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Preface to ”Properties and Dynamics of Neutron Stars

and Proto-Neutron Stars”

Following new developments in the measurement of gravitational waves from neutron–star

mergers and the modification or construction of particle colliders to reach larger densities, we are

entering a new era, during which we can begin to understand dense and hot matter for the first time.

This, together with future supernova explosion data, will provide us with the opportunity to have

truly multimessenger data on hot and dense matter, which is, to some extent, similar to the matter

present in the core of proto-neutron stars.

This Special Issue focuses on the theory necessary to understand present and future data. It

includes state-of-the-art theoretical models that describe dense and hot matter and the dynamic

stellar simulations that make use of them, with the ultimate goal of determining which degrees of

freedom are relevant under these conditions and how they affect the matter equation of state and

stellar evolution.

Veronica Dexheimer and Rodrigo Negreiros

Editors
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Editorial

Properties and Dynamics of Neutron Stars and
Proto-Neutron Stars

Veronica Dexheimer

Department of Physics, Kent State University, Kent, OH 44242, USA; vdexheim@kent.edu

This Special Issue provides a comprehensive collection of papers that present modern
theories to describe neutron star interiors and dynamics. It includes state-of-the-art theo-
retical models that describe dense and hot matter and simulations that test how different
models affect the birth, evolution, and coalescence of neutron stars. While following diverse
approaches, the different papers that constitute the Special Issue are motivated by the same
recent developments in nuclear physics and astrophysics, concerning new data provided
by the measurement of electromagnetic and gravitational waves from neutron-stars and
their mergers and new laboratory constraints for nuclear matter from heavy-ion collisions.

Since the observation of the first neutron star 55 years ago, we have learned a great
amount about them: how they are formed, typical masses, radii, surface magnetic fields,
etc., culminating in the detection of the merger of two neutron stars in 2017, from a galaxy
140 million light years away. Nevertheless, properties of their most inner layers, such as
composition, density, and magnetic fields remain a mystery, which we are only starting to
understand systematically. To do so, one starts with a theory or model, which provides a
thermodynamic description (the equation of state, or EoS) that can be used to reproduce
observable stellar properties, ultimately confronted with experimental data. See Ref. [1]
from Débora Peres Menezes for a review.

The different regions inside neutron stars are defined based on the presence (or
absence) of nuclei. While in the core all nuclei have been dissolved into bulk nuclear matter,
in the crust they are still present. More specifically, in the inner crust, larger structures
can appear when nuclei combine into shapes, referred to as nuclear pasta. To study
pasta phases, one can either assume particular configurations or make use of Quantum
Molecular Dynamics (QMD) simulations to determine which configurations appear at
different densities inside the star. However, unlike atomic nuclei, neutron stars are very
asymmetric with respect to isospin. The effect of isospin-dependent nuclear forces on
nuclear clusters in the inner crust of neutron stars is the topic of Ref. [2] by Parit Mehta,
Rana Nandi, Rosana de Oliveira Gomes, Veronica Dexheimer and Jan Steinheimer. There,
the authors study the relation between the poorly known vector–isovector couplings and
the density dependence of the symmetry energy, a quantity that can be measured in the
laboratory at low densities.

Concerning the core of neutron stars, the uncertainty in the particle composition and
how they interact grows with density (towards the center). The most basic hypothesis
assumes that the constituents of the core are the same ones that make up the nuclei in the
crust, protons and neutrons (and electrons). In this case, direct connections can be made,
using Bayesian analysis, between dense matter equation of state, nuclear equation of state
parameters, and recent observational data collected by LIGO-Virgo and NASA NICER. In
particular, Ref. [3] by Hoa Dinh Thi, Chiranjib Mondal, and Francesca Gulminelli extracts
the behavior of the energy per particle of symmetric matter and the density dependence of
the symmetry energy.

Alternatively, exotic particles (not present in normal nuclei) can be produced in the
inner core of neutron stars. These are hyperons, more massive than neutrons and protons,
that also contain strange quarks. Hyperons become particularly important when the
temperature is comparable (roughly >10%) to the Fermi energy of the particles present

Universe 2022, 8, 434. https://doi.org/10.3390/universe8080434 https://www.mdpi.com/journal/universe1
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in the star. This is the case in proto-neutron stars, immediately after being formed in
supernova explosions, and when neutron stars merge. Ref. [4] by Armen Sedrakian and
Arus Harutyunyan makes use of a covariant density functional (CDF) theory to describe
neutrons, protons, and hyperons with interactions that are density-dependent. The role of
leptons, electrons, muons, and neutrinos are also investigated by fixing the lepton fraction.
See Figure 1 below for examples of particle content for different snapshots of proto-neutron
star evolution.

Figure 1. Normalized particle content as a function of density (in nuclear saturation units). Several
temperatures are shown for a fixed lepton fraction YL,e = 0.4 .

If the density is such that neutrons, protons, and hyperons start to overlap, the descrip-
tion of matter needs to explicitly account for the quark degrees of freedom. Descriptions
that include different types of degrees of freedom (including deconfined quarks) are called
hybrid models. Ref. [5] by Daniela Curin, Ignacio Francisco Ranea-Sandoval, Mauro Mar-
iani, Milva Gabriela Orsaria and Fridolin Weber studies the possibility of a sharp phase
transition to quark matter in the inner core of neutron stars, modeled by an extended
version of the field correlator method (FCM) with repulsive vector interactions and color
superconductivity. The latter is important because the attraction between quarks can lead to
quark–matter pair condensation, a phenomenon similar to the Bardeen–Cooper–Schrieffer
(BCS) theory in condensed matter. The parameters of the model are constrained by obser-
vational data on massive pulsars and, again, LIGO-Virgo and NASA NICER data, pointing
towards a slow deconfinement of the quarks, which gives rise to stable neutron stars with
extended quark-matter inner cores.

The picture of neutron-star interiors becomes even more interesting when strong
magnetic fields are considered. In particular, they can affect color superconductivity.
Furthermore, phases in dense quark matter can be spatially nonuniform, in which case
the ground state spatial structure of the theory takes the form of a standing wave. Ref. [6]
by Efrain J. Ferrer and Vivian de la Incera discusses the characteristics of the magnetic
dual chiral density wave (MDCDW) phase, possibly formed inside neutron stars. This
could give rise to topological properties and anomalous electric transport, leading to γ-
ray photons being converted into gapped axion-polaritons (quasiparticles resulting from
strong coupling of electromagnetic waves, equivalent to phonons) and causing stars to
collapse. This mechanism could provide an explanation for the a long-standing puzzle in
astrophysics concerning observing electromagnetically fewer pulsars than expected close
to the galactic center.

Another ingredient for the description of neutron stars being currently discussed in
the literature is dark matter, which comprehends 85% of the matter content of the universe.
As it is expected to interact weakly with normal matter, dark matter is described inside
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stars as a separate fluid. Within this framework, Ref. [7] by José C. Jiménez and Eduardo
S. Fraga investigate cold quark matter (described by the MIT bag model) and (weakly
and strongly self-interacting) fermionic dark matter. By studying their fundamental-mode
radial oscillations, they find that dark strange planets and very small dark strangelets can
be stable.

Although there is strong indications for quark matter being present in neutron stars
(especially when they merge), the dynamics of deconfinement in neutron stars is far
from being completely understood. This is because stars cannot be exactly probed in the
laboratory, where it is impossible to achieve extreme densities with comparative very low
temperature, not to mention the important influence of gravity. For example, a conversion
to quark matter could trigger another stellar explosion (after the supernova that created
the neutron star), referred to as a quark-nova. Ref. [8] by Rachid Ouyed comprehensively
discusses the theory behind such explosions and how to simulate them numerically using
the Burn-UD computer code. The authors also discuss neutrino signatures for such events
and the possibility of measuring those here on Earth.

Another astrophysical scenario in which temperature is relevant, in addition to super-
novae and proto-neutron stars, is the merger of neutron stars. A question worth asking
is whether the low-temperature beta-equilibrium condition (or relation among chemical
potentials), μn = μp + μe, still holds at the higher temperatures reached in mergers. Ref. [9]
by Mark G. Alford, Alexander Haber, Steven P. Harris and Ziyuan Zhang shows the need
for corrections to this condition when the temperature is in the range 1 MeV � T � 5 MeV.
They make use of IUF and SFHo relativistic mean field models with relativistic dispersion
relations of protons and neutrons and find that such corrections are very important when
calculating Urca process rates, which are essential in modeling the thermal evolution of
neutron stars.

Finally, in order to better understand neutron star mergers, we need to understand the
relation between important quantities, such as the stars’ masses, radii, and tidal deforma-
bility, which is a measurement of how much neutron stars are deformed while they merge.
Universal relations, that do not depend on the equation of state, provide such correlations
in a reliable way. To obtain these, Ref. [10] by Daniel A. Godzieba and David Radice used
approximately 2 million phenomenological equations of state, all causal and consistent
with observational constraints, to find new and improved universal relations.

With all these tools in hand, we are ready for the next generation of astrophysical
observations and terrestrial particle collision data to be analyzed and interpreted, with the
ultimate goal of reaching a comprehensive understanding of dense matter and neutron
stars.

Funding: The Guest Editor’s activity received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Menezes, D.P. A Neutron Star Is Born. Universe 2021, 7, 267. [CrossRef]
2. Mehta, P.; Nandi, R.; Gomes, R.d.O.; Dexheimer, V.; Steinheimer, J. Low Density Neutron Star Matter with Quantum Molecular

Dynamics: The Role of Isovector Interactions. Universe 2022, 8, 380. [CrossRef]
3. Dinh Thi, H.; Mondal, C.; Gulminelli, F. The Nuclear Matter Density Functional under the Nucleonic Hypothesis. Universe 2021,

7, 373. [CrossRef]
4. Sedrakian, A.; Harutyunyan, A. Equation of State and Composition of Proto-Neutron Stars and Merger Remnants with Hyperons.

Universe 2021, 7, 382. [CrossRef]
5. Curin, D.; Ranea-Sandoval, I.F.; Mariani, M.; Orsaria, M.G.; Weber, F. Hybrid Stars with Color Superconducting Cores in an

Extended FCM Model. Universe 2021, 7, 370. [CrossRef]
6. Ferrer, E.J.; de la Incera, V. Magnetic Dual Chiral Density Wave: A Candidate Quark Matter Phase for the Interior of Neutron

Stars. Universe 2021, 7, 458. [CrossRef]
7. Jiménez, J.C.; Fraga, E.S. Radial Oscillations of Quark Stars Admixed with Dark Matter. Universe 2022, 8, 34. [CrossRef]
8. Ouyed, R. The Macro-Physics of the Quark-Nova: Astrophysical Implications. Universe 2022, 8, 322. [CrossRef]

3



Universe 2022, 8, 434

9. Alford, M.G.; Haber, A.; Harris, S.P.; Zhang, Z. Beta Equilibrium under Neutron Star Merger Conditions. Universe 2021, 7, 399.
[CrossRef]

10. Godzieba, D.A.; Radice, D. Correction: Godzieba, D.A.; Radice, D. High-Order Multipole and Binary Love Number Universal
Relations. Universe 2021, 7, 368. Universe 2021, 7, 456. [CrossRef]

4



universe

Article

A Neutron Star Is Born

Débora Peres Menezes

Citation: Menezes, D.P. A Neutron

Star Is Born. Universe 2021, 7, 267.

https://doi.org/10.3390/

universe7080267

Received: 16 June 2021

Accepted: 17 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
debora.p.m@ufsc.br

Abstract: A neutron star was first detected as a pulsar in 1967. It is one of the most mysterious
compact objects in the universe, with a radius of the order of 10 km and masses that can reach two
solar masses. In fact, neutron stars are star remnants, a kind of stellar zombie (they die, but do not
disappear). In the last decades, astronomical observations yielded various contraints for neutron
star masses, and finally, in 2017, a gravitational wave was detected (GW170817). Its source was
identified as the merger of two neutron stars coming from NGC 4993, a galaxy 140 million light
years away from us. The very same event was detected in γ-ray, X-ray, UV, IR, radio frequency and
even in the optical region of the electromagnetic spectrum, starting the new era of multi-messenger
astronomy. To understand and describe neutron stars, an appropriate equation of state that satisfies
bulk nuclear matter properties is necessary. GW170817 detection contributed with extra constraints
to determine it. On the other hand, magnetars are the same sort of compact object, but bearing much
stronger magnetic fields that can reach up to 1015 G on the surface as compared with the usual 1012 G
present in ordinary pulsars. While the description of ordinary pulsars is not completely established,
describing magnetars poses extra challenges. In this paper, I give an overview on the history of
neutron stars and on the development of nuclear models and show how the description of the tiny
world of the nuclear physics can help the understanding of the cosmos, especially of the neutron stars.

Keywords: neutron stars; equations of state; relativistic models; gravitational waves

1. Introduction

Two of the known existing interactions that determine all the conditions of our Uni-
verse are of nuclear origin: the strong and the weak nuclear forces. It is not possible to
talk about neutron stars without understanding them, and especially the strong nuclear
interaction, which is well described by the Quantum Chromodynamics (QCD). However,
note that a good description through a Lagrangian density does not mean that the solutions
are known for all possible systems subject to the strong nuclear force.

Based on the discovery of asymptotic freedom [1], which predicts that strongly in-
teracting matter undergoes a phase transition from hadrons to the quark–gluon plasma
(QGP) and on the possibility that a QGP could be formed in heavy-ion collisions, the QCD
phase diagram has been slowly revealed. While asymptotic freedom is expected to take
place at both high temperatures, as in the early universe and high densities, as in neutron
star interiors, heavy-ion collisions can be experimentally tested with different energies at
still relatively low densities but generally quite high temperatures. If one examines the
QCD phase diagram shown in Figure 1, it is possible to see that the nuclei occupy a small
part of the diagram at low densities and low temperatures for different asymmetries. One
should notice the temperature log scale, chosen to emphasize the region where nuclei exist.
Neutron stars, on the other hand, are compact objects with a density that can reach 10 times
the nuclear saturation density, which discussed later on along this paper. While heavy
ion collisions probe experimentally some regions of the diagram, lattice QCD (LQCD)
calculations explain only the low density region close to zero baryonic chemical potential.

Universe 2021, 7, 267. https://doi.org/10.3390/universe7080267 https://www.mdpi.com/journal/universe5
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Hence, we rely on effective models to advance our understanding, and they are the main
subject of this paper.

Since the beginning of the last century, many nuclear models have been proposed. In
Section 2.1, the first models are mentioned and the notion of nuclear matter discussed. The
formalisms that followed, either non-relativistic Skyrme-type models [2] or relativistic ones
that gave rise to the quantum hadrodynamics model, were based on some basic features
described by the early models, the liquid drop model [3] and the semi-empirical mass
formula [4]. Once the nuclear physics is established, the very idea of a neutron star can
be tackled. However, it is very important to have in mind the model extrapolations that
may be necessary when one moves from the nuclei region shown in Figure 1 to the neutron
star (NS) region. A simple treatment of the relation between these two regions and the
construction of the QCD phase transition line can be seen in [5].

Figure 1. QCD phase diagram. On the left of the transition region stands hadronic matter and on the
right side, the quark gluon plasma. Quarkyonic phases represent a region where chiral symmetry
has been restored but matter is still confined. Figure taken and adapted from [6].

The exact constitution of these compact objects, also commonly named pulsars due to
their precise rotation period, is still unknown, and all the information we have depends
on the confrontation of theory with astrophysical observations. As the density increases
towards their center, it is believed that there is an outer crust, an inner crust, an outer core
and an inner core. The inner core constitution is the most controversial: it can be matter
composed of deconfined quarks or perhaps a mixed phase of hadrons and quarks. I will
try to comment and describe every one of the possible layers inside a NS along this text.

NASA’s Neutron Star Interior Composition Explorer (NICER), an X-ray telescope [7]
launched in 2017, has already sent some news [8]: by monitoring the X-ray emission of gas
surrounding the heaviest known pulsar, PSR J0740 + 6620 with a mass of 2.08 ± 0.07, it
has measured its size, and it is larger than previously expected, a diameter of around 25 to
27 km, with consequences on the possible composition of the NS core.

In this paper, I present a comprehensive review of the main nuclear physics prop-
erties that should be satisfied by equations of states aimed to describe nuclear matter,
the consequences arising from the extrapolation necessary to describe objects with such
high densities as neutron stars, and how they can be tuned according to observational
constraints. At the end, a short discussion on quark and hybrid stars is presented and the
existence of magnetars is rapidly outlined. Not all important aspects related to neutron
stars are treated in the present work, rotation being the most important one that is disre-
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garded, but the interested reader can certainly use it as an initiation to the physics of these
compact objects.

2. Historical Perspectives

I divide this section, which concentrates all necessary information for the development
of the physics of neutron stars, into two parts. In the first one, I discuss the development of
the nuclear physics models based on known experimental properties and introduce the
very simple Fermi gas model, whose calculation is later used in more realistic relativistic
models. The second part is devoted to the history of compact objects from the astrophysical
point of view.

2.1. From the Nuclear Physics Point of View

The history of nuclear physics modeling started with two very simple models: the
liquid drop model, introduced in 1929 [3], and the semi-empirical mass formula, proposed
in 1935 by Bethe and Weizsäcker [4].

The liquid drop model idea came from the observation that the nucleus has behavior
and properties that resemble the ones of an incompressible fluid, such as the following:
(a) the nucleus has low compressibility due to its almost constant internal density; (b) it
presents a well-defined surface; (c) the nucleus radius varies with the number of nucleons
as R = R0 A1/3, where R0 � 1.2× 10−15 m; and (d) the nuclear force is isospin-independent
and saturates.

Typical nuclear density profiles are shown in Figure 2, in which one can observe some
of the features mentioned above; e.g., the density is almost constant up to a certain point
and then it drops rapidly close to the surface, determining the nucleus radius. The mean
square radius is usually defined as

R2
i =

∫
d3r r2ρi(r)∫
d3r ρi(r)

, i = p, n (1)

where ρp is the number density of protons and ρn the number density of neutrons.
A nucleus with an equal number of protons and neutrons has a slightly larger proton

radius because they repel each other due to the Coulomb interaction. A nucleus with more
neutrons than protons (as most of the stable ones) has a larger neutron radius than its
proton counterpart and the small difference between both radii is known as neutron skin
thickness, given by [9–12]:

θ = Rn − Rp. (2)

For the last two decades, a precise measurement of both charge and neutron radii
of the 208Pb nucleus has been tried at the parity radius experiment (PREX) at the Jef-
ferson National Accelerator Facility [13] using polarized electron scattering. The latest
experimental results [12] point to θ = 0.283 ± 0.071 fm and to the interior baryon density
ρ0 = 0.1480 ± 0.0036(exp)± 0.0013(theo) fm−3. These quantities have been shown to be
important for the understanding of some of the properties of the neutron star. I will go
back to this discussion later on.

The binding energy B of a nucleus A
Z XN is given by the difference between its mass

and the mass of its constituents (Z protons and N neutrons):

B = (Zmp + Nmn − (m(A
Z X)− Zme))c2 = (Zm(1H) + Nmn − m(A

Z X))c2, (3)

where m(A
Z X) is the mass of the chemical element A

Z X and is given in atomic mass units.
The binding energy per nucleon B

A is shown in Figure 3, from where it is seen that the curve
is relatively constant and of the order of 8.5 MeV except for light nuclei. The semi-empirical
mass formula, which is a parameter-dependent expression was used to fit the experimental
results successfully and it reads:

7
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B(Z, A) = av A − as A
2
3 − ace2 Z(Z − 1)

A
1
3

− ai
(N − Z)2

A
+ δ(A). (4)

Figure 2. Schematic representation of the nuclear densities with equal number of protons and
neutrons (left) and a larger number of neutrons than protons (right). The proton and neutron
densities depend on the number of nucleons such that heavier elements present larger densities.
Typical theoretical densities for 208Pb are of the order of 0.09 fm−3 for neutrons and 0.06–0.07 fm−3

for protons [10].

Figure 3. Binding energy per nucleon as a function of the number of nucleons.

In this equation, from left to right, the quantities refer to a volume term, a surface
term, a Coulomb term, an energy symmetry term and a pairing interaction term [14,15].
Of course, with so many parameters, other parameterisations can be obtained from the
fitting of the data. One possible set is av = 15.68 MeV, as = 18.56 MeV, ac × e2 = 0.72 MeV,
ai = 18.1 MeV and

δ =

⎧⎪⎨⎪⎩
34 A−3/4MeV, even-even nuclei,
0, even-odd nuclei,
−34 A−3/4MeV, odd-odd nuclei.

(5)

Although quite naive, these two models combined can explain many important
nuclear physics properties, such as nuclear fission [15].

Parameter-dependent nuclear models can also explain the fusion of the elements in
the stars and the primordial nucleosynthesis with the abundance of chemical elements in
the observable universe, which is roughly the following: 71% is hydrogen, 27% is helium,
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1.8% is carbon to neon elements, 0.2% is neon to titanium, 0.02% is lead and only 0.0001%
is elements with atomic number larger than 60. By observing Figure 3, one easily identifies
the element with the largest binding energy, 56Fe. Hence, it is possible to explain why
elements with atomic numbers A ≤ 56 are synthesised in the stars by nuclear fusion that
are exothermic reactions, and heavier elements are expected to be synthesized in other
astrophysical processes, such as supernova explosions and more recently also simulated in
the mergers of compact objects. For a simplistic and naive but didactic idea of the stellar
fusion chains, I show the possible synthesized chemical elements in Figure 4.

Figure 4. Naive schematic representation of the possible chemical elements synthesized in stellar
fusion. Heavier elements are produced in dense stellar matter. Notice that these elements are
produced in normal stars, not neutron stars.

After a star is born, it takes some time to fuse all the chemical elements in its interior,
until its death, which is more or less spectacular depending on its mass. One of the most
useful diagrams in the study of stellar evolution is the Hertzsprung and Russel (HR)
diagram [16], developed by Ejnar Hertzsprung and Norris Russel independently in the
early 1900s. According to the HR diagram, displayed in Figure 5, the star spends most of
its life time in the central line of the diagram, the main sequence. Our Sun will become
a white dwarf after its death, the kind of objectt shown at lower luminosities and higher
temperatures, towards the left corner of the diagram. More massive stars, with masses
higher than eight solar masses (M�) become either a neutron star or a black hole, and
these compact objects are not shown in the HR Diagram since they do not emit visible light
waves. Moreover, neutron stars were only detected much later, as discussed in Section 2.2.
For a better comprehension of the HR diagram, please refer to [17].

9
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Figure 5. Hertzspring and Russel diagram: luminosity (in terms of the Sun luminosity) as a function
of the star temperature. Notice that the temperature increases from right to left. The yellow, orange,
and red big dots on the right top represent red giants, the blueish sequence on the bottom left
represents white dwarfs, and the central line is the main sequence, where the red stars are red dwarfs
and the blue ones are blue giants.

The main idea underlying nuclear models is to satisfy experimental values and nuclear
properties, and to achieve this purpose, in almost one century of research, they became more
and more sophisticated. The most important of these properties are the binding energy,
the saturation density, the symmetry energy, its derivatives, and the incompressibility, all
of them already explored in the semi-empirical mass formula given in Equation (4). An
important question to be answered is what happens when one moves to higher densities
or to finite temperature in the QCD phase diagram shown in Figure 1.

To better understand this point, let us discuss the concept of nuclear matter. This is a
common denomination for an infinite matter characterized by properties of a symmetric
nucleus in its ground state and without the effects of the Coulomb interaction. If one
divides Equation (4) by the number of nucleons A, one can see that under the conditions
just mentioned, the third and forth term disappear. If one assumes an infinite radius,
A → ∞ and no surface effects exist. The pairing interaction would be an unnecessary
correction. Hence, the binding energy per nucleon becomes approximately

B(Z, A)

A
= av � 16 MeV, (6)

which is what one gets for a two-nucleon system if compared with the average value shown
in Figure 3. However, the deuteron binding energy is much smaller, around only 2 MeV.
This means that nuclear matter is not an appropriate concept if one wants to describe the
properties of a specific nucleus, but it is rather useful to study, for instance, the interior
of a neutron star. Normally, it is described by an equation of state, which consists of a
set of correlated equations, such as pressure, energy, and density. The equation of state
that describes the ground state of nuclear matter is calculated at zero temperature and
is a function of the proton and the neutron densities, which are the same in symmetric
matter. Useful definitions are the proton fraction yp =

ρp
ρ and the asymmetry δ =

ρn−ρp
ρ ,

which are respectively 0.5 and 0 in the case of symmetric nuclear matter. In these equations,
ρ = ρp + ρn is the total nuclear (or baryonic) density. The macroscopic nuclear energy can
be obtained from the microscopic equation of state if one assumes that

EN =
∫

E(ρ, δ)d3r, (7)

10
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where E(ρ, δ) is the energy density. Thus,

B(Z, A)

A
=

EN
A

− mn =
E
ρ
− mn, (8)

where mn = 939 MeV is the neutron mass (c = 1). The binding energy as a function of
the density is shown in Figure 6. We will see how it can be obtained later in the text. The
minimum corresponds to what is generally called saturation density, and the value inferred
from experiments ranges between ρ0 = 0.148 − 0.17 fm−3, as mentioned earlier when the
PREX results were given.
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Figure 6. Nuclear matter binding energy per nucleon.

The pressure can be easily obtained from thermodynamics

− PV = EN − TS − μ A, (9)

or, dividing by the volume,

− P = E − TS − μ ρ = Ω, (10)

where T is the temperature, S is the entropy density, μ is the chemical potential, and Ω the
thermodynamical potential. When we take T = 0, the expression becomes even simpler
because the term TS vanishes.

To demonstrate how a simple equation of state (EOS) can be obtained from a relativistic
model, we use the free Fermi gas and assume that h̄ = c = 1, known as natural units.
Within this model, the fermions can be either neutrons or nucleons, but I would like to
emphasize that it is not adequate to describe nuclear matter properties, as will be obvious
later. Its Lagrangian density reads:

L0 = ψ̄(iγμ∂μ − m)ψ. (11)

From the Euler–Lagrange equations

∂μ

(
∂L

∂(∂μψ)

)
− ∂L

∂ψ
= 0, (12)

the Dirac equation is obtained:
(iγμ∂μ − m)ψ = 0. (13)

11
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Its well known solution has the form ψ = Ψ(k, λ)ei(k·�r−E(k)t), where Ψ(k, λ) is a
four-component spinor and λ labels the spin. The energy can be calculated from

(�α · k + βM)2Ψ(k, λ) = E(k)2Ψ(k, λ), (14)

where α = γ0�γ or
(k)2 + M2 = E(k)2, E(k) = ±

√
k2 + M2. (15)

Moreover, one gets

< Ψ|Ψ >= γ
∫ d3k

(2π)3 ( f+ − f−) = ρ, (16)

where f± represents the Fermi–Dirac distribution for particles and antiparticles [18] . For
T = 0, f+ is simply the step function, and there are no antiparticles in the system. In
this case,

< Ψ|Ψ >= γ
∫ d3k

(2π)3 θ(k2
F − k2) =

γ

2π2

∫ kF

0
k2dk =

γ k3
F

6π2 = ρ, (17)

with kF being the Fermi momentum and γ the degeneracy of the particle. If one considers
only a gas of neutrons, the degeneracy is 2 due to the spin degeneracy. However, if one
considers a gas of nucleons, i.e., symmetric matter with the same amount of protons and
neutrons, it is 4 because it accounts for the isospin degeneracy as well.

One can then write

< Ψ|�α · k + βM|Ψ >=
∫ d3k

(2π)3

√
k2 + M2( f+ + f−) (18)

or
E =

γ

2π2

∫
k2dk

√
k2 + M2( f+ + f−). (19)

For T = 0, it becomes

E =
γ

2π2

∫ kF

0
k2dk

√
k2 + M2. (20)

As we still do not know the value of the chemical potential in Equation (10), the
pressure can be obtained from the energy momentum tensor:

Tμν = −gμνL+ ∂νψ

(
∂L

∂(∂μψ)

)
, (21)

having in mind that

E =< T00 >, P =
1
3
< Tii > (22)

and is given by

P =
1
3

ψ†(−i�α · ∇)ψ. (23)

From Equation (18), one can write

< Ψ|�α · k|Ψ >= k
∂

∂k
< Ψ|�α · k + βM|Ψ >= k

∂

∂k
< Ψ|E(k)|Ψ > (24)

and finally

ψ†(−i�α · ∇)ψ =
γ

(2π)3

∫
d3kk

∂E
∂k

=
γ

2π2

∫
k2dk · k2

√
k2 + M2

,
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P =
γ

6π2

∫
dk

k4
√

k2 + M2
( f+ + f−), (25)

and for T = 0,

P =
γ

6π2

∫ kF

0
dk

k4
√

k2 + M2
. (26)

The entropy density of a free Fermi gas is given by

S = −γ
∫ d3 p

(2π)3 ( f+ln
(

f+
1 − f+

)
+ ln(1 − f+) (27)

+ f−ln
(

f−
1 − f−

)
+ ln(1 − f−)) , (28)

By minimizing Equation (10), the distribution functions are obtained:

∂Ω
∂ f+

= 0 → f+ =
1

1 + e(E−μ)/T
(29)

and
∂Ω
∂ f−

= 0 → f− =
1

1 + e(E+μ)/T
. (30)

On the other hand, the minimization of the thermodynamical potential with respect
to the density yields the chemical potential, i.e.,

∂Ω
∂ρ

= 0 → μ. (31)

For T = 0,
∂Ω
∂kF

= 0 → μ =
√

k2
F + M2. (32)

In order to go back to the discussion of nuclear matter, we are lacking exactly the
nuclear interaction and its introduction will be seen in Section 3.

2.2. From the Compact Objects Point of View

I have already discussed the evolution process of a star while it remains in the main
sequence of Figure 5. When the fusion ends, it is believed that one of the possible remnants
is a neutron star. We see next how it was first predicted and then observed.

In fact, the history of neutron stars started with the observation of a white dwarf
and its description with a degenerate free Fermi gas equation of state, as the one just
introduced, but with the fermions being electrons instead of neutrons. In 1844, Frederich
Bessel observed a very bright star that described an elliptical orbit [19], known as Sirius.
He proposed that Sirius was part of a binary system, whose companion was not possible
to see. In 1862, it was observed by Alvan Clark Jr. This companion, named Sirius B, had
a luminosity many orders of magnitude lower than Sirius, but approximately the same
mass, of the order of the solar mass (1 M�). In 1914 Walter Adams concluded, through
spectroscopy studies, that the temperature at the surface of both stars should be similar, but
the density of one of them should be much higher than the density of the companion. This
high-density star was called a white dwarf, and its properties were explained only in 1926
by Ralph Fowler [20] with the help of quantum mechanics. He claimed that the internal
constituents of the white dwarf should be responsible for a degeneracy pressure that would
compensate the gravitational force. This hypothesis was possible since the electrons are
fermions and hence obey the Pauli Principle. In 1930, Subrahmanyan Chandrasekhar
calculated the maximum densities of a white dwarf [21] and subsequently its maximum
mass [22] that he thought should be 0.91 M� due to an incorrect value of the atomic mass to
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charge number ratio. It is interesting to note that the correct Chandrasekhar limit, 1.44 M�,
was actually obtained by Landau [23].

Concomitantly, Lev Landau reached the same conclusion as Chandrasekhar and went
further: he proposed that even denser objects could exist, and in this case, the atomic nuclei
would overlap and the star would become a gigantic nucleus [24]. Landau’s hypothesis
is considered the first forecast of a neutron star, although the neutrons had not been
detected yet. Landau’s paper was written in the beginning of 1931 but published one year
later, just when the neutron was discovered by James Chadwick [25]. The first explicit
proposition of the existence of neutron stars was made by Baade and Zwick [26], soon after
Chadwick’s discovery.

In 1939, Toman and, independently, Oppenheimer and Volkoff (TOV) [27,28] used
special and general relativity to correct Newton’s equations that described the properties
of a perfect isotropic fluid, which they considered could be the interior of compact objects
(white dwarfs and neutron stars). While Tolman proposed eight different solutions for the
system of equations, Oppenheimer and Volkoff used the equation of state of a free neutron
gas (exactly the one introduced in the previous section) and obtained a maximum mass
of 0.7 M� for the neutron star, which was very disappointing because it was lower than
the Chandrasekhar limit. However, soon, the limitations of this EOS were noticed: the
inclusion of the nuclear interaction could make it harder and then generate higher masses.
These calculations will be shown in the next section.

In 1940, Mario Shenberg and George Gamow proposed the Urca process [29], respon-
sible for cooling down the stars by emitting neutrinos, which can carry a large amount of
energy with very little interaction.

In 1967, the first neutron star (NS) was detected by Jocelyn Bell and Anthony Hewish [30].
At first, they believed they were capturing signals from an extraterrestrial civilization and
the booklet The Little Green Men really existed. However, they soon realised that the radio
signals were coming from a compact object with a very stable frequency (pulse) and the
object was called a pulsar.

It is worth pointing out that white dwarfs and neutron stars bear very different
internal constituents and densities. Neutron stars are much denser. This means that general
relativity is a very important component in the study of NS, but this is not true for white
dwarfs. Hence, it would be expected that only relativistic models, as the ones introduced in
the present text, could be used to describe neutron star macroscopic properties. However,
there are non-relativistic models, known as Skyrme models, which can be used to describe
NS, as far as they do not violate causality. Moreover, some non-relativistic models lead to
symmetry energies that decrease too much after three times saturation density, which is a
very serious problem if we want to apply them to the study of neutron stars, which are
highly asymmetric systems. These problems can be solved with the inclusion of three-body
forces, which makes the calculations much more complicated. For a review of Skyrme
models, please see Reference [2]. On the other hand, relativistic models are generally causal
and always Lorentz invariant and when extended to finite temperature, anti-particles
appear naturally. Thus, only relativistic models are discussed in the present work.

Let us go back to history because it continues. In 1974, Russel Hulse and Joseph
Taylor identified the first binary pulsar PSR1913+16 [31] with a radio-telescope in Arecibo
and proposed that the system was losing energy in the form of gravitational waves (GW),
the same kind of waves foreseen by relativistic theories. Note that they did not detect
gravitational waves directly but instead proved their existence via pulsar timing and were
laureated with the Nobel prize for this discovery. In 2015, the first GW produced by two
colliding black holes was finally detected directly by LIGO [32], and in 2017, GW170817,
produced by the merger of two NS [33], initiated the era of multi-messenger astronomy [34].
These gravitational waves have become an excellent source of constraints to the EOS used
to describe neutron stars, as will be discussed in a future section.
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3. Relativistic Models for Astrophysical Studies

In Section 2.1, the EOS of a free Fermi gas was introducedl and in Section 2.2, I men-
tioned that the EOS can satisfactorily describe a white dwarf, as shown by Chandrasekhar,
if the free Fermi gas is a gas of electrons. However, if the fermions are neutrons, it cannot
describe neutron stars. One important ingredient, besides the already mentioned relativis-
tic effects, is still missing in the recipe: the nuclear interaction. Therefore, let us go back to
nuclear matter.

3.1. The σ − ω Model

This model, also known as the Walecka model [35] or quantum hadrodynamics
(QHD-1), is based on the fact that the interaction inside the nucleus has two contributions:
an attractive contribution at large distances and a repulsive one at short distances, and both
can be reasonably well described by Yukawa-type potentials and represented by fields
generated, respectively, by scalar and vector mesons. This idea was first proposed by Hans
Peter Durr in his Ph.D. thesis in 1956, supervised by Edward Teller, who, in 1955, also
proposed a version of the model based on classical field theory [36]. However, the quantum
version proposed by Walecka was the one that gained the most popularity, and until now,
it is largely applied with different versions and extensions. This simplified model does not
take pions into account because, as will be seen next, it is usually solved in a mean field
approximation and in this case, the pion contribution disappears. As the σ − ω model is
a relativistic model, this simpler and more common approximation is always known as
relativistic Mean Field Theory (RMF) or relativistic Hartree approximation.

As the name suggests, the σ − ω model considers that the central effective potential
for the nucleon–nucleon interaction is given by

V(r) =
g2

ω

4π

e−mωr

r
− g2

σ

4π

e−mσr

r
,

where r is the modulus of the vector that defines the relative distance between two nucleons,
the two constants gσ and gω are adjusted to reproduce the nucleon–nucleon interaction
and the meson masses are, respectively, mσ = 550 MeV and mω = 783 MeV. The interested
reader can look at the potential V(r) obtained with the coupling constants and masses used
in this section in [15]. To obtain the binding energy that corresponds to this potential in
RMF, a Lorentz invariant Lagrangian density is necessary, and it reads:

L = ψ̄
[
γμ(i∂μ − gωωμ)− (M − gσσ)

]
ψ

+
1
2
(∂μσ∂μσ − m2

σσ2) +
1
2

m2
ωωμωμ − 1

4
FμνFμν, (33)

where
Fμν = ∂μων − ∂νωμ, (34)

ψ represents the baryonic field (nucleons), σ and ωμ represent the fields associated with
the scalar and vector mesons and M is the nucleon mass, generally taken as 939 MeV. By
comparing Equations (11) and (33), one can see that besides the Fermi gas representing the
nucleons, the latter contains two interaction terms and kinetic and mass terms for both
mesons. The usual prescription is to use the Euler–Lagrange Equation (12) for each field to
obtain the equations of motion. They read:(

∂μ∂μ + m2
σ

)
σ = gσψ̄ψ, (35)

∂μFμν + m2
ωων = gωψ̄γνψ (36)

and [
γμ(i∂μ − gωωμ)− (M − gσσ)

]
ψ = 0. (37)
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Note that Equation (35) is a Klein–Gordon equation with a scalar source, Equation (36)
is analogous to quantum electrodynamics with a conserved baryonic current (ψ̄γνψ), in-
stead of the electromagnetic current, and Equation (37) is a Dirac equation for an interacting
(not free) gas.

In an RMF approximation, the meson fields are replaced by their expectation values
that behave as classical fields:

σ → 〈σ〉 ≡ σ0 (38)

and
ωμ → 〈ω0〉 ≡ ω0, 〈ωk〉 = 0. (39)

The equations of motion can then be easily solved and they read:

σ0 =
gσ

m2
σ
< ψ̄ψ >=

gσ

m2
σ

ρs (40)

and

ω0 =
gω

m2
ω

< ψ†ψ >=
gω

m2
ω

ρ, (41)

where ρs is a scalar density and ρ is a baryonic number density. The Dirac equation
becomes simply [

(iγμ∂μ − gωγ0ω0)− (M − gσσ0)
]
ψ = 0, (42)

and

M∗ = M − gσσ0, (43)

is the effective mass. To obtain the EOS, the recipe is the same as already shown for the
free Fermi gas, which leads to expressions for the energy density and pressure. Assuming
C2

s = g2
σ(M2/m2

σ) = 267.1 and C2
v = g2

ω(M2/m2
ω) = 195.9, the binding energy E/N − M =

−15.75 MeV at the saturation density ρ = 0.19 fm−3, a little bit too high.
Other important quantities directly related with nuclear matter EOS are the symmetry

energy, its derivatives and the incompressibility. The symmetry energy is roughly the
necessary energy to transform symmetric matter into a pure neutron matter, as shown in
Figure 7, i.e.,

E(ρ, δ) � E(ρ, δ = 0) + Esym(ρ)δ
2. (44)

Its value can be inferred from experiments and it is of the order of 30–35 MeV and it
can be written as

Esym =
1
8

(
∂2(E/ρ)

∂y2
p

)
yp=0.5

=
1
2

(
∂2(E/ρ)

∂δ2

)
δ=0

. (45)

It is common to expand the symmetry energy around the saturation density in a Taylor
series as

Esym = J + L0(
ρ − ρ0

3ρ0
) +

Ksym

2
(

ρ − ρ0

3ρ0
)2 +O(3), (46)

where J is the symmetry energy at the saturation point and L0 and Ksym represent, respec-
tively, its slope and curvature:

L0 = 3ρ0

(
∂Esym(ρ)

∂ρ

)
ρ=ρ0

, (47)
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and

Ksym = 9ρ2
0

(
∂2Esym(ρ)

∂ρ2

)
ρ=ρ0

. (48)
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Figure 7. Schematic representation of the nuclear matter symmetry energy.

Experimental data for the symmetry energy can be inferred from heavy-ion collisions,
giant monopole (GMR) and giant dipole (GDR) resonances, pygmy dipole resonances and
isobaric analog states. Accepted values for the slope until very recently lay in between 30.6
and 86.8 MeV [37,38] and for the curvature, in between −400 and 100 MeV [39,40]. These
two quantities are correlated with macroscopic properties of neutron stars, as will be seen
later on in this manuscript. Based on 28 experimental and observational data, restricted
bands for the values of J (25 < J < 35 MeV) and L0 (25 < L0 < 115 MeV) were given
in [41] . More recently, results obtained by the PREX2 experiment [12] point to a different
band, given by L0 = 106 ± 37 MeV [42]. If confirmed, this result rehabilitates many of the
EOS already ruled out and points to a neutron star radius much larger than previously
expected, as also discussed later on in the present paper.

Another important quantity is the incompressibility, already mentioned when the
liquid drop model idea was introduced. It is a measure of the stiffness of the EOS; i.e., it
defines how much pressure a system can support and it is calculated from the relation

K0 = 9
(

∂P
∂ρ

)
ρ=ρ0, yp=0.5

(49)

and ranges between 190 and 270 MeV [37,38]. These values can be inferred from both
theory and experiments.

I will go back to the importance of these nuclear matter bulk properties and their
connection with neutron star properties later on.

3.2. Extended Relativistic Hadronic Models

I next present one example of a complete Lagrangian density that describes baryons
interacting among each other by exchanging scalar-isoscalar (σ) , vector-isoscalar (ω),
vector-isovector (ρ), and scalar-isovector (δ) mesons:

L = Lnm + Lσ + Lω + Lρ + Lδ + Lσωρ, (50)
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where [43]

Lnm = ψ(iγμ∂μ − M)ψ + gσσψψ − gωψγμωμψ − gρ

2
ψγμ�ρμ ·�τψ + gδψ�δ ·�τψ, (51)

Lσ =
1
2
(∂μσ∂μσ − m2

σσ2)− A
3

σ3 − B
4

σ4, (52)

Lω = −1
4

FμνFμν +
1
2

m2
ωωμωμ +

C
4
(g2

ωωμωμ)2, (53)

Lρ = −1
4
�Bμν�Bμν +

1
2

m2
ρ�ρμ ·�ρμ, (54)

Lδ =
1
2
(∂μ�δ∂μ�δ − m2

δ
�δ2), (55)

and

Lσωρ = gσg2
ωσωμωμ

(
α1 +

1
2

α1
′gσσ

)
+ gσg2

ρσ�ρμ ·�ρμ

(
α2 +

1
2

α2
′gσσ

)
+

1
2

α3
′g2

ωg2
ρωμωμ�ρμ ·�ρμ. (56)

In this Lagrangian density, Lnm represents the kinetic part of the nucleons plus the
terms standing for the interaction between them and mesons σ, δ, ω, and ρ. The term
Lj represents the free and self-interacting terms of the meson j, where j = σ, δ, ω, and
ρ. The σ self-interaction terms were the first ones to be introduced [44] to correct some
of the values of the nuclear bulk properties. The last term, Lσωρ, accounts for crossing
interactions between the meson fields. The antisymmetric field tensors Fμν and �Bμν are
given by Fμν = ∂νωμ − ∂μων and �Bμν = ∂ν�ρμ − ∂μ�ρν − gρ(�ρμ ×�ρν). The nucleon mass is
M and the meson masses are mj.

In a mean field approximation, the meson fields are treated as classical fields and
the equations of motion are obtained via Euler–Lagrange equations. Translational and
rotational invariance are assumed. The equations of motion are then solved self-consistently
and the energy momentum tensor, Equation (21), is used in the calculation of the EOS.
The calculations follow the steps shown in Sections 2.1 and 3.1. The interested reader
can also check them, for instance, in [35,37]. Nevertheless, some of the important steps
are mentioned in what follows. Within a RMF approximation, the common substitution
mentioned below is again performed:

σ → 〈σ〉 ≡ σ0, ωμ → 〈ω0〉 ≡ ω0, �ρμ → 〈�ρ0〉 ≡ ρ̄0(3), �δ → < �δ >≡ δ(3), (57)

and the equations of motion read:

m2
σσ0 = gσρs − Aσ2

0 − Bσ3
0 + gσg2

ωω2
0(α1 + α1

′gσσ) + gσg2
ρρ̄2

0(3)(α2 + α2
′gσσ) , (58)

m2
ωω0 = gωρ − Cgω(gωω0)

3 − gσg2
ωσ0ω0(2α1 + α1

′gσσ0)− α3
′g2

ωg2
ρρ̄2

0(3)ω0, (59)

m2
ρρ̄0(3) =

gρ

2 ρ3 − gσg2
ρσ0ρ̄0(3)(2α2 + α2

′gσσ0)− α3
′g2

ωg2
ρρ̄0(3)ω

2
0, (60)

m2
δδ(3) = gδρs3, (61)

and
[iγμ∂μ − γ0Vτ − (M + Sτ)]ψ = 0, (62)

where
ρs =

〈
ψψ

〉
= ρs p + ρsn, ρs3 =

〈
ψτ3ψ

〉
= ρs p − ρsn, (63)

ρ =
〈

ψγ0ψ
〉
= ρp + ρn, ρ3 =

〈
ψγ0τ3ψ

〉
= ρp − ρn = (2yp − 1)ρ, (64)

with

ρs p,n =
γM∗

p,n

2π2

∫ kF p,n

0

k2dk√
k2 + M∗2

p,n

, (65)
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ρp,n =
γ

2π2

∫ kF p,n

0
k2dk =

γ

6π2 k3
F p,n, (66)

Vτ = gωω0 +
gρ

2
ρ̄0(3)τ3, Sτ = −gσσ0 − gδδ(3)τ3, (67)

with τ3 = 1 and −1 for protons and neutrons respectively and γ = 2 to account for the
spin degeneracy. The proton and neutron effective masses read:

M∗
p = M − gσσ0 − gδδ(3) and M∗

n = M − gσσ0 + gδδ(3). (68)

Due to translational and rotational invariance, only the zero components of quadrivec-
tors remain. From the energy-momentum tensor, the following expressions are obtained:

E =
1
2

m2
σσ2

0 +
A
3

σ3
0 +

B
4

σ4
0 − 1

2
m2

ωω2
0 −

C
4
(g2

ωω2
0)

2 − 1
2

m2
ρρ̄2

0(3) + gωω0ρ +
gρ

2
ρ̄0(3)ρ3

+
1
2

m2
δδ2

(3) − gσg2
ωσω2

0

(
α1 +

1
2

α1
′gσσ0

)
− gσg2

ρσρ̄2
0(3)

(
α2 +

1
2

α2
′gσσ0

)
− 1

2
α3

′g2
ωg2

ρω2
0 ρ̄2

0(3) + E p
kin + En

kin, (69)

with

E p,n
kin =

γ

2π2

∫ kF p,n

0
k2(k2 + M∗2

p,n)
1/2dk (70)

and

P = −1
2

m2
σσ2

0 − A
3

σ3
0 − B

4
σ4

0 +
1
2

m2
ωω2

0 +
C
4
(g2

ωω2
0)

2 +
1
2

m2
ρρ̄2

0(3) +
1
2

α3
′g2

ωg2
ρω2

0 ρ̄2
0(3)

− 1
2

m2
δδ2

(3) + gσg2
ωσ0ω2

0

(
α1 +

1
2

α1
′gσσ0

)
+ gσg2

ρσρ̄2
0(3)

(
α2 +

1
2

α2
′gσσ

)
+ Pp

kin + Pn
kin, (71)

with

Pp,n
kin =

γ

6π2

∫ kF p,n

0

k4dk
(k2 + M∗2

p,n)
1/2 . (72)

3.3. Too Many Relativistic Models

In [37], a large number of relativistic models were confronted with two sets of nuclear
bulk properties, one more and one less restrictive. The interested reader should check the
chosen ranges of properties in both sets and the respective values of 363 models. In what
follows, I will restrict myself to three parameter sets: NL3 [45], NL3ωρ [46], which is an
extension of the NL3 parameter set with the introduction of a vector–isovector interaction,
and IUFSU [47]. These models are chosen because they are frequently used in various
applications in the literature. Moreover, NL3ωρ and IUFSU satisfy all nuclear matter bulk
properties, but it will be seen throughout the text that recent astrophysical observations are
not completely satisfied by them. The inclusion of NL3 and its comparison with NL3ωρ
help the understanding of the importance of the ω − ρ interaction. Other parameter sets
shown along the next sections are GM1 [48], GM3 [49], TM1 [50], and FSUGZ03 [51]. All
of them are contemplated in [37], and the interested reader can check their successes and
failures in satisfying the main nuclear bulk properties. Notice that none of the parameter
sets explicitly mentioned in the present work includes the δ meson, which distinguishes
protons and neutrons, and consequently, the effective masses given in Equation (68) are
identical. The mesonic crossing terms weighted by the parameters α1, α1

′, α2, α2
′ are not

included either. In Table 1, the parameter values for the three parametrizations mostly
used are presented and in Table 2, their main nuclear properties are shown.
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Table 1. Parameter sets used in this section-all meson masses and A are given in MeV, Λv = α3
′/2 and M = 939 MeV.

Model mσ mω mρ gσ gω gρ A B C Λv

NL3 508.194 782.501 763 10.217 12.868 8.948 2.055 ×10−3 −2.65 ×10−3 0 0
NL3ωρ 508.194 782.501 763 2.192 12.868 11.276 2.055 ×10−3 −2.65 ×10−3 0 0.03
IUFSU 491.5 782.5 763 9.971 13.032 13.590 1.80 ×10−3 4.9 ×10−5 0.18 0.046

In Figure 8 left, I plot the binding energy per nucleon for the three parameter sets, and
one can clearly see the slightly different saturation densities and binding energy values.
Notice that the ω − ρ channel does not influence the binding energy of symmetric nuclear
matter but plays an important role in asymmetric matter. In Figure 8 right, the symmetry
energy is depicted, and it is easy to see that they are very similar at sub-saturation densities
but completely different at larger densities. As a consequence of what is seen in Figure 8,
the incompressibility, the slope, and the curvature of the three models are different, as
shown in Table 2.
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Figure 8. (Left) Binding energy and (right) symmetry energy as a function of the baryonic density
for the three parameter sets used in this section.

Table 2. Saturation and stellar properties. These values are commented along the text.

Model
ρ0 B/A K0 M∗/M J L Mmax/M�

R1.4M�
fm−3 MeV MeV MeV MeV km

NL3 0.148 −16.24 271.53 0.60 37.40 118.53 2.78 14.7
NL3ωρ 0.148 −16.24 271.60 0.60 31.70 55.50 2.76 13.7
IUFSU 0.155 −16.40 231.33 0.61 31.30 47.21 1.94 12.5

4. Stellar Matter

The idea of this section is to show how the relativistic models presented so far can
be applied to describe stellar matter, and, in this case, we refer specifically to neutron
stars. Looking back at the QCD phase diagram presented in the Introduction, one can see
that neutron stars have internal densities that are 6 to 10 times higher than the nuclear
saturation density and that their temperature is low. Actually, if we compare their thermal
energy with the Fermi energy of the system, the assumption of zero temperature is indeed
reasonable. At these very high densities, the onset of hyperons is expected because their
appearance is energetically favorable as compared with the inclusion of more nucleons in
the system. To deal with this fact, the first term in the Lagrangian density of Equation (51)
has to be modified to take into account, at least, the eight lightest baryons, and it becomes:

LBm = ∑
B

ψB(iγμ∂μ − MB)ψB + gσBσψBψB − gωBψBγμωμψB − gρB

2
ψBγμ�ρμ�τψB. (73)
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The meson-baryon coupling constants are given by

gjB = χBjgj, (74)

where gj is the coupling of the meson with the nucleon and χjB is a value obtained accord-
ing to symmetry groups or by satisfying hyperon potential values. These are important
quantities when hyperons are included in the system [49,52]. We come back to the discus-
sion of these quantities below. If we perform once again an RMF approximation and use
the Euler–Lagrange equations to obtain the equations of motion, we find:

σ0 = ∑
B

gσB

m2
σ

ρsB − 1
m2

σ

(
Aσ2

0 − Bσ3
0

)
, (75)

ω0 = ∑
B

gωB

m2
ω

ρB − 1
m2

ω

(
2Λvg2

ωg2
ρρ̄2

0(3)ω0

)
, (76)

ρ̄0(3) = ∑
B

gρB

m2
ρ

τ3

2
ρB − 1

m2
ρ

(
2Λvg2

ωg2
ρω2

0 ρ̄0(3)

)
, (77)

where ρsB is the scalar density and ρB is the baryon B density, given by:

ρsB =
γ

2π2

∫ k f B

0

M∗
B√

k2 + M∗2
B

k2dk, (78)

ρB =
γ

6π2 k3
f B, and ρ = ∑

B
ρB, (79)

where k f B is the Fermi momentum of baryon B. The terms E p
kin and En

kin that appear in
Equation (69), must now be substituted by

EB =
γ

2π2 ∑
B

∫ k f B

0

√
k2 + M∗2

B k2dk (80)

and
M∗

B = MB − gσσ0. (81)

Whenever stellar matter is considered, β-equilibrium and charge neutrality-conditions
have to be imposed, and hence, the inclusion of leptons (generally electrons and muons) is
necessary. These conditions read:

μB = μn − qBμe, μe = μμ, ∑
B

qBρB + ∑
l

qlρl = 0, (82)

where μB and qB are the chemical potential and the electrical charge of the baryons, ql
is the electrical charge of the leptons, ρB, and ρl are the number densities of the baryons
and leptons.

After the supernova explosion, the remnant is, at first, a protoneutron star. Before
deleptonisation takes place, neutrinos are also present in the system and in this case, the
chemical stability condition becomes

μB = μn − qB(μe − μνe), μe = μμ. (83)

In this process, entropy is usually fixed at values compatible with simulations of
neutron star cooling, and the lepton fractions reach values of the order of 0.3–0.4. This
scenario is not considered in the present paper, but examples of this calculation can be seen
in [53].
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To satisfy the above conditions of chemical equilibrium and charge neutrality, leptons
must be incorporated in the system, and this is done with the introduction of a free Fermi
gas, i.e.,

Llep = ∑
l

ψ̄l [iγμ∂μ − ml ]ψl , (84)

where the sum runs over the electron and the muon and their eigenenergies are

El =
√

k2 + m2
l , (85)

so that their energy density becomes

El =
γ

2π2 ∑
l

∫ k f l

0

√
k2 + m2

l k2dk. (86)

The total pression of the system can be either obtained separately for its baryonic and
leptonic parts as in the previous section or by thermodynamics:

P = ∑
f

μ f ρ f − E f , (87)

where f stands for all fermions in the system and it is common to define the particle fraction
(including leptons) as Yf =

ρ f
ρ .

As already mentioned, an important point is how to fix the meson–hyperon coupling
constants giB, i = σ, ω, ρ. There are two methods generally used in the literature. The first
one is phenomenological and is based on the fitting of the hyperon potentials [49]:

UY = gωBω0 − gσBσ0, (88)

which, unfortunately, are not completely established. The only well-known potential is
the Λ potential depth UΛ = −28 MeV [48]. Common values for the Σ and Ξ potentials
are UΣ = +30 MeV and UΞ = −18 MeV [54,55], but their real values remain uncertain.
According to [48], appropriate values for the meson–hyperon coupling constants defined
in Equation (74) are obtained if χBσ = 0.7 and χBω = χBρ is given by 0.772 for NL3 and
0.783 if another common parametrization, the GM1, is used. However, in these cases, the
value of χBρ remains completely arbitrary. We have mentioned GM1 here because it is very
often used in the description of neutron star matter since it was one of the first parameter
sets with a high effective mass at the saturation density (M∗/M = 0.7) as compared with
0.6 given by NL3, for instance (see Table 2). This high effective mass helps the convergence
of the codes when the hyperons are introduced because Equation (81) accounts for a large
contribution of the σ0 field, which in turn, carries the information of the scalar densities
of eight baryons. The situation is very different from the one in nuclear matter, where
the effective mass only carries the σ0 field coming from the nucleonic scalar density. This
means that whenever the eight lightest baryons are included, the negative contribution in
Equation (81) can make the nucleon mass reach zero very rapidly if the effective mass is
too low.

Other examples of how to fit these couplings based on phenomenological potentials
can be seen in [56,57]. The second possibility to choose the meson–hyperon couplings is
based on the relations established among them by different group symmetries, the most
common being SU(3) [52,58] and SU(6) [59].

In the present work, we have used the following sets of couplings, for which
UΛ = −28 MeV, UΣ = +30 MeV and UΞ = −18 MeV:

• for NL3 and NL3ωρ: χΛσ = 0.613, χΣσ = 0.460, χΞσ = 0.317,
• for IUFSU: χΛσ = 0.611, χΣσ = 0.454, χΞσ = 0.316,

and χΛω = χΣω = 0.667, χΞω = 0.333 in all cases due to the SU(6) symmetry and
χBρ = 1 for all hyperons in all cases.
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In Figure 9, six different EOSs are shown, for the three parameter sets identified
above, with and without the inclusion of the hyperons. The EOSs for the IUFSU with and
without hyperons are reproduced with different units (fm−4) instead of the more intuitive
(MeV/fm3) because those are common units used in stellar matter studies. Notice that
h̄c = 197.326 MeV.fm and Natural units are used in these calculations.
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Figure 9. (Left) Stellar matter EOS obtained with different parametrizations. Thick solid lines show
EOS with nucleons only and thin lines represent EOS with the eight lightest baryons and (right)
the same EOS for IUFSU with and without hyperons but with different units for pressure and
energy density.

In Figure 10, the particle fractions obtained with IUFSU are displayed for the two cases
shown in Figure 9 right. Notice that when the hyperons are included, these particle fractions
depend on the meson–hyperon couplings discussed above. A different choice for these
couplings would generate different particle fractions for the same nuclear parametrisation.
One can see that the constituents of the neutron stars change with the increase in the
density, making their core richer in terms of particles than the region near the crust. From
these plots, the conditions of charge neutrality and chemical equilibrium become clear.
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Figure 10. Particle fractions obtained with IUFSU for an EOS with (left) nucleons only and (right)
lightest eight baryons.

4.1. The Tolman–Oppenheimer–Volkoff Equations

As it was just seen, essential nuclear physics ingredients for astrophysical calculations
are appropriate equations of state (EOS). After the EOSs are chosen, they enter as input to
the Tolman–Oppenheimer–Volkoff equations (TOV) [27,28], which in turn give as output
some macroscopic stellar properties: radii, masses, and central energy densities. Static
properties, as the moment of inertia and rotation rate can be obtained as well. The EOSs
are also necessary in calculations involving the dynamical evolution of supernova, pro-
toneutron star evolution and cooling, conditions for nucleosynthesis and stellar chemical
composition, and transport properties, for instance.
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The TOV equations were obtained by Tolman [27] and independently by Oppenheimer
and Volkoff [28], as already mentioned, and they read:

dP
dr

= −G
(E + P)(M(r) + 4πPr3)

r2 − 2M(r)r
,

= −GEM(r)
r2

[
1 +

P
E
][

1 +
4πr3P
M(r)

][
1 − 2GM(r)

r

]−1

(89)

dM
dr

= 4πEr2,

dMBaryonic

dr
= 4πmnr2ρ(r)

[
1 − 2M(r)

r

]−1/2

,

where M is the gravitational mass, MBaryonic is the baryonic mass, mn is the nucleon mass,
and r is the radial coordinate and also the circumferential radius. Be aware that MBaryonic
refers to the baryonic mass of the star, and it is not the same as the MB, the individual
baryonic masses used to compute the EOS.

The first differential equation is also shown in such a way that the corrections obtained
from special and general relativity are clearly separated.

The EOSs shown on the r.h.s. of Figure 9 are then used as input to the above TOV
equations and the corresponding mass-radius diagram is shown in Figure 11. Each curve
represents a family of stars, being the maximum point of the curves related to the maximum
stellar mass of the family. By comparing the curves shown in Figures 9 and 11, one can
clearly see that the harder EOS yields higher maximum mass. Hence, the inclusion of
hyperons makes the EOS softer, as expected, but results in lower maximum masses. As
there is no reason to believe that the hyperons are not present, this connection of softer
EOS with lower neutron star mass gave rise to what is known as the hyperon puzzle. I will
go back to this debate in the next section.
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Figure 11. Mass–radius diagram obtained with the IUFSU parametrization for hadronic matter with
(8b) and without hyperons.

