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In the last decade, consumers have become increasingly aware of and concerned
about the quality and safety of food, in part due to several scandals that were widely
disseminated by the media. Currently, consumers are requesting more information about
the food they buy, not only from a nutritional point of view but also regarding origin, safety,
traceability, and authenticity. In addition, concerns about environmental and ethical issues
are on the rise, with more attention being given to topics such as biodiversity protection,
production mode, and food authenticity. The growing demand for higher quality foods,
the desire for new experiences associated with delicacy products or foods having particular
organoleptic characteristics, together with the increasing willingness to pay more money
for such products, provides an overall incentive for the adulteration of premium foods.
Moreover, several factors such as international trade, market globalization, long and
complex food supply chains, and the booming of e-commerce, further create opportunities
for food fraud. While in several cases food adulteration poses no major risk for consumers’
health (e.g., mislabeling of geographical origin), in others it can result in health hazards
due to toxic or allergenic substances. However, even when health is not jeopardized, food
fraud leads to unfair market competition and consumers being deceived. For all these
reasons, the issue of food authenticity and food fraud has been receiving increased attention
from several stakeholders, including government agencies and policymakers, control labs,
producers, industry, and the research community, and different attempts have been made
aiming for the definition of these concepts. According to the CEN Workshop Agreement
17369:2019, an authentic food product is “a food product where there is a match between the
actual food product characteristics and the corresponding food product claims; when the food product
actually is what the claim says that is” [1,2]. In the discussion paper on food integrity and
food authenticity of the working group of the Codex Alimentarius Commission [3], food
fraud is described as “any deliberate action of businesses or individuals to deceive others in
regards to the integrity of food to gain undue advantage”. Moreover, four key elements are
identified, namely deliberate intent, deception, financial gain and misrepresentation, which
are in line with the European Commission’s key criteria to refer to when establishing
if a case should be considered as fraud or as non-compliance, namely (i) violation of
one or more rules of the European Union agri-food chain legislation as referred to in
Article 1(2) of Regulation (EU) 2017/625, (ii) customer deception, (iii) economic gain, (iv)
intention [2,4]. Furthermore, different types of food fraud have been described, including
substitution, dilution, mislabeling, concealment, and unapproved enhancement, among
others [2]. In order to identify, tackle and/or deter fraudulent practices in the agri-food
sector, complementary approaches are needed to address this complex issue, including
analytical testing and broader strategies such as implementing early warning systems,
vulnerability assessments, and intelligence gathering, among which the development of
new, fast and advanced analytical methods for checking food authenticity is a central
aspect. Thus, several works have been published on the subject with respect to different
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food matrices, putting in evidence a variety of analytical techniques that can be used for
food authentication [2,5–10]. So far, the majority are targeted methods, which look for
a pre-defined characteristic or adulterant, thus being focused on the detection of a few
selected analytes [11–13]. However, in the last few years, non-targeted methods have
increasingly come into focus. These methods do not rely on the analyses of selected
individual analytes since the molecules to be detected are not known a priori, but instead
aim at studying a global fingerprint that should be as comprehensive as possible [11–13].
This approach can be advantageous when no information about possible adulterants is yet
known and/or when unconventional adulterants are added, which would be unlikely to be
detected by conventional targeted approaches. Moreover, contrary to targeted methods that
frequently need complex and expensive extraction processes, in non-targeted approaches
a simple sample preparation is generally performed to get as many matrix components
as possible [12]. Despite the many challenges that still need to be overcome, non-targeted
methods are becoming increasingly used and their contribution to deterring food fraud,
together with targeted methods, is expected to grow in the coming years.

In this regard, this Special Issue aimed at gathering original research and review
papers focusing on the development and application of both targeted and non-targeted
methodologies to verify food authenticity and traceability. This Special Issue includes
eighteen notable contributions, comprising one review paper and seventeen original re-
search papers, these last dealing with the authentication of different foods, including some
considered as highly prone to food fraud such as olive oil [14,15], honey [16,17], fish [18–20]
and meat [21–24].

Several research articles in this Special Issue reported the application of different
analytical techniques including chromatography, spectrometry, and spectroscopy aiming
for food authentication. Grazina et al. [18] used a targeted approach to determine nineteen
fatty acids by gas-chromatography with flame ionization detection (GC-FID), which were
used together with advanced chemometrics to discriminate wild from farmed salmon.
Based on seventeen features obtained from the chemical analysis, all the tested approaches,
namely principal components analysis (PCA), t-distributed stochastic neighbor embed-
ding (t-SNE), and seven machine learning classifiers, allowed them to differentiate the
two groups (wild vs. farmed). Moreover, five classifiers allowed distinguishing between
groups of farmed salmon from different geographical origins. Detecting mislabeling of
geographical origin is an issue that has been receiving increasing attention in the last few
years, since certified products or those produced in certain regions are frequently associated
with a higher price due to their quality and specific characteristics. Analytical testing for
identifying the geographical origin of foods is generally considered of high complexity
since specifications for agri-food products with geographic indication are frequently based
on subjective characteristics such as organoleptic properties [25]. Kim et al. [26] reported
the use of hydrophilic and lipophilic metabolite profiling by gas chromatography-mass
spectrometry (GC-MS) coupled with orthogonal partial least squares discriminant analysis
(OPLS-DA) to differentiate perilla and sesame seeds originating from China and Korea.
Furthermore, the authors noticed that glycolic acid was a notable metabolite for discrim-
inating between perilla seeds grown in China and Korea and proposed this compound
as being a potential biomarker for such discrimination. Likewise, proline and glycine
could be considered potential biomarkers to determine the geographical origin of sesame
seeds. The importance of tracing the geographical origin was also addressed in the study
of Vukašinović-Pešić et al. [16] on multifloral honeys from different regions of Montenegro.
The mineral content determined by inductively coupled plasma-optical emission spectrom-
etry (ICP-OES) and linear discriminant analysis allowed the researchers to distinguish
honeys that originated from areas exposed to industrial pollution. A different approach
was proposed by Lippoli et al. [17] aiming for the fast authentication of honey’s geographi-
cal origin. The authors describe the development of a non-targeted method using direct
analysis in real time and high resolution mass spectrometry (DART-HRMS) combined with
multivariate statistical analysis to discriminate chestnut honey from Portugal and Italy and
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acacia honey from Italy and China. A non-targeted method coupled with chemometrics
was also the approach selected by Barbieri et al. [14] towards the authentication of virgin
olive oils. In this study, a classification model was developed based on the raw data from
the volatile fraction fingerprint obtained by flash gas chromatography and partial least
squares-discriminant analysis (PLS-DA) to predict the commercial category of olive oils
(extra virgin, virgin and lampante). The proposed classification model was shown to be
robust since it included a high number of diversified samples classified by sensorial analy-
sis (n = 331); it was also shown to have good performance, since it was able to correctly
classify a high percentage of samples in both cross and external validation. Thus, the
proposed approach represents a valid alternative for supporting official sensory panels and
increasing the efficiency and fastness of controls, since it could be used as a screening tool
allowing for a fast pre-classification of olive oil quality grade, thus supporting the panels by
prioritizing the samples or even reducing the number of samples requiring sensory analysis.
The comparison of targeted and non-targeted approaches for detecting the adulteration of
fresh turkey meat by the fraudulent addition of protein hydrolysates was reported by Wag-
ner et al. [21]. Turkey breast muscles were treated with plant or animal protein hydrolysates
(those being produced by enzymatic and acidic hydrolysis and presenting different hy-
drolyzation degrees—partial or total) and analyzed by traditional high-performance liquid
chromatography with ultraviolet-visible detection (HPLC-UV/VIS) targeting ten proteino-
genic amino acids and by GC–MS and nuclear magnetic resonance (NMR) spectroscopy
as two non-targeted metabolite profiling methodologies. While free amino acids analysis
allowed the detection of the injection with fully hydrolyzed proteins, it was not suitable
for the detection of food fraud in the case of partial hydrolysates. It was concluded that
for lower hydrolyzation degrees, additional compounds originating from protein (such
as sugars and the by-products released during hydrolysis) play an important role in the
differentiation of nontreated samples and hydrolysate treated ones. Thus, the combination
of amino acid profiling and additional compounds can provide stronger evidence for
detecting and classifying this kind of adulteration.

The feasibility of using spectroscopic techniques as non-targeted approaches for food
authentication was also demonstrated in this Special Issue. Truffles are very expensive
mushrooms whose price depends mainly on their species but also on their origin, with the
white Piedmont truffle (Tuber magnatum) and the black Périgord truffle (Tuber melanosporum)
being the most valued species. In the paper of Segelke et al. [27] Fourier transform
near-infrared (FT-NIR) spectroscopy combined with chemometrics is used to differentiate
these truffle species from other species that are less valued but morphologically very
similar. Various data pre-processing techniques were evaluated to avoid overfitting and
the results compared using several classification models. The results showed the ability to
differentiate the expensive white truffle T. magnatum from Tuber borchii with 100% accuracy,
and T. melanosporum from Tuber aestivum and some species of Chinese black truffles with an
accuracy of 99%. Moreover, Piedmont truffles could be differentiated from non-Italian T.
magnatum truffles with an accuracy of 83%. Therefore, this work demonstrates the potential
of FT-NIR spectroscopy as a fast and low-cost authentication tool, not requiring special
training for sample preparation and equipment handling, thus being very suited for the
industrial screening of samples.

In addition to chemical approaches, several works have been conducted so far de-
scribing the development and application of molecular biology techniques for food authen-
tication purposes. These techniques are highly specific and sensitive and are frequently
considered as the most suitable tools for the identification of species. Various research
papers on the use of DNA-based approaches are also included in this Special Issue, from the
comparison of different DNA extraction methods [28] to the use of multiplex polymerase
chain reaction (PCR) [23], real-time PCR [19,22,24,29,30], or more advanced techniques
such as Digital PCR [31]. Kim et al. [23] proposed the use of a simple qualitative assay
based on the use of multiplex PCR to identify three deer species, namely red deer (Cervus
elaphus), roe deer (Capreolus capreolus), and water deer (Hydropotes inermis). Three sets of
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species-specific primers were developed, generating amplicons of different sizes for each
species that were then visualized by capillary electrophoresis to increase resolution and ac-
curacy for the detection of the multiple targets. In other works, the specific identification of
species was achieved by using real-time PCR. Kim et al. [24] designed new species-specific
primers and probe targeting the cytb region of donkey (Equus asinus) allowing the detection
of as low as 0.001% donkey meat in raw and processed meat mixtures made with beef.
Velasco et al. [29] reported the development of a real-time PCR based on the use of specific
primers and a minor groove binding TaqMan probe targeting the COI (Cytochrome Oxidase
I) region for the specific authentication of common cuttlefish (Sepia officinalis) in seafood
products. Commercial samples were also analyzed by FINS (forensically informative nu-
cleotide sequencing) in order to test the reliability of the developed method and guarantee
the correctness of the level of mislabeling found in this work (25%). This low-cost method
proved to be reliable in the differentiation of this species from other cephalopods and can
be very useful for food control authorities, since species from the genus Sepia are frequently
similar and very difficult to identify after processing because the characteristics for mor-
phological identification are eliminated. Kyriakopoulou and Kalogianni [15] described
the development of a new allele-specific real-time PCR to specifically differentiate olive
oil from the valuable wild-type Olea europaea var Sylvestris from the commonly cultivated
type Olea europaea L. var Europaea. Besides being used for species-specific identification,
real-time PCR is also reported for quantification purposes [22,29,30]. While Oh et al. [29]
estimate the percentage of corn (Zea mays) as an added adulterant in turmeric powder
(Curcuma longa) by using the fluorescent dye SYBRGreen, others propose the use of specific
probes [22,30]. Dolch et al. [22] developed two multiplex real-time PCR assays using
specific primers and probes, one for the detection and quantification of chicken (Gallus
gallus), guinea fowl (Numida meleagris) and pheasant (Phasianus colchicus), and other for
quail (Coturnix japonica) and turkey (Meleagris gallopavo). For each system, three different
quantification methods were compared for estimating the relative meat content of these
poultry species in meat mixtures. According to the authors, each method had its pros and
cons, although the matrix-specific multiplication factors method was the one presenting
more accepted recovery rates. By the contrary, in the work of Grazina et al. [30] the ∆Ct
method was chosen to estimate the percentage of Ginkgo biloba in commercial herbal infu-
sions. The proposed normalized real-time PCR system, which required the amplification
of the specific target (G. biloba ITS1 region) using the novel primer set and TaqMan probe
and a reference endogenous gene (nuclear 18S rRNA), exhibited high performance pa-
rameters and was successfully validated using blind mixtures. To assess the occurrence
of fraud in the swordfish supply chain, Ferrito et al. [20] suggested the use of a different
molecular strategy encompassing the PCR amplification of the frequently used barcode
COI gene combined with the restriction fragment length polymorphism (RFLP) technique.
The COIBar-RFLP procedure was applied on several authenticated reference samples of
swordfish (Xiphias gladius) and four different shark species to generate species-specific
restriction enzyme patterns. Those were further used for the authentication of fresh and
frozen commercial swordfish slices, allowing the detection of Prionace glauca, Mustelus
mustelus and Oxynotus centrina in slices labeled as Xiphias gladius. A different technology,
namely digital PCR, is reported in the work of Morcia et al. [31] to identify economically
motivated adulteration in the pasta industry by the substitution of Triticum durum with
cheaper common wheat (Triticum aestivum). Moreover, the proposed assay allowed the
researchers to track the adulterant down to 3%, which is the critical value established in
the legislation as a limit for accidental contamination.

Finally, closing this Special Issue, the review paper by Hassoun et al. [32] discusses the
use of different analytical methods for detecting frauds in food products of animal origin,
with particular attention being paid to non-targeted spectroscopic detection methods.
The advantages, opportunities and challenges associated with the use of spectroscopic
techniques are discussed and several application examples are given, covering relevant
and recently published works.
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Overall, the papers included in the Special Issue “Target and Non-Target Approaches
for Food Authenticity and Traceability” put in evidence the global relevance of the topic and
the importance of developing different approaches that can be used by control laboratories
and governmental agencies to verify and guarantee food authenticity and traceability,
allowing agencies to detect and expose eventual food fraud scenarios, and therefore
protecting producers and industry from unfair competition as well as increasing consumers’
confidence in purchased foods.

Funding: The author acknowledges the Foundation for Science and Technology (FCT, Portugal) for
financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020).
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Abstract: Animal origin food products, including fish and seafood, meat and poultry, milk and
dairy foods, and other related products play significant roles in human nutrition. However, fraud in
this food sector frequently occurs, leading to negative economic impacts on consumers and potential
risks to public health and the environment. Therefore, the development of analytical techniques that
can rapidly detect fraud and verify the authenticity of such products is of paramount importance.
Traditionally, a wide variety of targeted approaches, such as chemical, chromatographic, molecular,
and protein-based techniques, among others, have been frequently used to identify animal species,
production methods, provenance, and processing of food products. Although these conventional
methods are accurate and reliable, they are destructive, time-consuming, and can only be employed
at the laboratory scale. On the contrary, alternative methods based mainly on spectroscopy have
emerged in recent years as invaluable tools to overcome most of the limitations associated with
traditional measurements. The number of scientific studies reporting on various authenticity issues
investigated by vibrational spectroscopy, nuclear magnetic resonance, and fluorescence spectroscopy
has increased substantially over the past few years, indicating the tremendous potential of these
techniques in the fight against food fraud. It is the aim of the present manuscript to review the
state-of-the-art research advances since 2015 regarding the use of analytical methods applied to detect
fraud in food products of animal origin, with particular attention paid to spectroscopic measurements
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coupled with chemometric analysis. The opportunities and challenges surrounding the use of
spectroscopic techniques and possible future directions will also be discussed.

Keywords: authentication; authenticity; chemometric; fish; origin; honey; meat; milk; spectroscopy; species

1. Introduction

In recent years, consumers have become more concerned about the quality and safety of food
products and have become keenly interested in knowing more about food authenticity and food fraud.
In other words, consumers demand more complete information about their food, including what
they are really buying, where the food comes from, and when and how it was produced. Although
fraud and adulteration have been practiced since ancient times, it is only in recent years that food
authenticity issues have been more exposed, and public attention has been intensively paid to the
magnitude of this problem and the serious consequences of food fraud [1,2]. Furthermore, during the
current pandemic period with coronavirus raging around the world, affecting every aspect of life,
including food choices and nutrition habits, consumers have become even more concerned about safety,
accessibility, affordability, and the origin of food products than any time before. This increased interest
in food authenticity may also be explained by the numerous food scandals over the last few years
(e.g., horsemeat scandal in 2013 and rotten meat from Brazil in 2017) and the increased consumer
awareness about the impacts of food fraud in terms of illegal economic gain, as well as negative effects
on the public health and the environment. Nonetheless, several recent studies have indicated that
fraud or mislabeling is still a widespread practice, especially in food products of animal origin, which
are often considered among the most frequently adulterated foods [3–6]. Market globalization and
increases in international trade, driven by fewer obstacles to the export and import of food, a complex
food production chain, and the complex nature of food products of animal origin, the huge variety of
these products, as well as the emergence of tricky and more sophisticated forms of fraud are some of
the reasons that could explain this rise in food fraud and why detection and prevention are challenging
tasks [7–10].

Fraud in animal origin products can take many forms, including mislabeling of the provenance
(geographical or botanical origin), species substitution, discrepancies in the production method and
farming or breading technique, addition of non-declared substances, as well as fraudulent treatments
and non-declaration of processes, such as previous freezing, irradiation, and microwave heating
(Figure 1). To support this review and obtain the research published in the last few years on the
authenticity of food products of animal origin, Scopus database was queried in May 2020, using the
keyword “authenticity” or “authentication” and the different categories of animal origin food products.
It can be noticed that a huge amount of studies dealing with authenticity and detection of fraud in fish,
meat, milk, honey, and eggs has been published in recent years; the number of published works
increased from 530 between 2010 and 2014 to 1000 between 2015 and 2019 (Figure 2a).

Fraud in fish and other seafood is a widespread issue, and seafood products are often ranked
among the top food product categories that are susceptible to fraud. Substitution of a high-value fish
species with a cheaper alternative and mislabeling of the geographical origin are among the most
common fraudulent activities practiced in the fish and seafood sector. Determining whether fish is wild
or farmed, tracing farming systems, and differentiating between fresh and frozen–thawed seafoods
are among the seafood authenticity topics that have been widely investigated [8]. According to our
literature review, meat and meat products are the most studied animal origin foods with regards to
authenticity (Figure 2b). Meat authenticity has similar issues to those of fish. To address authentication
issues related to muscle foods (fish and meat), a wide range of protein- and DNA-based techniques,
chromatography, elemental profiling, and isotopic analysis, among many other measurements,
have been frequently applied to this problem [10–12]. Similar techniques have also been established in
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routine analysis for detecting fraud that occurs in other foods of animal origin (e.g., milk and dairy
products, honey, and eggs).
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products of animal origin during the last decade (a) and publications distributed between the different
food categories (b).

However, most of the aforementioned analytical methods are associated with several drawbacks,
mostly related to the destructive nature of the measurements and the time required to perform
the analysis. Therefore, there is still great interest in the development of non-destructive, rapid,
accurate, robust, and high-throughput analytical methods for on-site and real-time food authentication.
Spectroscopic techniques have gained much importance during the last few years, and spectroscopy
has been a popular “buzz word” in the context of fighting fraud and verifying the authenticity of food
products. The considerable interest in these non-targeted fingerprinting techniques may be due to the
advancements in the analytical instruments and the increasing awareness in the food industry and
research on the advantageous aspects of applying such techniques [13]. The number of scientific works
regarding the use of spectroscopy for food authenticity increased from 134 papers during 2010–2014
to 369 papers during 2015–2019 (Figure 3a), while the number of total citations (Figure 3b) doubled
during the last five years (20,784 citations between 2015 and 2019 versus 9666 citations between 2010
and 2014). Some examples of recent applications of spectroscopic techniques for authentication of
food products of animal origin include detection of adulteration in meat [14,15] identification of milk
species [16,17], detection of thawed muscle foods [18,19] identification of muscle foods species [20–22],
and determination of the botanical origin of honey [23,24], among many others.

Over the last few years, several review papers have been published focusing on either one of the
authenticity issues, such as the geographical origin [25,26] or species [27]; or one category of food
products of animal origin, such as fish [7,8], meat [28,29], or honey [30]. Other papers have reviewed
one specific type of analytical method, such as multielement and stable isotype techniques [11],
volatilomics [31], DNA-based methods [32,33], or infrared spectroscopy [34]. The current review will
cover the most recent studies that shed light on the various authenticity-related issues (i.e., geographical
or botanical origin, species, production method, farming or breeding technique, and processing method)
for all food products of animal origin (fish, meat, milk, honey, and egg), highlighting a wide range
of both traditional and emerging techniques. This review will first introduce a brief description
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of the common multivariate data analysis and analytical techniques related to detecting fraud in
food products of animal origin. Several examples of applications of conventional and spectroscopic
techniques will be then presented, covering the most relevant works published during the last five years.
Finally, some difficulties and challenges, as well as future trends in applications of these techniques,
will be discussed. To the best of our knowledge, this review paper is the first to combine results from
recent studies on a wide range of analytical methods applied to authenticate fish, meat, milk, honey,
and egg, as well as their products.
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2. Multivariate Data Analysis

Traditional chemometric methods are based on linear projections onto a lower dimensional latent
variable space, and these powerful and simple methods still dominate the field. However, more flexible
and data-intensive machine learning methods have gained traction lately. These methods have the
ability to model complex, non-linear relationships; however, the curve fitting procedures, interpretation,
and validation are often more complicated. In general, the choice of data analysis strategy depends on
the research question, as well as the type and size of the available data.

The data analysis pipeline consists of preprocessing, data exploration, modeling, and validation.
The following sections give a brief description of each of these steps, with the main emphasis on recent
trends and developments. For detailed overviews of data analysis in food authenticity, please refer
to [35–38].

2.1. Data Preprocessing

The aim of preprocessing is to reduce non-relevant variations in the signal stemming from
instrumental artifacts, surrounding effects, or sample preparation. The most used methods include
standard normal variate (SNV), (extended) multiplicative signal correction ((E)MSC), derivatives,
smoothing, baseline corrections, and peak alignments, which are often used in combination. The choice
of preprocessing method is critical for the subsequent modeling and interpretation [39,40], and should
be chosen based on knowledge of the samples and the measurement platform. Recent research suggests
various strategies for making the modeling less sensitive to preprocessing, for instance by using
a boosting approach [41], through Tikhonov regularization [42], or by using convolutional neural
networks [43–45].

2.2. Data Exploration

Data exploration is an important step prior to the actual modeling. The aim is to gain an overview
of the data, deal with outliers, evaluate the effects of preprocessing, and get a first impression of the
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potential for discriminating between samples. Principal component analysis (PCA) is the most used
tool for data exploration, providing a linear transformation of the original data by maximizing the
explained variance. Cluster analysis is another group of exploratory methods based on a certain
distance or similarity measure between samples. These methods can be more flexible than PCA,
depending on the chosen similarity metric, and may be useful for very large sample sizes.

2.3. Modeling

Authentication tasks mainly aim to determine which category a food item belongs to,
i.e., classification. There are two main approaches to classification: class modeling and class
discrimination [46–48]. While class modeling focuses on modeling the similarities among samples
from the same category, class discrimination focuses on finding the differences between a set of
predefined categories. The most used methods in the scientific literature are the soft independent
modeling of class analogies (SIMCA) and partial least squares discriminant analysis (PLS-DA) classical
chemometric methods for class modeling and discrimination, respectively; however, methods such
as support vector machines (SVM), random forests (RF), k-nearest neighbor (k-NN), and different
types of neural networks (NN) are also frequently applied. Quantitative prediction models are also
relevant in some cases, for instance when the objective is to quantify the amounts of specific adulterants.
An overview of alternative methods for class modeling, discriminant analysis, and quantitative
prediction can be found in [35–38].

Data Fusion: Data or sensor fusion is an emerging topic within food authentication. A combination
of several instrumental techniques can lead to more accurate results, either by providing complementary
information or by reducing uncertainty [49–53]. Data fusion is also an active research area in fields
other than authenticity, and new methods for explorative analysis, classification, and prediction
are presented frequently. In principle, all multivariate methods can be used for data fusion by (1)
combining all the measured variables directly, called low-level data fusion; (2) combining extracted
features such as principal components, called mid- or feature-level data fusion; or (3) combining
predictions or classifications from different techniques through voting, called high- or decision-level
fusion. There are also several methods that are tailored for data fusion problems. Examples of newly
developed explorative techniques include methods that separate common and distinctive variations in
multiple data blocks [54,55], whereas sequentially orthogonalized PLS (SO-PLS) [56,57] is a common
example of multiblock regression methods.

From Small to Big Data: In general, the traditional chemometric methods, such as PCA, SIMCA,
and PLS-DA/PLSR, are suited for small feasibility studies, while larger studies allow for use of more
data-intensive methods, such as SVM, RF, and NN. In industrial applications, however, databases with
hundreds of thousands of samples are often available. Such huge data sets call for completely different
data analysis strategies. There has so far been little focus on authentication models based on large
databases in the scientific literature, mainly because these databases are not open. There are, however,
a few exceptions showing that local modeling is a promising strategy [58,59]. In local modeling, a new
model is fitted for each new sample to be predicted, using only a subset of spectrally similar samples
as a calibration set. More research is needed on the use of local modeling for classification and on the
analysis of large databases in general.

2.4. Validation

One of the main barriers for the successful implementation of fingerprinting techniques in food
authenticity is the lack of proper validation schemes [2,60–62]. A full validation scheme consists of
four phases: (1) optimization of the analytical procedure, (2) statistical model selection and parameter
optimization, (3) testing of the model performance, and (4) stability testing by system challenges [60].
Most published feasibility studies stop at phase two or three, while phase four is essential for
successful implementation.
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Phase one is specific for the analytical technique and will not be covered here. The aim of
phase two is to select an optimal modeling strategy and model parameters. This is usually done by
resampling methods, such as cross-validation or bootstrapping. Phase three involves testing the model
performance using an independent test set, while phase four tests the extrapolation of the model,
e.g., overtime or for different instruments and locations. Thorough reviews of both numerical and
conceptual aspects of validation are given in [63,64].

3. Overview of Fraud Detection Techniques

3.1. Spectroscopic Techniques

3.1.1. Vibrational Spectroscopy

Innovation pathways in vibrational spectroscopy during this past half decade are preludes to
potential impacts and further practical achievements in the next half decade. Vibrational spectroscopy
techniques, including infrared spectroscopy in the near (NIR)- and mid (MIR)-infrared spectral ranges,
as well as Raman spectroscopy, enable a fingerprinting chemical analysis of an intact food sample in situ
for adulteration in real time. The sample remains intact for confirmatory analysis using other techniques.
Spectroscopic technologies require high levels of rigor in the evidence for authentication of both the
food or food product and of the adulterant or contaminant.

Variance in the spectral signature of the food always can complicate the capacity to distinguish
the amount and composition of an adulterant or contaminant. Recent state-of-the-art authentication
of milk products has been reported [65,66]. The authentication of raw milk involves a different
process—knowing its fingerprint identity enables detecting adulteration [67]. Products made from milk
have also been authenticated. Desi ghee made from buffalo and from cow milk can be differentiated [68],
while butter containing lard [69] and cream and yogurt [70] can be distinguished with chemometrics.

Authentication in meats is required for foods that are labeled as individual meats [71]. Horsemeat
in minced beef [72], beef and mutton in pork [73], and rainbow trout in Atlantic salmon [74] each
require sufficient data specific to substances to be labeled to assure the meat contaminant is properly
characterized in order to identify markers characteristic of each additional component. Spectral data
on the primary meat preferentially needs to be oversampled relative to that of a contaminant, or of
minor or occasional components that could be misinterpreted as unrelated to the original meat. Factors
such as diet can alter vibrational fingerprints. Eggs from poultry fed omega-3 fatty acids contain an
intentional adulterant that can be detected in the spectral signature of the eggs [75]. Work involving
fish fillet authentication using vibrational spectroscopy has also been published [21,76].

3.1.2. Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy, despite being a very well-established
methodology in food analysis, has had limited new publications over the last five years. The major
difficulties are that foods are inherently mixtures of components and adulterants may or may not
be mixtures. Thus, identifying NMR chemical shifts that do not belong in a particular food first requires
authentication of the fact that a particular set of peaks may not arise occasionally (i.e., more rarely) on
its own. This is an innately complicated process because one needs to ascertain which chemical shifts
are correlated. A major advantage of NMR is that modern NMR techniques can trace the fingerprints
from finger to finger and ascertain one part of a fingerprint belongs to another hand. Publishing the
results of such an effort is often difficult because someone else may have found the same compound
in this (or another) food product. Further, if the compound found is of little apparent biological
or food property relevance, journal reviewers can deem such research as having a correspondingly
low relevance.

The specificity of NMR complicates the authentication of the composition of an adulterant.
A unique and specific NMR peak at best detects only a single component of an adulterant. If an
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adulterant happens to be a mixture of components, NMR is useful only for detecting chemical
components one at a time. Thus, if in minced meat labelled beef porcine fat can be detected as
an adulterant, NMR can only identify a chemical shift, which identifies a site on a specific unsaturated
lipid as foreign to beef. It cannot likely identify which animal (or plant for that matter) was
the source of the product contamination. Once markers have been authenticated properly to a
specific chemical structure, this fingerprint is treated as a positive result awaiting verification by
some other technique. Verifying the food commodity that has been used for adulteration requires
significantly more spectroscopic data. Each and every spectral identification result that can be detected
in a specific matrix can be a significant challenge and are important to know. Publishing such a finding
is a more complicated endeavor.

Three recent NMR manuscripts involved detection of adulteration in milk, powdered milk,
or butter [77–79]. Two publications involving edible lipids, including milk, additionally used more
complicated NMR experiments (time-domain NMR and 13C inept NMR) [80,81]. The more complicated
NMR techniques enhance the resolution and quality of data collected. A similar enhancement using
improved technologies and methodologies in milk was reported using Raman chemical imaging
techniques [82]. One manuscript reported on the authentication of krill oil using NMR techniques [83].

The focus on NMR research in authenticating lipid compositions in foods is because specific
lipids in mixtures of lipids appear to be characteristic of their origin. The high resolution of NMR
enables deconvolution of the specificity of the lipid composition at the molecular level. Solvent effects,
however, appear to complicate spectral assignments. Two publications verified that NMR techniques
can fully distinguish omega-3 from omega-6 fatty acids in mixtures [84] and among three omega-3
fatty acid structural analogs, each in an intact lipid environment [85]. Authenticating the fingerprints
of lipids is an essential component of and prerequisite for verifying adulteration correctly.

3.1.3. Fluorescence Spectroscopy

Fluorescence spectroscopy is based on measurement of the spectral distribution of the intensity of
the light emitted by electronically excited molecules. Fluorescence coupled with chemometrics has
been widely used in food studies, including for products of animal origin [86–91]. The main advantages
of fluorescence as compared to other spectroscopic techniques are its higher sensitivity and selectivity.
Due to these features, fluorescence is particularly useful for studying minor and trace components in
complex food matrices [87,91]. Characterization of real multifluorophoric food samples requires more
advanced measurement techniques than conventional emission or excitation spectra. The advanced
fluorescence techniques have often been used in food studies, including excitation–emission matrix
(EEM) fluorescence spectroscopy, synchronous fluorescence spectroscopy (SFS), and total synchronous
fluorescence spectroscopy (TSFS) [87,92].

Fluorescence patterns of food products are usually complex. Fluorophores in food include
natural food components, process-derived compounds, food additives, and contaminants [89].
Autofluorescence of meat and fish originates mainly from collagen, adipose tissues, proteins,
and oxidation products [89]. Milk and dairy products contain several intrinsic fluorophores,
including free aromatic amino acids, nucleic acids, aromatic amino acids in proteins, vitamins
A and B2, nicotinamide adenine dinucleotide (NAD), chlorophyll, and oxidation and Maillard
reaction products [86,90]. Fluorescence in honey is ascribed to proteins, polyphenolic compounds,
and Maillard reaction products [23,93,94]. The unique fluorescence patterns of food products have
been successfully utilized in authentication studies of food of animal origin, including meat [95,96],
fish [97,98], milk [16,17] dairy products [86,90], and honey [23,88,99–102].

3.1.4. Other Spectroscopic Techniques

The number of studies on the potential use of novel spectroscopic techniques to detect fraudulent
practices encountered in the food chain has gradually increased in recent years. In this section,

14



Foods 2020, 9, 1069

information is given on the applications of laser-induced breakdown spectroscopy (LIBS), terahertz
(THz) spectroscopy, and hyperspectral imaging (I) in food adulteration analysis.

LIBS has been presented as a potential alternative to the existing analytical atomic spectrometry
techniques used to determine the elemental composition of food. Most of the samples need a
minimum or no sample preparation to be analyzed by using LIBS. The simultaneous analysis of
multiple elements can be achieved. It is highly applicable to at-, on-, and in-line measurements and
remote sensing, enhancing its potential as an analytical technology process [103,104]. LIBS coupled with
several chemometric methods has been widely used for species discrimination [105], determination
of adulteration [106], and spatial mapping of the sample surfaces in meat, milk, and other
products [107,108]. Recently, some studies utilized LIBS for analysis of honey adulteration [109,110]
and determination of its geographical origin [111,112]. Although there is a significant amount of
research in the literature reporting the high potential of LIBS as an at-line monitoring tool for the
industry, there is still a need for further improvements in system components and configurations.
Besides, more research is required to recommend alternatives to reduce the matrix effect and minimize
sample preparation procedures in order to improve the predictive accuracy. Peng et al. have described
the significant challenges and possible solutions to these in order to speed up the use of LIBS as an in
situ monitoring tool [113,114].

Terahertz spectroscopy (THz) is another technique that provides an excellent alternative to X-rays
in order to obtain high-resolution images from the interiors of solid objects. Frequency-domain and
time-domain measurements are performed for both imaging and spectroscopy with THz waves [115].
There are a limited number of studies on the use of THz spectroscopy for the determination of food
adulteration, which were previously compiled by Afsah-Hejri [115] and He [116]. Adulteration of
milk with a fat powder [117], discrimination of honey samples [118], and determination of honey
adulteration [119] were some of the recent study topics.

Hyperspectral imaging (HSI) is another relatively new technology, which has explicit potential
to satisfy the needs for remote and real-time monitoring techniques. Being rapid, non-invasive,
and providing spectral and spatial features simultaneously are some of its significant advantages.
Numerous articles describe the pros and cons of HSI-based methods for food authenticity and
adulteration analyses [14,15]. Nowadays, low-cost, rapid, and simple multispectral imaging systems
are being designed for the determination of particular adulterations [120]. Efforts are being made
to offer alternative methods for the interpretation of HSI data. The transition from the use of linear
classifiers to machine learning and deep learning solutions offers a great variety of opportunities [121].
Another trend is to employ miniature devices called single shot or snapshot hyperspectral sensors,
which are ultra-portable and able to acquire data at video rates [122]. The enormous potential of the
HSI technique to detect many aspects of food adulterations has been shown in the literature. Even so,
enhancement of the spectral and spatial resolution and presentation of alternative technologies for
advanced data analysis would be positive contributions to the accuracy and cost-effectiveness of the
developed methods.

3.2. Other Analytical Methods

3.2.1. DNA-Based Techniques

To date, many DNA-based detection methods have been developed to determine animal species
in food products. In particular, DNA-based methods have been used to detect target species in
processed foods, because DNA is stable at high temperatures and pressures. Sequencing-based
techniques (such as DNA barcoding and minibarcoding), polymerase chain reaction (PCR) coupled
with restriction fragment length polymorphism (PCR-RFLP), real-time PCR, multiplex PCR,
and species-specific PCR are among the most used techniques [32,123,124].

Identification of short DNA sequences, called DNA barcodes, has been widely exploited for
species discrimination. DNA barcoding and minibarcoding were used to authenticate animal-derived
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food products sold in the Chinese market [125] and to identify selected brands of locally-produced
canned and dried sardines in the Philippines [126].

In PCR-RFLP, the PCR products are cleaved with restriction enzymes, followed by gel
electrophoresis and blotting [32,123]. The technique was successfully applied to differentiate four
commercial shrimp types in India, and the developed PCR-RFLP protocol was validated by analyzing
52 commercial shrimp products [127].

Real-time PCR and multiplex PCR methods are the most common detection technologies in meat
and meat products, fish and seafood, and other food categories that are known to have a high incidence
of adulteration [124,128–130]. There are numerous reports in the literature demonstrating that real-time
PCR is a powerful method that can be used as a reliable and sensitive technique for meat identification.
For example, in one of the recent studies, a real-time PCR assay was developed for the detection of
raw donkey meat and different processed meat mixtures [131]. Fang and Zhang used real-time PCR
and TaqMan-specific probes for the detection of murine components in mutton meat products [129].
The results showed that the limit of detection was lower than 1 pg of DNA per reaction and 0.1%
murine contamination in meat mixtures.

Many researchers have applied multiplex PCR methods for identification of meat species for
simultaneous and rapid detection of multiple species in a single reaction. For example, two direct-triplex
real-time PCR systems based on intercalating dyes were applied as a robust and precise quantitative
PCR assay for meat species identification [124]. No DNA extraction was required and 92.5% of market
samples of six commonly eaten meat species were successfully amplified. The multiplex PCR method
was also applied to detect chicken, duck, and goose in beef, mutton, pork, or quail meat samples [132].
In a similar study, a multiplex PCR assay was used to identify lamb, beef, and duck in a meat mixture
before and after heat treatment [133]. Similar approaches were developed to monitor commercial jerky
products [134]; to detect chicken and pigeon in raw and heat-treated meats [135]; and to detect chicken,
turkey, and duck in processed meat products [130]. Recently, a fast multiplex real-time PCR with
TaqMan probes was performed to simultaneously detect pork, chicken, and beef in processed meat
samples [136].

The species-specific PCR method has been used to a great extent for meat species identification
in foods because of its high specificity and rapidity. For instance, El-Razik and co-authors used a
species-specific PCR test to differentiate donkey and horse tissue in cooked beef meat products in
Egypt [137]. In another study, a species-specific PCR was developed for the identification of beef in
India [138].

In addition, more advanced high-throughput DNA sequencing methods, such as next-generation
sequencing (NGS) [139,140], have emerged in recent years as valuable techniques for carrying out
untargeted screening of complex samples.

3.2.2. Protein-Based Techniques and Related Methods

Chromatographic, electrophoretic, and immunological methods have been widely used for
different authenticity issues for food products of animal origin [29,123,141,142]. Different mass
spectrometry (MS) techniques have emerged in recent years, and along with chromatographic and
NMR techniques have become some of the most commonly applied approaches for metabolomic
fingerprinting [142,143]. Traditionally, MS methods are coupled with chromatographic separation
techniques, such as liquid chromatography mass spectrometry (LC-MS) [142]. More recently, direct MS
analysis approaches, such as matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF),
real-time techniques (e.g., direct analysis in real-time (DART) technique), and high-resolution mass
spectrometry (HR-MS), among others, have been developed and applied to many authentication
problems [123,144–147]. For example, a DART HR-MS method was developed to discriminate Canadian
wild salmon from the farmed fish produced in Canada, Chile, and Norway [144]. The results showed
that PCA applied to the 30 most abundant signals generated from fatty acids after the DART HR-MS
analysis of fillet lipid extracts enabled a rapid discrimination between farmed and wild fish, whereas
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discriminant analysis (DA) gave a correct classification rate of 100%. In another study, the differences
between rainbow trout and king and Atlantic salmons were studied using a lipidomical method based
on hydrophilic interaction chromatography MS [147]. PCA was applied to recognize the variance
among these fish species, which was attributed to the genetic origin, living environment, and feed
ingredients, among others. A novel method based on quadrupole time-of-flight (Q-TOF) MS coupled
with a surgical diathermy device was recently developed to distinguish cod from oilfish in real
time [145]. PCA demonstrated that the clusters of oilfish were well separated from those of cod,
while the application of discriminant analysis models showed that the fish tissue can be authenticated
with 96–100% accuracy. Another recent study investigated the potential of ultra-performance liquid
chromatography–triple time-of-flight–tandem mass spectrometry (UPLC−triple TOF−MS/MS) to
determine lipid composition in the muscle tissue of four popularly consumed shrimp species [146].
About 600 lipid compounds from 14 classes were characterized and quantified, and PCA results of
lipid profiles allowed the different species to be distinguished. In a similar investigation, the use of
LC-TOF−MS allowed the detection of commercially available, highly processed mixed-meat products,
including duck, goose, and chicken, along with pork and beef [148].

Besides the chromatographic and mass spectrometry techniques, enzyme-linked immunosorbent
assay (ELISA) is one of the most widely used methods for meat identification, because it is cheap and
easy to perform [141,149].

Although the aforementioned techniques have several advantages, such as stability during thermal
processing and high sensitivity and selectivity, most of these measurements are time-consuming
because several steps are required for sample preparation, protein extraction, and lipid extraction.
In addition, the technical difficulty with MS and PCR in food adulteration is that they are useful
mainly and sometimes only after the rest of the chemistry and spectroscopy work has been completed.
Such techniques are especially valuable for verifying adulterations detected in situ by other technologies.

3.2.3. Isotopic Technique

As the isotopic compositions of the plants or animals reflect the condition of natural environment
where they grew up, the light stable isotopes 13C/12C, 18O/16O, 2H/1H, and 15N/14N, 34S/32S; and the
heavy isotopes 11B/10B and 87Sr/86Sr are commonly used in food authentication [11]. Preliminary
studies have demonstrated the usefulness of stable isotope analysis in determining the origins of
animal origin products [150–154]. However, the animal origin products had more complicated life
cycles than the plant origin products. The stable isotopes such as δ2H and δ18O were more likely to be
affected by the ambient environment [151,155]. Camin and co-authors [151] reported the H/O ratios
of Italian rainbow trout fillets were positively interrelated with the O ratio of tank water. However,
the other stable isotopes 13C/12C, 15N/14N, and 34S/32S were reported to be affected by diet [11,156,157].
Taking shrimp as an example, the δ13C and δ15N values in shrimp are significantly related to the food
sources [158]. During shrimp culture, the farmers may use several brands of commercial feeds with
different ingredients and isotopic signatures. Li et al. [156] reported that the δ13C and δ15N values
in 16 commercial feeds used in shrimp culture in China ranged from −23.03 to −24.75‰, and from
2.1 to 8.18‰, respectively. The dietary shifts could influence the stable isotope signature of shrimp.
The effects of diet on the stable isotope signature of animal origin products should be considered when
using traceability methods. Moreover, animals can only be sampled for traceability purposes when
they are in isotopic equilibrium with their diet. In a recent study, Li and others suggested the sampling
of shrimp that have been consistently fed with the same feed for more than twenty days [158].

The stable isotopes of animal origin products could also be affected by other environmental factors,
such as culture seasons and salinity [159,160]. Compared with the marine ecosystem, the freshwater
ecosystem generally has low δ13C and δ15N values [159,161]. Previous studies reported different δ13C
and δ15N values in shrimp and fish cultured in freshwater and seawater [156,159]. Hence, all of these
factors should be compared when using isotopic traceability methods to allow for deter animal origin
product fraud.
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3.2.4. Elemental Technique

The isotopic technique is usually combined with an elemental profiling technique to increase the
accuracy of the traceability methods [157,159,162–165]. Elemental profiling techniques rely on digestion
of samples into ions, then concentration of the ions is followed by spectroscopic analysis, including
atomic absorption spectroscopy (AAS), inductively coupled plasma–optical emission spectroscopy
(ICP-OES), and ICP–mass spectrometry (ICP–MS) [11]. The analyzed elements include K, Ca, Na,
Mg, Cu, Fe, Mn, Al, Zn, As, Cd, Cr, Mn, Ni, Zn, Ba, Sr, Li, Se, Co, Ti, and V. Those elements include
bulk structural elements (P, S, Si, etc.), macroelements (K, Ca, Na, Mg, etc.), trace elements (Cu, Fe,
Zn etc.), and ultratrace elements (As, Cd, Cr, Mn, Ni, Co, V, etc.). Both non-metal elements (P, S,
As, etc.) and metals (Mn, Fe, Cu, etc.) have been used in analysis [166]. In recent years, the rare
earth elements (REEs), including Y, Ce, Nd, Pr, Sm, Er, and Eu, have also been used in traceability
methods [159,167]. Databases generated by chemical analysis are subjected to multivariate analysis for
data exploration.

Elemental profiling was used in geographic traceability testing of plant origin products, because
element compositions of the specimen were believed to be a distorted reflection of the elemental
profiling of the soil environment in which they grew [11]. This fact is more complicated for animals,
who derive their elements not only from the environment but also the food they consume. Hence,
feed is a factor that needs to be seriously considered in the traceability of animal origin food products.
Mineral concentrations of feed, such as fish feed, vary greatly due to differences in raw ingredients,
addition of specific macro or trace mineral premixes, or contamination [11]. The culture environment
of animals is also more complicated than plants and the elemental profiling of animals can be affected
by factors such as the culture season, size of the animal, species, and water quality [160,168,169].
For example, Han and others [168] reported that the element compositions of salmonid obtained from
the reservoir were vulnerable to seasonal changes. Although studies have demonstrated the usefulness
of elemental profiling in tracing the origin of animal origin products, all factors should be considered
in future studies to strengthen the accuracy of the method.

4. Examples of Recent Use of Spectroscopic and Traditional Methods to Detect Fraud

4.1. Fish and Seafood Products

Identification of Geographical Origin: Provenance or geographical origin has become one of the most
important authenticity issues for fish and seafood due to the increasing awareness among consumers
of the impacts of their purchasing choice of seafood on the marine environment. Many consumers
are becoming more worried about fraud, which occurs when fraudsters conceal the geographical
origin or hide an illegally harvested protected species or a species from a protected area. Thus,
reporting of the country of origin or place of provenance of seafood is essential in the fight to
preserve sustainable fisheries, for better management of fish stocks, and to prevent unreported and
unregulated fishing. This is why a requirement with respect to a clear indication of the geographical
origin of seafood products has been implemented in many countries, such as the European Union and
the USA [123,170].

Several analytical methods have been developed in order to identify the origin of seafood.
Trace elements fingerprinting, stable isotope analysis, and DNA-based methods are among the most
used approaches for this purpose. While these techniques show promise for definitively identifying
the geographical origin of fish and other seafood [32,171–173], they have certain drawbacks, especially
in terms of the required time and the destructive nature of measurements.

Recently, some studies have demonstrated the usefulness of spectroscopic techniques for
monitoring the geographical origin of seafood [174–176] (Table 1). In one of these studies,
NIR spectroscopy was applied to classify tilapia fillets according to their 4 geographical origins,
namely Guangdong, Hainan, Guangxi, and Fujian in China [174]. SIMCA performed on the spectra
showed a classification ability ranging from 75% for the Guangxi provenance to more than 80% for
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the other origins. In another study, a better classification efficiency of sea cucumber originating from
nine Chinese locations was obtained using NIR spectroscopy combined with PCA [175]. More recently,
a similar technique was used to trace the geographical origin of European sea bass collected from
the Western, Central, or Eastern Mediterranean Sea [176]. Results showed correct classification rates of
100% 88%, and 85% for the fish originating from the Eastern, Central, and Western Mediterranean Seas,
respectively, with lipid absorption bands being the major contributor to the discrimination ability of
the spectra.

In the literature, there are few studies regarding the use of NMR or fluorescence spectroscopy
for monitoring of the geographical origin of seafood. In one of these scarce studies [177], 1H NMR
spectroscopy combined with SIMCA and PLS-DA was successfully applied to discriminate caviar
cans originating from producers in the Aquitaine region in France from other producers. Therefore,
more spectroscopic studies should be conducted on this topic in order to draw valid conclusions about
the potential of these techniques for determining the geographical origin of fish and other seafood.

Tracing Wild and Farmed Seafood and Farming Methods: During the last few years, there has been a
rapid expansion of aquaculture as a result of overfishing and decreasing wild fish stocks. Consumers
generally prefer wild fish over farmed fish, and when it comes to farming, organically farmed fish is
usually believed to be healthier and of higher quality in terms of animal welfare and environmental
perspectives compared to conventionally farmed fish. This is why labeling farmed fish as wild or
conventionally raised fish as organic is considered a fraudulent practice.

Various approaches have been proposed over the years to trace production methods and
farming systems. Elemental profiling, stable isotopes, fatty acid analysis, or combinations of these
methods have been extensively applied [144,173,178,179]. For example, a technique based on stable
isotope analysis allowed differentiation of organically farmed from conventionally farmed salmon and
brown trout, independent of the type of processing, i.e., raw, smoked, or graved [180]. In another study,
the combination of stable isotope ratio analysis with multielement analysis gave a correct classification
of 100% of shrimp samples according to their geographical origin and production method (i.e., wild
or farmed), while 93.5% of the samples were correctly classified according to species [163]. A more
recent study confirmed the positive effects of combining the stable isotopes and elemental profiling
techniques to determine the origin and production method of Asian sea bass collected from Australian
and Asian sources [160].

Only a few studies regarding the use of spectroscopic techniques for distinguishing between wild
and farmed fish or between different farming regimes have been published so far. Xu and co-authors
studied the possibility of discriminating wild and farmed salmon with different geographical origins and
farming systems using HSI operating in two spectral ranges (spectral set I: 400–1000 nm; spectral set II:
897–1753 nm) coupled with different chemometric tools [181]. The best results were obtained with
SVM applied to spectral set I, giving a correct classification rate of 98.2%. In a more recent study, NIR
spectroscopy in the range of 1100–2500 nm was applied to authenticate European sea bass [176]. Slight
separation was observed between fish groups when PCA was applied. However, PLS-DA allowed
a clear discrimination between wild and farmed fish with a correct classification rate of 100% being
achieved. Moreover, the different farming systems, including extensive, semi-intensive, and intensive
farming, were discriminated from each other with correct classification rates of 67%, 80%, and 100%,
respectively. In this study, the absorption bands of proteins were reported to be the greatest contributors
to the discrimination ability of the spectra.

Detection of Species Fraud: Substitution of valuable marine species with less desirable or cheaper
ones is the most common type of fraud in fish and other seafood. Detection of this type of fraud
is difficult, especially if the fish is in the form of a fillet without skin or if the seafood product has been
processed [182,183]. Given the widespread practice of species fraud and the serious consequences it
can have, it is no wonder that a wide variety of conventional methods and spectral fingerprinting
techniques have been investigated in order to aid in addressing this issue. DNA analysis and MS
methods are among the most commonly used techniques in this regard [126,145,146,184,185].
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Table 1. Examples of applications of spectroscopic techniques with respect to various authenticity
issues for fish and other seafood.

Fish or Other Seafood Authenticity Issue Analytical Technique Modeling Method Reference

Horse mackerel, European anchovy,
red mullet, bluefish, Atlantic salmon,
and flying gurnard

Species identification/detection
of thawed fish Raman PCA [186]

Pacific white shrimp Origin authentication NIR HSI (874–1734 nm) PLS-DA, LS-SVM,
ELM [187]

Norwegian salmon Species identification FT-IR (4000–450 cm−1) PLS-DA [188]

Carotenoid, salmonid/freshwater,
saltwater fishes Species identification/origin Raman HCA [189]

Seven freshwater fish species Species identification NIR (1000–1799 nm) PCA, LDA [190]

Fish surimi; white croaker, hairtail,
red coat Species identification FT-IR (2500–25000 nm) PCR [191]

Fish surimi; white croaker, hairtail,
red coat Species identification NIR (1000–2500 nm) DA [192]

Freshwater shrimps Addition adulterant LF-NMR, MRI PCA, PLSR [193]

Tilapia Detection of thawed fish NIR (1000–2500 nm) PCA [194]

Crucian carp Detection of thawed fish VIS/NIR HSI (400–1000 nm) PLS-DA [195]

Grass carp Detection of thawed fish VIS/NIR HIS (400–1000 nm) SIMCA, PLS-DA,
LS-SVM, and PNN [196]

Shelled shrimp Detection of thawed products VIS/NIR HSI (400–1000 nm) SIMCA, RF [197]

PCA, Principal Component Analysis; PCR, Principle Component Regression; LDA, Linear Discriminant Analysis;
DA, Discriminant Analysis; RF, Random Forest; SIMCA, Soft Independent Modeling of Class Analogy;
PLS-DA, Partial Least Squares Discriminant Analysis; PLSR, Partial Least Squares Regression; LS-SVM, Least
Squares Support Vector Machines; PNN, Probabilistic Neural Network; VIS/NIR; Visible–Near-Infrared Spectroscopy;
his, Hyper Spectral Imaging; LF-NMR, Low-Field Nuclear Magnetic Resonance; MRI, Magnetic Resonance
Imaging; FT-IR, Fourier-Transform Infrared Spectroscopy; ELM, Extreme Learning Machine; HCA, Hierarchical
Cluster Analysis.

Several spectroscopic techniques in conjunction with chemometric tools have been used to identify
fish species and detect fraud. Alamprese and Casiraghi used FT-NIR and FT-MIR data coupled
with two classification techniques (i.e., SIMCA and linear discriminant analyses (LDA)) in order to
discriminate valuable fish species (i.e., red mullet and plaice) substituted with cheaper ones, namely
Atlantic mullet and flounder [76]. The best results were obtained by the LDA model, giving a 100%
correct classification rate for red mullet and Atlantic mullet, regardless of the used spectroscopic
techniques. Regarding discrimination between plaice and flounder species, the best results were
obtained using FT-IR, with more than 83% prediction ability and 100% specificity being achieved.

The progress in miniaturization accompanied by software development has led to the emergence
of several handheld and portable devices based on spectroscopy for many applications in the food
industry [198,199]. In this respect, an investigation based on a handheld NIR device and FT-NIR
benchtop spectrometer was carried out in order to discriminate Atlantic cod from haddock fillets
and patties [200]. The results obtained by applying LDA and SIMCA models to the spectra using the
portable device demonstrated an equivalent discrimination power to those obtained by the stationary
benchtop instrument.

Besides NIR spectroscopy, other vibrational spectroscopic techniques have been widely employed
to detect fraud in seafood species. For instance, MIR spectroscopy was applied to detect fraud involving
substituting Atlantic salmon with rainbow trout in mini-burgers [201]. Using PCA, the authors
succeeded in discriminating 11 formulations with different percentages of these two species, and the
percentage of the fraud in the mixture was successfully predicted using PLSR. The same authenticity
issue (i.e., species identification) was later studied in a similar investigation, but with a different
vibrational spectroscopic technique, namely Raman spectroscopy [74].

Again, few or no studies have been found in the literature regarding the application of NMR
or fluorescence spectroscopy. A recent study investigated the use of HSI in 4 different spectroscopic
modes, including reflectance in the VIS/NIR region, fluorescence, reflectance in the short-wave infrared
region, and Raman spectroscopy for discriminating between 6 fish species and differentiating between
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fresh and frozen–thawed fish [21]. By testing several machine learning classifiers, the authors obtained
the best results when using the VIS/NIR and the short-wave infrared techniques for the identification
of fish species and detection of thawed fish, respectively.

Checking of Processing Treatments: Fish and other seafood products are highly perishable foods that
must be processed or preserved properly and rapidly after catch or harvest in order to extend their
shelf life and maintain quality. Freezing has been widely applied as one of the most common ways of
achieving this purpose. However, fresh products are often considered by consumers to be of superior
quality and are usually sold at higher prices then frozen food. Therefore, discrimination between
fresh and frozen products is one of the most important authenticity issues. Enzymatic, electrophoretic,
and histological methods have been commonly used to detect thawed fish and seafood [202–205].

Vibrational spectroscopy, NMR, and fluorescence spectroscopy have shown considerable
potential as interesting alternatives to traditional measurements used to differentiate fresh from
frozen–thawed seafood. For example, differentiation of fresh and frozen–thawed Atlantic mullet
fillets was successfully reported with the use of SIMCA applied to FT-IR, with values of more
than 98%, 88%, and 95% being obtained for classification ability, prediction ability, and specificity,
respectively [76]. Similar results were reported by using PLS-DA on VIS/NIR spectra obtained for
fresh and frozen–thawed tuna, and high sensitivity, specificity, and accuracy of the model were
achieved [206].

Unlike the other vibrational spectroscopy, very little work has been devoted to examining the
potential of Raman spectroscopy to differentiate fresh and frozen–thawed fish. Fat extracted from
six fish species, namely horse mackerel, European anchovy, red mullet, bluefish, Atlantic salmon,
and flying gurnard, was analyzed using Raman spectroscopy in order to discriminate between fresh,
once-frozen–thawed, and twice-frozen–thawed fish [186]. PCA models were developed and displayed a
clear discrimination between the 3 states of each fish species, indicating a strong ability of this technique
to rapidly detect changes in the lipid structures of fish species compared to gas chromatography,
which is usually used in classical analysis.

Although NMR has been widely used to monitor changes in fish occurring during freezing and
frozen storage [207], little work has been done regarding the use of this technique to differentiate
between fresh and frozen–thawed fish. Recently, NMR was used to deal with freshness authentication
of Atlantic salmon by analyzing metabolic changes that occur during the thawing process [19]. A PCA
score plot showed distinct fresh and frozen–thawed groupings, while the discrimination ability was
attributed to the formation of aspartate in the thawed salmon.

Few studies on fluorescence spectroscopy have been reported in the scientific literature, showing
the possibility of the application of this technique to study different authenticity issues in seafood.
For instance, the potential of front-face fluorescence spectroscopy was investigated to discriminate
between fresh and frozen–thawed sea bass [208]. In this study, four fluorophores were examined,
including NADH (excitation at 340 nm), tryptophan (excitation at 290 nm) riboflavin (excitation at
380 nm), and vitamin A (emission set at 410 nm). The results showed that this technique coupled
with some appropriate chemometric tools was able to discriminate not only between fresh and
frozen–thawed fish, but also between frozen fish of differing quality before freezing and storage.

Many studies have demonstrated the potential use of HSI for various authentication purposes [209].
Discrimination between fresh and frozen–thawed cod fillets was investigated by using VIS/NIR HSI
adapted for online measurements of fish fillets moving on a conveyor belt at a speed of 40 cm/s, a rate
that meets the industrial production requirements [210]. The results showed that the technique was
able to differentiate between both fresh and frozen–thawed cod fillets and between the fillets according
to different freezing and thawing protocols as a function of sample freeze–thaw history. In this study,
the discrimination ability was attributed to variations in the visible region of the spectrum induced by
oxidation of hemoglobin and myoglobin and to scattering changes caused by protein denaturation and
other structural modifications during the freezing–thawing processes.
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In light of the herein reviewed results, it can be noticed that various spectroscopic methods have
tremendous potential for the detection of fraud and verification of several authentication issues in fish
and other seafood. Our literature review revealed that the detection of species fraud and thawed fish
are the most studied topics, while vibrational spectroscopic techniques, particularly NIR spectroscopy,
are the most investigated techniques. Our literature review shows that few spectroscopic studies have
been conducted with respect to the determination of geographical origins and detection of the modality
of production (capture or aquaculture) of fish and other seafood. The low number of studies regarding
authenticity issues, such as geographical origin, may be due to the difficulty associated with modeling
variability in the spectra due to challenges related to many factors affecting measurements, such as
biological variability, water temperature, and salinity [8,176]. Surprisingly, only a few applications
of fluorescence spectroscopy have been reported, although the high sensitivity and specificity of this
technique compared to the other spectroscopic techniques is well known. Therefore, fluorescence
spectroscopic techniques should be investigated more extensively in future works.

4.2. Meat and Meat Products

Meat Species Adulteration: Meat and meat products can have a wide range of market values,
depending on several factors. Among other factors, the biological origin is one of the most relevant.
In fact, some animals are considered of greater value because of their renowned organoleptic
characteristics; consequently, they have a higher selling price. One of the most common adulterations
in meat products is the addition of the flesh of a different animal of a lower market value.

In recent years, a lot of effort has been put into developing non-destructive approaches for
detecting meat adulterations. In this regard, the choice has often been spectroscopy, especially infrared
spectroscopy, which limits or completely avoids any loss of sample material [27] (Table 2). Among the
different flesh used as an adulterant, pork, which undesirable for several reasons [29], is probably
one of the most investigated and reported materials in the literature. For instance, Kuswandi and
collaborators [211] very successfully exploited FT-IR spectroscopy (equipped with attenuated total
reflection cell) to detect porcine meat in beef jerky. In order to achieve this goal, the authors exploited
three different classifiers, namely LDA, SIMCA, and SVM, and the best results were provided by
LDA, giving a total classification rate of 100%. Beside FT-IR, NIR spectroscopy has also been widely
exploited in this regard. For instance, Kuswandi et al. used NIR coupled with PLS-DA to detect pork
adulteration in beef meatballs [212]. This approach provided extremely satisfying results, since the
optimal classification model detected all the adulterated samples. In a similar study proposed by Rady
and Adedeji [213], pork adulteration in minced beef was evaluated by NIR spectroscopy combined
with PLS-DA. This research provided slightly lower but very promising results.

After pork, another common adulterant in beef meat is poultry. Several studies have used
spectroscopy to detect this kind of adulteration. One example is the work from Deniz and
collaborators [214], who demonstrated the possibility of using a fast and non-destructive spectroscopic
technique to detect chicken or turkey in beef minced meat. In more detail, adulterated samples of
different proportions (5%, 10%, 20%, 40%, and 100%) were prepared and analyzed by FT-IR combined
with hierarchical cluster analysis (HCA) and PCA. The data obtained by HCA gave less information
than those obtained by PCA, while different spectral bands, especially those of lipids, exhibited
noticeable differences between the different meat products (beef, chicken, turkey). A similar study
was proposed by Alamprese and collaborators in 2016 [215], who also investigated beef adulteration
with turkey, however they inspected fresh, thawed, and cooked meat samples using NIR spectroscopy.
Eventually, they used PLS-DA to identify the adulterant and were able to distinguish between samples
presenting a low level of adulteration (<20%) and highly adulterated ones (≥20%).

HSI has been widely used and has shown promise in overcoming the challenges related to
measurements of heterogeneous food matrices, such as muscle foods (meat, fish). For instance,
Kamruzzaman et al. used this technique coupled with PCA to detect pork [216] and chicken [217]
adulteration in beef. Similarly, HSI was applied to detect fraud in minced beef [218]. The data
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were preprocessed by MSC and SNV, and the performance of two classification models (SVM and
RF) was compared. The best results were obtained using the optimized RF model developed on
selected wavelengths, achieving an accuracy of 96.87%.

One of the main advantages of HSI is the possibility to generate a distribution map, allowing
the visualization of adulteration levels [14,20]. On the other hand, the data generated from HSI are
extremely vast, requiring complex data handling. Multispectral imaging (MSI), however, uses a lower
number of spectral bands, thus the acquisition time and complexity of MSI are comparably lower
than that of HSI. MSI was successfully used recently in order to detect minced beef adulteration
with horsemeat [219]. In this study, the performance of three classification models, namely PLS-DA,
RF, and SVM, was explored, and the best results were obtained by the SVM model, giving a correct
classification rate of more than 95%.

Beside spectroscopic methods, the traditional ones (e.g., PCR) are still widely used in this field
of quality control. For example, Hou et al. used a PCR method to detect different adulterants
(duck, chicken, and goose) in pork, beef, and mutton [132]. Similarly, Kim et al. used it to detect
undesired donkey meat in mixtures [131]. Several similar studies have been conducted recently for
the same purpose [220–222]. Very recently, Yin and co-workers proposed a novel and highly sensitive
molecular assay (PCR-based) for the fast revelation of pork components at a concentration of 0.01% in
adulterated meat [223]. A relatively novel technique, which is widely used to detect adulterated meat,
is DNA barcoding. As an example, Xing et al. successfully exploited DNA barcoding and DNA
mini-barcoding to detect mislabeling of several products on the Chinese market [125]. In addition to
the previously mentioned approaches, ELISA is another common tool used for species identification in
food authentication. For example, it has been used to detect pork-adulterated beef by Mandli and
collaborators [141], whereas Perestam et al. compared the performance of the ELISA and of PCR for
detecting beef and pork—both approaches have advantages and disadvantages for this purpose [149].

Table 2. Examples of applications of spectroscopic techniques with respect to various authenticity
issues in meat and meat products.

Meat and Meat Products Authenticity Issue Analytical Technique Modeling Method Reference

Bovine meat Detection of non-meat ingredients FT-IR (4000–525 cm−1) PLS-DA, data fusion [52]

Mutton, beef, pork Species identification FT-IR (4000–450 cm−1) SVM, PLS-DA [73]

Porcine, poultry, bovine, ovine Species identification FT-IR (4000–550 cm−1) PCA, PLS-DA, and PLS [224]

Pig Identification of feeding regime Portable NIR (900–1700 nm) LDA, QDA, and non-parametric
Bayes [225]

Beef, lamb, pork Species identification FT-NIR (1100–1938 nm) One-class classifier partial least
squares (OC-PLS), SIMCA [226]

Pig lard Origin identification FT-NIR (750–2500 nm) PLS-DA [227]

Lamb, beef, pork Species identification HSI VIS/NIR (548–1701 nm) SVM, CNN [228]

Beef, meat of rat Species identification FT-IR (4000–400 cm−1) PCA, PLSR [229]

Veal sausages, pork Species identification Various FT-NIR equipment PCA, SVM [230]

Fresh and rotten beef Meat identification VIS/NIR HSI (496–1000 nm) SVM, LS-SVM, PLSR [231]

Turkey cuts, processed products Meat identification VIS/NIR (400–2500 nm) PCA, LDA [232]

Lamb, beef Species identification NIR (1100–2300 nm) PCA, PLS-DA [233]

Duck, beef, pork Species identification NIR (12500–5400 cm−1) DA, PLSR [234]

Beef, pork, beef heart,
beef tallow Species identification VIS/NIR (350–2500 nm) SVM, RF, PLSR, DCNN [235]

Tan mutton Detection of thawed meat NIR HSI (900–1700 nm) PLS-DA [236]

PCA, Principal Component Analysis; PCR, Principle Component Regression; LDA, Linear Discriminant Analysis;
DA, Discriminant Analysis; QDA, Quadratic Discriminant Analysis; RF, Random Forest; SIMCA, Soft Independent
Modeling of Class Analogy; PLS-DA, Partial Least Squares Discriminant Analysis; PLSR, Partial Least Squares
Regression; LS-SVM, Least Squares Support Vector Machines; VIS/NIR, Visible–Near-Infrared Spectroscopy;
HSI, Hyper Spectral Imaging; FT-IR; Fourier-Transform Infrared Spectroscopy; (D)CNN, (Deep) Convolution
Neural Networks.

Distinction Between Fresh and Thawed Meat: Beside adulteration with undesired meats,
scams concerning meat freshness are unfortunately common, and consequently in the literature
it is possible to find different studies aiming to detect this kind of fraudulent action. It is not always
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easy to discern the freshness of meat by sight, and mislabeling can occur accidentally or intentionally
to make illicit profits by selling thawed meat as fresh. Regardless of the reason, it is important to
possess suitable tools for the authentication of fresh meat. Once again, in recent years, spectroscopy
has played a key role in the detection of this kind of fraud.

One of the meats investigated the most in this context is chicken, mainly because of the few visual
differences that differentiate fresh and thawed products. Nevertheless, Grunert and collaborators
have suggested that discrimination can be achieved by FT-IR spectroscopy; in fact, in their study
they showed the possibility of using this technique coupled with artificial neural networks (ANN)
to discern fresh and thawed samples (frozen and stored for time periods from 2 up to 85 days) [237].
The results were extremely satisfying, since twenty samples (of the twenty-one investigated) were
correctly classified. A similar study was proposed by Parastar and collaborators, where fresh and
thawed chicken samples were analyzed using a portable NIR instrument and then classified by different
methods (random subspace discriminant ensemble (RSDE), PLS-DA, ANN, and SVM); the best results
were obtained by using RSDE, providing extremely satisfying results with a classification accuracy
higher than 95% [18].

Detection of the Geographical Origin and Production Method: The traceability of meat and meat
products is relevant from different standpoints; for this reason, several approaches have been proposed
to assess the origins of meat samples [238]. Traditionally, meat and meat products are traced by means
of protein- and DNA-based methods [239]. An example is a recently published paper by Muñoz
and collaborators, who focused on Iberian pork meat, which is used to prepare a Spanish typical
cured meat product [240]. The authors proposed a single nucleotide variant genotyping panel suitable
for recognizing purebreds (Duroc and Iberian) or crossbreds. Interesting solutions for the origin
assessment of edible meats were also provided by means of stable isotope ratio analysis. For instance,
Erasmus and co-workers showed that δ15N and δ13C can be used to discriminate South-African lamb
breeds in diverse regions [241]. These authors related the isotope abundancies to the pedo-climatic
conditions of the different areas. A similar study on a diverse animal species was conducted by
Monahan et al., who investigated the possibility of using stable isotope ratio analysis to recognize Irish
chickens [242]. Further applications can be found in [243].

Despite the tools mentioned above providing noteworthy outcomes, they are time-consuming,
destructive, relatively expensive, and require complex sample preparation. During the first decade
of this century (2000–2010), a lot of effort has been put into developing fast and non-destructive
spectroscopy-based approaches to achieve the same purpose. However, during the last five years,
not many novel strategies have been proposed. For example, recently Zhang and co-authors
demonstrated that FT-IR spectroscopy integrated with second derivative infrared spectroscopy
(SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR) coupled with computer
vision methodologies represent suitable choices for discrimination of different hams produced in three
different locations [244].

There are few studies on the potential of spectroscopic techniques for the determination of the
production method (dietary background) of meat. One example is a study conducted by Huang
and co-authors [245], who applied reflectance spectroscopy in two spectral ranges (400–700 nm and
400–2500 nm) coupled with PLS-DA to discriminate carcasses of lambs reared with 3 feeding regimes,
involving perirenal fat from pasture-fed, concentrate-fed, and concentrate-finished after pasture feeding
diets. The results demonstrated that the 3 feeding regimes could be distinguished with overall correct
classification rates of 95.1% and 99% for the 400–700 nm and 400–2500 nm spectral ranges, respectively.

Other Common Adulterants or Contaminants in Meat: A number of foreign ingredients can
be introduced (voluntarily or accidentally) in meat and meat products. Some contaminants can
be unintentional, while others are conceived to alter the characteristics of the treated food in order to
make it more palatable to the consumers. For instance, the addition of food dyes in meat products is
allowed by law, but the types of colorants are strictly regulated; consequently, the possible presence
of forbidden dyes has to be checked [243]. Other forms of fraud in meat may involve unwanted or

24



Foods 2020, 9, 1069

forbidden physical pretreatments, as is the case with irradiation. This practice, which is generally
used to extend the shelf-life of food products, is allowed for some foods (for instance dry aromatic
herbs) but it is banned for meat. As a consequence, different research studies have been conducted
with the aim of developing analytical approaches suitable for the detection of this illicit practice,
as in the case discussed by Varrà and co-authors, where irradiated and non-irradiated sausages were
discriminated by NIR spectroscopy coupled with orthogonal partial least square–discriminant analysis
(OPLS-DA) [246].

One further illegal practice is fraudulent mislabeling, consisting of substituting a high-value cut
meat with a cheaper alternative, as in the case reported by Sanz and his group [247]. In their study,
the authors investigated four different types of lamb muscles using HSI and discriminated the four
diverse categories using seven classifiers. The most accurate outcome was achieved using linear least
mean squares, which led to a total correct classification rate of 96.67%.

Only limited research has been found in the literature about the use of fluorescence spectroscopy for
studying authenticity issues in meat and meat products. In one of the scarce studies, FFFS combined with
chemometric tools (PLS and PLS-DA) was successfully applied to classify three different beef muscles,
namely the semitendinosus, rectus abdominis, and infraspinatus muscles [248]. These results were
confirmed recently in a similar study [95]; in this study, FFFS achieved better accuracy in discrimination
of beef muscles than synchronous fluorescence spectroscopy.

4.3. Milk and Dairy Products

Thanks to its enhanced nutritional value provided by the presence of high-quality protein
and minerals, milk is an essential food for people of all ages, from infants to elderly people [249].
Adulteration of milk by the addition of undeclared substances is a widely encountered problem in
the dairy industry. Whey, melamine, starch, water, chlorine, formalin, and hydrogen peroxide are
the most frequently used adulterants for this type of practice. Mixing milk from different species,
replacement of milk fat with non-milk fats or oils, labelling a conventional product as an organic
farming product, and false declaration of the processing technology and geographical origin are the
other primary fraudulent practices. Several physicochemical methods, liquid and gas chromatography,
isotope ratio analysis, and DNA-based techniques have been used for these issues, which involve
drawbacks such as having a high cost and being labor-intensive. Spectroscopic techniques (Table 3),
being rapid, easy to operate, and applicable to on-line and at-line measurements, as well as providing
a high amount of data, are alternatives that can be used to overcome the disadvantages of existing
methods [250].

