair, which give shorter revisit time
and higher temporal resolution [20,41–43]. Figure 3 shows the backscatter mechanism of
shortwave radar (illustrated with black arrows) and long (illustrated arrows in blue) on
various surfaces under normal conditions and during a flood. On the grass surface, there
are surface reflections at both wavelengths due to the relative roughness of the surface.
For short waves, the scattering is due to the thickness of the grass, while long waves can
penetrate deeper [44].

 

Figure 1. SAR image of Jakarta on 2 January 2020.

 

Figure 2. An optical image from Landsat-8 of Jakarta on 2 January 2020.

When a flood occurs, specular reflection occurs in both types of waves. On objects
in the form of trees or forests, the reflection is dominated by the scattering volume. For
short waves, the scattering comes from the canopy (leaves) of the trees, while the longwave
scattering by the branches and other tree structures is added by a double-bounce, which
hits the ground surface and then the tree trunk or vice versa. When there is a flood, the
double reflection will get more significant due to the specular reflection on the water surface
(shown as a thick line of the direction of the reflection). In urban areas, the reflection on both
waves is dominated by multiple reflections, although the surface will appear coarser on
short waves. When there is a flood, this double reflection will be significantly strengthened
due to the specular reflection on the water surface (shown as a thick line of the direction of
the reflection).
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Figure 3. Radar wave backscatter mechanism on the surface of the object (a) Grass/Land,
(b) Vegetation, and (c) Urban in normal and flood conditions, for short wavelengths (C- and X-
band) and long waves (L- and P-band).

In this study, the flood data collected came from Sentinel-1a remote sensing satellite.
The data are downloaded through Google Earth Engine by the Copernicus catalog and
selecting available dates from the archive. The selected mode is Interferometric Wide Swath
(IW) with 250 km swath and 5 m × 20 m spatial resolution [45]. For our model, the pixel
resolution is preset at 10 m × 10 m. Remote sensing data combined with GIS data are
integrated to create a flood hazard and potential map. Based on information obtained from
remote sensing and GIS databases, the ML method can be applied for spatial modeling of
flood vulnerability.

The data shown in Figure 4 are divided by the date of acquisition into three categories,
namely: pre-event, consists of data from November to December 2019, which represent
conditions before the major flood occurred; co-event is data taken on or near the 2 January
2020 flood, and the rest is categorized as post-event data. In Figure 5, the SAR images
are set into a dataset, which contains 39 cross-polarized and 39 co-polarized images from
Sentinel-1a between November 2019 and October 2020, with co-event images designated as
the target image. The dataset SAR was collected using Google Earth Engine and consisted
of Sentinel-1a VV and VH images between November 2019 and December 2020 as RGB
composite TIF images. All images are resized into 946 × 681 pixels covering the Jakarta
area and part of the Bekasi and Tangerang Regencies that flooded. The target image is
further broken down as flood markers to make a 25 × 25 pixels-sized kernel. The previous
individual images shown in Figure 5 are combined into three-dimensional data with a
946 × 681 × 78 pixel dataset and 25 × 25 × 20 pixel kernel.

2.2. Image Segmentation and Classification

In a digital image processing application, the primary process is segmentation to
detect and identify objects and components within the image. The segmentation process
divides the image into parts known as constituent objects. Automatic segmentation is
generally the most challenging image processing [12]. With the development of image
processing algorithms, image segmentation is also developed using region growing and
merging, namely by expanding pixels so that the object becomes larger. In the end, some
objects close to the same value will merge into one other, bigger object. This mathematical
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algorithm is the basis for developing an image segmentation algorithm that carries out the
unsupervised segmentation process without human intervention.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Sample images from co-polarization (VV) and cross-polarization (VH): (a,b) Pre-flood event;
(c,d) Co-event during January 2020 flood; (e,f) Post-flood event.

Kwak et al. created a SAR satellite data processing algorithm to detect urban floods
near-real-time using data before and after a flood event. Furthermore, the image is clas-
sified using a supervised classification to obtain the flood area based on building classes.
The developed Probability Density Function (PDF) method can reduce the maximum
backscatter intensity difference for rice fields and open areas by 35 dB; however, for urban
areas, it has increased by 25 dB [9]. Further development of this method can reduce variance
by 12 dB and increase urban areas by 15 dB [10]. In comparison, Liang et al. [46] used PDF
to estimate the maximum similarity before thresholding by comparing the Otsu, Split-KI
(Kettler and Illingworth), and Local Thresholding (LT) methods. The Overall Accuracy
(OA) results obtained from the Sentinel-1a image classification in the Louisiana plain were
98.12% (Otsu), 98.55% (Split-KI), and 98.91% (LT), respectively.
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(a) 

 
(b) 

 
(c) 

Figure 5. Sentinel-1a images: (a) co-polarized (VV); (b) cross-polarized (VH); (c) flood markers.

Pelich et al. proposed the creation of a large-scale global database for flood inundation
maps derived from the SAR dataset [28]. The method used is histogram thresholding to
delineate quickly, then the level of flood distribution is extracted from the SAR backscat-
ter using the Probability Density Function (PDF). Thresholding is performed using the
Hierarchical Split-Based Approach (HSBA) to identify pixels with a bimodal distribution
on the sub-pixels, which indicates that there is an immersion limit on these pixels [47].
The accuracy of the results obtained from flood detection in rural areas is 35%.
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Another technique in flood detection is to utilize the polarization characteristics of
radar signals, namely the Interferometric SAR (InSAR) method. The principle of stable
scatterer or persistent scatterer is used to detect areas that do not experience changes in
reflection characteristics, while changes in reflection characteristics result in low coherence
between image data and are assumed to be flooded. The mapping is built by creating
20 interferometric pairs from 22 consecutive Sentinel-1a images with a composition of
17 pairs of pre-event images, a pair of images during a flood, and two pairs of post-
event images [48]. Chini et al. also integrated intensity data using InSAR coherence,
normalized cross-correlation to detect the presence of water in urban areas and mapping
of double-bounce-producing objects using histogram thresholding and region growing.
Pixels are categorized as floods when there is a decrease in coherence on the RGB composite
channel [16].

In line with the development of the field of artificial intelligence, image processing
methods also develop by making use of artificial intelligence functions. Several artifi-
cial intelligence methods that are widely used in image processing are Artificial Neu-
ral Networks or ANNs. The method that has recently begun to be applied in studies
of mapping flood potential and vulnerability is to use machine learning. Some of the
methods that were implemented include Adaptive Neuro-Fuzzy [34], Support Vector
Machine (SVM) [35,36], Convolutional Neural Network (CNN) [36,38], and Swarm Intelli-
gence [39,40,49]. Dasgupta et al. used Gamma Maximum A-Posteriori (GMAP) to filter out
speckle noise from SAR images, then performed surface texture analysis using the Gray
Level Co-Occurrence Matrix (GLCM) [34].

Although being the most common basic method on flood mapping, NDFI/NDWI as
the most straightforward method tends to amplify noise greatly. Otsu thresholding suffers
from high computational requirements since it is an early optimization method. The SMUF,
SVM, GRNN [34,35], and most recently CNN [50] still perform the classification process in
a 2D plane and then perform the 1D multi-temporal process. Due to the complexity of the
factors that influence the occurrence of floods in urban areas, the most effective and efficient
classification method is needed. As a classification technology developed based on feature
matching, the ML method produces a more accurate recognition than feature matching.
However, it has limited extraction features that can cause errors in the computation process.
This study proposes three-dimensional CNN in mapping flood areas to filter and weigh
neurons and map the potential flood areas in urban areas with fewer images compared
to the previous study [36,51]. CNN features unsupervised feature extraction compared to
Artificial Neural Network (ANN), in which the process is achieved through the training
phase to recognize flood areas. In ANN, all neurons of a layer are fully connected to every
neuron from other layers, whereas in CNN, only the last layer of neurons is fully connected
due to the parameter-sharing nature of the CNN, therefore the computational load of CNN
is less than ANN.

2.3. Deep Learning Neural Network

Recent developments in the Deep Learning Neural Network (DNN) are increasingly
opening up great opportunities in flood mapping research. Deep Learning as one of the
Machine Learning models has shown promising results in image processing and pattern
recognition. Therefore, this research will propose mapping the potential flood areas using
the DNN algorithm. DNN is based on Artificial Neural Network and generally consists
of an input layer, with more than one hidden layer and one output layer [52]. Figure 6
shows the conceptual structure of the DNN model used for flood vulnerability mapping.
The input layer is the factor that affects flood (F1–Fn). The information is processed and
analyzed in the hidden layer to determine the weight and classification of each pixel. The
final result of the classification is an indication that there is a flood in the output layer with
two possible labels: Flood (positive class) and Others (negative class).
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Figure 6. DNN structure concept for mapping flood potential.

DNN is a feed-forward network and is trained using the back-propagation method.
However, more hidden layers will make the network challenging to train because of the
different adjustment speeds in the hidden layer. DNN was implemented successfully
in various applications, especially in automatic image recognition, speech recognition,
language processing, and some applications in remote sensing. There is no rule of thumb
about the number of hidden layers and neurons in each layer since it depends on the
complexity of the problem and the conditions of the dataset.

The number of hidden layers in DNN has the advantage of representing a very complex
relationship between factors. The hidden layer on DNN has neurons that are activated with
the Rectified Linear Unit (ReLU) function as an alternative whose computation is more
straightforward when compared to the sigmoid. Because DNN is trained on the principle
of back-propagation, ReLU can minimize the decrease in learning gradient, hindering the
learning process. Mathematically, the ReLU activation function can be expressed as h′(x) in
Equation (1).

h′(x) =
{

1i fx > 0
0i fx ≤ 0

(1)

Hidden layers in DNN perform increasingly complex feature transformations to pro-
duce a more discriminatory feature abstraction. The classification results displayed in the
output layer are based on the most abstract features obtained in the last hidden layer. Dur-
ing the DNN learning phase, the connection weights between layers are adjusted to reduce
the difference between observed and predicted results. The back-propagation process trains
DNN by providing feedback on the error results to the hidden layer. The deviation between
the observed and predicted results is expressed in the loss function between entropies, as
expressed in Equation (2).

L = − 1
ND

ND

∑
n=1

Tln(Y) + (1 − T) ln(1 − Y) (2)

where ND is the number of training data points, T represents the observed output, and
Y represents the predicted output. The back-propagation learning gradient used for the
training sample of m is formulated in Equation (3):

g =
1
m

C

∑
i=1

∂L
∂w

(3)

where L is the loss function, w represents the network weight, and C = 2 represents the
number of output classes used (flood and others).
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2.4. Convolutional Neural Network (CNN)

CNN is one type of DNN that uses the convolutional principle in its data processing.
The basic concept of CNN architecture is to utilize a convolutional layer to detect the
relationship between the features of objects and a pooling layer to similar group features.
The CNN architecture consists of a series of layers, namely the Convolutional Layer (CL),
which functions to transform a set of activations with a differential function, a Pooling
Layer, and the final result is a Fully Connected Layer (FCL). Unlike other neural networks
where all neurons are fully connected with every other neuron of the next layer, CNN
disregards zero-valued parameters and makes fewer connections between layers. The
non-zero parameters can be shared to be used by more than one connection in the layer to
reduce the number of connections. This characteristic is useful for recognizing features.

The pooling layer function is used to reduce the size of an image by downsampling
it and summarizing the features. The common pooling methods to achieve grouping are
average pooling, where the summary is the dominant feature, and maximum pooling by
summarizing the strongest feature [53]. Average pooling produces a smooth feature that
is useful to extract the most relevant value, such as the color of a surface, where a small
variation in isolated points within a region does not affect the overall value. On the other
hand, max-pooling extracts high contrast data, such as edges or points.

The problem with a sampling matrix (and an image) in CL is that pixels at and near the
edge are sampled less than pixels farther from the edge. This sometimes results in sampling
inaccuracy. To prevent this, the kernel filter is padded, with extra rows and columns to
allow for more information to be collected from the edge pixels. For two-dimensional data,
there are two types of padding: same padding and valid padding. Same padding maintains
the sample size at the same as the original matrix; basically, it resamples the image. Valid
padding considers all pixels valid, so the model considers the value. This is useful for
keeping the information from corner pixels since the simple model considers it invalid due
to being less sampled compared to other pixels.

The extracted features compose the feature map that the FCL will use to classify the
result. This approach makes CNN a method with fewer computational requirements than
the fully connected ANN structure. The CL calculation is formulated in Equation (4):

hi,j =

m

∑
k=1

m

∑
l=1

w(k,l)x(i+k−1),(j+l−1) (4)

and the pooling layer (max pooling) is stated in Equation (5):

hi,j = max
{

x(i+k−1),(j+l−1)∀l ≤ k and 1 ≤ l ≤ m
}

(5)

with fully connected layer h formulated in Equation (6):

h = ∑
i

wixi (6)

where hi,j is the output at point (i, j) on the layer with input x and filter w, and m denotes
the width and height of the filter. Non-linear functions are used in CL and FCL to convert
negative values to zero, including Sigmoid, Hyperbolic Tangent (Tanh), and Rectified Linear
Unit (ReLU).

Three-dimensional CNN is a CNN structure whose input is a set of square matrices,
s × (n × n), so it is a suitable method for image segmentation and classification. In this
study, the dataset used is multi-sensor, multi-temporal data derived from SAR and optical
images, rainfall data, and ground surface contour data, as shown in Figure 7.
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Figure 7. Representation of the multi-temporal 2D dataset into 3D data.

2.5. Proposed Method

Segmentation and classification of flooded areas using 3D CNN for the SAR image
dataset and the flood factor consists of three-dimensional dataset segmentation stages using
three-dimensional CNN to get initial segmentation results. These results are used to weight
neuron connections to perform n-dimensional optimization so that we get the classification
of pixels into flood or other categories.

In the three-dimensional CNN shown in Figure 8, several CLs with dimensions
a × a × a are used to filter the input data to obtain a feature map. The input data used are
shown in Table 1. The images are down sampled using a pooling layer by summarizing the
features present in the images. In this model, the pooling layer uses max pooling, which
summarizes the most dominant value in the sample. To prevent edge and corner pixels
from being omitted by the model, valid padding is used on the input layer and the CL.
The padding basically left the image unchanged but allows edge and corner pixels to be
more sampled as it is now placed further from the edge. Furthermore, the pooling layer
measuring b × b × b is used to reduce the map, so those neuron connections are formed to
compile the information obtained, which is then formed into FCL. FCL stored the different
feature values and compiled them into a feature map with two output categories, namely
flood pixels and non-flood pixels.

 

Figure 8. Representation of 3D-CNN process.

Table 1. Input data used for the 3D-CNN.

Type Source Resolution/Scale Acquisition Date

Co-polarization (VV) SAR data Sentinel-1a 10 m 21 November 2019 to 20 October 2020
Cross-polarization (VH) SAR data Sentinel-1a 10 m 21 November 2019 to 20 October 2020
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The stages carried out in this study began with an inventory of the data used for
classification, namely the SAR image dataset. The pre-processing stage is comprised of
registering the image data to ensure that the coordinates are consistent between different
images. As the images are in RGB TIF format with r × c × 3 dimensions, they must
be converted first into grayscale images, and then samples of sub-images were selected
that represent flood and non-flood targets. The data are then divided into training and
validation sets. The Feature Learning stage, or training, provides training data for the
model to store known flood data. The commonly used proportion between the two sets
is 70:30 [54], but we also include 80:20 and 90:10 for comparisons. Training data are used
to train 3D CNN [36] in determining the parameters’ optimized values. The next stage is
to conduct training on the classification by three-dimensional CNN to detect the presence
of water surfaces and differentiate them from other surfaces by the variance of the pixel
values since dry land and permanent water bodies have consistent values. The ReLU plays
a significant part in this phase since flood areas tend to change values, the possibility of dry
land changes to a water surface and then back to dry land will result in a negative value.
The ReLU rectifies this problem and prevents the neuron with a negative output from being
contributed to the network. The Classification stage presents the system to other data for
recognizing if there are flood features present in the images using feedback from the results
of the Training stage. The overall process in the research is shown in Figure 9.

 
Figure 9. Workflow of the research.

3. Results and Discussion

The three-dimensional CNN model is trained with two main hyperparameters, namely:
epoch, which is the complete iteration of convolution feed-forward before starting over
the next iteration; and validation-split, which is the proportion of the training data used
for validating the result of the training. In this research, we use the combination of
training/validation split of 70/30, 80/20, and 90/10 with epochs of 100 and 150 iterations.
The elapsed time and resulting accuracy for each combination are shown in Table 2 and the
graphic plot in Figure 10. Accuracy is defined as the percentage of correct predictions for
the test data calculated by dividing the number of correct predictions by the number of
total predictions, while elapsed time counts the total time needed to perform the training
with the corresponding proportion and epochs.
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Table 2. The elapsed time, accuracy, and RMSE of the 3D-CNN model.

No. of Epochs Performance Metrics
Training/Validation Split

70/30 80/20 90/10

100
Time 163 min 188 min 140 min

Accuracy 0.667 0.659 0.685
RMSE 0.284 0.282 0.203

150
Time 243 min 257 min 302 min

Accuracy 0.672 0.692 0.674
RMSE 0.288 0.314 0.296

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Graphic plot from the testing and validation of the 3D-CNN model: (a) 100 epochs,
70/30 split; (b) 100 epochs, 80/20 split; (c) 100 epochs, 90/10 split; (d) 150 epochs, 70/30 split;
(e) 150 epochs, 80/20 split; and (f) 150 epochs 90/10 split.

During model testing with 100 epochs, the algorithm quickly reaches 100% training
accuracy under 40 epochs, and in the first half of the epoch, the testing accuracy increases,
but in the second half, it does not rise significantly, being around 0.667; 0.672; and 0.685 for
70/30; 80/20; and 90/10 data split. The overall accuracy achieved by the model is between
0.667 to 0.692 for 100 epochs completed between 140 and 183 min. Root Mean Square
Error (RMSE) for 70/30 and 80/20 is around 0.28, while for 90/10 is lower at 0.2, which is
consistent with higher accuracy. For 150 epochs, the accuracy of 0.672; 0.692; and 0.674 with
RMSE of 0.288; 0.314; and 0.296 for the corresponding data split in 70/30; 80/20; and
90/10 ratios, respectively. The process was completed in 4 h and 3 min. Figure 10 shows
that the validation accuracy quickly becomes stable after 20 to 25 epochs while the training
accuracy is still increasing until it reaches 100%. This condition indicates that the model
was overfitting during testing. Overfitting resulted from a vast set of neural connections,
which often reduces the system fitness due to non-common cases included in learning
data [55].

We readjusted the model to eliminate and reduce overfitting and then tested it with
similar hyperparameters. Overfitting correction is performed by randomly deactivating
some neurons on each layer, so they are not used during forward- and back-propagation
training. This causes the learning process to spread out connection weights without
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focusing on specific neurons. In this research, the deactivation probability is set at 0.5,
which means there is an equal chance of each unused neuron in the learning process.
Low deactivation probability will not reduce overfitting, while high probability will cause
the system to underachieve. Reducing neurons results in a smaller, simpler, and more
regulated connection network, which means outlying or widely different results will be
disregarded. In this manner, the overall error could be reduced by averaging errors from
different connections.

The adjusted model yields the result shown in Table 3 and Figure 11. The results
indicate that computation time takes 50 min longer for an 80/20 and 90/10 split, with the
resulting accuracy reaching over 0.7 than the previous test. The most significant increase in
accuracy is for 150 epochs with a 90/10 split of testing and validation data, which shows
an increase of 0.045 for accuracy of 0.719, the lowest RMSE achieved by 70/30 split with
100 epochs with a drop of RMSE value from 0.284 to 0.024. The fastest computing time
of 165 min is achieved with 100 epochs and 70/30 split data. This result is consistent that
fewer training data corresponds with faster computing but lower accuracy, while a higher
percentage of training data took longer but with higher accuracy.

Table 3. The elapsed time, accuracy, and RMSE of the adjusted 3D-CNN model.

No. of Epochs Performance Metrics
Testing/Validation Split

70/30 80/20 90/10

100
Time 165 min 235 min 195 min

Accuracy 0.691 0.708 0.705
RMSE 0.024 0.051 0.078

150
Time 172 min 283 min 302 min

Accuracy 0.699 0.709 0.719
RMSE 0.082 0.093 0.112

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. The testing and validation accuracy of the tuned 3D-CNN models: (a) 100 epochs,
70/30 split; (b) 100 epochs, 80/20 split; (c) 100 epochs, 90/10 split; (d) 150 epochs, 70/30 split;
(e) 150 epochs, 80/20 split; and (f) 150 epochs, 90/10 split.
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Further testing with 140, 145, 155, and 160 epochs to investigate the optimum combi-
nation of accuracy with shorter time yields the results shown in Figure 12. Since the testing
accuracy is greater with 150 epochs than 100 epochs, we assume that accuracy will improve
within 150 ± 10 epochs. Testing with a 70/30 split confirms that as epochs increased from
140 to 160, accuracy gradually improved by 13.6% from 0.567 to 0.703, while computing
time increased by 12% from 240 min to 269 min. A similar trend is also observed during
testing using an 80/20 data split with an accuracy increase by 13.5% from 0.577 to 0.712 but
with a much longer computing time from 243 min to 304 min, representing an increase of
25.1%. The more significant increase is due to the additional time needed to perform more
training for the 80/20 than the 70/30. As for the testing with a 90/10 data split, the peak
accuracy performance is achieved at 150 epochs with 0.719. Testing with 140, 145, 155, and
160 epochs gives lower results.

In Table 4, the three-dimensional CNN without any combinations with other methods
results in higher accuracy than what was achieved by Wang et al. at 0.685 [36]. It is
comparable to Grimaldi et al. [11] on open trees flood accuracy at a range of 0.55 to 0.70,
which is similar in conditions to flooded areas in Jakarta. Figure 12 shows the flood map
of the proposed model compared to the SAR image, as shown in Figure 2, where the
model could detect most of the dark areas of the flood while leaving out the similarly
dark Jakarta Bay. Compared to the sub-district-level flood map publicly released by the
government [2], it is also shown that the flood has occurred in the reported sub-districts.
There are discrepancies between the detected and reported areas since the report classifies
floods as a whole sub-district coverage.

Table 4. Comparison between models.

KERRYPNX
Methods

3D-CNN CNN-SVM Fuzzy Logic

Accuracy 0.719 0.685 0.669
Location

Characteristic
Dense Urban Rural Rural

Flat Hill Flat

(a) 

Figure 12. Cont.
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(b) 

Figure 12. Result map compared to (a) 2 January 2020 SAR image, and (b) Jakarta Flood Map released
by the government report.

4. Conclusions

In this study, an application of a three-dimensional Convolutional Neural Network for
flood mapping is proposed. The deactivation factor minimizes the overfitting problem to
reduce the number of neurons and simplify the connections. The research results are that
the 3D-CNN method enables the analysis of multi-temporal images for flood detection and
classification instead of using multiple image pairs with multiple classification levels. For
three combinations of splitting training/test data, the highest overall accuracy of 0.72 was
achieved for a split of 90/10 and 150 epochs in 302 min. Regarding computation time,
the best performance is achieved with an 80/20 split and 150 epochs with an accuracy of
0.71 in 283 min. Another test with epochs other than 150 showed that accuracy gradually
decreases with a 90/10 split, but with a lower training function, the accuracy improves as
the number of epochs increases.
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Abstract: With its high water potential, the Ziz basin is one of the most important basins in Morocco.
This paper aims to develop a methodology for spatiotemporal monitoring of the water quality of
the Hassan Addakhil dam using remote sensing techniques combined with a modeling approach.
Firstly, several models were established for the different water quality parameters (nitrate, dissolved
oxygen and chlorophyll a) by combining field and satellite data. In a second step, the calibration
and validation of the selected models were performed based on the following statistical parameters:
compliance index R2, the root mean square error and p-value. Finally, the satellite data were used to
carry out spatiotemporal monitoring of the water quality. The field results show excellent quality for
most of the samples. In terms of the modeling approach, the selected models for the three parameters
(nitrate, dissolved oxygen and chlorophyll a) have shown a good correlation between the measured
and estimated values with compliance index values of 0.62, 0.56 and 0.58 and root mean square
error values of 0.16 mg/L, 0.65 mg/L and 0.07 μg/L for nitrate, dissolved oxygen and chlorophyll a,
respectively. After the calibration, the validation and the selection of the models, the spatiotemporal
variation of water quality was determined thanks to the multitemporal satellite data. The results
show that this approach is an effective and valid methodology for the modeling and spatiotemporal
mapping of water quality in the reservoir of the Hassan Addakhil dam. It can also provide valuable
support for decision-makers in water quality monitoring as it can be applied to other regions with
similar conditions.

Keywords: Ziz basin; water quality; satellite image analysis; modeling approach; nitrate; dissolved
oxygen; chlorophyll a; climate change; time series analysis; environmental monitoring

1. Introduction

Over the last two decades, Morocco, as a Mediterranean country affected by climate
change, has pursued an economic and social policy characterized by numerous develop-
ment programs such as the policy of dam construction [1]. These hydraulic infrastructures
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provide a variety of services to both humans and the environment by organizing agricul-
tural practice [2,3], as well as ensuring an efficient mobilization of water resources and
improving the living conditions and environment of citizens [3]. These dams also provide
habitat for fauna and flora and play a very important role in the global carbon cycle and
climate change [4,5]. However, they are facing the interannual variability of precipitation
and the succession of droughts and floods [6–9]. In order to monitor the water quality
and observe the biophysical and biochemical conditions of the Hassan Addakhil dam and
to prevent serious damage from occurring to the ecological system, the Guir-Ziz-Rheris
Hydraulic Basin Agency (HBAGZR), in charge of water resources management in the
Errachidia region, conducts in situ measurement surveys. The implemented system of in
situ measurement (Figure 1) and monitoring is not practical due to its limitations in time
and space [10]. It is expensive and has deficiencies that prevent accurate and complete
results. Therefore, it is essential to have a complete, accurate, fast and inexpensive monitor-
ing system to follow the water quality of the dam in order to avoid any degradation by
applying prompt treatments.

Figure 1. In situ measurement and monitoring of the Hassan Addakhil dam with (a) fieldwork data collection equipment
and (b) laboratory data analysis.

Recently, geospatial tools have been widely used for the spatiotemporal monitoring
of environmental phenomena [6,11,12], especially the monitoring of lake water quality
parameters [3,13–30]. Such application is mainly enabled by the high spatial resolution
data [21,24,26] as well as the temporal resolution. However, this aspect has always en-
countered problems due to the lack of appropriate sensors [31,32]. Moreover, moderate
resolution sensors that are characterized by frequent revisit time and high radiometric
resolution have been used [31], but the spatial resolution of these sensors does not allow for
small lakes [31]. Several works have been carried out using Landsat TM and ETM+ data,
but these satellites are limited in terms of revisit time [21,31] for very frequent monitoring.
However, with the availability of new satellites with higher spatial, spectral and temporal
resolution, such as Landsat OLI and Sentinel-2, retrieval and mapping of water quality
from the satellite orbit has become more accessible. In 2008, Kallio et al. [31] conducted a
study with the main purpose of monitoring turbidity and colored dissolved organic matter
(CDOM) through ETM+ images in lakes in two river basins in southern Finland. The results
showed that despite limitations in spectral and radiometric resolution, these images can be
an effective and useful tool for water quality monitoring of small lakes (<1 km2). Toming
and his collaborators [18] conducted a study in Estonia in which they evaluated Sentinel-2
Multispectral Imager (MSI) data in the mapping of different lake water quality parameters
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such as chlorophyll a (Chl-a), water color, CDOM and dissolved organic carbon (DOC).
Therefore, field data of different parameters were compared to the Sentinel-2 derived band
ratio algorithms. The obtained results showed a strong correlation between the Sentinel-2
MSI ratio bands and the different lake water quality parameters such as Chl-a (R2 = 0.83).
In the Czech Republic, a study was carried out by Saberioon and his collaborators [33]. It
aimed at developing a semiempirical model for predicting water quality parameters such
as Chl-a and total suspended solids (TSS) by combining Sentinel-2A data and machine
learning methods. The results showed an adequate prediction accuracy for both Chl-a
(R2 = 0.85, RMSEp = 48.57) and TSS (R2= 0.80, RMSEp = 19.55).

Jerry C. Ritchie et al. [29] conducted a study aimed at providing the capability of
remote sensing technology in mapping water quality parameters (suspended sediments
(turbidity), chlorophyll and temperature). As a result, in situ measurements have been used
to assess water quality, and empirical relationships between spectral properties and water
quality parameters have been established. Another study was carried out by Carly Hyatt
Hansen et al. [30] in the USA at three lakes in the Great Salt Lake surface water system
(namely the Great Salt Lake, Farmington Bay and Utah Lake), the objective of which was to
improve techniques for the development of algal mapping models through the use of field
sampling methods. This study has shown that Landsat, SENTINEL-2 and MODIS sensors
are suitable for monitoring water quality in the lake system. In some cases, temporal
variability may be an obstacle to detecting short-term events, but it may be sufficient in
other areas where short-term variability is lower.

In Morocco and in another context, El Hafyani et al. [34] conducted a study in the
Tafilalet plain aiming at modeling and mapping soil salinity through Landsat Oli images.
The results showed a strong fitting of this technique with R2 of models ranging from 0.53 to
0.75 and root mean square error of 0.62 to 0.82 dS/m. Karaoui et al. [3] carried out a study
aiming at estimating and mapping the water quality parameters in the Bin El Ouidane
reservoir through better understanding the relationship between the latter and digital
data. The correlation results showed that all the studied parameters have an R2 greater
than 0.52 and that they can be transformed into predictive models by stepwise regression.
This work carried out at the Bin El Ouidane reservoir is of considerable importance for
the water resource managers of the Oum Er-Rbia Hydraulic Agency. Thus, the present
study was carried out at the level of the Hassan Addakhil dam, in collaboration with
the Guir-Ziz-Rheris Hydraulic Basin Agency (HBAGZR). It aims at the validation of this
method and the strengthening of its results by comparing them with other studies in the
same context.

The objective of this study is to conduct modeling and spatiotemporal mapping of
water quality of the Hassan Addakhil reservoir by combining the high spatial resolution
data (Sentinel-2) and field measurements. In fact, 20 samples were collected on 14 March
2021, at the same Sentinel-2 satellite transit time. Measurements of nitrate, dissolved
oxygen and Chl-a were carried out. Next, a statistical study was performed to select the
bands correlated with the quality measurements, and a stepwise regression analysis was
elaborated to model each parameter. Finally, a spatiotemporal mapping was made for
water quality.

2. Materials and Methods

2.1. Study Area

The Hassan Addakhil reservoir is located in the southeast of Morocco at a longitude
of 4◦28′50.98′′ W, latitude of 31′01′00.44′′ N and altitude of 1125 m (Figure 2). It accurately
lays at Foum Rhiour on the Ziz River, to the north of Errachidia city. It was built in
1970, five years after the devastating flood of October 1965, which ravaged the Ziz valley,
leaving 25,000 people homeless. Its retention capacity is 312.8 million m3. The objective
of its construction was to ensure protection against floods and to achieve agricultural
development of the Ziz valley and the Tafilalet plain by regulating its floods. This dam
receives the water of the Ziz River and its tributaries, which drain the Upper Ziz watershed.
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The latter is rich in fertile valleys but with low development of perennial courses. The
geology is of Jurassic type [35] with limestone and dolomitic limestone formations that
constitute good water reservoirs [36–39]. The climate is semiarid with short and brutal
precipitation. The rainwater that escapes infiltration and evapotranspiration flows into
the Hassan Addakhil dam (Figure 3). Downstream of the dam, aridity increases and
evaporation phenomena increase. The dry period often lasts up to eight months, with
maximum temperatures obtained during the months of June, July and August. The winter
is relatively wet and very cold with minimum temperatures in January [40].

Figure 2. Location of study area and sampling points.

Figure 3. Correlation between volume of rainfall and dam’s contributions.
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2.2. Data
2.2.1. Ground Data

Ground truth samples were taken at 20 points distributed over the reservoir of Hassan
Addakhil dam (Figure 2), where nitrate, dissolved oxygen and Chl-a were measured
by chemical process at the laboratory of the Guir-Ziz-Rheris Hydraulic Basin Agency in
Errachidia and Gaya Laboratory in Rabat, Morocco, according to the Moroccan law adopted
for aquatic waters [41] (Table 1). The Chl-a indicates the stage of eutrophication in the
reservoir, while the nitrates’ concentration is directly related to the agricultural practices
upstream of the reservoir, as well as to wastewater discharge.

Table 1. On-ground data sample characterizations.

Sampling
Data ID

Dissolved
Oxygen
(mg/L)

Nitrates
(mg/L)

Chl-a (μg/L)
Sampling
Data ID

Dissolved
Oxygen
(mg/L)

Nitrates
(mg/L)

Chl-a (μg/L)

01 7.4 1.82 0.55 11 7.5 1.57 0.47
02 9 1.57 0.77 12 9 1.56 0.55
03 7.6 1.56 0.51 13 9.1 1.6 0.69
04 8.2 1.65 0.61 14 9 1.82 0.57
05 7.9 1.31 0.48 15 8.6 1.54 0.64
06 5.8 1.45 0.77 16 9.7 1.78 0.52
07 8.1 1.5 0.54 17 7.4 1.74 0.72
08 7.4 1.42 0.60 18 7.5 1.96 0.68
09 7.4 1.6 0.49 19 7.2 1.71 0.77
10 7.2 0.8 0.53 20 8.9 1.85 0.55

Dissolved oxygen was measured in situ using a portable dissolved oxygen meter
(BANTE Instruments 821). For the determination of Chl-a, a volume of samples between
0.1 and 2 L was first filtered under vacuum through a glass fiber filter without organic
binder with a diameter greater than 1 μm, depending on the algal content, after shaking.
Then we proceed to the extraction step by pouring a small volume of acetone (20 mL to
30 mL) into the tube containing the filtered pieces. This step was followed by shaking
the extract contained in the extraction tubes for at least 3 min. Finally, we proceeded to
the reading of a part of the clear extract by UV-Vis spectrophotometry (Lovibond), which
provides double-beam operation with a scattered light rate of 0.01%, wavelength accuracy
of +/−0.1 nm and stability of 0.00015. The measurements were made at two wavelengths,
A1 = 665 nm and A2 = 750 nm, by comparison with a reference cell filled with acetone.

The determination of nitrates was done by UV-Vis spectrophotometric calibration
(Lovibond). In fact, after the preparation of the solution noted, it was smothered by
dissolving 129 mg of ammonium nitrate (of raw formula NH4NO3) in 1.0 L of distilled
water. A solution of mass concentration (or content) equal to 100 mg L–1 was then obtained.
Then, we subtracted the absorbance of the blank from the absorbance of each standard
solution and plotted the calibration curve showing absorbance versus mass of nitrate,
in milligrams per liter. Finally, the nitrate concentration C was determined from the
UV–visible calibration curve, established following the Beer–Lambert law.

The analyses of the samples were measured in three replicates, and the average was
calculated. The Table 1 shows the average of the three measured values.

2.2.2. Satellite Data

Twelve images obtained from the Sentinel-2 sensor of the European Space Agency
(https://sentinel.esa.int/web/sentinel/sentinel-data-access (accessed on 10 August 2021))
were used in this study. These images are characterized by a high spatial resolution of 10 to 60
m from the visible to mid-infrared range and a revisit time of 10 days (Table 2). The March
image was used for calibration with field data and model validation, while the other images
were used for spatiotemporal monitoring of different parameters. These images have been
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uploaded for the period April 2020–March 2021 (Table 3). The QGIS software was used to
process the Sentinel-2 satellite images through the interface (Semi-Automatic Classification Plu-
gin) developed by Luca Congedo [42]. There were several preprocessing steps, including the
conversion of digital number (DN) to top of atmosphere reflectance (TOA) and the subsequent
atmospheric correction by the dark object subtraction (DOS) algorithm [43].

Table 2. Sentinel-2 satellite image characteristics.

Sentinel-2 Bands Wavelength (nm) Spatial Resolution (m)

Coastal Aerosol 442.7 60
Blue 492.4 10

Green 559.8 10
Red 664.6 10

Vegetation red edge 704.1 20
Vegetation red edge 740.5 20
Vegetation red edge 782.8 20

NIR 832.8 10
Narrow NIR 864.7 20
Water vapor 945.1 60
SWIR-Cirrus 1373.5 60

SWIR 1613.7 20
SWIR 2202.4 20

Table 3. Sentinel-2 satellite image acquisition dates.

Image Acquisition Dates

1 28 April 2020
2 3 May 2020
3 6 June 2020
4 7 July 2020
5 6 August 2020
6 20 September 2020
7 28 October 2020
8 19 November 2020
9 19 December 2020

10 13 January 2021
11 17 February 2021
12 14 March 2021

2.3. Methodology

Figure 4 shows the different phases of this work. A field mission was carried out in
the Hassan Addakhil dam on the same day of the satellite visit in order to calibrate the
extracted models for the different water quality parameters, for which the image of 14
March 2021 has been used. This mission was done in collaboration with the staff of the
Guir-Ziz-Rheris Hydraulic Basin Agency, and the analyses were realized in its laboratory.
Later on, a statistical study was carried out to extract the different correlated bands with
the different parameters, and a multiple stepwise analysis modeling approach was used
in order to set the models. Several models were extracted for the different parameters,
and the selection of a suitable one was made on the basis of the compliance index R2, the
root mean square error (RMSE) and p-value. Finally, after the models’ validation and the
extraction of their equations, spatiotemporal monitoring of the reservoir water quality was
performed through multitemporal images.
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Figure 4. Flowchart of the methodology used.

3. Results

3.1. Model Assessment and Validation

Modeling is a representation of reality in order to demonstrate some of its properties.
Therefore, there are several types of models, such as stochastic models, optimization models,
dynamic simulation models and empirical statistical models, that allow predicting the
outcome of a categorical variable using a set of quantitative and/or qualitative predictors.

In this case, a statistical model based on a stepwise multiple regression analysis was
developed for the models’ creation in order to estimate different water quality parameters
using the RStudio open source software, using the following equation:

Y = b0 + b1 × X1 + b2 × X2 + . . . + bk × Xk

Y is the predicted variable with regression coefficients b1 to k and Y-intercept b0 when
the values for the predictor variables are X1 to k.

Firstly, a correlation study was conducted between the different water quality parame-
ters and the satellite image bands in order to select the appropriate bands for the elaboration
of the models (Table 4). For Chl-a, bands B5, B6 and B7 showed a strong correlation with
this band with correlation coefficients of 0.81, 0.71 and 0.73, respectively. The bands B1, B3
and B4 showed a strong correlation with nitrates with correlation coefficients of 0.73, 0.69,
and 0.73, respectively. Dissolved oxygen measurements showed a positive correlation with
bands B2 and B3 with correlation coefficients of 0.71 and 0.75, respectively. The bands that
were chosen in the first step were later integrated into the equations of the different models
(Table 5). The choice of the suitable model was based on the three statistical parameters,
namely the compliance index R2, the root mean square error (RMSE) and p-value. The
priority of choice was given to the models that have the strongest conformity index and
the lowest root mean square error, while the threshold of p-value was fixed at a value of
0.05. Table 5 represents the different developed models along with their equations and the
different statistical parameters for each. For dissolved oxygen, the chosen model is the one
that combines band 2 and band 3, with a compliance index R2 of 0.56, a root mean square
error of about 0.65 mg/L and a p-value of about 0.0009. For nitrates, the chosen model is
the one that combines band 1, band 3 and band 4, with a compliance index R2 of 0.62, a
root mean square error of about 0.16 mg/L and a p-value of about 0.0011. Lastly, for Chl-a,
the chosen model is the one that groups band 5, band 6 and band 8, with a compliance
index R2 of 0.58, a root mean square error of the order of 0.07 μg/L and a p-value of the
order of 0.0024.

In order to verify the accuracy of the proposed models, the measured values in the field
and the observed values of the different parameters were presented with their equations
(Figure 5).
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Table 4. Correlation between satellite bands and water quality parameters.

B1 B2 B3 B4 B5 B6 B8

Chl-a - - - - 0.81 0.71 0.73
Nitrates 0.73 - 0.69 0.73 - - -

Dissolved Oxygen - 0.71 0.75 - - - -

Table 5. Statistical parameters of the best performance models.

Model Equations RMSE R2 p-Value

Nitrate

0.00372 × B01 − 3.05 0.19 (mg/L) 0.39 0.0030
0.00895 × B03 + 0.31 0.24 (mg/L) 0.06 0.2945

0.00114 × B04 + 0.630 0.19 (mg/L) 0.39 0.0031
0.00372 × B01 − (3.056 × 10−7) × B03 − 3.0593 0.20 (mg/L) 0.39 0.0140

0.00273 × B01 + 0.00084 × B04 − 2.53264 0.17 (mg/L) 0.58 0.0067
0.000412 × B03 + 0.00125 × B04 + 1.1273 0.20 (mg/L) 0.40 0.0127

0.003099 × B01 − 0.000944 × B03 +0.0010509 × B04 − 1.81 0.16(mg/L) 0.62 0.0011

Dissolved Oxygen
0.0128 × B02 - 8.324 0.75 (mg/L) 0.30 0.0040
0.0102 × B03 - 6.704 0.63 (mg/L) 0.55 0.0001

0.00075 × B02 + 0.00989 × B03 − 7.09 0.65(mg/L) 0.56 0.0009

Chl-a

0.0007071 × B05 + 0.184 0.07 (μg/L) 0.41 0.0022
0.0010213 × B06 + 0.3066 0.08 (μg/L) 0.37 0.0042
0.002332 × B08 − 0.15655 0.07 (μg/L) 0.45 0.0011

0.0004766 × B05 + 0.000591 × B06 + 0.144903 0.07 (μg/L) 0.49 0.0029
0.000423 × B05 + 0.001572 × B08 − 0.1589 0.07 (μg/L) 0.55 0.0010
0.000574 × B06 + 0.00167 × B08 − 0.1076 0.07 (μg/L) 0.53 0.0015

0.0003214 × B05 + 0.000378 × B06 + 0.0013207 × B08 − 0.126 0.07(μg/L) 0.58 0.0024

Figure 5. Water quality parameters measured versus estimated through the models (best models’ performance).

3.2. Spatial Variation of Water Quality

The dissolved oxygen levels measured during the field campaign vary between 5.8 and
9.7 mg/L, while the values estimated by the model show a minimum value of 6.39 mg/L
and a maximum one of 9.39 mg/L (Figure 6). The spatial variation of this parameter
shows a well-oxygenated zone in the northeast of the reservoir. This area represents the
water inlet to the reservoir. For the spatiotemporal variation, the maps of different months
show high values in the northeastern part of the reservoir with a decrease moving away
from this area (Figure 6). Except for few months such as January, October and December,
this variation can be explained by the coincidence of these periods with that of water
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supply for agriculture downstream of the dam which allows the movement of water in the
reservoir and consequently an agitation of the water leading to an increase in the values of
this parameter.

Figure 6. Obtained maps of dissolved oxygen using best model.

Generally, the samples showed an excellent quality from the point of view of the
nitrate parameter with values ranging between 0.8 and 1.96 mg/L. The estimated values
for the model are between 1.11 and 1.96 mg/L (Figure 7). The spatial variation of nitrate
shows a decrease in values from the northeastern part of the reservoir, representing the
outlet, to the southeastern part (Figure 7).

The temporal variation shows that nitrate values do not exceed 10 mg/L throughout
the year. This proves the excellent water quality of this reservoir. This variation in the
reservoir can be explained by the leaching from agricultural soils and also by domestic
discharges of the agglomerations upstream.

Generally, the samples show an excellent quality compared to the quality standards for
surface water in Morocco with Chl-a concentrations varying between 0.47 and 0.77 μg/L.
The estimated values for the model range between 0.48 and 0.73 μg/L (Figure 8).

133



Appl. Sci. 2021, 11, 9297

Figure 7. Obtained maps of nitrate using best model.

Figure 8. Cont.
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Figure 8. Obtained maps of Chl-a using best model.

4. Discussion

The combination of field data, high spatial resolution images and modeling shows a
strong efficiency in the spatiotemporal monitoring of water quality at the reservoir scale. On
the other hand, the measured values of the different proposed models showed in most cases
a strong correlation with those measured in the field. Three water quality parameters were
selected in this study: dissolved oxygen, nitrates and Chl-a. The choice of these parameters
is based on their importance in the eutrophication of fresh or coastal water [44,45]. The
most visible phenomena are the appearance in spring and summer of the green tides in
coastal marine water and the water in lakes and rivers. These manifestations correspond to
an ecological imbalance linked to excessive inputs of phosphorus (including in the form of
phosphate PO4

3-) and nitrogen (nitrate NO3-). In fact, these inputs lead to an explosion
in the development of aquatic plants, which leads to an excessive local accumulation
of biomass and is the cause of various undesirable effects such as impoverishment of
biodiversity, visual and olfactory nuisance, inconvenience for bathing, difficulties in water
treatment (drinking water), gas emissions and colonization by algae producing toxins such
as certain Cyanophyceae.

Several estimation models have been developed based on the multiple stepwise regres-
sion analysis, while the choice of the suitable model was based on the largest compliance
index (R2) and the smallest root mean square error (RMSE). The estimation of nitrate was
done by applying the model that groups bands B1, B3 and B4 with the largest R2 and the
smallest RMSE among all the extracted models (R2 = 0.62, RMSE = 0.16 mg/L). For the
estimation of dissolved oxygen, the model chosen is the one that combines the two bands
B2 and B3 (with R2 = 0.56 and RMSE = 0.65 mg/L). For Chl-a, the model chosen is the one
that includes the bands B5, B6 and B8 (with R2 = 0.58 and RMSE= 0.07 μg/L).

The choice of the bands integrated into the model was made on the basis of a statistical
study that was carried out between in situ measurements and satellite data. For chlorophyll
a, a correlation was obtained between the in situ measurements of this parameter and
band 5 of the Sentinel-2 sensor, which is located in the 704.1 nm spectral range. This result
is in agreement with the results obtained by Toming [18], who used the peak reflectance
between 700 and 720 nm for the estimation of this parameter. For nitrate, this study showed
that the estimation of this parameter is very efficient when using the spectral interval from
442.7 to 664.6 nm (Table 4). For the estimation of the dissolved oxygen, the results show
that the spectral interval of 492.4 to 559.8 nm is more appropriate (Table 4). Another work
that was carried out by Vanhellemont and Ruddick [23] has shown that one of the main
advantages of Sentinel-2 over Landsat-8 is the presence of the band B5 (704.1 nm) with a
spatial resolution of 20 m to determine chlorophyll absorption. Eventually, these images
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will be useful for many aquatic water quality monitoring applications, and they can also be
combined into a virtual constellation to improve temporal coverage.

In Morocco, satellite images have been widely used for modeling and spatiotemporal
monitoring of several environmental phenomena, but the application of satellite images
in spatiotemporal monitoring of lake water quality is still not well developed. The only
study is the one carried out by Karaoui and his collaborators in 2019 [3], which aimed to
map water quality parameters using Sentinel images. Indeed, the spectral interval from
559.8 to 740.5 nm for the mapping of Chl-a, the spectral interval from 832.8 to 1373.5 nm for
dissolved oxygen and the spectral interval from 442.7 to 864.7 nm for nitrate had R2 indices
of 0.78, 0.74 and 0.67, respectively. Therefore, our work involves a complementarity and a
recognition of what has been done by these authors, obviously applying it with a different
approach and in a different context, adding the aspect of spatiotemporal monitoring which
allows for continuous survey throughout the year.

In addition, the results can contribute indirectly to the quantification of the impact of
both the agriculture and the discharges in the upstream part of the reservoir. This system
represents a very effective and economical solution for monitoring water quality and could
be applied by hydraulic basin agencies under several restrictions to travel or other activities
or in periods that require remote work (e.g., at the time of COVID-19). Ultimately, this
approach is more efficient and not only can be used under similar conditions but also
provides vital information on water quality parameters in a faster, more accurate and
less computationally expensive way. As a perspective, a seasonal analysis is required to
evaluate, calibrate and validate the models obtained in a temporal way.