I would like to call the attention of the reader for the values of the symmetry energy
slope (L0), which has been extensively discussed in the last years. Although its true value
is still a matter of debate, most studies indicate that it has non-negligible implications on
the neutron star macroscopic properties [38,60–66]. The slope can be controlled by the
inclusion of the ω − ρ interaction, as can be seen in Table 2. In general, the larger the value
of the interaction, the lower the values of the symmetry energy and its slope [60]. As a
general trend, it is also true that the lower the value of the slope, the lower the radius
of the canonical star, the one with 1.4 M�. In Table 2, the values of the maximum stellar
masses obtained without the inclusion of hyperons and the radii of the canonical stars are
displayed. Notice, however, that the value of the radius of the canonical stars depends on
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the EOS of the crust. To obtain the values shown in Table 2, I used the BPS EOS [67] for the
outer crust and interpolated the inner crust. As far as the maximum mass is concerned, the
crust barely affects it, since the involved densities are too low. I will discuss this subject
further when discussing the pasta phase in Section 4.3. Another interesting correlation
noticed in [68] is that the onset of the charged (neutral) hyperons takes place at lower
(larger) densities for smaller values of the slope.

4.2. Structure of Neutron Stars and Observational Constraints

Although the internal constitution of a neutron star cannot be directly tested, it is
reasonably well understood. A famous picture of the NS internal structure was drawn by
Dany Page and can be seen in [69]. Close to the surface of the star, there is an outer and an
inner crust, and towards the center, an outer and an inner core are believed to exist. The
solid crust is expected to be formed by nonuniform neutron-rich matter in β-equilibrium.
This inhomogeneous phase is known as pasta phase, and calculations predict that it exists at
densities lower than 0.1 fm−3, where nuclei can coexist with a gas of electrons and neutrons
that have dripped out. The center of the star is composed of hadronic matter, and the true
constituents are still a matter of debate, as one can conclude from the results presented
in the last section. The fact that the core should contain hyperons is widely accepted,
although this possibility excludes many EOS that become too soft to explain the existing
massive stars, namely, MSP J0740+6620, whose mass range lies at 2.07 ± 0.08 M� [8,70],
PSR J0348+0432 with mass of 2.01 ± 0.04 M� [71] and PSR J1614-2230, which is also a
massive neutron star [72]. Until around 2005, these massive NS had not been detected and
practically all EOS could satisfy a maximum 1.4 M� star.

Since the appearance of hyperons is energetically favorable, different possibilities
were considered in the literature such that the EOS would be stiffer, such as the tuning of
the unknown meson–hyperon coupling constants. Another mechanism that increases the
maximum mass of neutron stars with hyperons in their core is the inclusion of an additional
vector meson that mediates the hyperon–hyperon interaction [52,58]. In Figure 12, mass–
radius curves are shown for different hyperon–meson coupling constants of the GM1
parametrization [52]. One can see that all choices produce results with high maximum
masses, satisfying the new massive star constraints. I refer the reader to [52] and references
therein for explanations of the introduction of the strange meson channel on the Lagrangian
density and the corresponding strange meson–hyperon couplings.
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Figure 12. Mass–radius curve for the GM1 parametrisation based on [52].

As already mentioned in Section 2.2, the observation of the binary neutron star system
GW170817 [33] by the LIGO-Virgo scientific collaboration and also in the X-ray, ultra-
violet, optical, infrared, and radio bands gave rise to the new era of multi-messenger
astronomy [34]. The detection of the corresponding gravitational wave helped the estab-
lishment of additional constraints to the physics of neutron stars. This subject is discussed
in more detail below, but at this point, I would like to mention that a series of papers based
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on the these constraints imposed restricted values for the neutron star radius [73–77], not
always compatible among themselves.

The dimensionless tidal deformability, also called tidal polarisability and its associated
Love number, are related to the induced deformation that a neutron star undergoes by the
influence of the tidal field of its neutron star companion in the binary system. The idea is
analogous to the tidal response of our seas on Earth as a result of the Moon’s gravitational
field. The theory of Love numbers emerges naturally from the theory of tidal deformation,
and the first model was proposed in 1909 by Augustus Love [78] based on Newtonian
theory. The relativistic theory of tidal effects was deduced in 2009 [79,80], and since then
the computing of Love numbers of neutron stars has become a field of intense investigation.

As different neutron star EOS and related composition have different responses to the
tidal field, the tidal polarizability can be used to discriminate between different equations
of state. A complete overview on the theory of Love numbers in both Newtonian and
General Relativity theories can be found in [81]. Here, I show next only the main equations
for the understanding of the constraints on NS.

The second order Love number k2 is given by

k2 =
8C5

5
(1 − 2C)2[2 + C(yR − 1)− yR]

×
{

2C[6 − 3yR + 3C(5yR − 8)]

+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C2)[2 − yR + 2C(yR − 1)]ln(1 − 2C)
}−1

. (90)

where C = M/R is the star compactness, M and R are the total mass and total circumferen-
tial radius of the star, respectively, and yR = y(r = R), which is obtained from

r
dy
dr

+ y2 + yF(r) + r2Q(r) = 0. (91)

Here, the coefficients are given by

F(r) = [1 − 4πr2(E − P)]/E (92)

and

Q(r) =4π

[
5E + 9P + (E + P)

(
∂P
∂E

)
− 6

4πr2

]
/E

− 4
[

m + 4πr3P
r2E

]2

, (93)

where E = 1 − 2m/r, E , and P are the energy density and pressure profiles inside the star.
Notice that Equation (91) has to be solved coupled to the TOV equations.

Finally, one can obtain the dimensionless tidal deformability Λ, which is connected to
the compactness parameter C through

Λ =
2k2

3C5 . (94)

In Figure 13, the second-order Love number as a function of the compactness is shown
for the three equations of state discussed in Section 3.2, as well as the corresponding tidal
deformabilities (Λ1, Λ2) for the binary system (M1, M2), with M1 > M2. The plots are
calculated from the equation for the chirp mass

Mchirp = (M1M2)
3/5(M1 + M2)

−1/5, (95)
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and the diagonal dotted line corresponds to the case M1 = M2. The lower and upper
dashed lines correspond to LIGO/Virgo collaboration 50% and 90% confidence limits,
respectively, which are obtained from the GW170817 event. The EOS used to obtain these
curves do not include hyperons to avoid the uncertainties related to the meson–hyperon
couplings. It is important to mention the matching procedure used to compute the Love
number and the tidal polarizabilities. The outer crust is a BPS EOS, the inner crust is a
polytropic function, which interpolates between the outer crust and the core. A detailed
explanation is given in [82], Section 2.2. More advanced crustal EOSs are available [83,84],
and I discuss the sensitivity of some results on the crust model later on. One can see from
these figures that the Love numbers are very different for the three models and so are the
tidal polarisabilities, the NL3 and NL3ωρ not being able to reproduce the GW170817 data
satisfactorily. Actually, this behavior of the NL3 and NL3ωρ had already been observed in
[85], but one should notice that in [85], the confidence lines were taken from a preliminary
version of the LIGO/Virgo data [33], while in the present paper, they are taken from [86],
where the consideration of massive stars was neglected.

Figure 13. (Left) Love number as a function of the compactness and (Right) tidal deformabilities of
both NS in the binary system before the merger.

Another important constraint concerns the radii of the canonical stars, the ones with
M = 1.4 M�. According to the LIGO/Virgo collaboration, the tidal polarizability of
canonical stars should lie in the range 70 ≤ Λ1.4 ≤ 580 [86], a restriction that imposed a
constraint to the radii of the corresponding stars, which should lie in the range 10.5 km
≤ R1.4M� ≤ 13.4 km. This constraint, which does not take into account a maximum stellar
mass of 1.97 M�, only excludes the NL3 parameter set from the ones we are analyzing
(see Table 2), exactly the one that was shown not to describe nuclear bulk properties well
enough. However, the history has become more complicated: a recently published paper
concludes that the canonical neutron star radius cannot be larger than 11.9 km [77]. If this
small radius is confirmed, it could imply a revision of the EOSs or of the gravity theory
itself, as done in [87]. Notice, however, that this small radius is in line with older works
that predicted that the maximum mass of a canonical star should be 13.6 km [73,74], whose
authors claimed that any NS, independently of its mass, should bear a radius smaller than
13 km. Moreover, the new information sent by NICER [8] supports the evidence that the
detected massive PSR J0740+6620 has a radius of the order of 12.35 ± 0.75 km and that a
star with a mass compatible with a canonical star, J0030+0451, has a radius of the order
of 12.45 ± 0.65 km [88], or 12.71+1.14

1.19 km [75] or even 13.02+1.24
1.06 km [76], depending on the

analysis performed. These recent detections point to the fact that the radii of canonical and
massive stars are of the same order, and this feature is not easily reproduced by most EOSs.
On the other hand, one of the analyses of the results from the PREX experiment implies
that 13.25 km ≤ R1.4M� ≤ 14.26 km corresponding to a tidal polarizability in the range
642 ≤ Λ1.4M� ≤ 955 [42], also much higher than the above mentioned value obtained from
GW170817 data. Notice, however, that the recent PREX results seem to contradict previous
understandings on the softness of the symmetry energy [89]. Hence, the sizes of these
objects are still a source of debate. One of the conclusions in [42] is that a precise knowledge
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of the crust of these compact objects may help to minimize the systematic uncertainties of
these results.

A detailed analysis of the relativistic mean field models shown to be consistent with all
nuclear bulk properties in [37] according to the masses and radii they yield when applied to
describe NS can be found in [90]. Thirty four models were analyzed, and only twelve were
shown to describe massive stars with maximum masses in the range 1.93 ≤ M/M� ≤ 2.05
without the inclusion of hyperons. In another paper [91], the very same models were
confronted with the constraints imposed by the LIGO/Virgo collaboration. In this case,
24 models were shown to satisfy them. However, only five models could, at the same
time, describe massive stars and constraints from GW170817. These studies did not use
EOSs with hyperons, what poses an extra degree of complication due to the uncertainties
on the meson–hyperon coupling constants. Looking at the three sets used in the present
work, one can clearly see the difficulty. The two models that can describe massive stars are
outside the range of validity of the GW170817 tidal deformabilities. On the other hand,
IUFSU gives a mass a bit lower than desired, a deficiency that can be made correct with
some tuning.

Another aspect that deserves to be mentioned refers to the inclusion of Δ baryons in
the EOS. If they are considered as a possible constituent of neutron stars, at least with the
parametrisations studied (GM1 and GM1ωρ), no “Δ puzzle” is observed [92].

4.3. The Importance of the Inner and Outer Crusts

When examining neutron star merger, the coalescence time is determined by the tidal
polarizability, which as already explained, is a direct response of the tidal field of the
companion that induces a mass quadrupole. This scenario suggests that the neutron star
crust should play a role in this picture. If one looks at the famous figure drawn by Dany
Page [69], one can see that the crust is divided into two pieces, the outer and the inner crust,
the latter being the motive for the present section. It may include a pasta phase, the result of
a frustrated system in which there is a unique competition between the Coulomb and the
nuclear interactions, possible at very low baryonic densities. In the simplest interpretation
of the geometries present in the pasta phase, they are known as droplets (3D), rods (2D),
and slabs (1D) and their counterparts (bubbles, tubes, and slabs) are also possible. Much
more sophisticated geometries such as waffles, parking garages and triple periodic minimal
surface have been proposed [93–95], but I next describe only the more traditional picture.

The pasta phase is the dominant matter configuration if its free energy (binding energy
at T = 0) is lower than its corresponding homogeneous phase. Depending on the model,
the used parametrization and the temperature [96], typical pasta densities lie between 0.01
and 0.1 fm−3. Different approaches are used to compute the pasta phase structures: the
coexisting phases (CP) method, the Thomas–Fermi approximation, numerical simulations,
etc. For detailed calculations, one can look at [96–98], for instance. In what follows, I only
show the main equations used to build the pasta phase with the CP method.

According to the Gibbs conditions, both pasta phases have the same pressure and
chemical potentials for proton and neutron and, at a fixed temperature, the following
equations must be solved simultaneously:

PI = PII , (96)

μI
p = μI I

p , (97)

μI
n = μI I

n , (98)

f (ρI
p − ρe) + (1 − f )(ρI I

p − ρe) = 0. (99)
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where I (I I) represents the high (low) density region, ρp is the global proton density, ρe is
the electron density taken as constant in both phases and f is the volume fraction of the
phase I, which reads

f =
ρ − ρI I

ρI − ρI I . (100)

The total hadronic matter energy reads:

Ematter = fE I + (1 − f )E I I + Ee, (101)

where E I and E I I are the energy densities of phases I and I I, respectively, and Ee is
the energy density of the electrons, included to account for charge neutrality. The total
energy can be obtained by adding the surface and Coulomb terms to the matter energy in
Equation (101),

E = Ematter + Esur f + ECoul . (102)

Minimizing Esur f + ECoul with respect to the size of the droplet/bubble, cylinder/tube
or slabs, we obtain [97] Esur f = 2ECoul where

ECoul =
2α

42/3 (e
2πΦ)1/3

[
σsur f D(ρI

p − ρI I
p )
]2/3

, (103)

with α = f for droplets, rods and slabs, and α = 1 − f for tubes and bubbles. The quantity
Φ is given by

Φ =

{ (
2−Dα1−2/D

D−2 + α
)

1
D+2 , D = 1, 3

α−1−ln α
D+2 , D = 2

(104)

where σsur f is the surface tension, which measures the energy per area necessary to create
a planar interface between the two regions. The surface tension is a crucial quantity in
the pasta calculation, and it is normally parametrized with the help of more sophisticated
formalisms. Another important aspect is that the pasta phase is only present at the low-
density regions of the neutron stars, and in this region, muons are not present, although
they are present in the EOS that describes the homogeneous region.

In Figure 14, I plot the binding energy of the homogeneous matter (dashed line) as
compared with the pasta phase binding energy (solid line with different colours repre-
senting the different structures). One can see that the pasta-phase binding energy is lower
up to a certain density, when the homogeneous phase becomes the preferential state. In
Figure 15, I show various phase diagrams obtained with the CP and TF methods for fixed
proton fractions at different temperatures. As the temperature increases, the pasta phase
shrinks. Here I have mentioned the TM1 parameter set [50], not used before in the present
work but also quite common in the literature. The purpose is only to show that different
approximations and different parametrizations result in different internal structures with
different transition densities from one phase to another.
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Figure 14. npe matter binding energy obtained with the CP method and NL3 parametrisation [45].
Figure taken from [96].

Figure 15. Phase diagrams obtained with (Left) NL3 parametrisation and CP method for Yp = 0.5.
From bottom to top, the colors represent homogeneous phase (T = 5 and 10 MeV only), droplets,
rods, and homogeneous phase. (Right) NL3 and TM1 parametrizations with CP and TF methods for
Yp = 0.3 and T = 0. Figures taken from [96].

However, what is the influence of the pasta phase on the calculation of the tidal
polarizability, and if this structure is not well determined, how much does its uncertainty
contribute to the final calculations? This problem was tackled in [99], and, as the model
used in that paper is quite different from the RMF models we use in the present work,
we do not include any figures, but it is fair to say that the contribution is indeed minor.
In [99], the BPS EOS was used for the outer crust. For the inner crust, two possibilities were
considered: the existence of the pasta phase and a simple interpolation between the outer
crust and the core. It was observed that, although the explicit inclusion of the pasta phase
affected the Love number in a visible way, it almost did not change the tidal polarizabilities,
a result that corroborated the findings in [100]. These results can be explained by the
fact that, for a fixed compactness, even if the Love number is sensitive to the inner crust
structure, the tidal polarizability scales with the fifth power of C, and hence, the influence
is small.

Furthermore, what about the outer crust? Indeed, in this case, the tidal effects should
be even more sensitive. In what follows, I test how much the use of a modern EOS for
the outer crust, which we call reliable [84], changes the results as compared with the BPS
generally used and mentioned below. A modified version of the IUFSU model known
as FSUGZ03 [51] was used to plot Figure 16, and we trust that the qualitative results
would be the same for any other parametrisation. In this Figure, the outer crust is linked
directly to the core EOS, as seen on the top figure. Log-scale is used because the differences
cannot be seen in linear scale. Then, the different prescriptions are used to compute the
tidal polarisabilities shown on the bottom. Once again, one can see that the influence is
very small.

Although we have seen that neither the outer nor the inner crust significantly alter
the tidal polarizabilities, they do have an impact, which was quantified in [101,102]. The
authors of these works concluded that the impact of the crust EOS is not larger than 2%, but
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the matching procedure (crust-core) can account for a 5% difference in the determination of
the low mass NS radii and up to 8% on the tidal deformability. In another recent work [103],
the inner crust was parametrised in terms of a polytropic-like EOS and the sound velocity
and canonical star radii were computed. EOS for the inner crust with different sound
velocities produced radii with up to 8% difference when the same EOS was used for
the core.

0 500 1000 1500 2000
Λ1

0

500

1000

1500

2000

Λ
2

Core + BPS
Core + reliable outer crust

FSUGZ03

LIGO and Virgo
(90%)

LIGO and Virgo
(50%)

Figure 16. (Top) EOSs obtained with the outer crust described by BPS and by a reliable model [84];
(Bottom) tidal polarizabilities for both NSs with the EOSs shown on the right.

Despite the fact that present results show that the inclusion of the pasta phase is not
essential when the above discussed macroscopic properties of NSs are computed, it may
indeed be important for the thermal [104] , magnetic evolution [105,106], and neutrino
diffusion of NS [107,108], processes that take place at different epochs. This means it is
able to handle properly the pasta phase structure is still a matter or concern. The first
issue worth discussing is the possible existence of baryons that are more massive than
nucleons and carry strangeness in the pasta phase. In [109], it was verified that the Λ
hyperons can indeed be present, although in small amounts, as seen in Figure 17, where the
Λ fraction is shown as a function of temperature in phases I (clusters) and I I (gas). For the
parametrization used, NL3ωρ, the pasta phase disappears at T = 14.45 MeV, the Λs being
present for electron fractions ranging from 0.1 to 0.5 and in quantities larger than 10−11 for
T > 7 MeV. The Ξ− can also be found, but in much smaller amounts, on the order of 10−12.
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Figure 17. Λ fraction as a function of temperature in the cluster and gas phases with the NL3ωρ

parametrization [46]. Figure taken from [109].

The second important point refers to the fact that the CP method just presented and
also another commonly used method, the Thomas–Fermi approximation [110], can only
provide one specific geometry for each density, temperature, and proton (or electron)
fraction, but it is well known that this picture is very naive. In fact, different geometries
can coexist at thermal equilibrium [98,111,112]. The problem with these more sophisticated
approaches is that the computational cost is tremendous, making them inadequate to
be joined to other expensive computational methods that may be necessary to calculate
neutrino opacities and transport properties, for instance. In a recent paper, a prescription
with a very low computational cost was presented [113]. In that paper, fluctuations are
taken into account in a reasonably simple way by the introduction of a rearrangement term
in the free energy density of the cluster. A simple result can be seen in Figure 18, where
one can see that different geometries can coexist at a certain temperature for a fixed density.
If different proton fractions are considered, the dominant geometry changes as in the CP or
TF method, but the other geometries can still be present. The complete formalism has been
revised and extended to asymmetric matter and can be found in [114].
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Figure 18. 3D probability distribution as a function of the pasta linear dimension and the normalized
cluster density with different geometries obtained with the IUFSU parametrization for different
proton fractions. Notice the vertical scale differences.

5. Hybrid Stars

So far, I have discussed the possibility that hadronic matter exist in the core of a
neutron star and that nuclear physics underlies the models that describe it. The idea of a
hybrid star containing a hadronic outer core that has a different composition than the inner
core, which could be composed of deconfined quarks, was first proposed by Ivanenko
and Kurdgelaidze [115] in the late 1960s. In their papers, they have even foreseen that a
transition to a superconducting phase would be possible. This idea has gained credibility
lately. A model-independent analysis based on the sound velocity in hadronic and quark
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matter points to the fact that the existence of quark cores inside massive stars should be
considered the standard picture [116]. In this case, one would be dealing with what is
known as hybrid star, and, from the theoretical point of view, its description requires a
sophisticated recipe: a reliable model for the outer hadronic core and another model for
the inner quark core. The ideal picture would be a chiral model that could describe both
matters as density increases, but those models are still rarely used [117–120]. Generally,
what we find in the literature are Walecka-type models such as the ones presented in
Section 3.2 or density-dependent models, whose density dependence is introduced on the
meson–baryon couplings as in [121,122] for the hadronic matter and the MIT bag model
[123] or the Nambu–Jona–Lasinio (NJL) model [124] for the quark matter. While the MIT
bag model is very simplistic, the NJL model is more robust and accounts for the expected
chiral symmetry but cannot satisfy the condition of absolutely stable strange matter that
will be discussed next. The MIT bag model EOS is simply the EOS calculated for a free
Fermi gas in Section 2.1, where the masses are the ones of the u, d, s quarks, generally taken
as mu = md = 5 MeV and ms varying from around 80 to 150 MeV and the inclusion of a
bag constant B of arbitrary value, which is responsible for confining the quarks inside a
certain surface. B enters with a negative sign in the pressure equation and consequently a
positive one in the energy density equation. The NJL EOS is more complicated and, besides
accounting for chiral symmetry breaking/restoration, also depends on a cut-off parameter.
The derivation of the EOS can be obtained in the original papers [124] in an excellent review
article [125] or in one of the papers I have co-authored, [126], for instance, and I will refrain
from copying the equations here. Contrary to the MIT bag model, the NJL model does
not offer the possibility of free parameters. All of them are adjusted to fit the pion mass,
its decay constant, the kaon mass, and the quark condensates in the vacuum. There are
different sets of parameters for describing the SU(2) (only considers u and d quarks) and
the SU(3) versions of the model.

When building the EOS to describe hybrid stars, two constructions are commonly
made: one with a mixed phase (MP) and another without it, where the hadron and quark
phases are in direct contact. In the first case, neutron and electron chemical potentials are
continuous throughout the stellar matter, based on the standard thermodynamical rules
for phase coexistence known as Gibbs conditions. In the second case, the electron chemical
potential suffers a discontinuity, and only the neutron chemical potential is continuous. This
condition is known as Maxwell construction. The differences between stellar structures
obtained with both constructions were discussed in many papers [127–129], and I just
reproduce the main ideas next.

In the mixed phase, constituted of hadrons and quarks, charge neutrality is not
imposed locally but only globally, meaning that quark and hadron phases are not neutral
separately. Instead, the system rearranges itself so that

χρQP
c + (1 − χ)ρHP

c + ρl
c = 0,

where ρiP
c is the charge density of the phase i = H, Q; χ is the volume fraction occupied by

the quark phase; and ρl
c is the electric charge density of leptons. The Gibbs conditions for

phase coexistence impose that [49]:

μHP
n = μQP

n , μHP
e = μQP

e and PHP = PQP,

and consequently,
〈E〉 = χEQP + (1 − χ)EHP + E l (105)

and
〈ρ〉 = χρQP + (1 − χ)ρHP. (106)
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The Maxwell construction is much simpler than the case above and it is only necessary
to find the transition point where

μHP
n = μQP

n and PHP = PQP,

and then construct the EoS.
In Figure 19, different EOS are built with both constructions, and the respective

mass radius curves are also shown. In all cases, the hadronic matter was described with
either GM1 [48] or GM3 parametrizations [49] and the quark phase with the two most
common parametrizations for the NJL model (HK [130] and RKH [131]). On the left, one
can see that under the Maxwell construction, the EOS presents a step at fixed pressure,
and under the Gibbs construction, the EOS is continuous. It is then easy to see that
for both constructions, the mass radius curves are indeed very similar and yield almost
indistinguishable results for gravitational masses and radii. In these cases, the differences
in the hadronic EOSs dominate over the differences in quark EOSs. Hence, the maximum
mass is mostly determined by the hadronic part. It is also important to stress that the quark
core is not always present in the star even if the quark matter EOS is included in the EOS.
This fact is noticed when one compares the density where the onset of quarks takes place
with the star central density. If the star-central density is lower than the quark onset, no
quark core exists.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14  16

P(
fm

-4
)

ε(fm-4)

GM1xSU3HK without MP
GM1xSU3HK with MP

GM1xSU3RKH without MP
GM3xSU3HK without MP

GM3xSU3HK with MP
GM3xSU3RKH without MP

GM3xSU3RKH with MP
 0

 0.5

 1

 1.5

 2

 8  9  10  11  12  13  14  15  16

M
/M

0

R(Km)

GM1xSU(3)RKH with MP
GM1xSU(3)HK with MP

GM1xSU(3)RKH without MP
GM1xSU(3)HK without MP

GM3xSU(3)RKH with MP
GM3xSU(3)HK with MP

GM3xSU(3)RKH without MP
GM3xSU(3)HK without MP

Figure 19. (Left) EOS built with Maxwell (without MP) and Gibbs (with MP) constructions; (Right) corresponding
mass–radius diagram. Figure based on the results presented in [129].

A more recent analysis of the dependence of the macroscopic properties of hybrid
stars on meson–hyperon coupling constants and on the vector channel added to the NJL
model can be seen in [59].

In 2019, the LIGO/Virgo collaboration detected yet another gravitational wave, the
GW190814 [132], resulting from the merger of a 23 M� black hole and another object with
2.59+0.08

−0.09M�, which falls in the mass-gap category, i.e., too light to be a black hole and too
massive to be a NS. In [118], a chirally invariant model was used to describe hybrid stars
with a variety of different vector interactions, and this compact object could be explained
as a massive, rapidly rotating NS. A comprehensive discussion on ultra-heavy NS (masses
larger than 2.5 M�) and the possibility that they are hybrid objects can be found in [133].

If the reader is interested in understanding the effects of different quark cores that
also include trapped neutrinos at fixed entropies, reference [53] can be consulted.

6. Quark Stars

All experiments that can be realized in laboratories show that hadrons are the ground
state of the strong interaction. Around 50 years ago, Itoh [134] and Bodmer [135], in
separate studies, proposed that under specific circumstances, such as the ones existing in
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the cores of neutron stars, strange quark matter (SQM) may be the real ground state. This
hypothesis, later on also investigated by Witten, became known as the Bodmer–Witten
conjecture, and it is theoretically tested with the search of a stability window, defined for
different models in such a way that a two- flavor quark matter (2QM) must be unstable
(i.e., its energy per baryon must be larger than 930 MeV, which is the iron-binding energy)
and SQM (three-flavour quark matter) must be stable, i.e., its energy per baryon must be
lower than 930 MeV [135,136]. As shown in the previous section, although the Nambu–
Jona–Lasinio (NJL) model [124] can be used to describe the core of a hybrid star [120,126],
it cannot be used in the description of absolutely stable SQM as shown in [137–140]. The
most common model, the MIT bag model [123] satisfies the Bodmer–Witten conjecture, but
cannot explain massive stars J0348+0432 [71], J1614-2230 [72] and J0740+6620) [8,70], as
can be seen in Figure 20, from where one can observe that the maximum attained mass is
1.94 M� obtained for a non-massive strange quark.

Figure 20. Stability window shown in the shaded area. The flags indicate the maximum stellar
masses obtained with various B and strange quark mass values. Figure taken from [141].

Hence, we next mention another quark matter model that satisfies de Bodmer–Witten
conjecture at the same time that can describe massive stars and canonical stars with small
radii, the density-dependent quark mass (DDQM) proposed in [142,143] and investigated
in [144]. In the DDQM model, the quark masses depend on two arbitrary parameters and
are given by

mi = mi0 + mI ≡ mi0 +
D

ρ1/3
b

+ Cρ1/3
b , (107)

where the index I stands for the medium corrections and the baryonic density is written in
terms of the quark densities as

ρb =
1
3 ∑

i
ρi, ρi =

giν
3
i

6π2 , (108)

and νi is the Fermi momentum of quark i, which reads:

νi =
√

μ∗2
i − m2

i (109)

and μ∗
i is the i quark effective chemical potential. The energy density and pressure are

respectively given by

E = Ω0 − ∑
i

μ∗
i

∂Ω0

∂μ∗
i

, (110)

and
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P = −Ω0 + ∑
i,j

∂Ω0

∂mj
ni

∂mj

∂ρi
, (111)

where Ω0 stands for the thermodynamical potential of a free system with particle masses
mi and effective chemical potentials μ∗

i [142]:

Ω0 = −∑
i

gi
24π2

[
μ∗

i νi

(
ν2

i −
3
2

m2
i

)
+

3
2

m4
i ln

μ∗
i + νi

mi

]
, (112)

with gi being the degeneracy factor 6 (3 (color) x 2 (spin)) and the relation between the
chemical potentials and their effective counterparts is simply

μi = μ∗
i +

1
3

∂mI
∂nb

∂Ω0

∂mI
≡ μ∗

i − μI , (113)

On the left of Figure 21 the stability window is plotted for a fixed value of C, so that it
displays a shape that can be compared with Figure 20. For other values of the constants,
more stability windows are shown in [144]. On the right of Figure 21, different mass–radius
curves are shown, and one can see that very massive stars can indeed be obtained. At this
point, it is worth mentioning that quark stars are believed to be bare (no crust is supported),
and for this reason, the shape of the curves shown in Figure 21 are very different from the
ones obtained for hadronic stars and shown in Figures 11 and 12 and for hybrid stars, as
seen in Figure 19.
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There is still another very promising model: an extension of the MIT bag model based
on the ideas of the QHD model. In this extended version, the Lagrangian density accounts
for the free Fermi gas part plus a vector interaction and a self-interaction mesonic field and
reads [145]:

L = ∑
u,d,s

{ψ̄q[γ
μ(i∂μ − gqqVVμ)− mq]ψq − B}Θ(ψ̄qψq) +

1
2

m2
ωVμVμ + b4

(g2
uuVVμVμ)2

4
, (114)

where the quark interaction is mediated by the vector channel Vμ representing the ω meson,
in the same way as in QHD models [35]. The relative quark–vector field interaction is
fixed by symmetry group and results in

gssV =
2
5

guuV =
2
5

gddV , (115)

with adequate redefinitions given by

(guuV/mV)
2 = GV , XV =

gssV
guuV

(116)
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and b4 taken as a free parameter. Using a mean field approximation and solving the Euler–
Lagrange equations of motion, the following eigenvalues for the quarks and V0 field can be
obtained:

Eq = μ =
√

m2
q + k2 + gqqVV0, (117)

guuVV0 +

(
guuV
mω

)2(
b4(guuVV0)

3
)
=

(
guuV
mω

)
∑

u,d,s

(
gqqV

mω

)
nq.

With this new approach, when the self-interaction vector channel is turned off, the sta-
bility window increases, and a 2.41 M� quark star that satisfies all astrophysical constraints
is obtained. The self-interaction vector channel does not change the stability window,
but it allows even more flexibility in the calculation of the tidal polarizability and the
canonical star radius due to the inclusion of the free parameter b4. In this case, a 2.65 M�
quark star corresponding to a 12.13 km canonical star radius and a tidal polarizability
within the expected observed range is obtained along many other results that satisfy all
presently known astrophysical constraints. Some of the results are displayed in Figure 22.
After all the discussion on the radii of NS constrained with the help of gravitational wave
observation and neutron skin thickness experimental results presented in Section 4.2 and
on the uncertainty of these values, I just would like to add one comment: contrary to what
is obtained for a family of hadronic stars (maximum mass stars are generally associated
with a smaller radii than their canonical star counterparts), a family of quark stars may
produce canonical stars with radii that can be approximately the same as the maximum
mass star radii, depending on the model used [145], and this feature could accommodate
the recent NICER detections for J0030+0451 and J0740+6620.
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Figure 22. Mass–radius diagram obtained with the minimum value of the bag pressure that produces
stable quark stars with different values of Gv and left) Xv = 0.4, right) Xv = 1.0. Figure based on the
results presented in [145].

This modified MIT bag model has also been used to investigate the finite temperature
systems and to obtain the QCD phase diagram in [5] with the help of a temperature
dependent bag B(T), as discussed in the Introduction of the paper. Some of the possible
phase diagrams are shown in Figure 23.
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Figure 23. Phase diagram for neutral matter in β-equilibrium with a temperature dependent bag
pressure B(T). Dashed lines stand for Xv = 0.4 and solid lines for Xv = 1.0. Figure based on the
results presented in [5].

I have outlined the main aspects concerning the internal structure of quark stars,
but the discussion about their bare surface [146,147] is not completely settled [148] and
important problems as its high plasma frequency and neutrinosphere are out of the scope
of the present work but should not be disregarded.

7. Magnetars: Crust–Core Transitions and Oscillations

I cannot end this review without mentioning magnetars [149,150], a special class of
neutron stars with surface magnetic fields three orders of magnitude (reaching up to 1015

G at the surface) stronger than the ones present in standard neutron stars (1012 G at the
surface). Most of the known magnetars detected so far are isolated objects; i.e., they are
not part of a binary system and manifest themselves as either transient X-ray sources,
known as soft-γ repeaters or persistent anomalous X-ray pulsars. They are also promising
candidates for the recent discovery of fast radio bursts [151]. So far, only about 30 of them
have been clearly identified [152] but more information is expected from NICER [7] and
ATHENA [153], launching foreseen to take place in 2030. So far, NICER has already pointed
to the fact that the beams of radiation emitted by rapidly rotating pulsars may not be as
simple as is often supposed: the detection of two hot spots in the same hemisphere suggests
a magnetic field configuration more complex than perfectly symmetric dipoles [8].

From the theoretical point of view, there is no reason to believe that the structure of
the magnetars differs from the ones I have mentioned in this article. Thus, they can also be
described as hadronic objects [81,154–158], as quark stars [138,139,157–160] or as hybrid
stars [155,157].

At this point, it is fair to claim that the best approach to calculate macroscopic proper-
ties of magnetars is the use of the LORENE code [161], which takes into account Einstein–
Maxwell equations and equilibrium solutions self consistently with a density dependent
magnetic field. LORENE avoids discussions on anisotropic effects and violation of Maxwell
equations as pointed out in [160], for instance. However, at least two important points
involving matter subject to strong magnetic fields can be dealt with even without the
LORENE code. The first one is the crust core transition density discussed in [156,162].
Although the magnetic fields at the surface of magnetars are not stronger than 1015 G, if the
crust is as large as expected (about 10% of the size of the star), at the transition region the
magnetic field can reach 1017 G. The transition density can then be estimated by computing
the spinodal sections, both dynamically and thermodynamically. The point where the EOS
crosses the spinodal defines the transition density [163]. An interesting aspect is that the
spinodals of magnetized matter are no longer smooth curves. Due to the filling of the
Landau levels, more than one crossing point is possible [156,162], which introduces an
extra uncertainty into the calculation.
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The second aspect refers to possible oscillations in magnetars caused by the violent
dynamics of a merging binary system. One has to bear in mind that so far, all observed
magnetars are isolated compact objects, but there is no reason to believe that binary systems
do not exist. In this case, the perturbations on the metric can couple to the fluid through
the field equations [164,165]. For a comprehensive discussion of the equations involved,
please refer to [81]. The gravitational wave frequency of the fundamental mode is expected
to be detected in the near future by detectors such as the Einstein Telescope. In [81], the
effect of strong magnetic fields on the fundamental mode was investigated. From the
results presented in that paper, one can clearly see that magnetars with masses below
1.8 M� present practically the same frequencies. Nevertheless, more massive stars present
different frequencies depending on their constitution: nucleonic stars present frequencies
lower than their hyperonic counterparts, a feature that may define the internal constitution
of magnetars.

The DDQM described in Section 6 was also investigated under the effects of strong
magnetic fields, and the main expressions can be found in [166]. This may be an interesting
model for future calculations of the fundamental models.

8. Final Remarks

From the existence of a massive ordinary star that is alive due to nuclear fusion, to
its explosive ending and its aftermath, I have tried to tell the history of the neutron star.
All these stages can be explained thanks to nuclear physics, and I have revisited the main
aspects and models underlying each one.

I have also tried to emphasize that nuclear models are generally parameter-dependent,
and a plethora of models have been proposed in recent decades, but it is unlikely that
the very same models can be used to describe different aspects of nuclear matter and,
at the same time, all macroscopic properties of neutron stars. I do not advocate that the
models I have chosen to use are the best ones, but the main idea is to show that different
models should be used at the discretion of the people who employ them. I have not used
density-dependent hadronic models such as the ones proposed, for instance, in [122,167],
to avoid extra theoretical complications, but they are indeed very good options, since they
can describe nuclear matter, finite nuclei, and NS properties well, as seen in [37,90,91].

As far as detections of gravitational waves are concerned, a window was opened in
2015, and many observations will certainly be disclosed even before I finish writing this
paper. Besides the ones already mentioned, I would like to comment on the GW190425 [168],
GW200105, and GW200115 [169]. The first one was used in conjunction with a chiral
effective field theory to constrain the NS equation of state [170]. The authors obtained a
radius equal to 11.75+0.86

0.81 for a canonical star, which was also quite small as compared with
the ones obtained from the PREX experiment. The other two probably refer to neutron
star–black hole mergers, systems that have been conjectured for a long time and will
probably contribute to the understanding of NS EOS.

Before concluding, I would like to mention that many aspects regarding either isolated
NS or binary systems have not been tackled in this manuscript and, in my opinion, rotation
is the most important one. A better understanding of these compact objects depends
on many rich features, including thermal and magnetic evolution. Different observation
manifestations such as pulsars, accreting X-ray binaries, soft γ-repeaters, and anomalous
X-ray pulsars also deserve an attentive investigation. Hence, this review is just one step
towards the incredible exotic world of neutron stars.

As far as the QCD phase diagram is concerned, many aspects have been extensively
studied and are well understood: matter at zero temperature; symmetric nuclear and pure
neutron matter; low density matter; including clusterisation and the pasta phase; high
density matter; and matter in β-equilibrium. Nevertheless, an EOS that covers the complete
QCD phase diagram parameter space in (T, μB) in a single model is not available yet. Some
of the EOS can be found on the CompOSE (CompStar Online Supernovae Equations of
State) website [171].
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Abstract: The effect of isospin-dependent nuclear forces on the inner crust of neutron stars is modeled
within the framework of Quantum Molecular Dynamics (QMD). To successfully control the density
dependence of the symmetry energy of neutron-star matter below nuclear saturation density, a mixed
vector-isovector potential is introduced. This approach is inspired by the baryon density and isospin
density-dependent repulsive Skyrme force of asymmetric nuclear matter. In isospin-asymmetric
nuclear matter, the system shows nucleation, as nucleons are arranged into shapes resembling nuclear
pasta. The dependence of clusterization in the system on the isospin properties is also explored by
calculating two-point correlation functions. We show that, as compared to previous results that did
not involve such mixed interaction terms, the energy symmetry slope L is successfully controlled
by varying the corresponding coupling strength. Nevertheless, the effect of changing the slope of
the nuclear symmetry energy L on the crust-core transition density does not seem significant. To the
knowledge of the authors, this is the first implementation of such a coupling in a QMD model for
isospin asymmetric matter, which is relevant to the inner crust of neutron and proto-neutron stars.

Keywords: neutron star crust; nuclear matter; meson interactions; quantum molecular dynamics

1. Introduction

Matter in neutron stars presents the largest densities achieved in the Universe, making
their equation of state (EOS) hard to determine. Seeking the EOS of neutron-star matter
(NSM) is a flourishing field of interest due to the presence of neutron rich matter with
magnetic fields that can be larger than 1012 G with the possibility of exotic particles, and a
phase transition to deconfined quark matter. The crust of a neutron star contains nuclei
embedded in a sea of electrons. As the density increases from the surface of the neutron
star towards its core, these nuclei undergo a neutronization process, eventually reaching a
state of high neutron to proton asymmetry, which is followed by a transition to uniform
nuclear matter at the core. Since matter above nuclear saturation density is unattainable
in terrestrial conditions (except in heavy ion collisions with larger temperatures), neutron
stars are considered to hold the key to the mysteries of dense nuclear matter.

Several approaches have been employed to study the properties of nuclear matter
in the context of neutron stars. One of the prominent methods is Quantum Molecular
Dynamics (QMD), which allows for the incorporation of competing nuclear forces of
attraction and repulsion in dynamical simulations. QMD as a framework for simulating
heavy-ion collisions was proposed by J. Aichelin and H. Stöcker [1]. Until then, nuclear
matter simulations were only possible microscopically through one-body models, such as
the Vlaslov–Uehling–Uhlenbeck (VUU) theory, and macroscopically by fluid dynamical
models [2,3]. QMD combines classical molecular dynamics with quantum corrections,
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the most important of which is the Pauli principle. Peilert et al. [4] used QMD for the first
time to simulate clustering in nuclear matter at sub-saturation densities. They performed
uniform nuclear matter simulations with nucleons, which were sampled only in momentum
space, for the density range 0 < ρ < 2ρ0 (where ρ0 is the nuclear saturation density). These
were then compared with simulations where nucleons were free to move in position space,
showing a decrease in binding energy per nucleon (E/A), for the latter case, of about 8 MeV
towards a more bound system for sub-saturation densities at a near-zero temperature. In the
same work, the authors also took snapshots of simulated nuclear matter for different mean
densities below ρ0, which was useful to visualize clustered matter at ρ = 0.1ρ0, but did
not help deduce the properties of single clusters (unless a computationally expensive time
average of many simulations could be done).

Later, results for sub-saturation density nuclear matter at zero temperature were
published by Maruyama et al. [5], where the the number of nucleons was significantly
expanded (by ≈4 times) in the simulated infinite nuclear matter system. In addition to
partially observing transient shapes like holes, slabs, and cylinders in clustered nuclear
matter, they also extended the calculations to asymmetric nuclear matter, and obtained
similar clusterization effects. This is necessary to evaluate the properties of NSM, which is
highly asymmetric at saturation and sub-saturation densities. Further improvements to
NSM simulations were made by Watanabe et al. [6] by implementing larger relaxation time
scales and analyses of spatial distribution of nucleons. In a similar analysis, utilizing the
Indiana University Molecular Dynamics framework, Sagert et al. [7] have shown nuclear
pasta through similar 3D Skyrme Hartree–Fock (SHF) simulations. Recently, Schramm and
Nandi [8] studied the asymmetry dependence of the transition density from asymmetric to
homogeneous nuclear matter in the inner crust using QMD.

In this article, the asymmetry dependence shown by R. Nandi and S. Schramm [8] is
modified to have better control on the symmetry energy slope (L). The inspiration is taken
from the coupling of omega (ω) and rho (ρ) meson fields in the Relativistic Mean-Field
(RMF) theory. The model is first applied to isospin chains of finite nuclei, and then to
nuclear matter at ρ0. Symmetry energy at saturation density is re-evaluated along with its
slope L. The primary aim of this work is to successfully control the density dependence
of symmetry energy, and of pure neutron matter, by calibrating the ω − ρ type coupling
according to established constraints. The expected clustering of nuclear matter at densities
≈0.1ρ0 is also addressed.

The structure of the article is as follows: the general formalism is outlined in Section 2.
Then a study of parameters of different strengths of the ω − ρ coupling in elucidated in
Section 3. The conclusions are presented in Section 4, along with an outlook for the model
under study.

2. Formalism

2.1. The Canonical Formalism: Hamiltonian and Equations of Motion

Quantum Molecular Dynamics (QMD) is a model used to accomplish dynamical
simulations of nuclear matter by incorporating correlation effects between the constituents
of the simulated N-body system. Peilert et al. [4] studied non-uniformities that give rise
to clustering in nuclear matter. A model based on QMD for heavy-ion collisions through
an N-body approach was proposed as early as the late 1980s (Aichelin and Stöcker [1]).
The reader can refer to Ref. [9] for a thorough review of the method and its theoretical
background. A brief insight into the working of QMD and the relevance to this project is
provided in this section based on a review by Maruyama et al. [10].

In a Classical Molecular Dynamics (CMD) simulation of nucleons, particles are sim-
ulated as solid elastic spheres, and their motion is governed by Newton’s equations of
motion. Inter-particle potentials quantify the force experienced by a particle, given the
positions of other particles. QMD introduces quantum behavior to the system of nucleons
by including the following modifications:
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(a) In QMD for nuclear matter, a nucleon is represented by a fixed-width Gaussian
wavepacket in the form of a single particle wave function

ψ(ri) =
1

(2πCW)3/4 exp
(
− (r − Ri)

2

4CW
+ ir · Pi

)
, (1)

with Ri and Pi as the centers of position and momentum of the wave packet, respec-
tively. CW denotes the width of the wave packet. The motion of the wave packet or
‘nucleon’ is determined by forces derived from inter-particle potentials in the QMD
Hamiltonian. The total wave function of the N-nucleon system is obtained through a
direct product given by

Ψ(r) =
N

∏
i

ψ(ri), (2)

(b) The nucleon wavefunctions are not anti-symmetrized to explicitly manifest fermionic
characteristics. As a result, the energy states violate the Pauli principle, as they all
attain minimum energy. This problem was addressed phenomenologically (see the
review in Ref. [10] for further references) by mimicking the Pauli principle through a
repulsive 2-body potential called the Pauli potential (VPauli). The potential effectively
repels nucleons with the same spin and isospin from coming close in phase space,
since it is a function of both distance in coordinate and momentum space. In the
ground state, nucleons have non-zero momentum values and do not all exist in the
lowest energy state.

The Hamiltonian of the nucleon-nucleon interaction is given by Ref. [11]

H = K + VPauli + VSkyrme + Vsym + VMD + VCoul , (3)

where K is the kinetic energy, VPauli is the Pauli potential, VSkyrme is the potential similar to
Skyrme like interactions, Vsym is the isospin dependent potential, VMD is the momentum
dependent potential, and VCoul is the Coulomb potential. The expressions for the potential
and kinetic terms are

K = ∑
i

P2
i

2mi
, (4)

VPauli =
CP

2

(
1

q0 p0

)3

∑
i,j( �=i)

exp

[
−
(
Ri − Rj

)2

2q2
0

−
(
Pi − Pj

)2

2p2
0

]
δτiτj δσiσj , (5)

VSkyrme =
α

2ρ0
∑

i,j( �=i)
ρij +

β

(1 + θ)ρθ
0

∑
i

⎡⎣ ∑
j( �=i)

ρ̃ij

⎤⎦θ

, (6)

VSym =
Cs

2ρ0
∑

i,j( �=i)

(
1 − 2

∣∣τi − τj
∣∣)ρij , (7)

VMD =
C(1)

ex

2ρ0
∑

i,j( �=i)

1

1 +
[

Pi−Pj

μ1

]2 ρij +
C(2)

ex

2ρ0
∑

i,j( �=i)

1

1 +
[

Pi−Pj

μ2

]2 ρij , (8)

VCoul = Ccoul
e2

2 ∑
i,j( �=i)

(
τi +

1
2

)(
τj +

1
2

) ∫∫
d3r d3r ′ 1

|r − r ′|ρi(r)ρj(r
′) , (9)

where the nucleon mass, spin, and isospin are represented by mi, σi and τi, respectively.
The values of the parameters are listed in Table 1.
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Table 1. Parameter set for nucleon-nucleon interaction (values from Ref. [5] parameterized to
reproduce properties of the ground states of the finite nuclei and saturation properties of the nuclear
matter). The parameters are optimized to give E/A ≈ −16 MeV for symmetric nuclear matter at
saturation ρ0.

Parameter Value

CP (MeV) 207
p0 (MeV/c) 120

q0 (MeV) 1.644
α (MeV) −92.86
β (MeV) 169.28

θ 1.33333
C(1)

ex (MeV) −258.54

C(2)
ex (MeV) 375.6

μ1 (fm−1) 2.35
μ2 (fm−1) 0.4
ρ0 (fm−3) 0.165
CS (MeV) 25
CW (fm2) 2.1

Ccoul 0 or 1

The overlap between single nucleon densities ρij and ρ̃ij, which depends on positions
Ri and Rj, is calculated as

ρij ≡
∫

d3rρi(r)ρj(r), ρ̃ij ≡
∫

d3rρ̃i(r)ρ̃j(r) , (10)

where the single nucleon densities are given by

ρi(r) = |ψi(r)|2 =
1

(2πCW)3/2 exp

[
− (r − Ri)

2

2CW

]
,

ρ̃i(r) =
1(

2πC̃W
)3/2 exp

[
− (r − Ri)

2

2C̃W

]
,

(11)

along with the modified width

C̃W =
1
2
(1 + θ)1/θCW , (12)

which is calculated in this form to incorporate the effect of density-dependent term in
Equation (6) (see Section II.B. of Ref. [5] for details).

2.2. Vector-Isovector Interaction Formalism

As the numerical model to simulate nuclear matter in conditions pertaining to neutron
star crusts has been outlined above, we now move on to the introduction of a nucleon-
nucleon interaction potential based on the RMF ω − ρ vector interaction.

C. J. Horowitz and J. Piekarewicz [12,13] added isoscalar-isovector coupling terms to
the non-linear Lagrangian for nuclear matter, and achieved softening of symmetry energy
to control the neutron skin thickness in 208Pb. They introduced a RMF Lagrangian density,
where the interaction part has the following terms:

Lint = ψ̄
[

gsφ −
(

gvVμ +
gρ

2 τ · bμ + e
2 (1 + τ3)Aμ

)
γμ
]
ψ

− κ
3! (gsφ)3 − λ

4! (gsφ)4 + ζ
4! g4

v
(
VμVμ

)2
+ ξ

4! g4
ρ

(
bμ · bμ

)2

+g2
ρbμ · bμ

[
Λ4g2

s φ2 + Λvg2
vVμVμ

]
,

(13)
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where ψ and ψ̄ are the baryon and conjugate baryon fields, respectively. V represents the
isoscalar ω meson field, φ represents the isoscalar-scalar σ meson field, isovector b is the
ρ-meson field, and the photon is denoted by A. gv, gs, and gρ are the respective coupling
constants. A similar Lagrangian with a non-linear ω − ρ interaction term is employed by
F. Grill, H. Pais et al. [14] to study the effect of the symmetry energy slope parameter, L,
on the profile of the neutron star crust within a Thomas–Fermi formalism.

Note that a softening of the symmetry energy around saturation can also be achieved
through the use of density dependent couplings (See Figure 4 and the right panel of Figure 2
of Ref. [15]).

According to the RMF framework, the equation of motion for the ω-meson field takes
the form,

m2
ω〈V0〉 − ∑

B=n,p
gvρB +

ζ

3!
g4

v〈V0〉3 + 2g2
ρΛvg2

v〈b0〉2〈V0〉 = 0 , (14)

and similarly for the the ρ-meson field:

m2
ρ〈b0〉 − ∑

B=n,p
gρ(ρp − ρn) +

ξ

3!
g4

ρ〈b0〉3 + 2g2
ρΛ4g2

s 〈b0〉〈φ0〉2 + 2g2
ρΛvg2

v〈b0〉〈V0〉2 = 0 . (15)

From Equations (14) and (15), it is clear that the mean ω and ρ meson fields depend
on the baryon density ρB and isospin density ρI = ρp − ρn , respectively (linearly, if we
ignore higher-order contributions). Equation (13) shows how the mixed coupling ω − ρ
potential part of the Lagrangian density depends quadratically on the ω and ρ meson
fields, from which we can conclude its dependency to be ∼ ρ2

Bρ2
I . Let us approximate it for

our QMD model, motivated by the density-dependent repulsive Skyrme potential as in
Equation (6) with a term quadratic in both the ρB, and in ρI as

Vωρ =
Cωρ

5ρ4
0

∑
i,k

< ρi >
2 < ρ̃k >

2, (16)

where < ρi > and < ρ̃k > are the averaged ρB and ρI respectively, with the
following expressions:

< ρi > = ∑
j( �=i)

ρij = ∑
j( �=i)

e−(Ri−Rj)
2/4CW

(4πCW)3/2 (17)

< ρ̃k > = ∑
l( �=k)

cklρkl = ∑
l( �=k)

(1 − 2|τk − τl |) e−(Rk−Rl)
2/4CW

(4πCW)3/2 . (18)

The summation needs to be calculated before squaring in Equation (16). A similar
calculation has already been made for the repulsive part of the Skyrme potential.

The components of force for the ω − ρ term can be derived from the potential

− f x
m =

∂Vωρ

∂Xm

=
2Cωρ

5ρ4
0

∑j,k

[(
< ρm > + < ρj >

)Xm−Xj
2L ρmj < ρ̃k >

2

+
(
< ρ̃m > + < ρ̃j >

)
< ρk >

2 Xm−Xj
2L cmjρmj

]

=
2Cωρ

5ρ4
0

[
∑k < ρ̃k >

2
{

∑j ρmj
dXmj

2L (< ρm > + < ρj >)
}

+∑k < ρk >
2
{

∑j Cmjρmj
dXmj

2L (< ρ̃m > + < ρ̃j >)
}]

(19)
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where Xm and Xj are the x-coordinates of the centers of the positions of m−th and j−the
particles, respectively.

2.3. Modeling of Infinite Systems: Achieving the Ground State Configuration

Different methods can be employed to achieve the ground state configuration of
nuclear matter for a given density or temperature. Peilert et al. [4] calculated E/A values
for finite nuclei, and subsequently studied infinite nuclear matter using a version of the
QMD model. They found that nuclear matter simulated at temperatures near T = 0 MeV
showed clustering among nucleons at sub-saturation densities. Later, Maruyama et al. [5]
employed QMD to study the dynamical evolution of nuclear matter into pasta phases.
In this work, we follow the method employed by Maruyama et al., obtaining the energy-
minimum configuration of nuclear matter by distributing nucleons randomly in phase
space, and then cooling down the system to achieve the minimum energy state of the
system. This allows for arbitrary nuclear shapes and incorporates thermal fluctuations,
giving an insight into the formation process of such structures.

To achieve equilibrium in the nuclear matter system, we use the following equations
of motion along with damping factors ξR and ξP:

.
Ri =

∂H
∂Pi

− ξR
∂H
∂Ri

,

.
Pi = − ∂H

∂Ri
− ξP

∂H
∂Pi

,
(20)

where H is given by Equation (3) and the factors ξR and ξP are adjusted according to the
relaxation time scale, with a fixed value of either 0 or −0.1.

The system is cooled from an initial temperature maintained by the Nosé–Hoover ther-
mostat. The thermostat introduces additional coordinates and velocities in the Hamiltonian
of the system in order to mimic a thermal bath in contact with the system. The extended
Hamiltonian HNose appears as

HNose =
N

∑
i=1

P2
i

2mi
+ U({Ri},

{
Pij

})
+

sp2
s

2Q
+ g

ln s
β

= H+
sp2

s
2Q

+ g
ln s
β

,

(21)

where s is the additional dynamical variable for time scaling, ps is the momentum conjugate
to s, U ({Ri}, {Pi}) = H− K is the potential which depends on both positions and mo-
menta, Q is the thermal inertial parameter corresponding to a coupling constant between
the system and thermostat, g is a parameter to be determined as 3N by a condition for
generating the canonical ensemble in the classical molecular dynamics simulations, and β is
defined as β ≡ 1/(kBTset) [16,17]. The energy of the nuclear matter system is not conserved,
but HNose is . The most important variables here are β = 1/kBTset , where Tset is the desired
input temperature, and Q ≈ 108 MeV (fm/c)2. More details can be found in Refs. [17,18]
and sources therein.

At sub-saturation densities, local minima may take place around the actual global
energy-minimum value of the ground state that the damping coefficients lead to if not
chosen carefully. The simulation results should be checked to avoid local energy minima
by repeating the cooling procedure.

3. Results

3.1. Simulation Procedure

Using the theoretical framework established in the previous chapters, the QMD sim-
ulation of a system of neutrons and protons is carried out. The final temperature after
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cooling down from a finite temperature was set to 0, so as to imitate the conditions in a
neutron star’s inner crust.

A cubic box confines the nucleons. The size of the box is determined by the number
of nucleons N and average density ρav. Periodic boundary conditions are imposed and
the motion of nucleons is imitated across 26 cells surrounding the central primitive cell.
The value of N is set to 1024, such that for homogeneous symmetric nuclear matter the
number for protons/neutrons with spin up and protons/neutrons with spin down is equal
(proton fraction Yp = 0.5 with 512 particles each of protons and neutrons). Hence, there is
no magnetic polarization. Electrons are treated as a uniform background gas that makes
the system charge neutral.

The nucleons are initially distributed randomly in phase space. The system is brought
to thermal equilibrium at T = 20 MeV for about 1000 fm/c. The system, initially kept at a
constant temperature by the Nosé–Hoover thermostat, is slowly cooled down in accordance
with the equations of motion (Equation (20)), until the temperature is 0. To attain the ground
state configuration, the simulation requires about 1–2 days of computation time to reach
104 fm/c when carried out on the Goethe-HLR CPU cluster at Goethe-University Frankfurt.
The computer code for the simulations in this project was first used for QMD calculations
in Ref. [8].

The set of values for the parameters used in interaction potentials constituting the
Hamiltonian Equation (3) is given in Table 1. Additionally, the set of values for the
coefficient Cωρ of Vωρ in Equation (16) are listed in Table 2.

Table 2. Optimized values for coefficient of Vωρ.

Set Cωρ (MeV)

I 0.02
II 0.01
III 0.005
IV −0.01
V −0.02

3.2. Finite Nuclei

We first calculate the binding energies of ground states of a number of finite nuclei
and their isotopes. Five different values of the coefficient Cωρ are tested. All five reproduce
the trend of binding energies per nucleon of various nuclear isotopes, as can be seen in
Figure 1. Individual simulated energy values (Ecalc) deviate from the experimental (Eexp)
counterparts [19] by less than 10% in all cases. Considering a reasonable expectation
of accuracy within the QMD model employed in this paper, there is a minor spread in
the calculated values. It is clear that varying Cωρ does not have a significant impact on
the binding energies per nucleon of finite nuclei, which can be explained by the non-
dependence of symmetry energy in a finite nucleus to its slope L, and the fact that it rather
depends on other parameters: the symmetry energy coefficient at saturation density, ratio of
the surface symmetry coefficient to the volume symmetry coefficient, surface stiffness and
obviously the mass number of the nucleus (see Refs. [20,21] and sources therein.) The nuclei
chosen are heavy with Z larger than 40. Good results for lighter nuclei are not expected,
based on the results in Figure 4 of Ref. [5]. For each isotope family, three nuclei are selected
with YP ranging from 0.3 to 0.5 to analyze the effect of isospin dependent interactions.

There is an anomaly in the form of binding energies per nucleon being about
0.65 MeV too deep compared with experimental values for all nuclei. Given the real-
istically achievable accuracy within a molecular dynamics approach, this deviation is
acceptable. Nevertheless, the model reproduces the overall trends of the binding energies
of various nuclei reasonably well, for all values of Cωρ.
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Figure 1. Binding energies per nucleon for three nuclear isotopes each of Zr, Sn, Sm, Os, Pb, and U
obtained from simulation for five different parameter sets listed above the image. The experimental
values are taken from AME2016 [19].

3.3. Pure Neutron Matter

An important final test of the model is the examination of the behavior of a pure
neutron gas at nuclear and sub-nuclear densities. The energy per nucleon (E/N)n of pure
neutron matter affects the densities at which NSM becomes uniform.

For this case, the same system is adapted to simulate nuclear matter with YP = 0.0,
i.e., 1024 neutrons in the primitive cell without protons. The results for pure neutron matter
simulations for nuclear and sub-nuclear densities are shown in Figure 2. The density
dependence of neutron matter (or the neutron matter EoS) is crucial, as E/N is an input in
the calculation of the symmetry energy.

In Figure 2, the neutron matter EoSs for different Cωρ from the QMD model can
be compared with two other non-linear RMF models (IUFSU [23] and FSUgold [24]),
which also include the ω − ρ coupling. The shaded area shows the results from Chiral
EFT [22], providing robust theoretical constraints for neutron-matter equations of state. For
Cωρ = 0.02, the EoS indicates a bit too much repulsion around the nuclear saturation density.
For all values of Cωρ at low densities, binding is weaker than expected. In spite of these
issues, all parameter sets with different strengths of the coefficient Cωρ appear to be in good
qualitative agreement with the constraints.
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Figure 2. Energy per nucleon of pure neutron matter as a function of density for 5 different parameter
sets. The shaded area corresponds to Chiral EFT constraints as provided in Ref. [22]. The RMF models
FSUgold and IUFSU, which also include the ω − ρ interaction, are shown for comparison. Note that
here the saturation density ρ0 = 0.165 f m−3.

The slope of the symmetry energy L and the pure neutron matter EoS are related,
shown by Equation (19) in Ref. [11]:

L = 3ρ0
∂

∂ρn

(
εn

ρn

)
ρ0

, (22)

where the energy density of pure neutron matter is given by εn. The slope of the neutron-
matter EoS decreases as Cωρ is lowered, which is consistent with the trend of the L values in
Table 3. Therefore, varying the slope (and by extension the strength of the ω − ρ interaction)
has a direct impact on the densities at which neutrons drip out of nuclei, and consequently
on the nuclear pasta phases in NSM.

Table 3. Symmetry energies and corresponding slope values (parabolic approximation).

Set Cωρ (MeV) S(ρ) L

I 0.02 37.40 135.26
II 0.01 35.63 102.71
III 0.005 34.72 100.41
IV −0.01 32.23 66.38
III −0.02 30.52 48.32

3.4. Determination of Symmetry Energy and Slope Parameter

In a free fermion gas of nucleons, the expression for energy per particle is

E
A

≈ E
A
(βasy = 0) + Esymβ2

asy + · · · , (23)

where βasy defined as

βasy =
nn − np

nn + np
=

N − Z
A

, (24)

or in terms of proton and neutron densities ρp and ρn,

βasy =
ρn − ρp

ρ
. (25)
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For an initial determination of Esym and L at saturation density, a parabolic approxi-
mation is applied, such that only the lowest-order non-vanishing term in βasy is retained.
Rewriting the equation with the approximation gives

E
A

=
E
A
(βasy = 0) + S(ρ)β2

asy , (26)

where E
A (βasy = 0) = (E/A)0 is the energy per nucleon of symmetric matter, and S(ρ) is the

nuclear symmetry energy. Keeping the Coulomb interaction switched off, the simulation
is run for many values of YP at ρ0 for all Cωρ in Table 2. The values for E/A are fitted in
Equation (26), and S(ρ0) is obtained as a fit parameter from the plot of energies per nucleon
shown in Figure 3.