Addition of Non-Declared Substances: Urea, melamine, dicyandiamide, sodium bicarbonate,
ammonium sulfate, and sucrose are the most frequently used adulteration agents for milk and
dairy products [251,252]. Infrared spectroscopy, FT-MIR, and MIRS have been widely applied to
determine raw milk and milk powder adulteration by using waste whey [253,254]. In a comprehensive
study by Coitinho et al. [67], the FT-IR MilkoScan FT1 device was calibrated and validated using
a large number of raw milk samples. Then, the sensitivity (80–90%) and specificity (80–100%) of
the method were designated for adulteration of raw milk with different adulterants. Several NIR
spectroscopic methods have been utilized to detect milk and milk powder adulteration [255]. In a
recent study, a non-targeted method employing benchtop FT-NIR and portable NIR devices coupled
with SIMCA was developed to determine eleven potential adulterants in milk powder. The portable
device provided lower sensitivity and specificity due to its lower spectral resolution and narrower
spectral range [256].
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Table 3. Examples of applications of spectroscopic techniques with respect to various authenticity
issues in milk and dairy products.

Milk or Dairy Products Authenticity Issue Analytical Technique Modeling Method Reference

Yogurt and cheese Species identification Front-face fluorescence PLS-DA and PLSR [17]

Raw milk Detection of adulterants Time Domain NMR PCA, PLS, and SIMCA [257]

Milk powder Detection of adulterants 1H NMR PCA and Conformity Index [78]

Ultra-heat-treated bovine milk Detection of adulterants 1H and 2D NMR PLS-DA [258]

Goat milk Detection of adulterants FT-NIR
(10000–4000 cm−1)

PCA, Q-control, k-NN,
SIMCA, and PLS-DA [255]

Milk powder Detection of adulterants NIR
(850–2499.5 nm) PLSR [259]

Dairy cream Detection of adulterants Raman spectroscopy LDA [260]

Milk Species identification 2DCOS-SFS Relative auto-peak intensity [261]

Milk Species identification NIR
(700–2500 nm) PLS-DA [262]

Raw and pasteurized milk Species identification Raman PLS-DA [263]

Milk Identification of
geographical origin

MIR
(926–3050 cm−1) GA-LDA [264]

Cow and goat milk Detection of adulterants MIR and Raman PLSR [265]

Milk Species identification FT-IR
(1700–600 cm−1) PCA and HCA [266]

PCA, Principal Component Analysis; LDA; Linear Discriminant Analysis; DA, Discriminant Analysis; SIMCA,
Soft Independent Modeling of Class Analogy; PLS-DA, Partial Least Squares Discriminant Analysis; PLSR, Partial
Least Squares Regression; 1H NMR, High-Field Nuclear Magnetic Resonance; 2D-NMR, Two-Dimensional Nuclear
Magnetic Resonance; FT-IR, Fourier-Transform Infrared Spectroscopy; HCA, Hierarchical Cluster Analysis; (D)CNN,
(Deep) Convolution Neural Networks; k-NN, k-Nearest Neighbors; Q-control, Control Chart Q; GA-LDA, Genetic
Algorithm Linear Discriminant Analysis; 2DCOS-SFS, Synchronous Fluorescence Spectroscopy coupled with
Two-Dimensional Correlation Spectroscopy.

Raman spectroscopy is another vibrational spectroscopic technique that has been widely
investigated for adulteration purposes. For example, a portable Raman spectrometer was employed
to detect melamine, dicyandiamide, urea, ammonium sulfate, and sucrose adulteration of milk.
The standard error of prediction and relative standard deviation values were 39 to 72 ppm and
8% for nitrogen-rich compounds, and 1400 ppm and 10% for sucrose, respectively. The selectivity
and efficiency values were 100% for the PLS-DA model in discriminating pure milk samples from
adulterated ones [267]. The obtained results were found to be comparable with those of a previous
study of the same group, in which a Raman microprobe system was employed [268]. Considering
the high-throughput Raman chemical-imaging-based method, it was possible to visualize the spatial
distributions of melamine and urea in milk powder and quantify these at the 50 ppm level [82].
Moreover, vegetable oils that were fraudulently added to dairy cream and yogurt were detected by
Raman spectroscopy [70,260]. Finding alternative sample preparation procedures is an essential
point to be highlighted for efficient Raman spectroscopic analysis in milk and dairy products.
Nedeljković et al. [269] performed a preheating process to butter and margarine samples before
Raman measurements. In a recent study, the successful use of a portable Raman spectrometer to assess
lard adulteration in butter was reported. Samples were melted and mixed thoroughly prior to the
Raman measurements [69]. Lohumi et al. developed a line scan spatially offset Raman spectroscopy
(SORS) technique that can collect data from packaged butter and margarine samples [270].

Detection of Species Fraud: Successful discrimination and quantification of milk from undeclared
species have been carried out using infrared spectroscopy [271]. Equivalent promising results were
reported with Raman spectroscopy [272]. Nonetheless, it is important to emphasize the fluorescence
interference problem during Raman spectroscopy measurements, especially with 532 nm lasers.
Studies employing lasers with different wavelengths (e.g., 785 and 1064 nm) have extended the use of
this technique for milk and dairy product analyses.

There have been very few studies in the literature reporting the use of NMR for the determination
of adulteration. Nonetheless, one study succeeded in discriminating soymilk, bovine milk, goat milk,
and their adulterants after coupling chemometrics and metabolite analysis using 1D- and 2D-NMR,
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with limit of quantification values ranging between 2% and 5% [273]. Some other studies highlighted
the changing sensitivity and specificity of the 1H time-domain NMR (TD-NMR) method, depending on
the used adulterant [81,257].

The identification of milk species by employing different measurement techniques involving
fluorescence spectroscopy has been studied by several authors [16,274]. Boukria et al. [261]
highlighted that cow milk adulteration in camel milk could be detected through the application
of the two-dimensional correlation spectroscopy method on SFS spectra. Inclusion of a higher number
of samples in the calibration model and scanning of a more comprehensive wavelength range were
emphasized as determinant factors in obtaining satisfying discrimination results.

The successful use of several DNA-based analytical methods has been reported for milk
authentication and traceability in the dairy sector [275]. In recent applications, entirely satisfactory
limit of detection values were achieved [276,277]. Efforts have been made to develop low-cost and
user-friendly PCR devices with accuracy and stability comparable to commercial alternatives [278].
Commercial PCR-based assays designed for the detection and quantitative authentication of animal
species in a specific dairy product are also available in the market [279,280].

Identification of Geographical Origin and Production Method: Over the last five years, various
studies have been reported regarding the authentication of Mozzarella di Bufala Campana Protected
Designation of Origin (MBC-PDO) cheese. For example, to combat fraud, Bontempo et al. [281] have
successfully proposed the use of the stable isotope method combined with elemental analysis to
differentiate both milk and cheese products produced in the PDO area from other products produced
outside the PDO area. In another study, Salzano et al. [282] demonstrated that it was possible to
distinguish MBC-PDO milk and cheese from non-MBC-PDO products using an advanced GC-MS
method and metabolite identification.

Concerning spectroscopic techniques, most of the reported studies were performed in the infrared
wavelength range. In more detail, Caredda et al. [264] showed that MIR correctly identified 99% of the
ewe’s milk from different geographical regions. In another study, Liu et al. [283] conducted a study to
assess the interest in a portable micro-NIR spectrometer to discriminate organic milk from pasture and
conventional milk. It was shown that the micro-NIRS device could distinguish between organic and
conventional milk as efficiently as the FT-NIRS device (i.e., laboratory device).

The abovementioned studies prove how frequently spectroscopic techniques are used to detect
adulteration of milk and dairy products. Nonetheless, there is an imbalance in use between the different
available spectroscopic techniques. Vibrational spectroscopy has been clearly the most preferable
applied method used to detect and identify the most common adulterants in milk. However, more
studies comparing the performance of NIR, MIR, and Raman spectroscopy for detecting adulteration of
milk samples are necessary. Based on the existing literature, it can be noticed that Raman spectroscopy
has particular potential for use for routine analysis of milk and dairy products. However, there is still a
need for further studies investigating the simultaneous use of adulterants and extending the scope by
developing novel untargeted approaches. Regarding the identification or authentication of milk and
dairy products based on their geographical origin and processing treatments, surprisingly only a few
studies were conducted during the last five years using spectroscopic techniques. This conclusion is
similar to that discussed above for fish and meat products. Thus, the use of spectroscopic techniques
for differentiation of fresh and frozen–thawed milk and dairy products and investigation of the effects
of the applied processes (milk preparation, cheese processing, etc.) or storage conditions that are
important for compliance with specifications (such as PDO, protected geographical indication, etc.)
are some of the issues that need to be further studied.

4.4. Honey and Other Products of Animal Origin

Honey is a natural sweet product made by bees from the nectar of plants or plant
excretions combined with bees’ own specific substances and maturated in the honeycomb.
The characteristic flavor, nutritional value, and health benefits of honey depend on its origin and
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production methods. As a high-quality food product with a high price, honey is often subjected
to fraudulent practices, which include mislabeling and adulteration. Development of methods for
assessing honey authenticity is of interest to consumers, the honey industry, and food law agencies.
Several papers have reviewed the methods used for honey analysis [30,284–288].

Botanical Origin: The price of honey strictly depends on its botanical origin. According
to botanical origin, honey is classified as unifloral, multifloral (polyfloral), and honeydew [30].
The monofloral honeys are often more expensive than multifloral honeys and are subject to mislabeling
or adulteration with cheaper honeys [289].

The most used conventional method for determining honey quality related to its origin is
melissopalynological analysis based on the identification and quantification of pollen grains in
honey sediment [30]. The physicochemical (profiles) parameters, such as sugars, moisture, proline,
and hydroxymethylfurfural (HMF) contents; acidity; electrical conductivity; diastase; and invertase
activity are used to establish the origin of a honey. Analytical techniques including gas and liquid
chromatography are often used to measure markers of honey origin, such as sugar, phenolic compounds,
and flavor compounds. The profiling techniques, stable isotope ratio, and trace element analysis can
provide an indication of the geographical origin of honey. The identification of plant species and
varieties of honey by DNA fingerprinting is also utilized to assess honey origin.

Spectroscopic techniques have shown considerable potential as rapid and often non-destructive
methods used to study the authenticity of honey. In recent years, several studies have demonstrated
the potential use of various spectroscopic techniques for evaluation of the botanical origin of honeys
(Table 4). For example, NIR spectroscopy and chemometrics were applied to palynological and mineral
characteristics of honey collected from Northwestern Spain [290]. Prediction models using a modified
PLSR for the main pollen types (Castanea, Eucalyptus, Rubus, and Erica) in honeys and their mineral
compositions were established. The ratio of performance to deviation exhibited a good prediction
capacity for Rubus pollen and for Castanea pollen, whereas these ratios were excellent for minerals,
Eucalyptus pollen, and Erica pollen.

The benefit of data fusion obtained using different analytical techniques was demonstrated
for classification tasks of honey according to the botanical origin. The honey samples from three
different botanical origins were analyzed by attenuated total reflection IR spectroscopy (ATR/FT-IR)
and headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS) [291]. The obtained
datasets were combined in a low-level data fusion approach with subsequent multivariate classification
by principal component analysis–linear discriminant analysis (PCA-LDA) or PLS-DA. The results
showed that data fusion is an effective strategy for improving the classification performance.

Raman spectroscopy techniques complement information obtained from infrared spectral data
and can be used in honey authenticity assessment [287]. Raman spectroscopy, performed using
fiber optics, was successfully used to distinguish the botanical origin of unifloral (chestnut, citrus,
and acacia) honeys produced in the Italian region of Calabria [292]. Moreover, predictive models were
built to quantify important marker indicators in nutraceuticals, such as the main sugars, potassium,
and selected sensory properties.

A promising quick, automatic, and non-invasive approach for honey botanical origin classification
was developed using a combination of VIS/NIR hyperspectral imaging and machine learning,
namely SVM and k-NN [24]. The developed techniques include noisy band elimination, spectral
normalization, and hierarchical classification. The proposed model showed promising results under
several classification scenarios, achieving high classification performances.

The blending of expensive (pure and rare) honey with a cheaper (pure and plentiful) one is another
form of honey adulteration. NMR spectroscopy allows the rapid detection of adulterants in honey,
as well as the simultaneous quantification of various chemical compounds from a spectrum [287].
For example, 1H NMR spectroscopy combined with chemometric techniques was applied to detect
and quantify adulteration of acacia honey with cheaper rape honey [293]. The highest prediction
accuracy for rape honey addition of −89.7% was obtained using canonical discriminant analysis (CDA),
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determined from compounds located in the spectral range corresponding to the aliphatic compounds
and carbohydrates (3.00–6.00 ppm). Orthogonal projection to latent structure discriminant analysis
(OPLS-DA) was used to further discriminate samples of pure acacia honey adulterated with different
amounts of rape honey. A PLSR model established a linear fit between the actual and predicted
adulterant concentrations, with an R2 value of up to 0.9996.

The fluorescence of honey originates from several groups of compounds, such as amino
acids, proteins, phenolic acids, vitamins, fluorescent Maillard reaction products, and other
bioactive molecules [23,102,294]. Few studies have demonstrated the potential of fluorescence for
authenticity assessment. Fluorescence spectroscopy in EEM mode coupled with parallel factor analysis
(PARAFAC) and PLS-DA was applied for classification of honey samples of different botanical origin,
including acacia, sunflower, linden, meadow, and fake honey [100]. The classes of honey of different
botanical origin were differentiated mainly by emissions from phenolic compounds and Maillard
reaction products. PLS-DA constructed from the PARAFAC model provided detection of fake honey
samples with 100% sensitivity and specificity. Moreover, PLS-DA classification results gave errors of
only 0.5% for linden, 10% for acacia, and about 20% for both sunflower and meadow mixes.

Table 4. Examples of applications of spectroscopic techniques with respect to various authenticity
issues of honey.

Honey Authenticity Issue Analytical Technique Modeling Method Reference

Acacias, lindens, sunflowers,
and meadow mixes

Identification of fake honey
produced by feeding of bee

colonies with a sucrose solution
Fluorescence LDA [99]

Honey of various botanical
origins, collected from different

parts of Ethiopia
Identification of botanical origin Fluorescence SIMCA [101]

Commercial honey from two
different provinces of Ecuador Adulteration Raman SIMCA [295]

Acacia honey Adulteration of acacia honey with
cheaper rape honey

1H NMR CDA, OPLS-DA [294]

Honey samples (Vitex, Jujube,
and Acacia) Identification of botanical origin Electronic nose, electronic

tongue, NIR, and MIR
PLS-DA, SVM,

iPLS [296]

South African honey
Differntiation between authentic
South African and imported or

adulterated honey
NIR PLS-DA [297]

Honey samples from the Granada
Protected Designation of

Origin (Spain)

Quantification of the level of
adulteration VIS/NIR HCA, PCA, LDA, PLS [298]

High-quality honey (Granada
Protected Designation of

Origin, Spain)

Identification and quantification
of different types of adulterants

(inverted sugar, rice syrup, brown
cane sugar, and fructose syrup)

VIS/NIR HCA, PCA, LDA, PLS [299]

Honey samples belonging to
seven different varieties Identification of botanical origin FT-NIR

HPLC-DAD PLS-DA [300]

PCA, Principal Component Analysis; LDA, Linear Discriminant Analysis; SIMCA, Soft Independent Modeling
of Class Analogy; PLS-DA, Partial Least Squares Discriminant Analysis; PLSR, Partial Least Squares Regression;
SVM, Support Vector Machines; VIS/NIR, Visible–Near-Infrared Spectroscopy; NMR, Nuclear Magnetic
Resonance; FT-IR, Fourier-Transform Infrared Spectroscopy; HCA, Hierarchical Cluster Analysis; CDA, Canonical
Discriminant Analysis; OPLS-DA, Orthogonal Projection to Latent Structure Discriminant Analysis; iPLS, Interval
Partial Least Squares; HPLC-DAD, High-Performance Liquid Chromatography with Diode Array Detection.

Adulteration Detection: Honey is a natural product for which the addition of any other substance is
prohibited by international regulations. However, due to its high economic value, it is often subject
to adulteration. The most common adulterants in honey are sugars from high-fructose corn syrup,
corn sugar syrup, inverted sugar syrup, and cane sugar syrup [287]. Adulteration of honey is not
limited to direct addition of sugars into natural honey. A common fraudulent practice is overfeeding of
bees with concentrated sugar solutions during the main nectar flowing season [30]. Among analytical
methods, spectroscopic techniques have become popular for detecting the adulterants in honey [287].

FT-IR and PLSR were utilized for the determination of sucrose syrup adulteration of Turkish
honeys [301]. The results indicated that the predicted sucrose concentration of honey samples by the
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spectroscopic method ranged between 4.52 and 15.16%, and that the obtained results were confirmed
by chromatography. Several studies reported successful applications of NIR or VIS/NIR spectroscopy
for evaluation of honey adulteration. For example, NIR spectra (1300–1800 nm) recorded with a fiber
optic immersion probe were used for the detection of high-fructose corn syrup in four artisanal Robinia
honeys [302]. The PLSR models developed using the spectral region containing absorption bands
related to both water and carbohydrates allowed accurate (root mean squared error of cross-validation;
RMSECV = 1.48; R2

CV = 0.987) detection of the adulterant concentration. Recently, NIR and MIR
spectroscopy coupled with SVM and data fusion were utilized to detect adulteration of 20 common
honey types from 10 provinces in China [303]. Both pure honey and adulterated samples with different
percentages of syrup were analyzed. Compared to low-level data fusion, intermediate-level data fusion
significantly improved the detection model, achieving 100% accuracy, sensitivity, and specificity.

Fluorescence excitation–emission spectroscopy was effectively used for the non-destructive and
fast detection of fake honey samples obtained during winter feeding of bee colonies with a sucrose
solution [99]. Natural honey samples (acacias, lindens, sunflowers, and meadow mixes) were perfectly
discriminated from fake honey samples using the developed LDA model. Natural and adulterated
honey samples differed significantly in five spectral regions corresponding to aromatic amino acids,
phenolic compounds, furosine, and Maillard reaction products.

Eggs are consumed worldwide and are well known as a source of vitamins, minerals, phospholipids,
and high-quality proteins. EU regulation classifies egg production into four hen housing systems,
including 0 for organic production, 1 for free range, 2 for barns, and 3 for cages. Consumers are willing
to pay higher prices for eggs produced in a way that considers animal welfare [304], and chicken eggs
are often a subject of food fraud. Therefore, there is a need for analytical methods that are suitable
for classifying eggs and for detecting the fraudulent mislabeling of eggs obtained from different
production systems.

Various procedures are used to discriminate eggs, including carotenoid profiling, fatty acid
composition, and mineral content procedures. Eggs from various systems (1-, 2-, and 3-coded
eggs) may be discriminated through fluorescent patterns on egg surfaces or stable nitrogen isotope
compositions. Stable isotopes methods were used to develop authentication criteria of eggs laid
under cage, barn, free range, and organic farming regimens [305]. Recently, discrimination of selected
chicken eggs in China’s retail market based on multielement and lipidomic analyses was reported [306].

UV-VIS/NIR spectroscopy and chemometrics were utilized for a complete detection of the housing
systems declared on the eggs’ label [307]. Eggs were perfectly classified into the four housing
systems by applying quadratic discriminant analysis for UV-VIS/NIR spectra of the yolk lipid extracts.
NMR spectroscopy was successfully utilized as a tool to screen eggs according to the different systems
of husbandry [304]. In this study, 1H NMR of freeze-dried egg yolk samples were analyzed using PCA
followed by a linear discriminant analysis (PCA-LDA). The prediction model allowed for the correct
classification of about 93% of the organic eggs, barn eggs, and free range eggs.

5. Challenges and Future Trends

Even though extensive research regarding the authenticity and detection of fraud by on-site and
real-time approaches has been carried out in recent years, several key challenges still remain concerning
both technique-related issues and the model validation framework.

Regardless of the non-destructive approach considered, the correct sampling procedure is pivotal to
provide valuable information, and thus to embrace the complexity of modern food authentication [308].
Indeed, non-destructive approaches include non-targeted methods (i.e., fingerprint techniques) with
the ability to detect multiple small modifications in the considered food product and to extract these
modifications as relevant information using the proper multivariate statistic approach. However,
the database used to address the authentication issue should consider the main sampling-related criteria,
such as the definition of the sample unit, number of samples, sample variability, handling procedure,
representativeness, and so on. The most important considerations that must be addressed when creating

30



Foods 2020, 9, 1069

a food authenticity database are discussed in the position paper by Donarski and co-authors [309].
These issues are highly relevant, as the database is used to define an “authentication rule”, which is
applied to compare the unknown sample fingerprint with those of authentic reference samples [308].
Even though the creation of the foodstuff-specific database was done considering the perfect sampling
procedure and can quickly cover the variability expected from test samples, continuous maintenance
of the database is needed to ensure long-term ability to return reproducible results, and most of the
scientific publications do not meet this requirement.

Once the authentication issue has been defined and the database creation has been designed
accordingly, consideration needs to be given to the definition of a standard operating procedure (SOP)
from the sample preparation to the analytical protocol.

DNA-based methods, protein-based methods, and isotopic techniques require specific
consideration when defining SOP. Indeed, in these cases, the required analytical steps for sample
preparation highly influence the results and their interpretation [2]. As for any analytical technique,
different experimental factors can influence the obtained results, introducing an analytical deviation
that is not related to the authentication issue under study. These deviations should be reduced
to the lowest terms and controlled to ensure that they do not introduce confounding results in
the analysis [309]. The influence of experimental factors cannot be avoided, even in spectroscopic
technologies (e.g., vibrational spectroscopy, NMR, and fluorescence spectroscopy), despite being
reproducible and barely influenced by changes in sensitivity over time. Indeed, they do not
generally require any sample preparation, guaranteeing long-term stability and online or in-line
application along the production chain. This is particularly true for liquid “homogeneous” samples,
whereas solid heterogeneous products, such as meat, fish, and dairy products, may require
moderate sample preparation or multiple point measurements. Moreover, the choice of the proper
acquisition mode is fundamental to obtain reliable spectroscopic results according to the nature of
the food product, including the type of radiation (NIR, IR, NMR, or fluorescence spectroscopy),
sample presentation (transmission, absorbance, reflectance, excitation or emission fluorescence,
synchronous fluorescence, EEM), type of sample holder (cuvette, fiber probe, attenuated reflectance
holder, integration sphere), and working temperature, among others.

Actually, HSI technologies are a valid alternative to point spectral scanning, whereby the
spatial distribution of components in heterogeneous products can be distinguished using site-to-site
spectroscopic fingerprint specificity. Food quality and authenticity, especially referring to meat products,
have been widely investigated by HSI technologies associated with NIR radiation. However, most
of the reported works are feasibility studies at the laboratory scale, whereas there is a lack of studies
proving the model’s robustness at the processing plant level. Furthermore, the huge disadvantages
of HSI technology are related to the large amount of produced data for each single measure and
the relatively long processing times for these data. However, simplified instruments (multispectral
imaging systems) developed for specific applications could reduce the spectral range to be scanned to a
few selected wavelengths, thus minimizing both the acquisition time and generated data, which could
be managed quickly with the proper ad hoc chemometric method [310]. Simplified, miniaturized,
and portable instruments have been developed for the whole spectroscopic field, which are oriented
toward food authentication [311]. Certainly, the performance of these instruments in terms of the
electromagnetic range covered, resolution, signal-to-noise ratio, specificity, and sensitivity is lower
if compared to the results obtained by benchtop instruments [198]. However, their use for ad hoc
authentication purposes and their combination with robust chemometric algorithms for classification
applications are expected to be major trends in the coming years.

As described in Section 2, multivariate data analysis is the fundamental step taken to produce
a model able to classify samples as authentic or non-authentic from any emerging detection
method result. No matter the algorithm used to solve an authentication issue, robust validation of the
model is mandatory to guarantee reliable and reproducible results and to favor the acceptance
of these methodologies in legislation. This theme is quite contentious, and it is one of the
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major reasons for the refusal of emerging detection methods, along with the standardization
procedures [2,60]. Although several attempts have been made to meet the need for common and
reliable validation protocols, there is still a lack of validation programs for method developers, which is
also reflected in the scientific literature. In the paper by Oliveri [46], a detailed analysis of the key
aspects of model evaluation is discussed. This paper could be a landmark when defining a global
workflow to solve an authentication issue using spectroscopic techniques.

Thus, it is undeniable that spectroscopic techniques have enormous advantages over the targeted
approaches when addressing a food authentication issue; however, their wide application outside of
laboratories remains challenging. Meeting these challenges will align emerging spectroscopic methods
with the needs of food fraud risk management systems, paving the way for their use for food integrity
assurance, such as with the EU-wide Rapid Alert System for Food and Feed (RASFF).

6. Concluding Remarks

This paper has reviewed and discussed papers published in the last 5 years on the use of different
analytical methods used to target issues related to fraud in both food and products of animal origin.
The available literature in the field has shown an increase in the number of applications combining
rapid analytical methods (e.g., DNA analysis, vibrational spectroscopy) with modern data analytics
(e.g., multivariate data analysis). The body of research as a whole presents indisputable evidence that
these methods and techniques have enormous advantages over other approaches when addressing
food authentication. However, several challenges still exist related to the wide application and
implementation of these technologies in both research and commercial laboratories. This calls for
the need for a continuous exchange between the food authentication stakeholders, together with the
growth of a new generation of scientists able to work in both academic and industrial environments
and who are skilled in facing all aspects of food authentication using non-targeted techniques.
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caprine milk and cheese by commercial qPCR assay. Potravin. Slovak J. Food Sci. 2017. [CrossRef]

281. Bontempo, L.; Barbero, A.; Bertoldi, D.; Camin, F.; Larcher, R.; Perini, M.; Sepulcri, A.; Zicarelli, L.; Piasentier, E.
Isotopic and elemental profiles of Mediterranean buffalo milk and cheese and authentication of Mozzarella
di Bufala Campana PDO: An initial exploratory study. Food Chem. 2019, 285, 316–323. [CrossRef] [PubMed]

282. Salzano, A.; Manganiello, G.; Neglia, G.; Vinale, F.; De Nicola, D.; D’Occhio, M.; Campanile, G. A preliminary
study on metabolome profiles of buffalo milk and corresponding mozzarella cheese: Safeguarding the
authenticity and traceability of protected status buffalo dairy products. Molecules 2020, 25, 304. [CrossRef]
[PubMed]

283. Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable
near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [CrossRef] [PubMed]

284. Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A Comprehensive Review on the Main Honey
Authentication Issues: Production and Origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100.
[CrossRef]

285. Pita-Calvo, C.; Vázquez, M. Honeydew Honeys: A Review on the Characterization and Authentication of
Botanical and Geographical Origins. J. Agric. Food Chem. 2018, 66, 2523–2537. [CrossRef]

286. Pascual-Maté, A.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T. Métodos analíticos en mieles. J. Apic.
Res. 2018, 57, 38–74. [CrossRef]

287. Se, K.W.; Wahab, R.A.; Syed Yaacob, S.N.; Ghoshal, S.K. Detection techniques for adulterants in honey:
Challenges and recent trends. J. Food Compos. Anal. 2019, 80, 16–32. [CrossRef]

288. Maione, C.; Barbosa, F.; Barbosa, R.M. Predicting the botanical and geographical origin of honey with
multivariate data analysis and machine learning techniques: A review. Comput. Electron. Agric. 2019, 157,
436–446. [CrossRef]

289. Stanek, N.; Teper, D.; Kafarski, P.; Jasicka-Misiak, I. Authentication of phacelia honeys (Phacelia tanacetifolia)
based on a combination of HPLC and HPTLC analyses as well as spectrophotometric measurements. LWT
2019, 107, 199–207. [CrossRef]

290. Escuredo, O.; González-Martín, M.I.; Rodríguez-Flores, M.S.; Seijo, M.C. Near infrared spectroscopy applied
to the rapid prediction of the floral origin and mineral content of honeys. Food Chem. 2015, 170, 47–54.
[CrossRef]

291. Schwolow, S.; Gerhardt, N.; Rohn, S.; Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the
authentication of olive oils and honeys—is it worth to go the extra mile? Anal. Bioanal. Chem. 2019, 411,
6005–6019. [CrossRef] [PubMed]

292. Grazia Mignani, A.; Ciaccheri, L.; Mencaglia, A.A.; Di Sanzo, R.; Carabetta, S.; Russo, M. Dispersive raman
spectroscopy for the nondestructive and rapid assessment of the quality of southern Italian honey types.
J. Light. Technol. 2016, 34, 4479–4485. [CrossRef]

293. Song, X.; She, S.; Xin, M.; Chen, L.; Li, Y.; Heyden, Y.V.; Rogers, K.M.; Chen, L. Detection of adulteration in
Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics. J. Food Compos. Anal.
2020, 86. [CrossRef]

294. Cebrero, G.; Sanhueza, O.; Pezoa, M.; Báez, M.E.; Martínez, J.; Báez, M.; Fuentes, E. Relationship among
the minor constituents, antibacterial activity and geographical origin of honey: A multifactor perspective.
Food Chem. 2020, 315, 126296. [CrossRef] [PubMed]

295. Aykas, D.P.; Shotts, M.-L.; Rodriguez-Saona, L.E. Authentication of commercial honeys based on Raman
fingerprinting and pattern recognition analysis. Food Control 2020, 117, 107346. [CrossRef]

296. Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using sensor and spectral analysis to classify
botanical origin and determine adulteration of raw honey. J. Food Eng. 2016, 178, 151–158. [CrossRef]

297. Guelpa, A.; Marini, F.; du Plessis, A.; Slabbert, R.; Manley, M. Verification of authenticity and fraud detection
in South African honey using NIR spectroscopy. Food Control 2017, 73, 1388–1396. [CrossRef]

46



Foods 2020, 9, 1069

298. Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F.
Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with
chemometrics. Talanta 2018, 188, 288–292. [CrossRef] [PubMed]

299. Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening
method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants
in high-quality honey. Talanta 2019, 203, 235–241. [CrossRef]

300. Ghanavati Nasab, S.; Javaheran Yazd, M.; Marini, F.; Nescatelli, R.; Biancolillo, A. Classification of
honey applying high performance liquid chromatography, near-infrared spectroscopy and chemometrics.
Chemom. Intell. Lab. Syst. 2020, 202, 104037. [CrossRef]

301. Cengiz, M.F.; Durak, M.Z. Rapid detection of sucrose adulteration in honey using Fourier transform infrared
spectroscopy. Spectrosc. Lett. 2019, 52, 267–273. [CrossRef]

302. Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR detection of honey adulteration
reveals differences in water spectral pattern. Food Chem. 2016, 194, 873–880. [CrossRef] [PubMed]

303. Huang, F.; Song, H.; Guo, L.; Guang, P.; Yang, X.; Li, L.; Zhao, H.; Yang, M. Detection of adulteration in
Chinese honey using NIR and ATR-FTIR spectral data fusion. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc.
2020, 235, 118297. [CrossRef] [PubMed]

304. Ackermann, S.M.; Lachenmeier, D.W.; Kuballa, T.; Schütz, B.; Spraul, M.; Bunzel, M. NMR-based
differentiation of conventionally from organically produced chicken eggs in Germany. Magn. Reson. Chem.
2019, 57, 579–588. [CrossRef] [PubMed]

305. Rogers, K.M.; Van Ruth, S.; Alewijn, M.; Philips, A.; Rogers, P. Verification of Egg Farming Systems from the
Netherlands and New Zealand Using Stable Isotopes. J. Agric. Food Chem. 2015, 63, 8372–8380. [CrossRef]
[PubMed]

306. Mi, S.; Shang, K.; Zhang, C.H.; Fan, Y.Q. Characterization and discrimination of selected chicken eggs in
China’s retail market based on multi-element and lipidomics analysis. Food Res. Int. 2019, 126. [CrossRef]
[PubMed]

307. Puertas, G.; Vázquez, M. Fraud detection in hen housing system declared on the eggs’ label: An accuracy
method based on UV-VIS-NIR spectroscopy and chemometrics. Food Chem. 2019, 288, 8–14. [CrossRef]

308. Ballin, N.Z.; Laursen, K.H. To target or not to target? Definitions and nomenclature for targeted versus
non-targeted analytical food authentication. Trends Food Sci. Technol. 2019, 86, 537–543. [CrossRef]

309. Donarski, J.; Camin, F.; Fauhl-Hassek, C.; Posey, R.; Sudnik, M. Sampling guidelines for building and curating
food authenticity databases. Trends Food Sci. Technol. 2019, 90, 187–193. [CrossRef]

310. Amigo, J.M.; Grassi, S. Configuration of hyperspectral and multispectral imaging systems. Data Handl.
Sci. Technol. 2020, 32, 17–34. [CrossRef]

311. Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urbina, A.U. Miniaturization of Optical Sensors and their
Potential for High-Throughput Screening of Foods. Curr. Opin. Food Sci. 2020. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47





foods

Article

Flash Gas Chromatography in Tandem with
Chemometrics: A Rapid Screening Tool for Quality
Grades of Virgin Olive Oils

Sara Barbieri 1, Chiara Cevoli 1, Alessandra Bendini 1,* , Beatriz Quintanilla-Casas 2,3,
Diego Luis García-González 4 and Tullia Gallina Toschi 1

1 Department of Agricultural and Food Science, Alma Mater Studiorum-Università di Bologna, 47521 Cesena,
Italy; sara.barbieri@unibo.it (S.B.); chiara.cevoli3@unibo.it (C.C.); tullia.gallinatoschi@unibo.it (T.G.T.)

2 Department de Nutrició, Ciències de l’Alimentació i Gastronomia, Campus De l’Alimentació Torribera,
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona,
08921 Santa Coloma de Gramenet, Spain; beatrizquintanilla@ub.edu

3 Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona (UB),
08921 Santa Coloma de Gramenet, Spain

4 Instituto de la Grasa (CSIC), 41013 Sevilla, Spain; dlgarcia@ig.csic.es
* Correspondence: alessandra.bendini@unibo.it; Tel.: +39-0547-338121

Received: 11 June 2020; Accepted: 29 June 2020; Published: 2 July 2020

Abstract: This research aims to develop a classification model based on untargeted elaboration of
volatile fraction fingerprints of virgin olive oils (n = 331) analyzed by flash gas chromatography
to predict the commercial category of samples (extra virgin olive oil, EVOO; virgin olive oil,
VOO; lampante olive oil, LOO). The raw data related to volatile profiles were considered as
independent variables, while the quality grades provided by sensory assessment were defined as
a reference parameter. This data matrix was elaborated using the linear technique partial least
squares-discriminant analysis (PLS-DA), applying, in sequence, two sequential classification models
with two categories (EVOO vs. no-EVOO followed by VOO vs. LOO and LOO vs. no-LOO followed
by VOO vs. EVOO). The results from this large set of samples provide satisfactory percentages of
correctly classified samples, ranging from 72% to 85%, in external validation. This confirms the
reliability of this approach in rapid screening of quality grades and that it represents a valid solution
for supporting sensory panels, increasing the efficiency of the controls, and also applicable to the
industrial sector.

Keywords: virgin olive oil; quality; volatile compounds; sensory analysis; chemometrics

1. Introduction

The official methodology for sensory evaluation of virgin olive oils (VOOs), known as a panel
test, is a fundamental tool to assess the quality of products that cannot be replaced by instrumental
methods, considering that the overall and complex perceptual attributes (e.g., fruity and defects)
are the indicators of the quality of VOOs. Despite its proven effectiveness in evaluating the quality
grades of samples, tested in EU countries since 1991 [1,2], the scientific community has highlighted
some drawbacks on its application that are mainly related to the following: (i) the reproducibility of
results among different panels; (ii) critical attribution of the category when, e.g., a defect is borderline;
(iii) costs, assessor fatigue and other limitations associated with a method working with humans.

Specifically, according to decisions taken at International Olive Council (IOC) level, the Reg. (EU)
1348/2013 [3] recommends the number of oils to be assessed by the sensory panels, fixing a maximum
number of four samples at each session. Moreover, a maximum of three sessions per day is specified,
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to leave enough time between a session and another, thus avoiding the contrast effect that could be
produced by immediately tasting sequences of samples. These specifications strongly limit the number
of samples that can be assessed by one panel per day. On the other hand, to enhance panel skills in
recognizing, identifying, and quantifying sensory attributes, the introduction of new artificial reference
materials (obtained by chemical or biotechnological approaches), could improve the proficiency of
the individual panels and their global alignment by overcoming some limitations associated with a
natural matrix (e.g., limited amounts available, difficultly obtaining, low homogeneity year by year)
and offering advantages such as preparation in each laboratory, reproducibility over time, possibility
of purchase, and therefore their availability for the market.

In this context, the development of an instrumental method for rapid screening of quality grades of
samples (extra virgin olive oil, EVOO; virgin olive oil, VOO; lampante olive oil, LOO) could represent
a solution to support sensory panels (particularly for large private industries), decreasing their daily
work by reducing the samples that need to be assessed (e.g., by excluding those definitely compliant),
with a consequent increase in the efficiency of quality controls and reducing the number of samples
that need to be controlled.

In this way, improvement of the activity of sensory panels, whose work remains central to
ensuring the quality of the product, would be achieved by focusing sensory analysis only on uncertain
samples (i.e., borderline oils between two product categories that can be the object of disagreement
among panels).

It is well known that volatile compounds are crucial to determine VOO quality and that they
are responsible for the different VOO sensory profiles [4–6]; their determination in a rapid way
(e.g., screening method) could support sensory analysis and represents one of the current challenges
in the olive oil sector where fast, accurate, and easy-to-use approaches providing real-time results
are required.

Recently, different analytical techniques combined with chemometric statistical approaches have
been proposed to predict sensory information [7–9].

Alongside the traditional techniques (targeted) in which specific and selected molecular markers are
monitored during the analysis to assess the presence or absence of compounds and their quantification,
untargeted analyses, based on a holistic approach and able to provide information such as a spectral
fingerprint, giving a simplified and overall picture of the food under analysis, have gained an increasing
relevance over the last years [10].

Among the latter, different analytical methods for determination of volatile compounds combined
with multivariate chemometric techniques for VOOs quality testing have been described in the literature
and proposed to the industrial sector as fast and high throughput screening techniques [9,11–18].

In particular, as an alternative to headspace gas chromatography-mass spectrometry (HS-GC/MS),
which is the most widely used technique to quantify and characterize the profiles of volatile compounds
of VOOs thanks to its high sensitivity and selectivity, the application of the HS-GC ion mobility
spectrometry (HS-GC-IMS) has been proposed. This technique combines high selectivity and sensitivity
with high robustness and cost-efficiency, and has given promising results in discriminating VOOs
according to quality grades [9,11,12,14,18] or geographical origin [13,15].

The need to support organoleptic analysis was also reported in a specific call of the Horizon 2020 EU
program (H2020-SFS-14a-2014) and is one of the main objectives of the OLEUM project (Horizon 2020,
Grant Agreement No. 635690). In the framework of this project, two analytical instrumental techniques,
headspace-solid phase micro extraction–gas-chromatography/mass spectrometry (HS-SPME-GC/MS)
and flash gas chromatography (FGC) based on the determination of volatile compounds, have been
proposed as the most promising rapid screening methods that can support sensory panels in the
determination of quality grades.

In a recent work by Quintanilla-Casas and co-authors (2020) [17], the results obtained with
HS-SPME-GC/MS with a fingerprinting approach to classify VOO categories has been demonstrated.
Herein, a classification model based on minor fraction fingerprints that is able to predict the commercial
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category of olive oil samples (EVOOs, VOOs, LOOs) obtained by FGC is presented. The FGC is
an innovative analytical approach for analysis of volatile compounds of VOOs based on the FGC
separation: the headspace of VOOs, previously conditioned, is sampled by a syringe, the volatile
organic compounds are adsorbed on a Tenax trap and subsequently desorbed by rapid heating, and,
finally, transferred to a FGC step. The elution of analytes runs in parallel using two metal capillary
columns with different polarity of the stationary phase. This gives rise to slight differences in the
separation capability of molecules that are detected by a flame ionization detector (FID) located at the
end of each column.

The main advantage of the FGC technique is its short analysis time (total separation time is 100 s);
moreover, its application associated with sensory analysis for calibration and chemometric tools is
promising to support the work of panel tests in discriminating samples of different product categories.
A classification model, once built, could be easily applied in any laboratory or industry.

The effectiveness of this technique is already demonstrated by previous works aimed to differentiate
VOOs according to their geographical origin declared by labels such as “100% Italian” and “non-100%
Italian” oils [19] or “EU” and “extra-EU” [16].

The aim of this study was to classify VOOs according to quality grade, combining FGC data
with the multivariate classification technique partial least squares discriminant analysis (PLS-DA).
To provide robustness to our model, a set of 331 oils belonging to the three different commercial
categories (EVOO, VOO, LOO) involving two harvesting/production years was analyzed. The adopted
validation protocol (repeatability and reproducibility tests) and related performance are also shown.

2. Materials and Methods

2.1. Olive Oil Samples

An initial set of 334 EVOOs, VOOs, and LOOs oils representative of the most common
olive cultivars, geographical origin, sensory positive attributes, and sensory defects were sampled.
Specifically, in addition to a first set of 180 oils collected during the first year of the OLEUM project
(2016–2017 olive season), another set of 154 samples (2017–2018 olive season) was collected and
analyzed during the second year (Tables S1–S4 in the Supplementary Materials).

The panel test method was carried out by six panels involved in the OLEUM project as described
by Barbieri et al. 2020 [20] and sensory data were expressed as mean of medians. The procedure deals
with possible disagreement between panels with a decision tree in order to have definitive classification
of samples in which definitive agreement is reached. In agreement with the sensory results reported in
Tables S1 and S2 (Supplementary Materials), in the first year of the project 178 of 180 samples were
immediately classified by panels (54 EVOO, 78 VOO, and 48 LOO). Classification was not possible for
only two samples (UN_10, UP_14), as agreement among panels was not reached on the category (V/L).
The sensory evaluation of oils from the second sampling allowed classification of 153 oils (69 EVOO,
51 VOO and 33 LOO); 1 sample was not classified due to an anomalous lemon smell (ZRS_1) and
was therefore excluded from the set [20]. For these reasons, the classification model was built on
331 samples.

The oils collected were representative of possible commercial samples and borderline samples that
can be the object of disagreement between panels in terms of sensory characteristics. Different aliquots
of the samples, stored in the lab at 10–12 ◦C (for sensory analysis) and at −18 ◦C (for instrumental
analysis), were reconditioned at room temperature before analysis.

2.2. Analytical Conditions

The FGC system (FGC-E-nose Heracles II, AlphaMos, Toulouse, France) is based on the technology
of ultra-fast gas-chromatography.

The FGC is equipped with two columns working in parallel: a non-polar column (MXT5: 5%
diphenyl, 95% methylpolysiloxane, 10 m length and 180 µm diameter) and a polar column (MXT-1701:
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14% cyanopropylphenyl/86% dimethyl polysiloxane, 10 m length, 180 µm diameter). At the end of
each column, a FID detector is placed and the acquired signal is digitalized every 0.01 s.

The analytical conditions applied were the same described by Melucci et al. 2016 [19]. The only
difference was related to the temperature of the conditioning step of the samples before injection: the
vial is placed in the auto-sampler (HS 100, CTC Analytics), which moves it in a shaker oven where it
remains for 20 min at 40 ◦C, shaken at 500 rpm.

2.3. Validation Protocol

To confirm that the analytical procedure employed has performance capabilities consistent with
the required application, a validation strategy for non-targeted approaches was performed.

A QC (quality control) sample, representative of the qualitative and quantitative VOO volatile
composition (presence of volatile compounds along the entire interval of the chromatogram), was used.
In this study, the QC sample was obtained by pooling the same volume of three case-control samples
(1 EVOO, 1 VOO with median of 1.9 for fusty-muddy defect, and 1 VOO with a median of 2.5 for
rancid defect) and seven replicates were taken into consideration.

The quality of the instrumental performance intended for fingerprinting analysis was checked
by the calculation of the relative standard deviation (RSD) as proposed by the Food and Drug
Administration [21]. Specifically, the repeatability (intra-day repeatability and inter-day repeatability
performed according to EC 657/2002) [22] of the chromatographic signal evaluated in terms of RSD%
of each chromatogram data point, with intensities above noise signal of the replicates of the same QC
samples, was considered [23,24].

Prior to RSD calculation, data were aligned using the COW algorithm (correlation optimized
warping) [25] and autoscaled (mean-centering followed by division of variable by the standard deviation
of that column) to correct shifts in retention time and possible differences in the signal amplification of
the instrument. All elaborations were made using PLS Toolbox for Matlab (MatlabR2018a®) (Natick,
MA, USA).). For calculation of RSD% for each chromatogram data point, the evaluation and exclusion
of noise signal is carried out to avoid considering non-relevant RSD%.

For precision, the FDA recommends a RSD not higher than 15% regarding the analytical variability
for target analysis, except for concentrations close to the detection limit where a RSD of 20% is
acceptable (FDA Bioanalytical Method Validation-Guidance for Industry, 2018). This, in agreement
with the trend described by the Horwitz equation for targeted methods [26], demonstrates that the
repeatability is strongly correlated with the intensity of the variables.

Although fingerprinting represents a different analytical approach and more variation is expected
when doing untargeted analysis, these guidelines are used as a benchmark towards repeatability
evaluation. Specifically, for intra-day repeatability, the acceptance criteria were as follows: more than
90% of signals with RSD < 15%; more than 95% of signals with RSD < 20% and distribution of RSD%
vs. signal intensity in accordance with the Horwitz equation. For inter-day repeatability or within-lab
reproducibility, the acceptance criteria were as follows: more than 85% of signals with RSD < 15%,
more than 90% of signals with RSD < 20% and distribution of RSD% vs. signal intensity in accordance
with Horwitz’s equation.

In addition, the examination of system performance by checking the signal to noise ratio in
standard solutions (instead of the evaluation of representative VOO profiles) to facilitate the assessment
and comparison of method sensitivity for other laboratories was proposed. The sensitivity of the
analytical system was evaluated by analyzing 2 g of each standard solution in refined olive oil (ethanol
0.05 mg·kg−1, CAS Number 64-17-5; assay ≤ 97.2%; density 0.789 g/mL at 25 ◦C; hexanal, 0.1 mg·kg−1

CAS Number 66-25-1; assay ≥ 95% (GC); density 0.815 g/mL at 25 ◦C; (E)-2-hexenal, 0.75 mg·kg−1

CAS Number 6728-26-3; assay ≥ 97.0% (GC); density 0.846 g/mL at 25 ◦C). The S/N (S = intensity of
the peak of the compound; N = mean intensity of the noise measured considering the baseline of the
chromatographic zone between 43 and 50 s) for the selected analytes in the chromatograms should be
>3 (acceptance criteria).
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2.4. Classification Models

In order to predict the assignment of samples to a specific quality grade, full chromatograms were
used to develop classification models. The raw data of each chromatogram, for a total of 19,900 points,
were aligned by the COW algorithm and autoscaled using PLS Toolbox for Matlab (MatlabR2018a®).
Subsequently, the noise was excluded and 8401 points were consecutively selected from first to last
peak observed in the chromatogram.

Subsequently, PLS-DA (partial least square discriminant analysis) models [27] were built by using
the intensity values of the points as variables X (matrix X), while the commercial categories (EVOO,
VOO, LOO) were considered as variable Y. In particular, classification models with 2 categories were
developed in sequence: EVOO vs. no-EVOO followed by VOO vs. LOO and LOO vs. no-LOO
followed by EVOO vs. VOO, as proposed by Quintanilla-Casas et al. 2020 [17].

The sample dataset was split in calibration (venetian blinds cross validation, including 75% of the
samples) and external validation set (25% of the samples) by using the Kennard–Stone method [28].
The dataset was deposited for possible consultation in an on-line repository [29].

The threshold value able to identify the belonging category of each sample into one of the groups
was defined by using a probabilistic approach based on Bayes’s rule [30]. Finally, to assess the goodness
of the method, the receiver operating characteristic (ROC) curves were evaluated.

3. Results and Discussion

3.1. Performance of FGC

Most of the procedures proposed in the literature for validation of non-targeted methods focus
on post-analytical data treatment and validation of statistical models. Nevertheless, a few studies
have investigated control procedures as well as performance criteria and requirements to ensure the
consistence of the analytical signal (fingerprint) [24,31].

Conventional performance criteria adopted for targeted methods are not applicable as such to
fingerprinting methods. Fingerprinting methods intended for sample classification are not aimed at
identification and quantification of analytes, but on finding distinctive patterns that are specific for a
given food category (i.e., VOO commercial category) in raw analytical signals (i.e., chromatograms).
Therefore, the main constraint of the fingerprinting analytical method is to provide a repeatable and
reproducible signal with sufficient sensitivity to collect the information from samples for the final
purpose of the method, i.e., quality classification.

For evaluation of intra-day repeatability, the pooled QC sample was analyzed by the same
operator with the same equipment and in the same instrument operative conditions within the same
day. For each variable (data points), mean value, SD, and RSD% were calculated considering the seven
replicates. More than 97.5% of signals presented RSD < 10%, while it achieves 99.8% in correspondence
of RSD < 20% (Table 1). To analyze the variability as related to the magnitude of the variables, RSD%
was plotted versus signal intensity (data not shown). As expected, data points with RSD > 10% are
characterized by low values of intensity. This is in agreement with the trend described by the Horwitz
equation for targeted methods [26].

In the case of the inter-day repeatability (within-lab reproducibility), seven replicates of the pooled
QC sample were analyzed by the same operator with the same equipment but on different days,
consequently involving different environmental conditions, and the mean value, SD, and RSD% were
calculated. More than 91% and 99.4% of the signals presented RSD < 10% and RSD < 20%, respectively
(Table 1). A relation between intensity and RDS% was also observed in this study, similarly to that
previously observed in the intra-day repeatability test.

As the fingerprinting approach intended for sample classification is not aimed in determining
the concentration of single analytes, limits of detection or quantification cannot be calculated for the
analytical outcome. However, the analytical method needs to be sufficiently sensitive to allow detection
of minor constituents to avoid missing any valuable information.
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Table 1. Frequency of each relative standard deviation percentage (RSD%) class obtained for intra-day
and inter-day repeatability evaluated on the quality control (QC) sample.

Intra-Day Repeatability Inter-Day Repeatability

Class (RSD%) Frequency % Class (RSD%) Frequency %

10 8185 97.5 10 7690 91.5
15 166 1.5 15 552 6.6
20 33 0.8 20 106 1.3
30 17 0.2 30 16 0.2
40 0 0 40 37 0.4
50 0 0 50 0 0
60 0 0 60 0 0
70 0 0 70 0 0
80 0 0 80 0 0
90 0 0 90 0 0

100 0 0 100 0 0

On this basis, the method’s sensitivity needs to be set as a reference parameter to be evaluated in
the validation process. A target-type strategy applied to standard solutions was proposed.

Standard solution compounds were chosen as most representative of the qualitative and
quantitative volatile composition of VOOs, especially regarding the presence of volatile compounds
over the entire interval of the chromatogram considered in fingerprinting analysis. Differences between
the concentrations used for each compound are related to their different amounts generally present in
a VOO sample. Results of the S/N are reported in Table 2.

Table 2. Concentration (mg·kg−1) of each compound included in the standard solution used for
method’s sensitivity evaluation and related S/N. The standard mix were prepared by spiking refined
olive oil with each compound and analysed by flash gas chromatography (FGC). S = intensity of the
peak of the compound; N = mean intensity of the noise measured considering the baseline of the
chromatographic zone between 43 and 50 s.

Compound Retention Time Concentration (mg·kg−1) S/N

Ethanol 21.8 0.05 3.84 ± 0.99
Hexanal 55.6 0.1 5.55 ± 0.96

(E)-2-Hexenal 62.0 0.75 4.42 ± 1.82

3.2. Classification Models

A fingerprinting approach involving chemometric elaboration of the entire profiles in volatile
molecules without identification and quantification was applied.

Two different classification strategies were taken into account: (i) a classification model able to
discriminate EVOO and no-EVOO samples, followed by a model to classify VOO vs. LOO samples;
(ii) a classification model able to discriminate LOO and no-LOO samples, followed by a model to
classify VOO vs. EVOO samples.

The results, in terms of percentage and number of correctly classified samples, are reported
in Table 3 for cross and external validation, respectively. Regarding the first classification strategy,
the percentages of correctly classified samples ranged from 72 to 89% and from 72 to 85%, for cross
and external validation, respectively. In particular, the best results were obtained during the second
step useful to discriminate VOO vs. LOO. For the second strategy, conceptually more correct in terms
of sequence because it first discriminates LOO which are not edible if not refined, the percentage
ranged from 78 to 92% and from 73 to 85%, for cross and external validation, respectively. In this case,
the highest percentages were reached using the first PLS-DA model (LOO vs. no-LOO). Furthermore,
this latter model was the best of all PLS-DA models developed.
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In general, the percentages are in the same range as those obtained by other authors who proposed
chemometric models to discriminate VOO quality grades according to their volatile profile analyzed
by different instrumental techniques [9,17].

The ROC curves (Figure 1) evaluated the sensitivity (number of samples predicted as in the class
divided by number actually in the class) and the specificity (number of samples predicted as not in
the class divided by actual number not in the class) of all PLS-DA models (external validation) [16].
In particular, the area under the curve (AUC) identifies the degree of discrimination (ranged 0.8148 to
0.8899) and suggests that all the models are characterized by a good degree of discrimination.
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Figure 1. Receiver operating characteristic (ROC) curves of all developed PLS-DA models used to
discriminate samples according to quality grade; the red circles identify the sensitivity (number of
samples predicted as in the class divided by number actually in the class) and the specificity (number
of samples predicted as not in the class divided by actual number not in the class) of the models.
EVOO = extra virgin olive oil; VOO = virgin olive oil, LOO = lampante Olive Oil.

The results of all the models (cross and external validation), in term of probability of belonging
to the correct class, are shown in Figure 2. The threshold value was fixed at 0.5, corresponding to a
probability of 50%: a sample classified with a probability lower than this is considered as not correctly
grouped [32].

The definition of a probability level, ranging from 50% to 100%, could be a means of identifying
uncertain samples that need to be checked by sensory evaluation. In other words, the samples
classified with a probability lower than the selected probability level should be submitted to panel test.
These procedures would reduce the amount of the samples analyzed by the panel, but at the same
time, it would insure the accuracy of the classification.

55



Foods 2020, 9, 862

Foods 2020, 9, x FOR PEER REVIEW 9 of 12 

 

The results of all the models (cross and external validation), in term of probability of belonging 
to the correct class, are shown in Figure 2. The threshold value was fixed at 0.5, corresponding to a 
probability of 50%: a sample classified with a probability lower than this is considered as not correctly 
grouped [32]. 

The definition of a probability level, ranging from 50% to 100%, could be a means of identifying 
uncertain samples that need to be checked by sensory evaluation. In other words, the samples 
classified with a probability lower than the selected probability level should be submitted to panel 
test. These procedures would reduce the amount of the samples analyzed by the panel, but at the 
same time, it would insure the accuracy of the classification. 

 
Figure 2. Class prediction probability of all samples used to develop the models, in cross and external 
validation (grey area). Step 1—EVOO (green star) vs. no-EVOO (blue square); step 2—VOO (yellow 
diamond) vs. LOO (red circle); step 1—LOO (red circle) vs. no-LOO (yellow square); step 2—VOO 
(yellow diamond) vs. EVOO (green star). EVOO = extra virgin olive oil; VOO = virgin olive oil, LOO 
= lampante olive oil. 

4. Conclusions 

Despite the undisputed validity of the panel test, its application is time consuming and 
expensive. Accordingly, companies and private and public quality control labs could benefit from 
robust instrumental pre-classifications, which would reduce the number of samples that have to be 
assessed by panels, or at least prioritize their assessment. 

For this reason, the development of rapid screening methods to support the official panel test, 
to analyze olive oils and differentiate their quality grades, is one of the challenges in the olive oil 
sector, as reported in the EU framework program Horizon 2020. 

In this work, FGC combined with the multivariate statistical technique was applied to 
discriminate samples according to different quality grades (EVOO, VOO and LOO; examples of GC 
traces for EVOOs and LOOs are shown in Figure S1 of the Supplementary Materials). The analytical 
technique proposed herein for fingerprinting olive oils combined with chemometrics was effective in 
reducing data complexity and time to obtain a response; this rapid screening tool could be adopted 

C
la

ss
 P

re
d 

Pr
ob

ab
ilit

y 
(C

la
ss

 E
VO

O
)

20 40 60 80 100 120 140 160 180 200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cl
as

s 
Pr

ed
 P

ro
ba

bi
lit

y 
(C

la
ss

 L
O

O
)

VOO
LOO

50 100 150 200
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
 P

re
d 

Pr
ob

ab
ilit

y 
(C

la
ss

 E
VO

O
)

VOO
EVOO

Step 1 - LOO vs noLOOStep 1 - EVOO vs noEVOO

Step 2 - VOO vs LOO Step 2 - VOO vs EVOO

Figure 2. Class prediction probability of all samples used to develop the models, in cross and external
validation (grey area). Step 1—EVOO (green star) vs. no-EVOO (blue square); step 2—VOO (yellow
diamond) vs. LOO (red circle); step 1—LOO (red circle) vs. no-LOO (yellow square); step 2—VOO
(yellow diamond) vs. EVOO (green star). EVOO = extra virgin olive oil; VOO = virgin olive oil,
LOO = lampante olive oil.

Table 3. Results in terms of percentage and number of samples correctly classified in cross and external
validation of the two classification strategies applied based on the partial least squares-discriminant
analysis (PLS-DA) sequential model. EVOO = extra virgin olive oil; VOO = virgin olive oil,
LOO = lampante olive oil.

1st CLASSIFICATION STRATEGY 2nd CLASSIFICATION STRATEGY

1st Step: EVOO vs. no-EVOO 1st Step: LOO vs. no-LOO

Cross validation External validation Cross validation External validation
EVOO: 70/90 (78%) EVOO: 26/32 (81%) LOO: 50/61 (81%) LOO: 17/20 (85%)

No-EVOO: 132/164 (81%) No-EVOO: 37/48 (77%) No-LOO: 172/188 (92%) No-LOO: 55/65 (85%)
TOTAL: 202/254 = 80% TOTAL: 63/80 = 79% TOTAL: 222/249 = 89% TOTAL: 72/85 = 85%

2nd Step: VOO vs. LOO 2nd Step: VOO vs. EVOO

Cross validation External validation Cross validation External validation
VOO: 88/99 (89%) VOO: 22/26 (85%) VOO: 84/95 (88%) VOO: 23/27 (85%)
LOO: 41/57 (72%) LOO: 18/25 (72%) EVOO: 74/94 (78%) EVOO: 24/33 (73%)

TOTAL: 129/156 = 83% TOTAL: 41/51 = 78% TOTAL: 158/189 = 84% TOTAL: 47/60 = 78%

4. Conclusions

Despite the undisputed validity of the panel test, its application is time consuming and expensive.
Accordingly, companies and private and public quality control labs could benefit from robust
instrumental pre-classifications, which would reduce the number of samples that have to be assessed
by panels, or at least prioritize their assessment.
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For this reason, the development of rapid screening methods to support the official panel test,
to analyze olive oils and differentiate their quality grades, is one of the challenges in the olive oil sector,
as reported in the EU framework program Horizon 2020.

In this work, FGC combined with the multivariate statistical technique was applied to discriminate
samples according to different quality grades (EVOO, VOO and LOO; examples of GC traces for
EVOOs and LOOs are shown in Figure S1 of the Supplementary Materials). The analytical technique
proposed herein for fingerprinting olive oils combined with chemometrics was effective in reducing
data complexity and time to obtain a response; this rapid screening tool could be adopted for a quick
pre-classification of the quality grades, e.g., by control laboratories in companies of the OO sector,
before buying or blending EVOOs.

In order to propose a robust chemometric model, a large set of samples (n = 331) involving two
different harvesting/production years, the most common olive cultivars, geographical origin, sensory
positive attributes, and sensory defects, was analyzed. In addition, a validation protocol was adopted
for evaluate the reliability of the results.

The proposed analytical fingerprinting method provided repeatable and reproducible signals
with sufficient sensitivity to collect valuable information about samples.

FGC associated with the two-category sequential classification model is promising to support
sensory analysis in discriminating samples of different product categories. Among the proposed
classification strategy, the second (1st step: LOO vs. no-LOO; 2nd step: VOO vs. EVOO) was the best
of all PLS-DA models developed with percentages of correctly classified samples ranging from 78 to
92% and from 73 to 85%, for cross and external validation, respectively.

This analytical approach is very fast, and, in fact, only around 200 s are needed to analyze a
single sample. The classification model, built by using a high number of robust samples classified by
sensorial analysis and representative of the commercial variability (here we used a decision tree and
six panels to ensure their classification) is easily applicable in any laboratory or industry.

Future studies could be addressed to the implementation of this methodology, even in relation
to an increasing interest of the food sector towards volatile compounds and more widespread use
of instruments such as FGC, which are less common in quality control laboratories. An even wider
sampling phase including other variables among oils, since they are natural products, could lead to a
better control of classifications and would lead to implementation of this technique to a broader extent.
Lastly, the use of other statistical approaches, such as nonlinear techniques, could be investigated in
order to improve the results of classification.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/7/862/s1,
Table S1: Sensory results of samples from the first year. Table S2: Sensory results of samples from the second year.
Table S3: available information on samples collected and evaluated during the first year of the Oleum project.
Table S4: available information on samples collected and evaluated during the second year of the Oleum project.
Figure S1: overlapping of the GC traces of extra virgin (EVOO) and lampante (LOO) samples.
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Abstract: The wild-type of olive tree, Olea europaea var Sylvestris or oleaster, is the ancestor of the
cultivated olive tree. Wild-type olive oil is considered to be more nutritious with increased antioxidant
activity compared to the common cultivated type (Olea europaea L. var Europaea). This has led to the
wild-type of olive oil having a much higher financial value. Thus, wild olive oil is one of the most
susceptible agricultural food products to adulteration with other olive oils of lower nutritional and
economical value. As cultivated and wild-type olives have similar phenotypes, there is a need to
establish analytical methods to distinguish the two plant species. In this work, a new method has
been developed which is able to distinguish Olea europaea var Sylvestris (wild-type olive) from Olea
europaea L. var Europaea (cultivated olive). The method is based, for the first time, on the genotyping,
by allele-specific, real-time PCR, of a single nucleotide polymorphism (SNP) present in the two olives’
chloroplastic genomes. With the proposed method, we were able to detect as little as 1% content of
the wild-type olive in binary DNA mixtures of the two olive species.

Keywords: Olea europaea var Sylvestris; oleaster; olive; olive oil; real-time PCR; adulteration; SNP; DNA

1. Introduction

The wild form of the olive tree, formally named Olea europaea var Sylvestris or oleaster, is considered
to be one of the oldest trees worldwide; it is found mainly in the Mediterranean Basin. Genetic pattering
studies have shown that cultivated olive trees, i.e., Olea europaea L. var Europaea, are more similar to
oleaster species, providing evidence to support the concept that oleasters are the ancestors of cultivated
trees [1]. Both wild and cultivated olive oil have beneficial properties for human health, giving them
high economic and nutritional value; however, this has made olive oil one of the most vulnerable
agricultural products to fraud and fakery. Wild-type olive oil has higher antioxidant activity, as
well as phenolic, tocopherolic and orthodiphenolic contents equal to or higher those in extra virgin
cultivated olive oil [2]. Moreover, wild-type olive is a valuable natural resource due to its resistance
to certain environmental and climatic conditions and diseases [3]. For the above reasons, its genetic
characteristics have to be evaluated, and reliable molecular tools have to be developed for olive oil
origin traceability (genetically and geographically) and wild-type olive oil identification. On the
other hand, producers need accurate analytical tools for the genetic identification of their wild-type
olive-related products to ensure their high added value [4].

Genetic variations between the two plant species have not been extensively explored by the
research community. The analytical techniques used so far for the genetic identification of the wild
form of olive tree include randomly amplified polymorphic DNA (RAPD), amplified fragment length
polymorphisms (AFLPs) and intersimple and simple sequence repeats (ISSRs and SSRs), based on
the chloroplastic and mitochondrial plant DNA [1]. Early research compared the genome of Olea
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europaea L. var Europaea to that of the wild-type olive, derived from many countries and two areas in
Italy, using AFLP analysis as designed by Angiolillo et al., 1999, and Baldoni et al., 2006 [5,6]. RAPD
analysis was used to distinguish oleasters from Olea europaea L. var Europaea trees on the Mediterranean
islands of Corsica and Sardinia, as well as in Turkey [7,8]. Besnard et al. used RAPD markers and
restriction fragment length polymorphism (RFLP) analysis based on mitochondrial and cytoplasmatic
DNA to investigate the relationships among olive species and subspecies in the Mediterranean Basin
and other countries in Asia and Africa. This research led to the discovery that there was a large
degree of diversity among olive cultivated trees, but that they were more or less related to the local
oleasters [9,10]. Moreover, ISSR and SSR markers have been utilized by many researchers to investigate
the relation and differentiation of cultivated olives from wild-type olives [3,11–16]. Genome size
estimation based on double-stranded DNA staining followed by flow cytometric analysis was also
used for screening purposes between Olea europaea var Sylvestris and Olea europaea L. var Europaea
species [17], while flow cytometry in combination with SSR profiles was used for the taxonomy of four
olive subspecies, namely Olea europaea ssp. cerasiformis, Olea europaea ssp. guanchica, Olea europaea var
Sylvestris and Olea europaea L. var Europaea [18].

Moreover, the wild olive has also been used for nonedible purposes in pharmacology and cosmetics
to create products with specific valuable characteristics. Researches have also studied the antimicrobial
activity of the wild olive against certain human bacterial pathogens [19]. Several plants, including
the olive and its wild form, have also been used for the production of various food supplements [20].
Finally, phenolic extracts from wild olive leaves have been investigated for use in foodstuffs, food
additives and functional food materials, due to their high antioxidant activity [21,22].

In 2017, the complete genome sequence of Olea europaea var Sylvestris was published by
Unver et al. [23]. This will be useful, in the future, for the localization of specific genetic variations in
the genome of oleasters compared to other olive subspecies.

For the first time, in this work, a single nucleotide polymorphism (SNP)-based method was
developed for the detection and identification of the wild form of olive in order to distinguish it from
the cultivated olive. Different olive cultivars contain different SNPs in their genome that are responsible
for their unique phenotyping characteristics [24,25]. The method was based on an allele-specific,
real-time PCR. The proposed method is able to detect wild-type olive DNA at levels as low as 1% in
DNA derived from the cultivated olive.

2. Materials and Methods

2.1. Materials and Instrumentation

The Vent (exo-) DNA polymerase was purchased by New England Biolabs (Beverly, MA, USA).
Deoxynucleoside triphosphates (dNTPs) were obtained from Kapa Biosystems (Wilmington, MA,
USA). The fluorescent dye SYBR Green I 104 × concentrated was from Molecular Probes (Eugene, OR,
USA). The primers used were from Eurofins Scientific (Brussels, Belgium) and are listed in Table 1. The
size of the PCR products was 136 bp. An extra virgin olive oil sample (Olea europaea L. var Europaea) was
purchased from a local market, while a certified wild-type olive oil sample (Olea europaea var Sylvestris)
was kindly by local producer, Alexandros Karakikes, from the Olea Sylvestris estate (Agrielaio, Volos,
Greece) [26].

Real-time PCR was performed using the Mini Opticon Real-Time PCR System from Biorad
(Hercules, CA, USA), while the results were analyzed using the Bio–Rad CFX Manager 3.0 software.
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Table 1. The primers used in the allele-specific, real-time PCR, two species-specific upstream primers
and a common downstream primer, along with their melting temperatures (Tm).

Primer Name 5′–3′ Oligonucleotide Sequence Melting Temperature *

Olea europaea var Sylvestris
upstream primer TGTCAATTTTAATCACTACTGC 62 ◦C

Olea europaea L. Europaea upstream
primer TGTCAATTTTAATCACTACTGT 61 ◦C

Common downstream primer CTAGTAACTAATCCTAACATGGAA 64 ◦C
* according to Eurofins Scientific (Brussels, Belgium).

2.2. DNA Isolation Procedure

DNA was isolated from olive oil samples using the NucleoSpin Tissue kit from Macherey-Nagel
(Düren, Germany) according to the manufacturer’s instructions. The quantity and purity of the isolated
DNA were determined using the Nanodrop UV/VIS Nanophotometer by Implen GmbH (Münich,
Germany).

2.3. Design of the Primers

The primers used for the amplification of Olea europaea var Sylvestris (wild-type olive) and var
Europaea (cultivated olive) were designed using the free online Oligo Analyzer software for primer
evaluation (created by Dr. Teemu Kuulasmaa), based on the Olea europaea var. sylvestris NADH
dehydrogenase subunit F gene, chloroplastic sequence (Accession Number: AY172114) and the Olea
europaea L. NADH dehydrogenase subunit F (ndhF) gene chloroplastic sequence (Accession Number:
DQ673278) [23].

2.4. Allele-Specific, Real-Time PCR

The allele-specific, real-time PCR reactions were conducted in a final volume of 50 µL and
contained 1 × Thermopol Buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl, 0.1% Triton® X-100
at pH 8.8), 0.5 µM of each of the upstream and downstream primers, 0.2 mM of each of the four dNTPs,
0.5 mM MgCl2, 2 × SYBR Green I, one unit of Vent (exo-) DNA polymerase and 150 ng of isolated DNA.
The reaction conditions involved a 95 ◦C incubation step for three min, followed by 45 cycles at 95 ◦C
for 30 s, 62 ◦C for 30 s, 72 ◦C for 30 s and a final extension step at 72 ◦C for 10 min.

3. Results and Discussion

A new analytical method was developed for the detection and identification of Olea europaea
var Sylvestris that refers to the wild form of the olive tree. The method was based on the detection
of a specific Single Nucleotide Polymorphism (SNP) that is different in the genome of the wild olive
plant. The method involves the following steps: (i) DNA isolation from olive oil samples and (ii)
allele-specific, real-time PCR using an upstream primer specific to Olea europaea var Sylvestris or var
Europaea species and a common downstream primer. The species-specific primers have the same
22-base sequence but differ only at the base at the 3′ end that contains the SNP of interest. The DNA
sequences were amplified using a DNA polymerase that lacked the 3′ to 5′ exonuclease activity, so
only the primer that was perfectly complementary to the DNA target was extended by the enzyme.
The amplicons were finally detected using the DNA intercalating fluorescent dye SYBR Green I. The
principle of the proposed method is illustrated in Figure 1. SYBR Green I was chosen here instead of
Taqman probes in order to develop a new analytical method that could be easily transferred, with few
modifications, for the detection of other SNPs that will be found in the wild olive genome in the future.
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of the annealing step of the reaction. At low DNA and primer concentrations, low temperature (55-
60 °C) and number of cycles < 45, the PCR was not sufficiently efficient. The yield of the reaction also 
decreased when a high amount of initial DNA target was used. This may be attributed to the fact that 
the DNA isolated from olive samples has reduced quality, as it contains high amounts of PCR 
inhibitors that may inhibit the activity of the DNA polymerase [27]. We also observed that the highest 
reaction yield and specificity were obtained at an annealing temperature of 62 °C. 

Figure 1. (Upper panel) Schematic illustration of the principle of the method that includes DNA
isolation and purification from olive oil samples using spin cleanup columns, including the following
steps: cell lysis of an olive oil sample, capture of DNA to the cleanup columns and elution of the
DNA from the columns. (Lower panel) The allele-specific, real-time PCR. Two allele-specific upstream
primers that contain the SNP of interest at their 3′ ends and one common downstream primer were
used in the amplification reaction. Only the perfectly complementary upstream primer to the target
was extended by the DNA polymerase, while the amplicons were detected by the DNA intercalating
dye, SYBR Green I.

3.1. DNA Isolation

First, DNA was isolated from olive oil samples and its concentration was determined using
a UV/VIS nanophotometer. It was found that the isolation procedure did not result in a constant
DNA amount for all samples, with the DNA concentrations ranging from 8.4 to 142 ng/µL. To avoid
fluctuation in the PCR yield due to different initial DNA concentrations, we decided to use the same
amount (ng) of isolated DNA for all samples into the real-time PCR mixture. After amplification,
the amplicons had a size of 136 bp. The quality of the isolated DNA was also determined by UV
measurements; the ratios A260/A280 were from 1174 to 1739. DNA was considered to be of high quality
when the ratio A260/A280 was above 1.8.

