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Preface to ”Satellite and UAV Platforms, Remote

Sensing for Geographic Information Systems”

LAerial photography has been used since the First World War, and after the Second World War

became an important tool of the Earth Sciences, as well as Biological and Geographical Sciences.

Satellite Remote Sensing has been a standard research instrument since the launch of Landsat 1

in 1972. The digitalization of geographical work resulted in the first Geographical Information

Systems in the 1960s. The rapid evolution of computer hardware and software has provided ever

faster and better platforms for the analysis of digital geoinformation. The introduction of cheap

and reliable unmanned aerial vehicles (UAV) in the last two decades filled the gap between global

satellite imagery and digital aerial photogrammetry. Together with the advent of computer modelling

and geo-statistical analytical capabilities, we have now an extremely powerful complex to analyze,

model and predict changes in the environment. The effects of climate change, loss of biodiversity, and

complex ecological questions are all possible fields benefitting from the integration of digital remotely

sensed data and the analytical powers of geoinformatics.

Alfred Colpaert

Editor
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Editorial

Satellite and UAV Platforms, Remote Sensing for Geographic
Information Systems

Alfred Colpaert

Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111,
80101 Joensuu, Finland; alfred.colpaert@uef.fi

Satellite and UAV (unmanned aerial vehicle) imagery has become an important source
of data for Geographic Information Systems (GISs). Enormous volumes of remote sensing
and GIS data are nowadays produced, stored and analyzed in high-capacity network-based
geoinformatics systems. Satellite imagery in a wide range of spatial, spectral, and temporal
resolutions provides the scientific community with rapidly available global data to be
used as an integral part of spatial data structures and analyses. Remote sensing platforms,
such as Modis and Landsat, have a unique historical record of providing tens of years of
uninterrupted global data, provided by repositories such as NASA and ESA.

For local applications, the rapid evolution of unmanned aerial vehicles and lightweight
sensors has provided the scientific community with a tool for acquiring data of extremely high
resolution, covering areas that vary from several hectares to hundreds of square kilometers in
size. These data can be used for precision farming, forestry, and environmental monitoring.

The present Special Issue on the integration of UAV and satellite imagery with GIS
contains ten articles, which can be divided into three parts: UAV applications, satellite
remote sensing and methodological work using RS data.

Three articles deal with pure UAV applications, two applying UAV for agricultural
crop monitoring [1,2] and one paper [3] using GIS and computer vision to analyze UAV
orthomosaics. The planning of high-altitude long-endurance pseudo-satellite missions is
dealt with in this paper [4].

The integration of satellite RS data in GIS systems for vegetation monitoring is used
in three papers: one paper dealing with winter stress on arctic understory vegetation [5],
one on the application of Copernicus (CMEMS GlobColour-Merged CHL-OC5 Satellite
Observations) satellite-derived data concerning the aquatic environment [6] and one on
the application of MODIS NDVI data and GIS to assess the effect of wildlife upon tropical
savannah vegetation [7].

The problem of mosaicking multiple high-resolution orthoimages (UAV or satel-
lite) is dealt with in paper [8], introducing a novel method based upon the D-LinkNet
Neural Network.

Precise satellite telemetry data can be used to monitor the minute deformations occur-
ring in the Earth’s crust. The paper by Jagoda et al. describes the use of high-precision laser
altimetry data to assess the deformation of the Earth’s crust caused by external planetary
bodies (tidal forces) [9]. The last paper uses data derived from global navigation satellite
systems (GNSS) to monitor the crustal deformation of the Earth [10].

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.
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Assessing the Impact of Wildlife on Vegetation Cover Change,
Northeast Namibia, Based on MODIS Satellite Imagery
(2002–2021)

Augustine-Moses Gaavwase Gbagir 1,*, Colgar Sisamu Sikopo 2, Kenneth Kamwi Matengu 3

and Alfred Colpaert 1,*

1 Department of Geographical and Historical Studies, University of Eastern Finland, Yliopistokatu 7,
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kmatengu@unam.na
* Correspondence: augustine.gbagir@uef.fi (A.-M.G.G.); alfred.colpaert@uef.fi (A.C.)

Abstract: Human–wildlife conflict in the Zambezi region of northeast Namibia is well documented,
but the impact of wildlife (e.g., elephants) on vegetation cover change has not been adequately
addressed. Here, we assessed human–wildlife interaction and impact on vegetation cover change.
We analyzed the 250 m MODIS and ERA5 0.25◦ × 0.25◦ drone and GPS-collar datasets. We used
Time Series Segmented Residual Trends (TSS-RESTREND), Mann–Kendall Test Statistics, Sen’s Slope,
ensemble, Kernel Density Estimation (KDE), and Pearson correlation methods. Our results revealed
(i) widespread vegetation browning along elephant migration routes and within National Parks,
(ii) Pearson correlation (p-value = 5.5 × 10−8) showed that vegetation browning areas do not sustain
high population densities of elephants. Currently, the Zambezi has about 12,008 elephants while
these numbers were 1468, 7950, and 5242 in 1989, 1994, and 2005, respectively, (iii) settlements and
artificial barriers have a negative impact on wildlife movement, driving vegetation browning, and
(iv) vegetation greening was found mostly within communal areas where intensive farming and
cattle grazing is a common practice. The findings of this study will serve as a reference for policy
and decision makers. Future studies should consider integrating higher resolution multi-platform
datasets for detailed micro analysis and mapping of vegetation cover change.

Keywords: vegetation monitoring; drivers of deforestation; Zambezi region; land degradation;
vegetation cover change; wildlife management; TSS-RESTREND; greening and browning; MODIS;
Mann–Kendall

1. Introduction

One of the persistent ongoing global environmental challenges is that of land degrada-
tion [1–3]. Land degradation is quite complex in nature and often involves the inter-play
of biophysical, environmental, and socioeconomic factors [4]. There are several scientific
debates on what constitutes land degradation but in this study, we adapt the general
definition of land degradation by Barbier and Hochard 2018 [5], “as some measurable loss
of the biological or economic productivity and complexity of rainfed cropland, irrigated
cropland, or range, pasture, forest and woodlands . . . arising from human activities and
habitation patterns”.

Anthropogenic disturbances have been identified as a major driver of land degrada-
tion globally [6–10] and are well documented [6,11–15]. The drivers of land degradation
are many, complex, and unique across regions [8,13,14,16,17], but these have been cate-
gorized as direct and indirect [16,17]. Based on this categorization, the direct causes of
land degradation include: (1) infrastructure development (e.g., roads and settlements),

Sensors 2022, 22, 4006. https://doi.org/10.3390/s22114006 https://www.mdpi.com/journal/sensors3
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(2) expansion of agriculture (e.g., large- and small-scale farming and cattle grazing), and
(3) wood extraction (e.g., fuelwood, pole wood, and charcoal production). While the indi-
rect drivers of land degradation include: (a) demographic (e.g., population density, and
migration/emigration), (b) economic (e.g., market growth and commercialization, and
economic structures), (c) technology (e.g., agro-tech changes), (d) policy and institutional
(e.g., formal policies, and property rights), and (e) cultural (e.g., public attitudes and beliefs,
and individual and household behavior).

Anthropogenic activities such as wood extraction and conversion of woodland and
forests into small and large-scale farming have been a major contributor to land degradation
across different geographical regions [15,18]. In the tropics, particularly Africa and in
Namibia, agricultural expansion, wood extraction, and infrastructure development are the
key drivers of land degradation [9,12,16–18].

The impact of land degradation is quite severe in arid, semi-arid, and sub-humid
regions [4,19]. Land degradation has a long history in Sub-Saharan Africa and has been
well documented and researched [19–21]. In Africa, anthropogenic activities, includ-
ing unsustainable land use practices (e.g., overexploitation of natural vegetation cover),
are a major contributor to land degradation, in addition to other natural causes such as
droughts [16,22,23]. In a country such as Namibia in south-western Africa, where about
22% of the land area is classified as desert, 70% as arid to semi-arid, and 8% as dry sub-
humid [24–26], any slight change or modification in the vegetation structure could have
adverse effect on the environment, social well-being, and livelihoods of the people [27].

In Namibia, the contribution of anthropogenic activities to the loss of vegetation cover
has been well documented [12,24,27–29]. The loss of vegetation cover is mostly driven by
the conversion of forests and woodland into agricultural farmlands [12,24]. Even though
this is the case, the interaction and contribution of wildlife to vegetation cover loss is less
understood and needs to be studied in more detail. On the other hand, wildlife damage
and human–wildlife conflict is an on-going topic of research and discussion amongst
researchers, natural resources managers and various other stakeholders [30–32]. This study
will focus on one aspect of land degradation: vegetation cover loss and how anthropogenic
and wildlife interaction are driving land cover change in the Zambezi region.

Amongst all the human–wildlife conflicts, the African elephant (Loxodonta africana)
is one of the most significant wildlife species causing structural changes and damage to
vegetation [33]. Elephants are herbivores and bulk feeders and require large amounts of
food resources to fulfill their nutritional requirements, which they receive from trees, shrubs,
and grasses [33,34]. Even though elephants’ consumption of vegetation to meet their dietary
needs is natural, overexploitation and mechanical damage becomes destructive, causing
vegetation browning and contributing to land degradation (e.g., leaving soils bare) [33–35].
The impact of elephants on structural changes in vegetation has been documented by
several studies [34,36–42]. Unlike anthropogenic activities, the impact of elephants on
vegetation cover is, to a large extent, confined to locations where elephants exist mostly
within protected areas [35,40,43,44]. Anthropogenic restriction of elephant movement and
access to space and resources is the main factor driving the browning of vegetation cover
by elephants [45,46].

In Namibia, anthropogenic activities are the primary driver of land degradation [12,24],
while elephants are mainly responsible for modifying the vegetation structure [47]. As
such, we will limit our discussion in this study to the elephant as the major interacting non-
human factor contributing to the loss of vegetation cover in Namibia. Additionally, we will
use the Zambezi region as a test case, as it is one of the best areas suitable for agriculture in
the whole of Namibia and, historically, is home to a wide variety of wildlife (both large and
small) [28,48]. The region has the largest savannah woodland cover in Namibia [24,27,28]
and is habitat to most elephants in Namibia [30,48]. It is well documented that elephants
browse, break, pull and uproot woody species, thus causing structural changes in vegetation
cover [44,49–51]. The movement of elephants depends on several interrelated factors such
as food, water, elevation, density and human settlements [30,49]; they have a home range

4



Sensors 2022, 22, 4006

of from 10 km to more than 8000 km [49]. Consequently, human–wildlife conflicts are a
common occurrence in the region [32]. One of the identified reasons for these conflicts is the
anthropogenic fragmentation of natural wildlife habitats [30,32,46]. Though this is the case,
elephant-induced vegetation cover loss is most likely a secondary cause [51], the primary
cause being the limited availability of resources driven by anthropogenic activities [25,46].

One of the solutions to these conflicts has been the establishment of wildlife reserves
and national parks and the construction of fences and other barriers to keep wildlife at
bay from human settlements [25]. While this has largely worked, the carrying capacity of
these wildlife reserves is often not sufficient to sustain large herds of herbivores [25], thus
putting pressure on available resources and causing the loss of vegetation cover [25].

Currently, in Namibia, specifically in the Zambezi region, there are projects to combat
land degradation [48], conserve wildlife and manage human–wildlife conflicts [51–53].
In this study, we will use land degradation to mean the loss of vegetation cover with
contextual meaning [54]. Additionally, we will use the terms greening and browning to
refer to vegetation increase and decrease, respectively.

Presently, there are multiple satellites that provide datasets that can be used for differ-
ent research purposes [55–57]. Satellite remote sensing is widely used in environmental
monitoring, mapping of vegetation, and assessment of different land use and land cover
changes [58–61]. Remote sensing is a popular mode of research as it is the cheapest and
most efficient way to assess land use and land cover change [62]. Land use and land cover
change assessment is still one of the most important areas of research because of the direct,
immediate, and long-term impact of anthropogenic activities on the environment [3,60,63].
Thus, finding long-lasting and sustainable approaches to address land degradation is essen-
tial [3,64]. Additionally, it is important to understand that land degradation is contextual
in nature and this should be taken into account during discussions [65].

In the Zambezi region, many studies have successfully used satellite remote sensing
to assess and map changes in vegetation cover [24,28,29,66]. Although this is the case,
to our understanding and best knowledge, assessing and characterizing the impact of
wildlife on vegetation cover using remote sensing in the Zambezi region has not been
attempted before.

Thus, improving our understanding of the dynamics and impact of wildlife on land
degradation within the Zambezi region and beyond is important. Better understanding
will provide better insight and tools to improve the management of wildlife and natural
land resources in the region. One major challenge of implementing more effective wildlife
conservation and natural resource management is continuous access to historical and up-
to-date land use and satellite data. Fortunately, the availability of historical satellite remote
sensing data and the increasing improvements in analytical software provide opportunities
to assess and map changes in vegetation cover and structure. In a 2019 study, the authors
successfully applied remote sensing data to characterize regional vegetation cover change
in the Zambezi region [24]. In that study, they used eight km resolution Global Inventory
Monitoring and Modelling Studies (GIMMS) from the Advanced Very High-Resolution
Radiometer (AVHRR) [67]. In the study, only results on a regional scale were obtained due
to the coarse resolution of the data [24].

Although higher resolution satellite observations exist, there are drawbacks in using
this data, such as (a) the exponentially increasing amount of data result in high computa-
tional costs for a long time series, and (b) the low temporal resolution and higher impact of
cloudiness (especially in the tropics) [68]. The MODIS 250 m resolution dataset provides
over 20 years of continuous global daily imagery, which has been resampled into a monthly
NDVI nearly cloudless dataset. This monthly NDVI dataset allows us to use sophisticated
geospatial trend analysis techniques.

In this study, we will assess and characterize the vegetation cover change in the last
nineteen years (2002–2021).

The specific objectives of this study are to:
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(i) Assess the impact of wildlife (elephants and other large herbivores) on the vegetation
cover change (greening and browning) in the last 19 years (2002–2021).

(ii) Assess the effects of anthropogenic activities on wildlife migration and vegetation
cover change (greening and browning).

To assess the vegetation cover change, we will use historical remote sensing data from
the 250-meter Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite
instrument. We will use time series and geostatistics, as well as geo-spatial analytical meth-
ods. Specifically, we will use the Time Series Segmented Residual Trend (TSS-RESTREND)
method, which will allow us to separate human-induced land degradation from that caused
by natural climatic factors [24,69–71]. A similar approach was used by the authors in their
2019 study [24]. Additionally, we will use the Mann–Kendall non-parametric test and Sen’s
Slope measure of direction and magnitude of vegetation change [72]. In addition, we will
use the Kernel Density Analysis [73] to cluster the elephant GPS tracking data and correlate
the results with the trajectory of vegetation cover change.

2. Materials and Methods

2.1. Study Area

The Zambezi region ((formerly Caprivi Strip) (Figure 1)) is part of the Kavango-Zambezi
Transfrontier Conservation Area (KAZA TFCA), stretching across five countries: Namibia,
Angola, Zambia, Zimbabwe, and Botswana [48], forming the second largest conservation
area in the world [51]. The land area of the Zambezi region is 14,785 km2 [51], with a total
population of 98,849 (2011 Census) [24]. Most of the vegetation in the region is woodland
savanna and open grasslands [27,28,51]. The region contains three large National Parks,
Bwabwata, Mudumu and Nkasa Lupala (formerly Mamili) [48,51]. Conservancies in the
region include: Kwandu, Mayuni, Salambala, Sibbinda and Linyanti [25,29]. A conser-
vancy is a legally defined area set aside and managed by local communities who have
rights to live within, use, and manage wildlife and other natural resources for personal
and tourism purposes (including trophy hunting) [74,75]. The region is an important mi-
gratory route and home to a high density of elephants [25,76], buffalos, and antelopes [48].
Additionally, the region is an important agricultural area, due to good soils and high rain-
fall [77,78].The major soil types in the region are poor ferralic arenosols containing high iron
contents and fertile eutric fluvisols with high base saturation [77,78]. The yearly amount of
rainfall in the region is the highest in Namibia (500–700 mm/year) [77,78] when compared
to the national mean of <250 mm/year [19] and <50 mm/year in the southwestern and
coastal areas [77]. The wet season in the region starts in November and ends in April. The
average summer and winter temperatures in the region are 35 ◦C and 5 ◦C, respectively [78].
The region has a yearly evaporation rate of about 2500 mm [78]. The region shares com-
mon borders with Angola, Botswana, Zimbabwe, and Zambia [48]. The perennial Kwando
(Cuando) River flows along the border between Angola and Zambia through the Zambezi
region (with Bwabwata National Park on the west and the Mudumu National Park and
the six conservancies on the east) south towards the swampy areas around Nkasa Lupala
National Park. East of Nkasa Lupala is the Linyanti River that flows east through the seasonal
Lake Liambezi into the Chobe River. The Chobe River flows eastward into the perennial
Zambezi River, one of Africa’s major and longest river systems. The Zambezi River flows
from Zambia and forms the border between Zambia and Namibia in the Zambezi region.

2.2. Satellite and UAV Field Data and Image Pre-Processing

We downloaded and processed the monthly 250 m Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra satellite instrument NDVI datasets. We resampled the
NDVI index to a common 250 m grid (UTM-35S). Because the 2001 data set is incomplete,
we used only raster images from 2002 to 2021.
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Figure 1. Study area, main roads, rivers, conservation areas, and field work way points for high
resolution (2 cm) UAV data in (a). In (b), the map of Namibia, and (c) map of major soil types.

The time series for precipitation and temperature data were monthly ERA5, available
from 1979 (ERA documentation). The monthly 0.25 × 0.25 degree resolution data was
downloaded from 1999 to 2021 (https://cds.climate.copernicus.eu (accessed on 6 May 2022)).
Both temperature and precipitation were resampled to a common 250 m grid and re-projected
to the UTM reference system. The temperature and precipitation data must start two years
before the NDVI time series because this information is required by the processing algorithms
during analysis to calculate the maximum rainfall accumulation months. Finally, we used
265 gridded monthly temperature and precipitation raster layers.

2.3. Field Sample Locations and Elephant Tracking Data

During our field work, we used a hand-held GPS instrument [(Garmin GPSMAP
62ST), Garmin Finland] to collect the latitudes and longitudes of sample points. At each
sample point (Figure 1), we recorded the location coordinates and geographical name. We
used a DJI Mavic Pro Platinum drone to document the vegetation characteristics by taking
aerial photos and videos at every sample point. At each sample location, we flew the drone
at a height of 40–90 m and recorded a 360◦ view of the surrounding vegetation (pictures
and videos).

The Government of the Republic of Namibia (Ministry of Environment Tourism and
Forestry) provided the elephant tracking data (2010–2020). These data are a transboundary
hourly GPS-collar tracking dataset, covering Namibia, Botswana, Angola, and Zambia.
The data consisted of 31 individual elephants over a period of eight (8) years (2010–2020).
The GPS-collared elephant data were collected by the Africa Wildlife Tracking company
(https://awt.co.za/ (accessed on 6 May 2022)), based in Pretoria, South Africa. The GPS
collars were put on the elephants by first using a tranquilizer dart from a helicopter
to immobilize them. The brand of GPS collar used was the Iridium Satellite (IR-Sat)
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that collects and transmits continuous near real-time data. The data transmission and
receiver of the IR-Sat covers a few hundred meters to multiple kilometers [79]. Table 1
presents a breakdown of the number individual elephants tracked and during which
period. We downloaded additional crowd sourced wildlife observations, elephant and
buffalo observations (one kilometer grid), using the Monad (1 km × 1 km) reference
grid data from the Environmental Information Service Namibia (http://www.the-eis.com
(accessed on 6 May 2022)).

Table 1. The tracked elephant data used in this study. The periods correspond to the 12 calendar
months of the year. The total length of tracking period (in months) is shown in brackets.

Year No. of Individual Elephants Tracked Period

2010 8 10–12 (3)
2011 7 1–12 (12)
2012 7 1–8 (8)
2016 5 3–12 (8)
2017 13 1–12 (12)
2018 20 1–12 (12)
2019 16 1–12 (12)
2020 6 1–12 (12)

2.4. Data Analysis

To assess the vegetation changes, browning (decrease) or greening (increase), we used
the Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) method [69] to
perform a pixel wise analysis. To achieve this, we created and used an R-script that iterates
over each pixel across the image stack of the complete the time series. TSS-RESTREND is
an improved method of the Residual Trends algorithm (RESTREND) [71] that incorporates
the functionalities of Break For Additive Season and Trend (BFAST) algorithm [80,81] to
look for break points in the time series.

RESTREND uses an Ordinary Least Squares Linear Regression model, fitted on the
residual and time [1,24]. The equation is of the form:

yi = β0 + β1x, (1)

where x is time in years, β0 is the intercept and β1 is the slope.
BFAST fits a linear piecewise harmonic model using the ordinary least squares moving

sum (OLS-MOSUM) to test for structural changes within time series data [24,82].
The decomposition model takes the following form:

Yt = Tt + St + et, (2)

where Yt is the original observed data (TS) at time t, Tt is the trend, St is the seasonal, and
et is the remaining unexplained variation within the TS, respectively [24,80].

TSS-RESTREND fits a multivariate regression between the VPR-Residual (vegetation
precipitation) and a dummy variable (0 before a break point and 1 after). The model is of
the form:

yi = β0 + β1x + β2zi + β3xizi (3)

where x is time in years, β0 is the intercept, β1 is the slope, β2 is the offset at breakpoint
position, β3 is the change in slope at the breakpoint position and z is the dummy variable
(0 or 1) [24,69].

In addition, we performed a pixel wise Mann–Kendall statistics test of the NDVI time
series to determine the trend of total vegetation change in the Zambezi, and the Sen’s Slope
to determine the magnitude of the change [72]. Mann–Kendall is a non-parametric test and
does not rely on a particular data distribution but rather on the relative magnitude of the
sample data [83,84].
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The Mann–Kendall statistics is of the form:

S =
n−1

∑
k=1

n

∑
j=k+1

sign
(
xj − xk

)
(4)

where:

sign
(
xj − xk

)
=

⎧⎨
⎩

1 if xj − xk > 0
0 if xj − xk = 0
−1 if xj − xk < 0

(5)

xj and xk are the annual values in years j and k, respectively [29].
The non-parametric Sens Slope time series analysis was performed using the same

pixel-wise moving window method to obtain the linear rate of change in the time series.
During all pixel-wise analysis (TSS.RESTREND, RESTREND, Mann–Kendall and Sen’s
slope), we used a p-value parameter of 1 during the analysis, thus we obtained the change
in every pixel, irrespective of the p-value. We took this approach because it provides for a
synoptic spatial overview, showing gradual changes between distinct areas of significant
degradation and vegetation increase, and areas of no change; the latter is associated with
non-significant p-values. We observed that the changes that the algorithm interpreted as
non-significant contain important information, e.g., areas of no change. This approach
also provides a much more homogeneous and easier to understand cartographic map
product. Although the general result of the different methods conforms very well, local
differences are noticeable when comparing the results of different algorithms, therefore we
made an additional ensemble analysis by combining the TSS.RESTREND, RETREND and
Mann–Kendall algorithms and calculating the mean value of the results.

We computed a Kernel Density Estimation (KDE) of the elephant tracking point data in
ArcMap 10.5.1. We then used the KDE and the ensemble mean to calculate a simple Pearson
correlation analysis between the presence of elephants and vegetation changes. Before
calculating the Pearson correlation, we used ArcMap 10.5.4 to create a grid of 1600 points
over the whole Zambezi area where elephants are present (Figures 2 and 3). Additionally,
we created an additional l600 points in two sub-sample grids, west of the Kwando River in
Bwabwata park and around the Mudumu park (Figure 3B,C). We then extracted the values
of the ensemble mean at these points and we excluded data points where the KDE was
zero (no presence). We were left with 1506 points 1386 points in sub-sample locations one
(Bwabwata) and 1482 points in two (Mudumu). We then used these points to compute a
simple Pearson correlation in Microsoft Excel (version 2202).

To validate our results, we compared the UAV data we collected during our 2019 field
trip with the outcome of the time series analysis. We used R (R Core Team, 2022) and
ArcMap (version 10.5.4) for data analysis and to produce graphics. The R-code was run
on the cPouta cloud services of CSC using 24 and 48 cores Ubuntu Virtual Machines
(https://research.csc.fi (accessed on 6 May 2022)). We implemented Google Earth Pro for
visual interpretation and verification of results.
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Figure 2. (a–e) show the output of the TSS.RESTREND, Mann–Kendall, ensemble, and kernel
density estimate (KDE) analysis over the whole Zambesi region. In (a), the Residual Change of
the TSS.RESTREND and (b) is the Mann–Kendall Tau. In (c) is the ensemble of the mean values of
RESTREND, TSS.RESTREND, (d) the spatial distribution of elephant sightings overlayed over the
ensemble mean value from (b) above and (e) the overlay of the Kernel Density Estimate (KDE), and
Mann-Kendal Tau from (b) above. No data and background values are displayed as grey.
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Figure 3. Shows the locations of the sampled grid points in the Zambezi region of the Kernel Density
Estimate and the ensemble. The grid points are overlayed on the ensemble (a) used previously in
Figure 2. The results of the Pearson correlation in (A) correspond to all the sampled points in the
Zambezi while (B), and (C) correspond to the sub-sampled areas (black polygons) above.

3. Results

Pattern of Vegetation Trend: 2002–2021

Based on remote sensing and GIS data, this study analyzed the human–wildlife inter-
action in the Zambezi region. Figure 2 shows the pixel-by-pixel vegetation change pattern
in the Zambezi region during the period 2002–2020. The TSS-RESTREND residual change
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(Figure 2a) highlights a mixed pattern of positive (greening) and negative (browning)
vegetation changes. Similarly, the ensemble and Mann–Kendall Tau (Figure 2b,c) both
clearly show a mixed pattern of positive and negative values. The positive and negative
pixel values indicate vegetation change increase and decrease, respectively. The observed
negative pattern of the TSS-RESTREND and RESTREND is attributed to factors other
than climatic aspects because the variability associated with climate was removed dur-
ing the analysis. Most of the browning pixels (land degradation) are along the Kwando
River (Figures 2a, 3 and 4A), which is a major migration route for wildlife, specifically
elephants [25]. On the eastern part of the Kwando River are two National Parks Mudumu
and Nkasa Lupala, and six conservancies (Kwandu, Mayuni, Mashi, Balyerwa, Wuparo,
and Malengalenga), (Figures 1, 2a and 3) [25]. On the western part of the Kwando River is
the Bwabwata National Park, a part of the home range for large herds of elephants [32],
and also contains a buffalo core area [25]. Most of the vegetation browning we observed
was also taking place within Mudumu and Nkasa Lupala National Parks (Figure 2). Within
Bwabwata National Park (west of the Kwando River), browning is mainly close to and
along the Kwando River, while elsewhere most of the pixels show greening (Figure 2).

Figure 3 shows the Pearson correlation between the Mann–Kendall Tau and the Kernel
Density Estimate of the elephant data. Over the whole Zambezi (Figure 3A), as well as
in the western (Figure 3B) and eastern areas (Figure 3C), there is a clear negative trend
(browning) indicated by the red straight line. In the whole Zambezi area (Figure 3A) and
in both sub-sampled locations (Figure 3B,C), the negative trend (browning) is significant
(p-values = 5.5 × 10−8, 0.0005, and 3.93 × 10−24). Additionally, the results (Figure 3A–C)
show that as the density of elephants decreases away from the KDE core areas, vegetation
greening begins to occur (black polynomial line, Figure 3A–C). It is noteworthy that the
polynomial line increase related to high KDE densities probably indicates that large herds
are attracted to abundant vegetation resources. Moving further to the eastern part, we
observed browning around and within the Salambala core area, located east of Lake
Liambezi (Figure 2c). The Salambala core area is also home to elephant herds (Figure 2e).
In addition, we also observed browning close to and around roads (Figures 2–4). These
roads are locations of high-density human settlements where cattle grazing and extensive
agricultural activities are a common practice. On the other hand, we also observed some
relatively high greening, mostly around Lake Liambezi, communal areas, as well as some
locations of the floodplains (Figures 2–4).

The browning pattern we observed is not only confined to the Zambezi region but
extends across the border into neighboring countries (Figure 2). For example, the browning
along the Kwando River continues across the Namibian border into Luina Partial Reserve
(Angola) and Sioma Ngwwezi National Park (Zambia). We also observed a similar pattern
across the border into Botswana, where we can see a clear difference along the 135 km
veterinary fence which was constructed between 1991 and 1997 [25], (Figure 2c,e). On the
eastern side of the fence, we observed high levels of degradation, while to the west we see
relatively high greening values (Figure 2c).

We also ran the Mann–Kendall test on temperature and precipitation but did not
see any significant trend, so the result was not shown here. An enlarged graphics of the
Mann–Kendall NDVI Tau is shown in Figure 5 (Additional resources).
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Figure 4. Shows aerial images from our 2019 field survey in the Zambezi region (a–m). In (A), the
labels (a–m) correspond to the images shown with their respective GPS coordinates at the sample
locations (red circle with black dot in the middle). Additionally, in (A), we use the same ensemble as
in Figure 2b above for reference purposes.
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Figure 5. Additional resources.

4. Discussion

Potential Impact of Wildlife on Vegetation Cover and Land Degradation: 2002–2021

This study found that human–wildlife interaction is driving vegetation cover change
in the Zambesi region. Specifically, anthropogenic restriction of space and resources for
wildlife is driving the observed accelerated vegetation removal by large wildlife herbivores,
in this case elephants. Consequently, this interaction is a potential contributor to land
degradation in the Zambezi region. Previous studies in the Zambezi region by Gbagir et al.
2019 [24] revealed that land degradation is driven by the interaction of multiple direct and
indirect factors. These factors include: demographic [24,27], ecological (e.g., floods) [27,85],
and environmental factors (e.g., topography) [24,28]. Specifically, subsistence farming,
infrastructure expansion (e.g., roads), including settlements, and legal and illegal wood
extraction for firewood were identified as the main drivers of land degradation in the
region [24]. However, the studies by Gbagir et al. 2019 [24] were not able to clearly establish
more specific causes for land degradation due to the nature of the data used [24].

In the present study, a more detailed pattern and trend of vegetation cover change
was revealed and the impact of wildlife on land degradation was clearly established. The
contribution of wildlife on land degradation in the region corresponds to previous base line
studies and ongoing statistics from the region. Reports indicate that elephant populations
in the Zambezi region are stable or growing [51,86]. In addition to elephants, other wildlife
populations, e.g., buffalo, are present (Figure 2d), but since elephants clearly damage trees,
our results and discussion are focused on these.

Baseline studies on the presence of elephants in Namibia were carried out in the early
1980s and 1990s [32,87]. Based on these studies, several subsequent surveys have shown
that the population of elephants has been increasing steadily in Namibia [25,48] from 600 to
1000 in 1934 to 22,754 in 2016 [48]. Probably the elephant population can be assumed to be
even larger in 2022. The Zambezi region (Namibian KAZA) hosts most of the elephants in
Namibia and is the most important migration route [30,48]. Reports show that the number
of elephants within the Zambezi region has more than tripled since 1995/1996 [48]. A
current estimate of elephants in the region is reported as 12008 [88]. According to Chase and
Griffin (2009) [25], the elephant population in the Zambezi region was 1468 in 1989, while in
1994, these figures were reported as 5804 [25], 7950 and 5556 [87,88].The differences between
the figures are mainly due to the different sampling techniques used in those studies [25,88].
By 1998, these figures were down from 5804 to 4576 [25], but in 2005 the numbers had again
increased to 5242 [89]. The decline in the elephant population was thought to be the result
of the civil unrest in Angola [25,89] and the construction of the veterinary fence between
Namibia and Botswana in western Zambezi [25,48,76], consequently restricting and cutting
off the migration of wildlife (elephants, buffalos, wildebeests, zebras, etc.) [25,48,76].
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Most of the browning we observed was along the Kwando River (Figure 2), an im-
portant migration corridor for elephants [32]. The negative impact (browning) on the
surrounding vegetation is clearly visible compared to elsewhere in the Zambezi region,
as elephants browse on and de-back and break down trees, causing structural changes
to the surrounding vegetation [47,90]. The Kwando River and the Mudumu and Nkasa
Lupala parks contain medium to high numbers of elephants [32]. The studies by O’Connell-
Rodwell et al. 2000 [32] put the number of elephants present on the western Kwando River
as 3000, while 400 and 600 were reported for Mudumu and Nkasa Lupala, respectively.
Within Bwabwata national park (west of the Kwando River), browning is limited to the
riverbanks and migration route, while elsewhere, there is less indication of high levels of
browning. We also observed a similar pattern of browning within the Salambala core area,
while most of the greening is occurring elsewhere in the area (Figure 2c). A 2019 survey of
elephants reported the current population in the Salambala conservancy as 507 [88].

Other important factors contributing to land degradation in the Zambezi region are
of anthropogenic origin, as has been established by previous studies [24]. However, in
this study, we now see clearly how these anthropogenic activities have contributed to
wildlife-induced vegetation browning in the region. The expansion of settlements and
roads and the construction of artificial barriers (e.g., fences) has diminished the habitat of
elephants and reduced their access to food and water resources [25,45,47,91]. As a result,
more pressure is put on the remaining resources, propagating vegetation browning in the
region [25,45,47,91]. Additionally, the shrinking of elephants’ habitats has modified the
behavioral pattern of these animals [46] and increased human–wildlife conflicts [53,66].
Most of the visible browning was observed within the protected areas (e.g., Mudumu,
Nkasa Lupala, Salambala core) due to the high density of elephants concentrated within
small restricted areas. Restricting the habitat of wildlife, specifically elephants, has im-
pacted and contributed to the observed browning [45,91]. The Pearson correlation results
(Figure 3A,B) also confirmed that the concentration of elephants within a certain restricted
area was contributing to the observed gradual browning. However, the right side of the
curve (Figure 3A,B) show that areas of vegetation browning do not sustain high animal
populations; hence, the curve rises as the green areas attract large herds, thus indicating
that the available space and resources may be beyond the carrying capacity of the current
number of elephants with the protected areas. Additionally, taking into consideration that
the arenosols soils are poor in nutrients [77,78], any slight modification in the vegetation
cover will have a visible impact, which in this case is browning.

In addition to the elephant populations in this area, along the Kwando River there
are also six conservancies (Kwandu, Mayuni, Mashi, Balyerwa, Wuparo, and Malen-
galenga) [25]. The presence of these settlements has given rise to clearing of land for
farming and cattle grazing and increases in the road network. The presence of human
settlements increases human–wildlife competition for land resources, making these areas
hotspots for human–wildlife conflicts. Just like the six conservancies along the Kwando
River, the Salambala core is also surrounded by several villages where farming and cat-
tle grazing is a common practice [24,29,92,93], which could explain the high levels of
vegetation browning (Figure 2c).

Apart from browning, there is also greening within the Zambezi region, most of the
greening is occurring within the communal areas of Lake Liambezi and the Chobe River
floodplains farther east. These greening areas have high human population densities and
are locations of intensive farming and cattle grazing [48]. This we were able to verify during
our field visit in December 2019 (Figure 4).

The greening of the Lake Liambezi is mostly due to the present drying (Figure 4j)
which opens land for vegetation growth, farming, and grazing activities (Figure 4k). Large
numbers of cattle are grazing on the eastern floodplains (Figure 4l) [48]. Recent reports in
2019 estimated the total number of cattle in the Zambezi region to be 135,878 animals [88].

The pattern of vegetation browning observed along the Kwando migratory route
continues into neighboring Zambia (Sioma Ngwezi National Park) and Angola (Liuana
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Partial Reserve) (Figures 1 and 2). Additionally, this pattern of vegetation browning applies
to the southern border with Botswana around the Chobe National Park (Figures 2–4). The
Chobe National Park is where the majority of the 200,000 migratory elephant population
is located [24,94,95]. Furthermore, it is quite clear that greening is mainly on the opposite
side (south) of the northern buffalo fence, where access by elephants is restricted [9,35]
(Figure 2c,e) [59].

Similar studies elsewhere have also linked elephants to the loss of vegetation in
protected areas. Examples include: Samburu and Buffalo Springs National Reserves [39],
Aberdare National Park [44] in Kenya, Addo Elephant National Park, Eastern Cape, South
Africa [38], and the Serengeti National Park, Tanzania [40,42]. We anticipate that the results
of this study will provide increased understanding of the interaction between wildlife and
land degradation in the Zambezi region. This new additional information could potentially
improve and inform policy formulation and decision-making regarding wildlife and natural
resources conservation and management in the region and elsewhere in Namibia.

Future studies should consider detailed and micro-analysis, classification and mapping
of vegetation cover change by combining and integrating higher resolution remote sensing
datasets [56,61,63,96–98]. This form of information will provide even better data to improve
the current integrated sustainable land use and management practices.

5. Conclusions

This study assessed the impact of wildlife populations, specifically elephants, on
vegetation browning in the Zambezi region during the last 19 years (2002–2021). Our
analysis reveals that vegetation browning is mostly in locations with a high density of
elephants. Most of the browning is along the migration corridor of elephants within
national parks and conservation areas as a result of exclusion and harassment in areas with
human settlements. Obviously, brown vegetation areas do not sustain high population
densities of animals.

We also found that the expansion of settlements and the construction of artificial
barriers (e.g., fences) has affected the movement and migration pattern (behavior) of
wildlife populations, specifically elephants, in the region, which has led to the concentration
of game animals within confined national parks.

Furthermore, the limited amount of space and resources for wildlife populations
could potentially be a major factor contributing to vegetation browning in the region. This
assumption is supported by the high incidence of ongoing human–wildlife conflicts within
the region. On the other hand, our study found that most of the greening was occurring
in areas with intensive farming; for example, around the shrinking Lake Liambezi, and
within communal areas.
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Abstract: Soil salinization is an important factor affecting winter wheat growth in coastal areas.
The rapid, accurate and efficient estimation of soil salt content is of great significance for agricultural
production. The Kenli area in the Yellow River Delta was taken as the research area. Three machine
learning inversion models, namely, BP neural network (BPNN), support vector machine (SVM)
and random forest (RF) were constructed using ground-measured data and UAV images, and the
optimal model is applied to UAV images to obtain the salinity inversion result, which is used as the
true salt value of the Sentinel-2A image to establish BPNN, SVM and RF collaborative inversion
models, and apply the optimal model to the study area. The results showed that the RF collaborative
inversion model is optimal, R2 = 0.885. The inversion results are verified by using the measured
soil salt data in the study area, which is significantly better than the directly satellite remote sensing
inversion method. This study integrates the advantages of multi-scale data and proposes an effective
“Satellite-UAV-Ground” collaborative inversion method for soil salinity, so as to obtain more accurate
soil information, and provide more effective technical support for agricultural production.

Keywords: sentinel-2A image; UAV image; remote sensing; soil salinity

1. Introduction

Soil salinization is a form of soil degradation. Soil salinization will not only cause a series of
problems such as ecological deterioration, but also have a negative impact on the growth of crops [1].
Therefore, it is of great practical significance for agricultural production to carry out research on soil
salinization in coastal winter wheat planting areas and grasp the spatial distribution of salinization.

Traditional soil salt information is obtained mainly through field survey sampling and chemical
analysis method. This method is relatively accurate, but it is time-consuming and labor-intensive,
and has obvious limitations in terms of spatial globalization and effectiveness. In addition, field
sampling can also cause damage to winter wheat and other crops. Satellite remote sensing data can
make up for these shortcomings. Because of its high timeliness, economy and large-area simultaneous
observation ability, it has become an important method for quantitative extraction of saline soil
information in a large area. A large number of scholars have carried out related research and achieved
excellent results. Most of them have realized a large-scale quantitative inversion of soil salt content
based on multi-source satellite images [2–11], and they inverted soil salinity by studying the quantitative
relationship between soil salinity and vegetation index. This is mainly because the vegetation cover
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and growth can reflect the status of soil salinity. In addition, the satellite image detects mainly the
vegetation coverage information, so it is hard to directly use the spectrum of bare soil to monitor the
soil salinity in the vegetation coverage area on a large scale [12–15]. When constructing soil salinity
inversion model based on satellite imagery, most studies use traditional linear regression methods and
machine learning algorithms. After comparison, it is found that most machine learning methods are
more accurate and therefore more widely used [16–19].

However, satellite imagery is greatly affected by factors such as fixed orbit, time phase, weather,
etc., especially the low spatial resolution and imaging quality, and it often fails to meet the demand
of high-precision and real-time monitoring of soil salinization [4]. In recent years, UAV technology
has rapidly developed, due to its advantages of high image accuracy, simple operation and flexibility,
it has been applied to soil salt monitoring by scholars [20–22]. However, UAV technology has some
limitations in monitoring soil salinization on a large scale due to its limited observation range. Therefore,
it is necessary to make use of the complementarity of “Satellite-UAV-Ground” multi-scale data to carry
out collaborative inversion of soil salinity.

At present, scholars have carried out certain researches on the inversion of surface-related
parameters by combining data from two platforms such as Satellite-Ground and UAV-Ground.
For example, An et al. [23] built soil salinity inversion model by simulating Landsat8 band through
actual hyperspectral measurements on the ground. Schut et al. [24] combined the vegetable index
of UAV and satellite with the crop growth model to evaluate the yield and fertilizer response in the
field of heterogeneous smallholders, which would improve the accuracy of yield and crop production
assessment. Kattenborn et al. [25] built a random forest model based on the spectrum, texture
information and canopy structure obtained from UAV data, and upscaled it to Sentinel satellite data to
draw a large range distribution map of tree species; Hu et al. [26] found that the inversion accuracy
of soil salinization using the combination of UAV hyperspectral data and GF-2 multi-spectral data
was better than that of GF-2 multi-spectral data inversion. Daryaei et al. [27] used Sentinel-2 and
UAV data to conduct fine-scale monitoring of vegetation in semi-arid mountainous areas focusing on
riparian landscapes, and the accuracy has been improved. Zhang et al. [2] established the reflectance
relationship between satellite and UAV data and applied the constructed UAV high-precision model to
satellite imagery to realize the SPAD worth inversion during the recovery period of winter wheat in a
large area. Studies have shown that the combination of data from the two platforms can effectively
improve the accuracy of the inversion, but most of these studies are based on the spectral information
relationship between the data samples of different platforms for data fusion to achieve collaborative
inversion. Due to the large spatial scale and spectral differences between the samples, it will cause the
spectrum information loss and errors, which will affect the accuracy of inversion results. How to realize
the accurate and efficient connection of data from the three platforms of “Satellite-UAV-Ground”,
and then the high-precision and large-scale monitoring of ground surface information, especially soil
salinization information, needs further research and exploration.

Therefore, this study selects typical coastal areas in the Yellow River Delta, and uses Sentinel-2,
UAV and ground multi-platform data to explore its efficient and accurate collaborative method to
carry out “Satellite-UAV-Ground” collaborative inversion of soil salinity in winter wheat planting
areas. Thus, a rapid and accurate method for obtaining soil salt in the coastal area was proposed,
which provided a scientific basis for the production and management of winter wheat.

2. Materials and Methods

2.1. Study Area

The study area is located in Kenli District (37◦24′–38◦10′ N, 118◦15′–119◦19′ E), which is the core
area of the Yellow River Delta. It has a warm temperate continental monsoon climate, with sufficient
sunlight but little precipitation and evaporation large, uneven droughts and floods, and obvious
seasonal alternating wet and dry. The annual mean precipitation, evaporation and air temperature

22



Sensors 2020, 20, 6521

are 511.6 mm, 1928.2 mm and 12.4 ◦C, respectively [28]. The terrain of the study area is low and
flat, decreasing from southwest to northeast. The source of surface water is natural precipitation
and water from the Yellow River. The groundwater level is relatively shallow and the salinity is
high. The main soil type is gleyic solonchaks with a high sand proportion and high salinization.
Soil texture is light, organic matter is generally lack, nitrogen and phosphorus are less, soil overall
nutrient is poor, the pH value of the soil is greater than 7 [29]. The main crops are winter wheat, corn,
rice and cotton, but the overall management is extensive and the yield is low. Wheat planting areas are
mainly distributed in the higher terrain area in the southwest and the Yellow River coast area in the
northeast. The variation of soil salinization is obvious, which is an ideal area for this study. Based on
the investigation of Kenli area, landform, soil and crop distribution, two test areas A and B (Figure 1)
were selected for the concentrated distribution of winter wheat in the southwest and northeast of the
study area respectively to carry out field soil salinity measurement and UAV flight test. Test area A
was a square area of 200 m × 200 m, and a 100 m × 50 m area was selected to arrange sampling points.
Test area B was a rectangular area of 200 m × 100 m, and a 50 m × 50 m area was selected to arrange
sampling points. An investigation suggests that planting time, farming methods, and fertilization
conditions are all basically the same in A and B test areas, while the growth of winter wheat there is
obviously different, with all soil salt content levels distributed, making the experimental area more
typical and representative.

Figure 1. Location map of the study area and test areas (A, B), the red dots are the sampling points in
the test area. The study area is true color image of Sentinel-2A, and the test area (A, B) are false color
images of UAV.
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2.2. Data Acquisition and Preprocessing

2.2.1. Acquisition of Ground Soil Salinity Data

There is less rainfall in spring in Kenli District, and the surface salinization is obvious and stable.
Winter wheat is at the reviving stage, while other major crops are not sown, which is convenient for
extracting spectral characteristics [30]. A field survey in the study area was conducted from April
10 to 16, 2019. To ensure uniform distribution, three samples were pre-arranged in the study area
every 5 km × 5 km grid, and finally 77 winter wheat sample data were collected. At the same time,
for the two test areas, a ground card was placed every 10m at the outer boundary of the sampling
point area of the A and B test areas, and connect them with a measuring rope to form a 10 m × 10 m
grid of sample points, taking the intersection of the grid as sampling points. This 10 m × 10 m grid is
the same as the pixel size of Sentinel-2A. A total of 102 sample points was collected, including 66 in the
A test area and 36 in the B test area. Four outliers in the sampling points were eliminated, and the
remaining 98 samples were used to construct and verify the soil salinity inversion model of winter
wheat. An EC110 portable salinity meter (Spectrum Technologies, Inc., Aurora, USA) equipped with a
2225FST series probe (conductivity temperature correction was performed) was used to make multiple
measurements of the electrical conductivity (EC) of the soil surface layer 10 cm below the plant at
each sample point and make a record after stabilization. The average of the measured values is taken
as the EC value of each sample point, in ds/m. According to the results of earlier research which in
our laboratory, the measured EC data were converted into soil salt content (SSC) in g/kg by using the
formula SSC = 2.18 EC + 0.727 which was obtained by chemical analysis of soil in the same study area
in spring [31]. At the same time, the orientation, topography, soil, wheat growth and other relevant
information were recorded.

2.2.2. Acquisition and Processing of UAV Imagery

A multispectral camera (Parrot Sequoia, Parrot Inc., Paris, France) was mounted on a Dajiang
Matrice 600 Pro UAV (loaded mass: 5.5 kg; flying time: 18 min) (SZ DJI Technology Co., Ltd. Shenzhen,
Guangdong Province, China). The camera can receive a total of 4 bands of information, which are green
light (G), red light (R), red edge (RE), near infrared (NIR). The wavelengths are 550 nm, 660 nm, 735 nm,
and 790 nm, and the band widths are 40 nm, 40 nm, 10 nm and 40 nm. The Sequoia multi-spectral
camera is mounted on the head of the UAV, and the radiation sensor is mounted on the top of the UAV
to write the radiometric correction data into the image during flight.

The data collection time was from 11:00 to 15:00 on 14 April 2019. The weather was clear and
cloudless with low wind force when the UAV was flying. Before takeoff, the Sequoia multispectral
camera and radiation sensor were calibrated, and the ground standard whiteboard image was collected.
The flight height was 50 m, the flight speed was 5 m/s, and the image acquisition interval was 1.5 s.
After the data are collected, they will be imported into Pix4D Mapper software (Pix4D, S.A., Prilly,
Switzerland) for splicing, radiation correction and other processing to obtain the high-resolution
orthophoto image of the test area, with a spatial resolution of 4–5 cm. Finally, in ENVI5.3, the decision
tree method is used to remove the soil background. In order to eliminate the random error caused by
the reflectance of a single point, a 5 × 5 pixels image is taken with the sampling point as the center,
and the average reflectance value is taken as the reflectance data of the sampling point.

2.2.3. Acquisition and Processing of Sentinel-2A Satellite Data

Sentinel-2 satellite is a multispectral imaging satellite with high resolution, revisit rate and update
rate. It includes two small satellites A and B. The revisit period is 5 days. The main payload is
MSI multispectral imager, covering 0.4–2.4 μm spectral range, including 10 m (four bands), 20 m
(six bands), 60 m (three bands) ground resolution, which can monitor the growth, coverage and
health of land vegetation, and obtain information on crop planting, land use changes, etc. In this
paper, the Sentinel-2A products were downloaded from the ESA Copernicus data sharing website
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(https://scihub.copernicus.eu/). Considering the acquisition time of ground and UAV data and the
quality of the image, the Sentinel-2A Level-1C multispectral image on 17 April 2019 was selected for
modeling and inversion of the soil salt content, and the images of 3 November 2018 and 26 June 2019
were used for extraction of winter wheat planting areas.

The downloaded L1C data are orthophoto with geometric precision correction, without radiometric
calibration and atmospheric correction. First, radiometric calibration and atmospheric correction are
carried out by using Sen2cor, a plug-in published by ESA. Then, the data are re-sampled by the Sentinel
Application Platform (SNAP) software to generate 10m spatial resolution images, and the data are
exported in ENVI format. Finally, the Sentinel-2A true color images of the research area were obtained
by splicing the images in ENVI 5.3 (Exelis Visual Information Solutions, Inc., Colorado, USA) and
clipping the images using kenli District administrative boundary vector documents (Figure 1). In order
to be consistent with the UAV image band, the green (G), red (R), red edge (RE), and near infrared
(NIR) of Sentinel-2A image are selected in this study. The wavelengths are 560 nm, 665 nm, 740 nm,
865 nm, and the band widths are 45 nm, 38 nm, 18 nm and 33 nm.

2.3. Methods

2.3.1. Calculation and Optimization of Vegetation Indices

Studies have shown that different levels of soil salinization have an impact on vegetation growth
and morphology, plasma membrane permeability, photosynthetic pigments of leaves, gas exchange
parameters, chlorophyll fluorescence characteristics, etc. [32]. Therefore, there are differences in
spectral information of vegetation at different levels of soil salinization, which can indirectly reflect the
level of soil salinization [33,34]. The vegetation index can highlight the characteristics of vegetation
and effectively reflect the health and growth of vegetation. When the soil salt content increases,
the reflectivity of visible red light of the salt-sensitive vegetation will increase, and the near-infrared
reflectance will decrease [35].In order to better reflect the vegetation conditions, 8 vegetation indexes
related to red light and near-infrared are selected in this study, including normalized difference
vegetation index (NDVI), normalized difference red edge index (NDRE), optimized soil adjusted
vegetation index (OSAVI), green normalized difference vegetation index (GNDVI), triangle vegetation
index (TVI), difference vegetation index (DVI), Improved chlorophyll absorption vegetation index
based on PROSPECT and SAILH radiation transfer model (MCARI2) and renormalized difference
vegetation index (RDVI).

The multi-band spectrum collected by the UAV is used to calculate the 8 vegetation indexes,
and the formulas are shown in Table 1. Then the correlation coefficient between each vegetation
index and soil salinity was calculated, and the variance inflation factor (VIF) between vegetation
indexes was calculated by using the formula VIF = 1/(1-r*r) (r is the correlation coefficient between
vegetation indexes) [12], excluding the low correlation or VIF > 10, which is the parameter that cannot
be diagnosed by collinearity. The sensitive vegetation indexes are selected for soil salt modeling.

Table 1. Formulas and corresponding citation for vegetation indexes.

No. Vegetation Index Formula Reference

1 NDVI (NIR−R)/(NIR + R)

[36]2 NDRE (NIR−RE)/(NIR + RE)
3 OSAVI (1+ 0.16)(NIR−R)/(NIR + R+ 0.16)
4 MCARI2 [3[(RE−R)− 0.2(RE−G)(RE/R)]]/RE/R

5 TVI
√
(NIR−R)/(NIR + R) + 0.5 [37]

6 DVI NIR−R

7 GNDVI (NIR−G)/(NIR + G)
[38]

8 RDVI (NIR−R)/
√
(NIR + R)
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2.3.2. Construction and Optimization of UAV-Ground Collaborative Inversion Model of Soil Salinity in
Wheat Field Based on UAV Images

The 98 samples were sorted from small to large, and the modeling set and the validation set were
sampled at equal intervals in a ratio of 2:1 to ensure the same range and uniform distribution of the
model samples and the validation samples. 68 samples were selected for modeling and 30 samples
for validation.

Taking the sensitive vegetation index as the input variable of the model, three methods were used
to construct the winter wheat soil salinity inversion model, namely, BPNN, SVM and RF. BPNN is a
multi-layer feedforward neural network trained according to the error back propagation algorithm,
and it has also been applied to the salt inversion problem [39,40]. SVM is a new machine learning
method from linear separable to linear nonseparable based on the principle of minimizing structural
risk according to the statistical theory. It has been widely applied in image recognition and classification
and has also been applied in regression problems in recent years [41,42]. The RF algorithm is an
integrated learning algorithm obtained by combining the bagging algorithm with the decision tree
algorithm. In recent years, many scholars have applied it to remote sensing technology [43,44]. All the
three methods were implemented in MATLAB R2016b (MathWorks, Inc., Natick, MA, USA). The BPNN
sets the number of training iterations to 1000, the accuracy to 0.003, the learning rate to 0.01; The SVM
method was set as V-SVR, Gaussian kernel function was selected, the best penalty factor C and kernel
parameter gamma were selected through network search and cross validation, and the SVM model
was trained. The RF method called MATLAB random forest toolbox, and the parameter leaf node
Leaf = 5 and the number of trees Ntrees = 200 were finally determined by Bayesian optimization.

The accuracy of model modeling and verification was evaluated by the coefficient of determination
(R2) and root mean square error (RMSE) [45–47]. R2 is used to measure the fitting degree of the
model, and RMSE reflects the deviation between measured value and predicted value. The closer
R2 is to 1, the smaller the RMSE, which means the higher the accuracy of the model, the better the
effect. The model with the best accuracy and effect was selected for soil salinity inversion of winter
wheat. The degree of soil salinization is divided into five grades according to relevant criteria [48],
non-salinization (<1 g/kg), mild salinization (1–2 g/kg), and moderate salinization (2–4 g/kg), severe
salinization (4–6 g/kg) and saline soil (>6 g/kg), and we get the distribution map of soil salinity grade.

2.3.3. Information Extraction of Winter Wheat Planting Area

The planting area of winter wheat in the study area was extracted by using the time series features
composed of the NDVI of the Sentinel-2A images on 3 November 2018, 17 April 2019 and 26 June 2019.
According to the investigation and analysis of various vegetation types in the study area, only winter
wheat was in the seedling stage in early November, its growth reached the peak stage in late April of
the second year, and entered the maturity stage at the end of June. Its NDVI time series curve showed
a rapid rise from early November to late April, while other vegetation types showed little change
in NDVI, the NDVI of winter wheat declined rapidly from late April to the end of June, while the
NDVI time series curves of other vegetations were in varying degrees of rising stages, as shown in
Figure 2. The valley-peak-valley in the NDVI time series at the beginning of November, late April
and the end of June is a significant feature that distinguishes winter wheat from other vegetation.
Therefore, by calculating the changes in NDVI from early November to late April, and late April to the
end of June, a decision tree is established to extract this feature. Combined with the training sample
data, the following decision rules are established:

Types of ground objects =

{
Winter wheat, b2 > 0.1 and b2 − b1 > 0.1 and b3 − b2 < 0
Other ground objects

(1)

where b1, b2, and b3 are the NDVI values of Sentinel-2A images on 3 November 2018, 17 April 2019,
and 26 June 2019, respectively.
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Figure 2. Changes of NDVI of different vegetation types in the study area with time.