The slope parameter L quantifies the density dependence of the symmetry energy,
which can be used to practically calculate the possible L values as [25]

L = 3ρ0
S(1.1ρ0)− S(0.9ρ0)

1.1ρ0 − 0.9ρ0
. (27)

Here, S(1.1ρ0) and S(0.9ρ0) are determined with the same procedure as for S(ρ0)
described above. The obtained values for S(ρ) and L are listed in Table 3.

Figure 3. Fit of energy per nucleon vs. neutron excess using Equation (26) for different parameter sets
(parabolic approximation). βasym is the neutron excess with 1.0 being pure neutron matter, and 0.0
being symmetric nuclear matter. A list of the corresponding slope values is given in Table 3.

The calculations discussed above can be improved. Chen et al. [26] suggested that the
description of the nuclear matter EoS can be made better by improving on the parabolic
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approximation. Through a systematic study of isospin dependence of saturation properties
of asymmetric nuclear matter, it was concluded that the parabolic approximation produces
good results for β2

asy ≤ 0.1, but for higher asymmetries the quartic term should also be
included. In this work, where higher isospin asymmetries are simulated, the fit using the
function in Equation (26), as can be seen in Figure 3, is not satisfactory. The slope values for
β2

asy > 0.1 can therefore be modified by adding a quartic term to Equation (26), which now
expands to

E
A

=
E
A
(βasy = 0) + S(2)(ρ)β2

asy + S(4)(ρ)β4
asy , (28)

where S(2)(ρ)=S(ρ) and S(4)(ρ) is the fourth order term of nuclear symmetry energy.
The binding energies for different βasy values are fitted to the Equation (28) and S(2)(ρ)=S(ρ)
and S(4)(ρ) are obtained as fitting parameters. A better fit for energy per nucleon is
achieved, as shown in Figure 4. The updated values for symmetry energy and slope are
listed in Table 4. Figure 5 shows the density dependence of symmetry energy for 5 different
parameter sets. The difference between results obtained using different parameter sets
increases with density due to the quadratic dependence of Vω−ρ on baryon and isospin
densities, being very small for densities below 0.5ρ0.

Figure 4. Fit of energy per nucleon vs. neutron excess using Equation (28) (quartic approximation)
for different parameter sets. βasym is the neutron excess with 1 being pure neutron matter and 0
being symmetric nuclear matter. A list of the corresponding slope values is given in Table 4. This
approximation results in better fitting compared to the parabolic approximation in Figure 3.
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Figure 5. Density dependence of symmetry energy for 5 different parameter sets is shown. The ω − ρ

term determines the coupling of two vector fields, which are sub-leading at low densities, where the
attraction represented by the scalar fields dominates. As the density increases beyond ρB = 0.5 fm−3,
the ω − ρ effects can clearly be seen in this figure.

Comparing Tables 3 and 4, the effect of adding a fourth order term is a decrease in
the symmetry energy in all cases. However, the decrease in L is not straightforward and
is only seen for Sets II, III, and IV in the quartic case (as compared to the parabolically
approximated case). It is clear in Table 4 that, with a decrease in Cωρ, L can be lowered to
optimal values for Sets II, III, VI, and V. However, the L for Set III was expected to be lower
than that for Set II, in agreement with the trend of decreasing values going from Sets I to
V. It appears that this value is indeed much closer to previous results in Ref. [8], where a
symmetry energy of ≈29 MeV is associated with an L ≈ 92 MeV. This can be interpreted
in terms of the strength of the ω − ρ interaction energy being too low for Set III, which
causes the prediction to agree closely with previous results that excluded it. Note that the
values of symmetry energy and slope for set I are high when compared with experimental
values [27–29].

Table 4. Symmetry energies and corresponding slope values (quartic approximation).

Set Cωρ (MeV) S(2)(ρ) S(4)(ρ) L(2) L(4)

I 0.02 32.81 6.56 135.52 −0.38
II 0.01 30.93 6.72 71.88 44.11
III 0.005 30.18 6.59 99.52 1.30
IV −0.01 27.56 6.68 61.32 7.24
V −0.02 25.88 6.63 49.32 −1.43

3.5. Nucleon Distributions

Nuclear clustering cannot only occur in NSM, but also for more isospin symmetric
matter as it undergoes the liquid-gas transition. Such matter can be studied, for example,
in high energy nuclear collisions. In order to bridge the gap between such studies and
NSM, the proper isospin dependence of the existence and occurrence of the liquid-gas
phase separation needs to be understood. In the following we will show how our model
can be used to study the occurrence of clustering of nuclear matter for nuclear matter with
proton fractions between 0.3 < Ye < 0.5.

The nucleon distribution of nuclear matter at T = 0 can be visualized in the simulation
box. At every grid point, the density contribution of each nucleon is added to produce a
density map. Since the Coulomb interaction is included, clusterization of nucleons in a
lattice-like structure is clearly seen in the system.

In Figures 6–8, clusterization is seen in the system at T = 0. At every grid point in the
simulation box, the density contribution of each nucleon gaussian wave packet is added to
calculate the density map. In Figure 7, an increased Cωρ decreases the density of clusters,
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so they seem to break up into smaller clusters of lower densities. This implies that neutrons
will drip out at lower densities for Cωρ = 0.02 than for 0.01. As the density is increased
3-folds (shown in Figure 8), the density map morphs into a more interesting structure.

Figure 6. Density map of simulation box with Cωρ = 0.01.

Figure 7. Density map of simulation box with Cωρ = 0.02.

Figure 8. Density map of simulation box with Cωρ = 0.01, but at three times the density of Figure 6.
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3.6. Transition from Clustered to Uniform Nuclear Matter

Long-range correlations between nucleons can determine the density at which a liquid-
gas phase transition occurs. To this end, a useful tool to analyse the spatial distribution of
nucleons is the two-point density fluctuation correlation function ξNN for nucleon density
fluctuations defined as [8]:

ξNN = 〈ΔN(x)ΔN(x + r)〉 . (29)

Here, the average denoted by 〈. . .〉 is taken over the position x and in the direction of
r. The fluctuation ΔN(x) of the nucleon density field ρN(x) is defined as

ΔN =
ρN(x)− ρav

ρav
, (30)

where ρav is the average density of the simulation box. Two-point correlation functions
for YP = 0.3 and 0.5 (for Cωρ = 0.01, 0.005, and −0.01) are plotted in Figure 9. In all cases,
an increase in density decreases the amplitude of ξNN , indicating a smoother nucleon
density distribution. Correlations are highest near the origin as the nucleons have the
strongest influence on their nearest neighbors. This also indicates clusterization at low
densities. A negative value of ξNN at a given r implies anti-clustering or regularity, which
means the point at that r has a density lower than the average density of the simulation box.

All curves at densities higher than 0.8ρ0 are almost flat-lined at ξNN = 0, indicating
uniform matter above 0.8ρ0. Clear trends in the variation of cluster size and densities with
Cωρ and L could not be deduced.

When nuclear matter is uniform, the two-point correlation vanishes. At a certain
average density, the long-range correlations suddenly disappear (instead of gradually),
indicating the density turning to uniform matter through a first-order phase transition,
which corresponds to the liquid-gas transition. Similar conclusions were obtained in
previous studies [6,8]. For all cases of Cωρ in Figure 9, more data is needed to find out the
point of transition although the transition from asymmetric to uniform matter seems to
occur between ρ/ρ0=0.6 and 0.8.

Figure 9. Two-point correlation function ξNN of nucleon density fluctuations for Cωρ = 0.01,
Cωρ = 0.005 and Cωρ = −0.01 and proton fractions YP = 0.3 (left) and 0.5 (right).

Note that it has been shown using relativistic mean field models that effects on the
slope of the symmetry energy induced by an additional ω − ρ interaction affect the crust-
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core transition: a smaller slope reproduces a larger onset [30–32]. Similar results were
found within the Brueckner–Hartree–Fock approach [33] and in a detailed study involving
different approaches [34].

4. Conclusions

The conditions in the inner crust of neutron stars have been simulated within a Quan-
tum Molecular Dynamics (QMD) approach with periodic boundary conditions to imitate
infinite uniform nuclear matter. The nucleon-nucleon interaction Hamiltonian for QMD
was successively developed in earlier works by Aichelin and Stöcker [1], Peilert et al. [4],
and Watanabe et al. [6] and consists of effective interaction potentials that take into account
the Pauli principle, the Yukawa interaction, Coulomb interaction, and density dependent
terms. In the current project, an isospin-dependent potential term to take into account the
repulsion from interaction of omega and rho mesons has been implemented in the QMD
Hamiltonian. The idea to include a mesonic self-interaction in nuclear matter calculations
is not new. It was first introduced in an attempt to reduce the neutron-skin thickness of
208Pb [12]. In a work proposing the IUFSU effective interaction [23], it was shown that in-
creasing the ω − ρ coupling constant softens the EoS of nuclear matter at around saturation
density and that the density dependence of symmetry energy is highly sensitive to it. This
was done within a model based on a relativistic effective field theory. Later, it was shown
to improve the radius and tidal deformability of neutron stars, leading RMF models to be
in better agreement with observations [35].

The new ω − ρ-inspired term in the QMD model Hamiltonian in this work is inspired
from the density dependent repulsive Skyrme force and depends on the baryon density and
isospin density of asymmetric nuclear matter. A few values for the coefficient of the ω − ρ
potential were tested, which resulted in very different behavior of the symmetry energy and
its slope L. First, the values and trends of binding energies per nucleon of ground states of
several nuclear isotopes were reasonably reproduced compared with experimental values.
Simulations for pure neutron matter resulted in a density dependent behavior that is largely
similar for all Cωρ (coefficient of ω − ρ meson field interaction) below nuclear saturation
density and is in good qualitative agreement within constraints from Chiral EFT. Around
ρ0, we can see a large divergence in the trend of E/N and a decrease in maximum energies
as Cωρ is lowered. The numerical data obtained by simulating asymmetric nuclear matter
was fitted to the energy per nucleon expanded as Taylor series, keeping both the lowest
and the second highest order term. The approximation in the second-order term, also
called the parabolic approximation, gave a trend of symmetry energies that decreases as the
coefficient of the ω− ρ potential also decreases. The corresponding slopes L exhibit a similar
trend, although four of five tested parameter sets produced L values within established
constraints [27–29]. The higher-order approximation, which is necessary to obtain a better
fitting of the data to energy per nucleon, further reduced the symmetry energies for the
same coefficient values whereas there are more variations in the corresponding L values
amidst a general decrease. This behavior requires the inclusion of data for higher and
in-between values of proton fractions to further improve fitting and obtain better symmetry
energy and slope values.

The dependence of clusterization in the system, due to the nuclear liquid-gas tran-
sition, on the isospin properties was also explored by calculating two-point correlation
functions. Although a detailed study of the structure of inhomogenous phases could not
be accomplished due to inaccurate Coulomb energies, a visualization of the simulated
system shows interesting pasta-like shapes. The transition from inhomogeneous to uniform
matter is evaluated using a two-point density fluctuation correlation function and points to
a first-order phase transition. Only a small change was observed in the effect of varying
L on the transition density, which cannot be deemed as significant. The properties of the
mixed phase with the newly integrated ω − ρ-inspired interaction can be studied in a
similar fashion to a work conducted earlier in Ref. [36] with the aim of giving a better
range for the critical end-point of the liquid-gas phase transition in dense nuclear matter.
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The analysis of two-point density fluctuation correlations also reveals the size of clumps of
nucleons in the system. If the evolution of clump sizes is tracked with respect to time, one
can deduce where density fluctuations are amplified enough to have matter separate into
domains of high and low densities forming a coexisting phase. The growth of instabilities
or fluctuations point to a region of negative compressibility in the phase diagram of nuclear
matter, where at a constant temperature an increase of density results in a decrease in
pressure [37]. This region is called the spinodal region. Therefore, further study is needed
to shed more light on the nuclear phase diagram. Steinheimer et al. [38,39] have conducted
detailed analyses on experimental signals of the expected phase transition at large baryon
densities and identifying spinodal clumping in high energy nuclear collisions. Studies of
temperature, pressure, and time evolution of density fluctuations in nuclear matter are
outside the scope of this project but is an interesting prospect for the future.

QMD has an advantage over other types of models in the possibility to track the
trajectory of nucleons and study the non-averaged properties of clusters in nuclear matter
at inner crust densities, unlike mean-field approaches. Implementing the ω − ρ interaction
in a QMD model is an important step in efforts to constrain the density dependence of
symmetry energy and at the same time observe effects of this interaction on the structure
of nuclear matter within a dynamical framework. Pressure can be calculated using the
simulated data to obtain the full equation of state, and subsequently a M-R curve for the
model used in this work. We also aim to find a way to reconcile the model with the causality
of sound speed, which is ensured in Relativistic Mean Field models but can be problematic
in microscopic simulations. An exciting prospect is finite temperature calculations to
check for phases of hot nuclear matter at sub-saturation densities, which is relevant for
proto-neutron stars.
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Abstract: A Bayesian analysis of the possible behaviors of the dense matter equation of state informed
by recent LIGO-Virgo as well as NICER measurements reveals that all the present observations are
compatible with a fully nucleonic hypothesis for the composition of dense matter, even in the core
of the most massive pulsar PSR J0740+6620. Under the hypothesis of a nucleonic composition,
we extract the most general behavior of the energy per particle of symmetric matter and density
dependence of the symmetry energy, compatible with the astrophysical observations as well as
our present knowledge of low-energy nuclear physics from effective field theory predictions and
experimental nuclear mass data. These results can be used as a null hypothesis to be confronted with
future constraints on dense matter to search for possible exotic degrees of freedom.

Keywords: neutron stars; gravitational waves; equation of state; dense matter

1. Introduction

The exceptional progress of multi-messenger astronomy on different astrophysical
sources of dense matter has very recently led to quantitative measurements of various
properties of neutron stars (NS), such as the correlation between mass and radius (M-R)
from X-ray timing with NICER [1–4] and the tidal polarizability from gravitational wave
(GW) LIGO/Virgo data [5–9]. These observations, together with the plethora of upcoming
data [10], are expected to unveil in the near future exciting open questions such as the
structure and degrees of freedom of baryonic matter in extreme conditions, particularly the
presence of phase transitions and the existence of deconfined matter in the core of neutron
stars [11].

This direct connection between astrophysical measurements and the microphysics
of dense matter is due to the well-known fact that, under the realm of general relativity,
there is a one-to-one correspondence between any static observable and the dense matter
equation of state (EoS) [12]. However, this task is complicated by the fact that there is no
ab initio calculation of ultra-dense matter in the hadronic or partonic sectors; therefore,
effective models are used. Information about the composition of high-density matter is
blurred by the uncertainty on the effective energy functional, and similar equations of state
can be obtained under different hypotheses on the underlying microphysics [13,14].

Tension was reported between the GW observational data that tend to favor stiffer EoS,
and ab initio nuclear physics calculations, which point towards a slightly softer density
dependence [15]. This tension could, in principle, suggest the emergence of new degrees
of freedom at high density. However, the statistical significance of the dispersion is not
sufficient to lead to strong conclusions, and could even be reduced if the new measurement
of the neutron-skin thickness of 208Pb by the PREX-II collaboration [16] will confirm a
higher value for the skin than previously estimated [17,18]. In addition to this, the most
recent M-R estimations from the two objects PSR J0740+6620 and PSR J0030+0451 do not
report any significant reduction in the NS radius with increasing mass [3,4], in qualitative
agreement with the expectations for purely hadronic models for the EoS [19].
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For these reasons, the hypothesis of a purely nucleonic composition of the NS cores
cannot be ruled out. To identify the observables pointing towards more exotic constituents,
it is important to quantitatively evaluate the space of parameters and observables that are
compatible with the nucleonic hypothesis. To this end, meta-modelling techniques were
proposed [19–25], which allow for exploring the complete parameter space of hadronic
equations of state, and predicting the astrophysical observables with uncertainties con-
trolled by our present theoretical and experimental knowledge of nuclear physics. This ap-
proach can be viewed as a way of transforming experimental and observational constraints
into empirical parameters of nuclear physics to guide the elaboration of phenomenological
and microscopic nuclear models, and it can also be used as a null hypothesis to search for
exotic degrees of freedom.

In this paper, we address this timely issue by performing a Bayesian statistical anal-
ysis of the semi-agnostic meta-modelling technique of Refs. [21,24], including both nu-
clear physics and astrophysical constraints. With respect to previous works by different
groups [19–25], we include the most recent NICER results [4] which provide constraints
in the density region where many-body perturbation theory (MBPT) cannot be applied,
and use a fully unified EoS approach [26] allowing for the constraints from nuclear mass
measurements [27] to be included in the posterior distributions. We have not included the
recent skin measurement by PREX II [16] in the considered constraints because our model
is not presently able to calculate nuclear radii. An extension in this direction would be of
interest, and is left for future work. In the present work, the information from the PREX
II experiment can only be incorporated as an interval of the empirical parameter Lsym in
the prior distribution. The prior that we have chosen already overlaps with the lower end
of the constraint given on Lsym by PREX-II. Increasing the range of Lsym to include the
higher values compatible with the PREX experiment would not modify our results, as the
corresponding equations of state are filtered out by the chiral EFT constraint.

The paper is organized as follows. In Section 2, we summarize the basic ideas of
nucleonic metamodelling developed in References [19,21]. We explain the different filters
from low-energy nuclear physics and astrophysical observations used for the Bayesian
analysis in Section 3. The results obtained in the present work are described in Section 4.
We make our concluding remarks in Section 5.

2. Meta-Modelling of the EoS

Within the assumption that the core of neutron stars is composed of neutrons, protons,
electrons, and muons in weak equilibrium, a prior distribution of the viable unified EoS
model is generated by Monte-Carlo sampling of a large parameter set of 10 independent,
uniformly distributed empirical parameters corresponding to the successive density deriva-
tives at saturation up to order 4 of the uniform matter binding energy in the isoscalar and
isovector channels. These parameters characterize the density dependence of the energy in
symmetric matter, as well as of the symmetry energy, and their prior distribution is con-
sistent with the present empirical knowledge for a large set of nuclear data [21]. They are
complemented by five additional surface and curvature parameters [28] that are optimized,
for each set of uniform matter parameters, to the experimental Atomic Mass Evaluation
2016 (AME2016) nuclear mass table [27]. The expression of the surface and curvature
energy we employ [29] was optimized on Thomas–Fermi calculations at extreme isospin
asymmetries, and also subsequently employed in different works on neutron star crust and
supernova modelling within the compressible liquid drop approximation [26,28,30–33].
Two additional parameters rule the density dependence of the effective mass and the effec-
tive mass splitting, and an extra parameter enforces the correct behavior at zero density; see
Reference [21] for details. The use of the same functional to describe the inhomogeneous
crust [26,28] guarantees a consistent estimation of the crust–core transition and is known
to be important for a correct estimation of the NS radius [34].
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3. Bayesian Analysis

The posterior distributions of the set X of EoS parameters are conditioned by likelihood
models of the different observations and constraints c according to the standard definition:

P(X|c) = N P(X)∏
k

P(ck|X), (1)

where P(X) is the prior, and N is a normalization factor. The different constraints ck used
in the present study are as follows: (a) nuclear mass measurements in the AME2016 mass
table [27]; (b) the bands of allowed region in symmetric and pure neutron matter produced
by many-body perturbation theory (MBPT) calculations from Reference [35] based on
two- and three-nucleon chiral effective field-theory (EFT) interactions at next-to-next-to-
next-to leading order (N3LO), which are interpreted as a 90% confidence interval; (c)
mass measurement from radio-timing observations of pulsar PSR J0348+0432 [36], MJ03 =
2.01 ± 0.04M�, where M� is the solar mass; (d) constraints on the tidal deformability
of the binary NS system associated to the gravitational wave event GW170817, detected
by the LIGO/Virgo Collaboration (LVC) [7]; (e) X-ray pulse-profile measurements of
PSR J0030+0451’s mass, MJ00 = 1.44+0.15

−0.14M�, and radius, RJ00 = 13.02+1.24
−1.06 km from

Reference [2]; (f) the radius measurement with NICER and XMM-Newton data [4] of the
PSR J0740+6620 pulsar of mass MJ07 = 2.08 ± 0.07M� [37], RJ07 = 13.7+2.6

−1.5 km [4].
Posterior distributions of different observables Y are calculated by marginalizing over

the EoS parameters as:

P(Y|c) =
N

∏
k=1

∫ Xmax
k

Xmin
k

dXk P(X|c)δ(Y − Y(X)), (2)

where N = 13 is the number of parameters in the metamodel. Y(X) is the value of
any observable Y obtained with the X parameter set, with Xmin(max)

k being the minimum
(maximum) value in the prior distribution taken as in Reference [26]. To see the impact of
different constraints on the nuclear physics informed prior, we consider four distributions,
with each containing around ∼18,000 models. They are labeled as follows:

1. Prior: models in this set are required to result in meaningful solutions for the crust,
that is, the minimization of the canonical thermodynamic potential at a given baryon
density leads to positive gas and cluster densities. In addition, the fit of the surface
and curvature parameters {σ0, bs, σ0c, β} to the nuclear masses in the AME2016 table
must be convergent. These criteria are characterized by the pass-band filter ω0. Given
that the mentioned conditions are satisfied, i.e., ω0 = 1, the probability of each model,
associated to a parameter set X, is then quantified by the goodness of the optimal fit,

P1(X) ∝ ω0e−χ2(X)/2P(X), (3)

in which the original prior P(X) contains uniformly distributed EoS parameters, and
the cost function χ2(X) has the following form:

χ2(X) =
1

Ndo f
∑
n

(
M(n)

cl (X)− M(n)
AME

)2

σ2
n

. (4)

The sum in Equation (4) runs over all the nuclei in the AME2016 [27] mass table,
with MAME and Mcl(X) being the experimental and theoretical nuclear masses, re-
spectively, in which the latter is calculated within a compressible liquid drop model
(CLDM) approximation using the best-fit surface and curvature parameters for each
EOS model; σn represents the systematic theoretical error; Ndo f (= n − 4) is the num-
ber of degrees of freedom. The distributions obtained with this prior represent the
most general predictions, within a purely nucleonic composition hypothesis, which
are compatible with low-energy nuclear physics experiments.
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2. LD: in this sample, the models are selected by the strict filter from the chiral EFT
calculation, where the energy per nucleon of symmetric nuclear matter (SNM) and
pure neutron matter (PNM) of the model are compared with the corresponding energy
bands of Reference [35], enlarged by 5%. This constraint is applied in the low-density
region, from 0.02 fm−3 to 0.2 fm−3. The posterior probability can be written as:

P2(X) ∝ ωLD(X)P1(X), (5)

in which ωLD(X) = 1 if the model X is consistent with the EFT bands, and ωLD(X) = 0
otherwise. Implementing this low-density (LD) filter amounts to including in the
nucleonic hypothesis the information from ab initio nuclear theory.

3. HD + LVC: the posterior probability of this distribution is written as:

P3(X) ∝ ωHDP(J03|X)P(LVC|X)P1(X). (6)

Here, ωHD is also a pass-band type filter similar to ωLD in Equation (5). It only
accepts models satisfying all the following conditions: causality, thermodynamic
stability, and non-negative symmetry energy at all densities. The second term in
Equation (6), P(J03|X), is the likelihood probability from the mass measurement of
PSR J0348+0432 [36], which is MJ03 = 2.01± 0.04M�. This likelihood is defined as the
cumulative Gaussian distribution function with a mean value of 2.01 and a standard
deviation of 0.04:

P(J03|X) = 1
0.04

√
2π

∫ Mmax(X)/M�

0
e−

(x−2.01)2

2×0.042 dx, (7)

where Mmax(X) is the maximum NS mass at equilibrium, determined from the solu-
tion of the Tolmann–Oppenheimer–Volkoff (TOV) equations [38,39].
We expect these different conditions not to be selective on the low-order EOS param-
eters, but to constitute stringent constraints on the high-density (HD) behavior of the
EOS that is essentially governed, within the nucleonic hypothesis, by the third- and
fourth-order effective parameters Qsat, Zsat, Qsym and Zsym [21].
The constraint from the GW170817 event, measured by the LVC, evaluates the weight
of a model based on its prediction for the tidal deformability Λ̃. The likelihood is
written as:

P(LVC|X) = ∑
i

PLVC(Λ̃(q(i)), q(i)), (8)

in which q is the ratio of the lighter component mass m2 to the heavier component
mass m1, q = m2/m1 ≤ 1, and PLVC(Λ̃(q), q) is the joint posterior distribution of
Λ̃ and q taken from References [7,40]. In References [7,40], the authors performed
a Bayesian inference with four different waveform models. The distribution for Λ̃
and q, which we are using for this work, is the one obtained with the PhenomPNRT
waveform, which is mentioned as their “reference model”. The tidal deformabil-
ity Λ̃ is expressed in the form of the component masses, m1 and m2, and the two
corresponding dimensionless tidal deformabilities, Λ1 and Λ2, as:

Λ̃ =
16
13

(m1 + 12m2)m4
1Λ1 + (m2 + 12m1)m4

2Λ2

(m1 + m2)5 . (9)

The dimensionless tidal deformability Λ is related to the mass M through the expression:

Λ =
2
3

k2

[
c2

G
R(M)

M

]5

, (10)

where c, G, R(M), and k2 are the speed of light, gravitational constant, NS radius at
mass M, and Love number, respectively [41–43]. In our analysis, q is chosen to be in
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the one-sided 90% confidence interval obtained in Reference [7], q ∈ [0.73, 1.00]. In
Reference [7], it was shown that the chirp mass Mc of the binary NS system associated
to the GW170817 event was accurately determined, Mc = 1.186 ± 0.001M� at the
median value with 90% confidence limits. The chirp mass Mc can be expressed as a
function of m1 and q as:

Mc =
(m1m2)

3/5

(m1 + m2)1/5 =
q3/5m1

(1 + q)1/5 . (11)

Since the uncertainty in the chirp mass Mc is negligible, for each value of the mass
ratio q, we calculate m1 directly from the median value of M through Equation (11).

4. All: Including the three constraints mentioned above, together with the likelihood
from the joint mass-radius distributions of the two NICER measurements from Refer-
ences [2,4], the posterior probability for the final distribution is written as:

P4(X) ∝ ωLDωHDP(J03|X)P(LVC|X)P(NICER|X)P1(X). (12)

The NICER likelihood probability is given by:

P(NICER|X) = ∑
i

pNICER1(M(i)
1 , R(M(i)

1 ))∑
j

pNICER2(M(j)
2 , R(M(j)

2 )), (13)

where pNICER1(M, R) is the two-dimensional probability distribution of mass and
radius for the pulsar PSR J0030+0451 obtained using the waveform model with three
uniform oval spots by Miller et al. in [2]; and pNICER2(M, R) is the probability distri-
bution for PSR J0740+6620 using NICER and XMM–Newton data by Miller et al. [4].
The intervals of M1 and M2 are chosen to be sufficiently large so that they cover
most of the associated joint mass-radius distributions, M1 ∈ [1.21, 1.70]M� and
M2 ∈ [1.90, 2.25]M�.

To ensure that the differences in the posterior distributions are induced by the impact
of the different constraints, care is taken to obtain comparable statistics from the four
distributions for each plot shown in this paper. Moreover, for all the shown observables,
we have checked that an increase in statistics does not affect the results within the chosen
precision for the numerical values given in this paper.

4. Results and Discussions

4.1. Empirical Parameters

In Figures 1 and 2 we show the probability density distributions (PDFs) of isoscalar
and isovector empirical parameters of order N < 4, respectively. As we have described
previously, the distributions labeled as “Prior” in these figures are not flat, but carry the
information from the experimental nuclear mass measurement. For example, Esat, the
energy per particle in SNM at saturation, already has a peaked shape (see Figure 1a)
because of this reason. From the HD+LVC distribution in these figures, we can see that
the astrophysical constraints on NS mass and tidal deformability have almost no effect
on low-order parameters. The impact of the chiral EFT filter on the isoscalar parameters
of order N < 3, i.e., Esat, Ksat, along with nsat is not prominent. This knowledge can be
further reinforced by looking at Table 1, where the LD filter hardly improves the constraints
on the aforementioned isoscalar parameters. This can be explained by the fact that the
prior intervals of the empirical parameters are chosen based on the current knowledge
provided by nuclear physics, in which the deviations of Esat, nsat, and Ksat are already
relatively small.
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Figure 1. Probability density distributions of isoscalar empirical parameters Esat (panel (a)), nsat

(panel (b)), Ksat (panel (c)), and Qsat (panel (d)), for the prior distribution informed by experimental
nuclear masses (black dotted line) and for posteriors of models passing through the low-density
(chiral EFT) constraint (blue dashed line), high-density constraints (causality, stability, esym ≥ 0,
maximum NS mass, and tidal deformability) (red dash-dotted line), and all constraints combined
(green shaded region). See texts for details.

Figure 2. Same as Figure 1 but for isovector empirical parameters Esym (panel (a)), Lsym (panel (b)),
Ksym (panel (c)), and Qsym (panel (d)).
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Table 1. Medians and 68% confidence limits of EoS empirical parameters of order N < 4 in the
four distributions.

Esat nsat Ksat Qsat Esym Lsym Ksym Qsym
[MeV] [fm−3] [MeV] [MeV] [MeV] [MeV] [MeV] [MeV]

Prior −16.25+0.61
−0.46 0.159+0.008

−0.006 231+27
−28 −44+693

−650 32.6+3.5
−3.9 42+24

−22 −62+181
−210 −132+1394

−1290

LD −15.90+0.51
−0.50 0.163+0.005

−0.008 239+22
−30 −264+383

−356 31.2+1.3
−1.3 43+11

−9 −175+136
−131 406+1026

−1116

HD+LVC −16.20+0.60
−0.47 0.161+0.006

−0.008 231+27
−27 321+467

−596 31.4+4.0
−3.6 48+18

−19 −2+121
−113 502+891

−1054

All −15.86+0.49
−0.50 0.163+0.006

−0.007 249+15
−23 −41+310

−267 30.9+1.3
−1.3 47+9

−9 −74+78
−65 1207+491

−539

Unlike the lower-order parameters in the isoscalar sector, the isovector counterparts
are quite poorly determined by nuclear physics experiments. As a result, once the constraint
from the chiral EFT calculation is included, Esym, Lsym and Ksym are strongly affected (see
Figure 2 and Table 1). Interestingly, the LD filter also has a non-negligible impact on
the high-order parameters Qsat and Qsym. This is because the chiral EFT calculation
gives very precise predictions at very low densities, far from nuclear saturation. In this
region, the high-order parameters have a non-negligible contribution to the nuclear matter
energy. It was shown by References [28,44] that constraining the EoS at very low densities
n ∼ 0.02–0.1 fm−3 is crucial when studying the crust–core transition.

As one may expect, the constraints from NS observables (HD+LVC) play an important
role in high-order parameters, such as Qsat and Qsym, as well as on the poorly constrained
isovector compressibility Ksym. One can observe that, for these parameters, higher values of
the chosen intervals are preferred in the nucleonic hypothesis, with a low preference for the
softer EoSs. However, note that this is the net effect of both the radio mass and GW180817
measurements. We have checked that without the constraint on the tidal deformability, the
resulting nuclear matter energies are even higher, which means that the constraint from
GW170817 softens the EoS.

As discussed in detail in Reference [21], the density behavior of realistic functionals
can be accurately reproduced up to the central density of massive neutron stars by a
Taylor expansion truncated at the fourth order; however, because of the truncation, the
parameters of order N ≥ 3 have to be considered as effective parameters that govern
the high-density behavior of the EOS, and do not need to be equal to the corresponding
density derivatives at saturation. On the other hand, in the sub-saturation regime, the
deviations from the Taylor expansion are accounted for by the low-density corrective term
that imposes the correct zero-density limit [21]. With these two effects being completely
independent, the meaning of the third- and fourth-order parameters as explored by the
EFT calculation and the astrophysical observations is not the same, and we can expect that
low- and high-density constraints might point to different values for those parameters.
Comparing the dashed and dashed-dotted lines in Figure 1, we can see that low-density
constraints impose lower values of Qsat with respect to high-density ones. This means that
low-energy experiments aimed towards a better measurement of Qsat will not improve
our empirical knowledge of the high-density EOS. Interestingly, the same is not true for
Qsym, for which the dotted and dash–dotted distributions closely overlap. Even if the
present constraints are quite loose, it appears that the skewness of the symmetry energy at
saturation Qsym gives a fair description of the behavior of the EOS at high density, while a
deviation is observed at the level of compressibility Ksym. We do not include results for the
fourth-order parameters Zsat, Zsym, because they have very large uncertainties and very
little impact from the different constraints. Furthermore, we will see that they have almost
no correlations to other parameters, as well as observables.

In Figure 3, we plot the bands for SNM energy per nucleon and symmetry energy at
50% and 90% confidence intervals for the four posterior distributions, as explained in the
previous section. The impact of LD and HD+LVC filters can be observed by looking at
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panels (b) and (c) of Figure 3, respectively. Their effects are appreciated at different density
regimes, as is also evident from the analysis carried out in Figures 1 and 2 and Table 1.

Figure 3. 50% (darker color) and 90% (lighter color) confidence intervals of energy per nucleon of
symmetric nuclear matter (eSNM, color green) and symmetry energy (esym, color orange) as a function
of density n in the four distributions: Prior (panel (a)), LD (panel (b)), HD+LVC (panel (c)), and All
(panel (d)).

4.2. Properties of NS Crust

In our calculation, the transition from the solid crust to the liquid outer core is de-
termined by comparing the corresponding energy density of clusterized matter to that of
homogeneous matter at β-equilibrium with the metamodel. For the crust part, the meta-
model is extended by introducing surface parameters within the compressible liquid drop
model (CLDM) approach [26]. The precision in the prediction of the crust–core transition
point is crucial in estimating crustal observables, such as crustal mass, thickness, and mo-
ment of inertia. These quantities are in particular thought to have an influence on the origin
of the pulsar glitches [45]. In the literature, there are various works devoting to determin-
ing the crust–core transition density nCC with different many-body methods and nuclear
functionals, spanning a large range of values, such as nCC = 0.0548 fm−3 in [46] obtained
using Thomas–Fermi calculations for the NL3 functional, or nCC = 0.081 fm−3 in [47] within
the full fourth-order extended Thomas–Fermi approach for the BSk24 functional. For this
reason, an estimation for the uncertainties of the crustal properties with Bayesian tools using
both the current nuclear physics and astrophysical data, provided by LVC and NICER, are
of great importance.

In Figure 4, we display the joint distributions of the crust–core transition density nCC
and pressure PCC. The chiral EFT calculation plays an important role in the determination
of the crust–core transition point, which is evident from the LD distribution in Figure 4b.
One can observe that the chiral EFT filter puts stringent limits on both the crust–core
transition density nCC and pressure PCC; very high and very low values of nCC and PCC
get eliminated. In Figure 4c for the HD+LVC distribution, the most noticeable fact is the
suppression of models with high transition pressures. However, the probability densities of
these models are tiny, and they are outside of the 95% contour in the prior distribution (see
Figure 4a). Moreover, they are associated to models violating at least one of the following
conditions required in the HD+LVC posterior: causality, thermodynamics stability, or non-
negative symmetry energy. In other words, the astrophysical constraints on NS maximum
mass and tidal deformability have very little effect on the crust–core transition. This is
consistent with our observations for the nuclear matter energy in Figure 3c: the nuclear
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matter energy in the HD+LVC distribution is not notably constrained at densities around
n ∼ nsat/2.

The crust–core transition point determines astrophysical observables, such as crust
thickness, or moment of inertia [24]. In this study, we have chosen the crust thickness to be
the demonstrative quantity. Figure 5 presents the PDFs of NS crust thicknesses for 1.4M�
and 2.0M� NSs. In both cases, the uncertainties in the LD distributions are narrowed down
compared to the prior, while the effect in the HD+LVC distribution is only marginal. This
agrees with our conclusions for the crust–core transition point, that is, the role of the chiral
EFT filter is more dominant in the determination of crustal properties. When all constraints
are taken into account, the crust thicknesses of both 1.4M� and 2.0M� NSs are known with
relative uncertainties of up to 10%. For a quantitative estimation of the effects of different
filters, in Table 2 we present crust–core transition density nCC and pressure PCC, along
with a crustal thickness of 1.4M� and 2.0M� NSs accompanied by errors on them at 68%
confidence interval. One can quite conclusively comment that the primary effect comes
from the LD chiral EFT filter, which also puts stringent constraints when all the filters are
combined together, denoted as “All”.

Figure 4. Joint probability density plots of crust–core transition density nCC and pressure PCC in the
four distributions: Prior (panel (a)), LD (panel (b)), HD+LVC (panel (c)), and All (panel (d)). The
dashed black contours in each panel indicate the 68%, 95%, and 99% confidence regions.
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Figure 5. Probability density distributions of crust thickness at M = 1.4M� (panel (a)) and
M = 2.0M� (panel (b)).

Table 2. Estimations of NS crustal properties in four distributions. The results are presented with
medians and 68% confidence limits.

nCC PCC R1.4
crust R2.0

crust
[fm −3] [MeV fm−3] [km] [km]

Prior 0.087+0.033
−0.037 0.163+0.281

−0.095 1.13+0.25
−0.29 0.706+0.165

−0.191

LD 0.078+0.011
−0.011 0.385+0.104

−0.097 1.11+0.10
−0.14 0.693+0.070

−0.079

HD+LVC 0.079+0.023
−0.033 0.141+0.202

−0.076 1.05+0.20
−0.20 0.627+0.126

−0.128

All 0.084+0.009
−0.010 0.423+0.093

−0.090 1.15+0.10
−0.08 0.687+0.067

−0.067

4.3. NS Equation of State

Unlike the crustal properties, HD+LVC filter is expected to put tighter bounds on
global NS properties, which is governed chiefly by the high-density part of the EoS. The
effects of different filters on the EoS are shown in Figure 6. The light (dark) orange band
indicates 90% (50%) confidence interval. For comparison, we also display the result inferred
from the gravitational wave data GW170817 by LVC at the 90% level in dashed blue lines [6].
We have also used the same units for mass-density g cm−3 as in Reference [6] for the same
reason. In this unit the saturation density nsat is denoted as ρsat (� 2.8 × 1014 g cm−3).
In Reference [6], Abbott et al. have sampled their EoSs at high density using the spectral
parametrization [48]. These EoSs are then matched with SLy EoS [49] at around ∼ ρsat/2.
Incidentally, the authors also utilized some prior criteria similar to our analysis, which
are causality, thermodynamic stability, and consistency of NS maximum mass with the
observation. For the last condition, they put a sharp limit (Mmax ≥ 1.97M�) instead of
using a likelihood probability as in our analysis (see Equation (7)). However, we have
verified that the difference in the maximum NS treatment does not lead to sizable deviation
in the final results. In Figure 6a, we can see that our prior distribution perfectly covers the
whole posterior band given by GW170817 event [6] with good agreement. In our case, the
prior distribution carries information from nuclear physics experiments and theoretical
calculations via the chosen prior intervals of empirical parameters as well as the mass fit.
This is why the EoS in our prior distribution at low densities is relatively narrow compared
to other analyses. Note that the uncertainty below ρsat, appears to be large due to the visual
effect of the logarithmic scale in the pressure. Once the chiral EFT filter is applied, this
uncertainty is vastly reduced (see Figure 6b), resulting in a very well-constrained band and
excellently compatible with the posterior constrained by GW170817 data [6]. Contrarily,
the behavior of the EoS at supra-saturation densities is not constrained by the chiral EFT
filter. As a result, a larger dispersion is observed at high densities. This dispersion is not as
important as in fully agnostic studies [50] because of the nucleonic hypothesis that imposes
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an analytic behavior of the EoS at all densities. This strong hypothesis can be challenged by
the astrophysical measurements, and any inconsistency with the observations will reveal
the presence of exotic degrees of freedom.

Figure 6. 50% (dark orange) and 90% (light orange) confidence intervals of pressure P as a function
of mass density ρ in comparison with the 90% confidence interval of the posterior obtained in Abbott
et al. 2018 [6] (blue dashed lines) in the four distributions: Prior (panel (a)), LD (panel (b)), HD+LVC
(panel (c)), and All (panel (d)). See text for details.

By incorporating the pass-band filter ωHD as well as the condition on the NS maximum
mass in Figure 6c, the deviation in the lower limit of the pressure at density ρ � 1015 g cm−3

observed in the prior, is eliminated. In particular, the constraint on the NS maximum mass
sets a stringent limit on the lower bound of the pressure, and posterior EoS is shifted
significantly towards higher values of pressure. Conversely, the constraint from LVC
prefers softer EoS, hence setting the limit on the upper bound of the pressure band. In
Figure 6d, when all constraints are combined, as expected, we obtain a narrower band
for the EoS than the one obtained exclusively from GW170817 data [6]. In addition, we
observe that our EoS is lightly stiffer than the one of Reference [6] at around 2 − 3ρsat. The
small width of the EoS and its stiffness are assigned to the semi-agnostic hadronic prior,
which represents current nuclear physics knowledge. Nevertheless, the overall agreement
is excellent. Thus, it indicates the compatibility of the nucleonic EoS with the gravitational
wave GW170817 data.

Comparing the “HD+LVC” and “All” distributions in Figure 6c,d, it can be ob-
served that the inclusion of the new NICER measurement does not show any significant
impact on the EoS. Similar conclusions have been drawn in other studies in the litera-
ture. Pang et al. [51] carried out a Bayesian analysis using the data from Riley et al. [3]
and Miller et al. [4]. In both cases, they found that the effect of the constraint from
the radius measurement of PSR J0740+6620 only marginally impact the EoS. In Refer-
ence [52], Raaijmakers et al. performed the Bayesian inference with two EoS parametriza-
tions: a piece-wise polytropic (PP) model and a speed-of-sound (CS) model drawing
similar conclusions. For the constraint on PSR J0740+6620, they employed the data
from Riley et al. [3], in which the error bar of the radius is smaller than that obtained
in Miller et al. [4]. They concluded that, for the PP models, the impact on the EoS mainly
comes from the high mass value of PSR J0740+6620 because their prior distribution in that
mass range is within the 68% level of the radius measurement (see Figure 4 in [52]).
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4.4. Speed of Sound in Medium

In Figure 7, we plot the velocity of sound in medium as a function of mass density
ρ obtained with four different filters at the 50% and 90% confidence intervals, together
with the behavior of some selected models [53–56]. One can observe that, for all the filters,
the most probable equations of state remain causal up to very high densities (∼6ρsat),
even though we do not explicitly put this requirement in our “Prior” and the “LD” filters
in Figure 7a,b, respectively. As expected, the behavior of the sound speed is globally
structureless. However, we can surprisingly see a trend for a peaked structure, which is
typically presented in the literature as a signature of a transition to exotic matter. This peak
may arise from the shoulder observed in Figure 6 above, which is due to the combined
constraints of a relatively soft EoS at low density, and the necessity of reaching the maximal
mass. These conditions lead to a peak in the global distribution; note, however, that this is
not true for all models individually (see lines in Figure 7d). A very small fraction of non-
causal models are present due to the fact that we plot the EoS only up to densities where
the nucleon sound velocity is in the interval between 0 and 1. Residual non-causalities (not
visible within 90% confidence interval of Figure 7) originate from the additional lepton
contribution in beta-equilibrated matter.

Figure 7. 50% (dark green) and 90% (light green) confidence intervals of sound speed
( cs

c
)2 as a

function of mass density ρ in the four distributions: Prior (panel (a)), LD (panel (b)), HD+LVC (panel
(c)), and All (panel (d)). Curves in panel (d) show the sound speed of some selected models [53–56]
up to the central density corresponding to the maximum mass. See text for details.

4.5. NS Observables
4.5.1. Masses and Radii

In Figure 8 we plot, for different filters, three shaded regions (from light to dark)
sequentially containing 99%, 95%, and 68% confidence intervals for two-dimensional distri-
bution for the mass and radius of NSs. The two black contour lines, at low mass and high
mass, respectively, indicate 68% of the mass-radius distributions for PSR J0030+0451 [2]
and PSR J0740+6620 [4]. One can observe in Figure 8a that our prior is already quite
compatible with both the recent NICER observations [2,4]. This explains why the effect
of the constraints from NICER is globally small in all our distributions. Moreover, since
in Figure 8c we already included the constraint from the radio mass measurement of the
high-mass pulsar PSR J0348+0432, the impact from the mass of PSR J0740+6620 is obscured
in Figure 8d. Additionally, the large uncertainty in the new radius measurement does
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not help to further constrain the EoS. The compatibility of NICER measurement and our
distributions implies that a nucleonic EoS is flexible enough to reproduce those dense-
matter observations. In Reference [51], Pang et al. computed the Bayes factor to study the
possibility of a strong first-order phase transition from nuclear to quark matter in NS. If
the data from Miller et al. [4] is used, the Bayes factor changes from 0.265 to 0.205. Even
though the effect from PSR J0740+6620 is not significant, a decrease in the Bayes factor
points to the fact that a first-order phase transition to quark matter is disfavored. Similarly,
Legred et al. [57] found that the Bayes factor for EoSs with one stable branch against those
with at least one disconnected hybrid star branch is 0.156 (0.220) with (without) the PSR
J0740+6620 measurement. Both these studies censure the possibility of a strong phase
transition and support the suitability of the hadronic EoS with respect to NS observables,
which is in line with our present analysis.

Figure 8. Probability density plots of NS mass M as a function of radius R in comparison with two
NICER measurements at 68% (black contours) in the four distributions: Prior (panel (a)), LD (panel
(b)), HD+LVC (panel (c)), and All (panel (d)). The three shaded regions in each panel contain 68%,
95%, and 99% of the distribution. See text for details.

Figure 9 displays the marginalized distributions of NS radii, R1.4 and R2.0, of the
canonical mass 1.4M� (panel (a)) and the typical high mass 2.0M� (panel (b)), respec-
tively. The dashed blue lines represent the PDFs obtained when a chiral EFT (LD) filter is
applied. We can see from the figure that this filter puts a constraint on the upper bound
of the distributions. It rejects models with R1.4 � 13.6 km and R2.0 � 14.0 km. In the
HD+LVC distribution for 1.4M� NS, the constraint from GW170817 softens the EoS, hence
constraining the upper bound of R1.4, while the requirement on the NS maximum mass
filters out very soft EoSs, which places a limit on the the lower bound of R1.4. As a result,
these two competing effects provide us with a relatively narrow range on the radius. In
particular, R1.4 ∈ [11.8, 14.0] km (see red dashed-dotted line in panel (a)). In the case of
R2.0, the constraint from radio mass measurement of PSR J0348+0432 becomes redundant
because all distributions must support 2.0M� NS, resulting in no effect being shown in
the lower value of R2.0. Therefore, in the HD+LVC distribution of R2.0, the constraint only
comes from the LVC measurement. Furthermore, this figure also tells us that the impacts
on R2.0 from the gravitational signal GW170817 and chiral EFT calculation are very similar,
even though they affect two different regions of the EoS. Specifically, the former controls
the EoS in the NS core, hence the core radius, while the latter dominates the crust EoS,
hence the crust thickness. The prediction in the form of median and 68% credible limits
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for R1.4 (R2.0) when all constraints are applied together is 12.78+0.30
−0.29 (12.96+0.38

−0.37) km. In
Miller et al. [4], the authors employed three EoS models, namely Gaussian, spectral, and
PP. The values of R1.4 for these three models are, respectively, 12.63+0.48

−0.46 km, 12.30+0.54
−0.51

km, and 12.56+0.45
−0.40 km at 68% confidence limit. Despite the difference in EoS sampling

methods, these results are in excellent agreement with the results obtained in the present
work. Using also the likelihood from PREX-II measurement of R208

skin [16], Reference [58]
obtains R1.4 = 12.61+0.36

−0.41 km, which is also consistent with our prediction.

Figure 9. Probability density distributions of NS radii at M = 1.4M� (panel (a)) and M = 2.0M�
(panel (b)).

The dimensionless tidal deformability Λ in Equation (10) suggests a relation between
Λ and R for a NS of given mass M. However, this relationship is not straightforward
due to the complex radius dependence of the tidal Love number k2 [41–43]. The relation
between R and Λ, particularly for the mass M = 1.4M� has been investigated in several
works [59–62]. Interestingly, Figure 10 shows that the distributions of Λ1.4 and Λ2.0 behave
in accordance with the corresponding radius distributions in Figure 9. This may indicate a
strong positive correlation between these two quantities, which will be discussed later. In
addition, we estimate the 90% confidence boundaries of Λ1.4 (Λ2.0) to be Λ1.4 ∈ [463, 757]
(Λ2.0 ∈ [43, 94]). This prediction of Λ1.4 agrees excellently with the upper bound extracted
from GW170817 signal in Reference [5] using TaylorF2 model, that is, Λ1.4 ≤ 800. The
limit in Λ1.4 has been improved in Reference [6], in which the more realistic waveform
PhenomPNRT was employed, and they obtained Λ1.4 ∈ [70, 580] at 90% confidence level
for the EoS-insensitive analysis [5,6]. Our distribution is still compatible with this result,
but it suggests a slightly too stiff EoS in the nucleonic hypothesis.

Figure 10. Probability density distributions of NS dimensionless tidal deformabilities at M = 1.4M�
(panel (a)) and M = 2.0M� (panel (b)).
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4.5.2. Composition

The determination of the proton fraction is crucial for studying NS cooling. The most
efficient cooling mechanism of NS is through the direct Urca (dUrca) neutrino emission
process. This process is described by the following successive reactions:

n → p + l + ν̄l (14)

p + l → n + νl , (15)

where l = {e−, μ−}. From the momentum and charge conservations, one can derive the
expression for the threshold, below which the dUrca process is forbidden:

xDU =
1

1 + (1 + x1/3
ep )3

, (16)

where xep(= xe/xp) is the ratio between electron and proton fraction. Values of xDU can
vary in the range from xDU � 1/9 in the case of no muons (xep = 1) to xDU � 0.148 at the
limit of massless muons (xep = 0.5) [30,63].

Figure 11 shows the PDFs of proton fractions calculated at the center of NS with
M = 1.4M� and M = 2.0M�. The black arrow in each panel indicates the most probable
value of xDU , calculated for the central density, denoted as xmp

DU . We find that this quantity
is independent of the constraint used. Furthermore, xmp

DU only depends weakly on NS
mass, xmp

DU � 0.134 (0.138) for M = 1.4 (2.0) M�. For both masses, the distributions of xp

extend to higher values than the corresponding threshold xmp
DU . Therefore, it is possible for

the dUrca process to operate even in NS of mass 1.4M�. Nevertheless, this fast cooling
channel is more likely to occur in heavier NSs due to the higher median and deviation of
the xp distribution. By integrating the PDF to find the area under the curve for xp ≥ xmp

DU ,
we estimate the possibility for the dUrca process in NS of mass 1.4M� (2.0M�) to be
approximately 26% (72%). For a more definitive evaluation, the predictions of NS central
proton fractions, along with the radius and tidal deformability for NSs of mass 1.4M� and
2.0M� at 68% confidence limit, are listed in Table 3.

Figure 11. Probability density distributions of central proton fractions of NS at M = 1.4 M� and
M = 2.0 M�. The arrow in each panel indicates the most probable value of xDU . Panel (a): xmp

DU �
0.134. Panel (b): xmp

DU � 0.138. At each value of mass, value of xmp
DU are very similar in four

distributions. See text for details.
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Table 3. Medians and 68% confidence intervals of NS radii, dimensionless tidal deformabilities, and
central proton fractions at M = 1.4M� and M = 2.0M�.

R1.4 R2.0 Λ1.4 Λ2.0 x1.4
p x2.0

p
[km] [km]

Prior 12.85+0.52
−0.69 13.26+0.45

−0.52 601+171
−182 78+23

−22 0.115+0.047
−0.052 0.166+0.073

−0.070

LD 12.61+0.45
−0.64 13.03+0.39

−0.49 541+151
−162 70+19

−19 0.117+0.041
−0.052 0.187+0.072

−0.067

HD+LVC 12.89+0.38
−0.40 13.07+0.42

−0.44 626+114
−107 71+20

−17 0.113+0.038
−0.039 0.154+0.079

−0.074

All 12.78+0.30
−0.29 12.96+0.38

−0.37 598+105
−85 66+18

−14 0.117+0.027
−0.030 0.181+0.070

−0.065

4.6. Pearson Correlations

Studying correlations among parameters and observables reveals a great deal about
the many facets of multi-parametric model calculations [64]. The most frequently employed
tool for this purpose is the linear Pearson correlation, which is defined for two quantities, x
and y (x, y can be parameters of the model or any observable calculated from it) as,

corr(x, y) =
cov(x, y)

σxσy
, (17)

where cov(x, y) is the covariance between x and y, and σx (σy) is the standard deviation on
x (y).

Figure 12 displays the Pearson correlation coefficients among all bulk, surface, and
curvature parameters in the case where all constraints are applied. Since the bulk parame-
ters are initially by construction uncorrelated in the flat prior distribution, we can easily
assign the induced correlations to the different filters employed. It is shown in the figure
that there is a perfect negative correlation between the surface tension of symmetric matter
σ0 and the saturation energy Esat, with corr(σ0, Esat) = −1. A similar result was found
in Reference [26]. The parameters associated to the curvature (σ0c and β), on the other
hand, exhibit strong positive correlations with Esat. These correlations appear due to the
fit of the surface and curvature parameters to the experimental nuclear mass table. In
addition, if the prior is only constrained by the experimental masses of nuclei, we also find
a strong correlation between bs and Esym, which are the two main parameters governing
the energy of asymmetric nuclear matter. However, once the filter from chiral EFT calcu-
lation is applied, Esym is tightly constrained, and hence the correlation becomes blurred.
Similar to References [19,26], no significant correlations are found to be induced by the
astrophysical constraints. The correlations among the bulk parameters shown in Figure 12
are resulted from the chiral EFT constraint. In particular, the symmetry energy Esym has
a moderate (anti)correlation with (Esat) nsat. Stronger correlations are found among the
isovector parameters, which are corr(Esym, Lsym) = 0.67 and corr(Lsym, Ksym) = 0.67. The
former is found in several works (see References [23,26,65] and references therein for a
review), and the latter is also studied in References [66–72]. Slight correlations between
high-order parameters, Ksat − Qsat and Ksym − Qsym, are also induced due to the narrow
EFT energy bands at very low densities.
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Figure 12. Pearson correlation coefficients matrix among bulk and surface empirical parameters in
the case all filters are applied.

Correlations among different observables found in our study are plotted in Figure 13.
The strongest correlations in this matrix are the well-known ones between radius and
dimensionless tidal deformability, corr(R1.4, Λ1.4) = 0.97 and corr(R2.0, Λ2.0) = 0.98. This
explains the similarity in the distributions of R and Λ seen in Figures 9 and 10. There is
also a strong positive correlation between nCC and PCC. This correlation is also visible in
the joint distribution plot in Figure 4. We have mentioned before that the determination
of the transition point from crust to core is important in predicting crustal observables;
this is again confirmed by the correlation coefficients between the crust thickness with
the transition density and pressure. Finally, the correlations between the observables and
parameters are also computed. The correlation matrix is shown in Figure 14. For most of
the cases, the most influential parameters are from the isovector channel, which are Lsym,
Ksym, and Qsym. The only exception is for the proton fraction, where high-order isoscalar
parameters have negative correlations. This correlation study clearly demonstrates that
astrophysical observables have a marginal influence on the higher order nuclear matter
properties, which points towards two conclusions: (a) the low-density nuclear physics
data have a large influence on constraining the lower-order parameters; (b) we need
more precise astrophysical data to tighten the constraints on higher order parameters.
Conversely, to obtain a more accurate prediction of astrophysical properties, we need to
reduce the uncertainties in these higher-order parameters from other sources, e.g., heavy
ion collisions [73].
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Figure 13. Pearson correlation coefficients matrix among some observables in the case all filters
are applied.

Figure 14. Pearson correlation coefficients between some observables with the empirical and surface
parameters in the case all filters are applied.

5. Conclusions

To conclude, we have jointly analyzed different constraints on the nuclear matter EoS
coming from nuclear experiments, ab initio nuclear theory, and several new astrophysical
observational data, including the very recent simultaneous observation of mass-radius
of PSR J0348+0432 and PSR J0740+6620 from NICER collaboration as well as LIGO-Virgo
observations of tidal deformability in GW170817 event. Imposing all these different con-
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straints in a Bayesian framework, we have challenged the hypothesis of a fully analytical
(continuous and derivable at all orders) EoS, as obtained in the case where dense baryonic
matter is purely constituted of neutrons and protons without any phase transition or exotic
degrees of freedom.

Notably, we have observed that if we have a nuclear physics informed prior including
the binding energy data of the whole nuclear chart and chiral EFT constraints on low-
density SNM and PNM, the posterior for mass-radius of NSs are already in line with
NICER observations. Contrarily, bounds on high-density matter from a radio astronomy
observation of NS of 2 solar mass and GW170817 data on tidal deformability are reasonably
appreciated. With the present knowledge of astrophysical observations, we predict that
the direct Urca cooling is possible with non-negligible probability (27%), even in an NS
with a mass as low as 1.4M�, which increases much further ∼ 72% for a NS of 2.0M�. This
might also be very crucial when (in)validating the nucleonic hypothesis of high-density
matter. As all current data on astrophysical observations comply with the nucleonic
hypothesis within our metamodel approach, we need much more stringent constraints
from the observations to conclusively establish (reject) the presence of exotic degrees of
freedom in high-density matter.
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Abstract: Finite-temperature equation of state (EoS) and the composition of dense nuclear and
hypernuclear matter under conditions characteristic of neutron star binary merger remnants and
supernovas are discussed. We consider both neutrino free-streaming and trapped regimes which are
separated by a temperature of a few MeV. The formalism is based on covariant density functional
(CDF) theory for the full baryon octet with density-dependent couplings, suitably adjusted in the
hypernuclear sector. The softening of the EoS with the introduction of the hyperons is quantified
under various conditions of lepton fractions and temperatures. We find that Λ, Ξ−, and Ξ0 hyperons
appear in the given order with a sharp density increase at zero temperature at the threshold being
replaced by an extended increment over a wide density range at high temperatures. The Λ hyperon
survives in the deep subnuclear regime. The triplet of Σs is suppressed in cold hypernuclear matter
up to around seven times the nuclear saturation density, but appears in significant fractions at higher
temperatures, T ≥ 20 MeV, in both supernova and merger remnant matter. We point out that a
special isospin degeneracy point exists where the baryon abundances within each of the three isospin
multiplets are equal to each other as a result of (approximate) isospin symmetry. At that point, the
charge chemical potential of the system vanishes. We find that under the merger remnant conditions,
the fractions of electron and μ-on neutrinos are close and are about 1%, whereas in the supernova
case, we only find a significant fraction (∼10%) of electron neutrinos, given that in this case, the μ-on
lepton number is zero.

Keywords: equation of state; neutron stars; neutrinos; hyperons

1. Introduction

Several astrophysical scenarios lead to the formation of hot, neutrino-rich compact
objects which contain nuclear and hypernuclear matter at finite temperature. One such
scenario arises in the core-collapse supernova and proto-neutron star context, where a
hot proto-neutron star is formed during the contraction of the supernova progenitor and
subsequent gravitational detachment of the remnant from the expanding ejecta [1–7]. A
related scenario arises in the case of stellar black-hole formation when the progenitor mass
is so large (typically tens of solar masses) that the formation of a stable compact object
is not possible and a black hole is inevitably formed [8–11]. Finally, the binary neutron
star mergers offer yet another scenario where finite temperature nuclear and hypernuclear
matter play an important role [12–15]. In the “hot” stage of evolution of these objects
the thermodynamics of the matter is characterized by several parameters, for example,
density, temperature and lepton fraction. This is in contrast to the case of cold (essentially
zero-temperature) compact stars whose thermodynamics is fully determined by a one-
parameter EoS relating pressure to energy density under approximate β-equilibrium. An
important feature of the hot stages of evolution of compact stars is the trapped neutrino
component above the trapping temperature Ttr � 5 MeV—a regime where the neutrino

Universe 2021, 7, 382. https://doi.org/10.3390/universe7100382 https://www.mdpi.com/journal/universe87
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mean-free-path is shorter than the size of the star [16]. As is well known, neutrinos affect
significantly the composition of matter and are important for the energy transport and
dynamics of supernova and binary neutron star mergers.

After the first observation of a massive compact star in 2010 [17] which was followed by
further observations of such objects [18,19] the interest in the covariant density functional
(CDF) theories of superdense matter resurged because its parameters became subject
to astrophysical constraints in addition to the (low-density) constraints coming from
laboratory nuclear physics (for reviews see [20–22]). CDF based models tuned to the
astrophysical constraints that account for the finite temperature, neutrino component,
and strangeness in the form of hyperons appeared in recent years [23–34].