3.2. Optimization of the PCR Conditions

The real-time PCR conditions were initially optimized. The parameters studied were the amount
of the isolated DNA, the concentration of the primers, the number of PCR cycles and the temperature of
the annealing step of the reaction. At low DNA and primer concentrations, low temperature (55–60 ◦C)
and number of cycles < 45, the PCR was not sufficiently efficient. The yield of the reaction also
decreased when a high amount of initial DNA target was used. This may be attributed to the fact
that the DNA isolated from olive samples has reduced quality, as it contains high amounts of PCR
inhibitors that may inhibit the activity of the DNA polymerase [27]. We also observed that the highest
reaction yield and specificity were obtained at an annealing temperature of 62 ◦C.
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3.3. Specificity of the Allele-Specific Primers

The specificity of the two species-dependent upstream primers was then studied as follows: both
DNA targets, Olea europaea var Sylvestris (wild-type olive) and var Europaea (cultivated olive) were
subjected to two separate amplification reactions using either the upstream primer specific to the
wild-type olive or the cultivated olive-specific upstream primer. As shown, in Figure 2, each primer
amplified only its fully complementary DNA sequence, proving the superior specificity of the primers.
To ensure that the fluorescence signals were attributed only to the specific amplicons, a melting curve
analysis was also performed after each amplification reaction. The melting curve analysis revealed
only one peak for each PCR product, the melting temperature (Tm) of which was 77 ◦C for Olea europaea
var Sylvestris (wild-type olive) and 78 ◦C for var Europaea (cultivated olive), allowing us to distinguish
between the two allele-specific DNA sequences.

Foods 2020, 9, x FOR PEER REVIEW 5 of 9 

3.3. Specificity of the Allele-Specific Primers 

The specificity of the two species-dependent upstream primers was then studied as follows: both 
DNA targets, Olea europaea var Sylvestris (wild-type olive) and var Europaea (cultivated olive) were 
subjected to two separate amplification reactions using either the upstream primer specific to the 
wild-type olive or the cultivated olive-specific upstream primer. As shown, in Figure 2, each primer 
amplified only its fully complementary DNA sequence, proving the superior specificity of the 
primers. To ensure that the fluorescence signals were attributed only to the specific amplicons, a 
melting curve analysis was also performed after each amplification reaction. The melting curve 
analysis revealed only one peak for each PCR product, the melting temperature (Tm) of which was 77 
°C for Olea europaea var Sylvestris (wild-type olive) and 78 °C for var Europaea (cultivated olive), 
allowing us to distinguish between the two allele-specific DNA sequences. 

Figure 2. The real-time PCR curves, along with the corresponding melting curve analysis, obtained 
during the specificity study of the two-allele specific upstream primers with both DNA targets: Olea 
europaea var Sylvestris (wild-type of olive) (a) and Olea europaea L. var Europaea (cultivated olive) (b). 
Each specific primer strictly amplifies the fully complementary DNA sequence. Tm: melting 
temperature, RFU: Relative Fluorescence Units. 

  

Figure 2. The real-time PCR curves, along with the corresponding melting curve analysis, obtained
during the specificity study of the two-allele specific upstream primers with both DNA targets: Olea
europaea var Sylvestris (wild-type of olive) (a) and Olea europaea L. var Europaea (cultivated olive) (b). Each
specific primer strictly amplifies the fully complementary DNA sequence. Tm: melting temperature,
RFU: Relative Fluorescence Units.

3.4. Detectability of the Method in Binary DNA Mixtures

Subsequently, the detectability of the method in olive DNA binary mixtures was evaluated. DNA
mixtures that contained different proportions (1–50%) of DNA from Olea europaea var Sylvestris in DNA
from var Europaea were prepared. An amount of 150 ng of each DNA mixture was then subjected to two
separate allele-specific, real-time PCR reactions using each of the species-specific upstream primers
along with the common downstream primer, respectively. A high amount of total DNA was used in
the PCR in order to detect the low amount of wild olive DNA in the mixtures, e.g., for 150 ng of total
DNA in the 1% mixture, only the 1.5 ng was the wild olive DNA. The results are presented in Figure 3.
We were able to detect as little as 1% of DNA specific to Olea europaea var Sylvestris in the presence of
DNA from Olea europaea L. var Europaea. The allelic ratios of the analyzed SNP for the above DNA
mixtures were also calculated based on the fluorescence value at the 45th cycle of the reaction, and are
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presented in the same Figure. The allelic ratios for all DNA mixtures were close to the value of 0.5, as
expected for a heterozygote sample.
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Figure 3. (a) The real-time PCR curves obtained for different % DNA content (0–50%) of Olea europaea
var Sylvestris (wild-type olive) DNA in binary mixtures with Olea europaea L. var Europaea (cultivated
olive) DNA. (b) The allelic ratios of the binary DNA mixtures calculated as the ratio of the fluorescence
intensity obtained with the upstream primer specific to Olea europaea var Sylvestris target versus the sum
of the fluorescence intensity obtained by both allele-specific primers for Olea europaea var Sylvestris and
var Europaea targets. All allelic ratios were close to the value of 0.5, which corresponds to a heterozygote
sample. RFU: Relative Fluorescence Units.

3.5. Reproducibility of the Method

Finally, the reproducibility of the method was determined. Two different proportions, 1% and
10%, of the above DNA mixtures, were subjected, in triplicate, to real-time PCR. The % coefficients
of variation (CV) were calculated based on the obtained Cq values for all samples. The CV for
the 1%-content was 10.5% and for the 10%-content was 7.5%, demonstrating the reproducibility of
the method.

4. Conclusions

A new allele-specific, real-time PCR-based analytical method was developed for the detection
and identification of wild-type olive oil (Olea europaea var Sylvestris), compared to cultivated olive
oil (Olea europaea L. var Europaea). The discrimination of the two similar plant species was based on
genotyping a single nucleotide polymorphism (SNP) that is differently present in the genome of the
two plant species. The detection of this SNP was carried out by an allele-specific, real-time PCR that
was performed using two different species-specific upstream primers that contained the analyzed SNP
and a common downstream primer. Each specific primer amplified only its fully complementary DNA
sequence, leading to species identification. The detection of the amplicons was accomplished using
the DNA intercalating dye, SYBR Green I. With the proposed method, we were able to sucessfully
distinguish between the two plant species in olive oil samples. Also, as little as 1% wild-type olive
species was detected in binary DNA mixtures of the two analyzed plant species. In conclusion, the
method is easy, rapid, has good detectability, is reproducible and can easily distinguish between species.
The proposed method also contributes to the ability to add the higher financial value to wild-type
olive-based products. In the future, the determination of different SNPs in the wild-type olive genome
compared to all the known cultivated olive trees could lead to more accurate discrimination of the
wild-type olive among other olive-based subspecies. The proposed method could also be applied,
with some modifications, for the detection of wild olive-based ingredients in food supplements and
cosmetic products. The global increase in food supplements has led to the mislabeling of these products
and fraudulent practices. In both cases, the purity of the extracted DNA is more important than the
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PCR yield itself, because several food additives and other ingredients may be present in the extracts,
inhibiting the PCR amplification. Also, the amount of the extracted DNA may be extremely low. Thus,
the DNA isolation protocols have to be properly justified to remove these inhibitors and increase the
DNA recovery and the PCR yield. In some studies, however, the inability to extract DNA from some
food supplements has been reported. Finally, in some products, DNA degradation may also occur due
to thermal or chemical treatment, but the use of short-length amplicons can overcome this issue [28–31].
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Abstract: This is the first study of mineral content and basic physicochemical parameters of honeys
of Montenegro. We examined honey samples from eight different micro-regions of Montenegro,
and the results confirm that, with the exception of cadmium in samples from two regions exposed
to industrial pollution, none of the 12 elements analyzed exceeded the maximum allowable level.
The samples from areas exposed to industrial pollution were clearly distinguished from samples
from other regions of Montenegro in the detectable contents of Pb, Cd, and Sr. This study showed
that chemometric techniques might enhance the classification of Montenegrin honeys according to
their micro-regional origin using the mineral content. Linear discriminant analysis revealed that the
classification rate was 79.2% using the cross-validation method.

Keywords: honey; regional origin; chemometric analysis; mineral content; Montenegro

1. Introduction

Honey is a complex natural product, whose characteristics depend on the flower nectar from
which it is obtained, but also on other factors such as geographical origin, bee species, season, type of
processing and storage [1]. It is known that pollution and a number of different pollutants present in its
foraging areas have an impact on honeybees [2] but also on nectar-providing plant species. Therefore,
it is necessary to assure geographical traceability and determine the botanical origin of the foraging
area of the beehive.

As stated by Karabagias and Karabournioti [3], the authentication of honey is gaining in importance
and includes a number of contending parties from producers and sellers to consumers and control
labs. A number of papers have shown that specific physicochemical parameters and mineral contents
in combination with chemometric analyses can be a useful tool in discovering botanical and/or
geographical origin of honeys that may enter the market [1,3,4].

Tracing the geographical origin of honeys can provide important information about the potential
contamination of the area from which the honey production material comes. Therefore, ensuring high
standards in terms of product safety leads to the need to examine the contents of essential and toxic
elements in honey. Due to its bioaccumulation ability, honey can be used as an indicator of metal
pollution, especially of toxic pollutants such as Pb, Cd, and As [5–7].

Due to its geographical position, climate conditions and richness of the nectar-providing plants,
Montenegro provides favorable natural conditions for more intensive development of beekeeping.
According to the data for 2011, the population in Montenegro was 625,266, while the honey production
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for that year was 394 t, and the average annual consumption 1.2 kg per person, meaning that a large
part of honey consumption in Montenegro is imported [8]. Data for the last few years show an increase
in honey production (627 t for 2016) but also an increase in the average annual consumption of honey
per person (2.76 kg) [9].

The majority of honey on the market in Montenegro are multifloral (derived from a large number
of nectar-providing plant species in the honeybees foraging area). Most of these honey types are
recognizable by their local or regional origin (e.g., Katunski med (= honey), Pivski med, Piperski med.).
It is worth mentioning that Montenegro and its regions are known to harbor a high number of regional
floral endemics [10] that likely affect the composition and properties of honey.

There is a lack of information on the mineral content and basic physicochemical parameters of
honey from the territory of Montenegro. Moreover, there is no continuity in monitoring the quality of
honey, especially in areas that are exposed to the effects of potential pollution sources. Due to the high
consumption of local honey in the diet, the need and obligation for its systematic characterization are
highly required.

This study is aimed to investigate the mineral content and the basic physicochemical parameters
of honeys from different micro-regions of Montenegro. We evaluated the usefulness of chemometric
analyses for the classification of honeys according to its regional origin.

2. Materials and Methods

Twenty-four honey samples as indicated in Figure 1 were collected from eight micro-regions of
Montenegro, i.e., (1) Piva, (2) Zbljevo, (3) Potrlica, (4) Mijakovići, (5) Piperi, (6) Martinići, (7) Katunska,
and (8) Zeta. The Piva, Zbljevo, Potrlica and Mijakovići micro-regions are situated in the continental
part of Montenegro (Alpine biogeographical region, see Figure 1) while the four other micro-regions are
situated in the sub-Mediterranean part of the country belonging to the Mediterranean biogeographical
region [10]. The climate in the latter region is mainly Mediterranean-Adriatic with relatively dry and
warm summers (the average air temperature of the warmest month > 20 ◦C), but humid and mild
winters (the average air temperatures varies from 6 to 9 ◦C), while the Alpine region has a “continental”
type climate, with relatively cool and humid summers and long and harsh winters [10].

Samples were taken from individual beekeepers during the harvesting season 2015. All samples
were multifloral as confirmed by the suppliers. The samples were stored in glass flasks at room
temperature before analysis. Physicochemical parameters (pH, electrical conductivity (EC), free acidity
(FA) and moisture) were analyzed using the Harmonized Methods of the International Honey
Commission [11].

The mineral composition of honey was analyzed by inductively coupled plasma-optical emission
spectrometry (ICP-OES). About 1 g of each honey sample was digested with 14 mL 65% HNO3 and
2 mL 35% H2O2 on a hot plate to near dryness. The sample containing a volumetric flask was cooled at
room temperature before the addition of deionized water to the mark on the flask. All samples were
prepared in triplicate and their average value was assessed.

The concentration of twelve elements (Pb, Cd, Cu, Zn, Fe, Cr, Sr, Ba, Ca, Na, K, Mg) were
determined by ICP-OES according to the iCAP 6000 spectrometer method.

All statistical analyses were performed using SPSS 17.0 (SPSS Statistics for Windows,
Version 17.0. SPSS Inc., Chicago, IL, USA). Data were expressed as mean ± standard deviation.
A Kolmogorov–Smirnov test showed that all analyzed physicochemical parameters were normally
distributed, while the content of Pb, Cd, Sr and Ba in some regions exhibited significant differences
from the normal distribution. The one-way analysis of variance (ANOVA) was performed on
physicochemical parameters in order to determine if there any significant differences between studied
micro-regions at the confidence level 0.05. The Kruskal–Wallis test was used to investigate whether
the mineral contents varied significantly between the investigated micro-regions. The relationship
between the mineral content and physicochemical parameters were analyzed using the Spearman’s
correlation analysis. For checking similarities between samples of honey of different geographical
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origin we used two chemometric analyses: PCA and LDA. Statistical methods based on principal
component analysis (PCA) and linear discriminant analysis (LDA) have been used. The LDA was
performed using R.3.5.3, while the PCA was made by using MVSP version 3.21.Foods 2020, 9, x FOR PEER REVIEW  3 of 9 
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Figure 1. Map of Montenegro with marked locations of honey sampling from eight micro-regions (in
parentheses are given sampling location numbers): Piva (1–3), Zbljevo (4–6), Potrlica (7–9), Mijakovići
(10–12), Piperi (13–15), Martinići (16–18), Katunska (19–21), and Zeta (22–24).

3. Results

The mineral content of honey samples from different geographical areas of Montenegro is presented
in Table 1. The value presented for each element is the average concentration observed. A significant
difference has been observed in the concentrations of Pb, Cd and Sr (p = 0.002) between studied
micro-regions. In most analyzed samples the concentrations of above-listed elements were below
the limit of detection except in the samples from Potrlica, Zbljevo and Mijakovići. The highest Cd
concentration was observed in samples from Potrlica (0.08 ± 0.01 mg/kg). The highest concentration of
Pb (0.21 ± 0.06 mg/kg) and Sr (0.12 ± 0.00 mg/kg) were recorded in samples from Zbljevo.
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The concentrations of examined physicochemical parameters of honey samples are given in Table 1.
The moisture level had similar values across studied regions and ranged from 14.92 ± 0.78% (Piperi) to
16.22 ± 0.36% (Zeta). The pH of studied honey samples varies between 3.87 and 4.49 and was lowest in
samples from the Piva region (3.87 ± 0.36) and highest in honey samples from Mijakovići (4.49 ± 0.14).
A significant difference has been observed in pH according to the honey regional origin (p = 0.048).
The electrical conductivity varied from 0.39 to 0.93 mS/cm and was lowest in samples from Katunska
(0.39 ± 0.08 mS/cm) and highest in honey samples from Zeta (0.93 ± 0.15 mS/cm). A significant
difference has been observed in electrical conductivity according to the honey geographical origin
(p = 0.013). Free acidity varied from 25.00 to 41.67 meq/kg and was lowest in samples from Katunska
(25.00 ± 7.21 meq/kg) and highest in honey samples from the Piva region (41.67 ± 12.10 meq/kg).

Correlation analysis revealed significant correlation between contents of K (R = 0.800,
significance < 0.001) and Mg (R = 0.758, significance < 0.001) from one side and pH from the
other one (Table 2).

Table 2. Results of the correlation analysis between the mineral content and physicochemical parameters
of analyzed honey samples from Montenegro.

Electrical Conductivity pH Moisture Free Acidity

Pb R −0.028 −0.052 0.013 0.224
Cd R −0.087 −0.030 0.080 0.259
Cu R −0.239 0.240 −0.043 −0.029
Zn R −0.329 −0.183 0.052 0.035
Fe R −0.379 0.044 −0.115 −0.194
Cr R −0.179 0.335 −0.069 −0.285
Sr R −0.006 0.074 0.009 0.125
Ba R −0.064 0.114 −0.275 −0.082
Ca R −0.229 −0.019 -0.031 −0.061
Na R 0.079 0.382 0.214 −0.173
K R 0.171 0.800 ** 0.218 −0.250

Mg R 0.159 0.758 ** 0.325 −0.391

** significance < 0.01.

The first principal component explains 42.53% of the total variability and is mostly determined by
Cd (R = 0.416), Pb (R = 0.398), and Cu (R = 0.352). The PC2 explains 17.97% and is mostly determined
by Mg (R = −0.577), K (R = −0.54), and Na (R = −0.425). Mutual projections of factor scores and their
loadings for the first two PCs are presented in Figure 2. As can be seen from the projection plot the
separation of the analyzed honey samples is much clearer along the X-axis. On the one side, there
are localities Piva, Piperi, Katunska, Zeta and Martinići in whose honey samples Cd, Pb, and Sr were
not detected. On the other side, there are Mijakovići, Potrlica and especially Zbljevo, whose honey
samples concentrations of Cd, Pb and Sr were detected.
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Figure 2. Principal component analysis (PCA) of the mineral content scores of analyzed Montenegrin
honey samples.

LDA performed on the geographical origin revealed that the cross-validation classification was
correct for 79.17% of samples (Table 3). The smallest percent of good classification was achieved in
the case of honey samples from Katunska, while the highest in the case of honeys from Piperi, Zeta,
Mijakovići, and Zbljevo.

Table 3. Classification of honey according to their regional origin using the linear discriminate analysis.

Predicted Piva Piperi Katunska Zeta Martinići Mijakovići Potrlica Zbljevo

Piva 66.67% 0.00% 0.00% 0.00% 33.33% 0.00% 0.00% 0.00%
Piperi 0.00% 100.00% 33.33% 0.00% 0.00% 0.00% 0.00% 0.00%

Katunska 0.00% 0.00% 33.33% 0.00% 0.00% 0.00% 0.00% 0.00%
Zeta 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

Martinići 33.33% 0.00% 0.00% 0.00% 66.67% 0.00% 0.00% 0.00%
Mijakovići 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
Potrlica 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 66.67% 0.00%
Zbljevo 0.00% 0.00% 33.33% 0.00% 0.00% 0.00% 33.33% 100.00%

The bidimensional plot (Figure 3) of the first two functions show four distinct clusters, three of
them corresponding to Mijakovići, Potrlica, and Zbljevo regions, while all other regions were clustered
together. The first discriminant function explains 94.2% of the total variance and it is dominated by
Cd content (R = 0.95). The second discriminant function explains 4.4% of the total variance and is
dominated by Pb (R = −0.55) and Sr (R = −0.59) contents.
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4. Discussion

The values of the mineral contents have been compared with those established by the EU
regulations [12]. With the exception of the concentrations of cadmium in samples from Zbljevo and
Potrlica, none of the 12 elements analyzed exceeded the maximum allowable level established by the
EU regulations. Our results revealed significant differences in the concentrations of Pb, Cd, and Sr
between the studied geographical areas of Montenegro. The latter elements were detected only in
the samples from Mijakovići, Potrlica and Zbljevo regions, which are likely under the influence of
the Pljevlja Thermal Power Plant (Zbljevo, and in less extent Mijakovići) and the Pljevlja coalmine
(Potrlica).

The Pb content in the analyzed honey samples varied from 80–210 µg/kg. These values were
lower in comparison with the honey from Serbia (290 µg/kg [13]) and Italy (289 µg/kg [14]) but
higher in comparison with those from Croatia (5.43–11.3 µg/kg [15]) and Bosnia and Hercegovina
(13.4 µg/kg [16]). All these values are below the maximum allowable level established by the EU
regulations (0.5 mg/kg) [12].

The values reported for Cd in this study (20–80 µg/kg) were higher in comparison with the
honey from Croatia (0.69–12.8 µg/kg [15]), Bosnia and Hercegovina (0.013–22.9 µg/kg [16]), Romania
(0.5–11.60 µg/kg [17]), Italy (8–18 µg/kg [14]), Spain (0.7–50 µg/kg [17]) and Serbia (0.59–30 µg/kg [1,13]).
The values of Cd content in the samples from Potrlica and Zbljevo exceeds the maximum allowable
level established by the EU legislation (0.05 mg/kg) [12]. As the main sources of Cd are recognized as
the presence in sewage sludge and smelting from the nearby Pljevlja Thermal Power Plant (Zbljevo),
or mining from the Pljevlja coalmine (Potrlica).

The Sr content in honey samples from our study varied from 0.07–0.12 µg/kg and was in the same
range as those from Serbia (0.09–0.19 µg/kg [13]).
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The most abundant element in honey samples was kalium, followed by Ca, Mg, Na, and Fe.
In our study, we found that the content of kalium and magnesium correlated with pH. The average
levels of K content ranged from 713–2589.33 mg/kg and was in the same range with those from
Croatia (304.7–2824.4 mg/kg [15]), but lower in comparison with the maximum values established
for honeys from Bosnia and Herzegovina (14.81–4895.73 µg/kg [16]). On the other hand, the range of
concentrations of kalium in the honey from Serbia (400–1755 mg/kg [1,13]) and Slovenia (1090–1220
mg/kg [18]) were lower. The Mg content in honey samples from our study varied from 29.52 to
76.33 mg/kg. In neighboring countries the Mg content in honey varied in a similar range, as: 28.83
to 101.50 mg/kg [13] in Serbia, 2.18 to 166.04 mg/kg [16] in Bosnia and Herzegovina and from 8.02 to
59.1 mg/kg [16,19] in Croatia.

In our study, we used two chemometric analyses, PCA and LDA, respectively to test similarities
between honey samples of honey of different geographical origins. Both applied methods separated
the regions exposed to industrial pollution (Mijakovići, Potrlica, and Zbljevo) which are characterized
by detectable content of Cd, Pb and Sr in their honey samples.

Using LDA it’s possible to evaluate the capacity to correctly predict the group to which the
unknown samples belong. In our study LDA analysis performed on the geographical origin revealed
that the cross-validation classification was correct for 79.17% of the samples. The obtained values
are in the range for those from Serbia (Zlatibor: 94.73%, Vojvodina: 70.58% [1]). On the other hand,
our value was greater than those reported in the case of Romania honeys where only 21.2% were
correctly classified according to their geographical origin [4].

The smallest percentage of good classification was achieved in the case of honeys from Katunska.
Of the three samples from the latter region, only one was correctly classified, while the other two
being misclassified as Piperi and Zbljevo, respectively. It is known that large numbers of beekeepers
(especially from Katunska) in a part of the year (most often in summertime) move their bee colonies to
geographically distant areas. On the other hand, the highest percentage of good classification was
achieved in the case of honeys from Piperi, Zeta, Mijakovići, and Zbljevo. One cause may be that most
of these sites (i.e., Zeta, Mijakovići, and Zbljevo) are more exposed to industrial pollution, resulting
in increased concentration of heavy metals (Pb, Cd, and Sr showing significant difference (p < 0.05)
between studied regions) in their honeys, which, in turn, increase the success rate of the classification
of honey according to their geographical origin.
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Abstract: An untargeted method using direct analysis in real time and high resolution mass
spectrometry (DART-HRMS) combined to multivariate statistical analysis was developed for
the discrimination of two monofloral (chestnut and acacia) honeys for their geographical
origins—i.e., Italy and Portugal for chestnut honey and Italy and China for acacia honey. Principal
Component Analysis, used as an unsupervised approach, showed samples of clusterization for
chestnut honey samples, while overlapping regions were observed for acacia honeys. Three supervised
statistical approaches, such as Principal Components—Linear Discriminant Analysis, Partial Least
Squares—Discriminant Analysis and k-nearest neighbors, were tested on the dataset gathered
and relevant performances were compared. All tested statistical approaches provided comparable
prediction abilities in cross-validation and external validation with mean values falling between
89.2–98.4% for chestnut and between 85.8–95.0% for acacia honey. The results obtained herein
indicate the feasibility of the DART-HRMS approach in combination with chemometrics for the rapid
authentication of honey’s geographical origin.

Keywords: monofloral honey; direct analysis in real time (DART); high resolution mass spectrometry
(HRMS); geographical origin; chemometrics

1. Introduction

Honey is a complex and high-quality natural product containing a wide range of nutritional
and therapeutic properties but with a limited production and high commercial prices. Honey is defined
by European Union legislation as the natural sweet substance produced by bees of Apis mellifera
species from nectar or sugary secretions of plants, as well as from excretions of plant-sucking insects
on the living parts of plants [1]. Both the European Union and Codex Alimentarius laws establish
that the geographical origin, in terms of country of production, must be indicated on the label,
also supplemented by specific reference to the floral or vegetable origin. Moreover, in the case of
blends of honey, their origin should be declared as a “blend of EC honeys”, “blend of non-EC honeys”
or “blend of EC and non-EC honeys” [1,2].

Geographical and botanical origins of honey account for the peculiar chemical composition
and organoleptic characteristics of the final product [3,4]. Monofloral honeys, mostly deriving from a
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single plant species (at least 45% of pollen grains), may considerably differ in their sensory properties
with highly prominent flavor and aroma. Acacia (Robinia pseudoacacia) honey is one of the most
consumed monofloral honeys in Europe, being appreciated for its permanently liquid state, light color,
floral aroma and sweet and delicate taste [5]. Similarly, chestnut (Castanea sativa) honey is considered
one of the most delicious and high-quality honeys, being a very good source for nectar and pollen [6,7].
For these reasons, monofloral honeys, and in particular those derived from acacia and chestnut,
have recently gained consumer preferences, with an increased demand and commercial value [4].
Due to their increased commercial value, monofloral honeys are highly susceptible to fraudulent
practices through mislabeling and mixing with cheaper and lower-quality honeys or with various
sugar syrups.

Honey is produced in different areas of the world, with more than 2.3 million tonnes produced
worldwide in 2018, with China and Turkey as main producers [8]. China is also the largest exporter
of honeys in the world, while in Europe, Portugal is the country bearing the highest number of
geographical protected labels on honey [9]. Honey composition is quite variable and strictly linked
to its floral source and geographical origin, but external factors, including processing, packaging
and storage conditions, could play an important role. Although Italy is one of the EU countries with
the highest honey production [10], the market demand for honey is higher than domestic production,
therefore a substantial amount of honey is imported from elsewhere in Europe and from third-world
countries, in which production does not always meet the high food safety standards required. This can
lead to honey mislabeled with regard to its geographical and/or botanical origin [11].

The traceability certifying the geographical origin of food products is of primary importance for
traders and producers, as well as to reinforce consumer trust. The complex task of the determination of
food origin is commonly applied to control products in both customs control and self-control programs
of the food industry.

Melissopalynological analysis of pollen is the most used approach for the botanical
and geographical origin classification of honey, as the pollen spectrum is strictly related to
the environment where the nectar is collected [12]. This analysis is often complemented by
other analytical methodologies, mainly based on chromatographic techniques, to assure the honey
authenticity [13]. Often, the use of conventional and targeted methods is time-consuming and not
sufficient to guarantee the evaluation of complex matrices, including honeys. For this reason,
the development of rapid and reliable non-targeted analytical approaches, such as fingerprinting
and profiling methods, is highly demanded. Indeed, these methods combined to chemometric tools
allow for the detection of a high number of metabolites, leading to samples based on their pattern.

Several analytical techniques, mainly based on nuclear magnetic resonance [5,14,15],
Raman and infrared spectroscopy [16,17], mass spectrometry [18–20], electronic tongue [21,22]
and electronic nose [23,24], in combination with chemometrics, have been applied to discriminate
the geographical origin of honey.

The use of ambient mass spectrometry (AMS) is continuously increasing in the field of
metabolomic fingerprinting as a high-throughput alternative to more traditional hyphenated methods
for authentication issues [25]. Among AMS techniques, direct analysis in real-time mass spectrometry
(DART-MS), being simple and requiring a very limited sample preparation, has been shown to
be the most promising and versatile technique, proving to be a rapid tool in the assessment of
food authenticity and food quality, also thanks to the use of fast and streamlined protocols [25–27].
Such an approach offers several advantages over the conventional techniques, including direct
sample analysis in open atmosphere, high sample throughput and minimal or no sample preparation
requirements, the soft ionization of a wide range of both polar and apolar compounds. Several
papers have been recently published demonstrating the applicability of DART-MS to assess food
authenticity and detect food adulterations of olive oil [28], beer [29], wine [30], animal fat [27], milk [31]
and salmon [32]. Only one paper reported the applicability of DART-MS to the discrimination
of geographical origin of food—i.e., garlic produced in Czech Republic, Spain and China [33].
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Regarding honey products, DART-HRMS was used as alternative approach for the determination of
5-hydroxymethylfurfural [34,35]. To the best of our knowledge, no studies based on DART-MS have
been performed to date for the assessment of geographical origin of honeys.

In this context, the aim of this study was to demonstrate the feasibility of the DART-HRMS
technique for the discrimination of the geographical origin of honeys. Specifically, a rapid and suitable
non-targeted DART-HRMS method in combination with multivariate statistical analysis was developed
and validated to discriminate two monofloral honeys varieties (i.e., chestnut and acacia) for their
geographical origin (i.e., Italy and Portugal and Italy and China, respectively). Different statistical
classification models were investigated and applied to the analysis of honey samples and performance
results were compared.

2. Materials and Methods

2.1. Chemicals and Reagents

Methanol (HPLC grade) was purchased from Sigma-Aldrich (Milan, Italy). Ultrapure water was
produced by a Milli-Q® Direct system (Merck KGaA, Darmstadt, Germany). Helium (99.9995% purity)
was provided by Sapio S.r.l. (Bari, Italy). Regenerate cellulose (RC) syringe filters with 0.2 µm of
porosity were purchased by from VWR International (Milan, Italy). OpenSpot (OS) Sample Cards were
purchased by Ion Sense Inc. (Saugus, MA, USA).

2.2. Honey Samples

A total of 234 monofloral honey samples commonly found in marketplaces and collected in
different countries with certified origins were selected for this study. Specifically, 117 chestnut honey
samples were collected from Italy (39) and Portugal (78), while 117 acacia honey samples were collected
from Italy (78) and China (39). The authenticity of the monofloral honeys was assessed by internal
certified protocols performed by Coop Italia Soc. Cooperativa (Casalecchio di Reno, Italy) which
provided samples. Only honey samples produced in seasons 2017–2018 were taken into account.

2.3. Sample Preparation

Sampling and homogenization of honey samples were performed according to AOAC 920.180
protocol [36]. For sample preparation, a rapid protocol aimed at retaining as many honey metabolites
as possible—thus to obtain most comprehensive spectra applicable for discriminating between different
geographical origin—was optimized for the DART-HRMS analysis. In particular, an aliquot (1 g) of
homogenized honey was added to a mixture of MeOH/H2O (1:1, v/v), (50 mL) and the sample was
vortexed for 3 min. After filtration using 0.2 µm RC syringe filter, the filtered extract was directly
analyzed by DART-HRMS.

2.4. DART-HRMS Analysis

DART-HRMS analyses were carried out by using a DART ionization source SI-140-GIST (DART
Thermo Ion Max Vapur Interface, Ion Sense Inc., Saugus, MA, USA) coupled to an Exactive™monostage
Orbitrap™High Resolution mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). An aliquot
(2 µL) of the honey extract was placed onto the metallic grid of the OpenSpot® sample cards and kept
at 60 ◦C for 5 min to facilitate solvent evaporation before its introduction into the DART source holder.
The operating conditions of the DART source were: positive ion mode; helium flow of 3.2 L/min for
1 min and heated at 250 ◦C; discharge needle voltage kept at −6 kV; grid electrode voltage set to 250 V;
distance between DART exit and MS inlet set at 5 mm. The operating conditions of DART source
were set by DART-SVP controller (v. 4.0.x). The main settings of the Exactive™ mass spectrometer
were the following: mass scan range of 100–600 m/z; resolution set at 25,000 (FWHM at m/z 200);
microscan number of 4; Automatic Gain Control (AGC) Target of 3 × 10−6; maximum injection time
(IT) of 250 ms; capillary voltage set to 30 V; tube lens voltage set to 65 V; capillary temperature kept
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at 250 ◦C. Calibrations of the MS system were periodically performed by the direct infusion ESI-MS
approach of the positive ion calibrating solution, provided by the manufacturer, in order to obtain
a mass accuracy lower than 5 ppm. The MS system was controlled by using the Xcalibur™ v. 2.1
software (Thermo Fisher Scientific, San Jose, CA, USA).

To carry out the subtraction of the spectral background, a blank open spot card was acquired
before analyzing each sample by DART-HRMS acquiring the relevant spectrum for 30 s.

2.5. Data Processing and Statistical Analysis

In the first step of data processing, DART-HRMS spectra acquired in the time range of 30 s
were averaged and then subtracted of spectral background by using the Xcalibur™ software.
Successively, for each honey sample, the full list of accurate m/z ratios and peak intensities obtained
was exported and processed by MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) [37,38] for peak
matching and alignment with mass tolerance of 0.25, imputation of missing values (replacing missing
elements by using the half of the lowest measured peak intensity) and data filtering (by using
Interquartile Range approach). Successively, after pre-processing obtained by data centering, the dataset
was submitted to multivariate statistical analyses performed by V-Parvus software (release 2010,
http://www.parvus.unige.it, Genova, Italy).

Principal Component Analysis (PCA) was used as an unsupervised technique to evaluate
the presence of outliers. Specifically, PCA was applied to each single group of monofloral honey
samples of different geographical origin, observing the relevant influence plots and excluding samples
identified as extreme outliers. To establish the exact number of Principal Components (PCs) to be used
to build PCA models, the Non-linear Iterative Partial Least Squares (NIPALS) algorithm was applied
using V-fold of 10 (cross validation process, CV = 10). PCA was also used as exploratory technique to
visualize the presence of natural sample clustering between monofloral honey samples in relation to
their geographical origin [39].

Afterwards, three supervised pattern recognition techniques—i.e., Linear Discriminant Analysis
(LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and k-nearest neighbors (k-NN) [40],
were exploited to classify monofloral honey samples on the basis of their geographical origin.
For this purpose, the two data matrices were randomly split in two subsets: a modelling set (containing
60 samples) and a test set (containing 57 samples). Specifically, for each monofloral honey, a modelling
set, composed by 30 samples for each geographical origin, was used to build the three different statistical
models. Test sets, consisting of 9 Italian and 48 Portuguese chestnut honey samples and 48 Italian
and 9 Chinese acacia honey samples, were used for the validation process.

The chemometric models of PCA-LDA was built by firstly performing PCA test to reduce
the number of variables that exceeded the number of objects, thus preventing model overfitting;
then the selected scores were used as classification variables for LDA [41,42]. Indeed, the number of
variables should not exceed (n-g)/3, where n is the number of objects and g is the number of categories.
Considering that modelling sets were composed by 60 objects (number of samples) and 2 categories
(number of geographical origins) the maximum number of variables should be approximately 19.

The appropriate numbers of principal components, latent variables and k values, respectively,
for PCA-LDA, PLS-DA and k-NN models were established by evaluating those determining the lowest
prediction error rate in cross-validation (cross-validation segments, V = 10). This parameter guarantees
to improve feature variables and, at the same time, to avoid model overfitting. Model performances
for PCA-LDA, PLS-DA and k-NN, expressed as percentages, were compared with reference to their
recognition ability—i.e., the ability to correctly classify samples of the modelling set—prediction ability
in cross-validation (CV)—i.e., the ability to correctly classify samples of a test set generated in a V-fold
cross validation—and prediction ability in external validation—i.e., the ability to correctly classify
samples of the test set.
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3. Results and Discussion

In the present study, the real-time mass spectrometry (DART-MS) combined with chemometric
analysis, was used for the first time to the discrimination of two kind of monofloral honey samples,
namely chestnut and acacia, based on their geographical origin. As for chestnut, Italian and Portuguese
honey samples were compared to each other, while for acacia, Italian honeys were compared with
samples from China.

Figure 1 reports four representative DART-HRMS average spectra, after blank subtraction,
obtained for the chestnut honey extracts of Italian (Figure 1a) and Portuguese (Figure 1b) samples
and acacia honey extracts of Italian (Figure 1c) and Chinese (Figure 1c) samples.

Foods 2020, 9, x FOR PEER REVIEW 5 of 12 

Figure 1 

Figure 1. Cont.

83



Foods 2020, 9, 1205Foods 2020, 9, x FOR PEER REVIEW 6 of 12 
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At first, a preliminary PCA was performed on pre-processed spectra of chestnut and acacia honey 
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of chestnut samples, seven PCs described 96.3% of total variance for samples from Italy while nine PCs 
described 93.0% of total variance for samples from Portugal. In the case of acacia honey samples, PCA 
models showed that eight PCs described 93.7% of total variance for samples from Italy while nine PCs 
described 91.0% of total variance for samples from China. The absence of outliers in all classes was 
demonstrated using influence plots where the Mahalanobis distance was plotted versus sample 
residual. 

Subsequently, an explorative PCA was performed using the entire data set to obtain an overview 
of the data distribution for each monofloral honey. Figure 2 shows the PCA score plot (PC1 vs. PC2) 
obtained for chestnut honey samples (Figure 2a) and for acacia honey samples (Figure 2b). A discrete 
visual clustering of the objects on the basis of their geographical origin was observed for chestnut 
honeys (PC1 and PC2 explained 88.6% and 10.2% of the total variance, respectively), while overlapping 
regions were observed for acacia honeys with a modest clustering for their geographical origin (with 
88.4% and 9.7% of the total variance explained by PC1 and PC2, respectively). Additionally, by 
analyzing the score plots of the remaining PCs no visual clusterization was observed. 

 

Figure 1. Representative DART-HRMS positive ion spectra acquired for the sample extracts of chestnut
honeys from Italy (a), chestnut honeys from Portugal (b), acacia honeys from Italy (c) and acacia honeys
from China (d). NL: Normalization level.

At first, a preliminary PCA was performed on pre-processed spectra of chestnut and acacia
honey samples in order to explore the presence of outlier samples. PCA score plots highlighted that,
in the case of chestnut samples, seven PCs described 96.3% of total variance for samples from Italy
while nine PCs described 93.0% of total variance for samples from Portugal. In the case of acacia honey
samples, PCA models showed that eight PCs described 93.7% of total variance for samples from Italy
while nine PCs described 91.0% of total variance for samples from China. The absence of outliers in all
classes was demonstrated using influence plots where the Mahalanobis distance was plotted versus
sample residual.

Subsequently, an explorative PCA was performed using the entire data set to obtain an overview
of the data distribution for each monofloral honey. Figure 2 shows the PCA score plot (PC1 vs.
PC2) obtained for chestnut honey samples (Figure 2a) and for acacia honey samples (Figure 2b). A
discrete visual clustering of the objects on the basis of their geographical origin was observed for
chestnut honeys (PC1 and PC2 explained 88.6% and 10.2% of the total variance, respectively), while
overlapping regions were observed for acacia honeys with a modest clustering for their geographical
origin (with 88.4% and 9.7% of the total variance explained by PC1 and PC2, respectively). Additionally,
by analyzing the score plots of the remaining PCs no visual clusterization was observed. 
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Figure 2. PC1 vs. PC2 scatter plots for monofloral chestnut (a) and acacia (b) honey samples. Geographical
origins: Italy (black filled circle), Portugal (grey filled triangle), China (grey filled rhombus).

These results were confirmed by analyzing the Fisher weight (FW) values of the principal
components, which measure the between-class variance/within-class variance ratio. Indeed, FW values
resulted to be 2.64 for the PC1 of chestnut honeys samples and lower than 1 for all the remaining PCs of
both data sets (data not shown). These results indicated that the PCA was not able to discriminate honey
samples on the basis of their geographical origin; therefore, it was necessary to treat data with three
different supervised discriminant techniques—i.e., PCA-LDA, PLS-DA and k-NN. These classification
techniques were tested on both chestnut and acacia honey samples previously split into two subsets: a
modeling set and a test set. Overall, results are indicated in Tables 1 and 2, for chestnut and acacia
honeys, respectively.

Table 1. Model performances in terms of recognition, cross validation (CV) prediction abilities
and external prediction to classify chestnut honeys based on their geographical origin.

Model Performance (%)

Recognition Ability (Modelling) Prediction Ability (CV c 10) External Prediction

ITA a POR b Mean ITA POR Mean ITA POR Mean

PCA/LDA d

(7 Principal Components)
100.0

(30/30)
96.7

(29/30) 98.4 100.0
(30/30)

96.7
(29/30) 98.4 88.9

(8/9)
91.7

(44/48) 90.3

PLS-DA e

(10 Latent Variables)
100.0

(30/30)
96.7

(29/30) 98.4 100.0
(30/30)

93.3
(28/30) 96.7 88.9

(8/9)
89.6

(43/48) 89.2

k-NN f

(k value of 3)
96.7

(29/30)
100.0

(30/30) 98.4 96.7
(29/30)

100.0
(30/30) 98.4 88.9

(8/9)
93.8

(45/48) 91.4

a: Italy; b: Portugal; c: Cross Validation; d: Principal Components—Linear Discriminant Analysis; e: Partial Least
Squares—Discriminant Analysis; f: k-nearest neighbors.

As for LDA, PCA was used as strategy for variable reduction and to avoid model overfitting.
The number of PCs (seven and nine for chestnut and acacia honeys, respectively) to be used to build
the PCA-LDA models was selected on the basis of the error in prediction cross validation that has to be
the lowest (CV procedure with V = 10). The PCA-LDA models provided mean value of recognition
ability of 98.4% for chestnut honeys (Table 1) in both classification and CV prediction and 95.0 and 93.4%
for acacia honeys (Table 2) in classification and CV prediction, respectively. The model applicability
was also tested by using the test set providing mean prediction abilities of 90.3 and 89.2%, for chestnut
and acacia honeys, respectively (Tables 1 and 2).
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Table 2. Model performances in terms of recognition, cross validation (CV) prediction abilities
and external prediction for all models built to classify acacia honeys based on their geographical origin.

Model Performance (%)

Recognition Ability (Modelling) Prediction Ability (CV c 10) External Prediction

ITA a CHI b Mean ITA CHI Mean ITA CHI Mean

PCA/LDA d

(9 Principal Components)
96.7

(29/30)
93.3

(28/30) 95.0 96.7
(29/30)

90.0
(27/30) 93.4 89.6

(43/48)
88.9
(8/9) 89.2

PLS-DA e

(12 Latent Variables)
100.0

(30/30)
93.3

(28/30) 96.7 96.7
(29/30)

93.3
(28/30) 95.0 93.8

(45/48)
77.8
(7/9) 85.8

k-NN f

(k value of 3)
100.0

(30/30)
90.0

(27/30) 95.0 93.3
(28/30)

90.0
(27/30) 91.7 91.7

(44/48)
88.9
(8/9) 90.3

a: Italy; b: Portugal; c: Cross Validation; d: Principal Components—Linear Discriminant Analysis; e: Partial Least
Squares—Discriminant Analysis; f: k-nearest neighbors.

PLS-DA was applied as an alternative multivariate statistical approach of classification offering
the advantage to avoid variables reduction processes. Specifically, by applying a 10-fold cross-validation,
10 and 12 latent variables (LVs) were found to produce the optimal model complexity for chestnut
and acacia honey data sets, respectively. In these conditions, mean recognition rates were higher than
96.7% in both cases (Tables 1 and 2). Specifically, all Italian samples was correctly classified, while one
Portuguese and two Chinese samples were not correctly assigned. The mean CV prediction rates were
96.7 and 95.0%, for chestnut and acacia honeys, respectively. In addition, mean prediction abilities of
89.2% and 85.8% for chestnut and acacia honeys samples, respectively, were obtained for the external
validation procedure (Tables 1 and 2).

In the case of k-NN, the prediction error rate in cross-validation (V = 10) was calculated for
each different k value. The smallest k value determining the lowest error was 3 for both data sets
and therefore it was selected as the optimal value. The k-NN models provided mean recognition
abilities in the range between 95.0–98.4%, while CV predictions were of 98.4 and 91.7%, for chestnut
and acacia honeys samples, respectively. Finally, mean prediction abilities of 91.4% and 90.3% were
obtained in the external validation for chestnut and acacia honeys, respectively.

The results herein obtained were in accordance with a similar study focused on the geographical
authentication of Italian honey based on an NMR-metabolomic approach [5]. The authors developed a
PLS2-DA model able to correctly discriminate 100% of Italian honeys from Eastern European ones.
In another study, MIR analysis in combination with a PCA-LDA model were found able to distinguish
geographical origins of monofloral honeys from Switzerland, Germany, and France, with prediction
abilities ranged from 76 to 100% [17] although only a limited number of samples was used for
the analysis.

In the current study, the DART-HRMS untargeted approach coupled with three supervised
techniques, such as PCA-LDA, PLS-DA and k-NN, were investigated for discriminating Italian chestnut
and acacia honey from Portuguese and Chinese samples. The results showed that all developed models
provided acceptable and comparable prediction abilities, highlighting the robustness of the entire
method, its applicability being unaffected by the statistical approach used to assess the authenticity
of unknown samples. Moreover, these results demonstrated that DART-HRMS technique provides
informative experimental data useful to build up appropriate models for the discrimination of
monofloral honey samples on the basis of their geographical origin.

4. Conclusions

In this study, a rapid, easy-to-perform and low-cost method based on DART-HRMS analysis
combined to multivariate statistical analysis was successfully developed and applied to classify
monofloral honeys for their geographical origins, such as Italy and Portugal for chestnut samples
and Italy and China for acacia samples. Specifically, three supervised approaches—i.e., PCA-LDA,
PLS-DA and k-NN were evaluated. All tested models provided high and comparable recognition
and prediction abilities in cross-validation and external validation, with mean values ranging from

86



Foods 2020, 9, 1205

89.2% and 98.4%. The performances of the proposed DART-HRMS method makes it an effective tool to
assess the authenticity of honeys, for both industries of sector against unfair advantages of competitors
and control bodies to fight food frauds. Future efforts will be directed to improve the current predictive
models in order to discriminate honey samples from different production seasons and identify potential
markers useful for developing a DART-HRMS target method aimed at honey authentication. Moreover,
the use of the DART-HRMS approach, generating huge information in a single run, would be a
useful tool for discriminating honey samples with similar organoleptic characteristics but different
quality levels.
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Abstract: In the last decade, there has been an increasing demand for wild-captured fish, which
attains higher prices compared to farmed species, thus being prone to mislabeling practices. In this
work, fatty acid composition coupled to advanced chemometrics was used to discriminate wild from
farmed salmon. The lipids extracted from salmon muscles of different production methods and
origins (26 wild from Canada, 25 farmed from Canada, 24 farmed from Chile and 25 farmed from
Norway) were analyzed by gas chromatography with flame ionization detector (GC-FID). All the
tested chemometric approaches, namely principal components analysis (PCA), t-distributed stochastic
neighbor embedding (t-SNE) and seven machine learning classifiers, namely k-nearest neighbors
(kNN), decision tree, support vector machine (SVM), random forest, artificial neural networks (ANN),
naïve Bayes and AdaBoost, allowed for differentiation between farmed and wild salmons using
the 17 features obtained from chemical analysis. PCA did not allow clear distinguishing between
salmon geographical origin since farmed samples from Canada and Chile overlapped. Nevertheless,
using the 17 features in the models, six out of the seven tested machine learning classifiers allowed a
classification accuracy of ≥99%, with ANN, naïve Bayes, random forest, SVM and kNN presenting
100% accuracy on the test dataset. The classification models were also assayed using only the best
features selected by a reduction algorithm and the best input features mapped by t-SNE. The classifier
kNN provided the best discrimination results because it correctly classified all samples according
to production method and origin, ultimately using only the three most important features (16:0,
18:2n6c and 20:3n3 + 20:4n6). In general, the classifiers presented good generalization with the herein
proposed approach being simple and presenting the advantage of requiring only common equipment
existing in most labs.

Keywords: authenticity; fish; Salmo salar L.; fatty acids; mislabeling; chemometrics; machine learning
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1. Introduction

In recent decades, the consumption of fish has been increasingly recommended due to its health
benefits, mainly related to the prevention of cardiovascular diseases [1]. In particular, fatty fishes
from cold waters, such as salmon, are frequently rich in polyunsaturated fatty acids (PUFA), including
the essential fatty acids linoleic (18:2n6) and α-linolenic (18:3n3), but also in several omega-3 PUFA
such as eicosapentaenoic (EPA, C20:5n3) and docosahexaenoic (DHA, 22:6n3) acids. Besides being
components of cell membranes, omega-3 PUFA are involved in the biosynthesis of eicosanoids and
have been shown to influence health by affecting cell signaling cascades and gene expression, resulting
in decreased expression of inflammatory and atherogenesis-related pathways [2,3]. Moreover, different
studies showed that omega-3 PUFA play an important role in altering blood lipid profiles and associate
their consumption with improved cardiovascular function and decreased risk of atherosclerosis and
peripheral arterial disease [2,3].

In addition to these benefits, fish is largely consumed for its nutritional value and sensory aspects,
making it one of the most traded food commodities. In this sense and considering that the world’s wild
fish stocks are limited, the production of farmed fish has been steadily increasing in recent last years. In
fact, according to the Food and Agriculture Organization (FAO) Globefish Highlights, world fisheries
capture was 92.5 million tonnes in 2017 with this figure expected to decrease to 91.3 million tonnes in
2019, by the contrary, fish capture arising from aquaculture is expected to grow from 80.1 to 86.5 million
tonnes in the same period [4]. Concerning salmon, from 2000 to 2014, a much stronger increase was
verified for aquaculture production (from 898,800 to 2,326,300 tonnes) compared to that of the world’s
capture of wild salmon (from 728,000 to 879,000 tonnes) [5]. Aquaculture allows wider consumer
access to fish generally at more affordable costs, though it is known that fatty acid composition can
significantly vary according to its production method (wild vs. aquaculture). Particularly for salmon, it
has been reported that wild salmon generally present higher contents of valuable omega-3 PUFA [6–8].
This aspect, together with particular organoleptic characteristics, has driven several consumers to
prefer wild salmon. Considering the limited availability of this type of salmon and its growing
demand, prices have been increasing significantly, resulting in this product being prone to adulteration
by origin mislabelling or even substitution with other lower-cost fish [9–11]. Whereas fish species
authentication can be performed using well established and straightforward DNA-based methods [12],
different approaches have been proposed so far to assess the origin of fish with respect to production
method. These include, mainly, the use of nuclear magnetic resonance (NMR) [13,14], isotope ratio
analysis [15,16], lipidic profile [17,18] or a combination of these [11,19–21]. Excellent discrimination
(100%) between wild and farmed Atlantic salmon was reported by Aursand et al. [13] by applying
support vector machines (SVM) to data obtained by 13C NMR. In another study of the same group, the
lipid extract was analyzed by 13C NMR and by gas chromatography with flame ionization detector
GC-FID for fatty acid composition to discriminate between wild and farmed Atlantic salmon and
assign the origin of the aquaculture samples to the farms included in the study [19]. The application
of chemometrics to the reference farmed fish showed very good results for both approaches, but,
surprisingly, slightly better for GC-FID data. The use of stable isotope analysis based on isotope ratio
mass spectrometry (IRMS) is also a promising approach, especially when combined with chemical
composition analysis, notably fatty acids [11,15,21]. Yet, previous works have demonstrated that lipidic
profile is sufficient to establish the production method of salmon samples, particularly when combined
with chemometric analysis [8,19,20]. Recently, Fiorino et al. [8] analyzed the lipid extracts obtained
from a total of 100 samples of farmed and wild salmon by direct analysis in real time (DART) coupled to
high resolution mass spectrometry (HRMS). The proposed methodology showed to be fast and allowed
a good discrimination between the two groups (wild vs. farmed), though without differentiating
the geographical origin of the farmed fish. Moreover, the referred approach requires advanced and
expensive equipment, which is not available in most control quality/analytical laboratories. In the
present study, the fatty acid composition of the same samples of wild and farmed salmon used in
the work of Fiorino et al. [8] was analyzed by GC-FID, an affordable equipment commonly available

92



Foods 2020, 9, 1622

in most laboratories. Subsequently, the obtained data were submitted to advanced chemometric
analysis to establish the most suitable classifier able to discriminate the origin of salmon samples
(wild vs. farmed, and the geographical origin among farmed samples) with the minimum possible
computational effort.

2. Materials and Methods

2.1. Samples

In this study, a total of 100 authentic salmon samples obtained in the framework of the EU-funded
project FOODINTEGRITY (Working Package 18) were analyzed. The samples included 26 wild salmon
captured in Canada, and 74 farmed salmon samples from aquaculture farms in Canada (25), Norway
(25) and Chile (24). No information was available about the gender of each specimen, neither of the diet
or farming conditions used. The samples (entire fish) were transported frozen to the laboratory (Meriex
Nutriscience, Chicago, IL, USA), allowed to defrost overnight at refrigerated temperature, and filleted
in a cold room (4 ◦C). After removing the bones and skin, the muscles were grinded and distributed in
labelled glass jars containing approximately 200 g each. The jars were immediately frozen and then
shipped under freezing conditions (−20 ◦C) to the participating laboratories in different countries.
After arriving, the samples were kept at −20 ◦C and submitted to lipid extraction as soon as possible.

2.2. Lipid Extraction

Lipids were extracted based on the Bligh and Dyer protocol [22] with some modifications. Briefly,
about 13 g of each minced fillet were added with 13 mL of NaCl (1%) and 100 µL of butylated
hydroxytoluene (BHT) (0.01% in n-hexane) to avoid oxidation, and homogenized for 1 min using an
Ultra-Turrax at 13,500 rpm, keeping a low temperature by immersing the tube with the sample on
ice. After that, 2.5 mL of the homogenate was transferred to a new tube and added with 2.5 mL of
chloroform and 5 mL of methanol, both refrigerated. The solution was mixed vigorously by vortexing
for 2 min. After centrifuging (4000 rpm, 15 min at 4 ◦C) the upper layer was discarded, and an
additional 2.5 mL of refrigerated chloroform was added. After vortexing for 30 s and centrifuging
under the same conditions, the chloroformic phase was transferred into a new tube and centrifuged
(4000 rpm, 5 min at 4 ◦C). Finally, the chloroformic phase was collected into a previously weighted vial,
flushed with a nitrogen stream and stored at −20 ◦C until further analysis. Each sample was submitted
to independent extractions (n = 3).

2.3. Fatty Acids Analysis by GC-FID

Fatty acids were methylated using acid-catalysed trans-methylation with BF3 [23]. Firstly, the
lipidic chloroformic extracts, previously stored at −20 ◦C, were dried under nitrogen and the tubes
weighted to calculate the extraction yield. After dissolving the obtained lipids in 1 mL of n-hexane, for
each sample, the volume containing 12.5 mg of lipids was transferred for a glass tube and dried under
nitrogen. After adding 100 µL of BHT (0.01% in n-hexane) to prevent oxidation phenomena, fatty
acid methyl esters were prepared. For that purpose, 1.25 mL of KOH (0.5 M) in methanol were added
and the mixture was heated for 10 min at 100 ◦C after vortex-mixing vigorously. After cooling down
the tubes, 1.0 mL of 14% boron-trifluoride in methanol (≥99.0% purity) (Sigma-Aldrich, Steinheim,
Germany) was added to the solution, which was homogenized by vortexing, and the tubes heated
again for 30 min at 100 ◦C. After completely cooling down the tubes in ice, 2.0 mL of n-hexane high
performance liquid chromatography HPLC grade (Merck, Darmstadt, Germany) was added and the
solution was vortex-mixed. Then, 1.0 mL of a saturated NaCl solution was added, followed by vigorous
mixing and then by centrifuging for 5 min at 3000 rpm to obtain a clear upper phase. After that, 1.5 mL
of supernatant was transferred to a new vial, added with anhydrous Na2SO4 and approximately 1.0 mL
of FAME solution was transferred to an injection vial.
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GC-FID analysis was carried out in a Shimadzu GC-2010 Plus gas chromatograph equipped with a
Shimadzu AOC-20i auto-injector and a flame ionization detector (Shimadzu, Japan). FAME separation
was achieved on a CP-Sil 88 silica capillary column (50× 0.25 mm i.d., 0.20 µm, Varian, Middelburg, The
Netherlands). The injector and detector temperatures were 250 ◦C and 270 ◦C, respectively. The oven
parameters were set as follows: an initial temperature of 150 ◦C was increased at 3 ◦C/min to 160 ◦C
and held for 2.0 min, then it was increased at 3 ◦C/min to 220 ◦C and held for 10 min. Helium was
used as the carrier gas at a flow rate of 1 mL/min, and 1 µL of sample was injected using a split ratio
of 1:50. Identification of compounds was performed by comparison of their retention times with
those of authentic standards mixtures, namely 37 component FAME mix (certified reference material
CRM47885) and PUFA nº.1 Marine source (standard 47,033) both from Supelco (Bellefonte, PA, USA).
In addition, the fatty acid cis-11-octadecenoate (C18:1n7) was identified with and individual standard
also purchased from Supelco. The results were expressed as the relative percentage of each fatty acid,
calculated based on the chromatographic peak area. Each lipid extract was injected in duplicate.

2.4. Chemometric Analysis

2.4.1. Dataset

The data used for chemometrics resulted from the chemical analyzes, totalizing 596 instances
(4 chromatograms were excluded due to injection/chromatographic system problems) that were
organized into four reasonably well balanced groups, each corresponding to a class of salmon:
Norway Farmed (25 salmons), Chile Farmed (24 salmons), Canada Farmed (25 salmons), Canada Wild
(26 salmons). Each salmon sample was represented by a block of 6 chromatograms. The number of
independent features considered was 17, corresponding to the identified fatty acids.

2.4.2. Statistical Analysis by One-Way ANOVA

The differences between groups were analysed using a one-way analysis of variance (ANOVA)
followed by Tukey’s honest significant difference post hoc test with p = 0.05. The analysis was carried
out using the SPSS v. 23.0 program (SPSS v. 23.0; IBM Corp., Armonk, NY, USA).

2.4.3. Data Modelling Tools

The data modelling tools used in this work are based on the Orange 3.24 software, which, in turn,
uses libraries from the Scikit-learn, Numpy and Scipy written in Python. The graphical user interface
uses the cross-platform Qt framework.

Data Visualization by PCA and t-SNE

As a first approach, the possibility of separating the data by classical and linear statistical methods
was evaluated. For that purpose, principal component analysis (PCA) was used to check the possibility
of obtaining a separation by linear composition in a subspace of principal components based on the
PCA projections. When the PCA shows data superposition among groups, it means that the possibility
of separating groups in the original dimension space cannot be performed, since the mapping from
the original dimension space to the principal component space is always linear [24]. A manner to
overcome this issue involves using the t-distributed stochastic neighbor embedding (t-SNE) method,
which is able to replicate non-linear mappings in the original data space to the lower dimension [25].
Thus, a non-linear approach by t-SNE was used to observe separations in higher dimensions when
they are projected in a two-dimensional space.

Machine Learning Classifiers

Several well-known classification models were evaluated, namely k-nearest neighbors (kNN),
decision tree, support vector machine (SVM), random forest, artificial neural networks, naïve Bayes
and AdaBoost, whose main characteristics are described as follows:
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• kNN is a method that can be used for data classification. A sample is classified by the rating vote
of its neighbors present in the dataset; the result is attributed to the most common class among
the k closest neighbors. If k = 1, the object is simply assigned to the class of the only nearest
neighbour [26].

• Decision tree is one of the predictive modeling approaches used in machine learning. It uses a
tree schema as a predictive model to move from the analysis of a sample to conclude the class
that corresponds to the sample. The decision trees are built inductively from a dataset that is
analyzed by measures, such as the information entropy. During the process, the dataset is divided,
successively, in order to reduce the uncertainty in the classification. That division is represented
by each feature (tree node) [27].

• Support-vector machines (SVM) are models of supervised learning. Given a set of training
examples, each is marked as belonging to one or the other of two categories. The resulting model,
after training, is a representation of the examples as points in space, mapped so that the widest
possible spatial margin separates the examples of the two categories. The new examples are
expected to belong to a category based on the margin side where they are located. That side is
formed from the center of the separating margin. This process leads to the fact that SVM can
generalize as best as possible, avoiding overfitting. In addition to performing linear mapping,
SVM can efficiently perform non-linear mapping using what is called a kernel trick, implicitly
mapping their inputs into high-dimensional spaces, allowing separations to happen in the high
dimensional space [28].

• Random forests are a learning method that can be used for classification. They are built based on
decision trees, but in this case, there is a participation of several trees that are trained with segments
of the dataset and with segments of the feature set randomly selected [29]. This stochastic factor
improves the generalization of the model and reduces the overfitting.

• Artificial neural networks (ANN) is a model based on a collection of connected units or nodes
called “artificial neurons”, which mimic neurons in a biological brain. Each connection can
transmit signals from one artificial neuron to another; the magnitude of the signal is modulated
by a parameter adjusted during the learning phase. Each neuron behaves like a separating
hyperplane in the classification space. The association of neurons, by layers, allows obtaining
conjugations of complex hyperplanes that lead to non-linear classification models. The adjustment
of the parameters is made by algorithms that use the gradient descent of the error. The error
is defined by the difference between the value emitted by the neural network and the desired
value [30].

• Naïve Bayes, in machine learning, are probabilistic classifiers, based on the application of Bayes’
theorem with evidence on the assumptions of independence between features [31]. Naïve Bayes
classifiers are easy to implement using Gaussian curves and the inverse Bayes formula.

• AdaBoost (short for adaptive boosting) is based on the idea that a set of weak classifiers can
result in a strong classifier. Weak classifiers are combined linearly, but modulated by coefficients
that are obtained during the training. The choice of weak classifiers is made focusing on the
examples that are classified with more difficulty. In this iterative process, the weak classifiers have
coefficients that correspond to the classifier error on the dataset. The weak classifiers that make
the least mistakes have their coefficients increased. The strong classifier aggregates all those weak
classifiers according to their importance coefficients [32].

All these models are mappers with non-linear capabilities, each having different methods of
statistical induction of knowledge. Thus, some may perform better for certain classification problems
than others. For this reason, in this study we used a test bench formed by several models.

All these classifiers were developed/trained, in a first phase, using the 17 features present in the
dataset and the obtained classification results used for the assessment of each model.
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Reduction in Features

Aiming at decreasing the cost of analyses and complexity of data, accelerating the whole process,
it is frequently important to reduce the number of features in chemometric analysis. On the other
hand, the reduction in the number of features can enhance the generalization capability of the classifier.
Therefore, after having the models parameterized using all the features, strategies were developed to
explore the reduction in features. The selection of the best features was made using a ranking process
that is based on the measurement of information entropy. In this case, the well-known information gain
ratio criterion was applied [27]. This criterion measures the uncertainty in how the data are separated
based on a specific feature; the value of the information gain ratio is calculated for each feature,
representing its separation power in the dataset. The sorting of features, according to these values,
establishes their ranking. This criterion is normalized regarding the number of data partitions that the
usage of a given feature causes. This mechanism makes it possible to obtain a numerical criterion,
independent from the classifying bias (overfitting), prompted by numerous potential partitions of
information groups. Thus, in the next step, the minimum number of the best features, in that ranking,
was determined, ensuring that the classification model still classifies the data accurately.

Aiming to evaluate model overfitting, assertiveness and generalization assessments of the
classification models were made using both external and full-cross validation. For external validation,
the test dataset was obtained by splitting the data into 20:80. For the cross-validation scheme a
mechanism of leave-one-sample-out (each sample corresponding to a block of 6 chromatograms) was
used. Moreover, that scheme allowed us to parameterize the models by observing the validation
performance given by the average of all six-chromatogram groups. The used performance indicators
were the accuracy (CA) and F1. F1 is a more revealing measure of the practical performance that
a classification model presents, being more sensitive to poorly classified instances. Moreover, an
assertiveness analysis was made by using confusion matrices.

During the process of feature reduction, the performance of the classifiers was tested using a
successive bisection approach. Starting from a set of classification models that normally provide
high assertiveness rates and using all the features sorted by the information gain ratio, the following
method (Algorithm 1) was developed and applied. This algorithm allows for the optimization of the
search for the minimum number of features to classify the samples, with an arbitrary minimum of 99%
of accuracy.

Algorithm 1 Searching the optimal number of features

Given a set of features F of n elements with gain ratio values F0, F1, F2, . . . , Fn−1 sorted such that F0 > F1 > F2
. . . > Fn−1, and the accuracym being the correctness classifying the dataset using the first m features.
The following algorithm is based on the binary search to find the index m in F that corresponds to the
minimum index to classify the dataset properly.

1. Set L to 0 and R to n − 1
2. Set m = R, mold = m
3. If accuracym < 99%, stop, the classifier must use the all features
4. Set m (the middle position) to the floor of L+R

2
5. If accuracym > 99%, set R to m
6. If accuracym < 99%, set L to m
7. If abs(m − mold) > 0, mold = m, goto 4
8. Stop, the classifier must use the first m + 1 features

The algorithm is repeated independently for each of the classifiers under analysis. The minimum
number of features is selected to further actions when the accuracy is ≥ 99% for at least one model. For
each machine learning classifier, a trial-and-error approach was used to find the best parametrization,
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with classifiers being tuned at two stages. At the first stage, Algorithm 1 was applied to all the models
using the maximum number of features (seventeen). This tuning aims at obtaining a good classification,
concerning the dataset, for each classifier. The adjustment was done manually, in a trial-and-error
fashion, changing the hyperparameters associated to each model. In this phase, to get a good functional
response (selection) from Algorithm 1, it is not necessary to have a perfect tuning of the classifiers.

After this, the minimum number of features required to produce good classifications (accuracy of
99%) on a classifier are known. Thus, at the second stage, eventually, one could make new adjustments
to the classifier models to improve functional performance subjected to the new subset of features
selected after applying Algorithm 1. The details of the final parameters used for the best models are
shown in Table 1. Figure 1 schematically describes the chemometric approaches and main process
pipeline used in this work.

Table 1. Details of the parametrization used to tune each of the final classification models.

Classifier Parameters

kNN Number of neighbors: 3; Metric: Euclidean; Weight: Distance.

Decision tree Limit the tree depth: 100; Do not split subsets smaller than: 2; Min. number of
instances in leaves 3.

SVM C: 15; Kernel: Radial Basis Function (RBF); g: auto.

Random forests Number of trees: 15; Do not split subsets smaller than: 5.

ANN Neurons in hidden layers: 300; activation: Rectified Linear Unit (Relu); solver:
Adam; regularization: 0.02.

Naive Bayes Non-applicable

AdaBoost Number of estimators: 80; learning rate: 0,7; classification algorithm: SAMME.R;
Regression loss function: Square.

kNN: k-nearest neighbors; SVM: support vector machine; ANN: artificial neural networks.
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3. Results and Discussion

3.1. Fatty Acids Composition

Figure 2 shows representative chromatograms of fatty acid analysis obtained from wild and
farmed salmon samples and Table 2 presents their relative contents for the four salmon groups under
evaluation, namely, wild from Canada and farmed from Canada, Chile and Norway.
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Figure 2. Chromatograms of fatty acid profiles obtained by GC-FID analysis of wild (A) and farmed
(B) salmon samples from Canada.

Table 2. Fatty acid composition (relative% of the identified FAME) obtained by GC-FID analysis of
lipids from the wild and farmed salmon samples of different origins. Results are given as mean ± SD of
the total specimens analyzed for each group.

Fatty Acid Wild Farmed

Canada (n = 26) Canada (n = 25) Chile (n = 24) Norway (n = 25)

14:0 3.86 ± 0.40 c 1.99 ± 0.47 a 1.98 ± 0.10 a 2.14 ± 0.06 b

16:0 15.75 ± 1.70 d 11.64 ± 0.83 b 12.22 ± 0.78 c 9.13 ± 0.24 a

16:1 3.73 ± 0.58 c 3.48 ± 0.80 b 2.78 ± 0.25 a 2.67 ± 0.07 a

18:0 3.61 ± 0.65 b 3.54 ± 0.22 b 3.78 ± 0.31 c 2.60 ± 0.10 a

18:1n9c 12.89 ± 2.89 a 42.15 ± 4.42 b 41.98 ± 1.58 b 43.89 ± 0.29 c

18:1n7 2.19 ± 0.28 a 3.82 ± 0.33 b 4.05 ± 0.41 c 3.81 ± 0.28 b

18:2n6c 1.76 ± 0.15 a 14.35 ± 1.52 b 16.36 ± 0.72 c 16.31 ± 0.21 c

18:3n3 6.72 ± 1.52 c 5.02 ± 0.57 b 4.47 ± 0.40 a 7.79 ± 0.27 d

20:1n9 3.57 ± 0.94 c 2.09 ± 0.65 a 2.36 ± 0.22 b 2.17 ± 0.24 a

18:4n3 2.51 ± 0.51 c 0.58 ± 0.14 a 0.61 ± 0.09 a,b 0.69 ± 0.08 b

20:2n6 0.48 ± 0.10 a 0.87 ± 0.09 b 1.04 ± 0.06 c 0.90 ± 0.06 b

22:1n11 + 22:1n9 9.30 ± 2.90 b 1.10 ± 1.11 a 0.64 ± 0.27 a 0.67 ± 0.05 a

20:3n3 + 20:4n6 1.83 ± 0.33 d 0.79 ± 0.11 c 0.60 ± 0.05 a 0.66 ± 0.02 b

20:5n3 9.12 ± 0.97 c 2.74 ± 0.42 b 2.54 ± 0.23 a 2.69 ± 0.15 ab

24:1n9 1.06 ± 0.17 c 0.24 ± 0.05 b 0.21 ± 0.02 a 0.26 ± 0.02 b

22:5n3 2.75 ± 0.30 d 1.37 ± 0.34 c 1.28 ± 0.13 b 1.17 ± 0.05 a

22:6n3 18.83 ± 2.82 d 4.23 ± 0.62 c 3.12 ± 1.11 b 2.45 ± 0.13 a

Σ SFA 23.25 ± 1.93 d 17.18 ± 1.42 b 17.98 ± 1.13 c 13.6 ± 1.98 a

Σ MUFA 32.73 ± 3.22 a 52.89 ± 1.76 c 52.02 ± 1.63 b 52.41 ± 7.55 c

Σ PUFA 43.95 ± 2.77 c 29.93 ± 0.62 a 30.00 ± 1.62 a 31.99 ± 4.62 b

n3/n6 16.75 ± 1.61 b 0.90 ± 0.24 a 0.66 ± 0.04 a 0.82 ± 0.02 a

SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids. Different letters
indicate significant differences (p < 0.05) between groups in the statistical analysis by one-way analysis of variance
(ANOVA).
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Striking differences can be observed between wild and farmed salmons, namely in terms of the
sum of MUFA and PUFA, ratio between omega-3 and omega-6 fatty acids, and also regarding several
individual fatty acids. For the same amount of derivatized lipids, and when compared to wild, farmed
salmon presented a significantly higher (p < 0.05) content of oleic and linoleic acids and lower contents
of EPA, DHA and C22:1 isomers. In general, the obtained results are in good agreement with previous
knowledge since farmed salmons are frequently described as having higher amounts of C18:1, C18:2
and C18:3 fatty acids, while wild are richer in long chain omega-3 PUFA as well as saturated fatty
acids (SFA) [6,7]. Nevertheless, in the present study, similar contents of α-linolenic acid (C18:3n3) were
found between the wild and farmed groups and only a slightly higher amount was verified in terms of
SFA. The obtained data confirm that the consumption of wild salmon can be associated with greater
health benefits due to their favorable ratio omega-3/omega-6 fatty acids. As discussed in previous
papers, the differences observed are most probably related with differences in the diets of fish from the
wild and in aquaculture conditions [6,17,21].

Compared to the results previously reported for the analysis of the same samples (as part of
the EU-funded project FOODINTEGRITY) using a different technique, namely DART-MS, some
quantitative differences can be pointed out. Namely, the content reported by Fiorino et al. [8] for 16:0
was higher in both farmed and wild groups, while the present GC-FID results show higher contents for
18:3, 18:1 (mainly for the farmed group) and 22:6 (mainly for the wild group). These dissimilarities can
be due to the different techniques used, one based on mass spectrometry and normalized abundances,
and the other relying on flame ionization detection and relative peak areas.

3.2. Chemometric Analysis of the Generated Data

3.2.1. Features Selection

The importance of each feature regarding the group separation was evaluated by applying the
information gain ratio criterion, as described in the materials and methods section. Table 3 presents
the ranking of features obtained based on that measurement. Subsequently, the developed algorithm
(Algorithm 1) was used to determine the minimum number of features required for classifying the
four groups accurately. That number was found to be six, corresponding to the following features:
16:0, 18:2n6c, 20:3n3 + 20:4n6, 14:0, 18:1n9 and 22:6n3.

Table 3. Features sorted by applying the information gain ratio criterion.