5. Conclusions

In this study, a new method of combining high-resolution and field data was applied
for the spatiotemporal mapping of certain surface water quality parameters, namely nitrate,
dissolved oxygen and Chl-a in the Hassan Addakhil dam in southeastern Morocco. The
field results show an excellent quality for most of the samples. In terms of the modeling
approach, the models selected for the three parameters have shown a good correlation
between the measured and estimated values with compliance index values of 0.62, 0.56
and 0.58 and root mean square error values of 0.16 mg/L, 0.65 mg/L and 0.07 μg/L for
nitrate, dissolved oxygen and Chl-a, respectively. After the calibration, the validation and
the selection of the models, the spatiotemporal variation of water quality was determined
thanks to the multitemporal satellite data.

In summary, this research represents an efficient and useful solution for the hydraulic
basin agency in charge of water resources management in the region. Indeed, it will help to
minimize the costs of quality surveys carried out throughout the year. It can also contribute
to decision-making regarding agricultural profitability and its relation with water quality,
as well as to the development of strategies for efficient water resources management.
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Abstract: This work was undertaken to develop a low-cost but reliable assessment method for
agricultural water requirements in semi-arid locations based on remote sensing data/techniques.
In semi-arid locations, water resources are often limited, and long-term water consumption may
exceed the natural replenishment rates of groundwater reservoirs. Sustainable land management in
these locations must include tools that facilitate assessment of the impact of potential future land use
changes. Agricultural practices in the Boufakrane River watershed (Morocco) were used as a case
study application. Land use practices were mapped at the thematic resolution of individual crops,
using a total of 13 images generated from the Sentinel-2 satellites. Using a supervised classification
scheme, crop types were identified as cereals, other crops followed by cereals, vegetables, olive trees,
and fruit trees. Two classifiers were used, namely Support vector machine (SVM) and Random forest
(RF). A validation of the classified parcels showed a high overall accuracy of 89.76% for SVM and
84.03% for RF. Results showed that cereal is the most represented species, covering 8870.43 ha and
representing 52.42% of the total area, followed by olive trees with 4323.18 ha and a coverage rate of
25%. Vegetables and other crops followed by cereals cover 1530.06 ha and 1661.45 ha, respectively,
representing 9.4% and 9.8% of the total area. In the last rank, fruit trees occupy only 3.67% of the
total area, with 621.06 ha. The Food and Agriculture Organization (FAO) free software was used
to overlay satellite data images with those of climate for agricultural water resources management
in the region. This process facilitated estimations of irrigation water requirements for all crop
types, taking into account total potential evapotranspiration, effective rainfall, and irrigation water
requirements. Results showed that olive trees, fruit trees, and other crops followed by cereals
are the most water demanding, with irrigation requirements exceeding 500 mm. The irrigation
requirements of cereals and vegetables are lower than those of other classes, with amounts of 300 mm
and 150 mm, respectively.

Keywords: Sentinel-2; SVM; RF; Boufakrane River watershed; irrigation requirements; water
resources; sustainable land use; agriculture
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1. Introduction

According to World Bank data, the global rural population declined from 66.39%
of the total population in 1960 to 44.72% in 2016. Meanwhile, agricultural added value,
as a percentage of GDP (gross domestic product), decreased from 7.59 to 3.43% during
the period 1994–2017. Despite these changes, the continued growth of the global human
population has resulted in phases of deforestation together with innovations, increasing the
efficiency of agricultural systems, and subsequent crises of unprecedented demographic,
economic and urban expansion [1,2].

In semi-arid regions like Morocco, agricultural practices are facing a series of chal-
lenges not limited to climate change, which is reflected in an increasingly warmer and drier
climate [3], coupled with the increasingly random spatiotemporal variability of rainfall, and
associated droughts and floods [4–8]. These issues are exacerbated by increasingly complex
land use and land cover practices that in turn adversely affect socio-economic develop-
ment [9]. Agriculture, as an important economic sector, is therefore deeply impacted, given
crop production dependence on the annual rainfall distribution [4–8]. It is clear that hu-
mans have created and are now witnessing a great agricultural ecosystem disturbance [8].

Recently, geospatial technologies have been used extensively for spatiotemporal
monitoring of environmental phenomena, including land use/land cover changes [6,9–15],
understanding the ecosystem functions [16,17], identifying agricultural systems and crop
mapping [3,8,18,19], estimating fractional crop cover and crop residue [20], estimating
the impacts of urbanization on agricultural dynamics [3], identifying the karst cavities in
agricultural areas [21–23], and water balance assessments at regional and local scales [6,24].
Many investigations have shown a great deal of potential in terms of different machine
learning approaches in imagery classification, such as vector machine support [3,25–29]
and random forest [30–32]. These innovative data interrogation and modeling approaches
are critically important for estimating agricultural crop water use. This is important in
order to implement effective strategies for advanced water resource management for
agriculture in response to contemporary water budget challenges. Several works have
been published supporting these needs in recent years [33–41], particularly in semi-arid
zones [42]. Ofentse Moseki et al. [42] used the CROPWAT model to determine the irrigation
needs of the Jatropha crop in Botswana. They used the CROPWAT model to estimate
baseline evapotranspiration (ETo), evapotranspiration (ETc), irrigation water requirements
(IWR) and yield response to irrigation scheduling in Botswana. The results showed that
the annual ETo from 2014 to 2016 at the station was 1456 mm. The lowest monthly ETo
(50.10 mm) was observed in June and the highest (182.59 mm) in January.

This model is widely used, especially in understanding the changes in crop water
requirements [38], which are defined as the depth of water required to meet the evapo-
transpiration water loss (ETc) of a disease-free crop growing in large fields; this parameter
is important for promoting sustainable development. In particular, the model is used
in the determination of crop water and of the effects of irrigation programming on the
crop [40,41]. This model allows calculation of the water requirements of the different crops
using soil data, climatic data, and data on the crops themselves. Therefore, to determine
the crop’s water requirement, several parameters were calculated.

Calculation of Potential Evaporation of Crop ETc: Before calculating the ETc, specific stud-
ies on the water requirements of crops in the area should be examined; the meteorological
and research stations and the environment should also be visited. The calculation of this
parameter is done by the following two main steps:

(a) Reference evapotranspiration (ET0): Collect climate data and choose the method for
calculating ET0 for each 30 or 10 day period using the average climate data.

(b) Crop coefficient (kc): Determine the timing of planting or sowing, the rate of crop
development, the duration of crop development stages and the growing season.
Choose the kc for a given crop plan and crop development stage under prevailing
climatic conditions, and prepare a crop coefficient curve for each one.

(c) Crop evapotranspiration (ETcrop): Calculate ETcrop for each 30- or 10-day period:
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ETc = Kc ∗ ET0

Irrigation requirements: Part of the crop water requirements is met by rainfall (Pe),
groundwater (Ge) and stored soil water (Wb); or

Irr.Req = ETc − Pe − Ge − Wb

and is determined on a monthly basis.
The specific objectives of this work were to (i) use high spatial resolution Sentinel-2

images to map crop types in the Boufakrane watershed; (ii) evaluate machine learning
(ML) methods such as support vector machine (SVM) classifier and random forest (RF) in
crop species’ mapping; (iii) use the CROPWAT 8.0 model to estimate water demand for
agriculture in the study area through the calculation of potential evaporation and effective
rainfall. Finally, irrigation water requirements were estimated.

2. Materials and Methods

2.1. Study Area

The Boufakrane River watershed is located in the headwaters region of the Great
Sebou Basin between longitudes 5◦25′46.13′ ′ and 5◦37′49.71′ ′ W and between latitudes
33◦28′54.40′ ′ and 33◦58′32.93′ ′ N (Figure 1). Locally, the area is part of the Fez-Meknes
region, which is one of the most important and productive areas for agriculture in the region,
given its relatively high water availability and good quality soils. The regional Useful
Agricultural Area (UAA) is estimated to be approximately 1,340,826 hectares, representing
15% of the national total area. The UAA is dominated by cereals (816,000 ha) and olive
trees (350,000 ha), and 14% of the area is irrigated (184,162 ha). Climatically, the region
is characterized by a semi-arid climate, with a mean annual rainfall of 500 mm, a mean
annual reference evapotranspiration of 907 mm, and a dry season extending from June to
October (Figure 2).

Figure 1. Study area: (a) Kingdom of Morocco, (b) Sebou Basin, (c) Boufakrane watershed.
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Figure 2. Ombrothermic diagram of the meteorological station at Meknes. Rainfall is mean monthly
rain depth and temperature is mean monthly air temperature (1998–2018).

2.2. Data

The regions of interest used for land use classification were developed based on a
series of field missions throughout the study area along with high-resolution Google Earth
visualizations. A total of 88,546 pixels with a resolution of 10 m2 was used for classification;
65% were used as reference data and 35% for the validation. The sampling was done in a
random way; it was chosen to be representative and well distributed in the area. Figure 3
shows the field data used for this work. Weather data were collected for the study period
of September 2018 to August 2019. These data included monthly mean rainfall, monthly
average minimum temperature, monthly average maximum temperature, humidity (%),
wind speed (m/s), and sunshine intensity (hours). Figure 4 shows climate data collected
by the climate station at the Faculty of Science of Meknes, Moulay Ismail University,
coordinates: Latitude: 33◦52′11.12′ ′ N, Longitude: 5◦32′35.11′ ′ W, Z = 554 m.

For the satellite data, a total of 13 satellite images covering a whole crop year were
used to carry out this work. All these images were obtained from the Sentinel-2 sensor of
the European Space Agency (https://sentinel.esa.int/web/sentinel/sentinel-data-access
(accessed on 15 August 2021)). This mission was launched in June 2015, with a revisit
time (i.e., image interval) of 10 days and image spatial resolution of 10 m to 60 m in
thirteen spectral bands from visible to mid-infrared. Images were downloaded from
https://scihub.copernicus.eu/dhus/#/home (accessed on 15 August 2021) for the period
August 2018–August 2019 (Table 1).

Table 1. Sentinel-2 satellite image acquisition dates.

Image Acquisition Dates

1 22 August 2018
2 1 September 2018
3 21 October 2018
4 15 November 2018
5 15 December 2018
6 14 January 2019
7 13 February 2019
8 15 March 2019
9 29 April 2019

10 14 May 2019
11 8 June 2019
12 18 July 2019
13 22 August 2019
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Figure 3. Field survey sampling. OCFC: Other crops follow by cereals.

 
Figure 4. Climatic data.

2.3. Methodolgy

Normalized difference vegetation index (NDVI) was calculated to construct NDVI
time-series images. In parallel, several surveys and field missions were conducted in the
region to collect reference (validation) points for the different agricultural crops. These data
were combined with the high spatial resolution Google Earth images. Spectral profiles were
then constructed and used as input data for a machine learning approach to map different
crop species in the region. As a final step, and to associate satellite data with observed
water management practices, CROPWAT 8.0 software was used to estimate crop water
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requirements (Figure 5). The simulation was carried out on three parameters: potential
evapotranspiration for the different crop types (ETc), effective rainfall (ER), and irrigation
water requirements (IWR). These three parameters are dependent on each other. The ETc is
the amount of water that should be transpired in a given time by the crop, while the ER
is defined as the rainfall fraction that responds to the crops’ water needs [43]. During the
rainy months, rainfall covers the water requirements of the crops, while during the dry
months, rainfall must be supplemented by irrigation water to cover water requirements.

 

Figure 5. Flowchart of the methodology.

2.4. Support Vector Machine (SVM)

SVMs belong to a family of algorithms that use supervised learning and are specialized
in solving mathematical discrimination and regression problems. They were developed
in 1998 by Vladimir Vapnik [44]. Support vector machines (SVMs) represent a group of
theoretically superior machine learning algorithms. The development of this method was
initially triggered by the exploration and formalization of machine learning capacity control
and over-fitting problems [44] and represents an efficient technique, with reduced data and
processing demands. The method avoids the problems of over-adjustment and does not
require any hypothesis on the type of data. Although non-parametric, the method is capable
of developing efficient decision limits and can therefore minimize classification errors.
This is done by searching for the optimal separation between classes [45]. Their work was
quickly adopted because of their ability to work with large data, their theoretical guarantees
and the good results achieved in practice. Requiring a small number of parameters, SVMs
are appreciated for their simplicity of use.

2.5. Random Forest (RF) Classifier

Random forest (RF) was developed by [46]. It is a supervised non-parametric method
applicable for both classification and prediction [47,48]. Model subroutines are composed
of a combination of decision trees used independently to assign the most frequent class to
the input data, and the majority vote of the trees determines the class prediction. The part
of the data not used in tree training is used for performance evaluation.

For the current investigation, after extracting the crop type characteristic based on the
data collected in the field, twelve decision trees were constructed and were the basis for RF
classifier (Figure 6). These decision trees make it possible to predict the different classes.
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Figure 6. Decision trees used for random forest classification. OCFC = Other Crops Followed by Cereals.

2.6. NDVI Time-Series Spectral Profile Curves

Field data and data collected from the Regional Directorate of Agriculture showed
the presence of five main cropping systems in the region, including cereals, other crops
followed by cereals, vegetables (onion, potatoes, tomatoes), olive trees and fruit trees. More
than two hundred profiles were developed for the different crop types. These profiles were
associated with the field data and the visualization of high spatial resolution Google Earth
images in order to collect input data for classification (Figures 7 and 8).

From Figure 8, it is possible to discriminate the spectral characteristics of the different
crops in relation to NDVI values during the year. This index, proposed for the first time
by Rouse et al., 1973 [49], is widely used and provides information on the quantity and
vigor of vegetation, taking into account the near infrared (NIR) and visible red bands of the
electromagnetic spectrum [49,50] calculated by the following equation:

NDVI = ρNIR − ρRED/ρNIR + ρRED

where ρNIR : the reflectance in the near − infrared reflectance, ρRED : the reflectance in
the red band.

For example, for an olive pixel, the NDVI value did not change significantly through-
out the year, with an increase around February. While for a pixel of cereals, the NDVI
values did increase with the crop growth cycle.

145



Appl. Sci. 2021, 11, 10379

Figure 7. Different types of crops in the study area. (a) Olive trees, (b) Cereals, (c) Fruit trees,
(d) Vegetables (Source: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community).

 

Figure 8. NDVI time-series spectral profile curves at different crop developmental stages.

3. Results

3.1. Overall Accuracy

The classification approaches used in this work were selected based on the confusion
matrix and the Kappa index [51–53], whose the overall accuracy is the proportion of the
area mapped correctly. It provides the user of the map with the probability that a randomly
selected location on the map is correctly classified. The Kappa coefficient measures the
agreement between the resulting classes of the classifier and the true values [52,54], with
values ranging from 0 to 1, where 0 represents no agreement and 1 represents perfect
agreement. The Table 2 shows the confusion matrix calculated from the reference data
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and the map classes; the reference data is presented in the row, and the map classes in the
columns. The results showed that the two approaches showed high classification accuracies.
The overall accuracy for the SVM classifier exceeded 89.76%, and a significant agreement
by the Kappa index of 0.79 was obtained. The overall accuracy for RF was 84.03%, with a
Kappa index of 0.68. For the validation, 57,554 pixels were used. In most cases, it showed a
high accuracy of this classification for most crop species. Few confusions between classes
were recorded using the RF approach (e.g., crops followed by cereals, cereals, vegetables,
and olive trees).

Table 2. Confusion Matrix. OCFC = Other Crops Followed by Cereals.

Reference Data (%)

Map Classes Cereals OCFC Vegetables Olive Trees Fruit Trees Total (%)
Classifier SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

Cereals 88.23 87.40 6.05 24.43 2.05 1.52 1.21 5.17 0.65 6.17 64.17 64.32

OCFC 5.27 4.48 88.10 41.86 4.80 10.76 1.66 7.39 0.48 0.62 5.54 5.81

Vegetables 3.97 3.30 1.88 10.96 92.61 84.30 0.97 0.39 0.39 0.06 14.63 13.13

Olive trees 2.20 3.41 3.76 13.47 0.43 0.88 94.79 70.05 2.36 23.69 11.42 10.79

Fruit trees 0.33 1.40 0.21 9.29 0.11 2.53 1.37 17.01 96.13 69.46 4.23 5.94

100 100

In addition to the overall accuracy and the Kappa index, other types of accuracy and
errors were calculated for both classifiers, including the producer’s accuracy, the user’s
accuracy, the commission error, and the omission error (Table 3) [53].

(i) Producer’s accuracy is defined as the probability that a value in a reference dataset
was correctly classified. Producer’s accuracy is the complement to the probability of
omission error.

(ii) User’s accuracy represents the probability that a resulting value in a certain class is really
that class. User’s accuracy is the complement to the probability of commission error.

(iii) Commission errors represent the fraction of the resulting values in a class that does
not belong to that class.

(iv) Omission errors represent the fraction of values that belongs to one class but was
predicted in a different class.

Table 3. Commission, omission, producer’s and user’s accuracy for the SVM and RF classifiers.

Classes Commission (%) Omission (%) Producer’s Accuracy (%) User’s Accuracy (%)

Classifier SVM RF SVM RF SVM RF SVM RF

Cereals 0.74 1.91 11.77 12.60 88.23 87.40 99.26 98.09
OCFC 82.93 92.26 11.90 58.14 88.10 41.86 17.07 7.74

Vegetables 20.49 19.38 7.39 15.70 92.61 84.30 79.51 80.62
Olive trees 15.56 33.95 5.21 29.95 94.79 70.05 84.44 66.05
Fruit trees 9.27 53.29 3.87 30.54 96.13 69.46 90.73 46.71

In terms of accuracy, the producer’s accuracy and user’s accuracy confirm the results
found for the overall accuracy. The producer’s accuracy showed very high values, with
more than 80% for all classes in the both classifiers SVM and RF, except the class other
crops followed by cereals, which presented a value of 41.86% for the RF classifier. The
user’s accuracy showed very high values, with more than 79% for all classes in the SVM
classifier, except for other crops followed by cereals, which presented a value 17.07%. For
the RF classifier, this accuracy shows high values for the three classes of cereals, vegetables,
and olive trees: 98.09%, 80.62%, and 66.05%, respectively. The other two classes, fruit trees
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and other crops followed by cereals, represent low precision, with values of 46.71% and
7.74%, respectively.

In terms of commission error, the results showed that the other crops followed by
cereals represents the highest values for the two classifiers SVM and RF, with values of
82.93% and 92.26%, respectively, followed by vegetables and fruit trees. The other two
classes represented a low value for this error. For the omission error, cereals and other crops
followed by cereals represented the highest value for the SVM, whereas for RF, cereals and
other crops followed by cereals represent a high value of 58.14%, followed by fruit trees
with 30.54% and olive trees with 29.95%.

3.2. Crop Mapping

Crop mapping was performed based on field data combined with a detailed study of
the chlorophyll response (NDVI) for each of crop type. The crops determined in the region
were cereals, other crops followed by cereals, vegetables (onions, potatoes, tomatoes), olive
trees, and fruit trees. In order to calculate the areas of each class, pixel size was used.
Therefore, after obtaining the classes, the area of each class was obtained by multiplying the
number of pixels and the pixel size (10 m × 10 m). For the crop year 2018–2019, the areas
determined for the cereals represented the largest class, with an area of 8870.43 ha, followed
by olive trees with an area of 4323.18 ha. Classes of other crops followed by cereals and
vegetables represented 1661.45 ha and 1530.06 ha, respectively. The least represented class
was that of fruit trees, with only 661.05 ha (Figure 9).

 

Figure 9. Crop mapping using SVM and RF classification. (A) Northern part (B) Southern part.

3.3. CROPWAT for Water Crop Requirements

This section includes calculation of the crop water requirements using the FAO free
software CROPWAT 8.0, based on climate, soil, and crop data. Thus, three main variables
were estimated by the units of water depth (mm): ETc, ER, and IWR. For preliminary
planning, monthly data are frequently used, and the total of the data of the different crops
over the area constitutes the basis for determining the supply.

The climatic data were used to calculate the reference evapotranspiration ET0, and by
determining the timing of planting or sowing, the rate of crop development, the duration
of crop development stages, and the growing season kc for a given crop were chosen. Then,
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the ETc for each crop type was calculated for each 10 day period. Figure 10 shows the
different crop types’ evapotranspiration from October 2018 to August 2019. The curves
show that this parameter increases in the driest months (July and August) for all crop types,
while it decreases in the rainiest months (December to February). For the class of other crops
followed by cereals, for example, the potential evapotranspiration reached up to 70 mm.

 

Figure 10. Potential evaporation of crops ETc.

Not all precipitation is effective, and in the most cases some of this precipitation
can be lost through surface runoff, deep percolation, or evaporation. Only part of the
high-intensity rain can penetrate and be stored in the root zone. These rains can be 100%
effective when the vegetation cover is complete, while they can be only 60% effective with a
low percentage of vegetation cover. The relationship between the average monthly ER and
the average monthly rainfall is shown for different values of the average monthly ETc [55].
Figure 11 shows the evolution of ER for the different types of crops. The evolution curves
of this parameter show that the crops’ needs were met in the rainy months. However, in
the dry months, these crops suffered from water stress.

 

Figure 11. Effective rain.
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Irrigation water requirements are calculated using the field water balance, based on
ETc and ER. They allow for optimal production in a given growing environment.

Figure 12 shows the evolution of water requirements for agriculture for the different
types of crops. In the rainy months, rainfall covers the water requirements of the crops;
during this time, the water requirements for irrigation are expected to be very low. This
parameter is strongly related to the climatic conditions and is directly influenced by
variations in conditions. It is inversely correlated with the daily rainfall. Thus, it is
high in the dry months and low in the rainy months.

 

Figure 12. Irrigation requirements.

Figure 13 shows the total for the year of the three estimated parameters (ETc, ER,
and IWR) for the different types of crops. For water irrigation requirements, other crops
followed by cereals, olive trees, and fruit trees were the three types of crops that required a
very large quantity of water, exceeding 500 mm. Vegetables required about 450 mm; the
demand of cereals did not exceed 200 mm. The potential evapotranspiration was strongly
correlated with the water demand; the crop types that demanded a lot of water were those
that recorded high values of evapotranspiration. For the ER, the class that recorded the
lowest values was vegetables, while the other classes recorded values higher than 300 mm.

 

Figure 13. Total Etc, Eff.Rain, and Irr.Req.
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4. Discussion

Using the classification approach described earlier, and based on spectral analysis re-
sults, a map of the different agricultural species was produced for the study area (Figure 9).
Results generally showed that the classification using both classifiers was satisfactory, with
the exception of some confusion between a few classes, which is likely due to the spectral
similarity of the crops.

Previous investigations using geospatial techniques have shown a strong efficiency in
land use/land cover change monitoring [6,11], crop mapping [3,18], and identification of
agricultural systems [8]. Ouzemou et al. [3] carried out an insightful study in the plains
of Tadla, Morocco. The objectives included mapping different agricultural species using
high-resolution satellite data and machine learning approaches and comparing the different
used approaches. Their study showed an overall accuracy of 89.26%, 85.27%, and 57.17%,
respectively, for random forest, support vector machine, and spectral angle mapper, with a
Kappa index of 0.85, 0.80, and 0.4, respectively. Comparing our result with this one, our
study also showed a high overall accuracy of 89.76% for SVM and 84.03% for RF, and a
Kappa index of 0.79 and 0.68, respectively.

The CROPWAT model was used to determine water demand for the different agricul-
tural species in the region. Three parameters were calculated, namely, the crops’ potential
evaporation, the effective rain, and the irrigation requirements. The results obtained by [40]
showed that the irrigation requirements varied according to the location, whereas the
required water quantity per palm varied between 115 and 200 liters per day. Comparing
our result with this one, our study showed that olive trees, fruit trees, and other crops
followed by cereals are the most water demanding, with needs exceeding 500 mm. The
water demands of cereals and vegetables are lower than that of other classes, with amounts
of 300 mm and 150 mm, respectively.

As explained, water consumption is increasing in the Saiss plain. This is mainly due
to excessive exploitation. According to the 1939–2002 groundwater data record, there is a
constant deficit of approximately 100 Mm3/year, with an estimated inflow of 242 Mm3/year
and an estimated outflow of 342 Mm3/year. While the output includes abstraction with
260 Mm3/year, and rivers and springs with 82 Mm3/year, 22% of the water balance is
dedicated to human drinking water supplies and 78% to private irrigation [56].

5. Conclusions

The assessment and estimation of water demand for agriculture is crucial to improve
water resource management in a given region. The final objective was to determine the
water demand for agriculture in the Boufakrane River watershed through several steps.
First, a map of the different crop types was produced using the SVM and RF machine
learning algorithms, based on field data combined with the high spatial resolution Google
Earth images. Five crop types were mapped, including cereals, other crops followed by
cereals, vegetables, olive trees, and fruit trees. Then, the evaluation of the classification map
was made based on the Kappa index and the overall accuracy. Finally, the satellite data
were combined with climate, soil, and crop data before being used as inputs for CROPWAT
software to estimate the water requirements for agriculture.

The mapping results showed a strong potential of high-resolution satellite data in
agricultural species mapping. The evaluation of the two classifiers used (RF and SVM)
showed a Kappa index higher than 0.67 and an overall accuracy exceeding 83%. The
irrigation requirements showed that the other crops followed by cereals, olive trees, and
fruit trees were the three types of crops that required a very large quantity of water,
exceeding 500 mm. Vegetables required an amount of about 450 mm; the demand of cereals
did not exceed 200 mm.

The method developed in this work facilitates estimations of the agriculture water
demand in the study area, thereby promoting sustainable water resource management.
Through this study, we recommend a combination of these methods with existing real
data for the implementation of a system for the quantification of water resources for
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crops throughout Morocco, which would allow validation using global crop yield data. It
was also an opportunity to see the link between water demand and known groundwater
reserves and existing data on actual evapotranspiration in this area.
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Abstract: Monitoring open water bodies accurately is important for assessing the role of ecosystem
services in the context of human survival and climate change. There are many methods available
for water body extraction based on remote sensing images, such as the normalized difference water
index (NDWI), modified NDWI (MNDWI), and machine learning algorithms. Based on Landsat-8
remote sensing images, this study focuses on the effects of six machine learning algorithms and
three threshold methods used to extract water bodies, evaluates the transfer performance of models
applied to remote sensing images in different periods, and compares the differences among these
models. The results are as follows. (1) Various algorithms require different numbers of samples
to reach their optimal consequence. The logistic regression algorithm requires a minimum of 110
samples. As the number of samples increases, the order of the optimal model is support vector
machine, neural network, random forest, decision tree, and XGBoost. (2) The accuracy evaluation
performance of each machine learning on the test set cannot represent the local area performance.
(3) When these models are directly applied to remote sensing images in different periods, the AUC
indicators of each machine learning algorithm for three regions all show a significant decline, with a
decrease range of 0.33–66.52%, and the differences among the different algorithm performances in
the three areas are obvious. Generally, the decision tree algorithm has good transfer performance
among the machine learning algorithms with area under curve (AUC) indexes of 0.790, 0.518, and
0.697 in the three areas, respectively, and the average value is 0.668. The Otsu threshold algorithm
is the optimal among threshold methods, with AUC indexes of 0.970, 0.617, and 0.908 in the three
regions respectively and an average AUC of 0.832.

Keywords: water extraction; modified normalized difference water index (MNDWI); remote sensing;
machine learning algorithm

1. Introduction

Water is the source of life: the earth’s surface open water body accounts for about
74% of the total earth area, it is an important resource for all life survival, and it is also the
most important component of living organisms [1,2]. In China, the distribution of water
resources is quite uneven, and the pollution situation is serious. So, how to identify water
bodies efficiently and accurately has become a severe issue [3,4].

With the rapid development of aviation and aerospace technology, remote sensing
technology has provided advanced support for many fields, including resource survey,
environmental monitoring, mapping, and geography [5,6].

The development of remote sensing technology makes it possible to extract water
information quickly and accurately, which is substantially different from conventional field
survey methods employed in the past [7–10].

Monitoring open water bodies accurately is an important and basic application in
remote sensing. Various water body mapping approaches have been developed to extract
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water bodies from multispectral images [11–13]. Using remote sensing images to monitor
a water body is mainly based on spectral bands and each image’s spatial feature, so the
identification methods can be categorized into three types from different perspectives.

(1) Water body index method: This method is based on the spectral curves of wa-
ter bodies, and thresholds are utilized to effectively distinguish water bodies from the
background [14]. Different water indexes have already been proposed in the past few
decades. Specifically, in 1996, McFeeters [15] introduced the normalized difference water
index (NDWI) model to extract water bodies. However, this model is unable to distinguish
between dark shadow and water bodies. To overcome the shortcomings of NDWI, in
2006, Xu [16] proposed the modification of normalized difference water index (MNDWI) to
enhance open water features in remotely sensed imagery, and this model has better results
for urban water bodies extraction. The water body index method has the characteristics
of high precision and low computational cost, which has been widely used in practical
applications. In the last few decades, the MNDWI of Xu is one of the most widely used
water indices for various fields, including surface water mapping, land use/cover change
analyses, and ecological research [17–20].

(2) Machine learning methods: These methods feature pixel-based pattern recogni-
tion analysis, mainly including supervised and unsupervised classification techniques.
The supervised methods mainly include neural network [21–25], support vector machine
(SVM) [26–28], logistic regression [29,30], and random forest [31–33], and the unsupervised
classification methods mainly include K-means clustering [34] and ISODATA cluster-
ing [35,36] methods. The machine learning algorithm has been widely used in remote
sensing water extraction due to its high accuracy.

(3) Object-based image analysis methods (OBIA): Due to the limitations of pixel-based
classification methods, such as the salt and pepper phenomenon in classification results,
object-based classification techniques have been increasingly applied in remote sensing
classification in recent years [37,38]. Many successful cases of water body extraction using
OBIA methods have been reported [39–43]. Given that urban functional zones (UFZs)
are composed of diverse geographic objects, Du et al. [44] presented a novel object-based
UFZ mapping method using very-high-resolution (VHR) remote sensing images. Based
on object-oriented analysis technology and multi-source data, Guo et al. [45] proposed a
multi-level classification scheme based on goals and rules to study the changes of glacier
environments.

In addition, some studies also have used synthetic aperture radar (SAR) data to
monitor the surface dynamics, because these data are insensitive to clouds [14,46,47]; the
area of surface water can be extracted from SAR data based on textural analysis [48], change
detection [49], automatic segmentation [50], and classification [51].

At present, machine learning algorithms to extract water bodies mainly include neural
networks, support vector machines, and random forest algorithms. The studies carried
out in the past have identified the best performing classification algorithm by comparing
different classification algorithms. However, none of them provides a comprehensive
comparative analysis of some popular classification algorithms [37,52].

There are few studies on the evaluation of the transfer performance of each machine
learning algorithm applied to remote sensing images in different periods. Based on Landsat-
8 images, this study uses machine learning algorithms such as decision tree, logistic
regression, random forest, and neural network to extract water bodies. First of all, the effect
of each machine learning algorithm on the test set is discussed. After that, each machine
learning algorithm is applied to three different local areas, and its effect on each local area
is evaluated. At last, each machine learning algorithm is applied to remote sensing images
in different periods to evaluate the model transfer performance of each machine learning
algorithm, and three threshold methods are compared. The results could shed light on the
future work of water body extraction based on remote sensing.
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2. Data and Pre-Processing

2.1. Data

Landsat-8 data from the website (http://glovis.usgs.gov/ (accessed on 20 October
2021)) of the United States Geological Survey are used. Landsat-8, launched as a collabo-
ration between the United States Geologic Survey (USGS) and National Aeronautics and
Space Administration (NASA) on 11 February 2013, carries onboard the OLI push broom
multispectral radiometer [53]. As shown in Table 1, the Landsat-8 OLI/TIRS imagery has
11 spectral bands in total, including eight spectral bands (i.e., three visible bands, two
bands for describing aerosol, water vapor, and cirrus clouds, two short-wave infrared
bands (SWIR) and near infrared (NIR)) with spatial resolution of 30 m, one panchromatic
spectral band with a spatial resolution of 15 m, and two thermal spectral bands with a
spatial resolution of 100 m [54]. Landsat-8 remote sensing images (path 123; raw 039) of
the same area acquired on 4 October 2019 and 20 October 2019 are used in our experiment.
Specifically, the data on 20 October 2019 are used to establish the model and compare the
effect of each algorithm, and the data on 4 October 2019 are used to examine the perfor-
mance of model transfer. Three different areas with different surface features are selected
from remote sensing images. As shown in Figure 1, Area1 has a large area of water with
relatively simple surface object types, while Area2 has a small water area and complex
surface environment, and its water extraction is affected by numerous vegetation and
mountain shadow. Area3 is located in the urban built-up area and has multiple contiguous
water bodies; thus, the water extraction is affected by nearby buildings and roads.

To avoid the effects of too many clouds and aerosol, images with fewer clouds are
selected here. All original data are processed by converting the original digital number
(DN) value into spectral radiance, through Equation (1) [55]. The formula is given as
follows:

Lλ = ML·Qcal + AL (1)

where:
Lλ = spectral radiance

(
W/m2·sr·um

)
;

ML = radiance multiplicative scaling factor for the spectral band(radiance_mult_band_n
from the metadata);

AL = radiance additive scaling factor for the spectral band(radiance_add_band_n
from the metadata);

Qcal = raw digital numbers (DN).

Table 1. Spectral band spatial resolution and wavelength of the Landsat-8 image.

Landsat-8 OLI and TIRS Bands Wavelength (um) Spatial Resolution (m)

Coastal/Aerosol 0.435–0.451 30
Blue 0.452–0.512 30

Green 0.533–0.590 30
Red 0.636–0.673 30
NIR 0.851–0.879 30

SWIR-1 1.566–1.651 30
TIR-1 10.60–11.19 100
TIR-2 11.50–12.51 100

SWIR-2 2.107–2.294 30
Pan 0.503–0.676 15

Cirrus 1.363–1.384 30
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Figure 1. Landsat-8 remote sensing images are displayed in false color in bands 7, 5, and 3. Three
local areas are extracted from this image. Area1 has a large area of water distribution with a simple
ground environment and is only affected by vegetation; Area2 is affected by mountain shadow
and vegetation; Area3 is located in the urban built-up area with scattered water distribution and is
affected by roads and buildings.

2.2. Pre-Processing

By adopting spectral band combinations 7/5/4, 7/4/3, 6/5/4, and 4/3/2 combined
with visual interpretation, a sample dataset is selected from Landsat images for classifica-
tion; the sample set contains 340 water samples and 454 non-water samples. To avoid the
influences of heterogeneous categories in the subsequent classification, the ratio of other
ground object samples to the water body samples remains at 1.3:1.

The characteristics of the data, such as a large correlation between multiple spectral
bands in the original images and similar information and structures between different spec-
tral bands, generally bring significant amounts of redundancy. For this reason, principal
component analysis (PCA) for dimensionality reduction is applied to remove repetitive and
redundant information between various spectral bands [56]. The first and second principal
components in the PCA with a cumulative variance contribution of 99% are selected as
classification characteristics.

Based on the PCA, four generally used texture features, i.e., contrast, autocorrelation,
dissimilarity, and entropy are extracted. The distance is set to be 1 pixel (distance of 30 m),
2 pixels (distance of 60 m), and 3 pixel (distance of 90 m), and 3 × 3, 5 × 5, 7 × 7, and 9 × 9
are selected as windows with orientations of 0◦, 45◦, 90◦, and 135◦. Optimal combined
features are selected as the characteristic spectral bands for water body extraction. When
the two parameters—i.e., window size and distance—increase, the edges of the images get
fuzzy, and the window size shows more effects than distance. Considering the factors of
ground objects correlation and image resolution, we set the distance to 1 pixel and select a
3 × 3 window with four orientations of 0◦, 45◦, 90◦, and 135◦.
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After the size and window parameters are determined, J-M distance [57,58] and
transformed divergence [59] (T-D) in many extracted texture features are used for studying
the separability of ground objects; thus, the characteristics ultimately used for classification
are determined as well. As shown in Table 2, the separability of the first component
(PCA1) and the second component (PCA2) is compared in detail, and the separability of
J-M dissimilarity in PCA2 is the optimal. Therefore, in later classifications, a total of six
characteristics are selected.

Table 2. Separability of the samples.

PCA1 PCA2

J-M T-D J-M T-D

Contrast 1.723 1.9991 1.825 1.0000
Autocorrelation 1.404 1.6832 1.787 1.989

Dissimilarity 1.562 1.9232 1.84 1.0000
Entropy 1.634 1.9746 1.816 1.999

3. Research Methods

First of all, the performance of machine learning algorithms with a different sample
number is discussed. During this process, the optimal parameters of the models are deter-
mined and the indices, such as precision and AUC, are used to evaluate the performances
of algorithms in the test set. Then, according to spectral characteristics, the water indices
are constructed, and on this basis, thresholds are selected; thus, water bodies and other
ground objects are classified and identified. Moreover, machine learning methods, such
as SVM, decision tree, and random forest, are used to extract water bodies. At last, the
accuracy of the test results is verified for the same area at different times.

3.1. MNDWI

In 2006, Xu [16] presented a modification of normalized difference water index
(MNDWI) (Equation (2)) by replacing the NIR spectral band used in NDWI with the
SWIR spectral band to reduce the influence of building information on water bodies. By
using the MNDWI water index method, the MNDWI image is binarized by selecting an
appropriate threshold to achieve water bodies extraction. The determination of thresholds
affected the accuracy of water body extraction, and different thresholds might be made
by subjective judgments of different people. To reduce such influences, three methods
for determining thresholds are used for comparison and discussion. The three threshold
methods used in this article are as follows: (1) the user-defined threshold method, which is
determined according to visual effect through multiple experiments; (2) the Otsu threshold
method [60,61]; and (3) the adaptive threshold method, which is used to scan the image
through a 3*3 window.

The MNDWI is expressed as follows:

MNDWI =
GREEN − SWIR
GREEN + SWIR

(2)

where Green is the radiance of the green band, which corresponds to the 3rd Landsat-8
image band; SWIR represents the short-wave infrared band radiance, namely band 6 of the
Landsat-8 image.

3.2. Machine Learning Algorithms

In this research, six machine learning algorithms are selected, all of them used the same
group of sample set, and the whole samples are divided into a training set and a test set by
the ratio of 7:3. Furthermore, in the process of model training, the relevant parameters of
the models are further trained by using 10-fold cross-validation with hierarchical sampling
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of the training set. Finally, some indices, such as accuracy, recall rate [62], and AUC [63],
are utilized to assess the results.

3.2.1. SVM

SVM has a simple structure but a strong generalization ability to solve problems with
high-dimensionality, small sample numbers [64,65]. In this study, the Gaussian radial basis
function is selected as the kernel function. By using the grid search method in combination
with 10-fold cross-validation, the optimal parameters are determined as C = 3 and γ = 0.003.

3.2.2. Decision Tree

The decision tree determines the categories of the samples in the dataset by assigning
the sample data to a certain leaf node. There are many methods for constructing the
decision tree, but all of them are based on the different purity indices selected and sample
attributes for classification [66]. The algorithms ID3, C4.5, C5.0, etc. are generally used. A
classification and regression tree (CART) algorithm is used in this study, and pre-pruning
is utilized to avoid the overfitting problem. The parameters mainly include the limited
depth of the decision tree, the minimum sample number of leaf nodes, and the least
sample number of separable leaf nodes. By using the grid search method and 10-fold
cross-validation, the final parameters are determined as follows: the entropy is selected as
the purity index and the maximum depth is 7. The lowest sample number of separable leaf
nodes is 8, and the minimum sample number of leaf nodes is 1.

3.2.3. Multi-Hidden-Layer Neural Network

The neural network uses specific learning algorithms to learn from data through many
learning algorithms; however, the network is generally trained by iteratively modifying
connection weights and deviations until the error between the output generated by the
network and the expected output is smaller than some specified threshold [21]. The input
characteristics are passed to the next layer of nerve cells through a non-linear activation
function and then continue to be passed down after activation of the nerve cells in this layer.
That process is repeated and cycled to the output layer. The repeated superposition of these
non-linear functions ensures that the neural network has sufficient non-linear fitting ability,
while different activation functions can affect the output of different neural networks. By
selecting a sigmoid activation function, it is determined that the neural network structure
should have four layers based on multiple tests through cross-validation. Except for input
and output layers, the numbers of nerve cells in the two hidden layers are eight and six,
respectively.

3.2.4. Random Forest

The random forest is an ensemble method specially designed for a decision tree
classifier, and the selection of random attributes is further added to its training process.
Using similar parameters to those used for the decision tree, the random forest model
is easy to implement and shows good effects [32,33]. In this research, parameters are
determined by using cross-validation and grid search methods. The main parameters of
random forest are as follows, there are 10 weak estimators in the decision tree, and the
maximum depth is 4. Moreover, a Gini function is selected as the purity index.

3.2.5. XGBoost

The core of XGBoost is an ensemble algorithm based on the gradient boosting decision
tree (GBDT), and it can be used for classification or regression problems. Its modelling
process is as follows: a decision tree is built, and one more tree is added upon each iteration
to form a strong evaluator integrating many numerical models [67,68]. The accuracy
is superior to that of a weak estimator, and its calculation speed and performance are
good [69]. The main parameters are set as follows: the maximum depth of each tree is 3,
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and a weak classification estimator with 300 decision trees is established. The learning rate
is set to be 0.01.

3.2.6. Logistic Regression Algorithm

The logistic regression is a type of classification model. It establishes a regression
formula for samples and a sigmoid function is used for classification. For more information,
please refer to references [70,71].

4. Experiment and Analysis

4.1. Effects of the Sample Number on Learning Algorithms

For each classification algorithm in machine learning, the basic requirement is that
the training and test set are reliable and there are enough samples for training. In this
way, a good classifier can be trained. It is assumed that the samples selected by visual
interpretation are reliable: namely, the various classes of the sample points are assigned
to correct labels. Based on this, a small sample is randomly selected from the training set
and divided into a training set and a validation set in the proportion of 7:3. By using the
accuracy of the validation set of the small sample as an evaluation index, the effects of the
sample number on the classification effects of each algorithm are discussed, so as to judge
whether the sample number selected is sufficient to achieve the purpose of the training
model.

As demonstrated in Figure 2, the accuracies of the classification algorithms in the
validation set of the experiment all tend to increase with the sample number, and they
show a smaller error relative to the accuracy in the training set. Moreover, the accuracies
gradually tend to be equal. This indicates that there is almost no underfitting of the
samples, and the parameters of each algorithm are well adjusted. The accuracy of the
logistic regression algorithm is improved rapidly, approximating to the accuracy in the
training set when the sample number is small, suggesting that there is almost no overfitting.
As the sample number increases, the accuracy stabilizes; however, other classification
algorithms need larger samples to achieve this stability, and the accuracy fluctuates (albeit
within a small range), therefore, the number of training samples selected in the experiment
can meet the needs of model training.

4.2. Analysis of Performance Indices of Machine Learning Algorithms

After testing the performance of the models when using each algorithm on sets of
different sample numbers, the effect of each model in the same test set is further evaluated,
so as to reflect the predictive abilities of the models to some extent and judge the general-
ization abilities of the algorithms. As shown in Table 3, the value of the accuracy index and
recall index of each model in classifying water bodies and other ground objects are high,
the accuracy index is in the range of 0.945–1, and the recall index is in the range of 0.911–1.
However, the AUC index can better represent the comprehensive performances of the
models and the higher the value, the better the performance [63]. There is little difference
in the effect of each machine learning algorithm on the test set, and the AUC index ranges
from 0.956 to 0.987; by analyzing AUC data, the logistic regression and XGBoost algorithm
are found to perform best on the test set, followed by the SVM, the neural network, then
the random forest, while the decision tree has (in general) the worst performance. Whether
the evaluation of these algorithms in the test set can accurately represent the generalization
abilities of the algorithms for classifying water bodies in the remote sensing images needs to
be discussed and studied using remote sensing images acquired under different conditions.
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Figure 2. Effects of the sample number on performance of each algorithm.

Table 3. Analysis of performance indices of each algorithm.

Accuracy Recall AUC

SVM
Water 1.000 0.949

0.983Other 0.968 1.000

Random Forest
Water 0.975 0.975

0.979Other 0.983 0.983

Decision Tree
Water 1.000 0.911

0.956Other 0.945 1.000

Neural Network
Water 1.000 0.962

0.981Other 0.976 1.000

Logistic Regression Water 1.000 0.975
0.987Other 0.984 1.000

XGBoost
Water 1.000 0.975

0.987Other 0.984 1.000

4.3. Comparative Analysis of NDWI and Machine Learning Algorithms

The model established by 2019/10/20 training data is used for water extraction in
three areas of 2019/10/20. Statistical results of AUC indicators of each algorithm are
shown in Figure 3 (For more details, see Tables A1–A4 in the Appendix A). In general, the
XGBoost algorithm has the best accuracy, with an average AUC of 0.966, and the AUC
indicators in the three regions are 0.985, 0.972, and 0.941 respectively, which is followed
by the random forest algorithm with an average AUC of 0.964, and the AUC indicators
in the three regions are 0.985, 0.973, and 0.935; the SVM algorithm has the worst accuracy,
the average AUC is 0.898 and the AUC indicators in the three regions are 0.982, 0.789, and
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0.923, respectively. When each machine learning algorithm is applied to three different
local regions, the average range of AUC index is 0.898–0.966 (for more details, see Table A1
in Appendix A), and the descending order of each machine learning algorithm is XGBoost,
random forest, decision tree, logistic regression, neural network, and SVM according to the
value of the AUC index. However, this is inconsistent with the conclusion of Section 4.2. In
Section 4.2, there is little difference in the accuracy of each machine learning algorithm on
the test set, and the AUC index ranges from 0.956 to 0.987. The machine learning algorithms
are XGBoost, LR, SVM, NN, RF, and DT in descending order according to the value of
the AUC index. It further explains that the evaluation on the test set cannot represent
the effect of each algorithm applied in a local area. Among the threshold classification
methods, the Otsu threshold algorithm is the best, with an average AUC of 0.957, and the
AUC indicators in the three regions are 0.985, 0.922, and 0.964, respectively, followed by the
custom threshold algorithm, and the worst performance among all algorithms is adaptive
threshold algorithm: the average AUC is only 0.764.

 

Figure 3. Statistics of the AUC index of each algorithm applied in the three regions.

The image water extraction results of each algorithm were placed in the supplementary
materials, as shown in Figure S1: Classification results of each algorithm in Area1 on
October 20; Figure S2: Classification results of each algorithm in Area2 on October 20;
Figure S3: Classification results of each algorithm in Area3 on October 20. As can be seen
from the results graph, compared with other algorithms, the salt and pepper phenomenon
for the adaptive threshold and custom threshold is very serious, there is a large number of
non-water body “noise”, other algorithms basically have the same visual interpretation
effect, and there is no obvious difference, but the edge part is slightly different due to the
influence of adjacent features.

4.4. Reliability Test

To discuss the effects of the aforementioned algorithms in water body extraction from
remote sensing images in different periods, a remote sensing image captured on 4 October
2019 in the same region is selected. Based on this, the water bodies are classified using the
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same algorithms and parameters. The aim is to verify whether the experimental results
of each algorithm under different image conditions are reliable and decide whether the
models are universal.