In this work, we study the EoS and composition of nuclear and hypernuclear mat-
ter both in the neutrino free and neutrino-trapped regimes within the CDF formalism.
Our numerical implementation is based on that of Ref. [24] but also includes the hidden
strangeness σ∗ and φ mesons which account for the interactions amongst hyperons. In ad-
dition, instead of using SU(3) symmetry arguments of Ref. [24] in the scalar sector, we
adjust the parameters to the depths of hyperon potentials, as already done in Refs. [35–37]
in the case of zero-temperature EoS. In this work, we use, for the sake of conciseness,
a single nucleonic CDF with parameters chosen according DDME2 parameterization [38].
A similar nucleonic DDME2-model-based finite temperature EoS has been presented in
Ref. [32], where the couplings in the hyperonic sector were taken from Ref. [39] which
differ from the ones adopted here. In this work, we do not address microscopic models
of hypernuclear matter which predict too low masses associated for hyperonic stars, see
Refs. [22,40] for reviews.

This work is organized as follows. Section 2 is devoted to the formal aspects of EoS
and the composition of matter at finite temperatures. The CDF formalism is discussed
in Section 2.1 and the choice of the baryon–meson coupling constants is addressed in
Section 2.2. The thermodynamic conditions of baryonic matter relevant to neutron star
mergers and supernovas are discussed in Section 2.3. Our numerical results are given in
Section 3. Section 4 provides a short summary. We use the natural (Gaussian) units with
h̄ = c = kB = 1, and the metric signature gμν = diag(1,−1,−1,−1).

2. Relativistic Density Functional with Density-Dependent Couplings

2.1. Equation of State

We start with a description of the formalism of CDF as applied to hyperonic mat-
ter. In this work, we adopt the DDME2 parameterization [38] which is based on the
version of the theory that uses density-dependent coupling constants for the meson-baryon
interactions [41].

The Lagrangian of the stellar matter is given by

L = Lb + Lm + Lλ + Lem, (1)

where the baryon Lagrangian is given by

Lb = ∑
b

ψ̄b

[
γμ

(
i∂μ − gωbωμ − gφbφμ − 1

2
gρBτ · ρμ

)
− (mb − gσbσ − gσ∗bσ∗)

]
ψb, (2)

where the b-sum is over the JP
B = 1

2
+

baryon octet; ψb are the Dirac fields of baryons with
masses mb; σ, σ∗, ωμ, φμ, and ρμ are the mesonic fields and gmb are the coupling constants
that are density-dependent. The σ∗- and φ-meson fields only couple to hyperons. The
mesonic part of the Lagrangian is given by
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Lm =
1
2

∂μσ∂μσ − m2
σ

2
σ2 − 1

4
ωμνωμν +

m2
ω

2
ωμωμ − 1

4
ρμν · ρμν +

m2
ρ

2
ρμ · ρμ

+
1
2

∂μσ∗∂μσ∗ − m∗2
σ

2
σ∗2 − 1

4
φμνφμν +

m2
φ

2
φμφμ, (3)

where mσ, mσ∗ , mω, mφ and mρ are the meson masses and ωμν, φμν and ρμν stand for the
field-strength tensors of vector mesons

ωμν = ∂μων − ∂μων, φμν = ∂μφν − ∂μφν, ρμν = ∂νρμ − ∂μρν. (4)

The leptonic Lagrangian is given by

Lλ = ∑
λ

ψ̄λ(iγμ∂μ − mλ)ψλ, (5)

where ψλ are leptonic fields and mλ are their masses. The lepton index λ includes electrons
and μ-ons. In hot stellar matter, one needs to include also the three flavors of neutrinos
whenever they are trapped. An approximate estimate of the temperature above which
neutrinos are trapped is Ttr = 5 MeV. We will neglect henceforth the strong magnetic fields
present in certain classes of compact stars and drop the gauge part Lem of the Lagrangian.
For the inclusion of these effects see Refs. [42–44]. We do not consider in this work the
non-strange J = 3

2 members of the baryons decuplet—the Δ-resonances [35,45–50]; for a
review, see [21].

The partition function Z of the matter can be evaluated in the mean-field and infinite
system approximations from which one finds the pressure and energy density

P = Pm + Pb + Pλ, E = Em + Eb + Eλ, (6)

with the contributions due to mesons and baryons given by

Pm = −m2
σ

2
σ2 − m∗2

σ

2
σ∗2 +

m2
ω

2
ω2

0 +
m2

φ

2
φ2

0 +
m2

ρ

2
ρ2

03, (7)

Em =
m2

σ

2
σ2 +

m∗2
σ

2
σ∗2 +

m2
ω

2
ω2

0 +
m2

φ

2
φ2

0 +
m2

ρ

2
ρ2

03, (8)

Pb =
1
3 ∑

b

2Jb + 1
2π2

∫ ∞

0

dk k4

Eb
k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)
]
, (9)

Eb = ∑
b

2Jb + 1
2π2

∫ ∞

0
dk k2Eb

k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)
]
, (10)

where 2Jb + 1 is the spin degeneracy factor of the baryon octet. The lepton contribution is
given by

Pλ =
1
3 ∑

λ

2Jλ + 1
2π2

∫ ∞

0

dk k4

Eλ
k

[
f (Eλ

k − μλ) + f (Eλ
k + μλ)

]
, (11)

Eλ = ∑
λ

2Jλ + 1
2π2

∫ ∞

0
dk k2Eλ

k

[
f (Eλ

k − μλ) + f (Eλ
k + μλ)

]
, (12)

where 2Jλ + 1 = 2 for electrons and μ-ons and 1 for neutrinos of all flavors. The single

particle energies of baryons and leptons are given by Eb
k =

√
k2 + m∗2

b and Eλ
k =

√
k2 + m2

λ,
respectively, where the effective (Dirac) baryon masses in the mean-field approximation
are given by

m∗
b = mb − gσbσ − gσ∗bσ∗. (13)
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Next, f (E) = [1 + exp(E/T)]−1 is the Fermi distribution function at temperature T. The ef-
fective baryon chemical potentials are given by

μ∗
b = μb − gωbω0 − gφbφ0 − gρbρ03 I3b − Σr, (14)

where μb is the chemical potential, I3b is the third component of baryon isospin and the
rearrangement self-energy Σr, which arises from density-dependence of the coupling
constants, is given by

Σr = ∑
b

(
∂gωb
∂nb

ω0nb +
∂gρb

∂nb
I3bρ03nb +

∂gφb

∂nb
φ0nb − ∂gσb

∂nb
σns

b −
∂gσ∗b
∂nb

σ∗ns
b

)
. (15)

In the mean-field approximation the meson expectation values are given by

m2
σσ = ∑

b
gσbns

b, m2
σ∗σ∗ = ∑

b
gσ∗bns

b, (16)

m2
ωω0 = ∑

b
gωbnb, m2

φφ0 = ∑
b

gφbnb, (17)

m2
ρρ03 = ∑

b
I3bgρbnb, (18)

where the meson fields now stand for their mean-field values; the scalar number density
is given by ns

b = 〈ψ̄bψb〉, whereas the baryon number density is given by nb = 〈ψ̄bγ0ψb〉.
Explicitly, they are given by

nb =
2Jb + 1

2π2

∫ ∞

0
k2dk

[
f (Eb

k − μ∗
b)− f (Eb

k + μ∗
b)
]
, (19)

ns
b =

2Jb + 1
2π2

∫ ∞

0
k2dk

m∗
b

Eb
k

[
f (Eb

k − μ∗
b) + f (Eb

k + μ∗
b)
]
. (20)

2.2. Choice of Coupling Constants

The coupling constants are functions of baryon density, nB. This accounts for mod-
ifications of interactions by the medium at zero temperature; the extrapolation to finite
temperature neglects the influence of temperature on the self-energies of baryons at beyond-
mean-field level. The nucleon–meson couplings are given by

giN(nB) = giN(nsat)hi(x), (21)

where nsat is the saturation density, x = nB/nsat and

hi(x) =
ai + bi(x + di)

2

ai + ci(x + di)2 , i = σ, ω, hρ(x) = e−aρ(x−1). (22)

For completeness, we list the values of parameters in Table 1.

Table 1. The values of parameters of the DDME2 CDF.

Meson (i) mi (MeV) ai bi ci di giN

σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 — — — 7.3672
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The density-dependent functions hi(x) are subject to constraints hi(1) = 1, h′′i (0) = 0
and h′′σ(1) = h′′ω(1).

Fixing the hyperonic coupling constants involves two sources of information: (a) the
couplings of hyperons to the vector mesons are chosen according to the SU(6) spin-flavor
symmetric model [51]; (b) their couplings to the scalar mesons are chosen such as to
reproduce their phenomenological potential depths at the saturation density, which are
determined from experiments.

We express the hyperonic couplings in terms of their ratios to the corresponding cou-
plings of nucleons: RiY = giY/giN for i = {σ, ω, ρ} and Rσ∗Y = gσ∗Y/gσN , RφY = gφY/gωN .
For Λ-hyperons, we adopt RσΛ = 0.6106 [35], which is close to the value determined in
Ref. [52] through fits to the Λ-hypernuclei. The likely range of the potentials for Σ and Ξ
hyperons are

−10 ≤ UΣ(nsat) ≤ 30 MeV, (23)

−24 ≤ UΞ(nsat) ≤ 0 MeV, (24)

where the value UΞ(nsat) = −24 MeV has been given in [53] and is much deeper than the
one expected from Lattice 2019 results [54,55]. The adopted values of the coupling constants
are taken from Ref. [35] and are listed in Table 2. Note that it is implicitly assumed that
the couplings of mesons to hyperons have the same density dependence as for nucleons.
The hidden strangeness mesons have masses mσ∗ = 980 and mφ = 1019.45 MeV, with the
density dependence of their couplings coinciding with those of the couplings of the σ- and
ω-mesons, respectively.

Table 2. The ratios of the couplings of hyperons to mesons. See text for explanations.

Y\R RωY RφY RρY RσY Rσ∗Y

Λ 2/3 −√
2/3 0 0.6106 0.4777

Σ 2/3 −√
2/3 2 0.4426 0.4777

Ξ 1/3 −2
√

2/3 1 0.3024 0.9554

2.3. Thermodynamic Conditions in Supernovas and Merger Remnants

Next, we adopt our hypernuclear CDF to the stellar conditions, specifically to the cases
of supernovas and binary neutron star mergers. As already mentioned, two regimes arise
depending on the ratio of the neutrino mean-free-path to the size of the system: the neutrino
free regime in the case of this ratio being much larger than unity, and the trapped neutrino
regime in the opposite case. Trapped neutrinos are in thermal equilibrium and are charac-
terized by appropriate Fermi distribution functions at the matter temperature. Numerical
simulations provide the lepton fractions that we adopt in our static (time-independent)
description. We assume that the lepton number is conserved in each family, which im-
plies that the neutrino oscillations are neglected. The τ-leptons are neglected because of
their large mass. For supernova matter, the predicted electron and muon lepton numbers
are typically YL,e ≡ Ye + Yνe = 0.4 and YL,μ ≡ Yμ + Yνμ = 0 [1,6,29], where we introduced
partial lepton densities normalized by the baryon density Ye,μ = (ne,μ − ne+ ,μ+)/nB, where
e+ refers to the positron and μ+—to the anti-muon. Note, however, that Ye may vary
significantly along with a supernova profile in a time-dependent manner. Furthermore,
muonization in the matter can lead to a small (of the order 10−3) fraction of μ-ons [56,57]
which we neglect here. In the case of neutron star mergers, the hot remnant emerges from
the material of initial cold neutron stars, and the lepton fractions YL,e = YL,μ = 0.1 are
assumed for the remnant of a merger. The adopted values reflect (approximately) those of
the pre-merger cold neutron stars.
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The stellar matter is in weak equilibrium and is charge neutral. The equilibrium with
respect to the weak processes requires

μΛ = μΣ0 = μΞ0 = μn = μB, (25)

μΣ− = μΞ− = μB − μQ, (26)

μΣ+ = μB + μQ, (27)

where μB and μQ = μp − μn are the baryon and charge chemical potentials, μb with
b ∈ {n, p, Λ, Σ0,±, Ξ0,−} are the thermodynamic chemical potentials of the baryons. The
charge neutrality condition is given in terms of the partial densities of charged baryons as

np + nΣ+ − (nΣ− + nΞ−) = nQ. (28)

Introducing the partial charge density normalized by the baryonic density YQ = nQ/nB,
the charge neutrality condition can be written

YQ = Ye + Yμ. (29)

The free streaming and trapped neutrino regimes are characterized by

μe = μμ = −μQ = μn − μp, (free streaming) (30)

μe = μL,e − μQ, μμ = μL,μ − μQ, (trapped) (31)

where μL,e/μ are the lepton chemical potentials which are associated with the lepton number
YL,e = Ye + Yνe and YL,μ = Yμ + Yνμ , which are conserved separately. Combining the weak-
equilibrium and charge neutrality conditions we are now in a position to compute the
EoS of stellar matter both in the trapped and free streaming neutrino regimes. Note that
it is implicitly assumed that the matter is under detailed balance with respect to Urca
processes; if this condition is violated, then an additional “isospin chemical potential”
arises [58,59]. Additionally, note that we do not constrain particles to their Fermi surfaces
and any corrections associated with the finite temperature features of the Fermi distribution
function are included in our β-equilibratium condition.

3. Numerical Results

Our numerical procedure involves a solution of self-consistent equations for the
meson fields and the scalar and baryon densities for fixed values of temperature, density,
and lepton numbers YL,e and YL,μ, which are chosen according to the physical conditions
characteristic for supernovas and merger remnants, as specified in Section 2.3. In this work,
we concentrate on the features of EoS and particle fractions (or abundances) in the matter
under various thermodynamic conditions.

Figure 1 shows the EoS for nucleonic and hyperonic matter at temperature T = 0.1 MeV
in the β-equilibrium and neutrino-free case, as well as at T = 5 and 50 MeV with trapped
neutrinos and several values of YL,e. The μ-on fractions are chosen as YL,μ = 0 for YL,e =
0.2, 0.4 and YL,μ = YL,e = 0.1. The non-zero YL,μ is characteristic of merger remnants
whereas zero YL,μ is characteristic for supernovas. The key well-known feature of the onset
of hyperons seen in Figure 1 is the softening of the EoS, i.e., the shift of pressure to lower
values above the energy-density for the onset of hyperons. It is further seen that for a
higher temperature, the pressure is larger at low densities and is lower at high densities
independent of the presence of hyperons.
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Figure 1. Dependence of the pressure on the energy density. The panel labeled μν = 0 corresponds to
neutrino-free β-equilibrium case without (solid) and with (dashed) hyperons at T = 0.1 MeV. (Varying
the temperature up to Ttr does not produce visible changes.) The remaning panels show results
for the neutrino trapped matter at T = 5 MeV (solid—without hyperons and long-dashed—with
hyperons) and 50 MeV (short-dashed—without hyperons and double-dash-dotted—with hyperons)
for YL,e = 0.1, 0.2, 0.4. The μ-on fractions are YL,μ = YL,e = 0.1 (upper right panel) and YL,μ = 0 for
YL,e = 0.2 and 0.4 (lower row). The case YL,e = 0.1 is characteristic of a merger remnant, whereas
YL,e = 0.2, 0.4—to supernova.

Figure 2 shows the particle number densities ni/nB in npeμ-matter normalized by
baryon density as a function of baryon density normalized by nsat = 0.152 fm−3. The case
μν = 0 corresponds to the β-equilibrium neutrino-free case at T = 1 MeV, whereas the cases
YL,e = 0.1, 0.2, 0.4 correspond to the trapped neutrino regime at T = 50 MeV. The choices
of YL,μ match those of Figure 1. In contrast to the neutrino-transparent case, where the
muons appear above a threshold density around nsat where μe ≥ mμ, in the neutrino-
trapped regime, the electron and muon contributions are almost equal under merger
conditions (YL,e = 0.1), and there is a visible fraction of μ-on neutrinos. Thus, the charge
neutrality is maintained through the balance of negative charges of both types of leptons
with protons. From the upper right panel of Figure 2, we see that the net neutrino numbers
become negative at low densities for both lepton families, indicating that there are more
antineutrinos than neutrinos in the low-density and high-temperature regime of neutron
star merger matter.

Note that the proton fraction remains below the threshold for the Urca processes to
operate in the low-temperature neutrino-free regime. In the high-temperature regime, the
phase-space for Urca processes opens due to the thermal smearing of Fermi surfaces of
baryons. This has important ramifications on the oscillations of post-merger remnants
through the damping effect of the bulk viscosity driven by Urca processes [34,58,60–62].
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Figure 2. Dependence of the particle fractions ni/nB on the baryon density nB normalized by the
saturation density. The panels show the composition of npeμ matter in β-equilibrium at T = 1 MeV
in the neutrino-free case (μν = 0) and for neutrino-trapped matter at T = 50 MeV for several values
of the electron lepton faction YLe = 0.1, 0.2, 0.4., with the μ-on component satisfying YLμ = YLe = 0.1
and YLμ = 0 for YLe = 0.2, 0.4, where YLμ is the μ-on lepton fraction.

Under the supernova conditions, μ-ons are greatly suppressed and the corresponding
neutrinos are extinct. Then, the near equality of proton and electron abundances is required
by charge neutrality. Note that the μ-on abundances need not vanish, as YL,μ also includes
the contributions from muonic neutrinos and antineutrinos. The small μ-on fraction seen in
the lower panels of Figure 2 is compensated by an equal fraction of muonic antineutrinos ν̄μ

required by the condition YL,μ = 0. The isospin asymmetry in supernova matter is reduced
with increasing YL,e and, consequently, the difference between the neutron and proton
abundances gradually vanishes. The electron-neutrino population increases as well. In the
cases YL,e = 0.1, the μ-on neutrino fraction is comparable to that of electron-neutrinos, as
their lepton numbers are set equal. In the lower panels of Figure 2, they are absent because
we enforced the condition YL,μ = 0.

Figure 3 shows the same as Figure 2, but it includes the full baryon octet. Hyperons
appear at densities above the saturation, in the following sequence: Λ, Ξ− and Ξ0. The onset
of Σ− hyperon in the low-temperature matter occurs at densities outside the range shown.
The reason for the shift of Σ− hyperons to high densities is the adopted highly repulsive
potential value in nuclear matter [63–68]. This ordering is at variance to the case of free
hyperonic gas, where Σ− was predicted to be the first hyperon to nucleate [69], and
more elaborate models which assign weakly repulsive potential, see, e.g., [24]. However,
the triplet of Σ±,0 is present for T = 50 MeV independent of the values of lepton numbers.
It is interesting that Σ− and Σ+ fractions interchange their roles from being most abundant
to least abundant Σ-hyperon with increasing density at a special intersection point where
the abundances of all the Σs coincide. Note that the location of this special point depends
on the choice of YL,e. Furthermore, it is seen that the intersection point of n and p fractions,
as well as that of Ξ− and Ξ0 fractions, are located close to the intersection point of Σs.

This feature can be understood by examining the β-equilibrium conditions (25)–(27).
If there is a point within the density range considered where the proton fraction reaches
the neutron fraction (which means μ∗

n = μ∗
p due to Equation (19)), then the charge chem-

ical potential μQ = μp − μn vanishes at that point (due to the density scaling (22), the
contribution of the ρ-meson mean-field to the effective baryon chemical potentials (14)
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is negligible at high densities, resulting in μ∗
n − μ∗

p � μn − μp). This results in a single
chemical potential μb = μB for the full baryon octet at that special isospin degeneracy point.
This implies, in turn, almost equal values of effective chemical potentials and, therefore,
equal baryon fractions within a given isospin-multiplet.

Figure 3. Same as in Figure 2, but for the full baryon octet with the μ-on component satisfying the
conditions YL,μ = YL,e = 0.1 (upper right) and YL,μ = 0 for YL,e = 0.2, 0.4 (lower row). In the low-
temperature, β-equilibrium case, the Λ, Ξ− and Ξ0 appear in the given order with a sharp increase in
their fractions at the corresponding density thresholds. At high temperature T = 50 MeV the density
thresholds are located at lower densities (some are outside figure’s scale) and the triplet Σ0± appears.
The fractions of Λ hyperons are shown by dash-triple-dot lines, that of Ξ0,− by double-dash-double-
dot lines and that of Σ0,± by dash-single-dot lines. The electron and μ-ons neutrinos are shown by
double-dash-dot lines; the electrons and μ-ons by long-dashed lines, protons by short-dashed lines
and, finally, neutrons by solid lines.

Figure 4 shows the effective masses of baryons as a function of density at T = 0.1 MeV
and in β-equilibrium. The effective masses of isospin multiplets (n, p), Σ0,± and Ξ0,− are
degenerate. The temperature dependence of the effective masses of baryons is very weak
and, for the sake of clarity, is not shown.

Figure 5 shows the effective baryon chemical potentials minus their effective masses,
which clearly show the special intersection points within each multiplet at all values
of the lepton fractions in the neutrino-trapped matter. Note that the effective masses
within each multiplet are equal in our model, see Figure 4 above. On the left side of the
intersection point we have μQ ≤ 0, which according to the conditions (25)–(27) puts the
baryon abundances within each multiplet in the charge-decreasing order (i.e., baryons with
smaller charges are more abundant). Above the intersection point μQ ≥ 0, the ordering of
baryon fractions within each multiplet is reversed. Similar behaviour of baryon abundances
was found also in Refs. [6,32], where the composition of hot stellar matter was shown
at constant entropy-per-baryon and the composition of matter also included the quartet
of Δ-resonances. Note that in the ideal case of exact isospin symmetry, the intersection
points of the three isospin-multiplets n − p, Σ0,± and Ξ0,− would be located exactly at the
same density. The small deviations of these three points from each other (which increase
gradually with increasing YL,e) reflect the fact that the isospin symmetry is approximate.
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Figure 4. Dependence of effective masses of baryons on the density at T = 0.1 MeV and in β-
equilibrium. Each isospin multiplet is shown by a single line due to the degeneracy in their masses.

Figure 5. Dependence of baryon effective chemical potentials (computed from their effective masses)
on the normalized baryon density nB/nsat. The line styles for each baryon and the values of the
temperature and lepton fractions for each panel match those in Figure 3. The intersection (isospin
degeneracy) points of chemical potentials of the same isospin-multiples is clearly visible at all values
of lepton fractions in the neutrino-trapped matter.

The difference between almost equal abundances of leptons for YL,e = 0.1 and the
remaining cases YL,e = 0.2, 0.4 is related to our choice of YL,μ to reflect merger remnant
conditions (first case) and supernova conditions (second case). This difference also propa-
gates to the abundances of electron and μ-on neutrinos, which are present in almost equal
quantities in the first case, whereas in the second case, the μ-on neutrinos are replaced by a
much smaller amount of μ-on antineutrinos. Hyperons affect the way the charge neutrality
is maintained at high density. In low-temperature and β-equilibrated matter it is enforced

96



Universe 2021, 7, 382

by equal abundances of protons and Ξ− hyperons with electrons and μ-ons being extinct
at high densities. At finite temperature, the electrons are abundant and the presence of
Ξ− hyperon only induces some splitting between the electron and proton fractions, which
becomes less pronounced with increasing YL,e. The fractions of μ-ons and their neutrinos
in the merger remnant case (YL,e = YL,μ = 0.1) are as significant as those of electrons and
electron-neutrinos, respectively, but they do not play any significant role in the super-
nova case where YL,μ = 0. In contrast to the pure nucleonic matter where the neutrino
abundances remain constant or decrease slowly with baryon density, the hypernuclear
matter features increasing neutrino abundances with density because of decreasing lepton
fractions at fixed YL,e and YL,μ.

It is further seen that finite temperatures induce a significant shift of the hyperon
thresholds to lower densities (which lie outside of the density range considered). This is in
accordance with the recent observation that low-density hot nuclear matter may feature
a significant fraction of strangeness (Λ-particles) as well as Δ-resonances in addition to
light clusters and free nucleons [70]. Note also that the Λ-hyperon abundances become
larger than those of neutrons at high density, i.e., these species are the dominant baryonic
component in the matter for nB/nsat � 5.5. This results mainly from the weaker repulsive
coupling of Λs to ω-meson which enhances their abundances compared to neutrons. The
weaker renormalization of Λ’s mass due to coupling to σ and σ∗ mesons than that of
neutron is less important.

Figure 6 shows the particle fractions in the hypernuclear matter in the tempera-
ture range 10 ≤ T ≤ 40 MeV and electron and μ-on fraction fixed by the condition
YL,e = YL,μ = 0.1 characteristic of neutron star binary mergers. It is seen that the abun-
dances of neutrons, protons, electrons and μ-ons are weakly dependent on the temperature.
Due to equal lepton numbers, the electron and μ-on abundances are close to each other with
the small electron excess reflected in the dominance of μ-on neutrinos over the electron-
neutrinos. At high densities, the neutrino abundances are almost independent of the
temperature as well, but they decrease with increasing temperature and, eventually, be-
come negative at temperatures between 40 and 50 MeV in the low-density domain (see
also the upper right panel of Figure 3).

Figure 6. Same as in Figure 3, but for the fixed electron and μ-on lepton fractions YL,e = YL,μ = 0.1
and temperatures T = 10, 20, 30 and 40 MeV. The lepton number fractions are characteristic for
binary neutron star mergers.
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Hyperons have sharply increasing fractions at the thresholds at T = 10 MeV, which
replicates those at low temperatures and in neutrino-free regimes. With increasing tempera-
ture, the thresholds of the appearance of the hyperons move to the lower densities, with the
Λ threshold moving to a density below nsat/2. The high-density limit shows the following
new features: (a) the Λ becomes the most abundant baryon by exceeding the neutron
fraction; the Ξ0 hyperon overtakes Ξ− and becomes the second-most abundant hyperon.
Note that the upper right panel of Figure 3 differs from the panels shown here only by the
temperature (T = 50 MeV); therefore, our comments here parallel the statements made
earlier in the context of Figure 3. Turning to the Σs, we note that their abundances are
noticeable for T ≥ 20 MeV and the occurrence of the special interchange point of isospin
degeneracy is seen again for T = 30 MeV and T = 40 MeV.

In Figure 7, we show the same as in Figure 6 but for YL,e = 0.4 and YL,μ = 0, which
physically corresponds to the case of supernova matter. Many general trends seen for
baryon abundances remain the same under these new conditions. An interesting new fea-
ture is the near equipartition between neutrons, Λ, and protons at high density nB/nsat ≥ 5,
with Ξ0 fraction approaching this group above 6nsat. As for leptons, the main effect arises
from the drop of μ-on fraction to below 1% and less for T ≤ 40 MeV. For T = 50, this
number climbs to a few percent (see Figure 3, lower panels). Because of this, the charge
neutrality is mainly maintained by the equality of the abundances of protons and electrons,
with slight disparity introduced by Ξ− at high density. The most striking difference is the
strong enhancement of electron-neutrino abundances for all temperatures, with a very
weak dependence on the temperature of the environment.

Figure 7. Same as in Figure 6, but for the fixed YL,e = 0.4 and YL,μ = 0, i.e., the lepton number
fractions are characteristic for supernova.

4. Conclusions

In this work, we explored the finite-temperature EoS of nuclear and hypernuclear
matter within the CDF formalism. Formally, our study uses essentially the same approach
as that of Ref. [24], but it includes additional hidden-strangeness mesons and employs a
different strategy to fix the hyperonic couplings in the scalar sector by adjusting these to the
depths of hyperon potential in nuclear matter. We performed parameter studies varying the
temperature, density and lepton fraction within two scenarios: the binary merger remnant
scenario with equal numbers of electron and μ-on lepton numbers and the supernova
scenario with non-zero electron and zero μ-on lepton numbers. In all cases, the well-known
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feature of softening of the EoS with the inclusion of hyperons is reproduced. Even though
the temperature dependence of the EoS is not strong (see Figure 1), it has significant impact
on the radii and masses of compact stars (see for example, refs. [32,71]). The abundances of
particles in a baryon–lepton mixture in a merger remnant and a supernova were explored
within the CDF formalism. The main features are: (a) at finite temperatures, the sharp
increase in hyperon fractions at the thresholds is replaced by a gradual increase over
a density range allowing for a significant fraction of hyperons, especially Λs, at sub-
saturation densities, as shown in Figures 3, 6, and 7. (b) At large densities nB/nsat ≥ 5,
the most abundant baryon is Λ, as in the strongly relativistic regime, the difference between
the (bare) masses of the neutron and Λ is not important. The weaker coupling of σ meson
to Λ than to nucleon results in a a weaker renormalization of Λ mass (see Figure 4) which
disfavors Λ hyperons. However, the weaker repulsive coupling of Λs to ω-meson promotes
their abundances compared to neutrons, which eventually leads to their dominance at high
densities. Note that the ρ-meson coupling is exponentially suppressed at high densities and
it does not play any considerable role. Note also that the roles played by σ∗- and φ-mesons
are similar to that of σ- and ω-mesons, but are quantitatively less important. (c) The triplet
of Σ hyperons, which is completely suppressed in the cold regime of hypernuclear matter,
emerges at temperatures above 20 MeV, with significant fractions of Σ− compatible to that
of Ξ− at low densities nB ≤ 2nsat and high temperatures T ≥ 40 MeV. (d) In the neutrino-
trapped regime, there is always a special isospin degeneracy point where the charge
chemical potential of the system vanishes. At that point, the baryon abundances within
each of the three isospin-multiplets are equal to each other as a result of (approximate)
isospin symmetry. (e) We find a significant difference between the neutrino abundances in
the merger remnant and supernova cases. In the first case, there are comparable numbers
∼ 1% of electron and μ-on neutrinos (the electron and μ-on lepton numbers being equal).
In the second case, electron neutrino abundance is much larger ∼ 10% and μ-on neutrinos
are absent (there is only a small fraction of μ-on anti-neutrinos in this case, typically less
than a percent). This, of course, reflects the choices of YL,e and YL,μ for these cases, but the
abundances are not trivially related to lepton numbers.
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Abstract: We investigate the influence of repulsive vector interactions and color superconductivity on
the structure of neutron stars using an extended version of the field correlator method (FCM) for the
description of quark matter. The hybrid equation of state is constructed using the Maxwell description,
which assumes a sharp hadron-quark phase transition. The equation of state of hadronic matter is
computed for a density-dependent relativistic lagrangian treated in the mean-field approximation,
with parameters given by the SW4L nuclear model. This model described the interactions among
baryons in terms of σ, ω, ρ, σ∗, and φ mesons. Quark matter is assumed to be in either the CFL
or the 2SC+s color superconducting phase. The possibility of sequential (hadron-quark, quark-
quark) transitions in ultra-dense matter is investigated. Observed data related to massive pulsars,
gravitational-wave events, and NICER are used to constrain the parameters of the extended FCM
model. The successful equations of state are used to explore the mass-radius relationship, radii, and
tidal deformabilities of hybrid stars. A special focus lies on investigating consequences that slow
or fast conversions of quark-hadron matter have on the stability and the mass-radius relationship
of hybrid stars. We find that if slow conversion should occur, a new branch of stable massive stars
would exist whose members have radii that are up to 1.5 km smaller than those of conventional
neutron stars of the same mass. Such objects could be possible candidates for the stellar high-mass
object of the GW190425 binary system.

Keywords: neutron stars; hybrid star; equation of state; color superconductivity; diquark

1. Introduction

Neutron stars (NSs) are compact stellar remnants which are born in type-II supernova
explosions [1]. Within just a few minutes after birth, they turn into cold (on the nuclear
scale) stellar objects with temperature of just a few MeV [2]. Their masses can be as high as
∼ 2 M�, and their radii range from ∼10 to ∼13 km, depending on mass. The mean density
of a NS with a canonical mass of 1.5 M� is higher than the nuclear saturation density of
n0 = 2.5 × 1014 g cm−3 and the density reached in the central core is expected to be several
times higher than n0 [3]. Paired with the unprecedented current progress in observational
astronomy [4–8] these characteristic features make NSs superb astrophysical laboratories
for a wide range of physical studies, which help us to understand the nature of matter
subjected to most extreme conditions of pressure and density [9,10].

Traditionally, NSs are though as three-layer compact objects composed by an inner
core, an outer core and a crust. Densities in the crust are lower than n0. Experimental
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nuclear physics data from terrestrial laboratories have been extremely useful to reduce the
uncertainties in the low-density regime of such NS matter and its associate equation of
state (EoS). The situation is different for matter with densities above n0, for which there
is no general agreement about the structure and composition. This lack of knowledge in-
creases with increasing central density [11,12]. Over the years, several different theoretical
possibilities regarding the unknown nuclear composition have been explored, including
those that take into account a possible hadron-quark phase transition (see, e.g., Refs. [10,12],
and references therein). Neutron stars containing hadrons and deconfined quarks in their
center are referred to as hybrid stars (HS). The situation is different for matter at densities
above n0, for which no general agreement on the structure and composition exists. This lack
of knowledge deepens with increasing density. Several different theoretical possibilities
of the central composition of NSs are being explored, including some which account for
a possible hadron-quark phase transition (see, for example, Refs. [10,12], and references
therein). NSs containing hadrons and deconfined quarks in their centers, are known as
hybrid stars (HSs).

Observations of the 2 M� pulsars PSR J1614-2230 [13,14], PSR J0348+0432 [15] and
PSR J0740+6620 [16] have imposed strong constraints to the EoS of matter inside NSs.
In addition, the merger of two binary NSs (BNSs) known as GW170817, together with the
detection of the electromagnetic radiation associated with this event, has been used to put
constraints on the radius and dimensionless tidal deformability of the merging compact
objects and, therefore, indirectly on their nuclear EoSs [4]. The analysis of the data from
this event has been used to set new limits on the radius of a 1.4 M� NS which is estimated
to be between 9.2 and 13.76 km [17]. Moreover, the upper bound to the maximum-mass
of cold and slowly rotating NS has been estimated to be ∼ 2.3 M� [18]. A second BNS
merger, named GW190425, has been detected by the LIGO Livingston interferometer.
In this case, the inferred total mass of the NSs that merged has been estimated to be
Mtot = 3.4+0.4

−0.1 M� [6]. This is higher than the expected Galactic mean mass for this kind of
binary systems [19]. To date, no electromagnetic counterpart associated with GW190425
has been detected (see, for example, Ref. [20], and references therein).

In 2019 the NICER collaborations have determined the mass and radius of the
isolated NS PSR J0030+0451 with values of 1.34+0.15

−0.16 M� and 12.71+1.14
−1.19 km [21] and

M = 1.44+0.15
−0.14 M� and 13.02+1.24

−1.06 km [22]. Very recently, data from NICER and XMM-
Newton were used to determine the radius of PSR J0740+6620 with a value of 13.7+2.6

−1.5 km [8]
and 12.39+1.30

−0.98 km [7]. These values show that the radius of PSR J0030+0451 is similar to
the radius of the much more massive NS PSR J0740+6620, whose mass is 2.072+0.067

−0.066 M� [7].
This constrains the nuclear EoS to a greater degree than previously possible.

For a comprehensive study of the properties of matter in the cores of neutron stars and
the EOS associated with such matter, it is necessary to resort to Quantum Chromodynamics
(QCD), the theory of strong interactions. Besides quark confinement, asymptotic freedom
is one of the main features of QCD, which states that matter at high density and/or
temperatures exhibits a phase transition in which hadrons merge leading to the formation
of a plasma of quarks and gluons. QCD has inherent computational problems that make
it extremely difficult to perform analytic calculations at finite densities to be performed.
For this reason, several phenomenological and/or effective models have been proposed
that reproduce (some of) the key features and symmetries of the QCD Lagrangian density
(see Ref. [10] and references therein).

If the hadron-quark phase transition occurs in the cores of NSs, it has been shown
that the liberated quarks should form a color superconductor (CSC) [23–25]. This phase is
characterized by the formation of quark Cooper pairs, similarly to the formation of electron
Cooper pairs in ordinary condensed matter superconductivity, which is energetically
favored since it lowers the energy of the Fermi sea of fermions [26]. A Cooper pair of
quarks can not be a in a color singlet state as the corresponding condensate breaks the
QCD local color symmetry, SU(3)color. Hence the notion color superconductivity. Since
the pairing among the quarks is quite robust, quark matter, if existing in the cores of
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NSs, ought to be a CSC. In contrast to ordinary condensed matter superconductivity,
however, the condensation patterns of CSC quark matter are much more complex as up to
three different quark flavors and three different color states are involved in the diquark
formation [24,25].

Two of the most studied color superconducting phases are the two flavor color su-
perconducting (2SC) phase and the color-flavor-locked (CFL) phase. In the 2SC phase,
only up, u, and down, d, quarks pair. The strange quark, s, has a mass that is by two
orders of magnitude higher than the masses of u and d quarks. This favors the formation
of the 2SC phase at intermediate densities, while at high densities, where the mass of
the strange quark plays a less dominant role, the CFL phase may replace the 2SC phase.
CFL is a more symmetric phase of matter in which all three quark flavors are involved in
the pairing process. There is also the possibility that a phase known as 2SC+s is formed
at intermediate densities, where the strange quarks are treated as a gas of free massive
fermions [27]. The formation of diquarks lower the energy of the system by an amount
related to the size of the CSC gap, Δ. This quantity is a function of the chemical potential,
but can be treated as a free parameter of the model [28]. This phenomenological approach
is useful as it gives theoretical insight into CSC. The occurrence of each of these phases is
directly related to the mass of the strange quark mass, the energy gap, and the electron
chemical potential [25].

In addition to the possibility of diquarks formation in HSs, it is known that the
inclusion of the repulsive vector interaction in quark models allows HSs to satisfy the 2 M�
constraint [29–31].

In this work, we study the influence of color superconductivity and of vector interac-
tions among quarks on the composition and structure of HSs. Using an extended version of
the Field Correlator Method (FCM) for the description of quark matter [32–34], the effects
of 2SC+s and CFL superconductivity is included in the quark model in a phenomenological
way. To model the hadronic phase of the hybrid EoS, we use the SW4L parametrization
of the density dependent relativistic mean-field theory which includes all particles of the
baryon octet as well as the Δ resonance [35].

We assume that the surface tension at the hadron-quark interface is high so that a
sharp hadron-quark phase transition occurs, which is modeled as a Maxwell transition
(see Ref. [10], and references therein). In this context we analyze the possibilities of rapid
versus slow conversions of matter at the hadronic and quark matter interface [36]. This
phenomenon requires a modification of the traditional stability criteria of compact objects.

The paper is organized as follows. In Section 2 we provide some details of the
treatment of phase transitions in HSs. Chemical and mechanical equilibrium conditions for
the construction of the hybrid EoS are also given. Section 3 is devoted to the description of
the hadronic model used to describe the outer cores of HSs. The model used to describe
quark matter in the inner core of HSs is introduced in Section 4. The model accounts for
vector interactions among quarks and the effects of color superconductivity. The results
of our comprehensive analysis of quark matter parameters, phase transitions and hybrid
configurations will be discussed in Section 5. Finally, a summary and discussion of our key
findings are presented in Section 6.

2. Quark-Hadron Phase Transition in Neutron Stars

Properties such as the surface tension at the hadron-quark interface, σHQ, and nu-
cleation timescale are only poorly known. These two quantities define the nature of the
hadron-quark phase transition. For example, whether the hadron-quark phase transition
separating both types of matter is sharp or smooth is determined by the value of the
surface tension between the two phases. If the value of the surface tension is larger than a
critical value of σHQ ∼ 70 MeV fm−2, a (sharp) Maxwell phase transition is favored [37–39].
Otherwise, a (smooth) Gibbs phase transition would be expected. It is important to note
that for the Gibbs formalism, the global electric charge neutrality condition leads to the
appearance of geometrical structures in the mixed hadron-quark phase. This so-called
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pasta phase is highly dependent on the EoS used to construct the phase transition as well
as on the value of σHQ (see, for example Refs. [40,41], and references therein).

Although the analysis of data from GW170817 and its electromagnetic counterpart led
to the conclusion that high-mass NSs may be expected to have quark matter in their inner
cores [42], there is no direct observational evidence of the occurrence of a hadron-quark
phase transition in the interior of such objects. In this work, we assume that the favored
transition scenario is that of a sharp hadron-quark phase transition.

Within this theoretical framework, we study two different regimes related to the
nucleation timescales of the sharp phase transition: the slow and the rapid conversion.
The importance of considering these different theoretical scenarios has been introduced in
Ref. [36]. In that work, the authors showed the huge impact these two types of conversions
have on the structure and stability of HSs against radial oscillations. The main result was
that when a slow conversion rate is considered to occur inside of a HS, the star continues
to remain stable against radial oscillations (i.e., the fundamental radial mode remains
real valued) even beyond the gravitational mass peak, where the mass is decreasing with
increasing central energy density (for details, see Ref. [43]). This finding differs drastically
from the standard stability criterion established for compact stars whereupon stability of
stars against radial oscillations is only possible if the mass is monotonically increasing
with density.

The concept of slow and rapid conversion is linked to the relationship between two
very different timescales. These are the nucleation timescale, i.e., the characteristic time
during which a hadron (quark) fluid element is converted into quark (hadronic) matter,
and the characteristic timescale of the oscillation of the fluid elements. As to the latter,
the fluid elements located near the transition interface oscillate to regions of larger (smaller)
pressures as the oscillation stretches and compresses the matter in the star. The hadron-
quark conversion is slow (rapid) if the nucleation timescale is much larger (smaller) that
the one associated with the oscillations at the interface separating the two phases.

The strong and weak interactions have times scales that differ from each other by many
orders of magnitude (τstrong ∼ 10−23 s, τweak ∼ 10−8 s). For this reason it has been proposed
that the hadron-quark deconfinement process ought to consist of two separate steps: the
formation of a virtual drop of out-of-β-equilibrium quark matter that will subsequently
reach chemical equilibrium. The characteristic time scale of this process is related to the
difference between the Gibbs free energies of equilibrium and out-of-β-equilibrium quark
matter (for a more detailed discussion, see, for example, Ref. [44]). Present results for
this energy difference are strongly model dependent and inconclusive (for details, see,
for example, Refs. [45–49]). Therefore, in this work we shall account for both theoretical
possibilities and analyze the astrophysical consequences and observational differences that
might help understand in detail the microphysics of the hadron-quark phase transition.

The composition of the matter in the interior of a HS is determined by the condition of
β-equilibrium and electric charge neutrality [50,51]. These condition imposes a relationship
between the chemical potentials of the different particle species in the hadronic phase,

μB = μn + qB μe , (1)

and in the quark phase with flavors f = u, d, s,

μ f = μn/3 + q f μe , (2)

where qB and q f are the baryon and quark electric charges, μn is the neutron chemical
potential, and μe the electron chemical potential.

To calculate the hybrid EoS within the Maxwell construction at zero temperature,
T = 0, we impose the mechanical equilibrium condition that reads

Ph(μn, μe) = Pq(μn, μe) . (3)
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Charge neutrality is imposed locally in the Maxwell formalism, i.e., each phase has to
be independently electrically neutral. This condition is satisfied if ∂Ph(q)/∂μe = 0, where
Ph(q) is the pressure of the hadronic (quark) phase, which will be defined later.

3. The Hadronic Phase

To describe hadronic matter in the outer core of HSs we use the SW4L parametrization
of the density dependent non-linear relativistic mean-field model [52–54]. This family
of models have gained popularity since the density-dependent couplings allows one to
account for the latest slope values of the symmetry energy consistent with experimental
data [55,56]. This quantity plays a significant role for the determination of the radii of
NSs [57].

For the SW4L parametrization, the interactions between baryons are described by the
exchange of scalar (σ, σ∗), vector (ω, φ) and isovector (ρ) mesons. The pressure and the
energy density of the model are given by

Ph =
1

π2 ∑
B

∫ pFB

0
dp

p4√
p2 + m∗2

B

− 1
2

m2
σσ̄2

− 1
2

m2
σ∗ σ̄∗2 +

1
2

m2
ωω̄2 +

1
2

m2
ρρ̄2 +

1
2

m2
φφ̄2 (4)

− 1
3

b̃σmN(gσN σ̄)3 − 1
4

c̃σ(gσN σ̄)4 + nR̃ ,

εh =
1

π2 ∑
B

∫ pFB

0
dp

√
p2 + m∗2

B +
1
2

m2
σσ̄2

+
1
2

m2
σ∗ σ̄∗2 +

1
2

m2
ωω̄2 +

1
2

m2
ρρ̄2 +

1
2

m2
φφ̄2 (5)

+
1
3

b̃σmN(gσN σ̄)3 +
1
4

c̃σ(gσN σ̄)4 ,

where the sum over B sums all members of the baryon octet, p, n, Λ, Σ, Ξ, as well as the
Δ resonance. The quantities gρB(n) denote density dependent meson–baryon coupling
constants that have a functional form given by

gρB(n) = gρB(n0) exp
[
−aρ

(
n
n0

− 1
) ]

, (6)

where n is the total baryon number density. The last term in Equation (4) is the rearrange-
ment term which guarantees the thermodynamic consistency of the model [58],

R̃ = [∂gρB(n)/∂n]I3BnBρ̄ . (7)

The quantity I3B is the 3-component of isospin, and nB = p3
FB

/3π2 are the particle
number densities of each baryon B with Fermi momentum pFB . The effective baryon mass
in Equations (4) and (5) is given by

m∗
B = mB − gσBσ̄ − gσ∗Bσ̄∗ . (8)

The parameters of SW4L are presented in Table 1. These values are adjusted to the
properties of nuclear matter at saturation density shown in Table 2 (for details, see Ref. [54],
and references therein).
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Table 1. Parameters of the SW4L parametrization that lead to the properties of symmetric nuclear
matter at saturation density shown in Table 2.

Quantity Numerical Value

mσ (GeV) 0.5500
mω (GeV) 0.7826
mρ (GeV) 0.7753
mσ∗ (GeV) 0.9900
mφ (GeV) 1.0195

gσN 9.8100
gωN 10.3906
gρN 7.8184
gσ∗N 1.0000
gφN 1.0000
b̃σ 0.0041
c̃σ −0.0038
aρ 0.4703

Table 2. Energy per nucleon E0, nuclear compressibility K0, effective nucleon mass m∗, symmetry
energy J0, and slope of the symmetry energy L0 of nuclear matter at saturation density, n0, obtained
for the SW4L parametrization.

Saturation Properties Numerical Values

n0 (fm−3) 0.15
E0 (MeV) −16.0
K0 (MeV) 250.0
m∗

N/mN 0.7
J0 (MeV) 30.3
L0 (MeV) 46.5

4. The Quark Phase

To describe quark matter in the inner core of cold HSs we use an extended version of
the FCM model, including the effects of repulsive vector interactions among quarks and of
color superconductivity.

The FCM model is based on the calculation of the amplitudes of the color electric
DE(x), DE

1 (x) and color magnetic DH(x), DH
1 (x) Gaussian correlators. DE(x) and DH(x)

are directly related with the confinement of quarks, and DE
1 (x), DH

1 (x) contain perturbative
terms related to the perturbation expansion over the strong coupling constant at a given
order [32,59]. The method has been generalized to finite temperature and baryonic density
using the single line approximation (SLA) which neglects, to first order, all perturbative
and non-perturbative interactions of the system. In this way, it is possible to factorize the
partition function into the products of one gluon and one quark (anti-quark) contributions
and thus calculate the corresponding thermodynamic potential [33].

For zero-temperature HS matter, DE(x) = DH(x) and DE
1 (x) = DH

1 (x), leaving two
field correlators which can be parametrized through the large distance qq̄ potential, V1,
and the gluon condensate, G2. In addition, the main consequence of repulsive vector inter-
actions for HSs is to stiffen the EoS of quark matter to obtain 2 M� stellar configurations,
in agreement with recent observations of massive pulsars. We also mention that the onset
of quark matter in the interior of HSs is affected by this interaction.

Both vector interactions among quarks and color superconductivity are taken into
account by FCM model.

4.1. Inclusion of Vector Interactions in the FCM Model

The inclusion of vector interactions among quarks modifies the SLA of the quark
pressure in the following way
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Pf =
T4

π2

[
φ+

ν (
μ∗

f − V1/2

T
) + φ−

ν (
μ∗

f + V1/2

T
)

]
+ PVI(T, μ∗

f ) , (9)

where

φ±
ν (a) =

∫ ∞

0
dz

z4
√

z2 + ν2

1

e
√

z2+ν2±a + 1
, (10)

and ν = m f /T, mq is the bare quark mass of a quark flavor f and T is the temperature.
The effective chemical potential is given by

μ∗
f = μ f − Kv w(T, μ∗

f ) , (11)

where μ f is the chemical potential of a quark of flavor f , Kv is the coupling constant of the
vector interactions, and w(T, μ∗

f ) is the associated condensate.
An expression similar to the first term in Equation (9) can be deduced for the pressure

of the gluons, which vanished at zero temperature. The second term is the pressure due
the vector condensates given by

PVI(T, μ∗
f ) =

Kv

2
w2(T, μ∗

f ) . (12)

Taking the limit T → 0 in Equation (9), we obtain a simplified expression for the total
pressure of the system that reads

Pq = ∑
f=u,d,s

Pf = ∑
f=u,d,s

[
3

π2

∫ p∗F

0
z2(μ̃∗

f − z) dz

+
Kv

2
w2

f

]
+ Δεvac , (13)

where μ̃∗
f = μ∗

f − V1/2, p∗F =
√

μ̃∗
f − m2

f , w f = w(μ̃∗
f ), and

Δεvac = −11 − 2
3 Nf

32
G2

2
(14)

is the vacuum energy density for Nf flavors [32].
The EoS of the system can be computed using the Euler thermodynamic relation

given by

ε = −Pq + ∑
f=u,d,s

μ f
∂Pf

∂μ f
. (15)

The effective chemical potential of Equation (11) is determined in a self-consistent way
by minimizing Equation (13) with respect to the vector condensate, from which it follows
that w f = n(μ∗

f ), where n(μ∗
f ) is the number density quark flavor f .

4.2. Effects of Color Superconductivity on the Quark EoS

The working hypothesis of our study is that in the inner cores of HSs deconfined
up, down and strange quarks are paired in the CFL phase. However, since the mass of
the strange quark is around two orders of magnitude greater than that of up and down
quarks, paired up and down quark condensates should appear first, in a phase known as
2SC+s. The quark masses in the 2SC+s and CFL color superconducting phases are taken as
mu = md = 0 and ms �= 0.
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To include the effect of color superconductivity, we work to order Δ2 in the diquark
energy gap Δ, which simplifies the calculation considerably [51]. In this way, it is possible
to consider Equation (13) as a fictional state made of unpaired quark matter that transforms
to a superconducting state once the quarks involved in the pairing reach a common Fermi
momentum. Thus, analogously to what happens in BSC theory, the diquarks formed in the
2SC+s and CFL phases are conventional zero-momentum Cooper pairs.

For each quark forming a diquark, we have a contribution (Δμ̄/2π)2 to the binding
energy of the diquark pairing [51], where

μ =
1
N ∑

i
μ̃∗

i (16)

is the mean chemical potential related to N quarks participating in the pairing. In the
2SC+s phase, four of the nine quarks (three flavors times three colors) form pairs while
in the CFL phase all quarks form diquarks. The condensation terms that contribute to the
pressure are given by

PΔ2SC+s = 4
(

Δ μ̄

2 π

)2
(17)

for the 2SC+s phase and by

PΔCFL =

(
Δ1 μ̄

2 π

)2
+ 8

(
Δ2 μ̄

2 π

)2
� 3

(
Δ μ̄

π

)2
(18)

in for the CFL phase.
In the case of the CFL phase, the nine quarks forming pairs give rise to a singlet and

an octet state of quasi-particles (see Equation (18)) that satisfy the approximate relation
Δ1 = 2 Δ2 = 2 Δ [60].

Due to the breaking of the SU(3)color symmetry in the subgroup U(1)3 × U(1)8,
Equation (11) becomes

μ∗
i = μ f + T3μ3 + T8μ8 − Kvwi , (19)

where the matrices are defined in color space as T3 = diag(1/2, 1/2, 0) and
T8 = diag(1/3, 1/3,−2/3). The subscript i in Equation (19) accounts for the nine

possible combinations of flavor and color, as given in Table 3. The quantities μ3 and μ8
are the chemical potentials associated with the color charges. For the 2SC+s phase, we
consider μ3 = 0 because the symmetry that is broken in this phase is U(1)8, leaving the
U(1)3 intact. Only u and d quarks carrying green and red colors are paired in the 2SC+s
phase, while blue colored quarks do not participate in the formation of Cooper pairs.
The vector condensate in that phase is w f = ∑i wi.

Table 3. Flavor and color combinations associated with Equations (21) and (22).

i r g b
u 1 2 5
d 3 4 6
s 7 8 9

Considering the possibility of diquark formation, Equation (13) is modified as

Pq = P′ + PΔ + ∑
f=u,d,s

Kv

2
w2

f + Δεvac , (20)
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where PΔ is either given by Equation (17) or Equation (18), depending on which supercon-
ducting phase is being considered. The quantity P′ is given by

P′
2SC =

1
π2

4

∑
i=1

∫ pFC

0
z2(μ̃∗

i − z)dz

+
1

π2

9

∑
i=5

∫ pFC

0
z2 (μ̃∗

i −
√

z2 + mi) dz , (21)

or

P′
CFL =

1
π2

9

∑
i=1

∫ pFC

0
z2 (μ̃∗

i −
√

z2 + mi) dz , (22)

where μ̃∗
i = μ∗

i − V1/2 and pFC are determined by minimizing Equation (20). Color charge
neutrality is imposed by the conditions ∂Pq/∂μ3 = ∂Pq/∂μ8 = 0. The breaking of color
symmetry increases the number of coupled equations that are to be solved in order to
compute the quark matter EoS. The system of equations consists of nine coupled equations
for the 2SC+s phase and twelve coupled equations for the CFL phase.

5. Results

The hybrid configurations studied in this work consist of an inner core, an outer core,
and a crust. The latter has been modeled in out study by the Baym-Pethick-Sutherland
(BPS) and Baym-Bethe-Pethick (BBP) EoSs [61,62].

The FCM model has already been used in several works to model the inner cores of
HSs [34,43,63–66]. In these studies, the parameter space (V1, G2) of the model has been
analyzed by accounting for constraints from Lattice QCD simulations, the existence of 2 M�
pulsars, as well as the limits set by the gravitational-wave event GW170817. In our work, we
expand the (V1, G2) space by accounting for vector interactions and color superconductivity,
which introduces the additional parameters Kv and Δ, respectively. To investigate this
new parameter space spanned by V1, G2, Kv, Δ, we have chosen V1 = 20 MeV and
G2 = 0.009 GeV4, following the results presented in Ref. [34]; these values for V1 and G2
are qualitatively representative of the parameters space. In this way, we focus our attention
on the values of Kv and Δ.

In this context, it should be mentioned that one of the methods used to combine and
analyze different sets of data is Bayesian analysis, which analyzes the ranges of parameters
using probability techniques. The application of Bayesian methods is frequently used in
astrophysics (e.g., neutron star physics [67,68]), particularly when dealing with large data
sets. A Bayesian analysis of the parameters of our model, however, is out of the scope of
this paper.

To calculate the properties of HSs, such as gravitational mass, radius, tidal deformabil-
ity and study their stability under slow and rapid conversion of hadronic matter to quark
matter, we solve the relativistic hydrostatic equilibrium equation of Tolman, Oppenheimer,
and Volkoff (TOV) [69,70].

5.1. Analysis of the FCM Parameter Space Spanned by V1, G2, Kv, Δ

We start by analyzing the effects of varying Kv and Δ values on the EoSs and the
mass-radius relationship (M–R) of HSs shown in Figures 1–4. All the hybrid EoSs shown in
these figures satisfy the constraints presented in [42]; besides, these EoSs have one common
characteristic feature, namely that the hadron-quark transition pressure must be larger
than about 200 MeV fm−3 so that the 2 M�-mass constraint condition can be satisfied.
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Figure 1. (Color online) Hybrid EoS (panel (a)) and mass-radius relationship (panel (b)) for the 2SC+s phase at fixed gap
value of Δ = 35 MeV, for different values of the Kv parameter. In panel (a), the grey region shows the constraints presented
in [42]. The solid dots in panel (b) indicate the appearance of the color superconducting phase, just before the maximum
mass peak. For rapid conversions, the stellar configurations to the left of each maximum mass are unstable and the existence
of HSs is only marginal. For slow conversions, an extended stability branch exists. The stable configurations are shown by
continuous lines. The terminal configurations are marked with asterisks.
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Figure 2. Hybrid EoS (panel (a)) and mass-radius relationship (panel (b)) for the CFL phase at fixed gap value of Δ = 35 MeV,
for different values of the Kv parameter. In panel (a), the grey region shows the constraints presented in [42]. The solid dots
in panel (b) indicate the appearance of the color superconducting phase, just before the maximum mass peak. For rapid
conversions, the stellar configurations to the left of each maximum mass are unstable and the existence of HSs is only
marginal. For slow conversions, an extended stability branch exists. The stable configurations are shown by continuous
lines. The terminal configurations are marked with asterisks.
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Figure 3. Hybrid EoS (panel (a)) and mass-radius relationship (panel (b)) for the 2SC+s phase at fixed gap value of
Kv = 10 GeV−2, for different values of the Δ parameter. In panel (a), the grey region shows the constraints presented in [42].
The solid dots in panel (b) indicate the appearance of the color superconducting phase, just before the maximum mass
peak. For rapid conversions, the stellar configurations to the left of each maximum mass are unstable and the existence of
HSs is only marginal. For slow conversions, an extended stability branch exists. The stable configurations are shown by
continuous lines. The terminal configurations are marked with asterisks.
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Figure 4. (Hybrid EoS) (panel (a)) and mass-radius relationship (panel (b)) for the CFL phase at fixed gap value of
Kv = 10 GeV−2, for different values of the Δ parameter. In panel (a), the grey region shows the constraints presented in [42].
The solid dots in panel (b) indicate the appearance of the color superconducting phase, just before the maximum mass
peak. For rapid conversions, the stellar configurations to the left of each maximum mass are unstable and the existence of
HSs is only marginal. For slow conversions, an extended stability branch exists. The stable configurations are shown by
continuous lines. The terminal configurations are marked with asterisks.
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This has direct implications for the appearance of quark Matter in the cores of HSs.
A comprehensive study of the range of values of Kv and Δ (including the values of V1 and
G2) shows that only a rapid conversion of hadronic matter to quark matter destabilized
HSs. This finding is independent of the type of the color superconducting phase and is in
agreement with the results obtained in a previous study of HSs, where quark matter was
modeled with NJL-type models [71].

In Figures 1 and 2 we show the hybrid EoSs and the corresponding M–R relationships
of HSs computed for the 2SC+s and CFL phases. The value for the superconducting gap is
Δ = 35 MeV, and the Kv values range from zero to 15 GeV−2. In panels (a), we see how the
pressure at which the phase transition occurs increases and the energy density gap widens
as Kv increases. For the 2SC+s EoS (Figure 1) the increase in Kv stiffens the EoS of the color
superconducting phase, which in turn increases the speed of sound (c2

s /c2 = ∂P/∂ε) in
that phase. On the contrary, for the CFL EoS (Figure 2) we find that increasing values of Kv
lead to decreasing speeds of sound.

The solid dots shown in the M–R relationships shown in panels (b) of Figures 1 and 2
mark the appearance of color superconducting quark matter cores of these stars. Most
interestingly, the appearance of such matter does not destabilize the stars if the conversions
from hadronic matter to quark matter proceed slowly. Instead, such stars remain stable
over an extended regime in the M–R diagram. Their final termination points are marked
with asterisks in Figures 1 and 2).

In Figures 3 and 4, we present the EoSs and M–R relationships of HSs with 2SC+s and
CFL matter in their cores, but for which the value of Kv is kept constant while the diquark
energy gap taken on several different values. We can see that varying the value of Δ in the
2SC+s phase has little impact on the hybrid EoS. For the CFL phase, however, the impact is
more pronounced. In both cases, the speed of sound in the quark superconducting phase
does not change significantly with changes in Δ. An increase in Δ leads to a somewhat
smaller changes in energy density in the transition region. This effect is more noticeable in
the CFL phase than in the the 2SC+s phase. The main differences appear in the transition
pressure where a higher value of Δ leads to a lower transition pressure. This, of course, has
consequences for the appearance of superconducting quark cores in HSs and, in particular,
reverberates on the extended stable branch of HSs, panels (b) of Figures 3 and 4. One
common feature is that the increase of the value of Kv leads to a shortening of the extended
branch of stable compact objects.