Thus, the distribution of winter wheat planting areas on 17 April 2019 was obtained.

2.3.4. Construction of the Satellite-UAV-Ground Collaborative Inversion Model of Soil Salinity in
Wheat Area Based on Sentinel-2 Images

Sentinel-2A images have mixed pixels, and it is difficult to accurately obtain the measured data of
soil salinity within the corresponding range of pixels. However, the resolution of UAV images is up to
centimeter level, so the measured data of soil salinity within the corresponding range of pixels are easy
to obtain and accurate. Therefore, the measured ground salt data and the UAV image vegetation index
are used to construct a high-precision inversion model to obtain the soil salt content of the test areas A
and B, then the salt values corresponding to sentinel-2 image pixels in the test area were calculated and
taken as the “salt true value” of the Sentinel-2A image construction inversion model. It is combined
with the Sentinel-2A image vegetation index to construct three inversion models including BPNN,
SVM and RF.

First, the 10 m × 10 m surface vector data corresponding to the size positions of Sentinel-2A
image pixels were successively established in the test area A and the test area B. In order to ensure the
objectivity of the data, in the formed surface vector data grid, every three rows and three columns
of surface vector data are used as a unit to extract the surface vector data at the center of the unit.
If the center position is not in the unit, the surface vectors at other positions in the unit are extracted.
Figure 3 is the distribution map of the area vector data extracted from the test area A and a total of
75 surface vector data are extracted. The vegetation index corresponding to the Sentinel-2A image
pixel of the surface vector was counted and entered into the attribute information, and the combination
of the vegetation indexes were used as the input variable of the model. Secondly, A vector surface
corresponds to 40,000 image UAV pixels, and the average salt value of 40,000 UAV pixels is calculated
as the salt “truth value” of the surface vector data. The soil salt content of 75 surface vector data was
recorded into the attribute information as the output variable of the model. Finally, BPNN, SVM and
RF were used to construct soil salt content collaborative inversion model based on Sentinel-2A image.
All three methods were implemented in MATLAB R2016b.The BPNN sets the number of training
iterations to 1000, the accuracy to 0.003, and the learning rate to 0.02; The SVM method was set as
V-SVR, and the training set cross-validation and network search method were used to optimize the
parameters. According to the principle of minimum variance, the penalty coefficient was determined
as C = 10000, γ = 0.01; the RF method called MATLAB random forest toolbox, and the parameter leaf
node, Leaf = 5, and the number of trees, Ntrees = 300, was finally determined by Bayesian optimization.
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Figure 3. Distribution map of the extracted surface vector data of test area A.

2.3.5. Soil Salinity Inversion Results and Accuracy Analysis in Wheat Area

Among the three machine learning models constructed, the optimal model was selected according
to R2 and RMSE. The optimal model was used to invert the soil salinity of the winter wheat planting area
in Kenli District, and the soil salinity distribution map of winter wheat in Kenli District was obtained.

At the same time, this method was compared with the direct inversion method of satellite remote
sensing, namely, based on Sentinel-2A images and ground-measured salt data, the optimal model
was directly constructed and selected to invert the winter wheat soil salt distribution in Kenli District.
In order to verify the accuracy of the two methods, the R2 and RMSE of the inversion results and the data
of 77 winter wheat soil sampling points in Kenli District were calculated for quantitative evaluation.

3. Results and Analysis

3.1. Screening of Soil Salt-Sensitive Vegetation Index

Correlation analysis was conducted between UAV image vegetation index and measured soil
salinity content respectively, as is shown in Table 2. In the correlation matrix, the DVI, MCARI2,
and TVI of the eight vegetation indices had low correlations with soil salinity. The VIF value of OSAVI
and NDVI was greater than 10, and there was strong multicollinearity. Therefore, the combination of
vegetation index NDVI, NDRE, GNDVI and RDVI was selected as independent variables for modeling.

Table 2. Correlation coefficient between vegetation index and soil salinity.

r SS NDVI NDRE GNDVI OSAVI RDVI DVI MCARI2 TVI

SS 1
NDVI −0.730 ** 1
NDRE −0.669 ** 0.709 ** 1

GNDVI −0.710 ** 0.928 ** 0.691 ** 1
OSAVI −0.699 ** 0.961 ** 0.666 ** 0.931 ** 1
RDVI −0.631 ** 0.916 ** 0.674 ** 0.857 ** 0.883 ** 1
DVI −0.546 ** 0.769 ** 0.689 ** 0.741 ** 0.718 ** 0.768 ** 1

MCARI2 −0.584 ** 0.850 ** 0.678 ** 0.828 ** 0.862 ** 0.819 ** 0.842 ** 1
TVI −0.511 ** 0.462 ** 0.314 ** 0.452 ** 0.440 ** 0.395 ** 0.328 ** 0.371 ** 1

Significance levels: ** 0.01.

28



Sensors 2020, 20, 6521

3.2. UAV-Ground Collaborative Inversion Model of Soil Salinity Based on UAV Images

Soil salinity inversion model was established by taking 4 vegetation indexes of 68 modeling
samples as independent variables and soil salinity content as dependent variables, and 30 validation
samples were used to verify the model. The results are shown in Table 3.

Table 3. Accuracy of three inversion models based on UAV images.

Modeling
Methods

Modeling Set (n = 68) Validation Set (n = 30)

Rm
2 RMSEm Rv

2 RMSEv

BPNN 0.789 0.671 0.667 0.689
SVM 0.608 0.891 0.601 0.813
RF 0.878 0.511 0.827 0.473

It can be seen that all three inversion models show good stability, with their Rm
2 and Rv

2 both
exceeding 0.6, and there is no “overfitting phenomenon”. The highest modeling Rm

2 of the RF
algorithm is 0.878, which is 0.089 and 0.27 higher than the Rm

2 of the BPNN and SVM algorithms,
and the RMSEm is the lowest of 0.511, which is 0.159 and 0.38 lower than the RMSEm of the BPNN
and SVM algorithms, respectively. From the validation results, the highest Rv

2 of the RF algorithm is
0.827, which is 0.16 and 0.226 higher than the Rv

2 of the BPNN and SVM algorithms, and the RMSEv is
the lowest 0.473, which is 0.216 and 0.340 lower than the RMSEv of the BPNN and SVM algorithms,
respectively. The inversion model of the RF algorithm has the highest accuracy. Therefore, The RF
inversion model was selected to conduct soil salinity inversion for UAV images in the test areas A
and B, and the salinity levels were divided according to five levels to obtain the distribution diagram
(Figure 4a,b). Figure 4a,b are the interpolation maps of the measured soil salinity in the sampling area.
Generally speaking, the inversion results of the wheat field soil salinity are basically the same as the
interpolation results of measured data, and the change trend of the area proportions of each grade is
roughly the same, but in comparison, the reflection of the inversion results on spatial distribution of
soil salinity is more refined. Therefore, the soil salinity inversion model of winter wheat based on RF is
better and has the best stable effect.

Figure 4. Cont.
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Figure 4. Salinity inversion map (a,b) and regional interpolation map (a’,b’) of sampling points in the
test area.

3.3. Collaborative Inversion of Soil Salinity Based on “Satellite-UAV-Ground”

Based on the 75 surface vector data of test areas, the NDVI, NDRE, GNDVI and RDVI of the
Sentinel-2A images of 52 modeling samples were taken as independent variables, and the soil salt
content estimated by UAV was taken as dependent variable to establish soil salt inversion model, and
23 validation samples were used to verify the model. Figure 5 shows the accuracy of the modeling set
and validation set of the three models. By comparison, RF model has the highest accuracy, modeling
set R2 = 0.886, RMSE = 0.456, validation set R2 = 0.850, RMSE = 0.505, followed by SVM model, the
modeling set and validation set R2 are 0.796 and 0.649 respectively, and BPNN model has the lowest
accuracy, the modeling set and validation set R2 are 0.734 and 0.630 respectively. Therefore, RF model
is the optimal model for collaborative inversion of soil salinity based on “Satellite-UAV-Ground”.

 
(a) 

Figure 5. Cont.
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Figure 5. Accuracy of the three collaborative inversion models, (a) RF model, (b) SVM model,
and (c) BPNN model.

3.3.1. Analysis of Inversion Results of Soil Salinity in Wheat Area

A large-scale inversion of the soil salinity in the winter wheat planting area in Kenli district was
carried out through the optimal RF model of the “Satellite-UAV-Ground” collaborative inversion,
and the soil salinity level distribution map was obtained, as shown in Figure 6. Table 4 shows the
area ratio of each salinity level. It can be seen that the distribution of non-saline soil in the wheat
planting area of the study area is very small, accounting for only 0.05%. The proportion of winter
wheat soil area shows a trend of decreasing with the increase of salinization, which is consistent
with the actual situation of the survey. Among them, mildly salinized soil in wheat area is widely
distributed, accounting for 61.32% of the total area. It is concentrated in the southwest where the terrain
is relatively high and the northeast area affected by the fresh water of the Yellow River. The moderately
salinized soil area was the second, accounting for 19.53%, which was distributed in all wheat regions.
Severe salinized soil and salinized soil accounted for 19.1% of the total area and were scattered in
wheat area.

Table 4. Statistics of soil salinity grade area in wheat area (Unit: %).

Soil Salinity
Level

Non-Saline
Mild

Salinization
Moderate

Salinization
Severe

Salinization
Saline Soil

Proportion of
inversion result 0.05 61.32 19.53 12.28 6.82

3.3.2. Accuracy Comparison between “Satellite-UAV-Ground” Collaborative and “Satellite-Ground”
Direct Inversion

Figure 7 shows the soil salinity inversion results of the RF model constructed directly based on
Sentinel-2A images and measured salinity data. The R2 of the model is 0.56, which is far lower than
the RF model of collaborative inversion. From the comparison of Figures 6 and 7, it can be seen that
the trend of soil salinity distributions obtained by the two inversion methods are basically consistent.
However, Figure 7 is generally lower than the salt value in the survey. This is mainly due to the
influence of the mixed pixels during the directly satellite remote sensing inversion method. Figure 6 has
fewer non-saline areas and more saline soil areas, which is consistent with the field survey. As a result,
using the UAV inversion result as the medium data can effectively reduce the influence of mixed pixels
on the inversion result.
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Figure 6. Inversion results based on “Satellite-UAV-Ground”, and (a) is a partial enlarged view.

 

Figure 7. Inversion results based on satellite remote sensing, and (a) is a partial enlarged view.

In order to further compare the inversion results of the “Satellite-UAV-Ground” collaborative
method and the direct satellite remote sensing method, the salt values of 77 sampling points in Kenli
District at the two inversion results were extracted and compared with the measured data. As is
shown in Figure 8. The R2 = 0.741 and RMSE = 0.776 of the “Satellite-UAV-Ground” collaborative
inversion results and the measured values, while the R2 = 0.591 and RMSE = 0.831 of the satellite remote
sensing method and the measured values, indicating that the results of the “Satellite-UAV-Ground”
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collaborative inversion are highly consistent with the measured salinity, and the direct satellite remote
sensing inversion results have a large deviation.

 

Figure 8. Scatter plots of measured sample points and soil salinity inversion results by two methods in
Kenli District.

Therefore, “Satellite-UAV-Ground” collaborative inversion effectively improves the accuracy of
soil salt inversion in winter wheat planting areas and obtains a more reliable soil salt distribution.

4. Discussion

The measured data on the ground is the basis for quantitative analysis of soil, UAV near-earth
remote sensing is the link between the satellite and the ground, and satellite remote sensing is the
platform for large regional inversion. Combining the three will be an important way to obtain
soil salt information at present and in the future. Therefore, in this study, the three platforms of
“Satellite-UAV-Ground” data were used to perform soil salinity inversion. Compared with the direct
satellite image inversion results, the inversion quality was significantly improved. The inversion
results of two models are verified with ground-based data. The results show that the R2 based on the
“Satellite-UAV-Ground” collaborative inversion model has been significantly improved, and RMSE and
distribution pattern is also improved, but not so obviously. It might be because the salinity inversion
result of UAV image is used as an intermediate bridge, its scope is limited and it is hard to fully express
the situation of the entire study area. We will continue to improve research on collaborative approach,
models, vegetation spectra, data sampling, etc. to improve the performance in terms of scale, accuracy,
and temporal and spatial resolution.

The selected test areas in this study were located in two concentrated winter wheat planting areas
in the southwest and northeast of Kenli District. The growth of winter wheat was significantly different,
and the soil salt content was distributed in all grades, which was typical and representative. In order
to improve the spectral and salinity data accuracy of winter wheat, the grid intersection method was
used to determine the location of ground data collection, which could ensure the uniformity and
accuracy of sample points more than the traditional random sampling point determination method.
In order to ensure the representativeness of modeling samples, the samples are sorted and sampled at
equal intervals at the ratio of 2:1 between the calibration set and the validation set. Compared with
the traditional method of random partition modeling set and validation set [5,49], the data is more
uniform and effective, thus ensuring the strong universality and high stability of the model.

The soil salt contents in the study area vary greatly, so the smaller the pixel and the closer the
sampling point, the more accurate the information reflected. In this study, an inversion model was
built based on the measured ground data and UAV images. The salinity value obtained from the
inversion was regarded as the “salinity truth value”, one pixel of Sentinel-2A corresponds to 40,000 UAV
pixels, the average value of the soil salinity corresponding to these 40,000 UAV pixels was calculated,
which was used as the salt value corresponding to the pixel of Sentinel-2A. Compared with the salt
value measured on the ground, the “true salt value” is a more comprehensive representation of the
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true salt status in the Sentinel-2A pixel. Most of the previous studies have realized the up-scaling
inversion method of UAV model by establishing the relationship of spectral information between
UAV image and satellite image [5,50]. The method in this paper is a collaborative inversion model
based on satellite images which is constructed by taking the UAV “salt truth value” as the bridge of
“Satellite-UAV-Ground” collaborative inversion. It can better maintain the information content and
spatial structure characteristics of the original remote sensing data, and better guarantee the accuracy
of salt inversion. It is an effective way to realize the integrated inversion of “Satellite-UAV-Ground”.

Previous research results show that the machine learning inversion model is superior to the
statistical model [51–54]. The machine learning method can show strong nonlinear fitting ability and
excellent data mining ability and can better simulate the complex nonlinear relationship between soil
salinity and remote sensing image characteristics. Therefore, three machine learning modeling methods
were directly adopted in this study, and the comparison found that the RF model was particularly
effective, especially the “Satellite-UAV-Ground” collaborative inversion model, with R2 and RMSE up
to 0.886 and 0.456, respectively. Therefore, if there is a non-linear relationship between the predictor
variable and the response variable, a non-linear model such as RF will usually have a better fitting
effect and produce excellent estimation accuracy.

The growth of winter wheat in coastal salinized areas is mainly affected by soil salinity, while other
factors such as soil texture, pH value, climate, water, nutrients, and fertility have a more balanced
impact on crop growth, which is a systematic error. Therefore, salt content is mainly considered for
the impact on vegetation index. The vegetation index can be used to invert soil salinity indirectly,
which has been confirmed by previous research [11,55,56]. However, the relationship between the
vegetation index and soil salinity is different under different environmental conditions. Consequently,
the constructed model is only applicable to wheat fields in coastal saline soil in spring. In order to
make the obtained soil salinity better support crop production, the next step is to perform salinity
inversion for different crops in the study area in different seasons, and use satellite data at different
times to verify the model to further improve the reliability of the model.

When salinity inversion is carried out by using data from different remote sensing platforms,
matching between data is very important. The predecessors usually take the average of multiple
measurements within the ground range corresponding to the satellite pixel as the salt value
corresponding to the pixel [57,58]. In this paper, the salt value of the corresponding range of
Sentinel-2A pixels is obtained by calculating the average value of 40,000 pixels of the corresponding
UAV. Compared with the previous methods, the accuracy of salt value corresponding to satellite pixel is
improved, thus the spatio-temporal matching accuracy of the data is improved. Due to the uncertainty
of remote sensing data, the band response functions of different sensors are different. When building a
collaborative inversion model, it is necessary to fully consider the radiation characteristics of the data
and select similar bands to reduce the impact caused by radiation and improve the accuracy of data
spectrum matching.

5. Conclusions

In this study, satellite images, UAV images and measured soil salt data were combined to build an
inversion model to realize the “Satellite-UAV-Ground” collaborative inversion of soil salt in the coastal
area of winter wheat. The main conclusions are as follows:

(1) The correlation between 8 vegetation indexes based on the multi-spectral bands of UAV images in
the winter wheat test area and soil salinity was all greater than 0.5. According to the correlation
coefficient and variance expansion factor, four sensitive vegetation indices, including NDVI,
RDVI, GNDVI, and NDRE, were selected for modeling, and three machine learning inversion
models, BPNN, SVM and RF were constructed. The RF model modeling set has R2 = 0.878,
RMSE = 0.511, and its accuracy is higher than BPNN and SVM. It is the best salt estimation model.
The inversion results are in good agreement with the actual distribution of soil salt in the test
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area. The model has good predictive ability and applicability for the estimation of soil salinity of
winter wheat in spring in coastal salinization areas.

(2) The soil salinity in the test area obtained from the inversion of the best model of UAV imagery is
used as the “true value of salinity” for satellite image modeling, and three collaborative inversion
models are constructed. The RF inversion model has R2 = 0.885, which is significantly better
than the BPNN and SVM models. The model is applied to the study area to obtain a large-scale
distribution map of soil salinity in the winter wheat area. The soil in the winter wheat planting
area of the study area is dominated by light and moderate salinization, accounting for 80.85% of
the area, mainly distributed in the southwest and northeast regions. The area of heavily salinized
and saline soil is smaller, only accounting for 19.1%, and is scattered in the wheat area.

(3) The result of “Satellite-UAV-Ground” collaborative inversion method and the satellite remote
sensing direct inversion method were quantitatively compared and evaluated by using the
measured salinity data of 77 sample points in the wheat field in the study area. The results show
that the R2 = 0.741 and RMSE = 0.776 of the “Satellite-UAV-Ground” collaborative inversion
result and the measured value, while the R2 = 0.591 and RMSE = 0.831 of the satellite remote
sensing method and the measured value. Therefore, the “Satellite-UAV-Ground” collaborative
inversion method can effectively improve the accuracy of the soil salt inversion results and obtain
more accurate spatial distribution of winter wheat soil salt in spring in coastal salinization areas.

This study makes full use of the advantages of satellites, UAV images, and ground data to
construct soil salinity inversion model, using UAV soil salinity inversion results as intermediate data,
and machine learning modeling methods to obtain a grade distribution map of winter wheat soil
salinity in the study area which is consistent with the actual distribution of soil salt. The study proposed
an effective “Satellite-UAV-Ground” collaborative inversion method for soil salinity, which provides a
scientific basis for accurately grasping the distribution of winter wheat soil salinity levels and guiding
agricultural production in the study area.
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Abstract: Invasive blueberry species endanger the sensitive environment of wetlands and protection
laws call for management measures. Therefore, methods are needed to identify blueberry bushes,
locate them, and characterise their distribution and properties with a minimum of disturbance. UAVs
(Unmanned Aerial Vehicles) and image analysis have become important tools for classification and
detection approaches. In this study, techniques, such as GIS (Geographical Information Systems) and
deep learning, were combined in order to detect invasive blueberry species in wetland environments.
Images that were collected by UAV were used to produce orthomosaics, which were analysed to
produce maps of blueberry location, distribution, and spread in each study site, as well as bush
height and area information. Deep learning networks were used with transfer learning and unfrozen
weights in order to automatically detect blueberry bushes reaching True Positive Values (TPV) of
93.83% and an Overall Accuracy (OA) of 98.83%. A refinement of the result masks reached a Dice
of 0.624. This study provides an efficient and effective methodology to study wetlands while using
different techniques.

Keywords: ArcGIS; big data; blueberries; deep learning; image analysis; orthomosaics; segmentation
refinement; UAVs

1. Introduction

Recent changes in global climate conditions influence species composition and ac-
celerating the presence of invasive plant species in natural environments. Species that
spread outside their native habitat and rapidly and effectively adapt to new environments
are known as invasive species [1]. The spread of invasive species often benefits from
ecosystem changes and habitat disturbances that weaken the natural species and open
an ecological niche for invaders. Hence, invasive species can influence the biodiversity,
thus limiting the growth of natural plant species due to a higher occurrence of an invasive
species, which could lead to ecosystem degradation [2]. The fast adaption to multiple
stress factors in environments could also lead to a replacement of native species and it may
increase economic costs due to production losses in agriculture and forestry [3]. In Europe,
11% of the 12,000 identified species have caused damage to the economy, society, and the
environment [4]. Reference [5] states that hundreds of invasive species find their pathways
through horticulture, agriculture, etc., and the linearly increasing trend of invasive species
numbers (from 1970 to 2007) indicates higher impacts of invasive species in the future.
Reference [6] pointed out that not only invasive species have an impact on native plants,
since several factors often interact with the environment that influence species distribu-
tions. In recent years, the need to precisely understand the ecological impacts of invasive
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species in ecosystems has become a key in designing and prioritizing natural resource
management approaches [2], since the behaviour and impact of invasive species is still not
well understood [3,7]. Furthermore, a high number of invasive plant are species spreading
in natural environments, which increases the demand of management practices [5].

In the past two decades, an explosive spread of North American blueberry hybrids
(Vaccinium corymbosum x angustifolium) has been observed in several moors in the northern
German geest area, endangering the natural development of these protected raised bog
areas [8]. The starting point of the spread has been almost exclusively located at existing or
former commercial blueberry plantations [9,10], which can be found near or in the imme-
diate vicinity of bogs or former peat extraction areas, due to good soil and local climatic
conditions. Most of the recipient habitats are pine forests and bogs in various stages of
de- and regeneration. Because of these characteristics, the American Blueberry (Vaccinium
angustifolium x corymbosum) has been classified as a potentially invasive neophyte by the
German Federal Agency for Nature Conservation [11]. After the degradation of wetland areas
due to anthropogenic activities, protection programs, called "Moorschutzprogramme",
were established by the state government of Lower Saxony for the conservation and the
development of rare animal and plant communities in these areas [12]. Furthermore,
activities that could threaten the goals of the protection program are prohibited, which in-
creases the difficulty of conducting relevant field studies [12]. However, maintenance
and development measures are needed in order to rehabilitate protected and relatively
sensitive wetland areas, into which the invasive blueberry species Vaccinium corymbosum
x angustifolium has migrated. In 2011, 20 counties in Lower Saxony reported stands of
spontaneously growing blueberry bushes [13]. The potential area that is occupied by
spontaneously growing blueberry bushes can reach several square kilometres within a
few years [14]. Previous studies, as presented in [10,14], used grids in the field in order to
plot the distribution of blueberry bushes within wetlands. Both of the studies focused on
sites near blueberry cultivation areas, as the biggest spread was found in close proximity
to blueberry plantations [9]. Those studies show the limitations in the studied area and
lack an overview. It is still unclear how far the blueberry bushes have already spread
and in which areas they occur. In order to implement effective measures in these areas
and minimise the disturbance of sensitive biotopes, it is necessary to locate the individual
blueberry bushes as accurately and early as possible. In addition, the following questions
arise: does a displacement of natural species occur and where should what measures
be taken against a continuing invasion? According to [14,15], relatively simple counter
measures can lead to good results and prevent further spread, especially when invasive
blueberry bushes are identified early. Therefore, a suitable and non-invasive method for
recording stock development and distribution is needed. A simple tool is needed to rapidly,
cost-effectively, and precisely detect invasive species in wetlands to counteract their rapid
reproduction. Wetlands are protected environments with limited ground accessibility
making UAVs particularly appropriate for data collection. UAVs offer the possibility to
cover large areas with high resolution images, and they have proved their usefulness in
a variety of studies in agriculture [16,17] and forestry [18–20]. Still, UAV images present
challenges like the pre-pocessing of the data. Large amounts of data need to be processed,
labeled, and annotated by experts, which is usually time consuming, before the data can
be further analysed. The use of deep-learning techniques reduces the amount of time that
is needed to extract information from the data, which increases the benefits for several
applications.

Images that are acquired by UAVs can be analysed while using computer vision and
GIS techniques. Important results can then be obtained by reducing the complexity con-
tained in the images (using different image interpretation strategies) and the findings can
be presented in elaborate visualisations [21]. Persistent homology, a tool of topological data
analysis, can help to understand complex datasets by analysing their large scale geometric
features [22]. In our study, we have used persistent homology to measure the spread of
invasive species. Processing images and creating orthomosaics allow for a fast analysis of
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large amounts of data. Deep learning techniques additionally automatize classification
and localisation processes, and make it possible to incorporate expert knowledge into
the automatic image processing pipeline. This has the potential to increase the scale of
the resulting studies to reach large regions that are significant in terms of country-level
invasive species detection and management.

In this study, the incorporation of all the mentioned techniques from remote sensing,
GIS, computer vision, computational topology, and artificial intelligence allows for us to
study invasive species on a large scale, with minimum disturbances and the incorporation
of expert knowledge. To the best of our knowledge, this is the first study that includes
different techniques and UAV gathered data to increase the understanding of an invasive
blueberry species in wetlands. Furthermore, locating and studying small bushes in large
areas and at the single-bush level was done for the first time. Therefore, UAV-supported
methods offer an efficient possibility to discover individual young plants on a large scale
and detect propagation hotspots at an early stage.

The following objectives guided this study:

(I) To use UAV data in order to provide allometric statistics (height, area, and number)
of invasive blueberry in large areas at bush level.

(II) To use clustering techniques and persistent homology to quantitatively and qualita-
tively assess the spread of blueberry invasions.

(III) To assess the potential of Deep learning to automatically segment blueberry bushes,
initiating the possibility for even larger-scale studies.

State of the Art

In recent years, remote sensing techniques have been used in various natural envi-
ronments with the goal of reducing the need for in situ measurements [23]. Low-cost
data gathering, time saving, and larger study areas are the benefits. Furthermore, data
can be directly used and processed within Geographical Information Systems (GIS) [23].
This has been done successfully, for environmental studies [24–26]. Closely related to
the current work, Reference [27] proposed using GIS as a synthesising tool in invasive
species management approaches. Reference [28] used satellite images of 1992 and 2002
in order to identify stress indicators and change detection in a wetland in Sri Lanka to
quantify the conditions of the complex. The authors state that the inventory, mapping, and
monitoring are needed to understand interactions in the ecosystem. Classification with
the Maximum Likelihood Algorithm were performed, mapping and spatial analysis were
used, and finally refined and verified with ground data. Their approach ([28]) reached 86%
accuracy and provided detailed analysis. GIS in combination with remote sensing data was
found to be an effective methodology for investigating wetlands. Reference [29] evaluated
vegetation change detection while using the NDVI of remote sensing data and applied
GIS in order to visualise the results. Landsat and Shuttle Radar Topography Missions
were used to capture the Vellore District. Image interpretations were carried out using
ERGDAS IMAGINE software in order to classify and detect changes in the vegetation. The
differences in the NDVI values were used to analyse data sets of the years 2001 to 2006.
The study provided information about the lowest decrease in the forest area by 6%, while
agriculture land increased the most by 19%.

In comparison to satellite images UAV images provide a higher resolution and appear
to be more suitable for wetland investigations, especially when focusing on invasive species.
Higher resolution images allow for higher accuracies of image interpretations and feature
extractions [30]. Several studies using UAVs in wetlands have already been carried out [31–34].
Reference [34]developed a method for detecting and mapping invasive species with UAVs.
The authors acknowledged UAVs as suitable for monitoring eradication efforts in wetlands.
Reference [33] realized the higher efficiency in gathering valuable and accurate information
in comparison to field studies, when using UAVs and computer vision techniques to enhance
classifications and health assessments in wetlands. Gandhi et al. [31] used UAV imagery
for detecting invasive species and mapping their distribution and spread. This study also
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compared data from two years (2009 and 2011) and detected an increase of 19.07%, which
was confirmed by field studies with a total agreement of 94% and shows the suitability of
UAV imaging for this kind of application. Reference [31] lanalysed the spread of Spartina
alterniflora in Beihai in the years 2009 and 2011, using high resolution images acquired by
UAVs. They captured images at a flight height of 800 m, generated orthomosiacs, performed
multi-resolution segmentation by grouping homogenous pixels, and classified them. The
target species was extracted by their pixel values. In a final step the accuracy was assessed
and verified with field data by comparing three sample plots (a total of 166 samples) with the
image results. A total accuracy of 94.0% could be achieved and, hence, provided information
regarding an increasing spread of 19.07% from 2009 to 2011. The total infected area was,
in 2011, 357.2 ha. Moreover, the image analysis provided the opportunity to identify areas
with different levels of densities. Reference [35] collected UAV images of Harrisia pomanensis
in the Limpopo province of South Africa. An area of 87 ha was captured by images that
were taken at a height of 800 to 817 m. Orthomosaics generated with Agisoft Photoscan and
pixel as well as object-based classifiers were used. The classification results of supervised
and unsupervised classifiers were assessed. The supervised classification outperformed the
unclassified one, and the object-based approach outperformed the pixel-based one. The best
accuracy achieved was 86.1%.

Given the sizes of the data sets used and the need to detect and classify parts of the
images that only trained experts can confidently tell apart the use of deep learning in
problems that are closely related to the current work is of common use. For example, a
recent study [36] used CNN (convolutional neutral network) in order to classify images
from wetlands in an area of 700 km2. They used a fully trained and fine-tuned CNN with
a limited amount of data. A comparison of the CNN with random forest was performed
to evaluate the capacity and classification accuracies of CNNs. Canadian wetlands were
captured with two RapidEye images with 5 m resolution in 2015. The validation data were
sampled in 2015 and 2016 and four wetland classes were identified using 1000 samples.
The network was trained with patches and 30,000 iterations and then tested in a second
step. The CNN outperformed the random forests and an overall accuracy of 94.82% was
achieved, varying between 76.65% and 98.74%. Deep convolutional neural networks were
also used by [37] in order to classify AUV-acquired wetland images. The 677 m × 518 m
study area was located in Southern Florida. The authors used processed orthomosaics and
multi-view images and then compared them with the performances of random forests and
support vector machines. Image segmentation was done with Trimble’s eCognition by first
segmenting objects, then extracting features, and finally training a classifier. The results of
the study show the advantages of deep CNN, reaching an accuracy of 82.02%, when multi-
view images were used and with lower accuracy when orthomosaics were used (71.69%).
A similar approach was used in [38]. 3800 images of the Brazilian national forest (Kaggle
dataset) were used in order to identify hydrangea in the images. The dataset contained
two-thirds of images, including the invasive species, a smaller fraction, where the invasive
species appeared only in parts of the images, and a third small fraction that included no
plants at all. The authors used three models: VGGNet, DenseNet, and Inception, which
were pre-trained with ImageNet. Data augmentation was used and accuracies of 97.6%
were reached.

2. Materials and Methods

2.1. Study Area

The study area “Lichtenmoor” is located in a wetland region about 60 km northwest of
Hanover in Lower Saxony, Germany (52°43′06.2′′ N 9°20′41.5′′ E) (Figure 1).The total size of
the moor area is 38 km2 [39]. Post industrial peat cutting characterises the central area of the
studied wetland. As a subsequent use, some former peat cutting areas have been rewetted
with the aim of regenerating raised bogs. In the surrounding area, parts of the Lichtenmoor
have been designated as nature reserves. Former hand peat cutting sites are located at
the edges and in parts of the nature reserves. Agricultural areas dominate the remaining
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areas, mostly grassland, dry to moist moorland forests, scrubby heather and moorland
degeneration stages, pioneer stages of moorland rewetting, and peat extraction areas under
cultivation. The case study area covers a total area of 62 ha and it is located in the central
part of the Lichtenmoor region. To the northeast, it borders a pine plantation, while at its
southwest border current peat extraction areas are located. Blueberry plantations can be
found throughout the Lichtenmoor, especially on the outskirts of the localities Lichtenhorst,
Heemsen, Sonnenborstel, and Steimbke.

Figure 1. Location of the study area in the north of Germany. In the upper right part of the figure, the study sites are marked
with different colours. The bottom right part an example orthomosaic is shown with detail of the different classes.

2.2. Characteristics of the Blueberry Species

Blueberries have been cultivated in commercial plantations in Lower Saxony since
the early 1930’s [14]. Since then, the area under cultivation has steadily increased. In 2005,
the area with blueberry cultivation in Lower Saxony was approximately 1400 hectares [13].
In nature, blueberries are mainly distributed by birds and small mammals, who spread
the seeds. Once established, plants can spread in a vicinity by clonal growth and the high
regeneration potential of blueberries favours a strong spread [10]. The species prefers acidic
locations, such as pine forests or wetlands. Especially, raised bogs in their degeneration
stage provide ideal habitat conditions for invasive blueberries [14]. Thus, blueberries are
growing increasingly wild in neighbouring areas. References [9,14] found a correlation
between the density of blueberries and the distance to blueberry plantations; a maximum
distance of 1700 m was recorded. Near cultivated areas, the feral blueberries form dense
shrub stands with height of up to 2–3 m and have a ground coverage of up to >60%. With
increasing distance, the degree of coverage decreases rapidly [8,9,13]. Since these studies
were already conducted in the last millennium, a larger distribution must be expected today.
Reference [10] describes a distribution of blueberry bushes over 4 ha in the “Krähenmoor”,
where the maximum distance to the plantation was identified at 100 m. Blueberry bushes
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are low and can reach a height of 60 cm, but, occasionally, tall species can be found with a
height of 3 m [10]. In the course of the increasing growth and dense shrub structures, other
ground vegetation is displaced, since it cannot exist under the shade of blueberries. Other
presumed effects of blueberry cultivation are reduced evaporation rates and the influence
on nutrient cycles in wetlands, which, in turn, can have an impact on existing plant species.
Therefore, human interventions are necessary to protect the sensitive rare structures and
characteristic plants of wetlands [10].

2.3. Data Collection and Pre-Processing

Image collection was performed by using a DJI phantom 4 UAV in autumn 2018,
because of the seasonal red colouring of blueberry leaves, which makes them easily de-
tectable (Figure 2). For sites B1 to B4, 490 to 584 images were collected, while 1346 images
were taken for B6. The flight height was 50 m and front and side overlaps of 80% were
chosen. These images were then processed while using the Metashape software [40] to
align images in order to produce one orthomosaic and DEM (Digital Elevation Model) for
each site (Figure 1). It should be mentioned that an overlap between the sites B1 to B4 was
chosen, so the east and west borders of the orthomosaics B1 to B4 are overlapping. All
of the obtained orthomosaics were annotated while using the open source image manip-
ulation software GIMP [41]. For three of them (B1, B2, and B3), the whole orthomosaic
was annotated and each pixel was given one of the following six labels: blueberries, trees,
yellow bushes, soil, water, and dead trees (Figure 1). The class trees contains pine trees
(Pinus sylvestris), the class yellow bushes contains shrubby birches (predominantly Betula
pubescens, secondarily Betula pendula). Binary layers for each of the six classes were created
for each of the three orthomosaics while using the pixel-level labels. These annotations
were based on colour, shape, and context information contained in the orthomosaics. In
the last two orthomosaics (B4 and B6), only blueberry bushes were annotated.

Figure 2. Workflow of the paper. Gray is our data base; purple boxes show softwares/programs used in this study;
white boxes with a blue outline are generated files; dark blue are processes used for the deep learning (DL) classification
and detection; light blue are tools in ArcGIS.
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In order to train deep learning models to detect blueberry bushes orthomosaics annotated
with all of the aforementioned labels were needed. Therefore, only B1 to B3 were used in the
deep learning section of this study. These three orthomosaics, as well as the corresponding
annotated binary layers were divided into axis-parallel patches of side length = 100 (hereafter
"patch size"). This value was determined by taking the sizes of the blueberry bushes in the
images, which ranged from 20 to 100 pixels in radius, into account. The classes in each patch
were stored in a separate label list. In general, patches contained more than one class and,
therefore, our problem can be defined as a multi-label patch classification problem.

2.3.1. Data Processing Using Arcgis

This section deals with data processing performed with ArcGIS pro 2.4.1 and python
in order to identify parts of the orthomosaic containing blueberry bushes, in order to
visualize them and analyse their characteristics. ArcGIS is a Geographic Information
System software that visualises and comprehends geographic data. The software provides
over 1000 tools to analyse real world data, including UAV-acquired images. The mapping
options allow to visualise the gathered data within the correct location in an eligible base
map. The primary purpose of this study was to provide information about the location
and distribution of invasive blueberry species and map them for management.

In this context, the positions of the blueberry bushes in the five orthomosaics were
digitised by hand as point data in an ArcGIS shapefile and several analytical tools were
then used (Figure 2). The kernel density tool functions were used to calculate the magnitude-
per-unit area from the blueberry points. Smaller search radiuses were used to show a
detailed density raster. The tool integrate was used to group blueberry bushes that fall into
a specified distance, as specified distance, 3 and 6 m were used. With the tool collect event,
the number of points which were integrated before, were summarized in a new layer. Those
steps were necessary to perform an optimized hotspot analysis of the blueberry abundance
with the blueberry point shapefile. The hotspot analysis identifies the significant difference
between the neighbourhood of a feature in comparison to the extent of the respective study
area. Is the value of a feature significantly higher, it is considered to be a hotspot and the
tool provides a feature map with three levels of confidence (90%, 95%, and 99%). As input
for the hot spot analysis, the created layer of the tool collect events was used and analysis
field counts were chosen. Furthermore, it also indicates the significantly lower features.

On the basis of the annotation made for all orthomosaics, several simple python codes
and ArcGIS were used to perform image analysis. Pixels were counted for all orthomosaics,
as well as all annotated layers. The number of black pixels in the annotated layers were
specifically counted in order to obtain the percentage and area in m2 per class. Additionally,
the overall area presented in the orthomosaics was calculated in hectares. Because the
focus of this study was on the blueberry bushes, several statistical values were generated:
the number of blueberry bushes was counted and the number of blueberry bushes per ha
was calculated for each orthomosaic. Additionally, the total area, as well as the area per
blueberry bush, were computed in m2. Furthermore, the proportion of blueberry bushes in
relation to the vegetation was calculated in %. Finally, height values were computed on
the basis of DEMs, annotations of the blueberry bushes, and annotations of ground points
per site. Ground points were annotated close to blueberry bushes in order to increase
the accuracy of the computed height. Maximum height values were estimated in a first
analysis and the median height in a second analysis to evaluate the results.

2.4. Persistent Homology

Persistent homology provides topological information of complex datasets [42] at
different spatial resolutions. This information deals with the connectivity of nearby points
and it can be computed in different dimensions. For the purpose of this study, we worked
with 0-D persistent homology (usually expressed in the form of H0 diagrams). H0 homol-
ogy can be seen as growing disk at uniform radius-increase speed around pre-defined data
points. In order to use this tool, we first discredited the manually annotated blueberry
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regions by uniformly sampling them. Subsequently, the radius around each sample point
was increased to grow blueberry bush regions. When two blueberry regions were merged
because of the expansion, one of the regions was considered to be dead because it was
absorbed by the other region. As time passed, the number of connected blueberry regions
decreased, and finally all of the regions were connected in one region.

The H0 diagram shows the change in the connectivity of the blueberry bushes by
plotting the time/radius when blueberry regions get connected. False regions that were
produced by our sampling of the annotated regions were discarded and only those parts of
the diagrams that were obtained after all sampling points in each region had been joined
together were considered. Based on this outcome, the radius was calculated until 1%, 10%,
50%, and 90% of the blueberry regions were connected and plotted. The diagram will vary
greatly, depending on the number and position of blueberry bushes in the input image.

2.5. Deep Learning Techniques

Deep learning is a trending field of machine learning that focuses on fitting large
models with millions of parameters for a variety of tasks, such as image classification and
segmentation. These approaches have been rapidly gaining attention in computer vision
tasks, due to their recently increased accuracy. Deep learning models commonly learn from
examples in a supervised manner. First, an architecture or a graph of connected nodes is
defined. These nodes are often grouped in layers that perform a specific operation, and the
combination of a large number of layers is referred to as a deep neural network (DNN).The
typology of the nodes, the number of nodes per layer and the connections between them
determine the behaviour of the network. In general, two main types of nodes are used:
linear nodes, expressed as matrix multiplications and nodes that introduce non-linear
functions (such as the sigmoid function). The weights in linear nodes are usually initialised
with random values following a specific distribution. Afterwards, the network is given
samples of the data, known as training samples, which contain instances of the problem
(i.e., image intensities) with their corresponding solutions (i.e., labels). These samples
are iteratively run through the network in order to evaluate its current accuracy and the
weights are updated following an optimization process.

In this study, DNNs were used to locate and identify the six classes that are defined in
Section 2.3, with a focus set on the blueberry class. The basis for this deep learning approach is
described in previous studies [20,43], which led to the use of the algorithms that are described
in this section.

Our approach is based on a patch classification model that uses the patches of
100 × 100 pixels described in Section 2.3. A patch of orthomosaic B1 and B3 covered; therefore,
700 cm × 700 cm and a patch of orthomosaic B2 500 cm × 500 cm. For each patch, a list
containing the class labels was created from the binary maps for each class. This classification
is usually referred as multi-label, since each input patch might contain different labels (i.e.,
a part of the patch may contain soil, while other parts of the same patch could also contain
bushes or blueberries).

Deep neural networks for classification have two major components: a feature extrac-
tion stage and a prediction stage. At the first stage, convolutional operators are trained in
order to extract salient and meaningful features (such as texture) while at the second stage
these features are used to predict the final labels for the given input patch or image. In order
to train general and robust feature extractors, a large pool of heterogeneous images with
different properties (lightning, colour, view, etc.) is needed to capture all of the possible
image variabilities. However, as proven by our previous work [20,43], transfer learning
is a useful tool for image analysis applications, where the training dataset is too small to
properly train these feature extractors from scratch.

In our case, only three different orthomosaics are available; hence, we decided to
use transfer learning by loading a pre-trained ResNet50 architecture with weights from
ImageNet, due to its accuracy and reduced training time. ImageNet is one of the largest
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image databases for image classification research, with more than 80,000 labels and at least
1000 images for each label.

In order to perform the evaluation of the proposed model, two of the three ortho-
mosaics were used for training and validation and the third one was used for testing.
This cross-validation strategy is usually referred to as a leave-one-out strategy. All of the
orthomosaics were used once for testing, training, and validation by rotating them for
each experiment. Patches from the testing orthomosaic were not included for training or
validation to avoid data leakage during training.

Two main approaches were used in order to obtain a higher detection rate for the
blueberry class:

• Data augmentation is a commonly used strategy in deep learning and it can increase
the size of the training datasets without the need to collect new data. In this case,
data augmentation was used to generate new synthetic patches of the blueberry class,
which was the less frequent class (see Section 3.2 for details). Six image transforma-
tions to augment the data were used: up/down and left/right flips; small central
rotations with a random angle, in order to simulate different perspectives of the
bushes; Gaussian blurring of the images, which simulates blurring due to the move-
ment of the UAV; linear and small contrast changes, which can represent different
light and shadow conditions and localised elastic deformations. In order to implement
this transformations we used the “imgaug” library [44].

• Loss functions are used to compute the accuracy of the network and update their
parameters. By giving different weights to different classes, their importance can be
changed during training. In this study, two loss functions were used; the first function
checks if a patch contains a blueberry or not, while the second one checks the fraction
of blueberry pixels inside the patch. The optimal training settings followed the ones
that were used in our previous study [43].

We considered labels for all the patches used and the relation between (1) predicted
values resulting from our algorithm and (2) real values as stated in the manually-annotated
ground truth in order to assess the predictive power of our algorithms.

We then broke all of the patches into the usual classification categories of:

• True Positives or TP, predicted to contain the blueberry class and also marked in the
ground truth as containing them.

• False Positives or FP, predicted to contain the blueberry class but NOT marked as
such in the ground truth. These patches correspond to over-prediction errors where
the algorithm “sees” the blueberry class when it is not really there.

• True Negatives or TN, not containing the blueberry class in the prediction or in the
ground truth.

• False Negatives or FN, not predicted to contain blueberries, but actually being marked
as containing them in the ground truth. These patches correspond to under-prediction
errors where existing blueberry instances are missed by the algorithm.

We used the two following metrics (True Positive Rate or Sensitivity and Accuracy) in
order to summarize the occurrences of the four categories.

TPR = SENS =
TP

TP + FN
ACC =

TP + TN
TP + TN + FP + FN

(1)

Finally, we modified the algorithm to present the results in a way that was more
usable for end-users. The 100 × 100 patches used for prediction managed to capture
most of the occurrences of the Blueberry class (see Section 3.2 for details). However, these
rather large patches also included large areas that actually contained no blueberries. While
expert users could easily use these results as a starting point in order to quickly identify
the exact location of blueberry bushes, we felt that refining our prediction using smaller
patches would make their work faster, while also providing clearer information for non-
expert users. Consequently, we divided each of the predicted 100 × 100 patches into
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16 25 × 25 patches, re-sampled each of these newly-made smaller patches to the image
size that is used by our DNN and re-classified them. This resulted in a refined result made
up of 25 × 25 patches. This process had the disadvantage that, if errors were made, some
of the correctly predicted blueberry pixels might be lost. In order to evaluate this issue,
we considered the TP, FP, TN, and FP status of each pixel in each patch and measured the
percentage of positive pixels that were covered by our predicted patches as well as the Dice
coefficient that gave us an indication of the relative weight of blueberry pixels inside of our
predicted patches:

Dice =
2TP

2TP + FP + FN
(2)

3. Results

This section is divided in two parts: the first part of the analysis focused on the
manual annotations of the wetland vegetation and, most specifically, of the blueberry
bushes. GIS, computer vision, and persistent homology were used to describe and quantify
the characteristics of the blueberry invasion in all of our test sites. In the second part of
this section, the results of Deep learning techniques are presented. In this case, our goal
was to assess to what extent these technologies can be used to automatically generate
the annotations that were used in the first part to characterise the invasion. The general
workflow can be seen in Figure 3.

Figure 3. Image analysis workflow. Consists of two parts, the manual approach using manual annotation, GIS and persistent
homology, and the automatic approach while using deep learning and segmentation to analyse the blueberry invasion.

3.1. Analysis of the Blueberry Invasion

In this part of the study, we focused on characterising and measuring the blueberry
invasion of the wetland.

3.1.1. Quantitative Analysis of Blueberry Bushes

The distribution of the classes in the images (blueberries, trees, yellow bushes, soil,
water, and dead trees, see Section 2.3) was analysed and the state of the invasion was
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assessed by gathering information regarding the areas of the sites, the numbers of blueberry
bushes, and the average area per bush.

One important aspect was to calculate the area of blueberry bushes within the ortho-
mosaics. The area covered by the orthomosaics varied between 10.6 to 12.5 ha, only B6
was larger with 15.5 ha (Table 1). Together with the annotations made for B1 to B3 the area
of each class was calculated (Figure 4). As can be seen in the orthomosaic (Figure 1) the
main part of the image represented soils. This was validated by the area calculations: with
76% of the orthomosaic B2 and 89% of B3, soil represents the highest values of all classes.
The second smaller pie shows the living vegetation varying between 4.7% in B1 to 18.6% in
B2. Out of the living vegetation, 8.2% (B2), 15.0% (B3), and 21.1% (B1) are blueberry bushes.
In most of the orthomosaics blueberries were the least frequent class (with 1 to 1.5%).

Figure 4. Distribution of annotated classes for the orthomosaics B1 to B3.
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Table 1. Area and counting measures of blueberry bushes detected in the orthomosaics.

Orthomosaic Area in ha Number of Blueberry Bushes Blueberry Bushes per ha Blueberry Bush Area in m2 Area per Blueberry Bush in m2

B1 11.64 375 32.21 1331.42 3.55
B2 10.64 687 64.55 1885.51 2.74
B3 12.47 566 45.40 1470.24 2.60
B4 12.44 405 32.54 870.33 2.15
B6 15.14 235 15.53 278.07 1.18

The number of blueberry bushes varied from 235 in orthomosaic B6 to 687 in B2
(Table 1). The site areas of orthomosaic B1, B3 and B4 were similar, while orthomosaic B6
is the largest site containing the least number of blueberry bushes and orthomosaic B2
contains the greatest number of blueberry bushes in the smallest area. The ratio could be
confirmed by calculating the blueberry bushes per ha (Table 1). In another step, annotations
were used in order to calculate the total area covered by blueberry bushes. In orthomosaic
B6, an area of 278.07 m2 was covered by blueberry bushes, which represents the smallest
area and it resulted in an area of 1.18 m2 per blueberry bush. The largest area was covered
by blueberry bushes in B2 with 1885.51 m2 . The average size of the bushes were similar
for B2 and B3. In site B1 the average size of blueberry bushes was the highest with 3.55 m2,
while the covered area was third lowest with 1331.41 m2.

Because the covered area and the average size of the bushes could be calculated, the
next point of interest was the area and height per blueberry bush (Figure 5). Bushes were
grouped into six to smaller than 10 m2 and over 10 m2 because the percentage of blueberries
decreased towards larger cover areas. B1 and B2 had approximately 30 bushes between
6 and 8 m2, which was the maximum of all sites. The mean areas were computed for all
orthomosaics, indicating that B1 had a high number of large bushes with a mean area
of 3.57 m2. The smallest blueberry bushes could be found in orthomosaic B6 indicated a
mean value of 1.18 m2. In general, most of the blueberry bushes showed areas of up to
2 m2, a lower amount distributed between 2 and 4 m2 and the lowest numbers distributed
in areas greater than 4 m2. B1 was an exception, with around 10% per class over 4 m2.
The highest areas calculated range between 17 to 25 m2, with B1 containing four bushes
in that range and 27 with areas above 10 m2. The lowest areas were found to be less than
10 cm2 for B1/B4 and approximately 15 cm2 for all other orthomosaics.

A similar distribution can be seen in Figure 5, where the number of blueberry bushes
were plotted against the height. Classes were chosen for each 0.5 m starting with 0 m
up to lower than 3.5 m and more than 3.5 m. This distribution was chosen due to the
characteristics of shallow blueberry bushes that reach 60 cm and tall species that reach
3 m. Regarding the maximum height, no height was computed for 2.3% (B1) up to 15.5%
(B6) while the numbers were higher when the median height was considered (11.0% for
B1 up to 35.2% for B6). In general, the median height values were higher for the classes
0 m and 0.5 m in comparison to the maximum height, while the values are lower from
0.5 m.The lowest height values started from 0.01 m (B6), 0.03 m (B1), 0.07 m (B3/4), and
0.1 m (B2) for both max. and median height. In general, the maximum and the median
height distribution of the orthomosaics was similar. Almost all of the blueberry bushes in
orthomosaic B6 were within the class < 0.5 (83.3%). In B1 the number of blueberry bushes
in this same class was 79% and 15.2% was between 0.5 and <1 m, which was similar to B6.
Orthomosaic B2 to B4 showed a Poisson distribution, whereby B2 had the highest number
in 1 < 1.5 m with 21.2 m, while 41.6 of the blueberry bushes in B4 had the highest value
in <0.5 m. Furthermore, in B2 and B3, more than 50% of the blueberry bushes reached
heights between 1 m and 3.5 m (57% and 57.7%).It has to be considered that the area was
calculated on the shapefiles in ArcGIS, while our developed python code was used in order
to calculate the height of the blueberry bushes. Because the input for the code was the
annotations of the blueberry bushes that were stored as a PNG file, those bushes that were
close together were grouped. Therefore, the height values were not always calculated for
an individual bush, which resulted in a different number of blueberry bushes per site: 309
(B1), 519 (B2), 461 (B3), 394 (B4), and 219 (B6).

50



Sensors 2021, 21, 471

Figure 5. Distribution of the area and height values of blueberry bushes. From top to bottom: area, maximum height, and
median height.
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3.1.2. Analysis of Spread Patterns

In a second step of our quantitative analysis of the blueberry invasion, the concentra-
tion, density, and spread patterns were examined. GIS and persistent homology were used
to assess these issues. Characterisations of concentrations and densities can indicate the
number of blueberry bushes within a given region of the orthomosaic, which exceeds a
simple location because the distribution of the bushes can be analysed precisely. Cluster-
ing bushes and mapping densities further increase the understanding of the distribution.
Together with the persistent homology and hotspot analysis, the spread can be defined for
all orthomosaics, which helps to characterise the invasion.

The first step was to cluster blueberry bushes by using specified distances, of which
3 and 6 m were chosen, due to the calculated area of the blueberry bushes. The average
diameter was considered to be 2 m for the different sites, and therefore a diameter of 3 m
was found to be appropriate to especially group blueberry bushes that were close to each
other. The results of both distances were compared and they are listed in Table 2. When
blueberry bushes were located in a range of 3 m, they were clustered with the following
results. From orthomosaic B3 to B1, 35.51% to 39.87% were clustered. The highest number
of clustered bushes were 33 in B3, followed by 25 in B2 and 10 in B1. In comparison to B1
to B3, B4 and B6 had around 28.3 % clusters with three and more blueberry bushes. The
highest number within a cluster was nine for B4 and 13 for B6. After increasing the range
to 6 m, the number of blueberry bushes clustered in the group 3 or more bushes increased
to 69.57%, which is more than 30 percentage points. B1, B3, and B4 had a similar increase
of around 15 percentage points and reached 56.63 % in B1, 50.43% in B3 and 44.35 in B6.
With less than 10 percentage points, 37.68 % of the blueberry bushes were grouped together
with more than three bushes.

Table 2. Clustering results that are based on point shapefiles of the sites.

3 m Clustering 6 m Clustering

Grouped 3
or More (in %)

Number of
Single Bushes

Highest Count
in One Group

Grouped 3
or More (in %)

Number of
Single Bushes

Highest Count
in One Group

B1 39.87 89 10 56.63 18 25
B2 36.82 87 25 69.57 23 50
B3 35.51 98 33 50.43 36 50
B4 28.34 92 9 44.35 39 22
B6 28.28 51 13 37.68 28 21

Based on the point shapefiles of the blueberry bushes, density maps were generated to
see how the bushes were distributed within the map. Figure 6 provides three examples of
the orthomosaics B1 to B3. Areas with a high density are marked in red and low densities
in dark green. Orthomosaic B1 has one large density spot in the northwestern part of the
map, while the southeast direction the density decreases with only single or paired bushes.
Orthomosaic B2 shows four density spots. Two smaller ones were located in the northwest,
a larger spot is in the middle of the orthomosaic and a final one in the southeast. The space
between the middle and southeast spot is covered by blueberry bushes, which was similar
to the distribution of B3. In orthomosaic B4, nearly the whole area is covered with green to
reddish colours. There are three dense spots in the northwest, two spots in the middle and one
in the southeast. In comparison to B2 and B3, the spots are smaller. Orthomosaic B6 covers a
larger area than all other orthomosaics, but only three density spots could be identified in the
middle of the orthomosaic. There were smaller groups of blueberry bushes along the borders
of the orthomosaic, and single ones are distributed close to the groups of bushes.