The model established by the data of 2019/10/20 is used in the data of 2019/10/04
for water body extraction. The statistical results of the AUC indicators of each algorithm
are shown in Figure 4 (for more details, see Tables A5–A8 in Appendix A). As shown in
Table 4, the AUC indicators of each machine learning algorithm for three regions all show
a significant decline, with a decreased range of 0.33–66.52% As shown in Figure 4, the
differences among the different algorithm performances in the three areas are obvious. In
the surface complex Area2, the AUC index of the machine learning algorithms is near 0.5,
which means it is difficult to extract water bodies accurately. In Area1 with a simple surface
environment, although the accuracy of all machine learning algorithms decreases, the
errors are still within an acceptable range. In general, the decision tree algorithm has better
transfer performance, with an average AUC of 0.668, and the AUC indexes of the three
regions are 0.790, 0.518, and 0.697 respectively. The XGBoost algorithm has an average
AUC of 0.631, and its AUC index in the three regions is 0.718, 0.512, and 0.665, respectively.
The logistic regression algorithm has the worst accuracy, with an average AUC of 0.392, the
AUC index in the three regions is 0.329, 0.489, and 0.357, respectively, which is inconsistent
with the conclusion in Sections 4.2 and 4.3. When the model is directly transferred to
remote sensing images of different periods for water extraction, the generalization ability of
each machine learning algorithm is different. Among the threshold classification methods,
the Otsu threshold algorithm is optimal, and its average AUC is 0.832. The AUC indexes
in the three regions are 0.970, 0.617, and 0.908, respectively, which exceed the accuracy
of the other machine learning algorithms. For the other two threshold algorithm, custom
threshold, whose average AUC is 0.700, and the AUC indexes in the three regions are 0.842,
0.549, and 0.708 respectively. The adaptive threshold algorithm has an average AUC of
0.611, and its AUC indicators in the three regions are 0.703, 0.506, and 0.623 respectively.
All in all, for different periods of remote sensing images, the threshold method is better
than most of the machine learning algorithms, because the sensor imaging is affected by
clouds, sun angles, and sensors. Due to the influence of the angle and other factors, the
characteristics of remote sensing images will be very different during the adjacent imaging
time. Even if there is no major change in the surface features, the pixel value of the remote
sensing image could also change significantly. Therefore, the machine learning models
trained on the data of 2019/10/20 may not be suitable for different periods.

Table 4. AUC index changes statistics of each machine learning algorithm.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold −8.41% −12.27% −5.37% −8.68%

Otsu Threshold −1.49% −33.10% −5.78% −13.46%
Adaptive Threshold −0.92% −0.16% −0.33% −0.47%

Machine Learning Method

Logistic Regression −66.52% −47.37% −61.74% −58.54%
SVM −66.25% −32.20% −60.49% −52.98%

Random Forest −30.12% −49.73% −62.68% −47.51%
XGBoost −27.16% −47.32% −29.35% −34.61%

Neural Network −30.13% −42.96% −62.13% −45.07%
Decision Tree −19.60% −46.28% −25.40% −30.43%
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Figure 4. The AUC indexes of the three regions in different periods for each algorithm.

However, the water extraction effect of the threshold method is related to the remote
sensing image data, and the water extraction effects of remote sensing images from different
periods do not affect each other.

The water extraction results of each algorithm were placed in the supplementary
materials, as shown in Figure S4: Classification results of each algorithm in Area1 on
October 4; Figure S5: Classification results of each algorithm in Area2 on October 4;
Figure S6: Classification results of each algorithm in Area3 on October 4. It can be seen
from the classification result diagrams that most of the machine learning pepper and salt
phenomenon is very serious, and there is a large number of non-water “noise”. The visual
effects of various algorithms are also significantly different.

5. Discussion

This study mainly selects neural network, support vector machine (SVM), logistic
regression, random forest, decision tree, and XGBoost from machine learning algorithms,
and it selects the MNDWI water index combined with three threshold methods to extract
the water bodies. Michael Schmitt [72] pointed out that for a simple surface environ-
ment, only the threshold method can achieve satisfactory results, and when the surface
environment is slightly more complicated, a supervised classification method, such as
SVM, needs to be introduced. However, for the supervised classification method, how to
choose the appropriate number of samples is a problem worthy of research. For example,
Deepakrishna Somasundaram et al. [73] selected 3765 water samples and 2685 non-water
samples from the four-view Landsat-8 OLI image; Wei Jiang et al. [74] selected more than
10,000 water samples and non-water samples in each study area. The choice of these large
numbers of training samples brings additional costs. In order to study the influence of
sample size on various algorithms, an experiment was designed in this paper, as outlined
in Section 4.1. As shown in Figure 2, there are great differences in the number of samples
required for various algorithms to reach their optimal. The logistic regression algorithm
requires the lowest number of samples, which is close to 110. The SVM algorithm has the
best performance when the number of samples reaches 150. As the number of samples
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increases, the order of the optimal model is neural network, random forest, decision tree,
and XGBoost. The primary task of water body extraction is to select a certain number of
samples for the training model. The conclusion of the sample number requirements of
each machine learning algorithm in this paper can be used as a reference for other similar
applications to reduce the cost of sample selection.

Most studies only use test set samples to evaluate the optimal model and use the
selected model for the final classification of images. However, Liu Yang et al. [75] pointed
out that in different surface environments, various types of shadows or background noises
need to be considered. For example, compared with arid areas, the influence of vege-
tation on water extraction should be considered in humid areas. In mountainous areas,
the extracted water is often mixed with mountain shadow. These types of background
information have different influences on different water extraction algorithms [61,76]. For
the above reasons, it is worth discussing whether the evaluation effect on the test set can
explain the actual generalization performance of the model, that is, whether the evaluation
effect on the test set is consistent with the evaluation effect on the local area. For this reason,
three local areas with different ground conditions are selected. As shown in Figure 3, in
general, the simpler the ground scene, the better the classification accuracy. If the ground
scene is complex, the accuracy of various algorithms has a great difference. Generally, three
algorithms (decision tree, XGBoost, and Otsu) can perform well in various scenarios. In the
case of mountain shadow in the ground background, it is suggested to give priority to the
XGBoost algorithm. In the case of roads and buildings in the ground background, besides
the XGBoost or decision tree algorithms, a logistic regression algorithm with a relatively
simple model can also be tried.

However, when multi-stage extraction research on water bodies is needed, the original
model will naturally be directly used to extract water bodies from remote sensing images
in other different periods. As shown in Table 4, when various machine learning algorithms
are directly used to extract water bodies from remote sensing images in different periods,
the AUC indicators of each machine learning algorithm for the three regions all show a
significant decline, with a decrease range of 0.33–66.52%. Generally, simple ground scenes
have higher accuracy, while complex ground scenes have some effects for different machine
learning algorithms. As shown in Table 4, among all the machine learning algorithms,
the accuracy of decision tree decreased the least in the three regions on average, and
the AUC index decreased 30.43% on average, followed by XGBoost. In the threshold
method, although the change of adaptive threshold is small, its accuracy is always very
low, while the Otsu algorithm not only has a good accuracy, but also the average decline
of the AUC index is small, which is 13.46%. The decision tree algorithm can still achieve
better classification results, and the Otsu algorithm also performs well. Experiments show
that it is not recommended to directly use the machine learning model to extract water
from remote sensing images in different periods. The Otsu classification result can be
used as a reference, so that training samples can be selected in other periods quickly and
conveniently to extract water bodies using machine learning algorithms.

In summary, for water extraction from remote sensing images, although various
algorithms can achieve satisfactory results under certain conditions, none of them can be
applied to all remote sensing image and scenes. The factors affecting the classification
accuracy of remote sensing images mainly include the complexity of the field landscape,
the availability of data, the effectiveness of the processing method, and the experience
judgment of the processing personnel [5,76]. Therefore, on the basis of this study, when
extracting water from remote sensing images, the water index (MNDWI preferred) can be
used first and combined with the Otsu algorithm to classify water bodies. This result is
in agreement with the results obtained by Ya’nan Zhou et al. [38], who used the NDWI
image to select water samples from the input image. However, if the accuracy does not
meet the requirements of the application, on the basis of its classification, researchers
can further select the number of samples that meet the requirements of various machine
learning algorithms (Figure 2) and select the corresponding machine learning training
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model. Among the various machine learning algorithms, XGBoost, decision tree, and
logistic regression algorithms are preferentially recommended.

6. Conclusions

Based on Landsat-8 images, decision tree, logistic regression, random forest, neural
network, support vector machine, and XGBoost algorithms are used to extract water
bodies. Firstly, the effect of each machine learning algorithm on the test set is discussed.
Secondly, each machine learning algorithm is applied to three different local areas, and
the consistency between the accuracy of each machine learning algorithm on the test set
and the accuracy of the local area is evaluated. Finally, each machine learning algorithm is
applied to remote sensing images in different periods, the model transfer performance of
each machine learning algorithm is examined, and three threshold methods are compared.
The following conclusions are drawn:

(1) There are great differences in the numbers of samples required for various al-
gorithms to reach their optimal. The logistic regression algorithm requires a minimum
number of samples, about 110. The SVM algorithm has the best performance when the
number of samples reaches 150. As the number of samples increases, the optimal order of
the model is neural network, random forest, decision tree, and XGBoost.

(2) The accuracy evaluation effect of each machine learning on the test set cannot
represent the effect on the local area, because the surface complexity is not same in the
three local areas. In Area1 with a single surface type, its AUC range is 0.982–0.985; in Area2
with complex surface environment (numerous vegetation and mountain shadow), its AUC
range is 0.789–0.973; in Area3 with wide water distribution, its AUC range is 0.923–0.941 in
an urban built-up area.

(3) When the models are directly applied to remote sensing images in different peri-
ods, the model accuracy is greatly reduced, the AUC indicators of each machine learning
algorithm for three regions all show a significant decline, with a decreasing range of
0.33–66.52%. In general, among the machine learning algorithms, the decision tree algo-
rithm has good transfer performance, with an average AUC of 0.668, and the AUC indexes
in the three regions are 0.790, 0.518, and 0.697 respectively. Among the threshold methods,
the Otsu threshold algorithm is the optimal, with an average AUC of 0.832 and AUC
indexes in the three regions are 0.970, 0.617, and 0.908, respectively.

(4) Owing to the complex distribution of ground objects and many influential factors
in the remote sensing image classification, it is difficult to collect small and dispersed water
bodies in this research. This limits the performances of these models in the environment
with many hill shadows and complex ground objects. The accuracy of these models needs
to be further improved; more samples should be collected from images over different areas
and periods to train the models in the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app112110062/s1, Detailed descriptions of Figure S1: Classification results of each algorithm
in Area1 on October 20; Figure S2: Classification results of each algorithm in Area2 on October 20;
Figure S3: Classification results of each algorithm in Area3 on October 20; Figure S4: Classification
results of each algorithm in Area1 on October 4; Figure S5: Classification results of each algorithm in
Area2 on October 4; Figure S6: Classification results of each algorithm in Area3 on October 4.
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Appendix A

Table A1. Statistics of the AUC index of each algorithm applied in the three regions.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold 0.919 0.626 0.748 0.764

Otsu Threshold 0.985 0.922 0.964 0.957
Adaptive Threshold 0.709 0.507 0.625 0.614

Machine Learning
Method

Logistic Regression 0.984 0.929 0.933 0.949
SVM 0.982 0.789 0.923 0.898

Random Forest 0.985 0.973 0.935 0.964
XGBoost 0.985 0.972 0.941 0.966

Neural Network 0.984 0.850 0.935 0.923
Decision Tree 0.982 0.965 0.935 0.961

Table A2. Statistics of various indexes of each algorithm in Area1 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.998 0.945 0.971

0.984other 0.971 0.999 0.985

Random Forest
water 0.997 0.950 0.973

0.985other 0.973 0.998 0.986

SVM
water 0.999 0.933 0.965

0.982other 0.964 1.000 0.982

XGBoost
water 0.996 0.952 0.974

0.985other 0.974 0.998 0.986

Logistic Regression water 0.999 0.942 0.970
0.984other 0.969 1.000 0.984

Decision Tree
water 0.998 0.937 0.966

0.982other 0.966 0.999 0.982

Adaptive Threshold water 0.508 0.909 0.652
0.709other 0.911 0.515 0.658

Custom Threshold
water 0.838 0.999 0.912

0.919other 0.999 0.894 0.944

Otsu Threshold
water 0.979 0.983 0.981

0.985other 0.991 0.988 0.990
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Table A3. Statistics of various indexes of each algorithm in Area2 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.708 0.595 0..647

0.850other 0.992 0.995 0.993

Random Forest
water 0.962 0.241 0.385

0.973other 0.984 1.000 0.992

SVM
water 0.585 0.712 0.642

0.789other 0.994 0.989 0.992

XGBoost
water 0.961 0.221 0.360

0.972other 0.984 1.000 0.992

Logistic Regression water 0.869 0.498 0.633
0.929other 0.990 0.998 0.994

Decision Tree
water 0.948 0.144 0.250

0.965other 0.982 1.000 0.991

Adaptive Threshold water 0.027 0.670 0.052
0.507other 0.986 0.496 0.660

Custom Threshold
water 0.256 0.825 0.391

0.626other 0.996 0.950 0.972

Otsu Threshold
water 0.856 0.361 0.508

0.922other 0.987 0.999 0.993

Table A4. Statistics of various indexes of each algorithm in Area3 on October 20.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.982 0.690 0.810

0.935other 0.889 0.995 0.939

Random Forest
water 0.999 0.628 0.771

0.935other 0.870 1.000 0.930

SVM
water 0.995 0.567 0.722

0.923other 0.852 0.999 0.919

XGBoost
water 0.998 0.671 0.802

0.941other 0.883 0.999 0.938

Logistic Regression water 0.997 0.624 0.768
0.933other 0.869 0.999 0.929

Decision Tree
water 0.984 0.682 0.805

0.935other 0.886 0.995 0.938

Adaptive Threshold water 0.405 0.747 0.525
0.625other 0.846 0.558 0.673

Custom Threshold
water 0.497 1.000 0.664

0.748other 1.000 0.593 0.745

Otsu Threshold
water 0.970 0.893 0.930

0.964other 0.958 0.989 0.973

Table A5. AUC index statistics of each algorithm in three regions on October 4.

The Method Name Area1 Area2 Area3 Average

Threshold Method
Custom Threshold 0.842 0.549 0.708 0.700

Otsu Threshold 0.970 0.617 0.908 0.832
Adaptive Threshold 0.703 0.506 0.623 0.611

Machine Learning
Method

Logistic Regression 0.329 0.489 0.357 0.392
SVM 0.331 0.535 0.365 0.410

Random Forest 0.688 0.489 0.349 0.509
XGBoost 0.718 0.512 0.665 0.631

Neural Network 0.688 0.485 0.354 0.509
Decision Tree 0.790 0.518 0.697 0.668
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Table A6. Statistics of various indexes of each algorithm in Area1 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.379 0.999 0.550

0.688other 0.996 0.097 0.177

Random Forest
water 0.377 1.000 0.547

0.688other 1.000 0.087 0.160

SVM
water 0.020 0.001 0.001

0.331other 0.643 0.994 0.781

XGBoost
water 0.435 1.000 0.607

0.718other 1.000 0.284 0.442

Logistic Regression water 0.017 0.001 0.001
0.329other 0.642 0.990 0.779

Decision Tree
water 0.579 1.000 0.734

0.790other 1.000 0.599 0.749

Adaptive Threshold water 0.493 0.918 0.641
0.703other 0.913 0.478 0.628

Custom Threshold
water 0.685 0.998 0.812

0.842other 0.998 0.746 0.854

Otsu Threshold
water 0.949 0.985 0.967

0.970other 0.992 0.971 0.981

Table A7. Statistics of various indexes of each algorithm in Area2 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.028 0.999 0.055

0.485other 1.000 0.283 0.441

Random Forest
water 0.022 1.000 0.042

0.489other 1.000 0.050 0.095

SVM
water 0.090 0.039 0.054

0.535other 0.980 0.992 0.986

XGBoost
water 0.024 1.000 0.048

0.512other 1.000 0.165 0.283

Logistic Regression water 0.001 0.001 0.001
0.489other 0.978 0.937 0.957

Decision Tree
water 0.037 0.992 0.072

0.518other 1.000 0.463 0.633

Adaptive Threshold water 0.026 0.692 0.050
0.506other 0.986 0.451 0.619

Custom Threshold
water 0.100 0.925 0.181

0.549other 0.998 0.826 0.904

Otsu Threshold
water 0.248 0.314 0.277

0.617other 0.986 0.980 0.983
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Table A8. Statistics of various indexes of each algorithm in Area3 on October 4.

Method Category Precision Recall F1-Score AUC

Neural Network
water 0.007 0.001 0.001

0.354other 0.702 0.944 0.805

Random Forest
water 0.001 0.002 0.001

0.349other 0.697 0.924 0.794

SVM
water 0.020 0.001 0.002

0.365other 0.709 0.978 0.822

XGBoost
water 0.329 1.000 0.496

0.665other 1.000 0.183 0.309

Logistic Regression water 0.002 0.001 0.001
0.357other 0.712 0.994 0.830

Decision Tree
water 0.395 1.000 0.567

0.697other 1.000 0.386 0.557

Adaptive Threshold water 0.399 0.756 0.523
0.623other 0.847 0.543 0.662

Custom Threshold
water 0.419 0.997 0.590

0.708other 0.997 0.444 0.615

Otsu Threshold
water 0.828 0.973 0.895

0.908other 0.988 0.919 0.952
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Abstract: Chlorophyll-a (Chla) concentration, which serves as a phytoplankton substitute in inland
waters, is one of the leading indicators for water quality. Generally, water samples are analyzed in
professional laboratories, and Chla concentrations are measured regularly for the purpose of water
quality monitoring. However, limited spatial water sampling and the labor-intensive nature of data
collection make global and long-term monitoring difficult. The developments of remote-sensing
optical sensors and technologies make the long-term monitoring of Chla concentrations for an entire
water body more achievable. Many studies based on machine learning techniques, such as regression
and artificial neural network (ANN) methods, have recently been proposed for Chla concentration
estimation using optical satellite images. The methods based on machine learning can achieve
accurate estimation. However, overfitting problems may arise because the in situ Chla dataset is
generally insufficient to train a complicated machine learning model, which makes trained models
inapplicable. In this study, an ANN model containing three convolutional and two fully connected
layers with 4953 unknown parameters is designed. A transfer learning method, consisting of model
pretraining, main-training, and fine-tuning stages, is proposed to ease the problem of insufficient
in situ samples. In the model pretraining stage, the ANN model is pretrained and initialized using
samples derived from an existing Chla concentration model. The pretrained ANN model is then fine-
tuned using the proposed transfer learning technique with in situ samples collected in five different
campaigns carried out during early 2019 from Laguna Lake, the Philippines. Before the transfer
learning, data augmentation and rebalancing methods are conducted to enrich the variability and to
near-uniformly distribute the in situ samples in Chla concentration space, respectively. To estimate
the alleviation of model overfitting, the trained ANN model, using an in situ dataset from Laguna
Lake, was tested using an in situ dataset from Lake Victoria, Uganda, obtained in 2019, which has a
similar trophic state as Laguna Lake. The experimental results from Sentinel-3 imagery indicated
that the overfitting problem was significantly alleviated and the trained ANN model outperformed
related models in terms of the root-mean-squared error of the estimated Chla concentrations.

Keywords: chlorophyll-a concentration; artificial neural network; transfer learning; overfitting

1. Introduction

Lakes are land-surrounded water bodies that generally provide freshwater for human
daily needs. For instance, water from Lake Biwa, Japan, is used as a water drinking resource
for people in Osaka and Kyoto and has been maintained as a conservation ecosystem
with good water quality [1]. In Indonesia, a freshwater treatment plant, namely, PDAM
Kabupaten Kerinci, was built around Lake Kerinci in Jambi to take, store, filter, and
distribute the water to people living nearby [2]. Meanwhile, the worldwide demand for
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fish products has steadily increased due to the growing need for protein and the shift in
behavior towards the consumption of healthier food [3,4]. The aquaculture industry often
adds nutrient fertilizers, which are useful for commercial fish, to the water somewhere
around the lake body. This procedure can fulfil the consumption demands; however, algal
growth may be enhanced when nutrients are oversupplied. Consequently, the penetration
of sunlight, which is required for respiration in fish, is limited and may lead to the extensive
deterioration of water quality and the declining availability of freshwater, harming not
only the fish, but also society. Therefore, the long-term monitoring of the water quality
in lakes is necessary for the authorities to develop sustainable management initiatives to
prevent water quality degradation and to maintain freshwater supplies in the future.

Chlorophyll-a (Chla), a pigment found in every phytoplankton species, is considered
a critical water quality parameter for many environmental issues [5–7]. The water quality
and Chla concentration can be categorized into four classes based on the trophic state index:
oligotrophic (less than 2.6 μg/L), mesotrophic (2.6–20 μg/L), eutrophic (20–56 μg/L),
and hypertrophic (more than 56 μg/L) [8]. The water quality condition for each class
is described in Table 1. Chla concentrations measured using field surveys are accurate
and precise; however, the concentration data are only available at the sampling locations.
Taking more measurements from the lake water body is hindered by the high labor and
financial costs. Remote sensing technology enables researchers to empirically estimate the
Chla concentration at the full spatial coverage of the lake water body by regressing the
remote-sensing reflectance (Rrs) or the features with the in situ data obtained from field
survey. Dall’Olmo and Gitelson [9] utilized the features of band ratios, combining Rrs at
wavelengths 443, 490, and 560 nm (denoted as λ443, λ490, and λ560) in a three-band model, in
which the in situ samples used in training ranged from 4.4 μg/L to 217.3 μg/L. Al-Shehhi
et al. [10] exchanged the Rrs at wavelengths λ560 to λ645, which has been found to represent
both water turbidity and algal absorption in a narrower range of in situ data (0.1–27.8 μg/L).
Chen et al. [11] performed local calibration in Chinese waters resulting in an Rrs feature
at λ580, λ600, and λ692. Gitelson et al. [12] and Moses et al. [13] simplified the three-band
model to a two-band model by removing the Rrs at λ443 due to the similar sensitivity
to absorption as Rrs at λ490. Hence, Mishra and Mishra [14] proposed a differentiate
index, called the normalized differentiate Chla index (NDCI), and demonstrated that
the method outperforms the three-band and two-band models in cross validation. Many
researchers [15–20] searched for important features that are sensitive to Chla concentrations;
however, the procedure is somewhat statistically exhaustive.

Table 1. Description of trophic state index [8].

Trophic Class
Chla Concentration

Range (in μg/L)
Water Condition

Oligotrophic 0~2.6
A lake with very clear waters and high drinking

water quality due to low nutrient content and
algal production.

Mesotrophic 2.6~20
Commonly clear water lakes with beds of

submerged aquatic plants and medium levels of
nutrients.

Eutrophic 20~56 The water body will be dominated either by
aquatic plants or algae.

Hypertrophic More than 56
Highly nutrient-rich lakes characterized by

frequent and severe nuisance algal blooms and
low transparency.

Another promising procedure to estimate Chla concentrations is by means of an artifi-
cial neural network (ANN). Buckton et al. [21] proposed a fully connected neural network
containing one hidden layer that revealed the capability of ANN for Chla concentration
estimation. Similar work was also conducted by other researchers [22–24]. Hafeez et al. [25]
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designed several fully connected neural networks and searched for the optimal hyperpa-
rameters, including the number of hidden layers and the number of neurons in a layer. The
study also revealed that the optimal ANN model outclassed the other machine learning
methods, including random forest, cubist regression, and support vector regression, in
terms of Chla concentration estimation. Furthermore, several researchers utilized convolu-
tional neural networks (CNNs), which consider neighborhood spectral information in Chla
concentration modelling using convolutional layers with 3D kernels [26–29].

An ANN model requires a high number of labelled data—that is, it uses in situ Chla
concentrations as outputs and their corresponding Rrs in satellite images as inputs, and
the initial values for unknown parameters for model training. Pyo et al. [28] constructed
a CNN model with more than 2000 unknown parameters. This model was trained using
only 238 labelled data. Meanwhile, Aptoula and Ariman [26] utilized 320 labelled data to
train a CNN model containing 2432 unknown parameters. However, overfitting problems
may arise because insufficient labelled data are used to search for the optimal values of
thousands of unknown parameters during model training. Nguyen et al. [30] applied data
augmentation to enrich the labelled data; however, they did not consider the data imbalance
problem that may affect the estimation accuracy. Furthermore, some researchers utilized
simulated datasets instead of in situ Chla concentration data to deal with the labelled data
insufficiency [31–33]. A simulated dataset means that the Chla concentration information is
obtained from an existing known model. With this procedure, the labelled data insufficiency
can be solved; however, training a neural network model with a simulated dataset may
not reach the global optimum of the defined loss function. Syariz et al. [34] proposed
a two-stage training method, in which the model is firstly pretrained using a simulated
dataset, and the pretrained model is then retrained using an in situ dataset. The advantage
of this method is that the pretraining process is able to provide good initial values for
the unknown parameters before the main training process using the in situ dataset. The
training process can train an ANN model rather well for Chla concentration estimation.
However, the overfitting problem is not fully alleviated because of the lack of training
sample variability and the problem of training sample imbalance.

In this study, the main objectives were (1) to propose a transfer learning technique
using the two-stage transfer training approach for better Chla concentration estimation
accuracy; (2) to enrich and balance the Chla-labelled data by performing data augmentation
and rebalancing techniques; and (3) to test the ANN model trained using the improved
proposed two-stage training transfer learning approach with an in situ dataset from Laguna
Lake, using the in situ dataset acquired from Lake Victoria, Uganda. To evaluate the
effectiveness of the proposed model learning methods, an ANN model, namely WaterNet,
first proposed by Syariz et al. [34], was adopted. The input to WaterNet was a water-body
image patch of the size 7 (width) × 7 (height) × 16 (bands) and the output was an estimated
Chla concentration at the center pixel of the input patch. Lastly, the proposed transfer
learning method can increase the accuracy of Chla concentration retrieval in the lake water
body, which can later be utilized by governments to better understand the lake water
state and develop a clinical management plan to prevent water quality degradation and
to maintain freshwater supplies in the future. The remainder of the paper is organized as
follows. Section 2 describes the study area, data material, acquisition, and preprocessing.
Section 3 elaborates the proposed transfer learning technique, data augmentation, and data
rebalancing. Section 4 presents the experimental results, performance, and the comparisons
of the trained ANN model and related models, and Section 5 provides the conclusions and
future work.

2. Data Materials and Preprocessing

The in situ dataset acquired from Laguna Lake, the Philippines, was used to train the
proposed ANN model while the in situ dataset acquired from Lake Victoria, Uganda, which
has a similar trophic state (i.e., mesotrophic) with Laguna Lake, was utilized to test the
trained model. The acquisitions of these two datasets are described in Sections 2.1 and 2.2.
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The Sentinel-3 imagery used for Chla estimations and data preprocessing are described in
Section 2.3.

2.1. Laguna Lake of the Philippines

Laguna Lake, with an area of 900 km2 and an average depth of 2.5 m, is the largest
lake in the Philippines. There are more than 20 million people living in the surrounding
areas of Laguna Lake, indicating the importance of the lake in providing freshwater for
local daily needs [35]. However, around 17% of the lake water body (~150 km2) is occupied
by aquaculture cages, where the nutrients and hazardous substances from industrial
activity may pollute Laguna Lake, in addition to the issues of rapid population growth,
industrialization, and urbanization [36,37]. In this study, field measurements of Chla
concentrations were conducted during five different campaigns in 2019, as shown in
Figure 1. Infinity-CLW ACLW2-USB, an optical-based data logger used to measure Chla
concentrations, was installed on a boat at a depth of 0.5 m below the water’s surface. The
data logger recorded the Chla concentrations once per second during a 5-hour field survey,
collecting more than 15,000 records at each campaign. Outlier removal and data down-
sampling were conducted to remove noise and to match the Chla concentration sampling
resolution with the spatial resolution of the Sentinel-3 images, respectively. After the data
pre-processing, 257 in situ Chla samples were obtained from the five field campaigns, as
shown in Table 2, and the resulting samples were utilized to train the ANN model and
related models for comparison and evaluation.

 

Figure 1. Laguna Lake and field campaigns for Chla concentration collection. The routes of the field
campaigns and the locations of the collected samples are visualized by colors.
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Table 2. Statistical summary of the in situ samples from Laguna Lake. “Min”, “Max”, Mean”
and “Std.” represent the minimum, maximum, mean, and standard deviation of the Chla
concentrations, respectively.

Campaign # Date (in 2019) # of Samples
Chla Concentration Statistics (μg/L)

Min. Max. Mean Std.

1 11 Jan 35 9.072 13.235 11.391 0.655

2 29 Mar 74 7.378 8.076 7.906 0.163

3 6 Apr 98 6.980 10.970 8.459 1.218

4 26 Apr 22 6.731 7.692 7.254 0.315

5 30 Apr 48 7.856 11.295 9.613 0.801

2.2. Lake Victoria of Uganda

The in situ Chla concentrations from Lake Victoria were obtained from the Mendeley
Online Database (https://data.mendeley.com/ (accessed on 3 August 2021)), as provided
by Deirmendjan et al. [38]. The study in [38] estimated the dissolved organic matter (DOM)
under the support of the project Lake Victoria Greenhouse Gas Dynamics (LAVIGAS).
In this project, there were three campaign periods: 29 March to 8 April 2018, 25 October
to 4 November 2018, and 7 June to 17 June 2019. At each period, the water samples
for Chla concentrations were measured daily in water depths ranging from 1 to 40 m.
Considering that (1) the samples have the same trophic state as Laguna Lake (2.6–20 μg/L),
the measurement depth should be similar to that for Laguna Lake (0.5 m), (2) the Chla
sampling time should match with the Sentinel-3 image acquisition time, and (3) the Sentinel-
3 image pixels corresponding the collected Chla samples should be cloud-free, only two
in situ samples, shown in Figure 2, could be utilized. These two samples were used to
evaluate the inference performance of the trained models to compare the trained model
with related models.

 
Figure 2. Lake Victoria and in situ samples. The locations of samples are marked by red dots, and the
sample information is provided.

2.3. Sentinel-3 Image Dataset

Fifteen level 2 water full resolution (WFR) images of Laguna Lake, acquired by the
ocean and land color instrument (OLCI) sensor of Sentinel-3, were utilized. A Sentinel-3
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WFR image contains 16 atmospherically-corrected bands, excluding bands 13–15 (λ761,
λ764, λ767) and bands 18–19 (λ885, λ900,) which are mainly designed for atmospheric correc-
tion [39]. The water-leaving reflectance in Sentinel-3 WFR images is further divided by π
to derive the remote-sensing reflectance Rrs. In addition, the Sentinel-3 WFR product also
contains several water quality parameters, including the Chla concentrations estimated
by using an inverse radiative transfer model–neural network (IRTM-NN) [40]. The Chla
concentrations from the IRTM-NN were regarded as a simulated dataset in this study and
were used for model pretraining.

In the image data preprocessing, cloud-free water pixels in the Rrs images and their
neighboring local patches of the spatial size 7 × 7 were extracted. Image patches containing
non-water pixels, such as cloud, and pixels with negative Rrs values due to imprecise
atmospheric correction or cloud shadow, were excluded from the dataset, forming full-
water Rrs image patches. The summary of the Rrs image patches is presented in Table 3.
Similarly, the cloud-free Sentinel-3 image patches corresponding to the locations with
the simulated Chla concentrations generated by IRTM-NN were extracted. These image
patches with simulated Chla concentrations were used in the model pretraining. The Rrs
water patches and their corresponding simulated Chla data were used as a training set.
The training set is denoted as {(Pi, s_chlai)}n

i=1, where n denotes the number of simulated
labelled data, and Pi and s_chlai represent the i-th Rrs water patch and its corresponding
simulated Chla concentration, respectively. There were a total of 47,231 simulated labelled
data. In addition, 275 in situ Chla data over Laguna Lake and their corresponding Rrs
water patches were used as the retraining dataset. The retraining dataset is denoted as
{(Ki, t_chlai)}m

i=1, where n represents the number of in situ Chla samples, and ki and
t_chlai represent the i-th Rrs water patch and its corresponding in situ Chla concentration,
respectively. In addition, one Sentinel-3 WFR image Rrs located in Lake Victoria was also
obtained, and the acquisition date of the image was 15 June 2019. A Rrs water patch of
the size 7 × 7 located at the field measurement point LV1 was extracted. As for the field
measurement LV2, which was taken on 16 June 2019, the water patch was extracted from the
Sentinel-3 image acquired on 15 June 2019. This means that the estimation was conducted
using the image acquired one day before the field measurement in LV2.

Table 3. Summary of Sentinel-3 Rrs image patches from Laguna Lake.

Image Acquisition Day
# of Image Patches

Pretraining Stage Transfer-Learning Stage

11 Jan 1008 35

29 Mar 4715 74

6 Apr 5681 98

26 Apr 1908 22

30 Apr 2582 48

15 Jan 3471

22 Jan 2017

7 Feb 3722

8 Feb 3681

19 Feb 2877

2 Mar 1654

10 Mar 3393

26 Mar 2766

10 Apr 3984

21 Apr 3772

Total 47,231 275
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Considering the stability of the model training, the water patches from Laguna Lake
and Lake Victoria containing Rrs at 16 spectral bands were normalized to the range 0, 1 using
the minimal and maximal Rrs values at each spectral wavelength. The data normalization
process was also performed for the in situ and simulated Chla concentration data.

3. Methodology

3.1. Artificial Neural Network Model

An ANN model, namely WaterNet, proposed by Syariz et al. [34] was adopted. As
shown in Figure 3, the input and output to the model was an image patch of the size
7 × 7 × 16 and an estimated Chla concentration in the center pixel of the patch, respec-
tively. The model is an end-to-end network structure consisting of three phases: that
is, band expansion, feature extraction, and Chla concentration estimation. In the band
expansion phase, there were three convolutional layers with 1 × 1 × 3 kernel filters. The
1 × 1 × 3 kernel filters performing convolution on the spectral domain attempt to augment
spectral features from the spectral bands of the input image patch, which is also known as
spectral feature extraction via band combination [41–43]. Meanwhile, two convolutional
layers containing ten filters of the size 3 × 3 × 42, and five filters of the size 3 × 3 × 10, were
utilized in the feature extraction phase. With those filters, the spatial feature information
was extracted. The output to this phase was a feature map of the size 3 × 3 × 5, and this
output was further flattened and linked to the Chla concentration estimation phase which
contained two fully connected layers. A rectified linear unit (ReLU) and sigmoid functions
were used as the activation function in convolution and fully connected layers, respectively.
In total, this ANN model contained 4753 unknown parameters.

Figure 3. Network structure of WaterNet.

3.2. ANN Model Training

Utilizing insufficient in situ Chla concentration data and unsuitable initialization for
the unknown parameters in ANN model training may lead to model overfitting and make
the loss function difficult to converge. Syariz et al. [34] proposed a two-stage training
approach consisting of pretraining and main-training, which is shown to be able to deal
with the aforementioned problems. The first stage provides a better initialization for the
unknown parameters before the main stage by pretraining the model with the simulated
labelled data {(Ki, s_chlai)}n

i=1. Here, the estimation error is large and backpropagating
the error could make the extraction of the spatial feature not optimum. Moreover, the
convergence of the loss function may not reach its global minimum due to the utilization
of the simulated data. However, this allows the model to have suitable initial values of
the unknown parameters before the main training stage. Then, the pretrained model is
refined with the in situ labelled data {(Pi, t_chlai)}m

i=1. This procedure is also known as
transfer learning.

In this study, the two-stage training was adopted and the main stage part was im-
proved by the implementation of fine-tuning, another kind of transfer learning technique.
Moreover, data augmentation and rebalancing were also proposed and performed before
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the training in the improved main stage. The aim was to have more in situ labelled data
with balanced amounts of samples in Chla concentration distribution space. Details regard-
ing the data augmentation and rebalancing and the proposed transfer learning approach
are explained below.

3.2.1. Data Augmentation and Rebalancing

To enrich the variability of the Chla in situ dataset, the data augmentation technique
was implemented, as the convolutional processing is insensitive to rotation and scale [44,45];
however, the balance of data may not be considered. In this study, the data augmenta-
tion was performed on the in situ labelled data {(Pi, t_chlai)}m

i=1 by applying rotation to
the image patches (with angles of 90◦, 180◦, and 270◦) and flipping the rotated images
from the left to right. Then, the rotated and flipped image patches were linked to their
corresponding Chla concentration as a new dataset, namely, an augmented dataset: that is,
{(Qi, n_chlai)}q

i=1 where q is the number of rotated and flipped images (2216 data in total).
The augmented dataset was further reclassified into 12 classes, with the first class starting
from 6 μg/L, the last class ending at 12 μg/L, and each class covering 0.5 μg/L, as shown
in Figure 4. Figure 4a implies the frequency of the in situ Chla in the augmented dataset. As
seen, the difference between the Chla concentration data inter-range is huge, and indicates
the imbalanced distribution of the data. Training the model with a data imbalance may
reduce the optimum accuracy, and therefore data rebalancing is necessary. For that, a
sample rebalancing technique was conducted by randomly removing several rotated and
flipped in situ labelled data if the frequency of Chla concentration of the corresponding
class was more than 100 sets (see Figure 4b). This kept the Chla concentration data at each
range equal to or less than 100 sets, thus the balance of the data was achieved. In total,
the data augmentation and rebalancing generated 900 rebalanced data {(Ri, n_chlai)}r

i=1
where r denotes the number of rebalanced in situ labelled data, qi and n_chlai represent
the i-th Rrs water patch and its corresponding in situ Chla concentration, respectively. This
also includes its original data {(Pi, t_chlai)}m

i=1. For simplification, the summary of dataset
variations is described below.

� The simulated labelled data {(Ki, s_chlai)}n
i=1,

� the in situ labelled data which also refer to the original dataset {(Pi, t_chlai)}m
i=1

� the augmented dataset {(Qi, n_chlai)}q
i=1, and

� the rebalanced dataset {(Ri, n_chlai)}r
i=1.

 
(a) (b) 

Figure 4. Amount of in situ Chla concentration after performing data augmentation (a) without and
(b) with the consideration of the balance of data.
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3.2.2. Transfer Learning

In this study, two-stage training was adopted and the main stage part was improved
by the implementation of fine-tuning. The procedures for the fine-tuning in the proposed
transfer learning is as follows. There are two sub-stages in the main training.

1. Main-training stage. With the help of the pretraining stage, the ANN model contains
suitable values of unknown parameters. Training them with the rebalanced dataset
increases the possibility that the search for the global minimum in the loss function
can be reached. This also means that the accuracy of the estimation is enhanced or the
estimation error is smaller. The error is then backpropagated to update the unknown
parameters and the spatial feature is more robust.

2. Fine-tuning stage. In the previous stage, the extraction of the spatial feature is al-
ready powerful, and continuing training the previously trained ANN model with the
rebalanced dataset may only endanger the spatial feature. Therefore, a fine-tuning
technique is performed in this stage by means of “network surgery”. First, the model
is split into two parts: the body part, consisting of the first and second phase of the
ANN model; and the head part, consisting of the last phase of the ANN model, which
is the Chla concentration estimation phase. The head part is then removed, leaving the
body part only. Inputting an image patch to the body part only will result in a spatial
feature image. In machine learning, the technique to split and remove the head part is
known as a feature extractor. Moreover, a new head part containing a similar network
as the last phase with a random initial value for the unknown parameters is attached
to the body part. Here, if the gradient is allowed to backpropagate from these random
values all the way through the network, the powerful spatial features could be at risk.
To prevent this problem, the layers in the body part, i.e., in the first and second phase
of the model, are frozen or set as untrainable and allow the backpropagation when
training be performed on the new head only. This allows the network to start learning
from the powerful spatial feature and the estimation of Chla concentration can be
optimized. Lastly, all of the layers are unfrozen or set as trainable. However, different
to the previous stage or sub-stage in which the training is conducted with a learning
rate of 0.001, the learning rate is now set to a very small rate of 0.0001. The aim of
setting such very small rate is to obtain a suitable adjustment for the body and head
parts. For simplification, Figure 5 shows the workflow of the fine-tuning stage.

 

Figure 5. Training flow in the main-training stage of the proposed method. Blue and grey boxes
represent trained unknown parameters in a layer with a learning rate of 0.001 and 0.0001, respectively;
the green box denotes the random reinitialization of unknown parameters in a layer.
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For hyperparameters, the Adam optimizer is employed due to its capability in adap-
tively tuning the learning rate and moment [46], and the mean squared error (MSE) is used
as the loss function L and is defined as follows:

L =
1
m

m

∑
i=1

(prChlai − isChlai)
2, (1)

where prChlai is the prediction or estimation of Chla concentration from the input im-
age patch of the i-th labelled data. Moreover, overfitting is alleviated by adopting two
regularization techniques: dropout and L2 regularization. The dropout rate is set to 0.5,
meaning that only 50% of the total unknown parameters are temporarily deactivated when
computing the loss function for model convergence monitoring, whereas the L2 regulariza-
tion adds the Frobenius norm to the loss function to penalize large weights during error
backpropagation for the tuning of unknown parameters. The maximum epoch is set to 30
and the trained network from an epoch with the smallest value of the loss function will be
stored and used for the Chla concentration estimation.

4. Experimental Results and Discussion

This study proposed a transfer learning technique consisting of model pretraining,
main-training, and fine-tuning stages for Chla ANN model training with an insufficient in
situ dataset. In addition, the data augmentation and rebalancing were integrated with the
transfer learning for Chla in situ data enrichment and imbalance. To evaluate the proposed
method, a k-fold cross validation was performed with the Chla in situ dataset from Laguna
Lake, the Philippines, where k was empirically set to 10. In this section, the results of the
proposed transfer learning are presented in Section 4.1, and the effect of data imbalance to
the trained ANN model is presented in Section 4.2. In addition, Section 4.3 demonstrates
the comparisons between the CNN model trained by the proposed transfer learning with
the related models using the dataset from Lake Victoria, Uganda. For accuracy assessment,
the root mean squared error (RMSE) is employed by rooting the MSE in Equation (1).

4.1. Evaluation of the Transfer Learning

To evaluate the proposed transfer learning technique with the processes of data aug-
mentation and rebalance, the ANN named WaterNet was used for Chla concentration
estimation. For details about WaterNet, please refer to Section 3.2. To evaluate the perfor-
mance of the three training stages in the transfer learning, the hyperparameters containing
the batch size, the optimizer, and the number of epochs was the same and 10-fold cross
validation was performed on the rebalanced dataset from Laguna Lake. The evaluation
results are presented in Table 4. After the model pretraining, the accuracy of the estimated
Chla concentrations was not satisfied. The range and average of RMSEs of the folds were
2.070~2.228 μg/L and 2.144 μg/L, respectively. This implies that a poor performance with
high estimation errors was obtained when training the ANN model using the simulated
Chla data. Although the ANN model at this stage cannot effectively retrieve the Chla
concentrations, this training stage can provide suitable initial values for the unknown
parameters for the coming stage. As a result, a better estimation result was obtained
in the main-training stage. The range and average of the RMSEs at folds decreased to
0.4866~0.6887 μg/L and 0.5819 μg/L, respectively. Moreover, the trained ANN model was
further fine-tuned in the next stage. The average RMSE improved from 0.5819 μg/L in the
second stage to 0.3724 μg/L in the third stage. This was caused by setting the layers in
the band extension and feature extraction phases to untrainable and only permitting the
backpropagation to work on the layers in the Chla concentration phase.
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Table 4. Performance of training stages in the proposed transfer learning.

Fold

Transfer Learning Performance (RMSE in μg/L)

Pretraining Stage
Transfer-Learning

Main-Training Stage Fine-Tuning Stage

1 2.070 0.689 0.478

2 2.144 0.562 0.229

3 2.113 0.487 0.219

4 2.089 0.606 0.430

5 2.190 0.576 0.414

6 2.120 0.517 0.284

7 2.194 0.609 0.441

8 2.228 0.560 0.387

9 2.216 0.633 0.508

10 2.079 0.581 0.336

Avg. 2.144 0.582 0.372

The ANN model trained by the proposed transfer learning was applied to five Sentinel-
3 images, which were acquired at similar dates with the field campaigns in Laguna Lake,
Philippines. The Chla concentration maps for the water body, shown in Figure 6, are
visualized by colors ranging from yellow (6 μg/L) to red (12 μg/L). In addition, the outputs
from the feature extraction phase in the ANN shown in Figure 3 are convolutional feature
maps of the size 3 × 3 × 5. The feature maps imply the importance of spatial features for
the Chla estimation. To visualize the feature maps for the whole lake body, the center pixels
of the feature maps were extracted and combined to form spatial feature maps. The Chla
concentrations of Laguna Lake on 6 April 2019, estimated by the trained ANN and the
spatial feature maps extracted from the trained ANN, are shown in Figure 7. The spatial
feature maps #1 and #3 are flashier than the others. To address this on the two spatial
feature maps, the two dashed boxes are set on the maps to represent the area of interest for
highlight and discussion. As shown in the brown dashed box, most of the features within
this area have smaller values in feature map #1 and higher values in feature map #3. The
significant differences between these two feature maps result in high Chla concentrations
during the model prediction. As for those in the yellow dashed box, the opposite results
are obtained, because the area is homogeneous and the pixels within this area have similar
values. This observation revealed that the proposed transfer learning is able to preserve
spatial features that are important in Chla concentration estimation.

4.2. Performance of Data Augmentation and Rebalancing

Three datasets are used and tested in this subsection, namely, original, augmented,
and balanced datasets. The original dataset refers to the Chla in situ data acquired from
Laguna Lake, the Philippines. The augmented and balanced datasets are the augmented in
situ datasets without and with, respectively, the consideration of in situ Chla concentration
unbalancing. The comparisons of the proposed transfer learning using these three datasets
are shown in Figure 8. The results indicated that the RMSEs of the training using the
original dataset ranged from 0.5 μg/L to 1.0 μg/L. By using the augmented dataset,
the RMSEs of estimated Chla concentrations ranged from 7.5 μg/L to 9.5 μg/L. This
is caused by the fact that more Chla samples in the augmented dataset are in the Chla
concentration ranges 7.5~8 μg/L and 9.5~10 μg/L. Consequently, the sample imbalance
on the Chla concentrations makes the performance of the trained model worse than that
trained using the original dataset. When the data rebalancing that considers the distribution
of samples’ Chla concentrations in the augmented dataset is performed, the RMSEs of
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the estimated Chla concentrations are improved to 0.5~0.7 μg/L. Similar statistical results
are shown in Figure 9, where the correlation coefficient between the estimated and in
situ Chla concentrations was improved when the data rebalancing was performed with
data augmentation.

Figure 6. Maps of estimated Chla concentrations using the trained ANN model. The Sentinel-3
images are shown in false color combination (R: Band 17; G: Band 5; B: Band 3).

Figure 7. Feature maps in the trained ANN model. Chla concentration estimation map at 6 April
2019 (left) and the corresponding spatial features as the output of the feature extraction phase in
WaterNet (right).
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Figure 8. Comparisons of ANN model training using original, augmented, and balanced dataset.

Figure 9. Performance of ANN model training with and without data rebalancing. Yellow and silver
dots represent the estimated Chla concentrations using the augmented dataset with and without the
process of data rebalancing.

4.3. Comparisons of Chla Estimation Models

A real model test, in which the machine-learning model is trained and tested using
two geographically different and dependently corrected sample datasets, is rarely con-
ducted due to the limited in situ Chla samples and overfitting problems. In this study,
a ANN model was trained using the proposed transfer learning with the processes of
data augmentation and rebalancing. The training Chla sample dataset was collected from
Laguna Lake, Philippines. The trained ANN model was then applied to the Chla samples
acquired from Lake Victoria, Uganda, for testing and evaluation. In addition, the trained
ANN model was compared with the related models, including the three-band model [9],
two-band model [13], NDCI [14], and WaterNet [34]. WaterNet is described in Section 3.1
and the other models are presented in Table 5. For fair comparisons, the three-band and
two-band models were calibrated using in situ Chla-labelled data from Laguna Lake with
a linear regression model. Linear regression was selected to ease overfitting problems. In
addition, the hyperparameters containing the batch size, the optimizer, and the learning
rate in the WaterNet training with original two-stage training are the same as that in the
proposed training. Different to the other compared models, it is not necessary to calibrate
the NDCI model, as the model directly outputs the estimated Chla concentrations. All of
the compared models were trained using the dataset from Laguna Lake and then tested
using the dataset from Lake Victoria for fair comparisons.
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Table 5. Information of the compared Chla estimation models.