Fatty Acid Gain Ratio

16:0 0.719
18:2n6c 0.709

20:3n3 + 20:4n6 0.675
14:0 0.615

18:1n9c 0.562
22:6n3 0.548
20:2n6 0.523

22:1n11 + 22:1n9 0.506
24:1n9 0.505
22:5n3 0.464
18:1n7 0.461
18:4n3 0.446
20:5n3 0.423

16:1 0.402
18:3n3 0.378
20:1n9 0.366

18:0 0.353

99



Foods 2020, 9, 1622

3.2.2. Data Visualization by PCA and t-SNE

As a first approach, PCA was applied to the dataset as a linear and unsupervised statistical
method. This method is one of the most widespread exploratory data analysis tools, providing a
fast data overview by projecting each data point onto a small number of principal components, thus
reducing data dimensionality, while maintaining their variation as much as possible [24]. Moreover,
this approach was used previously regarding the analysis of the same salmon samples by a distinct
methodology, namely DART-MS analysis [8]. Figure 3A presents the data distribution on two principal
components when all the 17 data features are used. As it can be observed, PC1 and PC2 accounted for
87.8% of the total variance and showed a clear separation between the wild samples and the farmed
ones, similarly to the results reported by Fiorino et al. [8]. Although it was not possible to clearly
distinguish the farmed samples according to their geographical origin, mainly due to overlapping of
samples from farmed Canada and Chile groups, a better separation was achieved when compared to
the results of Fiorino et al. [8] using DART-MS analyses. Interestingly, in their work, five out of the
six fatty acids, exhibiting the most relevant differences between wild and farmed salmons, were in
common with the ones selected by Algorithm 1. Linolenic acid (C18:3) was an exception because in the
present work it ranked as the 15th position with a low information gain ratio value, thus not being
relevant to distinguish the four groups using the GC-FID fatty acid profiles. Subsequently, PCA was
also applied to the whole dataset, but using only the selected best six features (Figure 3B), evidencing
results similar to the ones obtained with all the 17 features.
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Figure 3. Scatterplot obtained for the first two principal components after applying PCA to the whole
dataset using (A): all the 17 features, (B): the 6 best features (16:0, 18:2n6c, 20:3n3 + 20:4n6, 14:0, 18:1n9
and 22:6n3); 0—Norway farmed, 1—Chile farmed, 2—Canada farmed, 3—Canada wild.

The interpretation of Figure 3A,B allows drawing two conclusions: (1) most of the data are
strongly explained by the first principal component regardless of the number of used features, namely
all the 17 or only the best six, which confirms that most of the features are not important for the correct
classification; (2) some samples of Chile farmed and Canada farmed groups are not linearly separable
with data projected on a 2D subspace, thus suggesting the need for non-linear classification models.
Therefore, t-SNE was applied to the dataset, first using all the 17 features, and then only the selected
best six (Figure 4A,B). This method allows the projection of the original dimension on two dimensions
without losing the non-linear relations presented at the high dimensional space. Thus, it is a suitable
tool to perceive the separability of groups at the original dimension. As shown in Figure 4, there is
no data superposition and, in general, the groups are well separated according to this method. This
information suggests a good data separability when the classification models can handle non-linearities
in a high dimension space.
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Figure 4. Scatterplot obtained after applying t-SNE to the whole dataset using (A): all the 17 features
(B): only the 6 best features (16:0, 18:2n6c, 20:3n3 + 20:4n6, 14:0, 18:1n9 and 22:6n3); 0—Norway, Figure 1.
Chile farmed, 2—Canada farmed, 3—Canada wild.

A good separability among groups was also observed when the number of employed input features
was only six (Figure 4B). This suggests that, in the high dimension original space, the separability is
achieved based on only a few features. Normally, this is an advantage for subsequently used classifiers
because it promotes generalization and tends to avoid overfitting, thus strongly suggesting that new
samples will be properly classified based on such classifiers.

3.2.3. Machine Learning Classifiers

In this work, a total of seven different classifiers were tested considering performance (classification
accuracy) and required computational effort (evaluated as test time). Similarly, as was done for PCA and
t-SNE, each classifier was first assayed using all the 17 features as inputs to the classifiers. The obtained
performance is shown in Table 4, evidencing that ANN, random forest, SVM, naïve Bayes and kNN
were the best models as they showed a maximum performance, allowing classifying, without error,
for all of the test dataset. Nevertheless, they are closely followed by the remaining classifiers, with
decision tree being the one that performed worst. In terms of performance time (test time), among the
classifiers that allowed 100% accuracy (CA), naïve Bayes was the best one. This can be explained by
two factors: first, one must consider that in this case the number of features exceeds the needs, thus,
according to Occam’s razor principle, the simpler model can achieve a good performance; second, as
the model is very simple to implement, the number of required computational calculation steps is
small, thus corresponding to a shorter time of performance.

Table 4. Classifiers performance, in the test dataset, using all the 17 input features.

Model Test Time (s) CA F1

ANN 0.011 1.000 1.000
Naïve Bayes 0.008 1.000 1.000

kNN 0.012 1.000 1.000
SVM 0.013 1.000 1.000

Random Forest 0.011 1.000 1.000
AdaBoost 0.0064 0.991 0.991

Decision Tree 0.001 0.908 0.908

CA: accuracy; F1 score: harmonic mean of the precision and recall.

Next, the performance of classifiers was assayed with only the six best features as their inputs.
As can be observed in Table 5, in this case, the ANN, SVM and kNN classifiers allowed 100% correct
classification, as measured by accuracy and F1 indicators. It is possible that the elements that were
not correctly classified by the remaining models do not have statistical significance to change the
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parameters present on the learning mechanism to the rest of classifiers. Among the best classifiers the
one that presented the best computational performance was the SVM.

Table 5. Classifier performance, in the test dataset, using the selected best 6 input features.

Model Test Time (s) CA F1

ANN 0.010 1.000 1.000
SVM 0.006 1.000 1.000
kNN 0.009 1.000 1.000

Random Forest 0.011 0.992 0.992
Naïve Bayes 0.003 0.992 0.992

AdaBoost 0.004 0.983 0.983
Decision Tree 0.001 0.983 0.983

Overall, the remaining classifiers were very close to the performance of ANN, SVM and kNN,
despite the reduced number of features used. For this reason, it was decided to further observe the
classification performance when the features are remapped by the t-SNE method as inputs for the
classifiers, keeping the same parametrization for all models, as in the previous scheme. By applying
Algorithm 1 and extending the processing pipeline with the t-SNE block, namely by placing that
block between the features used and the classifiers, it was possible to conclude that the classification
can still be performed successfully by relying on only three features, namely 16:0, 18:2n6c and the
sum of 20:3n3 + 20:4n6. The obtained results are presented in Table 6, evidencing 100% accuracy of
sample classification using the kNN, with only three compounds being required in this model. In this
scenario, the decision tree classifier showed the worst performance, being the only one presenting an
accuracy < 95%.

Table 6. Classifiers performance, in the test dataset, using the selected best 3 input features mapped
by t-SNE.

Model Test Time [s] CA F1

kNN 0.094 1.000 1.000
SVM 0.016 0.992 0.992

Random Forest 0.021 0.992 0.992
ANN 0.112 0.983 0.983

AdaBoost 0.020 0.967 0.967
Naïve Bayes 0.018 0.967 0.967
Decision Tree 0.001 0.925 0.925

Figure 5 shows the confusion matrices, evidencing sample classification, for the best (kNN) and
worst (decision tree) models, using only the three best features, as processed by t-SNE. While the
confusion matrix for the kNN model presents all samples as being correctly classified, the confusion
matrix for the decision tree evidences some errors because six samples from group zero (Norway
farmed) were misclassified as being from group one (Chile farmed). This shows that the inductive
learning mechanism present in the decision tree was not able to classify those samples correctly, as
probably happens with the remaining classifiers, except for kNN that is not based on inductive learning.
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4. Conclusions

In general, the four evaluated groups of salmon (wild from Canada and farmed from Canada,
Chile and Norway) showed different fatty acid profiles, with wild specimens presenting significantly
higher contents of health beneficial omega-3 fatty acids, in particular DHA and EPA, while farmed
salmon presented significantly higher (p < 0.05) amounts of oleic and linoleic acids. Among the three
groups of farmed salmon with different geographical origins, specimens from Chile and Canada were
more similar, with the ones from Norway being more distinct mainly due to their lower levels of
SFA and higher levels of α-linolenic acid. The differences among farmed groups are most probably
related to different types of feed used in each farm. However, information about relevant factors such
as farming diet and conditions, which are known to affect the lipidic composition of fish, was not
available. In this work, we demonstrated the possibility of discriminating between wild and farmed
salmons, as well as differentiating the origin within farmed ones, based on the use of machine learning
models applied to fatty acid composition obtained by GC-FID. Thus, compared to a previous approach
reported for the same samples, namely the use of PCA applied to normalized intensities of the most
abundant signals generated by DART-HRMS analysis of the lipid extracts, this method showed a
higher discrimination power. Moreover, this method proved to be simple and it only requires the use
of affordable equipment, commonly found in most laboratories. Nevertheless, this approach has the
disadvantage of requiring a longer analysis time compared to DART-HRMS. The developed algorithm
combined with the information gain ratio criterion allowed us to establish the number of optimal
features, so the classification tasks can still attain a very good performance. The feature reduction offers
a computational speedup during the classification process. Among the seven tested machine learning
models, the best results were obtained with the k-nearest neighbors (kNN) classifier, allowing for the
correct classification of all tested samples. Moreover, it was shown that using t-SNE in the processing
pipeline boosts the reduction in features, while still maintaining 100% accuracy in data classification.
The performance difference between the test dataset and the leave-one-sample-out cross-validation
was residual, meaning a good generalization figure.
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Abstract: Cephalopods are very relevant food resources. The common cuttlefish (Sepia officinalis) is
highly appreciated by consumers and there is a lack of rapid methods for its authentication in food
products. We introduce a new minor groove binding (MGB) TaqMan real-time PCR (Polymerase Chain
Reaction) method for the authentication of S. officinalis in food products to amplify a 122 base pairs
(bp) fragment of the mitochondrial COI (Cytochrome Oxidase I) region. Reference and commercial
samples of S. officinalis showed a threshold cycle (Ct) mean of 14.40, while the rest of the species
examined did not amplify, or showed a significantly different Ct (p < 0.001). The calculated efficiency
of the system was 101%, and the minimum DNA quantity detected was 10−4 ng. No cross-reactivity
was detected with any other species, thus, the designed method differentiates S. officinalis from other
species of the genus Sepia and other cephalopod species and works for fresh, frozen, grilled, cooked
and canned samples of Sepia spp. The method has proved to be reliable and rapid, and it may prove
to be a useful tool for the control of fraud in cuttlefish products.

Keywords: Sepia; common cuttlefish; Sepia officinalis; real-time PCR (Polymerase Chain Reaction);
species identification; food authentication; COI (Cytochrome Oxidase I)

1. Introduction

Cephalopods are a very diverse group of mollusks and include 28 families and more than
600 species, many of which are commercially important. As a sign of their relevance, captures of
cephalopods in 2017 reached 3,772,565 t, with an estimated value of almost 8000 million dollars [1].

The common cuttlefish (S. officinalis) is highly appreciated by consumers around the world, and it
is traded with different presentations particularly in Japan, the Republic of Korea, Italy and Spain.
In the last decade, the world catches attributed to this species have registered numbers between 20,000
and 30,000 tons every year [2]. It is the species of cuttlefish with the highest commercial value.

European regulations regarding the labeling of fishery products [3,4] establish that these products
must show the information about the species, with the commercial and/or scientific name depending
on the type of product. Illicit substitution of one species for another may constitute economic fraud
and/or misbranding violations. Furthermore, species substitution may cause potential food safety
hazards to be overlooked by processors or end-users [5]. Species substitution is relatively frequent
in seafood products [6], and particularly in products containing cephalopods, where several cases of
species substitution have been reported [7,8].

Species belonging to the genus Sepia can look very similar to a non-trained consumer, especially
when they are processed for the market (e.g., peeled, canned), making the visual differentiation almost
impossible and increasing the possibilities of fraud. Thus, the reported cases of mislabeling in products
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containing Sepia spp. have usually been substitutions between species belonging to the same genus [9,10].
These cases can be attributed to economic fraud (e.g., substitutions between species with different
commercial value) or unintentional substitutions, which can be due to similar geographic distribution
of species (e.g., S. officinalis/S. orbignyanya/S. elegans) and/or similar morphological characteristics
(e.g., juveniles of S. officinalis/S. elegans) which can lead to misidentification at any level of the value
chain (fisheries, processors and consumers). In order to control these substitutions, a variety of genetic
methods have been published for the identification of several cephalopod species. The majority of these
are labor-intensive and time-consuming, such as forensically informative nucleotide sequencing (FINS),
barcoding [10–14] and RFLP [8,15]. Some rapid DNA-based methods have also been published for
the authentication of some cephalopod species [7,16–18], but to date, there is not any rapid technique
available for the genetic identification of S. officinalis.

This work presents a rapid and reliable method for the authentication of S. officinalis in different
food matrices, including processed products. Therefore, it can be a useful tool for control authorities at
different levels of the value chain.

2. Materials and Methods

2.1. Sampling and DNA Extraction

In this work, 14 samples of S. officinalis from different locations of Spanish and Portuguese waters
were used as a reference. Also, 29 individuals from 20 other cephalopod species of 11 genera from the
Instituto de Investigaciones Marinas (IIM-CSIC) own tissue collection were included for the specificity
assay (Table 1). All reference individuals had a known origin and were identified visually prior to
the FINS identification. Additionally, 16 commercial samples were collected from supermarkets and
restaurants in Galicia region (Spain) for the application to commercial products (Table 2). All tissue
samples were stored at −20 ◦C until analysis.

Table 1. Reference samples used in this study and threshold cycle (Ct) results.

Sample Code Species Common Name (FAO) Geographic Origin Ct Mean ± SD

SOFF2 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Vigo 12.98 ± 0.32
SOFF3 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Cambados 14.05 ± 0.26
SOFF4 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Cambados 14.80 ± 0.04
SOFF5 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Cambados 16.16 ± 0.35
SOFF6 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Vigo 13.57 ± 0.70
SOFF7 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Vigo 15.37 ± 0.10
SOFF8 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Vigo 13.51 ± 0.07
SOFF9 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27) 14.11 ± 0.20

SOFF10 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27) 15.65 ± 0.21
SOFF11 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27) 13.86 ± 0.48
SOFF12 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27) 13.25 ± 0.39
SOFF15 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Algarve 12.72 ± 0.06
SOFF16 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Algarve 12.59 ± 0.19
SOFF17 Sepia officinalis Common cuttlefish Atlantic, Northeast (FAO 27.9) Algarve 13.98 ± 0.12
SBER 2 Sepia betheloti African cuttlefish Atlantic, Eastern Central (FAO 34) ≥40
SBER 3 Sepia betheloti African cuttlefish Atlantic, Eastern Central (FAO 34) ≥40
SORB 4 Sepia orbygniana Pink cuttlefish Atlantic, Northeast (FAO 27) ≥40
SORB 5 Sepia orbygniana Pink cuttlefish Atlantic, Northeast (FAO 27) ≥40
SPHA 1 Sepia pharaonis Pharaon cuttlefish Indian Ocean, Western (FAO 51) ≥40
LVUL 2 Loligo vulgaris European squid Western Central Atlantic (FAO 31) 27.00 ± 0.16
LVUL 1 Loligo vulgaris European squid Atlantic, Northeast (FAO 27) 26.03 ± 0.28
LVUL 5 Loligo vulgaris European squid Atlantic, Northeast (FAO 27) 29.15 ± 0.14
LVUL 3 Loligo vulgaris European squid Western Central Atlantic (FAO 31) ≥40
LVUL 4 Loligo vulgaris European squid Western Central Atlantic (FAO 31) ≥40
LVUL 6 Loligo vulgaris European squid Western Central Atlantic (FAO 31) ≥40
LVUL 7 Loligo vulgaris European squid Western Central Atlantic (FAO 31) ≥40
LVUL 8 Loligo vulgaris European squid Western Central Atlantic (FAO 31) 29.80 ± 0.40
LREY 1 Loligo reynaudi Cape Hope squid Atlantic, Southeast (FAO 47) ≥40
IILL 2 Illex illecebrosus Northern Shortfin squid Atlantic, Northwest (FAO 21) ≥40

TEBL 1 Todaropsis eblanae Lesser flying squid Atlantic, Northeast (FAO 27) ≥40
TPAC 3 Todarodes pacificus Japanese flying squid Pacific, Northwest (FAO 61) ≥40
ICOI 10 Illex coindetii Southern shortfin squid Atlantic, Northeast (FAO 27) ≥40
LGAH 9 Loligo gahi Patagonian squid Pacific, Southeast (FAO 87) ≥40
MHYA 8 Martialia hyadesi Sevenstar flying squid Atlantic, Antarctic (FAO 48) ≥40
NSLO6 Nototodarus sloanii Wellington flying squid Pacific, Southwest (FAO 81) ≥40
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Table 1. Cont.

Sample Code Species Common Name (FAO) Geographic Origin Ct Mean ± SD

TSAG 1 Todarodes sagittatus European flying squid Atlantic, Northeast (FAO 27) ≥40
OVUL 142 Octopus vulgaris Common octopus Atlantic, Northeast (FAO 27) ≥40

OCYA 3 Octopus cyanea Big blue octopus Pacific, Western Central (FAO 71) ≥40
OCYA 4 Octopus cyanea Big blue octopus Pacific, Western Central (FAO 71) ≥40
OMIM 1 Octopus mimus Changos octopus Pacific, Southeast (FAO 87) ≥40
ECIR 143 Eledone cirrhosa Horned octopus Atlantic, Northeast (FAO 27) ≥40
DGIG 1 Dosidicus gigas Jumbo squid Pacific, Southeast (FAO 87) ≥40

AMEM 1 Amphioctopus membranaceus Webfoot octopus Indian Ocean, Western (FAO 51) ≥40

FAO: Food and Agriculture Organization. SD: Standard Deviation.

Table 2. Commercial samples used for validation. The mislabeled samples are highlighted in red.

Sample
Code

Type of
Processing

Type of
Establishment Species Declared Species Identified by

FINS Ct Mean ± SD

S1 Frozen Supermarket Sepia spp. Sepia pharaonis 29.77 ± 0.62
S2 Frozen Supermarket Sepia spp. Sepia pharaonis 27.68 ± 0.06
S3 Frozen Supermarket Sepia spp. Sepia sp (not S. officinalis) ≥40
S4 Frozen Supermarket “Sepia” Sepia sp (not S. officinalis) 31.85 ± 0.26
S5 Canned Supermarket “Sepia” Sepia officinalis 16.91 ± 0.47
S6 Frozen Supermarket Sepia spp. Sepia sp (not S. officinalis) ≥40
S7 Cooked Supermarket Sepia officinalis Sepia officinalis 17.88 ± 0.94
S8 Canned Supermarket “Sepia” Sepia officinalis 15.41 ± 0.03
S10 Grilled Restaurant “Choco” Sepia officinalis 13.70 ± 0.06
S11 Frozen Supermarket Sepia aculeata Sepia sp (not S. officinalis) ≥40
S12 Frozen Supermarket Sepiella spp. Sepiella inermis ≥40
S13 Frozen Supermarket Sepia pharaonis Sepia aculeata ≥40
S14 Thawed Supermarket Sepia officinalis Sepia officinalis 14.03 ± 0.28
S15 Grilled Restaurant “Sepia” Sepia bertheloti 26.08 ± 0.11
S16 Thawed Supermarket Sepia officinalis Sepia officinalis 13.43 ± 0.06
S17 Canned Supermarket “Sepia” Sepia pharaonis 23.62 ± 0.23

FINS: Forensically Informative Nucleotide Sequencing.

A portion of 0.3 g of muscle tissue from each sample was digested at 56 ◦C in a thermo shaker with
860 µL of lysis buffer (1% Sodium Dodecyl Sulfate (SDS), 150 mM NaCl, 2 mM Ethylenediaminetetraacetic
acid (EDTA) and 10 mM Tris-HCl at pH 8), 100 µL of guanidinium thiocyanate 5 M and 40 µL of
proteinase K (20 mg/mL). After 3 h, 40 µL of extra proteinase K was added and left overnight. DNA
was isolated with the Wizard DNA Clean-up System kit (Promega, Madison, WI, USA) following
the manufacturer’s protocol. Double-stranded DNA obtained was quantified with Qubit dsDNA BR
Assay Kit (Life Technologies, Carlsbad, CA, USA) and Qubit 3.0 fluorometer (Invitrogen, Carlsbad,
CA, USA). Purified DNA was stored at −20 ◦C until further analysis.

2.2. FINS Identification of Samples

Reference and commercial samples were authenticated by FINS (forensically informative
nucleotide sequencing) in order to test the reliability of the method developed. PCR reactions
were carried out in a Verity 96 wells Thermal cycler (Applied Biosystems, Foster City, CA, USA) with
Illustra PuReTaq Ready-To-Go PCR Beads (GE Healthcare, Chicago, IL, USA), 1 µL of each primer
(10 µM) and 100 ng of template DNA in a final volume of 25 µL. Primers designed by Folmer [19]
LCO1490-5′GGTCAACAAATCATAAAGATATTGG3′ and HCO2198-5′TAAACTTCAGGGTGACCAA
AAAATCA3′ were used to amplify a 750 base pairs (bp) fragment of the mitochondrial COI region,
with the following thermal protocol: a preheating step of 3 min at 95 ◦C, followed by 35 cycles of
1 min at 95 ◦C, 1 min at 40 ◦C and 1.5 min at 72 ◦C, with a final extension step at 72 ◦C for 7 min.
When amplification of COI fragment failed, the 16SVAR primers described by Chapela [11] 16SVAR-F-
5′CAAATTACGCTGTTATCCCTATGG3′ and 16SVAR-R- 5′GACGAGAAGACCCTAATGAGCTTT3′
were used to amplify a 210 bp fragment of the mitochondrial 16S rDNA, with the thermal protocol as
follows: a preheating step of 3 min at 95 ◦C, followed by 35 cycles of 40 s at 94 ◦C, 40 s at 50 ◦C and 40 s
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at 72 ◦C, with a final extension step at 72 ◦C for 7 min. Negative and positive controls were included in
all PCR sets.

Primers designed in this study for the minor groove binding (MGB)-TaqMan assay were also
used for FINS identification in 3 cases of processed commercial samples of Sepia spp. (cooked and
canned), where both COI and 16S sets of primers failed to amplify, with the following thermal protocol:
a preheating step of 3 min at 95 ◦C, followed by 35 cycles of 40 s at 95 ◦C, 40 s at 40 ◦C and 40 s at 72 ◦C
with a final extension step at 72 ◦C for 7 min. PCR amplicons were visualized on a 2% agarose gel,
using UV transillumination (BioRad, Hercules, CA, USA).

PCR products were purified with Illustra ExoProStar (GE Healthcare, Chicago, IL, USA) and
sequencing reactions were performed with BigDye Terminator 1.1 (Applied Biosystems, Foster City, CA,
USA), following the manufacturer’s instructions. The automatic sequencing was carried out in an ABI
PRISM 3130 (Applied Biosystems, Foster City, CA, USA). After automatic sequencing, F and R files were
edited with Chromas and aligned with Bioedit [20] to obtain the complete sequence of the fragment.
Bioedit software was also used to align the resulting sequence with reference ones from the NCBI and
the IIM-CSIC sequence database, which consists of more than 2000 sequences from fish and mollusks
specimens that have been collected during 30 years; most of these specimens were morphologically
identified and also genetically authenticated. This alignment was imported with MEGA [21] for
phylogenetic analysis. The phylogenetic model used for constructing the neighbor-joining tree was
Tamura–Nei, with 1000 bootstrap replicates. The results were also authenticated with BLAST [22].
The multiple alignments and the BLAST tool were also used to check the quality and coverage of the
resulting sequences.

The COI sequences obtained for reference and commercial samples of this study were uploaded
to Genbank [23] (accession numbers: MN977128 to MN977135, MN977138, MN977143, MN977144,
MN977146, MN977147, MN977149, MN977152, MN977154 to MN977156, MN977158, MN977159,
MN977161 to MN977171, MN977173 to MN977177, MN977179 to MN977191).

2.3. RT-PCR Design

In order to find a suitable fragment to design a short and specific system, a large number of
nuclear and mitochondrial cephalopod sequences from public and IIM-CSIC databases were aligned
and analyzed. A fragment of the COI region was suitable for the design of an MGB-Taq-Man Primers
and Probe set, complying with the requirements of showing low intraspecific variability and high
interspecific variability and allowing the amplification of a short fragment (122 bp, primers included).
The sequences of primers (F and R) and Probe (P) are the following (see Figure 1):

SOFI_F: 5′CTTCTCCTTACATTTAGCWGGRGTCT3′
SOFI_R: FAM-5′TACCGAYCAAGCAAATAAAGGTAGG3′-MGB
SOFI_P: 5′AGCGATTAACTTCATCA3′

2.4. Real-Time PCR Conditions and Data Treatment

Concentrations of 50, 300 and 900 nM of each primer and 25, 50, 75, 100, 125, 150, 175, 200 and
225 nM of the probe were tested in order to select the optimal reaction conditions. The combination
that gave the lowest threshold cycle (Ct) value and the highest final fluorescence was selected for the
subsequent assays. The selected concentrations were 300 nM of SOFI_F primer, 900 nM of SOFI_R
primer and 150 nM of SOFI_P probe.

Thus, each 20µL reaction contained 10µL of TaqMan Fast Universal Master Mix (2X), No AmpErase
UNG (Applied Biosystems, Foster City, CA, USA), 1 µL of Primer SOFI_F (6 µM), 1 µL of Primer
SOFI_R (18 µM), 1 µL of Probe SOFI_P (3 µM) and 100 ng of template DNA. Reactions were amplified
in a 7500 fast real-time PCR System (Applied Biosystems, Foster City, CA, USA), with the fast ramp
speed protocol: 95 ◦C for 20 s, followed by 40 cycles of 95 ◦C for 3 s and 60 ◦C for 30 s. Samples were
analyzed in triplicate, and Ct mean and standard deviation of each individual were registered.
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3. Results

3.1. Efficiency and Detection Limit

Different quantities of template DNA of S. officinalis, from 10−5 ng to 100 ng were used for the
efficiency assay. Over this range of dilutions, the response was linear with a slope of −3.13, an R2 of
0.999 and an efficiency of 101%, following the equation: E = 10−1/b − 1 [24]. The acceptable efficiency
values range from 90% to 110%, therefore, 101% can be considered ideally optimal. The minimum
quantity of DNA detected was 10−4 ng. The automatic threshold generated in this assay was 0.02,
the value used in the subsequent analyses.

3.2. Inclusivity and Specificity

A total of 14 samples of S. officinalis from different locations and dates of capture were tested
(Table 1), obtaining Ct data between 12.59 and 16.16, with a Ct mean of 14.04 (Figure 2A).Foods 2020, 9, x FOR PEER REVIEW 7 of 10 
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In the other 19 species tested (Table 1), none of them presented any fluorescence signal with the
exception of one specimen of Loligo vulgaris, which showed a late amplification signal (Figure 3B).
In view of these results, another specificity assay was carried out with seven additional individuals of
L. vulgaris, obtaining a Ct mean of 34.0, a result that is significantly different from the Ct of S. officinalis
when a mean comparison test (one way ANOVA) was run (p < 0.001).
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Figure 3. (A) Inclusivity test: amplification pattern of reference samples of Sepia officinalis. (B) Specificity
test: amplification pattern of reference samples of Sepia officinalis and the rest of the species tested.

3.3. Application to Commercial Products

According to the Spanish regulations for the labeling of fresh, frozen and refrigerated fishery
products, the commercial name “Sepia”, “Choco” or “Jibia” is only accepted for products containing
S. officinalis, while the commercial name “Sepias” can be used for all species of the genus Sepia [25].
In the same way, the commercial name “Jibia” or “Sepia” can be only applied to canned products
containing the species S. officinalis [26]. Therefore, the system was also tested with 16 commercial
samples labeled as “Sepia”, “Choco” or “Sepias”, from supermarkets and restaurants of Galicia (Spain),
with different degrees of processing such as thawed, frozen, grilled, cooked and canned.

Following the above-mentioned criteria, the FINS identification results of this study revealed four
cases of mislabeling regarding species (Table 2), all being substitutions between different species of the
genus Sepia, constituting a mislabeling rate of 25%. The substitute species found were Sepia pharaonis,
Sepia aculeata, Sepia bertheloti and a non-identified species. In four cases, it was not possible to reach the
species level with the FINS identification, due to the lack of reference sequences in public databases,
but authors could determine that these samples did not belong to S. officinalis species by analyzing
the results of the neighbor-joining tree and the BLAST tool. The MGB TaqMan real-time PCR system
worked in fresh and processed samples of S. officinalis, and the method was able to differentiate between
products containing S. officinalis (Ct mean 15.23) and products containing other species of the Sepiidae
family (Ct mean 33.82), with statistical significance (p < 0.001). The type of processing did not affect
the Ct values, and a good differentiation was obtained both in fresh and frozen products as well as in
highly processed samples, such as canned.

The Ct results obtained for both reference and commercial samples containing S. officinalis ranged
from 12.59 to 17.88, with a Ct mean of 14.40, while the rest of species remained undetected or showed
late amplification, with Ct values of 23.62 and higher and a mean Ct of 33.40 and this Ct mean resulted
significantly different from the Ct of samples containing S. officinalis (p < 0.001).

4. Discussion

Results confirm TaqMan real-time PCR technique as a powerful tool for species authentication, due
to its characteristics of specificity, increased with Minor Groove Binding technology (MGB probes) [27],
and its sensitivity, allowing the detection of very low quantities of target DNA. Real-time PCR also
allows the detection and quantification of target DNA in one step, eliminating post-PCR steps and
saving labor time. The method described in this work includes these characteristics of specificity,
sensitivity and fastness, since the real-time PCR analysis takes around 40 min, which means that,
depending on the tissue digestion protocol, the complete analysis from the tissue sample can be carried
out in 3–4 h. This feature and the reduced equipment needed, opens the possibility of the optimization
of the method for analyses on-site at the different levels of the value chain, including the point of
sale. The cost of the analysis (less than 5 euros per sample) is also much lower than sequencing-based
methods, which makes it affordable for low-resources control units.
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S. officinalis is marketed under several types of processing, including those that eliminate the
characteristics for visual identification, such as peeling, cutting, cooking and canning. This makes
these products vulnerable to species substitution, intentional or not. Results also show that the design
of the primer set allows the amplification and authentication of the species even in samples where
processing may lead to DNA degradation and/or fragmentation, such as canning. The lack of rapid
methods for this task makes the control of this market laborious and costly, and this technique emerges
as the only available alternative at the moment.

The sampling at supermarkets has also revealed that Spanish legislation of the commercial names
in canned products needs to be updated since it has not been reviewed since 1986. Taking into account
the current legislation, canned products are not obliged to show the scientific name on the labels, i.e.,
commercial names such as “Sepia” can be found, which correspond to several species. The authors
consider that this system is no longer suitable for the current market, where the amount of cephalopod
species in the market has greatly increased while different species may achieve significant differences
in market price.

The Ct values obtained in this study for the target species are at the same level or lower than
other recent works using the TaqMan real-time PCR technique for species identification [28,29].
The significant differences found between the data corresponding to S. officinalis and the other species
prove that Ct values can be used to determine whether a sample contains S. officinalis or another
cephalopod species. Results also prove the high specificity of the system, which works for the
differentiation of S. officinalis from the other species of the genus Sepia with commercial importance,
demonstrating the utility of the method in food control, since the reported cases of mislabeling in the
family Sepiidae show substitutions between species belonging to the same genus, as shown in previous
publications [9,10] and confirmed in this study. Although the system has not been tested with all the
species of the genus Sepia, this study included those with relevance to the market. Nonetheless, further
analysis could be carried out to confirm the specificity of the method with other species of the genus
Sepia which might have some commercial relevance in certain countries. The level of mislabeling found
in this work (25%) is slightly lower than those found in the aforementioned articles, but still in the
range of significant mislabeling. However, the different sampling procedures do not allow an adequate
comparison, therefore, authors cannot affirm that there has been a decrease in the mislabeling rates.
Nevertheless, these results highlight the need for an effective tool for the control of this type of product.

5. Conclusions

As a conclusion, this work presents a rapid, non-expensive and reliable method, able to differentiate
S. officinalis from other species of the genus Sepia and other cephalopod species in food samples with
different levels of processing, making it useful for food control authorities in the whole food value chain.

This study also found a moderate level of mislabeling in Sepia products, which highlights the
need for more efficient control of the authenticity of this type of product.
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Abstract: Market transparency is in strong demand by consumers, and the authentication of species is
an important step for seafood traceability. In this study, a simple molecular strategy, COIBar–RFLP
(cytochrome oxidase I barcode–restriction fragment length polymorphism), is proposed to unveil
commercial fraud based on the practice of species substitution in the swordfish trade. In particular,
COI barcoding allowed the identification of the species Prionace glauca, Mustelus mustelus, and Oxynotus
centrina in slices labeled as Xiphias gladius. Furthermore, the enzymatic digestion of COI amplicons
using the MboI restriction endonuclease allowed the simultaneous discrimination of the four species.
Interestingly, an intraspecific differential MboI pattern was obtained for the swordfish samples. This
pattern was useful to differentiate the two different clades revealed in this species by phylogenetic
analyses using several molecular markers. These results indicate the need to strengthen regulations
and define molecular tools for combating the occurrence of fraud along the seafood supply chain and
show that COIBar–RFLP could become a standardized molecular tool to assess seafood authenticity.

Keywords: COIBar–RFLP (cytochrome oxidase I barcode–restriction fragment length polymorphism);
seafood; fraud; DNA barcoding; food authenticity

1. Introduction

Swordfish fishery is one of the most important fishing activities in the Mediterranean Sea, in
particular in South Italy. Quotas have been established to combat overfishing, and fisheries have
been closed over several months to protect juveniles. According to recent data from the International
Commission for the Conservation of Atlantic Tuna, Italy ranks the highest in terms of swordfish catches,
which amount to 45% of the total allowable in the period 2003–2016 [1]. The highest demand for fish
products in general, and swordfish in particular, occurs during summer, especially in restaurants [2]
but also in local markets. As a result of the high demand, the price of these large pelagic fishes is on
average higher than that of small fishes [3].

With the increase in demand and price, alimentary fraud potentially increases too. This can
include food mislabeling, substitution, counterfeiting, misbranding, dilution, and adulteration [4].
The mislabeling of seafood can be harmful for health, in terms of economic loss, as well as for the
loss of biodiversity it may cause in the case of illegal trade of threatened species. For these reasons,
European regulations have focused on traceability and, in particular, on the mandatory declaration of
the species present in a product on the product label [5–10].

Despite these adequate legislative tools, the number of cases of food fraud perpetrated in the fish
trade in Europe and worldwide is increasing. The results of recent investigations on this phenomenon
have shown that the percentage of mislabeling was around 30% of the total samples collected [11–15].
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To address this problem, researchers have increasingly asserted the importance of using molecular
tools based on DNA sequencing for detecting food fraud. The most common mitochondrial (mt) genes
used for this purpose have been cytochrome b, 16S rRNA, and cytochrome oxidase I (COI). Other
mtDNA targets, such as the mtDNA control region (CR) [16,17], which has been the most popular
molecular marker used for genetic population structure studies [18–24], have seen limited use in fish
and seafood species identification. In recent years, COI has been standardized as a barcode gene for
species identification in several animal taxa [25–33] including fishes [34–40]. More specifically, the
high number of COI-barcode fish sequences available in the large public gene sequence databases
(BOLD and GenBank) [41,42] have made this gene the most highly used gene to clearly identify fish
species and cases of mislabeling of seafood products [38,43–54]. However, in the context of seafood
traceability, the main goal for the implementation of these analyses is to reduce the time it takes from
sampling to obtaining gene sequencing results, as well as the costs of processing.

An already well-proven technique for the identification of species is polymerase chain reaction
(PCR)–restriction fragment length polymorphism (RFLP), by which the PCR product of an amplified gene
is cut with different restriction endonucleases to obtain a species-specific RFLP [55–57], useful for species
authentication. In this regard, the combination of DNA barcoding of COI and the consolidated method of
RFLP analysis (COIBar–RFLP, cytochrome oxidase I barcode–restriction fragment length polymorphism)
has been successfully used to discriminate several fish species belonging to the Engraulidae, Merluccidae,
Soleidae, and Acipenseridae families in processed seafood products [49,52–54,58]. It should be noted
that the time and cost of execution of the COIBar–RFLP are lower than those of DNA sequencing (about
7 h and 10 euros per sample vs 24 h and 17 euros per sample, respectively).

Focusing on swordfish adulteration problems, the most commonly used species for fraudulent
substitution are elasmobranches, including some species of shark. It should be noted that the market
of shark meat is very wide for both fresh and frozen foods also in Italy, and cases of mislabeling have
been frequently recorded for these products imported from all over the world [59–61].

Therefore, food fraud occurs due to an economic return when using shark meat. However,
the substitution of a more valuable fish, such as swordfish, with shark meat leads to an even more
serious fraud in economic terms. In the last decades, several studies have been carried out to detect the
rate of mislabeling of different seafood products, and in some cases, shortfin mako (Isurus oxyrinchus)
and blue shark (Prionace glauca) have been found to be sold as swordfish [36,37,62,63].

On the basis of the considerations above, the aim of this work is to extend the use of COIBar–RFLP
to investigate the identity of swordfish products in the south of Italy and to discriminate swordfish
(Xiphias gladius) from other fish species to detect fraudulent actions, such as species substitution, which
represent the most common fraud in seafood. First, we sequenced the conventional COI barcode in a
large number of samples collected in local fish markets and supermarkets, labeled as swordfish slices.
Subsequently, the COIBar–RFLP procedure was applied on reference samples of the COI-barcoded
species to obtain a species-specific restriction enzyme pattern. Finally, this pattern was used for
swordfish slice authentication.

2. Materials and Methods

2.1. Sampling

Fresh and frozen slices of swordfish were acquired in 2010 and 2018 from local fish markets and
supermarkets of south Italy for a total of 35 samples. Another 10 samples from the local harbor were
collected and identified on the basis of morphological traits [64,65] and used to construct a reference
COI-barcode library. The samples collected in 2010 had already been processed [37] and were used
in this study only for the application of COIBar–RFLP. The remaining samples, preserved at room
temperature in 1.5 mL labeled tubes filled with 95% ethanol, were processed for DNA barcoding and
COIBar–RFLP (Table 1). DNA samples were deposited as vouchers at the Department of Biological,
Geological, and Environmental Science, Section of Animal Biology, in Catania, Italy.
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2.2. DNA Barcoding

Genomic DNA was extracted from 25 mg of tissue using a commercial kit based on silica
purification (DNeasy tissue kit, Qiagen, Hilden, Germany) following the manufacturer’s guidelines.
All samples were analyzed by amplifying a portion of about 650 bases of the COI gene in a 20 µL
reaction mixture also containing the M13 tailed primers (VF2_t1 and FishR2_t1) described in Ivanova
et al. [66] to improve the sequencing quality of the PCR products and following the PCR conditions
reported by Pappalardo et al. [54]. All PCR products were checked by 0.8% agarose gel electrophoresis,
visualized with SYBR® Safe (Thermo Fisher, Waltham, MA USA), displayed through a Safe Imager
TM 2.0 Blue Light Transilluminator (Thermo Fisher, Waltham, MA USA), and then purified with the
QIAquick PCR purification kit (Qiagen, Hilden, Germany). Sanger sequencing, using M13 primers,
was subsequently conducted by Genechron in both forward and reverse directions to generate the
DNA barcodes [67].

The sequence chromatograms were checked visually and assembled. Multiple-sequence alignment
was carried out by the online version of MAFFT v.7 [68]. Ambiguous sequences were trimmed, and
primer sequences were cut. The sequences were carefully checked for the presence of nuclear
mitochondrial pseudogenes or NUMTs (nuclear mitochondrial DNA sequences), which could be easily
coamplified with orthologous mtDNA sequences [69]. The EMBOSS Transeq tool [70] was used to
translate the nucleotide sequences to amino acids to check for premature stop codons and to verify
that the open reading frames were maintained in the protein-coding locus. To confirm the identity of
the amplified sequences, we conducted BLAST (Basic Local Alignment Search) searches in GenBank
with default parameters [71]. All sequences obtained from the present study were published in the
National Center for Biotechnology Information database (NCBI), and their GenBank accession numbers
are reported in Table 1. After the BLAST search, six shark species sequences (HM909857, JF493927,
KF899461, KI709900, JF493694, JN641217) downloaded from GenBank were added to our dataset to
construct a phylogenetic tree. We used jModelTest v 2.1.10 [72] to select the best-fitting substitution
model for our sequences according to the corrected Akaike information criterion. A maximum
likelihood (ML) tree by using a GTR + I + G model was implemented in MEGA v 6.0 (Biodesign
Institute, Arizona, MA, USA) [73]. The evaluation of the statistical confidence of nodes was based on
1000 non-parametric bootstrap replicates [74].

2.3. COIBar–RFLP

The selection of the most suitable restriction enzymes to discriminate swordfish from other shark
species (Mustelus mustelus, L., 1758, Oxinotus centrina (L., 1758), P. glauca (L., 1758), Scyliorhinus canicula
L., 1758) was performed through “Remap” [75]. The in silico analysis was preliminarily carried out
using a total of 10 COI barcode sequences (of about 650 bases) of the examined species, downloaded
from public databases (GenBank and BOLD) [41,42]. Five different restriction enzymes were tested to
scan all validated sequences and to detect the expected size of the digested products: HpaII (C*CGG),
Hinf I (G*ANTC), MboI (*GATC), RsaI (GT*AC), and HindIII (A*AGCTT). Finally, a total of 49 COI
sequences were analyzed by Remap to test for evidence of intraspecific variation at the recognition
site of the restriction endonuclease suitable for simultaneous discrimination of the examined species
(Figure 1, Table 2).
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Figure 1. Flow chart of COIBar–RFLP (cytochrome oxidase I barcode–restriction fragment length 
polymorphism) or species discrimination. DNA barcoding steps: DNA isolation from swordfish slices 
and barcode region PCR amplification. In silico analysis steps: search for an appropriate restriction 
enzyme. RFLP steps: incubation of barcode amplicons with MboI to obtain the COIBar–RFLP pattern. 
ML, maximum likelihood; nBLAST, nucleotide Basic Local Alignment Search Tool.  

Table 2. In silico analysis of swordfish and shark COI sequences scanned by Remap and using MboI 
as restriction endonuclease. 

Species 
Sequence 
Number 

Genbank 
Accession Number 

Sequence Size 
(bases) 

Restriction Fragment Size 
(base pair) 

Xiphias gladius 10 

JN083387 682 ≈ 145 - 270 - 220 
JN083389 682 ≈ 145 - 270 - 220 
JN049558 682 ≈ 145 - 270 - 220 
JF952886 652 ≈ 145 - 265 - 220 

HQ024928 652 ≈ 145 - 265 - 220 
HQ024927 652 ≈ 145 - 265 - 220 
KR086931 652 ≈ 145 - 265 - 220 
GU324195 652 ≈ 145 - 265 - 220 
DQ107625 655 ≈ 145 - 265 - 200 
DQ107623 655 ≈ 145 - 265 - 220 

Mustelus mustelus 10 

JN641215 676 ≈ 80 - 390 - 171 
JN641214 679 ≈ 80 - 390 - 169 
JN641213 672 ≈ 80 - 390 - 167 
JN641212 666 ≈ 80 - 390 - 156 
JN641211 681 ≈ 80 - 390 - 170 
KJ768265 652 ≈ 80 - 390 - 142 
KJ768266 652 ≈ 80 - 390 - 142 
JN641208 656 ≈ 75 - 390 - 156 
JN641209 669 ≈ 80 - 390 - 160 
JN641210 664 ≈ 80 - 390 - 160 

Oxynotus centrina 9 

KT307360 648 ≈ 510 - 95 
KT307361 620 ≈ 480 - 95 
KT307362 648 ≈ 510 - 95 
KT307363 648 ≈ 510 - 95 
KT307364 648 ≈ 510 - 95 
JF834320 672 ≈ 505 - 100 

KY176547 642 ≈ 495 - 105 

Figure 1. Flow chart of COIBar–RFLP (cytochrome oxidase I barcode–restriction fragment length
polymorphism) or species discrimination. DNA barcoding steps: DNA isolation from swordfish slices
and barcode region PCR amplification. In silico analysis steps: search for an appropriate restriction
enzyme. RFLP steps: incubation of barcode amplicons with MboI to obtain the COIBar–RFLP pattern.
ML, maximum likelihood; nBLAST, nucleotide Basic Local Alignment Search Tool.

Table 2. In silico analysis of swordfish and shark COI sequences scanned by Remap and using MboI as
restriction endonuclease.

Species Sequence
Number

Genbank Accession
Number

Sequence Size
(bases)

Restriction Fragment
Size (base pair)

Xiphias gladius 10

JN083387 682 ≈ 145 - 270 - 220
JN083389 682 ≈ 145 - 270 - 220
JN049558 682 ≈ 145 - 270 - 220
JF952886 652 ≈ 145 - 265 - 220

HQ024928 652 ≈ 145 - 265 - 220
HQ024927 652 ≈ 145 - 265 - 220
KR086931 652 ≈ 145 - 265 - 220
GU324195 652 ≈ 145 - 265 - 220
DQ107625 655 ≈ 145 - 265 - 200
DQ107623 655 ≈ 145 - 265 - 220

Mustelus mustelus 10

JN641215 676 ≈ 80 - 390 - 171
JN641214 679 ≈ 80 - 390 - 169
JN641213 672 ≈ 80 - 390 - 167
JN641212 666 ≈ 80 - 390 - 156
JN641211 681 ≈ 80 - 390 - 170
KJ768265 652 ≈ 80 - 390 - 142
KJ768266 652 ≈ 80 - 390 - 142
JN641208 656 ≈ 75 - 390 - 156
JN641209 669 ≈ 80 - 390 - 160
JN641210 664 ≈ 80 - 390 - 160
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Table 2. Cont.

Species Sequence
Number

Genbank Accession
Number

Sequence Size
(bases)

Restriction Fragment
Size (base pair)

Oxynotus centrina 9

KT307360 648 ≈ 510 - 95
KT307361 620 ≈ 480 - 95
KT307362 648 ≈ 510 - 95
KT307363 648 ≈ 510 - 95
KT307364 648 ≈ 510 - 95
JF834320 672 ≈ 505 - 100

KY176547 642 ≈ 495 - 105
GU805137 637 ≈ 500 - 95
GU805138 648 ≈ 510 - 95

Prionace glauca 10

JN312505 652 ≈ 85 - 405 - 70
JN312504 652 ≈ 85 - 405 - 70
JN312503 652 ≈ 85 - 405 - 70
KP193446 652 ≈ 85 - 405 - 70
KP193455 652 ≈ 85 - 405 - 70
KP193350 652 ≈ 85 - 405 - 70
KP193339 652 ≈ 85 - 405 - 70
KP193159 652 ≈ 85 - 405 - 70
KC015834 652 ≈ 85 - 405 - 70
KC015833 652 ≈ 85 - 405 - 70

Scyliorhinus canicula 10

JN641243 675 ≈ 85 - 400 - 100
JN641242 676 ≈ 85 - 400 - 100
JN641241 652 ≈ 70 - 400 - 100
JN641240 680 ≈ 85 - 400 - 100
JN641239 675 ≈ 85 - 400 - 100
JN641238 671 ≈ 85 - 400 - 100
JN641237 680 ≈ 85 - 400 - 100
JN641236 674 ≈ 85 - 400 - 100
JN641234 672 ≈ 85 - 400 - 100
JN641233 680 ≈ 85 - 400 - 100

Afterwards, the COI-barcode PCR products obtained from X. gladius and shark samples were
digested with the selected restriction enzymes. For each endonuclease, a 15 µL reaction volume
containing 13µL of unpurified PCR product, 1µL of digestion buffer (1X), and 1µL of each endonuclease
(10 U each) was prepared. The reaction mixtures were incubated at an optimum temperature of 37 ◦C
for 1 h. The digested amplicons were then separated on a 3% agarose gel using Trackit TM 100 bp DNA
ladder (Invitrogen) as a size standard. The restriction pattern obtained from the validated samples was
exploited to unequivocally identify the unknown commercial slices.

3. Results

3.1. DNA Barcoding

The length range of the obtained COI sequences was between 669 bases and 681 bases. Each of
them was a functional mitochondrial sequence without stop codons. NUMTs generally smaller than
600 bases were not sequenced [71]. Five species were identified in all examined samples: X. gladius
(Xiphiidae), P. glauca (Charcarinidae), M. mustelus (Triakidae), S. canicula (Scyliorinidae), and O. centrina
(Oxynotidae). The sequences obtained from morphologically validated species were compared with
the sequences retrieved from GenBank through a BLAST search. The identity percentage between the
COI query sequences and their top-match sequences ranged from 98.07% to 100% (Table 1). The ML
tree (Figure 2) showed the relationship between the sequences of several unidentified samples and
the reference barcode sequences. High bootstrap values (>60%) supported the nodes connecting the
sequences of the same species in the tree. The samples of X. gladius clustered into two main clades
(named clade I and II), as already found by Pappalardo et al. [36,37]. Only one case of mislabeling
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(1 out of 15) was found in the samples examined in 2010 (6.7%), while 15% (3 out of 20) of mislabeling
was found in the samples collected during 2018 (Table 1). Swordfish was substituted with P. glauca
(2 products), M. mustelus (1 product), and O. centrina (1 product).Foods 2019, 8, 537 9 of 15 

 

 

Figure 2.  Maximum likelihood (ML) tree showing the relationships of unknown samples sequences 
(X and Y) to validated reference barcode sequences. The numbers above the nodes represent bootstrap 
analyses after 1000 replicates. Bootstrap values greater than 60% are shown. The red square indicates 
swordfish mislabeled samples. Scale bar refers to a distance of 0.05 nucleotide substitutions per site. 

3.2. COIBar–RFLP 

The preliminary in silico analysis using “Remap” showed that the MboI enzyme produced a 
species-specific pattern useful to discriminate simultaneously all examined species. No intraspecific 
variation of the MboI recognition sites was detected for any species tested by “Remap”, with the 
exception of the X. gladius digestion pattern (Table 2). Figure 3 highlights both the size of the 
undigested COI amplicon, of about 750 bp, and the MboI differential restriction pattern obtained for 
each species: one fragment of 510 bp was obtained for O. centrina; two fragments of 110 and 400 bp 
and of 150 and 400 bp were obtained, respectively, for P. glauca and S. canicula; finally, three 

Figure 2. Maximum likelihood (ML) tree showing the relationships of unknown samples sequences
(X and Y) to validated reference barcode sequences. The numbers above the nodes represent bootstrap
analyses after 1000 replicates. Bootstrap values greater than 60% are shown. The red square indicates
swordfish mislabeled samples. Scale bar refers to a distance of 0.05 nucleotide substitutions per site.

3.2. COIBar–RFLP

The preliminary in silico analysis using “Remap” showed that the MboI enzyme produced a
species-specific pattern useful to discriminate simultaneously all examined species. No intraspecific
variation of the MboI recognition sites was detected for any species tested by “Remap”, with the
exception of the X. gladius digestion pattern (Table 2). Figure 3 highlights both the size of the undigested
COI amplicon, of about 750 bp, and the MboI differential restriction pattern obtained for each species:
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one fragment of 510 bp was obtained for O. centrina; two fragments of 110 and 400 bp and of 150 and
400 bp were obtained, respectively, for P. glauca and S. canicula; finally, three fragments of 120, 180, and
390 bp were obtained for M. mustelus. The negative control is not shown in the figure. The enzymatic
digestion of X. gladius amplicons produced two different patterns (Figure 4) corresponding to clades I
and II, already described in this species. In particular, three fragments of 170, 220, and 240 bp were
detected for clade I and three fragments of 170, 220, and 280 bp were found for clade II. On the basis of
this intraspecific pattern, the swordfish sample shown in Figure 3 belongs to clade I.
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4. Discussion

The results obtained in this study once again confirm the efficacy of COIBar–RFLP in discriminating
fish species in commercial products and also highlight the fraudulent practice of species substitutions
in seafood products, consisting in the use of less valuable shark species in place of swordfish. The MboI
endonuclease restriction enzyme produced species-specific restriction patterns of the COI amplicons
useful to differentiate X. gladius from shark species. Another interesting result proving the sensitivity
of this methodology is the intraspecific differential MboI pattern obtained for the swordfish samples.
This pattern was useful to discriminate the two different clades revealed in this species by phylogenetic
analyses using several molecular markers [36,37,76–78]. COI DNA-barcoding showed that 15% of
the swordfish samples purchased in local fish markets during 2018 was mislabeled, with an evident
economic loss for the consumers. This percentage was at least two times higher than that recorded in
2010, demonstrating that despite the current European legislation focused on consumer protection
against fraud, fraud remains frequent and widespread. In this context, there is no doubt that molecular
tools are very useful and effective to fight commercial fraud and that DNA-based methods have
become increasingly important for seafood authentication. However, while the practice of commercial
fraud in the seafood market is a global concern, to date there is no standardized global methodology
to expose this practice. Firstly, all states have not yet incorporated into their legislation the use of
molecular methods to combat commercial fraud; this is true for Italy, for example. Secondly, significant
differences among countries have been found in methods used by accredited laboratories for food
authenticity [79]. Thirdly, together with the classic methods (protein- and DNA sequence-based
methods), new and sophisticated methods are being developed to identify seafood species [80]. It is
evident that the first two issues can be solved only by adopting a common global policy to fight food
fraud. The European legislation, for example, could require, rather than only suggest, the application
of DNA analysis in the context of seafood traceability [81], also indicating the most useful methodology
to be used across European laboratories. In this regard, the features that molecular methods should
have for a rapid authentication of species in seafood products can be debated. To be effective for
routine activities carried out by local food safety and quality authorities, from the traceability of the
catch to the labeling of the products, effectiveness in terms of cost and time-saving and correctness of
species identification should be a priority. Among the classic methods, the protein-based methods,
such as isoelectric focusing of sarcoplasmic proteins, are still used as official methods for fish species
identification [82], but the DNA-sequencing methods, and the DNA-barcoding methodology in
particular, have become more common in laboratories specialized in food authentication ([3] and
literature therein). Increasingly, new methodologies are emerging for species identification, such
as qPCR, DNA microarrays, high-resolution melting analysis, mass spectrometry, high-throughput
sequencing, and the recently developed handheld testing devices [80], all of them suitable and effective
in terms of cost and time consumption.

However, these new methodologies require, in some cases, extensive technical equipment and
specific skills by the operators and need to be standardized for use as official methods. Furthermore,
the application of these methods is limited to a few cases of species authentication, while wide databases
of reference samples are needed for their validation as official methods. The methodological approach
we propose, COIBar–RFLP, although it cannot substitute DNA sequencing in general, takes advantage
of large databases of reference DNA sequences of fish species and of the positive results from several
study cases for species of relevant commercial interest under various food matrices [49,52–54,58].
COIBar–RFLP successfully and simultaneously discriminated the fish species analyzed in these studies,
through the banding pattern obtained after digestion with only one endonuclease restriction enzyme.
This simple, robust, easy-to-perform, and cost-effective strategy can potentially cover a wide range of
species and provide a versatile tool to monitor the mislabeling of fish products. However, it should
be noted that poor enzyme storage, as well as the processing conditions, could compromise the
advantages of the methodology in terms of expected time of processing and misleading results.
In a recent investigation on the methodological approach performed in 45 European laboratories,
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Griffiths et al. [79] revealed that PCR–RFLP was used in 40% of the laboratories involved in seafood
authentication; this result suggests that this method could become a standardized molecular tool to
assess seafood authenticity.

5. Conclusions

The efficacy of COIBar–RFLP was tested for species authentication on slices labeled as swordfish.
The illegal practice of species substitution was observed, with the species P. glauca, M. mustelus, and
O. centrina being sold in place of swordfish. These results indicate the need to strengthen regulations
and to define molecular tools to fight the occurrence of fraud along the seafood supply chain, from the
traceability of the catch to the labeling of the products, and to achieve market transparency, which is
highly demanded by the consumers. Finally, the future perspectives of COIBar–RFLP rest on the need
to build a database of COI restriction patterns to be used for unequivocal species identifications.
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Abstract: The adulteration of fresh turkey meat by the undeclared addition of protein hydrolysates
is of interest for fraudsters due to the increase of the economic gain by substituting meat with low
cost ingredients. The aim of this study was to compare the suitability of three different analytical
techniques such as GC-MS and 1H-NMR with HPLC-UV/VIS as a targeted method, for the detection
of with protein hydrolysates adulterated turkey meat. For this, turkey breast muscles were treated
with different plant- (e.g., wheat) and animal-based (e.g., gelatin, casein) protein hydrolysates with
different hydrolyzation degrees (15–53%: partial; 100%: total), which were produced by enzymatic
and acidic hydrolysis. A water- and a nontreated sample (REF) served as controls. The data analyses
revealed that the hydrolysate-treated samples had significantly higher levels of amino acids (e.g.,
leucine, phenylalanine, lysine) compared with REF observed with all three techniques concordantly.
Furthermore, the nontargeted metabolic profiling (GC-MS and NMR) showed that sugars (glucose,
maltose) and/or by-products (build and released during acidic hydrolyses, e.g., levulinic acid) could
be used for the differentiation between control and hydrolysates (type, degrees). The combination
of amino acid profiling and additional compounds gives stronger evidence for the detection and
classification of adulteration in turkey breast meat.

Keywords: 1H-NMR; GC-MS; HPLC-UV/VIS; metabolomics; food fraud; protein hydrolysate; free
amino acid contents; ProHydrAdd

1. Introduction

Meat is an important supplier of high-quality nutrients such as proteins, minerals and vitamins.
Since it is sold on the market for a low price, which does not cover the increasing production cost,
it is in focus for food fraud. Adulterators look for opportunities to increase the economic gain.
Possibilities would be to misrepresent, use illegal supply chains and/or manipulate the food product,
e.g., replace/substitute some, or all, premium quality materials with lower-grade, cheaper cuts of
meat, meat from other species or nonmeat components (e.g., water, additives) [1–3]. The fraud can
influence the consumers’ satisfaction and confidence (religious, moral, cultural), but worse it can
be extremely dangerous for human health, e.g., causing illness, provoke allergies or even causing
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death (e.g., melamine scandal) [1,4]. Therefore, it is necessary to have reliable analytical methods to
detect adulteration.

The water binding capacity of meat is strongly related to the rate of early postmortem metabolism
and the ultimate pH value. It is lowest at a pH of 4.9–5.4, but will increase with increasing or
decreasing of the pH [5]. The ultimate pH of poultry breast muscle is 5.67–5.69 and therefore, the water
uptake capacity is high [6]. A simple exposure to just water can lead to weight gain of the meat
and consequently increase the economic gain. For a fair market competition, the detection of such
fraudulent practices is required. The traditional method to determine extraneous water in meat is to
analyze the water/protein ratio [7]. In an untreated sample is the water/protein ratio of chicken as well
as turkey breast muscle <3.40, of chicken legs between 4.05–4.30 and of turkey legs between 3.80–4.05
(Commission regulation No 543/2008) [8]. If water is added, the water/protein ratio will be higher.

For more than a decade an undeclared addition of protein hydrolysates to poultry meat or
meat products could be observed. This way, the analytical protein content rises, masking the water
addition [3]. Protein hydrolysates consist mainly of amino acids and possibly peptides. They are cheaper,
better soluble and harder to detect than protein additions. Besides amino acids, hydrolysates contain
additional compounds like carbohydrates, fatty acids and/or side products, which are formed during
the hydrolyzation process. A suitable method is the detection of the free amino acid contents using high
performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/VIS). This technique
is well established in laboratories and is used as an alternative to the official method in Germany
(§64 LFGB: Determination of free amino acids in meat using gas chromatography with flame ionization
detection (GC-FID)) [9].

Alternative analytical approaches such as nontargeted metabolomics provide an entire profile
(chromatogram, spectrum, fingerprints, etc.) of a suspicious sample [10,11]. These methods have
gained more and more in importance in recent years due to strong technical improvements. With these
promising and valuable high-throughput tools such as mass spectrometry (MS) based techniques or
nuclear magnetic resonance (NMR) spectroscopy, it is possible to identify and quantify small organic
molecules with molecular weights of less than 1.5 kDa, including carbohydrates, peptides, nucleotides,
lipids and amino acids [12]. In order to analyze such a broad spectrum of metabolites with diverse
properties and concentrations (over several magnitudes) in just one single sample, it is important
to have techniques, which are robust and sensitive. The major techniques are MS coupled to a
chromatographic separation and NMR. The high sensitivity and selectivity make MS a powerful tool to
detect molecular masses and fragmentation patterns for chemical structure identification. It is possible
to profile myriads of metabolites due to the different combinations of separation, ionization and
detection technique. On the other hand, NMR spectroscopy provides characteristic information on the
metabolic profile by analyzing small amounts of one sample in a nondestructive, quantitative and
short-time period way with convenient sample preparation [13]. However, independent of the used
approach (targeted or nontargeted), large reference datasets are required to account for the natural
variation in different products due to multiple influencing factors such as feeding or storage conditions
(duration and temperature) [3,14].

Chemometrics is a powerful multivariate data analysis tool that reduces a huge amount of
generated data by (1) grouping or ordering unknown samples with similar characteristics (qualitative)
and (2) ascertaining adulterant analytes in sample (quantitative) or (3) for assessing their quality
or authenticity [14]. Chemometrics, and for this purpose used clustering, principal component
analyses (PCA) as well as regression analyses, is a routine complement for MS- and NMR-based
metabolomics [15].

The objective of this study was to compare the suitability of three different analytical methods such
as GC-MS and 1H-NMR (nontargeted approaches) and HPLC-UV/VIS as a targeted method, for the
detection of adulterated turkey breast muscle with protein hydrolysates. HPLC-UV/VIS was selected
due to the fact that it requires inexpensive equipment frequently available in every control laboratory.
The first part focuses on the identification of specific markers such as amino acids, which are detectable
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with all three methods. The second part (nontargeted approaches) focuses on the identification of
additional markers as well as possible classification of the added hydrolysates.

2. Materials and Methods

2.1. Chemicals

Sodium hydroxide, 5-sulfo salicylic acid, sodium chloride (NaCl, 99%), hydrochloric
acid (HCl), sodium acetate, ninhydrin, hydrindantin-dihydrat, methanol and chloroform were
obtained from Merck (Darmstadt, Germany). Ethylenediaminetetraacetic acid (EDTA, 99%)
was purchased from AppliChem (Darmstadt, Germany) and tris(hydroxymethyl)aminomethane
(TRIS Pufferan, Tris) from Carl Roth (Karlsruhe, Germany). The reagents (eluent buffers A,
B, C, D, E, F; cleaning solution W, derivatization reagent R, sampling dilution buffer and
autosampler solution) used for the amino acid (AA) determination were bought from membraPure
(Henningsdorf, Germany). The AA standards (AA standards physiological: acidics–neutrals–basics),
the amino acid mix solution (certified) and l-asparagine, l-glutamine, s-(2-aminoethyl)-l-cysteine
hydrochloride (thialysine), l-norleucine, isopropanol, gelatin hydrolysate enzymatic, HyPep® 4601
protein hydrolysate from wheat gluten, protein hydrolysate N-Z-amine® AS, casein from bovine
milk, gelatin from porcine skin and gluten from wheat were bought from Sigma-Aldrich
(Steinheim, Germany). 2-Methoxyethanol was obtained from Riedel-deHaen (Seelze, Germany).
For GC-MS derivatization methoxyamine hydrochloride (MAH) and pyridine were purchased
from Sigma-Aldrich (Steinheim, Germany), and N-methyl-N-(trimethylsilyl)trifluoroacetamide plus
1% chlorotrimethylsilane (MSTFA + 1% TMCS) were purchased from Thermo Fisher (Dreieich,
Germany). For NMR analyses reagents such as deuterium oxide (D2O) containing 0.05 wt%
TSP (sodium-3-(trimethylsilyl)-2,2,3,3-tetradeuteriopropionate) and maleic acid were obtained from
Sigma-Aldrich (Steinheim, Germany) and D2O (99.96%) was obtained from VWR (Ismaning, Germany).

2.2. Sampling and Adulteration of Turkey Breast

Meat. Three female turkeys (BUT Big 6, Meleagris gallopavo) with an average weight of 10.3 kg
and in average 112 days old were collected at 4 ◦C from a slaughterhouse in Germany directly after
slaughter. The Musculus pectoralis superficialis was taken after dissection [16]. After sampling, all meat
pieces were immediately frozen in liquid nitrogen and stored at −20 ◦C until further use.

Protein hydrolyzation. The protein powders (1.0 g of casein from bovine milk, gelatin from
porcine skin or gluten from wheat) were hydrolyzed at 150 ◦C in 8 mL of 6 M aqueous HCl solution for
1 h (total hydrolyzation: TH, degree of hydrolyzation: 100%). After that, neutralization with solid
1.0 M NaOH was performed. The final concentration of amino acids was 55.6 g/L (~0.5 M).

The protein hydrolysate powders (gelatin hydrolysate enzymatic, HyPep® 4601 protein
hydrolysate from wheat gluten, protein hydrolysate N-Z-amine® AS (casein)) were used without
further hydrolyzation (partial hydrolyzation: PH). All three bought protein hydrolysates were peptones
(enzymatic hydrolysis with pepsin (E.C.3.4.4.1) or acidic hydrolysis). The degree of hydrolyzation
was analyzed photometrically as the following describes. From each sample, 250 µL (aqueous AA
solution) were added to 250 µL of 4 M acetate buffer (pH 5.5) and mixed. After that, 75 µL of
1 M NaOH and 250 µL ninhydrin solution (174 mg Ninhydrin + 28 mg hydrindantin-dihydrat in
10 mL 2-methoxyethanol) were added. The reaction took place at 95 ◦C for 20 min and was stopped by
cooling the mixture in an ice bath (0 ◦C) for 20 min. 300 µL of each mixture was diluted with 1000 µL
isopropanol solution (50% v/v in water) and measured at room temperature at 570 nm (photometer DU
640, Beckman Coulter GmbH, Krefeld, Germany). The degree of hydrolyzation (DH) was calculated
by comparing the free amino groups of the samples with a solution of the same not hydrolyzed protein
(0% DH) and total hydrolyzed protein (100% DH). That implies a hydrolyzation degree for gelatin,
wheat and casein of 15% ± 3%, 16% ± 2% and 53% ± 2%, respectively.
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Hydrolysate injection. About 1 mL solution (0.5 M) hydrolyzed protein or commercially available
protein hydrolysate or water was injected per g turkey breast meat across and along the muscle fiber.
The samples were frozen at −80 ◦C and lyophilized for GC-MS and 1H-NMR analyses. All samples
were stored at −80 ◦C until further use.

Sample code. The sample codes were chosen as followed: reference sample without injection
is called REF, an additional control sample injected with water is called water. The different protein
hydrolysates (gelatin (G), wheat (W) and casein (C)) with different hydrolyzation degree (partial (PH)
or total (TH)) are indicated with the following codes: GPH, WPH and CPH for partial, respectively,
and GTH, WTH and CTH for total hydrolyzation, respectively. This means, for example, that the
sample GPH contained protein hydrolysate gelatin and was partially hydrolyzed.

2.3. Amino Acid Analysis Using HPLC-UV/VIS

2.3.1. Sample Preparation for Amino Acid Analysis

The frozen turkey samples (2 g each) were homogenized with an Ultra-Turrax T10 (12,000 rpm,
IKA Werke GmbH und CO KG, Staufen, Germany) in 5 mL 0.025 M EDTA/0.100 M Tris buffer (pH 8.0)
at −20 ◦C. As internal standards, l-norleucine and l-thialysine were used with a final concentration
of 133 µM and 88 µM, respectively. The proteins and longer peptides were precipitated with 30%
v/v of 15% 5-sulfosalicylic acid over 30 min at 4 ◦C at a resulting pH of about 2.2 (pH less than 2.5 is
recommended for cation exchange chromatography). The samples were centrifuged (15 min, 4 ◦C,
6827× g), filtered (45 µm) and then frozen at −20 ◦C until further use. The centrifugation and filtration
were repeated directly before the analysis.

2.3.2. Amino Acid Content Determination

The samples were analyzed in duplicates with internal (l-norleucine- and l-thialysine-solution,
see Section 2.3.1) and external AA standards. The external standards were worked up similar to
the meat samples. A regularly calibration of the amino acid analyzer was done with a certified AA
standard (amino acid mix solution [17]). For the cation exchange chromatography, a column with 3 µm
beads with a separation over a pH-range from 2.9 to 10.4 and ninhydrin post column derivatization
was performed. An injection volume of 20 µL (pH 2.2) and a flow rate of 180 µL/min were applied.
For the spectrophotometric analysis two photometers with wavelengths of 440 nm and 570 nm were
used for detection of the free amino acids. The limit of detection (LOD) and quantification (LOQ) were
defined as three and ten times the signal to noise ratio of the external standard solution, respectively.
All measured contents of the free amino acids (FAA) were above the LOQ (0.13 mg/100 g–0.33 mg/100 g,
depending on the different AA).

2.4. GC-MS-Based Metabolomics Analyses

2.4.1. Sample Preparation for Metabolomics Study of White Breast Meat

The sample set consisted of study samples, mix samples and blanks. The mix samples were
prepared by combining an aliquot from each muscle powder and served for normalization. All sample
types were extracted in the same manner. Study samples were extracted in triplicates. In a first step
20 mg of the dried, homogenous meat powder was extracted with 600 µL ice-cold 80% methanol
containing 10 internal standards using a bead mill homogenizer (Minilys, Bertin Technologies SAS,
Montigny-le-Bretonneux, France) for 2 times 30 s and an ultrasonic bath for 2 min. The raw extract
was centrifuged at 15,000× g for 20 min at 4 ◦C. In a second step the pellet was re-extracted with
600 µL ice-cold methanol:chloroform (2:1 v/v) according to the first extraction step. Both supernatants
were combined, mixed and centrifuged at 15,000× g for 20 min at 4 ◦C. 100 µL of the supernatant
were transferred into 2 mL glass vials containing a 200 µL glass insert and evaporated in a vacuum
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centrifuge (Christ Speedvac RVC 2¨C18 CD plus, Germany). The dried samples were stored under
protective argon atmosphere at −80 ◦C until analysis.

2.4.2. GC-MS Measurements and Data Processing

Prior to measurement samples were derivatized by methoximation and trimethylsilylation.
For methoximation samples were shaken in 30 µL of a 20 mg/mL solution of MAH in pyridine at
50 ◦C for 1 h. Subsequently, 70 µL MSTFA+1%TMCS were added and samples shook at 70 ◦C for
1 h. GC-MS analysis was performed on a Shimdazu GCMS QP2010 instrument (Shimadzu, Duisburg,
Germany) equipped with an OPTIC-4 injector (GL Sciences, Eindhoven, The Netherlands). A 1 µL
aliquot of each sample was injected in a 1:7 split ratio. A series of n-alkanes (C7-C30) was used as a
retention time standard. Analytes were separated on a 30 m Rxi-5SIL MS column containing a 10 m
Integra-Guard column (Restek, 0.25.mm i.d., 0.25 µm film thickness), and with a linear temperature
gradient starting from 80 ◦C to 300 ◦C with 5 ◦C/min and a final 5 min hold at 320 ◦C. Masses between
60 and 600 m/z were scanned.

For data analysis only those features were selected that were not present in blank samples.
The annotation of compounds was performed using the NIST 14 library database implemented in
GCMSsolution (Shimadzu, Duisburg, Germany). The retention times and selected masses used for
relative quantification are listed in Supplementary Table S1. Samples were normalized according to
the calculated means of the mix samples for each feature to reduce the impact of device maintenance
(instrument tuning, liner exchange and septum exchange during the measurement batch). Briefly,
signal intensities of the mix-samples within one measurement period (between device maintenance)
were averaged as well as for the whole measurement batch. Using these means a correction factor
was determined between the total means and the means for each measurement period between device
maintenances. These correction factors were then applied to the corresponding features of study
samples and calibration samples.

2.4.3. Amino Acid Quantification

For AA quantification a calibration curve consisting of a reference standard mixture and 8
final concentrations in the range 1.96–250 pmol/µL was applied. These standard mixes were spiked
into aliquots from pooled REF samples (50 µL of standard mixture into 50 µL of REF mixture) to
reduce for the impact of the sample matrix. The calibration samples were prepared in duplicates.
Calibration samples were evaporated in a vacuum centrifuge and prepared for GC-MS measurement
according to Section 2.4.2. For quantification, the calibration samples were at first normalized and then
the mean values (ion counts) of selected quantitative ions from calibration-reference samples were
subtracted from calibration samples containing the standard mixtures. Calibration coefficients were R2

> 0.99 with acceptance of alanine which had an R2 = 0.97). The retention times and selected masses
used for quantification are listed in Supplementary Table S2.

2.5. 1H NMR-Based Metabolomics Analyses

2.5.1. Sample Preparation for Metabolomics Study of White Breast Meat

The same dried, homogenous breast muscle samples as used for GC-MS were prepared for NMR
metabolomics as described previously by Wagner et al. [18] with slight modifications. In brief, 20 mg
of lyophilized, grinded, homogeneous muscle powder was extracted using first ice-cold methanol,
then ice-cold chloroform and finally ice-cold water (400 µL of each solvent). The samples were vortexed
for 1 min and stored on ice for 10 min between each step, and then stored at 4 ◦C overnight for
separation and finally after centrifugation (2000× g, 4 ◦C, 30 min) the aqueous phase was collected in a
new tube. The collected samples (750 µL) were dried using a vacuum centrifuge. The dried samples
were redissolved with 550 µL D2O, 25 µL MilliQ water and 25 µL D2O containing 0.05 wt% TSP as
internal standard for quantification and chemical shift reference.
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2.5.2. 1H NMR Spectroscopy, Data Processing and Identification of the Signals

All samples were analyzed with a Bruker 400 MHz spectrometer (Bruker BioSpin GmbH,
Rheinstetten, Germany). For the aqueous white breast muscle, a noesygppr1d pulse program at 25 ◦C
with 64 scans, a spectral width of 8224 Hz collected into 65,536 data point and acquisition time of 3.98 s
and an interscan relaxation delay of 4 s was used. 1H-1H COSY, 1H-1H TOCSY and 1H-13C HSQC
were obtained on one representative muscle sample for metabolite identification purposes.