5.2. Astrophysical Constraints

In Figure 5, we explore the maximum-mass values of HSs in the Kv-Δ plane. Panel (a)
shows the results for 2SC+s stars while panel (b) is for CFL stars. The 2.01 M� gravitational
mass constraint imposed by PSR J1614-2230, PSR J0348+0432, and PSR J0740+6620 is
shown by the white curve. It can be seen that our models satisfy this mass constraint for
a wide range of Kv and Δ values. A combination of such values is compiled in Table 4,
which will be used for subsequent investigations below. It is worth noting that HSs with
V1 = 20 MeV and G2 = 0.009 GeV4 do not satisfy the Mmax= 2.01 M� constraint unless
vector interactions and color superconductivity are included in the model. Furthermore,
the possibility of obtaining sufficiently massive HSs with color superconducting quark
matter in their cores increases if Δ increases, for a wide range of Kv values. This is most
noticeable in panel (b) for stars with a CFL core. Comparing panels (a) and (b) with each
other shows that the parameter space that leads to sufficiently massive HSs with 2SC+s
cores is narrower. For the 2SC+s phase, shown in panel (a), stars with Mmax (along the
white curve) correspond to Kv values that scatter around 7 GeV−2. This situation is quite
different when the CFL phase is considered (see panel (b) in Figure 5) where it is shown
that the maximum masses depend on both Kv and Δ rather strongly.
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Table 4. Selected sets of parameters for the quark matter EoS.

Set Quark Phase Kv (GeV−2) Δ (MeV)

1 2SC+s 15 90
2 2SC+s 10 30
3 CFL 10 30
4 CFL 15 30

Figure 5. (Text) Maximum mass of stars as a function of Δ and Kv, for the 2SC+s quark matter (panel (a)) and CFL quark
matter (panel (b)). The white curve marks the maximum mass constraint Mmax = 2.01M�.

In Figure 6, we show the M-R curves that correspond to hybrid star configurations
constructed with EoSs whose parameters are listed in Table 4. These curves are consistent
with the 2 M� mass constraint set by massive pulsars, NICER observations, as well as the
NS data extracted from the gravitational-wave event GW170817 and GW190425. We see
that, when assuming slow hadron-quark conversion, each model predicts the existence of
high-mass twin stars. And because of this possibility, the observed 2 M� pulsars could be
either NSs or HSs. The radii of the latter could be up to 1.5 km smaller than those of the
NSs. Furthermore, for parameter set 3 of Table 4 we find that the corresponding extended
hybrid-star branch could even explain the stellar high-mass component of the GW190425
binary system [6].

We have also explored the possibility of sequential phase transitions between the two
different quark matter EoSs, i.e., the occurrence of a transition of quark matter from the
2SC+s to the CFL phase. We find that such a sequential transition is possible, but the M–R
relationships do not fulfill 2 M� mass constraint. The main reasons for this is a low speed
of sound of c2

s /c2 ∼ 0.33 in the extended FCM EoS and a high phase transition pressure.
In Figure 7, we present the dimensionless tidal deformability, Λ, as a function of

gravitational mass for the stellar hybrid configurations of Figure 6. All models present
pure hadronic stars for masses M ≤ 1.4 M�, and are consistent with the Λ1.4 ∼ 500
constraint deduced from GW170817. One also sees that the HSs along the twin stellar
branch have tidal deformabilities that lie on an almost straight horizontal line. This opens
up the possibility that future observations of NS mergers may help to shed light on the
actual existence of twin stars and hence on the behavior of matter in the inner cores of
compact objects.
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Figure 6. (Color online) M–R relationship of the selected EoSs (Table 4) of this work. The solid dots
indicate the appearance of color superconducting quark matter in HSs, which happens just before
the maximum-mass peaks are reached. For a rapid conversion of matter, the stellar configurations
to the left of each maximum-mass star are unstable. For slow conversions there exist extended
branches of stable stars which end at the locations marked with asterisks. The shaded regions
(clouds) correspond to constraints imposed by GW170817, GW190425, and NICER observations
of PSR J0030+0451. The horizontal pink stripped bands, indicate constraints imposed by pulsars
J0740+6620, J0348+0432, and J1614-2230.
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Figure 7. (Color online) Dimensionless tidal deformability as a function of gravitational mass,
with the constraint obtained from GW170817 [5]. Stable stellar configurations beyond the maximum
mass have very small values of Λ, which are almost independent of mass. The positions of the
terminal stars of the twin HSs branch (obtained for slow hadron-quark conversion) are marked
with asterisks.
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In Figure 8, we show the individual dimensionless tidal deformabilities of the hybrid
configurations consistent with the observational constraints obtained after GW170817 and
its electromagnetic counterpart. The black line represents the situation in which the two
merging objects are purely hadronic NSs.

 100
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1
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Figure 8. Text Dimensionless tidal deformabilities Λ1 and Λ2 for the selected EoSs. The solid black
line represents the results obtained for a purely hadronic NS-NS merger with masses consistent with
data from GW170817. The dark (light) gray areas represent the 50% (90%) confidence limit of the
probability contour of GW170817 and the dotted line corresponds to Λ1 = Λ2.

6. Summary and Conclusions

In this work, we have studied hybrid EoSs and the structure of HSs considering the
effects of color superconductivity (2SC+s and CFL phases) and vector interactions in quark
matter in the framework of the FCM model. Both color superconductivity and vector
interactions were included in the model in a phenomenological way, taking advantage of
the similarity of the FCM with the MIT bag model at the zero temperature limit. For the
description of the hadronic phase, we used the SW4L parametrization of the RMF model.
We have assumed a sharp hadron-quark phase transition and considered the the impli-
cations of slow versus rapid conversions of matter at the hadron-quark interface. This
assumption dramatically modifies the traditional picture of stability in the M–R diagram
of HSs. For instance, if we consider a soft Gibbs phase transition, instead of a Maxwell
sharp transition, the extended stable branch does not exist. Since in the Gibbs case the
EoS has no discontinuity or jump, the stability criterion for hybrid stars is the traditional
one, in which case ∂M/∂εc < 0 indicates unstable configurations and the maximum mass
configuration is the last stable star in the mass-radius diagrams.

After extending the parameter space of the FCM model, we performed a system-
atic analysis of the parameters of this new space. The goal was to find out whether the
parameters lead to equations of state that are consistent with present astrophysical ob-
servations. For this purpose we investigated the dependencies of the EoS and the M–R
relationship of compact stars on the Kv and Δ parameters, which are related to vector
interactions and color superconductivity of the extended FCM model. Fixed values were
assumed for the other two parameters, V1 and G2, of the model. As our investigations
show, the hybrid EoSs we determined successfully satisfy the constraints set by Annala
et al. [42] and by PSR J1614-2230, PSR J0348+0432, PSR J0740+6620, GW170817, GW190425,
and NICER observations.

117



Universe 2021, 7, 370

In addition, using a specific FCM model parameter set, we have shown that the
inclusion of vector interactions and color superconductivity plays a central role in satisfying
the mass constraint set by massive pulsars. Specifically, we found that increasing Kv leads
to a stiffer hybrid EoS, which increases the maximum stellar mass. However, this increase
leads to shorter stability branches for the twin stars. In contrast, an increase in the Δ
parameter leads to softer EoSs, both for the 2SC+s and CFL phase, which lowers the
maximum mass but leads to extended branches of stellar stability. In general, changes in
the value of Kv have a more pronounced effect on the system properties than changes in Δ.
An exception is the CFL phase, where changes in Δ dominate the mass-radius relationship.

We have also explored the possibility of a sequential phase transition in HSs. We have
found that although that possibility exists, the hybrid configurations obtained from these
EoSs do not satisfy the restrictions imposed by massive pulsars. This is due to a low speed
of sound in the quark phase and a high value of the hadron-quark transition pressure. It is
worth a short discussion of this point since the authors of Refs. [72,73] obtained HSs with
sequential phase transitions in the constant speed of sound framework, which fulfill the
2 M� mass constraint. This was possible by using a parametric EoS for the quark phase and
by fixing the hadron-quark phase transition pressure (at pt ∼ 100 MeV fm−3) as well as the
quark-quark phase transition pressure (at pt ∼ 250 MeV fm−3). Furthermore, a high value
of the speed of sound in quark matter phases (c2

s /c2 � 0.7) was assumed in that paper.
Massive HSs with sequential phase transitions were also obtained with Nambu-Jona-

Lasinio type models of quark matter [74,75]. However, extra ingredients are needed in these
models to achieve a hadron-quark followed by a quark-quark phase transition, because in
these models c2

s /c2 ∼ 0.33. Besides that, an effective bag can be added to the model to
lower the transition pressure, considering a large diquark coupling [74]. In these works,
the transition pressures (i.e., pt ∼ 40 to 60 MeV fm−3 for the hadron-quark transition and
pt ∼ 100 to 130 MeV fm−3 for the quark-quark transition) are lower than in Ref. [72]. In a
recent study [31] it was shown that in NJL models a higher speed of sound can be achieved
through the incorporation of higher-order repulsive interactions. This affects the size of the
quark core in HSs, leading to massive hybrid configurations with extended cores of quark
matter in the rapid conversion scenario.

Regarding the tidal deformability results, our models satisfy the GW170817 constraint
of a 1.4 M� star. Also the restrictions coming from the constraints in the Λ1–Λ2 plane are
fulfilled. In this case, the purely hadronic branch already lies, for all four parameters sets
of Table 4, inside the confidence region. Remarkably, the slow hadron-quark conversion
scenario, which leads to new stable hybrid-star branches, helps to satisfy astrophysical
constraints (similar conclusions have already been presented in Refs. [43,54,73]).
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Abstract: In this review, we discuss the physical characteristics of the magnetic dual chiral density
wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the
interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic
field. It is a single-modulated chiral density wave characterized by two dynamically generated
parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-
Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy,
a fact that leads to the topological properties and anomalous electric transport exhibited by this
phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and
as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated
inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence
of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized
propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons
of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped
axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse,
a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center.

Keywords: chiral symmetry; axion QED; quark–hole pairing; cold-dense QCD; magnetic DCDW

1. Introduction

A fundamental question in nuclear physics/astrophysics currently is what is the state
of matter that is realized in the interior of neutron stars (NS). Neutron stars are among
the densest objects in the universe. They are produced by the gravitational collapse of
very massive stars that can have up to 30 solar masses or by binary NS merger events
such as GW170817 [1]. Their inner densities can reach values several times larger than the
nuclear density ρn = 4 × 1017 kg/m3. One possibility is that at those densities, baryons
are so close that they can be smashed together, producing quark deconfinement. Once
the quarks are liberated, there exists the possibility to have NSs exclusively formed by
strange matter, the so-called strange stars [2]. The idea of a strange star was prompted
by the Bodmer–Terazawa–Witten hypothesis [3–5] based on the idea that strange matter
has a lower energy per baryon than ordinary nuclei, even including 56Fe. Thus, the true
ground state of the hadrons may be strange matter. Later on, the equilibrium composition
and the equation of state (EoS) for strange matter were studied by other authors [2,6–10].
Thus, a strange star will be formed by an absolutely stable phase consisting of roughly
equal numbers of up, down, and strange quarks plus a smaller number of electrons (to
guarantee charge neutrality). More recently, by using a phenomenological quark–meson
model that includes the flavor-dependent feedback of the quark gas on the QCD vacuum,
it was demonstrated in [11] that u-d quark matter is in general more stable than strange
quark matter, and it can be more stable than the ordinary nuclear matter when the baryon
number is sufficiently large.
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Considering effective models of the Nambu–Jona–Lasinio (NJL)-type with parameters
matched to nuclear data, we can simulate the one-gluon exchange interaction of QCD,
which contains a dominant attractive diquark channel. This attractive interaction gives rise
to color superconductivity (CS) [12–15]. NJL models have predicted that the most favored
phase of CS at asymptotically high densities is the three-flavor color-flavor-locked (CFL)
phase with a significantly large gap. The existence of a large superconducting gap together
with a repulsive vector interaction, which is always present in a dense medium [16], can
help to make the EoS stiff enough to reach the high stellar masses measured for two
compact objects, PSR J1614-2230 and PSR J0348+0432 with M = 1.97 ± 0.04M� [17] and
M = 2.01 ± 0.04M� [18], respectively, where M� is the solar mass. In a recent paper [19],
it was found that in addition to the previously cited agreement with respect to the stellar
maximum mass, there is also a strong correlation between the predictions of the CFL model
in a plausible range of parameters, even including the radiative effects of gluons [20], and
the mass/radius fits to NICER data for PSR J003+0451, as well as the tidal deformabilities of
the GW170817 event. Despite these encouraging results, the CFL phase fails to pass another
important astrophysical test: the heat capacity lower limit obtained from temperature
observations of accreting NSs in quiescence. As found in [21], the heat capacity of the NS
core has a lower limit C̃V ≥ 1036(T/108) erg/K. Thus, NS matter-phase candidates that
do not satisfy this constraint should be ruled out. Superfluid/superconducting phases
where all the fermions are paired do not obey the constraint since they have a very small
heat capacity proportional to e−a/T at small T, with a a model-dependent function of
the gap. Only superfluid/superconducting phases where not all the fermions are paired
have the possibility to produce sufficient heat capacity to satisfy the lower limit thanks
to the contribution of nonpaired fermions. These arguments were explicitly corroborated
in [21,22] for a pure CFL phase, showing that its heat capacity is strongly depleted, not
only because all the quarks form Cooper pairs, but also because the system does not have
many electrons as its electrical neutrality is ensured by the almost equal numbers of u, d,
and s quarks alone. These results indicate that a pure CFL phase is not a suitable choice for
the inner composition of compact stars.

NSs are not only the natural objects with the highest density in the universe, but they
also exhibit the strongest magnetic fields, which become extremely large in the case of
magnetars, with inner values that have been estimated to range from 1018 G for nuclear
matter [23] to 1020 G for quark matter [24]. The facts that strong magnetic fields populate
the vast majority of the astrophysical compact objects and that they can significantly affect
several properties of the star have served as the motivation for many works focused on the
study of the EoS of magnetized NSs [24–32]. An important characteristic is that the EoS in
a uniform magnetic field becomes anisotropic, with different pressures along the field and
transverse to it [24–31]. The magnetic field has been shown to play an important role in
CS [27,33–42], as well as in inhomogeneous chiral phases [43–47].

The presence of a magnetic field is relevant due to the activation of new channels of
interaction and, occasionally, also due to the generation of additional condensates. For
instance, in the quarkyonic phase of dense quark matter, a magnetic field is responsible for
the appearance of a new chiral spiral between the pion and magnetic moment condensates,
〈ψ̄γ5ψ〉 and 〈ψ̄γ1γ2ψ〉, respectively [48]. Similarly, additional condensates emerge in the
homogeneous chiral phase [49], as well as in color superconductivity [38].

On the other hand, various QCD effective model studies, as well as QCD calculations
in the large-Nc limit indicate that spatially inhomogeneous chiral phases, characterized by
particle–hole pairs that carry total momentum, can be formed at relatively low temperatures
and intermediate densities [50–63]. Such inhomogeneous chiral phases emerge when the
baryon density increases from low values, where the hadronic phase is favored, to densities
a few times the nuclear saturation density.

Interestingly enough, approaching the low-temperature/intermediate-density region
from the other side, i.e., from the very-high-density region, also favors the formation of
spatially inhomogeneous phases, only that in this case, they are CS phases since their
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ground state contains quark–quark pairs [12,64]. This phenomenon can be understood
as follows. The CFL phase, favored at asymptotically large densities, is based on BCS
quark pairing. In this phase, the quarks pair at the Fermi surface with equal and opposite
momenta, so the phase is homogenous. However, with decreasing density, the combined
effect of the strange quark mass, neutrality constraint, and beta equilibrium create a
mismatch in the Fermi momenta of different flavors. The mismatch in turn imposes an
extra energy cost on Cooper pair formation. BCS pairing can then dominate as long as the
energy cost of forcing all species to have the same Fermi momentum is compensated by the
win in pairing energy due to Cooper pair formation. The consequence of these competing
effects is that eventually, as the density decreases, the CFL phase becomes the gapless CFL
(gCFL) [65], on which not all the Cooper pairs remain stable energetically anymore and,
as a consequence, some of the quarks become gapless. More importantly, the onset of
gCFL produces chromomagnetic instabilities (CMIs) [66,67], meaning some of the gluons
acquire imaginary Meissner masses, a sign that one is working in the wrong ground state.
A viable solution, free of CMIs, involves a momentum-dependent quark–quark condensate
that spontaneously breaks translational invariance [68–71] and hence forms a spatially
inhomogeneous CS phase. Most inhomogeneous CS phases are based on the idea of Larkin
and Ovchinnikov (LO) [72] and Fulde and Ferrell (FF) [73], originally applied to condensed
matter. In the CS LOFF phases [74–76], quarks of different flavors pair even though they
have different Fermi momenta, because they form Cooper pairs with nonzero momentum.
CS inhomogeneous phases with gluon vortices that break rotational symmetry [77] have
also been considered to remove the instability.

Even though the above-mentioned studies suggest that the inhomogeneous phases
must be unavoidable at intermediate densities and low temperatures, the question of which
phase is the most energetically favorable on each segment of the intermediate region still
remains unanswered. Exploring it will require involved calculations due to the fact that
the pairing energies between particle–particle, particle–antiparticle, and particle–hole are
comparable at these densities.

In the present review, we focus our attention on one particular spatially inhomoge-
neous phase, a chiral phase known as the magnetic dual chiral density wave (MDCDW)
phase [43–46]. The MDCDW ground state is characterized by a chiral density wave made
of scalar and pseudo-scalar condensate components, hence the term “dual” in its name.
This phase occurs in the presence of a magnetic field and exhibits a wealth of interesting
topological properties. The MDCDW phase has profound differences from the so-called
dual chiral density wave (DCDW) phase [63] where no external field is present, even
though both are characterized by the same type of inhomogeneous chiral condensate. The
magnetic field explicitly reduces the rotational and isospin symmetries that are present in
the DCDW case, significantly enhances the window for inhomogeneity [43], and leads to
topologically nontrivial transport properties [45,46].

An additional effect that makes the MDCDW phase a particularly viable candidate for
the NS’s inner state of matter is that it is not washed out by thermal fluctuations at low
temperatures. This property is significant because even though single-modulated chiral
condensates are energetically favored over their homogeneous counterpart at increasing
densities and favored even over higher-dimensional modulations in three dimensions, the
long-order range in single-modulated condensates is always washed out by the thermal
fluctuations of the Goldstone bosons at arbitrarily small temperatures. This occurs due
to the existence of soft modes of the fluctuation spectrum in the direction normal to the
modulation, a phenomenon known in the literature as the Landau–Peierls instability [78,79].
In dense QCD models, the Landau–Peierls instability occurs in the periodic real kink crystal
phase [80]; in the DCDW phase [81]; and in the quarkyonic phase [82]. The Landau–Peierls
instability signals the lack of long-range correlations at any finite temperature, hence the
lack of a true order parameter. Only a quasi-long-range order remains in all these cases, a
situation that resembles what happens in smectic liquid crystals [83].
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Thanks to the external magnetic field, the Landau–Peierls instability is absent in the
MDCDW phase [84]. The field produces two main effects. First, it acts as an external vector
that explicitly breaks the rotational and isospin symmetries, allowing the formation of addi-
tional structures in the Ginzburg–Landau (GL) expansion of the MDCDW thermodynamic
potential and reducing to one the number of Goldstone bosons in the spontaneously broken
symmetry theory. Second, it induces a nontrivial topology in the system that manifests
itself in the asymmetry of the lowest Landau level (LLL) modes and in the appearance
of odd-in-q terms in the GL expansion. These two features in turn affect the low-energy
theory of the thermal fluctuations, stiffening the dispersion relation in the direction normal
to the modulation vector, thereby preventing the washout of the long-range order, hence
removing the Landau–Peierls instability.

In this review, we discuss the main properties of the MDCDW phase, including
how the interaction of the MDCDW medium with an electromagnetic field modifies
the propagation of electromagnetic waves, thereby leading to interesting implications
for astrophysics.

The review is organized as follows. In Section 2, we introduce the two-flavor NJL
model that serves as the basis for the MDCDW phase of dense quark matter in a magnetic
field, outlining the derivations that lead to the emergence of a chiral anomaly term in the
effective action of the system. In Section 3, we discuss the realization of axion electrody-
namics in the MDCDW phase and the implications for electric transport. In Section 4, we
demonstrate the lack of the Landau–Peierls instability in the MDCDW system and discuss
the role played by the background magnetic field on this property. In Section 5, we go
beyond the mean-field approximation to study the anomalous matter–light interaction that
takes place in this inhomogeneous phase. We show how photons couple to the fluctuation
of the axion field (proportional to the phonon fluctuation) to produce hybrid modes of
propagation called axion polaritons. A possible consequence of the formation of these
hybridized modes inside a quark star bombarded by γ-rays is then proposed in Section 6
to explain the so-called missing pulsar problem in the galactic center. Section 7 summarizes
the main results and our concluding remarks.

2. The Magnetic Dual Chiral Density Wave Phase

To study the MDCDW phase, we start from a two-flavor NJL model of strongly
interacting quarks at finite baryon density that includes the electromagnetic interaction
and a background magnetic field:

L = −1
4

FμνFμν + ψ̄[iγμ(∂μ + iQAμ) + γ0μ]ψ + G[(ψ̄ψ)2 + (ψ̄iτγ5ψ)2], (1)

Here, Q = diag(eu, ed) = diag( 2
3 e,− 1

3 e), ψT = (u, d); μ is the quark chemical poten-
tial; G is the four-fermion coupling. The electromagnetic potential Aμ is formed by the
background Āμ = (0, 0, Bx, 0), which corresponds to a constant and uniform magnetic
field B pointing in the z-direction, with xμ = (t, x, y, z), and a fluctuation field Ã. Because
of the electromagnetic coupling, the flavor symmetry in this model is U(1)L × U(1)R. In
addition, the background magnetic field explicitly breaks the rotational symmetry that
exists in its absence, so that the spatial symmetry of (1) is SO(2)× R3.

It has been shown that at finite baryon density, the two condensates:

〈ψ̄ψ〉 = Δ cos qμxμ, 〈ψ̄iτ3γ5ψ〉 = Δ sin qμxμ, (2)

obtain expectation values different from zero, forming a dual chiral density wave conden-
sate, with its modulation vector favored along the field direction qμ = (0, 0, 0, q) [43,44].
Notice that this means that the modulation is q for the u-quarks and −q for the d-quarks.
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Expanding the Lagrangian (1) about this inhomogenous condensate, bozonizing the
four-fermion interaction via the Hubbard–Stratonovich approach, and taking the local
chiral transformations:

ψ → eiτ3γ5θψ, ψ̄ → ψ̄eiτ3γ5θ (3)

with θ = qz/2, we arrive at the mean-field Lagrangian:

LMF = ψ̄[iγμ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ − m2

4G
− 1

4
FμνFμν (4)

where m = −2GΔ; thus, the quasiparticle mass is proportional to the condensate magni-
tude.

The energy spectrum of the theory (4) separates into two sets:
(1) Lowest Landau level (LLL) (l = 0):

E0 = ε
√

m2 + k2
3 + q/2, ε = ±; (5)

(2) Higher Landau levels (HLLs) (l �= 0):

El = ε

√
(ξ
√

m2 + k2
3 + q/2)2 + 2|e f B|l, ε = ±, ξ = ±, l = 1, 2, 3, ... (6)

The HLL spectrum has four branches, with ξ = ± indicating spin projections and
ε = ± the energy sign. In contrast, the LLL has only two branches because only one spin
projection contributes to the LLL modes. Here, ε loses the energy sign interpretation as
long as q �= 0 [43]. An important feature of this spectrum is that the LLL energies are not
symmetric about the zero-energy level. This asymmetry in the LLL spectrum gives rise to
nontrivial topological effects, which are pointed out below.

It is important to note that the fermion measure in the path integral is not invariant
under the local chiral transformation (3), and hence, it produces a contribution to the action
through the transformation’s Jacobian J(θ(x)) = (DetUA)

−2:

Dψ̄(x)Dψ(x) → (DetUA)
−2Dψ̄(x)Dψ(x), (7)

with UA = eiτ3γ5θ . However, J(θ(x)) is ill-defined and needs to be regularized. This can
be done using the Fujikawa method [85], so that the measure contribution to the mean-
field action turns out to be an axion term given by the electromagnetic chiral anomaly
κ
4 θ(x)Fμν F̃μν [45,46]. Then,

Se f f =
∫

d4x{ψ̄[iγμ(∂μ + iQAμ + iτ3γ5∂μθ) + γ0μ − m]ψ − m2

4G

+
κ

4
θ(x)Fμν F̃μν − 1

4
FμνFμν}, (8)

The coupling between the background axion field θ(x) and the electromagnetic tensor

is given by κ
4 =

3(e2
u−e2

d)

8π2 = e2

8π2 = α
2π . It contains the contribution of all the quark flavors

and colors.
The one-loop thermodynamic potential of the mean-field theory was found in

Refs. [43,46] to be:

Ω = Ωvac(B) + Ωanom(B, μ) + Ωμ(B, μ) + ΩT(B, μ, T) +
m2

4G
, (9)

where Ωvac is the vacuum contribution; Ωanom is the anomalous contribution, extracted
from the LLL part of the medium term after proper regularization [43]; Ωμ is the zero-
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temperature medium contribution and ΩT the thermal contribution. For a single quark
flavor f , they are [46]:

Ω f
vac =

1
4
√

π

Nc|e f B|
(2π)2

∫ ∞

−∞
dk ∑

lξε

∫ ∞

1/Λ2

ds
s3/2 e−s(E)2

(10)

Ω f
anom = −Nc|e f B|

(2π)2 qμ (11)

Ω f
μ = −1

2
Nc|e f B|
(2π)2

∫ ∞

−∞
dk ∑

ξ,l>0
2[(μ − E)Θ(μ − E)]|ε=+

+Ω f LLL
μ (12)

Ω f
T = −Nc|e f B|

(2π)2β

∫ ∞

−∞
dk ∑

lξε

ln
(

1 + e−β(|E−μ|
)

(13)

with E the energy modes (5) and (6) and the LLL zero-temperature medium contribution
given by:

Ω f LLL
μ = −1

2
Nc|e f B|
(2π)2

∫ ∞

−∞
dk ∑

ε

(|E0 − μ| − |E0|)reg

= −Nc|e f B|
(2π)2

{[
Q(μ) + m2 ln

(
m/R(μ)

)]
Θ(q/2 − μ − m)Θ(q/2 − m)

−
[

Q(0) + m2 ln
(

m/R(0)
)]

Θ(q/2 − m) (14)

+

[
Q(μ) + m2 ln

(
m/R(μ)

)]
Θ(μ − q/2 − m)

−
[

Q(0) + m2 ln
(

m/R(0)
)]

Θ(μ − q/2 − m)Θ(−q/2 − m)

}
,

Here, we introduced the notation:

Q(μ) = |q/2 − μ|
√
(q/2 − μ)2 − m2, Q(0) = |q/2|

√
(q/2)2 − m2

R(μ) = |q/2 − μ|+
√
(q/2 − μ)2 − m2, R(0) = |q/2|+

√
(q/2)2 − m2

Notice that the anomalous term Ω f
anom favors a nonzero modulation q since it decreases

the free-energy of the system. Such a term is a direct consequence of the asymmetry of the
LLL spectrum and, hence, has a topological origin.

The minimum solutions for m and q in terms of the chemical potential and the external
magnetic field can be found by numerically solving the gap equations [43,47]:

∂Ω
∂m

= 0,
∂Ω
∂q

= 0. (15)

Figure 1 shows the resulting m and b = q/2 vs. μ at undercritical coupling G = 2.5 for
two strong magnetic strengths. Thanks to the magnetic field, the MDCDW solution exists
even in the undercritical regime. Notice that the condensate magnitude is quite sensitive to
the change in the field strength, while its modulation is not. For

√
eB = 0.4, m is at least

one order of magnitude smaller than for
√

eB = 0.6 for the entire range of μ considered.
Figure 2 shows the solutions in the supercritical case. In this case, the effect of increasing
the magnetic field is also noticeable in m, but still not significant in b, except that increasing
the field tends to smooth out the behavior of the dynamical parameters in the region before
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and after they cross each other. Comparing the two set of curves, it becomes apparent that
at a given magnetic field, larger coupling leads to a larger condensate magnitude, but not
a larger modulation. All the quantities in the figures are normalized with respect to the
proper-time regularization parameter Λ = 636.790 MeV, thus dimensionless.
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Figure 1. Solutions of the MDCDW gap equations versus the quark chemical potential at subcritical
coupling (G = 2.5) and magnetic fields (a)

√
eB = 0.4 and (b)

√
eB = 0.6.
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Figure 2. Solutions of the MDCDW gap equations versus the quark chemical potential at supercritical
coupling (G = 4) and magnetic fields (a)

√
eB = 0.4 and (b)

√
eB = 0.6.

3. Electromagnetism in the MDCDW Phase

To obtain the electromagnetic effective action Γ(A) in the MDCDW phase, we start
from the formula:

Γ = −i log Z, (16)

where the partition function Z is:

Z = eiΓ =
∫

Dψ̄(x)Dψ(x)eiSe f f (17)

with Se f f given in (8).
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Integrating in the fermion fields, performing the Matsubara sum, taking the zero-
temperature limit, and expanding Γ in powers of the fluctuation field Ã, we obtain:

Γ(A) = −VΩ +
∫

d4x
[
−1

4
FμνFμν +

κ

4
θ(x)Fμν F̃μν

]
(18)

+
∞

∑
i=1

∫
dx1...dxiΠμ1,μ2,...μi (x1, x2, ...xi)Ãμ1(x1)...Ãμi (xi),

with V the four-volume, Ω the mean-field thermodynamic potential in the one-loop approx-
imation (9), and Πμ1,μ2,...μi the i-vertex tensors corresponding to the one-loop polarization
operators with internal lines of fermion Green functions in the MDCDW phase and i
external lines of photons.

We are interested in the linear response of the MCDCW phase to a small electromag-
netic probe Ã. For the consistency of the approximation, we can neglect all the radiative
corrections of order higher than α, as α is the order of the axion term in (18). These condi-
tions imply that we shall cut the series at i = 1, which can be shown to provide the medium
corrections to the Maxwell equations that are linear in the electromagnetic field and in α.

Hence, the electromagnetic effective action becomes:

Γ(A) = −VΩ +
∫

d4x
[
−1

4
FμνFμν − κ

∫
d4xεμανβ Aα∂ν Aβ∂μθ

]
−

∫
d4xÃμ(x)Jμ(x), (19)

where we integrated by parts the third term in the r.h.s. of (18). The four-current
Jμ(x) = (J0, J) represents the contribution of the ordinary (nonanomalous) electric four-
current, obtained from the one-loop tadpole diagrams.

The Euler–Lagrange equations derived from this effective action turn out to be the
equations of axion electrodynamics:

∇ · E = J0 + e2

4π2 qB, (20)

∇× B − ∂E/∂t = J − e2

4π2 q × E, (21)

∇ · B = 0, ∇× E + ∂B/∂t = 0, (22)

where we already used θ = qz
2 [46]. Hence, electromagnetism in the MDCDW phase is

described by a particular case of the axion electrodynamic equations proposed many years
ago for a general axion field θ [86].

The q-dependent terms in (20) and (21) are directly connected to the chiral anomaly
and, thus, give rise to an anomalous electric charge density,

J0
anom =

e2

4π2 qB, (23)

and to an anomalous Hall current density,

Janom = − e2

4π2 q × E. (24)

The anomalous electric charge density (23) can be also found by multiplying the flavor
electric charge e f by the anomalous quark number density of that flavor, obtained as the

derivative of Ω f
anom = −Nc |e f B|

(2π)2 qμ with respect to μ, and then summing in flavor [46]. As it
should be, the anomalous Hall current Janom is perpendicular to the background magnetic
field and the probe electric field, since q is aligned with B.
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In (20), J0 and J denote ordinary charge and current densities, respectively, which
are calculated through radiative corrections. The contribution of the LLL to the ordinary
charge density can be found from the tadpole diagram [45,46] and is:

J0
LLL = ∑

f
J0
LLL(sgn

(
e f

)
) (25)

=
e2B
2π2

√
(μ − q/2)2 − m2[Θ(μ − q/2 − m)− Θ(q/2 − μ − m)],

Since the LLL ordinary charge density is linear in the magnetic field, one can use the
Strěda formula [45,46,87]:

σxy =
∂J0

∂B
(26)

to show that the LLL contribution to the ordinary Hall conductivity is given by:

σord
xy =

∂J0
LLL

∂B
=

e2

2π2

√
(μ − q/2)2 − m2[Θ(μ − q/2 − m)− Θ(q/2 − μ − m)], (27)

which in turn leads to the LLL ordinary Hall current:

Jord
LLL = (σord

xy Ey,−σord
xy Ex, 0). (28)

Likewise, the anomalous Hall conductivity can be found either from the anomalous
charge (23),

σanom
xy =

∂J0
anom
∂B

=
e2

4π2 q, (29)

or directly from the anomalous Hall current (24). As J0
anom is due to the LLL, so is σanom

xy ,
thereby underlining once again the LLL origin of Janom.

The anomalous Hall conductivity has a topological origin since it is a direct conse-
quence of the chiral anomaly. That means that it has a universal character, and as such,
it is robust against dissipative effects. This is quite analogous to what occurs in Weyl
semimetals [88], where an anomalous Hall conductivity very similar to (29) is also con-
nected to the chiral anomaly. The only difference is that there, the modulation q is replaced
by the separation in momentum between the two Weyl nodes. A more important differ-
ence is that in Weyl semimetals, a gap term that explicitly breaks chiral symmetry may
exist, in contrast to the MDCDW, where the theory is initially massless and the mass m is
dynamically generated by the spontaneous breaking of chiral symmetry induced by the
inhomogeneous condensate. Even when there is an initial gap, there are still gapless Weyl
points, as long as the separation between them is larger than the gap. Hence, even in this
case, the anomalous Hall current of the Weyl semimetal is given by the same expression
and remains robust against impurity scattering potentials, electron–electron interactions,
or other similar dissipative effects [88].

Something worth noticing is that the LLL contribution to the ordinary charge J0
LLL

and Hall current Jord
LLL do not cancel out their corresponding anomalous counterparts (23)

and (24) [45,46], in sharp contrast to what occurs in the chiral magnetic effect in equilibrium
where the anomalous and ordinary currents completely cancel out [89]. Nevertheless, in
the limit when the order parameter m becomes very small, m � q

2 < μ, one can expand the
square root in the LLL ordinary part of the electric charge (25) to see that the anomalous
contribution is effectively canceled out by one of the terms from the expansion of the
ordinary part, leaving only terms that explicitly depend on μ, hence nontopological. The
same type of cancellation happens between the anomalous Hall conductivity and a term
coming from expanding the LLL ordinary Hall conductivity at very small m. This occurs
near the phase transition line that separates the MDCDW phase from the chirally restored
phase, where it is physically expected that the topology (or the lack of it) at the two sides

131



Universe 2021, 7, 458

of the transition line should match. Therefore, the topological properties of the MDCDW
phase become practically inoperative near the phase transition.

We point out that in [44,90], a different method was employed to obtain the anomalous
contributions to the fermion number, electric charge, and Hall current of the MDCDW
phase. That method was based on the regularized Atiyah–Patodi–Singer index ηH =
lims→0 ∑l sgn(λl)λ

−s
l using an approach discussed in [91]. As found in [44], the index

gives different results for the anomalous fermion number depending on whether m > q/2
or vice versa. Since m > q/2 occurs at low chemical potentials, where no Fermi surface
is generated, while m < q/2 occurs at chemical potentials large enough for a Fermi
surface to exist, these results seem to indicate that there is an additional contribution to
the anomalous fermion number in the region of high chemical potentials. Specifically,
when m > q/2, Reference [44] found that ηH = −|eB|q

2π2 , while when m < q/2, it was

ηH = |eB|
2π [− q

π +

√
q2−4m2

π ]. Based on these results, Reference [90] claimed that a similar
additional contribution entered in the anomalous Hall conductivity. Since such a term does
not appear when one extracts the anomalous fermion number contribution using an energy
cutoff regularization, as done in [43,45,46], the authors of [90] concluded that the energy
cutoff method is not good to extract the complete anomalous parts of physical parameters as
the fermion number, Hall conductivity, electric charge, etc. What the authors of [90] failed
to realize is that the additional term they found using the index approach and that they
interpreted as the “anomalous” Hall conductivity for the region of m < q/2 (Equation (18)
in [90]) not only is not anomalous, but it is actually eliminated by an equal and opposite
contribution coming from the ordinary part of the Hall conductivity (Equation (20) in [90]).
Therefore, the actual anomalous Hall conductivity is σanom

xy = e2

4π2 q. Not only is it the same
in all the regions, but it can be correctly extracted from the anomalous charge derived using
the energy cutoff regularization approach employed in [43] or from the chiral anomaly
obtained using the Fujikawa approach, as done in [45,46].

As the above discussion illustrates, in the region of large chemical potentials, the
regularized Atiyah–Patodi–Singer index may contain, besides the genuinely anomalous
part, some spurious nonanomalous contributions that cancel out with others coming from
the ordinary part of the fermion number. To extract the correct anomalous contribution
using the regularized index, one has to be particularly careful when using Niemi’s approach
for theories with finite chemical potential [92]. Indeed, one first has to add the index and
the ordinary (Fermi surface) contributions to the fermion number, since only after that is
it possible to cancel any spurious terms and then correctly separate the anomalous from
the nonanomalous contributions in the fermion number and similarly in other quantities
such as the Hall conductivity. On the other hand, the advantage of finding the anomalous
fermion number and electric charge with the energy cutoff approach or the anomalous
charge and current from the chiral anomaly is that these approaches manage to extract the
actual anomalous contribution without producing spurious terms.

Another interesting property of the MDCDW medium becomes apparent by rewriting
Equations (20) and (21) in terms of the D and H fields:

∇ · D = J0, ∇× H − ∂D

∂t
= J (30)

which shows that in this model, the fields D and H are:

D = E − κθB, H = B + κθE (31)

with κ and θ defined in Section 2. Equation (31) shows that a magnetic field induces an
electric polarization P = −κθB and an electric field induces a magnetization M = −κθE, a
phenomenon known as magnetoelectricity. The linear magnetoelectricity of the MDCDW
medium is a direct consequence of the chiral anomaly. It reflects the fact that the ground
state of the MDCDW medium breaks the parity and time-inversion symmetries. The
magnetoelectricity in the MDCDW phase is different from the one found in the magnetic
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CFL phase of CS, where parity was not broken and the effect was a consequence of an
anisotropic electric susceptibility [39], thus not linear. It also follows from (30) that the
anomalous Hall current is given by a medium-induced, magnetic current density ∇× M,
due to the space-dependent anomalous magnetization coming from the axion term.

The above results might have some connotations for astrophysics. If the MDCDW
phase is realized in the interior of NSs, any electric field in the medium, whether due to
local separation of charges or any other possible reason, could trigger dissipationless Hall
currents in the plane perpendicular to the magnetic field. This current in turn could have
a back effect on the magnetic field. Currents of this type could serve to resolve the issue
about the stability of the magnetic field strength in magnetars [93,94].

4. Condensate Stability at Finite Temperature

Let us discuss now how the finite temperature can affect the inhomogeneous con-
densate. As mentioned in the Introduction, single-modulated phases in three spatial
dimensions exhibit the Landau–Peierls instability [78,79]. The Landau–Peierls instability is
characterized by the fact that at nonzero temperatures, thermal fluctuations of the Nambu–
Goldstone bosons, whose dispersions are anisotropic and soft in the direction normal to
the modulation vector, wash out the long-range order at any finite temperature, signaling
the lack of a true order parameter. Some inhomogeneity may remains, however, due to
the algebraically decaying long-range correlations of the order parameter, forming a phase
with a quasi-long-range order similar to smectic liquid crystals [83]. Depending on the
size of the system, this much smoother inhomogeneity may or may not be relevant for
the observables.

Nevertheless, the presence of a magnetic field changes the properties of the low-energy
theory in such a way that it completely removes the Landau–Peierls instability [84]. To show
that, we start from the low-energy theory of the MDCDW phase, described by a generalized
GL expansion of the thermodynamic potential in powers of the order parameter and its
derivatives. In the context of NS astrophysics, the region of interest is that of intermediate
chemical potentials and low temperatures. Henceforth, we focus our investigation on that
region and work near the phase transition to the chirally restored phase.

The validity of the GL expansion in this region is justified by the fact that the order
parameters satisfy m/μ � 1 and q/2μ < 1 [43]. One can readily show [95], following an
approach similar to the one used in [96] for the DCDW case, that the power series in q
effectively becomes an expansion in powers of q/2μ, hence corroborating the consistency of
the expansion and the truncation used. The GL expansion of the MDCDW phase near the
critical point (CP), that is in the region of large temperatures and low chemical potentials,
was explored in [44].

The GL expansion in our case should reflect the invariance with respect to the symme-
tries of the theory in the presence of the external magnetic field. In the MDCDW system,
the order parameter is characterized by the scalar and pseudoscalar fields σ = −2Gψ̄ψ
and π = −2Gψ̄iγ5τ3ψ, respectively. Under a global chiral transformation eiγ5τ3θ/2 of the
fermion fields, they transform as σ → σ cos θ + π sin θ and π → π cos θ − σ sin θ, reflecting
the isomorphism between the chiral group UA(1) and the SO(2) of internal rotations acting
on the two-dimensional vector φT = (σ, π). In a similar way, one can see that the UV(1)
transformation of the fermions reduces to the trivial group acting on the vector φ.

Therefore, the GL expansion, in the SO(2) representation, can be written as:
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F = a2,0φTφ +
b3,1

2

[
φT B̂ · ∇̃φ + B̂ · (∇̃φ)Tφ

]
+ a4,0(φ

Tφ)2

+ a(0)4,2 (∇̃φ)T · ∇̃φ + a(1)4,2 B̂ · (∇̃φ)T B̂ · ∇̃φ (32)

+
b5,1

2
(φTφ)

[
φT B̂ · ∇̃φ + B̂ · (∇̃φ)Tφ

]
+

b5,3

2

[
(∇̃2φ)T B̂ · ∇̃φ + B̂ · (∇̃φ)T∇̃2φ

]
+ a6,0(φ

Tφ)3

+ a(0)6,2 (φ
Tφ)(∇̃φ)T · ∇̃φ + a(1)6,2 (φ

Tφ)[B̂ · (∇̃φ)T B̂ · ∇̃φ]

+ a6,4(∇̃2φ)T(∇̃2φ) + ...,

where we introduced the additional structural terms that are consistent with the symmetry
of the theory in a magnetic field. The notation B̂ = B/|B| for the normalized vector in
the direction of the magnetic field was used, and the gradient operator −i∇ in the SO(2)
representation was introduced as:

∇̃ =

(
0 1
−1 0

)
∇ . (33)

The coefficients a and b are functions of T, μ, and B. They can be derived from the
MDCDW thermodynamic potential (9) found in [43,46], although their explicit expressions
are not relevant for the present study. The first subindex in the coefficients a and b indicates
the power of the order parameter plus its derivatives in that term, and the second index
denotes the power of the derivatives alone.

We can now take advantage of the isomorphism between SO(2) and UA(1) to repre-
sent the order parameter as a complex function M(x) = σ(x) + iπ(x). In terms of M(x),
the GL expansion of the free-energy (32) takes the form:

F = a2,0|M|2 − i
b3,1

2
[
M∗(B̂ · ∇M)− (B̂ · ∇M∗)M

]
+ a4,0|M|4 + a(0)4,2 |∇M|2

+ a(1)4,2 (B̂ · ∇M∗)(B̂ · ∇M)− i
b5,1

2
|M|2[M∗(B̂ · ∇M)− (B̂ · ∇M∗)M

]
(34)

+
ib5,3

2

[
(∇2M∗)B̂ · ∇M − B̂ · ∇M∗(∇2M)

]
+ a6,0|M|6 + a(0)6,2 |M|2|∇M|2

+ a(1)6,2 |M|2(B̂ · ∇M∗)(B̂ · ∇M) + a6,4|∇2M|2 + ...

The magnetic field produces two distinguishable effects on the GL expansion. First, it
allows terms even in B̂ that are responsible for the explicit separation of transverse and
parallel derivatives, as it is expected to occur in any theory where the rotational symmetry is
broken by an external vector. These are the terms with coefficients a(1)i,j , which have similar

structures to those with coefficients a(0)i,j , except that the gradient operator is replaced by
the projection of the gradient along the field. Second, the symmetries of the theory also
allow constructing B-dependent terms that are linear in B̂. These are the structures with
coefficients bi,j. As B is odd under the T symmetry, the rest of the structure has to be
also odd under T, hence odd in the pseudoscalar order parameter. Even though these
terms are permitted from general symmetry arguments, they are not a common feature of
theories with an external vector, but they exist instead when the system exhibits a nontrivial
topology. We shall see below that, as was shown in [84], in the MDCDW case, the existence
of nonzero bi,j can be indeed traced back to the nontrivial topology manifested through the
spectral asymmetry of the LLL fermions.

We call the readers attention to the fact that the anisotropy between transverse and
parallel (to the magnetic field direction) vectors created by the explicit breaking of the rota-
tional symmetry by the magnetic field in the MDCDW system is fundamentally different
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from the one created by the direction of the modulation in the DCDW case, where it is a
result of the spontaneous breaking of the rotational symmetry. This difference leads to
quite different low-energy theories of the fluctuations in these two models.

Considering that the preferred density wave in the MDCDW case is a single-modulated
density wave with its modulation vector parallel to the magnetic field, M(z) = meiqz,
m ≡ −2GΔ, the free-energy (34) can be written as:

F = a2,0m2 + b3,1qm2 + a4,0m4 + a4,2q2m2 + b5,1qm4

+ b5,3q3m2 + a6,0m6 + a6,2q2m4 + a6,4q4m2, (35)

where a4,2 = a(0)4,2 + a(1)4,2 , a6,2 = a(0)6,2 + a(1)6,2 . In (35), we keep up to sixth-order terms to ensure
the stability of the MDCDW phase in the mean-field approximation.

It is important to point out that straight derivations [95] show that the a coefficients
receive contributions from all Landau levels l, while the b-coefficients do not receive
contributions from the higher Landau levels (HLLs) l > 1. This follows from the fact
that the b-terms in (35) are odd in q, which leaves the LLL modes as the only possible
source of the b-terms. Indeed, the LLL contribution is not invariant under q → −q, due
to the asymmetry of the LLL modes (5). In principle, the LLL part of the thermodynamic
potential can have q-odd and q-even terms. Obviously, the b-terms come from the odd
part. Such an odd part is topological in nature, a fact that manifests in the existence of
several anomalous quantities, such as the anomalous part of the quark number, which
is proportional to a topological invariant [44], or the anomalous electric charge and the
anomalous Hall current [45,46], all of which are odd in q.

In summary, the additional a and b terms have quite different origins. a(1)-type terms
will always appear in the presence of an external magnetic field, because they reflect the
explicit breaking of the rotational symmetry produced by the field direction. On the other
hand, the b terms are associated with the topology of the modified fermion spectrum in
the presence of the field. As the LLL part of the thermodynamic potential is linear in the
magnetic field B, so will be the b-coefficients.

The stationary equations from which the ground state solutions for m and q can be
found are:

∂F/∂m = 2m{a2,0 + 2a4,0m2 + 3a6,0m4 + q2[a4,2 + 2a6,2m2 + a6,4q2]

+ [b3,1 + 2b5,1m2 + b5,3q2]} = 0, (36)

∂F/∂q = m2{2q[a4.2 + a6,2m2 + 2a6.4q2] + b3,1 + b5,1m2 + 3b5,3q2} = 0 (37)

The minimum equations of the DCDW phase can be readily found from the zero-
magnetic-field limit of (36) and (37), where the a(1)i,j and bi,j coefficients vanish.

Following [84], we now explore the theory beyond the mean-field approximation to
check if the Landau–Peierls instability found in the absence of a magnetic field (the DCDW
phase) [81] is present here as well. With this goal in mind, we investigated the low-energy
thermal fluctuations that may affect the long-range order of the inhomogeneous ground
state. Notice that in principle, there can be fluctuations of the condensate magnitude and
of the condensate phase, but we only need to care about fluctuations associated with the
spontaneous breaking of global symmetries, as those are the ones that could in principle
have soft modes that lead to the instability. In other words, to probe the instability of the
ground state at arbitrarily low temperatures, the relevant fluctuations are those that can be
excited at very low energies, i.e., those generated by the Goldstone bosons of the system.
Hence, in our analysis, we did not consider the magnitude fluctuations because they are
not associated with a Goldstone mode.

The symmetry group of the MDCDW phase is UV(1)× SO(2)× R2, since the ground
state of this phase spontaneously breaks the chiral symmetry UA(1) and the translation
along z. Hence, there are two Goldstone bosons: the neutral pion, τ, associated with the
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breaking of the chiral symmetry, and the phonon, ξ, associated with the breaking of the
translation symmetry. Now, the effect of the global transformations of these broken groups
on the order parameter is:

M(x) → eiτ M(z + ξ) = ei(τ+qξ)M(z), (38)

from which one clearly sees that there is a locking between the chiral rotation and the
z-translation. Therefore, we can always express them as two orthogonal combinations, one
that leaves the order parameter invariant and one that changes it. As a consequence, there
is only one legitimate Goldstone field in the MDCDW theory. One can arbitrarily choose it
as either the pion, the phonon, or a linear combination of them. Henceforth, without loss
of generality, we consider it to be the phonon.

Let us consider now a small phonon fluctuation u(x) on the order parameter and
expand it about the condensate solution up to quadratic order in the fluctuation,

M(x) = M(z + u(x)) � M0(z) + M′
0(z)u(x) +

1
2

M′′
0 (z)u

2(x), (39)

where M0(z) = m̄eiq̄z is the ground state solution with m̄ and q̄ given as the solutions
of (36) and (37).

Substituting (39) into (34) and keeping terms up to quadratic order in u(x), we arrive
at the phonon free-energy:

F [M(x)] = F0 + v2
z(∂zθ)2 + v2

⊥(∂⊥θ)2 + ζ2(∂2
zθ + ∂2

⊥θ)2, (40)

For convenience, we write (40) in terms of the pseudo scalar θ = qmu(x), which is
proportional to the phonon, but with the dimension of a spin-zero field. Here, F0 = F (M0),
(∂⊥θ)2 = (∂xθ)2 + (∂yθ)2 and ζ2 = a6.4. Notice that in deriving (40), the term linear in ∂zθ
cancels out after using (37).

The coefficients v2
z , v2

⊥ in (40) are given by:

v2
z = a4.2 + m̄2a6.2 + 6q̄2a6.4 + 3q̄b5,3 (41)

v2
⊥ = a4.2 + m̄2a6.2 + 2q̄2a6.4 + q̄b5,3 − a(1)4.2 − m̄2a(1)6.2 (42)

They represent the squares of the parallel and transverse group velocities, respectively.
The fluctuation low-energy Lagrangian density is then:

Lθ =
1
2
[(∂0θ)2 − v2

z(∂zθ)2 − v2
⊥(∂⊥θ)2 − ζ2(∂2

zθ + ∂2
⊥θ)2], (43)

from which we find the spectrum:

E �
√

v2
zk2

z + v2
⊥k2

⊥, (44)

with k2
⊥ = k2

x + k2
y.

The spectrum of the fluctuations is anisotropic and linear in both the longitudinal
and transverse directions. It is easy to see that vz �= 0 because a6.4 cannot be zero for the
minimum solution to exist [58]. As for v2

⊥, one can gather from (37) and (42) that the a(1)i,j
and bi,j coefficients entering in the transverse group velocity serve to avoid the softness in
the transverse direction normally seen in single-modulated phases such as the DCDW. Let
us recall that in the DCDW phase, there is no magnetic field, and thus, these coefficients
are zero. In such a case, the remaining combination in (42) vanishes due to the stationary
condition (37), thereby leading to v⊥ = 0. On the other hand, the lack of soft modes
ensured by the additional coefficients in the MDCDW phase has remarkable consequences
for the stability of the condensate, as shown below.
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In order to investigate the stability of the condensate against the fluctuations, we need
to calculate its average:

〈M〉 = m̄eiq̄z〈cos q̄u〉, (45)

with the average defined as:

〈...〉 =
∫ Du(x)...e−S(u2)∫ Du(x)e−S(u2)

(46)

where:

S(u2) = T ∑
n

∫ ∞

−∞

d3k
(2π)3 [ω

2
n + (v2

zk2
z + v2

⊥k2
⊥ + ζ2k4)]q̄2m̄2u2 (47)

denotes the finite-temperature effective action of the phonon and ωn = 2nπT the Matsub-
ara frequency.

Considering the relation:

〈cos q̄u〉 = e−〈(q̄u)2〉/2 (48)

and using (46), we find the mean square of the fluctuation as:

〈q̄2u2〉 =
1

(2π)2

∫ ∞

0
dk⊥k⊥

∫ ∞

−∞
dkz

T
m̄2(v2

zk2
z + v2

⊥k2
⊥ + ζ2k4)

� πT

m̄
√

v2
zv2

⊥
. (49)

where we took into account that the lowest Matsubara mode is dominant in the infrared.
From (45), (48), and (49), we can see that 〈M〉 �= 0 since 〈q̄2u2〉 is finite. This implies

that the MDCDW system does not exhibit the Landau–Peierls instability, meaning that
at B �= 0, the fluctuations do not wipe out the condensate at arbitrarily low T. As can be
gathered from our derivations, the lack of Landau–Peierls instabilities in the presence of a
magnetic field is a direct consequence of the stiffening of the spectrum in the transverse
direction, which in turn is due to the explicit breaking of the rotational symmetry by the
external field.

We should point out that the lack of Landau–Peierls instabilities in the presence of a
magnetic field will not be changed by a nonzero current quark mass, since this property
comes from the effect of the magnetic field on the low-energy behavior of the phonon,
which remains a Goldstone boson even at nonzero quark masses.

5. Hybrid Propagation Modes in the MDCDW Medium

In this section, we investigate the propagation of electromagnetic waves in the MD-
CDW phase by going beyond the mean-field approximation to study the effects of the
phonon fluctuations when the MDCD medium interacts with photons. This question is not
only of fundamental interest to understand the properties of matter–light interaction in the
MDCDW medium, but it may also be relevant to explain the stability of NSs in very active
γ-ray regions, as will be discussed in Section 6.

In the previous section, we saw that the low-energy theory of the fluctuations in
the MDCDW phase is given by (43). This result considered a background magnetic field
interacting with the quark medium, but assumed no other electromagnetic field was
present. However, there are situations where the MDCDW medium may be penetrated by
photons, and we need to understand if their interaction with the medium can produce new
physical effects.
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When photons are present in the MDCDW medium, the low-energy theory of the
fluctuations acquires the following additional contributions:

LA−θ = −1
4

FμνFμν + Jμ Aμ +
κ

8
θ0(x)Fμν F̃μν +

κ

8
θ(x)Fμν F̃μν, (50)

The first two terms are the conventional Maxwell and ordinary four-current contri-
butions, respectively, the latter obtained after integrating out the fermions in the original
MDCDW effective action [45,46]. The last two terms are the axial anomaly with the
background axion field θ0(x) = mqz and its (phonon-induced) fluctuation θ(x). Here,
κ = 2α/πm.

The combined Lagrangian L = Lθ +LA−θ effectively describes the low-energy theory
of an axion field θ(x) interacting nonlinearly with the photon via the chiral anomaly. Let us
now assume that a linearly polarized electromagnetic wave, with its electric field E parallel
to the background magnetic field B0, propagates in the MDCDW medium [97]. The field
equations of this theory are:

∇ · E = J0 + κ
2∇θ0 · B + κ

2∇θ · B, (51)

∇× B − ∂E/∂t = J − κ
2 (

∂θ
∂t B +∇θ × E), (52)

∇ · B = 0, ∇× E + ∂B/∂t = 0 (53)

∂2
0θ − v2

z∂2
zθ − v2

⊥∂2
⊥θ + κ

2 B · E = 0, (54)

which contains terms coupling the axion with the photon. In (51), B is the total magnetic
field, meaning the background field plus the wave magnetic field.

Since we are interested in applications to NSs, we should consider a neutral medium;
hence, we assumed that J0 contains an electron background charge that ensures
overall neutrality.

J0 +
κ

2
∇θ0 · B +

κ

2
∇θ · B = 0. (55)

The linearized field equations can then be written as:

∂2E/∂t2 = ∇2E + κ
2 (∂

2θ/∂t2)B0 (56)

∂2θ/∂t2 − v2
z(∂

2θ/∂z2)− v2
⊥(∂

2θ/∂x2 + ∂2θ/∂y2) + κ
2 B0 · E = 0. (57)

Their solutions describe two hybridized propagating modes of coupled axion and
photon fields that we call axion polaritons (APs), borrowing the term from condensed
matter. In general, polaritons are hybridized propagating modes that emerge when a
collective mode such as phonons, magnons, etc., couples linearly to light.

The energy spectrum of the hybrid modes is:

ω2
0 = A − B, (58)

ω2
m = A + B (59)

with:
A =

1
2
[p2 + q2 + (

κ

2
B0)

2], (60)

B =
1
2

√
[p2 + q2 + (

κ

2
B0)2]2 − 4p2q2, (61)

and q2 = v2
z p2

z + v2
⊥p2

⊥.
From (58)–(61), we identify ω0 as the gapless mode and ωm as the gapped mode with

field-dependent gap:
ωm(�p → 0) = mAP = αB0/πm (62)
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Similarly coupled modes of axion and photon have been found in topological magnetic
insulators [98], underlining once again the striking similarities between MDCDW quark
matter and topological materials in condensed matter.

6. Axion Polariton and the Missing Pulsar Problem

The fact that the MDCDW medium can create massive APs when it is bombarded
with electromagnetic radiation may have important implications for the physics of NSs in
the galactic center (GC) [97]. A long-standing puzzle in astrophysics, known as the missing
pulsar problem, refers to the failed expectation to observe a large number of pulsars within
10 pc of the galactic center. Theoretical predictions have indicated that there should be
more than 103 active radio pulsars in that region [99], but these numbers have not been
observed. This paradox has been magnified by pulse observations of the magnetar SGR
J1745-2900 detected by the NuSTAR and Swift satellites [100–102]. These observations
revealed that the failures to detect ordinary pulsars at low frequencies cannot be simply
due to strong interstellar scattering, but instead should be connected to an intrinsic deficit
produced by other causes.

Furthermore, as pointed out in [103], the detection of the young (T ∼ 104 year)
magnetar SGR J1745-2900 indicates high efficiency for magnetars’ formation from massive
stars in the GC, because it would be unlikely to see a magnetar unless magnetar formation
is efficient there. In fact, it has been argued that the detection of SGR 1745-2900, with a
projected offset of only 0.12 pc from the GC, should not have been expected unless magnetar
formation is efficient in the GC with an order unity efficiency [103] and that the missing
pulsar problem could be explained as a consequence of a tendency to create short-lived
magnetars rather than long-lived ordinary pulsars. On the other hand, there is evidence
that several magnetars are associated with massive stellar progenitors (M > 40M�) [104],
a fact that supports the idea that magnetars formed in the GC could be very massive
compact objects made of quark matter. These massive magnetars can be 2M� quark stars
with inner magnetic field B = 1017 G. Although the original argument for the existence
of quark stars was based on the stability of strange quark matter, in recent years, it has
been demonstrated [11], using a phenomenological quark–meson model that includes the
flavor-dependent feedback of the quark gas on the QCD vacuum, that u-d quark mater is in
general more stable than strange quark matter, and it can be more stable than the ordinary
nuclear matter when the baryon number is sufficiently large. Based on this result, for the
analysis below, we will consider the hypothesis that the massive magnetars in the GC are
two-flavor quark stars in the MDCDW phase.

The Milky Way GC is a very active astrophysical environment with numerous γ-ray-
emitting point sources [105]. Extragalactic sources of GRBs show an isotropic distribution
over the whole sky, flashing with a rate of 1000/year. The energy output of these events is
∼1056 MeV, with photon energies of order 0.1–1 MeV [106], meaning that each one of these
events can produce 1056 or more photons. If we assume that only 10% of these photons
reach the star, which is a conservative estimate if the star is in the narrow cone of a GRB
beam, about 1055 of those photons can reach the NS.

For fields B = 1017 G, the mass gap mAP of the gapped AP is in the range [0.06, 0.3] MeV
for the corresponding parameter intervals μ ∈ [340.1, 342.5] MeV and m ∈ [23.5, 4.7]
MeV [95]. Hence, one can gather that many of the photons reaching the interior of a quark
star in the MDCDW phase can have enough energy to propagate inside as gapped APs.
The conversion of a large number of γ-photons into APs once they hit the NS interior can
take place through the so-called Primakoff effect [107]. The Primakoff effect is a mechanism
that can occur in theories that contain a vertex between a scalar or a pseudoscalar and two
photons, so that via this vertex and in the presence of background electric or magnetic
fields, the photon can be transformed into these bosons. In the context of the MDCDW
dense quark matter, the Primakoff effect allows the incident photons to be transformed into
APs thanks to the anomalous axion–two-photon vertex and the existence of a background
magnetic field. This effect can produce a large number of gapped APs, which being bosons,
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will be gravitationally attracted to the center of the star where they will accumulate with
high density.