Model Name Formula Calibration Model

Three-band model
{[

R−1
rs (665)− R−1

rs (709)
]× Rrs(754)

}
Linear regression

Two-band model {[Rrs(709)÷ Rrs(665)]} Linear regression

NDCI
{

[Rrs(665)− Rrs(709)]
÷[Rrs(665) + Rrs(709)]

}
WaterNet

Table 6 shows the comparison results of WaterNet, trained using original two-stage
training with original data, and the proposed method, including the improved transfer
learning with data augmentation and rebalancing. The table also contains the related
models using the Chla dataset from Lake Victoria. The results indicate that the three-band
model with the performance RMSE = 0.588 μg/L and the two-band models with the per-
formance RMSE = 0.509 μg/L have similar Chla concentration prediction accuracy. This
may be due to the fact that these two models utilize similar Rrs features, that are Rrs at λ443
and at λ490, which share similar sensitivity to the absorption [13]. WaterNet trained with
original two-stage training and data also performed similarly, with RMSE = 0.496 μg/L.
Better performances were obtained when the estimation of Chla concentrations was con-
ducted using WaterNet with the proposed training method and NDCI. The RMSEs of the
two models were 0.228 μg/L and 0.244 μg/L, and WaterNet with the proposed training
was slightly better than NDCI. This means that the proposed transfer learning with the
processes of data augmentation and rebalancing is able to resist the overfitting problem,
and the performance of the trained model outperforms the related models.

Table 6. Comparisons of the ANN model trained by the proposed transfer learning with the related
models using Chla samples acquired from Lake Victoria, Uganda.

Station
Name

Estimation Error (in μg/L)

Three-Band
Model

Two-Band
Model

NDCI WaterNet
Proposed
Method

LV1 0.746 0.653 0.304 0.645 0.302

LV2 0.367 0.303 −0.164 0.277 0.117

RMSE 0.588 0.509 0.244 0.496 0.229

5. Conclusions and Future Work

A transfer learning method containing the stages of model pretraining, main training,
and fine tuning, was proposed to train ANN models for Chla concentration estimation
using Sentinel-3 images. In addition, data augmentation and rebalancing were performed
not only to increase the variability of the training dataset, but also to balance the samples
in terms of Chla concentrations. To evaluate the ease of overfitting and to compare with
related models, the models were trained using the Chla dataset from Laguna Lake and then
tested using the Chla dataset from Lake Victoria, which has the same trophic state with
Laguna Lake. The quantitative assessments on the Setinel-3 WFR images demonstrate that
the proposed transfer learning method is better than that of WaterNet, and the trained CNN
outperforms the related models in terms of Chla estimation accuracy. Considering that the
data rebalancing can provide massive effects to the performance of the model, in the near
future, WaterNet will be redesigned such that the neural network can be applied to other
optical satellite imagery with better spatial resolution, including Sentinel-2 and Landsat
8 images, in order to improve the extraction of important spatial features in lake water
bodies. In addition, other water quality parameters, such as turbidity and total suspended
matter, will be included in the modelling.
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Abstract: We consider the use of remote sensing for large-scale monitoring of agricultural land use,
focusing on classification of tillage and vegetation cover for individual field parcels across large
spatial areas. From the perspective of remote sensing and modelling, field parcels are challenging
as objects of interest due to highly varying shape and size but relatively uniform pixel content and
texture. To model such areas we need representations that can be reliably estimated already for small
parcels and that are invariant to the size of the parcel. We propose representing the parcels using
density estimates of remote imaging pixels and provide a computational pipeline that combines the
representation with arbitrary supervised learning algorithms, while allowing easy integration of
multiple imaging sources. We demonstrate the method in the task of the automatic monitoring of
autumn tillage method and vegetation cover of Finnish crop fields, based on the integrated analysis
of intensity of Synthetic Aperture Radar (SAR) polarity bands of the Sentinel-1 satellite and spectral
indices calculated from Sentinel-2 multispectral image data. We use a collection of 127,757 field
parcels monitored in April 2018 and annotated to six tillage method and vegetation cover classes,
reaching 70% classification accuracy for test parcels when using both SAR and multispectral data.
Besides this task, the method could also directly be applied for other agricultural monitoring tasks,
such as crop yield prediction.

Keywords: machine learning; object-based classification; density estimation; histogram; land use;
crop fields; soil tillage; data fusion; multispectral; SAR

1. Introduction

Remote sensing offers a cost-efficient approach for large-scale agricultural land use
monitoring for administrative and research purposes, especially when combined with
machine learning (ML) methods for estimating land use characteristics for individual crop
field parcels [1–3] or other small spatial regions. These methods require a representation
for each parcel derived from its pixels, either an explicitly engineered collection of features
or an internal representation learnt in a data-driven fashion as in popular deep learning
methods such as Convolutional Neural Networks (CNN) [4–7]. Our work is about learning
good representations for crop field parcels that are often small and vary in shape. We also
provide a practical computational pipeline for large-scale agricultural monitoring that can
efficiently integrate information provided by multiple raster images captured at different
resolutions, demonstrating it for the case of off-season soil tillage monitoring in Finland.

Previous studies have indicated object-level classification to be preferable over pixel-
level information in agricultural tasks [8,9], but typically very high-level aggregate infor-
mation such as the mean of individual pixel values has been used for representing parcels,
making discrimination between similar classes difficult. Even though spatial features as
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extracted by CNNs are nowadays routinely used in remote sensing, crop field parcels have
several characteristics that motivate representations focusing on the spectral distribution of
sensor values instead. First of all, image content within each parcel is nearly homogeneous
since the parcels are managed in a uniform way within the parcel boundaries. Hence, the
prior value of spatial information at the pixel level is low. Spatial statistics are also difficult
to estimate for parcels of irregular shape and with large differences in size, especially for
noisy imaging sources like Synthetic Aperture Radar (SAR) as well as for cloud-occluded
multispectral images (MSI). Distributional information about sensor values can, however,
be reliably estimated for objects of any size and shape also in the presence of occlusion and
noise. Consequently, we propose using probability density estimates (DE) of pixel values as
a general purpose representation for such objects and formalize a practical computational
pipeline around these representations, described in Section 2.2.

We assume the pixels of a given raster image area to be drawn from a probability distri-
bution of pixel band values. Rough aggregate summaries, such as mean and median of the
pixel values are still in active use in remote sensing due to simplicity and robustness [10–13],
but our interest lies in the advantages of characterising subtle differences in the whole
distribution. Histograms of pixel values have a long history as a natural representation
of spectral distribution in computer vision [14–16], and they have also been considered in
remote sensing [17–19]. Normalized object histograms are easy to compute but suffer from
poor sample efficiency and objects with different pixel counts are not directly comparable:
a small object’s histogram is likely to have gaps whereas larger ones appear to be more
continuous. Hence, histograms work best at a coarse bin resolution. We prefer direct
modelling of the joint density using multivariate DEs [20,21], so that for each object we
learn a continuous probability density over multi-band pixel values. To use the estimate
as representation for subsequent processing, we collapse the density to bins resemblant
of a histogram, with the advantage of inter- and extrapolation over observation gaps and
reduced noise in pixel values, especially for parcels of varying size. We also consider
Bayesian estimators [22] to account for uncertainty stemming from small pixel counts; in
our data the field parcel size varies from tens to hundreds of pixels.

We apply the proposed method to a case of off-season soil tillage monitoring in Finland.
From the standpoint of environmentally and economically sustainable agriculture, soil
erosion and nutrient runoff from crop fields to surface waters is a long-standing challenge,
to which soil tillage operations are a contributing factor [23,24]. Large-scale information
on annual off-season tillage status of arable land is of interest for agro-environmental
monitoring administration, policy makers as well as wide range of academic domains from
terrestrial carbon studies to hydrological research. The problem is made challenging by the
irregular shapes and small sizes of the parcels in Finland, and the limited amount of labeled
training data within a single country. Furthermore, the annual off-season observation
time window is limited and must take place during a relatively cloudy time of the year in
Finland. The proposed computational pipeline can address all of these challenges.

Previous remote sensing studies of soil tillage detection have focused on spectral
reflectance characteristics [25–27] or radar response [28–30] of soils, green vegetation, and
crop residues. SAR signal penetrates cloud cover and is inherently sensitive to target 3D
structure affecting backscatter mechanisms and angle. On the other hand, optical, for exam-
ple. multispectral reflectance from satellite images can be fully exploited only at cloudless
moments, but it can characterize a wide range of chemical and physical properties of matter
as well as reveal dynamics of organic phenomena. The differences in the physical processes
involved in radar backscatter and optical reflectance signals allow them to respond com-
plementarily to the phenomena being interpreted, which results in enhanced accuracy of
classification and regression for a range of remote sensing applications, for example, in
agricultural or land cover contexts [31–35], or recently in soil tillage detection [36,37]. Our
contribution to the topic is a practical, effort-reducing SAR-MSI data fusion technique. We
use Copernicus Sentinel-1 (S1) SAR data with dimensions of two polarity bands, overlaid
with polygon data of crop fields as provided by the Finnish Food Authority. Similarly to
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SAR bands, we construct density estimates over two spectral indices calculated from a
Sentinel-2 (S2) MSI for the same fields during a suitably narrow time window. Both sources
are then merged to estimate the soil tillage category. Besides the Sentinel data used here, we
expect the approach to be applicable to other SAR and MSI data sources, such as Radarsat-2,
Landsat, or Modis.

To summarize, as the main contributions of this work we:

• Present a method for off-season tillage and vegetation cover detection on crop field
parcels, which is a challenging task due to the heterogeneous size of the objects and a
limited amount of training observations;

• Propose a representation of a free-form raster image object as a non-parametric proba-
bility density estimate, to be used for increasing robustness to variability in object size,
count and missing pixel data;

• Introduce an easy-to-use framework for multi-sensor raster data fusion for sources of
varying spatial resolution, applicable also outside the specific task considered here.

2. Materials and Methods

2.1. Materials

We use polygon-delineated boundaries of Finnish crop field parcels illustrated in
Figure 1, collocated with mosaics of SAR and MSI satellite images over a time period from
11–23 April 2018 from Copernicus Sentinel-1 and Sentinel-2 missions, where the parcels
are classified to one of multiple crop field tillage operations that affect, for example, soil
properties and nutrient runoff to surface waters. The illustration reveals that the parcels
have complex shapes and varying sizes, and that many of the parcels are small.

Figure 1. Foreground polygons: Autumn tillage operations annotated to six classes (colors).
Background raster: Red-green rendering of a VH+VV dual polarization Sentinel-1 SAR image. Note:
Due to data protection regulations, the polygons are from publicly open similar data from 2016
instead of our actual data, and the classes are randomized.

2.1.1. Crop Field Parcels and Annotations

We are interested in six categories to gauge the variety of land use and management
over winter. The first class of conventional ploughing means mould-board ploughing in
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autumn to a depth of 20–25 cm. The second class of conservation tillage comprises tilling
methods that mechanically disturb the soil to a depth less than 15 cm while retaining most
of the crop residues on the surface. The last four classes include cases where the soil is
either covered with crop residues (stubble), or with vegetation (autumn crop, grass). Soil
with autumn crop has typically sparse plant cover before the growing season, and the soil
surface is rough after seedbed preparation, whereas grass vegetation is typically rather
thick, and the soil is covered. Stubble fields are covered with stalks and crop residues. In
autumn spontaneous regrowth and weeds typically start to re-vegetate the soil. A special
category of stubble field growing catch crops means crop fields where a companion crop (catch
crop) re-vegetates the soil after the harvest of the main crop.

The region of interest (ROI) is illustrated in Figure 2 and was chosen on agrometeoro-
logical grounds: autumn tillage operations can span over many autumn months depending
on the soil moisture conditions up until the soil is frozen and covered with snow. Therefore,
the optimal time window to acquire images to monitor winter-time tillage status is shortly
after snowmelt and before seedbed preparation in the spring. This time window is typically
quite short; from two to four weeks. During this time, the soil dries out fast, but also
there may occur sudden snow showers. To select the ROI, we used the regional starting
dates of the thermal growing season in 2018. In this region, by mid April, the mean daily
temperature permanently exceeded 5 ◦C, and snow had melted from open areas. The ROI
was used to mask the underlying field parcels for reference data.

Reference data were annotated as follows. Information on agricultural land use in
agricultural registers from two preceding growing seasons—2017 and 2018—were com-
pared. The soil cover class was decided based on the variables of the winter-time vegetation
cover related parcel-wise agri-environmental measures declared by farmers. Conservation
tillage and vegetation cover are subsidised and subscribed to parcels. The different types of
vegetation and crop residue cover were inferred from comparing the preceding years crop
types with expertise in crop management. If a parcel was not subscribed to any measure, it
was considered ploughed.

The intersection of the area of the satellite images shown in Figure 2 and of the parcel
polygons yields a total of 127,757 annotated parcels. Annotations across the six classes are
distributed as follows:

Conventional tillage, that is, ploughing 46,765; Conservation tillage 15,211; Autumn
crop 2681; Grass 24,503; Stubble with no tillage 37,750; and Stubble with companion crop
847. We assigned each parcel exclusively to training and test sets by random sampling in
a proportion of 80% for training and 20% for testing, resulting in total of 102,206 samples
available for training and 25,551 for testing. However, in the computational experiments
we mostly used considerably smaller subsets for studying the accuracy of models trained
on less data.

2.1.2. Satellite Imagery

As the first raster component, we use polarimetric SAR intensity data (Ground Range
Detected, GRD) from the Copernicus Sentinel-1 mission. Due to highly dynamic soil
moisture and even plausible short-lived snow cover conditions during the time window, it
is advantageous to use a mean-valued mosaic image composed of several images over the
time period. The Finnish Meteorological Institute (FMI) publishes a preprocessed 11-day
Sentinel-1 mean gamma-nought mosaic product [38]. See Supplement S1 for additional
information and availability of the mosaic. We use an instance of a VV and VH polarity
dataset from April 2018 (11th to 21st). Although the underlying spatial resolution of
a Sentinel-1 Interferometric Wide Swath image is 5 × 20 m for an image of a 250 km
swath [39], FMI mosaic preprocessing [38] resamples the data to 20 m spatial resolution.
As a restriction, measurements prior to 2019 were quantized to 1 dB intensity intervals
by the FMI data pipeline, posing a hard limit to discretization, that is, the binning of the
measurements for the density estimators. Individual Sentinel-1 images that coincide with
the time period and location of the mosaic and our ROI are listed in Supplement S1.
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Figure 2. The region of interest (ROI) and raster data extent over southern Finland.

As a second raster component, we spatially mosaic three Sentinel-2 multispectral
images selected from as close to the time period and ROI of the Sentinel-1 mosaic as possible
(see Supplement S2 for the image identifiers), resampled to 10 m spatial resolution. An
additional criterion for this image selection was a relatively low overall (<10%) percentage
of pixels containing cloud or snow in the quality indicator (QI) metadata of the images.
We also filter out individual pixels with a cloud or snow confidence value of ≥10%. This
reduces the amount of pixel observations per parcel and makes the pixel sets discontinuous,
but these properties do not cause problems for the proposed approach.

From the Sentinel-2 spectral channels, we calculate relevant basic spectral indices—the
Normalized Differential Vegetation Index (NDVI) [40] and Normalized Differential Tillage
Index (NDTI) [41,42]—as features for our density estimates. Consequently, we have D = 2
for MSI images. The formulas for the indices in the context of Sentinel-2 bands are:

NDVI = (B8 − B4)/(B8 + B4) (1)

and

NDTI = (B11 − B12)/(B11 + B12), (2)

where the Sentinel-2 band center wavelengths are: B4 (Red): 670 nm, B8 (NIR): 830 nm, B11
(SWIR): 1610 nm, and B12 (SWIR): 2200 nm.

The SAR VH/VV bands and the two optical spectral indices per pixel represent two
disparate data sources at different resolutions and image extents (as seen in Figure 2). In
Section 2.2 below we combine these to a common representation per parcel by extracting
the pixels that coincide with the parcel delineation polygons.

2.2. Methods
2.2.1. Problem Formulation

The agricultural land monitoring task can be formulated as a machine learning prob-
lem, where we learn to predict a label ŷ ∈ L for a previously unseen object (field parcel) X′
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given a collection of training observations {(X, y)}. For notational simplicity, we present
the details for classification problems (y are discrete and mutually exclusive categories)
although the representation could also be used for regression (continuous y, such as crop
yield) or structured output problems.

Our focus here is on learning a suitable representation for objects that are pixel subsets
of raster images. We denote individual pixels by column vectors x ∈ R

D where the individ-
ual elements correspond to different channels (e.g., spectral bands of MSI or polarization
channels of SAR). Each object o is defined by some subset of the pixels of an image Ai
captured within a geospatial region of interest A, and hence can be represented by a matrix
Xoi ∈ R

D×no storing the no pixels for this object as its columns. Note that this formulation
can be generalized in various ways; see Section 4.2.

Even though the focus of this work is on SAR and MSI data for soil tillage applications,
we note that the approach is applicable to any task that satisfies the requirements of:
(1) multi-banded raster data on a region of interest; (2) objects defined in terms of pixel
segments of the images with a (3) class annotation on each object, using a shared coordinate
reference system between the segment annotations and the rasters.

2.2.2. Data Flow: From Objects to Representations and Classification

Figure 3 shows a full data flow from raw images to predictions for the case of two
remote sensing image sources. After sensor- and application-specific preprocessing and
pixel-wise feature engineering of the images Ai, we extract for each object these resulting
pixels from each type of image. We associate with each object an unordered pixel set per
image type from within the geometric boundaries of the object shape. In the following,
we represent these data from two data sources of different resolutions and extents using a
shared representation of a multidimensional probability distribution per parcel.

From the object-wise pixel sets we form density estimates p(x) for each object sepa-
rately using a selected density estimation method, and then evaluate the density along a
regular grid G to form the representation f. For practical computation, this representation
is formatted as a vector, which we normalize for additional robustness so that the �2 norm
is one, but this normalization is not a critical part of the pipeline. This vector then becomes
the representation for the supervised learning algorithm. For Bayesian density estimators,
we can also consider an alternative representation that also captures the uncertainty of the
estimate, explained later after describing the Logistic Gaussian Process Density Estimation
(LGPDE) method.

Since our main focus is on the representation itself, we use standard classifiers readily
available as a program library and in frequent use in the research field: the scikit-learn
library’s implementation of the Random Forest (RF), Support Vector Machine classifier
(SVC) and a shallow feed-forward neural network (Multi-Layer Perceptron; MLP).

Figure 3. Process diagram with data flow from left to right.

2.2.3. Density Estimate as a Representation

A desirable object representation should condense relevant information into a similar
form whether the object is spatially small or large. Put more generally, objects should be
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commensurately represented for an arbitrary count of observations in the measurement
space. All density estimates and normalized histograms formally fulfill this requirement
and we can use them to represent the object, but as discussed next, practical methods differ
in terms of comparability given different amounts of pixels.

We consider a fixed-dimensional representation f = [p(x1), . . . , p(xBD )] suitable as
an input for any classifier, where the xg are center points of elements (bins) in an equally
spaced grid G overlaid on the density’s support dimensions (pixel bands), so that G has B
discretization intervals hd in each of the D dimensions, with a total of BD elements. p(x)
is a probability density that we learn based on the object’s pixel collection X and then
evaluate the density at the points xg of G to form the representation. We consider only
cases with D = 2, where the channels are two SAR polarisations or the two vegetation
indices for MSI, so that we can directly model the joint density. For higher-dimensional
cases, an alternative approach is to estimate a marginal density for each channel separately
and evaluate it along a grid of B elements, resulting in a representation fd ∈ R

B for each
band separately. A combined representation can then be obtained by concatenating these
as f = [f1, . . . , fD].

The representation can be computed for all density estimators, and next we discuss
three practical alternatives and their properties.

Multivariate Histogram

As the elementary density estimate, we consider the multivariate histogram. For com-
mon notation with the other estimators, we formulate the normalized multivariate density
histogram in the style of the univariate definition in [21] as a discretized function over G
and multivariate observations x ∈ X with a total count of n:

p(xg) =
νg

n
, (3)

where νg is the number of observations x falling into the multivariate interval whose index
is denoted by g. These intervals are defined as symmetric hybercubes around the center
points of the grid.

Histograms are broadly used as representations, but are problematic for small objects
with few pixels. We either need to use very small B, losing most of the resolution, or
accept that the bin estimates are increasingly noisy. For large B we will typically have
a significant proportion of bins with no observations at all and the non-zero bins will
include only one pixel observation, and this effect becomes more severe with large D. If
the pixel observations have noise comparable to or larger than the bin width hd, a pixel
often falls into one of the neighboring bins (or even further), and direct comparison of
two histograms computed for two noisy realizations of the same object would indicate
no similarity. Histograms also ignore uncertainty completely, which makes them poorly
suited for the comparison of objects of varying size; histograms estimated from fewer pixels
are noisier but this information is not captured by the estimate, and subsequent learning
algorithms would falsely attribute the same amount of confidence for both.

Kernel Density Estimation

Parzen [43] formulated univariate kernel density estimation (KDE) in its modern form
including the smoothing parameter, that is, bandwidth h, as:

ph(x) =
1

nh

n

∑
j=1

K
( x − xj

h

)
, (4)
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where the kernel K is a non-negative function and xj are the n data points. We use an
analogously defined multivariate version of KDE [20,44] with a bandwidth matrix S as:

ph(x) =
1
n

n

∑
j=1

Kh(x − xj), (5)

with the standard Gaussian kernel Kh(x) = (2π)−D/2|S|−1/2e− 1
2 xTyellowS−1x and a diagonal

bandwidth matrix as the covariance matrix
√

Sdd = n
−1

D+4 hd determined by Scott’s rule [21].
Note that for small objects the estimator is smoothed more, due to an inverse relationship
between n and Sdd. We refer to this estimate as Gaussian KDE (GKDE).

GKDE is an effective, lightweight method of providing smoothed probability density
estimates for point samples independently of discretization interval or data point count.
However, GKDE provides no measure of uncertainty relative to its suggested point esti-
mate, and hence, similarly to histograms, loses information about the relative reliability of
different objects.

Logistic Gaussian Process Density Estimation

For objects with only a few pixels, it becomes important to explicitly quantify the un-
certainty of the density estimate itself, which neither of the above methods can achieve. For
instance, for the extreme case of just one pixel, the histogram becomes a delta distribution,
and while GKDE provides a smoother estimate it still suggests this single noisy pixel alone
to be highly informative of the content. Bayesian estimators, instead, have the ability to
explicitly model uncertainty, and in the following we describe one practical alternative
building on Gaussian Processes (GP).

LGPDE, originally proposed by Leonard et al. [45], assigns a GP prior for the un-
normalized logarithmic density f (x) so that log p(x) = f (x) + C for any x, where C is a
constant required for normalizing the density. The GP assigns a prior over the functions
directly, so that for any finite collection of inputs their joint distribution is a multivariate
normal, and conditioning on some pixel observations X we can then obtain the posterior
distribution p( f |X) that captures the uncertainty of the estimator. Due to the logistic
transform, there is no closed-form analytic expression for the posterior, but both Markov
Chain Monte Carlo (MCMC) sampling [46] and Laplace approximation [22] can be used
for inference. We will later evaluate both the Laplace approximation as well as an MCMC
implementation using the No-U-Turn Hamiltonian Monte Carlo algorithm as provided in
the Stan probabilistic programming environment [47].

We use the formulation of Riihimäki et al. [22] with explicit enumeration over dis-
cretized support axes for computing the normalization term C. A prior term results from
the logistic transform:

log p( f |G, θ) = N ( f |Hm, K + HMHT), (6)

where f is a latent function representing the density estimate surface being evaluated
at points xg of the discretization grid G, θ denotes the hyperparameters of the prior and
the GP kernel, and H(G) is a basis function that modulates the density to achieve finite
support. For 2D densities we use the basis function H(x) = [x1, x2

1, x2, x2
2, x1x2]

T . For a
weakly informative prior, we parametrize a covariance adjustment of M = 102 I and a
zero mean of m = 0. The kernel K = K(G) determines a covariance matrix based on a
given covariance function and a chosen multivariate bin discretization expressed by G. The
posterior is formed using the likelihood

log p(ν| f ) = νT f − nlog

(
BD

∑ exp( fb)

)
, (7)
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where ν is a histogram-like vector of observation counts. In the multidimensional case, f
and z are vectorized to a single vector with BD elements. The model induces a density over
arbitrary x, but the construction is already in a form explicitly represented over the grid G.
Hence the representation is formed simply as the exponent of the log density.

Rather than a fixed representation f, we now have a set of S posterior samples f(s),
either as produced by the MCMC algorithm or obtained by sampling from the Laplace
approximation. They can be used within the proposed pipeline in two ways. The simplest
alternative is to collapse the posterior to a point estimate as E[exp({f(s))}]; s ∈ S , to be
used similarly as the results of other estimators. We call this Point Estimate Classification
(PE-C). The other alternative, here called Posterior Predictive Classification (PP-C), is to pass
all posterior samples of f(s) separately to the classifier, for each object being classified. For
testing, we evaluate the classifier similarly for all posterior samples and compute the poste-
rior predictive class distribution p(c = ĉ | x) using standard Monte Carlo approximation.
This allows an end-to-end probabilistic approach for classification even if the classifier itself
is designed to only produce point predictions ĉ.

3. Results

We report results for two types of experiments: Technical experiments validating the
computational pipeline (Section 3.1), and evaluation of the method for the soil tillage task
(Section 3.2).

3.1. Technical Validation

The core assumptions of our method are that a probability density of pixel values
represents useful information about the classes of interest, and that we can learn reliable
estimates of those based on individual parcels. We first validate these visually in Figure 4
for the SAR data. The top row shows that estimates computed from all pixels of a given
class are visually distinct, whereas the bottom row shows that estimates computed based on
pixels of individual parcels resemble the class-level information. The figure also illustrates
the difficulty of the problem; the densities are distinct but highly similar in the sense that
simpler representations like mean pixel value are unlikely to be sufficient for separating
the classes.

For accuracy evaluation between the method variants, we use balanced subsets of
parcel data described in Section 2.1.1 to make the results easier to interpret. We consider
only balanced classification problems with equally many observations for each class so
that classification accuracy can directly be interpreted as quality of the method, and we
only consider the classes ploughed, grass and stubble to avoid issues with classification of the
three minor classes that are difficult to separate from each other. For all of the technical
experiments we use a fixed randomly chosen subset of 300 parcels per class (900 samples in
total) for testing, whereas the size of the used subset of training data is a parameter for many
of the experiments, seen on the horizontal axis as “Number of training samples/class”.
This is to investigate model performance with respect to data size.

3.1.1. Comparison of Representations

To demonstrate the effect of object representation on classifier accuracy, we compare
three computationally efficient representations for three classifiers in Figure 5. The ex-
periment was done on MSI data with NDVI and NDTI indices as image bands on data
consisting of relatively small parcels (20. . . 50 px) with B = 50 bins per band. The parameter
B controls both the amount of information we can capture and the reliability of the estimate;
with small B the estimation task is easy but a majority of discriminative information is
lost, whereas with large B we retain all information but can no longer reliably estimate the
density from small samples. The choice of B = 50 (resulting in B2 = 2500 bins in total) is
motivated by Figure 6a, which shows the accuracy as a function of the discretization level
for the case of 50 training samples per class.
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Figure 4. Gaussian kernel density estimate representations of polarimetric SAR intensity measure-
ments for ploughed, grass- and stubble-covered fields. (a–c): Class-level density estimates from a
large random sample of all pixels of all field parcels of a class. (d–f): Density estimates for single
parcels of each class. The small red dots indicate individual pixels, with small jitter so multiple pixels
with identical values are also visible.

Figure 5 reports the accuracy for varying sizes of training data for three different
classifiers. The main observations for our MSI dataset are: (i) All forms of density estimates
outperform naive summary statistics. The baseline of using an aggregate summary of
all pixels, the median of NDVI and NDTI values, barely beats the random baseline of
33% classification accuracy, whereas all density estimates achieve accuracies between 40%
and 60% depending on the case; (ii) direct multivariate estimates are at least as good as
histograms and for some cases (SVC) better; (iii) GKDE performs as well as the multivariate
histogram and sometimes (SVC and MLP for some training set sizes) marginally better.
In summary, the results show that proper density estimators were preferable over both
multivariate and marginal histograms as general representations. Even though there was
no clear difference for one of the classifiers (RF), there were no cases where using GKDE
would hurt.

Figure 5. Density estimates, histograms and the median as representations for multispectral
NDVI/NDTI data across three different classifiers. (a) SVC (b) MLP (c) RF. Each color corresponds to
a representation, the line indicates the average over five random training sets evaluated on a single
test set, and the shaded areas represent 95% bootstrapping-based confidence intervals.
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3.1.2. Effects of Object Size

Next, we detail the performance of density-based representations under challenging
training conditions with very few training instances, highly varying object size, or both. We
do this on SAR data, using B = 12 bins over the range −24 . . . 0 dB, to keep computational
complexity manageable for extensive experimentation on all estimators.

We compare three proper density estimators, GKDE and LGPDE, with two inference
algorithms (MCMC and Laplace approximation) and restrict to a single choice of the
classifier to streamline the results; the observations are similar for the other classifiers.
Figure 7 shows the accuracies for these estimators as function of the size of the training data
for three scenarios: small parcels that only uses parcels of 20 . . . 30 pixels for training and
evaluation, large parcels that only uses parcels of 90 . . . 100 pixels for training and evalution,
and variable parcels that uses both small and larger parcels (range of 20 . . . 100 px). The main
results are: (i) The problem is considerably easier if the objects are larger but already for
the small parcels of only tens of pixels we comfortably beat the random baseline; (ii) The
accuracy naturally improves when we get more training instances, but already relatively
small number of approximately 30 parcels per class is enough for good accuracy; (iii) The
representations are robust over parcels of varying size, shown by relatively high accuracy
for the case that contains both small and large parcels; (iv) There are no clear differences
between the three density estimators in terms of accuracy.

Figure 6. Choice of the discretization bins. (a) Accuracy as function of the number of bins for S2
MSI data. (b) S1 SAR intensity (sigma nought, σ0) in crop field pixels concentrate within bounds of
−30. . . 0 dB.

Figure 7. Effect of field parcel size (line style) on MLP accuracy for different estimators (line color).
Confidence intervals omitted for visual clarity.
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Even though we did not observe a direct improvement in classification accuracy for the
more advanced density estimator LGPDE, it has the advantage of explicitly modeling the
uncertainty of the estimate and we can propagate it through the classification process for any
classifier as explained in Section 2.2.2. To demonstrate this, Figure 8 shows the classification
accuracy for the three different classifiers for a dataset of small parcels (20 . . . 30 px), for
both PE-C and PP-C. We observe that the PP-C approach that models the uncertainty offers
a small but consistent improvement. Figure 9 shows that the resulting class probability
distributions behave as expected—for small fields the uncertainty is better captured in the
final class distributions.

Figure 8. Accuracy for smaller parcels increases using posterior predictive LGPDE classification.

Figure 9. Confidence of small (a) vs. large (b) ploughed fields being classified as ploughed from a
probabilistic perspective, with higher uncertainty for small fields, as expected.

3.1.3. Data Fusion

By learning separate representations for each image modality (capture method or sen-
sor) Ai, we can perform easy data integration by simply concatenating the representations
fi. In experiments Sections 3.1.1 and 3.1.2 we showed that both MSI and SAR are valuable
sources of information for this task, and Figure 10 shows that by further combining them
we get a significant improvement in overall accuracy: The combined solution outperforms
MSI, which has the higher accuracy of the single-source capturing methods, on average by
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approximately 8 percentage points. We show the results on 1500 test parcels for the MLP
classifier; the other classifiers followed a similar pattern.

We also evaluated the final accuracy of the data fusion solution for even larger training
data to provide a baseline with ample data. With 6500 training parcels per class we reached
an accuracy of 82%, validating that the accuracy can be further improved by utilising more
data, as expected. However, the improvement over the 78% accuracy obtained already
with 160 parcels per class is only modest. On one hand, this implies that the method can be
reliably estimated already from small data and does not require access to thousands of or
tens of thousands of training instances. On the other hand, it suggests the problem itself is
challenging; as shown in Figure 4 and discussed in the next section, some of the classes are
highly similar in appearance, which sets natural upper bounds on classification accuracy.

Figure 10. Data integration vs single-source classification on a Random Forest classifier. The inte-
grated solution clearly outperforms both MSI and SAR alone for all training set sizes.

3.2. Soil Tillage Detection

Based on the technical validations above, we made the following choices for solving
the soil tillage classification problem: (a) We use both SAR and MSI images; (b) we use RF as
the classifier observed to be the most robust one; and (c) we use GKDE as computationally
efficient and accurate representation. We use B = 50 for MSI and B = 30 for SAR within the
range of −30 . . . 0 dB in alignment with [48–50]. Motivation for these choices is illustrated
in Figure 6.

We now use all six classes described in Section 2.1.1: ploughed, conservation tillage,
autumn crop, grass, stubble and stubble with companion crop. We train the model in total
on 43,299 parcels with the number of samples per class ranging from 169 to 15,885, and
evaluate the accuracy on 10,666 parcels not used for training. Together these form the full
set of parcels we find at the intersecting area of the SAR and MSI images in our data. The
overall classification accuracy, evaluated on the test parcels, was 70% and Figure 11 shows
the confusion matrix for the test parcels. The largest classes ploughed, grass and stubble are
classified with high accuracy, whereas the smaller classes conservation tillage, autumn crop
and stubble with companion crop are more difficult to classify correctly.
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Figure 11. Normalized confusion matrix for classification of fused SAR + MSI image objects for the
full set of annotated classes.

4. Discussion

4.1. Soil Tillage Detection

Our main goal was detecting autumn tillage and vegetation cover from earth observa-
tions for large-scale agricultural monitoring. Several previous studies such as [26,28,36]
on tillage detection with SAR imagery alone or fusion of SAR and MSI have concentrated
on tillage intensity classification. However, few studies have detected off-season land
cover classes on broader scale including also vegetation covered land cover types [37,51,52].
Shortage of studies on higher granularity of winter-time land cover classes indicates that
the task is difficult.

We observed significant and consistent improvement in classification accuracy by
combining SAR and MSI data. The result is well in line with those obtained both in crop
tillage classification [36,37] as well as in other EO tasks [34,48,53–55]. Since data fusion is
easy with the proposed object representations, only requiring georeferencing and simple
early fusion, we strongly recommend routinely using both sources for this task. When
using a single image capture method, MSI was here clearly more accurate than SAR, but
this observation needs to be interpreted with care because our experiment was carried out
on images with at most 10% occlusion. During a normal year, the time window for making
observations on tillage operations is short and typically cloudy across Southern Finland,
and MSI alone could not be trusted.

Somewhat low classification accuracy for the classes conservation tillage, autumn crop
and stubble with companion crop is explained by three main reasons: (a) the amount of data
for these classes is smaller compared to the other three, (b) under certain conditions some
of the classes are virtually indistinguishable, and (c) the ground truth data is imperfect due
to mislabeling. Regarding the difficulty of the problem, the autumn crop, stubble and stubble
with companion crop all have variable amounts of plant growth that makes the classes highly
similar in terms of all EO sources. Also, ploughed and conservation tillage may resemble
each other after snow melt in April on certain soil types, especially where stalks have been
highly decomposed.

Regarding mislabeling, the reference data were prepared with automatic rule-based
labeling, which is inherently error-prone. Whereas contradictory examples (duplicates) can
be removed, mislabeling remains a practical challenge due to inevitable simplifications
when building the rules. Imperfections in the underlying information on agricultural
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practices imply that each class membership has different reliability. For example, planting
of autumn crop is explicitly declared by the farmer, thus having really high reliability,
whereas ploughing is merely inferred by applying a long classifying set of rules to the
information. Conservation tillage is an example of low reliability. Farmers explicitly declare
to apply conservation tillage in October as it is subsidized, but if weather conditions are
not suitable for tilling after the declaration date, fields may remain covered by vegetation.
As vegetation cover is considered the more sustainable option, “no-till” is not subject to a
penalty. As a result, probability of stubble field samples mislabeled as conservation tillage
is high.

For improving the quality of the reference data, one could consider unsupervised
clustering techniques as in [56] to discover structure and compare with supervised tech-
niques and the assumed labels. During data exploration we performed an initial trial with
spectral and K-nearest neighbor clustering on the density representation of the objects, the
results of which did suggest some internal structure within the given classes of the dataset.
Additionally, specific geospatial properties such as latitude can be significant in Finland
with varying microclimates affecting vegetation cover and could be used as additional
features to improve the accuracy.

4.2. Modelling Aspects

The proposed computational method is applicable also for other agricultural monitor-
ing tasks besides the specific task of tillage and vegetation cover classification, such as crop
yield prediction. Furthermore, it can be applied to object-based remote sensing tasks also
beyond agricultural monitoring. Hence, we also provide a brief discussion of the method
itself. All forms of multivariate density estimates were observed to outperform simple
object representations of aggregate summaries and marginal histograms for supervised
classification of small and variably sized objects, even though the latter are easier to esti-
mate. Proper density estimators outperformed multivariate histograms in some cases, but
not in all and the difference was in general unexpectedly small. We believe this is primarily
because evaluation is extremely noisy for the scenarios (the smallest datasets with the small-
est objects) that would most benefit from smoothing and uncertainty quantification; more
direct measures of representation quality could be considered for stronger conclusions.

Regarding the representations, GKDE [57,58] has only negligible computational over-
head compared to histograms and no additional tuning parameters (due to the automatic
rule for selecting the bandwidths hd), and hence works as general plug-in replacement
for histograms—we did not observe any reasons to prefer using histograms over GKDE.
LGPDE [22] was demonstrated to further slightly improve accuracy while facilitating uncer-
tainty propagation for arbitrary classifiers, but this comes with a significant computational
overhead, even when using the more efficient Laplace approximation. Our results indicate
that there is value in explicitly modeling the uncertainty of the density estimate itself but
we do not yet provide a practical approach for arbitrary problems; to proceed towards
computationally efficient but still accurate LGPDE, one could use sparse variational approx-
imations [59]. Besides LGPDE, we could also consider other Bayesian density estimators,
for instance, Dirichlet process mixtures [60].

In this work we only considered non-parametric density estimators as representations,
since they are generally applicable for all imaging modalities. For SAR specifically, an
alternative would be to consider parametric distribution estimates [61]. For instance, a
Gamma distribution model can be used for pixel intensities [62], and complex-valued
SAR backscatter data can modeled using a complex Wishart distribution [63–65]. How-
ever, actual observed signal can display behaviors that require increasingly sophisticated
distributions to decrease model bias [61].

Finally, we make three generalizing notes on the method. First, it can be applied
directly to representing time series of the observations, either by promoting time to an
additional feature dimension of the density or by concatenating the representations for the
individual time points. Second, the raster images Ai may represent multiple sources with
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different spatial resolutions, multiple bands and features. Third, an object’s pixel set X can
be conventionally defined by a geospatial vector polygon, but does not necessarily need to
be contiguous or of any regular shape. For instance, it could be a scattered set of individual
pixels occluded by atmospheric haze in a cloud detection application.

5. Conclusions

Remote sensing tasks related to agricultural land use frequently involve delineated
areas of crop fields, for example, field parcels, as bounded objects of interest that have
similarly distributed pixel content with varying degrees of texture. We provided a practical
computational pipeline for large-scale agricultural monitoring tasks, combining robust
distributional representations computed for individual parcels with standard classifiers.
The approach is compatible with arbitrary remote sensing images. We demonstrated
the approach here on Sentinel data, using VH and VV polarities of SAR and for NDVI
and NDTI spectral indices of MSI, but the computational pipeline is compatible with
other EO data sources and indices. Importantly, our approach is amenable for easy data
fusion as each source can be processed independently and in parallel. We described and
evaluated alternative density estimators for forming the representation, ranging from
simple histograms to a non-parametric Bayesian density estimator of LGPDE, and showed
that both provide robust and reliable representations. The advantage of using proper
estimators is bigger for small training sets consisting of small and varying-sized objects,
but we also observed standard multivariate histograms to perform well in most cases.
A simple parametric multivariate density estimator GKDE was found to provide the
best compromise between computational complexity and accuracy, but for end-to-end
uncertainty quantification the LGPDE may offer further advantages.

The approach was demonstrated in the task of off-season soil tillage classification
in Southern Finland for the purpose of administrative monitoring. We used a collection
of 127,757 field parcels monitored in April 2018 and annotated to six tillage method and
vegetation cover classes. The task is challenging due to the small size of many of the
individual parcels, unequal distribution of classes, and in particular because of highly
similar classes and mislabeling of both training and evaluation instances. By combining
MSI and SAR data using the representations that can be estimated already from small
parcels, we reached 70% accuracy with six classes and 82% accuracy for a simplified
problem considering only the three most important classes. This is already sufficient for
partial automation of large-scale tillage monitoring. Furthermore, we showed that, for
the three-class problem, we can reach 78% accuracy already on a very small training set
of less than 500 parcels. The proposed computational method is applicable also for other
agricultural monitoring tasks, such as crop yield prediction. We expect the proposed
method to generalize from polygonal annotations of crop fields to other formats of segment
annotation and types of human-regulated land use.
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Abstract: Continuous monitoring and observing of the earth’s environment has become interactive
research in the field of remote sensing. Many researchers have provided the Land Use/Land Cover
information for the past, present, and future for their study areas around the world. This research
work builds the Novel Vision Transformer–based Bidirectional long-short term memory model for
predicting the Land Use/Land Cover Changes by using the LISS-III and Landsat bands for the
forest- and non-forest-covered regions of Javadi Hills, India. The proposed Vision Transformer
model achieves a good classification accuracy, with an average of 98.76%. The impact of the Land
Surface Temperature map and the Land Use/Land Cover classification map provides good validation
results, with an average accuracy of 98.38%, during the process of bidirectional long short-term
memory–based prediction analysis. The authors also introduced an application-based explanation of
the predicted results through the Google Earth Engine platform of Google Cloud so that the predicted
results will be more informative and trustworthy to the urban planners and forest department to take
proper actions in the protection of the environment.

Keywords: Land Use/Land Cover; LISS-III; Landsat; Vision Transformer; Bidirectional long-short
term memory; Google Earth Engine; Explainable Artificial Intelligence

1. Introduction

The Land Use/Land Cover (LU/LC) prediction is one of the most significant appli-
cations of remote sensing and GIS technology. The main causes of LU/LC changes are
agricultural/crop damage, wetland change, deforestation, urban expansion, and vegetation
loss. Several researchers working in this application area for many years had different
findings for their study areas around the world. The importance of this LU/LC prediction
research is to provide information about the landscape changes of the specific study area to
the government officials, forest department, urban planners, and social workers for the pro-
tection of the LU/LC environment [1–3]. Remote sensing technology provides information
about the satellite data and helps in performing the LU/LC prediction research effectively.
Researchers have used different remote sensing satellite systems for acquiring the data, and
some of the satellite system databases are Advanced Land Imager (ALI), Hyperion data,
Linear Imaging Self-Scanning Sensor III (LISS-III), Linear Imaging Self-Scanning Sensor
IV (LISS-IV), Landsat Series, Sentinel-2A and -2B, Moderate Resolution Imaging Spectro-
radiometer (MODIS), Rapid Eye Earth Imaging System (REIS), and ASTER Global DEM
(Digital Elevation Model). Other data acquisition for performing the LU/LC prediction
research can be made through aerial photographs, Google Earth images, government, and
field or ground survey data. The advantage of the satellite and airborne data has been used
in many applications areas such as oceanography, landscape monitoring, weather forecast-
ing, biodiversity conservation, forestry, cartography, surveillance, and warfare [4–10]. The
different band in the multispectral data has been widely used in monitoring the LU/LC
changes around the world. The visible (red–blue–green), near infrared (NIR), short-wave
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infrared (SWIR), and TIRS (thermal infrared sensor) bands were used for calculating the
most important LU/LC indices, such as the Land Surface Temperature (LST), Normalized
Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Nor-
malized Difference Water Index (NDWI), Normalized Difference Built-Up Index (NBBI),
and Normalized Difference Salinity Index (NDSI) [11,12].

The primary processing for correcting the noise and cloud effects in the satellite and air-
borne data has been achieved through preprocessing. The multispectral satellite data have
been used for performing effective research on LU/LC analysis. The noise, atmospheric,
geometric, topographic, and radiometric errors in the raw multispectral satellite data are
corrected by using the primary process of image preprocessing. Different methods have
been used for correcting the satellite image errors, and some of them are Image Registration,
Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), Discrete
Wavelet Transform (DWT), Resampling, Quick Atmospheric Correction (QUAC) module,
Minimum Noise Fraction (MNF), Dark Object Subtraction (DOS) module, Orthorectifi-
cation, Rescaling, Principal Component Analysis (PCA), F-mask method, FLAASH (Fast
Line-of-Sight Atmospheric Analysis of Hypercubes) module, ASCII Coordinate Conver-
sion, Apparent Reflectance Model (ARM), Georeferencing, Image De-striping, and Lookup
Table (LUT) Stretch and Point Spread Convolution methods [13–17]. LU/LC classification
has been performed by using different classification algorithms for finding the LU/LC
types of a particular location. Some of the LU/LC classification algorithms used by re-
searchers are Maximum Likelihood Classification (MLC), Support Vector Machine (SVM)
Classification, k-Nearest Neighbor Classification (kNN), K-Means Clustering, Mahalanobis
Distance Classification (MDC), Classification and Regression Tree (CART), Logistic Re-
gression Model (LRM), Artificial Neural Network (ANN) Classification, Random Forest
Classification (RFC), Spectral Angle Mapper (SAM) Classification, Minimum Distance to
Mean Classification (MDM), Parallelepiped Classification (PLC), Multivariate Adaptive
Regression Spline (MARS), Fuzzy C Means (FCM), and Iterative Self-Organizing Data
Analysis (ISODATA) clustering. The different LU/LC class types classified are built-up
areas, water bodies, forest-cover areas, wetlands, and vegetation areas. The accuracy as-
sessment was performed by comparing the LU/LC classified map with the ground truth
data. Based on the accuracy assessment, the performance of the classification method has
been measured. The LU/LC change detection has been performed between the LU/LC
time-series classified map [18–22].

The LU/LC prediction was performed by calibrating the dependent and independent
variables. The LU/LC change map is considered the dependent variable, and the factors
associated with the LU/LC change are considered as the independent variables. The
factors associated with LU/LC change include slope, elevation, aspect, climatic variables,
distance variables (distance from road, forest edge, agricultural land, water bodies, and
urban areas), and census data. LU/LC prediction has been performed by using different
algorithms for finding the future LU/LC changes in a particular location. Some of the
algorithms used by researchers are based on the Markov Chain (MC), Cellular Automata
(CA), Conventional Neural Network (CNN), Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), and Long Short-Term Memory Neural Network (LSTM) [23–30]. In
recent technologies, transformer-based models are widely used and processed in image-
processing applications. The transformer-based deep-learning model is considered the
state-of-the-art model in image recognition, as it focuses on the confident part of inputs to
get more efficient results [31,32]. Many researchers have worked on the transformer-based
model in the field of natural language processing (NLP) [33,34]. Researchers also performed
the transformer-based models in image-recognition problems through remote sensing
analysis. The Vision Transformers have been used widely for remote sensing applications.
The advantage of using the Vision Transformers for remote-sensing applications provides
better classification accuracy than the standard algorithms [35–37].

Explainable artificial intelligence (XAI) is a process of allowing the users to under-
stand and trust the outputs produced by the machine-learning and deep-learning models.
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XAI conveys the importance of transparency (presents the significant way of reaching
the goal), justification (clarifying why the results provided by the prediction model are
acceptable), informativeness (providing new information to researchers), and uncertainty
estimation (computing how trustworthy a prediction model is) [38,39]. The few XAI tools
for explaining the results of machine-learning and deep-learning models include LIME
(Local Interpretable Model-Agnostic Explanations), DeepLIFT (Deep Learning Important
Features), SHAP (Shapley Additive explanations), LRP (Layer-Wise Relevance Propaga-
tion), Saliency Maps, CIU (Contextual Importance and Utility), DALEX (Model Agnostic
Language for Exploration and Explanation), Skater, Occlusion Analysis, and Integrated Gra-
dients/SmoothGrad. The usage of XAI tools varies for every application area of machine-
and deep-learning models [40–43].