All data were processed using Bruker Topspin 3.6.0 software (Bruker), Fourier-transformed
after multiplication by line broadening of 0.30 Hz and subsequently referenced to standard peak
TSP at 0.00 ppm. After spectral phase and baseline were corrected, each NMR spectrum was
integrated using Matlab R2017b (Mathworks, Natick, MA, USA) into 0.01 ppm integral regions
(buckets) between 8.60 ppm and 0.80 ppm (area between 4.75 ppm and 4.80 ppm corresponding to
the water signal was excluded). Each muscle spectrum region was scaled to the intensity of internal
standard (TSP) for quantitative measurements. Afterwards, the signals were identified using ChenomX
NMR Suite 8.4 library (ChenomX Inc., Edmonton, AB, Canada), the Human Metabolome Database
(www.hmdb.ca) and previous literature [18–20] and confirmed with 2D-NMR in case of multiplicity.
For quantification (profiling approach), 86 metabolites were identified by overlapping with standard
spectra (Supplementary Table S3) and their concentrations (µmol/mg) were calculated using ChenomX
NMR Suite 8.4 library after accounting for overlapping signals. The absolute concentrations were
presented as mg/100 g wet weight (Supplementary Table S4).

2.6. Statistical Analysis

Multivariate data analyses were performed for the GC-MS data, the NMR spectral data (buckets)
and the absolute concentrations of the metabolites (profiling approach) using the Simca-P+ software
(version 13.0; Umetrics, Umeå, Sweden). All variables were centered and “pareto-scaled” (Par) (GC-MS
data and NMR spectral data) or “unit variance” (UV)-scaled (NMR data, absolute concentrations).
Principal component analysis (PCA) was used to screen the data and search for outliers. Outliers were
determined using PCA-Hotelling T2 Ellipse (95% confidential interval (CI)).

All statistical calculations such as one-way analysis of variance (ANOVA) and Dunnett’s test were
done in JMP (13.1.0, SAS Institute Inc., Cary, NC, USA).

The amino acid contents (alanine, leucine, methionine, phenylalanine, proline, serine, tyrosine,
histidine, lysine and glutamate) determined by HPLC, GC-MS and NMR are presented as mg/100 g
wet weight, henceforth referred to as mg/100 g. All data presented are mean ± standard deviation and
differences were considered significant when p < 0.01.

3. Results and Discussion

The aim of this study was to compare different analytical techniques in respect to their performance
for the detection of undeclared protein hydrolysates in fresh turkey breast. For this purpose, a traditional
HPLC-UV/VIS approach focusing on the detection of free proteinogenic amino acids was compared with
two nontargeted metabolic profiling techniques, GC-MS and 1H-NMR. Additionally, both nontargeted
approaches were compared for their suitability in the detection of the adulterated turkey breast muscle
with protein hydrolysates.

3.1. Capability of Amino Acid Profiling for the Detection of Added Protein Hydrolysates

The contents of the ten free amino acids (FAA) alanine, leucine, methionine, phenylalanine,
proline, serine, tyrosine, histidine, lysine and glutamate out of the 20 proteogenic AA were analyzed by
all methods. Those ten AA were selected as exemplary free amino acids with different properties, e.g.,
aliphatic (alanine, leucine, proline), aromatic (phenylalanine, tyrosine), acidic (glutamate), basic (lysine,
histidine), hydroxylic (serine) and sulfur-containing (methionine). The results of five groups (REF
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and addition of water, gelatin-, wheat- and casein-hydrolysates) were compared depending on the
hydrolyzation degree (PH or TH).

The contents of FAA for the addition of partial and total protein hydrolysates are shown in
Figures 1 and 2, respectively. All these data are also summarized in the Supplementary Table S5.
The reference samples (REF) were not modified and variations were therefore only occurring through
the analytical error and natural variations of the FAA contents. The natural FAA contents depend on
several conditions, e.g., the gender of the birds [21] or special feed additives [22].

It is obvious that the amount of FAA contents determined by HPLC-UV/VIS (in mg/100 g) and
GC-MS as well as 1H-NMR (in mg/100 g) are quite different. The FAA contents determined by
GC-MS and 1H-NMR are on average 3.8 times (range: 0.6-fold to 7.0-fold) and 3.3 times (range:
0.1-fold to 10.2-fold) higher, respectively, compared with the contents determined by HPLC-UV/VIS.
The differences can be arising from the different sample preparations. One possibility could be that the
homogenization method (HPLC-UV/VIS) was not able to dissolve all FAA. The homogenization method
for HPLC did not contain any specific extraction step with solvents, whereas for GC-MS and 1H-NMR
the samples were extracted using mixtures of water, methanol and chloroform. Moreover, it is possible
that the extraction method (GC-MS and 1H-NMR) led to protein hydrolysis. However, the different
quantification procedures could also have caused these differences. Comparative experiments (e.g.,
with protease inhibitors) clearly demonstrated that no protein hydrolysis occurred by using the
homogenization method (manuscript in preparation). This method was also used to determinate 18 of
the 20 proteinogenic FAA contents of chicken breast meat (manuscript in preparation) and the contents
were in agreement with Rikimaru and Takahashi [23].

The addition of water to the turkey breast muscle resulted in tendentially lower contents of
FAA, but statistical significance was not reached by using the Dunnett’s test (Figures 1 and 2 and
Supplementary Table S5). The reduced mean values in water treated samples could be explained as
dilution or even wash-out effect. When the amount of water injected to the sample exceeds its water
binding capacity, some endogenous compounds (e.g., FAA) might be washed out.

3.1.1. Comparison of Partial Hydrolyzed Wheat-, Gelatin- and Casein-Hydrolysates

Partial enzymatic hydrolysates from gelatin (GPH, hydrolyzation degree 15% ± 3%), wheat (WPH,
hydrolyzation degree: 16% ± 2%) and casein (CPH, hydrolyzation degree 53% ± 2%) were added to
the meat samples, respectively (Figure 1). WPH and GPH were only slightly hydrolyzed and therefore
most of the protein was converted to peptides. Therefore, the amount of FAA in these two hydrolysates
was lower compared to CPH, which was hydrolyzed to a higher hydrolyzation degree.

Hence, nearly no significant differences were found for the FAA contents of GPH and WPH
related to the REF. Only the content of free lysine (1H-NMR, from 5.26 mg/100 g ± 0.45 mg/100 g (REF)
to 26.9 mg/100 g ± 3.37 mg/100 g) for GPH, as well as the free methionine (HPLC-UV/VIS) and free
leucine contents (1H-NMR) for WPH showed significant differences (Supplementary Table S5).

Contrary to this, the CPH showed clearly significant different FAA contents compared to the REF.
As determined with HPLC-UV/VIS-method, the FAA contents of leucine, methionine, phenylalanine
and histidine were highly significant different (p < 0.001) and for serine significant different
(p < 0.01). For example, the FFA content increased for leucine from 1.97 mg/100 g ± 0.33 mg/100 g
(REF) to 19.9 mg/100 g ± 2.39 mg/100 g (CPH). The FAA contents analyzed with GC-MS showed
significant differences for five of the ten listed FAA. Leucine was also highly increased
(6.97 mg/100 g ± 2.78 mg/100 g for REF to 111 mg/100 g ± 26.4 mg/100 g (CPH), p < 0.001), as well as
methionine, phenylalanine and lysine. The histidine content was increased significantly (p < 0.01).
The analysis with 1H-NMR showed seven increased FAA contents: leucine, methionine, phenylalanine,
proline and lysine increased highly (p < 0.001), whereas alanine and serine increased significantly
(p < 0.01). For example, leucine increased from 4.26 mg/100 g ± 1.25 mg/100 g (REF) to 78.6 mg/100 g ±
19.6 mg/100 g (CPH).
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Figure 1. Free amino acids contents (mean ± standard deviation) of turkey breast meat samples treated 
with and without the addition of partial protein hydrolysates or water and analyzed via: (a) HPLC-
UV/VIS (b) GC-MS (c) 1H-NMR. Sample codes: REF: Reference, Water: injected with water, GPH: partial 
hydrolysate gelatin, WPH: partial hydrolysate wheat; CPH: partial hydrolysate casein. 
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Figure 1. Free amino acids contents (mean ± standard deviation) of turkey breast meat samples
treated with and without the addition of partial protein hydrolysates or water and analyzed via:
(a) HPLC-UV/VIS (b) GC-MS (c) 1H-NMR. Sample codes: REF: Reference, Water: injected with water,
GPH: partial hydrolysate gelatin, WPH: partial hydrolysate wheat; CPH: partial hydrolysate casein.
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Figure 2. Free amino acids contents (mean ± standard deviation) of turkey breast meat samples treated 
with and without the addition of total protein hydrolysates or water and analyzed via: (a) HPLC-UV/VIS 
(b) GC-MS (c) 1H-NMR. Sample codes: REF: Reference, Water: injected with water, GTH: total 
hydrolysate gelatin, WTH: total hydrolysate wheat; CTH: total hydrolysate casein. 
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Figure 2. Free amino acids contents (mean ± standard deviation) of turkey breast meat samples
treated with and without the addition of total protein hydrolysates or water and analyzed via:
(a) HPLC-UV/VIS (b) GC-MS (c) 1H-NMR. Sample codes: REF: Reference, Water: injected with water,
GTH: total hydrolysate gelatin, WTH: total hydrolysate wheat; CTH: total hydrolysate casein.

For a clear proof, several FAA contents should differ significantly from the reference sample.
In this way other reasons for different FAA contents (e.g., feed supplementation with AA) can be
excluded with higher probability. It can be concluded in this study, that in case of partial hydrolysate
treatment the detection of fraud could not be ensured by using only these ten FAA contents.
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3.1.2. Comparison of Total Hydrolyzed Wheat-, Gelatin- and Casein-Hydrolysates

All the total hydrolyzed proteins (GTH, WTH, CTH) showed a hydrolyzation degree of 100%
and were therefore only composed of AA. As expected, the FAA contents of all hydrolysate-treated
samples were increased dramatically compared to the REF (Figure 2). The analysis with HPLC-UV/VIS
revealed two significant and seven highly significant increases of FAA contents for GTH, eight highly
significant increased FAA contents for WTH and nine rises of the amounts of FAA for CTH (p < 0.001).
For example, the content of proline changed from 2.56 mg/100 g ± 0.42 mg/100 g (REF) to 52.5 mg/100 g
± 20.4 mg/100 g (GTH), 44.9 mg/100 g ± 16.8 mg/100 g (WTH) and 39.2 mg/100 g ± 13.8 mg/100 g (CTH),
respectively. With GC-MS, only highly significant changes were found: for GTH seven, for WTH
nine and for CTH all ten FAA contents were increased. As for HPLC-UV/VIS, the proline content
was raised obviously: from 10.0 mg/100 g ± 5.81 mg/100 g to 134 mg/100 g ± 71.4 mg/100 g (GTH),
161 mg/100 g ± 31.8 mg/100 g (WTH) and 160 mg/100 g ± 30.5 mg/100 g (CTH), respectively. The same
results were also found for the 1H-NMR analysis: one significant and eight highly significant increases
for GTH (proline: from 5.06 mg/100 g ± 0.78 mg/100 g (REF) to 77.5 mg/100 g ± 16.3 mg/100 g),
and nine highly significant differences for WTH (proline: 72.8 mg/100 g ± 12.1 mg/100 g) and CTH
(proline: 53.8 mg/100 g ± 16.1 mg/100 g). Therefore, only tyrosine (GTH), alanine and lysine (WTH)
as well as alanine (CTH) showed no significant differences determined by HPLC-UV/VIS. For the
GC-MS-method, only methionine, tyrosine, histidine (GTH) and lysine (WTH) were not significantly
different. The analysis by 1H-NMR revealed also nearly exclusive significant differences with only few
exceptions (tyrosine, histidine for GTH, histidine for WTH and CTH).

Depending on the hydrolysate type, different AA were more affected. The addition of GTH
resulted in higher levels of alanine, whereas WTH showed higher levels of glutamate and CTH higher
levels of leucine, methionine, tyrosine and lysine (Figure 2 and Supplementary Table S5). The latter
AA might be used as an indicator for animal-based protein origins whereas glutamate could indicate
plant-based protein origins.

It was shown in this study that in case of total hydrolysate treatment a general detection of fraud
is possible.

3.1.3. General Aspects Regarding the Detection of Free Amino Acids in Treated Breast Muscles

All three methods used (HPLC-UV/VIS, GC-MS, 1H-NMR) showed comparable results.
Although the FAA contents of the first method were about three- to fourfold lower compared to
the other two methods, the validity was given. This is due to the fact that all samples were compared to
the corresponding REF, determined with the same method. Hence, the method of sample preparation
plays an important role for absolute quantities, whereas regarding the differentiation between REF and
hydrolyzed-treated samples (rations are kept independently of the sample preparation) the method
has no impact.

It can be concluded that the differentiation of hydrolysate addition depends on the degree of
hydrolyzation. If breast muscles were treated with low degree hydrolysates, the additional injected
FAA might not induce a significant increase over the range of natural variation. It was shown that a
high hydrolyzation degree significantly increased the free AA content of several AA independently of
which analytical technique (HPLC-UV/VIS, GC-MS or 1H-NMR) was used.

Specific FAA profiles might be used for a tentative classification of the origin of the hydrolysate
type (e.g., plant-based vs. animal-based protein origins). Nevertheless, a clear classification and
identification of the protein used for hydrolyzation was not possible. Thus, it is of interest whether
further information about additional compounds might be helpful for the detection and classification
of the hydrolysates. For this, the following hypotheses for section two were postulated: (1) Original
protein sources are not clean and contain additional compounds, which can be introduced into the
breast meat. (2) Acidic hydrolysis leads to formation of byproducts and these compounds are also
possible to be found in the breast meat. (3) Additional metabolites can be washed out from the breast
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meat and (4) therefore, information from metabolite profiling might be of interest and was included in
the analysis.

3.2. Metabolomics Approaches to Obtain Additional Information Regarding Hydrolysate-Treated Samples
Independently of the Hydrolyzation Degree

The detection of hydrolysate treatment in turkey breast muscle by amino acid profiling largely
depends on the hydrolyzation degree. Our results clearly indicated that an addition of total
hydrolyzation increases the free amino acid content tremendously (Figure 2) so that a detection
with all three presented methods was possible. However, the lower the hydrolyzation degree the more
uncertain is the validity of amino acid profiles between the natural variation and the differentiation
due to hydrolysate treatment. Therefore, we applied two nontargeted metabolite profiling approaches
(GC-MS and 1H-NMR) to test for their suitability in the detection of hydrolysate treatment in turkey
breast muscle. Both approaches allow to detect additionally several metabolites besides the proteogenic
amino acids like carbohydrates, organic acids, lipids, et cetera. For both techniques PCA was used
to check for the variation of metabolite profiles between controls and treatments and between the
different types of hydrolysates (Figure 3).
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Q2 = 72.8%, 17 components). 1H-NMR: The first and second components explained 40.8% and 21.9%
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With GC-MS a total of 129 features were considered for PCA. The first (horizontal) and second
(vertical) components explained 38.0% and 15.7% of the variation, respectively, with R2X = 98.4%,
Q2 = 72.8% (Figure 3a). A clear separation between the controls (REF and water-treated control)
and five of the hydrolysate-treated sample groups was observed. GPH did not segregate from the
controls. WPH varied only in PC2 direction whereas CPH, with 53% hydrolyzation degree, stronger
differentiated in PC1 direction. The total hydrolysate treated sample groups showed most variation in
PC1 direction.
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In addition, the 1H-NMR spectra obtained were compared by PCA (PC1 vs. PC2) (Figure 3b).
The first component (horizontal) which is explained by 40.8% of spectral variation clearly separates
controls (REF and water-treated control, left) with total hydrolyzed-treated samples (right) and partial
hydrolyzed-treated samples (middle). The second component explained 21.9% of variation and
separates the controls and total hydrolyzed-treated samples (top) from partial hydrolyzed (bottom)
samples. The model parameters were the following: R2X = 98.5%, Q2 = 93.4%, 16 components. In order
to identify metabolic changes, the absolute concentrations of 86 metabolites were quantified through a
profiling approach from 1H-NMR spectra.

The total hydrolysate treated samples clearly separated from the controls in PC1 observed with
both techniques. Interestingly, with GC-MS analysis the wheat and casein origins showed higher
similarities to each other compared to gelatin (GTH). Whereas for NMR analyses, higher similarities
were observed between GTH and WTH. Obviously, independently of the analytical technique, there is
a clear separation between gelatin (GTH) and casein (CTH). From the loading plot (Figure 3c,d), it can
be deduced that proteinogenic amino acids particularly contribute to the differentiation of the total
hydrolysate treated samples and the controls (in PC1), which is in accordance to the results presented in
Section 3.1. Nevertheless, besides the amino acids other compounds could be identified which play an
additional role for the variation in PC1 such as hydroxyproline, levulinic acid, ornithine or glycerol (the
complete feature tables are presented in Supplementary Tables S3 and S4). Compounds, which were
additionally detected by 1H-NMR were pyruvate and acetate. Further compounds detected by GC-MS
were 5-hydroxylysine, 3-MCPD or aminomalonic acid among several nonidentified molecular features.
These additional compounds represent characteristics of the protein origin or are byproducts formed
during the acidic hydrolyzation process. In addition to the amino acid profiles these byproducts might
contribute to a better classification of the protein sources.

The wheat protein source contained higher amounts of sugars, which was also observed for the
WPH treated breast samples (see below). During the acidic hydrolysis of the protein source, the sugars
contained therein such as maltose, saccharose, glucose or fructose are converted to levulinic acid in
presence of hydrochloride and under high temperature [24,25]. Thus, the high levels of levulinic acid
detected in our analyses could be used to differentiate plant-based hydrolysates and as a marker for
acidic hydrolyzation treatment. Nevertheless, other plant-based hydrolysates need to be tested for
their carbohydrate content in contrast to animal-based protein sources.

The total protein hydrolysate from gelatin contained higher amounts of AA derivates such
as hydroxyproline and hydroxylysine. Gelatin is the denatured form of collagen, which is one of
the most abundant proteins in meat, ranging between 2 and 4 mg/g in chicken breast meat [26].
Most abundant amino acids of collagen are glycine, proline, glutamate and hydroxyproline [27].
Hydroxyproline is specific to collagen and its concentration in collagen is rather constant with
~12% [28]. Therefore, hydroxyproline is used to estimate the connective tissue content [29,30].
Regarding the treatment of turkey breast meat with protein hydrolysates, the hydroxyproline content
can serve as a marker for animal-based protein sources such as gelatin. Hydroxylysine is another
modified amino acid, which is unique to collagens. Similar to hydroxyproline, this amino acid becomes
posttranslational hydroxylated and subsequently glycosylated forming the α-helical structure of
collagens [31]. Therefore, 5-hydroxylysine might serve as an additional indicator of gelatin hydrolysate
treatment. Aminomalonic acid that was most abundant in GTH followed by CTH treated samples
represents an amino acid derivative, whose origin is suspected to be related to protein oxidation
processes [32] and to play a role in the serine-glycine interconversion [33]. According to our results,
the acidic hydrolysis process might increase the formation of aminomalonic acid in dependence of the
protein source, namely the glycine-rich gelatin.

For casein, the second tested animal derived hydrolysate, it was not that a particular molecule was
strongly increased, but the combination of several molecular features could hint towards this treatment.
In addition to the amino acid profile, the casein treated samples had higher levels of 3-MCPD and a
number of not-identified molecular features (Supplementary Table S1).
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Interestingly, the acidic treatment of the different protein sources led to the formation of 3-MCPD.
This compound can be found in numerous foodstuffs and is described to be present in acidic hydrolysates
of proteins [34]. Depending on the remaining lipids in the original protein sources, different amounts
of 3-MCPD and 3-MCPD fatty acid esters might be formed and injected into the breast meat. Thus,
3-MCPD represents an additional marker for acidic hydrolysis, similar to levulinic acid.

From the score plots of the partial hydrolysate treated breast muscles, we observed a clear
separation of all three sample groups using 1H-NMR technique, whereas by GC-MS analysis the
GPH group largely overlapped with the controls. The WPH treated samples were in a medium
distance to the controls, and the highest variation to the controls was observed for CPH treated
samples. Those observations are in accordance with the different degrees of hydrolyzation in the
partial hydrolysates with GPH having a hydrolyzation degree of 15% and CPH having a hydrolyzation
degree of 53%. Even though WPH has a hydrolyzation degree of only 16%, the better separation
compared to GPH might be explained by the plant-based origin and the present additional metabolites.

A closer look at the loading plots from the PCA models for control samples and partial hydrolysate
treated samples indicated that proteinogenic amino acids play a minor role for the variation between
controls (and GPH) and WPH, both having a low hydrolyzation degree (15% and 16%, respectively).
The variation of CPH from controls, which was to 53% hydrolyzed, was already dominated by
proteinogenic amino acids. Especially the plant-based hydrolysate contained additional sugars such
as maltose (Figure 4) and hexoses like glucose, detected with both technical approaches. In addition,
higher levels of glycerol were detected in WPH. As mentioned above, future studies will have to
elucidate to which extent different sugars are present in plant-based protein extracts used for hydrolysis.
With the animal-based protein hydrolysates, GPH and CPH, the contents of ornithine (Figure 4) were
increased as detected with 1H-NMR and GC-MS. A low level of levulinic acid and 3-MCPD was
observed in CPH treated breast muscle, which might be related to the CPH production process (CPH
was commercially obtained). Using 1H-NMR technique, higher amounts of acetate (GPH, WPH, CPH),
butyrate (CPH), carnitine (WPH, CPH), citrate (WPH, CPH), glutathione (WPH, CPH), pantothenate
(CPH) and putrescine (GPH, WPH, CPH), myo-inositol (GPH, WPH) were additionally detected
(Figure 4 and Supplementary Table S4), whereas with GC-MS analysis we obtained increased levels of
oxoproline (CPH), urea (CPH), hydroxylysine (GPH) and malic acid (GPH, WPH, CPH) among a few
nonidentified compounds (Figure 4 and Supplementary Table S1). It can be concluded that the lower
the hydrolyzation degree the more important are the additional compounds from the protein origins
for the differentiation of nontreated samples and hydrolysate treated samples.
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In accordance with the reduced AA content in water treated samples, we observed for several
endogenous metabolites of turkey breast muscle a similar reduction when samples were injected
with the different kinds of hydrolysates. This effect was particularly obvious for highly water-soluble
compounds such as creatinine and lactate, which were detected by GC-MS and 1H-NMR. Additionally,
reduced levels (not significant) of myo-inositol and the peptides glutathione and anserine were detected
by 1H-NMR. With GC-MS profiling we detected reduced levels of 4-hydroxybutanoic acid, myo-inositol,
inosine and uracil among several nonidentified molecular features (Supplementary Table S1). In our
approach, sample preparation was performed using ~2 g fresh turkey breast meat to minimize the effect
of natural variation when comparing different hydrolysate types. Whether the observed wash-out
effect can also be detected by using whole breast muscles has to be validated by further studies. It
can be suspected that the natural variation has a greater impact than the detected small levels of
a wash-out.

4. Conclusions

This study aimed at a comparison between different analytical methods and their possibility to
detect adulteration of turkey breast meat with different hydrolysates. It showed that FAA profiling
allows for the detection of protein hydrolysate treatments only above a certain threshold which is
mainly related to the degree of hydrolyzation. The samples naturally strongly differ in their free amino
acid contents as a result of feeding, genotype and meat age. Therefore, the FAA analyses under these
conditions (e.g., determination of only ten FAA contents) were not suitable for the detection of food
fraud in the case of partial hydrolysates. To overcome this limitation, the contents of more than ten
FAA of the 20 proteinogenic AA should be analyzed. Further on, a much higher quantity of samples
ought to be measured. The evaluation of these datasets enables the reduction of the variations and
therefore more significant differences. The additions of hydrolysates with high amounts of AA to
breast meat were easily proofed within this study.

The different profiling techniques revealed that protein sources contain different metabolites,
which can be used as biomarkers for the detection of partial hydrolysates. Furthermore,
byproducts formed during acidic hydrolysis provide additional evidence for the treatment of breast
meat with protein hydrolysates. Therefore, a combination of FAA and metabolite (by-products)
profiling makes it possible to identify and classify the addition of nondeclared hydrolysates to turkey
breast meat. In addition, an advantage of this comprehensive analysis is that it might be possible
to proof the addition of animal-based proteins or animal-based hydrolysates to vegetarian or vegan
products. According to the advantages of NMR in terms of sample throughput and direct quantification
of the identified compounds, 1H-NMR is used in further/detailed studies analyzing food fraud of
turkey breast meat.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/8/1084/s1,
Table S1: Molecular features used for GC-MS profiling. Annotation was performed with the NIST 14 library
implemented in the GCMSsolution software (Shimadzu, Duisburg, Germany). The signal intensities of the
quantifier ions were used for the relative quantitation and comparison between sample groups. According to the
presented FAA contents the Dunnett’s test was used for a comparison between control (REF) and the different
treatments.; Table S2: Quantification of amino acids via GC-MS was performed using the following parameters.;
Table S3: Assignment of 1H-NMR signals which could be identified via the software ChenomX NMR Suite 8.4
library. 86 metabolites were identified and exemplary one NMR signal (ppm) was chosen which was the obvious
signal for identification.; Table S4: Significantly different absolute concentrations of metabolites in turkey breast
meat treated with different hydrolysates and analyzed via 1H-NMR (mg/100 g).; Table S5: Significantly different
absolute concentrations (mg/100 g) of amino acids in turkey breast meat treated with different hydrolysates and
analyzed via HPLC-UV/VIS, GC-MS and 1H-NMR.

Author Contributions: Conceptualization, L.W., M.P., B.K., N.G, S.A., D.A.B.; methodology, validation, data
curation, formal analysis, investigation, B.K. (HPLC), M.P. (GC-MS), L.W. (NMR); investigation, N.G. (NMR);
resources, U.B. (NMR), D.A.B.; writing original draft, B.K. (HPLC), M.P. (GC-MS), L.W. (NMR); writing- review
and editing, all authors; L.W. coordinated the editing of the manuscript; visualization, B.K. (HPLC), M.P. (GC-MS),
L.W. (NMR); supervision, D.A.B.; project administration, all authors. All authors have read and agreed to the
published version of the manuscript.

146



Foods 2020, 9, 1084

Funding: This project was performed within the framework of the research project “Fremdeiweiß” (ProHydAdd),
delegated by the Federal Ministry of Food and Agriculture, Germany.

Acknowledgments: The authors thank the technical staff Elke Gardill, Gabriele Schüßler and Katrin Weiß for
their assistance in the laboratories.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Trivedi, D.K.; Hollywood, K.A.; Rattray, N.J.W.; Ward, H.; Trivedi, D.K.; Greenwood, J.; Ellis, D.I.; Goodacre, R.
Meat, the metabolites: An integrated metabolite profiling and lipidomics approach for the detection of the
adulteration of beef with pork. Analyst 2016, 141, 2155–2164. [CrossRef] [PubMed]

2. Campmajó, G.; Saez-Vigo, R.; Saurina, J.; Nunez, O. High-performance liquid chromatography with
fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection
and quantitation of almond-based product adulterations. Food Control 2020, 114, 107265. [CrossRef]

3. Ballin, N.Z. Authentication of meat and meat products. Meat Sci. 2010, 86, 577–587. [CrossRef] [PubMed]
4. Kamruzzaman, M.; Makino, Y.; Oshita, S. Hyperspectral imaging in tandem with multivariate analysis

and image processing for non-invasive detection and visualization of pork adulteration in minced beef.
Anal. Methods 2015, 7, 7496–7502. [CrossRef]

5. Hamm, R. Colloid Chemistry of Meat; the Water-Binding Capacity of Muscle Protein in Theory and Practice.
In Kolloidchemie des Fleisches; Parey: Singhofen, Germany, 1972.

6. Hahn, G.; Judas, M.; Berk, J. Forced locomotor activity improves walking ability of male turkeys and modifies
carcass characteristics. Br. Poult. Sci. 2020, 61, 107–115. [CrossRef]

7. ISO (the International Organization for Standardization) 1442:1997(en). Meat and Meat Products—Determination
of Moisture Content (Reference Method); International Organization for Standardization: Geneva,
Switzerland, 1997.

8. European Union. Commission regulation (EC) No 543/2008 of 16 June 2008 laying down detailed rules for
the application of Council Regulation (EC) No 1234/2007 as regards the marketing standards for poultrymeat.
Off. J. Eur. Union 2008, 157, 46–87.

9. BVL L 07.00-64 Technische Regel, 2014-08. Untersuchung von Lebensmitteln—Bestimmung von Frei
Vorliegenden Aminosäuren in Fleischerzeugnissen—Gaschromatographisches Verfahren (English: Analysing of
Food—Determination of Free Amino Acids in Meat Products–Using GC); Beuth Verlag: Berlin, Germany, 2014.

10. Rodionova, O.Y.; Pomerantsev, A.L. Chemometric tools for food fraud detection: The role of target class in
non-targeted analysis. Food Chem. 2020, 317, 7. [CrossRef]

11. Busch, D.U.; Krenz, O.; Schellenberg, D.A.; Huber, D.I.; Pavlovic, D.M. “Food fraud”—Analytische
Herausforderungen von Lebensmittelverfälschungen. Z. Das Gesamte Lebensm. 2017, 424, 424–438.

12. Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Amp. Technol.
2008, 19, 482–493. [CrossRef]

13. Gallo, V.; Ragone, R.; Musio, B.; Todisco, S.; Rizzuti, A.; Mastrorilli, P.; Pontrelli, S.; Intini, N.; Scapicchio, P.;
Triggiani, M.; et al. A Contribution to the Harmonization of Non-targeted NMR Methods for Data-Driven
Food Authenticity Assessment. Food Anal. Methods 2019, 13, 530–541. [CrossRef]

14. Sentandreu, M.A.; Sentandreu, E. Authenticity of meat products: Tools against fraud. Food Res. Int. 2014, 60,
19–29. [CrossRef]

15. Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Recent applications of omics-based technologies to
main topics in food authentication. Trac. Trends Anal. Chem. 2019, 110, 221–232. [CrossRef]

16. Hahn, G.; Spindler, M. Method of dissection of turkey carcases. Worlds Poult. Sci. J. 2002, 58, 179–197.
[CrossRef]

17. Amino Acid Mix Solution; Certificate (according to ISO Guide 31), Product 79248; GmbH Sigma-Aldrich Inc.:
Darmstadt, Germany, 2020.

18. Wagner, L.; Trattner, S.; Pickova, J.; Gomez-Requeni, P.; Moazzami, A.A. 1H NMR-based metabolomics
studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem. 2014, 147, 98–105. [CrossRef]
[PubMed]

147



Foods 2020, 9, 1084

19. Castejon, D.; Garcia-Segura, J.M.; Escudero, R.; Herrera, A.; Cambero, M.I. Metabolomics of meat exudate:
Its potential to evaluate beef meat conservation and aging. Anal. Chim. Acta 2015, 901, 1–11. [CrossRef]
[PubMed]

20. Bankefors, J.; Kaszowska, M.; Schlechtriem, C.; Pickova, J.; Brannas, E.; Edebo, L.; Kiessling, A.; Sandstrom, C.
A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic
salmon (Salmo salar L.)—Application to a short feeding study. Food Chem. 2011, 129, 1397–1405. [CrossRef]

21. Tatara, M.R.; Brodzki, A.; Pyz-Lukasik, R.; Pasternak, K.; Szpetnar, M. Sex-related Differences in Skeletal
Muscle Amino Acid Concentrations in 20 Week Old Turkeys. J. Poult. Sci. 2012, 49, 219–223. [CrossRef]

22. Hamano, Y.; Kurimoto, Y. Effects of acetylated wood powder on growth performance, hepatic and muscular
free amino acid profiles, and inosine 5′-monophosphate concentration of breast meat in broiler chickens.
Br. Poult. Sci. 2016, 57, 643–654. [CrossRef]

23. Rikimaru, K.; Takahashi, H. Evaluation of the meat from Hinai-jidori chickens and broilers: Analysis of
general biochemical components, free amino acids, inosine 5′-monophosphate, and fatty acids. J. Appl.
Poult. Res. 2010, 19, 327–333. [CrossRef]

24. Girisuta, B.; Janssen, L.P.B.M.; Heeres, H.J. Green Chemicals: A Kinetic Study on the Conversion of Glucose
to Levulinic Acid. Chem. Eng. Res. Des. 2006, 84, 339–349. [CrossRef]

25. Shen, J.; Wyman, C.E. Hydrochloric acid-catalyzed levulinic acid formation from cellulose: Data and kinetic
model to maximize yields. AIChE J. 2012, 58, 236–246. [CrossRef]

26. Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in Physicochemical and
Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent
Hens. Asian Australas. J. Anim. Sci. 2016, 29, 855–864. [CrossRef] [PubMed]

27. Gauza-Włodarczyk, M.; Kubisz, L.; Włodarczyk, D. Amino acid composition in determination of collagen
origin and assessment of physical factors effects. Int. J. Biol. Macromol. 2017, 104, 987–991. [CrossRef]
[PubMed]

28. Möller, J.; Sjödin, A. Determination of hydroxyproline in meat products by flow injection analysis. Fresenius’ Z.
Anal. Chem. 1988, 329, 732–734.

29. Fey, R. Über die Erfassung des Bindegewebsgehaltes von Fleischwaren mit der Hydroxyprolinmethode.
Z. Lebensm. Unters. Forsch. 1977, 164, 233–238. [CrossRef] [PubMed]

30. Hofman, K.; Hall, B.; Cleaver, H.; Marshall, S. High-throughput quantification of hydroxyproline for
determination of collagen. Anal. Biochem. 2011, 417, 289–291. [CrossRef]

31. Herbert, K.R.; Williams, G.M.; Cooper, G.J.; Brimble, M.A. Synthesis of glycosylated 5-hydroxylysine, an
important amino acid present in collagen-like proteins such as adiponectin. Org. Biomol. Chem. 2012, 10,
1137–1144. [CrossRef]

32. Copley, S.D.; Frank, E.; Kirsch, W.M.; Koch, T.H. Detection and possible origins of aminomalonic acid in
protein hydrolysates. Anal. Biochem. 1992, 201, 152–157. [CrossRef]

33. Van Buskirk, J.J.; Kirsch, W.M.; Kleyer, D.L.; Barkley, R.M.; Koch, T.H. Aminomalonic acid: Identification in
Escherichia coli and atherosclerotic plaque. Proc. Natl. Acad. Sci. USA 1984, 81, 722. [CrossRef]

34. Baer, I.; de la Calle, B.; Taylor, P. 3-MCPD in food other than soy sauce or hydrolysed vegetable protein
(HVP). Anal. Bioanal. Chem. 2010, 396, 443–456. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

148



foods

Article

Comparison of Real-Time PCR Quantification
Methods in the Identification of Poultry Species in
Meat Products

Kerstin Dolch, Sabine Andrée * and Fredi Schwägele

Department of Safety and Quality of Meat, Max Rubner-Institute, E.-C.-Baumann-Str. 20, 95326 Kulmbach,
Germany; kerstin.dolch@mri.bund.de (K.D.); fredischwaegele@gmx.de (F.S.)
* Correspondence: sabine.andree@mri.bund.de

Received: 26 June 2020; Accepted: 31 July 2020; Published: 3 August 2020

Abstract: Poultry meat is consumed worldwide and is prone to food fraud because of large price
differences among meat from different poultry species. Precise and sensitive analytical methods are
necessary to control poultry meat products. We chose species–specific sequences of the cytochrome b
gene to develop two multiplex real-time polymerase chain reaction (real-time PCR) systems: one for
chicken (Gallus gallus), guinea fowl (Numida meleagris), and pheasant (Phasianus colchicus), and one
for quail (Coturnix japonica) and turkey (Meleagris gallopavo). For each species, added meat could be
detected down to 0.5% w/w. No cross reactions were seen. For these two real-time PCR systems,
we applied three different quantification methods: (A) with relative standard curves, (B) with
matrix-specific multiplication factors, and (C) with an internal DNA reference sequence to normalize
and to control inhibition. All three quantification methods had reasonable recovery rates from 43% to
173%. Method B had more accepted recovery rates, i.e., in the range 70–130%, namely 83% compared
to 75% for method A or C.

Keywords: real-time PCR; quantification; chicken; guinea fowl; pheasant; quail; turkey

1. Introduction

Consumer awareness for food is growing. On one side, this may be due to health, religious,
or ideological issues. On the other side, consumers are sensitized due to food fraud incidences like
the horsemeat scandal [1]. Therefore, they want to know what they are getting for their money.
For processed food products, the easiest information source is the label of ingredients. In the EU,
regulation (EU) No 1169/2011 defines specifically what the label should contain and in which order [2].
For their control, if these regulations are complied, affordable and practical analytical methods are
necessary. Hence, one of the main focuses of food authenticity testing is to have the right analytical
methods in place and, if necessary, to develop new methods or to improve existing ones.

A change in detailedness of analytic results is one point where improvement is needed.
Qualitative results are sufficient when many samples are screened to obtain a rough idea with
respect to the contamination rate, and to find out suspected cases. However, in processed food with
several ingredients, it is not always sufficient to detect a specific ingredient. Quite often, it is more
important to know if the content of one ingredient is higher than another one [3], or if the concentration
of an ingredient exceeds a certain threshold [4].

To check the correct declaration of ingredients of animal or plant origin, one strategy is to detect
a specific sequence of the deoxyribonucleic acid (DNA) of the corresponding ingredient. This is
possible as each species has a unique genome. One widely established method for this is the real-time
polymerase chain reaction (real-time PCR). It has been used for a long time for different food products,
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and constantly new methods are published for meat, seafood, milk, and dairy products, as well as fruit
juices [5]. The advantages of real-time PCR analysis are its easy handling and affordable laboratory
equipment. The biggest issue, however, is to obtain valid results for legal purposes [6]. In literature,
there exist several options.

The most straightforward idea is absolute quantification, where a serial dilution of the target DNA
sequence is used as the standard curve [7]. Thereby, the template can be either directly isolated DNA
of the pure target [8], a plasmid containing the cloned DNA sequence [9], or synthetically synthesized
DNA [10]. This quantification method is well suited for raw food samples. However, for processed
food, it is not practicable, as all three DNA sources for the standard curve have in common that they
were not treated like the unknown sample. The measurement of DNA is an indirect quantification
method for the added amount of animal or plant tissue. The detected concentration of DNA deriving
from the target species should correlate directly with the amount of tissue added. But heat treatment
may change the amount of DNA detectable due to heat degradation [11,12], which would lead to an
underestimation of the actual amount of target tissue added.

The next possibility (method A) is to use a relative standard curve [13]. This step allows to perform
quantification of processed and unprocessed food by co-analyzing the DNA of unknown samples
together with the DNA of reference material. Therefore, reference material is produced under the same
production conditions as the unknown sample. Before production, the target is added in quantities
that comply with the measurement range, and DNA is isolated from these DNA standard samples as a
reference. For each real-time PCR run, these DNA standard samples have to be applied and measured
together with the DNA of the unknown samples [14].

Another possibility (method B) is to determine the matrix-specific multiplication factor of each
species under each production condition. DNA is isolated from the reference material and from raw
meat. These DNA samples are analyzed together to obtain the matrix-specific multiplication factor.
In all further quantification experiments, the DNA of the reference material is not needed anymore.
Instead, the DNA samples of the raw material are measured together with the DNA of the unknown
samples, and corrected with the matrix-specific multiplication factors obtained earlier [3,15,16]. As the
matrix-specific multiplication factors vary between laboratories [17], each laboratory has to determine
their own multiplication factors for each animal species and each processing condition [17]. To overcome
this time- and labor-consuming step, an internal DNA reference sequence is necessary to quantify
via a normalized standard curve (method C). This can be a common DNA sequence like myostatin
or a ribosome subunit [18], which detects the whole amount of eukaryotic DNA. In the subsequent
analytical process, either the ratio is determined between target and reference sequence [19,20], or the
difference between the detected amount of target and internal reference sequence (∆Cq) [21,22].

This leads to one of the most important decisions of real-time PCR: the choice of the target DNA
sequence. While the usage of single-copy DNA sequences is preferred because of the more stable copy
number per cell, the application of multi-copy DNA sequences is in favor of lower detection limits [23].

This study focused on the quantification of the relative meat content for five poultry species in
meat products as poultry is the most consumed meat, and its consumption rate is still growing [24].
In addition, poultry products are ranked in the top-ten list of most susceptible product categories [25].
The main species for poultry meat are chicken (Gallus gallus) and turkey (Meleagris gallopavo),
while guinea fowl (Numida melegaris), quail (Coturnix japonica), and pheasant (Phasianus colchicus) are
less consumed in Germany [26]. For each bird species, a DNA sequence of the mitochondrial cytochrome
b gene was chosen, which is often used for identifying animal species [27,28]. For the quantification
method C, we chose a sequence of the 12S rRNA gene as it is a mitochondrial DNA sequence as
well. To determine if the processing temperature affects the possibility to detect meat from the five
poultry species, sausages were prepared under two different temperatures and analyzed with the three
different quantification methods.
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2. Material and Methods

2.1. Material

2.1.1. Chemical Material

The following chemicals were used: Proteinase K (Machery-Nagel, Düren, Germany), hydrogen
chloride, isopropanol, sodium chloride, and tris(hydroxymethyl)aminomethane (Merck, Darmstadt,
Germany), dodecyl sulfate sodium salt (Serva, Heidelberg, Germany), ethylenediaminetetraacetic
acid disodium salt (Riedel-de Haën, Seelze, Germany), guanidine hydrochloride, DNA-free water,
and RNAse A (Sigma, St. Louis, USA), and ethanol (Th. Geyer, Renningen, Germany). The Wizard®

Plus Minipreps DNA Purification System was from Promega (Mannheim, Germany), the QuantiTect
Multiplex PCR NoRox from Qiagen (Hilden, Germany), and real-time PCR tubes from LTF-Labortechnik
(Wasserburg, Germany).

Primers and probes were synthesized by Eurofins Genomics (Ebersberg, Germany).

2.1.2. Sample Material

All meat samples were pectoral muscle meat. Chicken and turkey meat were obtained from C + C,
Kulmbach, Germany, and guinea fowl, pheasant, and quail as whole carcasses from a breeder in Bad
Wörishofen, Germany (Josef Maier). All other meat and plant samples were bought in local stores.

Emulsified type sausages were produced twice as two independent batches A and B on separate
days. If necessary, the carcasses were dissected, and the meat was minced in a Bizerba Ladenwolf (Baling,
Germany). The basic formulation consisted of 50% meat, 25% sunflower oil, 23% ice, 1.7% nitrite salting
mix, and 0.3% phosphate. All % values are (w/w) per sausage filling. For each species, the ingredients
were added to a meat grinder (Food Machines Saarbrücken MK13, Germany) and mixed at 2600 rpm.
The ground meat from all five poultry species were combined in various percentages (Table 1), and then
the additional ingredients were added. Sausages were filled into cans (type 99/36 mm, Dosen-Zentrale
Züchner GmbH, Cologne, Germany) and cooked at low (75 ◦C; batch A for 30 min, batch B for 4 min)
or high temperatures (117 ◦C; with final F values of 5.68 and 6.01 for batches A and B, respectively,
cf. [29]).

Table 1. Composition of standard (S1-5) and unknown emulsified type sausages (U1-5).

Amount of Meat Added (%)

Poultry Species S1 S2 S3 S4 S5 U1 U2 U3 U4 U5

Chicken 1.0 0.0 69.0 25.0 5.0 2.0 0.5 57.5 32.0 8.0
Guinea fowl 25.0 5.0 1.0 0.0 69.0 32.0 8.0 2.0 0.5 57.5

Pheasant 0.0 69.0 25.0 5.0 1.0 0.5 57.5 32.0 8.0 2.0
Quail 5.0 1.0 0.0 69.0 25.0 8.0 2.0 0.5 57.5 32.0

Turkey 69.0 25.0 5.0 1.0 0.0 57.5 32.0 8.0 2.0 0.5

2.2. Methods

2.2.1. Bioinformatics

A DNA sequence of the mitochondrial genome was obtained from NCBI GenBank for chicken
(NC_040970.1), guinea fowl (NC_034374.1), pheasant (NC_015526.1), quail (NC_003408.1), and turkey
(NC_034374.1). These sequences were aligned with the software Molecular Evolutionary Genetics
Analysis (MEGA) [30]. Regions with high similarity were chosen for primer and probe binding sites in
the area coding for the 12S rRNA gene.

The theoretical specificity of all primers was checked with the Primer-BLAST software (Basic
Local Alignment Search Tool, NCBI) with the same parameters as described in [14].
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2.2.2. DNA Isolation

The Wizard DNA isolation kit from Promega was used as the standard DNA isolation method [31].
All samples were prepared as duplicates according to the corresponding instruction. DNA-free water
was used as negative control.

All DNA samples were quantified and qualified by measuring at 260, 280, and 340 nm with a
spectrophotometer DU 7400 (Beckman Coulter, Brea, CA, USA).

2.2.3. Real-Time PCR

Reaction Set-Up

All real-time PCR assays were performed on a RotorGene 6000 (Qiagen, Hilden, Germany)
according to the QuantiTect Multiplex PCR handbook (Qiagen, Hilden, Germany). The reaction was
set up in 25 µL with primer and probe concentrations according to Table 2. The following cycler regime
was used: 15 min at 95 ◦C, 35 cycles of 15 s at 95 ◦C, and 1 min at 60 ◦C, collecting the fluorescence
signal at the end of each cycle.

Table 2. Sequences of primers and probes.

Multiplex
Real-Time PCR

Animal
Species Gene Code DNA Sequence 5′–3′ Concentration (µM) Reference

C-G-P

Chicken Cyt b
C-for AGC AAT TCC CTA CAT

TGG ACA CA 0.20 [27]

C-rev GAT GAT AGT AAT ACC
TGC GAT TGC A 0.20

C-probe
JOE-CAG TCG ACA

ACC CAA CCC TTA CCC
GAT TC-BHQ1

0.08 [32]

Guinea
fowl

Cyt b
G-for GCA TAC GCC ATC CTC

CGC TC 0.20 [33]

G-rev GCT GCC CAC TCA
GGT TAG A 0.20

G-probe
DY682-TGG AGG CGT
ACT AGC ACT AGC
AGC CTC CG-BHQ2

0.08 [32]

Pheasant Cyt b
P-for GAG ACA TGA AAC

ACT GGA G 0.20 [33]

P-rev CAG GTC CAT TCT ACC
AAG G 0.20

P-probe
ATTO633-CGT CCT ACT
CCT CAC ACT CAT AGC

AAC C-BHQ2
0.08 [32]

Q-T

Quail Cyt b
Q-for TGT ACC CTA CAT CGG

CCA AAC C 0.20 [33]

Q-rev GTC AGA TGA GAT
TCC TAA TGG G 0.20

Q-probe
FAM-CCT ACC CTA

ACC CGA TTC TTC GCC
CTC C-BHQ1

0.10 [32]

Turkey Cyt b
T-for CAC TCT TGC ATT CTC

TTC TGT GG 0.20 [33]

T-rev GGA GGT TAT GGA
GGA GTC AAC 0.20

T-probe
ROX-CCT ACA CAT
GCC GAA ACG TAC

AAT ACG-BHQ2
0.08 [32]

ALL Eukarya 12S
rRNA

12S-for AAA CTG GGA TTA
GAT ACC CCA CTA TG 0.3 This work

12S-rev AGA ACA GGC TCC
TCT AGG TGG 0.3

12S-probe
FAM-AGA ACT ACG
AGC ACA AAC GCT

TAA AAC TCT A-BHQ1
0.2
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Templates

After DNA isolation of the poultry sausages, the duplicates were combined. They were either
adjusted to a DNA concentration of 20 ng/µL or diluted 1:10 with elution buffer. The other animal and
plant samples were adjusted to a DNA concentration of 2 ng/µL. For the determination of efficiency,
R2, and limit of detection (LOD) values, the DNA samples of the poultry sausage and of the pure meat
samples were diluted ten-fold with elution buffer.

All DNA samples were analyzed in triplicates (standard samples) or duplicates (unknown
samples), or in sextets (influence of chicken DNA on detection of pheasant DNA and the LOD).
Positive controls and no-template controls (water) were measured once.

2.2.4. Calculation

Method A: Quantification with Reference Material

All DNA samples were diluted 1:10 with elution buffer. The DNA samples from S1–5 (Table 1)
were used as standard material, and the corresponding Cq values were plotted against the logarithmic
starting quantity. This standard curve was used to quantify the amount of meat from each poultry
species in the unknown samples U1–5 (Table 1) for both production temperatures.

Method B: Quantification with Matrix-Specific Multiplication Factors

For establishing the matrix-specific multiplication factors for each species, DNA was isolated
from poultry meat and from the standard emulsified type sausages S1–5 (Table 1) which were adjusted
to a DNA-concentration of 20 ng/µL with elution buffer. The DNA from the poultry meat was used as
standard material to obtain standard curves. For the detection of chicken and quail meat, this was
obtained by using 0.01, 0.1, 1.0, 10, and 100 ng DNA per real-time PCR reaction. For the detection
of guinea fowl, pheasant, and turkey meat, 0.1, 1.0, 5.0, 10, and 100 ng DNA per real-time PCR
reaction were used. The DNA from the emulsified type sausages S1–5 were used for calculating
the respective multiplication factors according to Köppel et al. [13,15] for each meat from poultry
species, separately for cooking at low or high temperatures. These multiplication factors were used to
calculate the amount of meat from poultry species added in the unknown emulsified type sausages
U1-5 (Table 1).

Method C: Quantification with Internal Reference Sequence

This method was performed according to Soares et al. [34] with Equation (1):

∆Cq = Cqtarget − Cqreference (1)

The poultry-species-specific real-time PCR systems were used as the target, and the eukaryotic
real-time PCR system was used as the reference.

All DNA samples were diluted 1:10 with elution buffer, and the ∆Cq values from S1–5 (Table 1)
were plotted against the logarithmic starting quantity for the standard curve. With this standard curve,
we calculated the amount of DNA in the unknown samples U1–5 (Table 1). This was performed for the
meat from each species and under both processing temperatures.

2.2.5. Statistical Analysis

Calculations were performed either with the Rotor-Gene Q Series Software (Qiagen, Hilden,
Germany), Excel (Microsoft Office 2019, Redmond, WA, USA), or with JMP (SAS, Heidelberg, Germany).
All factors were analyzed by multiple logistic regression, and the chi-squared values were recorded.
The level of significance was set at 5%. Standard box plots were used to visualize the data. The box
plots show the median, quantiles as boxes, and whiskers extend to 1.5 times the interquartile distance
at most. Outliers were not omitted from the analysis.
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3. Results

3.1. Bioinformatics

All primer pairs were checked theoretically for specificity against the ten most commonly eatable
bird species (chicken, duck, emu, goose, guinea fowl, ostrich, partridge, pheasant, quail, and turkey).
Additionally, the theoretical cross reactivity of the primers was checked for the triplex real-time PCR
system (C-G-P) and for the duplex real-time PCR system (Q-T) against all eukaryotes. All false positive
matches had several mismatches: the amplicons were either too short or too long, and/or the species
were irrelevant as food. Consequently, there were no relevant false positive matches.

The primer pair for detecting all five species was checked theoretically against all entries for
animal organisms in the NCBI GenBank database, and amplicons were obtained with a length of
143–146 bp. No mismatches were found for the five poultry species investigated.

3.2. Development of One Triplex and One Duplex Real-Time PCR System

A pentaplex real-time PCR system was proposed in a former publication. However, this system
had a lack in precision and accuracy [32]. To overcome this problem, the pentaplex real-time PCR
system was split into one triplex real-time PCR system for detecting meat of chicken, guinea fowl,
or pheasant (C-G-P), and one duplex real-time PCR system for detecting meat of quail or turkey (Q-T).

DNA isolated from raw meat had concentrations of 333 ng/µL for chicken, 245 ng/µL for guinea
fowl, 228 ng/µL for pheasant, 593 ng/µL for quail, and 209 ng/µL for turkey. Ten-fold dilution series
of 10−1–10−7 gave standard curves for detecting the meat of each species. For the triplex real-time
PCR system, efficiency and R2 values were 102% and 0.983 for chicken, 91% and 0.995 for guinea fowl,
and 95% and 0.985 for pheasant; for the duplex system, the values were 94% and 0.998 for quail and
93% and 0.993 for turkey, respectively.

No signal was received with either real-time PCR system when DNA of the following animal
species was used: bison, buffalo, camel, chamois, elk, fallow deer, goat, horse, llama, mouflon, pig,
reindeer, roe deer, sheep, tuna, wild hare, zebra, or zebu, or DNA from the following plant species:
bean, beetroot, black mustard, broccoli, Brussels sprouts, bunching onion, caraway, cardamom, carrot,
cauliflower, celery, chili, Chinese cabbage, coriander, cress, cucumber, fennel, garden leek, garden
radish, garlic, ginger, green cabbage, horseradish, Indian mustard, kohlrabi, lemon, marjoram, onion,
parsley, pepper, pistachio, potato, pumpkin, radish, red cabbage, rutabaga, salsify, savoy cabbage,
tomato, white mushroom, white mustard, white pepper, wood garlic, or zucchini.

However, signals were obtained for DNA of chicken, guinea fowl, pheasant, quail, or turkey,
each with the respective real-time PCR system (Cq = 15–18) (Table 3). False positive signals were
obtained for a few DNA samples with the earliest Cq value of 29. Additionally, all five real-time
PCR systems had in common that the blank values gave signals with Cq values between 29 and 33.
Therefore, a cut-off was set at Cq ≥ 29.

3.3. Quantification

The unknown emulsified type sausages were analyzed with three quantification methods.
For each method, the predicted means were calculated for the unknown samples, together with
standard deviations, coefficients of variation (CV), and bias. The CV represents the relative standard
deviation of results obtained under repeatability conditions, and was accepted with CV ≤ 25 [13].

Bias was accepted in a range of ±25% relative to the mean. Additionally, recovery rates were
calculated, and a range of ±30% was accepted, i.e., recovery rates of 70–130% [13].

3.3.1. Method A: Quantification with Reference Material

For this method, DNA of the reference material was used to obtain a standard curve. The reference
material with known concentrations of meat from the five poultry species was produced under the
same conditions as the unknown emulsified type sausages. Most of the CV and bias values were
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within the accepted range. Some of the values were out of range, especially when detecting small
concentrations of poultry meat or a high concentration of quail meat (Table 4).

Table 3. Cq values for various animal and plant species tested with the triplex real-time polymerase
chain reaction (real-time PCR) system (C-G-P) and the duplex real-time PCR system (Q-T) systems.

DNA
Triplex C-G-P Duplex Q-T

Chicken Guinea Fowl Pheasant Quail Turkey

Asparagus 32.28 32.96 - - - - - - - -
Beef 32.20 - - - - - - - - -

Chicken 15.21 15.47 - - 31.27 31.06 - - - -
Deer - - - - - - 34.74 34.26 - -
Duck - - - - 34.64 - - - - -
Goose - - - - 29.54 29.22 - - 34.23 -

Guinea fowl 32.95 34.77 16.40 16.71 - - - - - -
Kangaroo - - - - - - 32.33 31.46 - -

Mace 32.13 - - - 29.53 - - - - -
Ostrich - - 31.01 30.59 30.49 30.12 30.94 31.20 - -

Pheasant - - - - 14.70 14.73 - - - -
Quail - - - - - - 17.69 17.73 - -

Turkey - - - - - - - - 15.86 16.00
Wild boar - - - - - - - - 34.80 -

Blank value 32.66 - 32.36 32.33 29.13 29.73 32.23 31.35 31.71 32.38

All samples were measured in duplicates. - no Cq values were obtained until cycle 35.

Table 4. Predicted concentrations of meat from five poultry species in unknown emulsified type
sausages under two temperature conditions, quantified with reference material.

Actual
(% w/w)

Low Temperature High Temperature

Mean Predicted
(% w/w) a SD b CV (%) c Bias (%) d Mean Predicted

(% w/w) a SD b CV (%) c Bias (%) d

Chicken
0.5 0.28 0.04 14.41 −43.33 0.33 0.08 24.49 −33.33
2.0 1.88 0.26 14.01 −5.83 2.43 0.27 11.23 21.67
8.0 6.82 0.54 7.95 −14.79 7.22 1.64 22.71 −9.79

32.0 25.22 3.14 12.47 −21.20 36.45 7.15 19.61 13.91
57.5 50.53 10.56 20.90 −12.12 70.88 6.79 9.57 23.28

Guinea fowl
0.5 0.30 0.06 21.08 −40.00 0.37 0.08 22.27 −26.67
2.0 1.52 0.24 15.83 −24.17 2.48 0.69 27.95 24.17
8.0 8.45 0.73 8.62 5.63 10.30 2.42 23.48 28.75

32.0 26.63 3.93 14.74 −16.77 43.10 8.06 18.69 34.69
57.5 45.90 3.68 8.01 −20.17 57.42 17.53 30.53 −0.14

Pheasant
0.5 0.55 0.05 9.96 10.00 0.87 0.30 34.74 73.33
2.0 1.68 0.22 13.24 −15.83 1.78 0.15 8.25 −10.83
8.0 6.92 0.96 13.94 −13.54 10.45 1.35 12.96 30.63

32.0 24.85 3.93 15.81 −22.34 36.02 6.30 17.49 12.55
57.5 55.53 3.66 6.59 −3.42 57.60 13.94 24.19 0.17

Quail
0.5 0.47 0.16 34.99 −6.67 0.70 0.15 22.13 40.00
2.0 2.03 0.20 9.67 1.67 2.22 0.43 19.44 10.83
8.0 7.90 0.88 11.12 −1.25 9.68 2.41 24.91 21.04

32.0 28.83 7.56 26.23 −9.90 29.17 2.35 8.05 −8.85
57.5 50.32 10.41 20.69 −12.49 95.07 37.50 39.45 65.33

Turkey
0.5 0.52 0.16 31.01 3.33 0.45 0.05 12.17 −10.00
2.0 1.68 0.19 11.53 −15.83 2.03 0.30 14.81 1.67
8.0 4.95 0.23 4.56 −38.13 7.42 0.80 10.83 −7.29

32.0 29.05 2.81 9.68 −9.22 32.60 5.69 17.45 1.88
57.5 49.42 12.04 24.37 −14.06 54.68 5.37 9.82 −4.90

a Values are the means of replicate assays (n = 12); b SD—standard deviation; c CV—coefficient of variation;
d Bias = 100 * ((mean value − actual value)/actual value).
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Most recovery rates were within the accepted range of 70–130% (Figure 1). Lower recovery rates
(<70%) were obtained for detecting small concentrations (0.5% meat) and higher recovery rates (>130%)
for detecting 57.5% quail meat.Foods 2020, 9, 1049 8 of 18 

 
Figure 1. Recovery rates of meat from five poultry species in emulsified type sausages (with 0.5–57.5% 
meat) quantified with reference material from standard emulsified type sausages (with 0–69% meat). 
All concentration levels were cooked at low (L) or high temperature (H). DNA was isolated in 
duplicate from each sausage from both batches, and three independent real-time PCRs were 
performed, i.e., box plots are from twelve measurements. The grey areas represent the accepted range 
of 70–130%. 

3.3.2. Method B: Quantification with Matrix-Specific Multiplication Factors 

The DNA of the standard emulsified type sausages were used to calculate the matrix-specific 
multiplication factors, separately for low or high cooking temperatures, with the DNA of raw meat 
as standard material. The multiplication factors ranged from 0.90 (for pheasant meat) to 3.82 (for quail 
meat) at low cooking temperature, and from 0.09 (for pheasant meat) to 0.52 (for turkey meat) at high 
cooking temperature (Table 5). 

Table 5. Matrix-specific multiplication factors to predict the concentration of meat from five poultry 
species in unknown emulsified type sausages under two temperature conditions. 

Temperature Batch Chicken Guinea Fowl Pheasant Quail Turkey 
Low A 1.16 1.19 0.68 3.02 1.19 

 B 1.44 1.49 1.12 4.61 1.17 
 Mean 1.30 1.34 0.90 3.82 1.18 

High A 0.24 0.12 0.09 0.31 0.61 
 B 0.23 0.09 0.10 0.29 0.42 
 Mean 0.24 0.11 0.09 0.30 0.52 

All of the CV values were within the accepted range, only the CV value was slightly higher for 
detecting 0.5% of pheasant meat at low temperature (Table 6). Most of the bias values were as well 

Figure 1. Recovery rates of meat from five poultry species in emulsified type sausages (with 0.5–57.5%
meat) quantified with reference material from standard emulsified type sausages (with 0–69% meat).
All concentration levels were cooked at low (L) or high temperature (H). DNA was isolated in duplicate
from each sausage from both batches, and three independent real-time PCRs were performed, i.e.,
box plots are from twelve measurements. The grey areas represent the accepted range of 70–130%.

3.3.2. Method B: Quantification with Matrix-Specific Multiplication Factors

The DNA of the standard emulsified type sausages were used to calculate the matrix-specific
multiplication factors, separately for low or high cooking temperatures, with the DNA of raw meat as
standard material. The multiplication factors ranged from 0.90 (for pheasant meat) to 3.82 (for quail
meat) at low cooking temperature, and from 0.09 (for pheasant meat) to 0.52 (for turkey meat) at high
cooking temperature (Table 5).

All of the CV values were within the accepted range, only the CV value was slightly higher for
detecting 0.5% of pheasant meat at low temperature (Table 6). Most of the bias values were as well
within the given range, only for detecting chicken, pheasant, and turkey meat some values were out of
the range.
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Table 5. Matrix-specific multiplication factors to predict the concentration of meat from five poultry
species in unknown emulsified type sausages under two temperature conditions.

Temperature Batch Chicken Guinea Fowl Pheasant Quail Turkey

Low A 1.16 1.19 0.68 3.02 1.19
B 1.44 1.49 1.12 4.61 1.17

Mean 1.30 1.34 0.90 3.82 1.18
High A 0.24 0.12 0.09 0.31 0.61

B 0.23 0.09 0.10 0.29 0.42
Mean 0.24 0.11 0.09 0.30 0.52

Table 6. Predicted concentrations of meat from five poultry species in unknown emulsified type
sausages under two temperature conditions, quantified with matrix-specific multiplication factors.

Actual
(% w/w)

Low Temperature High Temperature

Mean Predicted
(% w/w) a SD b CV (%) c Bias (%) d Mean Predicted

(% w/w) a SD b CV (%) c Bias (%) d

Chicken
0.5 0.40 0.05 11.70 −19.33 0.35 0.07 19.07 −29.67
2.0 2.85 0.20 6.94 42.58 2.71 0.41 15.24 35.42
8.0 10.23 0.55 5.39 27.83 10.33 0.74 7.13 29.10

32.0 34.77 1.90 5.47 8.65 31.76 2.37 7.47 −0.74
57.5 60.68 2.49 4.10 5.52 62.27 4.51 7.25 8.30

Guinea fowl
0.5 0.44 0.06 14.08 −13.00 0.37 0.08 21.66 −26.67
2.0 1.80 0.23 12.61 −10.25 1.81 0.09 4.71 −9.58
8.0 7.75 0.73 9.45 −3.10 7.73 1.11 14.42 −3.35

32.0 29.86 2.96 9.91 −6.68 32.29 2.84 8.81 0.90
57.5 51.62 4.15 8.04 −10.22 51.76 2.72 5.26 −9.98

Pheasant
0.5 0.74 0.19 25.55 47.33 0.69 0.17 24.82 38.00
2.0 2.50 0.33 13.21 24.75 2.00 0.28 14.08 0.00
8.0 9.25 1.60 17.33 15.65 8.50 1.64 19.33 6.19

32.0 31.41 3.44 10.96 −1.83 31.11 4.83 15.53 −2.79
57.5 63.42 5.17 8.16 10.30 63.70 5.12 8.03 10.79

Quail
0.5 0.43 0.10 22.58 −13.67 0.45 0.06 13.19 −10.33
2.0 1.81 0.22 11.95 −9.75 1.90 0.19 9.94 −5.17
8.0 8.90 0.70 7.83 11.21 9.54 1.06 11.10 19.23

32.0 35.00 4.17 11.93 9.36 35.42 2.81 7.95 10.68
57.5 53.81 3.19 5.93 −6.42 57.99 4.04 6.96 0.86

Turkey
0.5 0.66 0.13 19.06 32.33 0.50 0.06 12.78 −0.67
2.0 1.74 0.17 9.89 −13.00 1.38 0.16 11.85 −31.00
8.0 5.68 0.94 16.46 −28.98 4.37 0.42 9.65 −45.42

32.0 26.62 4.58 17.19 −16.81 26.32 4.03 15.32 −17.76
57.5 57.65 2.79 4.84 0.26 54.78 2.57 4.69 −4.74

a Values are the means of replicate assay (n = 12); b SD—standard deviation; c CV—coefficient of variation;
d Bias = 100 * ((mean value—actual value)/actual value).

Most recovery rates were within the accepted range of 70–130% (Figure 2). Lower recovery rates
were obtained for detecting small concentrations of chicken and higher recovery rates were obtained
for detecting small concentrations of pheasant meat.

3.3.3. Method C: Quantification with an Internal Reference Sequence

A mitochondrial reference sequence was chosen because the specific target sequences were
mitochondrial. This additional step did not only normalize the results, it also worked well as an
amplification and PCR inhibition control, which is recommended for processed food products [13].
For detecting the meat of guinea fowl, quail, and turkey, most of these values are either close to the
limit of the range or above (Table 7). On the contrary, the CV and bias values are mostly within the
range for detecting chicken or pheasant meat.
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Table 7. Predicted concentrations of meat from five poultry species in unknown emulsified type
sausages under two temperature conditions, quantified with an internal reference sequence.

Actual
(% w/w)

Low Temperature High Temperature

Mean Predicted
(% w/w) a SD b CV (%) c Bias (%) d Mean Predicted

(% w/w) a SD b CV (%) c Bias (%) d

Chicken
0.5 0.69 0.11 16.37 37.67 0.57 0.21 37.23 14.00
2.0 2.06 0.20 9.65 3.08 2.03 0.32 15.90 1.58
8.0 7.38 2.64 35.76 −7.79 7.08 0.68 9.56 −11.56

32.0 26.22 2.48 9.47 −18.05 26.61 4.78 17.97 −16.84
57.5 72.45 9.83 13.56 25.99 73.04 9.12 12.49 27.02

Guinea fowl
0.5 0.21 0.04 21.00 −57.67 0.25 0.07 30.08 −50.67
2.0 1.87 0.42 22.56 −6.50 2.09 0.50 23.74 4.75
8.0 10.85 3.17 29.24 35.56 9.36 1.99 21.25 17.02

32.0 33.86 7.46 22.03 5.82 32.24 5.27 16.36 0.73
57.5 57.65 17.42 30.21 0.26 60.87 13.56 22.28 5.85

Pheasant
0.5 0.67 0.15 21.82 34.67 0.67 0.05 7.32 34.67
2.0 1.85 0.76 41.35 −7.50 1.75 0.25 14.53 −12.58
8.0 6.99 0.66 9.46 −12.62 7.22 0.85 11.76 −9.79

32.0 31.17 3.02 9.68 −2.59 34.09 2.49 7.31 6.52
57.5 53.74 6.71 12.49 −6.54 52.72 8.00 15.18 −8.31

Quail
0.5 0.35 0.16 47.44 −31.00 0.41 0.11 26.76 −18.00
2.0 1.92 0.57 29.44 −3.92 1.65 0.30 18.42 −17.50
8.0 7.33 1.64 22.44 −8.40 8.21 1.02 12.38 2.67

32.0 31.10 5.97 19.20 −2.83 32.02 6.33 19.76 0.06
57.5 57.61 8.82 15.31 0.19 66.62 10.82 16.24 15.87

Turkey
0.5 0.52 0.14 26.07 4.33 0.50 0.09 17.35 0.33
2.0 1.62 0.51 31.38 −18.92 1.45 0.39 27.19 −27.67
8.0 7.33 1.34 18.28 −8.42 6.59 0.51 7.73 −17.63

32.0 34.91 8.85 25.36 9.10 26.89 7.77 28.90 −15.97
57.5 42.73 9.91 23.19 −25.68 47.90 14.35 29.96 −16.70

a Values are the means of replicate assay (n = 12); b SD—standard deviation; c CV—coefficient of variation;
d Bias = 100 * ((mean value—actual value)/actual value).
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The median of most of the recovery rates were within the accepted range of 70–130% (Figure 3).
However, the scattering of the values for the recovery rates were wide for detecting the five poultry
meat species. Lower recovery rates were obtained for detecting small concentrations of guinea fowl
meat (0.5% meat).Foods 2020, 9, 1049 12 of 18 
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Figure 3. Recovery rates of meat from five poultry species in emulsified type sausages (with 0.5–57.5%
meat) quantified with an internal reference sequence. All concentration levels were cooked at low (L) or
high temperature (H). DNA was isolated in duplicate from each sausage from both batches, and three
independent real-time PCRs were performed, i.e., box plots are from twelve measurements. The grey
areas represent the accepted range of 70–130%.

3.3.4. Comparison

Repeatability (CV) and bias were used to compare the three quantification methods. With low
cooking temperature, the CV values differed (χ2 = 0.0079). For method A, 88% of the CV values were
within the limits, 96% for method B, and 67% for method C. For the bias, no obvious difference was
seen between method A, B, or C (χ2 = 0.3679). With high cooking temperature, the percentage of
accepted CV values differed between the three methods (χ2 = 0.0395). For method A, 84% of the CV
values were within the limits, 100% for method B, and 76% for method C. No differences were seen for
the bias values (χ2 = 0.4000) (data not shown).

Another criterion is to compare the recovery rates, where the limits for acceptance were set to
±30%. A multiple logistic regression was performed, and all predictors which did not significantly
contribute to the whole model (p-value > 5%) were removed from analysis. Thus, cooking temperature
and batches were omitted from the model. The three quantification methods differed in the percentage
of accepted recovery rates (p = 0.0110), with 75% for method A, 83% for method B, and 75% for method
C. There was no obvious pattern for under- or for overestimation. Recovery rates varied between
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poultry species (p = 0.0129) as well as between concentration levels of poultry meat (p < 0.0001).
For detecting chicken meat, all three quantification methods had low accepted recovery rates (Table 8).
For detecting guinea fowl meat, the quantification method B showed high accepted recovery rates.
For detecting pheasant and quail meat, all three quantification methods are similar and well suited.
For detecting turkey meat, method A showed the highest accepted recovery rates.

Table 8. Overview of the applied quantification methods, with percentages of accepted bias, coefficients
of variation (CV), and recovery rate.

Method Technical Summary Bias CV Recovery Rate Species
(% within Accepted Range) d

A a

Quantification with reference material

- Fast
- Low costs

80 100 68 Chicken
60 80 65 Guinea fowl
80 90 80 Pheasant
80 70 77 Quail
90 90 85 Turkey

B b

Quantification with matrix-specific multiplication factors

- More time and more costs for
establishment of multiplication-factors

- Suited for repeated use

50 100 70 Chicken
90 100 93 Guinea fowl
80 90 82 Pheasant

100 100 97 Quail
60 100 73 Turkey

C c

Quantification with an internal reference sequence

- More time and more costs due to second
real-time PCR assay

- With inhibition control

70 80 77 Chicken
70 70 62 Guinea fowl
80 90 80 Pheasant
90 70 80 Quail
80 40 77 Turkey

a Isolation of DNA from reference material and unknown sample; one real-time PCR for calculation of unknown
sample. b Isolation of DNA from unknown sample, reference material, and raw meat; one real-time PCR for
calculation of multiplication factor and another one for calculation of unknown sample. c Isolation of DNA from
reference material and unknown sample; two real-time PCR assays (one for target and one for reference sequence)
for calculation of unknown sample. d for explanation see Section 3.3: Quantification.

4. Discussion

In this study, we compared three different methods to quantify the amount of meat from chicken,
guinea fowl, pheasant, quail, or turkey in meat products, cooked at low or high temperatures [24–26].

For the detection of the two main poultry meat species—chicken and turkey—there is a large variety
of real-time PCR systems. Most of them are single real-time PCR systems to detect a mitochondrial gene
like cytochrome b [4,23,27,28,35,36]. For the detection of chicken meat, a few chromosomal genes are
used like interleukin-2 gene [37] or β-actin gene [38]. Fewer real-time PCR systems have been published
for the detection of meat from guinea fowl [39], pheasant [35,39], or quail [35,39]. There is only one
multiplex real-time PCR system for the combination of chicken and turkey meat [16]. To our knowledge,
less prominent poultry meat species like guinea fowl, pheasant, or quail have not been considered
so far. However, these species are also relevant as they are a delicacy and high-priced. Therefore,
the focus was set on the combined detection of the two main poultry meat species, chicken and turkey,
together with the high-priced poultry meat species guinea fowl, pheasant, and quail.