Another analysis focused on the point analysis to generate a map of hotspot areas in
order to analyse the spread of the blueberry species. The point analysis used the manually
marked blueberry bushes to identify where the proximity of the bushes was significantly
different (hot and cold), and to quantify those that were not identified as significantly
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different. In B1, two 90% confidence hotspots were found in the north. 21 clusters were
identified to be 90% significantly different from the study area. The hotspots in B2 were
concentrated in the south-easternmost part of the orthomosaic. 26 clusters (out of 220) were
significantly different to the study area with a confidence interval of 99%. These points
contained all of the bushes located in the south-easternmost part of the orthomosaic. In B3
16 out of the 214 clusters fell into the 99% confidence interval, all located in the south-east
of the orthomosaic. The same characteristic was found in B4. 23 clusters out of 248 were
found to be significant with a 99% confidence and seven points with 90% to 95% confidence.
B4 was the only orthomosaic containing two points considered to be cold spots with 90%
confidence in the centre of the orthomosaic.

Figure 6. Density map for the blueberry species for the sites B1 to B3 (location see Figure 1). Areas of low densities are
marked in green and high densities are red coloured. A gradient between green and red represents values of medium
density. White points mark the location of the blueberry bushes.

Finally, the persistent homology was performed, as described in Section 2.3.1. The
radius was plotted against the fused region, as can be seen in Figure 7. The orthomosaics
B2, B3, and B4 show a similar trend, while B1 and B6 also follow a different, but similar,
trend to each other. B2 is the first orthomosaic, where 1% of the blueberry bushes were
fused with a radius of 386 and B1 needed the largest radius with a value of 497. In all
orthomosaics the radius needed to fuse up to 10% of the blueberry bushes is similar with
values between 415 and 557. There is a small gap of approximately 150 between B3 (945),
B6 (998), B1 (824), B2 (768), and B4 (831), when 50% of the blueberry bushes were fused.
The radius needed to fuse 90% for B1 and B6 are 3279 and 3611, while, for B2 to B4, it is
1610 to 1709.

3.2. Deep Learning Results

In this section, we describe the usefulness of deep learning techniques in order to au-
tomatically determine the location of blueberry bushes in our data. As stated in Section 2.5,
a widely used network (ResNet50) was chosen and two main aspects were studied: how
the data balance affects the final classification results and whether using transfer learning
resulted in improved results. Several experiments were presented in a previous study [43];
however, we will only focus on the optimal results for this current study.
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Figure 7. The persistent homology is plotted by radius against the region. Four fused regions were
considered: 1%, 10%, 50%, and 90% and all sites are plotted.

Regarding transfer learning, unfrozen ImageNet [45] weights were considered to
initialise the network. When the model weights are unfrozen, all of the layers are normally
trained and, thus, all the weights are updated. Regarding the data balance, the blueberry
patch loss was weighted eight times that of the soil class, and four times the amount of the
other classes. We also performed upsampling of the blueberry class by creating 12 new
samples for each patch, as detailed in Section 2.5. Finally, the soil class was downsampled
to 50% of its original number of patches.

Because three orthomosaics were available, a leave-one-mosaic-out cross validation
approach was applied in order to evaluate the results. One of the orthomosaics was used
for training, another for validation and the last one for testing. In order to ensure that all
orthomosaics were used at least once for training, validation, and testing, we rotated them
accordingly. This section presents the averages results for the TPR and the accuracy results
of the three testing stages that correspond to each orthomosaic.

By using the optimal settings that are presented in this section, the model improved
from a low TPR value of 63.8% for the blueberry class when no data balancing was applied
to a value of 93.39%. In both cases, the overall accuracy for all classes remained similar
(98.83% and 98.10%, respectively). Furthermore, it could be observed that unfreezing the
weights had a positive effect on the TPR. The best TPR value for the frozen weights was
37.12% without data augmentation while maintaining an overall high accuracy value of
98.01%. However, when using high data augmentation with frozen weights, the best TPR
value of 87.99% was obtained at the expense of a lower overall accuracy value of 75.20%.
These results suggest that ImageNet weights can be used for this problem, but they need to
be updated (and unfrozen) when using data augmentation to focus on blueberry bushes
due to the differences in images.

Regarding the refinement step of the algorithm, Figure 8 presents an example of the
obtained results. For most of the predicted patches, the segmentation that was obtained
with the refined version of the algorithm is much closer to the manual annotation. However,
in a few cases, some of the bushes that had originally been detected are missed after the
refinement. Table 3 presents the detailed results of these two issues.
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Figure 8. Orthomosaic B1 is displayed with a combination of the manual annotations (black marked spots), the coarse mask
(dark grey) and the refined mask (light grey). The red box was zoomed in to show a detailed view on the image and masks.

Table 3. Numerical evaluation of the refinement step of the DNN. The rows marked "refined" stand
for the algorithm after refinement, while the rows marked "Coarse" correspond to the algorithm
without refinement for each of the three studied orthomosaics. The Dice coefficient, as well as the
ratio of blueberry pixels in the Ground truth covered by each of the two masks, are presented.

Orthomosaic Mask Type Dice GT Cover

1
Coarse 0.187 0.953

Refined 0.526 0.860

2
Coarse 0.264 0.949

Refined 0.624 0.874

3
Coarse 0.223 0.884

Refined 0.587 0.789

On the one hand, the Dice coefficient, which evaluates the overlap and number of
non-GT pixels that are contained in the predicted patches, improved significantly with the
refinement algorithm from values around 0.2 to values in the 0.5–0.6 range. On the other
hand, the ratio of GT pixels that are covered by the mask, which ranges from 0.88 to 0.95
for the non-refined mask was slightly inferior in the refined version (0.78 to 0.87).
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4. Discussion

The applied methodology used UAVs to gather information in a restricted access
area. Techniques from several research areas were then applied in order to gain knowledge
regarding the distribution and properties of the bushes of the invasive blueberry species.
In this section, the results that are presented in Section 3 are interpreted in order to assess
the stage of the invasion in each of the mosaics.

4.1. Difficulties with Data

Blueberry plants show a characteristic red leaf colour in autumn, which make them
easily recognisable and identifiable in comparison to other classes of vegetation. Both a
simple identification and segmentation by colour were proposed and applied in one of the
first segmentation approaches. However, partly visible soil with reddish tones constrained
blueberry identification. This problem was especially critical for small blueberry bushes.
In autumn, the leaf colours can vary between red, red with a yellowish tone, and partly
black. This caused challenges for the annotations and for the deep learning algorithm,
since the number of blueberry images was already low in comparison to the other classes
and it made the colour approach not usable for this study. Further complications were
given by light conditions during image taking. When the blueberry bushes had brighter
red colours due to sun light, it was difficult to distinguish them from the ground. Bushes,
which were located in the shadows, especially the ones that had a predominately black
colour, were barely recognisable.

The analysis presented some difficulties in the calculations of the height and surface
area of the blueberry bushes. The main problems to determine bush height are occlusions,
due to nearby trees and difficulties due to dense floor covering vegetation. As the cluster
analysis shows, the high density of blueberry bushes in some areas and their proximity
increased the possibilities that the bushes were partly covered and the whole bush area
was not visible, as already pointed out by [10]. Furthermore, bushes were often located
close to trees that have canopies that can cover most of a blueberry bush. The areas
calculated for the blueberry bushes, exceeding 4–5 m2, indicated that there has to be more
than one bush, which was difficult to identify in the images, as well as for calculating the
height. Wetland regions, imaged in the orthomosaics are grassland and covered with dense
hassocks. Therefore, the soil is often not visible and the ground annotations often represent
the height of the hassocks, which resulted in values of 0 m maximum height and even more
bushes showed a value of 0 m, when the median height was calculated for smaller bushes,
especially in B4 and B6. Therefore, it is assumed that the hassocks can reduce the real
height of the bushes by 30 cm. However, the calculated height values exceeded 3 m, which
is unusual for the blueberry species that are studied here. There were errors produced
when the annotations contained parts of an overlapping tree canopy, which increased the
maximum height. The median height was resistant to outlier values. When ground areas
were annotated, the median generally decreased the height values, especially for small
bushes. Annotations of the ground need to be set carefully, since the wetland was uneven
and depressions could increase the height values of the blueberry bushes. Furthermore, the
differences between the max. height and median height can be influenced by the structure
of the bush canopy. Because of these difficulties, a correlation between the height and area
values of blueberry bushes was not considered, but a comparison of the distribution of
these values showed that the distribution was similar and the bush area was larger than
the height.

Even though these values are estimations, the applied methodology gave a good
overview over a large study area, which cannot otherwise be done by extensive field
measurements due to wetland protection regulations. Therefore, despite the difficulties,
the achieved results emphasised the following discussion of applications and the qualitative
use of the introduced methodology.
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4.2. Application in Landscape Management

The collection of high resolution images and the gathered information can help to
map and visualise the findings of this study. This information can be used in order to
easily establish management measures against the further invasion of alien species into the
wetlands, as pointed out in previous studies [31,35].

The area that was occupied by blueberry bushes was low in terms of the studied area
(covering 1 to 1.5 %), which is lower than the identified 3 to 5% in [15]. However, when
only the living vegetation was considered, the number of blueberry bushes was found to
increase from 8.2 up to 21.1%. These percentages can be considered to be very high, due
to the fact that the species is invasive and it does not belong to this sensitive ecosystem.
B6 has the largest area and it contains the smallest number of blueberry bushes, with the
smallest height and area values measured. Therefore, the invasion seems to be in an early
stage and it should be easier to manage. Nevertheless, as shown by persistent homology
and the high number of single bushes after clustering, bushes were wide spread, which
increases the area where measures against the blueberry bushes need to be considered.
The hotspot analysis and density map of B6 indicated that there are some bushes, which
are concentrated in a dense spot in the middle of the area and distributed from there
homogeneously. These findings allowed for determining that the progress of the blueberry
bushes into this site is low.

B1 has a similar distribution, while the number of blueberry bushes per hectare is
doubled in comparison to B6. The density map showed high densities in the northern part of
the orthomosaic and a gradual decrease of blueberry bushes in the southern direction, which
was confirmed by the hotspot analysis. The density of the bushes was higher than in B6,
but, as indicated by the persistent homology, the spread was greater. This indicates that the
blueberries invaded but did not reach every region of the site. Furthermore, the blueberry
bushes in B1 have the largest bush area within all studied sites. The identified bushes maturity
suggests that the blueberry species has invaded the area a long time ago. Because the density
map provided the information that the blueberry bushes are mainly distributed in the north,
there must be conditions in the south, which prevented further spread.

In comparison, B2, B3, and B4 showed a high spread in the southern direction, because
blueberry bushes of various size were found everywhere and there were higher concen-
tration areas and several spreading centres. These findings can be confirmed with the
persistent homology and density map, indicating a high progress of the invasion. The three
orthomosaics seem to have a homogeneous distribution and a gradual change to lower
numbers in the southern direction. However, the significant differences that were found
by the hotspot analysis indicate that there are conditions that influence the distribution of
the blueberry bushes, as in site B1. In addition, all three orthomosaics show an area with
a small density of bushes, which can probably be explained by the high water content in
the soil correlated with unsuitable conditions regarding plant growth. The invasion of the
blueberry species was characterised as such and far advanced for B2 to B4. Only B4 has
smaller bushes that cover a smaller area, which suggests that the invasion is less advanced
than for B2 and B3. The spread will probably increase there in the following years.

Furthermore, the distribution of the blueberry bushes can be connected to the prox-
imity of trees, especially in B1 to B3, where bushes are mainly found around pine trees
and shrubby birches, since birds use these as rest areas and mainly distribute seeds where
they rest. An exception is B4, where the trees are located next to depressions that are filled
with water, which confirms the unsuitable living conditions for blueberry species. In gen-
eral, it seems that more blueberry bushes occur when the density of the living vegetation
is higher, which can be explained by better living conditions and a better distribution
through birds.

To sum up the results and interpretations, it was found that B6 showed an early stage
of invasion. B1 shows an advanced stage of invasion with limitations in the south, while B2
to B4 show a critical, advanced stage of invasion, since the blueberry bushes can be found
in the whole study site. The methodology used here helped to assess the stages of invasion.
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Our study shows a method for helping preserve a sustainable and adaptive con-
servation of natural ecosystems. Together with further expert interpretations, a deeper
understanding of wetland ecosystems can be achieved [30]. The calculated properties,
height and area, are indices that can be used for plant growth monitoring [46], and, there-
fore, they provide useful information for the practical management of wetlands.

4.3. Contribution to Invasive Blueberry Studies in Wetlands

Previous studies were conducted to identify areas of blueberry bush invasions. The first
studies were done by [9,14] covering up to 12.5 km2 with estimations of blueberry bush
coverage areas. Another study focusing on the invasive blueberry species was presented
by [15], studying an area of 4.7 ha, which is nine times smaller than the area that was stud-
ied in our work. Reference [10] studied an area of 230 ha and characterised the blueberry
invasion. The author conducted 11 days of fieldwork in order to capture the information
regarding the cover area of blueberry bushes. The study area is less in our work with 63 ha,
but, in comparison to the manual fieldwork, image capturing only took half a day. The
pre-processing step needed the longest time, about 4 to 5 h per orthomosaic, since manual
annotations were done in the beginning of the work. Therefore, the presented workflow of
our study reduces the amount of time for gathering information significantly. The charac-
teristics that were provided by [10] are mainly focused on the blueberry bush cover area,
which were 16% of the 230 ha. Other characteristics were provided by general statements
about average heights and clustering behaviours. Our study provided height and area mea-
surements for each blueberry bush, which has not been done in previous studies. Based on
the orthomosaics, further measures, like hot spot analysis, density calculations, and spread
measures, could be performed in order to characterise the blueberry invasion in much
more detail than previous studies have shown [10,15]. Furthermore, refs. [10,15] stated a
high probability of loss of identification during fieldwork due to the density of the bushes
in certain areas near former blueberry plantations, which were therefore predominantly
investigated. In comparison to the mentioned studies, our work presents an objective
grading, a precise cover area and each bush was detected in the captured high-resolution
images. This information is essential in order to compare both the invasion and monitoring
in different areas.

4.4. Automatic Masks Generation

Deep learning techniques were used in order to assess whether DNN can be used
to automatically detect the presence of blueberry bushes. Since the manual annotation
of the blueberry bushes is the most time-consuming step of this workflow, this has the
potential to greatly extend the range of studies. The results in Section 3.2 show that the
ResNet50 network succeeded at the classification tasks associated to our problem and that
the best results were obtained by re-training the whole network. In this respect, relying on
pre-trained weights from ImageNet to solve our problem after minor re-training of the last
layer is suboptimal. A dataset must be large enough to re-train the full networks. In our
case, this meant using images that were taken from three orthomosaics covering a total of
33 hectares.

At the same time, the results also quantify how a data imbalance may result in a network
that classifies most of the patches correctly, wven if the blueberry bushes were mainly misclas-
sified. To address this problem, data augmentation as well as a loss function that took into
account the number of pixels for each class were used to influence the weights which helped
to reduce bias of the training towards the correct classification of blueberry bushes.

Wetland image classification was performed by [36,37] identifying four and six classes,
reaching an overall accuracy of 94.82% and 82.02%. Transfer learning which was only applied
in [36] showed the effectiveness of this technique for natural environment studies, when the
dataset is large enough. Interestingly, the best result of [37] was obtained when using multi-
view images. We will consider this type of images in our future work. A similar approach
to detect invasive species was used by [38]. Their approach applied deep learning with data
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augmentation and transfer learning. Their highest accuracy was 97.6%, which is slightly lower
than our overall accuracies of 98.83% and 98.10%. It is important to consider that, in [38], the
dataset was mainly composed of images of the invasive species, while, in our case, only 2.64%
of the generated patches contained the invasive species. This illustrates the effectiveness of
the techniques used in our approach to overcome the imbalance in our dataset.

The results of the automatic classification were used in order to map the invasive
species, which is an important first step, whereby a refined segmentation is essential
to effectively determine the exact location of plant invasions [35]. The deep learning
applications used classified images, and a refined mask provided the blueberry bush
locations. The refinement step was necessary in this application, since most of the blueberry
bushes are small. Hence, the refined mask offered a more precise localisation of the
blueberry bushes. Even though not all bushes were found and some soil areas were
misclassified as blueberry bushes, the refined mask could significantly reduce the time
of manual annotations and provide maps of the studied area. Increasing the amount of
blueberry data can help to optimize the classification accuracy and the localisation of
blueberry bushes. This will be considered in our future research.

The generation of automatic annotation masks, as performed here, will allow for large
scale studies with a minimum of disturbances in the studied environment. Therefore,
UAVs and image analysis provide accurate and cost-effective surveys that are needed when
studying invasive species [31]. The used techniques provided more information than that
gathered by previous field surveys in wetland areas [10,14].

4.5. Limitation and Future Works

The presented work provided a methodology to analyse invasive species from UAV
images. Nevertheless, we faced limitations regarding the data that are described in Section 4.1.
The autumn season seemed to be a good timing for image taking, but the difficulties regarding
the varying colour of the blueberry bushes should be taken into account more carefully. Image
taking could be done when the weather is cloudy and not windy, as suggested in previous
studies [47,48]. The chosen flight height of 50 m resulted in high-resolution images, which
created heavy orthomosaics. The resolution was reduced to 5–7 cm/pixel to be able to use
image processing software. This led to difficulties in identifying blueberry bushes and their
properties. For the future, different flight settings can be tested, as presented in [49,50],
especially smaller flight areas and a reduced flight height can help to increase the resolution
and precision of the results of blueberry bush properties.

The use of deep learning proved to be effective for this problem, but also challenging.
As in all artificial intelligence approaches, a sufficient number of images that represent the
variability of the desired target is necessary in order to train a supervised model that is usable
in practice (in the current studies, this amounted to images that corresponded to 33 hectares).
Furthermore, with the size of the current blueberry bush data in these images, careful use
of data augmentation as well as a dedicated balancing approach was necessary. In order to
improve the detection of blueberry bushes, a larger training dataset would likely be needed.
For instance, because blueberry bushes are often planted for blueberry production, those
fields could offer a good opportunity to collect new images.

Therefore, the detailed mapping within this study can further improve the results
of the current status of the blueberry species invasion. Repeated data collection in the
same area, as planned, will provide a year-to-year comparison, which will allow for the
monitoring and analysis of the ongoing spread in the wetlands. Changes will be easily
detectable within the wetlands and the studied blueberry species without disturbances of
vulnerable plant and animal species and habitats, as already mentioned by [30,35].

5. Conclusions

In this paper, we introduced a multi-disciplinary methodology to quantitatively
evaluate the role of plant species in ecosystems, including invasive species. The use of
UAVs makes the approach applicable, even in restricted access areas and it increases the
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total area that can be studied, greatly exceeding the range of existing field studies. We
used this methodology to gather information regarding wetland vegetation. Simple and
time-saving methods were applied to classify vegetation and provide information about
the properties of the invasive blueberry species found in our study site. The distribution
of blueberry bushes was analysed in terms of their density, clustering, and spread. The
relative importance of blueberries in the wetland was analysed (number of bushes, bush
area, and bush height). This information was transformed into location, density, and
hotspot maps to provide advanced visualization tools. Deep learning techniques were used
in order to automatically detect and segment blueberry bushes, opening the possibility to
further extend the range of similar studies.
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Abstract: Unmanned Aerial Vehicles (UAVs) are gaining preference for mapping and monitoring
ground activities, partially due to the cost efficiency and availability of lightweight high-resolution
imaging sensors. Recent advances in solar-powered High Altitude Pseudo-Satellites (HAPSs) widen
the future use of multiple UAVs of this sort for long-endurance remote sensing, from the lower
stratosphere of vast ground areas. However, to increase mission success and safety, the effect of
the wind on the platform dynamics and of the cloud coverage on the quality of the images must
be considered during mission planning. For this reason, this article presents a new planner that,
considering the weather conditions, determines the temporal hierarchical decomposition of the
tasks of several HAPSs. This planner is supported by a Multiple Objective Evolutionary Algorithm
(MOEA) that determines the best Pareto front of feasible high-level plans according to different
objectives carefully defined to consider the uncertainties imposed by the time-varying conditions
of the environment. Meanwhile, the feasibility of the plans is assured by integrating constraints
handling techniques in the MOEA. Leveraging historical weather data and realistic mission settings,
we analyze the performance of the planner for different scenarios and conclude that it is capable of
determining overall good solutions under different conditions.

Keywords: HAPS; UAV; monitoring; constrained multiple objective optimization; temporal hierar-
chical task planning

1. Introduction

Regular monitoring of land development (e.g., agricultural activities, big construction
sites, essential infrastructure, wildforest, etc.) can be done using either satellites or air-
planes. Recently, Unmanned Aerial Vehicles (UAVs) are preferred for a more cost-efficient
and flexible deployment. However, UAVs flying at low altitude may not always be a solu-
tion, as their missions depend on the possibility of obtaining a permit-to-fly, on weather
conditions that can be quite challenging at low altitude, and on the required flight range.
In the case of fixed-wing UAVs, the takeoff and landing can also be troublesome for regular
deployments or may not even be an option from surroundings with unfavorable topologies.

Solar-powered unmanned High Altitude Pseudo-Satellites (HAPSs) are considered
a viable alternative to overcome the challenges arising from using satellites with a fixed
orbit, manned airplanes, or UAVs for regular monitoring. As [1] explains, HAPSs are a
type of light-weight High Altitude Long Endurance (HALE) aerial platforms that fly at low
speed (in order to be energy efficient), in the lower stratosphere (where the airspace is quite
calm and little congested), with extremely long endurance (e.g., [2] reports a continuous
HAPSs flight of almost 26 days). Moreover, although still at its infancy, the development of
HAPSs is promising and is expected to provide multiple benefits. However, given their
light-weight build, operating HAPSs can also be challenging. Table 1 summarizes some of
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the general benefits (+) and challenges (−) of these platforms, according to the relevant
characteristics of the HAPSs that contribute to each of them.

Table 1. Relationships among characteristics of HAPSs and their benefits (+) and challenges (−).

Properties Benefits and Challenges During Operation

Light-weight material (+) Energy efficient
(−) Fragile and vulnerable to adverse weather

Limited payload (+) Energy efficient
(−) Limited onboard computation power

Fixed-wing, large wingspan (+) More surface for harvesting solar power
(–) Limited maneuverability with respect to turn rate and mid-air still-stop

High flight altitude (+) Calmer weather
(−) Takeoff and landing are time consuming

Extreme long endurance (+) Suitable for longer missions
(+) No frequent takeoff and landing necessary
(−) High operating cost

Low-power electro-motor, low air-
speed

(+) Energy efficient
(−) Wind effect cannot be neglected

HAPSs operations contain the typical space flight phases, such as planning, processing,
departure and flight operations, return and landing, refurbishment, and turnaround [3].
However, these phases present some peculiarities, due to the HAPSs characteristics. For in-
stance, and according to the analysis presented in [4] on the trajectories obtained from
a test flight conducted using the Kelleher platform in Arizona in 2018, this HAPS takes
around a day to ascend/descend to/from its operating altitude by flying within a safe
vertical corridor allocated for takeoff and landing. Subsequently, the platform stays as long
as possible in the air and at the operating altitude in the lower stratosphere.

Given these continuous and extremely long operations, increasing HAPSs autonomy
is essential. Besides, it is also useful from a safety and pragmatic point of view, as well as to
reduce manpower and human error. Finally, and according to [5], the deployment of HALE
platforms can be “cost-efficient”, since by increasing autonomy and decreasing piloting,
operation cost and be further reduced (without compromising safety and efficiency).

Hence, automated mission planning is convenient for the deployment of HAPSs
that have to perform monitoring missions. However, although the airspace at this flight
level is often relatively calm with mild winds, some rare weather conditions can pose
serious safety-critical risks to the HAPSs. Moreover, since these platforms have limited
maneuverability, reactive avoidance of risk zones may not always be possible. Therefore,
weather risks must be addressed already in the mission planner on the Ground Control
Station (GCS) to minimize the need of an onboard replanning or emergency landing.
In particular, the following weather conditions must be considered:

• Cumulonimbus clouds: Although clouds are rare in the stratosphere where HAPSs
operate, the anvil of Cumulonimbus clouds can reach high altitudes and is extremely
dangerous. Hence, it must be avoided with substantial distance (∼37 km laterally
and 1.5 km vertically) to prevent structural impairment to the platforms [6].

• Turbulences and Precipitation: These weather phenomena can be caused by strong
winds and wind shear [7]. Although rare and harmless to bigger aircraft (e.g., airlin-
ers), turbulences and precipitations can cause extreme difficulties to HAPSs navigation
and damage their structures.

• Wind field: Given the low airspeed of the HAPS, even mild wind (with wind speed
up to 5 m/s) must be considered in planning for wind drift correction.

Besides, and although HAPSs airspace is little congested (since the airliners fly below),
High-level Flight Rules (HFR) also apply to unmanned flights above Flight Level (FL)
600 [8]. This implies that the airspace regulations must also be considered in the mission
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planner (in order to avoid collisions with other stratospheric aircrafts), that it is recom-
mendable to systematically organize and dynamically allocate the airspace [9], and that
the flight plans must be communicated to the authorities before the execution of each mis-
sion. However, since HAPSs are long-endurance platforms intended to remain airborne,
planning must also be performed during flight, before each monitoring mission starts.

Taking into account the previous considerations, this work focuses on increasing the
autonomy and efficiency in mission planning that takes place on the GCS during flight
operations but before the execution of the mission-related tasks. Our main goal is to
optimize the mission success rate of monitoring the requested sites (i.e., to improve the
chances of providing images of the sites with sufficient coverage and at the requested time
windows), while reducing the risk of replanning by considering, at the planning phase,
the predicted time-varying environment and the platform constraints. Furthermore, we
assume the presence of one or several human operators in the mission-planning loop.
Although their decision-making process is not considered in this work, our mission planner
is developed to be part of a decision-support system that is responsible for automatically
generating a group of feasible optimal plans and for presenting them as “suggestions” to
the operators, who have to perform the selection of the final plan.

The work presented in this paper is closely related with the approach described in [10],
which presented the preliminary version of our planner. The current version is improved,
by (1) adopting a Multi-Objective Evolutionary Algorithm (MOEA) for constrained prob-
lems to optimize the mission plans and (2) by considering the uncertainty associated to the
wind variability in the constraints. Besides, this paper presents new scenarios and analyzes
the results of the new planner over a wider set of circumstances. Finally, it is worth noting
that the relationships of other works with ours will be discussed later in Section 6, after the
readers are acquainted with the main characteristics of our planner described through
Sections 3 and 4.

The organization of this work is the following. Section 2 presents the problem at an
abstract level and describes its main elements. Section 3 provides a more formal description
of the problem, including the objective functions as well as the different components that
conform with the constraint criteria. Subsequently, the implementation of the MOEA that
supports the optimization process of the planner is described in Section 4, providing details
on the encoding of the plan, on the hierarchical task decomposition process and on the
particularities of our MOEA. Finally, results are illustrated and analyzed in Section 5, while
a discussion on related work is provided in Section 6, followed by the conclusion and
future work drawn in Section 7.

2. Problem Description

This work focuses on the task planning for multiple HAPSs, equipped with electro-
optical (EO) mission cameras and contracted to monitor repeatedly areas on the ground at
specific time windows.

This section presents the main elements of the problem, describing the monitoring
scenario that will be considered in this paper, introducing how the mission plan is de-
fined, characterizing the payload of the HAPSs, reporting the mission requirements and
constraints, and finally, explaining how the weather conditions to be considered at the
planning phase are extracted.

2.1. Monitoring Scenarios

The operation is assumed to take place in an organized airspace consisting of different
types of dynamically allocated operation areas, in order to reduce congestion in the lower
stratosphere. In particular, and as shown in Figure 1, the HAPSs will be able to operate
in Mission Areas (MAs, represented in blue), Corridors (Cs, in gray), and Waiting Areas
(WAs, in yellow).
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Figure 1. Mission scenario (plotted on © OpenStreetMap) for monitoring multiple Locations Of Inter-
est (LOI#) on the ground. The operation airspace is organized using dynamically allocated mission
elements of Corridors (C#), Waiting Areas (WA#), and Mission Areas (MA#) that encompass LOIs.

Besides, the Locations of Interest (LOIs, in green) are the projection of the ground
areas to be monitored within the time windows and at the frequency requested by the
clients. LOIs of the same client with the same set of mission requirements are grouped in a
MA, which defines the airspace (at the operating altitude for the HAPSs), allocated to allow
a HAPS to monitor the encompassed group of LOIs. Additionally, the WAs are airspace
made available for the HAPSs to loiter freely (for example upon sunset) or to exploit as a
“corridor” to reach another connected MA. HAPSs are allowed to move between MAs only
through the designated Cs or through WAs. This also implies that MAs are not to be used
as “corridors”, i.e., a HAPS entering a MA has to monitor its corresponding LOIs before
departing through a connected corridor.

Appendix A includes further details of the HAPSs considered in this work and of
the mission scenario represented in Figure 1. In particular, the numerical information
on the model of the HAPSs is adapted from [11] and summarized in Table A1, while the
dimensions of the mission elements are presented in Table A2.

2.2. Hierarchical Task Plan

Execution of tasks for multiple HAPSs can be structured conveniently in a hierarchical
manner, since the order of task execution depends substantially on the organisation of the
airspace and on airspace-related constraints and requirements, which can be expressed at
different levels of spatial resolution. In particular, we consider the following levels, ordered
from the highest to the lowest level, according to the spatial resolution:

1. MA level, where the plans are the sequences of mission areas (MA#) and waiting
areas (WA#) that each HAPS operates.

2. LOI level, where the plans are sequences of tasks to be performed in the mission
elements expressed at one higher abstraction level (i.e., MA# and WA#). Examples of
these tasks are flying through a WA (flyWA#) and monitoring a LOI in a given MA
(monitorLOI#∈MA#).

3. Waypoint (WP) level, where the plans consist of either executing a scan pattern (scan)
over a LOI or flying to sequences of waypoint, which are: fly to the closest entrance of
a given corridor (toC#), cross and fly to the end location of the given corridor (crossC#),
and fly to the closest vertex of the LOI that has to be monitored (NPL).
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Figure 2 illustrates the representation of a hierarchical task plan considered in this
work. In particular, on the left side, Figure 2a shows, over a portion of the mission scenario,
the execution of the task plan for a HAPS that, after the first task in WA1, continues
monitoring first the unique LOI in MA6 and afterwards the two LOIs in MA7. This
figure also shows the waypoints followed by the HAPS to move within MA1 and MA7.
On the right side, Figure 2b shows the hierarchical structure of the task plan of the HAPS
represented in Figure 2a and of a second HAPS (not depicted in Figure 2a). That is, it
shows how the plans that govern the two HAPS to monitor the LOIs within the horizon
[Tstart, Tend] are initially decomposed into the tasks expressed at the MA-level (represented
at the two top timelines, one for each HAPS), followed by the tasks expressed at the LOI-
level (represented at the two intermediate timelines) and finally by the actions presented at
the WP-level (shown at the two bottom-most timelines). At the lowest level, vertical color
bars without text annotation represent instantaneous tasks, for example, to turn on or off
the mission camera.

(a) Tasks execution viewed from
different spatial resolutions of

the airspace. (b) Task execution organized in a hierarchical structure.

Figure 2. Hierarchical task execution for HAPS.

2.3. Mission Payload

The HAPSs are equipped with light-weight electro-optical mission cameras. The ex-
ample camera considered in this work is inspired by the one described by Delauré et al.
in [12], specially designed for unmanned HALE platforms. In particular, it is a light-weight
(∼2.6 kg) and energy-efficient (<50 W) camera with two custom CMOS image sensors and
with resistance to low pressure (down to 60 mbar) and to a wide range of temperature
(from −70 °C to 60 °C). Its pixel counts for the width wI and height hI of the image are
1200 px × 10,000 px. With a ground sampling distance of 30 cm, an image taken from an
altitude of 18 km at Nadir position records an area of 360 m × 3000 m of the ground.

With this mission camera and a gimbal that performs a cross-track sweep scan within
10 s from −45◦ to 45◦, a HAPS can record images covering a total width of more than
30 km, while advancing forward. Figure 2a illustrates the scanned footprint, which is a
superposition of images taken during the scan. Even in the presence of a tailwind of 5 m/s,
the HAPS, flying at the airspeed of 30 m/s (that is considered in Table A1) will not advance
more than 360 m within a cross-track sweep, assuring some overlapping of the images
between two periodic sweeps. Therefore, and as Figure 2a shows, we adopt a lawn mower
scan pattern to monitor each LOI, with the distance between two consecutive tracks set at
30 km.
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Finally, the cloud layers between the HAPS and the ground must be considered during
the monitoring scans, as they reduce the coverage of the area recorded with the EO mission
camera. For this reason, if the stitched image of any one of the LOIs of a MA has a coverage
of the ground lower than requested, the monitoring of that MA will not be rewarded by
the client.

2.4. Mission Requirements

The HAPS team is rewarded by the contracting client if the ensemble of all the
monitoring tasks performed on the LOIs within a MA is considered “successful”. Therefore,
we consider this ensemble of tasks a “mission” unit, which is rewarded according to the
amount agreed upon by each client.

In particular, monitoring a mission unit is successful if the following mission require-
ments (MRs) are fulfilled:

• MR1: The recorded image of each LOI has a coverage of the LOI that is bigger than
the minimum required coverage for its corresponding MA.

• MR2: The captured images of each LOI are within the time windows requested by
the client for each MA.

• MR3: The time-lapse between two consecutive successful visits to the MA is larger
than the imposed minimum inter-visit time-lapse for the MA.

• MR4: The MA has not been visited more frequently per day than required by
the client.

The coverage percentage and reward obtained for monitoring successfully each MA
of the scenario presented in Figure 1 is presented in Table A3 of Appendix A. Besides,
the rewarding time windows for each MA are directly depicted together with the mission
plans obtained by our planner, which are presented in Figures 10–14 of Section 5, since
they are required to observe if the MA can be successfully or unsuccessfully monitored.
Finally, in the scenarios analyzed in this paper, the time-lapse between the start times of
two consecutive successful visits is set to one hour and each MA must not be visited more
than three times a day.

2.5. Mission Constraints

While mission requirements decide if a mission is successful, mission constraints
(MCs) dictate the “feasibility” of a plan and are defined in the interest of operational safety
by enforcing airspace regulation and measures for risk avoidance.

In particular, a plan is infeasible (i.e., it cannot be executed) if any of the following
constraints is violated:

• MC1: any mission element that the HAPS is operating in has a wind field with a wind
magnitude smaller than 5 m/s.

• MC2: the MA or WA that the HAPS is operating in (e.g., a MA, a WA, or a C) has an
obstacle occlusion (related with zones of adverse weather) smaller than 30%.

• MC3: Only one HAPS can operate in a MA (i.e., the simultaneous coexisting of HAPSs
in a MA is forbidden).

• MC4: Consecutive MAs or WAs have to be connected according to the mission
scenario.

• MC5: LOIs are monitored exactly once at each visit to the MA.
• MC6: A MA cannot be used as a corridor, i.e., HAPS cannot pass the MA without

monitoring all its encompassed LOIs.

2.6. Weather Conditions

Weather conditions also affect the HAPSs and can make a given mission plan un-
successful and/or infeasible. To take them into account, high-resolution global weather
forecast based on numerical weather prediction models can be used, because this approach
is beneficial compared to wide area weather forecast to foresee risk zones and to consider
wind effects.
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In particular, for this study we use the COSMO-D2 (COnsortium for Small-scale
MOdeling) numerical weather data from the German National Meteorological Service
(Deutscher Wetterdienst, DWD), which are updated every couple of hours to provide
information on the cloud coverage and on the wind vector field with a horizontal resolution
of 2.2 km and a temporal resolution of one hour [13].

In order to argue for availability of weather data that fit the underlying framework,
we also list here a set of alternative meteorological services that can be used in the mission
planner described in this paper, which also provide numerical global weather data such as
the Global Forecast System (GFS, Ref. [14]) and the European Center for Medium-Range
Weather Forecast (ECMWF, Ref. [15]).

3. Formal Problem Statement

This section defines the problem formally, detailing the variables used to mathemati-
cally define a hierarchical plan, as well as the objective and the constraint functions used to
evaluate them.

To help the reader understand the relationship of the elements presented in this
section and the previous sections, Figure 3 shows how the MRs and MCs described in
Sections 2.4 and 2.5 are mapped into the three Objective Functions (OFrew, OFeff, OFdiv)
and the three constraint criteria (ϕsaf, ϕcoex, ϕcon) that are formally stated in this section.
Furthermore, Figure 3 also illustrates the role of the operators as human decision makers,
i.e., how they select a plan (πMA

k , πLOI
k , πWP

k ) among the feasible solution plans that form
part of the first Pareto front determined by the planner that will be presented in Section 4.

Figure 3. Relationships among the mission requirements (MRs) and mission constraints (MCs)
described in Section 2 and the objective functions (OF) and constraints (ϕ) presented in Section 3.

3.1. Formal Definition of the Hierarchical Plan

The goal of the planning problem is to find a hierarchically structured plan such as
the one depicted in Figure 2b that entails the sequence of tasks to be performed by each
HAPS, as well as their expected initial time instant and duration.

Formally, the solution is a set of sequences of time-stamped tasks for each hierarchical
level and HAPS. More in detail:

• At the MA level, the plan can be represented as the ordered list of tasks πMA
h displayed

in Equation (1), where oMA
h,i is the i-th mission task (i.e., a MA# or WA# of the mission
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scenario) on the list that will be performed by HAPS h, and tMA,start
h,i and δMA

h,i are the
start time and the duration of the i − th task of HAPS h.

πMA
h =< oMA

h,1 (tMA,start
h,1 , δMA

h,1 ), oMA
h,2 (tMA,start

h,2 , δMA
h,2 ), oMA

h,3 (tMA,start
h,3 , δMA

h,3 ), · · · > (1)

Under this formulation, the high level mission plan of the first HAPS displayed in
Figure 2b will be represented as πMA

1 =< WA1(tMA,start
1,1 , δMA

1,1 ), MA6(tMA,start
1,2 , δMA

1,2 ),

MA7(tMA,start
1,3 , δMA

1,3 )>.
• At the LOI-level, the plan πLOI

h can be represented with Equation (2), where oLOI
h,i is the

i-th mission task (i.e., flyWA# or monitorLOI#∈MA#) that will be performed by HAPS h,
and tLOI,start

h,i and δLOI
h,i are the start time and duration of the i − th task of HAPS h.

πLOI
h =< oLOI

h,1 (tLOI,start
h,1 , δLOI

h,1 ), oLOI
h,2 (tLOI,start

h,2 , δLOI
h,2 ), oLOI

h,3 (tLOI,start
h,3 , δLOI

h,3 ), · · · > (2)

Under this formulation, the middle level mission plan of the first HAPS displayed
in Figure 2b will be represented as πLOI

1 =<flyWA1(tLOI,start
1,1 , δLOI

1,1 ), monitorLOI1∈MA6

(tLOI,start
1,2 , δLOI

1,2 ), monitorLOI1∈MA7(tLOI,start
1,3 , δLOI

1,3 ), monitorLOI2∈MA7(tLOI,start
1,4 , δLOI

1,4 )>.

Moreover, we can relate the time variables of the MA and LOI level (e.g., tLOI,start
1,1 =

tMA,start
1,1 , tLOI,start

1,2 = tMA,start
1,2 , tLOI,start

1,3 = tMA,start
1,3 , or tLOI,start

1,4 = tMA,start
1,3 + δLOI

1,3 ) to
signify the decomposition of the higher level task into lower-level tasks.

• A similar representation, where oWP
h,i are the actions that can be performed at the lower

mission level, and tWP,start
h,i and δWP

h,i are its corresponding start time and duration,
applies to the WP-level.

• Finally, we extend the previous notations as follows:

– πMA, πLOI and πWP represent the plans of the set of H HAPSs (i.e., π∗ =<
π∗

1 , π∗
2 , . . . , π∗

H >, where * stands either for MA, LOI, or WP).

– π̃MA
h,i:j , π̃LOI

h,i:j and π̃WP
h,i:j represent the partial plans between the i-th and j-th task

(i.e., π̃∗
h,i:j =< o∗h,i(t

∗,start
h,i , δ∗h,i), o∗h,i+1(t

∗,start
h,i+1 , δ∗h,i+1), . . . , o∗h,j(t

∗,start
h,j , δ∗h,j) >, where

* stands either for MA, LOI, or WP.

At this point, it is necessary to highlight that the time-dependent variables (tMA,start
h,i , δMA

h,i ,

tLOI,start
h,i , δLOI

h,i , tWP,start
h,i , δWP

h,i ) are probabilistic in our problem, except for the start time of the

mission t0 = tMA,start
h,1 = tLOI,start

h,1 = tWP,start
h,1 . The underlying reason of the probabilistic

nature of these variables is that, at the lowest spatial resolution, the duration of each task
can only be estimated, since neither the trajectory of the HAPS nor the exact wind vector
are computed or considered yet.

For this reason, we model the duration δWP
h,i of a task at the WP level as a random

variable uniformly distributed over:

[δWP,min
h,i , δWP,max

h,i ] = [l(oWP
h,i )/(|va|+ max(|vw|)), l(oWP

h,i )/(|va| − max(|vw|)], (3)

where l(oWP
h,i ) is the total linear distance to travel between the waypoints associated to

the task oWP
h,i , |va| is the cruising airspeed of the HAPS (see Table A1), and max(|vw|) is

the maximum wind magnitude (which is assumed to be 5 m/s in this study to ensure
that MC1 is not violated). Hence, when we consider |va|+ max(|vw|) we assume that the
HAPS is flying with tailwind, while by considering |va| − max(|vw|), we assume that the
HAPS is flying with headwind. Note that since l(oWP

h,i ) can only be estimated upon the
decomposition down to the WP level, our hierarchical planning approach searches for a
plan by adopting a downward-forward decomposition approach, which will be explained
in a later section in Algorithm 1.

Assuming that lingering between the tasks at any level is forbidden, task oWP
h,i ter-

minates at tWP,end
h,i = t0 + Σi

j=1δWP
h,j , where t0 is the deterministic start time of the plan,
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while Σi
j=1δWP

h,j follows the distribution of the sum of i nonidentically distributed uniform

random variables δWP
h,j . Therefore, the probability density function f (tWP,end

h,i ) of completing
the i − th WP-level task of HAPS h at a given time can be calculated with the following
expression, as derived in [16]:

f (tWP,end
h,i ) = f (tWP,end

h,i − t0) = f

(
i

∑
j=1

δWP
h,j

)
=

∑
�εk∈V i

(g(�εk, δWP
h,1:i))

i−1 ·sign(g(�εk, δWP
h,1:i))

i
∏
j=1

εj

(i − 1) ! 2i+1
i

∏
j=1

uδWP
h,j

(4)

where V i comprises the set with all 2i vectors of signs�εk = (εk
1, · · · , εk

i ) ∈ {−1, 1}i, uδWP
h,i

=

(δWP,max
h,i − δWP,min

h,i )/2, i! is the factorial of i, and g(�εk, δWP
h,1:i) = ∑i

j=1 δWP
h,j + ∑i

j=1(εjuδWP
h,j

−
mδWP

h,j
), with mδWP

h,i
being the median value of [δWP,min

h,i , δWP,max
h,i ].

The distribution of the higher levels (LOI and MA) time-dependent random vari-
ables can be modelled, given the hierarchical decomposition of the plan and the lack of
lingering between tasks, by considering the distribution of the lowest level (WP-level)
time-dependent random variables, i.e.,

f (tMA,end
h,i ) = f (tLOI,end

h,j ), (5)

f (tLOI,end
h,j ) = f (tWP,end

h,k ), (6)

where tMA,end
h,i is the end time of the i − th task of the MA level, tLOI,end

h,j is the ending time
of the j − th task of the LOI level that terminates when the i − th task of the MA level
ends, and tWP,end

h,k is the ending time of the k − th task of the WP level that terminates when
the i − th task of the MA level and the j − th task of the LOI level end. In other words,
the distributions of the higher levels are associated to some of the distributions of the lower
ones. Finally, it is worth noting that the estimated end time t∗,end

h,i of a task (o∗h,i) at any level
∗ is the estimated start time t∗,start

h,i+1 of the following task (o∗h,i+1) of the same level *.
To understand better the implications of the previous distributions, we represent in

Figure 4 the results of Equation (4) when considering up to five δWP
h,i random variables

with the median mδWP
h,i

and half length uδWP
h,i

provided at the figure caption. We can observe

how the sum of more than two uniform distributed random variables assimilates towards
a Gaussian distribution, while the variance grows with the number of random variables
involved in the sum. This implies that the distribution becomes more wide-spread, and in
our case, that the knowledge on the start or end time of a task further in the future is
more “uncertain” than the knowledge on the start or end time of a task in the near future.
Besides, it is possible to calculate the minimum and maximum values of t∗,end

h,i , as the
density functions calculated with Equation (4) have a limited support. Finally, it is worth
noting that a correct estimation of the probability distribution of the sum of tasks durations
implies the correct estimation of the start or end time of the tasks at each level. This is
essential, especially at the MA-level, since some of the mission requirements and mission
constraints stated in Sections 2.4 and 2.5 depend on the time-varying weather conditions
and on the time-dependent requirements, associated to the mission time windows used to
decide if the high-level tasks can be rewarded.
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Figure 4. Probability distribution of the sum of durations of tasks, which are uniform distributed
random variables of (mδWP

h,i
, uδWP

h,i
): (3132, 791), (4368, 1012), (2876, 698), (3856, 971), (4112, 1263).

3.2. Objectives

The aim of this work is to present a multi-HAPS planner that optimizes the HAPSs
tasks plans, whose joint quality is evaluated by the three objective functions defined in the
following subsections, each contributing to a different aspect of the overall operational per-
formance.

3.2.1. Expected Cumulative Rewards per Hour

This objective focuses on the reward the team of HAPS can gain with the generated
plan. Since the success of a task depends on its execution time (i.e., on its start and end
time), which can only be probabilistically estimated using Equation (4), the reward can
only be estimated with an expected cumulative reward function.

To do it, we exploit the Time-Dependent Markov Decision Process (TiMDP) of Boyan
and Littman [17] to calculate the expected cumulative reward, obtained when applying at
state sh,i (which in our case contains, among others, the current location of the HAPS) and
at time ti the remaining plan π̃MA

h,i:n under the weather wti forecasted for ti:

E(R|sh,i, ti , π̃MA
h,i:n, wti ) = Σμ∈{succ,fail}L(μ|sh,i, ti, oMA

h,i , wti )·
· ∫

R
f (tMA,end

h,i = ti+1) · [R(μ, oMA
h,i , ti+1) + E(R|sh,i+1, ti+1, π̃MA

h,i+1:n, wti+1)]dti+1,
(7)

where L(μ|sh,i, ti, oMA
h,i , wti ) is the likelihood that action oMA

h,i , performed at time ti at state sh,i

is successful (μ = succ) or not (μ = fail) under the weather conditions wti at ti; f (tMA,end
h,i =

ti+1) is the probability density function of ending oMA
h,i at ti+1, and R(μ, oMA

h,i , ti+1) is the
immediate reward obtained when performing oMA

h,i at time ti+1 successfully (μ = succ) or
unsuccessfully (μ = fail). In the latter case, R(μ = fail, oMA

h,i , ti+1) = 0.
Although Equation (7) was originally designed to devise a strategy aiming at opti-

mizing the success rate of arriving in time at a destination using different combinations
of means of transport, we do not seek to use TiMDP this way. Rather, we exploit the
equation as a model for computing the expected cumulative reward of a complete plan
E(R|sh,0, t0, πMA

h , wt0), which can be done using a backward iteration, since the immediate
reward R(μ, oMA

h,i , ti+1) is piecewise constant with respect to ti+1. Moreover, due to the
piecewise constant weather data, E(R|sh,i, ti, π̃MA

h,i:n, wti ) is piecewise constant too. Therefore,
the integration can be performed in piecewise time intervals that are generated using the
minimum and maximum of the start time of a task (according to f (tMA,end

h,i ), as well as the
minimum and maximum bounding times of the piecewise constant coverage.

Exploiting the formulation in Equation (7) for computing the expected cumulative
reward also leverages the following:
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• It takes into account the immediate reward R(μ, oMA
h,i , ti+1) obtained after monitoring

the selected mission area at end time ti+1, as well as the reward of the remaining
action plan π̃MA

h,i+1:n.
• It considers the likelihood of performing the task successfully and unsuccessfully,

depending on the weather conditions, or more specifically, on the cloud coverage,
which is related to the mission requirements (i.e., MR1) listed in Section 2.4.

• It exploits the weighting imposed by f (tMA,end
h,i = ti+1) at the given times ti+1. This is

helpful since the weather forecast is constantly updated and a replanning can occur in
the future. Therefore, while it is important to “look forward” in the plan to optimize it
for a longer time horizon, we allocate more weighting according to immediacy, since
a replanning could be triggered to improve the plan quality in the future.

Finally, since multiple HAPS can be involved and the start time of the plan for each
HAPS can be different, we accumulate the expected reward of each HAPS to obtain the
Objective Function (OF) of the expected cumulative reward OFrew:

OFrew(π
MA) = ΣhE(R|sh,0, th,0, πMA

h , wt0). (8)

3.2.2. Effort

Although the mission rewards are important, they are not the only objective to consider.
Global client satisfaction must be taken into account too. That is, to keep the clientele
satisfied, the HAPS team is required to perform monitoring tasks for as much of their time
in the air as possible. Therefore, we consider the objective function of effort, which is the
percentage of time spent on monitoring the LOIs:

OFeff(π
LOI) =

ΣhΣlE(δLOI
h,l ) ∗ isMonitor(oLOI

h,l )

Tmax
h − th,0

=
ΣhΣlmδLOI

h,l
∗ isMonitor(oLOI

h,l )

Tmax
h − th,0

, (9)

where Tmax
h is the end time of the plan horizon set for HAPS h, E(δLOI

h,l ) is the expected
duration of the monitoring task for oLOI

h,l which, given the symmetric distribution of the
random variable, is the median duration mδLOI

h,l
, and isMonitor(oLOI

h,l ) returns 1 if the action

oLOI
h,l consists of monitoring a LOI (i.e., if oLOI

h,l equals monitorLOI#∈MA#) and 0 otherwise.
This objective function contributes to preventing the HAPS from trying too hard to

reach more rewarding MAs by crossing multiple corridors and WAs.

3.2.3. Diversity

In the presence of missions that are much more rewarding than others, the plan
computation can be extremely unfavorable for less rewarding missions. This has a long-
term negative effect to the HAPS team in regard of “customer service”. In order to satisfy
a more diverse clientele pool, the diversity objective function OFdiv is devised using the
Simpson index [18]:

OFdiv(π
MA) = 1 − ΣNMA

c=1 nc(nc − 1)
N(N − 1)

, (10)

where NMA is the total number of MAs (or clients) considered in the mission scenario, nc
is the number of occurrences of MAc in the task plan, and N is the total number of MAs
within the task plan. Note that the function only considers what happens with the mission
areas, ignoring what is occurring in the waiting areas.

Optimizing this objective reduces the probability of drawing the same MA when two
of them are drawn without replacement from a given plan, preventing therefore the bias
towards rewarding missions.
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3.3. Constraints

While the missions’ requirements presented in Section 2.4 are considered in the
evaluation of the objective function OFrew, the mission constraints presented in Section 2.5
are evaluated with different constraint criteria.

Besides, while MC5 and MC6 are directly encoded in the solutions manipulated by the
EA-based planner described in Section 4.1 (and hence, they are never violated), the remain-
ing criteria (MC1–MC4) are evaluated with the functions described in Sections 3.3.1–3.3.3.

Finally, it is worth noting that our constraint functions consider the number of times
that each criterion is violated. Detailed information of this way of proceeding is presented
in Section 3.3.4.

3.3.1. Safety

The safety constraint criterion comprises MC1 and MC2 and is violated if the MA#
is a risk zone (due either to substantial obstacle occlusion or strong wind) while HAPS h
is operating in it. Since the position of a HAPS is probabilistic due to the uncertainty in
the task durations (as Equation (4) states), the constraint function associated to the safety
violation ϕsaf(π

MA) is incremented if the probability of operating any HAPS h in a MA
representing a risk zone is greater than a predefined threshold psaf:

P
([

tMA,start
h,i , tMA,end

h,i

]
∩ Trisk(oMA

h,i ) �= ∅
)
> psaf, (11)

where tMA,start
h,i and tMA,end

h,i are the start and end time of HAPS h performing the monitoring
task oMA

h,i , while Trisk(oMA
h,i = MA#) is the set of time windows where the MA# associated

to oMA
h,i represents a risk zone. Alternatively, we can compute the same ϕsaf(π

MA) by
incrementing its value if

∃t ∈ [min(tMA,start
h,i ), max(tMA,end

h,i )] ∩ Trisk(oMA
h,i ), P(posh(t) ∈ oMA

h,i ) > psaf, (12)

where t belongs to the intersection of Trisk(oMA
h,i ) with the maximum time span that the

HAPS could be performing task oMA
h,i , posh(t) is the position of HAPS h at time t, and

posh(t) ∈ oMA
h,i indicates that HAPS h is positioned within the MA in which the monitoring

task oMA
h,i takes place. The probability P(posh(t) ∈ oMA

h,m ) in Equation (12) can be further
simplified as Equation (13) states, by taking advantage, in the second last step, of the fact

that P(t < tMA,start
h,i ∩ t > tMA,end

h,i ) = P(t < tMA,start
h,i ∩ t > tMA,start

h,i + δMA
h,i )

δMA
h,i >0
= 0.

P(posh(t) ∈ oMA
h,i ) =

= P(tMA,start
h,i < t < tMA,end

h,i )

= P(t > tMA,start
h,i ) + P(t < tMA,end

h,i )− P(t > tMA,start
h,i ∪ t < tMA,end

h,i )

= P(t > tMA,start
h,i ) + [1 − P(t > tMA,end

h,i )]− [1 − P(t < tMA,start
h,i ∩ t > tMA,end

h,i )]

= P(t > tMA,start
h,i )− P(t > tMA,end

h,i )

=

⎧⎪⎪⎨
⎪⎪⎩

0, if t < min(tMA,start
h,i )∫ t

min(tMA,start
h,i )

f (tMA,start
h,i = t)dt, if t < min(tMA,end

h,i )∫ t
min(tMA,start

h,i )
f (tMA,start

h,i = t)dt − ∫ t
min(tMA,end

h,i )
f (tMA,end

h,i = t)dt, otherwise.

(13)

3.3.2. Coexistence

MC3 is violated and its corresponding violation index ϕcoex(πMA) is incremented by
1, if the probability of two HAPSs (h and h′, with h �= h′) operating at the same time t in the
same MA# (i.e., oMA

h,i = oMA
h′ ,j = MA#) is greater than an imposed threshold pcoex. That is, if

∃t ∈ [min(tMA,start
h,i ), max(tMA,end

h,i )], P(posh(t) ∈ oMA
h,i ∩ posh′(t) ∈ oMA

h′ ,j ) > pcoex. (14)
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The probability in the previous expression can be expressed as the product of two
probabilities, each of them computable using Equation (13):

P(posh(t) ∈ oMA
h,i ∩ posh′(t) ∈ oMA

h′ ,j ) = P(posh(t) ∈ oMA
h,i ) · P(posh′(t) ∈ oMA

h′ ,j ). (15)

To illustrate how the coexistence constraint is evaluated, Figure 5 shows the prob-
abilistic evaluation of the existence of two HAPSs in MA6 for a particular πMA. Given
the probability density functions of the start and end time of each HAPS in MA6, ob-
tained with Equations (4) and (5), and represented in Figure 5a,b, the probabilities of
the presence of each HAPS in MA6 (i.e., P(posh(t) ∈ oMA

h,i ) and P(posh′(t) ∈ oMA
h′ ,j ) with

oMA
h,i = oMA

h′ ,j = MA6) are estimated with Equation (13) and displayed in Figure 5c. Besides,
for clarity of the representation, the time limits of Figure 5c are marked with vertical dashed
lines in Figure 5a,b. The constraint function ϕcoex(πMA) associated to the coexistence of
both HAPSs in the MA will be incremented if the product of the two probabilities repre-
sented in Figure 5c (i.e., P(posh(t) ∈ oMA

h,i ) · P(posh′(t) ∈ oMA
h′ ,j )) exceeds the threshold pcoex.