In the field of remote sensing, we observed that researchers had used the supervised
and unsupervised machine-learning models for performing the LU/LC classification and
prediction analysis. The supervised-learning models (MLC, SVM, KNN, MDC, CART, LR,
ANN, RFC, SAM, MDM, PLC, MARS, MC, CA, CNN, RNN, and LSTM) are considered to
be more accurate than the unsupervised-learning models (KM, FCM, and ISODATA). The
unsupervised learning is performed with no prior information about the data, and there are
no training data available for training the unsupervised algorithms. It performs the LU/LC
classification by learning the data without any class labels. The advantage of unsupervised
algorithms helps in finding the unknown patterns in the image, which are more difficult to
find by using the normal method. The results of the unsupervised classification algorithms
were used as the input training data for the supervised algorithms. The advantage of using
the unsupervised methods (KM, FCM, and ISODATA) is that they help in separating the
similar and dissimilar pixels into clusters through the distance functions. The disadvantage
of the unsupervised-learning model is the high computational time when the data are
unstructured. The main disadvantage is that unsupervised algorithms are not used during
the process of LU/LC prediction analysis since it requires both past and present training
data. The supervised learning depends on the user-defined training data for classifying
the LU/LC classes. The MLC, SVM, KNN, MDC, SAM, MDM, CART, MARS, and PLC
techniques were widely used for classifying the LU/LC classes. The models based on
LR, ANN, MC, CA, CNN, RNN, GRU, and LSTM were widely used during the process
of LU/LC prediction analysis. The supervised classifiers help in providing the results
by using previous experiences. The real-world computation problems were solved by
using supervised-learning methods. It performs the classification and prediction with the
knowledge of class labels. The supervised-learning models were used during the process
of LU/LC prediction analysis. The past and present training data have been analyzed
and processed in supervised learning. The accuracy results of the standard classification
and prediction algorithms differ for each study area. The results mainly depend on the
training parameters and the complexity of the input data. In terms of LU/LC analysis, the
misclassification rate has been observed due to the overlapping of pixels in the satellite
image. In all the neural network models, the time taken for training and validation is more
for massive datasets. The disadvantage of the standard LU/LC machine-learning model is
lacking knowledge of the predicted map, resulting in difficulties for the urban planners
when further processing the data [44–46].

The rest of the paper is given as follows: Section 2 explains the motivation and
contribution of this work. Section 3 explains the proposed methodology of this research
work. Section 4 explains the materials and methods proposed in our research work,
Section 5 provides the training parameters and validation results of each method used in
this research work, Section 6 explains the comparative analysis of our LU/LC prediction
model, and Section 7 delivers the conclusion of this research work.

2. Motivations and Contributions

The main contribution of researchers around the world is to provide new innovative
information to society, government, and different educational sectors in their respective
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domains. Many researchers had motivated and contributed to the significant problem of
LU/LC prediction analysis. The LU/LC change detection for past, present, and future
analysis has been a key research topic to understand the environmental change on the
earth’s surface. Hence, LU/LC feature extraction has emerged as an essential research
aspect, and therefore, the standard and accurate methodology for LU/LC classification
and prediction should be made. By use of satellite system technology, we can perform our
research on LU/LC change analysis. The main need of this research is to assist the land-
resource management, government officials, forest department, and urban planners to take
action to protect the earth’s environment. From the brief survey on different classification
and prediction algorithms, we have found that the sustainable growth of the LU/LC
environment for the time-series data requires an accurate classification and prediction map,
which was considered the strong motivation for our study. The main contributions of our
work are as follows:

• The novel Vision Transformer–based Bidirectional long-short term memory (Bi-LSTM)
model is proposed for predicting the LU/LC changes of Javadi Hills, India.

• The use of the LST map with the Vision Transformer–based LU/LC classification
map provides the main advantage in achieving good validation accuracy with less
computational time during the process of LU/LC prediction analysis through the
Bi-LSTM model.

• The impacts of the Multi-Satellite System (LISS-III multispectral with the Landsat
TIRS, RED, and NIR bands) on the proposed LU/LC prediction model for Javadi Hills,
India, are analyzed.

• Explainable Artificial Intelligence (XAI), an application-based explanation, is also
introduced for validating the predicted results through the Google Earth Engine
platform of Google Cloud so that the predicted results will be more informative and
trustworthy to the urban planners and forest department to take appropriate measures
in the protection of the environment.

3. Materials and Methods

This section elaborates the various stages of our proposed prediction model: (i) the
study area and data acquisition, (ii) proposed Vision Transformer–based LULC classifica-
tion, (iii) description of expression for calculating and analyzing the LST map, (iv) Bi-LSTM
model for LULC prediction, and (v) description of explainable AI and its importance.

3.1. Study Area and Data Acquisition

The study area in our research work is the forest- and non-forest-covered area of Javadi
Hills with the geographic coordinates falling between 78.75 E 12.5 N and 79.0 E 12.75 N.
Our study area is located across the Eastern Ghats of Vellore and Tiruvannamalai district,
Tamil Nadu, India. The UTM (Universal Transverse Mercator) GCS (geographic coordinate
system)/WGS (World Geodetic System) 1984 (44 N) projection system was processed for
the extracted satellite data. The location of the Javadi Hills map was extracted from Google
Earth Engine (https://www.google.com/earth/ (accessed on 10 November 2021)). The
map view of our study area was prepared by using ArcGIS (Version 10.1 developed by ESRI
(http://www.esri.com/software/arcgis)) geospatial software, and it is shown in Figure 1.

The multispectral LISS-III satellite images for the years 2012 and 2015 were col-
lected from the Bhuvan Indian Geo-Platform of ISRO (www.bhuvan.com (accessed on
9 December 2019)). The extracted LISS-III multispectral data of Javadi Hills were used for
the LU/LC classification process. The TIRS, RED, and NIR bands of Landsat 8 (Band 10)
and Landsat 7 (Band 6) were collected from the United States Geological Survey (USGS),
United States (https://earthexplorer.usgs.gov (accessed on 16 December 2019)) and were
used for the estimation of LST. There was no TIRS Band in the LISS-III sensor, so we ex-
tracted the TIRS image from the Landsat Satellite data for our study area. The importance
of the TIRS band used in our paper provides the impact of LST on Javadi Hills for the years
2012 and 2015. Table 1 shows the source and characteristics of the remotely sensed satellite
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images. In our research work, the atmospheric corrections were made to provide good
visibility to the extracted LISS-III multispectral satellite image of Javadi Hills. The scan-line
error correction was made for filling the gaps in the extracted Landsat TIRS image of Javadi
Hills. The geometric correction was made to extract the Region of Interest (ROI) coordinates
in the forest- and non-forest-covered area of Javadi Hills that falls between 78.80 E 12.56 N
and 78.85 E 12.60 N. Figure 2 represents the preprocessed image of multispectral LISS-III
data of Javadi Hills for the years 2012 and 2015. Figures 3–5 represent the preprocessed
Landsat TIRS, RED, and NIR bands of the Javadi Hills for the years 2012 and 2015.

 

Figure 1. Study Area—Javadi Hills, India.
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Table 1. Characteristics and sources of the satellite images.

Satellite Path Sensor Year Source

Resourcesat-1/2 101/064 LISS-III 18 February 2012
22 March 2015

Bhuvan Indian Geo-Platform of
ISRO (www.bhuvan.com

(accessed on 9 December 2019))

Landsat 8 OLI/TI and
Landsat 7 (ETM+)

143/51
Operational Land Imager

(OLI) and the Thermal
Infrared (TI) Sensor

27 March 2015 United States Geological Survey
(https://earthexplorer.usgs.gov
(accessed on 16 December 2019))Enhanced Thematic

Mapper Plus (ETM+) 26 March 2012

  
(a) (b) 

Figure 2. Preprocessed LISS-III multispectral image of Javadi Hill for the years (a) 2012 and (b) 2015.

  
(a) (b) 

Figure 3. Preprocessed Landsat TIRS bands of Javadi Hill for the years (a) 2012 and (b) 2015.
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(a) (b) 

Figure 4. Preprocessed Landsat RED bands of Javadi Hill for the years (a) 2012 and (b) 2015.

  
(a) (b) 

Figure 5. Preprocessed Landsat NIR bands of Javadi Hill for the years (a) 2012 and (b) 2015.

3.2. Proposed Vision Transformer Model for LU/LC Classification

A transformer is a deep-learning model that has emerged through the self-attention
mechanism. The transformer follows the encoder–decoder architecture by processing
the sequential data parallelly without depending on any recurrent network. It has been
widely used in the scientific fields of NLP and computer vision. The Vision Transformer
architecture has attracted an interesting view from researchers in recent years by showing
good performance in the area of machine- and deep-learning applications. The Vision
Transformer has been used in the area of image classification for providing state-of-the-art
performance and to outperform the standard classification models. The Vision Transformer
develops the encoder module of the transformer for performing the image classification by
representing the sequence of image patches to the classified label. The attention mechanism
of the Vision Transformer goes through all areas of the image and integrates the informa-
tion into the full-sized image [47–51]. The end-to-end Vision Transformer model for the
classification of satellite images is shown in Figure 6. The Vision Transformer classification
model has experimented with the preprocessed LISS-III satellite image of Javadi Hills for
the years 2012 and 2015. The Vision Transformer architecture is composed of an embedding,
encoder, and classifier layer. Equations (1) and (2) represent the first step of analyzing and
dividing the training images into a sequence of patches.
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Figure 6. Proposed Vision Transformer model for LU/LC classification.

Let Si represent a set of training satellite images, r, where Xi is a satellite image; yi
represents the class labels {yi ∈ 1, 2, . . . . . . , m} associated with the Xi, and m denotes the
number of defined LU/LC classes for that set.

Si = {Xi, yi}r
i=1 (1)
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In the first step of the Vision Transformer model, an image Xi from the training, the set
is divided into non-overlapping patches of fixed size. Each patch is observed by the Vision
Transformer as an individual token. Thus, from the size h ∗ w ∗ c (where h is the height, c
is the number of channels, and w is the width) of an image Xi, we extracted the patches of
dimension c ∗ p ∗ p (p is the patch size) from it. The extracted patches are converted to a
sequence of images (x1, x2, x3, . . . . . . . . . , xn) of length n through flattening.

n = hw/p2 (2)

The image patches are linearly projected into a vector setup of model dimension, d,
using the known embedding matrix, E. The concatenation of embedded representations
is processed along with the trained classification token vclass for performing the classifi-
cation task. The positional information, Epos, is programmed and attached to the patch
representation. The spatial arrangements of the trained image patches were processed
through positional embedding. The resulting sequence of image patches from positional
embedding with token z0 is given in Equation (3).

z0 = [vclass; x1E; x2E; . . . . . . . . . , xnE] + Epos, E ∈ R
(p2c) ∗ d, Epos ∈ R

(n+1) ∗ d (3)

The resulting sequence of embedded image patches, z0, is passed into the transformer
encoder with L identical layers. It has a multi-head self-attention block (MSA) and fully
connected feed-forward MLP (Multilayer Perceptron) block with the GeLU activation
function between them. The two subcomponents of the encoder work with the residual
skip connections through the normalization layer (LN). The representation of the two
main components of the encoder is given in Equations (4) and (5). The last layer of the
encoder, the first element in the sequence z0

L, is passed into the head classifier for attaining
the LU/LC classified classes.

z1
l = MSA (LN(zl−1)) + zl−1, l = 1 . . . ..L (4)

zl = MLP
(

LN
(

z1
l

))
+ z1

l , l = 1 . . . ..L (5)

yi = LN
(

z0
L

)
(6)

The transformer block for the classification model is shown in Figure 7. The MSA
block of the encoder is considered the central component of the transformer. The MSA
block determines the importance of a single patch embedding with the other embeddings
in the sequence. There are four layers in the MSA block: the linear layer, the self-attention
layer, the concatenation layer, and a final linear layer. The attention weight is computed by
calculating the weighted sum of all values in the sequence. The query-key-value scaling
dot product is computed by the self-attention (SA) head through the attention weights The
Q (query), K (key), and V (value) were generated by multiplying the element against three
learned matrices UQKV (Equation (7)). For determining the significance of the elements
on the sequence, the dot product is used between the Q vectors of one element with the
K vectors of the other elements. The results show the importance of the image patches in
the sequence. The outcomes of the dot product were scaled and passed into a Softmax
(Equation (8)).

[Q, K, V] = zUQKV , UQKV ∈ R
d ∗ 3Dk (7)

A = so f tmax
(

QKT
√

DK

)
, A ∈ R

n ∗ n (8)

SA (z) = A.V (9)

MSA (z) = Concat(SA1(z); SA2(z); . . . . SAh(z))W, W ∈ R
h.DK ∗ D (10)
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Figure 7. Transformer block for the Vision Transformer classification model.

The scaling-dot-product process achieved by the SA block is related to the standard dot
product, but it includes the dimension of the key DK as a scaling factor. The patches with
the high attention scores (Equation (8)) are processed by multiplying the outputs of Softmax
with the values of each patch embedding vector. The results of all the attention heads are
concatenated and provided to the MLP classifier for attaining the pixel value representation
of the feature map (Equation (10)). The resampling was performed for adjusting the
size of the feature map so that the output classified image would be represented in the
standardized form during the time of accuracy assessment. The training data with different
parameters that define the Vision Transformer classification model of our research work are
presented in Section 5.1. The LU/LC classification map for the years 2012 and 2015 is shown
in Figure 8. The accuracy assessment for the feature-extraction-based classification model
is shown in Section 5.2. The evaluation of the LU/LC classification map was achieved
through the accuracy assessment. The percentage of the LU/LC change between the years
2012 and 2015 for our study area was calculated. Based on the good accuracy results,
the LU/LC change classification map was processed for further findings of the LU/LC
prediction map.
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(a) (b) 

Figure 8. LU/LC classification map of Javadi Hills for the years (a) 2012 and (b) 2015.

3.3. Land Surface Temperature

The LST measures the skin temperature of the spatial data in the field of remote
sensing. It displays the cold and hot temperature of the earth’s surface through the radiant
energy reflected within the surface. The thermal-infrared remote-sensing data are used
for measuring the LST. The TIRS data help in recognizing the mixture of bare soil and
vegetation temperatures through LST [52–54]. In our research work, we estimated the LST
for the TIRS bands of Landsat 8. Equations (11)–(13) represent the estimation of LST for
TIRS image 7. The conversion of the Digital Number (DN) value to the radiance of the TIRS
image is calculated by using Equation (11). The conversion of radiance into the brightness
temperature is shown in Equation (12). The degree conversion from Kelvin (K) to Celsius ©
is shown in Equation (13).

Lλ =

(
LMAXλ − LMINλ

QCALMAX − QCALMIN

)
∗ (QCAL − QCALMIN) + LMINλ (11)

where Lλ represents the spectral radiance in
(
Watts/(m2 ∗ sr2 ∗ μm

)
) , QCAL represents

the quantized calibrated pixel value, QCALMAX represents the maximum quantized cali-
brated pixel value, QCALMIN represents the minimum quantized calibrated pixel value,
LMAXλ represents the spectral radiance scaled to QCALMAX, and LMINλ represents the
spectral radiance scaled to QCALMIN.

TK =
K2

ln
(

K1
Lλ

+ 1
) (12)
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C = TK − 273.15 (13)

where TK represents the effectiveness at the satellite temperature in Kelvin, and K1 and K2
represent the calibration constants 1 and 2 in

(
Watts/(m2 ∗ sr2 ∗ μm

)
), respectively. For

Landsat 7, the calibration constant value of K1 and K2 is 666.09 and 1282.71, respectively.
Equations (14)–(20) represent the estimation of LST for the TIRS image of Landsat 8.

By using the radiance rescaling factor, the conversion of Top of Atmosphere (TOA) spectral
radiance is shown in Equation (14). By using the thermal infrared constant values in
the metadata file of the satellite image, the spectral radiance data are converted to the
TOA brightness temperature, and the expression is shown in Equation (15). The NDVI
is calculated for differentiating the near-infrared and visible reflectance of the vegetation
cover of the satellite data. The expression for NDVI is shown in Equation (16). The Land
Surface Emissivity (LSE) is derived from NDVI values for displaying the average emissivity
of the earth’s surface. The expressions are shown in Equations (17) and (18). By using the
results of TOA brightness temperature, emitted radiance wavelength, and LSE, the LST
was calculated and is shown in Equation (19).

TLλ = ML ∗ QCAL + AL − Oi (14)

where TLλ represents the TOA spectral radiance in
(
Watts/(m2 ∗ sr2 ∗ μm

)
), ML repre-

sents the radiance multiplicative band rescaling factor of the TIRS image, QCAL represents
the quantized calibrated pixel value, AL represents the radiance additive band rescaling
factor of TIRS image, and Oi represents the correction value of the TIRS band of Landsat 8.

BTP =
K2

ln
(

K1
TLλ

+ 1
) − 273.15 (15)

where BTP represents TOA brightness temperature in Celsius, and K1 and K2 represent the
calibration constant 1 and 2 in

(
Watts/(m2 ∗ sr2 ∗ μm

)
), respectively. For Landsat 8, the

calibration constant value of K1 and K2 is 774.8853 and 1321.0789, respectively.

NDVI =
(NIR − RED)

(NIR + RED)
(16)

where NDVI represents the Normalized Difference Vegetation Index, NIR represents the
reflectance values of the near-infrared band, and RED represents the reflectance values of
the red band.

PV = ((NDVI − NDVImin)/(NDVImax – NDVImin))
2 (17)

E = 0.004 ∗ PV + 0.986 (18)

where E represents the Land Surface Emissivity, PV represents the Proportion of Vegetation,
NDVI represents the reflectance values of the NDVI image, NDVImax represents the
maximum reflectance value of the NDVI image, and NDVImin represents the minimum
reflectance value of the NDVI image.

LST =
BTP(

1 +
(
λ ∗ BTP

c2

)
∗ ln(E)

) (19)

c2 =
pk ∗ vl

bc
(20)

where LST represents Land Surface Temperature, BTP represents the TOA brightness
temperature in Celsius ©, λ represents the wavelength of the emitted radiance, pk represents
the Planck’s constant value of 6.626 ∗ 10−34 J s, vl represents the velocity of the light value
of 2.998 ∗ 108 m/s, and bc represents the Boltzmann constant value of 1.38 ∗ 10−34 JK. The
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statistical modeling of TIRS bands present in the Landsat satellite image was used for
analyzing the LU/LC surface temperature of Javadi Hills, and it helps in improving the
performance of the LU/LC prediction model. The LST map of Javadi Hills during the years
2012 and 2015 was analyzed by using the TIRS bands of Landsat 7 and 8 for the area of
Javadi Hills. The flow of the calculation of LST for our area of Javadi Hills is shown in
Figure 9. The LST map for the years 2012 and 2015 is shown in Figure 10. In this research
work, we used the spatial features of the LST map and the LU/LC change classification map
for evaluating the LU/LC prediction map for Javadi Hills. The LST map shows the features
of the high- and low-temperature values of the earth’s surface. The high-temperature
values indicate less vegetation, and the low-temperature value indicates a high-vegetation
area. The impact of the LST map over the LU/LC change classification map provides good
accuracy during the process of LU/LC prediction. The relationship between the values of
the LST and LU/LC map is shown in Section 5.1.

Figure 9. The flow of Land Surface Temperature estimation for the area of Javadi Hills, India.
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(a) (b) 

Figure 10. LST map for the area of Javadi Hills for the years (a) 2012 and (b) 2015.

3.4. Bidirectional Long Short-Term Memory Model for LU/LC Prediction

The LSTM model is considered the advanced model of RNN, where the long-term de-
pendencies can be learned for the sequence prediction problems. The long-term vanishing-
gradient problems are prevented by using the LSTM models. The key elements of the LSTM
model are input, forget, and output gate [55–57]. Figure 11 displays the working principle
of the LSTM model. In Figure 11, the vector operations represent the element-wise multi-
plication (∗), and element-wise summation (+) respectively. The time step (t) indicates
the length of the input sequence in all the Equations (21)–(26). Equation (21) shows the
mathematical expression of the forget gate, where ft represents the memory gate’s output
at time t, σ represents the sigmoid function (0 < σ < 1), Wf represents the weight value of
ANN, ht−1 is the output value of the previous cell, xt represents the input values, and b f
denotes the bias weight values of the ANN. At the output of the equation, the value 1 will
keep the information and the value 0 will forget the information

ft = σ
(

Wf ∗ [ht−1, xt] + b f

)
(21)

It = σ (Wi ∗ [ht−1, xt] + bi) (22)

c̃t = tanh(Wc ∗ [ht−1, xt] + bc) (23)
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Figure 11. LSTM model.

In Equation (22), It represents the output of the input gate, σ represents the sigmoid
function, Wi represents the weight values stored in the memory of ANN, ht−1 is the output
value of the previous cell, xt represents the input values, and bi denotes the bias weight
values of the ANN.

In Equation (23), c̃t represents the output of ANN with the normalized tanh function
that outputs the value between −1 and +1, Wc represents the weight values stored in the
memory of ANN, ht−1 is the output value of the previous cell, xt represents the input
values, and bc denotes the bias weight values of the ANN.

Ct = Ct−1 ∗ ft + it ∗ c̃t (24)

Ot = σ (WO ∗ [ht−1, xt] + bO) (25)

ht = Ot ∗ tanh (Ct) (26)

Equation (24) shows the mathematical expression of the updated gate, where the
memory is updated. The ANN learns the stored or forgotten information from the memory
and then updates the newly added information from Equations (21)–(23). Equation (25)
shows the mathematical expression of the output gate, where WO represents the weight
values stored in the memory of ANN, ht−1 is the output value of the previous cell, xt
represents the input values, and bO denotes the bias weight values of the ANN. The output
value, ht, was calculated in Equation (26).

The uniform LU/LC classes were generated through the Vision Transformer classi-
fication model, and the features of the LST map were extracted for the years 2012 and
2015. In this research work, we used the spatial features of the LST map and the LU/LC
change classification map for evaluating the LU/LC prediction map, using the Bi-LSTM
model. The idea of Bi-LSTM is to process the sequence data in both forward and backward
directions. The Bi-LSTM algorithm was used in our research for extracting the spatial and
temporal features of the fifteen-year time-series data from 2012 to 2027 for the area of Javadi
Hills. Figure 12 displays the working principle of the Bi-LSTM prediction model.
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Figure 12. Bi-LSTM model for LU/LC prediction.

The inputs of the Bi-LSTM are given as the 3D vectors (samples, time steps, and
features) for producing both spatial and temporal information. The samples define the
number of the input LU/LC map (L (jm,n)) of size (m ∗ n) with defined labels (j) for
training and validation. With the LU/LC and LST features for the years 2012 and 2015,
we have predicted and simulated the LU/LC map for the years 2018 and 2021. With the
inputs of 2012 (t − 3), 2015 (t), 2018 (t + 3), and 2021 (t + 6), the Bi-LSTM was processed
in forward and backward directions for analyzing the features of time-series data and
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to project the predicted maps for the years 2021 (t + 9) and 2024 (t + 12) successfully.
The features (LC(jm,n)) define the LU/LC classes with the LST temperature values for
each time step at defined coordinates. The input set of combined features of the LU/LC
and LST map from the Javadi Hills was split by the ratio of 8:2 for the training and
validation of the model. The parameters were adjusted through a trial-and-error approach
for acquiring good prediction accuracy. The tanh activation function was used for the
Bi-LSTM layers, whereas the Softmax activation functions were used for the last layer to
calculate the probabilities between the LU/LC classes of Javadi Hills. Through repeated
forward and back-propagation processes, the parameters are adjusted until the cost function
is minimized. The validation method is part of training the prediction model and adjusting
the parameters, which uses a small portion of data to validate and update the model
parameters for each training epoch. The significant approach is to ensure that the prediction
model is learning from data correctly by minimizing the cost function during the training
and validation process. The training data with the parameters that run the Bi-LSTM
prediction model for our research work are presented in Section 5.1. The LU/LC prediction
map for the years 2018, 2021, 2024, and 2027 is shown in Figures 13 and 14. The validation
results of the LU/LC prediction model are shown in Section 5.2. Our proposed model
provides good validation accuracy, and the growth patterns of the LU/LC results are shown
in Section 5.3.

 
(a) (b) 

Figure 13. LU/LC prediction map of Javadi Hills for the years (a) 2018 and (b) 2021.
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(a) (b) 

Figure 14. LU/LC prediction map of Javadi Hills for the years (a) 2024 and (b) 2027.

3.5. Application-Based Explainable Artificial Intelligence and Its Importance

The XAI provides knowledge to humans about the outcomes achieved by machine- or
deep-learning models. The XAI has been used for providing knowledge on the extracted
time-series LU/LC information to the urban planners, forest department, and government
officials. XAI improves the user’s understanding and trust in the products or services. There
are many ways of explaining the model through XAI, and the techniques of explaining
the model differ for each application area around the world [58–60]. In our research work,
we used application-based XAI, and it was observed to be the easiest and fastest way of
obtaining knowledge with finite compute resources. The knowledge about the outcomes
of the prediction model can be accessed through online applications. Technically, the
application-based XAI can be understood by the end-users through third-party applications.
In our prediction model, we used the Google Earth Engine (https://www.google.com/
earth/ (accessed on 10 November 2021)) platform for explaining our results to urban
planners, forest departments, and government officials. The LU/LC predicted results for
the years 2018 and 2021 were tested through the Google Earth Engine time-series image. We
achieved good testing accuracy for our prediction model. Through the XAI of the Google
Earth Engine platform, the end-users can also access and check the LU/LC information.
We have shown the model structure of XAI through the Google Earth Engine platform
for our research work in Figure 15. The XAI on Google Earth will convey the LU/LC
information to the government, forest department, and urban planners to take action in
regard to protecting the LU/LC area.
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Figure 15. Explainable AI interface through Google Earth Engine platform.

4. Proposed LU/LC Prediction Using Vision Transformer–Based Bi-LSTM Model

This research work aimed to identify the LU/LC changes in the forest-covered (high
vegetation) and non-forest-covered (less vegetation) regions of the proposed study area.
The flow of LU/LC change for our study area is shown in Figure 16. The proposed flow of
this work is described in the following steps,

• The LISS III satellite images for the years 2012 and 2015 of Javadi Hills, India, were
collected from Bhuvan-Thematic Services of the National Remote Sensing Centre
(NRSC), Indian Space Research Organization (ISRO).

• The Landsat satellite images for the years 2012 and 2015 of Javadi Hills, India, were
collected from the United States Geological Survey (USGS), United States.

• Atmospheric, geometric, and radiometric corrections were performed to provide better
visibility in the acquired LISS-III and Landsat images.

• The proposed Vision Transformers for classifying LU/LC classes were successfully
performed for the years 2012 and 2015 of the LISS-III image.

• An LST map was calculated for the years 2012 and 2015 from Landsat TIRS images for
extracting the spatial features.

• The relationship between the spatial features of the LST map with the LU/LC classifica-
tion map were used to provide good validation results during the prediction process.

• The Bi-LSTM model was successfully applied to forecast the future LU/LC changes of
Javadi Hills for the years 2018, 2021, 2024, and 2027.

• The LU/LC changes that occurred in our study area will assist the urban planners
and forest department to take proper actions in the protection of the environment
through XAI.
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Figure 16. Proposed flow of LU/LC prediction using Vision Transformer–based Bi-LSTM model.

Algorithm to Construct the Vision Transformer–Based Bi-LSTM Model for LU/LC Prediction

Our research is based on the Vision Transformer–based Bi-LSTM model for LU/LC
Prediction of Javadi Hills, India. From the brief analysis and validation, we found that
the impact of the TIRS LST map with the LU/LC classified provides a good percentage of
results with a lower misclassification rate. The detailed steps of our proposed model are
presented in Algorithm 1. Each process in our proposed algorithm provides the different
aspects of LU/LC information of Javadi Hills. A brief explanation of the input data, training
data, parameter settings, and accuracy assessment of our proposed model is explained in
Section 5.

Algorithm 1: To Construct the Vision Transformer–Based Bi-LSTM Prediction Model.

Inputs (IP): The LISS-III multispectral satellite images for the years 2012 and 2015 (I1, I2), and
Landsat bands for the years 2012 and 2015 (IR1, IR2)
Output (OP): Predicted LU/LC images 2018, 2021, 2024, and 2027 (PR1, PR2 , PR3 , PR4 )
Begin
1 Input data (IP):
2 Initialize the input data
3 Extract LISS-III multispectral image (M = I1, I2)
4 Extract Landsat bands (T = IR1, IR2)
5 Return input data (IP)
6
7 Preprocessed data (PRI):
8 Initialize the input data for performing the preprocessing for the input data IP of M and T
9 For each initialized input image of M and T
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Algorithm 1: Continued.

10 Calculate the geometric coordinates of the study area GI (georeferencing)
11 Reduce the atmospheric (haze) effects AI of the georeferenced image
12 Correct the radiometric errors RI for the haze-reduced image
13 End for
14 Return preprocessed data (PRI)
15
16 LU/LC classification (LUI):
17 Perform the Vision Transformer–based LU/LC classification by using the preprocessed
image PRI
18 For each input image of PRI
19 Load the training data Ti and initialize the parameters
20 Split an image into patches of fixed size
21 Flatten the image patches
22 Perform the linear projection from the flattened patches
23 Include the positional embeddings
24 Feed the sequences as an input to the transformer encoder
25 Fine-tune the multi-head self-attention block in the encoder
26 Concatenate all the outputs of attention heads and provide the MLP classifier for
attaining the pixel value representation of the feature map.
27 Generate the LU/LC classification map
28 End for
29 LU/LC classification (LUI)
30
31 Accuracy assessment (AAI):
32 Perform the accuracy assessment for the feature extraction–based LU/LC classification
map LUI
33 For each classified map of LUI
34 Compare the labels of each classified data LUI with the Google Earth data
35 Build the confusion matrix
36 Calculate overall accuracy, precision, recall, and F1-Score
37 Summarize the performance of the classified map LUI
38 End for
39 Return accuracy assessment (AAI)
40
41 Change detection (CDI):
42 Perform the LU/LC change detection by using the time-series LU/LC change classification
map (LUI)
43 For each classified map of LUI
44 Calculate the percentage of change between the time-series classified map of LUI
45 End For
46 Return change detection (CDI)
47
48 Extracting LST map (LST)
49 Initialize the IP of T
50 For each preprocessed image of T
51 Calculate Land Surface Temperature using the Landsat bands (TIRS, RED, and NIR)
52 Extract the spatial features
53 End for
54 Return LST (LSTI)
55
56 LU/LC prediction (LPI):
57 Perform the Bi-LSTM prediction model by using the time-series LU/LC classification map
of 2012 (LU1) and 2015 (LU2) and the spatial features of the LST map of 2012 (LST1) and
2015 (LST2)
58 For each time-series, LU/LC classified map of LUI : {LU1, LU2} and LST map LSTI :
{LST1, LST2}
59 Perform LU/LC prediction (LPI) using Bi-LSTM model
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Algorithm 1: Continued.

60 Initialize the inputs for LU/LC prediction
61 Input (IP) = {L1, LST1, L2, LST2, . . .}
62 Combine the information of the time-series LU/LC classified map LUI with the LST
map LSTI
63 Load the 3D input vectors {samples, time steps, features}
64 Initialize the Bi-LSTM parameters
65 Apply tanh activation function for each Bi-LSTM layer
66 The output layer is decided by using the Softmax activation function
67 Update the parameters until the loss function is minimized
68 The output of the predicted time-series data is obtained
69 Validate the results
70 End for
71 Return LU/LC prediction map LPI {PR1, PR2 , . . .}
72 Analyze the growth patterns of the LU/LC prediction maps
73
74 Explain predicted results to the urban planners, forest department, and government
officials, using application-based XAI
End

5. Results and Discussion

The problematic study on LU/LC prediction in Javadi was presented in this research
work. The LISS-III multispectral, Landsat TIRS, RED, and NIR satellite images were used
for predicting the vegetation in the forest- and non-forest-covered regions of the Javadi
Hills. All the research experiments were processed on the Intel Xeon processor 2.90 GHz
CPU, along with 128 GB RAM in Windows 10 (64-bit) environment. The needed libraries
and packages of Python of version 3.10.2 developed by Python Software Foundation
(https://www.python.org/) were installed for implementing the proposed model of our
research. The backend geospatial software such as QGIS of version 3.6.1 developed by
QGIS Development Team (https://qgis.org/en/site/), ArcGIS of version 10.1 developed
by ESRI (http://www.esri.com/software/arcgis) and Google Earth Engine developed
by Google (https://www.google.com/earth/) was used for preparing and analyzing the
satellite data.

5.1. Training Data and Parameter Settings

For appropriate mapping of the input features to the output features using machine-
learning or a deep-learning model, the training data and its parameters were used and
tuned. Algorithm 1 shows the detailed procedure of our research on LU/LC prediction.
The multispectral input map (M) of our study area Javadi Hills for the year 2012 and
2015 was considered as (I1, I2). The preprocessed multispectral image was processed for
the further processing of our model.

The training samples of an image are divided into patches. The 16 patches (size = 64 × 4)
were extracted from the input training image (256 × 256), of which each patch contains
the trained LU/LC classes (high and less vegetation). The training samples for the area of
Javadi Hills were generated through the latitude and longitudinal coordinates of Javadi
Hills manually through Google Earth image. For the input image of Javadi Hills for
the years 2012 and 2015, the LU/LC classification was performed through the Vision
Transformer model. The working process of the Vision Transformer model was explained
in Section 3.2. For a better understanding of our training samples in the patched image,
we show the trained patches of 1 and 16 in Figure 17. The hyper-parameters used during
the training process of the Vision Transformer model are shown in Table 2. The output
extracted at the end of the fully connected layer was used as the LU/LC classified map for
further processing.
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Figure 17. Trained patches for the area of Javadi Hills.

Table 2. Hyperparameters of the Vision Transformer model.

Hyperparameters Value

Learning Rate 0.001
Weight Decay 0.0001

Batch Size 10
Number of epochs 100

Image size 256 × 256
Patch size 64

Patches per image 16
Number of heads 4

Transformer Layers 8
Activation Function GeLU

Optimizer Adam

After the classification, each classified sample was tested through the referenced
data of Google Earth images. The LU/LC classified image (LUI) was tested through
the referenced Google Earth image. Each reference datum was labeled according to the
respective LU/LC classes of the Javadi Hills through Google Earth images. The LU/LC
class considered in our research work includes the high- and less-vegetation regions of the
forest- and non-forest-covered regions of Javadi Hills. For better understanding, we have
shown the validation of the point shape file with the Google Earth images in Figure 18, and
the class values associated with each coordinate of the trained image are shown in Table 3.
The accuracy assessment was calculated for the Vision Transformer model, and the results
are shown in Section 5.2.
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Figure 18. Validation of LU/LC classified map for the area of Javadi Hills.

Table 3. Training data values for the area of Javadi Hills.

Training Feature Value Longitude Latitude Class Value Class Label

1 78.829746 12.581815 1 High Vegetation
241 78.81025 12.58796 2 Less Vegetation

1785 78.818244 12.580221 2 Less Vegetation
733 78.849159 12.576782 1 High Vegetation

6640 78.81107 12.57028 2 Less Vegetation
6277 78.83463 12.576789 1 High Vegetation

12,354 78.851079 12.59151 1 High Vegetation
12,179 78.80721 12.58024 2 Less Vegetation
20,163 78.81167 12.5669 2 Less Vegetation
30,759 78.841932 12.59148 1 High Vegetation
24,465 78.840458 12.591477 1 High Vegetation
28,861 78.805977 12.580232 2 Less Vegetation
35,655 78.836129 12.591499 1 High Vegetation
33,638 78.812464 12.580187 2 Less Vegetation

63 78.81674 12.60167 1 Less Vegetation
39,388 78.81276 12.58634 2 Less Vegetation

The percentage of LU/LC change detection was calculated for the LU/LC classified
image, and the results are shown in Section 5.3. Based on the good accuracy, the LU/LC
classification map was processed for further findings of the LU/LC prediction map. The
LST map for the years 2012 and 2015 was calculated to extract the spatial features of Javadi
Hills. The estimation of the LST map was explained in Section 3.3. The LST map shows the
features of the high- and low-temperature values of the earth’s surface of Javadi Hills. The
high-temperature values indicate less vegetation, and the low-temperature value indicates
a high-vegetation area. The LST (LSTI) and the LU/LC (LUI) classification map was used
as an input for predicting the LU/LC map of Javadi Hills. We combined the time-series
features of LST and the LU/LC map of Javadi Hills. The impact of LST on the LU/LC
map provides good results during the prediction process. For a better understanding, we
show the impact of a few LST and LU/LC features in Figure 19, and we show the values
in Table 4. The impact on the LST and LU/LC map strengthens our proposed predicted
model with good validation results.
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Figure 19. Impact of LST features with the LU/LC classes for Javadi Hills, India.

Table 4. LST and LU/LC values for the area of Javadi Hills.

Feature Value Longitude Latitude Class Value Temperature Value Class Label

1 78.82975 12.58182 1 32.183754 High Vegetation
241 78.81025 12.58796 2 37.755061 Less Vegetation

1785 78.81824 12.58022 2 37.755061 Less Vegetation
733 78.84916 12.57678 1 31.708773 High Vegetation

6640 78.81107 12.57028 2 34.998298 Less Vegetation
6277 78.83463 12.57679 1 31.708773 High Vegetation

12,354 78.85108 12.59151 1 30.273344 High Vegetation
12,179 78.80721 12.58024 2 38.20916 Less Vegetation
20,163 78.81167 12.5669 2 34.998298 Less Vegetation
30,759 78.84193 12.59148 1 32.607521 High Vegetation
24,465 78.84046 12.59148 1 32.183754 High Vegetation
28,861 78.80598 12.58023 2 38.20916 Less Vegetation
35,655 78.83613 12.5915 1 31.708773 High Vegetation
33,638 78.81246 12.58019 2 34.533323 Less Vegetation

63 78.81674 12.60167 2 36.842331 Less Vegetation
39,388 78.81276 12.58634 2 38.20916 Less Vegetation

From the input LU/LC and LST features of 2012 and 2015, we predicted the LU/LC
map of 2018 by using the Bi-LSTM model with the tuning of different parameters. The
validated result provides good accuracy for our proposed model. We used the inputs of the
LU/LC map of 2012 and 2015, along with the predicted LU/LC map of 2018 for predicting
the LU/LC map for the year 2021. The short-term prediction was performed till the year
2027 for our study area. The working process of the Bi-LSTM model was explained in
Section 3.4. The parameter used during the training process of the Bi-LSTM model is shown
in Table 5.
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Table 5. Hyperparameters for the Bi-LSTM model.

Parameter Value

Input Image Format Raster
Number of Training Samples 51,200

Activation Function tanh, Softmax
Dropout 0.1, 0.25

Learning Rate 0.001
Optimizer Adam

Loss Function Categorical Cross Entropy
Hidden layers 20

Number of epochs 100
Batch Size 32

The combined features of the LU/LC and LST map were used as the training features
during the process of the Bi-LSTM training. Each pixel value was identified through the
latitude and longitudinal coordinates of Javadi Hills manually through the combined
features of the LU/LC and LST map. Each pixel holds either high or less vegetation for its
defined coordinate system. The few combined values were shown in Table 4. For better
understanding, we show the combined features map in Figure 20. The accuracy results for
the prediction model are shown in Section 5.2. The results were also cross-verified with the
time-series Google Earth Engine for acquiring the validation accuracy of our model. With
the impact of the LST map with the LU/LC map, good validation accuracy was obtained
with a lower misclassification rate.

Figure 20. Training LU/LC–LST feature map for Bi-LSTM prediction model—Javadi Hills, India.

5.2. Validation of Vision Transformer–Based Bi-LSTM Model

The Google Earth images with the LU/LC classified images were evaluated for the
examination of accuracy assessment. By using the time-series images of the Google Earth
Engine, the accuracy assessment was calculated for the LU/LC classified image of Javadi
Hills. All the pixel values of the LU/LC classified image were validated with the Google

236



Appl. Sci. 2022, 12, 6387

Earth images. A total of 1008 random training samples were loaded, and the confusion
matrix was obtained during the process of accuracy assessment. Table 6 represents the
confusion matrix for the years 2012 and 2015. The results of the accuracy assessment for
the year 2012 are 0.9891, and for 2015, it is 0.9861. Table 7 represents the LU/LC accuracy
assessment for the years 2012 and 2015.

Table 6. LU/LC confusion matrix.

LU/LC Classification Class

Reference Class

2012 2015

High Vegetation Less Vegetation High Vegetation Less Vegetation

Actual Class
High Vegetation 694 4 689 6
Less Vegetation 7 303 8 305

Table 7. LU/LC accuracy assessment for the proposed Vision Transformer model.

LU/LC Classification 2012 2015

Overall Accuracy 0.9891 0.9861
Precision 0.9901 0.9885

Recall 0.9942 0.9913
F1-Score 0.9921 0.9898

The LU/LC prediction was performed, and the results were analyzed and processed.
The total number of pixel values was sliced into training and validation sets in an 8:2 pro-
portion. The accuracy values of the prediction method look good for the LU/LC map of
2018 and 2021. The result of the validation accuracy for the year 2018 is 0.9865, and for
2021, it is 0.9811. The results were also cross-verified with the time-series Google Earth
Engine image of Javadi Hills for the years 2018 and 2021 for acquiring the testing accuracy
of our model. The results of the testing accuracy for our model also provide good results
for 2018 and 2021. The results of the testing accuracy for the year 2018 is 0.9696, and for
2021, it is 0.9673. The results of the testing and validation accuracy of the predicted map
are presented in Table 8. The validation accuracy refers to the results of the non-trained
datasets of the model. The testing accuracy refers to the results of the complete model. We
used the inputs of the LU/LC map of 2012 and 2015, along with the predicted LU/LC map
of 2018 and 2021 for predicting the LU/LC map for the years 2024 and 2027. The short-term
prediction was performed till the year 2027 for our study area. As the Google Earth Engine
provides the time-series image till the current date, the validation and testing accuracy for
the predicted LU/LC map of 2024 and 2027 was not calculated. With the results of the
good validation accuracy for all the LU/LC predicted maps of Javadi Hills, our prediction
model provides a lower misclassification rate.

Average Model Accuracy =

(
AY1 + AY2 + . . . + AYn

T

)
∗ 100 (27)

where AY represents the accuracy value of years {1 . . . .n}, and T represents the total
number of years. The importance of providing the performance of the model depends on
the average classification and prediction results. The average classification and prediction
accuracy for the time series LU/LC data have been calculated by using Equation (27). The
accuracy results for the years 2012 (0.9891) and 2015 (0.9861) were used for providing the
performance of the calculation model through the average model accuracy. The average
classification accuracy that was obtained was 98.76% for the proposed Vision Transformer
model. The validation and testing results of our prediction model for the year 2018 are
0.9865 and 0.9696, respectively. The validation and testing results of our prediction model
for the year 2021 are 0.9811 and 0.9673, respectively. The average validation accuracy is
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98.38%, and the testing accuracy is 96.84% for our prediction model. We infer that the
impact of the LST spatial variable from TIRS bands with the classified LU/LC map provides
a good percentage of results.

Table 8. Validation and testing process of the proposed Vision Transformer–based Bi-LSTM
Prediction Model.

Input Map (Year)
Training Feature Map

(256 × 200 Pixels)
Train—Validation

Split (8:2) Data
Test Data (Google

Earth Image)
Predicted Map

Validation
Accuracy

Testing
Accuracy

LU/LC
Classification—
LST Map (2012,

and 2015)

51,200 40,960–10,240 51,200 2018 0.9865 0.9696

51,200 40,960–10,240 51,200 2021 0.9811 0.9673

The computational complexity defines the total time taken by the computer for run-
ning an algorithm. The computational complexity of the Vision Transformer model is
O (nC), where n is the size of input, and C is the number of classified LU/LC classes. The
computational complexity of the Bi-LSTM prediction model is O (nkC + 1), where k is the
size of the spatial maps (LST) associated with input data n. Hence, the total computational
time of our proposed algorithm Cc is the arithmetic sum of the classification and prediction
model, which is given in Equation (28).

Cc = O (nC) + O (nkC + 1) (28)

Although the proposed Vision Transformer–based Bi-LSTM prediction model shows
significant performance, its training phase requires the determination of class values associ-
ated with spatial maps for each pixel in the n images, and this is computationally expensive.

5.3. Growth Pattern of the LU/LC Area of Javadi Hills

The growth patterns of LU/LC change in the area of Javadi Hills were performed
between the years 2012 to 2027, and the results are shown in Table 9. In 2012, the LU/LC
multispectral classified map was found to be 1651.04 ha (hectare) of the high vegetation and
736.85 ha of less vegetation. In 2015, the LU/LC multispectral classified map was found to
be 1601.22 ha of vegetation and 786.67 ha of less vegetation. In 2018, the LU/LC predicted
map was found to be 1621.18 ha of high vegetation and 766.71 ha of less vegetation. In 2021,
the LU/LC predicted map was found to be 1596.04 ha of high vegetation and 791.85 ha
of less vegetation. In 2024, the LU/LC predicted map was found to be 1568.23 ha of high
vegetation and 819.66 ha of less vegetation. In 2027, the LU/LC predicted map was found
to be 1553.17 ha of high vegetation and 834.72 ha of less vegetation. It was observed that
the LU/LC changes have been frequently happening every three years in the area of Javadi
Hills. The results of the LU/LC change that occurred between the years 2012 to 2027 are
shown in Table 10. The comparison chart of LU/LC area statistics for the time-series data
from 2012 to 2027 is shown in Figure 21.

Table 9. LU/LC area statistics for LU/LC Map (2012–2027).

LU/LC Class

Area (ha)

Year

2012 2015 2018 2021 2024 2027

High Vegetation 1651.04 1601.22 1621.18 1596.04 1568.23 1553.17
Less Vegetation 736.85 786.67 766.71 791.85 819.66 834.72

Total (ha) 2387.89 2387.89 2387.89 2387.89 2387.89 2387.89
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Table 10. Percentage of LU/LC change for the area of Javadi Hills during 2012–2027.

LU/LC Class

Area (%)

Year

2012–2015 2015–2018 2018–2021 2021–2024 2024–2027

High Vegetation −3.01 1.24 −1.55 −1.74 −0.96
Less Vegetation 6.76 −2.53 3.27 3.51 1.83

Figure 21. LU/LC change analysis of the Javadi Hills, India (2012–2027).

6. Comparative Analysis

In this research work, we have proposed the Vision Transformer–based Bi-LSTM
prediction model for analyzing the past, present, and future changes of Javadi Hills, India.
We also infer that the LU/LC prediction accuracy of our model provides a lower error rate,
i.e., below 5%. From the thorough analysis, we infer that the use of the LST map has a high
impact on the LU/LC environment, and it was considered an important spatial feature for
the prediction of the LU/LC vegetation map.

We have compared our model with CNN, DWT, and standard LU/LC classification
and prediction techniques for the area of Javadi Hills. Our model outperforms the other
standard classification and prediction algorithms in terms of accuracy and computational
efficiency. We have executed the standard LU/LC algorithms (DWT [22], CNN [27],
SVM [1], MLC [2], and RFC [25]) and provided a comparative analysis of the Vision
Transformer model for our study area of Javadi Hills in Table 11. We have also presented
the comparative accuracy of the classification model in Figure 22. We have also shown the
comparative analysis of our prediction model with the hybrid machine-learning models [7]
for the area of Javadi Hills in Table 12.
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Table 11. Comparative analysis of the proposed Vision Transformer model with other algorithms for
the area of Javadi Hills, India.

Algorithms Average Accuracy (%)

Ours 98.76
CNN [27] 96.42
DWT [22] 94.21
SVM [1] 97.71
MLC [2] 94.4
RFC [25] 95.6

 

Figure 22. Performance analysis of LU/LC classification model—Javadi Hills, India.

Table 12. Comparative analysis of LU/LC prediction models for the area of Javadi Hills, India.

Study Area Algorithm Prediction Accuracy (%)

Javadi Hills, India

Vision Transformer–based
Bi-LSTM Model (ours) 98.38%

RFC-based MC–ANN–CA
Model [7] 93.41%

Our model outperforms the hybrid machine-learning models [7] and provides good
prediction accuracy. We have validated the use of the LST map with other spatial maps that
include a slope, aspect, and distances from the road map [7] for our prediction model. From
the thorough analysis, we infer that the use of the LST map has a high impact on the LU/LC
environment, and it has been considered an important spatial feature for the prediction of
the LU/LC vegetation map. We have shown a few comparisons of the validation results
of the LU/LC prediction methods by using LST, slope, aspect, and distance from the road
map for the area of Javadi Hills in Table 13.
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Table 13. Testing of the Vision Transformer–based Bi-LSTM model using the various combinations of
Input Spatial Data for Javadi Hills, India.