The bioinformatic testing of the primers resulted in no false positive matches as single systems,
as well as within their combinations (C-G-P and Q-T). However, as the DNA databases are not complete,
there is always the chance to miss a species [14]. Therefore, different animal and plant DNAs were
tested with both multiplex systems. False positive signals were obtained with a few of these DNA
samples. However, each of these Cq values appeared later than the Cq values of the blank samples,
and each was below the cut-off value. Furthermore, no influence of chicken DNA on the Cq value
of detecting pheasant DNA was shown and it was not possible to establish values for the LOD as all
dilutions were to 100% detectable until the cut-off. This, together with high efficiency and R2 values,
indicates that both multiplex real-time PCR systems are precise, specific, sensitive, and suitable to
differentiate meat from these five poultry species in meat products.
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The two real-time PCR systems were established with DNA that was isolated from 300 mg fresh
meat from each species. The DNA content for quail meat was almost twice as high than for each of the
other four species. One explanation for this observation is the small size of quails, which is the smallest
of the five poultry species investigated. A positive correlation between cell size and body mass among
birds [40] implies higher DNA content per body weight in smaller than in larger bird species.

In the literature, there is a large number of methods to quantify material of animal or plant origin
in food products [13,41]. Some of these methods are not suited for processed food products, and were
therefore not considered in this study. All other methods have in common that standard reference
material is required which should be prepared under identical conditions, with similar content, and in
similar concentrations [42,43]. Therefore, standard and unknown emulsified type sausages were
prepared under comparable conditions.

The three quantification methods compared in this study are in wide use. Quantification method
A used DNA from reference material to establish a standard curve that was applied to quantify the
amount of meat of each bird species in the unknown samples. At low cooking temperature, the recovery
rates were between 70% (chicken or turkey meat) and 90% (pheasant meat) within the accepted limits.
At high cooking temperature, the recovery rates were lower than at low temperature for most species,
but 100% for turkey meat. Combined with the high bias values for the detection of a low concentration
of 0.5% pheasant meat, and 57.5% of quail meat, it can be concluded that quantification with reference
material at high cooking conditions is not suited for the whole concentration range for all poultry
species. Overall, the idea of this quantification method is quite straight forward, but the main problem
is to have the right standard material in stock. For research purposes, this is feasible, and this method
was successfully applied to our unknown emulsified type sausages using the standard emulsified
type sausages.

Quantification method B applied multiplication factors. This method was first published by
Köppel and colleagues in 2011 to detect cow, pig, horse, and sheep [15]. It has been applied to many
different animal species since [3,17]. In this study, the multiplication factors were established separately
for each bird species and each cooking temperature. The multiplication factors were smaller for high
than for low cooking temperatures. This might be due to the higher degradation rate of the DNA due
to the higher processing temperature [12]. At low cooking temperature, the percentage of recovery rate
values within the limits of ±30% reached from 73% for chicken or pheasant meat to 97% for guinea fowl
or quail meat. At high cooking temperature, the percentage of recovery rate values within the limits
ranged from 67% (chicken or turkey meat) to 97% (quail meat). Only for the detection of a concentration
of 0.5% of pheasant meat, the CV and the bias values were out of range for both cooking temperatures.
This implies that, with such a low concentration of pheasant meat, the quantification is not accurate.
Overall, the quantification via multiplication factors was effectively applied to the unknown emulsified
type sausages. However, as this quantification method normalizes the concentration determined for
each species, this method is only practicable when all species added are both known and analyzed
together. Therefore, both real-time PCR systems should be expanded if e.g., pork or beef meat were
additional ingredients.

For quantification method C, an additional real-time PCR system was necessary. This system
should amplify a specific sequence from all eukaryote species. Therefore, this system is a way to
measure the total amount of eukaryotic DNA in a sample. In the literature, many different universal
systems have been published. The most common system for quantification of mammal or poultry
DNA is the myostatin gene. There are several systems which differ in their amplicon length [44–46].
However, none of these systems are suited for both of our multiplex real-time PCR systems which
detect sequences of the multicopy and mitochondrial cytochrome b gene, while myostatin is single-copy
and nuclear. Another gene which is used quite often is the 18S rRNA sequence [34,47–49]. This gene
is multicopy, however, it is also nuclear. Therefore, it was necessary to develop a new real-time
PCR system for eukaryotes which amplifies a multicopy and mitochondrial sequence: the 12S rRNA
gene. Because the calculation of the ∆Cq is widely used [13], this method was applied in our study.
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At low cooking temperature, the percentage of the recovery rate within the limits ranged from 50%
(guinea fowl meat) to 80% (pheasant meat), and at high cooking temperature, the values were between
73% (guinea fowl meat) and 87% (quail meat). Under both conditions, the CV and bias values were
especially large for the lower concentrations. This method allowed the detection of meat from all five
poultry species. As an advantage of this quantification system, the amplification of a reference sequence
serves also as an inhibition control. However, the addition of another real-time PCR system duplicates
the number of samples necessary, and consequently also the costs. Moreover, this quantification is not
always precise.

In summary, each quantification method was successfully applied to detect meat from the five
species in poultry meat products. While method A had a simple and easy line of action (just a
standard curve from standard emulsified sausages), the other two methods were more labor-intensive.
For method B, the multiplication factors had to be determined additionally, and for method C,
an additional real-time PCR system had to be established and performed. For highly processed
food products, an inhibition control is recommended and already included in method C. If the
detection system is to be used more often, quantification method B was the easiest to operate: in future
experiments, the standard emulsified type sausages are not needed anymore, and the DNA from
raw meat can be used for preparing standard curves. In addition, with some minor exceptions,
the percentage of acceptable values for CV and recovery rate were the highest for method B.

5. Conclusions

Overall, splitting the pentaplex real-time PCR system into one triplex and one duplex real-time
PCR system led to a stable, precise, and specific detection method to identify chicken, guinea fowl,
pheasant, quail, and turkey meat. All three quantification methods were successfully applied,
although mitochondrial gene sequences were chosen. While each quantification method had its pros
and cons, a final choice of the quantification method depends on the purpose of its application and the
expected concentration of poultry meat species in the meat product.
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Abstract: To provide consumers correct information on meat species, specific and sensitive detection
methods are needed. Thus, we developed a capillary electrophoresis-based multiplex PCR assay
to simultaneously detect red deer (Cervus elaphus), roe deer (Capreolus capreolus), and water deer
(Hydropotes inermis). Specific primer sets for these three species were newly designed. Each primer set
only amplified target species without any reactivity against non-target species. To identify multiple
targets in a single reaction, multiplex PCR was optimized and combined with capillary electrophoresis
to increase resolution and accuracy for the detection of multiple targets. The detection levels of this
assay were 0.1 pg for red deer and roe deer and 1 pg for water deer. In addition, its applicability was
demonstrated using various concentrations of meat DNA mixtures. Consequently, as low as 0.1% of
the target species was detectable using the developed method. This capillary electrophoresis-based
multiplex PCR assay for simultaneous detection of three types of deer meat could authenticate deer
species labeled on products, thus protecting consumers from meat adulteration.

Keywords: red deer; roe deer; water deer; multiplex PCR; capillary electrophoresis

1. Introduction

The inaccurate information on the meat species in meat products has been globally concerned
by consumers and regulatory agencies [1,2]. Since it is illegal to substitute meat species undeclared
on the label of meat products, food manufactures must authenticate correct ingredients declared on
their products [3,4]. In the meat industry, game meat consumed commercially is more expensive
than meat from domesticated animals. This is because game meat has high nutritional value, such as
higher protein and lower fat levels. In addition, it does not contain residues of antibiotics or growth
hormones [3,5,6]. Accordingly, replacing game meat with relatively cheaper domesticated meat has
taken place for the economic benefit [5]. For game meat products containing deer species, red deer
(Cervus elaphus) and roe deer (Capreolus capreolus) are commonly used, meaning that these species are
particularly susceptible to fraudulent labeling [7,8]. Several European countries traditionally permit
game hunting [7]. Meanwhile, in Korea, wild animals, such as water deer (Hydropotes inermis), that
damage crops can be temporarily hunted. However, their distribution and sale are limited, according
to the Ministry of Environment guideline. In addition, water deer cannot be used as raw meat or
processed food in Korea. To prevent food adulteration, an authentication method for differentiating
red deer, roe deer, and water deer is essential.
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Methods for detecting meat species have been developed based on DNA molecules and proteins [1,9].
Protein-based methods for deer species authentication have been used by enzyme-linked
immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid
chromatography-mass spectrometry (LC-MS) [10–12]. However, the thermal stability of nucleic
acids compared to proteins can increase the amplification efficiency of target species in processed
foods [13,14]. PCR, a representative DNA-based detection method, has been utilized for species
identification in various fields [15–18]. For deer species, PCR-based detection methods, such as
conventional PCR and real-time PCR, have been developed [3,8,19]. To differentiate closely related
animal species, the development of specific primers for a target species is very crucial. Mitochondrial
DNAs, such as cytochrome b, 12 S rRNA, and D-loop, are commonly used as target genes due
to their sequence variations [2,20–22]. Furthermore, to increase the sensitivity of the DNA-based
detection method in processed foods, a short fragment of PCR amplification is required because
of DNA degradation during the manufacturing process [22,23]. Meanwhile, a multiplex PCR can
simultaneously detect several species in a single reaction tube, resulting in effective detection [15,24,25].
Recently, to clearly separate similar sizes of amplicons of short PCR products, multiplex PCR methods
combined with capillary electrophoresis have been developed and applied to simultaneously identify
various target species [15,26].

The aim of this study was to develop a capillary electrophoresis-based multiplex PCR (CE-mPCR)
method to verify the presence of wild animal species, such as red deer, roe deer, and water deer, in
processed foods. The developed assay not only saves time and labor because it can simultaneously
detect three target species but also can be utilized as a specific and sensitive method for a clear
separation of these three species.

2. Materials and Methods

2.1. Sample Preparation

Raw tissue samples of 10 animal species (red deer: Cervus elaphus, water deer: Hydropotes inermis,
roe deer: Capreolus capreolus, beef: Bos taurus, pork: Sus scrofa domestica, lamb: Ovis aries, goat: Capra
hircus, horse: Equus caballus, chicken: Gallus gallus, and duck: Anas platyrhynchos) were collected
from the Conservation Genome Resource Bank (CGRB, Seoul, Korea) or purchased from online
and local markets of Korea. All samples were cut into small pieces and immediately stored at −20 ◦C
until analysis.

2.2. DNA Extraction

DNAs were extracted from meat samples of animal species and processed products using a DNeasy
Blood and Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions with
slight modifications. For good quality of DNA, 25 mg of meat was ground, and all buffers for extraction
were used at double quantity. The purity and concentration of extracted DNAs were measured with
a Maestro spectrophotometer (Maestro, Las Vegas, NV, USA). DNAs with a 260/280 nm ratio between
1.8 and 2.0 were used as templates for PCR.

2.3. Primer Design

To select species-specific regions for red deer, roe deer, and water deer, nucleotide sequences of
target genes of 19 various animals were downloaded from the GenBank database (Table S1) and aligned
using Clustal Omega program (http://www.ebi.ac.uk/Tools/msa/clustalo/) (Figure 1). Species-specific
primer sets were newly designed using Primer Designer, version 3.0 (Scientific and Educational
Software, Durham, NC, USA). Primers used in this study are listed in Table 1. They were synthesized
by Bionics (Seoul, Korea).
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Table 1. Primers used in this study.

Target Species Primer Name Sequences (5′ → 3′) Target Genes Amplicon Size (bp) Accession No.

Red deer
Deer 2 F TGGACAACTAGCATCTGTCT cyt b 79 JF489133.1
Deer 2 R GAGGTTGTTTTCGATTGTGCTGGTG

Roe deer
Roe deer 3 F CAGCCTTCCTATTAACCCCT

12 S rRNA 126 KJ681490.1
Roe deer 3 R AGGTGTCATGAGCTACAGGC

Water deer
Water deer 1 F CATGATTCAACCCTACAATTC D-loop 160 NC011821Water deer 1 R GGCGCTTAAATACATACCTTGCT

2.4. Single and Multiplex PCR Conditions

Single PCR was performed in a 25 µL final volume containing 10 × Buffer (Bioneer, Daejeon,
Korea), 10 mM of dNTPs (Bioneer), 5 units of Hot Start Taq DNA polymerase (Bioneer), 0.4 µM of each
primer, and 10 ng of DNA template. PCR reaction was carried out in a thermal cycler (Model PC 808,
ASTEC, Fukuoka, Japan) as follows: pre-denaturation at 95 ◦C for 5 min, followed by 35 cycles of 95 ◦C
for 30 s, 60 ◦C for 30 s, and 72 ◦C for 30 s, with a final extension step at 72 ◦C for 5 min.

PCR mixture for multiplex PCR was similar to single PCR except that it used 10 units of Hot Start
Taq DNA polymerase (Bioneer) and optimized concentrations of primers. Annealing temperature
concentrations of primers were optimized, considering specificity between three deer species.
The annealing temperatures were estimated at 58, 59, 60, and 61 ◦C, and the red deer/roe
deer/water deer primers combinations were 0.2/0.4/0.4, 0.2/0.4/0.5, and 0.4/0.4/0.4 µM. Finally, 0.2
µM of primers for red deer and 0.4 µM of primers for roe deer and water deer were used for
multiplex PCR. Multiplex PCR reactions were carried out under the same conditions as single PCR.
All PCR amplicons were electrophoresed on 3% agarose gels stained with ethidium bromide at
150 V for 25 min and confirmed by capillary electrophoresis using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) with DNA 1000 Lab Chip kit (Agilent Technologies).
Briefly, 1 µL of PCR product and 5 µL of markers were loaded into each of the 12 wells and applied
with a gel-dye mix in the chip, which was run in the bioanalyzer.

2.5. Specificity and Sensitivity of Multiplex PCR

The specificity of each primer set was performed using DNAs (10 ng each) isolated from 10 animal
samples, including red deer, roe deer, and water deer. The specificity of the developed multiplex
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PCR was conducted using DNAs of the three target species to determine whether there was any
cross-reactivity between closely related species.

The sensitivity of multiplex PCR was estimated using serially diluted DNAs (from 10 ng to 0.01
pg per reaction) of the three target species. Detection limits were tested using meat DNA mixtures.
The ratio of DNA used in the mixture is shown in Table 2. This test was validated independently using
different PCR instruments by different operators. All PCR reactions included a positive control (target
DNA) and negative control (no-template).

Table 2. The ratio of meat DNA mixtures used in this study.

The Ratio of Meat DNA Mixtures (%)

Red Deer Roe Deer Water Deer

Roe deer and water deer
in red deer

80 10 10
90 5 5
98 1 1
99 0.5 0.5

99.8 0.1 0.1

Red deer and roe deer
in water deer

10 10 80
5 5 90
1 1 98

0.5 0.5 99
0.1 0.1 99.8

3. Results and Discussion

3.1. The Specificity of Newly Designed Species-Specific Primers

In this study, the species-specific primer sets targeting mitochondrial genes of cytochrome b, 12 S
rRNA, and D-loop for red deer, roe deer, and water, respectively, were newly designed. As shown in
Figure 1, sequences of each target species were compared with two closely related species and 16 other
animal species. Considering the intraspecific variation of target species, each primer was selected to
have specific sequences of target species (Figure 1). Primer design is very important in the development
of multiplex PCR because the primer has to selectively amplify the target in a single reaction containing
several primer sets [12]. For multiplex PCR, the sizes of PCR products amplified by each primer set
were different for the three target species (79, 126, and 160 bp for red deer, roe deer, and water deer,
respectively, Table 1). Each set of species-specific primers amplified only the target species without
showing cross-reactivity with nine other species (Figure 2), demonstrating high primer specificity for
the target species.

3.2. Specificity and Sensitivity of Capillary Electrophoresis-Based Multiplex PCR

Using these newly designed primers for the identification of red deer, roe deer, and water deer,
a multiplex PCR was first optimized by adjusting the concentration of each primer and annealing
temperature of PCR condition. The specificity of this optimized assay was then evaluated using DNAs
isolated from 10 animal species. As shown in Figure 3, each primer set for red deer, roe deer, and water
deer in CE-mPCR specifically amplified target species, showing a high resolution between target
species. These results indicated that these red deer-, roe deer-, and water deer-specific primers were
sufficient to differentiate these closely related three species by multiplex PCR without causing any
cross-amplification against non-target species.

The sensitivity of this CE-mPCR developed in this study was evaluated using DNA at different
amounts ranging from 10 ng to 0.01 pg. The results are shown in Figure 4. In lane 6 of Figure 4,
peaks of electropherogram were detected for red deer and water deer, but the peak of roe deer was
not detected in lane 6 and shown in lane 5. Therefore, sensitivities for red deer, roe deer, and water
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deer were 0.1, 1, and 0.1 pg, respectively. Such high sensitivity of this assay might lead to accurate
and reliable detection and differentiation of meat from three target deer species.
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and N: non-template.
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alignment marker, lanes 1–7: 1.0 × 101, 100, 10−1, 10−2, 10−3, 10−4, and 10−5 ng of three target species,
and lane N: non-template.

3.3. Application and Validation of Capillary Electrophoresis-Based Multiplex PCR Using Meat DNA Mixtures

To determine detection limits of CE-mPCR and confirm its applicability to a real sample, two sets
of meat DNA mixtures were prepared as follows: (1) roe deer and red deer commonly used as game
meat were added in water deer to authenticate game meat species present in commercial deer meats,
and (2) red deer was contaminated with roe deer and water deer to detect wild animal species not
permitted commercially in several countries. As shown in Figure 5, the detection limit of this assay was
at least 0.1% for roe deer and red deer in meat DNA mixtures. In another meat DNA mixture, as low as
0.1% of roe deer and water deer could be detected (Figure 6). Microchip-based capillary electrophoresis
technology used in this study is known to provide better accuracy and resolution in multiple target
detection [15]. In the present study, at a low concentration of 0.1% for water deer (lane 6 in Figure 6),
the result obtained by capillary electrophoresis was clearer than a PCR band visualized on agarose gel
(Figure S1). This can help overcome the drawback, such as a false-negative result. In addition, the
detection limit was validated independently in duplicate. All results obtained through intra-laboratory
validation analysis were similar. The 0.1% of roe deer and red deer mixed in water deer and 0.1% of
roe deer and water deer mixed in red deer were detected in two independent PCR reactions using the
developed primer sets. Thus, this CE-mPCR assay developed in this study was able to simultaneously
detect up to 0.1% of red deer, roe deer, and water deer in meat DNA mixtures. Compared to the limit of
detection of 0.1% for roe deer and red deer [4] and 0.5% for red deer [3], our method showed higher or
similar sensitivity. Meanwhile, since this was the first study to apply a detection method for water deer
to meat DNA mixtures, the detection limit of 0.1% of our developed method could not be compared to
previous reports. However, this method might be sufficient to be utilized as a specific and sensitive
molecular tool for monitoring these three types of deer meat.
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Figure 5. Detection limits of red deer and roe deer in water deer by the multiplex PCR assay. Gel image
(A) and electropherograms (B). FU: fluorescence, M: alignment marker, lane L: 100 bp DNA ladder,
lane 1: positive control (10 ng of DNA from target species), lanes 2–6: 10, 5, 1, 0.5, and 0.1% red deer
and roe deer in water deer, and lane N: non-template. a, b, and c indicate red deer, roe deer, and water
deer, respectively.Foods 2020, 9, x FOR PEER REVIEW 10 of 12 
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(A) and electropherograms (B). FU: fluorescence, M: alignment marker, lane L: 100 bp DNA ladder, lane
1: positive control (10 ng of each DNA from target species), lanes 2–6: 10, 5, 1, 0.5, and 0.1% roe deer
and water deer in red deer, and lane N: non-template. a, b, and c indicate red deer, roe deer, and water
deer, respectively.

4. Conclusions

The CE-mPCR assay developed in this study could successfully detect three types of deer meat. Its
applicability for authentication of meat species was verified using various ratios of meat DNA mixtures.
This method is simple and user-friendly. It has high specificity and sensitivity for the simultaneous
detection of red deer, roe deer, and water deer. However, despite several advantages of this method
developed, since it is utilized for only qualitative detection, further study is required to the application
of real-time PCR to quantify meat of target deer species in processed game meat.
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Figure S1: Detection limits of the multiplex PCR assay. Lane M: 100 bp DNA ladder, lanes 1: positive control (10
ng of each DNA from target species), lanes 2-6: 10, 5, 1, 0.5, and 0.1% roe deer and water deer in red deer, and lane
N: non-template. Table S1: Mitochondrial gene sequences of various animals used for the sequence alignment.
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Abstract: In this study, a donkey-specific primer pair and probe were designed from mitochondrial
cytochrome b gene for the detection of raw donkey meat and different processed meat mixtures. The
PCR product size for donkey DNA was 99 bp, and primer specificity was verified using 20 animal
species. The limit of detection (LOD) was examined by serially diluting donkey DNA. Using real-time
PCR, 0.001 ng of donkey DNA could be detected. In addition, binary meat mixtures with various
percentages of donkey meat (0.001%, 0.01%, 0.1%, 1%, 10%, and 100%) in beef were analyzed to
determine the sensitivity of this real-time PCR assay. At least 0.001% of donkey meat was detected in
raw, boiled, roasted, dried, grinded, fried, and autoclaved meat mixtures. The developed real-time
PCR method showed sufficient specificity and sensitivity in identification of donkey meat and could
be a useful tool for the identification of donkey meat in processed products.

Keywords: food adulteration; food fraud; donkey; cytochrome b; real-time PCR; meat products

1. Introduction

Identification of animal species in meat products is important for preventing food adulteration
and providing accurate information regarding meat species to consumers. Donkey meat products are
highly nutritious; moreover, in many countries, including Korea, it is considerably more expensive
than other meats owing to its low supply [1]. In Islamic countries, donkey meat consumption is
prohibited on religious grounds [2]. Due to donkey meat being expensive, it is likely to be mixed with
other cheaper meats for economic benefits, and there is a need to avoid donkey meat entering the food
chain in Islamic countries. Therefore, it is necessary to develop reliable and specific detection methods
that can accurately identify animal species from meat products to prevent cases of disguising meat
from one species as another [3,4].

To date, many protein- and DNA-based detection methods have been developed to determine
animal species in food products. In particular, DNA-based methods have been used to detect
target species in processed foods because DNA is stable at high temperatures and pressures [5–7].
Real-time PCR is an effective tool that accurately amplifies target DNA. Several real-time PCR methods,
particularly based on detection via TaqMan probes, have been developed with high sensitivity and
accuracy to distinguish common meat species such as pork, lamb, and beef [8–12].

Mitochondrial DNA (mtDNA) has been mainly used to detect target species in meat products, and
mtDNA sequences from related species have been phylogenetically studied [13]. In addition, because
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mtDNA evolves faster than nuclear DNA, mtDNA has been used to discriminate target species from
similar species. Further, mitochondria are present in high copy numbers in cells. Thus, real-time PCR
based on specific mtDNA sequences can amplify target DNA degraded by food processing or mixed
with other species [14,15]. In many studies, mitochondrial cytochrome b has been used to develop
species-specific real-time PCR detection methods [12,16,17].

Here, we designed a donkey-specific primer and probe from mitochondrial cytochrome b and
developed a real-time PCR method to accurately identify donkey meat. Although there have been
several previous studies for donkey meat detection [1,9], no study has applied donkey meats treated
under a variety of processing conditions. Thus, in this study, we evaluated the applicability of the
developed method for the detection of donkey meat using raw, boiled, roasted, dried, grinded, fried,
and autoclaved meat mixtures.

2. Materials and Methods

2.1. Preparation of Samples and Binary Meat Mixtures

A total of 20 raw meat samples were obtained from the Conservation Genome Resource Bank for
Korean Wildlife (CGRB), the National Institute of Animal Science (NIAS), and local markets in South
Korea. All samples were homogenized in small pieces and stored at −20 ◦C until analysis.

Binary meat mixtures were prepared to determine the detection limit of donkey-specific real-time
PCR assay. For binary raw meat mixtures, 10 g of each of donkey and beef was lyophilized for 24 h
using a freeze dryer (Ilsin Biobase, Dongduchon, Korea) to remove moisture of raw meats without
DNA degradation, and then ground. In addition, to evaluate the applicability of the developed method
in processed meat products, two meats were treated under six different processing conditions as
follows: (1) boiled at 100 ◦C for 15 min in water bath (MONO-TECH, Daegu, Korea), (2) roasted at
200 ◦C for 5 min in hot plate (Corning Co., New York, NY, USA), (3) dried at 65 ◦C for 12 h in dry oven
(HANKUK S&I, Hwaseong, Korea), (4) grinded for 5 min in commercial grinder (Buwon Electronics,
Daegu, Korea), (5) fried at 180 ◦C for 5 min in cooking oil, and (6) autoclaved at 121 ◦C 150 kPa for
30 min. Each meat for the six different mixtures was prepared in triplicate, which was made on different
days and from meats of different origins. After treatments, each of binary meat mixtures containing six
different percentages (0.001%, 0.01%, 0.1%, 1%, 10%, and 100% (w/w)) of donkey meats in beef was
prepared. Samples (final weight, 100 mg) of various meat mixtures were used for analysis.

2.2. DNA Extraction

Genomic DNA was extracted from raw and autoclaved meat mixtures using the DNeasy Blood
and Tissue kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions with minor
modifications. Briefly, 100 mg of each sample was lysed with 3600 µL of ATL buffer and 400 µL
of proteinase K (20 mg/mL) in a water bath at 56 ◦C for 1 h. After adding 40 µL of RNase A
(100 mg/mL), the mixture was incubated at room temperature for 2 min. AL buffer (4000 µL) and 100%
ethanol (4000 µL) were mixed with the DNA mixture, and the sample was centrifuged through a spin
column. After washing with AW1 and AW2 buffers, the column-bound DNA was eluted with purified
water. The purity and concentration of the extracted DNA were confirmed using a Maestro Nano
spectrophotometer (Maestrogen, Las Vegas, NV, USA).

2.3. Primer and Probe Design

A donkey-specific primer pair and probe for the detection of donkey were designed to amplify
the specific target DNA (Table 1). To design a donkey-specific primer pair, mitochondrial cytochrome
b sequences from 20 animal species, including donkey, beef, and horse (Accession No.: FJ428510.1,
D34635.1, and MH594485.1, respectively) were obtained from GenBank. All sequences were aligned
using Clustal Omega program (http://www.ebi.ac.uk/Tools/msa/clustalo/). The primer pair and probe

178



Foods 2020, 9, 130

were designed using the Primer Designer program version 3.0 (Scientific and Education Software,
Durham, NC, USA) and synthesized by Bionics (Seoul, Korea) and Bioneer (Daejeon, Korea).

Table 1. Sequences of primers and probes used in this study.

Primer Name Sequences (5′→3′) Target
Genes

Amplicon
Size (bp) Reference

Don3 F CGCTCCATTCCCAACAAACTAGGTGGT
Cytochrome

b
99

This study
Don3 R GCTTCGTTGTTTTGACATGTGTAGGGTA

Don3 P FAM-GCCCTTATCCTTTCCATCTTAATCC-
TAMRA

18SpEU-DIR GGTAGTGACGAAAAATAACAATACAGGAC
18S rRNA 141 [18]18SpEU-INV ATACGCTATTGGAGCTGGAATTACC

18S probe FAM-AAGTGGACTCATTCCAATTACAGGGCCT-
TAMRA

2.4. Conventional PCR Reaction

Conventional PCR was performed using a thermal cycler (PC808, ASTEC, Kyoto, Japan) under
the following conditions: pre-incubation at 94 ◦C for 5 min, 30 cycles of denaturation for 30 s at 94 ◦C,
annealing for 30 s at 60 ◦C, extension for 30 s at 72 ◦C, and final extension for 5 min at 72 ◦C. The PCR
reaction mixture comprised 400 nM of each primer, 0.5 U of Ampli-Gold Taq polymerase (Applied
Biosystems, Foster City, CA, USA), 10× PCR buffer (Applied Biosystems), 2.5 mM of each dNTP
(Applied Biosystems), 1.5 mM of MgCl2 (Applied Biosystems), and 10 ng of DNA template isolated
from each of animal species for the specificity test in a total reaction volume of 25 µL. All PCR products
were electrophoresed on a 2% agarose gel and then visualized under UV irradiation.

2.5. Real-Time PCR Reaction

Real-time PCR amplification was performed using an ABI 7500 Real-time PCR instrument (Applied
Biosystems). The PCR reaction was performed in a final volume of 25 µL, containing 2× TaqMan
Universal Master mix (Applied Biosystems), 400 nM of primer pairs, 200 nM of the probe, and 10 ng of
the DNA template. Real-time PCR was performed with a holding stage at 95 ◦C for 10 min, followed
by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. All real-time PCR reactions were performed in
triplicates; no-template control (NTC) was used as a negative control. Data were analyzed using 7500
Software V.2.3 (Applied Biosystems).

2.6. Specificity and Sensitivity of Real-Time PCR

The specificity of the donkey-specific primer pair and probe was tested using 10 ng of genomic
DNA extracted from 20 animal species. To confirm the presence of DNA, endogenous primer pair
and probe targeting the 18S rRNA gene were also used [18]. The sensitivity of the real-time PCR
was measured using 10-fold serially diluted DNA (from 10 to 0.001 ng) extracted from donkey. The
detection limit of real-time PCR in 6 processed binary mixtures containing donkey meat (ranging in
concentration from 10% to 0.001%) mixed with beef meat was used.

3. Results and Discussions

3.1. Specificity

The donkey-specific primer and probe were designed to get a small product size of 99 bp from
mitochondrial cytochrome b. The specificity of donkey primer set was confirmed using the DNA from 20
animal species as templates for this assay. Only the DNA fragment specific for donkey was amplified by
conventional PCR, and there was no amplification in 19 nontarget species (Table 2). The PCR product
amplified by the donkey-specific primer was sequenced to verify the donkey species (Figure S1).
The specificity of the real-time PCR method was additionally verified, and the donkey DNA was
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specifically amplified without any cross-reactivity against the 19 other animal species tested (Table 2).
To confirm the presence of DNA, eukaryotic PCR targeting the 18S rRNA gene was performed. As
shown in Table 2, positive signals were observed in all PCR reactions. Thus, our results proved that
the donkey-specific primer and probe were accurately amplified the target DNA.

Table 2. Specificity results using conventional and real-time PCR assays.

Common
Name

Scientific Name
Conventional PCR Real-Time PCR

Donkey-Specific
PCR

Eukaryotic
PCR

Donkey-Specific
PCR

Eukaryotic
PCR

Donkey Equus asinus + + + +
Horse Equus caballus − + − +
Beef Bos taurus − + − +

Lamb Ovis aries − + − +
Goat Capra hircus − + − +
Deer Cervus elaphus − + − +

Pork Sus scrofa
domestica − + − +

Rabbit Oryctolagus
cuniculus − + − +

Raccoon dog Nyctereutes
procyonoides − + − +

Dog Canis lupus
familiaris − + − +

Cat Felis catus − + − +
Siberian

chipmunk Tamias sibiricus − + − +

Turkey Meleagris
gallopavo − + − +

Ostrich Struthio camelus − + − +
Chicken Gallus gallus − + − +

Pheasant Phasianus
colchicus − + − +

Duck Anas
platyrhynchos − + − +

Goose Anser anser − + − +

Pigeon Columba livia
domestica − + − +

Japanese quail Coturnix japonica − + − +

3.2. Sensitivity of the Donkey-Specific Real-Time PCR Assay

The sensitivity of the donkey-specific real-time PCR targeting cytochrome b gene was determined
using 10-fold serially diluted donkey DNA from 10 to 0.001 ng. Ct values were plotted against
logarithmic DNA concentrations to construct the standard curve for the donkey DNA. The slope and
correlation coefficient (R2) of the standard curve were −3.79 and 0.997, respectively. PCR efficiency
was calculated using the equation “E = (10(−1/slope) − 1)” and was determined to be 83.47% (Figure 1).
Each PCR reaction was performed thrice, and 0.001 ng of the donkey DNA was detected in all the
reactions. The absolute detection limit of the donkey-specific real-time PCR assay was as low as 0.001
ng. These results demonstrated that the real-time PCR method developed in this study has good
linearity and sensitivity.
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Figure 1. Amplification plot (A) and standard curve (B) for the detection of donkey DNA using 10-fold
serial dilutions (from 10 to 0.001 ng).

3.3. Application of the Real-Time PCR Assay to Meat Mixtures Treated under Different Processing Conditions

The meat mixtures treated under six conditions were used to confirm the applicability of
the developed method using highly processed meat products as well as raw meat, and various
concentrations of binary meat mixtures were prepared for the limit of detection (LOD) test of this
method. As shown in Table 3, 0.001% of donkey meat was successfully detected in all processed meat
mixtures, despite high heat and pressure treatments of donkey meat. The average Ct values of three
replicates using donkey DNA were 18.45 ± 0.7, 20.24 ± 0.97, 18.74 ± 0.06, 18.59 ± 0.31, 19.17 ± 0.6,
21.17 ± 0.55, and 20.86 ± 0.26 for raw, boiled, roasted, dried, ground, fried, and autoclaved meats,
respectively. Ct values of the target species in the boiled, fried, and autoclaved meat mixtures were
relatively higher than in other meat mixtures; this may be attributable to the fact that the DNA was
degraded under the high pressure and temperature treatments [7,19].

The lowest percentage of donkey meat adulteration that could be detected by the real-time PCR
method developed in this study was 0.001%, which was lower than 1% of detection limit reported
by Chen et al. [1] and same or lower than 0.001% and 0.01% of detection limits reported by Kesmen
et al. [19]. Therefore, this real-time PCR method can help to confirm the presence of donkey meat
in highly processed meat products and provide accurate information on target meat species. For a
more efficient detection method tool, a further study can be performed the development of multiplex
real-time PCR for the detection of two genes, including the endogenous 18S rRNA gene.
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4. Conclusions

This study described the development of a real-time PCR method to identify donkey DNA.
By targeting a 99 bp fragment of mitochondrial cytochrome b, the designed primer pair and probe
specifically amplified the donkey DNA. The standard curve of the developed real-time PCR method
has good linearity and sensitivity, which is adequate to successfully amplify the target DNA. Raw
and highly processed meat mixtures were analyzed with a sensitivity of 0.001% to demonstrate the
applicability of the method developed in the present study for detecting donkey meat in processed meat
products. The applicability of this method was verified with six processing conditions that can be used
for meat processing, and the applicability was confirmed under all processing conditions. Therefore,
the real-time PCR method developed in this study could be a useful tool for the detection of donkey
and determination of intentional adulterations or food fraud in highly processed meat products.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/2/130/s1,
Figure S1: The identity result of sequences of the PCR products for donkey-specific primer sets.
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Abstract: Perilla and sesame are traditional sources of edible oils in Asian and African countries.
In addition, perilla and sesame seeds are rich sources of health-promoting compounds, such as fatty
acids, tocopherols, phytosterols and policosanols. Thus, developing a method to determine the
geographic origin of these seeds is important for ensuring authenticity, safety and traceability and
to prevent cheating. We aimed to develop a discriminatory predictive model for determining the
geographic origin of perilla and sesame seeds using comprehensive metabolite profiling coupled
with chemometrics. The orthogonal partial least squares-discriminant analysis models were well
established with good validation values (Q2 = 0.761 to 0.799). Perilla and sesame seed samples
used in this study showed a clear separation between Korea and China as geographic origins in our
predictive models. We found that glycolic acid could be a potential biomarker for perilla seeds and
proline and glycine for sesame seeds. Our findings provide a comprehensive quality assessment
of perilla and sesame seeds. We believe that our models can be used for regional authentication of
perilla and sesame seeds cultivated in diverse geographic regions.

Keywords: perilla; sesame; geographic origin; metabolomics; multivariate analysis; metabolite profiling

1. Introduction

Perilla (Perilla frutescens) seed is a rich source of health-promoting compounds, such as tocopherols,
phytosterols, policosanols and fatty acids, which have various bioactivities [1]. Tocopherols have an
antioxidant effect and are known as vitamin E. Phytosterols show reduction of total cholesterols in the
serum. They increase high-density lipoprotein cholesterol levels and reduce low-density lipoprotein
cholesterol levels in the blood. Policosanols also have a serum lipid- and cholesterol-lowering
effect and other beneficial effects, such as cytoprotection, antiaging, liver protection, antioxidant and
anti-parkinsonian effects [2]. In addition, perilla seeds contain high levels of octacosanol (C28-ol) [1,2].
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The fatty acid α-linolenic acid (C18:3n3) is found in high levels in perilla seeds, which is essential to
human health; moreover, perilla seeds contain omega-3 fatty acid, which lowers inflammation and
risk of cancer and cardiovascular and atopic diseases [3]. Sesame (Sesamum indicum L.) seeds also
contain the abovementioned health-promoting compounds, and they are a good source of proteins
rich in sulfur-containing amino acids [4,5]. Linoleic acid (C18:2n6), which is an essential fatty acid for
humans, is the main fatty acid found in sesame seeds; in addition, oleic acid (C18:1n9) is the second
most abundant fatty acid in sesame seeds [6]. In addition, γ-tocopherol is the main tocopherol in
sesame seeds [6,7]. Sesame seeds reportedly contain high levels of phytosterols [5]. Although the
composition and contents of various health beneficial compounds in the perilla and sesame seeds
have been reported, to the best of our knowledge, a comprehensive comparative-analysis involving
hydrophilic and lipophilic compounds has not been reported.

Metabolomics has been widely used to distinguish food products on the basis of differences in
their chemical composition and metabolite contents [8,9]. Food metabolomics comprises analytical
techniques and multivariate discriminant analysis (MVDA) techniques used for food substances.
The analytical techniques usually used in food metabolomics are mass spectrometry (MS) coupled
with separation techniques such as liquid chromatography (LC) and gas chromatography (GC) and
nuclear magnetic resonance (NMR) [10]. For MVDA, the most commonly used methods are principal
component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial
least squares discriminant analysis (OPLS-DA), which are useful tools for describing correlations and
diagnosing differences among the studied samples and their metabolites. Therefore, food metabolomics
strategies are suitable for analyzing food safety, authenticity, traceability and quality assessment and
these strategies have been used to assess various foods and beverages, such as adzuki bean, olive oil,
cabbage, wine, rice, coffee and tomato [11–16].

Perilla and sesame seeds are traditionally used as sources of edible oils in Korea, China, India and
other Asian countries. Perilla is cultivated in Korea, China, Japan, India, Nepal and Thailand [17,18].
In Korea, the production of perilla seeds was average 40,448 tons per year over the last decade, and
approximately 24,411 tons were imported per year [19]. Out of the imported perilla seeds, almost of
99% are Chinese perilla seeds [20]. Sesame is mainly produced in China, Myanmar, India and African
countries such as Sudan, Nigeria and Tanzania. In Korea, the average production of sesame was
12,168 tons over the last decade, whereas approximately 76,812 tons were imported; the self-sufficiency
rate in sesame production was 14% [19,20]. In particular, more than 90% of sesame seeds were imported
from China (50%) and India (40%) [19]. The price of perilla and sesame seeds is influenced by their
places of origin; therefore, identification of the geographic origin of these seeds is important [21].
Forging or mislabeling domestic seeds as imported seeds to gain economic benefits has increasingly
become a crucial issue for both producers and consumers, and it affects food quality assurance
and safety [22]. To prevent this problem, developing a precise and accurate method to identify the
geographic origin of perilla and sesame seeds is needed. Recently, genomic and analytical approaches
have been developed for such identification [4,6,15,23–25]. The genomics method is considerably
accurate; however, it cannot determine the geographic origins of the same plant variety [14]. On the
contrary, the analytical methods can accurately determine the different geographic origins of the same
variety based on the differences in chemical composition. Previous studies have used multivariate
analysis for discriminating between geographic origins of perilla and sesame seeds using genomics
and analytical methods [4,22]. In the case of perilla, however, genomic methods have been reported to
determine geographic origin, but analytical methods have not been developed [23].

We aimed to develop a method to discriminate the geographic origin of perilla and sesame
seeds and to assess their nutritional quality. To discriminate the geographic origin, MVDA was
performed with targeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS).
The hydrophilic and lipophilic metabolite profiling (including amino acids, organic acids, sugars, sugar
alcohols, tocopherols, sterols, policosanols and fatty acids) of perilla and sesame seeds originated
in the Korea and China was performed. Using this, a discrimination model was established for
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the determination of geographic origins of perilla and sesame seeds. This is the first attempt to
construct a discrimination model for perilla seeds using metabolomics. Further, potential biomarkers
for distinguishing the geographic origins of perilla and sesame seeds were proposed. A comprehensive
food quality assessment was also performed. Our findings can offer reliable information about food
authenticity and traceability of perilla and sesame seeds.

2. Materials and Methods

2.1. Sample and Chemicals

Korean perilla and sesame cultivars were grown at the National Institute of Crop Science,
Rural Development Administration, Wanju-gun, Korea, during the 2018 growing season (June to
November). Chinese perilla and sesame samples were procured from a local market in Xinzhou
and JiangXia district (Wuhan city), China. The Chinese samples including perilla and sesame were
from the recent harvests of November 2017 and 2016, respectively. Three biologic replicates were
prepared for each sample. 5α-Cholestane, ribitol, pentadecanoic acid, fatty acid methyl ester (FAME)
mixture, N-methyl-N-trimethylsilyl trifluoroacetamide (MSTFA) and pyridine were purchased from
Sigma-Aldrich (St. Louis, Mo, USA). All other chemicals used in this study were reagent grade unless
stated otherwise.

2.2. Extraction and Analysis of Hydrophilic Compounds

The extraction and analysis of hydrophilic compounds was performed as described previously [26].
A finely ground sample (10 mg) was mixed with 1 mL of a mixture of methanol, water and chloroform
in the ratio 2.5:1:1 (v/v/v). Sixty microliters of ribitol (200 µg/mL) was added to the mixture as an internal
standard (IS) and the mixture was incubated using a Thermomixer Comfort (model 5355, Eppendorf
AG, Hamburg, Germany) at 37 ◦C for 30 min at a mixing frequency of 1200 rpm. The mixture was
centrifuged at 16,000× g for 3 min. The upper layer (methanol/water phase) of 800 µL was pipetted
into a fresh tube and mixed with 400 µL of water. The methanol/water fraction was centrifuged at
16,000× g for 3 min and 900 µL of the supernatant was collected into a fresh tube. The aliquots were
evaporated for 2 h in a centrifugal concentrator (CC-105; TOMY, Tokyo, Japan) and freeze-dried for
over 16 h. For derivatization, 80 µL of 2% methoxyamine hydrochloride (MOX) in pyridine (w/v) was
added in freeze-dried samples and the mixture was incubated at 30 ◦C and 1200 rpm for 90 min using
a Thermomixer Comfort (Eppendorf AG). Subsequently, 80 µL of MSTFA was added and the mixture
was further incubated at 37 ◦C and 1200 rpm for 30 min. The hydrophilic compounds were separated
on the GCMS-QP2010 Ultra system equipped with autosampler AOC-20i (Shimadzu, Kyoto, Japan)
and a DB-5 column (30 m length, 0.25-mm diameter and 1.00 µm thickness). The temperatures for
injection, interface and ion source were set at 280, 280 and 200 ◦C, respectively. The carrier gas was
helium and the column flow rate was 1.1 mL/min. The temperature was held for 4 min at 100 ◦C, after
which it was increased at a rate of 10 ◦C/min up to 320 ◦C and held for 11 min. The runtime was 4.00
to 37.00 min and the scan mode was used with a mass range of 45 to 600 m/z. The compounds were
confirmed using standards and the Wiley9, NIST11 and OA TMS DB5 (Shimadzu) libraries (Table S1).
For relative quantification, we used ribitol as an IS and the calculated the integrated peak area of all
the analyte ratios relative to the peak area of the IS.

2.3. Extraction and Analysis of Lipophilic Compounds

Extraction and analysis of lipophilic compounds (policosanols, phytosterols, tocopherols and
other terpenoids) was performed as described previously [27]. Finely ground samples weighing 10 mg
were collected in 15-mL conical tubes, and 3 mL of ethanol containing 0.1% ascorbic acid (w/v) was
added to the tubes. Fifty microliters of 5α-cholestane (10 µg/mL) was added to the mixture as an IS.
Next, the samples were vortexed for 20 s and placed in a water bath at 85 ◦C for 5 min. Subsequently,
120 µL of potassium hydroxide (80%, w/v) was added for saponification, and the mixture was vortexed

187



Foods 2020, 9, 989

for 20 s. The mixture was returned to the water bath at 85 ◦C for 10 min. The samples were then
cooled on ice for 5 min, and 1.5 mL each of deionized water and hexane was added to each sample and
vortexed for 20 s. The mixture was centrifuged at 1200× g for 5 min at 4 ◦C and the upper layer was
pipetted into afresh tube. In order to re-extract the remaining compounds, 1.5 mL of hexane was added
again into the remaining pellets. The hexane fraction was collected in fresh tubes and evaporated
under a stream of N2 gas in a centrifugal concentrator (TOMY). For the derivatization step, 30 µL of
MSTFA and 30 µL of pyridine were added and incubated at 60 ◦C and 1200 rpm for 30 min using a
Thermomixer Comfort (model 5355, Eppendorf AG, Hamburg, Germany). The GCMS-QP2010 Ultra
system, equipped with the autosampler AOC-20i (Shimadzu), was installed with a Rtx-5MS column
(30 m length, 0.25-mm-diameter and 0.25-µm-thickness) and used for the separation of lipophilic
compounds. In total 1.0 µL of each sample was injected with split mode (10:1 ratio) and the injection
temperature was set at 290 ◦C. Helium was used as a carrier gas and the column flow rate was
1.0 mL/min. The oven temperature was held for 2 min at 150 ◦C, increased at the rate of 15 ◦C/min up to
320 ◦C and finally held for 10 min. The chromatography runtime was 2.00–23.33 min. The MS interface
and ion source temperatures were 280 and 230 ◦C, respectively. The Labsolutions GCMSsolution
software version 4.20 (Shimadzu Kyoto, Japan) was used for the analysis of chromatograms and mass
spectra. The calibration curve range of each lipophilic compound was 0.025–5.00 µg, and a fixed
concentration (0.50 µg each) of the internal standard was used. Qualitative and quantitative analyses
were conducted using standards (Table S2).

Extraction of fatty acids was performed according to a method described previously, but with
slight modifications [28,29]. Briefly, 10-mg of sample was mixed with 2.5 mL of chloroform/methanol
(2:1, v/v) and 10 µL of pentadecanoic acid (100 µg/mL) as an IS. The mixture was sonicated for 15 min.
Next, 2.5 mL of 0.58% (w/v) sodium chloride (NaCl) in water was added to separate the extract into two
phases (methanol-water and chloroform) and to remove proteinaceous matter from the chloroform
fraction. The mixture was briefly vortexed and then centrifuged at 13,000× g for 5 min at 4 ◦C.
Thereafter, the chloroform phase (bottom layer) was pipetted into a new tube and evaporated using
a centrifugal concentrator (TOMY). Toluene (100 µL), 5 M sodium hydroxide (NaOH, 20 µL) and
methanol (180 µL) were added to the dried sample, and the tube was incubated at 85 ◦C for 5 min.
Next, 300 µL of 14% (w/v) boron trifluoride (BF3) in methanol was added for methylation, and the
reaction was performed at 85 ◦C for 5 min. Afterward, 800 µL of pentane and 400 µL of distilled water
were added to the tube, and the tube was centrifuged at 750 ×g for 15 min at 4 ◦C. The supernatant was
collected into a new 2-mL tube and concentrated using the centrifugal concentrator. The concentrated
sample was finally dissolved in 300 µL of hexane, filtered through a 0.5-µm syringe filter and analyzed
by gas chromatography–quadrupole mass spectrometry (GC-qMS) (Shimadzu). The methylated fatty
acids (1 µL) were separated in a DB-5 column (30 m × 0.25 mm × 1.00 µm; Agilent, Palo Alto, CA,
USA) using a GCMS-QP2010 Ultra system with autosampler AOC-20i (Shimadzu). Injection volume
of the samples was 1.0 µL and split mode was set at 10:1 ratio. Injection, ion source and interface
temperatures were set at 280 ◦C, 200 ◦C and 280 ◦C, respectively. The column temperature conditions
were as follows. The initial temperature was maintained at 40 ◦C for 2 min and raised to 320 ◦C at a
rate of 6 ◦C/min. Helium was used as a carrier gas at a flow rate of 1.42 mL/min. Runtime was 2.86 to
49.00 min and scan mode was used with a mass range of 45 to 500 m/z. Qualitative and quantitative
analyses of fatty acids were conducted using standards and a FAME Mix (C8–C24) (Table S3).

2.4. Statistical Analysis

All analyses were performed no fewer than three times. Data obtained from GC-qMS were
analyzed using PCA and OPLS-DA (SIMCA-P version 13.0; Umetrics, Umea, Sweden) to discriminate
the geographic origin of perilla and sesame seeds. To determine the optimal OPLS-DA model, all the
data were normalized with unit variance (UV)-scaling and pareto-scaling. PCA and OPLS–DA were
based on the calculated eigenvectors and eigenvalues. The external validation test, permutation test
and analysis of variance of the cross-validated residuals (CV-ANOVA) were conducted using SIMCA-P
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version 13.0 (Umetrics). The receiver operating characteristic (ROC) analysis and student’s t-test were
performed using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca).

3. Results

3.1. Metabolite Profiling of Perilla and Sesame Seeds

To discriminate the geographic origin of perilla and sesame seeds, we analyzed hydrophilic
and lipophilic compounds using GC-qMS. We detected 35 hydrophilic compounds in 19 samples
of perilla seeds and 31 hydrophilic compounds in 25 samples of sesame seeds (Tables S4 and S5).
The lipophilic compounds, such as fatty acids, sterols, policosanols and tocopherols, were detected
and quantified in all seed samples (Tables S6–S11). In total, 28 lipophilic compounds, including 11
fatty acids, 9 policosanols, 3 tocopherols, 3 sterols and 2 amyrins, were identified in perilla seeds
(Tables S6, S8 and S10). In addition, 23 lipophilic compounds, including 10 fatty acids, 9 policosanols,
1 tocopherol and 3 sterols were detected in sesame seeds (Tables S7, S9 and S11). Unlike perilla seeds,
α- and β-tocopherols, α- and β-amyrins and C18:3n3 were not detected in sesame seeds.

3.2. PCA and OPLS-DA for Geographic Discrimination of Perilla and Sesame Seeds

To discriminate the geographic origins of perilla and sesame seeds, the metabolite profiling data
were processed using multivariate statistical analysis (PCA and OPLS-DA), which is an important
tool for identifying the features of samples in complex data matrices. PCA uses an orthogonal linear
transformation to transform the original data into a new set of variables, the principal component (PC).
The scores and loading of PCs are represented in a bi-dimensional plot, which can formulate a dataset
pattern from the raw data. The data were normalized with UV-scaling. In the PCA score plots, the two
seeds did not show any variance according to geographic origins (Figures S1 and S2).

To improve the geographic discrimination of perilla and sesame seeds, we used OPLS-DA to
determine the differences in metabolites arising due to differences in the geographic origin. OPLS-DA
is a supervised classification method that features (X variables: metabolites) divides into two parts to
separate the systematic variation: one that models the correlation between X and Y (prediction) and
another that models the orthogonal components [30]. Thus, OPLS-DA has maximum separation by
geographic origins based on their metabolites. The geographic origins (Y-variables) were set to 0 for
Korea and 1 for China. Internal validation method was used to validate the model. The quality of the
predictive model was measured by R2 and Q2 values of the validation results. The R2 value indicates
how much the proportion of variation in the data is explained by the model and the goodness of fit.
The Q2 value indicates how much proportion of variation in the data is predictable by the model and
the goodness of prediction. The parameters R2 and Q2 were calculated minimum zero to maximum
one; the R2 value closer to 1 indicates a good value, Q2 > 0.5 is regarded as a good prediction model
and Q2 > 0.9 is regarded as excellent prediction model. To develop a better discrimination model,
the data were normalized by UV and pareto scaling. The optimal OPLS-DA model was established
using UV-scaling, which showed higher R2Y (perilla; 0.822, sesame; 0.844) and Q2 (perilla; 0.761,
sesame; 0.799) values than pareto-scaling (R2Y: perilla; 0.575, sesame; 0.744/ Q2: perilla; 0.480, sesame;
0.715) (Table 1). The OPLS-DA models of both perilla and sesame seeds showed the Q2 values to be
above 0.5, indicating a good prediction model.
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Table 1. Model validation results from orthogonal partial least squares discriminant analysis (OPLS–DA)
with various scaling methods for discriminating the geographic origin of perilla and sesame seeds.

Sample X Variables
Number

Scaling
Method R2X R2Y Q2

Perilla 57
UV 0.316 0.822 0.761

Par 0.473 0.575 0.480

Sesame 78
UV 0.303 0.844 0.799

Par 0.526 0.744 0.715

UV—unit variance; Par—pareto.

The OPLS-DA analysis was performed with UV-scaling data. The OPLS score plot of perilla
seeds showed good separation on the basis of geographic origins (Korea and China) (Figure 1A).
To identify the potential biomarkers for the geographic discrimination of perilla seeds, variable
importance in projection (VIP) plots were used to explain the contribution of metabolites to the
prediction models wherein VIP values greater than 1.00 indicate the significant influence on the model.
In total, 29 metabolites had greater than 1.00 VIP values (Table S12). Glycolic acid, α-tocopherol and
C20:0 were top-ranked metabolites in the VIP plots. The OPLS score plot of sesame seeds also showed
good separation by region (Korea and China) (Figure 1B). In total, 26 metabolites showed a VIP cut off

value of over 1.00 (Table S13). Proline, glycine and alanine were top-ranked in VIP plots.
The established OPLS-DA model for the discrimination of perilla and sesame seeds on the basis

of geographic origin was subjected to an external validation test to determine its accuracy. In the case
of perilla seeds, 57 samples were divided into 49 training samples and 8 test samples. The Y-variables
were set to 0 for Korea and 1 for China. The OPLS projection model was established using 49 training
samples, and then the 8 test samples were projected on the established OPLS projection model.
The results of external validation test showed good discrimination of geographic origin of perilla seeds
in the OPLS prediction model with R2X = 0.298, R2Y = 0.788 and Q2 = 0.674. In addition, this OPLS
model showed a root mean square error of prediction (RMSEP) = 0.229, which indicates the accuracy of
prediction. The RMSEP value, being close to zero, indicated a good value. Furthermore, perilla seeds
cultivated in Korea and China did not fall on the borderline of 0.5, which was a threshold level in the
external validation test. Additionally, a permutation test and CV-ANOVA were conducted to test the
risk of over-fitting the OPLS model. The permutation test was performed with 200 permuted models,
which was constructed using randomized Y-variables. The reference distribution of the Q2 value for
random data from permuted models was compared with the Q2 value of the real (unpermuted) OPLS
model. When the Q2 value from the permuted model is smaller than the Q2 value of the original OPLS
model, the model is considered as a predictable model. The results of the permutation test showed
the Q2 value of −0.496, which was lower than the Q2 value of the original OPLS model (Figure 2A).
The CV-ANOVA test was performed to testify the validity of the model. When the p-value was
smaller than 0.05, the model was regarded as a validated model. The p-value of perilla seeds from the
CV-ANOVA test was 3.05 × 10−10.

To perform the external validation test for the OPLS-DA model of sesame seeds, the 78 samples
were divided into 68 training samples and 10 test samples. The 68 training samples were used for
the construction of the OPLS prediction model, and the 10 test samples were projected on the OPLS
model. The external validation test results displayed good separation of sesame seeds samples on
the basis of geographic origin in the OPLS projection model, which showed validation values with
R2X = 0.320, R2Y = 0.812, Q2 = 0.754 and RMSEP = 0.208. The results of the permutation test for the
OPLS predictive model for sesame seeds showed the Q2 value of −0.383, which was smaller than the
Q2 value of the real OPLS model. The CV-ANOVA test results of sesame seeds showed the p-value
of 1.61 × 10−18. Therefore, the OPLS-DA model for geographic discrimination of both of perilla and
sesame seeds were successfully established and validated.
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Figure 1. OPLS–DA score plots and VIP (variable importance in the projection) plots of (A) perilla and
(B) sesame seeds from Korea and China. C20-ol—eicosanol; C21-ol—heneicosanol; C22-ol—docosanol;
C23-ol—tricosanol; C24-ol—tetracosanol; C26-ol—hexacosanol; C27-ol—heptacosanol;
C28-ol—octacosanol; C30-ol—triacontanol; C12:0—lauric acid; C14:0—myristic acid;
C16:1n7—palmitoleic acid; C16:0—palmitic acid; C18:2n6—linoleic acid; C18:3n3—α-linolenic
acid; C18:1n9—oleic acid; C18:0—stearic acid; C20:0—arachidic acid; C22:0—behenic acid;
C24:0—lignoceric acid.
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3.3. Potential Biomarkers for the Discrimination of Perilla and Sesame Seeds Based on Their Geographic Origins

The OPLS-biplot displayed a combination of observations (samples), X-variables (metabolites)
and Y-variables (geographic origin) in a bi-dimensional space. This could easily explain the correlation
of variables and the clustering of samples. The three ellipses—inner (0.50), middle (0.75) and outer
(1.00)—indicate that the explained variances are 50%, 75% and 100%, respectively. If the variables are
located close to the observations, the sample group has high levels of metabolites, whereas if they are
opposite, the levels of metabolites are low. If the variables are closer to the outer circle (1.00) of the
OPLS-biplot, the metabolites have more significantly contributed to the model.

In the OPLS-biplot of perilla seeds, glycolic acid, α-tocopherol and C20:0 were significant
contributors, which were notably positioned the closest to the outer (1.00) circle and Y-variables
(Figure 3A). In particular, only glycolic acid was located within middle (0.75) and outer (1.00) circles
among these metabolites. In addition, these metabolites had top-ranked VIP values (glycolic acid, 1.82;
α-tocopherol, 1.70; and C20:0, 1.48) in VIP plot. Therefore, to evaluate the predictive performance
of these metabolites as potential biomarkers, ROC analysis was conducted. When the area under
curve (AUC) values, which were a result of the ROC analysis, are to be closer to 1.00, the outcome
is desirable [4]. Glycolic acid showed the AUC value of 1.000, indicating the excellent accuracy of
discriminating Korean and Chinese perilla seeds (Figure 4A). In addition, α-tocopherol (AUC: 0.900)
and C20:0 (AUC: 0.856) showed good accuracy to be considered as potential biomarkers. Therefore,
glycolic acid was proposed as a potential biomarker for Chinese perilla seeds.

As shown in Figure 4B, proline, glycine and alanine, which were top-ranked (proline, 1.82; glycine,
1.57; and alanine, 1.49) in the VIP plot of sesame seeds, were located the closest to the outer circle
and Y-variables. These metabolites showed AUC values in the range of 0.915–0.944, indicating their
excellent accuracy as potential biomarkers for discriminating Korean and Chinese sesame seeds. Thus,
proline, glycine and alanine were proposed as potential biomarkers for discriminating sesame seeds
on the basis of geographic origin.
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Figure 3. The OPLS-biplot for discriminating the geographic origin of (A) perilla and (B) sesame seeds
using metabolite profiling data. The OPLS-biplot showed correlation of all metabolites (X-variables),
sample clusters (observations) and geographic origins (Y-variables). C20:0; arachidic acid.
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Figure 4. Receiver operating characteristic (ROC) curves for discriminating the geographic origins
of (A) perilla and (B) sesame seeds using metabolite profiling data. ROC curves for (a) glycolic acid,
(b) α-tocopherol and (c) C20:0 (arachidic acid) on discriminating (A) perilla seeds from Korea and
China. ROC curves for (d) proline, (e) alanine and (f) glycine on discriminating (B) sesame seeds from
Korea and China.

4. Discussion

The quality of perilla and sesame seeds and oils based on various health-related compounds
such as fatty acids, tocopherols and sterols has been assessed previously [1,5]. However, to the best
of our knowledge, a comprehensive metabolite profiling, which combines primary and secondary
metabolites, has not been reported for perilla and sesame seeds. Therefore, we analyzed the primary
metabolites and health-promoting compounds, which are abundantly found in perilla and sesame
seeds, using GC-qMS. Perilla and sesame seeds are important oil crops, and they contain high levels of
lipophilic compounds. In our analysis, perilla seeds showed high levels of α-linolenic acid (C18:3n3)
and linoleic acid (C18:2n6), which are essential omega-3 and -6 fatty acids, respectively (Tables S10 and
S11). On the contrary, α-linolenic acid (C18:3n3) was not detected in sesame seeds. However, linoleic
acid (C18:2n6) and oleic acid (C18:1n9) were detected in higher levels in sesame seeds than in perilla
seeds. Among tocopherols, γ-tocopherol was found in the highest amount in both perilla and sesame
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seeds; however, α- and β-tocopherols were not detected in sesame seeds. Phytosterols were found in
high amounts in perilla and sesame seeds (Tables S8 and S9). The levels of phytosterols in sesame seeds
were approximately three times higher than those in perilla seeds. The above results were consistent
with those of the previous studies [1]. Perilla seeds showed high levels of policosanols (Table S6).
In particular, C28-ol was found in the highest level among policosanols in perilla seeds. However,
sesame seeds showed low levels of policosanols (Table S7). These results agreed with those of the
previous studies, which showed that perilla seeds and oils contain the highest levels of policosanols
among other oil crops, while sesame seeds and oils contain negligible amounts of policosanols [31,32].
The hydrophilic metabolites, such as amino acids, organic acids and sugars, were detected in both
perilla and sesame seeds (Tables S4 and S5). Almost all amino acids were found at higher levels in
sesame seeds than in perilla seeds, except methionine and β-alanine. Sesame seeds are known as
a good source of proteins rich in high sulfur-containing amino acids [4,5]. Therefore, sesame seeds
may be consumed methionine for generating protein, which including high sulfur-containing amino
acids. For the synthesis of high amount methionine, aspartic acid metabolism is activated. As a result,
aspartic acid levels were higher in sesame seeds than in perilla seeds. In addition, sesame seeds have
high levels of phenylalanine. Sesame seeds are also known to contain high amounts of lignans such as
sesamin, sesamolin and sesamol [6,7]. Therefore, sesame seeds may have an activated phenylpropanoid
pathway for the synthesis of lignans, resulting in the upregulated levels of phenylalanine.

To compare the compositional differences in seeds according to their origins, student’s t-test was
performed with metabolite profile data of perilla and sesame seeds. The t-test results of perilla seeds
showed that 22 metabolites were considered statistically significant (0.05 ≥ p-value) between Korean
and Chinese perilla seeds. In addition, these metabolites were shown to have compositional differences
with geographic origins of perilla seeds. In the OPLS-DA loading plots of perilla seeds, the Korean
perilla seeds had higher amounts of five terpenoids (α-, γ-tocopherols, β-sitosterol and α-, β-amyrin),
five fatty acids (C14:0, C16:0, C18:0, C20:0 and C22:0) and methionine than Chinese seeds (Figure S3B).
On the other hand, four policosanols (C20-ol, C22-ol, C24-ol and C26-ol), five organic acids (glycolic
acid, phosphoric acid, nicotinic acid, lactic acid, glyceric acid), 4-aminobutyric acid and sucrose were
shown to be present in higher levels in Chinese perilla seeds. In the case of sesame seeds, 25 metabolites
were considered statistically significant between Korean and Chinese seeds. In the OPLS-DA loading
plots of sesame seeds, three fatty acids (C14:0, C18:1n-9 and C24:0), four organic acids (citric acid,
isocitric acid, malic acid and threonic acid), threonine and C22-ol were higher in concentration in
Korean sesame seeds than in Chinese sesame seeds (Figure S4B). Whereas, the Chinese sesame seeds
contained higher amounts of four amino acids (glycine, alanine, phenylalanine and 4-aminobutyric
acid), two organic acids (succinic acid and glyceric acid), four policosanols (C24-ol, C28-ol, C26-ol and
C30-ol), γ-tocopherol, glycerol, phosphoric acid, inositol and fructose than the Korean sesame seeds.

We determined and predicted the geographic origins of perilla and sesame seeds cultivated in
China and Korea using OPLS-DA (Figure 1). The score plot of OPLS-DA showed good separation of
both perilla and sesame seeds using appropriate data pretreatment. The optimal data preprocessing
method for the OPLS-DA model was the UV-scaling method with the highest Q2 and R2Y values in both
of perilla and sesame seeds (Table 1). The selection of normalization methods is particularly important
to reduce the unwanted instrumental errors of peak intensity measurements for relevant biologic
differences. Thus, data normalization and scaling strategies should be chosen in such a way that the
model shows optimal predictive ability of MVDA and retains meaningful biologic information [33].

The OPLS-biplots and VIP plots were generated to identify the biomarkers for discriminating
perilla and sesame seeds on the basis of their geographic origins. Glycolic acid, α-tocopherol and C20:0
were identified as potential biomarkers for perilla seeds discrimination. Furthermore, proline, alanine
and glycine were found to be potential biomarkers for sesame seeds discrimination. These potential
biomarkers were further validated using ROC curve analysis. All AUC values of potential biomarkers
were higher than 0.85, indicating that these metabolites significantly contribute to discriminating the
seeds on the basis of their geographic origins. Kim et al. have reported that the VIP values of proline
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and glycine derived from the OPLS-DA model for discriminating the geographic origin of sesame seeds
were higher than 1.0, indicating that these metabolites can be potential biomarkers for determining
the regional origins of sesame seeds [4]. Thus, our results were consistent with those of a previous
study. Glycolic acid is generated during photorespiration. Under low atmospheric CO2 condition,
C3 photosynthetic metabolism fixes the competing substrate O2 instead of CO2. The oxygen fixation
generates one molecule of 3-phosphoglycerate (3-PGA) and one molecule of 2-phosphoglycolate (2-PG)
instead of two molecules of 3-PGA. Glycolic acid is generated from the dephosphorylation of 2-PG, and
it can inhibit the rate of photosynthesis in the chloroplast. As a result, photorespiration under current
atmospheric CO2 concentrations reduces the efficiency of C3 photosynthesis by ~15% to 50%, depending
upon the temperature in the growing season at that particular geographic location [34]. Therefore,
this study suggests that glycolic acid could be a potential biomarker for geographic discrimination of
perilla seeds and proline and glycine could be the same for sesame seeds.

Outlier detection is an important issue in chemometrics analysis. The outliers are observations
that are extreme or that do not fit the PCA model. Furthermore, outliers can be both serious and
interesting observations in the data. To discover the outliers in the PCA model, we used the Hotelling’s
T2. The Hotelling’s T2 is a multivariate generalization of student’s t-test and provides a check for
observations adhering to multivariate normality. In the PCA score plots, the ellipse of Hotelling’s T2

indicates 95% confidence. When observations fall outside the confidence ellipse, they are termed as
strong outliers. Observations suggested as outliers were removed from the entire data set. This process
was repeated until no outliers were displayed on the PCA score plot. Figures S5 and S6 show the outlier
removal process. A total of 11 samples were identified as outliers, and 46 samples remained in the data
set of perilla seeds. In the OPLS-DA score plot of perilla seeds (Figure 1), Chinese perilla seeds were
more dispersed than Korean perilla seeds because the outliers were clustered in the upper right of the
score plot (Figure S3A). In addition, the data set of sesame seeds retained 69 samples and eliminated
9 samples. These pretreated data sets of perilla and sesame seeds were subjected to OPLS-DA. Figure S7
shows OPLS-DA scores and VIP plots of the outlier removal data sets. The OPLS-DA model was
established using UV-scaling, which showed higher R2Y (perilla; 0.928, sesame; 0.876) and Q2 (perilla;
0.874, sesame; 0.842) values than the original data set R2Y (perilla; 0.822, sesame; 0.844) and Q2 (perilla;
0.761, sesame; 0.799) values. The OPLS-DA score plots for the outlier removal data sets showed good
separation of both perilla and sesame seeds. In particular, the OPLS-DA score plots of the outlier
removal data set of perilla seeds showed clearer clustering of the Chinese samples than that of the
original data set. Furthermore, the VIP plots of the outlier removal data sets of perilla and sesame
seeds showed results that were almost same as those of the original data sets. Although the number of
samples was reduced by more than 10% due to the outlier removal, the potential biomarker candidates
were the same as those from the original data sets. These results demonstrated that the established
OPLS-DA discrimination models for perilla and sesame seeds were reliable predictive models.

In conclusion, we performed comprehensive metabolite profiling, which included primary
metabolites and health-promoting secondary metabolites, for perilla and sesame seeds cultivated in
Korea and China. In addition, we established the OPLS-DA discriminative model for perilla and
sesame seeds and validated it with good test results. The OPLS-DA results showed a clear separation
of perilla and sesame seeds sourced from Korea and China on the basis of their geographic origins.
The OPLS-biplot and VIP plot showed that glycolic acid was a notable metabolite for discrimination of
perilla seeds based on geographic origin; therefore, we propose it as a potential biomarker for such
discrimination. Furthermore, proline and glycine most significantly contributed for determining the
geographic origins of sesame seed, and thus, they could be potential biomarkers for discrimination of
sesame seeds based on the geographic origin. This study provides a reliable discriminatory predictive
model to determine the geographic origins of perilla and sesame seeds cultivated in Korea and China.
In addition, to the best of our knowledge, this is the first attempt to construct a discrimination model
for perilla seeds using metabolomics. We believe that this model will be helpful in dealing with issues
of selling domestic perilla and sesame seeds in the name of imported ones. In this study, the number
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of samples and their source countries was limited. A future work should involve a larger sample size
from more cultivated regions in various countries and evaluate the predictive ability of this model.
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Abstract: Truffles are certainly the most expensive mushrooms; the price depends primarily on
the species and secondly on the origin. Because of the price differences for the truffle species, food
fraud is likely to occur, and the visual differentiation is difficult within the group of white and
within the group of black truffles. Thus, the aim of this study was to develop a reliable method for
the authentication of five commercially relevant truffle species via Fourier transform near-infrared
(FT-NIR) spectroscopy as an easy to handle approach combined with chemometrics. NIR-data
from 75 freeze-dried fruiting bodies were recorded. Various spectra pre-processing techniques and
classification methods were compared and validated using nested cross-validation. For the white
truffle species, the most expensive Tuber magnatum could be differentiated with an accuracy of 100%
from Tuber borchii. Regarding the black truffle species, the relatively expensive Tuber melanosporum
could be distinguished from Tuber aestivum and the Chinese truffles with an accuracy of 99%. Since
the most expensive Italian Tuber magnatum is highly prone to fraud, the origin was investigated and
Italian T. magnatum truffles could be differentiated from non-Italian T. magnatum truffles by 83%. Our
results demonstrate the potential of FT-NIR spectroscopy for the authentication of truffle species.

Keywords: truffle; Tuber spp.; food authentication; species differentiation; near-infrared
spectroscopy; chemometrics

1. Introduction

Today’s globalization leads to an increase of known cases of food fraud [1]. At the same time,
consumer demand is moving towards food products of higher quality [2]. Many cases of food fraud
pose a risk to health if toxic or allergenic substances get into the products through adulteration.
However, even in cases of food fraud, which in many cases do not lead to a health hazard, it must
be ensured that the consumer is not economically harmed, i.e., that no unjustifiably high prices are
charged for inferior goods.

The increasing interest of the consumer in higher quality food [3], and also the willingness to pay
more money for it, provides the incentive for criminally motivated actors to stretch high-end products
with cheaper ingredients. Since many falsifications cannot be detected immediately by laymen or
even by trained personnel in companies, it is becoming increasingly important to have appropriate
instrumental detection methods for possible food adulteration at hand [4].

Because of the unique aroma and taste emitted from the fruiting bodies, truffles (Tuber spp.)
are considered as delicacies. The underground growing ascomycetes represent the most expensive
of all edible fungi, whereby the white Piedmont Truffle (Tuber magnatum) and the black Périgord
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Truffle (T. melanosporum) are the most valuable species: prices do range between 3000–5000 €/kg and
700–1200 €/kg, respectively [5–7].

Because of their high price, truffles are often subject to fraud, especially when the species are very
similar in their morphological appearance: T. borchii (syn. Tuber albidum Pico) is a truffle morphologically
and biochemically similar to T. magnatum, both are classified as white truffles. The latter is the most
expensive truffle species of all, so it is obvious that it is the subject of an intended counterfeit [8,9].
However, even unintentional cases of fraud are reported when other truffles, such as T. borchii are
harvested, although the roots have initially been colonized by T. magnatum [10,11].

Amongst black truffles, the species T. melanosporum is the most expensive and highly valued for
its organoleptic properties [12]. The Asian black truffles (e.g., Tuber indicum, Tuber himalayense, and
Tuber sinense) form fruiting bodies morphologically very similar to T. melanosporum [13]. In view of
the higher price of T. melanosporum, there is also a risk of fraud, especially since Asian black truffles are
imported into Europe from China [14–16].