(a) Probability density function of start
(dark blue) and end (light blue) time of
HAPS1 in MA6 (i.e., oMA

1,i = MA6)

(b) Probability density function of start
(dark orange) and end (light orange) time
of HAPS2 in MA6 (i.e., oMA

2,i = MA6)

(c) Probability of HAPS1 (blue) and of
HAPS2 (orange) operating in MA6 (i.e.,
oMA

1,i = oMA
2,i = MA6) between 15,200 s and

17,900 s

Figure 5. Probabilistic evaluation of the start and end time of the operation of HAPS in a MA and
probability of their operation in the MA within the duration marked by the vertical dash lines.

3.3.3. Connection

This constraint considers the connectivity of mission elements of a plan represented at
the MA-level. The mission elements (i.e., either MA# or WA#) are connected if and only if
there is a corridor connecting two consecutive elements in the MA-level plan. Each lack of
connection increments the constraint criterion ϕcon(πMA) by 1.
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3.3.4. Overall Constraint Violation

As each constraint violation increments ϕcriteria(π
MA) of its corresponding criteria;

a non-null ϕcriteria(π
MA) implies the infeasibility of the plan. For that reason, the overall

constraint function of a given plan πMA is simply the sum of all the constraint criteria:

ϕ(πMA) = ϕsaf(π
MA) + ϕcoex(π

MA) + ϕcon(π
MA). (16)

Finally, note that in order to determine during the evaluation of ϕsaf(π
MA) and

ϕcoex(πMA) if there is a t where Equations (12) and (14) hold, the time variable t is dis-
cretized, within the corresponding intervals given in those equations, into equally spaced
time instances.

4. Implementation of a GA-Guided Hierarchical Task Planner

The purpose of the planner presented in this section is to perform the task planning
for a group of HAPSs that maximize the objective functions presented in Section 3.2 (i.e.,
reward, effort, and diversity), while ensuring that it is feasible according to the constraint
criteria introduced in Section 3.3 (i.e., safety, coexistence, and connection).

To achieve it, we use the Genetic Algorithm (GA) based planner described in Section 4.3
that manipulates the codification of the solutions presented in Section 4.1, which encodes
the sequence of MA-level tasks that determines the (sub)optimal temporal hierarchical
decomposition of tasks governed by the approach presented in Section 4.2.

4.1. Plan Codification

The solutions that the planner must provide are hierarchical plans (πMA, πLOI, πWP)
to be presented as suggestions to the HAPS operator during the monitoring mission. Each
plan π∗ in the hierarchy, as its formal description in Section 3.1 shows, consists of a list of
tasks and their start times and durations. However, as the latter are affected by the weather
conditions, we decide to code only the tasks in the optimizer and estimate their timing,
when required, in the evaluation of the objective and constraint functions.

Besides, a hierarchical plan decomposes the tasks at a given level into a set of tasks
of a lower level, until the set of primitive tasks, or rather “actions”, are obtained. In our
case, the decomposition into tasks at the intermediate (LOI) level and at the lower (WP)
level are given by a fixed set of rules. In particular, a oMA

h,i = WA# task is directly converted
into oLOI

h,j =flyWA#, while a oMA
h,i = MA# is decomposed into the sequence of oLOI

h,j =

monitorLOI#∈MA# tasks that implies the sequential monitoring of all the LOIs (without
revisit) in the MA before departing. As the number of possible sequences of LOIs in a MA
is the number of their permutations, we fix the order in which the LOIs are visited, starting
with the LOI closest to the HAPS entry point in the MA and following the order that
minimizes the distance of the HAPS within the MA. This way of proceeding ensures the
shortest travel distance within a MA, simplifies the optimization problem and accelerates
the computation of the plans, as we can precalculate all the orders for a given MA, since
we know beforehand all its possible entry and exit points. Besides, it is justified by the fact
that the weather conditions do not vary much within a MA. Finally, the decomposition of
LOI actions in waypoint actions is usually straightforward and the only possible choices
are also fixed. As Figure 2a depicts, this can be done by connecting the entry and exit
points of a corridor, the entry point at a MA to the start point of the scan, followed by the
points that mark the start and end of a scan track and finally, the exit point of the MA.

Taking into account the previous ideas, the remaining effort to determine the (sub)optimal
solution lies in the search for the optimal lists of high level tasks (i.e., MA# and WA#) that
each HAPS must perform. As the number of possible WA and MA is finite, the elements
of the lists can also be encoded with a finite alphabet of labels. Hence, for the GA-based
planner, the solution will be encoded as an array of as many elements as HAPSs, where
each element contains the list of the high level tasks (MA# and WA#) of each HAPS. Finally,
to distinguish this encoding from the corresponding hierarchical plan (πMA, πLOI, πWP),
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we represent solk as the k-th possible solution of the planner, solk[h] as the part of the
solutions for HAPS h, and solk[h][i] as the i − th task at the MA-level (i.e., MA# or WA#) to
be performed by HAPS h of the k-th solution of the planner.

The next section explains how to obtain a hierarchical plan (πMA
h , πLOI

h , πWP
h ) from a

given solk[h].

4.2. Temporal Hierarchical Task Decomposition

Since the coding of the solutions manipulated by the GA that supports the search of
(sub)optimal solutions in our planner is only a sequence of MA# and WA# actions, and the
objective and constraint functions used to evaluate them require a hierarchical plan and
the estimated end time of the tasks at different levels, in this section we detail, with the
help of the pseudo-code presented in Algorithm 1, how the conversion from solk[h] to πh
is carried out.

The algorithm inputs are the solution plan solk[h] that encodes only the tasks at the
MA level and the start mission time t0

h for HAPS h, and its output is the hierarchical plan
πh = (πMA

h , πLOI
h , πWP

h ). To start with, Line 1 initializes the hierarchical plan as empty
sequences, while Line 2 initializes an empty list for the limits of the duration of each WP
task (which will be used later to estimate the density functions of the end time of the tasks
at WP level) and Line 3 initializes the Boolean flag bfinish (which is meant to keep track of
the temporal plan length and ignore the tasks that start after the maximum plan horizon
Tmax

h has been reached).
After the initialization steps, three nested loops are implemented, in order to be

able to decompose tasks at MA-level into primitive tasks at WP-level and to determine
the probability distributions of the end time of the tasks of the highest levels from the
primitive tasks of the lowest. As the number of nested loops depends on the depth of the
decomposition, in our case, three loops are necessary, since the primitive tasks (at WP-level)
lie two levels below the MA-level at which the initial solk[h] is given.

The particular behavior implemented in the three loops is the following. At Line 7
the current MA task in solk[h][i] is selected to be decomposed into an ordered list of LOI
tasks at Line 8. Next, at Line 9, temporary partial plans of the lower level tasks (π̃LOI

h and
π̃WP

h ) are initialized as empty lists to be able to temporarily store the sequences of tasks
obtained after the decomposition of the selected task oMA

current at the MA-level into the lists
of tasks at the LOI-level or WP-level. This lowest level decomposition into primitive tasks
happens at Lines 13 and 14, where the current LOI task oLOI

current is selected and decomposed
into the corresponding list of WP tasks. Next, we start processing sequentially each of the
primitive tasks oWP

current of our hierarchical task plan. For this, at Line 19 we determine (using
Equation (3)) the limits (minimum and maximum) of the duration needed for the task
and append them in Line 20 to the list of limits list_limits. Next, at Line 21 the minimum
temporal plan length up to the current oWP

current is checked to see if the plan horizon Tmax
h is

exceeded. If that is the case, the decomposition must stop and all lower-level partial plans
should not be accounted for. If Tmax

h is not exceeded, at Line 26 the probability distribution
on the end time of task oWP

current is determined with Equation (4), and at Line 27 the current
oWP

current task and the determined probability distribution is appended to the temporal plan
π̃WP

h . Next and after looping over all the tasks at the WP-level (if the finishing time has
not been reached) the probability distribution f (tend,LOI

current ) of the end time of the current
LOI-level task is assigned the probability distribution f (tend,WP

current ) of the end time of the last
WP-level task, and oLOI

current and f (tend,WP
current ) are appended to the temporal plan π̃LOI

h . Next,
a similar process is repeated to obtain at Line 38 the probability of the end time of the
current action of the MA level plan from the probability distribution of the end time of the
last LOI level action and to update at Line 39 the MA plan πMA

h . Finally, at Lines 40 and 41
the partial plans, π̃LOI

h and π̃WP
h are appended to their corresponding plans πLOI

h and πWP
h .
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Algorithm 1: Temporal hierarchical task decomposition
Input: solk[h], the encoded MA-level task sequence for HAPS h
Input: t0

h, the initial mission time for HAPS h
Result: {πMA

h , πLOI
h , πWP

h }, the hierarchical task plan for HAPS h
1 πMA

h =<>; πLOI
h =<>; πWP

h =<>; // Initialize the hierarchical plan as an empty plan
2 list_limits =<>; // Initialize an empty list for the limits of the duration of each WP task
3 bfinish = false; // Boolean variable that finishes the algorithm because the plan has reached the maximum

time
4 i = 1; // Index to iterate that actions of the MA level
5 while (i<=length(solk[h]) & bfinish = false) // Loop over the MA level
6 do

7 oMA
current = solk[h][i]; // Current action at the MA level

8 list_LOI = decompose(oMA
current); // Decompose oMA

current in its corresponding actions list at LOI level
9 π̃LOI

h =<>; π̃WP
h =<>; // Initialize temporary lists of lower-level tasks for oMA

current
10 j = 1; // Index to iterate the list of LOI
11 while (j<=length(list_LOI) & bfinish = false) // Loop over the decomposition at the LOI level
12 do

13 oLOI
current = list_LOI[j]; // Current action at the LOI level

14 list_WP = decompose(oLOI
current); // Decompose oLOI

current in its corresponding actions list at WP level
15 k = 1; // Index to iterate the list of WP
16 while (k<=length(list_WP) & bfinish = false) // Loop over the decomposition at the WP level
17 do

18 oWP
current = list_WP[k] // Current action at the WP level

19 limit = [l(oWP
current)/(|va|+ max(|vw|)), l(oWP

current)/(|va| − max(|vw|)]
20 list_limits.add(limit); // Add the duration limits of oWP

current to the list of WP durations
21 if (th,0 + list_limits.sum_min() > Tmax

h ) // Does the task ends after the maximum allowed time?
22 then

23 bfinish = true;
24 end

25 else

26 f (tend,WP
current ) = compute(th,0, list_limits) // Obtain, with Equation (4), the distribution for tend,WP

current

27 π̃WP
h .add(oWP

current, f (tend,WP
current )) // Add current task and its distribution to the WP plan

28 k = k + 1;
29 end

30 end

31 if bfinish = false then

32 f (tend,LOI
current ) = f (tend,WP

current ) // Use the same distribution, as tend,WP
current for last WP equals tend,LOI

current

33 π̃LOI
h .add(oLOI

current, f (tend,LOI
current )) // Add current task and its estimated distribution to the LOI plan

34 j = j + 1;
35 end

36 end

37 if bfinish = false then

38 f (tend,MA
current ) = f (tend,LOI

current ) // Use the same distribution, as tend,LOI
current for last LOI equals tend,MA

current

39 πMA
h .add(oMA

current, f (tend,MA
current )) // Add current task and its estimated distribution to the MA plan

40 πLOI
h .add(π̃LOI

h ) // Add the partial hierarhical plan at the LOI-level
41 πWP

h .add(π̃WP
h ) // Add the partial hierarhical plan at the MP-level

42 i = i + 1;
43 end

44 end

4.3. GA-Guided Search of the Best Plans

Algorithm 1 determines the hierarchical plan associated to a given HAPS h and list
of MA-level tasks solk[h]. However, determining the best list of MA-level tasks solk for
all the HAPSs in the mission is extremely complex, as we are facing a probabilistic time-
dependent multiple-vehicle routing problem, where multiple objective functions (OFrew,

78



Sensors 2021, 21, 1630

OFdiv, and OFdiv) and constraint criteria (ϕsaf, ϕcoex and ϕcon) have to be considered.
To tackle it, we develop a mission planner that exploits the Non-dominated Sorting Genetic
Algorithm (NSGA-II, Ref. [19]) to look for the optimal solk. For the clarity and completeness
of the paper, our implementation of NSGA-II is recapitulated in Algorithm 2, along with
the specifics relevant to this work.

Algorithm 2: NSGA-II-guided search of nondominated solutions of hierarchical plans
Input: NP, Population size
Input: Imax, Number of Iterations
Input: pcrossover, Probability of crossover
Input: pmut, Probability of mutation
Input: ktournament, Tournament arity
Result: FirstFront, information (MA-level plan, task decomposition, and evaluation criteria) of all the solutions

in the first pareto front.
1 Population = ∅ // Start an empty population set

2 k = 1
3 while k ≤ NP // Population Initialization and evaluation loop

4 do

5 solk = InitializeSolution() // Initialize the lists of MA-level actions for all the HAPSs by

ensuring connectivity among mission elements

6 [πk, evalk] = Decomponse&Evaluate(solk) // Obtain the hierarchical plan and evaluate it

7 Population.add({solk, πk, evalk}) // Add solution to population

8 k = k + 1
9 end

10 i = 1; // Initialize the iteration/generation counter

11 while i < Imax // While the stop condition is not met

12 do

13 Children = ∅ // Start an empty children set

14 k = 1
15 while Children.size() < NP // While not enough children have been created

16 do

17 [park, park+1] = TournamentSelection(Population, ktournament) // Select pair of parents

18 [solk, solk+1] = Crossover(park, park+1, pcrossover) // Create children solk and solk+1
19 for l=k:k+1 do

20 [soll ] = Mutate(soll , pmut) // Mutate child soll
21 [πl , evall ] = Decompose&Evaluate(soll) // Decompose and evaluate child soll
22 Children.add({soll , πl , evall}) // Add child soll to children set

23 end

24 k = k + 2
25 end

26 Population = Recombine(Population, Children, NP) // Determine the new population based on the

old population and on the children, using the nondominated sorting of NSGA-II.

The solutions of the new population will be sorted in Pareto fronts. Duplicates will be

discarded.

27 i = i + 1;
28 end

29 FirstFront = Population.FirstFront() // Get information of the first Pareto front of the final

population

Between Lines 1 and 9, Algorithm 2 performs the initialization steps, consisting
of generating Np solutions of high-level lists of actions (solk), performing their decom-
positions into hierarchical plans (π), and evaluating their objective functions and con-
straint criteria (evalk = [OFrew, OFdiv, OFdiv, ϕsaf, ϕcoex, ϕcon]). To do it, on the one hand,
InitializeSolution() generates a population of solution plans that fulfill the connectivity
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constraint, by appending to solk[h][i + 1] a mission element (MA# or WA#) randomly
selected (according to a uniform distribution) among the mission elements connected to
the last one solk[h][i]. Besides, a predetermined minimum duration, used to decide how
long the initialization of solk should take for each mission, is calculated based on the
maximum ground speed (va + |max(vw)|) and on a travel distance that lower-bounds
all realistic travel distances for the mission element derived from the tasks at the WP-
level (i.e., the shortest diagonal distance of the mission element). On the other hand,
Decompose&Evaluate(solk) performs the decomposition into hierarchical plans of all the
lists of high level actions solk[h] using Algorithm 1 and evaluates the obtained plans πk
using the objective functions and constraint criteria. Finally, the Population is formed by
the high-level list of actions solk, their corresponding hierarchical plan decomposition πk,
and their corresponding evaluation evalk.

Next, the generation loop of the algorithm is performed, between Lines 11 and 28,
until reaching the stop condition, consistent on testing if a predefined number of iterations
is met. In each generation (algorithm iteration), the new set of solutions, named Children
in Algorithm 2, are created by selecting from Population pairs of solution plans expressed
at the MA-level (named park and park+1), which will undergo crossover, mutation, decom-
position, and evaluation (see Lines 18 to 21). Afterwards, the old and the new population
are combined in Line 26 to determine the new population of the following generation.

In particular, the pairs of parents selection is performed with TournamentSelection
(Population, ktournament) that implements the k-tournament operator proposed in [19] for
constrained multiobjective problems. That is, for each parent, it selects randomly, according
to the uniform distribution, ktournament solutions of Population, and among them it selects
the best one, preferring infeasible solutions with smaller ϕ(π) to infeasible solutions with
a bigger ϕ(π), feasible solutions (i.e., those with ϕ(π) = 0) to infeasible ones (i.e., those
with ϕ(π) > 0) and the Pareto dominating feasible solutions to the dominated ones.

Next, the crossover of the two parents (park and park+1) is performed with Crossover
(park, park+1, pcrossover), that implements a single-point crossover that takes into consider-
ation the expected ending time of the MA-level tasks of each parent. That is, unlike the
typical genetic operators for crossover (which select the gene where the crossover should
be performed in both parents), we select randomly, according to the uniform distribution
and as shown in Figure 6a, the crossover time tcrossover. Each parent is then divided into a
head and tail component at the start time of a task (at the MA-level) closest to tcrossover (as
marked in the red ellipses), and afterwards the head of one parent and the tail of the other
(and vice versa) are concatenated to build the new list of solutions of each child, as shown
in Figure 6b. Besides, the probability of crossover pcrossover is used to decide, for each pair
of parents, if they should undergo the crossover process or if they should be directly copied
as new possible solutions.

(a) Random selection of a crossover time tcrossover. (b) Single-point crossover at the MA-level.
Figure 6. Single-point crossover with a random selection of the temporal crossover point.
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After crossover, each child is mutated in Line 20 with Mutate(soll , pmut), which uses
the probability of mutation pmut to determine, according to the uniform distribution, if each
of the MA-tasks in soll has to mutate and be changed by any other MA# or WA# task
randomly selected at the MA-level.

After mutation, each of the children is decomposed and evaluated with Decompose&
Evaluate(solk). Moreover, as crossover preserves the head actions of already decomposed
plans (as Figure 6b shows) and mutation does not influence in the timing (duration) of the
parts of the plan that are previous to the mutation point, we can use the corresponding
invariant decomposed plans of the parents to perform more efficiently the decomposition
of the new children. Besides, it is worth noting that the connection constraint ϕcon(πMA)
can be violated after a crossover or a mutation. Hence, in order to make the decomposition
quicker, the sequence of high level tasks (< oMA

h,i+1, . . . , oMA
h,end >) after the last connected one

(oMA
h,i ) are not decomposed into tasks of lower levels, neither will the density distribution

for the ending time of their tasks be determined. Finally, we prefer to use crossover and
mutation operators that allow to create unconnected high-level (MA) plans to allow them
to be reconnected afterwards, eventually, after other crossovers and mutations. By doing
so, the planner can sometimes create invalid solutions that are used by the search process to
transverse infeasible regions of the search space while moving from one side of the feasible
search space to the other. The planner configurations under analysis in the following
section will show the importance of this fact.

Once the children population has been completely created, the Population and their
Children are first compared to discard the duplicate solution. Afterwards they are sorted
together into nondominated fronts by using the same criteria as in the tournament selection
(i.e., their objective functions and constraint criteria are taken into account to prefer feasible
to infeasible, solutions that are closer to be feasible to those that are farther to be feasible).
Finally, the sorted population is truncated to contain only the best NP solutions, using the
crowding distance, as described in [19], to pick the surviving solutions that belong to the
last front that can be admitted into the new population.

At the end of the algorithm, once the generation loop has finished, the planner returns
the set of solutions that belong to the first front of the last Population. In this front, it is
expected to find solutions that fulfill constraints and that are equally good, from the Pareto
comparison perspective, regarding the objective functions.

Finally, it is worth noting that although it is not stated in Algorithm 2 for simplicity,
all the Population of all iterations obtained by the planner (in the initialization and during
the generation loop) are also stored to be able to analyze the performance of the planner,
over different scenarios, in the following section.

5. Results and Analysis

This section analyzes the performance of the GA-based planner described in this
paper for determining the hierarchical task decomposition of a set of HAPSs that carry
out realistic monitoring missions in complex time-varying environments with a highly-
organized airspace structure. This planner combines the algorithms described in Section 4
as well as the evaluation functions and constraint criteria formally elaborated in Section 3
in order to take into account the realistic mission requirements and constraints described
in Section 2.

To highlight the benefits of the planner, different scenarios are used during the perfor-
mance tests. The subsequent subsections will first introduce the chosen scenarios, followed
by a description of the different variants of the planner that are tested (to determine
which configurations are better for each scenario), by an interpretation of the graphical
representation of the results, and finally, by their in-depth analysis.

The algorithms are implemented in Matlab and tested on a 4-core i7 processor at
1.80 GHz. On average, an iteration takes 15 s and can go up to 30 s under challenging
weather conditions or when more HAPSs are involved, due to the constraint evaluations.
The computation time is acceptable for the mission at hand, as the planning is meant to
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be performed prior to the execution (as opposed to real-time planning), and therefore
more generous planning time is allowed. Besides, the planner can also be implemented as
an “anytime” planner, as the algorithm provides a Pareto front with feasible solutions at
each iteration. To accelerate the code in a future release, the evaluation functions could be
implemented in C.

5.1. Scenarios

The three scenarios considered in the performance tests of this paper share the mission
map depicted in Figure 1 and the HAPSs and mission parameters presented in Appendix A.
The scenarios differ in the weather data and/or the number of HAPSs involved. The fol-
lowing paragraphs briefly introduce the settings of each scenario, while Table 2 provides
an overview of all of them.

Nominal scenario. In the first scenario, historical weather data of COSMO-DE (prede-
cessor of COSMO-D2) taken from a relatively calm day in April 2018 is used. The weather
conditions are considered moderate, with some strong wind before noon time and some
cloudy hours. Besides, the mission is performed by two HAPSs, placed initially at WA2 and
WA4, that have to monitor the LOIs depicted in Figure 1 taking into account the rewards
and coverage information provided in Table A3. This scenario is useful to see how the
planner works under good (nominal) weather conditions.

Challenging weather scenario. In this scenario, we use a weather data of the same format
as the real weather data considered in the first scenario but synthetically increase the wind
to make it stronger. In particular, in some mission areas or corridors, strong wind can occur
during more than half of the time of the day. This synthetic scenario is created in order to
demonstrate the performance of the planner under challenging weather conditions. Finally,
similar to the first scenario, only two HAPSs, placed again initially at WA2 and WA4, are
considered in this scenario.

Three HAPSs scenario. To demonstrate the scalability of the planner regarding the
number of HAPSs, in this scenario the monitoring mission is performed by three HAPSs,
placed initially at WA2, WA4, and WA5. The weather conditions are identical to those of
the first scenario.

Finally, it is worth noting that the first scenario (labelled as SC1 hereafter) will be
considered the basis to compare against the other two, as the second scenario (SC2) is
similar to the first but with worsened weather conditions, while the third scenario (SC3) is
the first with an additional HAPS.

Table 2. Scenarios considered for performance tests.

Scenarios Weather Data Number of HAPSs

SC1 (Nominal scenario) Historical (April 2018) 2
SC2 (Challenging weather scenario) With synthetically increased wind magnitude 2
SC3 (Three HAPSs scenario) Historical (April 2018) 3

5.2. Planner Configurations

The general input parameters of Algorithm 2 are presented in Table 3. They have
been selected after analyzing the behavior of the planner under different combinations of
parameters over the presented scenarios.

Besides, several configurations of the GA are considered to optimize the hierarchical
task plan and to analyze the performance and benefits of each one for the different sce-
narios. The three Planner Configurations (PC1, PC2, and PC3) analyzed in the paper are
implemented in general according to Algorithm 2 and two of them (PC2 and PC3) contain
some slight variations injected into parts of the code to support the following behaviors:

Planner Configuration 1 (PC1). The constraint-handling technique proposed by [19] is used
for select the pair of parents in the k-tournament selection (at Line 17 of Algorithm 2) and
for recombining the old and new populations (at Line 26). In other words, solutions that
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fulfill or are closer to fulfilling the constraints are preferred to solutions that do not fulfill
or are further to fulfilling them, and among solutions that are equally good regarding the
constraints, solutions that Pareto dominate the others regarding the objective functions are
preferred to solutions that are Pareto dominated. As this configuration implements the
standard constraint-handling techniques of NSGA-II [19], it is also the one described in
Section 4.
Planner Configuration 2 (PC2). The constraint-handling criteria are only applied to select
the pair of parents in the k-tournament selection in Line 17 of Algorithm 2 and ignored
during the recombination of old and new populations. That is, during the recombination
step in Line 26 of Algorithm 2, the solutions are sorted by only taking into account the
ordering imposed by the Pareto comparison of the objective functions. The motivation of
this variation is to have a planner configuration that is less “stringent” with the hierarchical
plans that violate the constraints (i.e., that have ϕ(πMA) > 0), and to give them more
chances to be selected for the next generation (or even be selected as parents for the
generation of children solutions of the next iteration).
Planner Configuration 3 (PC3). The diversity objective function (OFdiv) is ignored both
during the parents selection and recombination steps. This configuration has been set up
to put forth the benefit of considering the diversity (and not only the expected reward or
the effort) for planning.

Table 3. Planner configuration parameters.

Planner Parameters Parameter Values

Crossover probability, pcrossover 0.9
Mutation probability, pmut 0.1
Population size, NP 50
Tournament size, ktournament 3
Number of generations, Imax 100 (in SC1 and SC3), 60 (in SC2)

Constraint Thresholds Threshold Values

psaf 0.1
pcoex 0.3

For readers familiar with the stochastic ranking mechanism for constrained evolution-
ary optimization presented in [20], it is interesting to highlight that PC1 and PC2 represent
the two extreme cases that are obtained when the probability of ignoring the constraints
is respectively set to 0 (for PC1) or to 1 (for PC2). That is, during the recombination step,
in PC1 the constraints are never ignored while in PC2 the constraints are always ignored.
Comparing the behavior of the extreme cases will facilitate the understanding of the effects
of taking into account (or ignoring) the constraints in the recombination step.

Finally, for the computation of the expected reward using Equation (7), we assume
L(μ = success|sh,i, ti, oMA

h,i , wti ) = 0.8, if the cloud coverage of wti is smaller than the image
coverage required by the mission, as shown in Table A3. Otherwise,
L(μ = success|sh,i, ti, oMA

h,i , wti ) = 0.2.

5.3. Results Representation

In order to provide an overview on the the weather (wind and cloud coverage)
conditions of each scenario, on the time windows where each mission area can be visited,
as well as on a representative solution obtained by the planner, we use the graphics
displayed in Figures 10–14, whose vertical axes represent, from the bottom to the top,
the mission areas (MA#) and waiting areas (WA#), while the horizontal axes represent the
hour of the day. Further, the graphics also contain the above-mentioned information on the
weather, mission, and plan, which is represented by the following items:
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• The light-grey bars represent the time windows with clear sky, while the dark-grey
bars signify high cloud coverage above the corresponding MA.

• The light-green bars represent the time windows for the absence of critical weather
conditions at the MA or WA, while the dark-green bars signify critical weather condi-
tions for the corresponding MA or WA, e.g., strong wind.

• The light-blue bars represent the time windows where monitoring missions at the
corresponding MA are requested (and therefore rewarded), while the dark-blue bars
signify the absence of mission request for the corresponding MA.

• Red lines represent the monitoring/fly-by tasks of HAPS1 to be performed on the cor-
responding MA/WA, according to the representative plan πMA

1 . Moreover, the thicker
line in the middle marks the median start and end time, while the thinner lines mark
the time range from the minimum starting time to the maximum end time of each task.

• Similarly, blue lines represent the tasks at MA-level to be performed by HAPS2 and
magenta lines represent tasks at MA-level to be performed by HAPS3.

Taking into account the previous information, the sequence of mission elements (i.e.,
MA# and WA#) traversed by each HAPS in a representative solution can be observed, along
with the weather conditions and the mission time window of each scenario. For example,
in Figure 10a we can observe, following the red line, that HAPS1 moves from WA2 (the
starting location of HAPS1, which is not represented in the graphic) to MA1, WA1, WA2,
MA2, WA2, WA1, MA3, WA1, and MA3. Besides, MA1 is visited when not requested, while
MA2 and the two visits to MA3 are within the correct mission time windows. Besides,
MA2 is partially visited under cloudy conditions, which can reduce the expected reward
obtained by HAPS1, while MA3 are visited under good weather conditions, which provides
HAPS1 two times the total reward of MA3.

Besides, in order to analyze the performance of the different configurations of the
planner in different scenarios, we store for each scenario-planner configuration pair and
for each iteration of the GA, the values of the objective functions (OFrew, OFeff and OFdiv )
and constraint criteria (ϕsaf, ϕcoex and ϕcon) of all the feasible solutions (i.e., ϕ(π) = 0) of
the best Pareto front obtained during the execution of the algorithm. With that information,
we represent the following graphs:

• The evolution over iterations of the Mean and Standard Deviation (M&SD) of the
values of each objective function of the feasible solutions that belong to the best front. Con-
sidering only feasible solutions of the best front is initially necessary for the three planner
configuration, since it is possible that the first Pareto fronts are initially infeasible.
Besides, it is always necessary in PC2, since the fronts are obtained by ignoring the
constraints, and therefore, the best front obtained using PC2 can contain infeasible
solutions. Moreover, this is meaningful since only the final feasible solution plans of
the best Pareto front will be presented to the HAPS operator. The M&SD evolution
graphs for each objective function are presented in the first row of Figures 8–13 for
Scenario 1, 2, and 3, respectively. The mean and standard deviation values of each
objective function are represented in different columns of the figures (left column
OFrew, middle column OFeff, and right column OFdiv). Besides, while the mean is
depicted over iterations with a bold line, the shadowed area around it represents the
standard deviation, using a different color for each planner configuration (blue for
PC1, green for PC2, and red for PC3).

• The evolution of the Maximum (Max) value of each objective function obtained among
the solutions of the first Pareto front that also fulfill the constraints are plotted in the
lower row of graphs of Figures 8–13. These graphs, organized as the previous and
using only a line for the Max value, complement the M&SD evolution graphs as they
show the objective values of the best solutions with respect to each objective in the
Pareto front.

Finally, we also use two additional types of graphs in order to analyze further certain
scenarios:
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• A 3D representation of the values of the three objective functions of all the solutions
of the population versus the values of the objective functions of the solutions of the
best Pareto front, at selected iterations of the planner (and a 2D representation of
OFeff versus OFrew). This information, represented in Figure 7, marking in red the
points associated to the solutions of the best Pareto front and in black the remaining
solutions of the population, is used to graphically demonstrate the effectiveness of
the planner in evolving and finding solutions of the Pareto front.

• The number of infeasible solutions within the population at each iteration. This
information, represented in Figure 9, is used to put forth the advantage of en-
abling/disabling the constraint handling during the recombination step of PC1
and PC2.

5.4. Comparative Analysis

In the following sections, the results obtained from each scenario and planner configu-
rations, characterized using the types of graphical representation explained in Section 5.3,
are analyzed.

5.4.1. Analysis for Scenario 1 (SC1)

For SC1, all the configurations of the planner (PC1-PC3) are tested and their GA are
set to run for 100 iterations to illustrate better the convergence behavior of the planner.

Figure 7 summarizes, at three selected iteration counts (in particular at the 1st, 40th,
100th iteration), the evolution of the OF of the population and of the best Pareto front,
obtained using PC1. The graphics show: (1) how the number of solutions belonging to the
best Pareto front in the population increases as the iteration number grows and (2) how
all the solutions move towards the Pareto optimal front, along the axis in the direction of
increasing values of the three objective functions. This is the expected behavior of NSGA-II,
which is the optimizer that supports the search of the sequence of high-level tasks in our
planner. To avoid increasing unnecessarily the length of the paper, it does not include
more graphics of this type for the other configurations (PC2 and PC3) or for the remaining
scenarios (SC2 and SC3), as they present similar behaviors. Besides, the evolution graphs,
used in the rest of the paper are more suitable to provide further insights on the behavior
of the planner configurations.

Figure 8a–c show the evolution of the mean and standard deviation of the values
of the objective functions (OFrew, OFeff and OFdiv) of the feasible solutions that belong
to the best Pareto front and that are found using the three planner configurations, while
Figure 8d–f show the maximum value of each OF. According to Figure 8a–c, the standard
deviations on the values of OFrew, OFeff and OFdiv obtained using PC2 are substantially
wider than those obtained with PC1 and PC3. This is due to the fact that the constraint
criteria are used only for the parents selection, allowing the MOEA to have a bigger
“exploring” capability. Besides, we can also observe that the GA search converges earlier,
around iteration 60. Additionally, to show the importance of considering OFdiv, in SC1
we also test PC3, where OFdiv is neglected deliberately during the parents selection and
recombination steps. Figure 8c,f show how the diversity criterion evolution is worst for the
configuration where OFdiv is neglected (that is, for PC3), while PC1 and PC2 reach similar
values (in particular the maximum value of OFdiv for PC1 is not observed as it is equal to
the maximum value of OFdiv for PC2). This implies that the mission plans obtained with
PC3 suffer from having a low diversity, resulting in a more challenging selection process
to be performed by the human operator who is responsible of choosing a “well-balanced”
plan among the feasible plans of the best Pareto front returned as plan suggestions by the
planner. Besides, if we compare PC1 and PC2, we can conclude that for SC1, PC2 produces
overall better solutions regarding OFrew, while PC1 produces overall better solutions with
respect to OFeff. However, the values of OFeff of the solutions found using PC1 is only
marginally better than the values of OFeff of the solutions obtained by PC2, while the values
of OFrew of the solutions obtained with PC2 is significantly bigger than the values of of
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OFrew of the solutions obtained with PC1. Therefore, we conclude that PC2, with its better
exploring capability, is more suitable for the first scenario.

(a) 3D OF obtained at iteration 1 (b) 3D OF obtained at iteration 40 (c) 3D OF obtained at iteration 100

(d) OFeff vs. OFrew at iteration 1 (e) OFeff vs. OFrew at iteration 40 (f) OFeff vs. OFrew at iteration 100

Figure 7. Values of the objective functions of the best Pareto front (marked in red) vs. values of the OFs of the remaining population
(marked in black) for SC1 and PC1. The top row of graphics represent in 3D the values of the three OFs, while the second row only
shows the values of two of them.

(a) M&SD evolution for OFrew (b) M&SD evolution for OFeff (c) M&SD evolution for OFdiv

(d) Max evolution for OFrew (e) Max evolution for OFeff (f) Max evolution for OFdiv

Figure 8. Evolution graphics of the OFs of the feasible solutions of the best Pareto front for SC1. The top row of graphics shows the
evolution of the mean and standard deviation (M&SD) of each OF, while the bottom row shows the evolution of the best (Max) value
of each OF.
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Figure 9a shows that the number of infeasible individuals in the population is also
higher in PC2 than in PC1, which practically excludes all infeasible individuals after eight
iterations. This demonstrates the difficulty of PC1 to explore new regions of the space that
can be reached with the help of some infeasible solutions obtained after random crossover
or mutation operations.

(a) Number of infeasible solutions in SC1 (b) Number of infeasible solutions in SC2

Figure 9. Infeasible plans in the population for PC1 (blue) and PC2 (green) for SC1 (a) and SC2 (b).

Figure 10 shows two representative plans of SC1, which have been selected among the
feasible plans of the best Pareto front found using PC2 (in the upper figure) and PC3 (in the
lower figure). In particular, we have decided to display the plans that have the maximum
OFrew. Comparing the plans of both figures, we can observe that the plan found with
PC2 (displayed in Figure 10a) has fewer repetitions of the visited MA than the plan found
using PC3 (represented in Figure 10b), where HAPS2 stays monitoring only MA10. This
happens because OFdiv is neglected in PC3 during the search of the solutions. Additionally,
both graphics show how both HAPSs try to accommodate their visit to the MAs to the
requested time windows and clear sky weather conditions in order to increment the overall
obtained reward. Lastly, by analyzing Figure 8d we can observe that the plan returned
by the planner with maximum OFrew in PC2 has a higher value of OFrew than the one
obtained with PC3, because by including the diversity objective function and by ignoring
the constraints in the recombination step, the GA configuration used in PC2 is able to
explore the search space more efficiently, jumping to search regions that contain solutions
of higher rewards.

Finally, it is worth noting that for the remaining scenarios we do not test against PC3,
in order to focus the analysis on the comparison of PC1 and PC2, i.e., the variants of planner
configurations that use and ignore the constraint criteria during the recombination of the
old and new populations.

5.4.2. Analysis for Scenario 2 (SC2)

In the second scenario, weather data of the same format as the real weather data in
SC1 are used but with synthetically increased strong wind. We also set the maximum
iterations to 60, which was the iteration number in which the GA converges for SC1.

The M&S and Max evolution graphs of the values of the OFs of the feasible solutions
belonging to the first Pareto front are shown in Figure 11. The graphics show that the
results obtained with respect to the evolution of the objective functions over iterations
are comparable in terms of order of magnitude using PC1 and PC2. However, the results
obtained with PC2 fluctuate much more than PC1. In fact, the behavior of PC2 is predictable
since in this configuration the best Pareto front can obtain both feasible and infeasible
solutions, and the feasible solutions, which are the only ones considered for plotting the
M&S and Max evolution graphs, can be overtaken by infeasible solutions whose objective
function values dominate the objective function values of the feasible solutions.
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(a). MA-level task sequencing of the feasible plan with the largest OFrew obtained using PC2.

(b). MA-level task sequencing of the feasible plan with the largest OFrew obtained using PC3.

Figure 10. Illustrative examples of feasible plans obtained by PC2 and PC3 for the first scenario (SC1).
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(a) M&SD evolution for OFeff. (b) M&SD evolution for OFeff. (c) M&SD evolution for OFdiv.

(d) Max evolution for OFrew. (e) Max evolution for OFeff. (f) Max evolution for OFdiv.

Figure 11. Evolution graphics of the OFs of the feasible solutions of the best Pareto front for SC2. The top row of graphics shows the
evolution of the mean and standard deviation (M&SD) of each OF, while the bottom row shows the evolution of the best (Max) value
of each OF.

Although PC2 works well under nominal weather conditions, this planner configura-
tion can be “unstable” under challenging weather conditions, which can facilitate a more
frequent violation of the constraints criteria. This behavior can be better explained using
Figure 9, where the number of infeasible solutions of the population obtained with PC1
and PC2 for SC1 and SC2 are displayed side-by-side. As already described in the previous
subsection, the graphics show how PC1 is much “stricter” against infeasible solutions,
as the constraint criteria are used in the recombination step, resulting in a reduction of
the “survivability” of infeasible individuals and of the exploring capability of the planner.
However, PC2’s higher exploring capability appears to be too “lenient” with the infeasible
solutions for SC2, allowing an excessive number of them predominate the population in
the final iterations. This behavior, which appears in the more constrained scenario imposed
by the stronger winds of SC2, is prone to end up having too few feasible individuals
remaining in the best Pareto front of the last iteration, thereby losing the best feasible ones
identified along the iterations of the algorithm. Therefore, under more challenging weather
conditions, PC1 should be the preferred configuration.

Figure 12 depicts the plan that has the highest expected reward among the feasible
plans of the best Pareto front found using PC1 over SC2. The figure shows that the mission
elements are affected by strong wind (which occupies more than 20% of the time) more
often than in SC1. Besides, HAPS1 monitors MA1 and HAPS2 monitors MA6 at time
windows that are not requested by the clients, in order to be able to reach other more
promising MAs (and due to the fact that a MA cannot be transversed without monitoring
its LOIs).

5.4.3. Analysis for Scenario 3 (SC3)

Three HAPSs are used in the third scenario to analyze the scalability of the planner.
However, since the search space of the possible solutions has grown (due to the additional
HAPS), more iterations of the GA are necessarily. For this reason, we set the maximum
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iterations of the stop condition to 100, which is also observed to be necessary, as the search
takes more iterations to converge according to the evolution graphics of OFrew presented
in Figure 13. Besides, since the nominal weather setting for the environment is used in this
scenario (as in SC1), Figure 13 shows how PC2 again exhibits higher variability and better
performance than PC1, thanks to its higher “exploring” capability.

Figure 12. Illustrative example of the feasible MA-level plan with the largest OFrew obtained by PC1 for the second
scenario (SC2).

The mission plan with the largest OFrew among the feasible plans of the first Pareto
front found using PC2 is illustrated in Figure 14, along with the operation environment
and requirements. With the additional HAPS, more MAs can be monitored, compared
to missions where only two HAPS operate (whose illustrative plans are presented in
Figures 10 and 12). This fact is also observable comparing the evolution of the Max graphs
of OFrew of SC1 and SC3, because the expected reward obtained by the plans for SC3
(Figure 13d) is higher than the one obtained for SC1 (Figure 8d). Figure 14 also shows how
the coexistence in the same MA of multiple HAPS is tolerated (e.g., the presence of HAPS2
and HAPS3 in MA10), since the constraint criterion ϕcoex is probabilistically evaluated and
violated when the probability of coexistence exceeds a given pcoex (which is set to 0.3 in this
paper). Changing the value of this parameter, the constraint violation can be “tightened”
or “relaxed” as much as desired. This is a novelty of the planner presented in this paper,
since the original version presented in [10] implemented a deterministic evaluation of the
coexistence criterion where no overlapping of the start and end time range of MA# tasks
was allowed.
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(a) M&SD evolution for OFrew (b) M&SD evolution for OFeff (c) M&SD evolution for OFdiv

(d) Max evolution for OFrew (e) Max evolution for OFeff (f) Max evolution for OFdiv

Figure 13. Evolution graphics of the OFs of the feasible solutions of the best Pareto front for SC3. The top row of graphics shows the
evolution of the mean and standard deviation (M&SD) of each OF, while the bottom row shows the evolution of the best (Max) value
of each OF.

Figure 14. Illustrative example of the feasible MA-level plan with largest OFrew obtained by PC1 for the third scenario (SC3).
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6. Related Works

UAVs have recently become a popular alternative for monitoring ground activities [21],
mapping [22] or search and rescue missions [23], since the operation of these platforms is
more cost-efficient than using manned aerial vehicles while achieving the same purpose [5].
Furthermore, the deployment of these platforms is also more flexible, because numerous
UAV platforms are capable of vertical take-off and landing, enabling the deployment in
many missions where vast areas for takeoff and landing are scarce. Lastly, the use of
unmanned platforms also allows the immediate deployment in risk zones, without com-
promising the safety of human pilots nor delaying the operations.

Following the development of battery technologies, light-weight but robust material as
well as technologies for optimal harvesting of solar energy, the development of unmanned
High Altitude Long Endurance (HALE) aerial vehicles has became the focus of giant aero-
nautics industries [2,24]. Moreover, new path and mission planning strategies for solar
powered UAVs are being continuously developed, intended to (1) improve their trajectory
by deriving the most energy-efficient flight patterns [25–29], to (2) determine the optimal
path for improving operational efficiency in missions meant for communications [30–32],
or (3) to track different types of targets [33]. The planning strategies exploited in these
works are based on different types of optimization approaches, ranging from nonlinear
optimization strategies [26,28–31] to rapidly-exploring random trees [32], the grasshopper
optimization algorithm [33] and particle swarm optimization [27]. Nevertheless, the plan-
ners presented in these works either (1) optimize the trajectories without considering
any aspect that is relevant to the mission or (2) tackle missions which are significantly
different from the one proposed in this paper (and hence they consider a different set of
requirements and constraints). Furthermore, the planning methods proposed are different
than the GA-based one presented in this paper, although the last two (i.e., [27,33]) are also
variants of evolutionary algorithms.

Moreover, the HAPSs considered in this work are special types of HALE platforms
aimed to be an alternative to satellites for long-term remote sensing while offering more flex-
ibility in its deployment. With the success stories around Kelleher [2], HAPSs are deemed
fit for deployment in the near future at larger scale. However, although HAPSs operations
can be beneficial, they can be extremely challenging, given the fragility of the platform
under critical weather conditions, their lack of maneuverability, and the requirement for
plans for long operations, which oblige the consideration of weather parameters that vary
over time within the plan horizon [34]. Specific studies on automated planning for HAPS
include [10,35], both aiming to reduce the operators’ workload. In particular, for a complex
mission scenario as the one depicted in Figure 1, Ref. [35] proposes a sequential task and
motion planning framework for a collective operation area, simplifying the constraints
of the planning problem, while [10] uses a GA to extend the temporal hierarchical task
planner for multiple HAPSs. Moreover, the current work extends the planner presented
in [10] by (1) including the evaluation of the safety and coexistence constraints with the
new probability based functions presented in Sections 3.3.1 and 3.3.2, by (2) substituting the
weighted evaluation function used in [10] for the constrained multiobjective Pareto-front
evaluation mechanisms of NSGA-II, and by (3) returning the set of the hierarchical plans
that form part of the final best Pareto front. Besides, this paper analyzes the behavior of the
new planner with new scenario and the influence of the diversity objective function and of
different constraint handling techniques within our planner.

Evolutionary algorithms, including variants for solving multiple-objective problems
with powerful constraint-handling techniques (such as [19,36]), have often been used for
the mission planning of Satellite and UAV operations. For instance, Refs. [37–39] present
different GA-based planner for scheduling the observation tasks of different satellites,
while [23,40–43] use multiple-objective evolutionary algorithms to solve task planning
problems for multiple UAVs engaged in performing monitoring tasks in dissected areas of
interest. Although our planner also uses a GA algorithm to determine the best solution
plans for a given scenario, it solves a different type of monitoring task mission problem,
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involving exogenous time-varying events (i.e., weather) and time-dependent mission
requirements. Therefore, its evolutionary encoding has a different interpretation and is
customized for HAPSs instead of satellites or other types of UAVs. Besides, similar to
other works that take into account the uncertainty associated to weather conditions [44–46]
or to other elements of the mission (e.g., the target location and movement in search and
rescue missions [47,48] or the probability of target detection and destruction in hostile
environments [49,50]), in this work the uncertainties are incorporated into the models used
to evaluate how probable is that each HAPS is at a mission area at a given time, which
affects the outcome of the objective and constraint values.

Finally, it is worth highlighting that although this work uses NSGA-II for a constrained
multiobjective optimization, it is only a part of the temporal hierarchical task planner,
in which the search for optimal decomposition into an ordered list of nonprimitive tasks
poses a combinatorial search problem. With an appropriate encoding of the problem at
the task level at which the combinatorial problem prevails, NSGA-II is used for guiding
the decomposition into executable tasks within a temporal hierarchical task network
with a nested Time-Dependent Multi-Vehicle Routing Problem (TDMVRP). Note also that
Hierarchical Task Planning often refers to an Artificial Intelligence (AI) planning paradigm
and that although there are some domain-independent frameworks meant for it [51,52];
they do not yet support a nested TDMVRP.

7. Conclusions and Future Work

This paper presents a new approach for planning the tasks that a group of HAPSs must
perform to carry out ground monitoring mission in a structured airspace. The new approach
returns a Pareto front of feasible hierarchical plans, whose sequence of higher level tasks is
determined using a MOEA that optimizes the expected reward to be received by the HAPSs
team for monitoring the different LOIs, the diversity of the LOIs visited by the HAPSs and
the time that the HAPSs are actually monitoring (and not traversing the airspace). Besides,
it also considers multiple constraints, some encoded in the decomposition method of the
hierarchical planner, while others validated by measuring the constraint criteria related to
the mission safety, the coexistence of HAPSs in the same MA and the connectivity of the
plan. The planner also considers, through the evaluation functions and constraint criteria,
the uncertainty that the weather conditions impose on the duration of each task (due to the
wind vectors) and on the visibility for the mission camera (due to cloud coverage).

The performance of the different configurations of the planner, carefully set up for
increasing/decreasing the “survivability” of the infeasible solutions or to disable the diver-
sity requirement, is tested against several scenarios, with varying number of HAPSs and
different weather conditions. The quality of the results is scenario-dependent, although it
seems advisable to use the second configuration (PC2) for the planner when the HAPSs
operate under mild weather conditions and the first configuration (PC1) for challenging
weather conditions, as suggested by the results of the performance tests presented in
Section 5. Besides, when planning for two HAPSs the number of iterations required by the
planner to converge is smaller than when planning for three HAPSs.

In order to further improve the planner, we will consider several possibilities. Firstly,
a “softer” constraint-handling method can be used to improve PC1. For this purpose, we
are planning to adopt the approach proposed by [20], in which, with a low probability,
some infeasible solutions can be ranked better than feasible solutions. This new planner
configuration could avoid, for example, the early convergence of PC1 in SC2, while still
managing to maintain the right balance between feasible and infeasible solution plans in
the population.

Secondly, while the planner is typically customized for solving HAPS mission plan-
ning problems, it can be extended for more generic uses. As a matter of fact, temporal
hierarchical task planners (without a nested TDMVRP) are gearing toward general im-
plementation [52]. Hence, with careful considerations of the encoding of the chromo-
somes for generic planning problems and more generic approaches for tuning the planner
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parameters, the approach presented in this work could be implemented in a “domain-
independent” fashion.

Finally, although the underlying mission planner reduces the operator’s workload,
when the planner suggest many solutions, selecting the one to execute can still be chal-
lenging for the operator. Therefore, in order to increase usability of the planner, it can be
convenient to provide operators with a set of tools that help them to analyze the solutions
of the best Pareto front more easily, by (1) taking into account the explicability of the
plans with a visualization interface that can highlight the probable constraint violations,
the rewarding mission tasks, the diversity of the clientele pool and the effort; or by (2)
designing filter mechanisms that accelerate the selection of the plan of the best Pareto
front that better fits the operator preference (e.g., the one with the maximum value of an
objective function or the one with the best preference weighting [53]). In a similar line,
more interactive functions can be integrated to enable “mixed-initiative planning”, which
can favor quick local replanning performed by the operator whenever necessary, due to
unexpected weather change or to take into account the operator’s preferences.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial Intelligence
C Corridor
EA Evolutionary Algorithm
EO Electro-Optical
FL Flight Level
GA Genetic Algorithm
GCS Ground Control Station
HALE High Altitude Long Endurance
HAPS High Altitude Pseudo-Satellite
HFR High-level Flight Rules
LOI Location Of Interest
MA Mission Area
MC Mission Constraint
MOEA Multi-Objective Evolutionary Algorithm
MR Mission Requirement
NSGA Nondominated Sorting Genetic Algorithm
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PC Planner Configuration
TDMVRP Time Dependent Multi-Vehicle Routing Problem
UAV Unmanned Aerial Vehicle
WA Waiting Area
WP Waypoint

Appendix A. Numerical Details on the HAPS Model and on the Mission Parameters

Table A1 details numerical information on the HAPS that are assumed in this work.

Table A1. Model of the HAPS considered in this work: build, performance, and mission payload.

Build/Fight Performance/Payload Parameter Values

Weight 100 kg
Wingspan 30 m
Payload 5–10 kg
Battery capacity 15 kWh
Electro-motor maximum propulsive power 1700 W
Operating altitude 18 km
Cruise airspeed at the operating altitude 30 m/s
Endurance 3 months
Ground sampling distance at 18 km 30 cm
hxw of an image 360 × 3000 m

The dimensions of the mission elements depicted in Figure 1 in form of their longest
diagonals in kilometers are given in Table A2.

Table A2. Dimensions of the mission elements depicted in Figure 1.

C Longest Diagonal [km] MA/WA Longest Diagonal [km] LoI 1 LoI 2 LoI 3

C1 60.78 MA1 27.58 17.10
C2 37.83 MA2 69.49 19.83
C3 33.67 MA3 103.11 20.07 44.27
C4 58.88 MA4 25.32 15.56
C5 34.22 MA5 52.90 13.25
C6 17.64 MA6 46.51 21.61
C7 70.41 MA7 84.03 21.42 25.88
C8 40.27 MA8 36.62 10.84
C9 66.19 MA9 133.30 34.36 21.24 38.13
C10 72.10 MA10 123.35 39.96 44.74
C11 20.52 MA11 74.98 31.62 24.53
C12 73.35 MA12 73.49 18.28 26.38
C13 39.34 MA13 56.87 18.62
C14 88.46 MA14 36.28 14.31
C15 63.04 MA15 104.92 23.66 36.46
C16 70.70 WA1 47.90
C17 71.98 WA2 34.44
C18 71.38 WA3 46.41
C19 61.77 WA4 47.96
C20 42.75 WA5 26.44
C21 46.67
C22 39.80
C23 74.26
C24 38.15
C25 106.86
C26 63.86
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The rewards obtained for the successful monitoring of all LOI(s) of a MA are listed in
Table A3, along with the image coverage of the ground required for the monitoring mission
to be considered successful.

Table A3. Rewards to be given for each MA (× 103).

Mission Area Coverage (%) Reward (€) Mission Area Coverage (%) Reward (€)

MA1 80 4 MA9 60 13
MA2 80 50 MA10 60 18
MA3 60 100 MA11 70 20
MA4 80 20 MA12 70 10
MA5 80 3 MA13 60 8
MA6 70 5 MA14 90 18
MA7 70 15 MA15 50 9
MA8 80 3
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Abstract: In this study, we focused on three species that have proven to be vulnerable to winter stress:
Empetrum nigrum, Vaccinium vitis-idaea and Hylocomium splendens. Our objective was to determine
plant traits suitable for monitoring plant stress as well as trait shifts during spring. To this end, we
used a combination of active and passive handheld normalized difference vegetation index (NDVI)
sensors, RGB indices derived from ordinary cameras, an optical chlorophyll and flavonol sensor
(Dualex), and common plant traits that are sensitive to winter stress, i.e. height, specific leaf area
(SLA). Our results indicate that NDVI is a good predictor for plant stress, as it correlates well with
height (r = 0.70, p < 0.001) and chlorophyll content (r = 0.63, p < 0.001). NDVI is also related to soil
depth (r = 0.45, p < 0.001) as well as to plant stress levels based on observations in the field (r = −0.60,
p < 0.001). Flavonol content and SLA remained relatively stable during spring. Our results confirm a
multi-method approach using NDVI data from the Sentinel-2 satellite and active near-remote sensing
devices to determine the contribution of understory vegetation to the total ecosystem greenness.
We identified low soil depth to be the major stressor for understory vegetation in the studied plots.
The RGB indices were good proxies to detect plant stress (e.g. Channel G%: r = −0.77, p < 0.001) and
showed high correlation with NDVI (r = 0.75, p < 0.001). Ordinary cameras and modified cameras
with the infrared filter removed were found to perform equally well.