Study Area Input Data Prediction Accuracy (%)

Javadi Hills, India

LU/LC Classification—LST Map 98.38

LU/LC Classification—Slope Map 92.33

LU/LC Classification—Distance from
Road Map 91.64

LU/LC Classification—Slope, Distance
from road map 92.52

LU/LC Classification—Slope, LST map 93.45

LU/LC Classification—Distance from
Road, LST map 93.17

LU/LC Classification—Slope, Distance
from Road, LST map 94.2

We also show a few comparative analyses of overall prediction models for a few
different study areas in Table 14. We observed that there is a performance variation
in the prediction results for each study area around the world. This variation of the
LU/LC classification and prediction results was due to the selection of study area, satellite
data, environmental data, and its LU/LC classes. A variation of results was observed
for our study area with the assessment of multi-satellite datasets through the proposed
algorithm. We delivered a clear view of the importance of Vision Transformer–based
LU/LC classification and Bi-LSTM-based prediction for forecasting the time series LU/LC
vegetation map. The advantage of our proposed work lies in using only the LST map as the
spatial data for predicting the LU/LC vegetation map. We also achieved a good prediction
accuracy of 98.38%. Our proposed algorithm can be applied to other study areas around
the world in predicting the LU/LC vegetation map. Moreover, our proposed model has
been efficient for urban planners, forest departments, and government officials in analyzing
the LU/LC information through XAI and taking necessary actions in the protection of the
LU/LC environment.

Table 14. Comparative analysis of LU/LC prediction models for different study areas.

Study Area Algorithm Prediction Accuracy (%)

Javadi Hills, India (our study) Vision Transformer–Based Bi-LSTM Model 98.38

Wuhan, China [28] Self-Adaptive Cellular-Based Deep-Learning
LSTM Model 93.1

Guangdong province of South China [23] Deep Learning
(RNN–CNN) and CA–MC Model 95.86

Western Fansu Province, China [26] CNN–GRU Model 93.46

Dhaka, Bangladesh [29] CA–MC and ANN Model 90.21

University of Nebraska–Lincoln [24] CNN–Bi-LSTM Model 91.73

City of Surrey, British Columbia [56] RNN–ConvLSTM Model 88.0

Klingenberg, Germany [55] Fully CNN–LSTM Model 87.0

Awadh, Lucknow [6] CA–MC and LR model 84.0

7. Conclusions

The LU/LC prediction modeling was considered important research in the area of
remote sensing. In this research work, the multispectral LISS-III and Landsat satellite
image of Javadi Hills for the periods 2012 and 2015 were downloaded and performed
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for analyzing the LU/LC prediction for the years 2018, 2021, 2024, and 2027. The Vision
Transformer model for performing the LU/LC classification was proposed, and the accuracy
assessment was performed by using Google Earth Images. The average classification
accuracy obtained for our Vision Transformer model was 98.76%. The spatial features from
the LST map and LU/LC classified map were used as input for predicting the LU/LC
changes in Javadi Hills. For predicting the future LU/LC changes of Javadi Hills, the Bi-
LSTM model was successfully applied. We infer that the impact of the LST spatial features
with the LU/LC classified map provides a good percentage of results with 98.38%. The
predicted results provide the variation in the high- and less-vegetation regions of Javadi
Hills from 2012 to 2027. Our Vision Transformer–based Bi-LSTM model has produced
good validation results when compared with other standardized models. Our research on
LU/LC prediction provides information to the forest departments, urban planners, and
government officials to take necessary action in the protection of the LU/LC environment
through application-based XAI. In the future, we plan to focus more on using the TIRS
bands of hyperspectral data to obtain the temperature values associated with each pixel
and to classify the hyperspectral data in real-time scenarios.
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Abstract: Accurate estimation of evapotranspiration (ET) can provide useful information for water
management and sustainable agricultural development. However, most of the existing studies used
physical models, which are not accurate enough due to our limited ability to represent the ET process
accurately or rarely focused on cropland. In this study, we trained two models of estimating croplands
ET. The first is Medlyn-Penman-Monteith (Medlyn-PM) model. It uses artificial neural network
(ANN)-derived gross primary production along with Medlyn’s stomatal conductance to compute
surface conductance (Gs), and the computed Gs is used to estimate ET using the PM equation. The
second model, termed ANN-PM, directly uses ANN to construct Gs and simulate ET using the PM
equation. The results showed that the two models can reasonably reproduce ET with ANN-PM
showing a better performance, as indicated by the lower error and higher determination coefficients.
The results also showed that the performances of ANN-PM without the facilitation of any remote
sensing (RS) factors degraded significantly compared to the versions that used RS factors. We also
evidenced that ANN-PM can reasonably characterize the time-series changes of ET at sites having
a dry climate. The ANN-PM method can reasonably estimate the ET of croplands under different
environmental conditions.

Keywords: evapotranspiration; penman-monteith equation; artificial neural network; canopy
conductance

1. Introduction

Evapotranspiration (ET) is the process by which vegetation and groundwater transport
water vapor to the atmosphere, mainly including plant transpiration and soil evapora-
tion [1], with transpiration being dominant on a global scale [2]. Estimation of ET is an
important basis for reasonable irrigation over croplands at a regional scale [3]; at the
same time, as an important part of energy balance and the water cycle, ET also affects
atmospheric circulation and plays an important role in regulating climate. Cropland is an
important ecosystem on the land surface. Thus, the accurate estimation of cropland ET
is of great significance for the rational irrigation of crops and the study of material and
energy balance under the background of climate change [4].

The Penman–Monteith (PM) equation is the most commonly used framework for
estimating regional or global ET. The regional-scale modeling process based on the PM
equation is a simulation of surface conductance (Gs), and this parameter accounts for the
largest source of uncertainty in ET modeling based on the PM equation on a regional
scale. Cleugh et al. [5] tested two models of estimating land surface evaporation, the
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surface energy balance model and PM-based approach using remote sensing (RS)-derived
leaf area index (LAI), to estimate Gs at two Australian flux stations, and the PM-based
method proved better. Mu et al. [6] found that the surface conductivity model of Cleugh
et al. [5] was unreliable when used to estimate the global ET of 19 AmeriFlux sites due to
the oversimplified estimates of surface conductance. Therefore, the canopy conductance
and ET algorithms based on the PM method of Cleugh et al. [5] were improved by using
the RS and global meteorological data. The algorithm of Mu et al. [6] considered the surface
energy partitioning process and the environmental constraints of ET, but the performance
of Mu et al. [6] still remains uncertain. Mu et al. [7] further improved the global terrestrial
ET algorithm and showed the improved algorithm performed better compared to the
original. Based on Cleugh et al. [5] and Mu et al. [6], Leuning et al. [8] developed a
biophysical model to estimate Gs and introduced a simpler soil evaporation algorithm than
the MOD16 algorithm [6] to calculate daily average evaporation. The results showed that
the PM equation, incorporated with the RS leaf area index, could more reliably estimate
the evaporation rate. However, the performances of the model degraded if a fixed value of
maximum stomatal conductance (gsx) was used to estimate the surface conductance across
a wide range of vegetation categories [8]. Zhang et al. [9] further developed the Gs formula
and calculated the land surface ET at a spatial resolution of 0.05 ◦ using the PM equation.
Yebra et al. [10] reversed the PM equation to obtain the Gs of the plant canopy, and then
the estimated Gs was used to retrieve actual ET using the parameterized PM equation.
Kitao et al. [11] also applied a semi-empirical model dependent on photosynthesis [12] to
estimate canopy Gs. Because the method of Ball et al. [12] restricted the applicability of
the model, Yan et al. [13] used a simple biophysical model to calculate Gs, and then the
computed Gs was used to calculated global ET based on the PM equation. Mallick et al. [14]
estimated Gs by integrating the radiometric surface temperature into a combined structure
of the PM model and the Shuttleworth–Wallace model and used the simplified surface
energy balance model to estimate ET. The method of Yan et al. [13] used the leaf area
index and surface meteorological data, while Mallick et al. [14] did not use any leaf-scale
empirical parameter model to determine Gs and ET. However, the method of Mallick
et al. [14] had a tendency to overestimate Gs. For areas with limited data, the method of
Mallick et al. [14] was considered to be further improved. Therefore, Bhattarai et al. [15]
used RS and reanalysis data to develop an automatic multi-model to estimate regional ET
in important areas.

In order to reduce the uncertainties in ET estimation due to the difficulty in estimating
Gs, semi-empirical models that use machine learning (ML) to more accurately calculate the
Gs in the PM equation were proposed [16–18]. For example, Zhang et al. [18] combined ML,
in which only temperature (Ta) data was used with the PM equation to estimate crop ET,
and showed that the accuracy of the ML-based PM approach was better than the Hargreaves
(HARG) method. However, the computational complexity of the model of Zhang et al. [18]
is relatively high and requires more storage space. Traore et al. [17] evaluated different
ML methods based on only temperature data to calculate ET under the framework of the
PM equation. The determination coefficients (R2) were significantly increased when wind
speed data was added to the model of [17]. Thus, only one meteorological input is not
enough for reasonably quantifying ET. Multiple data combinations can effectively improve
the accuracy of the ET model. Zhao et al. [19] developed a hybrid model to estimate latent
heat flux based on various variables (such as soil moisture, carbon dioxide concentration
(Ca), etc.), combining ML models with the PM method. The results showed that the hybrid
model is more adaptable to extreme environments compared with the pure ML method.
Due to a lack of reliable and spatiotemporal continuous soil moisture data sets on a global
scale, the model of Zhao et al. [19] is limited to a regional scale and cannot be applied on a
global scale. Therefore, using only a single datum or a data set that is difficult to obtain will
limit the application of the model on a regional or global scale. Therefore, we use a variety
of globally available data combined with ML methods in order to improve the estimates
of ET over croplands. The ML approaches can represent the complex and non-linearly

248



Appl. Sci. 2021, 11, 8649

relationships between inputs and the target [20], and assess the adaptivity of multiple ET
models of different environments [21], with smaller errors under a specific environmental
condition.

Nowadays, most of the existing studies on estimating ET use physical models [22–25]
or purely rely on ML algorithms [26–31]; these methods are not accurate enough to repre-
sent the ET due to the limited ability to understand the ET process. The hybrid ET model
that combines the physical framework, namely the PM equation, and ML algorithms has
proved to be effective in ET estimates [19,32]. The ML approaches resolved the difficulty of
characterizing the complex environmental constraints on ET in the hybrid model, while the
PM framework ensures the model’s robustness. It is worth noting that the pure ML models
may yield comparable or even better performance compared to the hybrid model [19] or
individual physical models [26,33]. However, without physical constraints, the reliability
of the pure ML models depends on the representativeness of training data [33]. As a result,
the pure ML models are vulnerable to extreme environmental conditions [19], while the
hybrid models show more robust performances under these conditions [19].

In this study, we aim to improve the estimates of cropland ET by training a hybrid ET
model based on an artificial neural network (ANN) and PM equation, investigate whether
the use of RS factors can improve the performances of hybrid models, and evaluate the
ANN-PM model to simulate ET on a daily scale over flux sites covering a wide range of
climate dryness.

2. Material and Methods

The research flow chart of this study is shown in Figure 1. We trained two methods to
estimate ET. First, the Gs model is constructed using meteorological data and remote sensing
data, and subsequently, used to simulate ET under the framework of the PM equation.
Secondly, Gs is estimated using ANN-derived GPP in conjunction with Medlyn stomatal
conductance, and then the computed Gs is used to estimate ET using the PM equation.

Figure 1. Research flow chart. Ta is temperature, P is precipitation, SW is solar radiation, Ca is carbon
dioxide concentration, VPD is vapor pressure deficit, GPP is gross primary production, NDVI is
normalized difference vegetation index, NIRv is near-infrared reflectance of vegetation, ANN is
artificial neural network, Gs is surface conductance, and PM is the Penman–Monteith equation. A
white parallelogram denotes a variable, and a white rectangle denotes a method. A gray dotted
rectangle denotes the source of the variable, and a gray solid rectangle denotes a model.
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2.1. Material

The meteorological data used in this study were retrieved from the meteorological
observation data of the eddy covariance flux tower at 17 flux sites. Figure 2 shows the map
representation of the 17 flux sites of cropland over the globe.

Figure 2. Map representation of 17 eddy covariance flux sites.

The information of the 17 flux sites is shown in Table 1. The 17 flux sites of cropland
over the globe were located in different countries (such as Germany, the United States,
France, and Italy). DE-Kli and IT-BCi have the lowest (7.77 ◦C) and highest (17.88 ◦C)
mean annual temperatures, respectively. The annual precipitation of these sites varies from
343.1 (US-Tw3) to 2062.25 mm (CH-Oe2). We divide the flux data set into the training set,
validation set, and test set, the ratios of which are 60%, 20%, and 20%, respectively, and the
three datasets are used to train, validate, and test the ANN model. The vegetation index
and reflectance data were retrieved from MODIS MOD09A1 (https://modis.ornl.gov/data.
html, accessed on 27 February 2020), having a spatial resolution of 500 m. These flux data
and MODIS data were used to training the two models of estimating ET. The time series
of MODIS data were extracted according to the longitude and latitude coordinates of the
flux sites. The spectral index was calculated using the MOD43A4 product, following the
formulations shown in Table 2. NDVI is usually used to reflect the information of vegetation
coverage and growth. In order to obtain information on a larger regional scale, a new
vegetation index NIRv is introduced [19], which can reflect the photosynthetic capacity
of surface vegetation better. NIRv is the product of the total near-infrared reflectance
(NIRt) (MODIS second band) and NDVI. NIRv is a remote sensing measurement of canopy
structure, which can more accurately predict photosynthesis [34]. The shortwave infrared
band (SWIR) is usually used to reflect water stress and is calculated by using the reflectance
data directly.
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Table 1. Description of flux sites.

Site Code Latitude Longitude
Mean Annual

Temperature (◦C)
Mean Annual

Precipitation (mm)
Years Reference

BE-Lon 50.55 4.75 11.41 766.50 2004–2014 Moureaux et al. [35]
CH-Oe2 47.29 7.73 9.56 2062.25 2004–2014 Moors et al. [36]
DE-Geb 51.10 10.91 9.67 532.90 2001–2014 Anthoni et al. [37]
DE-Kli 50.89 13.52 7.77 810.30 2004–2014 Brust et al. [38]
DE-RuS 50.86 6.45 10.80 551.15 2011–2014 Eder et al. [39]
DE-Seh 50.87 6.45 10.29 573.05 2007–2010 Korres et al. [40]
FR-Gri 48.84 1.95 10.96 598.60 2004–2014 Loubet et al. [41]
IT-BCi 40.52 14.96 17.88 1197.20 2004–2014 Ranucci et al. [42]
IT-CA2 42.38 12.03 14.84 766.50 2011–2014

US-ARM 36.60 −97.49 15.27 646.05 2003–2012 Raz-Yaseef et al. [43]
US-CRT 41.63 −83.35 10.85 810.30 2011–2013 Chu et al. [44]
US-Ne1 41.1651 −96.477 10.54 846.80 2001–2013 Verma et al. [45]
US-Ne2 41.1649 −96.470 10.26 876.00 2001–2013 Suyker and Verma [46]
US-Ne3 41.1797 −96.440 10.38 697.15 2001–2013 Suyker and Verma [46]
US-Tw2 38.1047 −121.643 15.23 386.90 2012–2013 Knox et al. [47]
US-Tw3 38.1159 −121.647 16.00 343.10 2013–2014 Baldocchi et al. [48]
US-Twt 38.1087 −121.653 14.75 357.70 2009–2014 Hatala et al. [49]

Table 2. Calculation of vegetation index. rx represents the reflectivity of MODIS bands (x = 1–7),
NDVI is the normalized difference vegetation index, NIRv is near-infrared reflectance of vegetation.

Index Formula

NDVI NDVI = r2−r1
r2+r1

NIRv NIRv = NDVI∗r2

2.2. Two ET Models Based on ANN

In this study, two models were trained based on the PM equation, and the difference
lies in the Gs calculation. The following two summaries introduce the two methods in
detail. The formula of the PM equation is as follows:

λE =
(Rn − G)·Δ + ρ·Cp·D·Ga

Δ + γ(1 + Ga/Gs)
(1)

where λE is evapotranspiration, Rn is net radiation, G is soil heat flux, Δ is the gradient of
the saturation vapor pressure versus atmospheric temperature, ρ is air density, Cp is the
specific heat at constant pressure of air, D is the vapor pressure deficit of the air, Ga is the
aerodynamic conductance, and γ is the psychometric constant.

In order to test the effects on the accuracy of using different combinations of input
variables, different combinations of input variables in the ANN are shown in Table 3.

Table 3. Different combinations of input variables in the ANN. Ta is temperature, P is precipitation,
SW is solar radiation, Ca is carbon dioxide concentration, VPD is vapor pressure deficit, NDVI is
normalized difference vegetation index, NIRv is near-infrared reflectance of vegetation, and SWIR is
shortwave infrared band.

Number Input Parameters

1 Ta, P, SW, Ca, VPD
2 Ta, P, SW, Ca, VPD, NDVI
3 Ta, P, SW, Ca, VPD, NDVI, NIRv
4 Ta, P, SW, Ca, VPD, NDVI, NIRv, SWIR
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2.2.1. ANN-PM Model

We trained an ANN-PM model based on ANN and PM equations to estimate ET.
ANN is a commonly used ML method, which has been widely used in estimating ET. It
consists of a large number of nodes, called neurons, which are connected to each other. The
typical structure of ANN used to estimate ET is shown in Figure 3.

Figure 3. The typical structure of ANN.

ANN contains three layers: the input layer, hidden layer, and output layer. The input
layer is responsible for receiving input data, the hidden layer constructs the relationships
between the input and output, and the output layer outputs the predicted target values.
The variables input to ANN in this study includes Ta, precipitation (P), solar radiation
(SW), Ca, vapor pressure deficit (VPD), normalized difference vegetation index (NDVI),
and near-infrared reflectance of vegetation (NIRv). In the variables we used, Ta, SW, Ca,
and VPD can affect canopy conductivity from different aspects [50]. The consideration of P
is mainly to represent the influence of canopy interception on ET. Thus they are selected
to model Gs. There is an interaction and mutual influence between the transpiration and
photosynthetic capacity of plants, and ET is dominated by transpiration. The vegetation
index, NIRv, is considered in order to better reflect the impact of the photosynthetic capacity
of the surface vegetation on evapotranspiration. NIRv is able to characterize seasonable
variations in canopy scale photosynthesis rate without additional environmental factors
that are conventionally used to constrain photosynthesis [34]. These variables are used to
train ANN to the Gs model. Referring to Zhao et al. [19], we used the ANN model to model
ln(Gs) rather than Gs because the logarithmic form can effectively reduce the effect of errors
in Gs calculated from the observations. Finally, the logarithm of Gs obtained by ANN
simulation is converted to Gs, and then the converted Gs is input into the PM equation
to calculate ET. Here, Gs values used to train the ANN model were calculated from the
observed ET along with the inverted PM equation [51]. In order to avoid over-fitting, the
network model is repeatedly trained, where the number of hidden layers ranges from 1 to
10, and the number of neurons in each layer increases from 1 to 128, with an interval of 8.
Then, we choose the optimal ANN structure as the best model.

2.2.2. Medlyn-PM Model

The Medlyn-PM model uses ANN-derived GPP in conjunction with a theoretical Gs
model to estimate surface conductance, and then the computed Gs is used to estimate ET
using the PM equation. Firstly, we use the optimal ANN structure selected above to train
the GPP model. Secondly, on the pixel scale, the computed GPP, Ca, and air vapor pressure
deficit are used for Gs regression analysis to establish the relationship among them and
determine the undetermined coefficients g0 and g1. Then, we use the above variables and
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the relationship between them to build the Gs model. Finally, the constructed Gs is input
into the PM equation to calculate ET. The relationship is as follows [52]:

Gs = 1.6 ∗ GPP
Ca

∗
(

g1√
D

+ 1
)
+ g0 (2)

where Gs is stomatal conductance, GPP is gross primary production, Ca is CO2 concentra-
tion of the air, g1 and g0 are undetermined coefficients derived from regression analysis,
and D is the vapor pressure deficit of the air. The minimum value of D is fixed to 0.1 KPa.

2.3. ANN Architecture Optimization

The ML method, i.e., ANN, used in the ANN-PM and the Medlyn-PM, considers
input variables, including Ta, P, SW, Ca, VPD, NIRv, and NDVI. Usually, in order to reduce
over-fitting, the network model is repeatedly trained. Thus, we need to recognize the
best ANN structure. In our study, the optimal ANN is determined in terms of mean
square error (MSE) while minimizing the number of degrees of freedom based on the
Akaike Information Criterion (AIC). AIC is a standard to measure the goodness of fit of the
statistical model. AIC encourages the goodness of data fitting but tries to avoid over-fitting.
Therefore, the priority model should be the one with the lowest AIC value. Cropland
ET is estimated by combining the predictive output of ANN with the PM equation. The
calculation formula of the AIC indicator is as follows [53]:

AIC = log(MSE) +
2q
n

(3)

where MSE is mean square error, q is the total number of parameters in the network, and n
is the number of observations in the training sample.

2.4. Model Evaluation
2.4.1. Model Performance Measurement

The model performance evaluation metrics used in the study include root mean
square error (RMSE), mean absolute error (MAE), and determination coefficients (R2). The
calculations of these metrics are shown in Table 4.

Table 4. Calculation formula of evaluation parameters. RMSE is the root mean square error, MAE is
the mean absolute error, and R2 is the determination coefficients. fi: Predicted value: f i Mean value
of the predicted values; yi: Experiment value; yi: Mean value of the observed values; m: Total amount
of experimental data.

Evaluation Parameters Formula

RMSE
√

∑m
i=1( f i−yi)2

m

MAE ∑m
i=1| f i−yi|

m

R2

(
∑m

i=1(yi−yi)( f i− f i)√
∑m

i=1(yi−yi)
2
√

∑m
i=1( f i− f i)

2

)2

RMSE is the standard deviation between the predicted and true values, reflecting the
degree that the predicted values explain the true values [54]. MAE is the mean error of
evaluating a set of predictions and is the average value of the absolute difference between
predicted and experimental values on test samples, but MAE is less sensitive to extreme
values than RMSE [55]. R2 is determined by drawing a scatter plot between the observed
and predicted value. Lower RMSE, MAE, and higher R2 correspond to a better performance
of the model.
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2.4.2. Evaluating the Model Used to Estimate ET under Dry Climate

Modeling ET in dry regions is more challenging than in other regions, especially
for croplands. Because the water status of croplands is affected by irrigation, and the
information of irrigation on a regional scale is difficult to obtain. On the other hand, in arid
areas, most of the precipitation is consumed in the process of ET, and inadequate water
supply could substantially limit the growth of crops in these regions. Therefore, accurate
estimation of ET plays an important role in the sustainable development of agriculture
in arid areas. Research on modeling ET in dry climates can facilitate rational cropland
irrigation, maintaining stable crop production in dry regions.

We analyzed the performance of the models we trained in estimating ET under a dry
climate. The aridity index (AI) is a means and tool to determine the drought degree and
range of a certain period quantitatively, and it is also an indicator of the degree of dry and
wet in a region. The calculation formula of the AI is as follows [56]:

AI =
P

PET
(4)

where AI is aridity index, PET is potential evapotranspiration, and P is the average precipi-
tation. The AI calculation of each site is limited to the time range covered by the site. Low
AI corresponds to a dry climate. We selected the sites with the AI values below 0.5 as arid
areas by calculating the AI values of each flux site.

3. Results

3.1. Model Parameter Optimization

The undetermined parameters g0 and g1 were required for running Medlyn-PM. They
were determined by fitting the analytical Gs equation, Gs = 1.6 ∗ GPP

Ca ∗
(

g1√
D
+ 1

)
+ g0,

and we obtained that g0 = 0.06 and g1 = 3.94. The variations in RMSE/MAE/R2 with the
change of the numbers of hidden layers and neurons for the ANN-PM model with training
and validation datasets are presented in Figure 4.

The figure shows that the RMSE and MAE of ANN-PM with the training dataset
decrease gradually as the number of hidden layers (HL) and the number of neurons
increase. The RMSE and MAE of ANN-PM with the validation dataset decrease as the
numbers of hidden layers (HL) and neurons increase from 1 (the number of HL) −1 (the
number of neurons) to 10–48 but increase after the number of the two parameters become
larger than 1–48. As the number of hidden layers and the number of neurons increase
to 10–128, the R2 of the training dataset reaches a maximum value (0.94), and the R2 of
the validation dataset is concentrated around 0.80. Then, considering the AIC values, we
identified the best architectures of ANN-PM (AIC = −0.76) and Medlyn-PM (AIC = −0.55)
models and the key parameters are shown in Table 5. The ANN-PM model has an ANN
structure with two hidden layers and 48 neurons in each layer. The AIC index is also used
to select the ANN-based GPP model in Medlyn-PM, and the optimal model has two hidden
layers and one neuron in each layer.

Table 5. The key parameters of the two models. ANN is artificial neural network and PM is the
Penman-Monteith.

ANN-PM Model Medlyn-PM Model

The number of hidden layers 2 2
The number of neurons 48 1
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Figure 4. A three-dimensional graph between the number of hidden layers, the number of neurons, and RMSE/MAE/R2

of the training and validation datasets of the ANN-PM model. (a1) is the RMSE of the training, (a2) is the RMSE of the
validation, (b1) is the MAE of the training, (b2) is the MAE of the validation, (c1) is the R2 of the training, (c2) is the R2 of
the validation. RMSE is the root mean square error, MAE is the mean absolute error, and R2 is the determination coefficient.

3.2. Comparison of ANN Model with Different Input Data

The input data of ANN in the ANN-PM model includes meteorological data (Ta, P,
SW, Ca, and VPD) and remote sensing data (NIRv and NDVI). We investigate the accuracy
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of estimating ET using the optimized ANN-PM (two hidden layers and 48 neurons in each
layer) with several combinations of input data (Table 3). Figure 5 shows the comparisons
between the predicted ET values and the measured values of cropland ET in the training,
validation, and test datasets across all flux sites.

Figure 5. Scatter plots between the predicted ET values and the observed ET values measured from the flux tower in the
training, validation, and test datasets of the ANN-PM model. (a1–a3) is the scatter plot between the predicted ET values
and the observed ET values measured from the flux tower of the ANN-PM model using meteorological data in the three
datasets, (b1–b3) is the scatter plot using meteorological data and NDVI, (c1–c3) is the scatter plot using meteorological
data and NDVI and NIRv, (d1–d3) is the scatter plot using meteorological data and NDVI and NIRv and SWIR.
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As shown in Figure 5, all the employed models provide different accuracies un-
der different input combinations. The accuracy of predicted ET values differs signifi-
cantly depending on the model types and input combinations. Except for the second
input combination, all input combinations show the highest R2 in the training stage
(Figure 5(a1,c1,d1)). The ranks of the input combinations under investigation in terms of
prediction accuracy are (the value in parentheses after RMSE indicates the percentage of
RMSE relative to the observed value): the fourth input combination (R2 = 0.831–0.837,
RMSE = 18.52–18.91 W m−2 (38.42–38.86%), MAE = 12.63–13.00 W m−2), the third input com-
bination (R2 = 0.83, RMSE = 19.09–19.50 W m−2 (39.84–40.46%), MAE = 13.27–13.41 W m−2),
the second input combination (R2 = 0.81–0.82, RMSE = 19.25–19.84 W m−2 (39.94–41.05%),
MAE = 13.05–13.51 W m−2), and the first input combination (R2 = 0.71–0.73,
RMSE = 23.76–24.58 W m−2 (49.29–50.75%), MAE = 16.05–16.47 W m−2). In the testing
stage, the models of the third input combination and fourth input combination have identi-
cal performance in estimating ET, both of which performed superior to the second input
combination and the first input combination in predicting ET. These results confirm that
the model using all input variables (meteorological data and three remote sensing data
factors (NDVI, NIRv, SWIR)) achieves the best performances (RMSE = 18.52–18.91 W m−2

(38.42–38.86%), MAE = 12.63–13.00 W m−2, and R2 = 0.831–0.837) compared with those
using a subset of all the variables. However, the model using meteorological data and two
remote sensing data factors (NDVI and NIRv) is also capable of predicting ET with accept-
able accuracy, having the RMSE and MAE values of 19.09–19.50 W m−2 (39.84–40.46%) and
13.27–13.41 W m−2, respectively. When using only meteorological data, the model shows
degraded performance with larger errors (RMSE = 23.76–24.58 W m−2 (49.29–50.75%) and
MAE = 16.05–16.47 W m−2) and smaller determination coefficients (R2 = 0.71–0.73). The
model using the combination of meteorological data and one remote sensing factor, NDVI,
shows intermediate results (RMSE = 19.25–19.84 W m−2 (39.94–41.05%),
MAE = 13.05–13.51 W m−2, and R2 = 0.81–0.82). The model using meteorological data
and three remote sensing data factors (NDVI, NIRv, and SWIR) showed comparable perfor-
mance with that using meteorological data and two remote sensing data factors (NDVI,
NIRv). Therefore, it can be concluded that remote sensing data in the ANN model facili-
tated the improvement of the estimates of croplands ET.

3.3. Comparison of ANN-PM and Medlyn-PM

Figure 6 shows the scatter plots of measured ET vs. predicted ET by the Medlyn-
PM and the ANN-PM model, respectively. At the site scale, the two models differ
substantially in performance from each other. Figure 6 shows good correlations be-
tween the observed ET and the predicted ET by the two methods (R2 = 0.75 and 0.83).
Figure 6 also illustrates that the R2 value of the ANN-PM model is 0.08–0.09 higher than
that of the Medlyn-PM model and the RMSE and MAE of ANN-PM are 4.26–4.3 and
3.12–3.34 W m−2 smaller than that of the Medlyn-PM model, respectively. Overall, the
ANN-PM model shows relatively high accuracy with smaller RMSE and MAE, and larger
R2 (RMSE = 19.09-19.50 W m−2 (39.84–40.46%), MAE = 13.27–13.41 W m−2, R2 = 0.83) in
estimating cropland ET compared to the Medlyn-PM model (RMSE = 23.39–23.76 W m−2

(49.95–51.14%), MAE = 16.39–16.75 W m−2, and R2 = 0.74–0.75), indicating a great advan-
tage in estimating cropland ET using the ANN-PM model.

3.4. Accuracy of ANN-PM Model under Dry Climates

In arid areas, most of the precipitation is consumed in the process of ET, and inade-
quate water supply could substantially limit the growth of crops in these regions. Therefore,
accurate estimation of ET plays an important role in the sustainable development of agricul-
ture in arid areas. Hence, we evaluated the ANN-PM model to simulate ET on a daily scale
over flux sites covering a wide range of climate dryness, measured using aridity index (AI).
The R2 between simulation and observation is used to measure the model performance.
The variations in R2 of each flux site in relation to site-scale AI are shown in Figure 7, where
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low AI values correspond to dry climates. The driest site is US-Twt, followed by US-Tw3,
US-Tw2, and DE-Rus. The average R2 of the 16 flux sites is 0.74, and the average R2 of
the driest four flux sites with an AI index lower than 0.5 (DE-Rus = 0.49, US-Tw2 = 0.42,
US-Tw3 = 0.30, and US-Twt = 0.26) is 0.77. In terms of R2, the performances of the ANN-PM
model at the dry sites are reasonable and comparable to those at the wet sites (Figure 7).

Figure 6. Scatter plots of the observed ET values measured from the flux tower and predicted ET
values of the Medlyn-PM (left) and the ANN-PM model (right) in estimating cropland evapotran-
spiration. (a,c,e) are the scatter plots of the observed ET values measured from the flux tower and
predicted ET values of the Medlyn-PM model in the training, validation, and test datasets, respec-
tively. (b,d,f) are the scatter plots of the observed ET values measured from the flux tower and
predicted ET values of the ANN–PM model in the training, validation, and test datasets, respectively.
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Figure 7. AI and R2 values of each flux site. AI is aridity index and R2 is the determination coefficients
between simulation and observation.

The ANN-PM model can capture the time-series changes of ET at the dry sites well
(Figure 8, four sites with an AI index lower than 0.5). At the driest site, US-Twt, which is a
paddy field site, ET predicted by the ANN-PM model agreed well with the observations,
indicating that the model can reflect the influence of irrigation on cropland ET under dry
conditions. Consequently, the ANN-PM model can simulate cropland ET across a wide
range of gradients of climate dryness, showing great potential to estimate cropland ET
accurately on a regional scale.

Figure 8. Time-series diagrams of observed ET (black line) measured from the flux tower and
simulated ET (red line) by the ANN-PM model.
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4. Discussion

4.1. Discussion of the Number of Sites

We used 17 sites in our study, and the time span of all sites is 2001–2014 (Table 1). The
entire dataset contains more than 50,000 samples on a daily scale, which are large enough
for establishing the ML-based method. As we know, the size of the sample we used is
larger than some existing publications. For example, Zhu et al. [31] used nine stations in the
arid region of Northwest China during the period 2002–2016. Yin et al. [57] evaluated ET
in the eddy covariance flux observations at 14 Chinese flux tower sites during the period
2003–2017, and each site has at least 3 years of reliable data. Hossein Kazemi et al. [58]
only used the daily meteorological records of seven weather stations in Iran for 10 years
(2008–2017). Therefore, our data are enough to train a machine learning model. Our study
is mainly for cropland. There are currently limited open-access cropland sites, but our sites
cover the current main farming areas. These areas cover different climate types. Therefore,
our model has wide applicability. There is currently a lack of stations in tropical regions.
When applied in this climate region, the model needs to be further tested.

4.2. Comparison between This Research and Existing Research

The ANN-PM model of this study combines ML methods and the PM equation, and
the remote sensing data of inputting into ANN contains a recently proposed NIRv index,
which can be used to reflect the photosynthetic capacity and water status of the surface
vegetation. Combining NIRv with ML and the PM equation shows great advantages in
estimating cropland ET. Zhao et al. [19] used an ML method (ANN) and PM equation to
estimate ET, but the study used soil moisture data that is difficult to obtain, which limits the
application of the model in a large-scale and long-term series. Yamaç and Todorovic [59]
combined the PM equation with three ML methods (K nearest neighbor algorithm, ANN,
and Adaptive Boosting model) to estimate the ET using available weather input data with
four different scenarios (temperature, solar radiation, wind speed, and relative humidity).
They showed that using the combination of four data scenarios performs better than any
other combinations. The above two studies are based on the theoretical framework of
the PM equation and use ML methods. However, the first study uses soil moisture data
that is not feasibly accessed on a regional scale, and the second uses only meteorological
data, which is only applicable in a limited area. Compared with the above two studies,
we combined meteorological data with remote sensing data to estimate ET. The fitting
effect is better, and accuracy is improved. The model tested was applicable to a wide range
of environmental gradients. He et al. [60] used a process and PM-based ET model, the
MOD16 algorithm, to estimate ET for cropland sites (US-Tw2, US-Tw3, and US-Twt). The
results showed that the site US-Tw2 has a higher R2 (0.72) than US-Tw3 and US-Twt. In our
study, we evaluated the performance of our ET models at three cropland sites (US-Tw2,
US-Tw3, and US-Twt), respectively. Compared with He et al. ’s [60] study, our models
at the three sites all show higher accuracy (R2 = 0.74–0.86). Our hybrid model, based on
ML and PM, can perform better than the model based on the process and PM equation.
Amazirh et al. [61] used the PM equation to estimate ET in semi-arid areas by introducing
a simple relationship between surface resistances (rc) and verified the model at flood and
drip irrigation sites. The results showed that the R2 of these two sites were 0.76 and 0.70,
respectively, and the RMSEs were 22 and 23 W m−2, respectively. Feng et al. [62] compared
the performance of the PM equation and self-optimizing nearest neighbor algorithm (CCA-
k-NN) in estimating ET. The results showed that the performance of CCA-k-NN was
comparable with PM (R2 = 0.8, RMSE = 24.01 W m−2, MAE = 18.06 W m−2). The above
studies only used the PM equation to estimate cropland ET. Our study combines ML
methods with the PM equation to estimate cropland ET (R2 = 0.84, RMSE = 17.40 W m−2,
MAE = 12.41 W m−2), the estimating accuracy obtained in this study is better, and the
physical mechanism of the PM equation can ensure that the simulation result is always
within the range of potential evapotranspiration.
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4.3. Comparison of the ANN-Based ET Model with Existing ML-Based ET Models

ML algorithms have been more and more widely used to estimate ET on a regional
or global scale. In this study, the most widely used ANN algorithm is used to improve
the accuracy of the PM equation to estimate cropland ET on a regional scale. There are
also many studies that use other ML algorithms to estimate ET, e.g., Abdullah et al. [63],
Antonopoulos and Antonopoulos [64], Reis et al. [29], Yamaç and Todorovic [59], Zhu
et al. [31], and Ferreira and da Cunha [65]. These studies literally showed different per-
formances of different ML-based ET models. However, it should also be noted that the
performance metrics of ET models could vary between different regions, validation data
sources, temporal scale of validation, and so on. For example, the ML models estimating the
reference ET usually show higher performance metrics than the actual ET models [64,66,67],
as reference ET was calculated from only a few meteorological factors. If different data
sources are used in modeling ET using the ML algorithm, the efficiency of the ET model
can also be different. For example, Fan et al. [67] showed that the performance of the ML
algorithm (R2 = 0.701–0.995, RMSE = 0.106–0.637 mm d−1) in estimating reference ET were
significantly different between eight meteorological stations that represented the eight
main climate types of China. Zhu et al. [31] showed similar results in modeling reference
ET using the ML over nine meteorological stations in the arid region of Northwest China
(R2 = 0.844–0.969, MAE = 0.268–0.635 mm d−1). The ET model focusing on the daily scale
also produces different performance metrics from the hourly scale ET model. Ferreira
and da Cunha [65] revealed better performances of the deep learning-based models in
estimating daily reference ET on a daily scale as compared to the models on an hourly
scale, with R2 increased from 0.78–0.88 to 0.87–0.91, and RMSE decreased from 0.56–0.73
to 0.47–0.60 mm d−1. The above studies show that the performance of the ET models can
differ under different temporal scales. The performance metrics of the hybrid model in our
study are in line with the range of those ML-based ET models.

4.4. The Reasons for the Low Accuracy of the Medlyn-PM Model and the Lack of the
ANN-PM Model

The reason for the degraded performance of Medlyn-PM in estimating cropland ET, as
compared to ANN-PM, is that the effect of soil evaporation is not considered in the model.
ET includes soil evaporation and plant transpiration, as well as part of the contribution of
canopy interception. Soil evaporation cannot be ignored in ET. Yu et al. [68] investigated
the contribution of soil evaporation to ET of winter wheat under sprinkler irrigation. Their
results showed that soil evaporation was an important part of ET, accounting for 20–28%
of ET. Liu et al. [69] used a large-scale weighing permeameter and a micro permeameter to
measure the daily evaporation and ET in winter wheat fields, and the study showed that
soil evaporation accounted for 30% of the ET. Qin et al. [70] also showed that evaporation
accounted for 32% of the total ET during the growth of winter wheat and 65% in the early
growth period. These indicated a considerable contribution of soil evaporation in ET. Since
ANN-PM used ANN to estimate the bulk surface conductance, which accounts for the
effect of both stomatal and soil conductance, it has been found to perform better than the
Medlyn-PM model.

The remote sensing information allows ANN-PM to simulate spatiotemporally con-
tinuous ET information [71]. However, we did not exhaust all possible RS data in the
ANN-PM, which is beyond the scope of this study. In the future, we can evaluate more RS
data to improve the accuracy of the ANN-PM model. For example, the development of
multi-source RS data and surface parameter inversion products can provide PM models
with some basic parameters that promote their application [72], so multi-source remote
sensing data and PM models can be combined to estimate cropland ET.
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5. Conclusions

The accurate estimation of cropland ET is important for crop irrigation, fertilization,
and other management measures. In this study, we proposed an ANN-PM model based
on ML and the PM equation to estimate cropland ET. At the same time, we optimized the
Medlyn-PM model (uses ANN-derived GPP along with Medlyn’s stomatal conductance to
compute Gs, and the computed Gs is used to estimate ET). We compared the two models
to get a better method for estimating ET based on the ML approach. Specifically, we used
ANN to estimate Gs in ANN-PM and GPP that was used to estimate Gs in conjunction with
Medlyn’s Gs model in Medlyn-PM. We have the following conclusions.

1. The optimal ANN architecture to estimate Gs in ANN-PM consists of two hidden
layers with 48 neurons in each layer, and that to estimate GPP in Medlyn-PM, two
hidden layers and one neuron in each layer was optimal. The optimized g0 and g1
values in Medlyn’s Gs model are 0.06 and 3.94, respectively.

2. The ANN-PM model can reasonably estimate the ET of cropland (RMSE = 19.09–19.50 W m−2,
MAE = 13.27–13.41 W m−2, and R2 = 0.83 for training, validation, and test datasets)
and is proven to perform better than Medlyn-PM with a smaller RMSE and MAE and
larger R2.

3. The ANN approach can represent the water stress impacts on ET well, as ANN-
PM can reasonably capture the seasonal variations in ET at the dry sties (AI < 0.5).
Additionally, the performances of the ANN-PM model at the dry sites were as good
as at the wet sites.
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Abstract: Weeds are found on every cropland across the world. Weeds compete for light, water,
and nutrients with attractive plants, introduce illnesses or viruses, and attract harmful insects and
pests, resulting in yield loss. New weed detection technologies have been developed in recent years
to increase weed detection speed and accuracy, resolving the contradiction between the goals of
enhancing soil health and achieving sufficient weed control for profitable farming. In recent years, a
variety of platforms, such as satellites, airplanes, unmanned aerial vehicles (UAVs), and close-range
platforms, have become more commonly available for gathering hyperspectral images with varying
spatial, temporal, and spectral resolutions. Plants must be divided into crops and weeds based on
their species for successful weed detection. Therefore, hyperspectral image categorization also has
become popular since the development of hyperspectral image technology. Unmanned aerial vehicle
(UAV) hyperspectral imaging techniques have recently emerged as a valuable tool in agricultural
remote sensing, with tremendous promise for weed detection and species separation. Hence, this
paper will review the weeds problem in rice fields in Malaysia and focus on the application of
hyperspectral remote sensing imagery (HRSI) for weed detection with algorithms and modelling
employed for weeds discrimination analysis.

Keywords: rice plant; weed; hyperspectral imagery; remote sensing

1. Introduction

The agricultural sector provides significant economic growth by endowing food
sources, producing industrial raw materials as well as providing job opportunities for a
substantial number of individuals [1,2]. In Malaysia, the agricultural industry has endured
as one of the predominant sectors for socio-economic activity, contributing about 8.7% of
the annual gross domestic product (GDP) and 11.4% of the total employment [3]. The
major agricultural activities in Malaysia are dominated by rubber (Hevea brasiliensis (Willd.
Ex A. Juss) Mull. ARg), oil palm (Elaeis guineensis) and rice plant (Oryza sativa L.) [4].
The agricultural sector focuses on sustainable food production and proffering consistent,
high-quality and safe food products. In line with an increasing population, global food
production will need to significantly multiply in the next few years along with limited area
expansion [5]. However, there are several issues that have arisen regarding low crop yield
production such as uncertain weather conditions, insufficient labour power, unmaintained
agricultural instruments, a reduction in soil and seed quality, constraints on the use of new
technologies, etc. [4,6].
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In the agricultural ecosystem, weeds serve as a competitor with the actual crop for
obtaining light source, nutrients, moisture intensity and gaseous exchange which result in
a reduction in crop yield and product quality [3,7]. For crop production, the potential of
weed-induced deprivation refers to the type of weed, density, emergence time, and duration
intrusion including the simultaneous emergence of weeds along with crop-augmented
competition towards restricted growth resources that can trigger the risk of critical yield
loss [2,8]. This paper will review the weeds problem in rice fields in Malaysia and focus on
the application of hyperspectral remote sensing imagery (HRSI) for weed detection analysis.
As a result, researchers, particularly in developing nations, can apply their understanding
of decreasing weed presence and enhancing yield output. The focus of this work is on
weed detection in rice fields utilising a hyperspectral remote sensing platform. However,
hyperspectral remote sensing weed detection in other crops is also included in this review.

2. Methodology

This paper is a conventional review paper. Sources of articles and related research
papers were browsed and identified from several databases such as Google Scholar, Google
Book, Semantic Scholar, UPM EZAccess, MDPI, and ResearchGate. The primary keyword
‘hyperspectral remote sensing’ and its synonym paired with the secondary keyword ‘weed’
and the third keyword ‘rice plant’ was used as the source of content exploration. Each
database search made use of these keyword sets. A hand search was also performed to
ensure that no related articles were overlooked. The search was carried out in the fourth
quarter of 2021.

All search results were filtered using the following criteria: (1) the study must use
hyperspectral remote sensing imagery and platform as the primary data input, (2) the study
must dispute the application of hyperspectral remote sensing techniques in weed detection
analysis, (3) the document must have reported on the research undertaken, (4) the included
papers must have been published in the first quarter of 2021, and (5) the articles must be
written in English.

The articles were then reviewed by title and abstract to exclude those that did not
satisfy the requirements. Finally, the complete text of the remaining articles was scrutinised
to determine whether or not they fit the requirements. Finally, data from a number of articles
were taken and transferred into a spreadsheet. Citation information, study objectives,
hyperspectral remote sensing sensor, crop and weed types, methodologies and techniques
employed, accuracy evaluation, study implications, year of publication, and reference data
were all included in the details.

This paper is organized into seven sections. The first section describes the weeds
problem in agricultural crops. The approach for searching the scientific database for
relevant publications is explained in Section 2. Section 3 highlights the significance of
weeds presence in Malaysia’s rice fields. Section 4 elaborates on the hyperspectral remote
sensing system while the literature on several methodologies for handling remote sensing
datasets is presented in Section 5. Section 6 explains the weed detection analysis by using
hyperspectral remote sensing with the classification by using spectral reflectance and
utilization of the modelling and algorithm. Future directions of hyperspectral remote
sensing approaches and conclusions are presented in Section 7.

3. Weeds in Malaysia’s Rice Field

According to El Pebrian and Ismail [9], rice is one of Malaysia’s most widely grown
agricultural crops. According to the Department of Agriculture (DoA) Peninsular Malaysia,
this crop was grown on 679,239 acres in 2014, making it the third-largest crop in the country
after oil palm and rubber. Malaysia produced 2,848,559 metric tonnes of paddy with
such a large planted area. Yusof et al. [10] stated that Malaysian farmers produced 70%
of the country’s rice production while the rice industry’s role is not only to contribute
to Malaysia’s economy but also to ensure the country’s food security. The plantation of
rice occurs twice a year, for example: (i) Main season (October–March) and off season
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(April–September) with two types of methods implemented in rice cultivation known as
direct seeding and transplanting. Dilipkumar et al. [4] stated that 90% of the total rice crop
in Malaysia was planted using the direct-seeded method and 10% was transplanted.

Most farmers chose the direct seeding method due to labour insufficiency and expen-
sive cost in rice transplanting [11]. Direct-seeded rice systems implement three different
principal methods, for example, water seeding, wet seeding and dry seeding [4,12]. How-
ever, the substitution of this planting technique presents crucial weeds expansion in rice
crops. According to Hossain et al. [13], many studies have reported that the dominance
of particular weed species in rice cropping systems is significantly influenced by the crop
establishment method. According to Nagarde et al. [14], weeds are a severe danger to
rice, with yearly weed yield losses ranging from 15% to 21% worldwide. Due to massive
weed infestation, direct-seeded rice yields are predicted to be reduced by 60% and above.
Yield reductions of up to 48% in transplanted crops, 53% in direct-seeded crops (flooded
conditions) and 74% in direct-seeded crops (dry soils) have been documented. Different
types of grasses, broadleaf weed and sedges make up the weed flora in direct-seeded
rice (Table 1).

Table 1. Weeds species in Asia’s rice field.