Due to the above-mentioned potential fraud cases, analytical authentication techniques are
necessary, which must also be time-efficient due to the short-term storage of the industry.

In 2006, Zhao et al. compared five Chinese truffle fruiting bodies using Fourier transform infrared
(FT-IR) spectroscopy [17] and successfully differentiated T. magnatum, T. indicum, and Tuber excavatum
from each other. More recently, El Karkouri et al. proposed a matrix-assisted laser desorption/ionisation
time of flight mass spectrometry (MALDI-TOF-MS) strategy, analysing proteins and applying database
search algorithms [5]. In 2020, Krauß et al. analysed different tuber species regarding their geographical
origin and species authentication via stable isotope ratio analysis showing that a differentiation with this
method is possible [18]. However, these techniques still require costly instrumentation, maintenance
and sophisticated handling. Instead, our practical approach is, to our knowledge, the first Fourier
transform near-infrared (FT-NIR) spectroscopy study addressing the authentication of truffles with
a relatively large number of samples.

FT-NIR spectroscopy is a simple and cost-effective approach, nowadays widely used for
the monitoring as well as for the controlling of product quality and safety [19] alike the evaluation of
the freshness [20] or of pesticide residues of fruits and vegetables [21]. FT-NIR spectroscopy is widely
used for the authentication of foodstuffs [9,22–24] or for controlling the intentionally or unintentionally
adulteration of exogenous substances or process by-products [25–27] and was recently used to monitor
the post-harvest ripening of white truffles [28].

Data pre-processing of the obtained data is a crucial step in spectroscopic analysis. Therefore,
pre-processing techniques, such as scatter correction, smoothing, or detrending steps are used in
order to reduce the variability between samples due to scattering caused e.g., by heterogeneous
sample size of powdery samples. Furthermore, additive and multiplicative effects in the spectra are
removed and a subsequent exploratory analysis, a bi-linear calibration model or a classification model
is improved [29]. It is essential to carefully compare and select the data pre-processing techniques to
avoid misleading results and overfitting [29–31]. The decision on the classification model is crucial as
well, and therefore, similarly to the evaluation of different data pre-treatment steps, we have examined
and compared various classification models.

The aim of this study was to develop a reliable, easy-to-handle and low-cost method using
the FT-NIR technology coupled to chemometric tools for the differentiation and authentication of five
economically relevant truffle species. In this regard, we concentrated on the real truffles of the genus
Tuber defined in the German Guidelines for mushrooms and mushroom products [32] and used in
foodstuffs: the expensive species T. melanosporum and T. magnatum, as well as the less expensive species
T. aestivum, T. borchii, and T. indicum. In this study, 75 truffle samples from three years of harvest and
eleven growing countries were analysed. Different common pre-processing techniques were applied
to the raw spectra and the results were compared using various classification models.
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2. Materials and Methods

2.1. Sample Acquisition

In total, 75 truffle samples of relevant, market available white and black truffle species (harvest
years 2017–2020) from 11 different countries were analysed in this study.

More precisely, the sample set consisted of two white species T. magnatum (20 samples) and
T. borchii (5 samples) and three black species T. melanosporum (10 samples), T. aestivum (synonym T.
uncinatum [33], 29 samples), and T. indicum (11 samples).

Regarding the T. aestivum species, molecular biological analyses have shown that T. aestivum
and T. uncinatum are one species. Both terms should therefore be regarded as synonymous. Since
T. aestivum was described before T. uncinatum, the species should be named T. aestivum [33]. Based
on these molecular biological findings, T. aestivum and T. uncinatum were subsumed and named T.
aestivum in this study.

An overview of the collected samples is given in Table S1. Some samples were commercially
purchased and, therefore, considered as non-origin-authentic, so the origin is stated as ‘unknown’ in
Table S1. Still, information regarding the truffle species were secured for all samples either by personal
participation in harvest or by DNA analysis carried out within the Hamburg School of Food Science [34].
On arrival, all samples were frozen in liquid nitrogen and stored at −80 ◦C until further treatment.

2.2. Sample Preparation

Per sample, several fruiting bodies, at least 75 g, were cleaned with pure water obtained by
a Direct-Q purifying system (Merck Millipore, Burlington, MA, USA) for removing remaining soil.
Subsequently, the fruiting bodies were milled using a knife mill (Grindomix GM 300, Retsch, Haan,
Germany) with dry ice at a ratio of 1:1 (w/w) and freeze-dried for 72 h [24]. The truffles were freeze-dried
because of two reasons, which are more discussed in Section 3.1: (i) FT-NIR spectra of fresh truffles
showed unspecific spectra with large water bands. (ii) It was known from the literature that such
a freeze-drying step can enhance the accuracy of the classification models [35]. Freeze-dried material
was crushed using a mortar and a pestle to obtain a fine homogeneous powder.

2.3. Spectra Acquisition

For the acquisition of near-infrared spectra, a TANGO FT-NIR spectrometer with an integrating
sphere (Bruker Optics, Bremen, Germany) was used. The signals were recorded between
11550–3950 cm−1, collecting 50 scans at a resolution of 4 cm−1. All spectra were acquired at room
temperature of 22 ± 2 ◦C. Samples of 300 mg, weighed in a glass vial (52.0 × 22 mm × 1.2 mm, Nipro
Diagnostics Germany GmbH, Ratingen, Germany), were analysed in triplicate, in-between individual
spectra recordings the lyophilisate was shaken in the glass vial.

2.4. Spectra Pre-Processing

FT-NIR spectra were pre-processed using MATLAB R2019a (The MathWorks Inc., Natick, MA,
USA). After having omitted a specific range of higher wavenumbers (see Table 1 and discussion
below), different pre-processing techniques or combinations of them were applied and compared (see
Table 1) [36].

Multiplicative scatter correction (MSC) using the average of all spectra as the reference spectra
was performed to eliminate scatter effects for all approaches i–vi. First order derivate (approach ii)
was calculated to eliminate offset, baseline drifts and additive scattering effects, and second order
derivate (approach iii) was calculated to remove multiplicative scattering effects in beyond. Detrending
(polynomial order = 1) was applied for approach iv and vii. The effect of smoothing (moving average,
span = 5) before MSC was investigated for approach v–vii.
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Table 1. Pre-processing steps to the raw spectra in the order 1–2–3. For all approaches, a binning was
added as a last step. MSC, multiplicative scatter correction.

Approach No. Cut Smoothing MSC 1st Derivative 2nd Derivative Detrending

(i) >9000 1

(ii) >9000 1 2

(iii) >9000 1 2

(iv) >9000 1 2

(v) >9000 1 2 3

(vi) >6000 1 2 3

(vii) >9000 1 2 3

After the pre-processing methods stated in Table 1, a binning by averaging 10 adjacent features
was carried out with all spectra. Lastly, the triplicate spectra were averaged [24,25,36,37]. For certain
issues (e.g., only black or white truffles or origin determination of T. magnatum samples), the MSC
correction was only applied to the selected spectra.

2.5. Multivariate Data Analysis

For data investigation and visualization, principal component analysis (PCA) and line plots were
calculated using MATLAB R2019a after applying spectra pre-treatments and mean centring the data.

For the different pre-processing approaches i–vii (see Table 1) it was each evaluated which
classification model achieved the best prediction accuracy using MATLAB R2019a. The classification
models examined in this context are stated in Table 2.

Table 2. Overview of the classification models examined in this study.

Classification Models Hyperparameters Used References

a Linear Discriminant Analysis
(LDA) discrimination type: linear [38]

b Linear Support vector machine
(lin. SVM)

kernel function: polynomial polynomial
order = 1

kernel scale = 1
box constraint level = 1

[23,24,35,37,39]

c Quadratic Support vector machine
(quad. SVM)

kernel function: polynomial
polynomial order = 2

kernel scale = 1
box constraint level = 1

d Subspace Discriminant (SSD)
method: subspace learners:

discriminant
number learning cycles = 30

[40]

e Random Forest (RF) split criterion: Gini’s diversity index
max. number of splits = 100: [41]

f k-nearest neighbour (k-NN)
number of neighbours = 1

distance: Euclidean
distance weight: equal

[22,42,43]

For optimising the model parameters and for obtaining an unbiased estimate of the model’s
performance, stratified nested cross-validation was used [44,45]. Therefore, the whole data set was
split into four parts whereby the samples were stratified by the species to ensure a representative
and balanced training set (three fourths) and test set (one fourth). For the training set, 10-fold cross
validation was applied to select the optimal model parameters, referred to as inner cross-validation.
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The performance of the calculated model was then evaluated by predicting the test set. This process
was repeated for all four folds, so every part of the four-fold outer cross validation was once used as
the test set.

Finally, since the results by a single nested cross validation can vary, the entire nested
cross-validation and the prediction of the test set were repeated 100 times, of which the mean
accuracy and the standard deviation are reported.

3. Results and Discussion

3.1. Spectra Investigation

Figure 1A shows all untreated spectra of the raw data, coloured in accordance to the different truffle
species. As anticipated and seen from Figure 1A, the absorbance rises towards lower wavenumbers
because of the transition probability which is higher for the first transition than for higher overtones [46].
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Figure 1. (A) Raw Fourier transform near-infrared (FT-NIR) spectra, triplicate measurements from all
75 samples, coloured by truffle species. (B) Mean FT-NIR spectra for each truffle species after omitting
the >9000 cm−1 range, MSC and binning.

However, in the range from 11,550−9000 cm−1 some spectra show strong absorbance. Calculating
the corresponding wavelength, this region from 11,000–9000 cm−1 relates to the region from
1111−909 nm, which is close to the visual region. Here, the 4th overtone of the –OH bond occurs,
and the colour of the truffle lyophilisate itself might cause an offset, which could have increased
the absorbance [47]. Since the spectra vary in a strong way for this region, chemometric analyses, such
as PCA, would excessively focus on this region and would neglect the information that is present
in the spectra for smaller wavenumbers, so we excluded the >9000 cm−1 region. In fact, the range
>9000 cm−1 is often excluded in various FT-NIR studies—also because this region is prone to noise
when performing data pre-processing methods, such as first or second derivative [37,43].

Regarding the exclusion of some regions in the FT-NIR spectra, special care has to be taken to
bands, which can be affected by the water content. Particularly in the region around 5312 cm−1 (O−H
stretching, first overtone) and around 7142 cm−1 (O−H deformation, second overtone), water can affect
the absorbance of protein or carbohydrate specific bands [43]. The analysis of fresh truffle samples
has shown that a drying step is necessary, as otherwise large water bands and unspecific spectra are
obtained which superimpose the information beneath. Thus, the truffle samples were freeze-dried
because such a sample preparation can enhance the accuracy of the classification models [35]. Due to
the freeze-drying step, the water content in the samples can be seen as negligibly small and in the same
range, so it should have no impact on the differentiation with chemometric models in the following
steps. In addition, in the region 6500−5300 cm−1, not only water molecules absorb electromagnetic
radiation, but also C–H vibrations do, which could be a useful parameter for the differentiation of
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the truffle species. In order to avoid the loss of useful information, we have not excluded other regions
for this non-targeted approach, as several other research groups do in practice [24,37].

For powdered samples, multiplicative scatter effects occur due to differences in the materials’
particle size, and have to be corrected for a reasonable data interpretation. To overcome such scattering
effects, two approaches are commonly used: MSC and standard normal variate (SNV). According
to Dhanoa et al., both pre-processing steps are two alternative approaches, which lead to similar
results [48]. In the present study, MSC was chosen to correct for scattering effects. It should be noted
that the sequence of the various pre-processing steps is always decisive. In Figure S1, the effect of
applying MSC on the raw data, after having omitted the >9000 cm−1 region, is shown. On the contrary,
applying MSC first and omitting the >9000 cm−1 region afterwards will have misleading results, as
shown in Figure S1B on the right: the unwanted variance in the >9000 cm−1 region is not excluded,
but persists in the spectra as an error propagation. By applying pre-processing steps, it is therefore
important to examine and to compare the impact of different orders, noted in the same way by
Gerretzen et al. [49]. Any further pre-processing steps will be investigated and discussed more deeply
in Section 2.4.

3.2. Spectra Interpretation and Assignment of Bands

The FT-NIR spectra reflect the major constituents of the truffles. Naturally low in fat, lyophilised
truffle samples are rich in dietary fibre and proteins [50]. These components can be recognised in
the spectrum by their characteristic bands; however, it should be noted that an exact assignment of
bands for complex samples is difficult due to overlapping effects. For the sake of clarity, the mean
spectra have been calculated for each truffle species, and the resulting representation is shown in
Figure 1B. At around 6667 cm−1 a vast band can be located induced by N−H stretching (first overtone)
that can be attributed to proteins and amino acids. Furthermore, N−H combinations are also present
around 4687 cm−1 and the bands at 4859 cm−1 and 4600 cm−1 are caused by amide groups [24,38,47].

Regarding the carbohydrates, the double peak at 4338 cm−1 and 4257 cm−1 can be assigned to
−CH2 asymmetric stretching and symmetric stretching, respectively [51]. In addition, C−H stretching
(first overtone) and −CH2 vibration lead to peaks at 5760 cm−1 and 5742 cm−1, respectively [24,37,47].

In order to put these observations into context, the work of Saltarelli et al. with an analysis of
the protein and carbohydrate content of T. magnatum, T. borchii, T. aestivum, and T. melanosporum is
of great importance. Although their work did not emphasise the species differentiation but storage
effects, they have already noticed differences in the major constituents for the truffle species [52]. This
can be illustrated well e.g., by the protein fraction: In ascending order, T. melanosporum, T. aestivum, T.
borchii, and T. magnatum have a soluble protein content of 8.7, 11, 13, and 24%, respectively [52]. Such
an order can be found at the wavenumber 6318 cm−1: T. melanosporum showing the lowest absorbance
for this protein-specific region and T. magnatum the highest, so the above-mentioned study and our
FT-NIR analysis is therefore consistent. Admittedly, this order is not properly given over the entire
protein-specific range, especially T. magnatum shows an individual curve, but it should be noted that
FT-NIR analysis is not capable of specifically measuring soluble proteins, as Saltarelli et al. (2008) did in
their approach. Instead, it returns a general parameter, so the amount of scleroprotein and non-soluble
protein fractions could cause the discrepancy. Consequently, it should be possible to distinguish species
by—albeit very costly—quantitation of soluble protein and carbohydrate content. FT-NIR analysis, on
the other hand, enables the indirect and rapid identification of these major constituents.

3.3. Principal Component Analysis

PCA is widely used for visualising high dimensional data by transforming them into a low
dimensional space. As an unsupervised approach, it is useful for the qualitative data exploration,
checking for potential outliers and rechecking the research hypothesis before using supervised
classification models [53,54].
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Figure 2A shows the score-plot for all 75 truffle samples. Tendencies of cluster formations
according to the truffle species can be identified: the T. magnatum samples are located in the lower-left,
whilst the T. melanosporum samples are located to the right and the T. aestivum samples are in the centre
of the plot. T. borchii und T. indicum samples scatter across the plot. These intermediate results give
reason to assume that a classification of truffle species is possible. However, with a differentiation of
all five species we do not address real issues in the incoming goods inspection: the truffle’s colour
can be checked visually; thus, it only makes sense to consider the white and black truffles separately
especially because falsification occurs within the white and within the black truffle, and these are not
adulterated with each other. Therefore, PCA was calculated only for white and black truffle species and
the score-plots are shown in Figure 2B–D, respectively. The trends from the score-plot in Figure 2A are
also noticeable here, and FT-NIR analysis appears to be an appropriate method for differentiating truffle
species. For the T. indicum samples in Figure 2C, some samples are spread over the entire score-plot,
but tend to higher PC2 values in the PC4 vs. PC2 plane, already indicating the need for multivariate,
non-linear analysis tools hereinafter. Moreover, the fact that there is still cluster formation shows that
the important information for the species differentiation is not only contained in the >9000 cm−1 region,
which was omitted, but is present over the whole spectra.
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3.4. Evaluation of Pre-Processing and the Suitability for the Species Classification

Whereas applying MSC or SNV correction is necessary without question and is common practice
in FT-NIR studies, the need and the impact of any further pre-processing steps should be investigated
experimentally [55]. For evaluating the quality of such steps, only visual comparison of ‘before-and-after’
PCA plots is unlikely to find the most suitable pre-processing strategy and may mislead to an approach,
which is not appropriate for a supervised model, so we calculated classification models and compared
the prediction accuracy [36,49].

Spectra comparison of different pre-processing approaches examined are shown in Figure 3.
The effect of smoothing is not recognisable visually. In addition, it turned out that neighbouring wave
numbers show almost identical absorbance values. In order to avoid redundant data and overfitting,
a binning was carried out by calculating the mean value of the absorbance for 10 adjacent wavenumbers
and combining the measuring points into 248 variables.
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Figure 3. Spectra comparison of different pre-processing approaches, also refer to Table 1. First row:
one-step pre-processing: (i) MSC. Second row: two-step pre-processing: (ii) MSC, 1st derivative. (iii)
MSC, 2nd derivative. (iv) MSC, detrending. Third row: three-step pre-processing: (v) smoothing, MSC,
1st derivative. (vi) Smoothing, MSC, 2nd derivative. (vii) Smoothing, MSC, detrending.

For every pre-processing approaches, all five classification models stated in Table 2 were calculated
and validated using stratified nested cross-validation. As the main result parameter for comparing
the approaches, we used the mean accuracy instead of the overall accuracy to account for the different
size of the groups. The classification accuracies and precision for the test set for the differentiation of
white and black truffles are given in Tables 3 and 4, respectively. For the training set used for validation,
the classification accuracies and precisions are given in Tables S2 and S3, respectively.
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As can be seen in Table 3, all classification models provide good accuracy (>90%). Only the second
derivation leads to significantly worse results. A pre-treatment of MSC with first derivation with both
a linear and a quadratic SVM lead to an error-free classification of 100% (the most appropriate results are
marked bold in the corresponding tables). Accordingly, any falsification of the expensive T. magnatum
with the cheaper T. borchii can be detected. Because of the clear result based on the available and
analysed truffle samples, the confusion matrix is not needed here, but can be seen in the supplement in
Table S4.

A similar trend can be seen for the black truffles: Here too, high accuracies are generally achieved
(>90%), only the second derivative without previous smoothing performs worse and a linear model
does not seem to be sufficient for this ternary issue. Although the results overlap when the standard
deviation is considered, the best accuracies of 99.1 ± 1.2 % are obtained when using MSC and the first
derivative with the SSD model. A previous smoothing does not yield a significant improvement. Since
every data pre-treatment is also a manipulation of the data, the model with the fewest steps should be
preferred. The corresponding confusion matrix is shown in Table 5. In particular, fraud is common
with T. indicum, which is counterfeited as the high-priced T. melanosporum because the two species are
morphologically very similar and collected at the same harvesting times. Therefore, it is pleasing that
the specificity for T. melanosporum is 97.5%—the error rate of mistakes is only 2.5%.

Table 5. Confusion matrix for classification of the black truffle species with the build subspace
discriminant model after MSC and 1st derivative; resulting in 99.1 ± 1.2% mean sensitivity.
The predictions of 100 repetitions of the test set were accumulated.

Predicted Species

T. indicum T. aestivum T. melanosporum sensitivity [%]

actual species

T. indicum 1073 1 26 97.5

T. aestivum 3 2897 0 99.9

T. melanosporum 1 0 999 99.9

specificity [%] 99.6 100 97.5

Table S5 shows the classification results for the test set for the differentiation of all five truffle species,
indicating that also for this more complex five-class-issue, classification models can be calculated with
high accuracy of 99%, and for the training set used for validation, the classification accuracies and
precisions are given in Table S6. The corresponding confusion matrix is shown in Table S7.

DNA analysis is often used to authenticate species and varieties, while FT-NIR analysis is widely
established in industrial incoming goods inspection. FT-NIR analysis does not require any specialised
training for handling and any special, eventually hazardous chemicals for sample preparation
and measurement, therefore the FT-NIR analysis is a “green method” [56]. Additionally, possible
contamination due to exponential amplification by PCR quickly leads to false positive results. In order
to keep this danger to a minimum, separate laboratories for sample preparation and DNA analysis
are necessary, whereas NIR does not have such requirements. Optionally, it would be conceivable
to use FT-NIR measurement for sample screening and to countercheck any conspicuous results by
DNA analysis.

Regarding the determination of the geographical origin, however, DNA analysis cannot provide
reasonable answers since the origin rather affects the phenotype. Here, FT-NIR analysis can be a tool for
differentiating the origin [35] and the possibilities for the truffle differentiation by origin are examined
in the following chapter.

3.5. Influence of Harvest Year and Geographical Origin

As shown in the PCA plot (Figure 2A), the truffle species has the dominant influence on the NIR
spectrum, since the scores cluster according to their species in this unsupervised model. This can
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be demonstrated on the T. magnatum samples, which, although dominant from Italy, originate from
Bulgaria, Croatia, and Romania, and are clustering together in the unsupervised PCA. This effect is
similar for the T. aestivum samples originating mainly from Romania, but also from Bulgaria, France,
Iran, Italy, Moldovia, and Slovenia. Thus, the species itself seems to have a much greater influence on
the metabolome to be measured by FT-NIR spectroscopy than the origin.

One model for the origins of all truffle samples is not advisable for this reason, since most Italian
samples are white truffles and most Romanian samples are T. aestivum truffles what is linked to
their natural areas of origin. Such a model might, therefore, correlate on a false causality. However,
the price depends primarily on the species whilst the origin is a second factor in the purchase decision.
Accordingly, for the incoming goods inspection it is important especially for the most expensive T.
magnatum truffle whether it comes from Italy or not, according to the consumer’s expectations. For
this Italy vs. non-Italy issue, all pre-processing was compared with classification models, analogous
to the previous investigations when targeting the species. The results of the test set are shown in
Table 6, and for the training set used for validation, the classification accuracies and precisions are
given in Table S8. Best classification results of 88.4 % are reached after MSC and 2nd derivative in
combination with a Random Forest (RF) classification model. However, we have decided not to
pursue this pre-processing strategy because the spectra line plots in Figure 3iii have shown that a lot
of noise occurs in the range of wavenumbers above 6000 cm−1 and a smoothing an omitting this
range is preferable. This alternative approach leads to a slightly worse accuracy of 82.8 ± 8.1% and
the corresponding confusion matrix is shown in Table 7. The accuracy results provided by the LDA
classification only differ by a few percentage points, and are even better in some cases. However,
we chose the RF model since the PCA plots have arouse the impression that non-linear classification
models might be more suitable for this issue.

Table 6. Mean accuracy and precision of the prediction of the external test set for different pre-treatments
and classification models for the differentiation of Italian vs. non-Italian T. magnatum truffles (all values
in %).

Classification Model

(a) LDA (b) lin.
SVM

(c) quad.
SVM (d) SSD (e) RF (f) k-NN

pre-processing

(i) MSC 82.4 ± 4.5 51.8 ± 2.5 74.5 ± 5.0 82.6 ± 4.7 72.8 ± 5.4 80.2 ± 4.3

(ii) MSC, 1st derivative 80.5 ± 4.5 50.8 ± 2.3 80.9 ± 3.4 82.0 ± 4.3 79.2 ± 5.6 82.5 ± 4.5

(iii) MSC, 2nd
derivative 83.6 ± 4.0 58.0 ± 3.6 82.9 ± 2.4 83.2 ± 3.1 88.4 ± 5.0 80.8 ± 4.5

(iv) MSC, detrend 82.6 ± 4.7 51.7 ± 2.5 74.4 ± 4.9 81.3 ± 4.7 78.9 ± 6.6 81.6 ± 3.8

(v) smoothing, MSC,
1st derivative 81.1 ± 4.1 51.4 ± 2.1 80.8 ± 3.0 81.1 ± 4.2 79.3 ± 5.4 80.9 ± 4.4

(vi) smoothing, MSC,
2nd derivative 83.7 ± 4.2 63.8 ± 3.8 82.3 ± 3.6 82.5 ± 4.5 82.8 ± 8.1 81.8 ± 4.6

(vii) smoothing, MSC,
detrend 82.6 ± 5.0 51.4 ± 2.4 74.3 ± 4.9 81.8 ± 4.5 80.5 ± 6.6 81.5 ± 4.2

Table 7. Confusion matrix for classification for the differentiation of Italian vs. non-Italian T. magnatum
truffles with the build RF model after smoothing. MSC and 2nd derivative; resulting in 82.8 ± 8.1%
mean sensitivity. The predictions of 100 repetitions of the test set were accumulated.

Predicted Origin

Italian non-Italian sensitivity [%]

actual origin Italian 1247 153 89.1

non-Italian 141 459 76.5

specificity [%] 89.8 75.0
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Additionally, the PCA-plots for the T. magnatum samples were calculated and are shown in
Figure 4, indicating and confirming that a non-linear classification model, such as RF, is more suited
for this issue. Still, there are two aspects to consider: first, the standard deviation is remarkably
high and second, the PCA plots show that the variance within the Italian samples is at least as large
as the variance of the other origins. An origin model with acceptable accuracy is chemometrically
possible, but should be checked with additional samples.Foods 2020, 9, x FOR PEER REVIEW 12 of 16 
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As the results show, FT-NIR can be used for the differentiation of black and white truffles, and
Italian and non-Italian truffles of the species T. magnatum. Since FT-NIR is a simple and cheap method,
it is suitable for industrial applications, for example, for the incoming goods inspection or authenticity
checks on truffles. The process of authentication using FT-NIR is shown schematically in Figure 5.
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Figure 5. Authentication protocol for the stepwise authentication assessment of truffles with FT-NIR
and chemometrics.

4. Conclusions

FT-NIR spectroscopy was combined with chemometrics to distinguish within the white truffles T.
borchii and T. magnatum and the black truffles T. aestivum, T. indicum, and T. melanosporum. Different
techniques for pre-processing in combination with various classification models and their effect on
the accuracy of the model were compared. Classification accuracies >99% showed that the analysis
of truffle samples by FT-NIR spectroscopy is a very suitable tool for species differentiation without
sophisticated sample preparation or instruments. When differentiating between Italian and non-Italian
T. magnatum samples, an accuracy of 83% was achieved. FT-NIR analysis requires no special training
for handling and no special, possibly hazardous chemicals for sample preparation and measurement.
In addition, most quality assurance laboratories already have FT-NIR instruments. Due to its simple,
cost-effective application, FT-NIR analysis is very well suited for industrial screening samples during
incoming goods inspection. Considering the number of 75 truffle samples used, we intend to extend
the results of our study by analysing further samples, including a research on the potential effects of
the harvest year.

Supplementary Materials: The following figures and tables are available online at http://www.mdpi.com/2304-
8158/9/7/922/s1, Figure S1: Influence of the order of pre-processing steps. (A) Raw data. (B) MSC and omitting the >

9000 cm−1 range. (C) Omitting the >9000 cm−1 range first and MSC; Table S1: Overview of the analysed truffle
samples with number of samples, harvest year and country; Table S2: Mean accuracy and precision of the training
set used for validation for different pre-treatment and classification models for the differentiation of the white
truffle species (20 T. magnatum samples, 5 T. borchii samples, all values in %); Table S3: Mean accuracy and precision
of the training set used for validation for different pre-treatment and classification models for the differentiation of
the black truffle species (29 T. aestivum samples, 10 T. melanosporum samples and 11 T. indicum samples, all values
in %); Table S4: Confusion matrix for classification of the white truffle species with the build linear SVM model
after MSC and 1st derivative; resulting in 100% mean sensitivity. The predictions of 100 repetitions of the test set
were accumulated; Table S5: Mean accuracy with standard deviation for different pre-treatment and classification
models for the prediction of the test set for the differentiation of five truffle species (20 T. magnatum samples, 5 T.
borchii samples, 29 T. aestivum samples, 10 T. melanosporum samples and 11 T. indicum samples, all values in %);
Table S6: Mean accuracy and precision of the training set for different pre-treatment and classification models for
the differentiation of the five truffle species (20 T. magnatum samples, 5 T. borchii samples, 29 T. aestivum samples, 10
T. melanosporum samples and 11 T. indicum samples, all values in %); Table S7: Confusion matrix for classification
of five truffle species with the build subspace discriminant model after MSC and 1st derivative; resulting in 99.3 ±
0.9% mean sensitivity. The predictions of 100 repetitions of the test set were accumulated; Table S8: Mean accuracy
and precision of the training set for different pre-treatment and classification models for the differentiation of
Italian vs. non-Italian T. magnatum truffles (all values in %), MATLAB function for the creation of stratified parts
for the nested cross validation.
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Abstract: Several commonly used extraction procedures and commercial kits were compared for
extraction of DNA from opium poppy (Papaver somniferum L.) seeds, ground seeds, pollen grains,
poppy seed filling from a bakery product, and poppy oil. The newly developed extraction protocol
was much simpler, reduced the cost and time required for DNA extraction from the native and ground
seeds, and pollen grains. The quality of extracted DNA by newly developed protocol was better or
comparable to the most efficient ones. After being extended by a simple purification step on a silica
membrane column, the newly developed protocol was also very effective in extracting of poppy DNA
from poppy seed filling. DNA extracted from this poppy matrix was amplifiable by PCR analysis.
DNA extracted from cold-pressed poppy oil and suitable for amplifications was obtained only by
methods developed previously for olive oil. Extracted poppy DNA from all tested matrices was
analysed by PCR using primers flanking a microsatellite locus (156 bp) and two different fragments of
the reference tubulin gene (553 bp and 96 bp). The long fragment of the reference gene was amplified
in DNA extracted from native seeds, ground seeds, and pollen grains. Poppy DNA extracted from the
filling of bakery product was confirmed only by amplification of short fragments (96 bp and 156 bp).
DNA extracted from cold-pressed poppy oil was determined also only by amplification of these two
short fragments.

Keywords: DNA extraction; opium poppy; seed; pollen grains; bakery product; oil; PCR

1. Introduction

Extraction of nucleic acids from various matrices is the first and crucial step in analysis of biological
materials generally. Methods of DNA extraction have evolved over time [1], but still contain several
basic and necessary steps such as cell disruption, removal of undesirable molecules (lipids, proteins,
polyphenols, and others), and purification. In addition to the cell wall disruption, the chemical
diversity of metabolites contained in the plant cell is a major complication in the DNA isolation
process. There is no available universal protocol for extraction of DNA which would be applicable
independently of plant species, plant tissues, and plant matrix [2,3]. Generally, extraction of DNA
from young, fast-growing, and healthy tissues is much easier. However, it is often necessary to
extract DNA from plant tissues rich in polysaccharides, lipids, secondary metabolites, or even from
very complex matrices (processed seeds, oils, foods, feeds). This is also the case of oilseeds where
extraction of DNA is considered more demanding than from vegetative plant tissues (e.g., young
leaves). Lipids usually prevent the action of solvents during removal of polysaccharides and phenolic
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compounds. Secondary metabolites can bind and precipitate with DNA and reduce efficiency of
isolation procedure. Nevertheless, extraction of DNA from mature seeds may be often preferred
over extraction from foliar tissues. Moreover, processing of plant seeds into foods is associated with
determination of authenticity and traceability of foods what have recently become very important
for various reasons [4–6]. The quantity and quality of DNA extracted from foods and oils tends to
decrease to the extent in which the food/oil is processed [7,8]. Processing affects the DNA and may lead
to degradation or removal of DNA from sample due to its hydrolysis, oxidation, and deamination [9].
Considering the DNA degradation and the presence of PCR inhibitors, DNA extraction from processed
matrices is often a compromise between high yield and high purity [9–11]. The most appropriate
extraction method should be chosen case by case. Extracted DNA is used for authentication of foods
and feeds and detection of falsifications (e.g., blending of low-quality oil into high-quality oil) [12–14].

Oilseed crop with an interesting position in the world agriculture is the opium poppy (Papaver
somniferum L.) grown under control only in some countries [15]. In addition to the production of
alkaloids extracted from poppy straw, edible seeds are in great demand in cuisine. However, trading
with poppy seeds, products (cake fillings, spreads), and oils suffers sometimes from adulteration
practices [16]. Sometimes, high quality poppy seeds with a blue colour and a sweet taste are adulterated
with technical poppy seed (grey-black colour, no taste). In addition to quality, they differ significantly
in price. The consumer may be deceived in both quality and price. Such practices are then transferred
to the food industry (poppy bakery products). Falsification is also a serious problem in the production
of vegetable oils, especially the more expensive ones, including poppy seed oil. Chemical analyses of
oils are used to determine the species origin of oil [17], but DNA analyses are appropriate to determine
species origin and also the cultivar origin [18–20].

Poppy seeds with a high content of lipids and secondary metabolites are not a simple object for
DNA extraction. This is even more complicated with ground seeds, poppy seed fillings from bakery
products, and pressed oil. The number of relevant scientific reports in poppy is very limited and DNA
extraction procedures have been published only from defatted seeds [21] and heroin samples [22]. Three
commercial kits were tested for DNA extraction from seeds [23]. Very useful would be efficient, simple,
and universal protocol for extraction of DNA from poppy seeds, grains, and products containing
or made from poppy seeds. Therefore, the aim of this study was to test several methods of DNA
extraction and try to design a new, effective procedure from different poppy seed matrices (native
and ground seeds, pollen grains, poppy filling of the bakery product, poppy oil) with respect to DNA
quality and suitability for amplification analyses.

2. Materials and Methods

2.1. Plant and Food Material

Mature seeds and pollen grains of opium poppy (Papaver somniferum L.) were collected from
registered cultivar Major, cultivated at the Research and Breeding Station in Malý Šariš (Slovakia).
They were stored at 4 ◦C before DNA extraction. Seeds and pollen grains were homogenized by
pestle and mortar before the extraction. Seeds were also ground with the poppy seed mill. The poppy
seeds roll (Tastino, Slovakia) and cold-pressed poppy seed oil (Juvamed Ltd., Tastino, Slovakia) were
purchased in food store and stored at 4 ◦C before the DNA extraction.

2.2. DNA Extraction from Seeds

Genomic DNA from seeds was extracted from 0.2–0.5 g of seeds by six methods:
Dellaporta et al. [24] with and without CTAB; Bayer BioScience N.V. [25]; Monsanto Company [26];
Murray and Thompson [27]; Sagwan et al. [21] and using four commercial kits: DNeasy® Plant Maxi Kit,
QIAamp DNA Stool Mini Kit, PowerSoil DNA Isolation Kit (all from QIAGEN N.V., Hilden, Germany)
and Plant DNAzol® Reagent (Thermo Fisher Scientific, Waltham, MA, USA).
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Another extraction protocol was newly developed protocol designed on the basis of the Bayer
BioScience N.V. procedure [25], but containing several modifications. The content of this protocol is
as follows. The sample (200 mg) of seeds was ground to a fine powder with mortar and pestle and
extracted with 2.7 mL of extraction buffer (50 mM EDTA, 100 mM Tris-HCl, pH 8.0, 500 mM NaCl),
190 µL of 20% SDS, and 10 µL of 2-mercaptoethanol. The mixture was vortexed and incubated at
65 ◦C for 30 min. During the incubation, the samples were mixed every 10 min. After incubation,
2.3 mL of mixture phenol:chloroform:isoamyl alcohol (25:24:1) was added, the mixture being shaken
for 1 min and centrifuged for 20 min at 5500× g. The upper aqueous phase was transferred to a new
tube, mixed with 2 mL of isopropanol and precipitated 30 min at −20 ◦C. Precipitated nucleic acids
were transferred to Eppendorf tube and washed with 70% and 96% ethanol. Pellet after drying was
dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and treated with 10 µL of RNase A
(10 mg/mL) for 30 min at 37 ◦C. After the incubation, 800 µL of mixture chloroform:isoamyl alcohol
(24:1) was added, shaken vigorously and centrifuged for 10 min in a microcentrifuge at maximum
speed. The upper aqueous phase was transferred to a new Eppendorf tube, 600 µL of isopropanol was
added and after vortexing was incubated for 20 min at −20 ◦C. Precipitate DNA was again washed
with 70 and 96% ethanol, dried, dissolved in TE buffer, and stored at −20 ◦C.

2.3. DNA Extraction from Ground Seeds

Six different methods used for isolation DNA from 0.2 g of ground seeds were: Bayer BioScience
N.V. [25], Monsanto Company [26], two commercial kits (DNeasy® Plant Maxi Kit, QIAamp DNA
Stool Mini Kit), and newly developed protocol (described above).

2.4. DNA Extraction from Pollen Grains

Three methods used for isolation of DNA from 0.1 g of pollen grains included DNeasy® Plant
Maxi Kit, QIAamp DNA Stool Mini Kit. The third was the newly developed protocol (described above).
An efficient mechanical homogenization of pollen grains was particularly important.

2.5. DNA Extraction from Poppy Seed Filling

DNA was extracted from 0.5–2.0 g of filling of the bakery product using methods: Bayer BioScience
N.V. [25], Monsanto Company [26], QIAamp DNA Stool Mini Kit, and newly developed protocol.
Extracted DNA was purified through the silica membrane spin-columns [28].

2.6. DNA Extraction from Poppy Oil

DNA was extracted from 0.2–15 mL of oil according to Doveri et al. [29]; Monsanto Company [26];
Bayer BioScience N.V. [25]; Consolandi et al. [30]; Giménez et al. [31]; Raieta et al. [4], newly developed
protocol, and commercial kit (QIAamp DNA Stool Mini Kit).

2.7. Qualitative and Quantitative Analysis of Extracted DNA

Integrity of the extracted DNA from different poppy matrices was assessed by agarose gel
electrophoresis. Parameters of extracted DNA were tested by UV spectrophotometry (NanoDrop
ND-1000 spectrophotometer, Thermo Fisher Scientific, Waltham, MA, USA) as well as by electrophoresis
in 0.8% agarose gel stained with ethidium bromide.

2.8. PCR Amplification

Extracted DNA were amplified by PCR using primers for microsatellite locus psSSR69 [32]. Two
pairs of primers for reference gene encoding tubulin beta-7 chain (Table 1) was designed from coding
sequence (XM_026557633.1, GenBank®, http://www.ncbi.nlm.nih.gov) [33] using the Primer3 Input
software (Whitehead Institute for Biomedical Research, USA).
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Table 1. Primer pairs used for amplification of opium poppy DNA. Tm: Melting temperature.

Primer Name Sequences of Primers Tm (◦C) PCR Product Size (bp)

psSSR69-F 5′-ATAGATTTATTTTGGCCACCT-3′ 54.6
156psSSR69-R 5′-CACCTATTGATTGAGGATGAA-3 55.2

tubulin beta-7 chain I-F 5′-CGTGGGTCACAGCAATACAG-3′ 59.4
96tubulin beta-7 chain I-R 5′-ATGCCTAGGATCAGCAGCAC-3′ 59.4

tubulin beta-7 chain II-F 5′-AATCGGTGCAAAGTTCTGG-3′ 54.5
553tubulin beta-7 chain II-R 5′-GTTCCCATCCCAGATCCTG-3′ 58.8

PCR reactions were carried out in 15 µL reaction containing 11.7 µL ddH2O, 1.5 µL 10× PCR
buffer, 0.3 µL of both primer (0.20 µM), 0.3 µL each of dNTP (200 µM), 0.2 µL Taq-polymerase (1U/µL),
and 1 µL DNA (25 ng/µL). Parameters of PCR for the psSSR69 locus were: 94 ◦C for 3 min, 45 cycles of
45 s at 94 ◦C, 1 min at 54 ◦C, 1 min at 72 ◦C, and additional 1 cycle at 72 ◦C for 10 min. The reference
gene for tubulin beta-7 chain was amplified using the program: 94 ◦C for 5 min, 35 cycles of 45 s
at 94 ◦C, 1 min at 59 ◦C, 1 min at 72 ◦C, and additional 1 cycle at 72 ◦C for 5 min. Amplicons were
analysed in 2% agarose gels in TBE buffer and stained with ethidium bromide.

3. Results and Discussion

3.1. DNA from Mature Seeds

Poppy seeds are specific commercial commodity used in the food industry particularly in some
regions of the world. However, the food quality and related price of seeds vary considerably for
different P. somniferum L. cultivars. Unfortunately, it is likely that premium quality seeds (sweet
taste, blue colour) of some poppy cultivars are intentionally handled while trading. They are usually
exchanged with low-quality seeds or mixed with them, whether intentionally or not. Therefore,
different protocols for extraction of total DNA from poppy seeds and poppy containing products were
tested. DNA analysis should be used to determine poppy seed cultivar origin. In addition to the
six extraction protocols and four commercial kits tested (Table 2), the modified extraction procedure
(“newly developed protocol”) was proposed in this study. It is based on the results and experiences
obtained during testing of ten extraction procedures.

Spectrophotometric analysis as well as gel electrophoresis of DNA from seeds revealed
significant differences between used extraction protocols, both in quantity and quality of obtained
DNA. The qualitative parameters of DNA were primarily important (Table 2). The protocol of
Dellaporta et al. [24] and its modification by incorporation of CTAB showed that mechanical
homogenization of seeds directly in the extraction buffer, even without the use of liquid nitrogen, did
not lead to deterioration in quality or amount of DNA (Table 2, Figure 1a). It may be concluded that
the need to use liquid nitrogen during mechanical homogenization of poppy seeds is not necessary
for prevention of degradation of extracted DNA [34–36]. Quality of extracted DNA varied according
to the extraction procedure. Procedures according to Sangwan et al. [21], Bayer BioScience N.V. [25],
Monsanto Company [26], Murray and Thompson [27], QIAamp DNA Stool Mini Kit, DNeasy® Plant
Maxi Kit, as well as the newly developed protocol, provided poppy DNA with A260/280 values in range
1.77–2.11. Procedures Dellaporta et al. [24], PowerSoil DNA Isolation Kit, and Plant DNazol® Reagent
had the A260/280 ratios in range 1.54–1.75 (Table 2).
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(lanes 40–47). Lane M—λ-phage DNA. (b) Ground poppy seeds: DNA extracted by: Bayer BioScience 
N.V. [25] (lanes 1–7, lines 1–4, 0.2 g of seeds with extraction buffer volume for 0.2 g; lanes 5–7, 0.2 g of 
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Kit (lanes 20–23). Lane M—λ-phage DNA. 
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Figure 1. Genomic DNA extracted from opium poppy seeds (a) by: Dellaporta et al. [24] (lanes
1–6, where 1–3 homogenization with liquid nitrogen, 4–6 homogenization without liquid nitrogen),
Dellaporta et al. [24] with CTAB (lanes 7–12, where 7–9 homogenization with liquid nitrogen,
10–12 homogenization without liquid nitrogen), Bayer BioScience N.V. [25] (lanes 13–15), Murray,
Thompson [27] (lanes 16–18), Monsanto Company [26] (lanes 19–21), Sangwan et al. [21] (lanes 22–24),
DNeasy® Plant Maxi Kit (lanes 25–28), Plant DNAzol® Reagent (lanes 29–31), QIAamp DNA Stool Mini
Kit (lanes 32–35), PowerSoil DNA Isolation Kit (lanes 36–39), newly developed protocol (lanes 40–47).
Lane M—λ-phage DNA. (b) Ground poppy seeds: DNA extracted by: Bayer BioScience N.V. [25]
(lanes 1–7, lines 1–4, 0.2 g of seeds with extraction buffer volume for 0.2 g; lanes 5–7, 0.2 g of seed with
extraction buffer volume for 0.5 g of seeds), Monsanto Company (26) (lanes 8–11), newly developed
protocol (lanes 12–15), DNeasy® Plant Maxi Kit (lanes 16–19), QIAamp DNA Stool Mini Kit (lanes
20–23). Lane M—λ-phage DNA.

However, the success in amplification of extracted DNA is not guaranteed only by purity, but also
by concentration and structural integrity of DNA [37,38]. Although values A260 of DNA extracted
by protocols Murray and Thomson [27], Sangwan et al. [21], Plant DNAzol® Reagent, and PowerSoil
DNA Isolation Kit were high, DNA was not observed in agarose gel (Figure 1a, Table 2). There were
probably only limited amounts of poppy DNA and absorbance values have been increased by the
presence of RNA and other contaminants. DNA extracted by these protocols also had very low quality.
Significant RNA contamination was reported only for the original CTAB method [27] and the QIAamp
DNA Stool Mini Kit due to absence of RNase A treatment (Figure 1a).

Amplifications were successful from DNA extracted from mature native seeds by almost all
of used protocols and the relevant fragments were generated (Figure 2). The only exception was
DNA extracted by the Plant DNAzol® Reagent. DNA extracted by PowerSoil DNA Isolation Kit
was probably highly degraded considering that 553 bp fragment of reference tubulin gene was not
amplified, but a 156 bp length microsatellite marker was generated (Figure 2).

The only one currently available protocol developed for extraction of DNA from poppy seeds [21] did
not provide high quality of DNA within this study (Table 2, Figure 1a). The newly developed protocol has
been proven as effective. Compared to the original protocol [25], extraction steps were rearranged, time
intervals between steps were changed, and some chemicals/enzymes were eliminated. Both absorbance
parameters (A260/280 and A260/230) as well as electrophoretic profile of DNA predicted very good quality
and quantity (Table 2, Figure 1a) that should be suitable for amplification by PCR (Figure 2).

3.2. DNA from Ground Seeds

Ground poppy seeds are commonly available in food stores. The sensory values (especially taste
and smell) and related varietal origin of high-quality seeds may be easily masked in ground seeds by
various additives, mainly by sugar. Analytical testing and confirmation of the poppy seeds varietal
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origin is necessary in such cases. DNA from ground poppy seeds was extracted by two protocols [25,26],
two commercial kits, as well as newly developed protocol. The QIAamp DNA Stool Mini Kit and
DNeasy® Plant Maxi Kit produced DNA with the A260/280 and A260/230 ratios furthest from optimal
values (Table 2). Both spectrophotometric ratios of DNA extracted by Monsanto Company [26] protocol
indicated high contamination of DNA with proteins, organic solvents, and secondary metabolites,
and also very low concentration (Table 2). The yield of DNA was significantly different between
tested protocols, but at the same amount of loaded DNA (25 ng/µL) the electrophoretic profiles of all
DNA samples were appropriate (Figure 1b). The highest quality and concentration of DNA has been
extracted by protocols Bayer Biocience N.V. [25] with changed ratio of sample–extraction buffer (w/v)
and the newly developed protocol (Table 2, Figure 1b). Both protocols contained SDS in extraction
buffer. It is suggested that SDS-based DNA extractions could be more appropriate for oily plant
matrices like ground poppy seeds. The SDS-containing method modified for ground raw soybean
seeds had the highest yield of DNA in comparison with the CTAB method and two commercial kits [39].
A lower amount of DNA yielded the CTAB method also from soybean flour [40].

p

Figure 2. Amplification of 156 bp microsatellite psSSR69 (a) and 553 bp fragment of gene for tubulin
beta-7 chain (b) in DNA extracted from poppy seeds by: Dellaporta et al. [24] with and without liquid
N2 (lanes 1 and 2), Dellaporta et al. [24] with CTAB with and without liquid N2 (lanes 3 and 4), Bayer
BioScience N.V. [25] (5), Murray, Thompson [27] (6), Monsanto Company [26] (7), Sangwan et al. [21] (8),
DNeasy® Plant Maxi Kit (9), Plant DNAzol® Reagent (10), QIAamp DNA Stool Mini Kit (11), PowerSoil
DNA Isolation Kit (12), newly developed protocol (13–14), NC—negative control, PC—positive control,
M1—25 bp ladder (Invitrogen), M2—100 bp DNA ladder (Solis BioDyne).

Amplifications of DNA from ground poppy seeds using primers flanking microsatellite marker
psSSR69 and longer fragment of gene for tubulin beta-7 chain resulted in production of both the 156
and 553 bp amplicons in DNA extracted by all used protocols (Figure 3).

3.3. DNA from Poppy Pollen Grains

DNA was extracted by two commercial kits and by newly developed protocol (Table 2).
Homogenization by pestle and mortar in liquid nitrogen was efficient for disruption of pollen
exine with high structural integrity. Both ratios A260/280 and A260/230 confirmed that the best quality
had DNA extracted by newly developed protocol (Table 2). This simple protocol produced also very
high amount of DNA. On the opposite, the QIAamp DNA Stool Mini Kit and DNeasy® Plant Mini
Kit extracted the least amount of DNA (Figure 4a). Amplifications of DNA from poppy pollen grains
were basically without any complications. All primer pairs were able to amplify relevant amplicons
(Figure 4). The genomic DNA is well protected inside the pollen grain therefore, a large fragment of
the reference gene (553 bp) was simply amplified (Figure 4b). Amplifications of both shorter, the 156
bp microsatellite marker and 96 bp fragment of reference gene were also easily feasible (Figure 4c,d).
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DNA was extracted by two commercial kits and by newly developed protocol (Table 2). 
Homogenization by pestle and mortar in liquid nitrogen was efficient for disruption of pollen exine 

Figure 3. Amplification of 156 bp microsatellite psSSR69 (a) and 553 bp fragment of reference tubulin
gene (b) in DNA extracted from ground seeds extracted by Bayer BioScience N.V. [25] (lanes 1–2,
lane 1), Monsanto Company [26] (3), DNeasy® Plant Maxi Kit (4), QIAamp DNA Stool Mini Kit (5),
newly developed protocol (6), NC—negative control, PC—positive control, M1—25 bp DNA ladder
(Invitrogen), M2—100 bp DNA ladder (Solis BioDyne).

Figure 4. Genomic DNA extracted from opium poppy pollen grains (a). Amplification of 553 bp (b) and
96 bp (d) fragments of reference tubulin gene, and 156 bp (c) microsatellite, respectively. (1)—newly
developed protocol, (2)—DNeasy® Plant Maxi Kit, (3)—QIAamp DNA Stool Mini Kit, NC—negative
control, PC—positive control, M—100 bp DNA ladder (b) (Invitrogen) and 25 bp DNA ladder (c,d)
(Solis BioDyne).

Extraction of DNA from pollen grains is needed in different applications including monitoring of
pollen grains transfer from transgenic opium poppy plants to the environment [41], detection of pollen
species in food (e.g., in honey) for the prevention of allergens [42], forensic palynology [43] and others.

3.4. DNA from Poppy Seed Filling

DNA was extracted by two procedures, one commercial kit, and the newly developed protocol
(Table 3). The purification step using the silica membrane spin-columns [28] was added to protocols
Monsanto Company [26] and newly developed one. Both ratios A260/280 and A260/230 confirmed that
DNA extracted using almost all extraction protocols had these values out of the optimal range (Table 3).
Undamaged high molecular weight DNA extracted from poppy seed filling from the bakery product
was not visualizable in agarose gel (data not shown). This reflects fragmentation of poppy DNA to
very short fragments due to high degradation during baking. This is common for DNA extracted
from a matrix that has undergone processing by high temperature [29] and a combination of grinding,
mechanical manipulation, and thermal treatment [44]. However, the objective quality and usability of
DNA extracted can only be revealed by its amplification.
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Complex food matrices contain a variety of PCR inhibitors [45]. Other effects of the matrix include
degradation, fragmentation, and restricted extractability of DNA, as well as presence of DNA from
different organisms [46]. Baking temperature around 200 ◦C used in processing of bakery goods
containing poppy seed filling substantially reduces the size of extracted DNA. Moreover, higher
moisture content inside the product, in this case in poppy filling, contributes to greater degradation of
DNA [9]. Amplifications of poppy DNA extracted from filling of the baked product were more difficult.
As expected, primer pair designed for amplification of 553 bp fragment of reference gene was not able
to generate amplicon (data not shown). The Bayer BioScience N.V. method [25] and the QIAamp DNA
Stool Mini Kit provided DNA with quality allowing amplification of the 156 bp microsatellite and
short (96 bp) fragment of reference gene (Figure 5). Both these methods were effective also without the
need of purification in columns. DNA extracted by the Monsanto Company method [26] and newly
developed protocol was amplifiable only if the purification step in the silica membrane column [28]
was added (Figure 5). Columns were able to bind impurities and inhibitors of polymerase chain
reaction from primary DNA extracts.
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3.5. DNA from Poppy Oil

Oil from poppy seeds is mainly used for culinary and pharmaceutical purposes, but also for 
production of cosmetics, paints and varnishes. Cold-pressed oil is quite expensive, so it can 
sometimes be adulterated by much cheaper vegetable oils (e.g., from rapeseed, sunflower, oil palm). 
Techniques of analytical chemistry are developing for distinguishing between cheaper oils (e.g., 
sunflower, oilseed rape) and poppy oil [17]. However, chemical analysis may not be unambiguous 
[31] due to variation in chemical composition of vegetable oils among growing areas and seasons. 
Alternative approaches are based on the DNA analysis and require extraction of DNA from oil. Such 
protocols were developed mainly for olive oil. Four of such methods [4,29–31], the QIAamp DNA 
Stool Mini Kit as well as Bayer BioScience N.V. [25], Monsanto Company [26], newly developed 
protocols were tested for different volumes of poppy seed oil. Bayer BioScience N.V. [25], Monsanto
Company [26] and newly developed protocol were unable to extract detectable and usable DNA
(data not shown). DNA extracted by other protocols had also both absorbance parameters (A260/280, 
A260/230) far from the optimal values (Table 3); however, DNA was amplifiable by PCR (Figure 6). 

Figure 5. Amplification of 156 bp microsatellite psSSR69 in DNA extracted from the poppy seed filling
(a) using: Bayer BioScience N.V. [25] (lane 1), QIAamp DNA Stool Mini Kit (2), newly developed
protocol (3, 5, 7), Monsanto Company [26] (4, 6) NC—negative control, PC—positive control. Lanes 1–4
represent samples without, lanes 5–7 with purification through silica membrane columns. Amplification
of 96 bp fragment of the reference tubulin gene (b) using: Bayer BioScience N.V. [25] (lanes 1, 2, 9, 10),
QIAamp DNA Stool Mini Kit (lanes 3, 4, 11, 12), newly modified protocol (lanes 5–7, 13–16), Monsanto
Company [26] (lane 8, 17) NC-negative control, PC-positive control. Lanes 1–8 represent samples
without, lanes 9-17 samples with purification through columns. M1—25 bp DNA ladder (Invitrogen).

3.5. DNA from Poppy Oil

Oil from poppy seeds is mainly used for culinary and pharmaceutical purposes, but also for
production of cosmetics, paints and varnishes. Cold-pressed oil is quite expensive, so it can sometimes
be adulterated by much cheaper vegetable oils (e.g., from rapeseed, sunflower, oil palm). Techniques
of analytical chemistry are developing for distinguishing between cheaper oils (e.g., sunflower, oilseed
rape) and poppy oil [17]. However, chemical analysis may not be unambiguous [31] due to variation in
chemical composition of vegetable oils among growing areas and seasons. Alternative approaches are
based on the DNA analysis and require extraction of DNA from oil. Such protocols were developed
mainly for olive oil. Four of such methods [4,29–31], the QIAamp DNA Stool Mini Kit as well as
Bayer BioScience N.V. [25], Monsanto Company [26], newly developed protocols were tested for
different volumes of poppy seed oil. Bayer BioScience N.V. [25], Monsanto Company [26] and newly
developed protocol were unable to extract detectable and usable DNA (data not shown). DNA
extracted by other protocols had also both absorbance parameters (A260/280, A260/230) far from the
optimal values (Table 3); however, DNA was amplifiable by PCR (Figure 6). DNA in cold-pressed
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vegetable oil has undergone a process of significant degradation, caused by DNA nucleases released
during crushing and malaxation of oily plant material. This will certainly happen when pressing oil
from poppy seeds as well. If enzymatic mixtures of proteases are applied during this process, the DNA
is prevented to damage and could be extracted with high integrity and concentration, similarly as from
vegetative tissues [47]. However, this cannot be ensured in the already pressed oil. Another significant
complication in the extraction of DNA is the time since pressing and conditions of the oil storage
before the DNA extraction. After a relatively short time interval, a significant decreasing of quality of
extracted DNA was observed due to oxidation damage [48]. Following the assumed high degradation,
DNA has not even been electrophoretically controlled and only its amplifications revealed the potential
utility of the extracted DNA. Statistical analysis did not reveal relationship between concentration,
A260/A280 ratio, and the ability to undergo amplification by PCR [49].
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Figure 6. Agarose gel electrophoresis of PCR products obtained by amplification of 156 bp microsatellite
psSSR69 (a) and 96 bp fragment of reference tubulin gene (b). M1—25 bp DNA ladder (Invitrogen).
DNA extracted by Consolandi et al. [30] (lines 1–6) from 3 mL (1–3) or 6 mL (4–6) of oil, Raieta et al. [4]
(lanes 7–10) from 3 mL (lanes 7,8) or 1 mL (lanes 9–10) oil, Doveri et al. [29] (line 11) extracted from
1 mL of oil, Giménez et al. [31] (lines 12–13) extracted from 0.5 mL (lane 12) or 3 mL (lane 13) of oil,
QIAamp DNA Stool Mini Kit (lanes 14–16) extracted from 0.2 mL (lane 14b), 1 mL (lane 15b) or 15 mL
(lanes 14a and 16b) of oil, NC—negative control, PC—positive control. aq/o—DNA from water (aq) or
oily (o) phase.

Four extraction protocols [4,29–31] and the QIAamp DNA Stool Mini Kit provided different results
(Figure 6). In addition, DNA extraction was also tested from different starting volumes of poppy seed
oil. Extraction protocol developed for authentication of olive oils [30] was efficient either from 3 mL or
6 mL samples of poppy oil. Poppy DNA obtained by this protocol, from both the oily and water phases
were amplifiable and provided templates for relevant amplicons. Other used DNA extraction protocols
were also developed for olive oil, but based on the CTAB in extraction buffer [4,31]. The resulting poppy
DNA behaved unreliably in the PCR reaction. Convincing and reliable amplifications were obtained
from DNA extracted by another protocol, modified for olive oil [29] containing guanidine thiocyanate
in extraction buffer. The capability of tested QIAamp DNA Stool Mini Kit for DNA extraction from
poppy oil has been demonstrated in low oil volumes (0.2–1 mL).

The quality and quantity of DNA extracted from native or processed poppy seeds strongly
depended on the character of poppy matrix entering the extraction procedure as well as level of its
processing. Amplifications of obtained DNA were also influenced by many factors, especially by the
presence of contaminants and inhibitors. Positioning of used primers for PCR analysis considered the
expected length of extracted DNA fragments depended on the expected disruption of DNA during
processing (baking, pressing) of poppy seed matrix. DNA extracted from different poppy seed matrices
by different extraction protocols was amplified using primer pairs flanking the 553-, 156-, and 96 bp
fragments, respectively (Table 1). The presence of the longest 553 bp fragment was detected by PCR
in poppy DNA extracted from native seeds and ground seeds, but not from processed poppy seed

227



Foods 2020, 9, 1429

matrices (filling of the bakery product, oil). Both types of poppy seed processing (baking, pressing)
reduced the effective concentration of poppy DNA fragments capable of amplification of fragments
longer than 100 bp, as was detected in maize cornmeal [50]. DNA from heat-processed and other
highly degraded plant matrices should be amplified only in short DNA sequences. This is the strategy
also in analysis of DNA from genetically modified organisms in processed foods [9,51]. Analysis of
highly degraded DNA by PCR is more advantageous in DNA regions higher in GC content because
their stability during heat treatment of the analysed matrices is higher [51].

Specific morphological characteristics, extreme heterogeneity and variation in chemical
composition of plant cells cause many problems in DNA extraction. Although numerous protocols
for plant DNA extraction have been published, none is found to be universally applicable [52].
Newly developed DNA extraction protocols are usually modifications of already existing protocols.
The extraction protocol developed in our study demonstrated a relatively high degree of universality,
with respect to poppy matrices. Compared to other DNA extraction protocols, it was quite universal.
In comparison with the Bayer BioScience N.V. [25] protocol, from which the most steps were taken, it
was approximately one third shorter in time. A significant reduction in time was achieved by adjusting
the centrifugation steps. 2-mercaptoethanol ME was added to the first extraction buffer. Some steps
during the extraction procedure were eliminated. Along with purification on silica membrane columns,
the newly developed extraction protocol was highly efficient and represents a simple and inexpensive
alternative to commercial DNA extraction kits. Extraction of DNA from oil required specific extraction
protocols that were developed specifically for this type of matrix only.

4. Conclusions

Protocols tested for extraction of DNA from native and ground poppy seeds, pollen grains,
poppy seed filling from the bakery product, and poppy oil have been differently effective and suitable
depending on individual poppy seed matrices or products. DNA from seeds, ground seeds and
pollen grains extracted by almost all extraction procedures had quantity and quality sufficient for
PCR analysis of short microsatellite marker (156 bp) and also long fragment of the reference gene
(553 bp). The best of these protocols have been tested for DNA extraction from the poppy seed filling
from the bakery product. It has been very useful to use silica membrane columns for purification
of the extracted DNA. Purified DNA was then amplifiable. Poppy DNA extracted from thermally
processed poppy seed filling from the baking product did not amplify long fragment (553 bp) of the
reference gene. However, primers designed for amplification of shorter fragment of the reference gene
(96 bp) as well as for the microsatellite marker (156 bp) provided the appropriate amplicons. The new
extraction protocol developed within this study has proven to be universally applicable to poppy
seeds, pollen, and poppy seed containing products. It can be used for various control purposes in
poppy breeding programmes, production and distribution of elite poppy seeds for crop production,
control of poppy seeds identity as an interesting market commodity, control of products containing
poppy seeds during food production. Protocols tested for extraction of poppy DNA from cold-pressed
poppy oil were originally developed or modified for olive oil. The most of them [29,30] were effective,
and extracted DNA was amplified using primers for the microsatellite marker and the short fragment
of the reference gene.
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Abstract: Turmeric, or Curcuma longa, is commonly consumed in the South East Asian countries as
a medical product and as food due to its therapeutic properties. However, with increasing demand for
turmeric powder, adulterated turmeric powders mixed with other cheap starch powders, such as from
corn or cassava, are being distributed by food suppliers for economic benefit. Here, we developed
molecular markers using quantitative real-time PCR to identify adulteration in commercial turmeric
powder products. Chloroplast genes, such as matK, atpF, and ycf2, were used to design species-specific
primers for C. longa and Zea mays. Of the six primer pairs designed and tested, the correlation
coefficients (R2) were higher than 0.99 and slopes were −3.136 to −3.498. The efficiency of the primers
was between 93.14 and 108.4%. The specificity of the primers was confirmed with ten other species,
which could be intentionally added to C. longa powders or used as ingredients in complex turmeric
foods. In total, 20 blind samples and 10 commercial C. longa food products were tested with the
designed primer sets to demonstrate the effectiveness of this approach to detect the addition of
Z. mays products in turmeric powders. Taken together, the real-time PCR assay developed here has
the potential to contribute to food safety and the protection of consumer’s rights.

Keywords: anti food fraud; Curcuma longa; DNA markers; species identification; SYBR-GREEN
real-time PCR; Zea mays

1. Introduction

Turmeric (Curcuma longa) belongs to the ginger family, Zingiberaceae, and is native to Southern
Asia and India. Turmeric rhizomes, which have brown skin and a unique flavor, are commonly used
as a coloring and flavoring agent in Asian cuisines. Due to its fragrant aroma and slightly bitter
taste, turmeric is a common culinary spice in Indian cuisines, especially curry. Additionally, beyond
food products, turmeric is commonly consumed as a medical product in South East Asian countries
due to its therapeutic properties [1]. The market size of curcumin was valued at USD 58.4 million
in 2019 and is expected to experience a CAGR (compound annual growth rate) of 12.7% from 2020
to 2027 [2]. Globally, the demand for turmeric has grown due to its therapeutic functions and low
toxicity. Curcumin, (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), also known as
diferuloylmethane, is the main natural polyphenol found in rhizomes of C. longa (turmeric) and in other
Curcuma spp. [3]. It has been shown to target multiple signaling molecules while also demonstrating
activity at the cellular level, which has helped support its multiple health benefits [4]. It has beneficial
effects in inflammatory conditions [3], metabolic syndrome [5], and pain [6], as well as helps in the
management of inflammatory and degenerative eye conditions [7]. While there appear to be countless
therapeutic benefits of curcumin supplementation, most of them may be due to its antioxidant and
anti-inflammatory effects [3].
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Reports on the medicinal value of turmeric in treating a variety of ailments have further increased
the global demand for turmeric [8]. In the United States, the largest market for turmeric supplements,
turmeric was the top-selling herbal supplement, with sales exceeding US $47.6 million in 2016 [8,9].
In addition, turmeric-based dietary supplements, which also include standardized extracts with
high concentrations of curcumin, have seen a steady increase in popularity in the United States
and elsewhere [10,11]. However, with the increasing demand for turmeric powder, adulterated
turmeric powders mixed with other cheap starch powders, such as from corn or cassava, have been
distributed by food supplies for economic benefit [12]. According to the United States Grocery
Manufacturers Association, food fraud costs $10–15 billion annually in the global food industry and
affects approximately 10% of all commercial foods sold [13].

To detect fraudulent ingredients in complicated mixed foods, various technologies, such as
sensory-, physicochemical-, chromatographic-, spectroscopic-, and DNA-based assays have been
developed. DNA is generally believed to be stable enough to withstand various chemical treatments
and high temperatures, and small quantities of DNA can be detected with specific primers using
PCR-based methods [14]. DNA-based methods, such as quantitative real-time PCR (real-time PCR),
multiplex PCR, and PCR-RFLP have been successfully applied to detect food fraud and adulteration
due to their economical and time-saving advantages over other approaches [15,16].

Specifically, real-time PCR (real-time PCR) assay presents with high specificity and sensitivity,
capable of detecting very small amounts of target DNA in complex foods. General types of real-time
PCR approaches, probe-based real-time PCR (TaqMan assay), and DNA intercalating dye-based
real-time PCR (SYBR Green I assay) have been employed for the detection and identification of
DNA [17]. Probe-based real-time PCR detects the target sequence with specificity using probes
designed to be complementary to a target sequence [18]; however, this approach requires many SNPs
or indels to differentiate species, and it is difficult to design probes and optimize real-time PCR
conditions [19,20]. Alternatively, SYBR Green I, an intercalating dye that binds to double-stranded
DNA in a sequence independent manner, can provide a more flexible, convenient, and inexpensive
method over probe-based methods [19].

It is generally believed that the nuclear genome of a cell has a single copy of a particular gene
along with a few sequences in low copy numbers; hence, it is difficult to obtain high uniformity in PCR
amplification. Especially, DNA extracted from processed commercial foods is of low quality, possibly
because of degradation caused by the processes of drying, heating, fermentation, and addition of
ingredients. Therefore, markers designed on the extracted nuclear DNA from processed foods exhibit
a low ability to discriminate between species because of the low quality of nuclear DNA that has
either a single gene or low-copies of genes [21,22]. The chloroplast genome size varies among species,
ranging from 107 to 208 kb and consisting of a single circular molecule of DNA that is generally present
in hundreds of copies per cell [23]. Chloroplasts are composed of two layers of membranes that enable
chloroplasts to persist through decomposition during food processing [24]. The chloroplast genome is
generally believed to contain 120–130 genes [22]. Some genes, such as matK, ndhF, ycf 2, and ccsA, exhibit
higher frequencies of single-nucleotide polymorphisms (SNPs) and insertion/deletions (indels) than
other chloroplast genes [23]. A variety of chloroplast markers, including atpF-atpH spacer, matK gene,
rbcL gene, rpoB gene, rpoC1 gene, psbK-psbl spacer, and trnH-psbA spacer, have been employed for
species identification [25,26].

As described above, cheap corn powder with a similar color to turmeric has been wildly used in
adulterated turmeric powders by food suppliers for illegal economic benefit. In this study, we developed
SYBR Green-based quantitative real-time PCR assay to identify adulteration in commercial turmeric
powder products using turmeric and corn species-specific primer sets. The real-time PCR methodology
was optimized for both species-specific primers to correctly identify target species in complex powder
products. Subsequently, the designed primers were applied to commercial turmeric products.
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2. Materials and Methods

2.1. Plant and Food Sample Preparation

Turmeric (Curcuma longa) rhizomes and corn (Zea mays) seeds were kindly provided by Gangwondo
Agriculture Research and Extension Services (Chuncheon, Korea). Both plants were grown in a stable
temperature greenhouse for four weeks with horticulture soil. Samples for DNA isolation were
extracted from the leaves of each plant. All C. longa commercial products used for the analysis of food
complexes were purchased from local markets and stored at room temperature.

2.1.1. Reference Binary Mixtures

To generate a quantitative reference binary mixture model, binary mixtures containing different
amounts (2 mg, 0.1%; 20 mg, 1%; 200 mg, 10%; and 2 g, 100%) of turmeric rhizome powders were mixed
to prepare a final mixture of 2 g with corn powder, wheat flour, or rice flour purchased from a local
market. Additionally, different amounts of corn powder were mixed (2 mg, 0.1%; 20 mg, 1%; 200 mg,
10%; and 2 g, 100%) to prepare final mixtures of 2 g with turmeric rhizome powders. Turmeric rhizomes
and corn seeds were dried in a 55 ◦C dry oven for 48 hours and then ground with a mixing machine.

2.1.2. Blind Samples

Blind powder samples (n = 20) were provided by the National Institute of Food and Drug Safety
Evaluation of the Ministry of Food and Drug Safety (Cheongju, Korea). The blind samples consisted
of different percentages of corn and turmeric rhizome powders. The corn powders were added to
turmeric rhizome powders at concentrations of 0–10% w/w, to prepare final mixtures of 150 mg.

2.2. DNA Extraction

For the efficiency of the designed primer sets, genomic DNA used for standard curves was
extracted from C. longa and Z. mays leaves using the Dneasy Plant Pro Kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s protocol. Genomic DNA used to plot standard curves of reference
binary mixtures was isolated from the binary mixture samples (2 g each) using a large scale CTAB-based
genomic DNA isolation method [27]. Genomic DNA from the commercial turmeric products was
extracted using the Dneasy Plant Pro Kit according to the manufacturer’s protocol. To obtain high
quality genomic DNA, DNA extracted with the large scale CTAB method was purified using the
Wizard DNA Clean-Up system (Promega, Madison, USA). DNA quantity and purity were measured
using a SPECTROstar Nano reader (BMG Labtech, Ortenberg, Germany). Purity of the DNA extracts
was in the range of 1.7–2.

2.3. Sequence Analysis and Primer Design

Sequences of target chloroplast genes such as matK, atpF, and ycf2 of two species (C. longa
for NC_042886.1 and Z. mays for NC_001666.2) were downloaded from the National Center for
Biotechnology Information (NCBI) and used to design target-specific primers. The nucleotide
sequences of the both species were aligned using ClustalW2 (EMBL-EBI, Hinxton, Cambridgeshire, UK)
and BioEdit 7.2 (Ibis Biosciences, Carlsbad, CA, USA). Species-specific primer sets were designed based
on the variable region between C. longa and Z. mays using Beacon DesignerTM (PRIMER Biosoft, Palo
Alto, CA, USA). Species-specific primers were commercially synthesized (Macrogen, Seoul, Korea).

2.4. Quantitative Real-Time PCR

Real-time PCR was performed in a final volume of 20 µL using AccuPower® 2× GreenStar™
real-time PCR Master Mix with SYBR Green (Bioneer, Daejeon, Korea). The real-time PCR reaction
mixture consisted of 10 µL 2× GreenStar Master Mix, 0.5 µL 10 pmol each primer, 1 µL of 10 ng/µL
genomic DNA, and 0.25 µL ROX Dye. A QuantStudio 3 Real-Time PCR System (Applied Biosystems,
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Foster City, CA, USA) was used for real-time PCR amplification. The real-time PCR conditions were as
follows: pre-denaturation (10 min at 95 ◦C), followed by 40 cycles of denaturation for 30 s at 95 ◦C,
annealing for 20 s at 55–60 ◦C (depending on each targeting primer sequence), and extension for 30 s at
72 ◦C. All real-time PCRs were performed in technical triplicates for three biological replicates.

2.5. Cloning of PCR Amplicons and Sequencing

Conventional PCR was carried out using TaKaRa Ex TaqTM DNA polymerase (TaKaRa Bio
Company, Kusatsu, Shiga, Japan) mixture with 10 ng DNA and 10 pmol each primer using a C1000
Thermal Cycler (BIO-RAD, California, USA). PCR conditions were as follows: pre-denaturation for
5 min at 95 ◦C, followed by 35 cycles of annealing and denaturation for 30 s at 95 ◦C, annealing for 20 s
at 55–60 ◦C (depending on primer sequences), and extension 30 s at 72 ◦C, and final extension for 5 min
at 72 ◦C. PCR products were amplified using target specific primers (CL_matK, CL_atpF, CL_ycf2,
ZM_matK, ZM_atpF, and ZM_ycf2) and cloned using the RBC T&A Cloning Vector (Real Biotech
Corporation, Taipei, Taiwan). Plasmid DNA was extracted from recombinant plasmids using the
DokDo-Prep Plasmid Mini-Kit (ELPISBIOTECH, DaeJeon, South Korea) and sequenced by a commercial
service (Macrogen, Seoul, Korea).