If the number of APs that accumulate in the star’s center is higher than the Chan-
drasekhar limit for these bosons, the AP’s will create a mini black hole in the star center that
will destroy the host NS, leaving a remnant black hole. We explored this possibility in [97],
where we considered the Chandrasekhar limit that determines the number of AP’s required
to induce the collapse, ignoring the gravitational energy associated with the quarks. For
boson particles, this limit is given by [108,109]:

NCh
AP =

( Mpl

mAP

)2

= 1.5 × 1044
(

MeV
mAP

)2
(63)

where Mpl = 1.22× 1019 GeV is the Planck scale. Using the largest AP mass mAP = 0.3 MeV
for the B = 1017 G field, we find NCh

AP = 1.7 × 1045. This implies that if just 10−8% of the
1055 photons reach the star with energies ∼0.3 MeV or larger, they can in principle generate
a large enough number of APs to produce a mini black hole in the star’s center and induce
its collapse. Similarly, for an AP mass mAP = 0.06 MeV, we find NCh

AP = 4.2 × 1046, so in
this case, 10−7% of the total number of photons will have to reach the star to create the
conditions for the collapse. Notice that this mechanism is purely a bosonic effect, since it is
related to the Chandrasekhar limit of the bosons.

We should point out that the likelihood of reaching the Chandrasekhar limit in the
star interior is not just determined by the number and energies of the γ-rays hitting the
star, but also by the capacity of these photons to penetrate the quark medium and then
generate a large enough number of APs that become trapped by the star’s gravity. Hence,
for the above AP mechanism to be operative, one has to estimate the γ-rays’ attenuation in
the MCDCW quark medium and use it to determine whether the star can trap or not the
APs that form in its interior [110].

In a medium, γ-rays are mainly attenuated by their interaction with electrons. The
main process driving the attenuation in an NS is Compton scattering. The attenuation at a
given depth can be found from the formula:

I = I0e−σne L, (64)

where I0 is the incident radiation intensity, I the intensity at a thickness L inside the
medium, σ the cross-section of Compton scattering, and ne the electron number density.
In a quark star, to reach the quark medium, the γ-rays have to cross an electron cloud of
thickness a few hundred fm, since quark stars exhibit a macroscopic quark matter surface
shrouded with this very thin electron cloud [8]. The quark-star surface acts as a membrane
that allows only ultrarelativistic matter to escape: photons, neutrinos, electron–positron
pairs, and magnetic fields. For the incoming γ-rays to reach the quark matter medium and
activate the Primakoff effect, they first need to go through the electron cloud without big
attenuation losses.

The formula that gives the Compton scattering cross-section is known as the Klein–
Nishina formula [111,112] and is given by:

σ =
3e4

48πε2
0m2

e c4

[
1
x

(
1 − 2(x + 1)

x2

)
ln(2x + 1) +

x + 8
2x2 − 1

2x(2x + 2)2

]
(65)

= 2.49 × 10−25
[(

x2 − 2(x + 1)
x3

)
ln(2x + 1) +

x + 8
2x2 − 1

2x(2x + 2)2

]
cm2

where x = ω/mec2 is the ratio between the photon energy and the rest energy of the
electron. For the maximum incident photon energy ω ≈ 1 MeV, x ≈ 2, and the cross-
section is:

σ ≈ 2.58 × 10−25cm2 (66)
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The electron number density of the cloud can be found from [8]:

ne =
9.49 × 1035cm−3

[1.2(z/10−11cm) + 4]3
(67)

Here, z is the height above the quark surface.
From Equations (64), (66), and (67), we obtain that the ratio of intensities for L ≈ z ≈

300 f m is I/I0 ≈ 0.983, which shows that for 1MeV γ-rays the attenuation is negligible. A
similar calculation for the least-energetic incident γ-ray, with 0.1 MeV, still shows small
attenuation I/I0 ≈ 0.64. In the case of hybrid stars, the situation is different since the
γ-rays have to cross several kilometers of hadronic matter with a relatively large electron
density before reaching the quarks in the core. It can be proven that in this case, the γ
radiation will be absorbed in a distance of less than a hundred f m into the mantle [110].

Back to the quark star case, once the γ rays reach the quark medium, they are converted
to APs via the Primakoff effect, and a natural question immediately follows: Are these AP
trapped inside the star? To answer this question, we need to compare the velocity of the
AP with the star’s escape velocity ve/c =

√
2GMstar/c2Rstar. For a star with Mstar = 2M�

and Rstar = 10 km, we have ve = 0.8c. The velocity vAP that an AP of mass mAP can reach
depends on the energy E it acquires from the incident γ-rays:

vAP/c =

√
1 −

(
mAPc2

E

)2

. (68)

For instance, for mAPc2 = 0.3 MeV, all the APs with energy E < 0.5 MeV cannot escape.
Similarly, if mAPc2 = 0.06 MeV, the APs with energies E < 0.1 MeV will be gravitationally
trapped. This implies that for incident γ-photons in the energy interval (0.1, 0.5) MeV,
there will always be APs that will be trapped. The use of 2M� stars in the escape velocity is
motivated by recent indications [113] that the heaviest neutron stars, with masses ∼ 2M�,
should have deconfined quark matter inside.

The constraint in the interval of photon energies needed to generate APs that will be
trapped in turn affects the estimate of the percentages of incident photons needed to reach
the Chandrasekhar limit. If we conservatively assume that the number of photons per
energy is the same throughout the entire interval of γ-ray energies, then we can estimate
that photons in the energy interval (0.3, 0.5) MeV roughly represent 22% of the total
number of incident photons that reach the quark medium, i.e., about ≈1054 photons. Of
these photons, only 10−7% are needed to generate enough APs to reach the Chandrasekhar
limit and induce the star’s collapse. We then conclude that the AP mechanism to collapse
the star by creating a mini black hole from the creation and subsequent accumulation of AP
particles in the star’s center is viable for quark stars and can serve to explain the missing
pulsar problem.

There are several reasons why the presence of a magnetic field is crucial for the AP
mechanism to work: first, because a background magnetic field is needed for the density
wave phase of quarks to be stable against low-energy fluctuations [84], second, because a
background magnetic field is needed to create APs through the Primakoff effect [97], and
third, because the AP gap is proportional to the magnetic field [97]. It is worth mentioning
that the AP mechanism does not require unrealistically large magnetic fields to be viable.
Fields of magnitude 1016–1017 G are enough to make the MDCDW phase energetically
favored over the chirally restored one at intermediate densities. These are plausible fields
for the interior of magnetars, whose surface magnetic fields can be as high as 1015G. All
these facts, together with the intense γ-ray activity in the galaxy center, create the conditions
needed for the collapse of those short-lived magnetars via the AP scenario.
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7. MDCDW Condensate versus Magnetically Catalyzed Chiral Condensate

It is well known that in a system of massless charged fermions in a magnetic field,
the dimensional reduction in the infrared dynamics of the particles in the LLL favors the
formation of an homogeneous particle–antiparticle chiral condensate even at the weakest
attractive interaction between fermions. This phenomenon is due to the fact that there is
no energy gap between the infrared fermions in the LLL and their antiparticles in the Dirac
sea. This phenomenon is known as the magnetic catalysis of chiral symmetry breaking
(MCχSB) [114–119]. The MCχSB is a universal phenomenon that has been tested in many
different contexts [120–126].

In the original studies of the MCχSB [114–126], the catalyzed chiral condensate was
assumed to generate only a fermion dynamical mass. However, it was later shown that
in QED [127,128], the MCχSB inevitably leads also to the emergence of a dynamical
anomalous magnetic moment (AMM). The reason is that the AMM does not break any
symmetry that has not already been broken by the chiral condensate. The dynamical AMM
in massless QED leads, in turn, to a nonperturbative Lande g-factor and a Bohr magneton
proportional to the inverse of the dynamical mass. The induction of the AMM also yields a
nonperturbative Zeeman effect [127,128].

Just as in QED, the magnetically catalyzed ground state of an NJL model of massless
quarks at subcritical coupling turns out to be actually richer than previously thought with
the emergence of two homogeneous condensates, the usual 〈ψψ〉 and a magnetic moment
condensate 〈ψΣ3ψ〉 aligned with the magnetic field direction [49]. An effect of the magnetic
moment is to significantly enhance the critical temperature for chiral symmetry restoration.

The above examples assumed zero chemical potential. A chemical potential can
affect the picture significantly because once the density becomes different from zero and a
Fermi surface is formed, the energy cost to pair particles with antiparticles grows, so that
eventually, the pairing is no longer energetically favored. At nonzero chemical potential,
the MCχSB then occurs until μ reaches a critical value at which a first-order phase transition
takes place and the chiral symmetry is restored [129].

In Section 2, we saw that the MDCDW condensate can be formed even in the subcriti-
cal coupling regime, as long as the chemical potential is nonzero. That means that there
is a region of chemical potentials where the MDCDW chiral condensate and the homoge-
neous MCχSB condensate compete with each other. Which of them is more energetically
favored can be gathered from Figure 3, where the plots of the free-energy vs. the chemical
potential are displayed for the MCχSB phase (yellow lines) and the MDCDW phase (blue
lines), at different magnetic fields and/or couplings. Clearly, the spatially inhomogeneous
condensate wins over the homogeneous one in the entire region of chemical potentials in
all the situations.
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Figure 3. Comparison of free-energies for two phases at subcritical couplings: a homogeneous phase
with a magnetically catalyzed condensate (yellow line) and a spatially inhomogeneous phase (blue
line) with an MDCDW condensate.

Comparing the plots in Figure 3a,b, one can see that a larger magnetic field decreases
the free-energy of the inhomogeneous phase and increases that of the homogeneous one. A

142



Universe 2021, 7, 458

similar behavior occurs at fixed field B, but different couplings, as can be seen from (b) and
(c). Here, the separation between the two free-energies increases with the coupling, clearly
favoring the MDCDW phase. These results underline how robust the MDCDW is even at
subcritical coupling, an effect that can be connected to the topological contribution to the
free-energy from the LLL quarks.

It is worth stressing another difference between these two phases. While a driven
factor in the MCχSB case is the LLL infrared dynamics, as already pointed out, in the
MDCDW phase, there is a connection between ultraviolet (UV) and infrared (IR) phenom-
ena. The appearance of Ωanom (11) in the thermodynamic potential is a consequence of
the regularization of the high-energy modes in the difference of two ill-defined sums from
which the anomalous and the finite medium contributions are extracted [43]. Since the
anomalous term contributes to the gap equation for q, whose origin is IR because it comes
from the quark–hole pairing, we have that the UV physics and the IR properties of the
system are interrelated.

Finally, we should comment on the fact that while in the original MCχSB phenomenon,
the condensate increases with the magnetic field, more recently, it was found that if the
effect of the magnetic field on the coupling constant is taken into consideration, the chiral
condensate actually decreases with the magnetic field, a phenomenon known as inverse
magnetic catalysis [130–134]. It remains as an open and interesting question what will
be the consequence of including the effect of the magnetic field on the strong coupling
constant for the inhomogeneous condensate of the MDCDW phase.

8. Conclusions

In this paper, we reviewed the main physical characteristics of the MDCDW phase
of dense quark matter and its possible connection with the astrophysics of NSs. One
main attribute of this phase is its nontrivial topology, which is due to the combined
effect of the density wave ground state and the dimensional reduction produced by the
magnetic field on the LLL, which together give rise to an asymmetric spectrum for the LLL
modes. As a consequence, the MDCDW phase displays anomalous properties such as an
anomalous electric charge that depends on the applied magnetic field and the modulation
q, a nondissipative anomalous Hall current, and magnetoelectricity.

The topological nature of the the MDCDW phase is also reflected in the matter–light
interactions and how they affect the propagation of photons in this medium, which occurs
via axion polaritons, a transport behavior that could help to explain the so-called missing
pulsar problem in the GC.

A very important feature of the MDCDW phase is its stability against thermal phonon
fluctuations at arbitrarily small temperatures. In other words, this system is protected
against the Landau–Peierls instability [78,79] that usually erodes single-modulated phases
in three spatial dimensions, leading to the lack of a long-range order. The lack of the
instability is due to magnetic-field-induced terms in the low-energy GL expansion, some
of which have a topological origin, since they are connected to the spectral asymmetry,
and some of which are just the effect of the explicit breaking of the rotational symmetry by
the magnetic field. The lack of Landau–Peierls instabilities in the MDCDW phase makes
this phase particularly robust and, hence, a good candidate for the inner matter phase of
neutron stars.

Although the emphasis of this paper was on NSs, the results of this review can also be
of interest for heavy-ion collision (HIC) physics. Future HIC experiments plan to explore
the region of lower temperatures and higher densities, and in doing that, they will certainly
generate strong magnetic and electric fields in their off-central collisions, so opening a
much more sensitive window to look into a very challenging region of QCD [135]. For
example, the second phase of the RHIC energy scan (BES-II) [136], the planned experiments
at the Facility for Antiproton and Ion Research (FAIR) [137] at the GSI site in Germany, and
the Nuclotron-based Ion Collider Facility (NICA) [138,139] at JINR laboratory in Dubna,
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Russia, are all designed to run at unprecedented collision rates to provide high-precision
measures of observables in the high-baryon-density and lower-temperature region.

Searching for signals of inhomogeneous quark phases in these planned experiments is
a necessary step to probe their realization in this yet unexplored region of the QCD phase
map. Recently, a proposal to detect those signatures was discussed in [140]. The idea is that
in regimes with periodic spatial modulation, particles can have a “moat” spectrum, where
the minimum of the energy is not at zero momentum, but lies over a sphere at nonzero
spatial momentum. On the basis that the particle distribution with a moat spectrum
should peak at nonzero momentum [141], the authors of [140] argued that this feature can
leave distinctive signatures in the production of particles and their correlations, which
are measurable in heavy-ion collisions. The properties of the MDCDW phase discussed
in this review, together with the upcoming findings of the range of critical temperatures
at which the condensate evaporates [95], can serve to guide the experiments to better
pinpoint the region of parameters where the signatures of a moat spectrum are most likely
to be detected.

Finally, we should call the reader’s attention to the fact that the anomalous effects of
the MDCDW phase share many similarities with topological condensed matter systems
as topological insulators [142], where θ depends on the band structure of the insulator;
Dirac semimetals [143–146], a 3D bulk analogue of graphene with nontrivial topological
structures; and WSM [88], where the derivative of the angle θ is related to the momentum
separation between the Weyl nodes. Therefore, the discovery of new physical properties of
these materials can shed light on the physics governing the challenging region of strongly
coupled QCD, thereby inspiring new strategies to probe the presence of the MDCDW and
other suitable phases in NSs and HICs.
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Abstract: We investigated compact stars consisting of cold quark matter and fermionic dark matter
treated as two admixed fluids. We computed the stellar structures and fundamental radial oscillation
frequencies of different masses of the dark fermion in the cases of weak and strong self-interacting
dark matter. We found that the fundamental frequency can be dramatically modified and, in some
cases, stable dark strange planets and dark strangelets with very low masses and radii can be formed.

Keywords: quark stars; dark matter; radial oscillations

1. Introduction

Compact stars offer a variety of possibilities for probing the inner structure of matter
through astronomical observations. In particular, matter at extremely high densities can
only be probed, so far, by investigating unique objects that represent one of the possible
final stages of stellar evolution. The structure of compact stars can be determined by solving
the Tolman–Oppenheimer–Volkov (TOV) equations, given the equation of state (EoS) for
the matter under consideration [1,2].

For high enough central energy densities, one expects to find either hybrid stars, i.e.,
neutron stars with a quark matter (QM) core, or even more exotic objects, such as quark
stars. Quark stars [3] and their structure [4] have been considered for more than half a
century, even before the elaboration of quantum chromodynamics (QCD) in the 1970s.
Later, after a seminal work by Witten [5], a rich phenomenology of self-bound strange
stars [6,7] and quark (hybrid) stars emerged using the MIT bag model [8] as a framework
for the EoS at high densities. For a review on quark matter in neutron stars, see Ref. [9].

On the other hand, dark matter (DM) represents about a quarter of the total mass–
energy density content of the universe or, equivalently, ∼85% of its matter content. Apart
from this, it is needed to explain structure formations without modifying general relativity
in the current cosmological standard model [10–12]. Nevertheless, there is still no exper-
imental evidence of DM-constituent particles, and its nature remains one of the greatest
mysteries of particle physics. Over the years, many candidates have been proposed as
being DM-constituent particles, with masses ranging from 10−33 GeV to 1015 GeV, includ-
ing weakly interacting massive particles (WIMPs), axions and axion-like particles (ALPs),
sterile neutrinos, neutralinos, and so on [13]. In spite of their nature, if DM-constituent
particles do not self annihilate and are non-relativistic at freeze-out (cold dark matter
(CDM)), the probability of their interaction with ordinary baryonic matter will increase
within the extreme densities found in compact stars. In this case, DM can accumulate and
thermalize in a small radius. So, if quark stars are to be found in the universe, they have
most likely accumulated some amount of dark matter over the course of their lives.

In this paper, we investigate strange quark stars consisting of cold QM and non self-
annihilating fermionic cold DM treated as two admixed fluids, attracted only gravitationally.
As our main goal, we aim to compute the fundamental radial oscillation frequency of
admixed QM and DM two-fluid stars for a relevant range of masses of the dark fermion.
We consider the cases of weak and strong self-interacting DM and also study how the total
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mass and radius of quark and dark stars are modified by their mutual presence in the
admixed star.

We describe the QM component on the framework of the MIT bag model, which
represents a choice for simplicity, which was mainly motivated by the possibility of direct
comparison to previous work. Moreover, for analyses that depend on a range of values for
the dark fermion mass and the intensity of DM self-interaction, it is convenient to avoid
other bands in parameters that would come about naturally in more realistic descriptions
of the EoS, such as those relying on perturbative QCD [14–24].

Neutron stars and quark stars admixed with DM have previously been considered.
The effects of fermionic and bosonic DM on the equilibrium features and radial oscillations
of neutron stars (NS) have been discussed, e.g., in Refs. [25–31] (see Ref. [32] for a
more complete list of references). Reference [33] considers hybrid NSs with an EoS for
neutron star matter that uses perturbative QCD and effective field theory as high and low-
density descriptions, respectively, and polytropes as interpolating functions, as discussed
in Ref. [18]1, in addition to taking into account inner and outer crusts. The authors also
consider white dwarfs admixed with asymmetric DM and find dark, compact (Jupiter-like)
planets and limits on the DM content of the stars in order to satisfy the two-solar mass
observational constraint [34,35]. A stability analysis is also performed by solving the usual
Sturm–Liouville problem for one-fluid stars [36,37]. Reference [13] extends these results to
a wider range of dark fermion masses, from 1 GeV to 500 GeV, assuming different amounts
of DM at the stellar center. From this analysis, the authors inferred that the total mass
decreases with mD, putting constraints on mD and on DM capture.

Quark stars admixed with dark matter have been discussed in Ref. [38], where the
authors use the MIT bag model to describe the EoS for QM admixed with DM made of dark
fermions of mass mD = 100 GeV (on the typical WIMP mass scale). They considered two
cases: free and strongly self-interacting DM. Solving the TOV equations with two fluids
that interact only gravitationally, they found minor modifications to the maximum mass
and radius, of the order of a few percent, though with higher values of the central energy
density due to a greater gravitational pull.

So far, the stability against radial oscillations of quark stars admixed with dark matter
has been studied using one-fluid formalism, usually with simplified interaction terms
and unphysical dark-fermion masses [39,40]. A complete treatment of the stability of two-
fluid stars requires a non-trivial extension of the Chandrasekhar second-order differential
equation, where a coupled system of equations should be solved for the corresponding
Lagrangian displacements associated with each fluid, but which also depend on the dis-
placement of the other fluid [26,27,41,42], as will be discussed in the sequel.

The paper is organized as follows. In Section 2, we briefly describe the two-fluid
hydrostatic equilibrium equations together with the general-relativistic formalism used
to study radial pulsations of the admixed stars. Section 3 contains our main results and
discussion. Section 4 presents our summary and perspectives. We adopt natural units, i.e.,
h̄ = c = 1.

2. Framework

In this section we summarize the main features of the TOV equations for the admixture
of two fluids that interact only gravitationally. The one-fluid radial oscillation equations
are conveniently partitioned to analyze either the stability of the quark mater core or dark
matter core of the whole compact star. For the bag constant we use B1/4 = 145 MeV, which
implements the Bodmer–Witten–Terazawa hypothesis for strange quark matter [2]. This
choice yields a maximum mass of 2.01 M� and a radius of R = 11 km. As mentioned
previously, fermionic dark matter is considered as being either weakly (y = 0.1) or strongly
(y = 103) self interacting [43]. Here, y ≡ mD/mint, where mD is the dark fermion mass, and
mint is the scale of interaction. One can consider that mint ∼ 100 MeV for strong interactions
and mint ∼ 300 GeV for weak interactions. The values y = 0.1 and y = 103 are commonly
adopted as typical illustrations.
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2.1. Two-Fluid Hydrostatic Equilibrium Equations

Since the structure of spherically symmetric, static one-fluid compact stars is deter-
mined from the usual TOV equations, they can be separated in order to deal with two
fluids that only interact gravitationally. This can be performed as follows. The (perfect)
one-fluid energy-momentum tensor is divided into two parts, i.e., Tμν = Tμν

1 + Tμν
2 . This,

in turn, induces a separation of the total pressure and energy density in fluid components,
as p = p1 + p2 and ε = ε1 + ε2, respectively. Given that this separation does not affect
the temporal eν(r) or radial eλ(r) metric functions, the corresponding equations keep their
original forms, depending on the total pressure and energy densities. On the other hand,
one has a set of coupled TOV equations for each of the fluids.

In our case, i.e., quark and dark matter fluids, we have these two-fluid TOV equations
in its dimensionless form given by [33] (see Ref. [29] for a detailed variational derivation):

dp′QM

dr′ = − (p′QM + ε′QM)

2
dν

dr′ ,

dm′
QM

dr′ = 4πr′2ε′QM,

dp′DM
dr′ = − (p′DM + ε′DM)

2
dν

dr′ , (1)

dm′
DM

dr′ = 4πr′2ε′DM,

dν

dr′ = 2
(m′

QM + m′
DM) + 4πr′3(p′QM + p′DM)

r′(r′ − 2(m′
QM + m′

DM))
,

where p′ and ε′ are the dimensionless pressure and energy density, respectively, and
m′

QM,DM are the dimensionless gravitational masses enclosed inside the dimensionless
radial coordinate r′.

The set of equations above is solved simultaneously by specifying the (dimension-
less) EoSs for QM, i.e., p′QM = p′QM(ε′QM), and DM, i.e., p′DM = p′DM(ε′DM). As usual, the
conditions at the center should be given for QM and DM in the admixed star. The numerical
integration stops when one of the pressures reaches zero, i.e., p′QM/DM(R′

QM/DM) = 0, char-
acterizing the QM or DM core surface, allowing us to obtain the corresponding gravitational
mass m′

QM/DM(R′
QM/DM) = M′

QM/DM, where, in general, R′
QM �= R′

DM. If R′
QM > R′

DM,
the admixed star has a DM core and, if R′

QM < R′
DM, it has a DM halo surrounding a

QM core.2

The boundary conditions for the metric function ν(r) come from ensuring that it
matches the Schwarzschild metric outside the QM or DM core in the admixed star, i.e.,:

ν(R′
QM) = ln

(
1 − 2(M′

QM + m′
DM(R′

QM))

R′
QM

)
(2)

or

ν(R′
DM) = ln

(
1 − 2(m′

QM(R′
DM) + M′

DM)

R′
DM

)
, (3)

respectively.

2.2. Pulsations of Quark and Dark Matter Cores

The equations that describe the radial pulsations of one-fluid compact stars were
obtained for the first time by S. Chandrasekhar [36]. He found that these equations could
be arranged as a Sturm–Liouville problem where the eigenvalues are the oscillation fre-
quencies squared, ω2 (the eigenfunctions being the radial Lagrangian displacements). For
numerical purposes, these equations can be conveniently modified to a pair of first-order
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differential equations for each of the Lagrangian variables with more intuitive boundary
conditions [44–48].

Strictly speaking, the dynamic stability of admixed stars must be studied using the
full two-fluid formalism3 of Refs. [27,41], which would produce unified oscillation frequen-
cies for the entire admixed star. However, since this calculation is computationally very
expensive and time consuming, we decided to solve the equivalent of the two-fluid TOV
equations, realized instead in the form of oscillation equations. In order to perform that
function, we used the formalism of Ref. [47], which deals with the relative radial displace-
ment Δr′/r′ ≡ ξ ′ = ξ and the Lagrangian perturbation pressure Δp′, both dimensionless.

Inspired by the previous separation for the total pressure and energy density, we
separated the total Lagrangian variables as ξ = ξQM + ξDM and Δp′ = Δp′QM + Δp′DM
(omitting the term eiωt in both variables), obtaining the following system of equations:

dξQM/DM

dr′ ≡ − 1
r′

(
3ξQM/DM +

Δp′QM

Γp′

)
− dp′

dr′
ξQM/DM

(p′ + ε′) , (4)

dΔp′QM/DM

dr′ ≡ ξQM/DM

{
ω′2eλ−ν(p′ + ε′)r′ − 4

dp′

dr′

}
+

ξQM/DM

{(
dp′

dr′

)2 r′

(p′ + ε′) − 8πeλ(p′ + ε′)p′r′
}
+

Δp′QM/DM

{
dp′

dr′
1

p′ + ε′ − 4π(p′ + ε′)r′eλ

}
, (5)

where ω′ is the dimensionless oscillation frequency and Γ is the adiabatic index4

Γ = (1 + ε′/p′)(∂p′/∂ε′). The metric function λ(r′) is obtained from λ(r′) = − ln(1 −
2(m′

QM(r′) + m′
DM(r′))/r′) with boundary conditions given by Equations (2) and (3), i.e.,

λ(R′
QM) = −ν(R′

QM) and λ(R′
DM) = −ν(R′

DM).
So far we have not mentioned whether ω′ corresponds to the pulsation of a QM core

or a DM core. Recall that these equations represent a Sturm–Liouville problem, which
defines its eigenvalues in terms of the associated boundary conditions. In this case, they are

(Δp′QM/DM)center ≡ −3(ξQM/DMΓp′QM/DM)center , (6)

demanding smoothness at the QM or DM stellar center, and

(Δp′QM/DM)surface ≡ 0 , (7)

since p′QM/DM(R′
QM/DM) = 0, with eigenfunctions normalized to ξQM/DM(0) = 1 as usual.

Thus, Equations (6) and (7) lead us to define ω′2 → ω′2
QM/DM if we are dealing with

a QM/DM oscillating core in the admixed star. In other words, only one of the cores
oscillates depending on the boundary conditions. The other fluid only affects its oscillation
indirectly, by the coupling of the total pressure and energy density.

A word of caution should be added at this point. Usually, two ways of dealing with
the radial oscillations of two-fluid compact stars have been explored. In the simplest one,
only the radial oscillation of the whole admixed star, i.e., treated as one fluid, is studied
without explicitly considering the gravitational coupling between the QM and DM cores
(see e.g., Refs. [33,39,40]). In the second, a consistent general-relativistic formalism to
deal with the couplings between oscillation amplitudes and Lagrangian perturbations for
each fluid is developed [41,42]. Unfortunately, dealing with a system of highly coupled
and non-linear differential equations requires very time-consuming numerical calculations
which we consider unnecessary when independently solving the oscillation equations for
each DM or QM core while keeping the other fluid at rest but still coupled through the
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coefficients entering in the equations. In this sense, the formalism built in this work occurs
more in the line of Ref. [27], which considers the independent oscillations of each fluid,
thus forming an Sturm–Liouville-like problem. Notice that our reasoning agrees with the
fact that each of the two-fluid TOV equations can be considered an independent ’one-fluid’
star only, coupled through ν(r′) to the other ’one-fluid’ star. Thus, radial oscillations of
each ’one-fluid’ star can be associated with a set of one-fluid5 oscillation equations coupled
now by the total pressures, energy densities, and polytropic indices and metric functions,
ν(r′) and λ(r′). For consistency, we have verified that our formalism agrees with the results
of Ref. [38] when a delay of the maximal central density is reached at higher densities for
increasing amounts of DM when the zero frequencies are reached. We stress that, in this
case, fn=0 → 0 coincides with ∂M/∂εc → 0, since few amounts of DM were considered,
whereas in this work we explore all the available DM densities which notoriously modifies
the stability of the admixed stars, so that ∂M/∂εc must be used with caution.

In following sections, we focus on the fundamental mode frequency, ωn=0. It vanishes
at the maximal stable QM or DM mass configuration, marking the onset of the instability
of the corresponding oscillating core which, in turn, induces the gravitational collapse of
the whole admixed star.

3. Results and Discussion

The parameter space for quark stars admixed with weakly or strongly self-interacting
DM is large. In this section we show only results where the effects on observables are
relevant. As mentioned before, we considered dark fermion masses mD =1, 10, 50, 100, 200,
500 GeV in order to include all possible dark fermion candidates.

Regarding the numerical values we chose for εQM/DM
c in our calculations and showed

in our plots: (i) for QM, the three values of εQM
c correspond to somewhat above, twice,

and nearly twice the value of the maximal central energy density of pure quark stars with
B = (145 MeV)4, i.e., ∼ 1 GeV/fm3. The reason for this is that higher values of εQM

c are
required when DM is present in the admixed star; (ii) the three values of εDM

c (for strongly
or weakly interacting DM) correspond to near the minimum, intermediate, and near the
maximal-mass central densities for corresponding pure DM stars. In Tables 1 and 2 the
maximal-mass values of central energy density for each mD are listed. This choice was
made to quantify the full dependence of the stellar structure on the amounts of DM. We
will show that, in some cases with a huge amount of DM, only very small objects with
strangelet-like and planet-like masses are allowed. This was expected from the results of
Ref. [38].

Although the usual criterion for static stability, ∂M/∂εc ≥ 0, consistently works for
one-fluid stars, it should not be taken for granted in two-fluid stars; only the frequency
analysis can decide on their stability. Our results for the oscillation frequency of the
fundamental mode for QM and DM cores in the admixed stars are written in terms of the
linear frequency f QM/DM

n=0 = ωQM/DM
n=0 /(2π).

Table 1. Maximum masses Mmax (M�) and their corresponding minimum radii Rmin (km) and
maximum central energy densities εmax

c (GeV/fm3) obtained for weakly interacting (wDM) pure
dark matter stars.

EoSs εmax
c (wDM) Mmax(wDM) Rmin(wDM)

DM (mD/GeV = 1) ∼3 ∼0.63 ∼8.1
10 ∼3 × 104 ∼6.27 × 10−3 ∼7.8 × 10−2

50 ∼1.97 × 107 ∼2.50 × 10−4 ∼3.2 × 10−3

100 ∼3 × 108 ∼6.27 × 10−5 ∼8.1 × 10−4

200 ∼4.99 × 109 ∼1.56 × 10−5 ∼2 × 10−4

500 ∼1.97 × 1011 ∼2.50 × 10−6 ∼3 × 10−5
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Table 2. Same notation as in Table 1 but now for strongly interacting (sDM) pure dark matter stars.

EoSs εmax
c (sDM) Mmax(sDM) Rmin(sDM)

DM (mD/GeV = 1) ∼4.9 × 10−5 ∼2.67 × 102 ∼1.87 × 103

10 ∼0.6 ∼2.67 ∼18.5
50 ∼4 × 102 ∼1.07 × 10−1 ∼ 7.4 × 10−1

100 ∼4.9 × 103 ∼2.67 × 10−2 ∼18.7 × 10−2

200 ∼8 × 104 ∼6.68 × 10−3 ∼4.7 × 10−2

500 ∼4 × 106 ∼1.07 × 10−3 ∼7.5 × 10−3

3.1. Admixtures of Quark Matter and Weakly (y = 0.1) Interacting Dark Matter
3.1.1. Solving the Two-Fluid TOV Equations

In Figure 1, we display the results obtained from solving the two-fluid TOV
Equation (2) with the condition pQM(RQM) = 0 for different central energy densities
of weakly interacting DM. One can easily see that only the solutions for mD = 1500 GeV
display sizable modifications on the QM stellar masses and radii. In particular, the case
of mD = 500 GeV suffers a marked reduction of 1.2 M� due to the very high DM central
energy densities (∼1011 GeV/fm3). Additionally, the central QM densities increased con-
siderably, by a factor ∼7. Normally such QM densities would generate unstable pure quark
stars with central energy densities at most ∼1 GeV/fm3 without the DM component.
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Figure 1. Cont.
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Figure 1. Each pair of panels with the same color for the plots displays the mass–radius relation
and the mass as a function of the energy density for quark matter cores, i.e., pQM(RQM) = 0, with
different amounts of weakly (y = 0.1) interacting dark matter (wDM) for dark fermion masses of
mD = 1, 10, 50, 100, 200, 500 GeV.

On the other hand, solutions for other values of the dark fermion mass show negligible
effects. Again, these QM stars require higher central energy densities in order to compensate
for the extra gravitational pull from the DM. Furthermore, solutions for all the dark fermion
masses, except mD = 1 and 500 GeV, develop a plateau at low QM stellar masses in
the mass vs. central energy density plots, which became wider for higher DM central
energy densities. Our calculations show that these QM cores have masses between 10−18

to 10−4 M� with radii between 10−4 and 10−2 km, depending on the value of the dark
fermion mass. For example, mD ∼ 10 GeV mostly commonly produces stellar masses
around 10−5 M� with radii of 10−3 km. As we increase the mass of the dark fermion, the
values of MQM and RQM are reduced by many orders of magnitude. We note that all these
stars satisfy the criterion ∂MQM/∂εQM

c > 0 and can be tentatively considered stable objects,
“dark strange planets” in analogy to the results of Ref. [33], and “dark strangelets”.

Figure 2 shows our results from the two-fluid TOV Equation (2) with the condition
pDM(RDM) = 0 for different values of QM central energy densities. The DM stars that are
most affected by the presence of QM are the ones with mD = 1 and 10 GeV. For stars with
mD = 1 GeV, the central QM energy densities are high enough to convert the usual behavior
of pure DM stars in the mass–radius diagram into a self-bound-like behavior, making them
more compact. To see this more quantitatively, Table 1 shows values of masses and radii
for pure y = 0.1 DM stars for the whole range of dark fermion masses considered. One can
see that the stellar masses and radii are slightly affected by the presence of QM near the
maximum mass, but the radii of less massive DM stars are significantly modified. The same
is true in the case of mD = 10 GeV. For mD = 50, 100, 200, 500 GeV, the DM high central
energy densities completely dominate the QM contribution.

3.1.2. Solving the Coupled Radial Oscillation Equations

The solutions to the coupled radial pulsation Equations (4) and (5), assuming an
oscillating QM core with fixed DM central energy density with boundary conditions (6)
and (7), are shown in Figure 3. We show the zero-mode frequency as a function of central
energy density and stellar mass.
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Figure 2. Same notation as in Figure 1 but now for dark matter cores satisfying pDM(RDM) = 0.
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Figure 3. Fundamental-mode frequencies, fn=0, versus gravitational masses, M, and central energy
densities, εc, all for the oscillating QM cores with different values of central wDM and dark fermion
masses mD. Panels with the same color belong to the same class of admixed stars. Notice that the
behavior in the planes fn=0(M) is highly dependent on the value of εwDM

c , especially for the low-mass
QM cores. In a marked contrast, the changes are more modest in the fn=0(εc) planes.
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One can see in Figure 3 that the increments in the DM central energy density tend to
delay the onset of radial instability (except in the case of mD = 10 GeV), which happens
when f QM

n=0 = 0. At the same time, this results in the maximum QM stellar masses in
the admixed star becoming smaller (in some cases by a factor of 10). This opens a new
stability window of ultra-low QM masses (when surrounded by DM) in the range between
10−18 and 10−4 M�, depending on mD, which correspond to the dark strange planets and
strangelets discussed above.

In the same way, Figure 4 shows the results for the coupled radial pulsation Equations (4)
and (5) assuming an oscillating DM core with boundary conditions (6) and (7) for different
fixed central energy densities of QM. Clearly, the general behavior is qualitatively different,
resembling the behavior of nucleonic stars. However, frequencies are very large, reaching
∼3 × 105 kHz, in contrast with the few and tens of kHz for hadronic and quark stars,
respectively [50]. In almost all cases, the DM core is essentially unaffected by QM due to
its very large central density, the exception being the case with mD = 1 GeV. On the other
hand, non-trivial effects show up in the f DM

n=0 vs. M diagrams: the maximum stable masses
do not correspond to the the ones in the mass–radius diagram of Figure 2; they are smaller.
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Figure 4. Same notation as in Figure 3 but now for oscillating wDM cores and different central QM
energy densities. Notice that, although the frequencies still reach high values, e.g., ∼3 × 105 KHz for
mD = 1 GeV, the qualitative behavior in the fn=0(M) and fn=0(εc) planes is markedly different and
characteristic of dominating wDM in the admixed star for any amount of central QM.
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Furthermore, in Figure 4 one sees that, for the case of εQM
c = 1.5 GeV/fm3 with

mD = 1 GeV, zero frequencies are not reached in the corresponding DM stars. After some
point, the solutions become mechanically unstable in the sense of having negative QM
pressure profiles inside the DM star. A similar phenomenon occurs for larger mD, though it
is much less visible. Systems exhibiting negative pressures, e.g., dark energy inducing an
accelerated expansion of the universe, are not strictly prohibited but should be carefully
interpreted. For instance, fluids develop negative-pressure states when stresses are applied
for long periods. In the case of hybrid neutron stars with a first-order hadron–quark
transition, oscillations to negative-pressure states may accelerate the nucleation of bubbles
around the transition region, which, in the limit of large amplitudes, induce mechanical
instabilities [51]. In our case of oscillating QM and DM cores with small amplitudes
having negative-pressure profiles, the two-fluid TOV equations allows for their existence as
hydrostatically-equilibrated configurations that are potentially unstable when disturbed by
radial perturbations leading to the automatic collapse of the whole admixed star. In other
words, negative-pressure interiors lead immediately to complex oscillation frequencies.
Only by increasing εQM/DM

c do the instabilities disappear and one is able to find only real
frequencies.

3.2. Admixtures of Quark Matter and Strongly (y = 103) Interacting Dark Matter
3.2.1. Solving the Two-Fluid TOV Equations

Similar to the case of weakly self-interacting DM, we solved the two-fluid TOV
Equation (2) with the condition pQM(RQM) = 0 for different central energy densities of
strongly self-interacting DM. We present our results in Figure 5. As in the weak limit for
DM, in most of the cases stellar masses, radii and central energy densities of the QM core
are not appreciably affected. However, for increasing DM central energy densities, some
relevant variations occur. In particular, when mD = 1, 100, 200 GeV, the maximum QM
central energy densities are increased by a factor of ∼20. The cases with mD = 10, 50 GeV
show sizable variations of the masses and radii, especially near the maximum mass, where
the presence of DM reduces the QM core masses down to ∼0.4 M�. Interestingly, in the
case of mD = 10 GeV, the central QM energy density is almost unaffected by DM, whereas,
for mD = 50 GeV, it is dramatically increased. In the case with mD = 500 GeV, the QM
masses and radii increase by any amount of DM, and the QM central energy density is
augmented by a factor of 10. Analogously to what we have seen before, in the cases with
mD = 50 to 500 GeV, there are plateaus whose widths increase with mD.
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Figure 5. Mass–radius and mass–energy density relationships for QM cores with different amounts of
strongly (y = 103) interacting dark matter (sDM) at the center of the admixed stars. Different values
for the dark fermion masses mD are considered and results characterized by the same color. Notice
that the effects of sDM are mainly for high-mass stars and especially marked for mD = 10 GeV.

In order to study the structure of the opposite case, we solved the two-fluid TOV
Equations (2) with the condition pDM(RDM) = 0 for different central energy densities of
QM, as displayed in Figure 6. Pure y = 103 DM stars display the same qualitative behavior
as in the case of mD = 500 GeV, since, in this case, their masses and radii are almost
unaffected by any amount of QM due to very large DM central energy densities. The same
is true for mD = 200 GeV. See also Table 1.

Although not noticeable in Figure 6, when mD = 1 GeV, our calculations show that the
QM in the DM core yields higher masses (not shown in the figure) that are in contradiction
with the negative gradient of pressure required by the TOV equations. This happens,
because we are considering unstable QM central energy densities for the DM star, as can be
seen in Figure 5, which are manifested by producing increasing profiles of pressure then
leading to mechanical instabilities associated with complex frequencies, thus destabilizing
the whole admixed star. When mD = 10 GeV, we find a self-bound-like behavior for the
DM star. This occurs since the DM and QM central energy densities are almost equal in the
admixed star, and, in this case, the QM component dominates, modifying the behavior in
the mass–radius diagram. As before, the central DM densities are increased by a factor of
10. The cases with mD = 50, 100 GeV display a behavior that is a mixture of dark and quark
matter, where QM mainly affects the sector of lower DM stellar masses, and the structure
remains almost the same near the maximum mass. There, the central DM energy densities
are almost the same since the DM energy densities are enormous compared the QM ones.
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Figure 6. Mass–radius and mass–energy density relations obtained for sDM cores for different
fermion masses mD (indicated by different colors) with increasing amounts of QM at the centers
of the admixed stars. Notice that the competition between sDM and QM densities in some cases
allows for the presence of very small stars, which are not present in the one-fluid case, producing
qualitatively different behavior in the mass–radius relations of sDM stars, especially for low mD.

3.2.2. Solving the Coupled Radial Oscillation Equations

Finally, we solved the coupled radial pulsation Equations (4) and (5) assuming an
oscillating QM core in the admixed star with the boundary conditions (6) and (7) for
different fixed central energy densities of strongly interacting DM. The results are displayed
in Figure 7. We found that only the case of mD = 1 GeV was unaffected by strongly self-
interacting DM. As we increased mD, the fundamental frequency was strongly affected.
In fact, as occurred in the QM cases with weakly self-interacting DM, only low-mass QM
stars survived radial oscillations and behaved as strange quark planets and strangelets.
The oscillation frequencies of these objects can reach ∼105 kHz for mD = 500 GeV.
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Figure 7. Fundamental-mode frequency, fn=0, versus QM core masses and central energy densities
with different amounts of sDM for increasing values of the dark fermion masses, mD, denoted by
different colors. It can be seen that the densities of sDM for mD = 1 GeV have almost no effect on
the stability of the corresponding QM cores. Nevertheless, as one increases mD, the stable QM core
masses are reduced to lower and lower values and require higher QM central densities.

In Figure 8, we show our results6 after solving the coupled radial pulsation Equations (4)
and (5), assuming an oscillating DM core with boundary conditions (6) and (7) for different
central energy densities of QM. In correspondence with the results of Figure 6 for the cases
mD = 1, 10 GeV, only a small family of DM stars survived the radial oscillation analysis
for low mass stars. These DM stars increase their stability as long as one increases the
QM component. The qualitative behavior resembles that of a strange star. This occurs
due to the high QM central energy densities compared to the DM ones, with the QM
component dominating the stability of the admixed star. On the other hand, the cases
with mD = 50, 100, 200, 500 GeV display the standard behavior of pure y = 103 DM stars
due to the very high DM central energy densities. Interestingly, the same phenomenon of
increasing stability for higher central QM energy densities occurs in all these cases. The
physical picture indicates that low QM central energy densities support a small subset of
DM stars against gravitational collapse. As we increase the central energy densities, the
admixed star supports higher and higher central DM energy densities.
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Figure 8. Same notation as in Figure 7, but now for the oscillating core composed of sDM correspond-
ing to increasing mD (with different colors) and increasing values of central QM densities. Notice the
changing qualitative behavior when QM densities dominate over sDM for low mD = 1, 10 GeV but
the opposite happening for larger mD, where QM only allows for more stable sDM cores.

4. Summary and Outlook

We have studied the stability and main global features of strange quark stars admixed
with fermionic dark matter in a large parameter space, allowing dark fermion masses from 1
to 500 GeV and considering weakly and strongly self-interacting dark matter. For simplicity,
cold quark matter was described within the MIT bag model with B1/4 = 145 MeV which,
in the one-fluid case, produces strange quark stars.

After solving the two-fluid TOV equations, we computed the associated stellar struc-
ture. We found that, depending on mD and the interaction parameter y, some of the
obtained QM and DM stars display significant modifications of their stellar masses and
radii, whereas others show no change at all. Furthermore, some of the DM stars display a
self-bound-like behavior in the mass–radius diagram. In most situations, the central QM
and DM densities are increased by the presence of the other component in the admixed star.

For the radial pulsation analysis, a full general-relativistic two-fluid Sturm–Liouville-
like problem should, in principle, be solved. Instead, inspired by the way one usually solves
the two-fluid TOV equations by separating the total pressure and energy density into QM
and DM components, we developed a framework where we separate the total Lagrangian
variables entering the oscillation equations into QM and DM contributions. This method
allowed us to solve the problem, assuming that we disturb only one component and the
other is affected only indirectly.

Our calculations indicate that the static stability criterion ∂MQM/DM/∂εQM/DM
c ≥ 0

alone might produce misleading and incomplete results when applied to two-fluid stars.
We found that, in the case of QM stars admixed with DM, predominantly in the case of
y = 0.1, only very small QM stellar masses are dynamically stable leading to dark strange
planets and dark strangelets. On the other hand, DM stars are mainly affected when small
values of mD are considered, since larger dark fermion masses induce ultra-dense cores for
which the QM contribution is almost negligible.

Although our results are still very sensitive, both to the dark fermion mass mD and
the kind of self-interaction involved in the dark sector, whose scale is encoded in the
dimensionless variable y, there is hope that the parameter space can be dramatically
constrained by gravitational wave events, as discussed recently in Ref. [52].

In a future publications, we plan to refine our description using an equation of state
obtained from perturbative QCD [17]. It would also be interesting to explore the effects of
adding a nuclear mantle to our dark strange planets.
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Notes

1 In fact, the EoS considered corresponds to the most compact of three cases presented in tabulated format in Ref. [18].
2 Equivalently, the total radius R and total mass M of the whole admixed star can be determined by the condition of the total

pressure p(R) = 0 and M = m(R), where m(r) = mQM(r) + mDM(r). In any case, our code for the two-fluid TOV equations
matches the results of Ref. [38] very well.

3 This general-relativistic formalism was studied many years ago in different papers (see e.g. Ref. [49] and references therein) when
investigating matter with different properties in compact-star interiors, e.g. one fluid being a proton (neutron) superconductor
(superfluid) and the other being normal nuclear matter.

4 The physical and dimensionless definitions have the same mathematical form after being rescaled by an arbitrary factor.
5 In the limit of one-fluid stars, our code for radial oscillations agrees very well with previous works, see e.g., Ref. [48].
6 Some results in this figure display a non-smooth behavior associated only with numerical limitations when using standard root-

finding routines to obtain the frequencies for dimensionless central sDM (∼10−8) and QM (reaching ∼10−14 for mD = 500 GeV)
values, i.e., being different by many orders of magnitude, very small, and sensitive to different numerical methods. For these
reasons, systematic differences are introduced and manifest as non-smooth curves due to variations in numerical precision
when obtaining the dimensionless frequencies with values around 10−4 for large mD, which otherwise would require very
time-consuming computations. It should be noted that the same root-finding routines work very well when obtaining the other
results shown in this work. In future studies, we propose to use improved theoretical and numerical approaches.
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Abstract: A quark-nova is a hypothetical stellar evolution branch where a neutron star converts
explosively into a quark star. Here, we discuss the intimate coupling between the micro-physics
and macro-physics of the quark-nova and provide a prescription for how to couple the Burn-UD
code to the stellar evolution code in order to simulate neutron-star-to-quark-star burning at stellar
scales and estimate the resulting energy release and ejecta. Once formed, the thermal evolution of
the proto-quark star follows. We found much higher peak neutrino luminosities (>1055 erg/s) and a
higher energy neutrino (i.e., harder) spectrum than previous stellar evolution studies of proto-neutron
stars. We derived the neutrino counts that observatories such as Super-Kamiokande-III and Halo-II
should expect and suggest how these can differentiate between a supernova and a quark-nova. Due
to the high peak neutrino luminosities, neutrino pair annihilation can deposit as much as 1052 ergs in
kinetic energy in the matter overlaying the neutrinosphere, yielding relativistic quark-nova ejecta. We
show how the quark-nova could help us understand many still enigmatic high-energy astrophysical
transients, such as super-luminous supernovae, gamma-ray bursts and fast radio bursts.

Keywords: neutron stars; nuclear matter aspects; quark deconfinement; quark-gluon plasma produc-
tion; phase-transition

1. Introduction

1.1. The Energetic Problem in Astrophysics

High-energy astrophysics suffers from an energy problem. The total integrated lumi-
nosity observed in the universe cannot be completely accounted for by existing theoretical
models. In almost all astrophysical explosive events that generate 1053 ergs or more in ki-
netic energy and radiation, the engine remains elusive. For example, the energies observed
in core-collapse supernovae [1] or gamma-ray bursts cannot be reproduced consistently
with computer simulations [2]. Specifically, in the case of core-collapse supernovae, com-
puter simulations cannot form robust explosions from first principles for all the relevant
progenitor masses [1]. In the case of even more energetic phenomena, such as superlumi-
nous supernova, that have kinetic energies of around 1052 ergs, the engine remains even
more elusive. Similar issues appear with gamma-ray bursts, which suffer from related
energy budget problems. Recently, the associated gamma-ray burst observation of the
gravitational wave [3] of a neutron star merger showed the same energy budget problems,
where the observed luminosity was much milder than for other known GRBs. These
anomalies suggest the need for a novel source that can “balance” this budget problem and
can be accounted for by the physics required to fix it.

There are various observational phenomena that indicate the explosion of a neutron
star. For example, most models that seek to explain the large luminosities and kinetic
energy of super-luminous supernovae do so by using a “point source” that injects energy
into an envelope of (1–20) M�, whether this point source is a core-collapse supernova, or a
magnetar [4]. However, in the case of transforming a core-collapse supernova’s energy into
luminosity by shocking it with a 1 M� envelope or “wall”, it is necessary to explain the
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source of the envelope itself, which is a non-trivial problem. In the case of a magnetar, it
is necessary to assume almost 100 percent efficiency of conversion between the rotational
energy and the luminosity/kinetic energy of the envelope [4]. Furthermore, it is necessary
to explain the source of the large magnetic field.

1.2. Exploding Neutron Stars?

We argue that this points to the explosive transition (i.e., combustion) of a neutron
star to a quark star. In the canonical case, a neutron-star is the final evolutionary path
of massive (>8 M�) stars which are the remnants of a core-collapse supernova explosion.
However, we propose a further evolutionary stage for some of these neutron stars, that is,
their explosive collapse into a more compact configuration—the quark star. We refer to
this “explosion pathway” as a quark-nova [5]. The energy released in the explosion is a
combination of the gravitational binding energy during the neutron star’s core-collapse
and the nuclear binding energy released from the neutron matter decaying to more stable
quark matter made of up, down and strange quarks (hereafter (u,d,s)). The model makes
use of the Bodmer–Witten–Terazawa hypothesis (BWTH; [6–8]), which argues that (u,d,s),
not baryonic matter, is the most stable form of matter in the universe. The Quark-Nova
group have developed this model theoretically and primarily numerically (by developing
the Burn-UD code) over many years, starting with their pioneering paper of 2002 [5].

If (u,d,s) quark-matter is the most stable form of matter in the universe, then it follows
that neutron stars may decay into more stable quark stars through an exothermic process.
According to the BWT hypothesis, the reason why hadronic matter does not spontaneously
decay into (u,d,s) matter is that there is an intermediate higher energy state of (u,d) matter.
To diminish this energy barrier, there need to be sufficient s-quarks available to trigger the
combustion process. Another way of stating this, is that s-quarks act as catalysts that lower
the free energy barrier, allowing hadronic matter to decay into a lower state of (u,d,s) matter.
This energy barrier could explain why (u,d,s) matter is much scarcer than hadronic matter
to the extent that we have not detected the former. In other words, although empirically
we do not find two-flavour-quark matter at zero pressure, the addition of an extra degree
of freedom, such as strange quarks, could decrease the Fermi energy for the same baryon
number density, lowering the quark matter’s free energy below the free energies of both
hadronic and two-flavoured quark matter.

Since this hypothesis was proposed, many interesting scenarios have been postulated
in both astrophysics and particle physics. For example, the existence of pure strange quark
stars, and fragments of (u,d,s) matter, called strangelets, have been suggested. Beyond
the existence of macroscopic objects, such as strange quark stars, another interesting
consequence of the BWTH is the release of large amounts of energy when hadronic matter
converts to (u,d,s) matter. Assuming a bag constant of B = 145 MeV, using the above model,
the energy per baryon becomes ∼840 MeV which is roughly 100 MeV less than for ordinary
hadronic matter (∼930 MeV) [9]. This implies that a conversion from hadronic to (u,d,s)
matter should release about 100 MeV per converted baryon. Assuming a neutron star has
about 1057 baryons, conversion of every baryon into (u,d,s) matter would generate ∼1053

ergs in total energy. While this is of the same order of magnitude for typical explosive
events in astrophysics, such as core-collapse supernovae, the energy is hardly harnessed
since it is emitted as neutrinos. The advent of the quark-nova allowed novel channels
which would convert this energy to photon fireballs and to the kinetic energy of the
quark-nova ejecta which can be easily harnessed with revolutionary consequences for
high-energy astrophysics. We discuss how it can be harnessed in a newly born neutron
star (i.e., embedded deep within its supernova ejecta) or in an old one (in isolation). This
contribution focuses on the macro-physics of the neutron-star-to-quark star conversion
in order to understand the unique features of quark-nova dynamics and energetics at
stellar scales. We refer the reader to a complementary paper [10] where we discuss in
detail the micro-physics of the hadron-to-(u,d,s) conversion which is briefly reviewed here in
Section 1.4. Firstly, however, we remind the reader of strategies described in the literature
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when exploring the transition. In particular, we explain why the correct choice for the
thermodynamic potential in a transition which is not in mechanical equilibrium (as in the
quark-nova scenario) is the Helmholtz potential, rather than the Gibbs potential which is
usually cited in the literature.

1.3. The Hadron-Quark Transition: The Thermodynamics

Glendenning [11] pointed out that, in complex systems of more than one conserved
charge, the system does not need to be locally electrically neutral, only globally so. This
allows for a complex mixed phase to exist during the transition of nuclear to quark matter
where various charges, including baryon number, electric charge, and quark flavors, are
conserved. This led to a rich literature exploring the hadron-to-quark matter transition
which can be divided into three main streams including smooth (i.e., cross-over), Gibbs
(i.e., soft) and Maxwell (i.e., sharp first-order) transitions. The nature of the transition
depends strongly on the EoS of the hadronic and quark matter. In the Maxwell construction,
the nuclear-quark phase transition is first-order (e.g., [12–15] and references therein) and
the imposition of local charge neutrality would lead to a sharp interface (because of the high
surface tension) with a width in the order of femtometers (for details see [11,16–18]). This is
in contrast to a Gibbs construction where there is a mixed region where hadron matter and
quark matter coexist [19–24]. In the case of a smooth cross-over, interpolation procedures are
used to connect the two phases (e.g., [25,26] and references therein). The Gibbs construction
also appeals to a smooth transition into the mixed phase but the fraction of each phase
is determined self-consistently and is independent of the interpolation method adopted.
For completeness, we mention other examples of a smooth cross-over transition, such as the
chiral model [27] and the quarkyonic model [28]. A quark phase with additional hadronic
admixtures, such as hyperons and meson condensates, has also been explored in early
work [29].

The Gibbs potential is typically chosen to model most phase transitions since the
timescales are usually large enough that the sound waves flatten any pressure spatial
gradient across the interface. The Gibbs potential is generally deployed in many studies
of phases of matter inside compact stars, since the objects of study are in a steady state,
sufficient time has passed so that the phases are in mechanical equilibrium, and the variables
that are being studied, such as the radius and mass, are steady-state, time-independent
values. Yet, not all phase transitions are in mechanical equilibrium. If the timescales are
short enough so that sound waves have not flattened the pressure gradients, then the
Gibbs potential becomes inaccurate. The correct choice for the thermodynamic potential to
represent the free energy depends on which thermodynamic quantities are approximated
as constant when a system changes its thermodynamic state. If it is assumed that the
pressure P and the temperature T remain constant through the change (i.e., dP = dT = 0),
then the decrease in free energy dG ≤ 0 is equivalent to the second law; that is, the increase
in entropy dS ≥ 0. In the case of the Helmholtz energy, dF ≤ 0 is equivalent to dS ≥ 0
if dV = 0 (where V is the volume) and dT = 0. This difference between the Gibbs
and Helmholtz potential is crucial in the context of hadron-quark phase transitions (see
discussion in [10]).

In our case, the first-order phase transition of nuclear to quark matter conserves
various charges, including baryon number, electric charge, and quark flavors. The fact
that the system does not have to be locally neutral gives rise to a complex mixed phase
made of differently shaped bubbles of quark matter embedded in hadronic matter. We
find that the correct choice for the thermodynamic potential is the Helmholtz potential,
which contrasts with the usual Gibbs potential found in the literature. To justify the use
of the Helmholtz instead of the Gibbs potential, we note that the most relevant (i.e., the
largest) timescale in our approach to the hadron-quark matter phase transition is the
weak interaction timescale which is of the order of 10−8 s; the timescale of energy release
due to quark beta equilibration is also relevant. Our study must also resolve the sonic
timescales which are of the order of 10−11 s, as the pressure gradients are dynamically
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important. Since the sonic time is twelve orders of magnitude larger than the strong
interaction (∼10−23 s), a study that resolves the sonic time cannot assume the interface is
in mechanical equilibrium—in other words, that dP = 0. In the case of the hadron-quark
phase transition, the strong interaction acts at a timescale of ∼10−23 s, which is much faster
than the hydrodynamics that may flatten the pressure gradient. Therefore, we must choose
the Helmholtz thermodynamic potential over the Gibbs one. In other words, hadronic
matter will convert to quark matter if the Helmholtz free energy is lower for quark matter
than for hadronic matter, a point discussed in detail in Section 2.2 in [10] (and references
therein).

1.4. Quark-Nova: A Brief Review of the Microphysics

The mechanism of the quark-nova is intimately linked to the strong force which gov-
erns the interaction between quarks and also gives rise to the nuclear force. In astrophysics,
quantum chromodynamics (QCD) becomes relevant in the context of compact objects. This
is because the cores of compact objects are so dense that they become thermodynamically
ideal sites for the phase-transition of hadronic to quark matter.

Quark deconfinement appears at extremely high temperatures or densities. This is
due to the property of asymptotic freedom where the high momentum exchange between
quarks weakens the attractive interaction between them. So, for the “quarks” to be re-
leased/deconfined, they need to collide with extreme momenta. Since temperature is a
measure of kinetic energies, high temperatures are a way to trigger this deconfinement.
In the case of high densities, fermions, such as quarks, are compressed into having high
Fermi energies, triggering high momentum exchange.

In Earth-based experiments, particle accelerators tap into the high temperature regime
by triggering very high energy collisions. However quark deconfinement in compact stars
cannot be probed through experiments, since deconfinement appears at low temperatures
but high (∼1015 g cm−3) densities. This give rise to the need to use compact star obser-
vations to probe the QCD phase diagram. The existence of exotic particles in the core of
compact stars is, therefore, an ideal laboratory for the study of exotic particles. Given the
high Fermi energies, and, therefore, high momentum exchanges in the cores of compact
stars, nucleation of quark matter inside them can be expected.

The BWTH hypothesis referred to previously states that matter with the lowest binding
energy could be (u,d,s) quark matter. The main reason for this is that the existence of a
third degree of freedom in the form of s-quarks in general lowers the Fermi energy of
the matter. In the MIT bag model, a simple approximation is that quark matter is in the
form of a Fermi gas with a constant B that acts as the confinement pressure. A range of
bag constants can be found where (u,d,s) quark matter is lower than the hadronic binding
energy of ∼930 MeV, but, at the same time, where (u,d) matter has a higher binding energy
than hadronic matter. This hypothesis therefore implies that macroscopic objects made of
(u,d,s) matter are thermodynamically plausible.

The conversion of hadronic to quark matter could occur in the following way: Once
two-flavoured quark matter is nucleated in the core of neutron stars, the weak interaction
can turn some of the d quarks into s-quarks, lowering the Fermi energy of the quark matter.
Because, at this point, the free energy of (u,d,s) matter is lower than the free energy of
hadrons, the hadrons accreted by the quark core would find it energetically favourable
to deconfine into lower energy quark matter. Eventually, the quark core would grow,
engulfing the whole compact star, turning it into a pure (u,d,s) star. There are alternate
scenarios for conversion of a whole compact star to a (u,d,s) star including, for example,
through “seeding” of cosmic strangelets (e.g., [30]), or dark-matter annihilation in neutron
stars heating up parcels of neutron star matter making conditions favorable for the creation
of quark bubbles [31].