Grassy Weeds Sedges Broadleaf Weeds

Digitaria setigera Cyperus iria Commelina benghalensis
Digitaria sanguinalis Cyperus difformis Caesulia axillaris

Digitaria ciliaris Cyperus rotundus Eclipta prostrata
Echinochloa colonum Fimbristylis miliacea Ipomoea aquatica
Echinoclhoa crus-galli Ludwigia octovalvis

Eleusine indica Ludwigia adscendens
Ischaemum rugosum Monochoria vaginalis
Leptochloa chinensis Sphenoclea zeylanica

Oryza sativa
Paspalum

Source: Nagarde et al. [14]

Direct-seeded rice systems bestow an aerobic environment for weed growth since they
are not flooded during the beginning growth stage of the rice plants and it is convenient
towards weed expansion [11,15]. The aerobic soil condition in the direct-seeded rice system
conserves water, while the weed problem in direct-seeded rice is exacerbated by the lack
of stagnant water and the lack of a ‘head start’ in rice seedlings over sprouting weed
seedlings [16]. Toriyama [17] explained that the extensive employment of the direct seeding
method with the frequent use of herbicide and a shortage of irrigation supplies accountable
on the transference of weed species populations in the rice field ecosystem, for example, the
grasses species: Echinochloa crus-galli, Echinochloa spp. (E. oryzicola, E. colona, E. staginina,
and E. picta), Leptochloa Chinensis, and Ischaemum rugosum, which were not dominant
in Malaysian rice fields, has previously become widespread afterwards (see Table 2).
Furthermore, Chauhan et al. [12] found that the density of grassy weeds in zero-tilled
direct-seeded rice was higher than in puddled transplanted rice. Sedges and broadleaves,
on the other hand, were less abundant. Broadleaves such as Sagittaria guayanensis Kunth,
Monochoria vaginalis (Burm. f.) C. Presl ex Kunth, Limnocharis flava (L.) Buchenau, Ludwigia
octovalvis (Jacq.) P.H. Raven, and Alternanthera sessilis (L.) R. Br. Ex DC. and Ammannia
baccifera L. also had expanded abundance in the puddled transplanted field.
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Table 2. Weed shift from transplanting to the direct-seeding method.

Irrigated Transplanting Extensive Direct Seeding Intensive Direct Seeding

Grasses

Isachne globose
Leersia hexandra

Echinochloa crus-galli complex
Lepthochola chinensis
Ischaemum rugosum

Oryza sativa (weedy rice)

E. crus-galli
L. chinensis
I. Rugosum

O. sativa (weedy rice)

Broadleaf weeds

Limnocharis flava
Monochoria vaginalis

M. minuta
Sphenoclea zeylanica

L. flava
M. vaginalis

L. hyssopifolia
M. minuta

L. flava a

S. guyanensis b

Sphenoclea zeylanica b

M. crenata b

Limnophila erecta a

Sedges

Scirpus grossus Cyperus iria
Fimbristylis miliacea

C. iria
F. milicea b

C. difformis
a Biotypes with herbicide resistance against 2,4-D and ALS-inhibitor herbicides. b Species/biotypes with herbicide
resistance against 2,4-D. Source: [17].

Weeds are one of the most significant causes of reducing rice productivity, resulting in
not only large financial expenditures but also crop quality difficulties. Crops can also be
affected by weeds present at any growth stage [18]. In Malaysia, weed-related production
losses range from 5% to 85%, depending on the planting method, season, region, major
weed flora, weed density, management practices and infestation length [4]. Issues regarding
weeds in crops are complex; meanwhile, to reduce their expansion and impacts on the crop,
the management strategy chosen must be synchronized in all aspects to make sure that
systematic guidance will be assembled to manage the existing weeds as well as to prevent
the spreading of new weeds [19]. A particular weed management proposition, for example,
mechanical, chemical, manual and biological control strategies were initiated for weeds
control in a crop field since these strategies came with certain constraints such as proper
climatic circumstances, location of farmers, labour availability and the capability to endure
with management expenses [20,21]. Early weed treatment not only reduces the occurrence
of pests and diseases but also reduces agricultural yield loss by up to 34%. Chemical
and non-chemical weed management strategies have been widely used in rice fields in
this scenario. Manual weeding is too time consuming, expensive, and inconvenient as a
non-chemical technique. Mechanical weed management is a non-chemical approach [18].

Partel et al. [22] created and constructed a smart sprayer that could distinguish be-
tween weeds and non-weed objects using machine vision and artificial intelligence. This
targeted approach was combined with a revolutionary precision spraying system that
included a state-of-the-art weed detecting technology and a weed mapping system for
precise spraying. When compared to traditional broadcast spraying techniques, which
often cover the entire field, the results showed that using this system lowered the number
of agrochemicals necessary. Huang et al. [23] and Yao and Huang [24] mentioned that
agricultural remote sensing has been established and utilised for monitoring crop field
conditions such as growth status, soil variability, crops stress from weeds, pests, water and
nutrition insufficiency in providing data and information towards the efficient operation.
Unmanned aerial vehicle (UAV) technology provides a desirable precision agriculture data
gathering platform that is highly flexible and simple to use while collecting high spatial
resolution data in a timely way. Due to their geographical and temporal resolution capabil-
ities and cost-effectiveness, UAVs are a better platform for crop monitoring activity [25].
Currently, in conjunction with the evolving transducer technology and sensor, remote
sensing approaches were upgraded for weed detection and control particularly with the
emergence of hyperspectral sensing and imaging [23].
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4. Hyperspectral Remote Sensing: A Brief Overview

According to Weiss et al. [26], agriculture monitoring from remote sensing is a vast
subject that has been widely addressed from multiple perspectives, sometimes based on
specific applications (e.g., precision farming, yield prediction, irrigation, weed detection),
remote sensing platforms (e.g., satellites, unmanned aerial vehicles—UAVs, unmanned
ground vehicles—UGVs), or sensors (e.g., active or passive sensing, wavelength domain)
or specific locations and climatic contexts (e.g., country or continent, wetlands or drylands).
Campbell and Wynne [27] defined remote sensing as the application of acquiring informa-
tion regarding the Earth’s land and water surface by utilising images obtained from an
overhead perspective, implementing electromagnetic radiation in one or more regions of
the electromagnetic spectrum, reflected or emitted from the Earth’s surface. Hyperspectral
remote sensing involves extracting information from the objects or scenes that lie on the
Earth’s surface due to radiance obtained by airborne or spaceborne sensors [28,29].

Generally, hyperspectral imaging is an incorporation of the modern imaging system
and traditional spectroscopy technology [30,31]. According to Govender et al. [32], the
evolution of airborne and satellite hyperspectral sensor technologies has overcome the
restraint of multispectral sensors since hyperspectral sensors assemble several narrow
spectral bands from the visible, near-infrared (NIR), mid-infrared, and short-wave infrared
portions of the electromagnetic spectrum. The hyperspectral sensor collects about 200 or
more spectral bands, each only 10 nm wide [27] which allows the construction of continuous
spectral reflectance signatures while the narrow bandwidths element of hyperspectral data
enable in-depth examination of Earth surface characteristics which would disappear within
the relatively coarse bandwidths acquired with multispectral data. Hyperspectral data are
usually assigned as hypercubes (see Figure 1) that contain two spatial dimensions and one
spectral dimension, regarding the characteristics of each hyperspectral image, comprising
many channels since there were bands—in contrast to grayscale or RGB images—that
included only one or three channels, respectively [33].

The hyperspectral data cube in Figure 1 explained that Figure 1a A push-broom sensor
on an airborne or spaceborne platform acquire spectral data for a one-dimensional row
of cross-track pixels named as scanline; Figure 1b Sequential scan lines including spectra
for each row of cross-track pixels are pilled to obtain a three-dimensional hyperspectral
data cube which in this illustration the spatial details of a scene are constituted by the x
and y dimensions of the cube, while the amplitude spectra of the pixels are projected to
the z dimension; Figure 1c the three-dimensional hyperspectral data cube can be analysed
as a stack of two-dimensional spatial images whereas each is equivalent to a particular
narrow waveband. Usually, hyperspectral data cubes contain hundreds of stacked im-
ages; Figure 1d the spectral samples can be marked for each pixel and discrimination
of the features in the spectra deliver the primary mechanism for detection and classifi-
cation in a scene [34,35]. Qian [31] stated that there were about three different methods
in obtaining the hyperspectral data regarding the type of imaging spectrometers such as
dispersive elements-based approach, spectral filters-based approach and snapshot hyper-
spectral imaging. In order to collect the hyperspectral images with different spatial and
temporal resolutions, the sensors used can, for example, be mounted on different platforms.
Unmanned-aerial vehicles (UAVs), airplanes, and close-range platforms [36]. Table 3 shows
the comparison of different types of hyperspectral imaging platforms. Kate et al. [37] men-
tioned that hyperspectral sensors were utilised for providing information such as airborne
visible/infrared imaging spectrometer (AVIRIS), Hyperion, Hymap (from HyVista Castle
Hill, Australia), and airborne imaging spectroradiometer for applications (AISA). Table 4
below shows different types of hyperspectral sensors used which are usually mounted on
the aircraft and satellite [38].
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Figure 1. Hyperspectral data cube structure [34,35].

Table 3. Comparison of hyperspectral imaging platforms [36].

Parameters Satellites Airplanes Helicopters
Fixed-Wing

UAVs
Multi-Rotor

UAVs
Close-Range

Platforms

Operational Altitudes 400–700 km 1–20 km 100 m–2 km <150 m <150 m <10 m

Spatial coverage 42 km × 7.7 km ~100 km2 ~10 km2 ~5 km2 ~0.5 km2 ~0.005 km2

Spatial resolution 20–60 m 1–20 m 0.1–1 m 0.01–0.5 m 0.01–0.5 m 0.0001–0.01 m

Temporal resolution Days to weeks Depends on flight operations (hours to days)

Flexibility Low (fixed by
repeating cycles)

Medium (depend on availability of
aviation company) High

Operational
complexity

Low (provide final
data to users)

Medium (depend on users or
vendors)

High (operate by users with setting
up the hardware and software)

Applicable scales Regional–global Landscape-regional Canopy–landscape Leaf–canopy

Major limiting factors Weathers Unfavourable flight height/speed,
unstable illumination conditions

Short battery endurance,
flight regulations

Platform design
and operation

Image acquisition cost Low to medium High (typically need to hire an
aviation company to fly) Large (due to area coverage)
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Table 4. Type of hyperspectral sensors on aircraft and satellites [38].

Types of Sensors Producer
Number of

Bands
Spectral Image (μm)

Satellite mounted hyperspectral sensors

FTHSI on
MightySat II

Air Force Research
(OH, USA) 256 0.35–1.05

Hyperion on EO-
NASA Guddard

Space Flight Center
(Greenbelt, MA, USA)

242 0.40–250

Aircraft-mounted hyperspectral sensors

AVIRIS
(airborne visible
infrared imaging

spectrometer)

NASA Jet Propulsion
Lab. (Pasadena, CA,

USA)
224 0.40–2.50

HYDICE
(hyperspectral digital

imagery collection
experiment)

Naval Research Lab
(Washington, DC,

USA)
210 0.40–2.50

PROBE-1
Earth Search Sciences

Inc. (Kalispell, MT,
USA)

128 0.40–2.50

CASI
(compact airborne

spectrographic
imager)

ITRES Research
Limited (Calgary, AB,

Canada)
Over 22 0.40–1.00

HyMap Integrated
Spectronics 100 la 200 Visible to thermal

Infrared

EPS-H
(environmental

protection system)
GER Corporation

VIS/NIR (76),
SWIR1 (32),
SWIR2 (32),

TIR (12)

VIS/NIR (0.43–1.05)
SWIR1 (1.50–1.80)
SWIR2 (2.00–2.50)

TIR (8–12.50)

DAIS 7915
(digital airborne

imaging spectrometer)

GER Corporation
(geophysical and

environmental
research imaging

spectrometer)

VIS/NIR (32),
SWIR1 (8),
SWIR2 (32),

MIR (1),
TIR (12)

VIS/NIR (0.43–1.05)
SWIR1 (1.50–1.80)
SWIR2 (2.00–2.50)

MIR (3.00–5.00)
TIR (8.70–12.30)

DAIS 21115
(digital airborne

imaging spectrometer)
GER Corporation

VIS/NIR (76),
SWIR1 (64),
SWIR2 (64),

MIR (1),
TIR (6)

VIS/NIR (0.40–1.00)
SWIR1 (1.00–1.80)
SWIR2 (2.00–2.50)

MIR (3.00–5.00)
TIR (8.00–12.00)

AISA
(airborne imaging

spectrometer)
Spectral Imaging Over 288 0.43–1.00

5. Hyperspectral Remote Sensing Imagery (HRSI) Data Processing and Analysing

5.1. Data Preprocessing

According to Weng and Xiaofei [39], due to the high-dimensional nature of hyperspec-
tral data, as well as the resemblance between the spectra and mixed pixels, hyperspectral
image technology still confronts a number of issues, the most pressing of which are the
following: (1) Hyperspectral image data have high dimensionality. Because hyperspectral
images are created by combining hundreds of bands of spectral reflectance data gathered
by airborne or space-borne imaging spectrometers, the spectrum information dimension of
hyperspectral images can also be hundreds of dimensions; (2) missing labelled samples. In
practical applications, collecting hyperspectral image data is rather simple, but obtaining
image-like label information is quite challenging. As a result, the categorization of hyper-
spectral pictures is sometimes hampered by a shortage of labelled samples; (3) variability
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in spectral information across space. The spectral information of hyperspectral images
changes in the spatial dimension as a result of factors such as atmospheric conditions,
sensors, the composition and distribution of ground features, and the surrounding envi-
ronment, resulting in the ground feature corresponding to each pixel not being single; and
lastly (4) image quality which is the interference of noise and background elements during
the acquisition of hyperspectral pictures which has a significant impact on the quality of the
data collected. The categorization accuracy of hyperspectral images is directly influenced
by the image quality.

Hyperspectral images obtained by various platforms and sensors are usually pre-
sented in raw format which requires them to be pre-processed (for example, atmospheric,
radiometric, and spectral corrections) to rectify detailed information [36]. Assembling
hyperspectral data is more intricate than multispectral and RGB sensors because its radio-
metric and atmospheric calibration workflows are more involuted [40]. Therefore, several
steps were required for the hyperspectral imaging processing procedure in order to obtain
precise output [33]. The processing of hyperspectral imaging signifies the utilisation of
computer algorithms. It includes tasks such as extracting, storing and falsifying infor-
mation from visible near-infrared (VNIR) or near-infrared (NIR) hyperspectral images.
It also provides different information on processing and data mining assignments (for
example, analyse, classify, target detection, regression, and pattern identification) [41,42].
Hyperspectral imaging includes extensive data collection stored in pixels while each data
particularly correlates to their neighbours [43]. Hyperspectral imaging also comprises the
spectral-domain signal as each of the image pixels contains the spectral information; thus,
specific tools and approaches have been amplified for processing both spatial and spectral
information [42]. This magnitude of data has led to the integration of chemometric and visu-
alisation equipment to competently mine for significant and detailed information [11]. The
ordinary hyperspectral image preprocessing procedure is delineated in Figure 2 below [42].

Figure 2. Hyperspectral image preprocessing workflow [42].

According to Burger and Geladi [44], numerous amounts of raw data produced from
hyperspectral imaging devices contain lots of errors that can be rectified by calibration.
Spatial calibration is one of the steps that correlates each image pixel to known units
or features, bestowing information about the spatial dimensions and also rectifying the
optical aberrations (smile and keystone effects) [42]. However, three conditions could
prevail which invalidate calibration models which are: (1) chemical or physical substi-
tution in samples, (2) change of equipment due to inherent uncertainty or ageing parts
and, (3) environment/weather condition, for example, temperature or humidity [14]. Lu
et al. [36] mentioned that hundreds of bands are common in hyperspectral photographs,
and many of them are highly connected. As a result, dimension reduction is an important
step to consider while pre-processing hyperspectral images. Dimensionality reduction is a
crucial pre-processing step in hyperspectral image classification that reduces HSI’s spectral
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redundancy, resulting in faster processing and higher classification accuracy. Methods
for reducing dimensionality convert high-dimensional data into a low-dimensional space
while keeping spectral information [45]. Hence, pre-processing is an important step in
increasing the quality of hyperspectral images and preparing them for subsequent analysis.

Basantia et al. [46] stated that hyperspectral imaging generates extensive data col-
lection from a single sample and with thousands of samples that require daily analysis.
According to Tamilarasi and Prabu [47], in contrast to other statistical techniques, hy-
perspectral image analysis uses physical and biological models to absorb light at certain
wavelengths. For example, air gases and aerosols could absorb light at specific wave-
lengths. Dispersion (adding an outside light source to the sensor region of perspective)
and absorption are examples of atmospheric diminution (radiance denial). As the outcome,
a hyperspectral sensor could not differentiate the radiance recorded with the imaging
generated at other times or locations. Hyperspectral image analysis techniques are derived
from spectroscopy, which relates to the distinct absorption or patterns of reflection of the
context at different wavelengths of a certain material’s molecular composition. This image
must be subjected to appropriate atmospheric correction techniques in order to compare
each pixel’s reflection signature to the spectrum of known material; in laboratories and in
“library” storage areas, known spectral information of materials include soils, minerals and
vegetation types.

5.2. Hyperspectral Image Classification

Hyperspectral imaging (HSI) is classified as supervised, unsupervised, and semi-
supervised based on the nature of available training samples. The supervised technique
uses ground truth information (labelled data) for classification whereas the unsupervised
technique does not require any prior information [48]. According to Wenjing and Xi-
aofei [39], support vector machines, artificial neural networks, decision trees and maximum
likelihood classification methods are examples of commonly used supervised classification
methods. The basic process is to first determine the discriminant criteria based on the
known sample category and prior knowledge and then calculate the discriminant function.
Therefore, in supervised classification, Freitas et al. [49] stated that support vector machines
can produce results that are similar to neural networks but at a lower computing cost and
faster rate, making them ideal for hyperspectral data analysis.

Unsupervised classification refers to categorization based on hyperspectral data spec-
tral similarity, for example, clustering without prior knowledge. As stated by Wenjing
and Xiaofei [39], unsupervised classification can only assume beginning parameters, build
clusters through pre-classification processing, and then iterate until the relevant parameters
reach the permitted range since no prior knowledge is employed. Examples of unsuper-
vised classification are K-means classification and the iterative self-organizing method
(ISODATA). Lastly, is the semi-supervised classification which trains the classifier using
both labelled and unlabelled data. The semi-supervised learning paradigm has been suc-
cessfully utilized beyond hyperspectral imaging [50]. It compensates for the lack of both
unsupervised and supervised learning opportunities. On the feature space, this classifica-
tion approach uses the same type of labelled and unlabelled data. Because a large number
of unlabelled examples may better explain the overall properties of the data, the classifier
trained using these two samples has superior generalisation. Examples of semi-supervised
classification are Laplacian support vector machine (LapSVM) and self-training [39].

Therefore, hyperspectral imaging can be one of the potential techniques for automatic
discriminations between crops and weeds. These sensing technologies have been utilized
in smart agriculture and made substantial progress by generating large amounts of data
from the fields. Machine learning modelling integrating features has also accomplished
reasonable accuracy in order to identify whether a plant is a weed or a crop. Table 5 shows
the application of hyperspectral imaging for the discrimination of crops from weeds by
using machine learning.
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Table 5. Hyperspectral imaging for discrimination of crops from weeds using machine learning
(adopted from Su. [51]).

No. Crop Weed Model
Optimal
Accuracy

Reference

1. Rice Barnyard grass,
weedy rice RF, SVM 100% Zhang

et al. (2019)

2. Maize

Caltrop, curly dock,
barnyard grass,
ipomoea spp.,

polymeria spp.

SVM,
LDA >98.35% Wendel

et al. (2016)

3. Soybean, cotton Ryegrass LDA >90% Huang
et al. (2016)

4. Wheat Broadleaf weeds,
grass weeds PLSDA 85% Hermann

et al. (2013)

5. Broadbean, wheat Cruciferous weeds ANN 100% De Castro
et al. (2012)

6. Sugar beet

Wild buckwheat,
Field Horsetail,
Green foxtail,
Chickweed

LDA 97.3% Okamoto
et al. (2007)

7. Wheat Musk thistle SVM 91% Mirik et al.
(2013)

8. Maize C. arvenis RF >90% Gao et al.
(2018)

RF—random forest; SVM—support vector machines; LDA—linear discriminant analysis; ANN—artificial neural
network; PLSDA—partial least square discriminant analysis.

6. HRSI Application in Weed Detection Analysis

6.1. Weed Classification Using the Spectral Reflectance

Weed classification is important in precision farming because weeds are pests to crops
and compete for space, nutrients, water, and light, and obstruct the growth of crops in the
field [52]. Effective weed management is vital in smart agriculture as weeds can trigger
major environmental and economic problems in agriculture [53]. According to Su [51],
smart agriculture may utilise intelligent technology to precisely monitor weed dispersion in
the field and undertake weed control chores at specific locations, which not only improves
pesticide effectiveness but also increases the economic benefits of agricultural products. The
most significant aspect of an automatic weed removal system within crop rows is the use
of dependable sensing technology to accomplish accurate weed and crop discrimination
at specified points in the field. Therefore, the application of remote sensing employed in
agricultural research was established for the interaction between electromagnetic radiation
and plant materials on the Earth’s surface [54,55]. Hyperspectral imaging has been sug-
gested as the most suitable instrument for food quality assessment and safety investigation
that has been exerted on an array of spectral imaging modalities, for example, NIR, fluo-
rescence, and Raman hyperspectral imaging [46,56]. Hyperspectral images captured by
UAV platforms has lately emerged as a significant tool in agricultural remote sensing, with
considerable potential for weed detection and species differentiation [57].

To obtain detailed spectrum information, hyperspectral imaging sensors frequently
use more and narrower bands. Hyperspectral images have comprehensive spectrum infor-
mation in each pixel, which has been used for a number of agricultural applications [37].
According to Pott et al. [58], spectral bands can be utilized for differentiating plants from
other non-targets. Plant pigments, such as chlorophyll (chlorophyll a and b), carotenes
and xanthophylls, are primarily affected by visible light reflection in plant leaves and
canopies [35]. The red-edge band reflectance is affected by a mixture of chlorophyll, in-
tense light scattering and internal cellular plant structure. Internal leaf structure and
many leaf layers influence the reflectance qualities of the canopy in the near-infrared (NIR)
band [37,58].
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Paap [19] stated that plants’ spectral reflectance is identified based on the cellular
and biochemical leaf structure and leaf canopy. Figure 3 represents a typical spectrum
reflectance and transmitted wavelength of green leaf. The contrast of the reflectance and
transmittance spectra depend upon absorption which is in the visible spectrum range
400–700 nm, the spectra are controlled by absorption of various pigments and primarily
chlorophylls. In near infra-red (NIR), the reflectance spectra are high which is close to 50%
and flat while above 1300 nm, the reflectance declines because of the water absorption
present in the leaf.

Figure 3. Spectral reflectance for healthy and stressed leaf in visible and NIR wavelength [59].

Further contemplation in the vegetation mapping procedure is the size of the objects
to be mapped. Higher spatial resolution imagery is frequently used for mapping narrow
vegetation objects which are acquired from airborne sensors [60]. Weeds compete with
crops and are difficult to distinguish because of their similar colour, shape, and size [61].
However, a previous study on dispersing reflectance spectra of crop and weed leaves
found the potential of weed detection with reflectance measurements. Zhang et al. [62]
mentioned that due to the considerable absorption by chlorophylls, a plant leaf typically
has a low reflectance in the visible spectral range and a comparatively high reflectance in
the near-infrared spectral area due to internal leaf scattering and no absorption. Therefore,
according to Thenkabail et al. [63], plant leaf area index and biomass are more sensitive to
the red band at roughly 680 nm, while plant moisture status is more sensitive to the NIR
near 950 nm. The correlation among the plant pathology has been employed by the remote
sensing technique in contemplation to discover the discrete plant characteristics from their
spectra reflectance.

The application of hyperspectral remote sensing is comprehensively used for dif-
ferent weed detection analysis studies, for example, weed discrimination in maize [64],
discrimination of grassweeds in winter cereal crops [65], in early detection of spotted
knapweed (Centraurea maculosa) and babysbreath (Gypsophila paniculate) with hyperspectral
sensor [66], herbicide-resistant weeds classification [67], identification of (Ranunculus acris
[giant buttercup] and Cirsium arvense [Californian thistle]) by Li et al. [53] and spectral
features extraction from hyperspectral images to differentiate weedy rice and barnyard
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grass [68]. Singh et al. [57] stated that hyperspectral imaging application has also been used
to identify between crop types, for instance, the utilization of satellite-based hyperspectral
sensors to distinguish mustard, potato, sugarcane, sorghum, and wheat in the range of
700–750 nm. The efficacy of hyperspectral sensors for plant species characterization has
been documented in a number of different studies, which is included in Table 6 below.

Table 6. Published reports/study on crop and weed species classification using hyperspectral
imagery [57].

Crop/Weed Mixture Reflectance Wavelength (nm)

Wheat system
Wheat (Triticum aestivum) 0.42–0.45 720–850

Broadleaved weeds 0.6–0.8 720–850
Grass weeds 0.55–0.6 720–850

Wheat stubbles 0.2–0.3 1425–2250
Wheat stubbles heavily grazed 0.3–0.4 1425–2250

Cruciferous weeds 0.65–0.7 750–900
Wheat 0.4–0.5 720–900

Soybean system
Soybean (Glycine max) 0.85–0.90 750–900

Prickly sida (Sida spinosa) 0.78–0.82 750–900
Pitted morning glory (Ipomoea lacunosa) 0.6–0.65 750–900

Sicklepod (Cassia obtusifolia) 0.52–0.55 750–900

Cotton system
Cotton (Gossypium hirsutum) 0.48–0.52 400–600

Cogongrass (Imperata cylindrica) 0.5–0.6 400–750
Johnsongrass (Sorghum halepense) 0.45–0.52 400–750

Sicklepod (C. obtusifolia) 0.21–0.3 400–800

Sorghum system
Sorghum (Sorghum bicolor) 0.55–0.6 720–1000

Common lambsquarters (Chenopodium album) 0.39–0.41 720–1000
Pigweed (Amaranthus spp.) 0.48–0.52 720–1000

Barnyardgrass (Echinochloa spp.) 0.35 72–1000
Mallow (Malva spp.) 0.42–0.44 720–1000

Purple nutsedge (Cyperus rotundus) 0.28–0.30 720–1000

6.2. Algorithms and Modelling for Weed Detection Analysis

For various agricultural applications, several remote sensing approaches, such as hy-
perspectral data from airborne, satellite platforms using multispectral and optical imagery
have been proposed [69,70]. A Study conducted by Felegari et al. [71] looked into the draw-
backs and benefits of using a combination of radar data and optical images to determine the
types of crops in the Tarom region (Iran) in which the Sentinel 1 and Sentinel 2 images were
utilised to generate a map for the selected research area. Hyperspectral sensing, which mea-
sures reflectance from visible to shortwave infrared wavelengths, has allowed vegetation to
be classified and mapped at a variety of taxonomic scales, often down to the species level.
To reduce the dimensionality of the data to a level suitable for the creation of a classification
model, hyperspectral measurements recorded by narrowband spectroradiometers or imag-
ing sensors have typically required some type of spectral feature selection [72]. Therefore,
the remote sensing method can detect the existence of non-crop plants between rows, such
as the recognition of weeds within rows, whereas segregating weeds from crops and iden-
tifying weed species emerging from proximal sensing research has utilized both spectral
reflectance and leaf shape analysis for identification [73]. According to Lan et al. [74], to
examine the datasets generated by these methodologies, proper and effective sophisticated
algorithms as well as high-power computation are required. Genetic programming was
utilized by Nguyen et al. [75] to distinguish between rice and other leaf groups. They also
employed a scanning window of 20 × 20 pixels on a test image to evaluate the classifier,
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attaining a 90% accuracy by applying the classifier to each pixel of the window based on a
colour threshold.

Therefore, several automatic classification techniques have been employed to classify
remote sensing data and plant monitoring procedures, for example, the machine learning
method [74]. According to Dadashzadeh et al. [18], machine vision based on image pro-
cessing has been used to collect data in two different ways: Two-dimensional (2D) vision
and three-dimensional (3D) vision. When using 2D cameras, machine vision systems based
on two-dimensional (2D) image processing have some drawbacks. First, differences in
external illumination have an impact on the quality of images captured by 2D cameras;
thus, the camera’s field of view must be covered. Second, the overlap of different plant
components can make distinguishing weeds from crops difficult.

According to Perez-Ortiz et al. [76], most standard classifiers in machine learning are
based on learning a discriminant function from labelled data (i.e., supervised learning).
However, obtaining tagged data, as opposed to unlabelled data, can be time consuming and
costly. Liakos et al. [77] stated that machine learning (ML) has risen to prominence with big
data technology and high-performance computers to open up new avenues for unravelling,
quantifying, and understanding data-intensive processes in agricultural operations. ML
is characterised as a scientific subject that allows machines to learn without being strictly
programmed, among other things. Examples of ML modelling include artificial neural
networks (ANNs), Bayesian models (BM), deep learning (DL), dimensionality reduction
(DR), decision trees (DT), ensemble learning (EL), instance-based models (IMB) and support
vector machines (SVMs).

Dadashzadeh et al. [18] investigated site-specific weed management in the rice field
using two metaheuristic algorithms: The bee algorithm (BA) and particle swarm optimisa-
tion (PSO), in order to improve the neural network’s ability to identify the most effective
characteristics and classify different types of weeds. Because of their abundance in the
chosen region, this study focused on a rice cultivar (Tarom Mahali) and two common types
of weeds (narrow-leaf weeds (Echinochloa crus-Galli, Paspalum distichum, and Cyperus dif-
formis) and wide-leaf weeds (Alisma plantago-aquatica and Eclipta prostrata) while a stereo
camera was used to collect the necessary data in the form of stereo videos, with different
channels of each frame extracted. The proposed stereo vision technique, which averaged
the related points on various channels and the proposed hybrid ANN-BA classifier for
better classification accuracy, proved to have promising capabilities. Zheng et al. [78]
created and evaluated a new classification algorithm based on colour indices and support
vector data description (SVDD). In the first, second and third years of a three-year case
study, overall accuracies of 90.19%, 92.36%, and 93.8%, respectively, were achieved. Kamath
et al. [79] looked at how to categorize paddy crops and weeds from digital images utilizing
several classifier systems developed with support vector machines (SVM) and random
forest classifiers (RFs) in which the dataset included paddy plants and weeds from the
seedling stage (1-leaf seedling) to the flowering stage. The results with an accuracy of
91.36% showed that multiple classifier systems were shown to outperform single classifier
systems and the extracted features are good for paddy crops and weeds classification.

Li et al. [53] studied weed identification by using hyperspectral data images trained
on three classification models, namely partial least squares discriminant analysis, support
vector machine and multilayer perceptron (MLP) with an overall accuracy range of about
70–100%. The analysis was run by using the whole plant averaged (Av) spectra and
superpixels (Sp) averaged spectra from four different weed samples which comprised
two types of grass (Setaria pumila [yellow bristle grass] and Stipa arundinacea [wind grass])
and two broadleaf weed species (Ranunculus acris [giant buttercup] and Cirsium arvense
[Californian thistle]). Results showed that using both Av and Sp spectra were able to
identify the four weeds’ species. To solve the challenge of forecasting the pre-planting risk
of Stagonospora nodorum blotch (SNB) in winter wheat, Mehra et al. [80] used machine
learning approaches such as artificial neural networks (ANNs), category and regression
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trees, and random forests (RFs). They created risk assessment models that could help with
disease control decisions before planting the wheat crop.

Research conducted by Chen et al. [81] combined the application of multi-feature
fusion and support vector machine (SVM) to detect corn seedlings and weeds for limiting
crop damage with an average recognition accuracy of about 97.50%. The dataset included
a small database of corn seedlings and weed and actual field images. The results of the
experiments revealed that the fusion feature of rotation invariant local binary pattern (LBP)
feature and grey level-gradient co-occurrence matrix based on an SVM classifier accurately
detected all types of weeds and corn seedlings. This provides information about weed
and crop positions to the spraying herbicide, allowing for exact spraying and fertilising.
Chou et al. [82] used a wavelet packet transform paired with a weighted Bayesian distance
based on crop texture and leaf data to identify the crop. The dataset needed for this
study included field crop images captured with a digital camera with a resolution of
640 × 480 pixels. To discriminate plants, they estimated energy coefficients in multiple
frequency bands produced after the change. The crop identification achieved an accuracy
of 94.63% by using the decision distance in different climates over three consecutive days
of photography.

Bakhshipour and Zareiforoush [83] used integrate decision tree (DT) and fuzzy logic
techniques to establish a fuzzy model for differentiating the peanut plant from broadleaf
weeds with the overall accuracies on training and testing datasets being, respectively, 92%
to 96%. On the input dataset, two feature selection approaches were utilised: Principal
component analysis (PCA) and correlation-based feature selection (CFS), and three decision
trees (DTs) were used to distinguish between distinct plants: J48, random tree (RT), and
reduced error pruning (REP). Another study by Bakhshipour et al. [84] is on texture features
recovered from wavelet sub-images to detect and describe four species of weeds in a sugar
beet field, while neural networks (NN) were run as a classifier. Images were taken from
sugar beet fields with a resolution of 96 × 1280 pixels when the plants had six to eight
leaves with significant occlusion and a height of about 80 mm to 160 mm. The research
found that even at a stage of beet growth greater than six leaves, the application of wavelets
proved to be effective for weed detection. Two-dimensional Gabor filters were employed
to extract the features in a study conducted by Tang et al. [85], and an artificial neural
network (ANN) was utilized to categorize broadleaf and grass weeds. The seeds of the
selected broadleaf weed species were planted and the image was captured four weeks
after seeding. The Gabor wavelet/ANN system was created to use texture features to
classify weed images into broadleaf and grass categories. Their findings revealed that joint
space–frequency texture properties might be used to classify weeds.

Furthermore, in agricultural research, deep learning combined with advancements in
computer technology, particularly graphical processing units (GPU) embedded processors,
has produced remarkable results for image classification and objection detection [86,87].
According to Alom et al. [88], deep learning (DL) algorithms have many advantages over
traditional machine learning approaches for image classification, object detection and local-
ization. To build a feature extractor from raw data, traditional machine learning techniques
necessitate extensive domain knowledge [89,90]. The DL approach, on the other hand,
employs a representation-learning method in which a machine can automatically discover
discriminative features from raw data for classification or object detection problems. DL
methods can effectively extract discriminative features of crops and weeds due to their
strong feature learning capabilities. Furthermore, as data sets have grown larger, the per-
formance of traditional machine learning approaches has become saturated. When large
datasets are used, DL techniques outperform traditional machine learning techniques [88].

Hosseini et al. [91] stated that convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are two commonly used architectures in DL. Although CNNs
are used for other types of data, the most common application of CNNs is to analyse and
classify images. The term convolution refers to the filtering process. CNN is based on
a stack of convolutional layers. Each layer receives input data, transforms or convolves
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it, and outputs it to the next layer. This convolutional operation eventually simplifies
the data so that it can be processed and understood more easily [89]. Mentioned by Bah
et al. [92], convolutional neural networks (CNNs) have advanced primarily as a result of
their successful use as a method in the ImageNet Large-Scale Vision Recognition Challenge
2012 (ILSCVR12) and the creation of the AlexNet network in 2012, which demonstrated that
a large, deep convolutional neural network can achieve record-breaking results on a highly
challenging dataset using purely supervised training. Therefore, a deep convolutional
neural network (DCNN) system for plant recognition based on plant leaf features and
patterns was also documented by Lee et al. [93] based on the leaf’s shape, texture, and
venation while they presented new hybrid models taking advantage of the correspondence
of different contextual information of leaf features.

7. Direction for Future Work and Conclusions

In most situations, removing weeds in agricultural areas requires the use of large
amounts of chemical pesticides, which are damaging to the environment regardless of
how effective they are at enhancing crop output. Precision spraying might be explored to
optimise herbicide application in crop fields, thanks to recent advances in image sensors.
In this paper, we have reviewed the situation of weeds in rice crops, the background of
hyperspectral imaging and techniques for processing hyperspectral data. This study is
interdisciplinary and experts from various disciplines, such as agronomy (weed science),
remote sensing, computing, and engineering are collaborating. Hyperspectral remote
sensing technology is an important component in precision farming and is being used by a
growing number of scientists and agricultural researchers. The capacity to properly and
reliably distinguish weeds from crops is a vital step in controlling or eradicating weed
infestations in agricultural crops. Due to the abundance of spectral information sensitive to
distinct plant biophysical and biochemical properties, hyperspectral imaging offers a lot of
potential for applications in agriculture, especially precision agriculture. Hyperspectral
remote sensing technology uses the difference in spectral reflectance qualities between
weeds and crops to identify weeds in crop stands and aids in the compilation of weed maps
in the field, allowing for the application of site-specific and need-based herbicides for weed
management.

Hyperspectral imaging data with high spatial resolution along with machine learning
algorithms in remote sensing showed good potential in agricultural studies. In the recent
decade, sensing technologies and machine learning approaches have grown at a breakneck
pace. These advancements are expected to continue to provide more cost-effective and com-
prehensive datasets, as well as more advanced algorithmic solutions, allowing for better
crop and environment status estimates and decision making. For more intricate hyperspec-
tral picture classification, existing theories and algorithms still have some limitations. As a
result, future research efforts will focus on developing more tailored hyperspectral image
classification systems. Therefore, in order to successfully use the information on weeds and
crop monitoring for economic benefit, a state or district level information system based on
existing information on diverse crops produced from this hyperspectral remote sensing
approach is required. Governments can use hyperspectral remote sensing data to make
critical decisions about which policies to pursue and how to address agricultural concerns.
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Abstract: This paper reviewed the weed problems in agriculture and how remote sensing techniques
can detect weeds in rice fields. The comparison of weed detection between traditional practices and
automated detection using remote sensing platforms is discussed. The ideal stage for controlling
weeds in rice fields was highlighted, and the types of weeds usually found in paddy fields were listed.
This paper will discuss weed detection using remote sensing techniques, and algorithms commonly
used to differentiate them from crops are deliberated. However, weed detection in rice fields using
remote sensing platforms is still in its early stages; weed detection in other crops is also discussed.
Results show that machine learning (ML) and deep learning (DL) remote sensing techniques have
successfully produced a high accuracy map for detecting weeds in crops using RS platforms. There-
fore, this technology positively impacts weed management in many aspects, especially in terms of
the economic perspective. The implementation of this technology into agricultural development
could be extended further.

Keywords: invasive plants; precision agriculture; remote sensing; rice farming; site-specific weed management

1. Introduction

It is undoubtful that weeds, also known as invasive plants, have their roles in the
ecosystem. However, their presence in crops such as rice, oil palm, rubber, and other mass
plantations influences productivity, causes significant economic consequences, decreases
land prices, and reduces company profits [1]. Moreover, the current trend shows that
farmers worldwide are strongly dependent on herbicides used to control weeds; other
control measures include cultural, physical, biological, and mechanical methods [2].

A statistic released by the Food and Agriculture Organization of the United Na-
tions (FAO) for the years 1990 to 2019 showed that the Asia continent had used approxi-
mately 805,412 tonnes of herbicides in controlling the presence of weeds in various types
of crops, followed by the Americas (593,619 tonnes), Europe (179,799 tonnes), Oceania
(29,309 tonnes), and Africa (21,117 tonnes) [3]. Thus, much money was spent on herbicides
to control and manage the presence of weeds in crops. However, too much dependence on
herbicides usage to control weeds to maximize yield production has caused herbicide resis-
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tance and reduced the choices of herbicides to use [4,5]. Figure 1 illustrates the herbicides
usage in controlling weeds for each continent in percentage.

Figure 1. The herbicides usage in controlling weeds by continent from 1990 to 2019.

It is necessary to construct systematic and strategic planning to improve the precision
agriculture (PA) sector, especially in weed management, to control and increase yield
production, leading to a better economy for the country and farmers. Therefore, remote
sensing-based techniques were used to construct and optimize weed management. Remote
sensing is a comprehensive framework that monitors and captures earth surface images
without direct contact with it. In PA sectors, the data gathered can be used in various
applications, such as monitoring rice’s morphology [6], yield estimation [7], and mapping
irrigated areas for food security and water resource management [8]. However, even
though remote sensing has been widely used in weed management, it may not be a
permanently adopted by developing countries anytime soon since local farmers still prefer
the traditional practices.

Thus, this paper aims to review and discuss the techniques and algorithms used in remote
sensing to construct systematic and strategic planning to improve precision agriculture in weed
management. As a result, researchers can adapt the knowledge of controlling weed presence
and increasing yield production, especially in developing countries. This study’s focus was
limited to weed detection using a remote sensing platform in the paddy field. However, weed
detection in other crops using remote sensing was also included.

This paper is organized into eight sections. Section 1 briefly explains this study’s
goal in implementing remote sensing techniques into the precision agriculture (PA) sector.
Section 2 explains the strategy used to search through the scientific database for relevant
publications. Meanwhile, Section 3 discusses the importance of rice and what has been
carried out to increase yield. Section 4 highlights the best stage to control weed in paddy,
weed types, and traditional farming practices. Section 5 presents the literature covering
various types of weed detection using remote sensing techniques. Section 6 reviews the
impact of inadequate and good weed management on crops, yield, and economy. Section 7
deliberates the future direction of remote sensing techniques in weed detection. Lastly, in
Section 8, the conclusions are presented.

2. Methodology

Articles were searched and identified from nine bibliographic databases: IEEE, Science
Direct, MDPI, Web of Science, Scopus, Google Scholar, ProQuest, Springer, and Wiley
Online Library. The primary keyword ‘remote sensing’ and its synonyms were paired with
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the secondary keyword ‘weed’ and the third keyword ‘detection’ and its synonyms, with
Boolean operators. These keyword sets were used in each database search. In addition,
a hand search was also run to ensure no related articles were missed. The search was
conducted in the quarter of 2021.

All search results were filtered based on five criteria: (1) the study must use remote
sensing imagery and platform as the primary data input with at least three spectral bands
(red, green, and blue), (2) the study must discuss the application of remote sensing tech-
niques in weed detection, (3) the document must have reported the research conducted,
(4) the included documents have been published up to the quarter of 2021, and (5) the
articles must be in English.

Next, the articles were screened by title and abstract to eliminate articles that did not
meet the stated criteria. Finally, the full text of the remaining articles was carefully reviewed
to decide whether they met the criteria or not. Lastly, details from selected articles were
extracted and compiled into one giant spreadsheet. The details include citation information,
study objective, remote sensing sensor, crop and weed types, approaches and technique
used, accuracy assessment, study’s implications, year of publication, and reference data.

3. The Importance of Rice Productivity

Rice is consumed by around 3.5 billion people worldwide. However, the estimated
demand by 2025 is mind-boggling, as rice consumption would grow higher than the popu-
lation growth in major Asian countries [9]. In general, paddy production had increased
globally up to 12% from 1975 to 2008, and nearly 166 million ha of paddy have been
harvested in the world [10]. However, in 2020, it was reported that China was the leading
country in the world producing paddy (30.5%), followed by India (224.14%), Bangladesh
(7.36%), Indonesia (7.14%), Vietnam (5.53%), and Thailand (4.17%) [11].

Numerous research have been conducted to increase the yield of rice production to
fulfil consumer demand. Masum et al. [12] had found that the Boterswar variety could
help improve the weed-suppressing capacity of rice. The study used five Bangladesh rice
varieties named Boterswar, Goria, Biron, Kartiksail, Hashikolmi, and Holoi, and these
varieties were planted via a non-weed control method. By using Simpson’s diversity
ndex (SDI) to measure the infestation rate of weed species, the relative neighbour effect
(RNE), and relative competitive intensity (RCI), results showed that Boterswar facilitated
the crop–weed interaction compared to the other varieties. This finding will significantly
influence methods to control the presence of weeds in paddy fields.

Meanwhile, Yamori et al. [13] found that, to increase plant productivity among various
crop species, they must improve the photosynthesis rate at the single-leaf level. To achieve
this, they used transgenic rice plants that consist of various amounts of the Rieske FeS
protein in the cytochrome (cyt) b6/f complex at between 10 and 100% of wild-type levels.
As a result, they decreased the electron transport rates through photosystem II, leading to
an increased uptake of carbon dioxide (CO2) and a successfully increased production yield,
up to 40% [14].

Besides improving the photosynthetic activities, improving the irrigation system in
paddy is the best practice to increase yield. In Thailand, they practiced an alternate wetting
and drying (AWD) method [15]. By setting the threshold at 15 cm of water level below the
soil surface for irrigation, this method increased the grain yield by 15% in the wet season
and 7% in the dry season, meanwhile improving water usage by 46% and 77% in the wet
and dry season, respectively, compared to continuously flooding water into the paddy
field. Therefore, the AWD method is a good practice that helps sustain rice production
through water-saving. Lahue et al. [16] also obtained the same result, and in addition, their
study successfully reduced the total arsenic concentration released by rice grain up to 65%.
Meanwhile, Liang et al. [17] managed to reduce the methane emissions into the atmosphere
by up to 77.1%.
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Climate conditions played a significant role. The potential rice yield will be affected
by severe climate conditions due to increased sterility caused by heat and shortening of
the growing season [18]. Van Oort [19] implemented a geographical information system
(GIS) by producing a map of abiotic stresses in Africa using drought, cold, iron toxicity,
and salinity or sodicity information as the input. From the analysis, drought was found as
the most critical variable that contributes to stress, where 33% of rice area was potentially
affected, followed by iron toxicity (12%), and then cold (7%) and salinity/sodicity (2%).
Dossou-Yovo et al. [20] used socio-economic, biophysical, farmer population surveys, and
secondary remote sensing data on soil characteristics and demand for water to determine
drought input parameters in rice-based inland valley production systems. Their study
shows that the average annual standardized precipitation evapotranspiration index and
groundwater availability duration were the most critical input to determine drought
occurrence in their study area.

It is crucial to find solutions to improve and increase rice yield. However, to achieve
rice production sustainably and meet demands, productivity and quality must significantly
improve. Therefore, through participatory approaches, it is critical to foster joint working
between research, extension, local governments, non-governmental organizations (NGO),
and private industry to identify the relevant constraints to high yield, adopt new solutions
and technologies, and make systematic decisions to close rice yield gaps.

4. Controlling Weed in Paddy Fields at Different Growth of Stages

In general, rice growth periods can be identified in three stages. They are the veg-
etative stage, reproductive stage, and maturative or ripening stage [21]. Depending on
agricultural and environmental conditions, the whole cycle takes about 120 to 125 days.
The International Rice Research Institute (IRRI) splits the growth cycle into five stages [22].
A general idea of the growth cycle is presented in Figure 2, with morphology examples.

Figure 2. The growth cycle of a rice plant corresponds to the IRRI scale and sample structure.

Rice is generally a weak competitor with weeds. Therefore, the vegetative stage is
critical in the paddy growth cycle. Successfully controlling weeds at this stage can deliver
a 95% weed-free yield [23]. This is agreed with by Kamath et al. [24] because the effect
of weeds in this stage will be at maximum. However, if we fail to prevent weeds from
spreading in the vegetative stage, they will dominate the area, leading to a lack of sufficient
space, light, and nutrients to grow and develop [25]. As a result, crops will experience
uneven flowering and will not mature uniformly for the scheduled harvest [26,27].
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Once the tillering reaches its maximum number, the reproductive stage will occur,
followed by the maturative or ripening stage. Excess water in the fields is drained, resulting
in a drop in the overall biomass due to lower moisture content. The grain is maturing and
becoming heavier. At this stage, the presence of weeds will not affect the development
of the crop. Nevertheless, we cannot save the yield losses because weeds dominated the
paddy plot and the number of paddy crops that survive the competition is nominal. In
general, weed in paddy can be classified into three types. They are grasses, sedges and
broad leaved weeds [28], and Table 1 shows a compilation of the primary weeds usually
found in paddy fields.

Table 1. Type of weeds commonly found in the paddy field.