Keywords: climate change; evergreen plants; extreme events; flavonol and chlorophyll sensor (Dualex);
greenness indices; mosses; near-remote sensing active and passive NDVI sensors; Sentinel-2; subarctic
vegetation damage

1. Introduction

Global warming will affect arctic and subarctic regions more than any other area in the world [1]. It is
expected to increase the productivity of subarctic and arctic ecosystems [2–4]. Increasing productivity and
biomass is generally known as ‘greening’ [5]. Major drivers are a longer growing season and increasing
summer warming [6]. However, negative trends in productivity and biomass, known as ‘browning’,
have also been reported [6]. For the Arctic as a whole, trends are complex, as Myers-Smith et al. state:
“Figures vary from 42% greening and 2.5% browning from 1982 to 2014 in the GIMMS3g AVHRR dataset
to 20% greening and 4% browning from 2000 to 2016 in Landsat data, and to estimates of 13% greening
and 1% browning for the MODIS trends calculated for 1,000 random points in the tundra polygon from
2000 to 2018.” ([7], p. 107).
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In the subarctic region of Scandinavia, i.e. Norway, Finland, and Sweden north of the Arctic Circle,
the main drivers of browning are winter warming events and pest outbreaks [8]. Winter warming events
can melt the insulating snow cover that normally protects photosynthetic short-statured organisms
overwintering with aboveground tissue (e.g. prostrate shrubs, cushion plants, bryophytes, and lichens)
from the harsh ambient winter weather conditions. After a few thaw days, ground vegetation becomes
exposed to ambient air and hibernation is interrupted, thus reducing the protection of photosynthetic
organisms against frost, which may easily lead to freezing damage upon return of normal winter
weather [9]. Soil communities, including both micro-arthropods and bacteria, can also be severely
affected [10]. Overall, a warmer winter climate changes species compositions and reduces carbon
cycling [11]. In subarctic and arctic regions evergreen plants in particular are sensitive to changing
winter climate and reduced snow cover [12]. This includes the widespread dwarf shrubs Empetrum
nigrum L., Vaccinium vitis-idaea L., Cassiope tetragona (L.) D.Don, and Calluna vulgaris (L.) Hull, as
well as the tall coniferous shrub Juniperus communis L. [6,11,13]. Bryophytes, such as the widespread
feathermoss Hylocomium splendens (Hedw.) Schimp., deciduous shrubs, such as Vaccinium myrtillus L.,
evergreen horsetails (Equisetum spp.), as well as small cushion plants show reduced growth following
exposure to winter warming [9,11,13,14]. The other major factor causing browning are pest outbreaks.
Recently, increasing frequency and intensity of outbreaks of leaf-defoliating geometrid moths led
to massive canopy defoliation of their preferred host tree Betula pubescens Ehrh. and understory
plants [13,15,16]. Overall, multiple stress events are main drivers of browning. Given the high focus
on climate change-induced changes in northern primary productivity, it is important to develop easy
and reliable methods for assessment of plant vitality.

For a long time, satellites have monitored the global vegetation status [2,3,17]. Spectral sensors
operated near the target vegetation are increasingly applied for assessing the plant status [18,19].
However, near-remote time series of the plant status are still uncommon, which is partly due to the
need for expensive equipment, for example spectroradiometers [20]. In recent years, several new
and low-cost active and passive proximal sensors were developed. This includes sensors measuring
the normalized difference vegetation index (NDVI). NDVI is a radiometric measure of the amount
of radiation (≈∼400–700 nm) absorbed by vegetation during photosynthesis. It is calculated from
contrasting reflectance at near-infrared (NIR) and red bands [21,22].

NDVI has been widely used in studies of phenology, productivity, biomass, and disturbance
monitoring, as it has proven to be a good proxy of the vegetation’s photosynthetic activity [19,23].
NDVI works well for subarctic ecosystem monitoring and is widely used on different scales and as a
vegetation marker [24–26].

Previously, modified cameras—with the infrared filter removed—were found to be good NDVI
surrogates. In such cameras, the NDVI proxy is commonly calculated by using the enhanced red
channel and the blue channel (BNDVI) [27]. However, a combination of the enhanced red channel
and the green channel might also be of interest due to a strong linear correlation with the chlorophyll
content (GNDVI) [28]. Additionally, ordinary cameras were increasingly applied for vegetation analysis
and phenology studies in recent years. Greenness indices based on ordinary RGB images from such
cameras are promising NDVI substitutes [28,29], even for high-arctic vegetation [30].

In subarctic forests, the contribution of understory vegetation (i.e. dwarf shrubs, herbs, graminoids,
bryophytes and lichens) to the total ecosystem productivity is similar to that of trees [31]. Moreover,
biodiversity of vascular plants at high latitudes is relatively low, which makes research into dominant
species and their vulnerability to environmental change even more important [32]. We hypothesized
that in situ estimates of plant damage would be correlated to optical measurements of plant greenness,
but that greenness indices would vary in their explanatory power. Our second hypothesis was that
plant stress would vary over short distances in a rolling subarctic landscape and that this would be
detectable both by near-remote sensing measurements and by Sentinel. To this end, we combined
near-remote sensing approaches with classical determination of plant traits of understory vegetation
to address the following research questions:
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(1) What is the range of intraspecific variability of common traits of dwarf shrubs and mosses in
subarctic spring?

(2) Which traits are reliable indicators of plant stress?
(3) How do the indices derived from ordinary and modified RGB cameras correlate with common

plant traits?

To answer these questions, we made analyses in a widespread subarctic heath ecosystem, focusing
on vegetation plots dominated by two evergreen dwarf shrubs and a mat-forming moss.

2. Materials and Methods

2.1. Site Description

We selected plots in wind-exposed areas where snow cover generally is shallow and plants are
more susceptible to winter frost-thaw stress. Eighteen plots (1 m × 1 m) were assessed within a total
area of approx. 1 km2 in Tromsø, Troms County, northern Norway (Figure S1, Table S1, Figure S2b,c).
Satellite upscaling was conducted in homogeneous plots within a wider area in Tromsø (Table S2),
from 8–12 June 2017, corresponding to days of year (DOY) 159–163. The three areas (a total of ca.
0.5 ha) for the upscaling approach were not congruent to the eighteen field plots (a total of 18 m2).
We chose three separate areas in order to avoid trails, snow patches, unvegetated ground and rocky
steep slopes (as exemplified in Figure S2a). Unvegetated ground was estimated to be around 10% in
the area shown in Figure S2a. The other two areas had around 5% of unvegetated ground. Satellite
upscaling was performed when snow patches became sparse, but before budburst of the deciduous
trees in the heath. The study focuses on the evergreen dwarf shrub species Empetrum nigrum and
Vaccinium vitis-idaea and the mat-forming moss Hylocomium splendens. These species are abundant,
co-occur in boreal ecosystems, and are linked to browning [9,14,33]. Our continuous monitoring of
plant vitality in the study area shows that these species have not been exposed to severely stressful
events since 2012, as reported in Bjerke et al. [15]. Minor damage rates were recorded in more
recent years, then mostly restricted to wind-exposed sites with little snow accumulation (unpublished
observations). Thus, plant traits in the study area were expected to vary naturally along microclimatic
gradients. Plots with different stress levels (or health states) were established for each species to
monitor natural intraspecific trait variabilities. The studied plots were dominated by (with number
of plots in parentheses): V. vitis-idaea (two), H. splendens (three), E. nigrum (nine), and mixed plots of
E. nigrum with a lower layer of H. splendens (four).

2.2. Data Collection

Five greenness measurements were made in each plot (n = 87) from DOY 130 to DOY 180. Weather
conditions varied between days of measurements. For greenness measurements we used four handheld
spectral devices (Table 1). The Mapir NDVI camera was only accessible in the last two sampling
cycles (n = 35). All passive spectral devices were applied 1.5 to 2.0 m above the plot for photographing.
We avoided photographing direct light reflectance in the calibration target, and also avoided overexposure.
The active Greenseeker sensor measurements were acquired 60 cm above ground.

Measurements of epidermal chlorophyll and flavonol content were conducted with the optical
Dualex 4 scientific instrument (Force-A, Orsay, France). The readings of this instrument show a linear
relationship to chlorophyll concentrations calculated from extractions. Readings are given in μg cm−2,
and the measuring wavelength for chlorophyll is a ratio of transmittance at 710 and 850 nm [34]. Within
each plot, we sampled at five different spots. The sampling dates were the same as for the greenness
measurements. Measurements were made on the newest, fully developed segment of H. splendens and on
shoot tips of E. nigrum. Eight V. vitis-idaea leaves of one plant were measured per sample, starting with
the upper (= newer) leaves. Hence, we measured physiological traits in different health states on three
plots per species (nine in total). All measurements were performed with the adaxial setting of the device.
High correlations with the abaxial side are found [35]. Measurements of V. vitis-idaea leaves showed
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reliable results. However, for the shoots of H. splendens, stable and reproducible results could only be
achieved when three shoots were stacked and fixed with a transparent tape (Figure S3b). The same
process was used for the shoots of E. nigrum (Figure S3a). At least eight chlorophyll measurements were
performed on each sample and readings were then averaged and divided by the number of stacks in the
tape. This results in 40 measurements per sampling date and plot. Palta [36] identified leaf anatomy, leaf
veins, the presence of other pigments, and leaf thickness as main causes of large variations in chlorophyll
meter readings. Hence, we decided to take the specific leaf area (SLA) into account. SLA is also of
additional value to determine growth and plant stress [37,38]. After the chlorophyll measurements had
been performed, a 6 mm circle was punched out of the prepared samples (Figure S3) [39]. First, fresh
weight of the samples was measured. Then, the samples were dried for 24 h at 70 ◦C before dry weight
was measured. This provided information on moisture content and SLA. Plant height was measured
as median height above ground. Plant height of H. splendens refers to the thickness of the moss layer.
We assessed stress levels for each plot in the first and last sampling periods. The stress estimate is a
bare-eye classification of visibly dead or dying leaves versus healthy leaves of evergreens within small
plots. Leaves that are dead or dying are brown, while healthy leaves are green. The stress estimate thus
ranges from 0 to 100%, and it has turned out to be closely correlated to NDVI [13] and CO2 fluxes [40].

2.3. Data Processing

2.3.1. Greenness Indices

We applied four different devices and extracted six different greenness indices from these (Table 1).
The calibration methods applied are also listed. The Greenseeker did not need a calibration; internal
tests suggest that measurements are not dependent on environmental changes [41].

The spectral properties of the devices we used for NDVI calculation are listed in Table 2. The active
Greenseeker device has very similar bandwidths and -peaks to the Sentinel-2 bands 4 and 7. The spectral
properties of the passive Mapir camera are closer to the “normal” NDVI calculated with Sentinel-2
bands 4 and 8.

Table 1. Background information on the greenness indices used in this study. Market prices refer to
price levels in 2019.

Name Equation Device Market Price Calibration Comments Source

Greenseeker
NDVI

Automatically
calculated NDVI

output; range 0–1 1

GreenSeeker
handheld crop sensor

(Trimble Inc.,
Sunnyvale, CA, USA)

ca. 700 $ Not needed Active sensor [41,42]

Mapir NDVI NIR−Red
NIR+Red

Survey2 Camera –
NDVI (Mapir Inc., San

Diego, CA, USA)
ca. 400 $ Mapir target Passive sensor [43]

BNDVI Red−Blue
Red+Blue

Modified Canon Eos
450D (no IR filter)

(MaxMax, LDP LLC,
Carlstadt, CA, USA)

Body +
conversion =

250 $

White balance (WB)
on gray area 2

Widely used
NDVI surrogate [44]

GNDVI Red−Green
Red+Green Same as for BNDVI Same as for

BNDVI
White balance (WB)

on gray area 2

More linear
correlation with
chlorophyll than

NDVI

[28,29]

GRVI Green−Red
Green+Red

α7 (ILCE-7) (Sony
Corp., Tokyo, Japan)

ca. 700 $, but
could be any
RGB camera

3-step gray card 2,
when EV = −0.7

RGB index [45]

Channel G% Green
Red+Green+Blue Same as for GRVI Same as for

GRVI

3-step gray card and
white balance on

white area 2 when
EV = −0.7

RGB index [46,47]

1 According to the manufacturer’s documents, even non-chlorophyll-containing surfaces, such as soil, have small
NDVI values. Therefore, values below 0.15 are rarely measured. Likewise, normal NDVI, with a range from −1 to 1,
shows NDVI values between 0.00 and 0.12 for scarce vegetation or bare soil. 2 Ordinary gray card with (N2, N5,
N9.5) with an accuracy of about 5% on the Macbeth color space.
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Table 2. Comparison of spectral properties of the various NDVI devices listed in Table 1. Numbers in
parentheses show the bandwidth in nanometers.

Mapir Greenseeker Sentinel-2 Sentinel-2 Sentinel-2

Survey 2 NDVI Handheld Crop Sensor Band 4 Band 7 Band 8

Red band 660 nm (50) 660 nm (25) 665 nm (30)

NIR band 850 nm (70) 780 nm (25) 783 nm (20) 833 nm (106)

Spatial
resolution 16 MP camera

an oval depending on
the height of the sensor:
at 60 cm, length is 25 cm

10 m 20 m 10 m

2.3.2. Analysis of the Data

For the calibration of the RGB indices as well as of BNDVI and GNDVI, an ordinary gray card was
applied. The card is printed on Teslin Synthetic (greywhitebalancecolorcard, Northfleet, UK]. According
to the manufacturer, it has an accuracy of 5% on the Macbeth color space. To decide whether a three-step
reflectance calibration on black, gray, and white is superior to a normal white balance, the Channel G%
index was calculated for both calibrations. For the Mapir camera (Mapir Inc., San Diego, CA, USA)
conversion and calibration were performed with the Mapir calibration target V1 and the QGIS software
plug-in version 1.1.2. (Mapir Inc.). All other calibrations and NDVI calculations were performed in
WINCAM pro 2013a (Regent Instruments Inc., Quebec City, QC, Canada). Further processing was
done in EXCEL (Microsoft Corp., Redmond, WA, USA), while statistical analyses were performed
with SPSS 25.0. (IBM Corp., Armonk, NY, USA). Additional, logistic curve fitting was analyzed using
the Excel add-on Xlfit version 5.3.1.3 (ID Business Solutions Ltd., Guildford, UK). We calculated all
correlations with a two-tailed Pearson´s testimony. Percentiles are weighted averages. Satellite NDVI
data were retrieved from ESA’s Sentinel-2 Open Access Hub [https://scihub.copernicus.eu]. Sentinel-2
satellite images were analyzed using ESA’s SNAP software version 5.0.8 with the integrated Sentinel-2
Toolbox (ESA, Common Service Section, Rome, Italy). Atmospherically corrected 2A products from
DOY 159 and DOY 163 in 2017 were used. Cloud cover was below 1% and products were analyzed
with a resampled spatial resolution of 20 m. Downscaling was done with the “mean method,” which
calculates the output as mean of every source pixel value. The downscaling was performed to compare
the different bands of Sentinel-2 for a pixelwise NDVI comparison, and also to reduce small-scale
effects, like imprecise GPS coordinates (up to 3 m). To compare spaceborne and handheld NDVI
data, at least four GPS waypoints were taken per area and NDVI values between the waypoints were
measured with the Greenseeker handheld sensor (Trimble Inc., Sunnyvale, CA, USA, see Table S2).
The sensor can also be used for measurement over a larger area. Then, it calculates an average of the
scanned area. The Sentinel-2 image pixels corresponding to the GPS waypoints were identified and
values were compared with the Greenseeker data.

3. Results

3.1. Descriptive Statistics

Descriptive statistics of the vegetation indices and plant traits are listed in Table 3. Due to relatively
large sampling sizes (n > 36) for all traits on plot level we can assume that data is normally distributed.
The combination of three different species in one dataset (Table 3), might lead to less normal distributed
data. According a Kolmogorov-Smirnov test, all datasets of Table 1 are normally distributed (p > 0.05),
except for Channel G%, Plant height, Stress level, Soil depth, SLA and Flav. However, a species-specific
normal distribution is achieved for Plant height, NBI, SLA and Flav. For Channel G% the species-specific
normal distribution does not hold for V. vitis-idaea, which was monitored on only two plots with highly
contrasting stress levels. Stress level in total is not expected to be normally distributed due to plot
selection by contrasting health states. Moreover, Soil depth is also not expected to be normally distributed.
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Table 3. Descriptive statistics of the monitored plant traits on plot level.

Name Mean
Std.

Error
Std.

Deviation
N 5% PCTL Median 95% PCTL Skewness Kurtosis

Greenseeker NDVI 0.64 0.0099 0.092 88 0.48 0.63 0.80 0.018 −0.701

Mapir NDVI 0.69 0.0104 0.062 35 0.56 0.69 0.78 −0.611 0.246

BNDVI 0.86 0.0096 0.090 88 0.68 0.87 0.99 −0.569 −0.233

Channel G% 0.40 0.0050 0.047 87 0.48 0.39 0.80 0.848 0.283

GRVI −0.098 0.0087 0.081 88 −0.212 −0.108 0.072 0.659 0.349

GNDVI 0.47 0.0085 0.079 88 0.34 0.47 0.60 −0.395 0.393

Plant height 9.46 0.0638 4.508 50 4.00 8.25 19.00 0.748 −0.430

Stress level 32.07 4.6593 27.956 36 0.85 30.00 93.63 1.009 0.274

Soil depth 13.73 0.7238 6.790 88 4.00 12.00 25.00 0.267 −1.301

SLA 0.149 0.0151 0.093 38 0.059 0.103 0.343 0.993 −0.238

Chl 23.46 0.7151 4.401 38 15.28 22.92 32.78 −0.014 0.617

Flav 1.01 0.0672 0.414 38 0.61 0.81 1.86 1.065 −0.420

NBI 25.31 0.0151 7.241 38 14.34 25.93 36.04 −0.018 −1.166

3.2. Comparison of Different Vegetation Indices and Plant Traits

We assessed the use of the six greenness indices and the different calibration methods. Accuracy
was not found to be improved by using a relatively cheap 3-step reflectance target instead of an
ordinary gray card for white balance (Table S3). However, it was important to avoid overexposure of
the calibration target. Comparing the greenness indices (Table 4): Mapir NDVI and Greenseeker NDVI
were significantly correlated (r = 0.951, p < 0.001; Figure 1a), while ordinary RGB indices showed
a much lower correlation, albeit still significant. NDVI to BNDVI (r = 0.779, p < 0.001) correlated
slightly better than Channel G% to NDVI (r = 0.749, p < 0.001) and NDVI to GRVI (r = 0.689, p < 0.001).
Greenseeker NDVI showed the best correlation with the chlorophyll content (r = 0.634; p < 0.001), while
other indices, such as BNDVI, showed rather low correlations with the chlorophyll content (r = 0.433,
p < 0.01; Table 4). Figure 1 illustrates the results for different species and how they correlate with the
other indices. Comparison of BNDVI and Greenseeker NDVI (Figure 1b) reveals several high BNDVI
values around 1 and increased deviation of lower values. Moreover, spaceborne NDVI data from the
Sentinel-2 satellites based on band 4/7/8 (Figure 1e,f) are highly correlated with ground-sampled NDVI
values (r = 0.956 and r = 0.968, p < 0.001, n = 14) obtained using the Greenseeker device. In principle,
this allows for a significant upscaling from ground to space.

Joint analyses of all plant species resulted in variable correlations between the greenness indices
and other plant traits, i.e. SLA, chlorophyll content, and plant height (Table 4). The nitrogen index
(NBI) shows a good correlation with soil depth (r = 0.685, p < 0.001), indicating that the nutrients may
be limited by shallow soil depths. The NDVI and the Channel G% indices allow for an assumption of
plant height, as correlations are good (NDVI: r = 0.703, p < 0.001; Channel G%: r = 0.515, p < 0.001),
even when comparing across functional groups, i.e. by considering mosses and dwarf shrubs together.
Species-specific correlations are listed in Tables S5–S8. Specifically, the correlation (Figure 2b) between
SLA and chlorophyll (r = −0.718, p < 0.001) is almost solely driven by the moss H. splendens, which
shows a strong correlation when analyzed separately (r = −0.745, p < 0.01), whereas V. vitis-idaea
and E. nigrum showed no significant correlation. A similar case is the SLA to flavonol correlation
(r = −0.512, p = 0.001; Table 4). In this case, E. nigrum is the only species showing a significant
correlation when analyzed species-wise (r = −0.589, p < 0.05), while the two other species showed no
significant correlation.
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Table 4. Correlations between greenness indices and plant traits at plot level. Root Mean Squared Error
(RMSE) of the linear regressions (slope, intercept) is computed for significant correlations with r > 0.4.
Chl = chlorophyll content, Flav = flavonol absorbance, and NBI = nitrogen balance index, i.e. the ratio
between Chl and Flav.

BNDVI
Channel

G%
GRVI GNDVI

Plant
Height

Stress
Level

Soil
Depth

SLA Chl Flav NBI

NDVI

Correlation 0.779 0.749 0.689 0.440 0.703 −0.600 0.454 −0.451 0.634 0.260 0.190
Sig. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.116 0.254

RMSE 0.0571 0.0314 0.0592 0.0716 3.2404 22.682 6.086 0.0841 3.4572
Slope/

Intercept
0.762/
0.376

0.379/
0.159

0.606/
−0.485

0.377/
0.232

36.892/
−14.313

−188.3/
152.9

33.324/
−7.562

−0.446/
0.436

29.706/
4.320

N 88 87 88 88 50 36 88 38 38 38 38

BNDVI

Correlation 0.730 0.641 0.547 0.468 −0.654 0.246 −0.232 0.433 −0.029 0.327
Sig. 0.000 0.000 0.000 0.001 0.000 0.021 0.161 0.007 0.863 0.045

RMSE 0.0324 0.0627 0.0668 4.026 21.469 4.027
slope/

intercept
0.378/
0.076

0.576/
−0.595

0.480/
0.059

26.478/
−13.720

−233.09/
228.97

19.167/
7.033

N 87 88 88 50 36 88 38 38 38 38

Channel
G%

Correlation 0.909 0.454 0.515 −0.768 0.395 −0.141 0.376 −0.051 0.354
Sig. 0.000 0.000 0.000 0.000 0.000 0.397 0.020 0.759 0.029

RMSE 0.0340 0.0714 3.946 18.176
Slope/

Intercept
1.565/
−0.728

0.164/
0.768

49.185/
−10.268

−419.85/
203.61

N 87 87 49 36 87 38 38 38 38

GRVI

Correlation 0.338 0.554 −0.745 0.393 −0.124 0.387 0.019 0.301
Sig. 0.001 0.000 0.000 0.000 0.459 0.016 0.908 0.066

RMSE 3.7909 18.909
slope/

intercept
30.426/
12.371

−246.65/
11.770

N 88 50 36 88 38 38 38 38

GNDVI

Correlation 0.045 −0.220 0.070 −0.324 0.226 −0.120 0.294
Sig. 0.758 0.196 0.515 0.047 0.172 0.472 0.074
N 50 36 88 38 38 38 38

Plant
height

Correlation −0.553 0.425 −0.357 0.365 0.383 −0.160
Sig. 0.001 0.002 0.103 0.095 0.079 0.477

RMSE 22.129 6.3474
slope/

intercept
−3.085/
58.926

0.654/
7.765

N 34 50 22 22 22 22

Stress
level

Correlation −0.336 −0.110 −0.232 −0.090 −0.021
Sig. 0.045 0.707 0.425 0.760 0.944
N 36 14 14 14 14

Soil
depth

Correlation −0.025 0.103 −0.441 0.685
Sig. 0.883 0.539 0.006 0.000

RMSE 0.3768 5.3469
slope/

intercept
−0.027/
1.385

0.721/
15.182

N 38 38 38 38

SLA

Correlation −0.718 −0.512 0.086
Sig. 0.000 0.001 0.607

RMSE 3.1102 0.3605
slope/

intercept
−34.048/
28.541

−2.282/
1.353

N 38 38 38

Chl

Correlation 0.541 0.045
Sig. 0.000 0.790

RMSE 0.3530
slope/

intercept
0.051/
−0.180

N 38 38

Flav

Correlation −0.787
Sig. 0.000

RMSE 4.5306
slope/

intercept
−13.759/
39.239

N 38
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(a) (b) 

  
(c) (d) 

(e) (f) 

Figure 1. Species are marked with different symbols (see legend). 95% confidence intervals are grey.
All correlations are significant (p < 0.001). The panels show the relationships between: (a) The active
Greenseeker and the passive Mapir NDVI; (b) the BNDVI from the modified camera and NDVI; (c) Channel
G% from the ordinary camera and NDVI; (d) chlorophyll content (Chl) and NDVI; (e) and (f) represent
our satellite upscaling; comparing ground-based Greenseeker NDVI and Sentinel-2 NDVI, (note n = 14).
NDVI is calculated with the named bands (= B). Equations and RMSE are shown in Table S4.
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(a) (b)

Figure 2. Relationship of two trait correlations from Table 4. Species are marked. 95% confidence
intervals are grey. Relation between (a) median plant height and NDVI, (b) chlorophyll content and
SLA. Equations and RMSE are shown in Table S4.

3.3. Intraspecific Trait Variablility

Table 5 illustrates the overall trait variability during the study. Plant traits varied in the course
of the study, with species showing contrasting responses (Figure 3). For example, Chl increased in
V. vitis-idaea, but was stable in E. nigrum and H. splendens (Figure 3a), while the flavonol content
was rather constant over time, but significantly higher in V. vitis-idaea than in the other two species
(Figure 3b). In early June, however, all studied species showed a sudden decline in chlorophyll content
(Figure 3a; DOY 152), (F4,14 = 7.945, p < 0.001), which coincided with the temperature dropping almost
to freezing point and light snowfall during DOYs 150–151 (Figure S4). The post-hoc Bonferroni test
confirms significant differences in chlorophyll content on the sampling dates before (DOY 138) and
after (DOY 172) the temperature drop (p = 0.020 and p = 0.015). NDVI varied considerably within
species (long boxes in Figure 3c) and only V. vitis-idaea showed a temporal trend in NDVI, which
coincided with an increase in chlorophyll content (compare Figure 3a,c). SLA was constant over time,
but significantly higher in the moss than in the two dwarf shrubs (Figure 3d).

Table 5. Descriptive statistics of the monitored plant traits on species level.

Name Specie Mean N
Std.

Deviation
Std.

Error
Median

5%
PCTL

25%
PCTL

75%
PCTL

95% PCTL

Greenseeker
NDVI

E. nigrum 0.65 59 0.094 0.012 0.62 0.49 0.58 0.72 0.82
H. splendens 0.59 19 0.086 0.020 0.62 0.47 0.50 0.67 0.68 (90%)
V. vitis-idaea 0.67 10 0.066 0.020 0.67 0.58 0.62 0.72 0.78 (90%)

Channel G%
E. nigrum 0.405 58 0.050 0.006 0.393 0.333 0.372 0.444 0.511

H. splendens 0.396 19 0.037 0.008 0.383 0.350 0.383 0.415 0.474 (90%)
V. vitis-idaea 0.397 10 0.046 0.015 0.389 0.355 0.363 0.408 0.497 (90%)

Plant height
E. nigrum 10.4 33 3.975 0.692 9.5 4,7 7.0 13.3 17.9

H. splendens 5.5 11 1.955 0.589 5.0 3.5 4.0 6.5 9.7 (90%)
V. vitis-idaea 11.8 6 6.55 2.676 10.5 6.0 6.0 19.0 -

SLA
E. nigrum 0.089 69 0.022 0.0027 0.085 0.057 0.072 0.105 0.130

H. splendens 0.257 69 0.086 0.0104 0.246 0.164 0.189 0.291 0.411
V. vitis-idaea 0.080 61 0.019 0.0024 0.079 0.052 0.066 0.092 0.117

Chl
E. nigrum 24.72 70 4.267 0.510 25.26 16.25 21.44 27.57 30.67

H. splendens 19.88 69 5.122 0.617 20.01 11.90 15.59 23.88 28.54
V. vitis-idaea 28.25 61 6.491 0.831 26.55 20.21 23.63 31.39 40.96

Flav
E. nigrum 0.833 69 0.164 0.020 0.818 0.542 0.727 0.943 1.145

H. splendens 0.736 67 0.126 0.015 0.728 0.519 0.642 0.842 0.942
V. vitis-idaea 1.671 61 0.232 0.030 1.706 1.297 1.558 1.843 1.944
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(a) (b) 

  
(c) (d) 

Figure 3. Intraspecific trait variability and its changes during the spring season for the species Empterum
nigrum, Vaccinium vitis-idaea, and Hylocomium splendens. All species were monitored in varying health
states, while each value represents one plot dominated by the named species. (a) Chlorophyll content
(Chl); (b) flavonols (Flav); relative absorbance values; (c) Greenseeker NDVI; (d) SLA. These results
were obtained at a moisture content (percent of wet weight) ranging from 55% to 75% for H. splendens,
63 to 68% for V. vitis-idaea, and 63 to 71% for E. nigrum.

3.4. Suitable Traits for Stress Monitoring

Our stress level estimate (Table 4) correlated with NDVI (r = −0.600, p < 0.001) and BNDVI
(r = −0.654, p < 0.001), while the RGB indices performed best; r = 0.768, p < 0.001 for the Channel G%
and r = −0.745, p< 0.001 for the GRVI, both as linear functions. Allowing a logistic relationship, a higher
correlation level is obtained r = −0.833, p < 0.001 (Figure 4a) and r = −0.650, p < 0.001 (Figure 4b).
Stress level estimates were also significantly correlated with plant height (r = −0.553, p = 0.001), as
well as with soil depth (r = −0.336, p < 0.05). For litter, the relation with stress is reasonable, but not
significant (r = −0.419, p = 0.084, n = 18). Neither flavonol absorbance nor chlorophyll content or the
NBI readings could be related to the stress estimate (Table 4). No correlation was found for SLA and
stress level (n = 14).

  
(a) (b) 

adj. R² = 0.694 adj. R² = 0.424 

Figure 4. Comparison of stress level to greenness indices. 95% confidence intervals are dashed. Relation
between (a) stress level and the RGB index Channel G%; (b) stress level and Greenseeker NDVI.
Equations are shown in Table S4.
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4. Discussion

The range of intraspecific trait variability (1st research question), is attributed well during the
study. Some plant traits remained relatively stable during spring (SLA, Plant height, Flav), while others
showed more variations during the season and to environmental circumstances (NDVI, ChannelG% and
Chl). The small leaves of E. nigrum and shoots of H. splendens made the SLA measurements challenging.
However, the infrequently used method that we decided to apply seemed to work well, as our results
are comparable to SLA values retrieved in previous studies [48–50]. To our knowledge, our plots did not
suffer from any major stress (browning) events during the last 3 years prior to our measurements, except
that Vaccinium myrtillus in the area had been partly defoliated by larvae of geometrid moths [51], but
this species was rare or absent in our plots. In the early growing season, plants are especially vulnerable
to winter-related stress and are showing accumulated stress responses from the previous years [13,14].
Hence, we monitored the natural range of trait variabilities from start of the growing season (DOY 130)
onwards. Chlorophyll content was dropping significantly when temperature fell to almost freezing
point. However, more research is needed to validate this result. It might be that the slight snowfall, or
both parameters jointly, instigated the decline in chlorophyll concentrations.

The second research question was to assess whether any of the studied plant traits are suitable
for stress monitoring. Our data show that the stress level differed between plots; we found that
plant height was related to soil depth and that soil depth was also related to NBI. Although we did
not find any significant correlation between plant height and NBI, we assume that soil depth is a
limiting factor for this ecosystem. Lower soil depth affects water and nutrient availability as well as
soil temperature [52] and is also associated with areas of low snow accumulation during winter [13].
This is supported by the fact that the stress level decreased with increasing soil depth and that NDVI
increased with increasing soil depth.

In general, the flavonol content is associated with plant stress reactions [53]. However, we could
not relate the flavonol absorbance to our stress level estimates. As the Dualex device estimates the
flavonol content from spectral properties, it might not be able to measure the relevant flavonols in
relation to the types of stress occurring in these subarctic plants. Dualex flavonol measurements are
performed at the wavelengths 375 nm (UV-A) and 650 nm (red) [34]. This results in screening of mainly
kaempferol, quercetin, and myricetin [53]. Our results are in agreement with Lefebvre et al. [54], who
concluded that the Dualex device could not accurately predict the flavonol content in the three alpine
plants they studied.

Concerning the third research question, our results show that ordinary RGB cameras may be
used as NDVI surrogates and that they reflect various plant traits well. They performed equally well
as modified cameras (with the infrared filter removed) for near-remote sensing approaches in the
subarctic ecosystem. We found that a normal gray card, as used by professional photographers, was
sufficient for the calibration process. Based on our findings, we recommend a simple white balance.
Even if correlations to NDVI were slightly higher for BNDVI (r = 0.779) than for RGB greenness indices
(0.689−0.749), one of the main strengths of the RGB cameras is that they are easier to operate than
the modified devices. Sonnentag et al. [46] showed that different RGB cameras produce comparable
results and that the choice of file format is not that important. Also, Nijland et al. [55] identified
band separation and dynamic range as main problems when using converted cameras and therefore
recommended the use of true color imaging. Another aspect is that the distribution of RGB cameras via
smartphones is enormous and might be valuable for citizen science projects or app development [56].
In general, our greenness measurements are in agreement with existing reports on phenology at higher
latitudes [30,57].

Moreover, the Channel G% index performed better than NDVI in characterizing some plant traits.
This includes the stress level which showed a stronger correlation to Channel G% (linear: r = −0.768
vs. r = −0.600; logistic: r = −0.833 vs. r = −0.651) and NBI which showed a significant correlation
(r = −0.354) to Channel G%, but not to NDVI. Consequently, the Channel G% index is of additional
value for screening plant stress (2nd research question). The significant correlation between RGB indices
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and chlorophyll meter readings (r = 0.38, p < 0.05) also implies that the RGB-based indices could be
potential NDVI surrogates (see Table 4). In contrast to previous studies [28,29,58], our GNDVI data did
not show any significant correlation with chlorophyll content or other plant traits. Correlations between
chlorophyll and NDVI showed reasonable results [29], indicating that chlorophyll measurements are
valid in spite of the untypical leaf structures of H. splendens and E. nigrum.

We found a high correlation between spaceborne NDVI and ground-sampled NDVI measured by
the active Greenseeker device (maximum r = 0.968 for the Sentinel-2 NDVI calculated with bands 4
and 7). Nevertheless, despite of the strongly significant correlation, it is based only on 14 data points,
implying that relationships have to be handled with care. It is a higher correlation than retrieved in
previous studies, where near-remotely sensed NDVI data were compared to NDVI from Sentinel-2
and Landsat 8 [59,60]. A likely reason for the very strong correlation is that this study was carried
out in a very open subarctic woodland (in parts nearly treeless and then considered as heath) where
understory vegetation contributes very much to the NDVI detected by the satellites. We did not find
major differences in the correlations, even when spectral properties (bandwidth and wavelength peaks)
were not similar. This strongly suggests that active sensors can be used for validation of spaceborne
data, for example, from Sentinel-2.

5. Conclusions

The objective of this study was to assess the applicability of common plant traits and near-remote
sensing approaches as tools to monitor the health state of dominant understory subarctic vegetation
types that previously were shown to be vulnerable to winter climate change and other types of stress.
In order to determine intraspecific trait variability, species were monitored in different health states.
Due to this screening we are able to better validate the effect size of a browning event on the studied
species. As the study was set in an area not recently damaged by stressful events, the different stress
levels could be explained by differences in soil depth, which again act as a surrogate for several
potential stressful elements, including moisture and nutrient deficits during the growing season and
little snow protection during winter. Channel G% was the best RGB-based index in our study, and
we recommend the use of this index. Finally, we found promising results by combining spaceborne
Sentinel-2 data with the active near-remote sensor for measurements of NDVI. This could be a useful
tool for upscaling the role of understory vegetation to the total NDVI measured by satellites in regions
where browning occurs. Further research is recommended on the satellite upscaling, but also on the
measured chlorophyll drop following a rapid midsummer temperature decrease to freezing point.
Finally, we recommend following the same plots after a stressful weather event, to report direct as well
as long-term changes in situ.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/7/2102/s1,
Figure S1: Study site of the 18 plots at the northern parts of Tromsøya (Norway). Exact coordinates are given in
Table S1. Figure S2: Typical vegetation plots within the study area. (a) Detail view of one of the satellite upscaling
areas. The photo was taken on the day of the upscaling experiment. Note: the snow patch on the left, which
made plot selection difficult. The leafless trees show that this is from early spring prior to budbreak. (b) RGB
image of a healthy plot (1 m2) of E. nigrum. (c) RGB image of a stressed plot of E. nigrum. Figure S3: Illustration of
the working process for the different species. After measuring at least eight times with the chlorophyll meter
(Chl, Flav, NBI), middle parts are hole-punched and cut and stored in sealed, numbered glasses to determine
moisture content and SLA. Figure S4: Weather statistics for Tromsø from November 2016 to July 2017. The red line
shows the mean value of daily temperature. The black line shows the average temperature from 1989-2018. Blue
bars indicate the snow depth. Snow depth and long-time temperature data are from the Tromsø weather station
(SN90450) located about 5.6 km south of the study area, while daily mean temperature is from the Stakkevollan
weather station (SN90495) located about 900 m south of the main cluster of field plots. Table S1: Plot descriptions,
including coordinates, stress level estimates, plant height, soil depth, litter, slope, and vegetation assessment.
Table S2: Coordinates of the waypoints for satellite referencing. Waypoint coordinates are different from plot
coordinates. Table S3: Plot-level relationships between different greenness indices and chlorophyll content for
different calibration methods. Wb =white balance, 3-step = 3-step reflectance calibration. Table S4: Equations
corresponding to the linear regressions in Figures 1 and 2. Table S5: Correlation table for plots dominated
by E. nigrum. Correlations are computed by Pearson’s correlation, while significance is two-tailed. Table S6:
Correlation table for plots dominated by Vaccinium vitis-idaea. Correlations are computed by Pearson’s correlation,
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while significance is two-tailed., Table S7: Correlation table for plots dominated by Hylocomium splendens.
Correlations are computed by Pearson’s correlation, while significance is two-tailed. Table S8: Correlation table
for mixed plots of Empetrum nigrum and Hylocomium splendens. Correlations are computed by Pearson’s correlation,
while significance is two-tailed.
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Abstract: The trophic state of Lake Ladoga was studied during the period 1997–2019, using the
Copernicus Marine Environmental Monitoring Service (CMEMS) GlobColour-merged chlorophyll-a
OC5 algorithm (GlobColour CHL-OC5) satellite observations. Lake Ladoga, in general, is mesotrophic
but certain parts of the lake have been eutrophic since the 1960s due to the discharge of wastewater
from industrial, urban, and agricultural sources. Since then, many ecological assessments of the
Lake’s state have been made. These studies have indicated that various changes are taking place
in the lake and continuous monitoring of the lake is essential to update the current knowledge of
its state. The aim of this study was to assess the long-term trend in chl-a in Lake Ladoga. The
results showed a gradual reduction in chl-a concentration, indicating a moderate improvement. Chl-a
concentrations (minimum-maximum values) varied spatially. The shallow southern shores did not
show any improvement while the situation in the north is much better. The shore areas around the
functioning paper mill at Pitkäranta and city of Sortavala still show high chl-a values. These findings
provide a general reference on the current trophic state of Lake Ladoga that could contribute to
improve policy and management strategies. It is assumed that the present warming trend of surface
water may result in phytoplankton growth increase, thus partly offsetting a decrease in nutrient load.
Precipitation is thought to be increasing, but the influence on water quality is less clear. Future studies
could assess the current chemical composition to determine the state of water quality of Lake Ladoga.

Keywords: Lake Ladoga; CMEMS GlobColour CHL-OC5; eutrophication; water quality assessment;
pulp and paper mill; climate change; ecological status; remote sensing; phytoplankton and
chlorophyll-a; chemical wastewater pollution

1. Introduction

Assessing the trophic state of Lake Ladoga is essential because of its past history of severe water
pollution [1,2]. The history of the Great Lake Ladoga begins after the melting of the ice of the last
glaciation, when Ladoga became separated from the so-called Yoldia Sea about 10,000 years ago [3].
The earliest drainage of the lake was to the Gulf of Finland in the direction of the region now known
as the city of Vyborg through the threshold of Vetokallio near Heinjoki [3]. Post-glacial uplift, which
was, and still is, faster in the north, tilted Lake Ladoga causing a transgression of its southern shallow
shoreline, leading to the creation of the current Neva River connection about 3300 years ago [3]. For
the same reason, about 9500 years ago, a connection was established from Lake Onega to Ladoga
via the River Svir [3]. The birth of the Neva caused the surface of Ladoga to drop by about 12 m,
producing the present shape of the lake [3]. The Lake was oligotrophic (mostly free from nutrients)
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before the 1950s and mesotrophic (moderate nutrients) in the 1970s but some areas of the lake (mostly
coastal locations) have become eutrophic due to anthropogenic activities [1,4]. These anthropogenic
activities were mainly industrial enterprises (e.g., pulp and paper mills, aluminum) and agriculture [1,5].
Consequently, the discharge of wastewater (containing high amounts of phosphorus and nitrogen)
into the lake from these industries resulted in the degradation of water quality [1,2]. The lake has
a large catchment (Figure 1), and thus receives huge amounts of water containing anthropogenic
nutrients [2,6]. An important part of these waste waters discharge into the shallow Volkhov Bay
(southern coastal area) which receives its waters from the Volkhov sub-catchment (West Ladoga),
and Syas River (from the South) [5]. Also, extensive agricultural activities resulted in the washing of
phosphorus and nitrogen into the lake [1,6]. It is well documented that the lake contains toxic chemical
substances, pesticides, other harmful material as well as large amounts of sediment [5,6]. Eventually,
Lake Ladoga flows through River Neva near St-Petersburg into the Gulf of Finland [7]. The lake is
the main source of clean water not only for local communities, but also for the city of St. Petersburg
(over five million inhabitants), thus there is much pressure to maintain good water quality. Also, the
importance of the lake for recreational use is steadily increasing [6,8].

Thus, continuous monitoring of the ecological status and water quality of this large lake is essential
to understand and assess changes in its environment. Monitoring activities have been on-going for
several decades [1,3,5,6]. In this paper, ecological status means the assessment of water eutrophication,
through changes in phytoplankton levels. The use of phytoplankton biomass and chlorophyll-a (chl-a)
concentration is a common method employed to study ecological status in water bodies [9,10]. This
method is successful because chl-a correlates well with phytoplankton biomass abundance [9,11] and
is used as an indicator for eutrophication [10]. Currently, low-cost instruments exist for measuring in
situ chl-a in water bodies [12–14]. On the other hand, the use of these low-cost instruments still rely on
the use of expensive research vessels and time consuming field surveys. However, the development of
remote sensing and satellite-based imagery serves a wider audience [10,15]. Although estimates of
chl-a based on remote sensing are generally less accurate than laboratory measurements, the approach
provides a cost-effective and sufficiently reliable regional picture of a phenomenon that can be used for
environmental monitoring and management needs. By using remote sensing data, the amount of chl-a
can be calculated using empirical formulas based on the correlation between the violet-green light
reflected from the water surface and the measured amounts of chl-a [16]. In addition, remote sensing
methods provide historical time series of observations, for example, Landsat satellite data have been
available since 1972 and MODIS data since 2000. Pozdnyakov et al. [1] have used SeaWiFS satellite
images to study the biochemical properties of Ladoga from 1998–2004. Pozdnyakov et al. [1], were
also able to validate the consistency of remote sensing derived chl-a with in situ chl-a measurements
in Lake Ladoga. Studies using temporal remote sensing data to study the ecological status of Lake
Ladoga are quite few and none have been done after 2010 (e.g., Pozdnyakov et al. [1]). The complex
nature of coastal and lake water bodies [excessive colored dissolved organic matter (CDOM) and
mineral particles] makes it difficult to use remote sensing to assess chl-a concentrations (so called
Case II water bodies), thus many empirical, local, algorithms have been developed [1]. Developing
different algorithms to suit each local water type around the globe is a dilemma. Thus, the main goal
of this study was to use a global remote sensing data product that has considered the complex nature
of different water types. In this study, we utilized the merged chlorophyll-a (chl-a) product derived
from SeaWiFS, MERIS, MODIS Aqua, VIIR, and OLCI satellite sensors (1997–2019) to characterize the
general trend of chl-a in Lake Ladoga. The novelty in our approach is to use geostatistical analytics
of remote sensing data to produce a historical and synoptic picture of the state of Lake Ladoga. We
anticipate that the results of this long-term assessment will contribute to the current information on
the ecological status of Lake Ladoga. This additional information may be beneficial to on-going policy
frameworks and management strategies of Lake Ladoga.
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2. Materials and Methods

2.1. Study Area

Lake Ladoga is the largest lake in Europe having a surface area of 17,765 km2 [17], with an average
depth of 48.3 m [17] and maximum depth of 230 m (Figure 1) [6,17]. The lake has a volume of 858
km3 [17], a water retention time of 12 years, and a coastline of 1570 km [17,18]. The lake has a total
catchment area of 282,200 km2, 20% of the area is located in Finland [6] (Figure 1b). The deepest parts
of the lake are in the North (60–200 m), and the shallowest parts (10–50 m) in the southern parts of
the basin [4]. The northern shores of the lake are rugged and rocky, while the western, southern, and
eastern shores are shallow with fine-grained sediments [4]. The East and South contain extensive sandy
beaches as well [4]. Water from Finland flows via the River Vuoksi from the west into Lake Ladoga
while from the East, the water from Lake Onega drain via the River Svir [4]. From the South, the
waters from Lake Ilmen flow into Ladoga via the River Volkhov [4]. Also, the River Syas and dozens of
smaller streams and rivers flow into Ladoga as well [5]. Eventually, Lake Ladoga flows through River
Neva near St-Petersburg into the Gulf of Finland [7].

Mean air temperature in the area is +3.2 ◦C [18,19]. The coldest month (February) has a mean
temperature of −8.8 ◦C, while the warmest month (July) has +16.3 ◦C [19]. The mean annual
precipitation in the area is about 475 mm [19].

Figure 1. Shows Lake Ladoga, the study area. In (a), zoomed in with Ladoga in the center, Lake Onega
(upper right), and Gulf of Finland (lower left corner), buffer 1, buffer 2, square are sample sites. In
(b), Lake Ladoga drainage basin. In (c), is the bathymetric map of Lake Ladoga (image adapted and
modified from Subetto et al. 1998 [20]).

Along Lake Ladoga’s shores there are several cities which include: Sortavala, Priozersk,
Shlisselburg, Novaya Ladoga, and Pitkäranta (Figure 1a), with a combined population of about
100,000 people. Also, there is a long history of industrial activity, mainly wood processing industries.
Some closed pulp and paper mills were located near Priozersk, and Harlu, Läskelä. Currently, there
are still functioning pulp mills in Pitkäranta in the North-East and near the town of Novaya Ladoga
in Syasstroy (south). Lake Ladoga is inhabited by several endangered species, as the Ladoga Lake
Salmon and the Ladoga Ringed Seal [18].

2.2. Data

We used the merged (4 km × 4 km) global monthly chlorophyll (chl-a) product (1997–2019)
from GlobColour [21]. The merged chlorophyll-a OC5 algorithm product (CHL-OC5) is available
from September 1997 to present and is updated annually [21]. The global monthly chl-a is a “Cloud
Free” level four (L4) product created by merging data from four satellite sensors, the Sea-Viewing
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Wide Field-of-View Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), Moderate
Resolution Imaging Spectrometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and
Ocean and Land Color Instrument (OLCI) [21]. The GlobColour products were downloaded from the
Copernicus Marine Environmental Monitoring Service (CMEMS) website: http://marine.copernicus.
eu/services-portfolio/access-to-products/.

CMEMS CHL-OC5 dataset has been created using the OC5-algorithm which has been shown
to work very well for Case II water bodies and has been validated using a large number of global
in situ data from sea and lake areas [21,22]. We tested the dataset for lake Ladoga using data from
Letanskaya and Protopopova [23], giving a reasonble fit, the CHL-OC5 dataset seemed to overestimate
chl-a values in the lower range (below 5 mg m−3), but for the higher ranges (over 15 mg m−3) the data
was consistent with the in situ values. As our main interst was in the trend of water chlorophyl-a
content and not in absolute values, we used the CMEMS CHL-OC5 dataset in our study, with the
notion that the values are not exact values, but relative indicators derived from a global dataset.

The datasets are for the months of June, July, August, September, and October. The downloaded
chl-a data was processed further using the SeaWiFS Data Analysis System (SeaDAS) software [24].
SeaDAS is a free and opensource software developed and maintained by Ocean Biology Processing
Group (OBPG) [24]. In SeaDAS, the land and water mask were created, and the no data layer added. The
appropriate vector data was added, and the final images exported and compiled using Inkscape [25].

Additional processing of the chl-a was done with R software (R Core Team, 2020, [26], with raster
package [27], to extract the mean, minimum and maximum values of chl-a. The results were then
written to Excel format with the R package writexl [28]. Also, for each year (1997–2019), we calculated
the (seasonal) mean of means for the five months (June, July, August, September, and October). Hence,
in this study we used season to represent the calculated mean of the five months. We calculated
the mean over the whole lake as a unit and within three sub-sample areas (buffer 1, buffer 1, and
central part of the lake). Buffers 1 and 2 were twelve and twenty kilometers, respectively, from the
shoreline (Figure 1). When calculating the season means, we excluded 1997 (only September) in the
trend analysis to prevent bias in the result.

3. Results

3.1. General Trend of Chl-a Concentration in Lake Ladoga: 1997–2019

The general trend of seasonal chl-a concentration in Lake Ladoga is negative (Figure 2, wl). The
negative trend is gradual (slope = −0.12416 and R2 = 0.4069). This indicates a moderate improvement
(decline in chl-a). In general, 2009 had the highest chl-a concentrations (>10 mg m−3) while the
lowest value was measured in 2017 (<5 mg m−3). Similarly, the trend in the sub-sampled locations
(s1, s2 and s3), was negative but non-significant ((buffer1: slope = −0.2962 and R2 = 0.4212); (buffer2:
slope = −0.3039 and R2 = 0.3991); (center square: slope = −0.2974 and R2 = 0. 433)). Water surface
temperature (SST) had no observable trend in the lake during the study period.
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Figure 2. The average seasonal trend of chlorophyll-a concentration (mg m−3) 1998–2019. wl = whole
Ladoga lake, buffer1 = 12 km from shore line, buffer2 = 20 km from shore line, and central square = the
sample site in the middle of the lake.

3.2. Spatial Distribution of Chl-a Concentration Across Lake Ladoga

Figures 3–7 show the pixel-wise variability of chl-a concentration across the lake. For June, wide
distribution of chl-a concentration (moderate to high values) was observed for 1998, 2000, 2002, 2003,
2006 and 2009 (Figure 3). The high values were along the shallow southern shoreline and moderate
values were within the central part.
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Figure 3. The map of chlorophyll-a concentration at Lake Ladoga for the month of June (1998–2019).
Partially displayed as reference points are the Gulf of Finland (Southwest) and Lake Onega (Northeast).
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Figure 4. The map of chlorophyll-a concentration at Lake Ladoga for the month of July (1998–2019).
Partially displayed as reference points are the Gulf of Finland (Southwest) and Lake Onega (Northeast).
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Figure 5. The map of chlorophyll-a concentration at Lake Ladoga for the month of August (1998–2019).
Partially displayed as reference points are the Gulf of Finland (Southwest) and Lake Onega (Northeast).
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Figure 6. The map of chlorophyll-a concentration at Lake Ladoga for the month of September
(1997–2019). Partially displayed as reference points are the Gulf of Finland (Southwest) and Lake
Onega (Northeast).
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Figure 7. The map of chlorophyll-a concentration at Lake Ladoga for the month of October (1997–2019).
Partially displayed as reference points are the Gulf of Finland (Southwest) and Lake Onega (Northeast).

In July, higher chl-a concentrations spread across the lake (Figure 4). During this month, high
concentration values were measured in 2002, 2003, 2006, 2009, 2010. On the other hand, 2012 and 2015,
appear almost free from high chl-a values except on the southern coast.

The highest chl-a values in August were measured in 2002 (20.70 mg m−3), 2003 (21.61 mg m−3),
2006 (25.34 mg m−3), 2007 (18.82 mg m−3), and 2019 (19.76 mg m−3) (Figure 6). The year 2017 had very
low values while 2019 had moderate to high values across the entire lake.
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September–October marks the beginning of the winter cooling period causing a drop in chl-a
concentrations (Figures 6 and 7). The entire lake still had detectable chl-a values in September, except
in 2014, 2017 and 2018. The yearly temporal and spatial distribution of water temperature across Lake
Ladoga is driven mainly by the thermal bar phenomenon [1,3], which is even noticeable from satellite
images [1]. The thermal bar is a common characteristic of large lakes [1]. In Lake Ladoga, the thermal
bar is formed in spring and early summer [1,3]. The thermal bar is the column of water formed between
the cold (deep central) and warmer (coastal) waters of a lake [17]. It is the location of vigorous water
mixing caused by downwelling of water with a temperature of four degrees Celsius [3]. This is the
result of the physical property of water, that has its maximum density at +4 ◦C, thus heavier rather than
colder or warmer water, causes it to sink. The thermal bar effectively acts as a wall between the coastal
and inner water masses of a lake, inhibiting mixing of the two water masses. This, in turn, only allows
for near shore cyclonic currents caused by the prevalent winds and the Coriolis effect. Consequently,
there is a bloom in phytoplankton biomass (chl-a producer) along the coast. The thermal bar disappears
around the end of June and beginning of July when the lake’s water temperature is homogeneously
above +4 ◦C, usually up to the depth of 50–70 m [1,3]. As the thermal bar disappears, temperature
no longer plays a major role in chl-a concentrations in the lake [1,3]. The cyclonic current transports
the phytoplankton to the north of Lake Ladoga. It is important to note that during August, the effect
of the thermal bar has completely disappeared [1]. Before the disappearance of the thermal bar, the
water flow and movement of phytoplankton is cyclonic (counterclockwise) in nature (South-East to
North) [3], mainly along the shoreline (Figure 1c). The cyclonic nature of the water movement is driven
by the topography, bathymetry, selective westerly winds [1], and the rotation of the earth (i.e., the
so-called Coriolis phenomenon). There are also anticyclonic eddy currents in Lake Ladoga [29,30].
In general, anti-cyclonic currents are caused by weak bottom friction and southerly winds [29–31].
Most of the observed low chl-a concentrations are in the north and central parts of the lake while
the southern coastal areas remain unchanged. From our results and in-depth literature review, the
following factors were identified to be driving the on-going chl-a changes taking place in Lake Ladoga:
(i) Temperature, (ii) impact from industry, external load, and littoral settlements. These coastal areas
are locations of high industrial activity (e.g., paper mills), settlements and from external sources [1,3].

4. Discussion

As mentioned in Section 3.1 (first paragraph), we observed a gradual and negative trend in chl-a
distribution, indicating a moderate improvement of water quality.

4.1. Effect of Temperature and Eutrophication on Chl-a Concentrations

During the month of June, high chl-a concentrations are observed only along the
southern–southwestern coastal areas while the deeper parts of the lake remain clean (Figure 3),
due to the presence of the thermal bar. These coastal areas have major influxes of nutrients from rivers
like the Syas, Volkov and Svir, carrying municipal, industrial and agricultural waste [1,3].

The action of the southern summer winds causing anti-cyclonic eddies moves and distributes the
phytoplankton mass towards the central part of the lake [1]. The temperature along the shallow coastal
areas of the lake is now homogeneous [1]. Consequently, eutrophication by nutrients originating from
bottom sediments could possibly be a factor contributing to chl-a concentrations [1,3]. These eutrophic
sediments are thought to originate from high nutrient fall-out between the 1950s and 1990s, the era
of intense eutrophication [32]. However, the present role of eutrophication of bottom sediments is
arguably not a major factor [1]. Previous studies analyzing water samples from Lake Ladoga revealed
that the coastal areas in the North, Southwest, and South were very eutrophic [33]. Also, the southern
part of the basin has high concentrations of dissolved organic matter (DOM), primarily from external
water load, excretion from green vegetation and decay of macrophytes [1].