2.6. Standard Curve Construction and Data Analysis

The efficiency of the designed primer sets was evaluated using two approaches.
First, species-specific PCR products were cloned into the RBC T&A Cloning Vector (Real Biotech
Corporation, Taipei, Taiwan), and recombinant clones were then diluted serially (107, 106, 105, 104,
and 103 copies) and used to quantify and confirm the efficiency of equivalent amplification [28,29].
Second, real-time PCR assays were applied to genomic DNA using target and non-target gDNA diluted
ten-fold into five series (10 ng to 1 pg).

Each binary mixture with genomic DNAs extracted from the leaves or powder products of each
species was diluted to a final concentration of 10 ng/µL. A baseline and a threshold were set for
further analysis. The cycle number at the threshold level of log-based fluorescence was defined as
the Ct (cycle threshold) number, which was the observed value in the conventional real-time PCR
experiments [30]. Correlations between diluted DNAs and cycle threshold (Ct) standard curves were
evaluated using a default parameter. The standard curve was calculated as y = −ax + b (a refers to the
standard curve slope and b refers to the y-intercept). The efficiency of the reaction (E) was calculated
as E = (10−1/a), and the percent efficiency was evaluated as (E − 1) × 100% [29,30]. For all analyses,
three technical replicates of each biological replicate were performed.

To evaluate amplification efficiency and sensitivity, two criteria were used to define an acceptable
real-time PCR assay based on previous reports [28,29]: linear dynamic range and amplification
efficiency. The linear dynamic range should ideally extend over four log10 concentrations, with the
coefficient of determination (R2) being greater than 0.98, and the amplification efficiency should be in
the range of 110-90%, corresponding to a slope between −3.1 and −3.6 [29].

To validate the specificity and sensitivity of the designed target-specific primers, interlaboratory
validation was performed in two independent laboratories. Validation was performed in two
laboratories using the same PCR conditions and with either an Applied Biosystems 7500 Fast Real-Time
PCR Instrument System (Applied Biosystems, Foster City, CA, USA) or a CFX Connect Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA).

3. Results and Discussion

3.1. Design of Species-Specific Primers

To verify authenticity of C. longa commercial food products, we designed species-specific primer
pairs for C. longa and Z. mays. Chloroplast genes, such as matK, atpF, and ycf2, with high frequencies of
SNPs and indels between the two species [25] were targeted to design the species-specific primer sets.
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For designing species-specific primers, chloroplast genes of both species, as well as those of other starch
crops (Oryza sativa and Triticum aestivum), were aligned using a software program with ClustalW2
(EMBL-EBI, Hinxton, Cambridgeshire, UK) and BioEdit 7.2 (Ibis Biosciences, Carlsbad, CA, USA;
Supplementary Figures S1 and S2). We identified a variety of SNPs within three chloroplast genes
among four species (Supplementary Figure S1). Food processing, such as heating, drying, and mixing,
is known to damage and degrade DNA [31]. If the length of PCR amplicons is long, real-time PCR
would be decreased in various food products. Therefore, based on species-specific SNPs, target-specific
primers were designed to amplify short products ranging from 80 to 194 bp (Table 1).

Table 1. Primer sets designed for species-specific targeting.

Target Species Target Gene Primer Length (bp) Sequence (5′→3′) Size (bp) Tm (◦C)

All plants 18s rRNA
region

18s rRNA_F 25 TCTGCCCTATCAACTTTCGATGGTA
137 5818s rRNA_R 25 AATTTGCGCGCCTGCTGCCTTCCTT

Curcuma longa

matK
CL_matK_F 19 CAATCCTATATGGTTGAGA

171 55CL_matK_R 18 GTCAGAAGACTCTATGGA

atpF CL_atpF_F 20 GCATTATTGGTTGATAGAGA
194 58CL_atpF_R 22 GTTTATTTCAAGAATAGGATGG

ycf2 CL_ycf2_F 20 GAAGAAGAGGAAGAGGACAT
80 60CL_ycf2_R 20 CATATTCTAGGAGCCCAAAC

Zea mays

matK
ZM_matK_F 19 TTGATATCGAACATAATGC

135 55ZM_matK_R 16 ACATCTTCTGGAACCT

atpF ZM_atpF_F 19 TGGAAGCAGATGAGTATCG
160 60ZM_atpF_R 18 TGTTGTCGGACCTGATTC

ycf2 ZM_ycf2_F 20 AAGAGGATGAGTTGTCAGAG
99 59ZM_ycf2_R 18 GCAAGAAGTCCGAATCAG

3.2. Amplification Efficiency of the Designed Primer Sets

Amplification efficiency of the six primer sets (CL_matK, CL_atpF, CL_ycf2, ZM_matK, ZM_atpF,
and ZM_ycf2) was evaluated by constructing standard curves using 10-fold serial dilutions (107 to 103)
of each recombinant plasmid DNA, and regression analyses were performed (Figure 1, Supplementary
Figure S3). The correlation coefficients (R2) of the six primer pairs were higher than 0.99, and slopes
ranged from −3.14 to −3.50. The efficiency of the primers was between 93.14 and 108.40%
(Supplementary Table S1). All values fit the ENGL (European Network of GMO Laboratories)
guidelines, with the coefficient of determination (R2) being greater 0.98 and the amplification efficiency
ranging from 110 to 90%, which corresponds to a slope between −3.1 and −3.6 [29]. Subsequently,
we evaluated the efficiency of the primers using the 10-fold serially diluted genomic DNAs (from
10 ng to 1 pg) extracted from plant samples (Figure 2, Supplementary Figure S4). Similarly to the
results of recombinant plasmid DNAs, standard curves in the gDNA samples also ranged from −3.42
to −3.54, exhibited R2> 0.99, and efficiency values of 91.78–95.92%, which also conformed to the ENGL
guidelines (Supplementary Table S1) [29].

In addition, to evaluate the adaptability of the primes across machines, amplification efficiency
was evaluated by two independent laboratories. As a result, the primer sets were found to meet
the ENGL criteria (R2 > 0.98 and efficiency ranges of 91.78–108.40; Supplementary Table S2). Based
on the evaluation of amplification efficiency of the designed primer sets through three approaches,
with recombinant plasmids, genomic DNA, and interlaboratory evaluation, the designed primer sets
could be suitable to detect the target species.
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CL_ycf2). Green dots represent serial dilution series of recombinant plasmids (107–103) containing C. 
longa specific target gene (matK, atpF and ycf2) sequences; (B) Z. mays targeting primer sets 
(ZM_matK, ZM_atpF, and ZM_ycf2). Blue dots represent serial dilution series of recombinant 
plasmids (107–103) containing Z. mays specific target gene (matK, atpF and ycf2) sequences. The real-
time PCRs were carried out in triplicate (n = 3). 
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and blue dots represent genomic DNA of Z. mays (10ng); (B) Z. mays targeting primer sets 
(ZM_matK, ZM_atpF, and ZM_ycf2). Blue dots represent serial dilution series of genomic DNA in Z. 
mays leaves (10ng–1pg) and green dot represents genomic DNA of C. longa (10ng). The real-time 
PCRs were carried out in triplicate (n = 3). 
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species-specific primer sets. The x-axis represents log number of plasmids and the y-axis represents
means of Ct value± SD. (A) C. longa targeting primer sets (CL_matK, CL_atpF, and CL_ycf2). Green dots
represent serial dilution series of recombinant plasmids (107–103) containing C. longa specific target gene
(matK, atpF and ycf2) sequences; (B) Z. mays targeting primer sets (ZM_matK, ZM_atpF, and ZM_ycf2).
Blue dots represent serial dilution series of recombinant plasmids (107–103) containing Z. mays specific
target gene (matK, atpF and ycf2) sequences. The real-time PCRs were carried out in triplicate (n = 3).
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Figure 2. Standard curve of cycle threshold (Ct) values were obtained on the basis of efficiency and
correlation of coefficient (R2) in serial dilution series genomic DNA (C. longa and Z. mays) using
species-specific primer sets. The x-axis represents log DNA concentration (ng) and the y-axis represents
means of Ct value± SD. (A) C. longa targeting primer sets (CL_matK, CL_atpF, and CL_ycf2). Green dots
represent serial dilution series of genomic DNA in C. longa leaves (10ng–1pg) and blue dots represent
genomic DNA of Z. mays (10ng); (B) Z. mays targeting primer sets (ZM_matK, ZM_atpF, and ZM_ycf2).
Blue dots represent serial dilution series of genomic DNA in Z. mays leaves (10ng–1pg) and green dot
represents genomic DNA of C. longa (10ng). The real-time PCRs were carried out in triplicate (n = 3).

3.3. Sensitivity and Specificity of the Assay

Globally, most C. longa-containing foods are prepared with rhizomes and dry powders. Therefore,
we tested the sensitivity and specificity of the designed C. longa primer sets with binary mixtures
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(0.1–100% (w/w)) of C. longa dry rhizome powders containing each of three starch crops, including corn,
rice, and wheat (Figure 3A–C). All three C. longa primer sets with slopes ranging from −3.35 to −3.550
exhibited R2 > 0.99 and efficiency values of 91.29–98.84% when used on mixed powders of C. longa
and each starch crop, supporting the high sensitivity of the primer sets for verifying the presence of
C. longa in mixtures sets (Supplementary Table S3). Subsequently, sensitivity of the three Z. mays primer
sets was tested with binary mixtures of Z. mays and C. longa (0.1–100% (w/w)). Similarly, the three
Z. mays primer sets with slope ranging from −3.12 to −3.44 exhibited R2 > 0.99 and efficiency values of
95.30–109.18% when used on mixed powders of C. longa and Z. mays, supporting the high sensitivity of
the primer sets for verifying the presence of Z. mays in mixtures. Next, we determined the cut-off of Ct
values based on the binary mixture standard collinearity equation of each primer set (Supplementary
Table S3) to identify intended additions of cheap starch ingredients, such as Z. mays, in the C. longa
powders. Ct values of 0.1% target species were determined as cut-off values for each primer set
because additions of less than 0.1% of non-target species were not considered to be intended for illegal
economic profit. The cut-off Ct values (0.1% target species in binary mixtures) were established to
verify the presence of the target species from the calibration curves (Figure 3). The cut-off Ct values
ranged from 26.82 to 29.59 cycles for each primer set targeting C. longa and 27.58 to 29.68 cycles for
those targeting Z. mays (Supplementary Table S3).

Subsequently, we conducted a specificity test using the species-specific primer sets. A total of
10 species of cereals and vegetables were examined to assess cross-reactivity (Table 2). The cheap starch
crops such as barley, wheat, oats, rice, sweat potato, and cassava, which are likely to be intentionally
mixed as ingredients in complex turmeric foods for illegal economic profits, were included for the
specificity test. In addition, one vegetable crop such as cabbage and one oilseed crop such as peanuts
were used for the specificity test as out groups. 18S plant rRNA primer sets were used as a positive
control [32], which exhibited lower Ct values than the cut-off. As shown in Table 2, Cl_matK, CL_atpF,
and CL_ycf2 exhibited C. longa-specific amplification but did not amplify the DNA of other species.
Similarly, ZM_matK, ZM_atpF, and ZM_ycf2 exhibited Z. mays specific amplification did not amplify
the DNA of other species. The specificity test demonstrates that the primer sets could be useful for
detecting the target species in unknown-ingredient powders and in complex food products.

Table 2. Results of the specificity test with other plants.

NO Species

Plant Systems Curcuma longa Zea mays

18s rRNA
CL_matK Cl_atpF CL_ycf2 ZM_matK ZM_atpF ZM_ycf2

28 a (Cycles) 28 (Cycles) 29 (Cycles) 28 (Cycles) 29 (Cycles) 28 (Cycles)

1 Curcuma longa
(Turmeric) + + b + + - - -

2 Hodeum vulgare
(Barley) + - c - - - - -

3 Avena sativa
(Oats) + - - - - - -

4 Triticum aestivum
(Wheat) + - - - - - -

5 Zea mays
(Corn) + - - - + + +

6 Oryza sativa
(Rice) + - - - - - -

7 Brassica oleracea var.
capitate (Cabbage) + - - - - - -

8 Ipomoea batatas
(Sweat potato) + - - - - - -

9 Arachis hypogaea
(Peanuts) + - - - - - -

10 Manihot esculenta
(Cassava) + - - - - - -

a Cycles, conventional PCR cycles based on cut-off (Ct) values of each specific primer sets (Ct values of 0.1% binary
mixture ); b +, detected at less than Ct values of primers; c -, not detected before the primers′ Ct values.
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Figure 3. Standard curve of cycle threshold (Ct) values obtained on the basis of efficiency and correlation
of coefficient (R2) by reference binary mixtures. The x-axis represents log percentage of the target species
(%) and the y-axis represents means of Ct value ± SD. plotted against the logarithm of the target species
concentration (100, 10, 1, and 0.1%). (A–C); each C. longa rhizome powders were mixed with three
different plant powders (Z. mays, O. sativa, and T. aestivum) by ten-fold dilutions (0.1, 1, 10 and 100%,
final mass of 2g) and the each mixture gDNA(10 ng/uL) was amplified using the C. longa targeting
primer sets (CL_matK, CL_atpF, and CL_ycf2). The green dotted line means the 0.1% binary mixture
Cts amplified using the C. longa targeting primer sets, CL_matK, CL_atpF and CL_ycf2) (A) binary
mixture of C. longa and Z. mays; (B) binary mixture of C. longa and O. sativa; (C) binary mixture of
C. longa and T. aestivum. (D) Z. mays powders were mixed with C. longa rhizome powders by ten-fold
dilutions (0.1, 1, 10 and 100%, final mass of 2g) and each mixture gDNA(10 ng/uL) was amplified using
the Z. mays targeting primer sets (ZM_matK, ZM_atpF, and ZM_ycf2). The blue dotted line means the
0.1% binary mixture Cts amplified using the Z. mays targeting primer sets, ZM_matK, ZM_atpF and
ZM_ycf2). The real-time PCRs were carried out in triplicate (n = 3).

3.4. Application of the Developed Real-Time PCR Assay to Blind Samples

A blind test was conducted to estimate the reliability of the developed real-time PCR assays.
Twenty unknown powder samples of C. longa and Z. mays were mixed randomly by an independent
research group. The 18S rRNA plant primer sets were used as positive amplification controls [32],
which exhibited low Cts (13.27–16.21; Table 3).

Next, we determined whether Z. mays powder was present in the samples based on the cut-off

Ct values of the designed primer sets (0.1% Z. mays in binary mixtures). As a result, we identified
four samples (sample 3, 9, 12, and 19) with Ct values exceeding the cut-off Ct values, indicating that
the samples did not contain Z. mays powder mixed in C. longa powder. The other 16 samples were
exhibited lower Cts than the cut-off Ct values, indicating that those samples contained Z. mays powder.
In addition, the ratio of Z. mays powder mixed into the 16 samples was predicted using the developed
binary mixture assay of the three primer sets (ZM_matK, ZM_atpF, and ZM_ycf2). The predicted
percentage of Z. mays in each blind sample was extrapolated by inserting the Cts into the standard
collinearity equation of each primer set (ZM_matK, ZM_atpF, and ZM_ycf2). As a result, the predicted
percentages of Z. mays present in each sample were consistent with those of the mixed samples (Table 3).
Therefore, the real-time PCR methodologies developed in this study demonstrated high accuracy for
detecting the addition of Z. mays in C. longa rhizome powders.
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Table 3. Results of the blind mixture test for evaluating the reliability of the developed primer sets.

No.

Ingredient

PACa Eb (%)

Z. mays Specific Primer Ct ± SD

A/DC. longa
(%)

Z. mays
(%) ZM_matK ZM_atpF ZM_ycf2

1 99 1 13.57 ± 0.04 0.5–1.5 25.02 ± 0.06 25.61 ± 0.20 26.44 ± 0.21 Ad

2 98 2 14.73 ± 0.09 1–5 25.09 ± 0.02 24.78 ± 0.12 22.8 ± 0.18 A
3 100 0 14.03 ± 0.01 NDc 31.51 ± 0.15 31.32 ± 0.26 35.15 ± 0.05 A
4 98 2 14.31 ± 0.01 1–5 24.40 ± 0.01 24.75 ± 0.15 23.92 ± 0.09 A
5 95 5 14.05 ± 0.01 1–5 23.72 ± 0.09 24.34 ± 0.09 21.94 ± 0.22 A
6 97 3 14.11 ± 0.06 1–5 23.45 ± 0.05 24.90 ± 0.07 22.97 ± 0.25 A
7 99.5 0.5 14.21 ± 0.02 0.5–1.5 25.09 ± 0.05 26.95 ± 0.07 26.34 ± 0.15 A
8 98.5 1.5 14.12 ± 0.05 0.5–1.5 25.59 ± 0.03 26.32 ± 0.10 24.69 ± 0.19 A
9 100 0 14.33 ± 0.08 ND 31.67 ± 0.20 31.01 ± 0.80 34.89 ± 0.10 A
10 98.5 1.5 14.23 ± 0.03 0.3–2 25.13 ± 0.09 25.69 ± 0.10 24.21 ± 0.02 A
11 99.5 0.5 14.27 ± 0.01 0.1–1 26.06 ± 0.09 27.08 ± 0.10 26.19 ± 0.09 A
12 100 0 13.61 ± 0.12 ND 31.33 ± 0.28 30.98 ± 0.11 34.46 ± 0.26 A
13 97 3 14.31 ± 0.10 1–5 24.97 ± 0.09 24.37 ± 0.07 23.86 ± 0.13 A
14 98 2 13.22 ± 0.07 1–5 24.19 ± 0.09 26.14 ± 0.12 23.22 ± 0.09 A
15 96 4 13.33 ± 0.06 1–5 23.92 ± 0.15 24.26 ± 0.03 22.72 ± 0.27 A
16 99 1 14.26 ± 0.05 0.1–1 25.75 ± 0.10 26.75 ± 0.14 25.11 ± 0.10 A
17 93 7 13.95 ± 0.07 5–10 22.11 ± 0.11 23.99 ± 0.13 21.72 ± 0.11 A
18 90 10 13.74 ± 0.02 10–15 22.11 ± 0.10 21.99 ± 0.18 21.23 ± 0.13 A
19 100 0 16.21 ± 0.07 ND 30.82 ± 0.20 31.09 ± 0.01 34.06 ± 0.56 A
20 97 3 13.27 ± 0.1 1–5 23.96 ± 0.05 24.28 ± 0.10 23.22 ± 0.12 A

a Positive amplification control (18s rRNA); b, expected ratio of the Z. mays; C, not detected; d accordance.

3.5. Application of the Developed Assay in Commercial Products

To verify adulteration with corn powder of C. longa food products, we performed the developed
real-time PCR assays on 10 C. longa commercial food products (Supplementary Table S4, Table 4).
First, the quality of genomic DNA isolated from the food products was evaluated using a spectrometer.
As depicted in Table 4, the 18S rRNA primer sets exhibited low Cts (14.01–19.82), indicating that the
gDNA from all the commercial products was sufficient to provide amplifiable gDNA. We found that
all C. longa commercial food products (samples 1–10) were amplified with lower Ct values (from 14.1
to 21.971 cycles) using the C. longa species-specific primers (CL_matK, CL_atpF, and CL_ycf2) than the
cut-off Ct values (Ct values of 0.1% C. longa-specific primer set in binary mixtures) for each primer
set (CT values of CL_matK, CL_atpF, and CL_ycf2 were 28.65, 28.60, and 29.59 cycles, respectively;
Figure 3, Supplementary Table S3). Additionally, all samples were amplified with higher Ct values
(from 30.23 cycles to not detected before 40 cycles) with Z. mays targeting primers (ZM_matK, ZM_atpF,
and ZM_ycf2) than the cut-off Ct values (Ct values of 0.1% Z. mays-specific primer sets in binary
mixtures) for each primer set (28.41, 29.68, and 27.58 cycles, respectively; Supplementary Table S2).
As a result, the commercial products purchased from local markets did not contain Z. mays, suggesting
that the developed real-time PCR assays could be successfully applied to detect the presence of Z. mays
in commercial complex C. longa products.

241



Foods 2020, 9, 882

Table 4. Result of the real-time PCR assay using 10 commercial products.

Real Commercial Products Tested that Labeled as 100% Curcuma longa

Sample Number Plant System (18s rRNA) CL_matK CL_atpF CL_ycf2 ZM_matK ZM_atpF ZM_ycf2

1
14.49 14.83 14.10 14.24

NDa 34.00
ND±0.15 ±0.13 ±0.17 ±0.14 ±0.07

2
15.23 15.27 15.70 14.50 38.26 33.59

ND±0.06 ±0.18 ±0.09 ±0.08 ±1.1 ±2.01

3
19.82 22.62 22.65 20.16 36.28 32.32 34.79
±0.08 ±0.27 ±0.04 ±0.06 ±0.61 ±0.54 ±0.47

4
15.25 15.95 16.33 15.25 33.60 30.05 34.35
±0.06 ±0.07 ±0.03 ±0.14 ±0.20 ±0.07 ±0.21

5
14.01 15.29 15.46 15.29 31.53 31.41

ND±0.05 ±0.07 ±0.01 ±0.07 ±0.54 ±0.56

6
19.19 17.68 21.97 15.28 32.34 31.14

ND±0.03 ±0.12 ±0.04 ±0.04 ±0.76 ±0.14

7
16.44 16.10 16.39 14.90 34.89 34.57

ND±0.18 ±0.03 ±0.03 ±0.09 ±0.35 ±0.65

8
18.87 15.35 20.24 14.10 32.82 34.55

ND±0.08 ±0.02 ±0.12 ±0.02 ±0.33 ±0.95

9
15.31 14.63 15.15 13.26 31.05 34.00

ND±0.09 ±0.08 ±0.06 ±0.02 ±4.55 ±0.08

10
16.10 15.84 16.57 14.95 32.02 30.23 33.77
±0.01 ±0.03 ±0.02 ±0.06 ±0.24 ±0.06 ±0.92

a ND indicates not detected at less than 40 cycles.

4. Conclusions

A real-time PCR assay is a highly sensitive, rapid, and specific method to detect target-species in
processed food complexes. We designed three chloroplast gene targeted primer sets for both C. longa
and Z. mays. To assess the quantities of the target-species present, standard curves were constructed
using recombinant plasmid DNA and binary DNA mixtures. The specificities of the designed primers
were confirmed with ten other species. Blind sample analysis and the application to commercial C. longa
food products supported the effectiveness of the real-time PCR assays to detect Z. mays products added
for illegal economic profits. Therefore, the developed real-time PCR assay could contribute to food
safety and the protection of consumer’s rights.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/7/882/s1,
Figure S1: Alignment of the target chloroplast gene (matK, atpF and ycf2) nucleotide sequences of C. longa,
Z. mays and starch crops (O. sativa and T. aestivum) mainly eating as powders amplified by C. longa specific
primer sets (CL_matK CL_atpF and CL_ycf 2), Figure S2: Alignment of the target chloroplast gene(matK, atpF
and ycf2)nucleotide sequences of Z. mays, C. longa and starch crops(O. sativa, and T. aestivum) mainly eating as
powders, amplified by Z. mays s pecific primer sets (ZM_matK, ZM_atpF and ZM_ycf2), Figure S3: Real time
PCR with SYBR Green and DNA melting curve analyses.(A) Serial dilution series recombinant plasmids (107–103)
containing C. longa specific gene (matK, atpF and ycf 2) sequence were amplified using C. longa specific primer sets.
(B) Serial dilution series recombinant plasmids (107–103) containing Z. mays specific gene (matK, atpF and ycf 2)
sequence were amplified using Z. mays specific primer sets. The real time PCRs were performed on a QuantStudio
3 Real Time PCR System (Applied Biosystems, Foster City, CA, USA) and carried out in triplicate (n = 3), Figure
S4: Real time PCR with SYBR Green and DNA melting curve analyses green lanes mean the C. longa blue lanes
mean Z. mays and pink lanes mean NTC. (A) Serial dilution series of C. longa genomic DNA (10 ng–1 pg) was
amplified using C. longa specific primer sets. (B) Serial dilution series of Z. mays (10 ng–1 pg) was amplified using
Z. mays specific primer sets. The real time PCRs were performed on a QuantStudio 3 Real Time PCR System
(Applied Biosystems, Foster City, CA, USA) and carried out in triplicate (n = 3), Table S1: Evaluation of slope, R2,
and efficiency using the developed primer sets, Table S2: Result of the real-time PCR assay in an interlaboratory
experiment, Table S3: Evaluation of the slope, R2, and efficiency using binary mixtures containing three different
intentionally added powders, Table S4: Information on the commercial food products.
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Abstract: Ginkgo biloba is a widely used medicinal plant. Due to its potential therapeutic effects, it is
an ingredient in several herbal products, such as plant infusions and plant food supplements (PFS).
Currently, ginkgo is one of the most popular botanicals used in PFS. Due to their popularity and
high cost, ginkgo-containing products are prone to be fraudulently substituted by other plant species.
Therefore, this work aimed at developing a method for G. biloba detection and quantification. A new
internal transcribe spacer (ITS) marker was identified, allowing the development of a ginkgo-specific
real-time polymerase chain reaction (PCR) assay targeting the ITS region, with high specificity and
sensitivity, down to 0.02 pg of DNA. Additionally, a normalized real-time PCR approach using the
delta cycle quantification (∆Cq) method was proposed for the effective quantification of ginkgo
in plant mixtures. The method exhibited high performance parameters, namely PCR efficiency,
coefficient of correlation and covered dynamic range (50–0.01%), achieving limits of detection and
quantification of 0.01% (w/w) of ginkgo in tea plant (Camellia sinensis). The quantitative approach
was successfully validated with blind mixtures and further applied to commercial ginkgo-containing
herbal infusions. The estimated ginkgo contents of plant mixture samples suggest adulterations due
to reduction or almost elimination of ginkgo. In this work, useful and robust tools were proposed to
detect/quantify ginkgo in herbal products, which suggests the need for a more effective and stricter
control of such products.

Keywords: adulteration; authenticity; Ginkgo biloba; plant infusions; real-time polymerase chain
reaction

1. Introduction

Ginkgo (Ginkgo biloba L.) is a millenary Chinese tree that belongs to the Ginkgoaceae family whose
leaves are widely used for medicinal purposes [1]. Owing to its composition in pharmacologically active
compounds, such as flavonol glycosides and terpene trilactones (bilobalides and ginkgolides) [2,3],
ginkgo is used for its capacity to improve cognitive impairment in the elderly and quality of life in
mild dementia. It is also known for its therapeutic action in peripheral circulatory illnesses, improving
blood circulation and preventing clot formation [1,2,4–6]. Currently, different herbal products that
have ginkgo as an ingredient are readily available in the global market, including in plant food
supplements (PFS) and herbal infusions. According to recent surveys, ginkgo was the most popular
botanical in PFS and is used in six European Union countries [7], while in the United States it ranked
among the top 10 dietary supplements in the category of herbal/botanicals [8]. Moreover, the global
market of G. biloba extracts, mainly intended for pharmaceutical and food supplement industries,
was estimated to be US $1590.5 million in 2018 and projected to reach US $2379.2 million by 2028 [9].
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The high demand of ginkgo in the global market and the increased value of ginkgo products make
them potential targets for economically motivated adulteration. Frauds can be performed by the
total or partial replacement of ginkgo with other plant species or by adding pure flavonols/flavonol
glycosides or extracts (rich in flavonol glycosides) from other plant species, such as Styphnolobium
japonicum (syn: Sophora japonica) and Fagopyrum esculentum Moench, belonging to the Fabaceae and
Polygonaceae families, respectively [6].

Both pharmaceuticals and traditional herbal medicinal products (THMP) (either final products or
the extracts used for their production) must comply with the Pharmacopeia standards, established
for ginkgo leaves or extracts, to ensure the product’s quality [3,10]. However, in the case of other
ginkgo-containing products, such as herbal infusions and PFS that are legally considered as foods, they
do not have to comply with those standards. Moreover, in these type of products, previous studies
have reported adulterations associated with the partial or complete replacement of ginkgo with other
plants [1,3]. Thus, it is crucial to provide analytical tools that allow the identification and quantification
of G. biloba in herbal products classified as foods, making possible the verification of compliance with
label statements.

Several analytical methodologies have been proposed for authenticity assessment of
ginkgo-containing herbal products based on liquid chromatography coupled to mass spectrometry
(LC-MS), high performance thin layer chromatography (HPTLC), HPTLC coupled with nuclear
magnetic resonance and spectroscopy [1,3,11–14]. Those methodologies rely on the identification
of bioactive compounds and/or chemical profile, which can be affected by several external factors,
such as the plant part/tissue, plant age, environmental conditions, geographical location, and storage
conditions, among others. Furthermore, chemical approaches can be less adequate when the formulation
includes several plant species. On the contrary, DNA-based methodologies have been shown to
be suitable tools for the identification/discrimination of species due to their high specificity and
sensitivity, with different works reporting successful applications in the authentication of herbal
products, namely food supplements or herbal infusions [15–17]. In this regard, different approaches
including species-specific polymerase chain reaction (PCR), multiplex PCR, real-time PCR, high
resolution melting (HRM) analysis, sequence characterization of amplified regions (SCAR), DNA
barcoding, and next generation sequencing (NGS), among others, have been proposed to authenticate
medicinal plants in herbal products [18]. Among them, real-time PCR offers the advantage of providing
quantitative information, being a very sensitive, specific, and fast tool.

So far, only a few works regard the identification of G. biloba in herbal products and PFS using
DNA-based approaches. Little [19] proposed the use of DNA barcoding targeting a short region of
matK gene to identify gingko in PFS. Despite using a DNA mini-barcode (166 bp), 3 out of 40 samples
were not successfully amplified. Besides, it should be noticed that this approach is not adequate
for samples containing mixtures of ingredients/medicinal plants. Liu et al. [20] developed a rapid
identification method to detect both gingko and a possible adulterant (Sophora japonica) in herbal
products using a recombinase polymerase amplification (RPA) approach, which relied on the use of
species-specific primers and a probe with high specificity, though with limited cross-reactivity testing.
More recently, Dhivya et al. [21] developed a real-time PCR assay using a species-specific hydrolysis
probe to identify G. biloba in natural health products. The method allowed the specific and sensitive
detection of G. biloba, but without any quantitative analysis that should rely on the development
of an adequate calibration model. Besides, the authors did not demonstrate its applicability in the
analysis of processed/complex products. Therefore, the present work aimed at filling this gap by
providing a specific, sensitive, high-throughput and cost-effective real-time PCR method that, besides
establishing the unequivocal identification of G. biloba in herbal products, enables its quantification in
plant mixtures. For this purpose, a normalized quantitative method was proposed, which was further
validated and applied to assess the authenticity of ginkgo-containing commercial herbal infusions and
to verify their labelling compliance.
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2. Materials and Methods

2.1. Plant Species and Commercial Samples

Leaves from G. biloba were kindly provided by the Botanical Garden of University of Porto,
Botanical Garden of Bern, Serralves Garden and Botanical Garden of Madeira (Table S1, Supplementary
Material). Leaves or seeds of 73 plant species corresponding to medicinal plants, fruits and spices were
used for cross-reactivity testing (Table S1, Supplementary Material). A total of 20 herbal infusions were
bought at local stores, including specialized herbalists, and from the internet (Table 1).

For method development, model mixtures with known amounts of dried leaves of G. biloba in
Camellia sinensis were prepared to contain 50%, 10%, 5%, 1%, 0.5%, 0.1%, 0.05% and 0.01% (w/w).
Firstly, a reference mixture with 50% of G. biloba was prepared by adding 10 g of ground G. biloba
leaves to 10 g of ground plant material of C. sinensis. All the subsequent mixtures were prepared
by sequential additions of C. sinensis plant material up to the level of 0.01% (w/w). For method
validation, blind mixtures were independently prepared as described for the reference mixtures,
with the proportion of 20%, 8%, 2%, and 0.2% (w/w) of G. biloba in C. sinensis plant material and were
further analyzed as unknown samples.

Seeds were ground with a mortar, while the leaves and herbal infusions were ground in a
laboratory mill Grindomix GM200 (Retsch, Haan, Germany).

2.2. DNA Extraction

The NucleoSpin Plant II kit (Macherey-Nagel, Düren, Germany) was chosen to perform the
DNA extraction from 50 mg of each sample, according to the manufacturer’s instructions with slight
modifications, as described by Costa et al. [22]

2.3. DNA Quality and Purity

The yield and purity of DNA extracts were assessed by UV spectrophotometry using a Take3
micro-volume plate accessory, on a Synergy HT multi-mode microplate reader (BioTek Instruments,
Inc., Winooski, VT, USA). The nucleic acid protocol was set for double-strand DNA in the Gen5 data
analysis software version 2.01 (BioTek Instruments, Inc., Winooski, VT, USA), which was applied to
absorbance data measured at 260 and 280 nm.

The quality of DNA extracts was further assessed by electrophoresis with 1% of agarose gel as
previously described [22].

2.4. Target Gene Selection, Oligonucleotide Primers and Probes

A set of primers (Gkb2-F/Gkb2-R) and a specific probe (Gkb2-P) labelled with fluorescein (FAM)
as a fluorescent reporter and black hole quencher 1 BHQ-1 as quencher, were designed to target the
Internal Transcribed Space (ITS) region of G. biloba (GenBank: Y16892.1) (Table 2). In silico analysis of
sequences and primers was performed using the BLAST and Primer-BLAST tools to verify fragment
and primer specificity, respectively. OligoCalc software was used to check primer properties and
ensure the absence of primer hairpins and self-hybridization.
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Table 2. Data of primers used, targeting the ITS1 region of Ginkgo biloba and a conserved
eukaryotic region.

Species Target Primer Sequence (5′→3′) Length Reference

G. biloba ITS1
Gkb2-F GCGGTAAGCCCATCTCTCGA

175 bp This workGkb2-R CCGAAGCGAACCCGAACAAC
Gkb2-P FAM-ATGCCAAGGTCGCCGGACCGTC-BHQ1

Eukaryote Nuclear 18S
rRNA

EG-F TCGATGGTAGGATAGTGGCCTACT
109 bp [23]

EG-R TGCTGCCTTCCTTGGATGTGGTA

EG-P FAM-ACGGGTGACGGAGAATTAGGGT
TCGATTC-BHQ-1 [24]

To ensure the presence of amplifiable DNA, a universal eukaryotic primer pair (EG-F/EG-R),
targeting a conserved 18S rRNA nuclear region, was used [23]. The same primer pair together with a
probe (EG-P) was used as an endogenous control gene for developing the normalized real-time PCR
system [24]. The primers and probes were synthesized by Eurofins MWG Operon (Ebersberg, Germany).

2.5. Qualitative PCR

PCR amplification was performed using a total reaction volume of 25 µL which contained 20 ng of
DNA, buffer (67 mM Tris-HCl, pH 8.8, 16 mM (NH4)2SO4, 0.01% Tween 20), 3 mM of MgCl2, 1.0 U of
SuperHot Taq DNA Polymerase (Genaxxon Bioscience GmbH, Ulm, Germany), 280 nM of each primer
and 200 µM of dNTP (Grisp, Porto, Portugal) (Table 2). The reactions were carried out in a MJ Mini™
Gradient Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA), using the following optimized
programs: initial denaturation at 95 ◦C for 5 min; 35 or 40 cycles (for EG-F/EG-R or Gkb2-F/Gkb2-R
primers, respectively) of amplification at 95 ◦C for 30 s, 63 ◦C or 62 ◦C (for EG-F/EG-R or Gkb2-F/Gkb2-R
primers, respectively) for 30 s and extension at 72 ◦C for 30 s; and a final extension at 72 ◦C for 5 min.

PCR products were further analyzed by electrophoresis in a 1.5% agarose gel stained with 1×
Gel Red (Biotium, Hayward, CA, USA) and running in 1× SGTB buffer (GRISP, Porto, Portugal) for
20–25 min at 200 V. Each extract was amplified in at least two independent assays.

2.6. Real-Time PCR

The reactions were performed using 20 µL of total reaction volume, containing 2 µL of DNA
(20 ng), 1× SsoFast Probes Supermix (Bio-Rad Laboratories, Hercules, CA, USA), 300 nM or 400 nM
of each primer set (EG-F/EG-R or Gkb2-F/Gkb2-R, respectively) and 200 nM of each probe (EG-P
or Gkb2-P, for eukaryotic and G. biloba genes, respectively). A fluorometric thermal cycler CFX96
Real-time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA) was used to amplify,
simultaneously and in parallel reactions, each target sequence, under the following conditions: 95 ◦C
for 5 min, 45 cycles at 95 ◦C for 15 s and 65 ◦C for 45 s, and the fluorescence signal was collected at the
end of each cycle. The data evaluation, from each real-time PCR assay, was made using the software
Bio-Rad CFX Manager 3.1 (Bio-Rad Laboratories, Hercules, CA, USA). Real-time PCR assays were
performed, at least, in two independent runs using n = 3 or n = 4 replicates in each one.

For the construction of a calibration curve and for the determination of the absolute limits of
detection (LOD) and quantification (LOQ), 10-fold serially diluted ginkgo DNA extracts (20 ng–0.002 pg)
were amplified by real-time PCR. Additionally, a normalized calibration model was constructed based
on the parallel amplification of the ITS1 region of G. biloba (target sequence) and the 18S rRNA gene
(reference for eukaryotes) using the model mixtures (0.01–50%) of G. biloba in C. sinensis. The acceptance
criteria established for real-time PCR assays were the PCR efficiency between 90–110%, the slope
within −3.6 and −3.1 and the correlation coefficient (R2) above 0.98 [25,26]. The lowest amplified level
for 95% of the replicates was considered as the LOD and the LOQ was set as the lowest amplified level
within the linear dynamic range of the calibration curve, which should cover a minimum of 4 orders of
magnitude and should extend to ideally 5 or 6 log10 concentrations [25,26].
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3. Results and Discussion

3.1. DNA Quality and Selection of Target Region

In general, DNA extracts from the leaves, seeds and commercial samples showed adequate yields
and purities, being in the range of 17.6–270.8 ng/µL and 1.4–2.1, respectively. Before the G. biloba
specific amplification of target region, all extracts were tested by PCR targeting a universal eukaryotic
region (EG-F/EG-R) to check the capacity of DNA amplification and avoid false negatives [23]. All DNA
extracts used for reactivity testing were amplified (Table S1, Supplementary Material).

So far, different regions have been assessed, either as a single locus or in combination, for their
adequacy as barcode markers in plant species, which include matk, rbcL, ITS and ITS2, among others [27].
In this work, the non-coding ITS region of nuclear ribosomal DNA was selected due to its high power of
species discrimination over plastid regions, allowing the differentiation of closely related species [27–29].
This region has been previously proposed for the development of PCR assays using species-specific
primers aiming at identifying medicinal plant species, with high specificity and sensitivity [30,31].
The specificity of the newly designed primers (Gkb2-F/Gkb2-R) was initially in silico verified and
subsequently assayed experimentally against different DNA extracts from several plant species (n = 73).
As expected, the primers proved to be specific since only the DNA extracts from G. biloba were amplified
(Table S1, Supplementary Material). Afterwards, the optimized species-specific PCR assay, using a
10-fold serially diluted G. biloba DNA extract (20 ng), showed a sensitivity down to 0.002 ng (Figure S1,
Supplementary Material) and was further applied in the analysis of the commercial samples (Table 1).
The achieved sensitivity was much higher than that obtained by the RPA-lateral flow strip device
reported by Liu et al., which was approximately 1 ng of purified DNA. Moreover, only a few plant
species were used for cross-reactivity testing (Crataegus pinnatifida, Epimedium brevicornu, Selaginella
tamariscina and Arisaema heterophyllum) by those authors. In the same work, a species-specific PCR
assay targeting G. biloba DNA was also developed, but again with very limited specificity testing (only
against S. japonica).

3.2. Quantitative Real-Time PCR

3.2.1. Method Development

Following the demonstrated suitability of the proposed primers for G. biloba specific detection,
a real-time PCR method was developed using a newly designed hydrolysis probe (Gkb2-P), increasing
the sensitivity and specificity of the assay. Figure 1 presents the real-time PCR amplification curves
and respective calibration curve using a 10-fold serially diluted ginkgo DNA extract. The average
parameters of PCR efficiency (101.4%), slope (−3.284) and R2 (0.988) were all within the acceptance
criteria (Figure 1B), suggesting a high performance of the assay [25,26]. The dynamic range covered six
orders of magnitude of the target analyte (20 ng to 0.02 pg of ginkgo DNA) and the absolute LOD of
the real-time PCR assay was established as 0.02 pg of G. biloba DNA, corresponding to 0.285 genomic
DNA copies (using the mean value of the Plant DNA C-value database [32]) and considering the
amplification of all replicates (n = 6 from two independent assays). Since the LOD value was within the
linear dynamic range of the calibration curve, the LOQ value was set at the same value (0.02 pg) [25,26].
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a hydrolysis probe targeting ITS1 region of G. biloba. The amplified extracts correspond to 10-fold 
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known as Ct, cycle threshold). 

For establishing a quantitative model of ginkgo in herbal material, a normalized real-time PCR 
assay using the ∆Ct method was developed. This approach accounts with amplification variations 
due to inconsistent DNA recovery and quality/degradation among extracts as a result of processing 
[24,33–35]. It relies on the construction of a normalized calibration curve using the cycle of 
quantitation (Cq) values from the target region (ITS1) and a reference endogenous gene (nuclear 18S 
rRNA) by applying the expression ΔCq = Cq (ginkgo)—Cq (universal gene). The normalized 
calibration curve was obtained by plotting the calculated ΔCq values versus the logarithm of the 
gingko concentration, using the binary mixtures with known quantities of G. biloba in C. sinensis 

Figure 1. Amplification curves (A) and respective calibration curve (B) of a real-time PCR assay with a
hydrolysis probe targeting ITS1 region of G. biloba. The amplified extracts correspond to 10-fold serially
diluted ginkgo DNA from 20 ng to 0.002 pg (n = 3 replicates). Cq (cycle of quantification, also known
as Ct, cycle threshold).

For establishing a quantitative model of ginkgo in herbal material, a normalized real-time PCR
assay using the ∆Ct method was developed. This approach accounts with amplification variations due to
inconsistent DNA recovery and quality/degradation among extracts as a result of processing [24,33–35].
It relies on the construction of a normalized calibration curve using the cycle of quantitation (Cq) values
from the target region (ITS1) and a reference endogenous gene (nuclear 18S rRNA) by applying the
expression ∆Cq = Cq (ginkgo)−Cq (universal gene). The normalized calibration curve was obtained
by plotting the calculated ∆Cq values versus the logarithm of the gingko concentration, using the
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binary mixtures with known quantities of G. biloba in C. sinensis (50.0%, 10.0%, 5.0%, 1.0%, 0.5%, 0.1%,
0.05%, and 0.01%, w/w) (Figure 2). The choice of C. sinensis, also commonly known as the “tea plant”,
to prepare the reference mixtures was based on the high frequency of its use in mixed herbal infusions.
The developed normalized real-time PCR approach exhibited high performance, as inferred from
the obtained parameters of PCR efficiency (96.2%), R2 (0.982) and slope (−3.417) (mean values from
6 independent assays), covering 7 magnitude orders, which were all within the acceptable criteria.
The approach enabled an LOD and LOQ down to 0.01% (w/w) (n = 12 from 3 independent assays),
corresponding to 0.1 g of G. biloba per 1 kg of C. sinensis.
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Figure 2. Normalized calibration curves obtained by real-time PCR, targeting the ITS1 region of ginkgo,
using the binary mixtures of G. biloba in C. sinensis (50%, 10%, 5%, 1%, 0.5%, 0.1%, 0.05% and 0.01%
(w/w)). The normalized ∆Cq method was performed by the parallel amplification of a eukaryotic
sequence (18S rRNA) as reference (mean values of six independent assays with n = 3 replicates).

Compared with the recent report of Dhivya et al. [21], describing a species-specific real-time PCR
with a hydrolysis probe targeting the matk gene, the present approach achieved similar performance
parameters in terms of PCR efficiency and R2 using serially diluted leaf DNA of ginkgo. However,
the proposed real-time PCR method provides a much wider dynamic range (seven orders of magnitude)
and a higher sensitivity (0.02 pg of ginkgo DNA) than that obtained by Dhivya et al. [21] (five orders
of magnitude and 10 pg of ginkgo DNA). Regarding specificity, the proposed primers and probe
targeting the ITS region do not provide any cross-reactivity with any of the known potential adulterants
(Sophora japonica and Fagopyrum esculentum Moench) (Figure S2), while the method of Dhivya et al. [21]
was reactive with S. japonica at late amplification cycles, which compromised its sensitivity, and the
potential reactivity with F. esculentum Moench was not verified by the referred authors. Therefore,
the proposed method demonstrated full specificity and high sensitivity for gingko detection, with the
important achievement of providing, for the first time, a normalized quantitative real-time PCR
approach to enable a determination of the proportion of ginkgo in herbal products.

3.2.2. Method Validation

To proceed with the validation of the method, the precision and accuracy should also be
evaluated [25,26]. Therefore, blind mixtures containing 20.0%, 8.0%, 2.0%, and 0.2% (w/w) of G. biloba
in C. sinensis were used. The results regarding the estimated values (%) of ginkgo and the comparative
analysis with the real values are presented in Table 3. The obtained values exhibited adequate
coefficients of variation (CV), which were between 5.6–17.9% and, therefore, lower than the maximum
acceptable (25%), demonstrating the high precision of the method over the considered dynamic range.

252



Foods 2020, 9, 1233

Regarding the accuracy, three out of the four blind mixtures presented bias values in the range of
5.6–17.9%, being within the recommended range (±25%) [26]. Although the mixture with 0.2% (w/w)
presented a slightly higher error (−27.4%), this is the lowest tested level, not likely to occur due to
adulteration, but rather from contamination. Besides, according to Kang [36], bias within 25–30% have
been considered as acceptable in real-time PCR methods for food analysis.

Table 3. Results of the validation assays using the normalized quantitative PCR system applied to
blind mixtures of G. biloba in C. sinensis.

Samples
Ginkgo (%, w/w)

CV b (%) Error c (%)
Real Value (%) Estimated Value a (%)

CG–A 20.0 23.58 ± 2.22 9.41 17.9
CG–B 8.0 6.86 ± 0.66 9.55 −14.3
CG–C 2.0 2.11 ± 0.15 7.03 5.6
CG–D 0.2 0.15 ± 0.02 16.88 −27.4

a Mean values ± standard deviation (SD) (n = 4) of three independent assays. b Coefficient of variation (CV).
c Error = ((mean estimated value—real value)/real value) × 100.

3.2.3. Analysis of Commercial Herbal Infusions

For assessing the applicability of the method, the normalized real-time PCR system was used
to analyze and further verify the authenticity and labelling compliance of several commercial herbal
products (herbal infusions). The analyzed herbal infusions were all labelled as containing ginkgo,
wholly or partially (Table 1). All the samples produced amplifiable DNA extracts, which were positive
for the ginkgo-specific PCR assay. The samples of mixed herbal species were further assayed by
quantitative real-time PCR to assess their ginkgo content. The quantitative results demonstrated that,
out of five samples of herbal mixtures with labelled ginkgo contents, four samples (#4, #10, #11 and
#16) declared 15% of ginkgo, but the obtained contents were within 0.01–2.98%. In particular, sample
#10 had only trace amounts (0.01%) of gingko, suggesting its complete substitution with other plant(s).
Sample #12 declared 30% of ginkgo, but the obtained content was 9.95%. Consequently, the results of
samples #4, #11, #12, and #16 suggest the partial substitution of ginkgo with other plant(s). The other
two mixed herbal samples (#14, #15) did not provide any quantitative information regarding gingko,
having low estimated amounts (<3%), suggesting again its reduced use. Therefore, the results of mixed
herbal products strongly suggest the practice of adulterations, probably due to the high market price
of G. biloba and its increasing demand, with the industries using less quantity than they declared to
raise their profits.

4. Conclusions

In the herein presented work, a new molecular marker of the ITS region was identified for the
species-specific detection of G. biloba by both qualitative PCR and real-time PCR with a TaqMan
probe, providing high specificity and sensitivity, down to 0.02 pg of DNA (0.285 genomic DNA
copies). For the effective quantification of ginkgo in herbal products, a novel normalized real-time
PCR system based on the ∆Cq method was successfully developed using reference herbal mixtures.
The method exhibited high performance parameters, namely PCR efficiency, coefficient of correlation
and covered dynamic range (50–0.01%), achieving a LOD and LOQ of 0.01% (w/w) of ginkgo in tea
plant. The quantitative approach was further validated with blind mixtures, demonstrating accuracy,
repeatability, and trueness within the range of 20–2%. The applicability of the PCR approaches was
demonstrated using a set of commercial ginkgo-containing herbal infusions (n = 20), confirming the
presence of ginkgo in all the products. However, the obtained quantitative results regarding the
estimated ginkgo content of seven herbal mixture samples suggest adulterations due to reduction or
almost elimination of ginkgo. The proposed system was demonstrated to be a powerful and robust tool
for control laboratories and regulatory authorities to ensure labelling compliance of ginkgo-containing
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herbal products. Since it was demonstrated that the developed method has a high specificity and
sensitivity, it can potentially be useful for further detecting G. biloba in other processed herbal products
or foods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/9/1233/s1,
Table S1: Results of cross-reactivity testing of ITS1 primers are presented. Figure S1: Sensitivity by qualitative
PCR. Figure S2: Analytical specificity by real-time PCR.
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Abstract: Pasta, the Italian product par excellence, is made of pure durum wheat. The use of Triticum
durum derived semolina is in fact mandatory for Italian pasta, in which Triticum aestivum species is
considered a contamination that must not exceed the 3% maximum level. Over the last 50 years,
various electrophoretic, chemical, and immuno-chemical methods have been proposed aimed to track
the possible presence of common wheat in semolina and pasta. More recently, a new generation of
methods, based on DNA (DeoxyriboNucleic Acid) analysis, has been developed to this aim. Species
traceability can be now enforced by a new technology, namely digital Polymerase Chain Reaction
(dPCR) which quantify the number of target sequence present in a sample, using limiting dilutions,
PCR, and Poisson statistics. In our work we have developed a duplex chip digital PCR (cdPCR)
assay able to quantify common wheat presence along pasta production chain, from raw materials
to final products. The assay was verified on reference samples at known level of common wheat
contamination and applied to commercial pastas sampled in the Italian market.

Keywords: pasta; Triticum aestivum; Triticum durum; genetic traceability; digital PCR; semolina; species

1. Introduction

Pasta production is a strategic chain in the Italian agri-food sector, covering around the 6% of
total industrial output [1]. Italy is at the same time the world’s leading pasta producer, with an annual
production around 3.2 million tons and, in the same time, is the largest consumer of pasta (26 kg per
capita). A pillar of Italian pasta production chain is the grain identity: The use of Triticum durum
derived semolina is in fact mandatory for Italian pasta, in which Triticum aestivum species is considered
a contamination that must not exceed the 3% maximum level, as indicated by Law n.580 of 1967 [2]
and by subsequent Decreto del Presidente della Repubblica (D.P.R.) 187, 9 February 2001 [3] and D.P.R.
41, 5 March 2013 [4]. Traditional Italian pasta, according to such regulations, is therefore the result of
the extrusion, rolling and drying of dough made exclusively from durum wheat and water. The choice
of Triticum durum is based on its peculiarities, among others the hardiness of the caryopsis, the intense
yellow color due to carotenoids, the gluten composition. Thanks to such specific properties, starch is
not lost during cooking, avoiding sticking and ensuring a unique and authentic taste to pasta.
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Beyond fraudulent behavior, dictated by the lower price of common wheat compared to durum,
the purity of the semolina can also be compromised during the various processing stages of the
supply chain, which range from harvesting in the field to storing the grains. Analytical methods
have been proposed aiming at the detection and quantification of the possible presence of common
wheat in semolina and pasta. In this perspective, over the last 50 years, various electrophoretic,
chemical and immuno-chemical methods have been proposed aimed at detecting the purity of the
semolina [5–9]. Such methods are based on the identification and quantification of specific protein,
which, however, can be degraded by the high temperatures nowadays used to dry pasta. To overcome
this gap and taking advantage of the remarkable thermic stability of DNA (DeoxyriboNucleic Acid), a
new generation of methods, based on DNA analysis, has been developed during the last two decades.
PCR (Polymerase Chain Reaction) based assays to identify common wheat by distinguishing it from
durum one has been developed by Bryan et al. [10], by Arlorio et al. [11] and by Sonnante et al. [12],
using respectively Dgas44 gene sequence, puroindoline B and SSR (Simple Sequence Repeats) related
sequences. Untargeted DNA fingerprinting through tubulin-based polymorphism (TBP) have been
optimized by Casazza et al. [13] and by Silletti et al. [14] for the authentication of cereal species,
including wheat and farro. qPCR assays for the quantification of Triticum aestivum species have been
proposed by Alary et al. [15], Terzi et al. [16], Matsuoka et al. [17], and by Imai et al. [18]. These two
last assays have been in-house verified and compared by Paterno’ et al. [19], with the aim to select
a taxon-specific assay useful for unauthorized GM (Genetically Modified) wheat detection in wheat
samples. An inter-laboratory validation in collaboration with public and private laboratories has been
even reported by Morcia et al. [20] to determine the performance parameters of a qPCR assay based
on the primers designed on puroindoline-b gene by Alary et al. [15] and on low molecular weight
glutenin encoding sequence by Terzi et al. [16].

Species traceability can be now enforced by a new technology, namely digital PCR (dPCR) which
quantify the number of target sequence present in a sample, using limiting dilutions, PCR and Poisson
statistics [21]. The PCR mix is compartmentalized across a large number of partitions or droplets
containing zero, one or more copies of the target sequence. After endpoint PCR amplification, a
partition can be positive (“1′’, the presence of PCR product) or negative (“0′’, the absence of PCR
product). The absolute number of target nucleic acid molecules contained in the original sample before
partitioning can be calculated directly from the ratio of the number of positive to total partitions,
obtained using Poisson statistics. It is an absolute quantification strategy because there is not the need
to have a standard curve as reference for quantification. In the past several years, dPCR has achieved
progress in in agri-food sector, especially for GMO (Genetically Modified Organism) testing [21,22]
and for pathogen diagnostics and, at more limited extent, to the detection of animal- and plant-derived
ingredients in food adulteration control [23].

The aim of this work has been to develop a chip digital PCR (cdPCR) assay able to quantify
common wheat presence along pasta production chain, from raw materials to final products. The assay
was verified on reference samples at known level of common wheat contamination and applied to
commercial pastas sampled in the Italian market.

2. Materials and Methods

2.1. Mono-Species Flour Samples Preparation and DNA Extraction

Certified Triticum durum (Claudio variety) and Triticum aestivum (Eureka variety) seeds were
obtained from CREA DC (Tavazzano, Italy). Such first-reproduction seeds are controlled and certified
both at species and variety levels. In major details, at species purity level, the maximum admitted
contamination is of 7 seeds belonging to different cereal species/500 g of certified seeds, according to
the Italian D.P.R. n. 1065, 8 October 1973. The seeds were milled using a Cyclotec (FOSS Italia S.r.l.,
Padova, Italy) at 0.2 mm grid diameter, avoiding any contamination between samples. Samples of
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100% durum wheat semolina and 100% common wheat flour were separately stored at controlled
temperature and humidity conditions until further use.

DNA were extracted from three biological replicates of milled Triticum aestivum and Triticum
durum seeds using the DNeasy mericon Food Kit (Qiagen, Milan, Italy), that is based on an improved
cetyltrimethylammonium bromide (CTAB) extraction of total cellular nucleic acids. The flour samples
(2 g) were extracted according to manifacturer’s instructions. The evaluation of quality and quantity
of extracted DNA was done using Qubit™ fluorometer in combination with the Qubit™ dsDNA BR
Assay kit (Invitrogen by Thermo Fisher Scientific, Monza, Italy).

2.2. Mixed Species DNA Samples Preparation

Triticum aestivum and Triticum durum DNA, extracted from the mono-species flours described in
point 2.1, were mixed to obtain the following samples:

• T.durum DNA 99.7% + T.aestivum DNA 0.3%;
• T.durum DNA 98.5% + T.aestivum DNA 1.5%;
• T.durum DNA 97% + T.aestivum DNA 3%;
• T.durum DNA 95.5% + T.aestivum DNA 4.5%;
• T.durum DNA 70% + T.aestivum DNA 30%

2.3. Mixed Species Flour Samples Preparation and DNA Extraction

Common wheat flour was used to contaminate durum wheat semolina with the aim to produce
durum wheat samples containing 0.3, 1.5, 3, 4.5, and 30% of common wheat. After weighing the
common and durum wheat flour, samples containing different percentages of the two species were
homogenized for 10 min. DNA were extracted from flours (2 g) with the DNeasy mericon Food Kit
(Qiagen, Milan, Italy), as previously described. The evaluation of quality and quantity of extracted
DNA was done using Qubit™ fluorometer in combination with the Qubit™ dsDNA BR Assay kit
(Invitrogen by Thermo Fisher Scientific, Monza, Italy).

2.4. Reference and Commercial Pasta Samples and DNA Extraction

Four reference pasta samples were prepared by mixing tap water and wheat flours containing the
following common wheat percentages: 1.5%, 3%, 4.5%, 10%. The samples were dried in oven at 80 ◦C
for 1 hour, followed by 3 hours at decreasing temperature. Such desiccation thermal profile is those
commonly used for commercial pasta preparation. DNA were extracted from two biological replicates
of reference pasta using the DNeasy mericon Food Kit (Qiagen, Milan, Italy), Twenty commercial pasta
samples of different brands were purchased from the market. The pasta samples were milled with
M20 Universal Mill (IKA). Samples (2 g) were extracted in single replicate with the DNeasy mericon
Food Kit (Qiagen, Milan, Italy), as previously described. The DNA obtained was measured using
Qubit™ fluorometer in combination with the Qubit™ dsDNA BR Assay kit (Invitrogen by Thermo
Fisher Scientific, Monza, Italy).

2.5. Primers and Probes

Primers and probes (Table 1) were designed using Primer Express 3.0.1 Software (Life Technologies
Corporation). Each primer was checked for absence of self-complementarity and primer dimer
formation with other primer pairs using the online tool Multiple Primer Analyzer (Thermo Fisher
Scientific, Monza, Italy). Primer specificity was checked by blasting in EnsemblPlants (https://plants.
ensembl.org/index.html) against the Triticum aestivum database.
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Table 1. Primers and probes.

Name Primer Sequence (5′-3′) Gene Target

GranoCO2- Forward TGCTAACCGTGTGGCATCAC

Triticum TaHd1 Triticum genusGranoCO2 Reverse GGTACATAGTGCTGCTGCATCTG

GranoCO2 probe VIC- CATGAGCGTGTGCGTG -MGB

TritA_APX Forward AGGAGCGGCCGAAGCT

Pinb-D1 Triticum aestivumTritA_APX Reverse TGTGAAACATCGCTCCATCAC

TritA_APX probe FAM-AGCTCTTGCAAGGAT -MGB

2.6. Real-Time PCR

The reaction mixture was prepared in a final volume of 25 µL consisting of 12.5 µL of SYBR
Green PCR, 2× GoTaq qPCR Master Mix (Promega Italia, Milan, Italy), 0.25 µl of 100× Reference Dye
(Promega Italia, Milan, Italy), 0.5 µL of each primer at 10 µM (final concentration 200 nmol), 4 µL of
DNA template serial dilution (10, 5, 2.5, 0.5, 0.25 and 0.025 ng/µL) and water to 25 µL. Three technical
real-time PCR replicates were done for each sample and control. The PCR mixture was activated at 95
◦C for 10 min. Forty amplification cycles were carried out at 95 ◦C for 15 s followed by 60 ◦C for 1 min.
A melting curve analysis was included in each run.

2.7. Chip Digital PCR

Chip digital PCR was performed using QuantStudioTM 3D Digital PCR System (Applied
Biosystems by Life Technologies, Monza. Italy). The reaction mixture was prepared in a final volume of
16 µLconsisting of 8 µL QuantStudioTM 3D Digital PCR 2X Master Mix, 0.72 µL of each primer at 20 µM
(final concentration 900 nmol), 0.32 µL of FAM and VIC-MGB probes at 10 µM (final concentration
200 nmol), 2 µl of DNA (40 ng/µL) and nuclease free-water. Also, a negative control with nuclease
free-water as template was added. A total volume of 15 µL reaction mixture was loaded onto the
QuantStudioTM 3D Digital PCR chips using QuantStudioTM 3D Digital chip loader, according to
manufacturer protocol. Amplifications were performed in ProFlexTM 2Xflat PCR System Thermocycler
(Applied Biosystems by Life Technologies, Monza, Italy) under the following conditions: 96 ◦C for
10 min, 45 cycle of 55 ◦C annealing for 2 min and 98 ◦C denaturation for 30 s, followed by 60 ◦C for 2 min
and 10 ◦C. End-point fluorescence data were collected in QuantStudioTM 3D Digital PCR Instrument
and files generated were analyzed using cloud-based platform QuantStudioTM 3D AnalysisSuite
dPCR software, version 3.1.6. Each sample was analyzed in triplicate.

2.8. Triticum aestivum Percentage Calculation

For the common wheat percentage calculation, we start from the absolute copies/µL yielded by
the QuantStudioTM 3D Analysis Suite dPCR software. In our assay the T. aestivum target sequence
is marked with FAM, whereas the taxon target sequence is marked in VIC. Equation 1 was used to
calculate the percentage of common wheat copies in the sample, in which FAM stands for the number
of FAM copies/µL and VIC for the number of VIC copies/µL:

FAM
VIC−3∗FAM

2 + FAM
∗ 100 (1)

3. Results

3.1. Reference Samples

Several factors are important for accurate quantification of multiplexed assays, including target
linkage, probe specificity and differential PCR efficiencies.
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The absence of linking between the two targets has been evaluated through literature and
bioinformatic analysis. Nemoto et al. [24] demonstrated, through Southern blot analysis, that the
Triticum TaHd1 gene is present in single copy on each A, B and D genomes of wheat and maps on long
arm of chromosome 6. Pinb-D1gene maps in D sub-genome and is located on chromosome 5 at the
Hardness (Ha) locus. The two targets are therefore not linked.

Primers/probes specificity have been preliminarily evaluated in qPCR, finding that TritA_APX
assay gives a signal only in hexaploid wheat, whereas GranoCO2 assay gives a signal both in hexaploid
and tetraploid wheats (including farro dicoccum and Kamut).

Amplification efficiency and reproducibility for each primer set were examined through a standard
curve qPCR assay, using bread and durum wheat DNA dilutions (Figure 1). Efficiency of reactions
were calculated from the slope using the formula E = 10−1/slope. The slope values obtained were of
−3.44 for GranoCO2 primers, and of −3.17 was obtained for TritAPX primers. Amplification efficiencies
were of 99.6 and 104%, respectively.
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Figure 1. qPCR standard curves obtained after amplification of the DNA dilutions reported in the
graph with GranoCO2 primers (A) and with TriAPX primers (B).

The duplex method was then optimized in cdPCR system for specificity on the reference samples
described in Materials and Methods. The concentrations of primers and probes were optimized at 900
nmol and 200 nmol respectively and the annealing temperature was fixed at 55 ◦C. The resolution of
the clusters (Figure 2) was obtained in absence of restriction digestion of the samples, therefore this
time-consuming procedure was omitted from the protocol.

The mean common wheat percentages experimentally determined in “mixed flour” and “mixed
DNA” samples in comparison with actual percentages are reported in Table 2. The SD values reported
in the same table express the precision of the method, i.e., the closeness of agreement between replicate
measurements. At 3% level, the SD values are <35% for all the samples and therefore the precision is
acceptable, according to Codex Alimentarius Commission/Guidelines 74–2010 [25]. In Table 2 are even
reported some values informative about the precision and the accuracy of the method, such as the
coefficient of variation (CV), the absolute error and the relative error.

The trueness of the method is usually defined as the degree of agreement of the expected value
with the true value or accepted reference value. In GMO testing the trueness must be within 25%
of the accepted reference value [25]. The trueness of our method fits the purpose: The estimated
concentrations over the dynamic range tested were within the ± 25% acceptable bias as recommended
by GMO analytical guidelines [26]. In particular, at 3% level the experimentally determined percentages
are very close to the true one. In the evaluated dynamic range, the LOD (Limit of Detection) of
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Table 2. Actual common wheat percentages in comparison with those experimentally determined in
two different classes of samples. “Mixed DNA” samples were obtained by mixing DNA extracted from
pure common and durum wheat species. “Mixed flour” samples were obtained by extracting DNA
from of common and durum wheat flours mixed at different percentages). CV: Coefficient of variation.

Actual
Common
Wheat %

Mixed DNA Mixed Flour

Mean
Common
Wheat %

Std
Dev CV Absolute

Error
Relative
Error

Mean
Common
Wheat %

Std
Dev CV Absolute

Error
Relative

Error

0 0.12 0.05 0.39 0.12 0.09 0.06 0.65 0.09

100 105.00 7.00 0.07 5.00 0.05 94.40 6.85 0.07 5.60 0.06

0.3 0.43 0.05 0.12 0.13 0.43 0.37 0.12 0.34 0.07 0.23

1.5 1.37 0.07 0.05 0.13 0.09 1.43 0.28 0.19 0.07 0.05

3 3.06 0.05 0.01 0.06 0.02 2.86 0.32 0.11 0.14 0.05

4.5 4.50 0.04 0.01 0.00 0.00 3.93 0.51 0.13 0.57 0.13

30 25.90 0.46 0.02 4.10 0.14 24.90 1.68 0.07 5.10 0.17

The Pearson’s r between the expected and calculated common wheat percentages were determined
in mixed DNA samples and in mixed flour samples. The correlation values found are respectively
of 0.9985 and of 0.9993. Extracting DNA from mixed flours and their subsequent amplification is
much more realistic model of real foods, rather than mixing DNA from different species/samples.
However, the preparation of mixtures of flours can be potentially affected by weighting errors and by
heterogeneity problems, due, for example, to variation in granulometry, in mixing and blending. On
the other hand, DNA mixtures can be affected by errors in DNA quantification and mixing. Therefore,
with the intent to minimize the inaccuracy of the reference materials we decided to prepare two series
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of blends using the two different options. After analyses, the two classes of reference materials gave the
same results. No statistically significant differences were found among mean common wheat % values
determined from mixed DNA samples and from mixed flours. It is therefore possible to conclude that
the two classes of reference materials prepared worked in agreement.

Since 3% common wheat threshold is in percentage of mass ratio (% m/m) and since the analytical
output is in number of common wheat and taxon target copies, a conversion factor is needed. This
conversion factor, CF, mainly depends on the zygosity, but even on differences linked to DNA extraction
and varieties. CF for GMO detection is available for each CRM (Certified Reference Material) [21].

For our homozygous samples, for which certified reference materials are not available, a conversion
from % (copy/copy) to % (m/m) can be hypothesized. This same approach has been used in the study
of Dong et al. [23] aimed to quantify kidney bean in lotus seed paste.

In 3% common wheat reference samples, a mean percent recovery of 100.44 has been obtained,
that fully fits with the acceptable range for major components in low complexity matrices (95–105%).

3.2. Reference and Commercial Pasta Samples

The applicability of duplex dPCR assay to pasta was evaluated in two different groups of samples:
4 reference pasta samples prepared in our laboratory and contaminated with 1.5%, 3%, 4.5%, and 10%
common wheat and on 20 pasta samples of different brands commercialized in Italy.

The results are reported in Figure 3, from which it can be observed that the duplex dPCR
assay performs well on reference pasta, with a correlation value of 0.99 among actual and measured
percentages and a mean relative error of 0.07.
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Figure 3. Common wheat percentages determined in 4 reference pasta (A) and in 20 commercial
pasta samples (B) with duplex digital PCR (dPCR) assay. In (A) the percentages values before the
word “pasta” indicate the common wheat contaminations. In (B) the red horizontal line indicates the
maximum level of common wheat contamination allowed by law.)

As previously introduced, a body of Italian laws and regulations rule the product named
“pasta” [2–4]. The denomination “pasta” strictly defines a product obtained after drawing, rolling
and subsequent drying of a dough exclusively made from durum wheat (flour or semolina or whole
semolina) and water. In the final product the humidity must not exceed 12.50%. The production of pasta
with common wheat flour is forbidden, but a maximum level of 3% common wheat flour is tolerated as
result of accidental contamination during the production chain. The inclusion of ingredients different
from durum wheat and water is reserved to “special pasta”. The special pastas must be offered for sale
in Italy with the name durum wheat semolina pasta supplemented by the mention of the ingredient
used and, in the case of several ingredients, of that or the characterizing ones. Anyway, even in special
pasta, common wheat is a contaminants. The special pasta represents a minor sector of Italian pasta
production and consumption. Therefore, as representative of the market, pasta of different brands
has been considered in this study. The analyzed samples were all labelled as “pasta” and all reported,
as ingredients, durum wheat and water. According to Italian laws, a maximum 3% common wheat
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presence is expected. All the commercial samples have been found below the 3% common wheat
contamination threshold. The analytical data confirm that all the samples comply with the Italian laws.

4. Discussion

We have developed a duplex chip digital PCR analytical protocol to identify and quantify common
wheat contamination in pasta production chain. The reason for developing such new assay is related
to dPCR particularities. In comparison with conventional end-point PCR and qPCR, this technique
has been reported to have many advantages (reviewed by Demeke et al. [27]), the major the absolute
quantification of a target without reference to a standard/calibration curve. This fact reduces the errors
deriving from the comparison of different matrices, i.e., the calibrant and the test sample. Moreover,
because of the high-level sample partitioning, dPCR is less sensitive to PCR inhibitors and the results
obtained are potentially very precise and accurate [27,28]. Thanks to the high resilience to inhibitors, the
efficiency and the reproducibility on different platforms, dPCR is candidate as higher-order reference
measurement methods and as the method for value assignment of reference materials [28]. On the other
hand, a limitation of such approach is that it is more expensive than qPCR, but the use of multiplex
approaches moves the scales in favor of dPCR [27]. From a technology transfer point of view, both the
pasta industry and the large consumer cooperative, between the other involved in this work, expressed
interest in developing and applying a dPCR strategy for control pasta chain. The key control points are
in the passage of the grains from stackers to the mills, of semolina batches from the mills to the pasta
factory and in the final product, the pasta. The pasta chain stakeholders interested in such analytical
tool are therefore the farmer associations, the stackers, the mills, the pasta industry, the consumer
associations and the public and private control bodies. All the stakeholders have the interest to share a
method for common wheat contamination control in grains, semolina, and pasta. Several assays has
been developed and validated for such purpose, but are all dependent on a calibration curve and suffer
from the loss of certified reference materials for the construction of such curves. DigitalPCR, that works
without the need of calibrants, can fill this gap. It can in fact be proposed as method for the validation
of reference materials to be used for qPCR standard curves and as higher order reference measurement
method. This hypothesis to apply dPCR technology to prepare reference materials has been advanced
by other authors, e.g., Mehle et al. [29] in plant pathogen detection, by Dong et al. [30] in environmental
microbiology and by Pavšič et al. [31] in microbial diagnostics. The potential for synergy of qPCR and
dPCR has been underlined by Debski et al. [32]. in the field of medical diagnostics. In conclusion,
the opportunity to complement and strengthen the cheaper qPCR analyses justify the higher cost of
dPCR assays.

Our cdPCR assay is based on duplex non-competing reactions: two amplicons are generated
from two primer sets and the signal generated from a probe specific for each amplicon enable to
distinguish the two targets within a single reaction. Such concurrent amplifications reduce technical
errors, reagent and time needed. One of the target is a D-genome specific genic sequence and the
other a Triticum specific genic sequence present in A, B and D genomes. This taxon-specific assay was
designed on TaHd1 gene sequence. Such gene, involved in the photoperiodic flowering pathway, has
been demonstrated to be present in single copy in each of the A, B and D Triticum genomes [20]. The
bread wheat specific assay was designed on Pinb-D1, a single-copy gene encoding for puroindoline
b protein [15,33]. This gene belongs to the Ha locus, occurring only on chromosome 5D in common
wheat [26]. Accordingly, we have developed the formula reported in Materials and Methods for the
common wheat % calculation. In the formula we have considered:

• The different level of ploidy between common wheat (hexaploid, with the three A, B and D
genomes) and durum wheat (tetraploid, with A and B genomes);

• the fact that TaHd1 gene is present in single copy/A, B and D haploid genomes;
• the fact that Pinb-D1 gene is present in single copy/D haploid genome; and
• the comparable amplification efficiency of the two targets
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The Pinb-D1 gene sequence has been used to target common wheat in cqPCR assays previously
developed, whereas the TaHd1 gene sequence has never been used in pasta authenticity assessment.

As verified on reference samples, the proposed protocol highly performs to track 3% common
wheat contamination, that is the critical value fixed by law as limit between accidental contamination
and fraud. Its applicability has been evaluated on reference and commercial pasta samples. In
conclusion, a cdPCR duplex assay has been developed to control pasta production chain from an
economically motivated adulteration, that is the use of cheaper ingredient (i.e., common wheat) instead
of durum wheat for pasta manufacturing. It is possible to quantify the mass of common wheat directly
in flours and in highly processed food, such as pasta. The inter-laboratory validation of the method
can be proposed as further step.
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