Although the 1053 ergs of energy release predicted by energetics compares favorably
to explosive events such as supernovae, whether this energy is released explosively or in a
slow simmer is not defined. Since the 1980s, different groups have sought to elucidate the
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phenomenology of this energy release. Olinto [30] pioneered a hydrodynamic formalism for
exploring the conversion of hadronic to (u,d,s) quark matter as a hydrodynamic combustion
process. The conversion was modeled as a “combustion front” that “burns” hadronic fuel
into (u,d,s) ash. However, the exact equations that govern this reaction zone, the reaction-
diffusion-advection equations, cannot be solved in analytic form since they are non-linear.
Olinto therefore needed to linearize the equations and impose mechanical equilibrium and
derive semi-analytic, steady-state solutions. The study yielded timescales of conversion of
minutes to days for the whole compact star, which would imply a slow simmer, since the
timescale of a supernova explosion is about one second.

Another pioneering paper was published by Benvenuto et al. [32] in the late 1980s.
In contrast to Olinto, the authors assumed an initial shock and solved the relativistic jump
conditions. The model proposed leads to a steady-state solution but without the mechanical
equilibrium assumed by Olinto. The approach yields a supersonic detonation, which Ben-
venuto et al. argue can provide enough kinetic energy to make a core-collapse supernova
explode. Although this explosive solution contrasts with Olinto’s much slower timescales,
the reason is that a shock is assumed on an a priori basis, with arguments presented
that the initial deconfined bubble of quark matter creates a sharp pressure discontinuity.
Drago et al. [33] also solved the jump conditions without assuming mechanical equilibrium,
but in their case they found that the combustion takes the form of subsonic deflagration.

All the literature on hadron-quark combustion before the 2010s can be roughly cate-
gorized as following either a mechanical equilibrium approach [30] or a jump condition
approach [33], and has always assumed a steady state. Because of the variety of the assump-
tions made, such as whether a pressure equilibrium is assumed or not, or whether a shock
is hypothesized as an initial condition or not, the timescales of conversion predicted for the
compact star have varied by various orders of magnitude, from milliseconds to days.

1.5. The Burn-UD Code and Non-Premixed Combustion

Previous literature on this topic has reported very different results on the transition
speed and energy as a consequence of incorrectly assuming premixed combustion (see
discussion on this in [34]). However, the (u,d-to-(u,d,s) combustion is of the non-premixed
type, a distinction that is critically important. In a hadron-quark combustion flame, the
thermal conductivity plays a negligible role, since the activation occurs through the s-quark
fraction, because it is ultimately the quantity of s-quarks in the quark phase that determines
whether the quark matter has a lower free energy than the hadronic matter. A minimal
amount of s-quarks in the NS core is sufficient to create “oxidation” (to represent it in
chemical activation terminology). In traditional pre-mixed combustion, the oxidant must
be mixed with the fuel so that, once the activation temperature is achieved, the fuel is
burned. Some fuels come premixed with the oxidant, and, therefore, the combustion is
fundamentally mediated by thermal conductivity. In our case, as the fuel and oxidant are
not mixed, the transport of oxidants into the fuel becomes an important process, alongside
the thermal conductivity. Since the s-quarks can be thought of as related to the activation
temperature and as an oxidant, a proper treatment of the hadron-quark combustion process
should be studied as a diffusion flame. Equally important, and unlike previous work, we
include neutrinos which carry a non-negligible energy (in the hadron-quark combustion
system, mass and energy are interchangeable) and momentum. We found a much more
complex interplay between fluid dynamics and radiation which makes it impossible to
compare our work to past investigations. Ultimately, it is the transport of s-quarks, in
concert with neutrino transport and leptonic dynamics, that decides the behavior of the
flame, which is very different from the way thermal conductivity acts in Arrhenius-type
reactions. Thus, fundamentally, the non-premised scenario in the quark-nova model is
different from that of past work (see in-depth analysis and discussion in [35,36]).

A hydrodynamic combustion code (the Burn-UD code; [35,36]) was developed by the
Quark-Nova group to model in detail the non-premixed phase transition of hadronic to
quark matter. The Burn-UD code allows the adoption of the Helmholtz, instead of the
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Gibbs, potential (see Section 1.3) and self-consistently couples the thermodynamics to the
hydrodynamics, which is of crucial importance. It can be shown that this coupling allows
for a more rigorous capture of the propagation of the burning front with implications for
the energetics in the case of a burning neutron star. For example, if the propagation of the
burning front is too slow, the energy released is not efficiently transformed into kinetic
energy, with the energy simply leaking out slowly as transparent neutrinos. The Burn-UD
code consistently calculates how the weak interaction gives rise to particle and temperature
spatial gradients that, in turn, trigger pressure gradients. A pressure gradient acts as a
source of momentum density in the fluid, transforming some of the energy released into
mechanical energy. The inclusion of the Helmholtz thermodynamic potential was found
to lead to much larger neutrino luminosities (about two orders of magnitude larger than
for the Gibbs potential) and larger burning speeds. Furthermore, the Helmholtz approach
offers advantages numerically since it can borrow from the Gibbs construction, which
avoids sharp density gradients in numerical experiments by employing a mixed phase (see
Section 2.2 in [10]).

The Burn-UD code models the flame micro-physics for different equations of state
(EOS) on both sides of the interface, i.e., for both the ash (up-down-strange quark phase) and
the fuel (up-down quark phase). It also allows the user to explore strange-quark seeding
produced by different processes. It is an advection-reaction-diffusion code which is essential
for a proper treatment of the micro-physics of a burning front. Furthermore, having a
precise understanding of the phase transition dynamics for different EOSs further aids in
constraining the nature of the non-perturbative regimes of QCD in general (see Section 4.1).
The Burn-UD code has evolved into a platform/software which can be used and shared by
the QCD community exploring the phases of quark matter and by astrophysicists working
on compact stars. The code provides a unique physical window to diagnose whether the
combustion process will simmer quietly and slowly, lead to a transition from deflagration
to detonation, or entail a (quark) core-collapse explosion.

Niebergal et al. [37], for the first time, in 2010 published a study that numerically
solved the reaction-diffusion-advection equations for hadron-quark combustion. This
study combined transport, chemical, and entropic processes into a numerical simulation.
Not only was the burning velocity much faster than many of the previous estimates,
but Niebergal et al. sugested that leptons may trigger feedback that can accelerate the
burning front into supersonic detonation or quench it. Their argument was based on
solving the jump conditions and parameterizing the cooling behind the front.

Later, Ouyed et al. [38] solved the reaction-diffusion-advection equations and coupled
them to neutrino transport using a flux-limited diffusion scheme, and added an electron
EOS and a hadronic matter (HM) EOS. Ouyed et al. confirmed numerically that leptons
can trigger extreme feedbacks, with the burning halting completely for certain choices
of the initial conditions. Ouyed et al.’s study was important in that it showed that, due
to non-linear couplings between lepton physics and hydrodynamics, the simulation was
extremely sensitive to the details of neutrino transport. This indicated that the system is
genuinely a non-linear, dynamic process, and that simplifying it by imposing mechanical
equilibrium or steady-state conditions was extremely inaccurate.

There are multiple ways that a quark-nova could be triggered. There are two “mecha-
nisms” for initiating the combustion of a neutron star into a quark star. One mechanism
relates to the core of a neutron star in some way reaching sufficiently high densities that
favour the deconfinement of quark matter. These nucleated (u,d) quark bubbles, in turn,
would beta equilibrate into (u,d,s) matter, and then, in accordance with the BWTH, grow,
engulfing the whole neutron star [39]. However, the density at which quark matter de-
confines is very uncertain. It could be that most neutron stars achieve the deconfinement
density and, therefore, turn into quark stars. However if the deconfinement density is
higher than that of the average core of a neutron star, then sufficiently high density could
be achieved through other processes, such as accretion, fall-back from supernovae, or spin-
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down evolution, leading to a two-family compact star scenario, where quark stars and
neutron stars coexist [40].

The other mechanism for triggering a quark-nova could be through “seeding”. Ac-
cording to the BWTH, a strangelet that interacts with hadronic matter can convert the
latter, provided that there is not an electrostatic barrier preventing the interaction. Since
neutrons do not have a charge, neutron stars are an ideal site for strangelet contamination.
The source of strangelets can be arbitrary; for example, cosmic strangelets can be released
by a (u,d,s) star merger, or stranglets may be formed through the annihilation of dark matter
in the core of neutron stars.

In summary, the quark-nova hypothesis (and the underlying microphysics) implies
that the traditional picture of stellar evolution is not the whole story. There is the possi-
bility that the neutron star would experience further collapse into a (u,d,s) star. Such a
phenomenon would have similar dynamics and energetics as a core-collapse supernova,
with approximately ∼1053 ergs released of both chemical and gravitational binding en-
ergy. Such an addition to the stellar evolution picture has immense phenomenological
consequences. This hypothesis essentially argues that the neutron star “explodes” (i.e.,
the neutron-star-to-quark-star combustion is explosive). The neutron-rich ejecta released
from the outer layers of the exploding neutron star also constitute a very suitable site for
nucleosynthesis and r-process elements, since there is a very low proton fraction (Ye; see
Section 3.4).

In the quark-nova investigations, it was found that a very natural way of triggering
the detonation of a neutron star is via a “quark core-collapse” where the neutron star core
simply collapses into a more compact, (u,d,s) configuration, releasing massive amounts of
energy. This relies on the crucial coupling between the conversion front (the micro-physics;
see [10]) and the dynamics it induces at the scale of the star (∼106 cm; the macro-physics),
as discussed in the next section.

2. Quark-Nova: The Macrophysics

The initial setup consist of a cold NS. The conversion from hadronic matter (HM) to
(u,d,s) is triggered by s-quark seeding in the core [38]. If sufficient s-quarks are seeded
into a parcel of quark matter, then the conversion of HM to (u,d,s) can proceed unimpeded
because s-quarks can behave as catalysts. In the results presented in this review, we chose
the Hempel & Schaffner-Bielich (2010; [41]) tabulated EOS to describe the HM layers
(overlaying the quark core) because it is well-cited, and, more importantly, its tabular
structure is fairly simple and well-documented. The EOS also satisfies the two-solar-mass
neutron star constraint. For the (u,d,s) EOS, we chose the MIT bag model which consists
simply of a Fermi gas with a negative pressure B that confines the gas—the Fermi gas
pushes outward but the confinement pressure B pushes inward. In the language of free
energy, (u,d) acts as an energy barrier between two energy minima, which are the hadronic
state (i.e., HM) and the (u,d,s) state. Since (u,d) exists as a barrier, the hadronic matter will
not decay by itself. For some values of B, (u,d,s)’s binding energy is lower than for the
hadronic matter, while at the same time the binding energy of (u,d) is higher than for the
hadronic matter. Therefore the absolute stability of (u,d,s) can exist while respecting the
empirical reality of unstable (u,d). For this work, we have extended the MIT bag EOS to
include first-order corrections for the strong coupling constant and included temperature
dependencies. Nevertheless, inherent uncertainties to the quark matter EOS we use exist
as we assume zero entropy and massless quarks. Moreover, only for certain choices of B
does the MIT bag model predict absolutely stable (u,d,s) matter. In Figure 1, we compare
the free energy per baryon versus temperature for the hadronic EOS of [41], and the (u,d,s)
matter represented by the MIT bag EOS with strong coupling constant corrections. As can
be seen from the figure, the free energy of (u,d,s) becomes higher around T∼40 MeV, which
blocks the conversion from hadronic to quark matter. In our simulations, we set an initial
temperature of T = 20 MeV yielding thermodynamic conditions of a neutron star that will
be converted into a proto-quark star (PQS). We tested other hadronic EOSs, but, as stated
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in our work (see [10] and references therein), the effects of the leptonic weak interaction,
including the corresponding weak decay rates and the EOS of electrons and neutrinos, are
at least as important as the uncertainties related to the EOS of HM, (u,d) and (u,d,s) (see
discussion in Section 4.1).

Figure 1. Free energy per baryon versus temperature for the hadronic EOS [41] and that of (u,d,s)
(the MIT bag EOS with strong coupling constant corrections) used in this work. The free energy
of (u,d,s) becomes higher around T∼40 MeV, which blocks the conversion from hadronic to quark
matter. Reprinted from Ref. [36].

2.1. The Code

The micro-physics of the quark-nova focuses merely on length-scales of ∼0.1 cm to
cm (width of the reaction zone) and timescales of about 10−8 s (the timescale of the weak
interaction that converts d quarks to s quarks). However, in order to study the final fate of
a neutron star combusting to a quark star, it is necessary to take into account larger scales.

To truly study this combustion process at a large scale it would be necessary to build
a three-dimensional code that combusts the neutron star into a quark star. This code
would need to solve the reaction-diffusion-advection equations for the whole star. Such
a simulation, although feasible, would be quite difficult to build, since the scales that
dominate in the reaction zone (cm) are various orders of magnitude smaller than the scales
of the whole compact star (106 cm). It would be necessary to use an adaptive computational
mesh that uses smaller computational zones for the reaction zone while using larger zones
for the rest of the star.

Such a computational code does not exist yet. However, if it is assumed that the
burning front remains somewhat well-defined, and therefore instabilities do not distort it
significantly, some macroscopic properties of the combustion process can still be derived.

The original attempts to derive the “macroscopic” phenomenology of microphysical
studies of the hadron-quark interface hark back to the 1980s, when Olinto et al. wrote their
pioneering paper on hadron-quark combustion [30]. In their case, and other similar studies
(e.g., [42]), the burning speed was calculated for different densities and then this speed
was assumed to be the same for the whole compact star. This approach, even under the
assumption that instabilities will not distort the interface too much, or that the boundary
conditions of the microphysical problem reflect the macroscopic physics, does not say a
great deal about the phenomenology of the conversion, i.e., what the conversion would
“look like” through detectors and telescopes. This approach can only be used to calculate a
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rough timescale for the conversion of the whole neutron star into a quark star, but without
calculating the signal detected on Earth.

An interesting imprint that the combustion process leaves behind that should be
detectable is a large neutrino signal. Electron neutrinos are produced copiously in quark
matter by leptonic processes:

u + e− → d + νe (1)

u + e− → s + νe (2)

d → e− + νe + u (3)

s → e− + νe + u (4)

Furthermore, copious τν and μν neutrinos are created through quark breemstralung
processes. Neutrinos provide an excellent probe into the combustion process because
of their high luminosity and high energies. The reason for the large luminosity is the
immense release of energy by the beta equilibration of quark matter. Since the quarks are
degenerate, their relaxation into a more stable energy state implies changes of 100 MeV
in binding energy. Much of this binding energy is released as neutrinos. Furthermore,
the binding energy release is what heats the quark matter, which in turn traps neutrinos and
thermalizes them into high temperatures of MeV. Given their energies and luminosities (e.g.,
peak neutrino luminosities of >1055 erg/s), neutrinos may serve as a means of confirming
the combustion process.

Furthermore, since the expected luminosities and neutrino temperatures are higher
than for other phenomena, such as core-collapse supernovae, the spectrum and photometry
of neutrinos for the quark-nova should provide an unambiguous probe to discriminate this
phenomenon macroscopically from other explosive astrophysical events.

Finally, neutrinos are also important because they are the most dynamic aspect of
the quark star’s energy budget. Once combustion burns the star, which would happen
over timescales shorter than a second (e.g., [37]), assuming that instabilities do not really
distort the interface significantly or quench it, the change in the energy density of the
profile becomes a function of neutrino transport, much like the case for proto-neutron
stars. At this point, hydrodynamic processes, such as convection, become secondary to
the process of neutrino transport. In other words, the evolution of the proto-quark star is
defined by the evolution of the neutrino profile, and the hydrodynamics are higher-order
effects. Therefore, to detect a “signal” that discriminates this combustion process, it would
be essential to examine the evolution of the neutrino profile.

2.2. The Hot Proto-Quark Star

Fortunately, there are approaches to studying the neutrino-driven evolution of a com-
pact star without building a complicated three-dimensional code for the hydrodynamics of
the combustion process. There is a class of codes called “stellar evolution” codes originally
designed to probe the evolution and luminosities of ordinary stars. They solve, through
implicit numerical techniques, the transport equations for heat, and couple these transport
processes to the equations for the hydrostatic equilibrium of the star (e.g., [43]). This
technique was applied to neutron stars. In the neutron star case, the transport equations
deal with the general relativistic transport of neutrinos, and the hydrostatic equations are
replaced by the general relativistic version of these equations (the Tolman–Openheimmer–
Volkoff (TOV) equations).

The reason why these equations must be solved in the general relativistic case, as op-
posed to the Newtonian case, is the extreme compactness of neutron stars and quark stars
which distort space and time because their radius is close to their Schwarzschild radius:
rs = 2GM/c2 where G is the gravitational constant, M is the mass of the object, and c is the
speed of light.
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For example, neutrinos look “cooler” and “less energetic” to an observer far away from
the compact star because of a gravitational red-shifting of the neutrinos, which decrease
their frequency from a frame of reference at infinity.

So, under the following assumptions, we can simulate the evolution of the proto-quark
star (PQS):

• Short combustion timescale: We must assume that the combustion process is much faster
than the neutrino evolution process. The reason we should make such an assumption
is that, if the neutrino cooling is much longer, it can be assumed that the temperature
profile produced by the combustion process “freezes” and is only affected by neutrino
transport. Since, outside the combustion process, all other cooling processes that
affect the partitioning of the energy budget are much slower than neutrino trans-
port, the microphysical combustion problem can reasonably be decoupled from the
large-scale evolution problem, if we assume that combustion is much faster than
neutrino transport.
This assumption of combustion may be supported by microphysical simulations
(e.g., [37]). Numerical simulations show that laminar burning speeds can reach
0.001c–0.1c. Assuming these speeds are sustained in the microscopic case, and that
instabilities do not slow down the burning front too much, using these numbers would
mean that the neutron star would combust into a quark star in a fraction of a second.
This timescale must be smaller than the timescale for cooling/deleptonization. We can
make a rough order-of-magnitude estimate of the timescale of deleptonization/cooling
through dimensional analysis. For the high temperatures > 20 MeV and high densities
of a quark star (a few times nuclear saturation density), the neutrino mean free path is
about λν∼1 cm, much smaller than the radius of the PQS of RPQS = 106 cm. Through
dimensional analysis, we find the timescale of cooling: τcool.∼R2

PQS/(λνc)∼33 s. Since
this cooling timescale is much larger than the estimated combustion timescale, this
particular assumption is valid.

• Hydrostatic equilibrium: This assumption is justified if the timescales studied in the
stellar evolution simulation are longer than the hydrodynamic timescales. This can
be tested by looking at the sonic time, which is the time a sound wave takes to cross
the whole length that is studied. The reason neutrino cooling needs to be slower
than the hydrodynamic processes is that the time-steps of the simulation need to be
large enough so that pressure gradients along the star are smoothed out by sound
waves. In our case, the length-scale is the radius of the PQS. Because the sound
speed of degenerate matter is of the order of the speed of light c, the sonic time will be
τs∼RPQS/c∼3× 10−5 s. Since the cooling timescale, as calculated above, is of the order
of 10 s, we can argue that the neutrino cooling is much slower than the hydrodynamic
processes, which justifies the hydrostatic assumption.

• Neutrino trapping: Most stellar evolution codes for compact stars assume neutrino
trapping to be able to simulate neutrino transport with a simple application of Fick’s
law. Since we know that the mean free path of neutrinos is about 1 cm, while the
radius of the quark star is R∼10 km, the neutrino trapping assumption is reasonable.

• β-equilibrium: We must assume that the quarks in the PQS are in chemical equilibrium
at each time-step. This assumption makes it possible not to have to keep track of
the time-dependent reaction rates that regulate the chemical composition of quark
matter. Since the weak interaction in the context of the conversion of two-flavoured to
three-flavoured matter has a timescale of ∼10−8 s, we can effectively assume chemical
equilibrium, since the cooling/deleptonization timescale, as calculated above, is ∼10 s.

• Thermal equilibrium: In order to assume thermodynamic variables such as pressure,
temperature, and chemical potential, we must assume that the neutrinos are ther-
malized. By thermalized, we imply that the neutrinos have collided and scattered
sufficiently so that they can be considered to be at thermal equilibrium. In much of
the Universe, neutrinos are seldom thermalized, since their interaction cross-section is
tiny; so, once emitted, they pass through matter mostly unperturbed. However, com-
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pact stars, such as quark stars, are the only existing systems in the Universe that emit a
spectrum of thermal neutrinos. This is due to the extreme densities and temperatures
of these objects; such thermodynamic conditions enlarge the cross-section of neutrinos
to the point that they scatter and collide easily with other particles.

2.3. Thermalized Neutrinos and Heat Transport

The fact that neutrinos are thermalized (λν << RPQS) makes the simulation much
easier than if the neutrinos were not thermal, since the neutrino’s temperature is the same as
the quark matter’s temperature. In this case, the transport equation for the energy density
of neutrinos simply corresponds to one diffusion-like equation per flavour. In contrast,
if the neutrinos were not thermalized, one would have to solve the Boltzmann transport
equations, which requires a very complicated six-dimensional integral, and therefore
requires more computational and programming sophistication/resources.

Following the assumptions above, we can outline the equations that our simulation
will solve. First, we must write down the relevant space-time metric of the problem:

ds2 = −e2φdt2 + e2λdr2 + r2dΩ (5)

Here, dt is an infinitesimal element of the coordinate time at infinity. dΩ is an infinites-
imal element of the solid angle, and φ and λ are metric functions.

The TOV equations that compute the structure of the compact star, that is, the pres-
sure, radius, and density, will be outlined using the above metric and the assumption of
hydrostatic equilibrium. The TOV equations in Lagrangian coordinates are:

dr
da

=
1

4πr2nBeλ
(6)

dm
da

=
ε

nBeλ
(7)

dφ

da
=

eλ

4πr4nB
(m + 4πr2P) (8)

dP
da

= −(ε + P)
eλ

4πr4nB
(m + 4πr3P) (9)

e−λ =

√
1 − 2m

r
(10)

where r stands for the radial coordinates, nB for number density, P for pressure, a for the
number of baryons enclosed by a sphere of radius r, and m is the gravitational mass enclosed
by radius r. The reason why we choose Lagrangian coordinates over the more common
derivation that uses Eulerian coordinates, and therefore r as the integrated quantity, is
that the radius of the compact star is time-dependent. Since the radius is not a conserved
quantity, the numerical treatment becomes complicated as a computational grid made of
radial coordinates would keep changing spatially. In contrast, the total baryon number of
the star is conserved, so a computational grid that discretizes along a baryonic coordinate
can be constructed.

The transport equations (for lepton fraction YL and energy density ε) are the following:

∂YL
∂t

+
∂(eφ4πr2(Fν,e)

∂a
= 0 (11)

∂ε

∂t
+

∂(e2φ4πr2(Hν,e + Hν,μ))

∂a
= 0 (12)

Fν,e =
λν,e

3
nν

dr
(13)
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Hν,i =
λν,i

3
ενi

dr
(14)

where Fν,e is the neutrino number density flux and Hν,i is the neutrino energy density flux.
These equations are simply Fick’s law as applied to neutrino number densities (nν) and
neutrino energy density (ενi ).

The stellar evolution code requires some initial conditions to be set in order to solve the
problem. Three important radial parameters that need to be imposed as initial conditions
are the baryonic mass, the lepton fraction and the temperature. The initial values of these
parameters must be imposed a priori. A useful observation that enables the derivation of
these initial distributions is the fact that neutrino transport is probably much slower than
the combustion speed; as calculated above, the timescale of neutrino transport is about
∼10 s while the timescale of combustion is at most a fraction of a second. We can therefore
make the following assumptions that simplify our calculations considerably:

• Frozen initial temperature profile: Since the dominant process of cooling is neutrino
emission/transport, we can assume that the initial temperature profile can be interpo-
lated from local microscopic simulations that calculate the temperature for a given
initial fuel density. This implies that we can decouple the problem into two sets of
microphysical and macrophysical simulations: the former calculates the temperature
profile through interpolation of temperature calculations for various initial densities,
and the latter solves the global, macroscopic equations of neutrino transport. This
decoupling simplifies the calculations considerably.

• Frozen lepton fraction: Since the combustion process happens at a much faster timescale
than the neutrino transport, we can assume that the initial lepton fraction of the
unburned neutron star is equivalent to the initial lepton fraction distribution of the
hot quark star that is evolved in the code. Through this assumption, we can directly
extract the initial lepton fraction from the EOS of a neutron star.

• Convergence of combustion temperature at low initial hadronic densities: Our simulations
can only calculate the temperature for initial hadronic densities that are not lower
than 0.05 fm−3, since, otherwise, the density gradient would be too large, generating
numerical instabilities. However, for lower initial densities, such as those found on
the edge of the hadronic star, the temperatures of the ash will converge to a similar
temperature of ∼20 MeV, as the ash will also converge to the same density, since
the large confinement pressure of B forces the ash to have a non-zero density in
the order of nuclear saturation. Therefore, even if we do not pursue a simulation,
we can calculate the neutrinospheric temperature from the binding energy released
through two-flavour to three-flavour quark matter equilibration using an analytical
argument. Using a zero entropy MIT bag model, in previous sections, we found that
the temperature of a baryon can increase to about ∼30 MeV. In the numerical scheme
for 0.05 fm−3 initial hadronic density, this quantity ends up lower, but of the same
magnitude, around ∼20 MeV, mostly because of the effect of the s-quark mass, where
a finite mass leads to less binding energy release.
The temperature of a neutrinospheric baryon that is about ∼20 MeV will mostly
cool through neutrino emission. To ensure that the neutrinospheric temperature will
remain high for sufficiently long after the combustion process, in order to assume
the same high initial neutrinospheric temperature, it is necessary to calculate the
cooling timescale. Assuming neutrinos are not trapped in the neutrinosphere, then the
neutrinos of neutrinospheric quark matter will automatically escape the moment they
are emitted. We can calculate the timescale of cooling analytically with the following
prescription obtained from Iwamoto et al. [44].

τcool ∼ 3153 s ×
(

Ye

0.01

)−1/3
× (Tf 9

−4 − Ti9
−4) . (15)
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In the above, Tf 9 and Ti9 are the neutrinosphere’s final and initial temperatures in
units of 109 K. For an initial temperature of around 20 MeV, how long it will take for
the temperature to cool off by 50 percent can be determined, assuming that there is no
combustion to “reheat” the interface. Using the above equation, the time necessary
for the neutrinosphere to lose 50 percent of its temperature is about τcool∼10−5 s.
This timescale is actually a lower bound, as the emissivity is proportional to Y1/3

e ,
and, therefore, the emissivity becomes less intense as the lepton fraction lowers
due to deleptonization. In order to assume this neutrinosphere temperature, this
timescale must be much longer than the time required for the combustion interface
to cross its own width. We can calculate the minimum combustion speed where this
approximation is valid through the estimate v = l/τcool. Assuming the reaction zone
width is l = 0.1 cm and τ∼10−5 s, as calculated from Equation (15), we obtain
v = 104 cm/s. As even the slowest burning speeds calculated in the literature
(e.g., Olinto et al. [30] indicate a lower limit of 1 km/s), we can assume that the
neutrinosphere remains “hot” throughout the combustion process.

The first assumption, that of a “frozen initial temperature distribution”, simplifies
the problem and calculations. Using these assumptions, we can run the Burn-UD code
for different initial hadronic densities to calculate the “frozen” temperatures that will be
plugged into a stellar evolution code. We ran the Burn-UD microphysical code for five
different initial densities (0.05 fm −3, 0.1 fm −3, 0.2 fm −3, 0.3 fm −3, 0.4 fm −3). Due to the
“frozen lepton fraction” assumption, we can impose a lepton profile extracted from a cold
neutron star in beta equilibrium [45], which is generally of the order of Ye = 0.1 or less.
We ran the simulations with a timescale of the weak interaction ∼10−8 s, which amounts
to about 105 time-steps. These simulations lead to a two-column table of temperature vs.
initial density (Table 1). These temperatures and densities can be easily interpolated into a
function of temperature that is a function of initial hadronic density.

Table 1. Final temperatures of (u,d,s) ash for different initial hadronic number densities, as calculated
by solving the reaction-diffusion-advection equations. Burning speed is also included for each initial
hadronic number density. Reprinted from Ref. [36].

nB [fm−3] T [MeV] v/c

0.05 22.9 0.00083
0.1 23.1 0.0016
0.2 23.4 0.0025
0.3 26.4 0.0058
0.4 30.4 0.010

In order to impose this temperature distribution into a stellar evolution macroscopic
simulation, we perform the following. We solve the TOV equations for a cold neutron star
at temperature T = 0.1 MeV. This gives a density profile of the hadronic star. Since we
have an interpolated function of temperature vs. hadronic density, we can compute the
temperature at each computational zone as a function of the density in the zone. This creates
a temperature profile. We maintain the temperature fixed at each baryonic coordinate a (see
Equation (6)), and then simply switch the EOS from hadronic to quark matter. We solve the
TOV equations again to obtain a new quark star density profile, radius, and gravitational
mass, while still maintaining the same temperature profile and the same baryonic mass.

2.4. The Neutrino Spectrum

Now that we have constructed our hot PQS, a simulation based on the above assump-
tions and equations produces the following behavior behind a nascent, hot quark star: the
production of entropy by the combustion process creates a nascent quark star with central
temperatures of T∼30 MeV and outer temperatures of about T∼20 MeV. The initial lepton
fraction is of the order of YL∼0.1 since it corresponds to the same lepton fraction as that
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of a cold neutron star in beta equilibrium. This nascent quark star also has a neutrino
density profile with a very high neutrino chemical potential profile of ∼100 MeV, since
the quark star’s densities are always of the order of nuclear saturation density, with the
density decreasing sharply to zero in a height scale of a femtometer (the length scale of the
strong interaction). This very hot object of T > 20 MeV will cool off in a period of tens of
seconds since the heat will utimately be carried away by neutrinos. There is also a Joule
heating effect in the neutrino transport, since the initial chemical potential of neutrinos is
high, and some of the chemical potential energy is transformed into heat as the neutrinos
escape from the quark star (see [10] for the micro-physics of the combustion).

The main ways in which this stellar evolution differs from proto-neutron stars are
the following: First, the initial neutrinosphere will be much hotter for the quark star case.
As mentioned previously in this section, the neutrinosphere temperature is ∼20 MeV if
calculated numerically. This has tremendous consequences for the spectrum and luminosity,
as the neutrino energy will be roughly ∼60 MeV and the luminosity is proportional to T4

ν ,
where Tν is the neutrinospheric temperature.

Since the neutrino spectrum is both harder and more luminous for the PQS than
the PNS, the neutrino signal, as detected from Earth, will be different for the PQS and
the PNS (Figures 2 and 3). First, the PQS will have a very hard spectrum composed of
high temperature T > 20 MeV neutrinos, which will produce a very different Fermi–
Dirac distribution, and, therefore, detected signal, than the PNS, where neutrinos have a
temperature of only T∼5 MeV. This harder spectrum also leads to a higher peak luminosity
for the PQS, which is >1055 erg/s, a luminosity that cannot be produced by PNSs.

Figure 2. Evolution of the neutrinospheric temperature for the PQS. Each curve represents a different
length of the mixed-phase d (in meters). Reprinted from Ref. [36].
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Figure 3. Detector count rates for a quark-nova vs. proto-neutron star for Super-Kamiokande III and
Halo 2. Reprinted from Ref. [36].

An interesting question is how would this neutrino signal look in a detector? We
will focus in water-based detectors (KIII) and lead-based detectors (Halo 2). In the case of
water-based detectors, neutrinos are detected through the emission of secondary positrons
by proton absorption of electron anti-neutrinos:

νe + p → e+ + n. (16)

where p, is a proton, n is a neutron, and e+ is a positron. This cross-section is proportional
to E2

ν, where Eν is the energy of neutrinos. In the context of Halo II, neutrinos are detected
by the emission of neutrons through neutrino capture by lead nuclei:

νe + (N, Z) = (N − 1, Z + 1) + e− + n , (17)

where (N, Z) is an arbitrary nucleus of N neutrons and Z protons.
Detector counts for the two types of detectors are found in Figure 3. For the first

10−2 s, PQS count rates are about two orders of magnitude higher than for the PNS case.
Furthermore, the PQS spectrum will be very different, as the neutrinospheric temperatures
are much higher for the PQS case, as can be seen from Figure 2. Therefore, we can deduce
that the PQS will release a fairly clean signal that should be very different from the case
of PNS.

2.5. The Ejecta

Another important aspect is that the large neutrino luminosity of the PQS can poten-
tially transform into kinetic energy through neutrino-antineutrino pair annihilation. This
effect arises from the fact that there will be a high density of both neutrinos and antineutri-
nos, and therefore a high probability of head-on collisions which would annihilate them.
The formula for neutrino pair-annihilation is:

Le−e+ = 1.09 × 10−5 × (D1 L9/4
νe ,51 + D2 L9/4

νμ ,51 + D2 L9/4
ντ ,51)R−3/2

PQS,6 (18)

where Le−e+ is the energy per second deposited as e−e+ pairs and Lνi ,51 is neutrino lumi-
nosity in units of 1051 erg/s, D1 = 1.23 and D2 = 0.814 [46]; the proto-quark star radius
RPQS is in units 106 cm.
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This implies that annihilation is proportional to T9
ν , which means this effect is extremely

sensitive to temperature. The pair annihilation mechanism has already been explored in
the context of core-collapse supernovae and neutron star mergers (e.g., [47]). In the case of
supernovae, it was originally conceived as a mechanism that could inject sufficient energy
to revive the stalled shock, with Goodman et al. [47] arguing that the pair annihilation
mechanism could inject as much as 1051 ergs in mechanical energy, which is the same kinetic
energy observed in ordinary core-collapse explosions. However Cooperstein et al. [48]
found that the original value of 1051 ergs was a gross overestimation, since Goodman et al.
had overestimated the energy of neutrinos, and had not taken into account the fact that the
reverse pair annihilation reaction could annihilate the electron-positron pairs to produce
cooling, which sapped the shock from the energy necessary to eject the supernova shell.
Therefore, in the case of supernovae, the pair annihilation mechanism contributes negligibly
to the explosion.

However, in the case of the PQS, there are differences in the physics of the neu-
trinosphere from the PNS case that makes the pair annihilation mechanism a powerful
explosive engine. First, there is the fact that the neutrinosphere of the PQS is extremely hot,
with a temperature of about T∼20 MeV. This high temperature is due to combustion, which
heats up the whole star, including the neutrinosphere. This large temperature makes an
immense difference in the energy deposited by the pair annihilation mechanism for the PQS
in contrast to the PNS. We can calculate the ratio between the two by noting that the pair
annihilation mechanism is proportional to T9

ν . Assuming the neutrinospheric temperature
of PNS is TνPNS∼5 MeV, and that for the PQS is TνPQS∼20 MeV, the ratio between the
two is:

Tν
4
PQS

Tν
4
PNS

= 49 ∼ 3 × 105 . (19)

In other words, the energy deposited through pair annihilation in PQS is more than
five orders of magnitude larger than for PNS! Furthermore, the PQS does not suffer the
same sort of electron-positron annihilation cooling as for the case of the PNS, since in the
PQS case, along the interface, there is an extreme temperature drop of 20 MeV with a scale
height of less than one centimeter. Since the cross-section for electron-positron annihilation
is proportional to temperature, then the cooling rates are of lesser magnitude than the
neutrino annihilation heating rates, since the latter have a much larger temperature than
the former.

We can estimate how much energy is injected through pair annihilation by using the
time-dependent output of the stellar evolution code, since the pair annihilation mechanism
ultimately depends on temperature.

Preliminary calculations have found that the kinetic energy deposited by pair annihi-
lation can be as much as ∼1052 ergs, depending on the existence of a strangelet-electron
mixed phase at the edge of the star [49]. The larger the mixed phase, the more energy is
deposited through pair annihilation, as the luminosity is larger. The neutrino luminosity is
larger with larger mixed phases because the mean free path becomes enlarged, since a PQS
without a mixed phase is extremely dense, of the order of the nuclear saturation density
throughout the whole profile, since the density falls very sharply to zero in a scale height
of Fermis.

We can estimate how much matter is ejected by the pair annihilation mechanism.
A more precise calculation would require solving the hydrodynamic equations behind
the PQS wind. However, we can find an analytic approximation of the hydrodynamic
equations that can be used to estimate the mass ejection with the use of the time-dependent
output of the stellar evolution code. The equations of mass continuity imply that:

dM
dt

= 4πρR2vs , (20)
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where
dM
dt

is the mass ejected per second, ρ is the mass density, R is the radius, and vs is the
velocity of the wind. We assume the mass ejected is the leftover hadronic mass that hovers
above the quark-star. We can assume that pair-annihilation “happens” before the whole
quark star is burnt; therefore, there will be a small amount of hadronic matter overlaying
the quark star that can be ejected. The same can be said for a mixed phase, where the
quark-nuggets that are gravitationally bound to an electron lattice can also be ejected by
the pair annihilation.

Furthermore, we must have an energy conservation equation where mass is ejected,
only if: (i) the energy injected by pair annihilation is more than the gravitational potential
energy of the parcel ejected, and (ii) the energy does not transport away as fast as it is
injected. Under these two assumptions, we can write the equation of energy conservation:

L − GM
dM
dt

/R = 4πρv3
s R2 , (21)

where vs is the sound speed, M is the mass of the quark star, and G is the gravitational constant.
As the speed of sound, M and R, and L are given, we can solve the two equations above

to obtain a solution for the
dM
dt

. The existence of mass ejection through pair-annihilation
implies an explosive mechanism that does not require supersonic detonation or core-
collapse—it merely requires that the neutrinosphere is hot enough and that the combustion
front is faster than the neutrino transport timescale. These conditions are weaker and easier
to achieve than core-collapse of the quark core or detonation to a deflagration transition.

We conclude this section by briefly enumerating the mechanisms that can trigger the
ejection of the relativistic ejecta. An important set of mechanisms is what we will refer to as
“shock-induced ejection”. This implies that, in a compact star, the ongoing conversion of
hadronic to quark matter shrinks the core too quickly for the overlaying layers to respond,
creating a separation or a gap. Given that this requires supersonic falling speeds, this
will create a shock. This scenario is similar to core-collapse supernova, where the core
shrinks supersonically, separating the outer layers. In this scenario, a couple of things
could happen:

• Mechanical core bounce: In the case of supersonic core-collapse, the increasing density
in the core would make it stiffer, eventually making the infalling matter bounce back.
This mechanism has been used in supernova simulations with quark cores (e.g., [50]).

• Thermal photon fireball: The surface of a quark star can achieve very high temperatures
of T∼20 MeV. This would generate an intense photon flux that could push the crust
towards relativistic speeds. This picture is sustained by the fact that the crust “floats”
on top of the quark star, leaving a gap between the quark surface and the crust.
The photon flux would then act as a piston that pushes the crust outwards. The other
issue that occurs in the case of a transition to CFL, is that neutrino emissivities are
shut off, making photons the explosive mechanism [51].

• Detonation: it could be that instabilities accelerate the laminar flame into supersonic
speeds. This would generate an effect referred to as a deflagration to detonation
transition (DDT). This would generate a shock that could eject the outer layers of the
compact star.

• Neutrino-induced ejection: Originally Keränen et al. [52] calculated the mass ejection
that is induced by neutrino deposition. From this perspective, the core shrinks super-
sonically and at the same time emits neutrinos that are absorbed by the overlaying
layers, unbounding them gravitationally. In this case, 1051 ergs are deposited into the
outer hadronic layers.

Here, we argue that, since the neutrinospheric temperature in a PQS will reach
∼20 MeV, there will be copious neutrino-antineutrino pairs. These pairs will annihilate
above the neutrinosphere into electron-positron pairs that will become tightly coupled
with the overlying hadronic matter. Due to momentum conservation, these neutrinos will
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deposit their momentum. Our preliminary calculations show that about ∼1052 ergs can be
deposited using this mechanism.

Given that, in the case of an isolated quark-nova, the only remaining hadronic matter
will be the overlaying crust, then the ejecta will only contain about ∼10−5M� matter. If we
assume that about ∼1052 ergs are injected into that crust, we will obtain a Lorenz factor of
about a few hundred. Thus the quark-nova has the potential to convert an important per-
centage of the NS-to-QS conversion energy to relativistic ejecta with interesting implications
for astrophysics, as discussed below.

3. Some Applications to High-Energy Astrophysics

The findings presented above did not take into account the presence of a color super-
conductive quark matter phase. This would allow the channelling of some of the neutrino
energy to a photon fireball (see [51] and references therein) making relativistic quark-nova
ejecta an even more likely outcome. The relativistic quark-nova ejecta (see Section 2.5)
enable an efficient harnessing of the HM-to-(u,d,s) conversion energy, converting it to
extreme radiation via shock following collision with the environment. An interesting aspect
of the mass ejection mechanism is the possibility that it produces strong electromagnetic
signatures with a total energy of 1052 ergs. There are two avenues for the production of
these signatures. The first avenue is when the quark-nova explodes in isolation; in other
words, the quark-deconfinement that produces the mass ejection appears in a fairly old
neutron star, where the supernova ejecta of the progenitor explosion has dispersed, giving
rise to a neutron star in isolation. The other case is when a neutron star explodes while still
embedded within the ejected envelope of its supernova progenitor. Under these two sce-
narios, the quark-nova model was found to account for the main high-energy astrophysical
phenomena and, in particular, those facing the energy budget discussed in the introduction.

3.1. Superluminous SuperNovae (SLSNe)

A dual-shock quark-nova (dsQN) happens when the quark-nova occurs days to weeks
after the supernova (SN) explosion of the progenitor star. The time delay means that
the quark-nova ejecta catch up and collide with the SN ejecta after it has expanded to
large radii [53]. Effectively, the quark-nova re-energizes the extended SN ejecta causing a
re-brightening of the SN; most of the ejecta’s energy (i.e., ∼1052 ergs) can thus be converted
to radiation! For time delays not exceeding a few days, and because of PdV losses, the size
of the SN ejecta is small enough that only a modest re-brightening results when the quark-
nova ejecta collides with the preceding SN ejecta; this yields a moderately energetic, high-
velocity, SN. However, in this case, the quark-nova model predicts that the interaction of
the quark-nova neutrons with the SN ejecta leads to unique nuclear spallation products [54].
For longer time delays, extreme re-brightening occurs when the two ejecta collide yielding
light curves very similar to those of SLSNe [55]. For time-delays exceeding many weeks,
the SN ejecta is too large and too diffuse to experience any substantial re-brightening.

A quark-nova could also occur in tight binaries where the NS can accrete/gain enough
mass to increase its core density and experience a quark-nova event. The NS can accrete
either from the companion overflowing its Roche lobe [56] or while inside a binary’s
common envelope. Quark-novae in binaries have proven successful in fitting properties of
unusual SNe (see [57] for details). The quark-nova model (applied to buried and isolated
NS) has been used to fit a large number of superluminous and double-humped supernovae
(see http://www.quarknova.ca/LCGallery.html (accessed on 20 March 2022) for a picture
gallery of the fits).

3.2. Gamma-Ray Bursts (GRBs)

For longer delays of years to decades following the core-collapse of a massive star (e.g.,
a Type Ic SN), Ref. [58] built a model capable of explaining many of the key characteristics
of gamma-ray bursts (GRBs). Here, one appeals to the turbulent (i.e., filamentary and
magnetically saturated) SN ejecta, shaped by its interaction with an underlying pulsar wind
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nebula (PWN), and sprayed by the relativistic quark-nova ejecta. Synchrotron radiation
is emitted as the quark-nova ejecta passes through successive filaments explaining the
light-curves of many observed GRBs including the flares and the afterglow. We successfully
fitted the light-curves in the XRT-band (including the afterglow and the flares when present)
simultaneously with the spectrum for each of the many GRBs we selected; see Section 5.3.1
and Figure 6 in [58].

3.3. Fast Radio Bursts (FRBs)

Old, slowly rotating and isolated NSs in the outskirts of galaxies experiencing a
quark-nova event can yield fast radio bursts [59]. The quark-nova ejecta expanding in a
low-density medium develops plasma instabilities (Buneman and Weibel successively)
yielding electron bunching and coherent synchrotron emission with properties of repeating
and non-repeating FRBs, such as the GHz frequency, the milli-second duration and a
fluence in the Jy ms range. (The reader is encouraged to run the quark-nova FRB simulator
at http://www.quarknova.ca/FRBSimulator/ (accessed on 20 March 2022)).

3.4. R-Process Nucleo-Synthesis

The presence of neutron-rich, large Z nuclei in the QN ejecta (i.e., the neutron star’s out-
ermost layers with (40, 95) < (Z, A) < (70, 177)), the large neutron-to-seed ratio, and the
low electron fraction Ye∼0.03 in the decompressing ejecta present favorable conditions for
rapid neutron capture (r-process) nucleosynthesis. The quark-nova provides a rich supply
of exotic nuclei and generates an r-process environment that is similar, though not identical,
to neutron star mergers (NSMs). The QN and NSM scenarios both utilize decompression of
neutron matter for the r-process, but the underproduction of elements at A < 130, known
as a feature of NSM yields, is less pronounced in the QN [60,61]. The quark-nova ejecta is
a natural rapid neutron-capture (r-process) site [61]. With an estimated quark-nova rate
of 0.1 that of core-collapse supernovae and an ejecta of ∼10−5M� per quark-nova, these
could be an important source of r-process elements ejecting ∼10−8M� per year per galaxy
of r-process products. This is of the same order as the contribution from binary mergers
which occur at a much lower rate of ∼10−6M� per year per galaxy but with a much higher
ejecta mass of ∼10−2M� per merger.

There are implications of the quark-nova r-process nucleosynthesis for astrophysics.
These include: (i) A neutron star experiencing a quark-nova event while still embedded
within the supernova remnant can deposit NSM-like r-process material into the expanding
shell; (ii) quark-novae occur naturally within Pop. III stars, thus contributing to the r-
enrichment of the interstellar medium much before NSMs which would instead lead to
a sudden and late r-enrichment [62]; (iii) The neutron-rich relativistic quark-nova ejecta
was shown to be an efficient spallation process converting 56Ni to 44Ti when interacting
with the preceding SN ejecta [54]. This novel process of destroying 56Ni would have the
unexpected effect of dimming some supernovae (e.g., [63]).

4. Discussion

The work of the Quark-Nova group in simulating the non-premixed hadron-to-quark
combustion starting with Niebergal [35] was seminal, since the time-dependent solutions
were solved for the first time. These early investigations used neither neutrino transport,
nor a hadronic EOS, and the halting solution (of the burning front) was based on hybrid
arguments which appeal to semi-analytic and numerical analyses. In subsequent work [36],
the Burn-UD code was extended by adding neutrino transport, electron EOS, neutrino EOS,
and a hadronic EOS. From these additions, we found, for the first time, that neutrinos do
indeed induce mechanical instabilities, since they can quench the burning. Furthermore,
the addition of hadronic EOS (i.e., HM-to-(u,d,s) combustion compared to the (u,d)-to-(u,d,s)
version) leads to thermodynamic effects that may quench or accelerate burning. A major
result is that the neutrino heating experienced by hadronic matter due to absorption of
neutrinos produced by the beta equilibrating of (u,d,s) ash, will lead to a free-energy barrier
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between the (u,d,s) ash and the hadronic fuel (see [10] for a recent review). This energy
barrier can quench the burning. Specifically, in comparing (u,d)-to-(u,d,s) versus HM-to-
(u,d,s) burning, the latter (i.e., the inclusion of a hadronic EOS) can generate non-linear
thermodynamic effects where the coupling of neutrino transport and the free energy of the
hadronic EOS can lead to quenching. This quenching appears since the hadronic fuel can
absorb neutrinos emitted by the hot (u,d,s), which can lead to the erection of a free-energy
barrier that makes combustion thermodynamically unfavourable. These results suggest
that a multidimensional code is necessary, since instability would lead to a wrinkling of the
interface, and, therefore, only through a multidimensional study can we unearth the final
fate of the burning neutron star.

4.1. Quark-Novae and the EOS of Dense Matter

We note that the formation and properties (e.g., temperature) of the hot proto-quark
star, driven by the pressure gradients that drive the burning interface, are controlled pri-
marily by leptonic weak decays rather than by the EOS of the hadronic matter. Specifically,
the effects of the leptonic weak interaction, including the corresponding weak decay rates
and the EOS of electrons and neutrinos, are at least as important as the uncertainties related
to the EOS of high density matter (see [10,36] for details). In the work presented here, we
explored hadronic EOSs with a proton fraction less than 0.1, but, in general, the proton frac-
tion, while important, is not as crucial as the strong pressure gradients induced by leptonic
weak decays which drastically slow down the burning speed (by orders of magnitude),
which is thereafter controlled by the much slower burning process driven by back-flowing
downstream matter. The relativistic mean-field approach used in [41] is not unique and
other approaches taking into account nuclear many-body interactions rather than reducing
the interactions to mean fields exist [64,65]. We plan to explore other hadronic EOSs, both
stiff and soft ones including hyperons.

The MIT bag EOS only includes confinement but does not emulate chiral symmetry
breaking (the process that gives hadrons their large masses compared to the quark masses
that constitute them). Some chiral models, such as the Nambu–Jona–Lasinio (NJL) model
tend to reduce the stability of (u,d,s), since the quarks become massive [66]. It is evident
that at least some quark matter EOS would not release as much energy through beta
equilibration, and therefore lead to lower temperatures for the (u,d,s) ash. We are currently
exploring a wider parameterization across different quark matter EOSs.

The observation of an energetic quark-nova (e.g., in re-energized core-collapse SNe
or in double-humped SNe; see Section 3.1) would support the suggestion that: (i) The
transition was first-order (i.e., release of latent heat during the HM-to-(u,d,s) transition);
(ii) Interface instabilities (e.g., deleptonization; [34]) would have taken place which would
favor HM EOS poor in proton fraction in concert with neutrino trapping; (iii) From the
total energy released, one could, in principle, differentiate a deflagration-to-detonation
from a (quark) core-collapse scenario; (iv) The time delay between the supernova and the
quark-nova (weeks in the case of double-humped SNe; see Section 3.1) could be used to
investigate: (iv-a) The density at which quark matter deconfines (which is very uncertain).
The time delay is the time it takes the core of the neutron star to reach quark deconfinement
density due to either spin-down or accretion; (iv-b) s-quark seeding timescales as the most
likely mechanisms.

While constraints on the HM and (u,d,s) EOSs could be gleaned from the observation
of a quark-nova as described above, better interpretation of the observations depends on
exploring more EOSs to understand their exact role in the conversion front compared to
pressure gradients (from leptonic weak decays and for different electron EOSs) that drive
the burning interface.

4.2. Quark-Novae and Binary Neutron Star Mergers

Section 2.5 discusses the quark-nova ejecta which consists mainly of the NS’s out-
ermost layers (i.e., the crust) with MQN∼10−5M�. With up to 1052 ergs of conversion
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energy converted to kinetic energy, this means an ejecta with a Lorentz factor of hundreds.
In other words, compared to binary mergers and SNe, the quark-nova ejecta, besides being
neutron-rich and efficient at r-process nucleo-synthesis (see Section 3.4), is highly relativis-
tic. Numerical simulations of NSMs suggest that the type of merger depends strongly
on the total mass of the binaries, the mass ratio and on the HM EOS. Prompt black hole
formation would naturally be expected if the EOS is soft, while a stiff EOS would yield
a hyper-massive NS (HMNS; e.g., [67–69]). Of relevance to the quark-nova model, is the
long-lived (>100 ms) HMNS scenario where the massive NS may undergo a quark-nova
transition before a black hole forms. An HMNS is more likely to harbour a quark core; once
two-lavoured quark matter is nucleated in the core of the HMNS, the weak interaction can
turn some of the d quarks into s-quarks, lowering the Fermi energy of the quark matter. The
conversion of the HMNS to a quark star is not unrealistic if it occurs on timescales shorter
than the black hole formation. An interesting outcome is a short gamma-ray burst from the
interaction of the relativistic quark-nova ejecta with the binary’s ejecta (see Section 3.2).

Adding the quark-nova into the NSM picture would help relax the need for a short-
duration gamma-ray burst driven by accretion onto the black-hole and would provide a
new channel for gravitational wave (GW) signals (see Section 4.3). The GWs would be
emitted in the time frame between the formation of the HMNS and the collapse to a black
hole. Our model would thus predict a short-duration gamma-ray burst prior to black hole
formation but following the quark-nova GW signal. The NSM ejecta (∼10−2M�) dwarfs
the QN ejecta (∼10−5M�). Nevertheless, the relativistic nature of the QN ejecta plausibly
implies the presence of unique exotic nuclei at A < 130 not expected from NSMs (see
Section 3.4).

4.3. Quark-Novae and Gravitational Waves

Preliminary investigation of gravitational waves from a quark-nova used Newtonian
gravity (see Appendix in [70]). The ultimate goal is to compute the GW signal during
the HM-to-(u,d,s) burning (i.e., during the outward expansion of the hadronic-to-quark
matter conversion front) using a full general relativistic treatment which is currently being
pursued by the Quark-Nova group. The extreme densities in the burning NS core and
instabilities unique to the HM-to-(u,d,s) burning (e.g., the deleptonization) should favour
specific modes. Ultimately, we hope to isolate unique features of quark-nova GWs to
differentiate them from supernovae and binary mergers.

5. Conclusions

By coupling a stellar evolution code to the Burn-UD code, we studied the formation
and evolution of a hot proto-quark star (the macro-physics of the quark-nova). We found
much higher peak neutrino luminosities (>1055 erg/s) and a harder neutrino spectrum
than previous stellar evolution studies on proto-quark stars (e.g., Pagliara et al. (2013)).
The neutrino counts derived were those that observatories such as Super-Kamiokande-III
and Halo-II should expect and could be used to differentiate between a supernova and a
quark-nova. Due to the high peak neutrino luminosities in a quark-nova, neutrino pair
annihilation can deposit as much as 1052 ergs in kinetic energy in the matter overlaying
the neutrinosphere, yielding a relativistic ejecta. The energetics of the quark-nova and
the dynamics of its ejecta have interesting implications for high-energy astrophysics and
could aid in our understanding of many still enigmatic astrophysical transients, such as
super-luminous supernovae, gamma-ray bursts and fast radio bursts.
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Abstract: We calculate the nonzero-temperature correction to the beta equilibrium condition in
nuclear matter under neutron star merger conditions, in the temperature range 1 MeV < T � 5 MeV.
We improve on previous work using a consistent description of nuclear matter based on the IUF
and SFHo relativistic mean field models. This includes using relativistic dispersion relations for
the nucleons, which we show is essential in these models. We find that the nonzero-temperature
correction can be of order 10 to 20 MeV, and plays an important role in the correct calculation of Urca
rates, which can be wrong by factors of 10 or more if it is neglected.

Keywords: nuclear matter; neutron star merger; beta equilibration; weak interaction

1. Introduction

Nuclear matter in neutron stars settles into beta equilibrium, meaning that the proton
fraction is in equilibrium with respect to the weak interactions. In this paper, we will
study the conditions for beta equilibrium in ordinary nuclear matter (where all the baryon
number is contributed by neutrons (n) and protons (p)) in the temperature range 1 MeV �
T � 5 MeV. This regime, which arises in neutron star mergers [1–4], is cool enough so
that neutrinos are not trapped, but warm enough so that there are corrections to the low-
temperature equilibrium condition. It has previously been shown [5] that in this regime
the full beta equilibrium condition is

μn = μp + μe + Δμ , (1)

where Δμ is a correction that arises from the violation of detailed balance (neutrino trans-
parency) and the breakdown of the Fermi surface approximation (see Section 2). In nuclear
matter in the temperature regime discussed here, the proton fraction will equilibrate to-
wards the value given by Equation (1). Even if equilibrium is not reached on the timescale
of a merger, one needs to know the correct equilibration condition in order to analyze
phenomena associated with this relaxation process, such as bulk viscosity and neutrino
emission. At low temperatures (T � 1 MeV) Δμ is negligible, but in the temperature
regime under consideration here it has been estimated to be up to tens of MeV [5]. The
calculation in Ref. [5] went beyond the Fermi surface approximation by performing the
phase space integral for the equilibration rate over the entire momentum space. However,
it used a very crude model of the in-medium nucleons, assigning them their vacuum mass
and assuming that their kinematics remained nonrelativistic at all densities.

In this paper, we improve on the analysis of Ref. [5]. We treat nuclear matter consis-
tently using relativistic mean field models [6,7] with fully relativistic dispersion relations
for the nucleons. We show that this makes a considerable difference to the beta equilibra-
tion rates because in these models the nucleons at the Fermi surface become relativistic
at densities of a few times nuclear saturation density n0. We calculate the direct Urca rate
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using the entire weak-interaction matrix element rather than its nonrelativistic limit, and
evaluate the full phase space integral.

Other authors have evaluated direct Urca phase space integrals in calculations of the
direct Urca rate, the neutrino emissivity, or the neutrino mean free path. Fully relativistic
computations of direct Urca phase space integrals are uncommon in the literature, but
they do appear. Refs. [8–11] calculate the neutrino mean free path using a fully relativistic
formalism, while integrating over the full phase space. Ref. [10] calculates the direct Urca
electron capture rate using a fully relativistic formalism and performs the full phase space
integration. Although these calculations perform the full integration over phase space, they
focus on high temperatures (T � 5 MeV) where neutrinos are trapped and where the direct
Urca threshold is blurred over a wide density range. In this temperature regime, which can
be reached in mergers as well [1,12–14], beta equilibrium is given by

μn + μν = μp + μe , (2)

with μν being the neutrino chemical potential. As discussed in more detail in Section 2,
the neutrino-trapped beta equilibration condition does not require an additional finite-
temperature correction. This paper will examine the phase space integral at lower tempera-
tures where the direct Urca threshold is apparent and a key feature in the physics of beta
equilibration or neutrino emission.

Other works use the relativistic formalism, but assume the nuclear matter is strongly
degenerate (using the Fermi surface approximation, described below), and thus their re-
sults have a sharp direct Urca threshold density [15–17]. Ref. [18] uses the Fermi surface
approximation, but develops a way to incorporate the finite 3-momentum of the neutrino,
slightly blurring the threshold at finite temperature. Some works do the full phase space
integration, but use nonrelativistic approximations for the matrix element and nucleon
dispersion relations [5,19–21]. The vast majority of calculations use nonrelativistic approx-
imations of the matrix element and the nucleon dispersion relations, together with the
Fermi surface approximation [22–34]. All of these calculations are approximations of the
full phase space integration using the fully relativistic formalism. Under certain condi-
tions, the approximations match well with the full calculation, and have the advantage of
being simple.

In Section 3 we introduce the two relativistic mean field models, IUF and SFHo, that
we use. Section 4 describes our calculation of the rate of direct Urca processes, where we
integrate over the entire phase space in order to include contributions from the region that
would be kinematically forbidden in the low-temperature limit. Section 5 describes our
calculation of the modified Urca contribution to the rate, where we use the Fermi surface
approximation since there is no kinematically forbidden region for those processes in the
density range that we consider. Section 6 presents our results, and Section 7 provides
our conclusions.

We work in natural units, where h̄ = c = kB = 1.

2. Beta Equilibration

Beta equilibration in npe− matter is established by the Urca processes [35]. The
modified Urca processes

N + n → N + p + e− + ν̄ (3)

N + p + e− → N + n + ν,

(here, N represents a “spectator” neutron or proton) operate at all densities in the core of
the neutron star. In uniform npe− matter, the proton-spectator modified Urca process only
operates at densities where xp > 1/65 [25,31], though this condition is only violated (if
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ever) in the inner crust of neutron stars [36] where the matter is not uniform and thus the
calculations in this paper would not apply. The direct Urca processes

n → p + e− + ν̄ (4)

p + e− → n + ν,

are exponentially suppressed when the temperature is much less than the Fermi energies
and the density is in the range where kFn > kFp + kFe. In nuclear matter, the proton fraction
rises as the density rises above n0 and eventually may reach a “direct Urca threshold”
where kFn = kFp + kFe. Above this threshold density beta equilibration is dominated by
direct Urca, since (when kinematically allowed) it is faster than modified Urca.

In nuclear matter at temperatures greater than, say, 10 MeV, the neutrino mean free
path is short and the nuclear matter system (for example, a protoneutron star) is neutrino-
trapped and has conserved lepton number YL = (ne + nν)/nB. In this case, the Urca
processes (3) and (4) can proceed forward and backward, as the nuclear matter contains a
population of neutrinos (or antineutrinos). In beta equilibrum, the forward and reverse
processes have equal rates (detailed balance), and the beta equilibrium condition is given
by balancing the chemical potentials of the participants in the equilibration reactions [6,37]

μn + μν = μp + μe (ν-trapped). (5)

In cooler nuclear matter, at the temperatures considered in this work, the neutrino
mean free path is comparable to or longer than the system size and therefore neutrinos are
not in thermodynamic equilibrium: they escape from the star. Neutrinos can then occur
in the final state but not the initial state of the Urca processes. Beta equilibrium is still
achieved, but now by a balance of the neutron decay and the electron capture processes.
However, the principle of detailed balance is not applicable because electron capture is not
the time-reverse of neutron decay.