The cooling cycle in Lake Ladoga starts in September, causing reduction in phytoplankton biomass
and consequently a decline in chl-a values. An important aspect to consider here is the impact of
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climate change on Lake Ladoga. In general, the last two decades have been exceptionally warm, in
fact, the warmest period in the entire history of climate measurement. Sharov et al. [34], reported a
temperature increase of +1.5 degrees Celsius between 1950 and 2010 in Lake Ladoga [34]. Likewise,
years 2000 and 2015 were exceptionally warm [18]. Consequently, this has increased the duration of
the lake’s ice-free period from 210 days to 230 days [34–36]. A recent study by Karetnikov et al. [17],
also reported increases in temperature giving rise to shorter ice periods. As a result, the increase in
available sunshine (less ice) and higher surface water temperatures promote the growth of algae. A
similar observation (rising water surface temperature and fewer ice days) have been reported in Lake
Peipsi [37]. The impact of climate change on temperature increase promoting algal growth has also
been reported in other regions as well [38,39].

4.2. Impact from Industries, Coastal Settlements, and External Load

The decline in chl-a (an indicator of improved water quality) is largely due to the closing of paper
mills that led to less wastewater being discharged into Lake Ladoga [40]. High chl-a areas have been
observed around functioning paper mills and coastal cities, these sources discharge a considerable
amount of nutrient rich wastewater [5]. The closure of several mills led to a significant reduction in
primary phytoplankton (chl-a) production and phosphorus concentrations [5]. The anthropogenic
activities of the high-density settlements around Lake Ladoga could also be sources for nutrients
driving algal blooms [41]. Also, by analyzing comprehensive water samples from Lake Ladoga,
Holopainen et. al. [33], found parts of the lake to be eutrophic. They found high chl-a concentrations
near Sortavala Bay (26 mg/m3 in August) and Pitkäranta (functioning paper mill) in the northern shores.
High chl-a values were also in the southwest corner of Ladoga, in front of Zaporozhskoye (Metsäpirtti)
(11.9 mg/m3) and in front of the city of Novaya Ladoga (20–25 mg/m3). The paper and pulp mills in
Priozersk (Käkisalmi), Harlu and Läskelä were already established during the Finnish period (before
1945) and continued to operate during the Soviet and Russian era until their closure in the late 1980s.
The Pitkäranta pulp mill was also established as early as the 1920s, and its production continues today.
An active pulp mill is located near the town of Novaya Ladoga, on the south coast of Ladoga. Here
a major accident occurred in 1998 when 700,000 cubic meters of toxic sludge spilled into the Syas
River, about a kilometer from the shores of Lake Ladoga [5]. Phosphorus and nitrogen emissions from
agriculture have also been a major nutrient source, but agriculture has declined since 1990.

External load from the large catchment area is still a major factor keeping chl-a levels elevated [6]
(Figure 1b). The effect of the Volkov Bay (southern Lake Ladoga) is also obvious (Figures 3–7), as the
Volkov River is the largest external load on Ladoga. For example, high phosphorus concentrations
of 210 μg/L were found in the 1980s as compared to 46 μg/L in the 1950s and 1960s [5]. The sources
of these phosphorus values were from a large number of industrial plants (594) and agricultural
enterprises (680) in the watershed [42,43]. However, due to the closure of factories in the 1990s [5,40]
phosphorus concentrations in the Volkhov Bay were found to have dropped to 120 μg/l from 210
μg/l [5]. Especially the closure of paper mills has been a contributing factor to the improved water
quality of Lake Ladoga [1–3,5].

A similar trend of water pollution has been reported at the pulp and paper mills located at the
shores of Lakes Onega and Imandra [44–46]. Both of these locations (Kondopoga Bay and Imandra
Bolshaya Bay), have seen increased nutrient loads, other toxic chemicals and degraded water quality [45].
However, in comparison to Ladoga, Onega and Imandra, are considerably cleaner (Figures 3–7). To
put this into perspective, the chl-a values of Lake Onega (1999–2010) in Lahti, Petrozavodsk varied
between 1 and 7 mg/L without a clear trend (with an average of 2–3 mg/L), clearly indicating low
pollution levels [34]. Also, Onega’s burden is only one urban center, the city of Petrozavodsk. On the
other hand, recents studies in Onega have indicated significant water browning especially around
Petrozavodsk Bay [47].

The pollution and degradation of water quality from wastewater discharged from pulp and paper
mills, urban settlements and agricultural activities have been documented in other countries as well.
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For example, in Finland’s pulp and papers mills located along Lake Päijänne polluted the lake’s water,
thus degrading the water quality [48].

On the other hand, it is well documented that, better waste management practices by paper mills,
settlements and agricultural activities have improved the water quality of rivers and lakes [49,50]. For
example, the Stora Enso Veitsiluoto Mills at Kemi, northern Finland [51,52] and the Kaukas paper
mill on southern Lake Saimaa have been able to improve local water quality through better water
management processes [53]. It is worthy to note that the closing of paper mills was a major factor to
improved water quality in the absence of better waste management practices, e.g., [51,52,54].

5. Conclusions

This study assessed the trophic state of Lake Ladoga during the last 23 years (1997–2019).
Geostatistical tools were used to analyze remote sensing data for this purpose. Our analysis reveals
a slight decline in chl-a, suggesting there is a moderate improvement in the state of the lake. This
study observed that the southernmost and shallowest part of the water body was the most problematic
with high observable concentrations of chl-a. This southern area receives nutrients both from the Syas
catchment and from bottom sediments causing high phytoplankton growth. Observable differences
were seen in the deeper parts of Lake Ladoga in the northern part of the basin. In this northern part,
reduced chl-a concentrations were observed, although there were local differences, especially on the
north-eastern shore off the Pitkäranta factory site. Also, on the northern shore of Sortavala, there were
exceptions as well which could be due to the discharge of municipal sewage.

It is important to note that reducing the nutrient load in Lake Ladoga due to anthropogenic
activities is a slow and complicated process. These processes include effects of climate change, mainly
warming and ice reduction, both of which contribute to eutrophication of the lake. The impact of
climate change on rainfall is not certain, but it is generally assumed that rainfall will increase, thus,
increasing the external nutrient load of Lake Ladoga. Furthermore, deforestation in the catchment area
also increases nutrient leaching from the soil, and it is therefore uncertain whether the current good
trend in the decrease of chl-a will continue. Despite the slight improve of the state of Lake Ladoga
reported in this study, it appears that primary production is still relatively high. Our conclusion is in
line with previous studies of the lake [6].

In this study, after the visual assessment of satellite imageries and an in-depth literature review,
we are of the opinion that the current nutrient load and chemical waste influx in Lake Ladoga is less
now, as compared to 23 years ago. We are of the opinion that to further decrease chl-a concentrations
in Lake Ladoga, sewage from municipalities should be treated before entering the lake, agricultural
practices have to be adjusted to reduce washing of fertilizers, the nutrient load from fish farming
should be reduced and traditional fishing should be increased. These measures could potentially
improve the water quality of the lake.
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Abstract: Green leaf area index (LAI) is an important variable related to crop growth. Accurate and
timely information on LAI is essential for developing suitable field management strategies to mitigate risk
and boost yield. Several remote sensing (RS) based methods have been recently developed to estimate
LAI at the regional scale. However, the performance of these methods tends to be affected by the quality
of RS data, especially when time-series LAI are required. For crop LAI estimation, supplementary growth
information from crop model is helpful to address this issue. In this study, we focus on the regional-scale
LAI estimations of spring maize for the entire growth season. Using time-series multispectral RS data
acquired by an unmanned aerial vehicle (UAV) and the World Food Studies (WOFOST) crop model,
three methods were applied at different crop growth stages: empirical method using vegetation index
(VI), data assimilation method and hybrid method. The VI-based method and assimilation method
were used to generate time-series LAI estimations for the whole crop growth season. Then, a hybrid
method specially for the late-stage LAI retrieval was developed by integrating WOFOST model and
data assimilation. Using field-collected LAI data in Hongxing Farm in 2014, the performances of these
three methods were evaluated. At the early stage, the VI-based method (R2 = 0.63, RMSE = 0.16, n = 36)
achieved higher accuracy than the assimilation method (R2 = 0.54, RMSE = 0.52, n = 36), whereas at
the mid stage, the assimilation method (R2 = 0.63, RMSE = 0.46, n = 28) showed higher accuracy than
the VI-based method (R2 = 0.41, RMSE = 0.51, n = 28). At the late stage, the hybrid method yielded
the highest accuracy (R2 = 0.63, RMSE = 0.46, n = 29), compared with the VI-based method (R2 = 0.19,
RMSE = 0.43, n = 28) and the assimilation method (R2 = 0.20, RMSE = 0.44, n = 29). Based on the
results above, we considered a combination of the three methods, i.e., the VI-based method for the early
stage, the assimilation method for the mid stage, and the hybrid method for the late stage, as an ideal
strategy for spring-maize LAI estimation for the entire growth season of 2014 in Hongxing Farm, and the
accuracy of the combined method over the whole growth season is higher than that of any single method.

Keywords: crop growth; reflectance saturation; crop model; assimilation; crop growth stage;
method combinations

Sensors 2020, 20, 6006; doi:10.3390/s20216006 www.mdpi.com/journal/sensors

131



Sensors 2020, 20, 6006

1. Introduction

Leaf area index (LAI) is defined as the one-sided green leaf area per unit ground area in broadleaf
canopies and as the projected needle leaf area in coniferous canopies [1,2]. Because green LAI (LAIg)
determines light interception and absorption of the crop canopy [3], estimation of crop LAI is critical for
understanding the biophysical processes of crop growth that are essential for predicting crop biomass
or yield [4,5].

To achieve accurate LAI estimations, a number of remote sensing (RS) based approaches have
been developed over the past few decades. These approaches can be grouped into two broad categories:
empirical methods and physical models [6]. Empirical methods can be further divided into parametric
and non-parametric empirical methods based on whether there is an explicit relationship between
selected RS bands and LAI [7]. A series of optical vegetation indices (VIs) have been developed
through combinations of reflectance in two or more bands [8,9] for maize LAI estimation. For instance,
a normalized difference vegetation index (NDVI) [10] calculated from the reflectance in red and
near-infrared bands are commonly used for retrieving canopy biophysical properties of corn [11].
Because NDVI is highly affected by soil reflectance at low LAI and shows asymptotic saturation at
high LAI [12], some more VIs were designed, such as the optimized soil adjusted vegetation index
(OSAVI) [13] for considering the soil effect and the two-band enhanced vegetation index (EVI2) [14]
for tackling reflectance saturation. The building of empirical methods depends on ground LAI
observations which were generally made using different instruments [15–17]. Using ground LAI
measurements and RS-based VIs, several empirical methods have been developed for maize LAI
estimations [7,10,11]. The non-parametric empirical methods usually define the regression function
between the RS information and the target variable, e.g., LAI directly [18]. Machine learning techniques,
include neural network [19], support vector regression [20] and gaussian processes [21], are typical
non-parametric empirical methods to generate LAI products from a variety of RS data products.
Although empirical methods are effective in estimating LAI with high accuracy, they are site- and
time-specific [22].

Physical models are constructed based on simulations of radiative transfer process in vegetation
canopy, and therefore their utilities are not limited to a specific site or a certain time of a year as
empirical methods. Physical models can be further divided into geometric optical (GO) model [23],
radiative transfer (RT) model [24] and RT-GO model [25]. In these models, LAI is one of the canopy
parameters that determine canopy reflectance. With the canopy reflectance acquired from RS data and
other canopy parameters known, these models can be inverted to derive LAI. RT models are more
suitable for crop LAI retrievals than GO models as a result, the PROSAIL model, a RT model, has been
commonly used to simulate LAI for maize using RS data [26,27]. The limitations of physical models
include the high cost of parameters calibration and low model running efficiency. Recently, a physical
model and a machine learning technique were combined for LAI estimations [6]. For instance,
the PROSAIL model and a neural network algorithm were combined to estimate maize LAI with high
accuracy [28]. The machine learning algorithm can help improve the efficiency of physical models,
but the high cost of parameters calibration cannot be completely avoided.

Because crop growth is a long-term process, continuous LAI information for the entire growth
season is critical to calculate corresponding biomass at different growth stages and thus essential to
predict the final yield. Since empirical methods and physical models require RS data as inputs for LAI
estimation, the quality of RS data will influence the estimation accuracy, especially when time-series
RS data are required to generate LAI estimations for different crop growth stages. In the rainy season
in northeast China, clouds, shadows, and haze can strongly influence the application of multispectral
RS data with high and medium spatial resolutions in time-series LAI estimation. Because plants
usually develop fast in the rainy reason, the lack of good quality RS data will cause the LAI estimates
to miss the critical growth stage, and thus will consequently influence biomass or yield estimation.
At the late-growth stage, the appearance of more senescing leaves will limit the RS application of
LAI estimations [29]. The senescing leaves are still attached to plants and can be captured by in-situ
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LAI instruments. However, these leaves have reduced photosynthetic capacity and therefore present
quite difference spectral behaviors from that of green leaves. The presence of senescing leaves can
be at different extents at the late stage [14,30], which is a great source of uncertainty for canopy LAI
estimation from RS data. The saturation of reflectance and VIs is another significant limitation for
the late-growth stage. The EVI has been designed to provide improved sensitivity at high LAI [31];
however, it is still not sufficient for the spring maize.

As mentioned above, the quality issues of RS data may cause failures of directly applying
RS-based empirical and physical models for LAI estimation in rainy seasons or at the late-growth
stage. Hence, supplementary information should be referred to address this issue. Unlike other
vegetation types, crops usually own a more regular growth period which can be useful in building
mechanistic models for simulating crop growth. Crop models [32,33] are able to provide comprehensive
mathematical descriptions of key crop physical and physiological processes, which cannot be achieved
by RS-based methods. Therefore, it is more applicable to use crop models for LAI estimations during
rainy- and late-growth seasons.

Since crop models are generally designed to simulate crop growth at the site level, several data
assimilation approaches [34–36] have been developed to incorporate crop parameters estimated from
RS data into crop model, aiming to extrapolate the simulations of crop models from a single site to the
regional scale. Among them, the Ensemble Kalman Filter (EnKF) [37–39], particle filtering (PF) [40],
and four-dimensional variational data assimilation (4DVar) [41,42] are common methods used to link
crop models with RS data. Unlike RS-based LAI estimation methods, assimilation methods can tolerate
time-series RS data withlong time intervals, making it possible to retrieve accurate LAI estiamtions in
rainy season. Therefore, it is feasible to use crop models to fill data gaps where high-quality continuous
RS data are not available. Because assimimation methods still require a small amount of RS data,
it cannot address the quality issues of RS data at thelate-growth stage. Hence, further studies are
needed to improve the multi-phase LAI estimates by integrating RS data and crop models.

The objective of this study is to address the quality issues of RS data for time-series LAI generation.
Using the World Food Studies (WOFOST) crop model and RS data acquired by an unmanned aerial
vehicle (UAV) in 2014, three methods were applied to estimate LAI for spring maize in Hongxing
Farm. Based on the performances of these methods, a method combination was developed to
generate LAI for the entire growth season, which includes: (1) a VI-based empirical method for
early-stage LAI estimation before rainy season; (2) the EnKF assimilation method for rainy-season LAI
generation; (3) the hybrid method by integrating EnKF method and WOFOST model for late-stage
LAI retrieval. Complete details of the applied methods and their performances were presented in the
following sections.

2. Materials and Methods

2.1. Study Area and Field Campaign

The study was conducted in an experimental field (48◦08′ N, 126◦57′ E, WGS84) of Hongxing
Farm, located in Heilongjiang province, Northeast China. Hongxing Farm is a large state-owned farm
that lies within the temperate monsoon climate zone characterized by an average annual precipitation
of 548.8 mm (2014) and an average annual cumulative temperature (>10 ◦C) of 2293.0 ◦C (2014).
Spring maize accounts for nearly 50% of the planting area of Hongxing Farm. The spring maize
growing season extends from the beginning of May till mid-October. Another important crop in this
region is soybean, which is usually rotated with spring maize. All the fields in Hongxing Farm have a
unique identifier (ID). The ID of the experimental field selected for this study is 5-1-2. Plot 5-1-2 covers
11 hectares (ha), and seeded with spring maize on 18 May 2015. Figure 1 shows the location of the
study area and the spatial distribution of field observation sites.
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Figure 1. Locations of the study area and the field observation sites.

A total of six field campaigns were conducted in 2015 to collect data for algorithm development.
During the field campaigns, LAI, basic soil available nutrient (SAN) contents, yield, and growth period
were observed. For LAI, three sequential field campaigns were conducted on 29 June, 30 July and
25 August. The number of quadrats involved in these campaigns were 36, 28, and 29 respectively.
The isometric sampling method was used to establish these quadrats. The distance of each quadrat
is more than 100 m and the locations for 29 June are shown in Figure 1. The area of each quadrat
was 4 m × 6 m. The LAI-2000 Plant Canopy Analyzer (LI-COR) [15,43] was used to measure LAI of each
quadrat. Using an optical sensor, the LAI-2000 can measure the effective LAI, under the assumption
of random leaf spatial distribution. Besides LAI, the instrument can also calculate the mean foliage
inclination and fraction of the sky visible from beneath the canopy. In this study, a one-up-seven-down
scheme was used to measure the LAI, i.e., in each quadrat, we obtained one measurement of sky light
above the canopy and then seven measurements of diffuse light below the canopy. The final LAI was
calculated using an LAI-2000 analyzer. Visually recognizable brown leaves in the target quadrats were
eliminated before measurements so that in-situ LAI measurements only accounts for green leaves and
thus can be comparable with LAI from optical RS data.

Another field campaign was conducted to collect basic SAN contents at the same locations and
with the same quadrat size as the LAI campaigns, on 10 May 2015 before the application of basic
fertilizer. In each quadrat, three sampling points along the diagonal were located, from which soil
samples were collected. The collected samples were used to measure the available nitrogen (N),
phosphorus (P), and potassium (K) contents in the lab. The mean value of the three sampling points
was calculated and used as the basic SAN content of each quadrat. For crop yield, we collected the
total grain weight of the plot after harvesting. The total grain weight divided by experimental plot area
is used as the measured yield. The percentage impurity and water content were also recorded, and the
final yield was calculated by removing the impurity and adjusting for the water content at 25%.

The key growth stages were also observed and detailed information on LAI, SAN, yield and
growth stage experiments, including the sampling strategies, soil sampling procedures, and testing
methods, can be found in [44,45].
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2.2. Remote Sensing Data Acquired by the Unmanned Aerial System (UAS)

The RS data used in this study were acquired by a UAS. The UAS consists of three parts: an 8-rotor
UAV, an MCA (Multispectral Camera Array) system, and a ground system, as shown in Figure 2.
The MCA camera acquires five-band image with a resolution of 1280 × 1024 (1.3 M) pixels. The central
wavelengths of the five bands are 490 nm (blue), 550 nm (green), 680 nm (red), 720 nm (red edge) and
800 nm (near-infrared). The flight height was set to 100 m above the ground level, and the overlap for
the flight lines was 60% longitudinally and 40% laterally.

 
(a) (b) 

Figure 2. The components of the UAV platform (a) and geometric correction accuracy (b).

The image pre-processing includes reflectance calculation, image stitching, and geometric
correction. Among the 6 MCA channels, one of them was connected to an electronic component
(an e-ILS sensor) to receive incoming radiation. Using the incident solar radiation, the reflectance
for the other five channels was obtained, thus the reflectance can be called at-sensor-reflectance.
Because the UAV flight was conducted under clear weather condition and the fight height is 100 m,
the at-sensor-reflectance can be used as the reflectance of crop canopy without the need for atmospheric
correction in this study. Two software, the Agisoft PhotoScan and PIE-UAV (Pixel Information Expert),
were used to generate the ALS-similar point clouds and to stitch the images using information on
the flight height, camera attitude, and GPS. For geometric correction, 18 ground control points were
collected within the experimental field using a hand-held Trimble GeoXH differential GPS with a mean
estimated error of 0.10 m. Twelve points were used to make the geometric correction and six points
were used to calculate the mean deviation error (MDE) of the corrected UAV images. The results show
that the MDE was less than two pixels (0.1 m) for the June and July images and three pixels (0.15 m) for
the August image. After reflectance calculation, image stitching and geometric correction, six images
with a spatial resolution of 0.054 m × 0.054 m were obtained.

2.3. Estimation of LAI

The quality issues of RS data will cause failures of common RS-based empirical methods and
physical models for continuous LAI estimations for the entire growth season. Hence, crop models
were considered in this study to avoid the use of low quality RS data. By integrating the time-series RS
data acquired by the UAS and WOFOST crop growth model, the LAI was estimated using combined
methods and the processes of LAI estimation for the entire growth is shown in Figure 3.
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Figure 3. Processes of LAI estimation for the entire growth season using combined methods.

In Figure 3, the whole growth season was divided into three stages: the early stage, the mid stage,
and the late stage. The phase from the emergence to the end of the elongation stage was considered as
the early stage, and the beginning of the late stage is the tasseling period in this study. The mid stage
was defined as the phase between the early and the late stage. In general, the early stage includes the
period with high-quality RS time series, the mid stage can also be considered as the rainy season in
this study before leaf senescence, and the late stage are characterized by reflectance saturation and
leaf senescence. Based on field observations, we divided the specific time spans for the early stage
(from the beginning of the growing season to 14 July) and late stage (from 12 August to the end of the
growth season). The 14 July and 12 August dates were determined by calculating the middle dates of
the field campaigns (30 June, 29 July and 25 August). Three methods, including the VI-based method,
the assimilation method, and the hybrid method integrating crop model and the assimilation method,
were applied to estimate LAI for the three stages, respectively. The details of these methods are in
Sections 2.3.1–2.3.3.

2.3.1. VI-Based Method

Our previous study [44] showed that the empirical model can provide LAI estimates with higher
accuracy than that of the physically based model (e.g., via PROSAIL simulation). In this study,
the relationship between different VIs and ground LAI were analyzed, and the VI with the highest
accuracy was selected to build a linear empirical model to estimate LAI.

To ensure the accuracy of LAI estimation, five VIs were calculated from the UAV data. Besides the
commonly used NDVI and ratio vegetation index (RVI) [8], OSAVI was also selected to reduce the
effect of soil at low LAI, and EVI2 and modified triangular vegetation index (MTVI2) [9] to lower the
influence of reflectance saturation. The selected VIs were calculated using the following equations:

NDVI =
NIR−RED
NIR + RED

(1)
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RVI =
NIR
RED

(2)

OSAVI =
1.16× (NIR−RED)

NIR + RED + 0.16
(3)

EVI2 =
2.5× (NIR−RED)

NIR + 2.4×RED + 1
(4)

MTVI2 =
1.5× {1.2 ∗ (NIR−GREEN) − 2.5× (RED−GREEN)

}√
(2×NIR + 1)2 −

(
6 ∗NIR− 5× √RED

)
− 0.5

(5)

where NIR, RED and GREEN denote the reflectance of the near-infrared band, red band and green
band, respectively. Based on the calculated VIs and ground LAI, linear functions can be built. The VI
yielding the highest accuracy of LAI estimation was selected as the optimal method for the early-stage
LAI estimation.

2.3.2. Data Assimilation Method

As shown in Figure 3, the WOFOST model and EnKF method was used to apply RS assimilation
for mid-stage LAI simulation. As a primary member of the Wageningen crop models [46] and a core
component of the Crop Growth Monitoring System (CGMS) [47], the WOFOST model can simulate
daily crop physiological and ecological processes. There were two reasons to select the WOFOST
model. Firstly, it can predict daily LAI by simulating CO2 assimilation, respiration, leaf growth and dry
matter formation. Secondly, following model modifications referred in [44], WOFOST can simulate LAI
under nutrient-limited conditions. Compared with the water-limited LAI, the accuracy of estimated
nutrient-limited LAI can be improved by eliminating the influence of SAN on crop growth.

Before WOFOST can be used for LAI simulation, its main parameters must be calibrated. In this
study, three methods were used to acquire the input parameters: the SAN estimation method,
field campaigns, and the FSEOPT optimization software. The method proposed in [44] was used
to estimate the SAN content. Field data was also used to calibrate crop and soil water parameters.
Details of the field campaign method can be found in [45]. However, there are still some core parameters
cannot be calibrated using the above two methods. In this study, the FSEOPT optimization software [48]
was used to calibrate the uncalibrated parameters based on field LAI observations. We selected LAI
because it is the research subject of this study. The mean field LAI value of the experimental plot
was calculated as the output variable. Then the calculated LAI was used to conduct optimization
in the FSEOPT software. The optimization was conducted once using LAI data collected on each
date of 30 June, 29 July and 25 August, respectively. Three values for each parameter were acquired
after three-time FSEOPT performances and the mean value was calculated as the final calibrated
parameter. The calibrated WOFOST model was used to simulate daily crop growth and output LAI
results, which is necessary for the assimilation method.

In this study, the EnKF method [37] was adopted to assimilate the LAI estimated from the VI-based
method into the WOFOST model to correct for daily simulated LAI results, and LAI values after data
assimilation were taken as the output results for the mid stage. The EnKF method, which is based on
the Monte Carlo simulation, performs a model forecast in which the state variables are propagated
forward in time based on the modeled dynamics and updated using probability distribution and
available observations [49]. EnKF is a major assimilation method that can be easily applied in the
WOFOST model [50]. In the recursive algorithm of the Kalman Filter, the assimilation process is
divided into two steps [41]: forecast and update. In the forecast step, the covariance matrix (Ac) of the
state variables is calculated. If ensemble of the state variables is defined as At,

At = (x1, x2, x3, . . . , xN) (6)
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then Ac can be calculated as follow:

Ac =
(
At −A

)
∗
(
At −A

)T
/(N − 1)

where A is the mean value of At, T represents the transpose of a vector, N is the element number in At.
In the update step, the state variables were updated using the observation (RS based LAI).

The simulated ensemble of state variables was calculated by a nonlinear equation:

xi(t) = M[xi(t− 1)] (7)

where t is WOFOST simulation step (Day of year), M is the forecast equation.
If the observed ensemble (RS based LAI) was defined as Dt, the covariance matrix (Dc) of the

observed ensemble can also be calculated by Equation (6). Then the standard analysis equation can be
built to calculate the updated WOFOST simulated ensemble (Aa):

Aa = A f + K(Dt −HA) (8)

where Aa is the optimal estimated ensemble, Af is the forecasted ensemble calculated using Equation (7),
K is the Kalman gain matrix to weigh the difference between observation (RS-based LAI) and prior
simulation of the model’s state (WOFOST-based LAI), which was calculated by the following equation:

K = AcHT
(
HAcHT + Dc

)−1
(9)

where H is the parameter of observation operator. The Aa was used to replace At to realize the
assimilation process.

Filter divergence was observed in our study. It represents a tendency of the standard EnKF to reject
observations in favor of ensemble forecasting in subsequent stages, leading to incremental deviations
of LAI from actual measurements. To address this issue, an expansion parameter (E) was used:

E = R ∗N ∗ σ
2
1

D ∗ σ2
2

(10)

where R is a random number that is less than 1, D is the total number of days for the assimilation stage,
N is the number of days (from 1 to D) for the current WOFOST’s simulation step, σ2

1 is the variance of
RS based LAI of N, and σ2

2 is the variance of WOFOST-based LAI of N. When σ2
1/σ2

2 is larger than 4
and E is equal or greater than 1, E will be used to enlarge K to eliminate filter divergence in this study.

2.3.3. The Hybrid Method

As mentioned in the introduction, both VI-based and assimilation methods cannot address the
quality issues of RS data at the late-growth stage caused by senescing leaves and reflectance saturation.
Hence, we designed a new strategy (the hybrid method) for the late-stage LAI estimation. In the hybrid
method, the WOFOST model with and without UAV data assimilation were combined to improve
the late-stage LAI estimation. The UAV data were assimilated into the WOFOST model to generate
daily crop growth from the beginning of the growth season until the begin of late stage. Then the data
assimilation was halted, and WOFOST was only used to simulate LAI until the end of the growth
season. The processes of LAI estimation for the late stage is shown in Figure 4.
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Figure 4. Processes of LAI estimation for the late stage using hybrid method (DVS: the development
stage of the crop, DVS = 1 indicates the beginning of tasseling period for maize in this study).

Figure 4 indicates that the hybrid method can be considered as a specific crop model method in
which the WOFOST model without using RS data was run from the end of the mid stage (DVS = 1).
To enable the simulation of WOFOST, the parameters of crop growth status with DVS = 1 and RS-based
SAN contents were required as initial inputs. Then, the WOFOST model was self-operated and daily
LAI values were output as the late-stage results. This method was named as the hybrid method to
distinguish it from the WOFOST model used in the assimilation method.

Finally, three methods were combined to generate LAI time series for the entire growth season
(shown in Figure 3). Detailed LAI estimation processes are described as follows:

Step 1. For early-stage LAI estimation, the VI-based empirical method was applied. VIs were calculated
from time-series RS data acquired by UAS and the empirical model was built between field
LAI measurements and VIs. Then, LAI was estimated using the empirical model.

Step 2. For mid-stage LAI estimation, the RS-based LAI was assimilated into the WOFOST model to
correct the daily crop growth simulations from the beginning of the growth season to the end
of the mid stage to generate LAI estimations.

Step 3. For late-stage LAI simulation, crop growth was simulated using the method in Step 2 from the
beginning of the growing season to the end of the mid stage. Then, we halted RS assimilation
and used the WOFOST model instead to output the daily LAI.

2.4. Evaluating the Accuracies of LAI Estimations

The performance of the three LAI estimation methods was evaluated using field LAI data.
The correlation coefficient (R), coefficient of determination (R2) and RMSE were selected as the indices
to analyze the relationship between the estimated and field-measured LAI values. The R2 and RMSE
were calculated as follows:

Lmean =
1
n

n∑
k=1

Lobs,k (11)

L f = a× L + b (12)
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R2 =

∑n
k=1

(
L f ,k − Lmean

)2
∑n

k=1

(
Lobs,k − Lmean

)2 (13)

RMSE =

√∑n
k=1

(
Lk − Lobs,k

)2
n

(14)

where Lobs is the measured LAI values during the first three field campaigns introduced above, n is the
number of quadrats, Lmean is the mean value of Lobs, L is the RS-based VIs (vegetation index method) or
simulated LAI (WOFOST model and assimilation method), Lf is the linear fitting formula between L
(independent variable) and Lobs (dependent variable), a and b are the coefficients.

The R2 and RMSE were both used to evaluate the performance of LAI estimation methods.
Generally, the LAI estimation method with a higher R2 corresponding to a lower RMSE was selected
as the ideal method combinations for time-series LAI estimation.

Furthermore, the variable coefficient (CV) was selected to examine the spatial heterogeneity of
late-stage LAI estimations. The CV was calculated as follows:

CV =
SD

Mean
∗ 100% (15)

where SD is the standard deviation and Mean is the mean value of the research data (LAI and vegetation
indices in this study).

3. Results and Discussion

3.1. LAI Estimation Using the VI-Based Method

Using the linear regression model, the R values between RS-based VIs and field LAI were derived.
To show the significant correlation level, a significance test was also conducted by calculating the
p-value. p-value < 0.01 indicates highly significant correlation level and p-value < 0.05 for significant
correlation level. The R values and significance levels are listed in Table 1. The results show that RVI
provided the best LAI estimations with the highest R among all the indices on 30 June (the early-growth
stage) and 29 July (the mid-growth stage). EVI2 provided LAI estimate with the highest R on 25 August
(the late-growth stage). The R values on 30 June (RVI) and 29 July (RVI) reach highly significant level,
reaches significant level on 25 August (EVI2).

Table 1. The R values between vegetation indices and field LAI.

Date (Month-Day) Number of Samples NDVI RVI OSAVI EVI2 MTVI2

6-30 36 0.78 ** 0.79 ** 0.75 ** 0.67 ** 0.73 **
7-29 28 0.63 ** 0.64 ** 0.55 ** 0.46 * 0.39 *
8-25 29 0.30 0.30 0.42 * 0.44 * 0.33

** indicates highly significant correlation, * indicates significant correlation.

Subsequently, RVI and EVI2 were selected to build the RS-based statistical models for LAI
estimation. The R2 and RMSE values of the field LAI and estimated LAI were also calculated.
The statistical models and the accuracy analysis results are shown in Figure 5.
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Figure 5. Established empirical vegetation index models (A) 30 June, (B) 29 July, (C) 25 August.

From Figure 5, we can observe that the estimation accuracy on 25 August was considerably lower
than that on 30 June and 29 July. The VI saturation that occurs during the late-growth season is an
important reason for the significantly reduced accuracy on 25 August. In Table 2, the CV indices of
the five VIs on 30 June, 29 July and 25 August were calculated to represent the levels of VI saturation
on different dates. The results (listed in Table 2) show that the CV values on 29 July and 25 August
were lower than that on 30 June, which means that there is a saturation trend toward the mid and
late season.

Table 2. CV values of the vegetation indices for the experimental field (%).

Time (Month-Day) Field LAI NDVI RVI OSVI EVI2 MTVI2

6-30 31.51 10.92 30.54 13.44 20.37 20.82
7-29 17.96 1.49 9.35 2.83 6.82 4.12
8-25 12.71 1.51 4.64 2.50 5.38 4.43

To compare the levels of VI saturation at different stages, LAI estimations using the VI-based
method were shown in Figure 6. The figure reveals that the relative dynamic range (the dynamic range
ratio of simulated and observed LAI) was reduced on 25 August respective to 29 July and 30 June.
This result suggests that although the saturation has already appeared on 30 July, it is more obvious
on 25 August. Hence, the saturation is an important reason for the poor performance of VI-based
empirical method for LAI estimation at the late stage.

   

Figure 6. The accuracy of LAI estimations using the vegetation index method (A) 30 June, (B) 29 July,
(C) 25 August.

Besides VI saturation, leaf senesce may also have contributed to the lower estimation accuracy
on 25 August. At the late growth stage of spring maize, the primary receiver of dry matter from
photosynthesis will be shifted to storge organs. The WOFOST’ parameters FOTB (fraction of above
ground dry matter to storage organs) and FLTB (fraction of above ground dry matter to leaves) can
be used to demonstrate this phenomenon. The FOTB on 25 August is higher than that on 29 July,
while FLTB shows the opposite pattern (25 August: FOTB = 0.69, FLTB = 0.12; 29 July FOTB = 0.20,
FLTB = 0.18). Less dry matter supply will decrease leaf bioactivity and thus generate more inactive
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leaves. Chemical changes in inactive leaves can hardly be detected by optical RS data. In general,
saturation and senescence jointly decreased the correlation between LAI and RS-based VIs.

From Figure 6A, we can find that the accuracy of VI-based method for the early-stage LAI estimation
is higher than the assimilation method. Hence, the statistical model shown in Figure 5A was selected
as the ideal method to provide early-stage LAI results (shown in Figure 3). Furthermore, the RS-based
LAI was also required by the assimilation method, and the three statistical models shown in Figure 5
were used to generate the RS-based LAI for the entire growth season. Then the inverse distance
weighted interpolation method was used to generate daily RS-based LAI for data assimilation.

Although the VI-based statistical models can provide higher accuracy LAI estimations,
these models are commonly used for specific sensors and sampling conditions because the lack
of physical basis. Thus, any changes in location, crop type and application years can cause failures
in the original model application [51,52]. Because radiative transfer model [53] is the core algorithm
of the physical models, they reflect the transfer and interaction of radiation inside the canopy;
hence, the physical model methods can overcome the limitations of sensors, geographical locations,
and application times. A physical model [26] should be considered before applying the LAI estimation
method to a larger area with different crops for different years. Meanwhile, detailed radiation transfer
and interaction simulations in physical models require more input parameters; consequently, more field
experiments should be conducted before applying physical models. Because there is no significant
change in environmental conditions, growth stages, and remote sensing data calibration, the VI-based
statistical model was selected and re-calibration of the relationship between RS-based VI and field LAI
each time is not necessary.

3.2. LAI Simulation Using the Assimilation Method

3.2.1. WOFOST Model Calibration

The results of the WOFOST model calibration are presented in this section. The input parameters
of the WOFOST model include meteorological, soil, and crop parameters. In addition to the daily
meteorological and fertilization data, which were provided by Hongxing Farm, other parameters also
need to be calibrated in this study. Based on a sensitivity analysis (discussed in previous work [44]),
18 parameters sensitive to LAI were selected as core parameters to be calibrated using the three
previously described calibration methods in this study. The values of the calibrated parameters and
their calibration methods are listed in Table 3.

Table 3. Core parameter calibration results of the WOFOST model.

Parameters Description Original Values Calibrated Values Unit
Calibration

Method

TSUM1 Temperature sum from emergence
to anthesis 695 890 ◦C × d Field campaign

TSUM2 Temperature sum from anthesis
to maturity 800 710 ◦C × d Field campaign

CVL Conversion efficiency of assimilates
into leaf 0.68 0.64 kg/kg Field campaign

CVO Conversion efficiency of assimilates
into storage organ 0.67 0.81 kg/kg Field campaign

CVR Conversion efficiency of assimilates
into root 0.69 0.70 kg/kg Field campaign

CVS Conversion efficiency of assimilates
into stem 0.66 0.66 kg/kg Field campaign

FRTB Fraction of total dry matter to root 0–0.37 0–0.40 kg/kg Field campaign

FOTB Fraction of above ground dry matter
to storage organs (DVS = 0.1–1.7) 0–1.00 0–0.74 kg/kg Field campaign
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Table 3. Cont.

Parameters Description Original Values Calibrated Values Unit
Calibration

Method

FLTB Fraction of above ground dry matter
to leaves (DVS = 0.1–1.7) 0–0.62 0.20–0.75 kg/kg Field campaign

FSTB Fraction of above ground dry matter
to stem (DVS = 0.1–1.7) 0–0.85 0.06–0.57 kg/kg Field campaign

NBASE Basic soil nitrogen content 100 40–410 mg/kg SAN estimation
method

PBASE Basic phosphorus content 100 10–80 mg/kg SAN estimation
method

KBASE Basic potassium content 100 20–340 mg/kg Field campaign

SMFCF Soil moisture content at field capacity 0.11 0.46 cm3/cm3 FSEOPT
software

SMW Soil moisture content at wilting point 0.04 0.20 cm3/cm3 FSEOPT
software

SM0 Soil moisture content of saturated soil 0.39 0.570 cm3/cm3 FSEOPT
software

RDMCR Maximum root depth allowed by soil 10 2.4 m FSEOPT
software

SPAN Life span of leaves growing at 35 ◦C 33 28 day FSEOPT
software

The accuracy of simulated crop growth by the calibrated WOFOST model was firstly evaluated
using emergence time, anthesis time, maturity time and yield. These parameters were simulated
for the experimental plot and compared with field observations, and the results are listed in Table 4.
Comparing to observations, the crop growth, as indicated by those parameters in Table 4, simulated by
the calibrated model is better than the original model.

Table 4. Performance of calibrated and un-calibrated WOFOST model.

Variable Method Values Error

Emergence time
Observed 1 June -

Original model 23 May −8 days
Calibrated model 28 May −4 days

Anthesis time
Observed results 25 July -
Original model 15 July −10 days

Calibrated model 29 July 4 days

Maturity time
Observed results 27 September -
Original model 22 September −5 days

Calibrated model 30 September 3 days

Yield (kg/ha)
Observed results 9179 -
Original model 9607 −428

Calibrated model 9104 75

3.2.2. LAI Simulation Using the WOFOST Model

We applied the calibrated WOFOST model to simulate LAI which is required for the assimilation
process, and the model performances were also evaluated using field LAI. Results (shown in Figure 7)
show that the calibrated model can simulate LAI on 30 June with high accuracy, but yielded LAI
estimates with much lower accuracy on 25 July and 25 August. Calibration errors are the potential
reason for the lower accuracy at the mid- and late-stages. Some core parameters of the WOFOST model
can only be acquired as constant values at the site level; but in reality they may change with time.
Thus, errors cannot be completely avoided using either of the three calibration methods. These errors
will propagate and accumulate, hence reduce the accuracy of LAI simulation over time. The higher
simulation accuracy on 30 June than the other two dates also indicates that reducing the simulation
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time can weaken the calibration error propagation and accumulation and help the WOFOST model
provide better LAI simulation.

   

Figure 7. The LAI estimation accuracies for the calibrated WOFOST model (A) 30 June, (B) 29 July, (C)
25 August.

Although the single WOFOST model cannot provide LAI estimates with higher accuracy than the
VI-based method and the assimilation method for all the three growth stages (shown in Figures 6–8),
WOFOST was still required by the assimilation method and the hybrid method (shown in Figure 3).
Errors in the WOFOST-based growth simulation will be reflected in the performance of the assimilation
and the hybrid methods. Hence, improve the performance of WOFOST is beneficial for the estimation
of LAI time series in this study. Because LAI is simulated and analyzed at the pixel or sampling point
level, the parameters with high spatial heterogeneity should also be calibrated at the pixel level to
ensure the LAI simulation accuracy. Among input parameters, soil parameters, including soil water and
soil available nutrients, are the main variables that change within the experimental field in this study.
Considering that soil water contents can be simulated by WOFOST model using daily precipitation data,
the SAN values at the pixel level should be acquired before conducting WOFOST-based LAI simulation.

Figure 8. The LAI estimation accuracies using assimilation method (A) 30 June, (B) 29 July, (C)
25 August.

The SAN estimation method proposed in [44] was used to provide available N, P and K based on
RS data and the WOFOST model. From the accuracy analysis results, we can find that the estimation
accuracy for K (R2 = 0.15, RMSE = 23.56 mg/kg, mean = 168.26 mg/kg) was significantly lower than that
of N (R2 = 0.48, RMSE = 18.45 mg/kg, mean value = 296.78 mg/kg) and P (R2 = 0.37, RMSE = 7.05 mg/kg,
mean value = 31.63 mg/kg). Optimizing the K estimation would be useful to further improve the LAI
simulations. The instability of K and the lower effect of potassium ions in comparison with the other
two ions on crop growth, especially on leaf growth, are the possible causes for the lower estimation
accuracy using the proposed method. Adjusting the SAN estimation method to consider these factors
will be the focus of future studies to further improve the K estimation accuracy.

3.2.3. LAI Simulation Using the EnKF Assimilation Method

Using the method presented in Section 3.1, LAI was estimated using time-series UAV data first,
and then assimilated into the WOFOST model through the EnKF method. The calibrated model with
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data assimilation was used to generate LAI for 30 June, 29 July and 25 August. The R2 and RMSE
were calculated for the three LAI simulations using field LAI. The results (listed in Figure 8) show that
the UAV data improved the WOFOST model’s LAI simulation performance for 30 June and 29 July.
However, the accuracy for 25 August did not improve. Compared with the VI-based empirical method,
the assimilation method provides higher simulation accuracy for 29 July and similar accuracies for
30 June and 25 August. From Figure 8A, we see that there are two samples with higher simulated LAI
(around 3). Comparing Figures 6B and 8B, we can also find that the assimilation can provide mid-stage
LAI estimation with higher accuracy, thus, this method was selected as the ideal method for this stage
(shown in Figure 3).

To show the improvements that both calibration and assimilation can bring in LAI simulation,
the LAI trajectories were gathered from three methods including the calibrated WOFOST model,
the assimilation method, and the VI-based empirical method. We selected the mean LAI value of the
experimental plot and LAI’s variation range (10–90%) as the indexes and generate three trajectories
(shown in Figure 9). The results show that the assimilation can correct WOFOST’s LAI simulation to
certain extent. Because we didn’t conduct UAV flight after 25 August, the trajectories end at that time
(Day of year; DOY = 137).

Figure 9. The seasonal LAI estimated using three methods: the calibrated WOFOST model, the
assimilation method, and the VI-based empirical using RS data.

3.3. LAI Estimations Using the Hybrid Method

From above analyses, we can find that the late-stage LAI estimation accuracies of the VI-based,
the WOFOST model and the assimilation methods at the late stage are much lower than those at the early
and mid-stages. Model calibration, reflectance and VI saturation, and canopy changes associated with
leaf aging, jointly contributed to the reduced performance to certain extents. Hence, the hybrid method
was developed to improve the accuracy of AI estimation at the late stage. Using this method, LAI values
on 25 August were simulated, and the accuracy was evaluated using field LAI. The analysis result,
which is shown in Figure 10, shows that combining the WOFOST model with RS data assimilation
provides better LAI simulations than the VI-based empirical method (Figure 5C) and the RS assimilation
method (Figure 8C) alone because the problems of leaf aging and error accumulation can be avoided.
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Figure 10. The LAI estimation accuracies for 25 August using the hybrid method.

The time span delimitation of different crop growth stages is the main limitations for the application
of the hybrid method. The time window used for the three crop growth stages in this study influences
the application times of the VI-based empirical method, assimilation and crop model without data
assimilation. For instance, the beginning of the late-growth stage is the period when reflectance
saturation and leaf senescence both appeared; hence, the WOFOST model was used to replace the
assimilation method during that period. However, we calculated the start date from the field campaign
dates, which may be inaccurate because the goal of the field campaign did not involve measuring
reflectance saturation and leaf senescence. More field campaigns should be conducted to acquire the
best application time for the three methods.

4. Conclusions

In this study, we applied three methods to conduct time-series LAI estimations for spring maize.
Using field-measured LAI over an experimental field, the performances of these methods were
investigated. Results show that the VI-based method can be used to provide LAI estimation with high
accuracy before the appearance of reflectance saturation and leaf senescence. With the application
of the UAV data, the accuracy of the assimilation method was improved, and this method was an
ideal choice for the mid-stage LAI simulation. The hybrid method is designed to address reflectance
saturation and leaf senescence issues of the VI-based method and error accumulation of the WOFOST
model in the late stage, and its LAI estimation accuracy of at the late stage is higher than the other two
methods. In general, the accuracy analysis results show that the combined methods, which applied the
VI-based method for the early stage, the assimilation method for the mid stage, and the hybrid method
for the late stage, can provide highly accurate continuous LAI estimations for the entire growth season.
Meanwhile, it’s also worth noting that the experiment was only conducted for one year due to the
high cost and logistic requirements. The field data gathered in the experiment are insufficient to well
evaluated the robustness of the applied methods. A multi-year experiments with additional crop types
will be the focus of future studies to further analyze the performance of the combined methods for
time-series LAI generation.
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Abstract: Image mosaicking which is a process of constructing multiple orthoimages into a single
seamless composite orthoimage, is one of the key steps for the production of large-scale digital
orthophoto maps (DOM). Seamline determination is one of the most difficult technologies in the
automatic mosaicking of orthoimages. The seamlines that follow the centerlines of roads where no
significant differences exist are beneficial to improve the quality of image mosaicking. Based on
this idea, this paper proposes a novel method of seamline determination based on road probability
map from the D-LinkNet neural network for urban image mosaicking. This method optimizes the
seamlines at both the semantic and pixel level as follows. First, the road probability map is obtained
with the D-LinkNet neural network and related post processing. Second, the preferred road areas
(PRAs) are determined by binarizing the road probability map of the overlapping area in the left and
right image. The PRAs are the priority areas in which the seamlines cross. Finally, the final seamlines
are determined by Dijkstra’s shortest path algorithm implemented with binary min-heap at the pixel
level. The experimental results of three group data sets show the advantages of the proposed method.
Compared with two previous methods, the seamlines obtained by the proposed method pass through
the less obvious objects and mainly follow the roads. In terms of the computational efficiency, the
proposed method also has a high efficiency.

Keywords: mosaicking; urban image; seamline determination; deep learning; D-LinkNet

1. Introduction

Orthoimages have increasingly become a popular visualization product and planning instrument
for integrating the rich information content of images with the geometric properties of maps (ground
projection) and can be easily combined with additional information from geographic information
systems (GIS) to create an orthoimage map [1]. However, with the development of technology, the
orthoimage spatial resolution becomes higher, and the coverage area of an individual orthoimage is
typically very small Thus, image mosaicking is a necessary process of constructing multiple images
into a large-scale and single seamless composite image. This process has been applied in a wide
variety of applications such as environmental monitoring, agricultural monitoring, and disaster
management [2,3]. Orthoimages are typically orthorectified by the Digital Terrain Model (DTM) of
the same geographical area. The quality of DTM directly affects the accuracy of orthorectification.
Objects not contained in the DTM cannot be orthorectified correctly. Those objects would appear at
different locations in the overlapping area and cause visual discontinuities in image mosaicking. An
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ideal seamline should avoid such objects [1,4–8]. A seamline is the line along which overlapping
areas will be mosaicked. Each pixel in the final mosaicking result is represented entirely by only one
orthoimage based on which side of the seamline it lies on. Seamline is also helpful when overlapping
areas have significant differences in features. When mosaicking orthoimages, seamline determination
is one of the most difficult technologies for compositing a single seamless orthoimages. The purpose of
seamline determination is to find the seamlines with the minimal intensity and gradient differences in
the overlapping area. In this paper, our work focuses on automatic seamline determination for urban
image mosaicking.

In order to minimize the transition of the final mosaic image, the ideal seamline should avoid
crossing obvious objects as much as possible and go along the objects which have small relief
displacement. Differential expression is essential for seamline determination, which is a measure of
the difference between left and right image overlap areas [1,7]. The method based on differential
expression is the basic method of seamline optimization. The method first measures the difference
between the overlap region images to form a difference matrix, and then uses the path search algorithm
to obtain the final optimized seamline. According to the differential expression algorithm and the path
search algorithm, the recently proposed seamline determination algorithms are as follows.

Milgram [9] defined the “best” seamline point for each line of the overlapping area that minimizes
the sum of the gray differences between the left and right images. Afek and Brand [10] integrated
global feature matching and local transformation into seamline determination. Soille [11] used the
mathematical morphology and marker-controlled segmentation paradigm to determinate the seamlines.
The difference (geometric and radiometric discontinuities) can be minimized if the seamlines go along
salient image structures.

Kerschner [1] proposed a “two snake” method for seamline determination. The main idea is to
design a double snake model, through mutual attraction of the two snake lines, and finally form a snake
line to obtain an optimized seamline. The energy of the double snakes is defined based on similarity.
The seamlines go along the region of maximum similarity. The criteria for regions of similarity are
color similarity (hue and intensity) and texture similarity (orientation and magnitude of gradients).
Wang et al. [12] proposed a seamline determination in image mosaicking using improved snakes. The
integrated snake model and Bresenham algorithm was presented, which the Bresenham algorithm was
used to calculation the photometric. This solves the local optimum problem that exists in the snake
model to some extent, but not completely.

Ma and Sun [13] proposed a seamlines optimization for image mosaicking with airborne light
detection and ranging (LiDAR). According to the raw laser scanning dataset, the high ground objects
of the overlap area were identified as the obstacle. Then, the A* algorithm was used to determine the
final seamlines, and the seamlines were kept away from these obstacles in the registered images. Wang
and Wan [14–16] presented a seamline determination with the aid of vector roads for the first time. In
this approach, firstly, with the help of the vector roads and their widths, the seamlines will go along
the centerlines of roads with a large width as much as possible and avoid crossing the obvious objects.
Finally, the shortest path algorithm is applied to determine the final seamline. Chen et al. [17] first
used the Digital Surface Model (DSM) and Digital Terrain Model (DTM) to derive an Orthoimage
Elevation Synchronous Model (OESM) that accurately reflected the pixel of each digital orthophoto
image, and then obtained the final optimized seamline using the Dijkstra algorithm. Wang et al. [2]
used vector building maps to determine the seamlines, which guaranteed the seamlines avoiding the
crossing of buildings as much as possible. Different from the method of tracking vector roads, the
seamlines determined by this method went along the middle line between buildings in order to avoid
crossing the obvious objects, especially for high-rise buildings.

Using the normalized difference vegetation index (NDVI) and morphological building index
(MBI), Pan et al. [18] introduced ground object classification into the seamline optimization method. In
this approach, based on ground object classes, three types of areas, that is, obstacle areas, preferred
areas, and general areas, are further formed. Then, each type of region is assigned a different weight to
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optimize obtained pixel-size costs. Finally, Dijkstra’s algorithm is carried out to search the shortest
path as the final seamlines based on previously determined pixel-size costs in overlapping areas.

Chon et al. [19] first sought the maximum difference by minimizing the maximum, and then used
Dijkstra’s algorithm to determine the final seamlines. The method, which is based on minimizing the
maximum difference, measures the difference by a local region. It first calculates the Normalized Cross
Correlation (NCC) of the central pixel in this window, and makes the contrast between the normalized
correlation coefficients by exponential stretching of further expansion. Then, using the strategy of
minimizing the maximum difference on the basis of the difference matrix, the seamline is prohibited
from crossing the region, and finally the final optimized seamline is obtained by the Dijkstra algorithm.

Pan et al. [6] used image segmentation to determine seamlines for orthoimage mosaicking in
an urban area for the first time. This method uses segmentation to improve seamline determination.
Firstly, the preferred regions were selected according to the spans of objects segmented by the mean
shift algorithm. Then, Dijkstra’s shortest path algorithm was adopted to determinate the final seamline.
Since this method was proposed, several object-based methods have been used to optimize seamlines.
After that, Pan et al. [20] introduced the region change rate (RCR) into seamline optimization for
orthoimage mosaicking. The change rate of the regions acquired by the mean shift segmentation
algorithm were defined by the percentage of the changed pixels. This method determined the
seamlines at object-level and pixel-level. Wang et al. [7] adopted watershed segmentation for seamline
optimization at both the object and pixel level. Using normalized cross correlation, the obvious
objects, such as buildings, were excluded from the preferred objects areas at the object level. Dijkstra’s
algorithm found the final seamlines in the preferred objects areas at the pixel level.

Li et al. [21,22] first adopted the graph cuts energy minimization framework to find the optimized
seamlines. The image color, gradient magnitude and texture were combined in the smooth energy
functions in the graph cuts energy minimization framework. The determined seamlines passed through
the areas of a smooth texture, such as roads, woodlands, and green lands. Li et al. [23] proposed an
automatic seamline optimization based on graph cuts in UVA image mosaicking.

Yuan et al. [24] proposed a seamline optimization based on the disparity image by the semi-global
matching (SGM) algorithm. After obtaining the disparity image, the mathematical morphology method
was employed to deal with the noises and small holes of the disparity image in order to determine the
non-ground area. Finally, an improved greedy snake algorithm was adopted for the final seamlines.
Similar to that algorithm, Pang et al. [25] introduced dense matching into seamline determination.
Firstly, the SGM was used to estimate the disparity of each pixel. Next, the obstacle and non-obstacle
areas were determined by a predefined threshold. Finally, Dijkstra’s algorithm was adopted to optimize
the final seamlines in avoiding crossing the obstacle area as much as possible.

Based on the integrated deep convolutional neural network (CNN) and graph cuts energy
minimization framework, Li [26] proposed a novel algorithm to optimize seamlines for image
mosaicking. Different from the previous method [22], this method defined similarity energy terms
of the graph cut using the semantic classification classified by the CNN instead of using the color,
gradient, or texture.

In our paper, we propose a novel method of seamline determination based on a road probability
map which is extracted by the D-LinkNet neural network for urban image mosaicking. This method
optimizes the seamlines at both the semantic and pixel level. Firstly, the D-LinkNet neural network
is adopted to obtain the road probability map of the overlapping area in the left and right image
respectively. Secondly, the preferred road areas (PRAs) are determined by binarizing the road probability
map of the overlapping area both in the left and right image. The PRAs are priority areas which the
seamlines cross. Finally, the final seamlines are determined by Dijkstra’s shortest path algorithm
implemented with binary min-heap at pixel level.