Family Name Scientific Name Common Name

Grasses weeds
Poaceae Oriza sativa complex Weedy rice

Leptochloa chinensis (L.) Nees Chinese sprangletop
Chloris barbata Sw. Swollen fingergrass

Echinochloa crus-galli (L.)
Beauv. Barnyardgrass

Echinochloa colana (L.) Link Jungle rice
Ischeamum rugosum Salisb Ribbed murainagrass

Brachiaria mutica (Forsk.) Stapf Para grass, buffalo grass
Cynodon dactylon (L.) Pers. Bermuda grass

Sedge weeds
Cyperaceae Fimbristylis miliacea (L.) Vahl. Fimbry

Cyperus iria Rice flat sedge
Cyperus difformis Small flower umbrella plant
Cyperus rotundus Nut grass, nut sedge

Eleocharis dulcis (Burm.f)
Henschel Chinese water chestnut

Fimbristylis globulosa (Retz.)
Kunth Globe fimbry

Fuirena umbellate Rottb Yefen, tropical umbrella sedge
Scirpus grossus L.f. Tukiu, giant bulrush

Scirpus juncoides Roxb. Club-rush, wood club-rush,
bulrush

Scirpus suspinus L. -

Broad leaved weeds

Butomaceae Limnocharis flava (L.)
Buchenau

Yellow velvet-leaf, sawah
lettuce, sawah flower rush

Pontederiaceae Monochoria vaginalis (Burm.f.)
C.Presl

Pickerel weed, heartshape
false pickerel weed

Eichhornia crassipes (Mart.)
Solms Floating water-hyacinth

Alismataceae Sagittaria guayanensis Kunth Arrowhead, swamp potato

Onagraceae Ludwigia hyssopifolia (G.Don)
Exell

Seedbox, linear leaf water
primrose

Sphenocleaceae Sphenoclea zeylanica Gaertn Goose weed, wedgewort

Convolvulaceae Ipomoea aquatica Forsk
Kangkong, swamp morning
glory, water spinach, swamp

cabbage

The environmental relationship between weed and rice is very complicated and
complex [29]. The weed management system needs improvement to control the spreading
of weeds. The traditional practices that include burning, hand sowing, manual spot
spraying, herbicide pre-emergence or post-emergence application, and repetitive blade
hoeing are not practical anymore. These practices impacted the non-target species and the
ecosystem rather than benefiting production [30].
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The traditional weed sampling for practice-oriented management is too costly, and
this is not a recent concern. Since 2005, Brown and Noble [31] have developed automated
methods for evaluating infestation. Automatic weed sampling provides a way to increase
the amount of data obtained in the field (smaller sampling intervals) at lower overall costs
of 7–13 USD/ha, and sensor technology is used exclusively for the application of herbicides,
resulting in a reduction of herbicide usage of 30–70% [32].

Advanced weed management methods are required to manage weeds effectively.
The process may include targeted and site-specific weed control, selection of weed seeds,
different herbicide application (depending on weed distribution, spatial arrangement
and soil properties), destruction of weed seeds over predation and microbial loss, nano
herbicides, and optical spraying techniques. Advanced vision-guided robotics that can
be adopted for site-specific weed management (SSWM) are transgenic herbicide-resistant
crops, weed control and spraying robots, decision support systems, and pattern recognition
modelling [33]. Implementing these technologies will help prevent unwanted species and
improve existing weed management systems [34].

5. Weed Detection Using Remote Sensing Technique

Remote sensing technology aims to monitor and capture the earth’s information
without making direct contact and destroying it. The utilization of the electromagnetic
spectrum, ranging from visible to microwave for measuring the earth’s properties, is
the main idea behind remote sensing technology. Since the target’s reactions to various
wavelength regions differ, we can exploit them to identify vegetation, water, soil, and
other features [35]. Combining the target’s reaction with the shape, texture, and pattern
information of weeds and crops, we can discriminate them and improve SSWM using
remote sensing algorithms.

The image processing workflow to detect weed in paddies can generally be divided
into five stages: image data collection, pre-processing, feature extraction and selection,
training, image classification and validation [36].

5.1. Image Data Collection

There are multiple platforms available for data gathering for weed detection in
crops, such as digital cameras [37], hand-held spectroradiometers [38], polarization spec-
troscopy [39], and satellites [40]. However, unmanned aerial vehicles (UAV) are the most
popular platforms researchers use to identify weeds in crops, due to their availability,
high-quality data delivery, and ease of handling [41]. Nevertheless, the data collection
differs in the types of sensors attached to UAVs: RGB, multispectral, or hyperspectral.

5.1.1. RGB Sensor

The RGB sensor is the most widely used and widely available commercial camera.
Because of their promise in delivering high-quality images and low-cost operational needs,
their possible applications have been the focus of most research for many years [42,43].
These sensors are increasingly employed in machine learning algorithms for object recogni-
tion, diseases, phenology, and other applications.

These are typical steps to acquire RGB images captured by UAV remote sensing: (1)
pre-flight planning, (2) flight and image acquisition and (3) post-processing and indices
or dataset extrapolation [44]. However, when preparing the images for machine learning
algorithms, the processing steps are different depending on the research’s objective [45–47].
The advantage of using this sensor is that radiometric and atmospheric calibration are
not required, unlike multispectral and hyperspectral images [41]. Therefore, noises from
electromagnetic radiation (EMR) can be ignored.
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5.1.2. Multispectral Sensor

The use of the multispectral sensors has become a trend nowadays because it has more
than three (RGB) bands installed. Compared to RGB sensors, several vegetation indices that
can be investigated are significantly expended. Nevertheless, to obtain accurate indices,
radiometric and atmospheric calibration are compulsory. Moreover, unlike RGB sensors,
the multispectral sensor is unable to deliver a high-quality spectral resolution image. This
drawback can be overcome by using a lower flying height and acceptable percentage of
horizontal and vertical image overlap [48].

In general, the typical steps involved in preparing multispectral images captured by
UAV remote sensing are: (1) radiometric and atmospheric calibration, (2) locating and
avoiding input and output (I/O) errors, missing data, and mission failure, and (3) image
rectification, georeferencing, and stacking [41]. In addition, these sensors are increas-
ingly being employed in machine learning algorithms for site-specific weed management
(SSWM) [40,49,50].

5.1.3. Hyperspectral Sensor

The hyperspectral sensor analyzes a broad spectrum of light, instead of assigning
primary colors (red, green, and blue). These sensors can record hundreds of narrow
radiometric spectral bands from visible to infrared, sometimes up to microwave ranges. Its
ability in providing narrow radiometric spectral bands can detect specific field concerns.
Thus, users can compute narrowband indices, such as the chlorophyll absorption ratio index
(CARI), transformed chlorophyll absorption ratio index (TCARI), triangular vegetation
index (TVI), and photochemical reflectance index (PRI) [51].

Preparing hyperspectral data is more complicated than RGB and multispectral sensors
because its radiometric and atmospheric calibration workflows are more complex. Sen-
sor calibration approaches are generated from the UAV’s hyperspectral platforms, which
use simulated targets to check data quality, correct radiance, and provide high-quality
reflectance information [52]. Therefore, typical steps in acquiring and preparing hyperspec-
tral data captured by UAV remote sensing are: (1) setting up a flight plan, (2) image size
and data storage, and (3) quality assessment [41]. Table 2 summarizes the characteristics of
each sensor alongside its advantages and disadvantages.

Table 2. Characteristic of RGB, multispectral, and hyperspectral sensors.

Sensors/Details RGB Multispectral Hyperspectral

Resolution (Mpx) 16–42 1.2–3.2 0.0025–2.2
Spectral range (nm) 400–700 400–900 300–2500

Spectral bands 3 3–10 40–660
Weight (approx.) (kg) 0.5–1.5 0.18–0.7 0.032–5
Price (approx.) (USD) 950–1780 3560–20,160 47,434–59,293

Advantages

High-quality images
Low-cost operational needs
No need for radiometric and

atmospheric calibration

Have more than three bands
Can generates more

vegetation indices than RGB

Hundreds of narrow radiometric
bands

Can calculate narrowband indices
that can target specific concerns.

Disadvantages

Only have three bands
A limited number of

vegetation indices can be
computed

Radiometric and atmospheric
calibration is compulsory

Unable to deliver a
high-quality resolution image

Expensive, heavier, and more
extensive compared to the other

sensors
Complicated system

Complex radiometric and
atmospheric calibration

Unable to deliver a high-quality
resolution image
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5.2. Image Mosaicking and Calibration

Images acquired from UAVs can be mosaicked using a Pix4D mapper (Pix4D, Prilly,
Switzerland), Agisoft Photoscan Pro (Agisoft LLC, 52 St. Petersburg, Russia), and any
available commercial software to generate qualitative, high-resolution orthomosaic images.
After mosaicking, the process will continue with radiometric calibration and rescale the
intensity of the electromagnetic radiation or digital number (DN) into the percentage
of reflectance values [53]. Researchers have implemented numerous methods, such as
the traditional empirical line correction approach and modern automatic radiometric
calibration using available commercial software.

The empirical line correction approach is an atmospheric correction technique that
provides a straightforward surface reflectance calibration method, if a set of invariants in
the time calibration target measurement is provided. Kelcey and Lucieer [54] implemented
this approach to improve six multispectral UAV data quality bands for quantitative data
analysis. Similarly, Mafanya et al. [55] applied the same method and obtained a reflectance
value of r = 0.997 (p ≤ 0.01) with an overall root mean square of 0.63. Nevertheless, when
dealing with high-quality data, the performance and accuracy must be re-evaluated [56].

In order to improve radiometric calibration accuracy, Xu et al. [57] introduced a spectral
angle correction approach, where their method uses all information in each spectral band.
Compared to the empirical line correction approach, they successfully improved the mean
relative percent error (MRPE) range up to 3% in the visible band and 1% in the near-infrared
(NIR) band. This finding will highly benefit the agriculture remote sensing field.

However, the user can also run the radiometric calibration automatically using avail-
able commercial software such as Agisoft Photoscan Pro (Agisoft LLC, 52 St. Petersburg,
Russia) and Pix4D mapper (Pix4D, Lausanne, Switzerland). The ‘reflectance map’ tool in
Pix4D mapper software is also similar to calibrate ‘calibrate reflectance’ in Agisoft Pho-
toscan Pro that employs multiple image attributes to determine surface reflectance [58].
In addition, these software packages provide ‘color correction/balancing’ functions to de-
velop the image information based on a radiometric block correction algorithm. However,
the algorithms used in these packages only calculate the homogeneity of the neighbouring
image’s histogram homogeneity, not the bidirectional reflectance distribution function
(BRDF) effect in a single image [59].

5.3. Feature Extraction and Selection

Following the spectral calibration, feature extraction can be extracted or computed
for different image processing purposes using various approaches (Table 3). This process
will be helpful for the classification and identification of weeds in paddy fields. Feature
extraction techniques are beneficial, especially in shape and pattern recognition. As features
define the behavior of an image, they show its place in terms of storage taken, classification
efficiency, and, obviously, in time consumption [60]. Therefore, optimizing the feature
subset is required before feeding it into the machine learning (ML) and deep learning
(DL) algorithms for improving the classification process and making it cost and time-
efficient [61].
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Table 3. An example of features extracted or computed for image classification.

Categories Feature Description/Formula Reference

Vegetation indices Normalized vegetation index (NDVI)
Excess green index (ExG)

(NIR − R)/(NIR + R)

2 × G−R−B
R+G+B

[62,63]

Color space transformed features
Hue

Saturation
Value

A gradation or variety of a color
Depth, purity, or shades of the color
Brightness intensity of the color tone

[64]

Wavelet transformed coefficients Wavelet coefficient mean
Wavelet coefficient standard deviation

Mean value calculated for a pixel
using discrete wavelet transformation

Standard deviation calculated for a
pixel using discrete wavelet

transformation

[65]

Principal components (1) Principal component 1
Principal component analysis-derived

component accounting maximum
amount of variance

[66]

5.4. Image Classification and Validation

Many machine learning (ML) and deep learning (ML) algorithms are available for image
classification. However, choosing the best one that fits the research’s objective is crucial, because
different algorithms have different difficulty levels. Therefore, Section 5.6 will further discuss
the application of remote sensing algorithms in detecting weeds in crops.

Accuracy assessment is crucial to validate the quality of the classification output that
best represents the study area. Overall, the assessment can be carried out by comparing the
classified pixels with ground truth pixels using a confusion matrix [67]. The result for weed
classification is presented in terms of producer accuracy and overall accuracy. Producer
accuracy (Equation (1)) is the probability that a pixel in the classification correctly shows
class X. Given the ground truth class is X, producer accuracy can be calculated using

Producer accuracy =
caa

c.a
× 100% (1)

where:

- caa = element at a position ath row and ath column.
- c.a = column sums.

Overall accuracy (Equation (2)) is the total percentage of pixels correctly classified,
and it can be calculated by using

Overall accuracy =
∑U

a=1 caa

Q
× 100% (2)

where:

- Q = total number of pixels.
- U = total number of classes.

The agreement between variables with ground truth data can be represented by using
the kappa coefficient (Equation (3)), and its value can be calculated by using

Kappa coe f f icient, K =
∑U

a=1
caa
Q − ∑U

a=1
ca .ca
Q2

1 − ∑U
a=1

ca .ca
Q2

× 100% (3)

where:

- ca = row sums.

However, some limitations occur when dealing with object-based classification, pri-
marily related to the real-world object recognition’s thematic and geometrical accuracy [68].
Therefore, to address this concern, De Castro et al. [46] designed Weed detection Accuracy
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(WdA), Equation (4). This index analyzes the spatial placement of classified weeds by
using the intersection of shapefiles as a spatial relationship rather than the overall overlap.

WdA (%) =
Area o f Observed Weed objects intersecting Detected Weed Objects

Area o f Observed Weed × 100 (4)

The detection of weeds is crucial for successful site-specific weed management
(SSWM). However, weed detection is still challenging for automatic weed removal [37]. In
addition, low tolerance between the cutting point and the crop location requires an accurate
weed classification against the main crop. Therefore, several works have been conducted
in the context of remote sensing image processing to detect and improve site-specific
management [69–71].

5.5. An Overview of Machine Learning in Agriculture

In recent years, machine learning (ML) has provided a new criterion for agriculture
with big data technology and high-performance computing. The development of ML has
created new opportunities in agriculture operational management to unravel, measure,
and analyze complex data [72]. Generally, the ML framework involves learning from
‘experience’, known as training data, to execute the classification, regression, or clustering
tasks. These training data are usually regarded as a feature described by a set of attributes
or variables. The machine learning model works by predicting the pattern and trend of
future events in crop monitoring and assessment [73]. The ML model’s performance in
a particular task is evaluated by performance metrics improved by experience over time.
As a result, classification techniques have been a prominent research trend in machine
learning for many years, informing various studies. This method seeks to create features
from the input data. Furthermore, it is highly field-specific and requires significant human
effort, leading to deep learning techniques [36]. Figure 3 shows how machine learning and
deep learning techniques work.

Figure 3. The differences in how deep learning and machine learning techniques work.
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Deep learning is a subset of machine learning, but with more complicated image
analysis [36], commonly used in agricultural crop monitoring and management. In terms
of functionality, machine learning and deep learning share the same purpose: to make intu-
itive and intelligent decisions using artificial neural networks stacked layer-wise based on
what it has learned while being trained [74]. However, in terms of developing an accurate
model, machine learning requires a pre-processing stage before the model is developed,
trained, and validated. In contrast, deep learning has a ‘build in’ feature extractor to extract
meaningful features from the raw data. It learns features layer by layer, which means
that it learns low-level features in the first levels and then progresses up the hierarchy to
learn a more abstract representation of the input. [75]. Regardless of which agricultural
domain and purpose, it has taken a directive in various crop monitoring purposes such
as nutrient disorder, weed detection, plant insects, and disease detection. Many studies
on weed detection have utilized deep learning with other remote sensing methods con-
cerning classification or regression performance differences. The outcome has marked high
accuracy, outperforming other commonly used image processing techniques [76].

In deep learning (DL), CNN is the most well-known and widely used algorithm [69,70,77].
The fundamental advantage of CNN over the other DL algorithms is that it automatically
detects significant elements without the need for human assistance [36]. Comparable to the
multi-layer perceptron (MLP), where it consists of three layers known as the input, output, and
hidden layer [78], CNN has many convolution layers before sub-sampling (pooling) layers,
with fully connected (FC) layers as the last layers. An illustration of the CNN framework for
image classification is shown in Figure 4.

Figure 4. An illustration of the CNN framework for image classification.

A CNN model’s input image is structured in three dimensions: height (m), width (m),
and depth (r), where height (m) equals the width (m), and the depth (r) is referred to as
channel number. For example, the depth (r) of the RGB image in Figure 4 equals three
(three bands). The available kernel filters for the convolution layer will be designated by
the letter k (n × n × q). However, n must be less than m, and q must be equal to or less
than r. The dot product between the input and the weights is calculated by the convolution
layer using Equation (5)

hk = f
(

Wk ∗ x + bk
)

(5)

where:

- hk = feature maps in size (m – n – 1).
- Wk = weightage.
- bk = bias.

These groundbreaking CNNs were able to achieve such incredible accuracy, partly
because of their non-linearity. The rectified linear activation function (ReLU) applies the
much-needed nonlinearity to the model. Non-linearity is necessary to produce a non-linear
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decision boundary, so the output cannot be written as a linear combination of the inputs.
If there is no non-linear activation function, the deep CNN architecture will evolve into a
single equivalent convolutional layer, and its performance will hardly be so. The ReLU
activation function is used explicitly as a non-linear activation function, in contrast to other
non-linear functions such as Sigmoid, because it has been observed from experience that
the CNN using ReLU trains faster than the corresponding CNN [79]. Furthermore, the
ReLU activation function is a one-to-one mathematical operation, as shown in Equation (6).

ReLU(x) = max(0, x) (6)

It converts the whole values of the input to positive numbers. Thus, lower computa-
tional load is the main benefit of ReLU over the others. Subsequently, each feature map
in the sub-sampling layers is down-sampled, decreasing network parameters, speeding
up the learning process, and overcoming the problem related to the overfitting issue. This
can be carried out in the pooling layers. The pooling operation (maximum or average)
requires selecting a kernel size p × p (p = kernel size) and another two hyperparameters,
padding and striding, during architecture design. For example, if max-pooling is used, the
operation slides the kernel with the specified stride over the input, while only selecting the
most significant value at each kernel slice from the input to yield a value for the output [80].

Padding is an important parameter when the kernel extends beyond the activation
map. Padding can save data at the boundary of the activation maps, thereby improving
performance, and it can help preserve the size of the input space, allowing architects
to build simpler higher-performance networks, while stride indicates how many pixels
the kernel should be shifted over at a time. The impact that stride has on a CNN is
similar to kernel size. As stride is decreased, more features are learned because more
data are extracted [36]. Finally, the fully connected (FC) layers receive the medium and
low-level features and generate the high-level generalization, representing the last-stage
layers similar to the typical neural network’s technique. In other words, it converts a
three-dimensional layer into a one-dimensional vector to fit the input of a fully connected
layer for classification. Usually, this layer is fitted with a differentiable score function, such
as softmax, to provide classification scores. The fundamental purpose of this function is to
make sure the CNN outputs the sum to one. Thus, softmax operations are helpful to scale
the model output into probabilities [80].

The key benefit of the DL technique is the ability to collect data or generate a data
output using prior information. However, the downside of this strategy is that, when
the training set lacks samples in a class, the decision boundary may be overstrained.
Furthermore, given that it also involves a learning algorithm, DL consumes many data.
Nevertheless, DL requires enormous data to build a well-behaved performance model, and
as the data grow, the well-behaved performance model can be achieved [36].

5.6. The Application of Remote Sensing and Machine Learning Technique into Weed Detection

Choosing remote sensing (RS) and machine learning algorithms for SSWM can improve
precision agriculture (PA). This situation has resulted in integrating remote sensing and
machine learning becoming critical, as the need for RGB, multispectral, and hyperspectral
processing systems has developed. Numerous researchers who tested the RS technique
successfully produced an accurate weed map with promising implications for weed detection
and management. Since the weed management using RS technique application in paddy is
still in its early stage, Table 4 lists more studies on weed detection and mapping in various
crops that apply remote sensing techniques with acceptable accuracy, for further reviews.
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Table 4. Weed detection and mapping in various crops that apply remote sensing techniques.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Carrots: Autumn
King

Grass and
broad-leaved

Auto-associative
neural network >75%

Neural network-based
allows the system to learn
and discriminate between

species without
predefined plant

descriptions

2003 [81]

Hyperspectral
images:

72-waveband
Corn Grass and

broad-leaved

Support vector
machine (SVM) vs

artificial neural
network (ANN)

66–76%
The SVM technique

outperforms the ANN
method

2006 [82]

Multispectral Winter wheat Cruciferous
weeds

Maximum likelihood
classification (MCL) 91.3%

MCL accurately
discriminated weed

patches field-scale and
broad-scale scenarios

2013 [83]

RGB* Rice Various types
Overlapping and

merging the binary
image layers

N/A

RGB images can be used
to validate proper growth

and discover the
irregularities such as

weeds in the paddy field

2013 [84]

Multispectral
and hyperspectral

Cereals and
broad-leaved

crops

Grass and
broad-leaved

General discriminant
analysis (GDA) 87 ± 5.57%

Using GDA, it is feasible
to distinguish between

crops and weeds
2013 [85]

Hyperspectral 61
bands: 400–1000

nm spectral
resolution: 10 nm

Field pea, spring
wheat, canola

Sedge and
broad-leaved

Artificial neural
network (ANN) 94%

ANN successfully
discriminates weeds from

crops
2014 [86]

Hyperspectral Soybean Broad-leaved Random forest (RF) >93.8%
Shortwave infrared: best
spectrum to differentiate
pigweeds from soybean

2016 [38]

RGB* Rice N/A Artificial neural
networks (ANN) 99%

ANN can detect weeds in
paddy fields with

reasonable accuracy, but
50 m above the ground is

insufficient for weeds
similar to paddy

2016 [45]

RGB* Sunflower Broad-leaved Object-based image
analysis (OBIA) >85%

The OBIA procedure
computed multiple data

points, allowing herbicide
requirements for timely

and improved site-specific
post-emergence weed
seedling management

2016 [87]

RGB*,
multispectral Maize Grass Object-based image

analysis (OBIA) 86–92%

Successfully produced
accurate weed map,
reduced spraying

herbicides and costs

2016 [88]

Multispectral Bracken fern Broad-leaved Discriminant analysis
(DA) 87.80%

WolrdView-2 has the
highest overall

classification accuracy
compared to Landsat 8
OLI, but Landsat 8 OLI*

provides valuable
information for long term

continuous monitoring

2017 [40]

Multispectral
camera Cereals Broad-leaved

Supervised Kohonen
network (SKN),

counter-propagation
artificial neural

network (CP-ANN)
and XY-fusion

network

>98%

The results demonstrate
the feasibility of weed

mapping on the
multispectral image using

hierarchical
self-organizing maps

2017 [49]

Multispectral Cereals Broad-leaved Maximum likelihood
classification (MCL) 87.04%

The results prove the
feasibility of weed

mapping using
multispectral imaging

2017 [89]

RGB* Sugarcane Grass
Artificial neural

network (ANN) and
random forest (RF)

91.67%

Even though ANN and RF
achieved nearly identical
accuracy. However, ANN

outperform RF
classification

2017 [90]

RGB* Sugar beet Broad-leaved

Support vector
machine SVM vs
artificial neural
network (ANN)

95.00%

The SVM technique
outperformed the ANN

method in terms of
shape-based weed

detection

2018 [37]
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Table 4. Cont.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Rice Grass and sedge

Pre-trained CNN
with the residual

framework in an FCN
form and transferred

to a dataset by
fine-tuning.

94.45%
The proposed method

produced accurate weed
mapping

2018 [42]

RGB* Rice Grass and sedge
Fully convolutional

neural network
(FCN)

93.5%

A fully convolutional
network (FCN)
outperformed

convolutional neural
network (CNN)

2018 [43]

RGB* Sunflower and
cotton

Grass and
broad-leaved

Object-based image
analysis (OBIA) and
random forest (RF)

Sunflower
(87.9%) and
cotton (84%)

The proposed technique
allowed short processing

time at critical periods,
which is critical for

preventing yield loss

2018 [46]

Multispectral Rice Grass and
broad-leaved

ISODATA
classification and
vegetation indices

(VI)

96.5%
SAVI and GSAVI were the
best inputs and improved

weed classification
2018 [50]

RGB* Spinach, beet,
and bean N/A Convolutional neural

networks (CNN)

Spinach (81%),
beet (93%) and

bean (69%)

The proposed method of
weed detection was

effective in different crop
fields

2018 [69]

RGB* Spinach and
bean N/A Convolutional neural

network (CNN) 94.5% Best option to replace
supervised classification 2018 [70]

RGB* Rice Grass and sedge
Fully convolutional

neural network
(FCN)

>94%

Proposed methods
successfully produced
prescription and weed

maps

2018 [77]

RGB* N/A Yellow flag iris Random forest (RF) 99%
Hybrid image-processing
demonstrated good weed

classification
2018 [91]

Hyperspectral Maize Broad-leaved Random forest (RF)

C. arvensis
(95.9%), Rumex
(70.3%) and C.

arvense (65.9%,)

RF algorithm successfully
discriminated weeds from

crops and combination
with VIs improved the
classification’s accuracy

2018 [92]

RGB* Soybean Grass and
broad-leaved

Joint unsupervised
learning of deep

representations and
image clusters (JULE)
and deep clustering

for unsupervised
learning of visual

features
(DeepCluster)

97%

Semi-automatic data
labelling can reduce the

cost of manual data
labelling and be easily
replicated to different

datasets

2019 [71]

RGB* and
Multispectral Wheat Unwanted crop

Object-based image
analysis (OBIA),

vegetation index (VIs)
87.48%

30m is the best altitude to
detect weed patches

within the crop rows and
between the crop rows in
the wheat field, and VIs
successfully extracted

green channels and
improved weed detection

2019 [93]

RGB* Upland rice Grass and
broad-leaved

Object-based image
analysis (OBIA) 90.4%

Rice and weeds can be
distinguished by

consumer-grade UAV
images using the SLIC-RF

algorithm developed in
this study with acceptable

accuracy

2020 [47]

RGB* Rice Grass and sedge Convolutional neural
network (CNN) 80.2%

A fully convolutional
network (FCN)

outperformed OBIA
classification

2020 [94]

RGB* Barley Broad-leaved Linear regression N/A
Qualitative methods

proved to have
high-quality classification

2020 [95]

RGB* Vineyard Grass
OBIA and combined

decision tree
(DT–OBIA)

84.03–89.82%

Proposed methods enable
winegrowers to apply

site-specific weed control
while maintaining cover
crop-based management

systems and their
vineyards’ benefits.

2020 [96]

300



Appl. Sci. 2021, 11, 10701

Table 4. Cont.

Sensors Crops Weed Type Technique Accuracy (%) Implications Year Reference

RGB* Cotton Sedge and
broad-leaved

Object-based image
analysis (OBIA) and
random forest (RF)

83.33% (low
density plot),

85.83% (medium
density plot) and

89.16% (high
density plot)

The findings
demonstrated the value of

RGB images for weed
mapping and density

estimation in cotton for
precision weed
management

2020 [97]

Multispectral and
hyperspectral Sorghum Grass and

broadleaved

OBIA with artificial
nearest neighbor
(NN) algorithm

92%

The combination of
OBIA–ANN

demonstrated the
feasibility of weed

mapping in the sorghum
field

2021 [62]

* RGB = red, green, blue; OLI = operational land imager.

Even though numerous platforms for data collection are accessible, a UAV is the
best for identifying weeds in paddy because of its availability, high-quality data delivery,
and convenience. On the other hand, the review discovered that deep learning (DL) is
suitable for classifying grass weeds in paddy and producing high accuracy weed maps.
However, when referring to other crops, it might differ for sedge and broad-leaved weeds.
Nevertheless, this method necessitates a large amount of training data, resulting in vast
agricultural datasets. In the future, to optimize the use of the RS technique, we must
know what types of weeds we are dealing with in the paddy fields to choose the best
technique for our research. Therefore, to classify weeds, a sophisticated method might not
be necessary.

5.6.1. Machine Learning (ML)

Machine learning is a part of artificial intelligence that enables machines to recognize
patterns and judge with little or no human input. Back during the early introduction to
machine learning, Aitkenhead et al. [81] proposed a simple morphological characteristic
measurement of a leaf shape (perimeter2/area) and a self-organizing neural network to dis-
criminate weeds from carrots using a Nikon Digital Camera E900S. Their proposed method
enables the system to learn and differentiate between species with more than 75% accuracy
without predefined plant descriptions. Eddy et al. [86] tested an artificial neural network
(ANN) to classify weeds (wild oats, redroot pigweed) from crops (field pea, spring wheat,
canola) using hyperspectral images. The original data were 61 bands that were reduced to
seven bands using principal component analysis (PCA) and stepwise discriminant analysis.
A total of 94% overall accuracy was obtained from the ANN classification. Yano et al. [90]
also successfully classified weeds from sugarcane using ANN with an overall accuracy of
91.67% with a kappa coefficient of 0.8958.

Barrero et al. [45] investigated the use of artificial neural networks (ANN) to detect
weed plants in rice fields using aerial images. To train the algorithm with a flying height
of 50 m, they used a gray-level co-occurrence matrix (GCLM) with Haralicks descriptor
for texture classification and a normalized difference index (NDI) for color. As a result,
they successfully obtained 99% precision for detecting weed on the test data. However,
the detection level was low for weeds similar to rice crops, because the image resolution
was 50 m above the ground. Later, to evaluate the ANN’s performance, Bakhshipour and
Jafari [37] used a digital camera to detect weeds using shape features with an improved
machine learning algorithm, support vector machine (SVM). Results showed that SVM
outperformed the AAN with an overall accuracy of 95.00%, while 93.33% of weeds were
correctly classified. Meanwhile, for ANN, its overall accuracy was 92.92%, where 92.50%
of weeds were correctly classified.

Doi [84] used ML knowledge to discriminate rice from weeds from paddy fields by
overlapping and merging 13 layers of binary images of red-green-blue and other color
components (cyan, magenta, yellow, black, and white). These color components were
captured using a digital camera (Cyber-shot DSC T-700, Sony) and used as input to specify
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the pixels with target intensity values based on mean ranges with ±3× standard deviation.
The result shows that yellow with 1x standard deviation has the best target intensity values
in discriminating paddy from weeds, with improved ratio values from 0.027 to 0.0015.

Shapira et al. [85] used general discriminant analysis (GDA) to detect grasses and
broad-leaved weeds among cereal and broad-leaved crops. Using spectral relative reflect-
nce values obtained by field spectroscopy as references, total canopy spectral classification
by GDA for specific narrow bands was 95 ± 4.19% for wheat and 94 ± 5.13% for chick-
pea. Meanwhile, for vegetation and environmental monitoring on a new micro-satellite
(VENμS), total canopy spectral classification was 77 ± 8.09% for wheat and 88 ± 6.94% for
chickpea, and for the operative satellite advanced land imager (ALI) it was 78 ± 7.97% for
wheat and 82 ± 8.22% for chickpea. Thus, an overall classification accuracy of 87 ± 5.57%
for >5% vegetation coverage in a wheat field was achieved within the critical timeframe for
weed control, thus providing opportunities for herbicide applications to be implemented.

Meanwhile, Rasmussen and Nielsen [95] developed a yield loss due to weed infesta-
tion model by combined manual image analysis, automated image analysis, image scoring,
field scoring, and weed density data to estimate yield loss by weeds (Cirsium arvense)
in a barley field on UAV images. With a flying height of 25 m above the ground, they
successfully computed the model (Equation (7)) and found that grain moisture increased
directly proportional to weed coverage (Equation (8))

Y = 100·(1 − exp (−0.0017·X) (7)

where:

Y = Percentage of crop yield loss.
X = Percentage of weed coverage.

M = 0.0310·X (8)

where:

M = Proportional percentage increase in grain moisture.
X = Proportional percentage of weed coverage.

Other than artificial neural networks (ANN), support vector machine (SVM), and
simple ML algorithms, other algorithms have been tested to detect and classify weeds
from crops. They are maximum likelihood (ML), random forest (RF), vegetation indices
(VIs), and discriminant analysis (DA) algorithms. De Castro, López-Granado, and Jurado-
Expósito [83] used ML and VIs to classify cruciferous weed patches on a field-scale and
broad-scale. Cruciferous weed patches were accurately discriminated against in both scales.
However, the ML algorithm has a higher accuracy than VIs, 91.3 % and 89.45%. The same
outcome was archived by Tamouridou et al. [89] when they classified Silybum marianum
(L.) in cereal crops.

Fletcher and Reddy [38] explored the potential of a random forest algorithm in clas-
sifying pigweeds in soybean crops using a spectroradiometer (FieldSpec 3, PANalytical
Boulder, Boulder, CO, USA) and WorldView-3 satellite data. One nanometer spectral
data were grouped into sixteen multispectral bands to match them with the WorldView-3
satellite sensor. The accuracy of weed classifications ranged from 93.8% to 100%, with
kappa values ranging from 0.93 to 0.97. The result shows an excellent agreement between
the classes predicted by the models and the ground reference data. They also found that the
most significant variable in separating pigweeds from soybean is the shortwave infrared
(SWIR) band.

Similar to Baron, Hill, and Elmiligi [91] and Gao et al. [92], they used feature selection
to train the random forest (RF) algorithm to classify weeds on different platforms: UAV
RGB and hyperspectral camera, respectively. Their studies showed that the integration of
feature selection with the RF algorithm produced an accurate map. As for Gao et al. [92],
their output showed that for Zea mays, Convolvulus arvensis, Rumex, and Cirsium arvense
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weeds, the optimal random forest model with 30 significant spectral features would achieve
a mean correct classification rate of 1.0, 0.789, 0.691, and 0.752, respectively. Meanwhile,
Matongera et al. [40] tested discriminant analysis (DA) to classify and map invasive plant
bracken fern distribution using Landsat 8 OLI. The performance of the classification output
was compared with high spatial resolution data, WorldView-2 imagery. Worldview-2
classification outperformed Landsat 8 OLI with overall accuracies of 87.80% and 80.08%,
respectively. However, for long term continuous monitoring, Landsat 8 OLI provides
valuable information compared to the WorldView-2 commercial sensor.

A few researchers chose object-based image analysis (OBIA) to classify weeds from crops.
OBIA is an automatic hierarchal image classification algorithm. It allows numerous image
objects to be created and further categorized into user-defined classes [98]. For example, López-
Granados et al. [87] used an RGB (red, green, blue) UAV to monitor early-season weeds in
a sunflower field using object-based image analysis (OBIA). Their experiment was tested at
two different flying heights, 30 m and 60 m, above the surface. They found that both flying
heights give satisfactory outputs, with 2.5% to 5% thresholds and an accuracy higher than
85%. The same result was archived by López-Granados et al. [88], Mateen and Zhu [93], and
Sapkota et al. [97] when they classified weeds from maize, wheat, and cotton, respectively. Their
research helped farmers with rationalization of the herbicide application.

Some of the researchers integrated object-based image analysis (OBIA) with other machine
learning algorithms. OBIA’s final output can be converted into another GIS format [99], making
it flexible to integrate with other algorithms. For example, De Castro et al. [96] successfully
classified Cynodon dactylon (bermudagrass) in a vineyard by combining OBIA with the decision
tree (DT) algorithm. De Castro et al. [46] also managed to produce a weed map of Convolvulus
arvensis L. (bindweed) in a soybean field by combining OBIA with the RF algorithm. Meanwhile,
Che’Ya, Dunwoody, and Gupta [62] successfully generated various types of weed maps in the
sorghum’s field by integrating OBIA with the artificial nearest neighbor (ANN) algorithm.

Kawamura et al. [47] experimented with the OBIA classification method using the
simple linear iterative clustering algorithm–random forest (SLIC–RF). SLIC is a super-
pixel method for extracting input feature details for each subject. They used three-color
spaces (RGB, hue-saturation-brightness (HSV) and transformation function of RGB images
(CIE-L*a*b*)) as the primary input feature and a spatial texture, four VIs (excess green
(ExG), excess red (ExR), green–red vegetation index (GRVI), and color index of vegetation
extraction (CIVE)), and DSM as the secondary data. The HSV-based SLIC–RF outperformed
the other color spaces tested, with an accuracy of 90.4%.

Instead of using an RGB UAV, Stroppiana et al. [50] used UAV multispectral images
for early season weed mapping in rice using ISODATA classification. Their input data are
spectral indices (normalized different vegetation index (NDVI), soil adjusted vegetation
index (SAVI), GSAVI, a simple ratio index related to leaf pigments content and greenness
(RGRI), normalized difference red edge (NDRE), and chlorophyll vegetation index (CVI))
and textural metrics. Weed mapping performance was validated by measuring overall
accuracy (OA), while for weed class, omission errors (OE) and commission errors (CE)
were calculated. The result shows that SAVI and GSAVI gave the best output compared to
other indices, with 96.5% and 94.5% overall accuracy. The final production, classification
map, weed proportion in the percentage map, weed canopy height measured in meters
(m) map, and rice fraction cover map, were successfully produced from SAVI and GSAVI.
Pantazi et al. [49] also chose multispectral UAVs to map weeds in cereals.

5.6.2. Deep Learning (DL)

Deep learning has recently become a machine learning component widely utilized
in agricultural crop monitoring and management. It has taken a directive in many crop
monitoring objectives such as weed detection, nutrient disorder, and disease detection.
Huang et al. [43] utilized the fully convolutional network (FCN) method to map weeds in
rice using unmanned aerial vehicle red-green-blue (UAV-RGB) imagery. Transfer learning
was used to optimize the generalization capacity, and skip architecture was chosen to boost
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prediction accuracy. The result was then compared with the patch-based convolutional
neural networks (CNN) algorithm and the pixel-based CNN method. The findings showed
a proposed FCN method that outperformed others, both in efficiency and efficacy in terms
of accuracy. The overall accuracy of the FCN method was up to 93.5%, and the accuracy
for weed recognition was 88.3%.

Meanwhile, Huang et al. [94] also tested the same algorithm to delineate weeds from
rice in multi-rotor UAV images. Using an RGB-UAV with a flying height of 10 m above
the surface, they compared the object-based image analysis with the fully convolutional
network (FCN). As expected, their finding shows that FCN performs better than OBIA,
with an overall accuracy of 80.2% and 66.6%, respectively, which means that this algorithm
can produce precise weed cover maps for the evaluated UAV-based RGB imagery.

Bah et al. [69] also tested other deep learning algorithms: convolutional neural net-
works (CNNs) on other crops, spinach, beet, and bean using UAV images to classify weeds
in the crops from a 20 m flying height. The method effectively differentiates weeds from
crops with an overall accuracy for beet of 93%, spinach of 81%, and bean of 69%. However,
deep learning alone requires a great deal of training data. It is too time-consuming of a
process to construct large agricultural datasets with pixel-level identifications by an expert.
Therefore, Bah et al. [70] proposed a fully automatic learning method using CNNs with an
unsupervised training dataset collection for weed detection from UAV images. The classifi-
cation started with the identification of inter-row weeds from the automatic detection of
crop rows. Then, training datasets from inter-row weeds were made before performing the
CNNs to detect crop and weed images. Results obtained were compared with supervised
training data, and the difference in accuracy for spinach is 1.5%, and for bean is 6%. The
differences between supervised and unsupervised are narrow. This proposed method can
be the best option, since supervised labelling is expensive and challenging and requires
human expertise.

Dos Santos Ferreira et al. [71] evaluated the unsupervised deep learning performance
to discriminate weeds from soybean in UAV images. They tested two unsupervised deep
clustering algorithms, joint unsupervised learning of deep representations and image clus-
ters (JULE) and deep clustering for unsupervised learning of visual features (DeepCluster),
using two public weed datasets. The first datasets were captured in a soybean plantation in
Brazil, and weeds were distinguished between the grass and broad leaf weed. Meanwhile,
the second dataset consists of 17,509 labelled images of eight common species originating
from Australia. Semi-automatic data labelling in agriculture was used to evaluate the
outputs, and the result showed that this method achieved up to 97% accuracy, reduced 100
times in manual annotations.

This study has used the shape, texture, and pattern of weeds and crops trained and
classified by remote sensing algorithms. However, more research needs to be carried out
to detect and produce an accurate weed coverage map that recognizes weed types: grass,
sedge and broad-leaved in the paddy field. This is because different weeds have different
characteristics that require other variables to identify them. Nevertheless, based on the previous
study, it is not impossible to produce an accurate map that will highly benefit weed management
in the paddy field, especially when dealing with herbicide consumption.

5.7. Advantages of Implementation of Remote Sensing in Weed Detection through PA

The usage of herbicides, also known as agrochemicals, to control weeds in paddy
fields has caused several impacts on the environment and human health [100]. Therefore,
the authorities can consider reducing these inputs to follow an environmentally friendly
rice production practice. A study by Jafari, Othman, and Kuhn [101] showed that a 10%
reduction in agrochemical grants would reduce agrochemical use. However, it dramatically
reduces national welfare and decreases food safety. Nevertheless, we can overcome these
issues by implementing remote sensing SSWM techniques into precision agriculture (PA).

Improving weed management can improve our food security. Numerous remote
sensing platforms are available to monitor weeds, and unmanned aerial vehicles (UAV) are
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among the most popular platforms used these days. The excellent part of a UAV is that
it can fly low and precisely detect the presence of weeds in the paddy plot. Numerous
researchers proved that a UAV could produce an accurate SSWM map with overall accuracy
ranging from 66.6% to 99%, depending on the type of weeds found in the plot [49,89,91,94].

The remote sensing technique can be used to locate weed presence in the paddy plot
by using multiple approaches such as machine learning [62] and deep learning [57,58] or
by combining them both. Previous studies (Table 4) proved that any weeds, grass, sedge,
and broad-leaved weeds in crops could be classified using remote sensing techniques.
Therefore, this technique can be adopted into paddy field practices. These algorithms
were beneficial in detecting weed distribution in the paddy field, with sufficient training
data. The weed location will be recorded, and thus, the farmers will know its location and
estimate the suitable volume of herbicide needed to control the invasive plant in the plot.
Therefore, the over-application of herbicides will not be an issue anymore.

There is no standard method drawn systematically and strategically planned to de-
tect and manage weeds in paddy fields using remote sensing in developing countries.
This study is significant for finding the best approach to classify weeds in a paddy plot.
Using UAV imagery, Huang et al. [42] chose a semantic labelling approach to generate
weed distribution maps in paddy. A residual framework with an ImageNet pre-trained
convolutional neural network (CNN) was adapted and transferred into the dataset by a
fine-tuning process. A fully connected conditional random field (CRF) was adapted to
improve the spatial details. They successfully produced weed distribution maps with an
overall accuracy up to 94.45% and kappa coefficient of 0.9128. The newly generated map
can guide the sprayer UAV to spray the herbicide only at the weed colony. Thus, the usage
of a spraying UAV can minimize the contact between farmers and herbicides and, at the
same time, reduce the impact of agriculture on the environment and human health [102].

Different types of weeds need different treatments. Traditional practices are too time-
consuming and require many human resources, and they are not effective methods to
monitor weed presence. Developing countries’ farmers need this technology to improve
and increase yield production.

6. Impact of Weeds Management on Crops, Yield and Economy

Weeds cause severe yield losses in agriculture [103] and cause significant damage to
the ecosystem and the economy in the territories they enter [104]. For example, a couple of
studies have reported that rice production’s total yield loss due to weed infestation could
be up to 72% [105,106]. This loss happened due to the presence of weeds in crops that
compete in nutrient uptake. In addition, uncontrolled chemical products used to control
weeds cause farmers health issues and negatively affect the climate, killing livestock and
contaminating the air and water [100].

Fertilizer given by the farmers to increase their yield was not 100% absorbed by their
crops. For example, in Cambodia, cultivated agricultural land is 3.7 million hectares, of
which 76% is planted with lowland rice and 24% with upland crops such as soybean,
cassava, vegetables, maize, and sugar cane. At approximately 3 t ha−1, their average rice
paddy yield was about 50%, and another 50% of losses were caused by weed competition,
which is a significant constraint [107]. Due to weeds, Iranian wheat and chickpea yield
losses are more than 25% and 66%, respectively [108].

Weeds are more competitive when moisture is inadequate, and rice seedlings cannot
cope well with weeds. Meanwhile, in China, the presence of such invasive species has
caused them an economic loss of approximately USD 15 billion [109]. In Pakistan, USD
3 billion is needed annually for a weed management program to increase yield [33]. In
England, approximately USD 545 million of gross profit were lost annually, equal to 0.8
million tonnes of yield production, due to the herbicide-resistant weeds [110].

Precision agriculture techniques using high-tech tools can minimize agriculture re-
sources by site-specific application since they can calculate an optimum input to spatial
and temporal requirements, reducing greenhouse gas emissions into the atmosphere. In
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addition, these techniques will positively affect economics and yield productivity with a
lower production cost than traditional practices [111].

Malaysian farmers could expect an additional return of rice yield from 0.3 to 0.6 t ha-1
through proper weed management [112]. Meanwhile, in India, improved weed man-
agement successfully decreased weed infestation in rice fields from very high intensity
(>75%) to a mild (50%) level [113]. Matthews [114] tested herbicide usage using a spray-
ing UAV to demonstrate the impact of technology adaptation into precision farming.
The result showed that the study used approximately 200 L of herbicide per hectare
than the traditional method, which is 1000 L per hectare. Meanwhile, by applying site-
specific treatment maps on a broad scale, Huang et al. [77] successfully saved herbicide
consumption from 58.3% to 70.8%. On the other hand, De Castro, López-Granado and
Jurado-Expósito [83] saved 61.31% for the no-treatment areas and 13.02% for the low-dose
of herbicide practice. The implementation of SSWM into PA proved that it effectively
decreased the herbicide cost, optimized weed control, and avoided unnecessary environ-
mental pollutions [108,109,115,116].

7. Future Direction

Machine learning such as deep learning algorithms should be implemented for ex-
tracting higher abstract levels of weeds and their relation to the seasonal changes of the
paddy for more accurate weed identification. It is challenging to implement remote sensing
techniques into paddy. However, when referring to the previous study, De Castro et al. [96]
successfully classified Cynodon dactylon (bermudagrass) in a vineyard by integrating OBIA
with a decision tree (DT) algorithm. De Castro et al. [46] also managed to produce a weed
map of Convolvulus arvensis L. (bindweed) in a soybean field. Meanwhile, Huang et al. [94]
successfully generated a grass and sedge weed map in a paddy field using a deep learning
technique. This study has similarities in shape, texture, and pattern that machine learning
and deep learning techniques can classify. In addition, the integration of various platforms,
such as ground-based and machine vision technologies, should be considered. Besides,
various yield-determining factors, such as climatic or agronomic, should be considered
during the developmental stages of paddy. By maintaining the vigorous development of
paddy, the existence of weeds can be minimized due to the biological mechanisms of the
crops, which can be used to suppress the growth response of weeds towards the crops
during the competition process.

8. Conclusions

Traditional practices are too time-consuming and require many human resources.
Therefore, adapting automated practices into precision farming (PA) is the best practice to
control weeds. Even though various platforms are available for data gathering, UAVs are
the best for detecting weeds in paddy due to their availability, high-quality data delivery,
and ease of handling. We had complete control over the data collection phase. The review
proved that deep learning could convey high accuracy weed maps. However, this method
requires a certain number of training data, resulting in massive agricultural databases.
Therefore, to decide which algorithm best suits our research, we need to know what types
of weeds we are dealing with by observing their types in paddy fields. It is not necessary
to use a complicated algorithm to perform weed classification. Although some studies
showed that deep learning might not be necessary when dealing with imagery, much
simpler algorithms, such as OBIA, can perform adequate image analysis for detecting
weeds in paddy fields. When comparing crops and weed types, both algorithms, ML and
DL, had successfully generated a high accuracy map ranging from 85% to 99%, depending
on the type of weeds and crops. Thus, we can expect the same accuracy in producing
weed maps in paddy, regardless of the types of weeds present in the field. More research
needs to be carried out, and this review has shown that improved weed management could
optimize the usage of herbicides that should be applied on a site-specific basis. Not only
did it increase yield production, but it also proved that this technology could control the
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spreading of weeds. It also effectively maximizes herbicide usage and decreases the budget
required to purchase them.
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