The remainder of this paper is organized as follows: Section 2 describes the proposed seamline
determination for urban image mosaicking based on a road probability map from the D-LinkNet neural
network, where Section 2.1 introduces road probability map generation by D-LinkNet. Section 2.2
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presents the determination of PRAs, and Section 2.3 introduces pixel-level seamline determination;
Section 3 describes the experimental results and analysis, where Section 3.1 presents the experimental
data and platform and Section 3.2 presents the seamline determination results and analysis. Section 4
draws the conclusions.

2. Materials and Methods

The major difficulty issue of seamline determination is to define the differential expression of the
overlapping area more accurately. A cost image is generally adopted to express the difference of the
overlap image. Most seamline determination methods use the pixel-by-pixel or local regular subimages
to define the differential expression, and it is difficult to measure the difference accurately [6,7]. Object
recognition is considered to be helpful for differential expression. If object recognition has been solved
perfectly, we can set the areas with the high differential expression highest cost, such as buildings. Then,
the seamlines can be guaranteed not to go across stand-alone objects such as buildings. However, object
recognition is a complicated problem [6]. With the help of a vector roads network, some approaches
have used vector roads to optimize the seamlines, in which the seamline follows the centerlines of
roads with a large width as much as possible and avoids crossing the obvious objects. Such seamlines
are benefited to maintain the integrity of objects and improve the quality of image mosaics [14–16].
Based on this idea, we utilized a road probability map from the D-LinkNet neural network to optimize
the seamline determination.

The process flow for the proposed method is shown in Figure 1. The proposed algorithm optimizes
the seamlines at the semantic and pixel level. The D-LinkNet neural network is adopted to achieve the
road probability map of the overlapping area both in the left and right image. At the semantic level,
the PRAs are determined by binarizing the road probability map. In this step, most of the roads will be
included in the PRAs. The PRAs are the priority areas which the seamlines cross. At the pixel level, the
Dijkstra’s shortest path searching algorithm is adopted to find the final seamlines.

 

Figure 1. The process flow for the proposed method.
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2.1. Road Probability Map Generation by D-LinkNet

2.1.1. Block Road Probability Map Generation by D-Linknet

Road extraction from high-resolution images is a basic application of remote sensing, which has
attracted the attention of both academics and industry for a long time [27,28]. With the development
of deep learning and contribution of specialized datasets from the remote sensing community,
convolutional neural networks (CNNs) have been broadly used as alternatives to traditional methods for
visual recognition tasks in remote sensing, including building detection [29], road segmentation [30–32],
and topological map generation [33]. In our research, we focus on the main part of road extraction—road
probability map generation—and model it with a convolutional neural network.

D-LinkNet [34] is adopted as a basic CNN model of the proposed method due to its excellent
performance in 2018’s DeepGlobe road extraction challenge and broad use as the baseline in road
segmentation tasks [35]. It uses the typical encoder-decoder architecture inherited from LinkNet and
adds the delated convolution part to acquire and ensemble multi-scale features to enlarge the receptive
field, which is able to handle a road’s properties, such as connectivity, complexity, and long span, to
some extent [36]. Specifically, ResNet34 [37] is pretrained on ImageNet [38] and used as the encoder
part of D-LinkNet, and several dilated convolution layers with skip connections are placed in the
center part to enhance the reception ability. The decoder part uses transposed convolution [39] layers
to conduct upsampling, restoring the resolution of the feature map from one that is downsampled to
the original one. The architecture of the D-LinkNet is presented in Figure 2.

Figure 2. D-LinkNet architecture [34].

In practice, considering the large size of satellite and aerial images, clipping is necessary to
generate image patches with a proper and fixed size (e.g., 1024 × 1024), to make sure that D-LinkNet
implementation works under a constrained computation ability and the output of separated patches
has been integrated into the final result. In addition, a small size of overlap between neighboring
patches should be considered and part of the redundant output within overlap areas should be
discarded, as misclassification often happens at the border pixels of a patch given that the receptive
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field is constrained by the edge. As for the training step of deep learning, we utilized transfer learning
to accelerate the whole train process, and data augmentation of the DeepGlobe road dataset [35] to
promote the network’s learning ability.

Some road probability map generation by D-LinkNet is shown in Figure 3. Each size of the sample
image is 1024 × 1024 pixels. The lighter the gray value of the pixel value in the image, the higher the
probability that it will be recognized as a road.

Figure 3. Road probability map generation by D-LinkNet: (a), (c), (e), and (g) are original images, (b),
(d), (f), and (h) are road probability maps generation by D-LinkNet of (a), (c), (e), and (g).

2.1.2. The Post Processing of Road Probability Map Generation

When processing high-resolution remote sensing images, due to the limitations of memory and
other factors, block processing is required to extract the roads using D-Link. If the block extraction
results are directly stitched together, this may lead to obvious visible transitions. The stitched result is
shown in Figure 4a. There are obvious visible transitions in the stitched result. Figure 4a is the result of
directly stitching the image according to the size of 1024 × 1024 pixels. In order to eliminate obvious
visible transitions, this paper ensures a certain overlap between adjacent blocks during blocking. The
overlap provides a foundation for the subsequent elimination of obvious visible transitions. When
blocking, the width of the overlapping area is 511 pixels.

Figure 4. The stitched result of the road probability map obtained by different methods: (a) the stitched
result of directly stitching method, (b) the stitched result of our stitching method.
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After processing according to the blocking principle to obtain the road extraction result, the post
processing can be performed to eliminate obvious visible transitions on both sides of the seamline. In
this paper, there are only vertical and horizontal seamlines. This kind of processing is performed on
the two sides of the stitching point line by line (or row by row) within the artificially specified width
range (the width of the range must be smaller than the width of overlap region). The method used is
as follows:

OIi
L = Oi

L + (Oi
L −Oi

R)K
OIi

R = Oi
R + (Oi

R −Oi
L)K

K = i/W 0 ≤ i ≤W − 1
(1)

where Oi
L is the gray value of the pixel in the left (top) road probability map, Oi

R is the gray value of
the pixel in the right(bottom) road probability map, OIi

L is the processed gray value of the pixel in the
left(top) road probability map, and OIi

R is the processed gray value of the pixel in the right(bottom)
road probability map. W is the width of the smooth area, and K is the weight [40].

In this process, the gray values of the two images to be stitched are weight averaged pixel by pixel
to be used as the gray values after stitching. The weights used vary linearly and inversely within the
calculation range. This process can basically eliminate the obvious difference near the stitched line,
which is shown in Figure 4b. Compared with Figure 4a, there are no obvious visible transitions in
Figure 4b.

2.2. Preferred Road Areas Determination

After the generation of the road probability map in the overlapping area in both the left and
right image, the accuracy of detecting preferred road areas is determined by the road probability
threshold for binarization. In order to estimate the road probability threshold adaptively, we used
the Otsu’s method [41,42] to estimate the value of the road probability threshold. Otsu’s method is
used to perform automatic image thresholding. The algorithm returns a single intensity threshold
that separates pixels into two classes: foreground and background. This threshold is determined by
minimizing the intra-class intensity variance, or equivalently, by maximizing the inter-class variance.
We estimated the road probability threshold in the overlapping in the left and right image respectively.
The method used is as follows Equations (2)–(4):

IL(x, y) ∈ PRALs

⎧⎪⎪⎨⎪⎪⎩true PL(x, y) >= T1

f alse otherwise
(2)

IR(x, y) ∈ PRARs

⎧⎪⎪⎨⎪⎪⎩true PR(x, y) >= T2

f alse otherwise
(3)

I(x, y) ∈ PRAs

⎧⎪⎪⎨⎪⎪⎩true IL(x, y) ∈ PRALs and IR(x, y) ∈ PRARs

f alse otherwise
(4)

where IL(x, y) is the pixel in the road probability map of the overlapping area in the left image. IR(x, y)
is the pixel in the road probability map of the overlapping area in the right image; PL(x, y) is the value
of IL(x, y); IR(x, y) is the value of IR(x, y); I(x, y) is the pixel of the overlapping area; PRALs represents
the preferred road areas of the overlapping area in the left image; and PRARs represents the preferred
road areas of the overlapping area in the right image. PRAs represents the preferred road areas. T1
and T2, which are estimated by Otsu’s method, are the road probability threshold of the overlapping
area in the left image and right image, adaptively.
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2.3. Pixel-Level Seamline Determination

2.3.1. Pixel-Level Cost Determination

After the determination of the PRAs, pixel-level seamline determination is used to determine the
final seamlines. The two intersecting pixels of the image borders are confirmed as the start and end
points [19].

Similar to Chon et al. [19], the Normalized Cross Correlation (NCC) is adopted to quantify the
difference between the overlapping area of two images at the pixel level. Considering the efficiency, the
quick NCC is calculated with Equation (5) using the 5× 5 windows. i and j are coordinates in the image
coordinate system. IL(i, j) and IR(i, j) are the gray values of the overlapping area in the left and right
image at (i, j), respectively. The cost value is computed in Equation (6), which has a range of 0–1.0.

QNCC(x, y) =

x+2∑
i=x−2

y+2∑
j=y−2

IL(i, j)IR(i, j) − 1
25

x+2∑
i=x−2

y+2∑
j=y−2

IL(i, j)
x+2∑

i=x−2

y+2∑
j=y−2

IR(i, j)

√√
[

x+2∑
i=x−2

y+2∑
j=y−2

IL(i, j)2 − 1
25

(
x+2∑

i=x−2

y+2∑
j=y−2

IL(i, j))
2

][
x+2∑

i=x−2

y+2∑
j=y−2

IR(i, j)2 − 1
25

(
x+2∑

i=x−2

y+2∑
j=y−2

IR(i, j))
2

]

(5)

cost(x, y) = 0.5− 0.5×QNCC(x, y) (6)

The final pixel-level cost of pixel (x, y) in the overlapping area between images is defined as:

DE(x, y) =

⎧⎪⎪⎨⎪⎪⎩w× cost(x, y) I(x, y) ∈ PRAs

cost(x, y) otherwise
(7)

where I(x, y) is the pixel of the overlapping area in the left and right image. If I(x, y) belongs to PRAs,
the cost value should be multiplied by w. w is the weight for pixels in PRAs, which is assigned a value
much lower than 1.0. With such weight processing, this makes sure that the difference in the road area
can be relatively small, so the seamlines will pass through roads as much as possible.

2.3.2. Shortest-Path Searching

After the final pixel-level cost determination, similar to Pan et al. [6], in order to minimize the
difference of the seamlines, the proposed method uses the differential cost to calculate the local cost
between neighboring pixels when applying Dijkstra’s algorithm to search for the shortest path. The
differential cost is defined in Equation (8).

demn,pq =
∣∣∣DE(m, n) −DE(p, q)

∣∣∣ (8)

where (m, n) and (p, q) are adjacent pixels; DE(m, n) and DE(p, q) are the pixel-level costs of pixels (m, n)
and (p, q), respectively, which are calculated in Equation (7). Let near(m, n) be the eight neighboring
nodes of (m, n), DCost(m, n), and DCost(p, q) be the global minimum costs from the start pixel to (m, n)
and (p, q), respectively. Then:

DCost(m, n) = min
{
demn,pq + DCost(p, q); (p, q) ∈ near(m, n)

}
(9)

Dijkstra’s algorithm is a classic global optimization method which solves the single-source
shortest-path problem for arbitrary directed graphs G = (V, E) with unbounded non-negative weights
[43,44]. Given a source vertex s in a weighted directed graph G = (V, E) where all edges are nonnegative,
the pseudo-code for Dijkstra’s algorithm is presented in Algorithm 1. Dijkstra’s algorithm uses
a data structure for storing and querying partial solutions sorted by distance from the start. The
computational complexity of the original Dijkstra’s algorithm is Θ(

∣∣∣V∣∣∣·∣∣∣V∣∣∣+∣∣∣E∣∣∣) , if the min-priority
queue is implemented by an ordinary linked list. |V| is the number of nodes in the graph and |E| is the
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number of edges in the graph. The computational complexity depends on how to the min-priority
queue is implemented. In order to improve the efficiency of Dijkstra’s algorithm, similar to Wang
et al. [7], the proposed method implements the min-priority queue with a binary min-heap. The
pseudo-code for Dijkstra’s algorithm with a binary min-heap is presented in Algorithm 2. The
computational complexity of the improved Dijkstra’s algorithm is Θ((

∣∣∣V∣∣∣+∣∣∣E∣∣∣) · lg∣∣∣V∣∣∣) [7].

Algorithm 1 Dijkstra’s algorithm

1 Dijkstra(G, s)
2 dist[s] = 0
3 for each vertex v∈V
4 if v � s
5 dist[v] =∞
6 pre [v] = undefined
7 S = Ø
8 Q = V
9 while Q � Ø do

10 u = extract_min(Q)
11 S = S∪{u}
12 for each vertex v∈Adj(u) do
13 dist[v] =min(dist[v], dist[u]+w(u, v))
14 pre[v] = u

Algorithm 2 Dijkstra’s algorithm with Binary Min-heap

1 Dijkstra_Binary_Min-heap(G, s)
2 dist[s] = 0
3 for each vertex v∈V
4 if v � s
5 dist[v] =∞
6 pre [v] = undefined
7 Q.add_with_min-priority(v, dist[v])
8 S = Ø
9 Q = V

10 while Q � Ø do
11 u = extract_min_with_min- priority(Q)
12 S = S∪{u}
13 for each vertex v∈Adj(u) do
14 dist[v] =min(dist[v], dist[u]+w(u, v))
15 pre[v] = u
16 Q.decrease_min-priority(v, dist[v])

3. Experimental Results and Analysis

3.1. Experimental Data and Platform

The experiment consists of two parts. The first part uses the D-LinkNet neural network to generate
the road probability map. The second part determines the seamline based on this road probability map.

The D-LinkNet neural network was trained and tested with a single NVIDIA GeForce GTX 1080Ti
using the TensorFlow library in python in Linux. The training set was composed of 6226 images from
the DeepGlobe Road Extraction dataset [35] and 1000 image sets of data for manually marking roads
with 0.5-m resolution remote sensing images. The image size was 1024 × 1024. Details for training
a D-LinkNet-34 network are as follows: Batchsize = 1, epoch = 200, train_best_loss = 50, learning_rate
= 2 × 10−4, and the loss function defined as a mixture of binary cross entropy loss representing the
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error between pixels with a dice coefficient loss suitable for the error between batches based on the
IOU(intersection over union) as an evaluation index. The output of the neural network is the probability
of judging whether the pixel belongs to a road. It took almost 50 h to complete the network training.
Once the network training is completed, the network can be applied to other datasets of different areas.
After training, the error train loss is 0.18796 and the accuracy rate is 0.81204.

The proposed determination of the seamline method was implemented by C++ programming
on a portable computer with four Intel(R) Core(TM) i7-6700HQ CPU at 2.60 GHz, 16.0 GB of internal
memory, and a mechanical hard drive with a 1 TB capacity, a 32 MB cache, and a 7200 r/min speed
for data processing. The Geospatial Data Abstraction Library (GDAL), which is a widely used open
source library, was adopted to read and write a large variety of raster spatial data formats. w was the
weight for pixels in PRAs which is shown in Equation (7). The proposed method was performed with
w = 0.001. In our practice, the value of w was determined by our experience.

In order to verify the algorithm proposed in this paper, three sets of aerial images were selected
for experiments. An overview of the three sets of data is shown in Table 1. Among them, the coverage
of Dataset A is the central urban area of a large city; the coverage of Dataset B is the suburb of a big
city, and the coverage of Dataset C is the center of a medium-sized city.

Table 1. Basic information of the datasets.

Dataset Image Resolution Imaging Size Coverage Features

Dataset A 0.5 3030 × 2067 × 3 Central area of a big city
Dataset B 0.2 2438 × 4824 × 3 Suburb of a big city
Dataset C 0.3 2212 × 2693 × 3 Central area of a medium-sized city

3.2. Seamline Determination Results and Analysis

In order to compare the effect and efficiency of the algorithm of our proposed approach, Dijkstra’s
algorithm [43] and the OrthoVista method (INPHO, 2005) were selected to compare with the proposed
algorithm. Dijkstra’s algorithm is one of the earliest and simplest algorithms. OrthoVista is one of
the most widely used professional mosaicking products in the world, which is a desktop software of
INPHO’s digital photogrammetric system [45].

Figure 5 illustrates the experiments of PRAs determination and the intermediate results for Dataset
A. Figure 6 illustrates the experiments of PRAs determination and the intermediate results for Dataset B.
Figure 7 illustrates the experiments of PRAs determination and the intermediate results for Dataset C.

In Figures 5–7, (a) illustrates the overlapping area of the left image; (b) illustrates the overlapping
area of the right image; (c) illustrates the road probability map of the overlapping area of the left image;
(d) illustrates the road probability map of the overlapping area of the right image; (e) illustrates the
PRAs of the overlapping area; and (f) illustrates the NCC cost of the overlapping area. Figures 5c,
6c, and 7c illustrate the road probability map of the overlapping area of the left image of Datasets
A, B, and C, respectively. The larger the pixel value, the more likely it is to be determined as a road.
Figures 5d, 6d, and 7d illustrate the road probability map of the overlapping area of the right image of
Datasets A, B, and C, respectively. The larger the pixel value, the more likely it is to be determined as a
road. Most of the roads in the orthoimages are extracted. In order to enhance the appearance of the
road probability map, the stretch method of histogram equalize is used to adjust the value of the road
probability map. Because of the differences between the overlapping area of the left and right image,
the road probability maps obtained by them are also not the same, which are illustrated in (c) and
(d) of Figures 5–7. With the help of the Otsu method [41,42], the preferred road areas of the left and
right image are determined by the road probability threshold for binarization, respectively. The final
PRAs of the overlapping are defined from the preferred road areas of left and right image by Equation
(4). In Figures 5e, 6e, and 7e, the white areas are the PRAs of the overlapping areas, which are the
priority areas that the seamlines pass. Most roads of the overlapping area are included in the PRAs,
which meets our requirement. Figures 5f, 6f, and 7f illustrate the NCC cost of the overlapping area of
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Datasets A, B, and C, respectively. The greater the brightness value of a pixel, the greater the NCC cost.
The NCC cost is an effective method for assessing the difference of the pixel-level.

Figure 5. Experiments of preferred road areas (PRAs) determination for Dataset A: (a) the ovrlapping
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the
overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC) cost of
the overlapping area.
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Figure 6. Cont.

162



Sensors 2020, 20, 1832

Figure 6. Experiments of preferred road areas (PRAs) determination for Dataset B: (a) the overlapping
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the
overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of the
overlapping area.

Figure 7. Cont.
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Figure 7. Experiments of preferred road areas (PRAs) determination for Dataset C: (a) the overlapping
area of the left image, (b) the overlapping area of the right image, (c) the road probability map of the
overlapping area of the left image, (d) the road probability map of the overlapping area of the right
image, (e) the PRAs of the overlapping area, and (f) the Normalized Cross Correlation (NCC)cost of the
overlapping area.

Figure 8 illustrates the experiments of seamline determination of the three different methods for
Dataset A. Figure 9 illustrates the experiments of seamline determination of the three different methods
for Dataset B. Figure 10 illustrates the experiments of seamline determination of the three different
methods for Dataset C. The three methods were tested without a down-sampling strategy.

In Figures 8–10, (a), (c), and (e) illustrate the seamlines determined using Dijkstra’s algorithm,
OrthoVista and the proposed algorithm, respectively; (b), (d), and (f) illustrate the details of the white
boxes in (a), (c), and (e), respectively. The ideal seamline should avoid crossing obvious objects, such
as buildings, as much as possible and go along the objects which have small relief displacement, such
as a road, river, grass, or bare land [6]. From the seamline detection results of the three data sets and
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especially the details of the white boxes, compared with the two previous methods, the seamlines
determined by the proposed method mainly go along the roads where no significant differences exist.

Figure 8. Experiments of seamline determination for Dataset A: (a) seamline determined by Dijkstra’s
algorithm, (b) details of the white box in (a), (c) seamline determined by OrthoVista, (d) details of the
white box in (c), (e) seamline determined by the proposed method, and (f) details of the white box in (e).
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Figure 9. Experiments of seamline determination for Dataset B: (a) seamline determined by Dijkstra’s
algorithm, (b) details of the white box in (a), (c) seamline determined by OrthoVista, (d) details of the
white box in (c), (e) seamline determined by the proposed method, and (f) details of the white box in (e).
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Figure 10. Cont.
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Figure 10. Experiments of seamline determination for Dataset C: (a) seamline determined by Dijkstra’s
algorithm, (b) details of the white box in (a), (c) seamline determined by OrthoVista, (d) details of the
white box in (c), (e) seamline determined by the proposed method, and (f) details of the white box in (e).

In many related studies, it is difficult to find a general method for automated quantitative
assessment of the seamline quality. Therefore, similar to the evaluation method in other relevant
studies [2,6,7,25], the quantitative index applied in the proposed method is the number of times that
seamlines cross obvious objects. The seamlines which have a smaller number of times are considered
ideal seamlines. In order to compare the efficiency of the different algorithms fairly, all the algorithms
were implemented without a down-sampling strategy and parallel computing strategy. The comparison
results of the three different methods in the three groups of test data are shown in Table 2.

Table 2. Comparison of previous methods with the proposed method.

Dataset Method
Number of Obvious

Objects Passed Through
Processing Time (s)

1
Dijkstra’s 5 329.770

OrthoVista 9 13.000
Proposed 1 21.387+Δ

Dijkstra’s 6 1033.976
2 OrthoVista 6 21.000

Proposed 0 38.353+Δ

Dijkstra’s 2 568.329
3 OrthoVista 11 9.000

Proposed 2 8.612+Δ

The coverage area of Dataset A is located in the central urban area of large cities, for which the
spatial resolution is 0.5 m. There are many high-rise buildings, overpasses, residential areas, and
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other buildings in the image. Such objects are the objects which the ideal seamlines should bypass.
The seamline determination by Dijkstra’s algorithm crossed five obvious objects, which is shown in
Figure 8a. It crossed four bridges and an overpass, which is illustrated in Figure 8b. The seamline
determination by the OrthoVista algorithm crossed nine obvious objects, which is shown in Figure 8c.
Figure 8d shows that the seamline crossed several bridges and a buildings. Seamline determination
by the proposed algorithm crossed one building, which is shown in Figure 8e. The details of the one
crossed building are illustrated in Figure 8f. As shown in Figure 5e, during the optimization of the
seamline at the semantic level, the proposed algorithms almost included the roads in PRAs. By giving
the PRAs area a smaller weight, which is shown in Equation (7), the seamline mainly passes through
the PRAs, and the final seamline is mainly along the roads, bypassing most of the areas with large
relief displacement.

The coverage area of Dataset B is located in the suburbs area of large cities, for which the spatial
resolution is 0.2 m. There is much agricultural land, woodland, and bare land in the image. There
are some original villages and factories in it. A main road runs from north to south. The seamline
determination by Dijkstra’s algorithm crossed six obvious objects, which is shown in Figure 9a. The
details of the crossed buildings are illustrated in Figure 9b. The seamline determination by the
OrthoVista algorithm crossed six obvious objects, which is shown in Figure 9c. The details of the
crossed buildings are illustrated in Figure 9d. Seamline determination by the proposed algorithm
crossed no obvious objects and was along the north–south main road, which is shown in Figure 9e.
The details of the crossed buildings are illustrated in Figure 9f. As shown in Figure 6e, during the
optimization of the seamline at the semantic level, the proposed algorithms almost included the roads
in PRAs. By giving the PRAs area a smaller weight, which is shown in Equation (7), the seamline
mainly passes through the PRAs, and the final seamline is mainly along the roads, bypassing most of
the areas with large relief displacement.

The coverage area of Dataset C is located in the central urban area of a medium-sized city, for
which the spatial resolution is 0.5 m. In the image, in addition to buildings and residential areas, there
is much agricultural land and woodland. The seamline determination by Dijkstra’s algorithm crossed
two obvious objects, which is shown in Figure 10a. It crossed two buildings, which is illustrated
in Figure 10b. The seamline determination by the OrthoVista algorithm crossed 11 obvious objects,
which is shown in Figure 10c. Figure 10d shows that the seamline crossed several buildings. Seamline
determination by the proposed algorithm crossed two obvious objects, which is shown in Figure 10e.
The details of the two crossed buildings are illustrated in Figure 10f. As shown in Figure 7e, during
optimization of the seamline at the semantic level, the proposed algorithms almost included the roads
in PRAs. By giving the PRAs area a smaller weight, which is shown in Equation (7), the seamline
mainly passes through the PRAs, and the final seamline is mainly along the roads, bypassing most of
the areas with large relief displacement.

In summary, due to the use of D-LinkNet, the roads were almost extracted and the PRAs were
determined, which are shown in Figures 5e, 6e, and 7e. The seamline obtained by our method had the
best result and passed through the less obvious objects and mainly went along the roads.

In practice, efficiency has to be taken into consideration. The processing time are recorded in
the fourth column of Table 2. This shows that the seamlines determined by Dijkstra’s algorithm
took around 644.025 s on average. OrthoVista’s method was better. It took around 14.333 s on
average. The seamlines determined by the proposed method took around 22.784 +Δs on average. This
processing time for the proposed method consists of two parts. The first part is the time required for
extracting the road probability map using D-LinkNet, and the second part is the time required for
seamline optimization. Δ represents the time required for training the network and extracting the
road probability map. It took around 50 h. Regardless Δ, the proposed and OrthoVista methods are
at the same level. Compared with Dijkstra’s and OrthoVista’s methods, Δ of the proposed method
includes the network training time and road probability map extraction time. The network training

169



Sensors 2020, 20, 1832

time accounted for most of Δ. Although network training takes some time, once processed completely,
it can be used to extract the road probability map for other data.

Figure 11 shows the experiments of seamline determination for Dataset A with different values of
w. A quantitative comparison of seamlines determined by the proposed method for Dataset A with
different values of w was conducted, as shown in Table 3. w is the weight for pixels in PRAs, which is
shown in Equation (7). With such weight processing, this makes sure that the difference in the road
area can be relatively small, so the seamlines will pass through roads as much as possible. In our paper,
we suggested setting w to 0.001. According to Table 3, an acceptable seamlines determination result
can be obtained by setting w to 0.001 for Dataset A.

 

Figure 11. Experiments of seamline determination for Dataset A with different values of w: (a) w is
0.001 (red line) and w is 0.1 (cyan line), (b) w is 0.001 (red line) and w is 0.01 (cyan line), (c) w is 0.001
(red line) and w is 0.0001 (cyan line), and (d) w is 0.001 (red line) and w is 0.00001 (cyan line).

Table 3. Comparison of the proposed method with different values of w for Dataset A.

The Values of w Number of Obvious
Objects Passed Through

Processing Time (s)

0.1 11 24.522+Δ
0.01 4 18.602+Δ

0.001 1 21.387+Δ
0.0001 1 25.461+Δ
0.00001 1 25.491+Δ

4. Conclusions

In this paper, an automatic seamline determination method was presented for urban image
mosaicking based on road probability map from the D-LinkNet neural network. The road probability
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map was used to improve the seamline determination. This method optimizes the seamlines at both
the semantic and pixel level. At the semantic level, the PRAs are determined by binarizing the road
probability map. In this step, most of the roads are included in the PRAs. At the pixel level, Dijkstra’s
algorithm is adopted to find the final seamlines. To improve the efficiency, the minimum heap is
adopted to store the graph in the form of adjacency lists and extract the minimum efficiently [7]. Three
group data sets of aerial orthoimages with different ground resolutions located in different cities were
used to test and validate the proposed method in this paper. The comparative experimental results
show the advantages of the proposed method. Compared with two previous methods, the seamline
obtained by the proposed method had the best result in that it passed through the less obvious objects
and mainly followed the roads. In terms of the computational efficiency, the proposed method also
has a high efficiency. Moreover, the proposed method can easily be applied to the seamlines network
determination framework easily [3,46,47].

Nevertheless, the proposed method may be improved in the future as follows: (1) Road probability
map generation by D-LinkNet may have a significant influence on the final seamline determination.
Therefore, more training samples should be made to better train the D-LinkNet neural network. (2)
The proposed algorithm can be applied to the seamline network determination framework [3,46,47] to
construct a single seamless composite image automatically.
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Abstract: This paper deals with the analysis of local Love and Shida numbers (parameters h2 and l2)
values of the Australian Yarragadee and Mount Stromlo satellite laser ranging (SLR) stations. The research
was conducted based on data from the Medium Earth Orbit (MEO) satellites, LAGEOS-1 and LAGEOS-2,
and Low Earth Orbit (LEO) satellites, STELLA and STARLETTE. Data from a 60-month time interval,
from 01.01.2014 to 01.01.2019, was used. In the first research stage, the Love and Shida numbers values
were determined separately from observations of each satellite; the obtained values of h2, l2 exhibit a high
degree of compliance, and the differences do not exceed formal error values. At this stage, we found that
it was not possible to determine l2 from the data of STELLA and STARLETTE. In the second research stage,
we combined the satellite observations of MEO (LAGEOS-1+LAGEOS-2) and LEO (STELLA+STARLETTE)
and redefined the h2, l2 parameters. The final values were adopted, and further analyses were made based on
the values obtained from the combined observations. For the Yarragadee station, local h2 = 0.5756 ± 0.0005
and l2 = 0.0751 ± 0.0002 values were obtained from LAGEOS-1 + LAGEOS-2 and h2 = 0.5742 ± 0.0015
were obtained from STELLA+STARLETTE data. For the Mount Stromlo station, we obtained the local
h2 = 0.5601 ± 0.0006 and l2 = 0.0637± 0.0003 values from LAGEOS-1+LAGEOS-2 and h2 = 0.5618 ± 0.0017
from STELLA + STARLETTE. We found discrepancies between the local parameters determined for the
Yarragadee and Mount Stromlo stations and the commonly used values of the h2, l2 parameters averaged
for the whole Earth (so-called global nominal parameters). The sequential equalization method was
used for the analysis, which allowed to determine the minimum time interval necessary to obtain stable
h2, l2 values. It turned out to be about 50 months. Additionally, we investigated the impact of the use
of local values of the Love/Shida numbers on the determination of the Yarragadee and Mount Stromlo
station coordinates. We proposed to determine the stations (X, Y, Z) coordinates in International Terrestrial
Reference Frame 2014 (ITRF2014) in two computational versions: using global nominal h2, l2 values and
local h2, l2 values calculated during this research. We found that the use of the local values of the h2, l2
parameters in the process of determining the stations coordinates influences the result.

Keywords: Love/Shida numbers; satellite laser ranging (SLR); Yarragadee station; Mount Stromlo station;
LAGEOS; STELLA; STARLETTE satellites; SLR stations coordinates; ITRF2014
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1. Introduction

There are different kinds of external forces acting on the Earth which cause its gradual changes;
for this reason, our planet needs constant monitoring. One of these forces is tidal forces,
which are reflected, among other things, in the displacement of Earth’s masses and, consequently,
in changes in the position of points on the Earth’s surface. To describe the flexible reaction of the
Earth to tidal stresses, the concept of so-called Love (h, k) and Shida (l) numbers were introduced.
These are tidal parameters whose detailed description was presented in the fundamental works of
A.E.H. Love “Some problems of geodynamics” [1] and T. Shida and M. Matsoyama “Note of Hecker’s
observations” [2].

The Earth’s dynamics is currently studied using satellite measurement techniques, including the
satellite laser ranging (SLR) technique [3]. In our earlier research programme, e.g., [4–6], we have
successfully demonstrated that the SLR technique makes it possible to determine tidal parameters
with very high accuracy, it was also indicated in [7]. Other satellite measuring techniques can also be
used for such purposes, e.g., the VLBI technique [8,9]; satellite altimetry [10,11]. All these publications
are focused on determining the global values of tidal parameters averaged over the whole Earth.

Due to the heterogeneous structure of our planet, it is reasonable that the reaction to tidal stresses
is not the same for the whole Earth. With this in mind, we have launched a research programme
to analyze the local tidal parameters. The research carried out so far focused on the Baltic Sea
region [12,13], where local tidal parameters for the SLR stations from Poland and Latvia were analyzed
based on data from the LAGEOS-1 and LAGEOS-2 satellites. In this study, we made an attempt to
determine and analyze local values of tidal parameters for two Australian SLR stations: Yarragadee
(no. 70900513, approx. 29◦ S, 115◦ E) and Mount Stromlo (no. 78259001, approx. 35◦ S, 149◦ E).
In addition, we assessed the impact of their use on the determination of the coordinates of these stations.
These tasks constitute the main research objective of this work. Estimation of the minimum time
interval ensuring the stability of the determination and the assessment of the possibility of determining
local tidal parameters from the data of the LEO satellites STELLA and STARLETTE constitute the
intermediary purpose of this study.

The data provided by the Australian Yarragadee and Mount Stromlo stations are extremely
important for geodynamic research. The global SLR network consists of 38 stations, of which only
eight are located in the Southern Hemisphere; two of them on the Australian continent. Their location
is shown in Figure 1.

Figure 1. Location of the Australian satellite laser ranging (SLR) stations.
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The Yarragadee station is located in Western Australia, near the city of Dongara. The Mount
Stromlo satellite laser ranging observatory is located in the south-eastern part of the continent, near the
city of Geraldton. These stations are part of the Western Pacific Laser Tracking Network and contribute
to the International Laser Ranging Service (ILRS). These are some of the best stations in terms of
accuracy and number of observations. The data they collect plays a very important role, in synergy
with other geodetic techniques, in defining International Terrestrial Reference Frame (ITRF) and
determining Earth Orientation Parameters (EOP).

The basis of the satellite laser ranging technique (SLR) is the measurement of two-way time of
light pulses flight between a station and a satellite fitted with retroreflectors. The distance measured to
the satellite must be adjusted to accommodate the effects of a speed of light decrease and the difference
between the straight and curved paths of ray. Furthermore, it must take into consideration the distance
from the retroreflector to the satellite mass center, influence of the satellite motion, the Earth rotation
and relativistic effects [14]. In its simplified form, the equation of laser observation is as follows [14]:

ρ =
CΔt

2
(1)

where ρ is the distance between a station and a satellite, Δt is the two way time interval of light pulses
flight between a station and a satellite, and C is the speed of light.

Typical, geodetic SLR satellites are sphere-shaped, covered with retroreflectors and can
be divided into two main groups: Medium Earth Orbit (MEO) satellites; e.g., LAGEOS-1
(Perige = 5860 km), LAGEOS-2 (Perige = 5620 km); and Low Earth Orbit (LEO) satellites, e.g., STELLA
(Perige = 804 km) and STARLETTE (H = 812 km). The data from these satellites is widely used
in geodynamic research; e.g., to determine stations coordinates [15–17], to study the gravitational
field of the Earth [18], to determine Earth Orientation Parameters [19–22], or to study the tidal
phenomenon [23,24]. In this work, we used the data of the LAGEOS-1, LAGEOS-2, STELLA,
and STARLETTE satellites to determine the local values of the tidal parameters and coordinates
of the Australian SLR Yarragadee and Mount Stromlo stations. A detailed description of the SLR
technique can be found in the works [25,26], while a wide range of applications of laser satellites in
geodynamic research has been presented in [27–29].

The gravitational impact of the Moon, the Sun, and the Solar System planets on the Earth’s surface
results in the creation of earth and ocean tides. The tidal forces cause the displacement of earth and
ocean masses. A detailed description of the tide phenomenon and its mathematical basis can be
found in fundamental work “The tides of the planet Earth” by P. Melchior [30]. These changes in the
distribution of the Earth’s masses related to tides are expressed by movements of observation stations,
as described by Equation (2) given in [31]:
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where

GMj—gravitational parameter for the Moon (j = 2) or the Sun (j = 3),
GME—gravitational parameter for the Earth,
ae—equatorial radius,
dj—distance to the Moon (j = 2) or Sun (j = 3),
R̂j—the unit vector from the geocenter to the Moon (j = 2) or Sun (j = 3),
r̂sta—the unit vector from the geocenter to the station,
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(Xj, Yj, Zj)—the Cartesian components of the unit vector R̂j,

(Xsta, Ysta, Zsta)—the Cartesian components of the unit vector r̂,
h2, l2—second degree of Love and Shida numbers.

In Equation (2), there are the tidal parameters h2 and l2 (Love and Shida numbers for the
second-degree tides). The former refers to the radial tidal displacement of the station, the latter
to the horizontal displacement, it is described in [32]. The tidal parameters are a measure of the
flexible Earth’s response to stresses created by tidal forces. If we assume that the Earth is a rigid body,
then no elastic deformation takes place, and h, l are both 0. If we assume another extreme case in
which the Earth is not just elastic but rather a liquid body, then the Love and Shida numbers are both
equal to 1. Thus, for a rigid Earth h = 0, l = 0, for a liquid Earth h = 1, l = 1 and for an elastic Earth
they take intermediate values: 0 < h < 1, 0 < l < 1. According to International Earth Rotation and
Reference Systems Service (IERS) Conventions (IERS Technical Note No. 36) [33], the Earth’s global
(so called nominal) averaged values of the Love and Shida numbers for the second degree tides are
h2 = 0.6078, l2 = 0.0847.

2. Materials and Methods

To determine the local tidal parameters of the Australian Yarragadee and Mount Stromlo stations,
we used observation data in the form of normal points of these stations collected for the LAGEOS-1,
LAGEOS-2, STELLA, and STARLETTE satellites for the 5-year interval from 01.01.2014 to 01.01.2019.
For the Yarragadee station, these were respectively: 57,299 LAGEOS-1 normal points, 58,133 LAGEOS-2
normal points, 38,031 STELLA normal points, 90,953 STARLETTE normal points; for the Mount
Stromlo station: 25,249 LAGEOS-1 normal points, 25,962 LAGEOS-2 normal points, 21,654 STELLA
normal points, 50,172 STARLETTE normal points. The method of creating normal points from
SLR measurements is described in [34]. The data from the analyzed period were used to create
7-day orbital arcs. In total, 260 orbital arcs were obtained for each of the satellites. Satellite orbits
were determined using the Cowell Numerical Integration method as described in detail in [31],
using standard procedures, force models and constants recommended by the International Earth
Rotation and Reference Systems Service (IERS) [33] and International Laser Ranging Service (ILRS) [35].
RMS values of the post-fit residuals, calculated from formula (3), were used as the satellites orbits
accuracy determination [5]:

RMS of the post-fit residuals =

√√√√ n∑
i=1

(Oi −Ci)
2

n− 1
(3)

where i denotes successive number of normal points, (Oi − Ci) is the SLR observation minus the
computed distance from the station to the satellite. The following values were obtained: RMS of the
post-fit residuals: RMS(LAGEOS-1) = 1.02 cm, RMS(LAGEOS-2) = 1.01 cm, RMS(STELLA) = 1.98 cm,
RMS(STARLETTE) = 1.87 cm.

To determine the local tidal parameters h2, l2 values of the Yarragadee and Mount Stromlo stations
and their coordinates, an observation Equation (4) was formulated and solved using the Bayesian least
square method, a detailed description of this procedure is given in [31]. The local tidal parameters and
coordinates were determined independently for both of the analyzed stations.

(Oi −Ci) = −
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
j=1

∂Ci
∂ε j

dε j +
∂Ci
∂h2

dh2 +
∂Ci
∂l2

dl2

⎫⎪⎪⎪⎬⎪⎪⎪⎭+ dOi (4)

where

j—number of adjusted parameters (satellite position and velocity, empirical accelerations, and the
station position),
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dε j—corrections to the j-th parameter,
dh2, dl2—corrections for Love number h2 and for Shida number l2,
dOi—error of observation associated with the i-th measurement.

Given in Equation (4) the
∂Ci
∂h2

,
∂Ci
∂l2

quantities are calculated by differentiating Equation (2) and are
expressed as follows [31]:

∂Ci
∂h2

=
∂Ci
∂Xsta

∂Xsta

∂h2
+
∂Ci
∂Ysta

∂Ysta

∂h2
+
∂Ci
∂Zsta

∂Zsta

∂h2
(5)

∂Ci
∂l2

=
∂Ci
∂Xsta

∂Xsta

∂l2
+
∂Ci
∂Ysta

∂Ysta

∂l2
+
∂Ci
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∂Zsta

∂l2
(6)
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∂Xsta
∂h2

=
3∑

j=2

GMj
GME

a4
e

d3
j

[
3

2ae
(R̂jr̂st)

2 − 1
3

]
Xsta,

∂Ysta
∂h2

=
3∑

j=2

GMj
GME

a4
e

d3
j

[
3

2ae
(R̂jr̂st)

2 − 1
3

]
Ysta,

∂Zsta
∂h2

=
3∑

j=2

GMj
GME

a4
e

d3
j

[
3

2ae
(R̂jr̂st)

2 − 1
3

]
Zsta,

(7)
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(8)

The sequential method was used to determine local tidal parameters. In the first step, the h2

and l2 parameters were determined separately from each orbital arc (arc1, arc2, arc3, . . . , arc260).
The following steps consisted in adding subsequent arcs to the calculations, one after another, following
the scheme: arc1 + arc2, arc1 + arc2 + arc3, . . . , arc1 + arc2 + . . . + arc260. In each subsequent step,
h2 and l2 parameters were re-computed. The values given in IERS Technical Note No. 36 [33] were taken
as priori values (h2 = 0.6078 and l2 = 0.0847). In the first calculation stage, the local tidal parameters
were determined separately from LAGEOS-1, LAGEOS-2, STELLA, and STARLETTE data, then data
from LAGEOS-1 and LAGEOS-2 and STELLA and STARLETTE were pooled (LAGEOS-1+LAGEOS-2
and STELLA+STARLETTE) and re-computed to increase the accuracy and stability of the solutions.
The final values were adopted and further analyses were made based on the values obtained from the
combined observations of 260 orbital arcs.

Additionally, the coordinates of the Yarragadee and Mount Stromlo stations were determined in
course of the analysis. These coordinates were calculated from the Equation (4). The determination
method of the stations’ coordinates from the SLR data was set out in detail in [14,36]. The coordinates
of the Yarragadee and Mount Stromlo stations were determined from the LAGEOS-1 + LAGEOS-2
data with a presumptive assumption of the stations coordinates in the ITRF2014 reference frame [37].
The adjustment was performed in two calculation versions. As regards the first one, Yarragadee and
Mount Stromlo stations coordinates were calculated using of the global nominal values (recommended
in the IERS Conventions [33]) of tidal parameters. In the second one, Yarragadee and Mount
Stromlo stations coordinates were estimated using the local values of tidal parameters calculated
in this present paper. The impact of the application of different values of tidal parameters on the
determination of these stations coordinates was then investigated.

The GEODYN II NASA GSFC software [31] was used for all the calculations related to the
determination of satellite orbits, local tidal parameters and coordinates of Yarragadee and Mount
Stromlo SLR stations.
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3. Results and Discussion

In this paper, we present the results of the determination of the local values of tidal parameters h2,
l2 for the Australian SLR stations Yarragadee and Mount Stromlo, and their coordinates in the ITRF2014
reference frame [37]. The first stage of the research included determining the local tidal parameters
separately from the data of each of the satellites: LAGEOS-1, LAGEOS-2, STELLA, and STARLETTE.
The obtained h2, l2 values show a high degree of consistency, and the differences do not exceed
formal error values (please refer to Table 1). At this stage, we found that it was not possible to
determine l2 from STELLA and STARLETTE data. Then, to increase the accuracy and stability of
the solutions, we pooled the data of the individual satellite groups, LAGEOS-1+LAGEOS-2 and
STELLA+STARLETTE, and re-computed the local tidal parameters. We did not determine the l2
parameter from STELLA+STARLETTE data. The values obtained in this way were assumed final and
subjected to further analysis. The final estimated values of the local tidal parameters for the Yarragadee
and Mount Stromlo stations are given in Table 1, whereas the results of the sequential determination
method are shown in Figures 2–7. For clarity and readability of the figures, we present results orbital
arcs combined in groups of ten (arcs 1–10, 1–20, 1–30, . . . , 1–260).

Table 1. Local tidal parameters h2, l2 for Yarragadee and Mount Stromlo SLR stations.

SLR Data
Yarragadee (No. 70900513) Mount Stromlo (No. 78259001)

h2 l2 h2 l2

LAGEOS-1 0.5764 ± 0.0007 0.0744 ± 0.0004 0.5616 ± 0.0009 0.0646 ± 0.0005
LAGEOS-2 0.5758 ± 0.0007 0.0748 ± 0.0004 0.5609 ± 0.0009 0.0650 ± 0.0005

LAGEOS-1+LAGEOS-2 0.5756 ± 0.0005 0.0751 ± 0.0002 0.5601 ± 0.0006 0.0637 ± 0.0003
STELLA 0.5741 ± 0.0022 0.0334 ± 0.0014 0.5622 ± 0.0026 0.0212 ± 0.0020

(unacceptable value) (unacceptable value)
STARLETTE 0.5750 ± 0.0019 0.1785 ± 0.0013 0.5604 ± 0.0022 0.0093 ± 0.0018

(unacceptable value) (unacceptable value)
STELLA+STARLETTE 0.5742 ± 0.0015 not estimated 0.5618 ± 0.0017 not estimated

Figure 2. Sequential solution for the Yarragadee local h2 parameter based on LAGEOS-1+LAGEOS-2 data.
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Figure 3. Sequential solution for the Yarragadee local h2 parameter based on STELLA+STARLETTE data.

 
Figure 4. Sequential solution for the Yarragadee local l2 parameter based on LAGEOS-1+LAGEOS-2 data.
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Figure 5. Sequential solution for the Mount Stromlo local h2 parameter based on LAGEOS-1+LAGEOS-2 data.

Figure 6. Sequential solution for the Mount Stromlo local h2 parameter based on STELLA+STARLETTE data.
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Figure 7. Sequential solution for the Mount Stromlo local l2 parameter based on LAGEOS-1+LAGEOS-2 data.

In the first step of the sequential method, the h2, l2 parameters were determined from two
orbital arcs. The computed values significantly deviate from the final ones. Adding arcs in weekly
cycles (up to 260) allows the observation of a slowly emerging stability approaching the final h2, l2
values determined from the 260 arcs. The values of formal errors of the determined parameters also
asymptotically approach their final values. The process of achieving stability varies across parameters
and stations. For the Yarragadee station, for the h2 parameter, the designation stability (understood as
the repeatability of the results obtained for subsequently added arcs down to the level of formal error)
for LAGEOS-1+LAGEOS-2 data (Figure 2) emerges at about 200 arcs. The situation is similar for the
determination from STELLA+STARLETTE data (Figure 3). The l2 parameter (Figure 4) exhibits a lower
degree of determination stability, achieved after about 230 arcs. In turn, for the Mount Stromlo station,
the stability of the h2 parameter determination was achieved for about 190 LAGEOS-1+LAGEOS-2
arcs (Figure 5) and 200 STELLA+STARLETTE arcs (Figure 6). The determination stability of the l2
parameter for the Mount Stromlo station is similar to that of Yarragadee station, and was achieved after
about 230 arcs (Figure 7). It proves that the number of arcs needed to determine local tidal parameters
of these stations is about 200, which corresponds to about a 50-month interval (seven-day orbital arcs).
For next added arcs, the estimated parameters values vary less than the formal error value.

Figures 2–4 show the results of the sequential solution for the Yarragadee station local
tidal parameters. The values of the h2 and l2 numbers for this station, determined from
LAGEOS-1+LAGEOS-2 data are 0.5756 ± 0.0005 and 0.0751±0.0002, respectively, and differ from
the global values h2 and l2 given in IERS Technical Note No. 36 [33] by 0.0322 (5%) and
0.0096 (11%), respectively. A similar value of the h2 parameter was obtained from the data of
the STELLA+STARLETTE satellites: h2 = 0.5742 ± 0.0015 (the difference with respect to the global
value is 0.0336, i.e., about 6%). The l2 parameter was not determined due to an unacceptable value
and large error obtained when independently determining from the STELLA and SRTARLETTE data
(see Table 1). Jagoda and Rutkowska [5], where global values of tidal parameters determined from
LEO satellites data were analyzed from January 2005 to July 2007, present similar findings. The values
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of horizontal displacement of Earth masses in effect of tidal forces which are described by Shida
l2 number are significantly lower and harder to be measured than radial displacements which are
expressed by Love h2 number. This can potentially affect a determination of l2 parameter from the LEO
satellites data.

In general, the results of determining h2 for the Yarragadee station from STELLA+STARLETTE
data are very similar to those from LAGEOS-1+LAGEOS-2, with the difference being 0.0014, i.e., in the
range of formal error.

In turn, the formal error in h2 designation is three times greater for STELLA+STARLETTE, which is
due to the impaired orbit designation of these satellites. The LEO satellites STELLA and STARLETTE
move in the lower, dense layers of the atmosphere (at an altitude of about 800 km), and therefore
their orbits are determined with greater errors than those of LAGEOS satellites. For the STELLA and
STARLETTE satellites in [38] authors obtained mean RMS values of the post-fit residuals from 1.30 cm
to 1.87 cm depending on the Earth gravity field model used. In another paper [39], mean RMS values
of the post-fit STELLA/STARLETTE were given from 1.87 cm to 2.90 cm depending on the frequency of
estimation of empirical acceleration parameters. In [40] these were 3.11 cm for STELLA and 2.40 cm
for STARLETTE. In this paper, the mean RMS values of the post-fit STELLA and STARLETTE were
1.98 cm and 1.87 cm, respectively. In turn, the LAGEOS satellite orbits at an altitude of about 6000 km
are determined with an accuracy of about 1 cm, and RMS values of the post-fit of this order were
obtained, e.g., in [6,39]. The mean RMS values of the post-fit residuals for LAGEOS-1 and LAGEOS-2
obtained in this analysis are 1.02 cm and 1.01 cm, respectively.

Figures 5–7 depict the results of sequential solution for Mount Stromlo station local tidal parameters.
The values of the tidal parameters for this station determined from the LAGEOS-1+LAGEOS-2 data are
h2 = 0.5601 ± 0.0006, l2 = 0.0637 ± 0.0003. The differences with respect to global values are 0.0477 (8%)
for h2 and 0.021 (25%) for l2. The value of the h2 parameter for this station determined from the
STELLA+STARLETTE data is 0.5618 ± 0.0017, the difference from the nominal value is 0.046, that is
about 7%. Similarly, as in the case of the Yarragadee station, the l2 parameter from combined LEO
satellites data was not determined. There is a high degree of conformity between the h2 values obtained
from LAGEOS-1+LAGEOS-2 and STELLA+STARLETTE data, with the difference being 0.0017 and not
exceeding the formal error level. Similar to the Yarragadee station, the formal error of the h2 parameter
is higher for the LEO satellites; about three times in this case.

The comparison of Love/Shida numbers for the Yarragadee and Mount Stromlo stations
shows that they differ by 0.0155 ± 0.0005 (LAGEOS-1+LAGEOS-2 data) and 0.0124 ± 0.0015
(STELLA+STARLETTE data) for the h2 number and 0.0114 ± 0.0002 (LAGEOS-1+LAGEOS-2 data) for
the l2 number. These differences exceed the formal error level. So far, no similar studies have been
carried out for SLR stations from Australia, so it is impossible to relate the results obtained to the work
of other researchers. However, data for two European SLR stations from the Baltic Sea region are
available: Borowiec (no. 78113802) and Riga (no. 18844401). Jagoda and Rutkowska [12] were found
that the local tidal parameters for the Borowiec station determined from the LAGEOS satellites data in
the 01.01.2009–01.01.2019 interval are h2 = 0.7308 ± 0.0008 and l2 = 0.1226 ± 0.0003. In another paper
Jagoda and Rutkowska [13], were obtained h2 = 0.6891 ± 0.0009 and l2 = 0.1043 ± 0.0004 for the Riga
station from the LAGEOS satellites data in the 01.01.2004–01.01.2019 interval. Significant differences
can be found when comparing the results obtained in this work to the results for the European stations
Borowiec and Riga. These are the largest for Mount Stromlo and Borowiec stations: about 23% for the
h2 parameter and about 48% for the l2 parameter.

The differences between the global and local tidal parameters may be influenced by the geological
structure and physical factors of the observation site, in this case Australia. The Australian continent is
located in the eastern part of the Indo–Australian lithosphere plateau. The greater part of Australia is
occupied by the Precambrian Craton called the Australian Craton, which is adjacent to the structure
of the Flinders Ranges and the Barrier Ranges, and the structure of the Great Dividing Range [41].
The Yarragadee station is located within the Australian Craton on the so-called Perth Basin. The Perth
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Basin is filled mainly with continental Permian sediments which lie directly on crystalline rocks.
The rocks of the Perth Basin sedimentary cover are mainly sandy-loam and marine sediments of Triassic
and Cretaceous periods [42,43]. The eastern part of Australia where the Mount Stromlo station is
located, is occupied by the of the Great Dividing Range. The Palaeozoic structures of the Great Dividing
Range were created as a result of subduction processes on the border between Panthalassa and the
Gondwana Craton, on the fringe of which the Australian continent was situated [42]. The mountain
range created as a result of these processes is characterised by a varied structure and geological history.
In the western part, the structures formed in the Neoproterozoic era region dominate. In the central part,
the main phases of the tectonic movements, magmatism, and metamorphism were at work from the
early Ordovician to the lowest Devonian. In the eastern part, on the rocks of the older Palaeozoic there
are thick sediments of the Devonian and the lower Carboniferous as well as the Permian. The tectonic
movements lasted here from the Carboniferous. They were accompanied by lava outflows, the covers
of which amount to many thousands of square kilometers of the area. In numerous places, after the
fold movements, tectonic subsidences and grabens were formed [42,43].

In addition we have studied the impact of adjusted local tidal parameters h2, l2 values on
the determination of the Yarragadee and Mount Stromlo SLR stations coordinates in the ITRF2014
reference frame [37]. The test consisted in determining the X, Y, Z coordinates of Yarragadee and
Mount Stromlo stations in ITRF2014 in two computational versions. In the first computational
version, the coordinates were determined using the nominal global values h2 = 0.6078, l2 = 0.0847 [33].
The second version consisted in determining the coordinates using the proposed in this analysis local
tidal parameters h2 =0.5756, l2 = 0.0751 for the Yarragadee station and h2 = 0.5601, l2 = 0.0637 for the
Mount Stromlo station. Table 2 presents the test results.

Table 2. The X, Y, Z coordinates of the Yarragadee and Mount Stromlo SLR stations estimated in two
calculation versions.

X, Y, Z (m) ITRF2014

X, Y, Z (m) Estimated
Version 1

(Using the Nominal
Global Values of h2, l2)

X, Y, Z (m) Estimated
Version 2

(Using Local Values of h2,
l2 Proposed in this Paper)

Version 1 Minus
Version 2

(m)

YARRAGADEE (no. 70900513)
−2389007.5340 −2389007.5204 ± 0.0022 −2389007.5171 ± 0.0022 −0.0033
5043329.4474 5043329.4418 ± 0.0019 5043329.4377 ± 0.0019 0.0041
−3078524.2232 −3078524.1935 ± 0.0017 −3078524.1883 ± 0.0017 −0.0052

MOUNT STROMLO (no. 78259001)
−4467064.7778 −4467064.7519 ± 0.0021 −4467064.7481 ± 0.0019 −0.0038
2683034.8865 2683034.8632 ± 0.0017 2683034.8582 ± 0.0017 0.0050
−3667007.3186 −3667007.3331 ± 0.0016 −3667007.3386 ± 0.0016 0.0055

The use of local tidal parameters h2, l2 values instead of global nominal h2, l2 values affects
the result of the coordinate determination. The Z coordinate seems to be the most affected one,
with the difference between version 1 and 2 being 0.0055 m and −0.0052 m for Mount Stromlo and
Yarragadee stations, respectively. The smallest difference was observed for the X coordinate: −0.0033 m
for Yarragadee and −0.0038 m for Mount Stromlo. The Y component differed by 0.0041 m (Yarragadee)
and 0.0050 m (Mount Stromlo). In [12], in a similar test performed for the Borowiec station, the same
order of differences was obtained (ΔX =−0.0035 m, ΔY = 0.0033 m, ΔZ = 0.0042 m) as for the Yarragadee
and Mount Stromlo stations. However, in [13] describing the Riga station, these discrepancies are larger,
namely, ΔX = 0.0044 m, ΔY = −0.0047 m, ΔZ = 0.0069 m.

Similar results of determining the coordinates of the Yarragadee and Mount Stromlo stations in
ITRF2014 system were obtained in the paper [17], where the authors proposed a kinematic method
to estimate the coordinates of SLR stations by using the Global Navigation Satellite System (GNSS)
technique onboard a low Earth orbiting (LEO) satellite. They applied SLR and GNSS observations of
the GRACE-A satellite from January to December 2012. They found that the GRACE-A satellite, as a
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connection between the SLR and GNSS techniques, allowed the accurate estimation of SLR stations
positions with the high agreement with the ITRF2014 system.

In another paper [22], the author used the STARLETTE, LAGEOS-1 and LAGEOS-2 data over a
14-year period (1993–2007) for determination and analysis of SLR stations coordinates in ITRF2005
system [44]. The author pointed out a good agreement of the estimated coordinates with respect to
the values given in ITRF2005. However, in both of these studies the influence of the application of
different values of h2, l2 parameters on the results of determining the SLR stations coordinates was
not investigated.

4. Conclusions

Based on the results obtained in the considered case studies, the following conclusions can
be drawn:

• There are discrepancies observed between the determined local tidal parameters h2, l2 for the
Yarragadee and Mount Stromlo stations and the commonly used values of the h2, l2 parameters
averaged for the whole Earth. This may be influenced by the geological structure and physical
factors of the observation site. In order to confirm this, detailed geophysical analyses should be
carried out. This goes beyond the scope of this work, suggesting at the same time the need for
further studies in this field.

• The use of local tidal parameters values in the process of determining the stations coordinates
influences the result.

• Local tidal parameters h2, l2 are better determined from the LAGEOS-1 and LAGEOS-2 data than
from the STELLA and STARLETTE. However, the results obtained from the LEO satellites indicate
that data from these satellites can be used for the determination of local tidal parameters. They can
be used for stations with a low number of observations from the LAGEOS satellites.

• It is not possible to determine the l2 parameter for the Yarragadee and Mount Stromlo stations
from STELLA and STARLETTE data. The values of horizontal displacement of Earth masses
which are described by the l2 parameter are significantly lower and harder to be measured than
radial displacements which are expressed by the h2 parameter. This can potentially affect a
determination of l2 parameter from STELLA and STARLETTE data.

• The time interval adopted in the analysis is sufficient to determine the h2 and l2 local parameters.
The results stabilize after about 200 orbital arcs, which corresponds to about 50 months from the
60-month interval adopted in the analysis.
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Abstract: Current knowledge about tectonic plate movement is widely applied in numerous scientific
fields; however, questions still remain to be answered. In this study, the focus is on the determination
and analysis of the parameters that describe tectonic plate movement, i.e., the position (Φ and Λ) of
the rotation pole and angular rotation speed (ω). The study was based on observational material,
namely the positions and velocities of the GNSS stations in the International Terrestrial Reference
Frame 2014 (ITRF2014), and based on these data, the motion parameters of five major tectonic
plates were determined. All calculations were performed using software based on a least squares
adjustment procedure that was developed by the author. The following results were obtained: for
the African plate, Φ = 49.15 ± 0.10◦, Λ = −80.82 ± 0.30◦, and ω = 0.267 ± 0.001◦/Ma; for the
Australian plate, Φ = 32.94 ± 0.05◦, Λ = 37.70 ± 0.12◦, and ω = 0.624 ± 0.001◦/Ma; for the South
American plate, Φ = –19.03 ± 0.20◦, Λ = −119.78 ± 0.39◦, and ω = 0.117 ± 0.001◦/Ma; for the Pacific
plate, Φ = −62.45 ± 0.07◦, Λ = 111.01 ± 0.14◦, and ω = 0.667 ± 0.001◦/Ma; and for the Antarctic
plate, Φ = 61.54 ± 0.30◦, Λ = −123.01 ± 0.49◦, and ω = 0.241 ± 0.003◦/Ma. Then, the results
were compared with the geological plate motion model NNR-MORVEL56 and the geodetic model
ITRF2014 PMM, with good agreement. In the study, a new approach is proposed for determining
plate motion parameters, namely the sequential method. This method allows one to optimize the data
by determining the minimum number of stations required for a stable solution and by identifying
the stations that negatively affect the quality of the solution and increase the formal errors of the
determined parameters. It was found that the stability of the solutions of the Φ, Λ, and ω parameters
varied depending on the parameters and the individual tectonic plates.

Keywords: GNSS stations; tectonic plate motion parameters; ITRF

1. Introduction

Since the beginning of the Earth, its surface has been undergoing dynamic changes,
which are caused both by external forces as well as those that act inside the planet, and their
effects are visible on the surface. One such dynamic change process is tectonic plate move-
ments on the surface of the asthenosphere. Current knowledge of the motion of the plates
has been applied in numerous areas of research such as environmental sciences. Processes
that result from plate tectonics, such as seismic or volcanic activity, have a direct influence
on the environment. An issue that has been recently discussed by McEvoy et al. [1] is the
influence of the movement of the lithosphere on the safety of radioactive waste stored
underground. In addition, in [2,3], the authors analysed the influence of plate tectonics on
climate change. Another research area where knowledge of tectonic plate motion has been
applied is geodynamics and geodesy, in particular, related to defining the Earth’s reference
systems [4,5]. For years, a problem for studies focused on lithospheric deformations, has
been the formulation of laws that govern these phenomena, in particular, explaining the
driving mechanism of this motion, and thus the dynamics of the lithosphere. A pioneer
of the idea of lithospheric motion, based on the adherence of the coastal lines of both
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Americas, Africa, and Europe, was A. Snider-Pellegrini [6]. However, only the arguments
later provided by A. Wegener [7] contributed to the fact that the latter is considered to be
the author of the foundation of the lithospheric motion theory. Currently, studies in the
literature, for example, studies by [8,9], divide the lithosphere into seven major plates of
various sizes (Eurasian, African, North American, South American, Australian, Pacific, and
Antarctic), and several smaller ones, referred to as minor plates and microplates, which
are parts of the major plates or complement them. Most of the plates are located along
the western margin of the Pacific Ocean, as detailed in [10] and more detailed information
about tectonic plate movement can be found, for example, in [11,12]. The 1980s was a
period that witnessed dynamic development of space measurement techniques, including
satellite laser ranging (SLR), doppler orbitography and radiopositioning integrated by
satellite (DORIS), very long baseline interferometry (VLBI), and global navigation satellite
systems (GNSS). These techniques have started to be used for precise determination of
tectonic plate motion, due to the possibility of conducting observations at a global scale.
Nowadays, the SLR, DORIS, VLBI, and GNSS techniques are the basis for studies on crustal
movements [13], as they allow plate movements to be quantified at a level of submillimetres
per year. Data from satellite systems are the basis for creating kinematic models of plate
movements, referred to as plate kinematic and crustal deformation models, such as the
series of models developed by H. Drewes [14–21]. Then, the obtained results have been
compared with the geological models of plate movement that have been developed based
on geophysical data. Examples of such models include: AMO-2 [22], NNR-NUVEL-1 [23],
NNR-NUVEL-1A [24], PB2002 [25], and the newest one, NNR-MORVEL56 [26]. Conduct-
ing studies on a global scale requires a reference system that is uniform in geometrical
and physical terms for the whole Earth. The International Terrestrial Reference System
(ITRS) is such a reference system, and an International Terrestrial Reference Frame (ITRF)
is a realization of the ITRS. To date, the International Earth Rotation and Reference System
Service (IERS) [27] has realised more than ten solutions of the ITRF system, among which
the currently valid one is the ITRF2014 [28]. The ITRF2014 was generated using the com-
plete observation history of the four space techniques SLR, DORIS, VLBI, and GNSS. The
corresponding international services, i.e., the International Laser Ranging Service [29], the
International DORIS Service [30], the International VLBI Service [31], and the International
GNSS Service [32], provided reprocessed time series of station positions and daily Earth
orientation parameters (EOP). The International GNSS Service submitted time series com-
prising 7714 daily solutions, resulting from the second reprocessing campaign, covering
the time period 1994.0–2015.1 [33]. It is worthwhile noting, here, that another realisation
of the ITRF, namely the ITRF2020, should be available by the end of 2021. More details
regarding specifications of the ITRF solutions can be found in [34,35] or IERS Technical
Note 36 [36].

In order to meet the expectations of the users of various geodynamic, geodetic, and
environmental applications, the realisations of the ITRF have been accompanied by the
publication of a tectonic plate motion model, for example, APKIM2005 [19], ITRF2008
PMM [4], and ITRF2014 PMM [5]. These are kinematic models that have been created
based on the position (coordinates) and velocities of the SLR, DORIS, VLBI, and GNSS
stations in the given ITRF frame as one common solution (SLR + DORIS + VLBI + GNSS).

Considering the need for continuous analysis of tectonic plate movement due to the
demands of contemporary geodynamics, geodesy, and the influence on the environment,
this study was conducted to determine and analyse plate motion parameters based on the
coordinates and velocities of SLR, DORIS, VLBI, and GNSS stations, separately, for each
of these techniques. Such an approach offers the possibility to evaluate the contribution
of each of these space techniques to the creation of a model of movement of specific
tectonic plates, and to assess the accuracy, of each technique, for determining the plate
motion parameters. In this study, a new approach is proposed for determining tectonic
plate motion parameters, namely the sequential method, described in Section 2. It is
successfully demonstrated that this method can be used to identify, and then to eliminate,
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from the calculations, the stations which, due to various reasons (e.g., being located on
cracked, unstable areas of the given plate, areas of seismic activity, or on a microplate, so
their movement is not consistent with the motion of the analysed plate), contribute to an
increase in formal errors of the determined parameters and the effects on the determination
results. The method also allows for data optimisation, i.e., specifying the minimum number
of stations on the given tectonic plate for which the calculated motion parameters are
stabilised (i.e., their changes do not exceed the value of formal errors). To date, studies
have been carried out on the SLR [37,38], DORIS [38,39], and VLBI [38,40] techniques and,
on the GNSS technique, for the Eurasian plate [41]. In this study, the subsequent stage of
the conducted studies is presented. The aims of the study are: (i) to determine and analyse
the motion parameters of the African, Australian, South American, Pacific, and Antarctic
plates based on the coordinates and velocities of the GNSS stations in the ITRF2014; (ii) to
identify the stations that increase the value of formal errors in the defined parameters and
negatively affect the calculation results; and (iii) to estimate the stability of the solutions of
the motion parameters of a given plate.

2. Materials and Methods

The data provided by SLR, DORIS, VLBI, and GNSS are the basis for the determination
of the positions φ and λ of the observation stations of these techniques. The positions of
the stations are subject to changes in time as a result of, among others, the movement of
the tectonic plates on which they are located. According to the station positions φ and λ

determined at time intervals Δt, the movement of the station in time Δ
→
x can be calculated.

Then, knowing the value of the displacement Δ
→
x (in terms of coordinate shifts Δφ and

Δλ) of the station on a given plate, we can determine three parameters that describe the
movement of this plate, i.e., the geographical latitude Φ and longitude Λ of the pole of
rotation Ω and the angular rotation speed ω of the given plate or the specific elements of
the pole of rotation ωx, ωy, and ωz around the X, Y, and Z axes (Figure 1). The relations
between these values are described in Equation (1) [42]. The geometric relations between
the plate motion parameters and coordinate shifts are shown in Figure 1, where X0 is the
position of the station on the initial epoch t0, X1 is the position of the station on the epoch
t1 (after plate moving), and point P denotes the Earth pole. Equation (1):

tan Φ = ωz√
ω2

x+ω2
y

tan Λ =
ωy
ωx

ω =
√

ω2
x + ω2

y + ω2
z

ωx = ω cos Λ cos Φ
ωy = ω sin Λ cos Φ

ωz = ω sin Φ

(1)

According to [17], the displacement of the observational station Δ
→
x = (

→
Ω ×→

x )Δt
expressed as a function of the tectonic plate motion parameters Φ, Λ, ω (Δϕ = f (Φ, Λ, ω),
Δλ = f (Φ, Λ, ω)) is described by Equation (2):

Δϕ = ω · Δt · cos Φ · sin(λ − Λ)
Δλ = ω · Δt · (sin Φ − cos(λ − Λ) · tan ϕ · cos Φ)

(2)

Determining the motion parameters of a tectonic plate requires knowledge of the
coordinates and velocities of at least two stations on that plate. This allows for the creation
of two observational equations, i.e., Equation (3), and for the determination of three plate
motion parameters Φ, Λ, and ω. In such a case (when the number of observational
equations is higher than the number of the determined unknowns) it may be aligned with
the use of the least-squares adjustment method. Assuming that more than two stations are
located on a given plate allows one to evaluate the influence of the number and location of
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the stations on the determined motion parameters of the plate and the accuracy of their
determination. A description of the least squares adjustment procedure was presented,
among others, by McCarthy et al. [43], and its practical applications for the determination
of plate motion parameters in [14], and in the earlier study by Jagoda et al. [40].

According to [14], the observational equations for the least squares adjustment proce-
dure, which allow for the determination of plate motion parameters based on shifts in the
station coordinates are expressed in Equation (3):

vϕ =
(

∂Δϕ
∂Φ

)
dΦ+

(
∂Δϕ
∂Λ

)
dΛ+

(
∂Δϕ
∂ω

)
dω−

(
Δϕobs − Δϕcal

)
vλ =

(
∂Δλ
∂Φ

)
dΦ+

(
∂Δλ
∂Λ

)
dΛ+

(
∂Δλ
∂ω

)
dω−

(
Δλobs − Δλcal

) (3)

where obs and cal mean observed and calculated values, respectively.
The expressions given in Equation (3) are calculated based on the following relations,

Equation (4) [14]:

∂Δϕ
∂Φ = −ω · Δt · sin Φ · sin(λ − Λ)

∂Δϕ
∂Λ = −ω · Δt · cos Φ · cos(λ − Λ)

∂Δϕ
∂ω = Δt · cos Φ · sin(λ − Λ)

∂Δλ
∂Φ = ω · Δt · cos Φ + ω · Δt · cos(λ − Λ) · tan ϕ sin Φ

∂Δλ
∂Λ = −ω · Δt · cos Φ · sin(λ − Λ) · tan ϕ

∂Δλ
∂ω = Δt · (sin Φ − cos(λ − Λ) · tan ϕ cos Φ)

(4)

For the purposes of this study, the sequential method was applied to determine the
plate motion parameters. It involves several calculation steps. In the first step, the Φ, Λ,
and ω parameters are determined based on the coordinates and velocities of two stations,
here, the GNSS stations (station 1 + station 2) located on a given tectonic plate, adopted
from the ITRF2014 [28] and available for users on the website http://itrf.ensg.ign.fr/ITRF_
solutions/2014/ [44] (accessed on 8 June 2021).

The next steps of the sequential method consist of adding further stations to the
calculations, one by one, according to the scheme: station 1 + station 2, station 1 + station
2 + station 3, station 1 + station 2 + station 3 + , . . . , station n, where n is the number of
stations on the given plate as adopted in the solution. The number of stations added varies
depending on the specific plate. In every subsequent step of the sequential method, the Φ,
Λ, and ω parameters are calculated again. The application of the sequential method enables
the obtainment of an increasingly stable adjustment, which is characterised by a decreasing
formal error of the determined parameters. By increasing the number of stations, it arrives
at a solution that, for a certain number of stations, is characterised by the high stability of
the solution and minimum error values. A further increase in the number of stations results
in the variability of the calculated motion parameter values within the limits of formal
error, which is discussed in Section 3. The final values of the Φ, Λ, and ω parameters
that were adopted and used in further analyses were those obtained from n stations (i.e.,
from the last step of the sequential method) for a given tectonic plate. The selection of
the stations that are the basis for the determination of the motion parameters of specific
tectonic plates should take into consideration the geophysical conditions of their location.
Another factor that influences the accuracy of the solution is the geometrical configuration
of the station network, which has been explained in [14,17]. Consistency with the previous
determination of the Φ, Λ, and ω parameters for the SLR [37,38], DORIS [38,39], and
VLBI [38,40] techniques were maintained, and the same manner of selecting stations was
used. These assumptions were created based on the tests conducted during the realisation
of previous studies. Thus, as in the previous studies, for example, [40,41], the stations
should be located on a stable, uncracked area of the given plate, outside deformation zones.
It is recommended that the stations should be distributed as evenly as possibly on the given
tectonic plate. The concentration of a large number of stations in a small area does not
significantly improve the accuracy and stability of the solution. The distance between the
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first two stations should equal approximately 60% of the distance between plate boundaries,
and it should not be shorter than 50 km. The minimum timespan of observations conducted
at a given station should be three years. This is required to meet the requirements of the
rigid plate motion theory, which was discussed in [4]. The number of GNSS stations used
in the calculations differs for specific plates: for the African plate, 25 stations were used;
for the Australian plate, 20 stations were used; for the South American plate 29 stations
were used; for the Antarctic plate, 13 stations were used; and finally, for the Pacific plate,
19 stations were used. As far as the Eurasian plate is concerned, which was analysed
by Jagoda and Rutkowska [41], 120 GNSS stations were used (4 calculation scenarios
were applied with 30 stations for each scenario). Figure 2 presents the stations that were
used (black dots) and those that were rejected (red dots) from the solution and estimated
positions (green stars) of the pole of rotation for particular plates (SOAM, South American;
AFRC, African; PACF, Pacific; ANTC, Antarctic; AUST, Australian).

Figure 1. Relations between
→
Ω (Φ, Λ, and ω) and Δ

→
x (Δφ and Δλ).

Figure 2. Distribution of the GNSS stations on tectonic plates and estimated positions of the pole of rotation for a given
tectonic plate.
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All calculations related to the determination of the Φ, Λ, and ω parameters were
performed with use of the software in FORTRAN90, developed by the author, based on
the least squares adjustment procedure. A block diagram of the adjustment of the plate
motion parameters used in the author’s own software was shown in an earlier study [40]
and is not repeated here. The adopted weights of observations were the formal errors in
the determination of shifts of individual GNSS stations given in the ITRF2014 [28].

3. Results and Discussion

The positions and velocities of the GNSS stations in the ITRF2014 [28], determined by
more than 21 years of GNSS observations that covered the period 1994.0–2015.1 [33], were
the basis for the determination and analysis of the values of the Φ, Λ, and ω parameters
that describe the movement of the five major tectonic plates: African, Australian, South
American, Pacific, and Antarctic. A study by Jagoda and Rutkowska, on the largest
tectonic plate, i.e., the Eurasian plate, has already been conducted and published in the
literature [41]. In addition, the last of the major plates, the North American plate, should be
analysed separately due to a very large amount of observational data. The North American
plate is covered with a vast number of GNSS stations, which enables a detailed analysis of
the area with very high tectonic activity, located along the boundary with the Pacific plate.

The results of each step of the sequential methods for the Φ, Λ, and ω parameter
values are presented in Figures 3–17 for each plate and parameter, both separately and
in Appendices A–E, with the names of the stations used for the calculations. The final
values of the Φ, Λ, and ω parameters and of formal errors adopted for further analyses
correspond to the values from the last step of the sequential method.

Figure 3. Results of sequential method for the Φ parameter for the South American plate.
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Figure 4. Results of the sequential method for the Λ parameter for the South American plate.

Φ Λ ω 

Figure 5. Results of the sequential method for the ω parameter for the South American plate.
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Figure 6. Results of the sequential method for the Φ parameter for the Australian plate.

Figure 7. Results of the sequential method for the Λ parameter for the Australian plate.
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Figure 8. Results of the sequential method for the ω parameter for the Australian plate.

Figure 9. Results of the sequential method for the Φ parameter for the Antarctic plate.
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Figure 10. Results of the sequential method for the Λ parameter for the Antarctic plate.

 
Figure 11. Results of the sequential method for the ω parameter for the Antarctic plate.
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Figure 12. Results of the sequential method for the Φ parameter for the Pacific plate.

 
Figure 13. Results of the sequential method for the Λ parameter for the Pacific plate.
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Figure 14. Results of the sequential method for the ω parameter for the Pacific plate.

Figure 15. Results of the sequential method for the Φ parameter for the African plate.
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Figure 16. Results of the sequential method for the Λ parameter for the African plate.

Figure 17. Results of the sequential method for the ω parameter for the African plate.

The first plate that was analysed was the South American plate, which is bordered by
the African and Nazca plates as well as several smaller ones with the oceanic lithosphere. It
moves northwest at a rate of approximately 3 cm/year towards the North American plate,
moving continuously away from Africa. It consists of three main geological units: the South
American craton, which covers the northern, eastern, and central parts of the continent;
the Palaeozoic Patagonian platform in the southeast; and the Andes, an alpine mountain
range that stretches along the western boundary of the plate. In total, 29 GNSS stations
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were used to determine the motion parameters of the South American plate. The motion
parameters calculated for all stations in total are: Φ = –19.03 ± 0.20◦, Λ = −119.78 ± 0.39◦,
and ω = 0.117 ± 0.001◦/Ma, which is presented, respectively, in Figures 3–5 and in Ap-
pendix A. The comparison of the results with the values obtained in a previous study
for the DORIS technique [39] demonstrated that the consistency of results was similar to
the value of formal errors, and the differences were 1.27◦, 1.57◦, and 0.016◦/Ma for the
Φ, Λ, and ω parameters, respectively. For the other techniques, i.e., SLR and VLBI, the
motion parameters of this plate were not calculated due to the lack of the required number
of stations.

The solution becomes stable after 10, 11, and 7 steps of the sequential method, re-
spectively, for the Φ, Λ, and ω parameters. At that stage, the changes in the values of the
calculated parameters after adding subsequent stations to the process do not exceed the
formal error. Hence, one may assume that the minimum number of stations required to
determine the motion parameters of this plate is approximately 13. Due to high values
of formal errors and discrepancies with the final values of the determined Φ, Λ, and ω
parameters (please refer to Table 1), the following stations were rejected from the solutions:
Valparaiso, Antuco, Concepcion, Quito III, Arequipa, and Callao (red dots on Figure 2).
These stations accumulate interseismic strain associated with locking of the Peru-Chile
megathrust, and therefore are moving east relative to the South American plate [45]. The
Quito III station is located near the boundaries of four smaller plates: Cocos, Caribbean,
Nazca, and North Andes. Including it in the solution causes a change in the Φ, Λ, and
ω parameters, respectively, by approximately 3◦, 10◦, and 0.01◦/Ma. The other stations:
Callao, Arequipa, Valparaiso, Concepcion, and Antuco are situated along the boundary
of the Nazca plate. Among them, the Callao station has the highest influence on the
change in motion parameters, namely parameter Φ by approximately 6◦, parameter Λ by
approximately 11◦, and parameter ω by −0.016◦/Ma.

Table 1. Stations rejected from the solutions.

Plate Name Name of the Station Φ (◦) Λ (◦) ω (◦/Ma)

South American

Valparaiso −14.47 ± 2.41 −117.08 ± 5.24 0.131 ± 0.011

Antuco −18.05 ± 1.06 −117.53 ± 2.54 0.110 ± 0.010

Concepcion −15.34 ± 2.39 −115.15 ± 5.43 0.132 ± 0.014

Quito III −16.09 ± 0.82 −129.78 ± 1.91 0.118 ± 0.014

Arequipa −16.06 ± 1.07 −127.45 ± 2.51 0.124 ± 0.008

Callao −13.01 ± 1.46 −130.48 ± 3.35 0.133 ± 0.012

Australian
Wellington 30.23 ± 1.03 34.14 ± 1.51 0.633 ± 0.005

Coco Island 31.00 ± 1.27 41.08 ± 2.56 0.583 ± 0.006

Pacific Nuku Alofa −56.97 ± 2.15 116.27 ± 1.97 0.647 ± 0.010

Antarctic King George Island 56.56 ± 3.40 −128.76 ± 3.07 0.183 ± 0.022

African
Awra 46.59 ± 0.47 −78.73 ± 2.02 0.250 ± 0.006

Marion Island 50.64 ± 0.51 −84.34 ± 1.23 0.254 ± 0.005

The motion parameters of the Australian plate were determined based on the position
and velocity of 20 stations. Their final values are: Φ = 32.94 ± 0.05◦, Λ = 37.70 ± 0.12◦, and
ω = 0.624 ± 0.001◦/Ma. The results of the solution for each step of the sequential method
are presented in Figures 6–8 and in Appendix B. The solutions become stable for Φ, Λ,
and ω parameters, respectively, after 10, 11, and 4 steps of the sequential method. Hence,
one may assume that the minimum number of stations required to determine the motion
parameters of this plate is approximately 12. The Australian plate is the most tectonically
stable among all of the analysed plates, it moves northeast towards the Eurasian and Pacific
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plate at a rate of approximately 6–7 cm/year. The greater part of the Australian plate is
occupied by the Precambrian Craton, called the Australian Craton, which is adjacent to
the structure of the Flinders Ranges and the Barrier Ranges, and the structure of the Great
Dividing Range [46]. The tectonic stability of this plate is reflected in the formal errors of
the determined motion parameters, i.e., their values are lower than those of the remaining
plates. Similar findings have been observed in previous studies on the SLR and DORIS
techniques [37–39]. The comparison of the results with the values obtained in an earlier
study on the SLR, DORIS, and VLBI techniques, the highest compatibility of results was
found with the VLBI technique [40], and the lowest one with the SLR technique [37]. The
differences in the determined Φ, Λ, and ω values for the GNSS and VLBI techniques are,
respectively, 0.31◦, 0.29◦, and 0.007◦/Ma, while, for the GNSS and SLR techniques, they are
1.52◦, −1.78◦, and 0.007◦/Ma, respectively, for Φ, Λ, and ω. Two stations (Wellington and
Coco Island) that disturb the result of calculating the Φ and Λ parameters by approximately
3◦ were found on the Australian plate (please refer to Table 1). Including these stations
in the determination of the parameters also increases the formal errors of the parameters
multiple times, therefore, these stations were rejected from the solutions. The Wellington
station is located at the boundary with the Pacific plate near the so-called Alpine Fault,
and the Coco Island station is located near the boundary with the Capricorn and Sunda
small plates.

The next plate, the Antarctic plate is bordered by the African, South American, Aus-
tralian, Pacific, Nazca, and Scotia plates. Within the plate, three main geological units can
be distinguished: the Antarctic craton, which covers the eastern part of the continent; the
Palaeozoic platform in the western part; and the Alpine fold zone of the Antarctic Peninsula.
The Antarctic plate moves in the northeast direction (the part bordering the South American
plate) and the southern direction (the part bordering the Australian plate) at a rate of about
1–1.5 cm/year. The following motion parameter values were obtained for the Antarctic
plate: Φ = 61.54 ± 0.30◦, Λ = −123.01 ± 0.49◦, and ω = 0.241 ± 0.003◦/Ma. The results
of the sequential method are depicted in Figures 9–11 and presented in Appendix C. The
solution was based on 13 stations, whose positions are shown in Figure 2. The inclusion of
the King George Island station located near the boundary with the Shetland microplate
and the Scotia plate, in the area of the alpine fold of the Antarctic Peninsula, results in an
approximately 10-fold increase in the formal errors and a change in the values of the Φ and
Λ parameters by about 6◦ (Table 1); this station was not included in the calculations.

In general, the formal errors of the Φ, Λ, and ω parameters for the Antarctic plate
were the highest among all of the analysed plates. The comparison of the obtained results
to the solutions for the DORIS [39] and VLBI [40] techniques revealed that the compatibility
was higher for DORIS. The differences in the determined values between the GNSS and
DORIS techniques are 1.26◦ for Φ, 1.89◦ for Λ, and −0.009◦/Ma for ω, while the differences
between GNSS and VLBI are, respectively, 2.26◦, 4.64◦, and 0.025◦/Ma. The stability of the
solution of the Φ, Λ, and ω parameters appear after five steps of the sequential method.
At that stage, the changes in the values of the calculated parameters, after the addition of
another station to the process, do not exceed the formal error. Hence, one may assume that
the minimum number of stations required to determine the motion parameters of this plate
is approximately 7.

The sequential method for the motion parameters for the Pacific plate are presented in
Figures 12–14 and in Appendix D. It is the largest tectonic plate, and, within it, there are
areas of very high tectonic activity, the so-called Ring of Fire. The Pacific plate moves north-
west towards the Eurasian and Australian plates at a rate of approximately 6–10 cm/year.
In the solution, 19 stations were included. Their locations are shown in Figure 2, and their
names are listed in Appendix D. The final values of the motion parameters of the Pacific
plate are: Φ = −62.45 ± 0.07◦, Λ = 111.01 ± 0.14◦, and ω = 0.667 ± 0.001◦/Ma. Similar
values were obtained in a previous study for the SLR, DORIS, and VLBI techniques [38].
The smallest differences were noted in the comparison with the SLR technique: 0.05◦ for
the Φ parameter, 2.50◦ for the Λ parameter, and the value of the ω parameter was the same.
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The stability of the solution of the Φ, Λ, and ω parameters appear, respectively, after 12,
15, and 5 steps of the sequential method. Adding further stations, up to 19 stations, resulted
in a change of the Φ, Λ, and ω parameters by values that did not exceed formal errors.
Hence, one may assume that the minimum number of stations required to determine the
motion parameters of this plate is approximately 17. The solution took into consideration
the Point Reyes Lig. station located on the North American continent that, on the one hand,
its movement was compatible with that of the Pacific plate and it did not have a negative
effect on the solution of the Φ, Λ, and ω parameters (please refer to Appendix D). On the
other hand, the Nuku Alofa station was rejected, as it caused a multi-fold increase in the
values of formal errors for the Φ, Λ, and ω parameters (please refer to Table 1) and changed
their values by approximately 5◦ (Φ and Λ) and by 0.020◦/Ma (ω).

Figures 15–17 depict the results of the sequential method for the motion parameters of
the African plate. It moves northeast towards the Eurasian and Arabian plates. The main
geological unit is the Precambrian craton (the so–called African Megacraton) with a system
of tectonic grabens, forming the East African Rift system. The sequential method was based
on 25 GNSS stations, which are listed in Appendix E, and their locations are presented
in Figure 2. The final values of the Φ, Λ, and ω parameters equal: Φ = 49.15 ± 0.10◦,
Λ = −80.82 ± 0.30◦, and ω = 0.267 ± 0.001◦/Ma. The obtained values of plate motion
parameters in the first few steps of calculations were significantly divergent from the final
results, as shown in Appendix E. Adding further stations in the calculation process led to
the stabilisation of the results, until final values were reached based on all 25 stations. The
stability of the results for the Φ, Λ, and ω parameters was noted, respectively, for 10, 7,
and 7 stations used in the solution. Hence, the minimum number of stations required to
ensure a stable solution is approximately 12 stations. The results were rather compatible
with the values obtained in previous studies for the SLR [37] and DORIS [39] techniques,
and the differences are, respectively, −1.63◦ and −0.38◦ for Φ, −4.00◦ and −1.70◦ for Λ,
and −0.016◦/Ma and 0.017◦/Ma for ω. The Awra and Marion Island stations were rejected
from the solution. The Awra station (located on the African continent near the boundary
with the Arabian plate) contributed to a change in the Φ parameter by approximately
2.5◦, Λ by approximately 2◦, and ω by approximately 0.02◦/Ma, while the Marion Island
(located on an island near the boundary with the Antarctic plate) station changed the values
by approximately 1.5◦ for Φ, by approximately 3.5◦ for Λ, and by approximately 0.01◦/Ma
for ω (please refer to Table 1). These stations also caused an approximately six-fold increase
in the value of the formal errors in the determined parameters. The following stations
are included in the solution: Addis Ababa, Mbarara, Tanzania CGPS, and Richardsbay.
Although they are located on the Somalia and Lwandle small plates, they do not have a
negative effect on the results of the solution (Appendix E).

Comparison with Geological Model NNR-MORVEL56 and Geodetic ITRF2014 Plate Motion
Model (PMM)

Geological models are developed based on geophysical observations, such as sea floor
spreading rates, earthquake slip vectors, and transform fault azimuths. The most commonly
used geological model is NNR-NUVEL1A [24] that originates from NNR-NUVEL1 [23].
It has recently been replaced with a new model, namely NNR-MORVEL56 [26], which is
considered to be better than NNR-NUVEL1A. The NNR-MORVEL56 model was deter-
mined from more and higher quality spreading rates and azimuths. Moreover, it excluded
circum-Pacific data (earthquake slip vectors and Pacific North America spreading rates)
that were biased measures of relative plate velocity, addressed in [26]. The comparison of
the results of the solutions of motion parameters of the specific tectonic plates with the
NNR-MORVEL56 geological model should be approached with caution. The observations
that are used for creating geological models are limited to plate boundaries, where local
deformations occur quite often, and therefore the obtained results are not always repre-
sentative of the movement of the whole plate. Moreover, geological models provide an
average movement of individual plates across a very long period of time, which may range
from hundreds of thousands to millions of years, and due to this, they may not reflect the
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potential current speeding up or slowing down of specific tectonic plates, which, however,
are recorded by very precise space techniques: SLR, DORIS, VLBI, and GNSS. Neverthe-
less, the ITRF2000 was defined based on the tectonic plate movement obtained from the
NNR-NUVEL1A geological model. Subsequent solutions of the ITRF were adopted to the
previous ones: ITRF2005 to ITRF2000, ITRF2008 to ITRF2005, and ITRF2014 to ITRF2008,
but they are still indirectly linked to NNR-NUVEL1A. The question about the use of the
new geological model, i.e., the NNR-MORVEL56, in future solutions of the ITRF, is still
important and was discussed in [28]. To date, it has been found that the angular velocities
in NNR-MORVEL56 differ significantly from those in NNR-NUVEL1A for all plates [5,26].
A detailed comparative analysis of these models was conducted by Argus et al. [26] and
it will not be discussed here. However, the comparison of the motion parameters of in-
dividual plates that were determined in this study with the NNR-MORVEL56 model is
presented in Table 2.

Table 2. Comparison with the NNR-MORVEL56 model.

Plate Name
NNR-MORVEL56 (1)
Φ (◦), Λ (◦), ω (◦/Ma)

This Paper (2)
Φ (◦), Λ (◦), ω (◦/Ma)

Differences (1)–(2)
Φ (◦), Λ (◦), ω (◦/Ma)

South American
−22.62 −19.03 ± 0.20 −3.59
−112.83 −119.78 ± 0.39 6.95

0.109 0.117 ± 0.001 −0.008

Australian
33.86 32.94 ± 0.05 0.92
37.94 37.70 ± 0.12 0.24
0.632 0.624 ± 0.001 0.008

Pacific
−63.58 −62.45 ± 0.07 −1.13
114.70 111.01 ± 0.14 3.69
0.651 0.667 ± 0.001 −0.016

Antarctic
65.42 61.54 ± 0.30 3.88

−118.11 −123.01 ± 0.49 4.90
0.250 0.241 ± 0.003 0.009

The calculated differences between the values of the Φ, Λ, and ω parameters for the
NNR-MORVEL 56 model and the results of the solution presented in this study revealed
that the most similar values were obtained for the Australian plate: the Φ parameter
differed by approximately 1◦, the Λ parameter by approximately 0.2◦, and the ω parameter
by 0.008◦/Ma, which corresponded to approximately 1 mm/year. A difference of approx-
imately 1◦ for the Φ parameter was also obtained for the Pacific plate, although for the
Λ parameter, the difference was higher and approximately 4◦, while the angular rotation
speed, ω, differed by approximately −0.02◦/Ma, which corresponded to approximately
2 mm/year. Regarding the South American and Antarctic plates, the difference in the val-
ues of the Φ parameter was approximately 4◦, and for the Λ parameter, approximately 7◦
(the South American plate) and approximately 5◦ (the Antarctic plate). The angular rotation
speed ω differed by −0.008◦/Ma for the South American plate and by 0.009◦/Ma for the
Antarctic plate, which corresponded to approximately 1 mm/year. The NNR-MORVEL56
model does not present the results for the African plate, which distinguishes two plates
within it, namely Nubia and Somalia; hence, the inability to compare the obtained results.
Nubia covers approximately 95% of the surface area of the African continent and the area
to the West, towards the boundary of the South American plate, while the Somalia plate
covers about 5% of the continent (the Eastern part) and the area to the East to the boundary
with the Australian plate and the smaller tectonic plate, i.e., the Indian plate.

The ITRF2014 PMM [5] is the geodetic model describing the motion of 11 tectonic
plates (the major plates and several selected small plates). It is dedicated to the currently
in force ITRF2014 frame [28]. In developing it, horizontal velocities of a subset of the
ITRF2014 stations of all space techniques in a combined solution (SLR + DORIS + VLBI
+ GNSS) were used, localized away from plate boundaries and deforming zones. For
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the South American plate, it was a total of 30 stations apart from the GNSS stations also
2 DORIS ones); for the Australian plate, it was 36 stations (including five DORIS, five
VLBI, and three SLR stations); for the Pacific plate, it was 18 stations (including four
DORIS, three VLBI, and one SLR); for the Antarctic plate, it was seven stations (GNSS
only). Similar to the NNR-MORVEL 56 model, no parameters were determined for the
African plate. In the ITRF2014 PMM, the plate motion was described providing specific
elements of the pole of rotation: ωx, ωy, ωz, and the angular rotation speed ω. In order
to compare the results, the values of geographical latitude (Φ) and longitude (Λ) of the
pole of rotation determined in this study for each plate were calculated with the use of
the formulas (Equation (1)) into ωx, ωy, and ωz. The comparison is presented in Table 3.
As it can be seen from that table, the largest differences are noted for the South American
plate, whereas small differences can be noted for the Australian plate. From the analysis
of separate components of the pole of rotation (ωx, ωy, and ωz), it becomes evident
that the largest differences for the ωx component occur for the South American plate
(−0.082 mas/year) and the Antarctic plate (−0.023 mas/year); for the ωy component, the
largest differences occur for the South American plate (0.050 mas/year) and the Australian
plate (0.029 mas/year); while for the ωz component, the largest differences occur for
the Antarctic plate (−0.088 mas/year) and the Pacific plate (−0.057 mas/year). For the
rotation angular velocity (ω), the biggest difference is in the case of the Antarctic plate
(−0.022◦/Ma) and the Pacific plate (0.012◦/Ma), which corresponds to approximately
2 mm/year and 1 mm/year, respectively. For the remaining plates the differences do not
exceed 1 mm/year.

Table 3. Comparison with the ITRF2014 PMM.

Plate Name
ITRF2014 PMM (1)
ωx, ωy, ωz (mas/yr),

ω (◦/Ma)

This Paper (2)
ωx, ωy, ωz (mas/yr),

ω (◦/Ma)

Differences (1)–(2)
ωx, ωy, ωz (mas/yr),

ω (◦/Ma)

South American

−0.270 ± 0.006 −0.188 ± 0.003 −0.082
−0.301 ± 0.006 −0.351 ± 0.003 0.050
−0.140 ± 0.003 −0.136 ± 0.002 −0.004
0.119 ± 0.001 0.117 ± 0.001 0.002

Australian

1.510 ± 0.004 1.492 ± 0.004 0.018
1.182 ± 0.004 1.153 ± 0.004 0.029
1.215 ± 0.004 1.222 ± 0.004 −0.007
0.631 ± 0.001 0.624 ± 0.001 0.007

Pacific

−0.409 ± 0.003 −0.410 ± 0.004 0.001
1.047 ± 0.004 1.066 ± 0.004 −0.019
−2.169 ± 0.004 −2.112 ± 0.004 −0.057
0.679 ± 0.001 0.667 ± 0.001 0.012

Antarctic

−0.248 ± 0.004 −0.225 ± 0.002 −0.023
−0.324 ± 0.004 −0.347 ± 0.003 0.023
0.675 ± 0.008 0.763 ± 0.021 −0.088
0.219 ± 0.002 0.241 ± 0.003 −0.022

In general, it can be stated that the agreement with the NNR-MORVEL56 and ITRF2014
PMM models is good for all plates.

4. Conclusions

In this study, the motion parameters, i.e., the latitude (Φ) and longitude (Λ) of the
rotation pole, and the angular rotation speed (ω) of five major lithospheric plates (South
American, African, Australian, Antarctic, and Pacific plates) were determined. The obser-
vational material includes the positions and velocities of 106 highly quality GNSS stations
in the ITRF2014. As many as 29 of these stations are located on the South American plate,
13 stations on the Antarctic plate, 20 stations on the Australian plate, 19 stations on the
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Pacific plate, and 25 stations on the African plate. The most accurate solutions of the Φ, Λ,
and ω parameters were determined for the Australian and Pacific plates, while the least
accurate were determined for the Antarctic plate. The comparison of the obtained results
to previously conducted research on the SLR [37,38], DORIS [38,39], and VLBI [38,40]
techniques revealed high compatibility. The most similar results were obtained for the
comparison with the VLBI technique for the Australian plate, the SLR technique for the
Pacific plate, and the DORIS technique for the African, Antarctic, and South American
plates. The most accurate solutions for the Φ, Λ, and ω parameters were obtained with the
GNSS technique as compared with the other techniques. Because of the dense coverage of
the Earth with GNSS stations, this is the only space technique that offers the possibility to
determine the motion parameters of all the major lithospheric plates. The applied sequen-
tial method allowed us to define the minimum number of stations that ensured a stable
solution and to indicate the stations that negatively affected the result of the solution. The
minimum number of stations that should be used to determine the Φ, Λ, and ω parameters
to guarantee a stable solution differs depending on the individual plates. For the South
American and Australian plates, this number is approximately 13 stations; 7 stations for
the Antarctic plate; 17 stations for the Pacific plate; and 12 stations for the African plate.
Including a larger number of stations in the calculations does not have a significant in-
fluence on the values of the determined Φ, Λ, and ω parameters and formal errors. A
total number of 12 stations that disturbed the solutions of the Φ, Λ, and ω parameters and
increased the values of formal errors were found; these stations were rejected from the
solution. Six of these stations are located on the South American plate (Valparaiso, Antuco,
Concepcion, Quito III, Arequipa, and Callao), two stations on the Australian (Wellington
and Coco Island) and African (Awra and Marion Island) plates, and one on the Antarctic
(King George Island) and Pacific (Nuku Alofa) plates. Including them in the solution leads
to a change in the Φ and Λ parameters in the range of 2–11◦, and of the ω parameter in the
range from −0.016 to 0.058◦/Ma.

The values that were the most similar to the current geological model NNR-MORVEL56 [26]
were obtained for the Australian plate (the differences do not exceed 1◦ for the Φ and the
Λ parameters, and 0.008◦/Ma for the ω parameter). The differences for the other plates
are higher, ranging from approximately 1 to 7◦ for the Φ and the Λ parameters, and from
−0.016 to 0.008◦/Ma for the ω parameter. These differences may indicate a current slowing
down or speeding up of the movement of certain tectonic plates, which are detected by
the very precise GNSS space technique. Comparing the results with the geodetic model
ITRF2014 PMM [5], one can find a high agreement between them, the largest differences are
found for the South American plate (ωx and ωy components) and the Antarctic plate (ωz
component). The rotation angular velocity (ω) differs within the range from −0.022◦/Ma
(the Antarctic plate) to 0.012◦/Ma (the Pacific plate).
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Appendix A

Determined plate motion parameters and their formal errors of the South American
plate for the GNSS network using the sequential method.
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No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

2 Brasilia + Forteleza −18.61 ± 0.76 −131.48 ± 1.91 0.136 ± 0.003
3 2 + Buenos Aires −19.11 ± 0.67 −124.67 ± 1.80 0.125 ± 0.003
4 3 + Rio Grande −19.80 ± 0.61 −122.75 ± 1.49 0.129 ± 0.003
5 4 + La Plata −18.89 ± 0.60 −121.31 ± 1.32 0.123 ± 0.003
6 5 + Bahia Blanca −18.20 ± 0.59 −121.72 ± 1.18 0.124 ± 0.003
7 6 + Lihue Calel −18.86 ± 0.59 −120.87 ± 1.16 0.119 ± 0.003
8 7 + Curitiba-Para −19.49 ± 0.57 −121.66 ± 1.14 0.118 ± 0.003
9 8 + Presidente Prud −18.90 ± 0.52 −120.75 ± 1.09 0.119 ± 0.002
10 9 + Manaus −19.53 ± 0.46 −119.37 ± 0.99 0.120 ± 0.002
11 10 + Porto Alegre −19.42 ± 0.43 −118.33 ± 0.95 0.118 ± 0.002
12 11 + Recif −19.30 ± 0.39 −118.64 ± 0.89 0.118 ± 0.002
13 12 + Cananeia −19.37 ± 0.38 −118.45 ± 0.86 0.117 ± 0.002
14 13 + Belem −19.41 ± 0.34 −118.31 ± 0.81 0.117 ± 0.001
15 14 + Porto Velho −19.22 ± 0.32 −118.72 ± 0.79 0.117 ± 0.001
16 15 + Macapa −19.06 ± 0.30 −119.00 ± 0.55 0.117 ± 0.001
17 16 + Ilha Solteira −19.02 ± 0.29 −119.19 ± 0.54 0.117 ± 0.001
18 17 + Boa Vista −19.09 ± 0.27 −119.28 ± 0.52 0.117 ± 0.001
19 18 + Imbituba −19.14 ± 0.27 −119.41 ± 0.51 0.117 ± 0.001
20 19 + Sao Gabriel −18.93 ± 0.25 −119.53 ± 0.48 0.117 ± 0.001
21 20 + Sao Luis −18.86 ± 0.24 −119.59 ± 0.47 0.117 ± 0.001
22 21 + Salvador Capita −18.95 ± 0.24 −119.70 ± 0.47 0.117 ± 0.001
23 22 + Rio Branco −18.82 ± 0.23 −119.94 ± 0.45 0.117 ± 0.001
24 23 + Palmas −19.02 ± 0.22 −119.82 ± 0.44 0.117 ± 0.001
25 24 + Kourou −18.94 ± 0.21 −119.90 ± 0.41 0.117 ± 0.001
26 25 + Yacuiba −18.87 ± 0.21 −119.74 ± 0.40 0.117 ± 0.001
27 26 + Cuiba −19.01 ± 0.20 −119.77 ± 0.40 0.117 ± 0.001
28 27 + Punta Arenas −19.00 ± 0.20 −119.75 ± 0.39 0.117 ± 0.001
29 28 + Iquitos −19.03 ± 0.20 −119.78 ± 0.39 0.117 ± 0.001

Appendix B

Determined plate motion parameters and their formal errors of the Australian plate
for the GNSS network using the sequential method.

No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

2 Melbourne Obser + Yarragadee2 32.78 ± 0.18 36.90 ± 0.35 0.643 ± 0.004
3 2 + Christmas Islan 32.55 ± 0.11 36.93 ± 0.21 0.636 ± 0.003
4 3 + Warkworth 32.67 ± 0.09 36.67 ± 0.17 0.627 ± 0.002
5 4 + Darwin I 32.72 ± 0.08 36.96 ± 0.16 0.625 ± 0.002
6 5 + Alice Springs 32.50 ± 0.08 36.97 ± 0.16 0.624 ± 0.002
7 6 + Diego Garcia 32.68 ± 0.08 37.78 ± 0.16 0.624 ± 0.002
8 7 + Noumea 32.79 ± 0.07 38.23 ± 0.16 0.624 ± 0.002
9 8 + Karratha 32.88 ± 0.07 37.98 ± 0.15 0.624 ± 0.002
10 9 + Lae–Universit 32.98 ± 0.06 38.15 ± 0.15 0.624 ± 0.002
11 10 + Tidbinbilla1 32.93 ± 0.06 37.99 ± 0.14 0.624 ± 0.001
12 11 + Koumac 32.99 ± 0.06 37.87 ± 0.13 0.624 ± 0.001
13 12 + Sydney 32.95 ± 0.05 37.78 ± 0.13 0.624 ± 0.001
14 13 + Katherine-Nor1 32.92 ± 0.05 37.66 ± 0.12 0.624 ± 0.001
15 14 + Townsville-Ca 32.95 ± 0.05 37.75 ± 0.12 0.624 ± 0.001
16 15 + Auckland 32.99 ± 0.05 37.64 ± 0.12 0.624 ± 0.001
17 16 + Ceduna 32.96 ± 0.05 37.70 ± 0.12 0.624 ± 0.001
18 17 + Parkes 32.94 ± 0.05 37.68 ± 0.12 0.624 ± 0.001
19 18 + Perth 32.93 ± 0.05 37.69 ± 0.12 0.624 ± 0.001
20 19 + Mount Stromlo 32.94 ± 0.05 37.70 ± 0.12 0.624 ± 0.001

Appendix C

Determined plate motion parameters and their formal errors of the Antarctic plate for
the GNSS network using the sequential method.
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No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

2 Syowa + Rothera 59.42 ± 1.51 −114.63 ± 1.95 0.217 ± 0.021
3 2 + O’Higgins 61.36 ± 0.85 −116.76 ± 1.72 0.240 ± 0.011
4 3 + Casey 62.59 ± 0.74 −118.39 ± 1.38 0.228 ± 0.009
5 4 + Vernadski 61.72 ± 0.62 −119.93 ± 0.99 0.237 ± 0.007
6 5 + Mount Fleming 61.99 ± 0.57 −121.74 ± 0.81 0.240 ± 0.005
7 6 + Ile des Petrels 61.42 ± 0.50 −121.62 ± 0.73 0.241 ± 0.004
8 7 + Mac Murdo 61.64 ± 0.49 −122.36 ± 0.66 0.241 ± 0.004
9 8 + Mawson 61.22 ± 0.38 −122.55 ± 0.62 0.241 ± 0.003
10 9 + Palmer 61.55 ± 0.37 −122.67 ± 0.58 0.241 ± 0.003
11 10 + Sanae 61.50 ± 0.34 −122.88 ± 0.53 0.241 ± 0.003
12 11 + Fishtail Point 61.52 ± 0.30 −122.96 ± 0.50 0.241 ± 0.003
13 12 + Cape Roberts 61.54 ± 0.30 −123.01 ± 0.49 0.241 ± 0.003

Appendix D

Determined plate motion parameters and their formal errors of the African plate for
the GNSS network using the sequential method.

No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

2 Kauai + Papeete (Tahiti) −62.18 ± 1.05 117.37 ± 4.83 0.684 ± 0.003
3 2 + Maui I −62.10 ± 0.71 115.73 ± 3.54 0.672 ± 0.002
4 3 + Dunedin −62.08 ± 0.54 110.50 ± 0.93 0.675 ± 0.002
5 4 + Mauna Kea −62.53 ± 0.38 111.58 ± 0.56 0.669 ± 0.002
6 5 + Rikitea (Ile Man) −62.52 ± 0.30 110.35 ± 0.38 0.668 ± 0.002
7 6 + Niue Island −62.35 ± 0.19 110.92 ± 0.29 0.669 ± 0.002
8 7 + American Samoa −62.38 ± 0.12 110.90 ± 0.22 0.668 ± 0.002
9 8 + Apia −62.20 ± 0.12 111.00 ± 0.22 0.667 ± 0.002
10 9 + Tubuai −62.48 ± 0.10 110.57 ± 0.21 0.667 ± 0.002
11 10 + Futuna −62.15 ± 0.10 111.15 ± 0.20 0.667 ± 0.002
12 11 + Point Reyes Lig −62.38 ± 0.09 110.67 ± 0.20 0.667 ± 0.002
13 12 + Chatham Island −62.45 ± 0.08 110.93 ± 0.18 0.667 ± 0.001
14 13 + Betio Island −62.40 ± 0.08 111.00 ± 0.17 0.667 ± 0.001
15 14 + Kwajalein Atoll −62.45 ± 0.07 110.75 ± 0.15 0.667 ± 0.001
16 15 + Nauru −62.41 ± 0.07 110.87 ± 0.14 0.667 ± 0.001
17 16 + Majuro −62.45 ± 0.07 110.90 ± 0.11 0.667 ± 0.001
18 17 + Pohnpei −62.44 ± 0.07 110.96 ± 0.14 0.667 ± 0.001
19 18 + Honolulu −62.45 ± 0.07 111.01 ± 0.14 0.667 ± 0.001

Appendix E

Determined plate motion parameters and their formal errors of the African plate for
the GNSS network using the sequential method.

No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

2 Cotonou + Lusaka 45.88 ± 0.84 −69.60 ± 1.89 0.260 ± 0.007
3 2 + Addis Ababa Uni 48.76 ± 0.70 −77.80 ± 1.36 0.252 ± 0.006
4 3 + Dakar Universit 49.90 ± 0.51 −78.08 ± 1.27 0.263 ± 0.004
5 4 + Sutherland 49.13 ± 0.40 −78.72 ± 1.18 0.268 ± 0.004
6 5 + Gough Island 49.64 ± 0.35 −80.13 ± 0.99 0.262 ± 0.003
7 6 + Gao 49.07 ± 0.30 −79.02 ± 0.85 0.266 ± 0.003
8 7 + Tamale 49.28 ± 0.28 −79.40 ± 0.82 0.267 ± 0.002
9 8 + Yamoussoukro 49.43 ± 0.24 −79.28 ± 0.75 0.267 ± 0.002
10 9 + Springbok 49.16 ± 0.23 −79.47 ± 0.72 0.266 ± 0.002
11 10 + Richardsbay 49.31 ± 0.21 −80.85 ± 0.69 0.266 ± 0.001
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No. Name of the Station Φ(◦) Λ(◦) ω(◦/Ma)

12 11 + Walvis Ba 49.20 ± 0.20 −80.32 ± 0.61 0.267 ± 0.001
13 12 + Helwan 49.25 ± 0.19 −80.78 ± 0.58 0.267 ± 0.001
14 13 + Hartebeesthoek 49.22 ± 0.17 −80.46 ± 0.57 0.267 ± 0.001
15 14 + Telecomm Centre 49.12 ± 0.16 −80.27 ± 0.55 0.267 ± 0.001
16 15 + Hermanus 49.15 ± 0.16 −80.45 ± 0.51 0.267 ± 0.001
17 16 + De Aar 49.22 ± 0.14 −80.77 ± 0.45 0.267 ± 0.001
18 17 + Ouagadougou 49.15 ± 0.13 −80.61 ± 0.42 0.267 ± 0.001
19 18 + Maspalomas 49.13 ± 0.13 −80.49 ± 0.39 0.267 ± 0.001
20 19 + Santa Cruz 49.22 ± 0.13 −80.68 ± 0.36 0.267 ± 0.001
21 20 + Saint Helena 49.16 ± 0.11 −80.77 ± 0.34 0.267 ± 0.001
22 21 + Tanzania CGPS 49.10 ± 0.11 −80.89 ± 0.33 0.267 ± 0.001
23 22 + Simonstown 49.07 ± 0.10 −80.83 ± 0.31 0.267 ± 0.001
24 23 + Mbarara 49.11 ± 0.10 −80.78 ± 0.31 0.267 ± 0.001
25 24 + Rabat 49.15 ± 0.10 −80.82 ± 0.30 0.267 ± 0.001
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