There is then no obvious equilibrium condition that can be written down a priori.
In the limit of low temperature (T � 1 MeV) the Fermi surface approximation becomes
valid: the particles participating in the Urca processes are close to their Fermi surfaces, and
the neutrino carries negligible energy ∼ T. The beta equilibrium condition can then be
obtained by neglecting the neutrino, so that neutron decay and electron capture are just
different time orderings of the same process n ↔ p e−, and detailed balance gives

μn = μp + μe (low temperature, ν-transparent). (6)

The same condition on the chemical potentials can be reached by examining the phase
space integrals for the direct Urca neutron decay and electron capture rates, taking the limit
where the neutrino energy and momentum go to zero [38]. At temperatures T � 1 MeV
corrections to the Fermi surface approximation start to become significant, particularly
for the protons whose Fermi energy is in the 10 MeV range. Then one cannot neglect the
finite-temperature correction to (6)

μn = μp + μe + Δμ (general, ν-transparent). (7)

The correction Δμ is a function of density and temperature, and its value in beta
equilibrium is found by explicitly calculating the neutron decay and electron capture rates
and adjusting Δμ so that they balance [5] (see also [39], where a similar calculation was
done in the context of a hot plasma). In this paper, we perform that calculation.

For weak interactions we use the Fermi effective theory, which is an excellent approxi-
mation at nuclear energy scales. The main approximations arise in our treatment of the
strong interaction. To describe nuclear matter and the nucleon excitations we use two
different relativistic mean field models, both consistent with known phenomenology and
chosen to illustrate a plausible range of behaviors. We describe these models in Section 3.
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For the modified Urca process we model the nucleon-nucleon interaction with one-pion
exchange [31,40].

3. Nuclear Matter Models

We will use two different equations of state, IUF [41] and SFHo [42], to calculate the
Urca rates and the nonzero-temperature correction Δμ. These are both consistent at the 2σ
level with observational constraints on the maximum mass and the radius of neutron stars.

IUF predicts a maximum mass of neutron star to be 1.95M�, and SFHo predicts
2.06M�. Both are consistent with the observed limits, which are:

• Mmax > 2.072+0.067
−0.066 M� from NICER and XMM analysis of PSR J0740+6620 [43];

• Mmax = 1.928+0.017
−0.017 M� from NANOGrav analysis of PSR J1614-2230 [44];

• Mmax = 2.01+0.14
−0.14 M� from pulsar timing analysis of PSR J0348+0432 [45].

For the radius of a star of mass 2.06 M�, SFHo predicts R = 10.3 km, consistent with
R = 12.39+1.30

−0.98 km from NICER and XMM analysis of PSR J0740+6620 [43]. For the radius of
a 1.4 M� neutron star, IUF predicts R = 12.7 km and SFHo predicts R = 11.9 km, consistent
with R = 11.94+0.76

−0.87 km obtained by a combined analysis of X-ray and gravitational wave
measurements of PSR J0740+6620 in Ref. [46].

It is still not determined whether there is a direct Urca threshold or not in nuclear
matter at neutron star densities [47–51], so we choose one equation of state (IUF) with a
threshold at 4.1n0 and one (SFHo) with no threshold, as shown in Figure 1. Our approach
could be applied to any equation of state where the beta process rates can be calculated. As
we will see in Section 6.3, the density dependence of the momentum surplus kFp + kFe − kFn
is an important factor in the behavior of the direct Urca rates at low temperature, but the
density dependence of the nucleon effective masses and Fermi momenta has a noticeable
impact as well.
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Direct Urca momentum surplus

Figure 1. Direct Urca momentum surplus kFp + kFe − kFn for IUF and SFHo equations of state at
T = 0 . When the surplus is negative, direct Urca is forbidden. IUF has an upper density threshold
above which direct Urca is allowed; SFHo does not.

The coupling constants for SFHo are shown in Appendix A. Notice that the constants
are taken from the online CompOSE database (https://compose.obspm.fr/, accessed on
27 April 2021), and are different from the values provided in Ref. [42].

A key feature of our calculation is that we use the full relativistic dispersion relations
for the nucleons. In Figures 2 and 3 we illustrate the importance of this in relativistic mean
field theories, where the nucleon effective mass drops rapidly with density. Although the
precipitous drop in the nucleon Dirac effective mass with increasing density is a common
feature in relativistic mean field theories [52,53], we note that in two recent treatments
that go beyond the mean field approximation, the drop in the effective mass was not as
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dramatic [54,55]. We plot the Dirac effective mass [56] and the Fermi momentum of the
neutrons and protons in these two EoSs. Although around nuclear saturation density n0,
the nucleons are nonrelativistic, as the density rises to several times n0, the nucleon effective
mass has dropped significantly below its vacuum value. Neutrons on their Fermi surface
become relativistic at 2 − 3n0, while protons on their Fermi surface remain nonrelativistic
until the density rises to 3 − 6n0. In Figures 4 and 5, we show that using a nonrelativistic
approximation would lead to Urca rates that are incorrect by about an order of magnitude,
although for direct Urca neutron decay the discrepancy can be many orders of magnitude.
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Figure 2. Density dependence of the neutron’s (Dirac) effective mass and Fermi momentum for the
IUF and SFHo EoSs, showing that neutrons at the Fermi surface become relativistic at densities above
2 to 3 n0.
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Figure 3. Density dependence of the proton’s (Dirac) effective mass and Fermi momentum for the
IUF and SFHo EoSs, showing that protons at the Fermi surface become relativistic starting at densities
between 3 − 6n0.
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Figure 4. Direct Urca neutron decay rate calculated using relativistic, nonrelativistic and the vacuum
dispersion relations at T = 3 MeV for IUF.

Relativistic (n)
Non=Relativistic (n)

Relativistic (n)

Non=Relativistic (n)

1 2 3 4 0 6
1.×10=17
0.×10=171.×10=16
0.×10=161.×10=10
0.×10=10

density nB/n0

[MeV
4 ]

modified Urca rate (IUF), T=3MeV

Figure 5. Modified Urca rate calculated using relativistic and nonrelativistic dispersion relations at
T = 3 MeV for IUF. (n) stands for neutron-spectator modified Urca and (p) stands for proton-spectator
modified Urca.

4. Beta Equilibration via Direct Urca

We calculate the in-medium direct Urca rates for neutron decay and electron capture
using the relativistic weak-interaction matrix element and the relativistic dispersion re-
lations for the nucleons and electrons. We also integrate over the full momentum phase
space, not relying on the Fermi surface approximation. This is important because in the
“dUrca-forbidden” density range the Fermi surface approximation would say the direct
Urca rate is zero, so nonzero-temperature corrections are the leading contribution. These
become significant (comparable to modified Urca) at the temperatures of interest here,
T � 1 MeV [5].
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In relativistic mean field models the dispersion relations for the neutrons, protons,
and electrons are

En =
√

m∗
n

2 + k2
n︸ ︷︷ ︸

E∗
n

+Un

Ep =
√

m∗
p

2 + k2
p︸ ︷︷ ︸

E∗
p

+Up (8)

Ee =
√

m2
e + k2

e

Eν = kν ,

where the nucleons’ effective mass m∗
i and energy shift Ui depend on density and tempera-

ture [10]. The unshifted energies E∗
i arise in the phase space normalization and the Dirac

traces [9].

4.1. Neutron Decay

The direct Urca neutron decay rate is [31,57]

Γnd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3 fn(1 − fp)(1 − fe)

∑ |M|2
(2E∗

n)(2E∗
p)(2Ee)(2Eν)

(2π)4δ(4)(kn − kp − ke − kν). (9)

For a more detailed explanation of this expression and its evaluation, see Appendix B.
As described there, it can be reduced to 5-dimensional momentum integral (43)

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dkek2

nk2
pk2

e fn(1 − fp)(1 − fe)Θ(Eν)∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
, (10)

where R, S, and Mφ0 are defined in Equations (24)–(26). The antineutrino energy Eν is
given by

Eν = En − Ep − Ee, (11)

which becomes a function of the remaining integration variables, kn, kp, and ke. Please note
that there are Fermi-Dirac distributions for the neutrons, proton vacancies, and electron
vacancies, but none for the neutrinos because we work in the neutrino-transparent regime
where neutrinos escape from the star and do not form a Fermi gas. We evaluate this integral
numerically using a Monte-Carlo algorithm.

4.2. Electron Capture

The expression for the electron capture rate can be obtained from that for neutron
decay (A10) by making the following changes: (1) the energy-momentum delta function
now corresponds to the process p e− → n ν, and (2) there are Fermi-Dirac distributions for
proton and electron particles, and neutron vacancies,

Γec =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3 (1 − fn) fp fe

∑ |M|2
(2E∗

n)(2E∗
p)(2Ee)(2Eν)

(2π)4δ(4)(kp + ke − kn − kν). (12)
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Evaluating this expression takes us through the same steps as for neutron decay,
except that the neutrino energy is now

Eν = Ep + Ee − En, (13)

and the requirement that this be positive leads to different limits on the momentum integrals,

Γec =
G2

16π6

∫ ∞

0
dkn

∫ ∞

0
dkp

∫ ∞

0
dkek2

nk2
pk2

e fn(1 − fp)(1 − fe)Θ(Eν)∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
. (14)

5. Beta Equilibration via Modified Urca

We calculate the rate of the modified Urca processes (3) using the relativistic dispersion
relations of the nucleons in the phase space integration, but unlike the direct Urca rate we
do not perform the phase space integration exactly, which would be difficult because the
involvement of the spectator particles would lead to an 11-dimensional numerical integral
over momentum. Instead we use the Fermi surface approximation. This is reasonable
for modified Urca as long as the Fermi surfaces are not too thermally blurred, i.e. when
the temperature is below the lowest Fermi kinetic energy, which is that of the proton.
The modified Urca processes do not have a density threshold in the range of densities we
consider here (see Section 2), so the Fermi surface approximation never predicts a vanishing
rate. In this work we explore the temperature range 1 MeV < T < 5 MeV, and the proton’s
Fermi kinetic energy is at least 10 MeV in the density range n > n0, so the Fermi surface
approximation is justified for modified Urca rates. The first paragraph of Section 4 contains
a discussion of why we need to go beyond the Fermi surface approximation in our direct
Urca rate calculations. For the matrix elements that arise in modified Urca (44) and (59),
we use the standard results (see, e.g., [31]), which were calculated assuming nonrelativistic
nucleons. It has been pointed out [58] that the standard calculation of the modified Urca
matrix element [40], which we use here, is based on a very crude approximation for
the propagator of the internal off-shell nucleon. A more accurate treatment would lead
to different modified Urca rates and shift our predicted values of Δμ; we defer such a
calculation to future work.

5.1. Neutron Decay

Modified Urca can proceed with either a neutron spectator or a proton spectator. From
Fermi’s Golden rule, we have the rate for the neutron decay process

ΓmU,nd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(
s

∑ |M|2
26E∗

nE∗
pEeEνE∗

N1
E∗

N2

)
(2π)4δ(4)(kn + kN1 − kp − ke − kν − kN2) fn fN1(1 − fp)(1 − fe)(1 − fN2). (15)

Here, s = 1/2 because of the identical particles appearing in the process. N1 and N2
are neutrons in the n-spectator process and for the p-spectator neutron decay process, N1
and N2 are protons. The matrix element is different for each process see Equations (44) and
(59). The detailed derivation of the modified Urca rates is in Appendix C. For n-spectator
neutron decay, allowing the system to deviate from the low-temperature beta equilibrium
condition (6) by amount

ξ =
μn − μp − μe

T
, (16)
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we obtain

ΓmU,nd(n)(ξ) =
7

64π9 G2g2
A f 4

(E∗
Fn)

3E∗
Fp

m4
π

k4
FnkFp

(k2
Fn + m2

π)2
F(ξ)T7θn, (17)

where f ≈ 1 is the N-π coupling [31],

F(ξ) ≡− (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)Li4(−eξ)

− 24(3ξ2 + 5π2)Li5(−eξ) + 240ξLi6(−eξ)− 360Li7(−eξ), (18)

and

θn ≡

⎧⎪⎨⎪⎩
1 kFn > kFp + kFe

1 − 3
8
(kFp + kFe − kFn)

2

kFpkFe
kFn < kFp + kFe.

(19)

The functions Lin(x) are polylogarithms of order n [59]. For p-spectator neutron decay,
we obtain

ΓmU,nd(p)(ξ) =
1

64π9 G2g2
A f 4

(E∗
Fp)

3E∗
Fn

m4
π

(kFn − kFp)
4kFn

((kFn − kFp)2 + m2
π)2

F(ξ)T7θp, (20)

where

θp ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if kFn > 3kFp + kFe

(3kFp + kFe − kFn)
2

kFnkFe
if

kFn > 3kFp − kFe
kFn < 3kFp + kFe

4
3kFp − kFn

kFn
if

3kFp − kFe > kFn
kFn > kFp + kFe(

2 + 3
2kFp − kFn

kFe
− 3

(kFp − kFe)
2

kFnkFe

)
if kFn < kFp + kFe.

(21)

5.2. Electron Capture

The electron capture modified Urca rate can be obtained in a similar way to neutron
decay, by changing the sign of the neutrino 4-momentum in the energy-momentum delta
function and interchanging the particle and hole Fermi-Dirac factors,

ΓmU,ec =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3
d3kN1

(2π)3
d3kN2

(2π)3

(
s

∑ |M|2
26E∗

nE∗
pEeEνE∗

N1
E∗

N2

)
(2π)4δ(4)(kp + ke + kN1 − kn − kν − kN2) fp fe fN1(1 − fn)(1 − fN2). (22)

Through a similar calculation, we find that the modified Urca neutron decay and
electron capture rates in the Fermi surface approximation are related by

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ), (23)

and

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ). (24)
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6. Results

6.1. Beta Equilibrium at Nonzero Temperature

Figures 6 and 7 show our final results for the nonzero-temperature correction Δμ
required to achieve beta equilibrium, for the IUF and SFHo equations of state, respectively.
The key features are

• At low temperatures T � 1 MeV, the Fermi surface approximation is valid and beta
equilibrium is achieved with a negligible correction Δμ (see Section 2).

• At the temperature rises through the neutrino-transparent regime, the value of Δμ rises.
• We only provide results for temperatures up to 5 MeV because at temperatures of

around 5 to 10 MeV the neutrino mean free path will become smaller than the star,
invalidating our assumption of neutrino transparency.

• The figures indicate that the nonzero-temperature correction reaches values of 10 to
20 MeV before neutrino trapping sets in.

• The density dependence of Δμ appears very different for different EoSs. For IUF the
largest values are reached at moderate densities, near the direct Urca threshold. For
SFHo, Δμ has a minimum at those densities.

In the rest of this section we will explain these features of our results.
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Figure 6. Nonzero-temperature correction Δμ required for beta equilibrium Equation (7) with the
IUF EoS.
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Figure 7. Nonzero-temperature correction Δμ required for beta equilibrium Equation (7) with the
SFHo EoS.
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The temperature dependence follows from the breakdown of the Fermi surface ap-
proximation. At T � 1 MeV the Urca processes are dominated by modes close to the Fermi
surfaces of the neutron, protons, and electrons. The energy of the emitted neutrino is of
order T which is negligible, so the direct Urca process is effectively n ↔ p e−, for which
the equilibrium condition is μn = μp + μe, i.e., Δμ = 0. As the temperature approaches
the Fermi energy of the protons, the Fermi surface approximation breaks down. Modes
far from the proton and electron Fermi surfaces begin to play a role, and the energy of
the emitted neutrino becomes important. The processes that establish beta equilibrium,
n → p e− ν̄e and p e− → n νe, are not related by time reversal, so the principle of detailed
balance does not apply. This means that even below the direct Urca threshold density,
direct Urca processes can be fast enough and sufficiently different in their rates to require
a correction Δμ to bring them into balance. As we will explain below, at Δμ = 0 electron
capture is much less suppressed than neutron decay, requiring a positive value of Δμ to
decrease the proton fraction and equalize the rates.

The density dependence of the correction Δμ is more complicated, depending on
specific features of the equations of state. We will discuss this in more detail below.

6.2. Urca Rates

Figure 8 illustrates how, without a nonzero-temperature correction Δμ (dashed lines),
the neutron decay (nd) and electron capture (ec) rates become very different when the
temperature rises to 3 MeV. For both EoSs, electron capture is significantly faster than
neutron decay, so a positive Δμ will be required to balance the rates and establish beta
equilibrium (solid lines). This is because a positive Δμ reduces the proton fraction. The
resultant change in the phase space near the neutron and proton Fermi surfaces enhances
the neutron decay rate and suppresses electron capture, bringing the two processes into
balance with each other.

nd IUF

ec IUF

nd SFHo

ec SFHo

IUF

SFHo

1 2 3 4 0 6
1.×10=16
0.×10=161.×10=10
0.×10=101.×10=14
0.×10=14

density nB/n0

[MeV
4 ]

Urca rates at T=3MeV

Figure 8. Urca (direct plus modified) rates for IUF and SFHo EoSs at T = 3 MeV. When Δμ = 0
(dashed lines) the rates for neutron decay (nd) and electron capture (ec) do not balance. With the
correct choice of Δμ (Figures 6 and 7) the neutron decay and electron capture rates (solid lines)
become equal, and the system is in beta equilibrium.

For IUF, the mismatch between electron capture and neutron decay is greatest just
below the IUF direct Urca threshold density of 4 n0, which explains why for IUF Δμ reaches
its highest value there (Figure 6). For SFHo, the mismatch is smallest at that density, which
explains why for SFHo Δμ reaches a local minimum there (Figure 7).

Figures 9 and 10 give further insight into the density dependence of the rates by
showing the separate contributions from direct and modified Urca.
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Figure 9. Urca rates calculated using the IUF EoS at T = 3 MeV. Because Δμ = 0 there is a large
mismatch between the direct Urca rates for neutron decay and electron capture. Modified Urca (with
neutron spectator (n) and proton spectator (p)) rates are calculated in the Fermi surface approximation
and therefore match automatically.
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Figure 10. Urca rates calculated using the SFHo EoS at T = 3 MeV. Because Δμ = 0 there is a
large mismatch between the direct Urca rates for neutron decay and electron capture. Modified
Urca (with neutron spectator (n) and proton spectator (p)) rates are calculated in the Fermi surface
approximation and therefore match automatically.

For IUF (Figure 9), in the dUrca-forbidden density range one would expect that the
direct Urca rates should be exponentially suppressed at low temperature, leaving the
modified Urca rates which automatically balance when Δμ = 0 because they are calculated
in the Fermi surface approximation. We see that the direct Urca neutron capture rate is
indeed strongly suppressed, but the direct Urca electron capture rate only shows a slight
reduction below the threshold, and remains well above the modified Urca rates. This
mismatch is what leads to a positive correction Δμ in beta equilibrium. We will explain
below why this is the case.

For SFHo (Figure 10), the analysis is similar: neutron decay is heavily suppressed
as expected in the dUrca-forbidden region (up to infinite density), but electron capture is
much less suppressed. In the middle density range (3 to 5 n0) where mUrca is dominant
there is no need for a correction, since the mUrca rates balance at Δμ = 0. However, at
lower or higher densities the direct Urca electron capture rate becomes large enough to
dominate, so a positive Δμ will be required to pull it down and establish equilibrium
between neutron decay and electron capture.

In the next subsection we analyze the imbalance between electron capture and neutron
decay rates in the dUrca-forbidden density range. This imbalance is the reason a nonzero
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Δμ is required in beta equilibrium. We can understand the difference in the rates, and
their density dependence, by looking at which parts of the phase space dominate the rate
integrals. This is largely determined by the Fermi-Dirac factors in the rate integrals, since
the matrix element depends only weakly on the magnitudes of the momenta.

6.3. Direct Urca Suppression Factors

The density and temperature dependence of the direct Urca rates is dominated by the
Fermi-Dirac factors. Below the dUrca threshold density, at zero temperature all direct Urca
processes would be forbidden, but at nonzero temperature the Fermi surfaces are blurred,
so there is some nonzero occupation of particle and hole states in regions of momentum
space where the direct Urca process is kinematically allowed. The rate is governed by the
Fermi-Dirac suppression factors for those momentum states.

At each density and temperature we search for the combination of momenta that is
least suppressed, i.e., that maximizes the product of Fermi-Dirac factors in the rate integral
while maintaining energy-momentum conservation. The magnitude of that product of
Fermi-Dirac factors tells us how suppressed the whole process will be, at that density
and temperature.

Below the direct Urca threshold density, considering particles near their Fermi sur-
faces, the neutron has a momentum larger than the sum of proton and electron momenta,
even if the proton and electron are coaligned (see Figure 1). In this regime, the direct Urca
kinematics will become essentially one-dimensional, as this is how the electron and proton
momenta can come closest to adding up to the large neutron momentum. We take the neu-
tron momentum to be positive, so a negative momentum indicates motion in the direction
opposite of the neutron. For momentum conservation to hold, the electron and proton will
have to be away from their Fermi surfaces. In the assumption of one-dimensional kine-
matics, we determine the optimal momenta {kopt

n , kopt
p , kopt

e , kopt
ν } as follows. For neutron

decay, we maximize fn(1 − fp)(1 − fe) and for electron capture we maximize (1 − fn) fp fe.
Energy and (one-dimensional) momentum conservation impose two constraints on the
momentum, leaving two independent momenta over which to maximize.

The results of this maximization exercise are shown for the IUF EoS in Figures 11 and 12,
and for SFHo in Figures 13 and 14.
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Figure 11. The optimal kinematics for neutron decay for the IUF EoS. Left panel: the least suppressed kinematic arrange-
ment, showing the energy distance γ of each particle from its Fermi surface. Right panel: the Fermi-Dirac suppression factor,
e−|γe |/Te−|γn |Θ(γn)/T which is dominated by the difficulty of finding an electron hole at energy γe below its Fermi surface.
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Figure 12. The optimal kinematics for electron capture for the IUF EoS. Left panel: the least suppressed kinematic
arrangement, showing the energy distance γ of each particle from its Fermi surface. Right panel: the overall Fermi-Dirac
suppression factor, e−|γp |/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , which is dominated by the difficulty of finding a proton at energy
γp above its Fermi surface.
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Figure 13. The optimal kinematics for neutron decay at T = 3 MeV for SFHo, obtained by maximizing the Fermi-Dirac
products. The suppression factor, e−|γe |/Te−|γn |Θ(γn)/T is dominated by the difficulty of finding an electron hole below its
Fermi surface.

The left panels show how far from their Fermi surfaces the particles are in the least
Fermi-Dirac-suppressed kinematic configuration. For each particle i we show γi ≡ Eopt

i −
EFi, which is the extra energy the particle with its optimal momentum has relative to its
Fermi energy. The curves only exist in the dUrca-forbidden region, which for IUF ends
at 4.1 n0. (In the dUrca-allowed region all particles can be on their Fermi surfaces, so the
curves would be trivially zero and are not shown). The right panels show the maximum
value of the Fermi-Dirac factor, which gives the overall suppression of the process.

6.3.1. Neutron Decay

Direct Urca neutron decay is suppressed because the neutrons at their Fermi surface
have just enough energy to make a proton and electron near their Fermi surfaces (this is a
consequence of the beta equilibrium condition (6)), but too much momentum (Figure 1).
The process can still proceed (with an exponential suppression factor) by exploiting the
thermal blurring of the Fermi surfaces. Figure 11 (IUF) and Figure 13 (SFHo) show that
the best option is to create a proton at energy γp above its Fermi surface and an electron
at energy γe = −γp which is below its Fermi surface. The co-linear proton and electron
now have more momentum then when they were both on their Fermi surfaces because the

210



Universe 2021, 7, 399

proton’s momentum rises rapidly with γp because the proton is less relativistic, whereas
the electron’s momentum drops more slowly as γe becomes more negative, because the
electron is ultrarelativistic. The creation of the proton incurs no Fermi-Dirac suppression
because states above the Fermi surface are mostly empty, but the creation of the electron
is suppressed by a Fermi-Dirac factor of e−|γe |/T reflecting the scarcity of electron holes
available to take such an electron. The net suppression of the rate, e−|γe |/Te−|γn |Θ(γn)/T ,
is shown in the right panels of Figure 11 (IUF) and Figure 13 (SFHo). For IUF we see the
strongest suppression at around 2 n0, which explains the density dependence of the IUF
neutron decay rate shown in Figure 9. For SFHo, since the dUrca-forbidden region extends
up to infinite density, and the momentum deficit remains large across the density range
surveyed, we see stronger suppression that does not relent at the upper end of the density
range, explaining the almost total suppression seen in Figure 10.
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Figure 14. The optimal kinematics for electron capture at T = 3 MeV for SFHo, obtained by maximizing the Fermi-Dirac
products. The suppression factor, e−|γp |/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , is dominated by the difficulty of finding a proton
above its Fermi surface.

We can understand the density dependence of γp in terms of the one-dimensional
model within which the maximization was performed.

We assume that as seen in Figure 11 (IUF) and Figure 13 (SFHo), the neutron remains
on its Fermi surface, and the neutrino takes negligible energy/momentum, since lack
of momentum to build the final state is the main obstacle. Conservation of energy and
momentum then tells us that

kFn = kopt
p + kopt

e , (25)

EFn = Ep(k
opt
p ) + kopt

e . (26)

Using the dispersion relations (8) we can solve for kopt
p and kopt

e and, after using that
EFn = EFp + EFe (since we have assumed Δμ = 0), we find

kopt
p − kFp =

Δk(2E∗
Fp − Δk)

2(E∗
Fp + kFp − kFn)

, (27)

where Δk ≡ kFn − kFp − kFe is the momentum deficit (we plotted the surplus −Δk in
Figure 1). From this analysis, we learn that the density dependence of γp, and therefore
the rate, not only depends on the momentum deficit Δk, but on the relative behavior of the
neutron and proton Fermi momenta and their effective masses.

Although the momentum deficit Δk in IUF monotonically shrinks with density, γp
shows a slight increase at low densities due to the fast drop of the effective proton mass
m∗

p (see Figure 3). This fast decrease counter-intuitively leads E∗
Fp to drop with density,
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while the real Fermi energy, which includes the nuclear mean field, Up, rises with density
as expected. Closer to the threshold density, the momentum deficit dominates the behavior
of γp and the rate, so that γp goes to zero at the threshold as Δk approaches zero, leading
to kopt

p = kFp as expected.
For the SFHo EoS, the direct Urca momentum deficit is only varying weakly with

density (see again Figure 1). Although the momentum deficit is slowly falling, γp continues
to rise with density as shown in Figure 13. This is due to the neutron Fermi momentum
which rises fast enough that the denominator in Equation (27) decreases by more than
a factor of five in the studied density range while the momentum surplus stays nearly
constant in comparison.

6.3.2. Electron Capture

In the dUrca-forbidden density range, using the one-dimensional kinematics described
above, we find that the optimal kinematics for electron capture has a proton above its
Fermi surface and an electron close to its Fermi surface combining to make a neutron
slightly below its Fermi surface and a neutrino. The Fermi-Dirac suppression factor is
e−γp/Te−|γe |Θ(γe)/Te−|γn |Θ(−γn)/T , reflecting the scarcity of protons and electrons above
their Fermi surfaces, and of neutron holes below the neutron Fermi surface.

Figures 12 and 14 show the corresponding energy excesses γi and Fermi-Dirac suppres-
sion factors. In the right panels we see that in the dUrca-forbidden region, electron capture
is somewhat suppressed but not nearly as suppressed as neutron decay. This is because, as
we explain below, it is able to proceed using a proton that is much closer to its Fermi surface
than is possible for neutron decay, and there is correspondingly less Fermi-Dirac suppres-
sion (compare the left panels of Figure 11 vs. Figure 12, and Figure 13 vs. Figure 14).

The special feature of electron capture is that there is a very efficient way to exploit the
thermal blurring of the Fermi surfaces. Given a momentum shortfall Δk ≡ kFn − kFp − kFe,
we can start with a proton whose momentum is less than Δk above the Fermi surface. The
rarity of finding such a proton leads to a Fermi-Dirac suppression factor of e−|γp |/T . This
proton captures an electron near its Fermi surface with momentum parallel to the proton’s.
At this point their combined momentum is not enough to make a neutron on its Fermi
surface, and there is excess energy. However, we can use that excess energy to create,
along with a neutron on its Fermi surface, a neutrino whose momentum partly cancels the
neutron momentum, so the combined momentum of the proton and electron is enough to
create that final state.

Because of the “help” from the neutrino, the proton does not need to be as far above
its Fermi surface as the proton in neutron decay, so the electron capture rate is suppressed
by a smaller Fermi-Dirac factor,

The density dependence of the suppression factors (right panels of Figure 12 for IUF
and Figure 14 for SFHo) explain the density dependence of the direct Urca electron capture
rates shown in Figures 9 and 10.

To understand the density dependence of γp, we can perform a similar analysis as
for neutron decay. We now assume neutron and electron to be on their Fermi surfaces, as
shown in Figure 12 (IUF) and Figure 14 (SFHo), which is not as good as an assumption
compared to the neutron decay analysis, but still helps us to gain insight into the behavior
of the rates. Energy-momentum conservation again allows us to deduce that

kFn = kopt
p + kFe + kopt

ν , (28)

EFn + kopt
ν = Ep(k

opt
p ) + kopt

Fe , (29)

which leads, following the same procedure as in the neutron decay case, to

kopt
p − kFp =

Δk(Δk + 2E∗
Fp)

2(E∗
Fp + kFn − kFp)

. (30)
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For IUF at low densities, we can neglect the proton Fermi momentum compared to the
effective mass. The behavior of γp is then again dominated by the effective proton mass,
whose rapid decrease overcomes the rising neutron Fermi momentum at low densities.
This pushes the proton further away from its Fermi surface at low densities, before the
momentum surplus dominates the behavior of γp as the threshold is approached. As for
neutron decay, Δk = 0 at the threshold, therefore the rate is again dominated by particles
on their respective Fermi surfaces.

For SFHo, the momentum surplus is becoming smaller from n0 to 3 n0 while the
combination of the effective masses and Fermi momenta in (30) varies slowly with density.
This allows the behavior of the momentum surplus Δk to dominate the behavior of γp at
low densities, so both are increasing and therefore pushing the proton further away from its
Fermi surface initially. At higher densities, SFHo is seemingly approaching asymptotically
a direct Urca threshold. Both the momentum surplus and the Fermi momenta and effective
masses in Equation (30) are pushing the ideal proton momentum back closer to the Fermi
surface. Overall, the behavior of the electron capture rate in SFHo can therefore largely be
explained by the density dependence of the momentum surplus.

6.4. Nonrelativistic Rate vs. Relativistic Rate

In Section 3 we emphasized that as the density rises above about 2n0 relativistic
corrections become important in the nucleon dispersion relations. In this section, we
illustrate the importance of relativistic corrections in the neutron decay rate.

6.4.1. Direct Urca Neutron Decay

Figure 4 shows various approximations to the direct Urca neutron decay rate at
T = 3 MeV (with Δμ = 0). We show the rate calculated with fully relativistic dispersion
relations, with the nonrelativistic dispersion relation

EN = m∗
N +

p2
N

2m∗
N
+ UN , (31)

and with the “vacuum dispersion relation” used in [5],

EN = meff,N +
p2

N
2mN

, (32)

where mN = 940 MeV, and meff,N is chosen such that EN(pF) = μN .
For the nonrelativistic curves, we use a corresponding nonrelativistic approximation

of the rescaled matrix element (12),

M = 1 + 3g2
A + (1 − g2

A)
�pe · �pν

EeEν
, (33)

see Refs. [5,31], and the derivation in Appendix C of [60]. We see that relativistic corrections
make an enormous difference to the rate. The nonrelativistic approximation is reasonably
accurate at low density (where the nucleons are indeed nonrelativistic) but overestimates
the rate by up to eight orders of magnitude (at T = 3 MeV) between 2 n0 and the direct
Urca threshold at 4.1 n0. Due to the breakdown of the nonrelativistic approximation, the
direct Urca threshold condition is incorrectly already fulfilled below two times saturation
density, which explains the steep increase of the nonrelativistic rate around this density.
For a detailed discussion of the density dependence of the relativistic rate, see Section 6.3.

The thermal blurring of the Fermi energy, which is proportional to the temperature
T, translates to a blurring in momentum space of order T/vF, where vF is the Fermi
velocity. In the correct relativistic treatment, vF has an upper bound of 1, whereas for the
nonrelativistic dispersion relation, the Fermi velocity grows without a limit. This leads to a
suppression of the nonrelativistic rate at higher densities which partially cancels the effects
of the earlier threshold.
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The “vacuum dispersion relation” gives a rate that is one to eight orders of magnitude
too large (at T = 3 MeV), and is less suppressed at higher densities since the corresponding
Fermi velocity stays comparatively small in the plotted density range.

6.4.2. Modified Urca Neutron Decay

Figure 5 shows the importance of using relativistic dispersion relations in calculating
modified Urca. The rates are calculated for the IUF equation of state in the Fermi surface
approximation at T = 3 MeV. The relativistic rate is about 1 to 2 orders of magnitude
smaller than the nonrelativistic rate. The modified Urca rates are not sensitive to the
direct Urca threshold because of the spectator providing extra momenta. Much of the
difference between the nonrelativistic calculation and the relativistic calculation comes
from the prefactors, as shown in Section 5 and Equations (57), (58), (60) and (61). The
relativistic rates are suppressed by

∏
i m∗

i /E∗
i , where i is the index for each of the nucleons

participating the interaction. Notice that the proton-spectator modified Urca rate is always
less than the neutron-spectator rate because the proton Fermi surface, and its accompanying
phase space, is smaller.

7. Conclusions

We have investigated the conditions for beta equilibrium in nuclear matter in neutron
stars, focusing on the temperature range where the material is cool enough so that neutrinos
escape (T � 5 MeV) but warm enough so that nonzero-temperature corrections to the Fermi
surface approximation play an important role (T � 1 MeV).

Previous work [5] found that a nonzero-temperature correction Δμ to the traditional
beta equilibrium condition (Equation (7)) was required to balance the rate of neutron
decay against the rate of electron capture. We have improved on that calculation using a
consistent description of nuclear matter, based on two relativistic mean field models, IUF
and SFHo.

We find that when using relativistic mean field models it is important to use the full
relativistic dispersion relations of the nucleons. In these theories the effective masses drop
quickly with density, so the neutrons become relativistic at densities of 2 to 3 n0. Using
nonrelativistic nucleon dispersion relations can make the modified Urca rates wrong by an
order of magnitude and the direct Urca rates wrong by many orders of magnitude.

Our results for the nonzero-temperature correction Δμ are shown in Figures 6 and 7.
We find that it rises with the temperature, and can be of order 10 to 20 MeV for temperatures
in the 3 to 5 MeV range. The density dependence is quite different for the two EoSs that we
studied, and we showed in detail how it depends on specific properties of the EoS.

We find that the nonzero-temperature correction plays an important role in the correct
calculation of Urca rates. Using the naive (low-temperature) beta equilibrium condition
μn = μp + μe at T = 3 MeV would yield electron capture rates that are too large by an
order of magnitude, and neutron decay rates that are too small by an order of magnitude
(Figure 8). This would significantly affect calculations of neutrino emissivity in the cooler
regions of a neutron star merger, and therefore the estimated energy loss due to neutrinos.
Currently used neutrino leakage schemes (e.g., Ref. [61] and references therein), which
often treat the temperature range T � 5 MeV as neutrino free streaming, need to be adapted
to the corrected beta equilibrium. Additionally, the bulk viscosity of nuclear matter [62]
depends on the rate of the Urca process which restores the system to beta equilibrium.
The improved calculation of the Urca rates presented here will modify the temperatures
and densities at which bulk viscosity reaches its maximum strength. Using the correct
beta equilibrium condition also affects the equation of state: a recent study estimated its
impact to be at the 5% level [63], and it would be interesting to evaluate the impact by
performing a merger simulation using an EoS that incorporates the finite-temperature
correction described in this paper.
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Appendix A. The SFHo Relativistic Mean Field Theory

The Lagrangian for the SFHo relativistic mean field model is given in Refs. [42,64]
and reads

L = LN + LM + Ll , (A1)

LN = ψ̄(iγμ∂μ − mN + gσσ − gωγμωμ − gρ

2
τ · ρμγμ)ψ , (A2)

with bold symbols being vectors in iso-space, τ being the iso-spin generators, and

LM =
1
2

∂μσ∂μσ − 1
2

m2
σσ2 − bM

3
(gσσ)3 − c

4
(gσσ)4 − 1

4
ωμνωμν +

1
2

m2
ωωμωμ

+
ζ

24
g4

ω(ωμωμ)2 − 1
4

Bμν · Bμν +
1
2

m2
ρρμ · ρμ +

ξ

24
g4

ρ(ρμ · ρμ)2

+ g2
ρ

[ 6∑
i=1

aiσ
i +

3∑
j=1

bj(ωμωμ)j
]
ρμ · ρμ , (A3)

where

ωμν = ∂μων − ∂νωμ , (A4)

Bμν = ∂μρν − ∂νρμ . (A5)

The lepton contribution

Ll = ψ̄e
(
iγμ∂μ − me

)
ψe , (A6)

consists of free electrons with a mass of me = 0.511 MeV. In our calculations we use the
values of the masses and couplings given in the online CompOSE database. These are
listed in Table A1. In the table,

cσ = gσ/mσ , (A7)

cω = gω/mω , (A8)

cρ = gρ/mρ . (A9)
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Table A1. SFHo parameter values taken from CompOSE (https://compose.obspm.fr/eos/34,
accessed on 27 April 2021). The last three masses are taken from [42].

Quantity Unit Value

cσ fm 3.1791606374
cω fm 2.2752188529
cρ fm 2.4062374629
b 7.3536466626 × 10−3

c −3.8202821956 × 10−3

ζ −1.6155896062 × 10−3

ξ 4.1286242877 × 10−3

a1 fm−1 −1.9308602647 × 10−1

a2 5.6150318121 × 10−1

a3 fm 2.8617603774 × 10−1

a4 fm2 2.7717729776
a5 fm3 1.2307286924
a6 fm4 6.1480060734 × 10−1

b1 5.5118461115
b2 fm2 −1.8007283681
b3 fm4 4.2610479708 × 102

mσ fm−1 2.3689528914
mω fm−1 3.9655047020
mρ fm−1 3.8666788766

mn MeV 939.565346
mp MeV 938.272013
M MeV 939

Appendix B. Direct Urca Neutron Decay Rate

From Fermi’s Golden rule, we have the rate Equation (9) [31,57]

Γnd =

∫
d3kn

(2π)3
d3kp

(2π)3
d3ke

(2π)3
d3kν

(2π)3

∑ |M|2
(2E∗

n)(2E∗
p)(2Ee)(2Eν)

(2π)4δ(4)(kn − kp − ke − kν)

fn(1 − fp)(1 − fe) . (A10)

There is no neutrino Fermi-Dirac factor because we assume the medium is neutrino-
transparent, i.e., neutrinos escape the star. The spin-summed matrix element is [11]∑

|M|2 =32G2[(g2
A − 1)m∗

nm∗
p(ke · kν) + (gA − 1)2(ke · kn)(kp · kν)

+ (1 + gA)
2(kp · ke)(kn · kν)] , (A11)

where G = GF cos θc, GF = 1.166 × 10−11 MeV−2 is the Fermi constant and θc = 13.04◦ is
the Cabbibo angle. As they originate from spin summations (see Appendix B of [9]), the
4-vector dot products in the matrix element (A11) are kμ = (E∗, k).

It is convenient to define the rescaled dimensionless matrix element

M ≡
∑ |M|2

32G2E∗
nE∗

pEeEν
(12)

=
(g2

A−1)m∗
nm∗

p(ke ·kν) + (gA−1)2(ke ·kn)(kp ·kν) + (1+gA)
2(kp ·ke)(kn ·kν)

E∗
nE∗

pEeEν
.

In the nonrelativistic limit, since gA ≈ 1, M ≈ (1 + 3g2
A) ∼ 4 [11,20,31,34,65,66].
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The neutron decay rate can now be written

Γnd =
2G2

(2π)8

∫
d3knd3kpd3ked3kν M δ(4)(kn − kp − ke − kν) fn(1 − fp)(1 − fe) . (13)

The 12-dimensional integral can be reduced to a 5-dimensional integral as follows.
Integrating over the 3-momentum conservation delta functions reduces the integral to
9 dimensions (compare (E.1) in Ref. [60])

Γnd =
2G2

(2π)8

∫
d3knd3kpd3ke Mδ(En − Ep − Ee − |�kn −�kp −�ke|) fn(1 − fp)(1 − fe) . (14)

The remaining delta function imposes energy conservation in the creation of the
neutrino: Eν = |�kν|, so the argument of the delta function is

g(φ) ≡ Eν − |�kn −�kp −�ke| , (15)

Eν ≡ En − Ep − Ee .

Each momentum integral can be written in polar co-ordinates as d3k = k2dkdzdφ
where z = cos θ. Setting up the following coordinate system (see Appendix E in [60])

�kn = kn(0, 0, 1) , (16)

�kp = kp(
√

1 − z2
p, 0, zp) , (17)

�ke = ke(
√

1 − z2
e cosφ,

√
1 − z2

e sinφ, ze) , (18)

allows us to integrate over zn and φn yielding a factor of 4π and over φp yielding a factor
of 2π, which eliminates three angular integrals, so that (compare (E.5) in [60])

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dkek2

nk2
pk2

e fn(1 − fp)(1 − fe) I(kn, kp, ke) , (19)

where

I(kn, kp, ke) ≡ Θ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze

∫ 2π

0
dφM δ(g(φ)) . (20)

Please note that for simplicity we label the electron azimuthal angle as φ (rather than
φe). The factor of Θ(Eν) restricts the integral to the region of momentum space where
the neutrino energy Eν(kn, kp, ke) is positive, which is a requirement for the emission of a
neutrino. This condition leads to the upper limits on the proton and electron momenta. If
we perform the integrals in the order shown in (19) then the electron momentum integral
is the inner integral, so it is performed for known values of kn and kp, so the constraint
Eν > 0 corresponds to Ee < En − Ep. Similarly, the kp integral is performed for a known
value of kn, so its range is constrained by requiring that there be enough energy to create
an electron (of unknown momentum) and a neutrino, Ep < En − me. This leads to upper
limits on the proton and electron integral,

kmax
p = Θ(En − Up − mp − me)

√
(En − Up − me)2 − m2

p , (21)

kmax
e = Θ(En − Ep − me)

√
(En − Ep)2 − m2

e . (22)
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In the delta function in Equation (20),

g(φ) = Eν −
√

R + S cos φ , (23)

where R ≡ k2
n + k2

p + k2
e − 2knkeze − 2knkpzp + 2kpkezpze , (24)

S ≡ 2kpke

√
1 − z2

p

√
1 − z2

e . (25)

Since g(φ) depends on φ only via cos φ there will be either zero or two solutions to
g(φ) = 0, so

I(kn, kp, ke) = 2 Θ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze Θ

(
S − |E2

ν − R|) Mφ0

|g′(φ0)| , (26)

where Mφ0 is the dimensionless rescaled matrix element (12) evaluated at φ0, which can
be either of the two solutions of g(φ) = 0,

cos φ0 =
E2

ν − R
S

. (27)

It does not matter which solution we use for φ0 because g is a function of cos φ and
M depends only on cos φ and sin2φ, so the integrand has the same value for both the
solutions. The theta function Θ(S − |E2

ν − R|) imposes the condition that there are two
solutions (rather than none), by limiting the integral to the domain where −1 < cos φ0 < 1.

We now use (23) and (27) to evaluate the integrand in (26).
First, the Jacobian of the delta function is

|g′(φ0)| =
√

S2 − (E2
ν − R)2

2Eν
. (28)

Using (28) in (26),

I = 4EνΘ(Eν)

∫ 1

−1
dzp

∫ 1

−1
dze

Θ
(
S − |E2

ν − R|)√
S2 − (E2

ν − R)2
Mφ0 . (29)

Secondly, substituting (27) in to (A11) gives the matrix element

Mφ0 =
1
2
(gA − 1)2F1 + (gA + 1)2F2 + (g2

A − 1)F3

E∗
nE∗

pEeEν
, (30)

where

F1 =
(

k2
n + k2

e − k2
p − 2E∗

pEν − E2
ν − 2knkeze

)(
knkeze − EeE∗

n

)
, (31)

F2 =
(

k2
n + k2

p + k2
e + 2E∗

pEe − E2
ν − 2kn(kpzp + keze)

)(
E∗

nEν + kn(kpzp + keze − kn)
)

, (32)

F3 = m∗2
n

(
k2

e − k2
n − k2

p + 2EeEν + E2
ν + 2knkpzp

)
. (33)
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Limits of Angular Integration

To speed up the numerical evaluation of (29) we implement the theta function as
limits on the range of integration over zp and ze. The condition S > |E2

ν − R| can be written
(using (24), (25)) as

|a + bze| < c
√

1 − z2
e , (34)

where a ≡ q2 − k2
n − k2

p − k2
e + 2knkpzp , (35)

b ≡ 2ke(kn − kpzp) , (36)

c ≡ 2kekp

√
1 − z2

p . (37)

The inequality (34) is obeyed for z−e < ze < z+e where

z±e =
−ab ± c

√
c2 + b2 − a2

b2 + c2 . (38)

Please note that if the roots are real then they are always within the physical range
ze ∈ [−1, 1]. We can therefore put bounds on zp by requiring that (38) has real roots,

c2 + b2 > a2

⇒ 2kpEν > |E2
ν + k2

e − k2
n − k2

p + 2knkpzp| . (39)

This means that z−p < zp < z+p , where

z±p =
k2

n + k2
p − k2

e − E2
ν ± 2keEν

2knkp
. (40)

In this case, however, these bounds are not necessarily within the physical range
zp ∈ [−1, 1], so the true bounds on the zp integral are

[zmin
p , zmax

p ] = [z+p , z−p ] ∩ [−1, 1] . (41)

We can now write the angular integral as

I = 4EνΘ(Eν)

∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

Mφ0√
S2 − (E2

ν − R)2
. (42)

Using this in (19) we obtain

Γnd =
G2

16π6

∫ ∞

0
dkn

∫ kmax
p

0
dkp

∫ kmax
e

0
dke k2

nk2
pk2

e fn(1 − fp)(1 − fe)

Θ(Eν)

∫ zmax
p

zmin
p

dzp

∫ z+e

z−e
dze

4EνMφ0√
S2 − (E2

ν − R)2
. (43)

The second line corresponds to the I integral (20), (42). It is natural to group a factor of
Eν with Mφ0 to cancel the factor of Eν in the denominator (30) which can cause numerical
problems at the edge of the kinematically allowed momentum range where Eν → 0.

The neutron decay rate can therefore be computed as a 5-dimensional momentum
integral (43), obtaining the integration ranges from (21), (22), (38) and (41), the matrix
element from (30), and the Jacobian (square root denominator) from (24), (25).
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C. Modified Urca Neutron Decay Rate

The matrix element is (4.16) in [31,60]

(
s

∑ |Mn|2
26E∗

nE∗
pEeEνE∗

N1
E∗

N2

)
= 42G2 f 4

m4
π

g2
A

E2
e

k4
Fn

(k2
Fn + m2

π)2
, (44)

where f ≈ 1 is the N-π coupling and s = 1/2 for the identical particles. The conventional
way of doing the integral is to divide the integral into an energy integral and an angular
integral (termed “phase space decomposition” [35])∫

dk3
ndk3

pdk3
e dk3

νdk3
N1

dk3
N2

=

∫
dkndkpdkedkνdkN1 dkN2 k2

nk2
pk2

e k2
νk2

N1
k2

N2

×
∫

dΩndΩpdΩedΩνdΩN1 dΩN2 . (45)

We use relativistic dispersion relations for nucleons

EN =
√

k2 + m∗2
N + UN , (46)

where U is the mean field contribution to the energy. We define E∗ ≡
√

k2 + m∗2 , then
dE∗ = kdk/E∗. We use ultrarelativistic dispersion relations for electron and neutrino,

E = k , (47)

then dE = dk (the electron mass me = 0.511 MeV is negligible compared to its momentum).
Therefore, we can convert the momentum integral to an energy integral, and the rate
integral becomes

ΓmU,nd(n) =
42G2g2

A f 4

(2π)14m4
π

∫
dΩndΩpdΩedΩνdΩN1 dΩN2

× δ(3)(�kn +�kN1 −�kp −�ke −�kN2)k
2
nk2

pk2
e k2

νk2
N1

k2
N2

1
E2

e

k4
Fn

(k2
Fn + m2

π)2

×
∫

dE∗
ndE∗

pdEedEνdE∗
N1

dE∗
N2

E∗
n

kn

E∗
p

kp

E∗
N1

kN1

E∗
N2

kN2

× δ(En + EN1 − Ep − Ee − Eν − EN2) fn fN1(1 − fp)(1 − fe)(1 − fN2) . (48)

Notice that it is most common to set �kν = 0 in the momentum conserving delta
function but keep Eν in the energy delta function.

In the Fermi surface approximation, we set all momenta to Fermi momenta and we
will have Ee = ke = kFe, kν = Eν.

Now, the rate integral becomes

ΓmU,nd(n) =
42G2g2

A f 4

(2π)14m4
π

k2
Fnk2

Fpk2
Fek2

FN1
k2

FN2

1
k2

Fe

k4
Fn

(k2
Fn + m2

π)2
E∗

n
kFn

E∗
p

kFp

E∗
FN1

kFN2

E∗
N2

kN2

×
∫

dΩndΩpdΩedΩνdΩN1 dΩN2 δ(3)(�kn +�kN1 −�kp −�ke −�kN2)

×
∫

dE∗
ndE∗

pdEedEνdE∗
N1

dE∗
N2

E2
ν fn fN1(1 − fp)(1 − fe)(1 − fN2)

× δ(E∗
n + E∗

N1
− E∗

p − Ee − Eν − E∗
N2

+ (Un − Up)) . (49)
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For the energy integral, we do a change of variable,

x =
E∗ − μ∗

T
, (50)

then, dx = (1/T)dE∗ and μ = 0 for the neutrino. For the integral bounds, we have∫ +∞

m∗
dE∗ = T

∫ +∞

(m∗−μ∗)/T
dx = T

∫ +∞

−(μ∗−m∗)/T
dx ≈ T

∫ +∞

−∞
dx , (51)

where the approximation is valid because μ∗ � T. For neutrino, μ = 0 and m = 0, so the
lower bound is 0. Then, the energy integral, which we denote as I, becomes

I ≡
∫

dE∗
ndE∗

pdEedEνdE∗
N1

dE∗
N2

E2
ν fn fN1(1 − fp)(1 − fe)(1 − fN2)

× δ(E∗
n + E∗

N1
− E∗

p − Ee − Eν − E∗
N2

+ (Un − Up))

=T7
∫

dxndxpdxedxνdxN1 dxN2 x2
ν f (xn) f (xN1)(1 − f (xp))(1 − f (xe))

× (1 − f (xN2))δ(xn + xN1 − xp − xe − xν − xN2 +
μn − μp − μe

T
)

=T7
∫ +∞

0
dxνx2

ν

∫ +∞

−∞
dxndxpdxedxN1 dxN2 f (xn) f (xN1) f (−xp) f (−xe)

× f (−xN2)δ(xn + xN1 − xp − xe − xν − xN2 +
μn − μp − μe

T
)

=T7
∫ +∞

0
dxνx2

ν

∫ +∞

−∞
dxndxpdxedxN1 dxN2 f (xn) f (xN1) f (xp) f (xe) f (xN2)

× δ(xn + xN1 + xp + xe − xν + xN2 +
μn − μp − μe

T
) . (52)

One can use Mathematica to obtain an analytical expression,

I =
1
12

F(ξ) , (53)

where ξ ≡ (μn − μp − μe)/T , and

F(ξ) ≡− (ξ4 + 10π2ξ2 + 9π4)Li3(−eξ) + 12(ξ3 + 5π2ξ)Li4(−eξ)

− 24(3ξ2 + 5π2)Li5(−eξ) + 240ξLi6(−eξ)− 360Li7(−eξ) . (54)

For the angular integral, we can look up [25], which calculated the n-dimensional
angular integral for n=3,4,5, and obtain

A =
32π(2π)4

k3
n

θn , (55)

where

θn =

⎧⎪⎨⎪⎩
1 kFn > kFp + kFe

1 − 3
8
(kFp + kFe − kFn)

2

kFpkFe
kFn < kFp + kFe .

(56)

Therefore, the neutron decay modified Urca rate with n-spectator under Fermi surface
approximation is

ΓmU,nd(n)(ξ) =
7

64π9 G2g2
A f 4

(E∗
Fn)

3E∗
Fp

m4
π

k4
FnkFp

(k2
Fn + m2

π)2
F(ξ)T7θn . (57)
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Similarly, we can calculate the electron capture mU rate with n-spectator

ΓmU,ec(n)(ξ) = ΓmU,nd(n)(−ξ) . (58)

For p-spectator processes, the matrix element is

(
s

∑ |Mp|2
26E∗

nE∗
pEeEνE∗

N1
E∗

N2

)
= 48G2 f 4

m4
π

g2
A

E2
e

(kFn − kFp)
4

((kFn − kFp)2 + m2
π)2

, (59)

where we still have s = 1/2. Then we have the mU rates with p-spectator

ΓmU,nd(p)(ξ) =
1

64π9 G2g2
A f 4

(E∗
Fp)

3E∗
Fn

m4
π

(kFn − kFp)
4kFn

((kFn − kFp)2 + m2
π)2

F(ξ)T7θp , (60)

ΓmU,ec(p)(ξ) = ΓmU,nd(p)(−ξ) , (61)

where

θp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 kFn > 3kFp + kFe
(3kFp + kFe − kFn)

2

kFnkFe
3kFp + kFe > kFn > 3kFp − kFe

4(3kFp − kFn)

kFn
3kFp − kFe > kFn > kFp + kFe

2 +
3(2kFp − kFn)

kFe
− 3(kFn − kFe)

2

kFnkFe
kFn < kFp + kFe .

(62)
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Abstract: Using a data set of approximately 2 million phenomenological equations of state consistent
with observational constraints, we construct new equation-of-state-insensitive universal relations
that exist between the multipolar tidal deformability parameters of neutron stars, Λl , for several
high-order multipoles (l = 5, 6, 7, 8), and we consider finite-size effects of these high-order multipoles
in waveform modeling. We also confirm the existence of a universal relation between the radius
of the 1.4M� NS, R1.4 and the reduced tidal parameter of the binary, Λ̃, and the chirp mass. We
extend this relation to a large number of chirp masses and to the radii of isolated NSs of different
mass M, RM. We find that there is an optimal value of M for every M such that the uncertainty in
the estimate of RM is minimized when using the relation. We discuss the utility and implications of
these relations for the upcoming LIGO O4 run and third-generation detectors.

Keywords: neutron star; equation of state; universal relation

1. Introduction

Due to the constraints imposed by general relativity and causality, there exist quasi-
universal relations between various bulk physical properties of neutron stars (NSs) that are
mostly insensitive to the actual equation of state (EOS) of nuclear matter [1–14]. Since the
nuclear EOS in the high-density regime of NSs is still unknown, these universal relations
are a great utility for gravitational wave (GW) astronomy. Universal relations reduce a
group of several seemingly independent physical properties to a family characterized
by only a few parameters. Ideally, this allows one to break the degeneracies between
parameters in the analysis of GW data as well as in waveform modelling.

A robust set of universal relations (called multipole Love relations) holds between
the l-th order dimensionless gravitoelectric tidal deformability coefficients of NSs [12], Λl ,
which are defined by

Λl ≡ 2
(2l − 1)!!

kl

C2l+1 , (1)

where C = M/R is the compactness of the NS (here we take G = c = 1) and kl is its l-th or-
der gravitoelectric tidal Love number [15]. The GW waveform of a binary NS (BNS) merger
is, quite understandably, highly sensitive to these tidal parameters. How deformable a NS
is in a tidal potential affects how its mass ultimately gets distributed during the inspiral
of a merger, which, in turn, shapes the GW waveform, especially during the late stages
of the inspiral [15–19]. The tidal parameters enter into the waveform at different post-
Newtonian orders; however, they are degenerate in the signal [12]. The multipole relations
allow this degeneracy to be broken by reducing all of the tidal deformabilities to a family
determined by a single parameter. This parameter is always chosen to be the quadrupolar
tidal deformability Λ2, which is the source of the leading-order finite-size effect in the GW
signal and, consequently, is the easiest to measure [12]. Thus, higher-order (l > 2) tidal
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deformabilities can be expressed through the multipole Love relations as functions of Λ2.
The authors and others have demonstrated that the improvements to the accuracy of tidal
deformability measurements, to parameter estimation, and to GW modelling offered by
the multipole Love relations are significant [12,14,15,20,21] and will become particularly
important with the increased sensitivity of upcoming third-generation GW detectors like
LIGO III, the Einstein Telescope, and Cosmic Explorer [12,15,22–25].

Motivated by these potential improvements, we present entirely new fits to several
previously un-fitted high-order multipole Love relations, specifically for l = 5, 6, 7, and 8.
Though the finite-size effects of these orders of tidal parameters are currently smaller than
measurement error, they will become more measurable with increased sensitivity; hence,
faithful GW waveform modelling will need to incorporate them. Previosu studies, such as
Flanagan and Hinderer [26] and Damour et al. [27], have discussed the finite-size effects of
the l ≤ 4 multipoles.

Zhao and Lattimer [19], De et al. [28] have demonstrated the existence of an intriguing
EOS-insensitive relation for BNSs between the radius of the 1.4M� NS, R1.4 and the
reduced tidal deformability (also called the binary tidal deformability), Λ̃. The quadrupolar
deformabilities of the individual NSs enter into the GW signal of the merger via Λ̃, which
is defined as

Λ̃ ≡ 16
13

(12q + 1)Λ2,1 + (12 + q)Λ2,2

(1 + q)5 , (2)

where Λ2,1 and Λ2,2 are the deformabilities of the primary and the secondary stars, re-
spectively. The quadrupolar tidal Love number k2 is known to scale roughly as C−1

independently of the EOS [15,29]. According to Equation (1), this means Λ2 scales approxi-
mately as C−6. In an apparently analogous fashion, Λ̃ seems to go as (M/R1.4)

−6, where
M is the chirp mass of the BNS given by

M ≡ (m1m2)
3/5

(m1 + m2)1/5 . (3)

Combining this observation with the definition of Λ̃ in the manner done by Zhao and
Lattimer [19] yields a mostly EOS-insensitive estimate of R1.4 in terms of Λ̃ and M that is
also mostly insensitive to the binary mass ratio q:

R1.4 � (11.5 ± 0.3 km)
M
M�

(
Λ̃

800

)1/6

. (4)

The immediate utility of this relation is the ability to produce an EOS-agnostic estimate
of R1.4 from just tidal parameter measurements. This is an alternative to the more involved
method of using the universal relation for binaries between the symmetric and antisym-
metric combinations of Λ2,1 and Λ2,2 [14,30] combined with the relation for individual NSs
between Λ2 and the compactness C [14,31] (a relation which intuitively follows from the
definition of Λl in Equation (1)). One would first use the symmetric-antisymmetric relation
to break the degeneracy between Λ2,1 and Λ2,2 and estimate them individually from Λ̃, and
then use the Λ2-C relation and the masses of the binary to extract the radii of both stars. The
LIGO/VIRGO analysis of GW170817 is an example of this latter approach [28,32,33]. One
need not appeal to universal relations to estimate stellar radii, however. Instead, one could
perform an inference of the EOS directly using a parametric representation of the EOS,
as was also done in the LIGO/VIRGO analysis [32], or using a much more sophisticated
nonparametric representation, as described in Essick et al. [34].

It is an appealing question, then, whether this relation can be extended using the
radius of a NS with a generic mass M, R(M) = RM. A RM–Λ̃ relation would allow one to
use measurements of tidal parameters and M to place robust constrains on RM directly
without the need for a more complicated procedure. Hence, our motivation in this work
is to provide a phenomenological study of the RM–Λ̃ relation. We look at the relation for
several values of M. For a given M, we compute fits to the relation for twelve fixed values

226



Universe 2021, 7, 368

of M between 0.9M� and 1.4M�. We then generalize the fit for all M ∈ [0.9M�, 1.4M�]
by interpolating the fitting parameters as functions of M. Fitting to the relation from across
a vast set of phenomenological EOSs incorporates the effects of higher-order terms that are
dropped when one analytically derives the expression in Equation (4) as was done in [19].
Equation (4) assumes that the R1.4-Λ̃ relation (and, by extension, the RM–Λ̃ relation) is
only linearly dependent on M, i.e., that M simply scales the relation but does not change
its dependence on Λ̃. A phenomenological study permits us to observe directly the effect
changing M has on the relation.

The outline of this paper is as follows. In Section 2, we describe the parameterization
scheme and algorithm by which we generate our phenomenological EOS data and the
statistics for our analyses. In Section 3, we present the fitting parameters of the high-order
multipole Love relations, followed in Section 4 by an phenomenological analysis of and
fits to the R1.4-Λ̃ relation as well as to the general RM–Λ̃ relation. We also discuss the
implications of these new fits to GW waveform analysis for the LIGO O4 run. A concluding
summary is given in Section 5.

2. Methods

We parameterize the space of all possible EOSs consistent with theoretical calculations
and astronomical observations using the piecewise polytropic interpolation developed in
Read et al. [35], with the only modification being that we allow the transition densities ρ1
and ρ2 to vary. We then generate random piecewise EOSs using a Markov chain Monte
Carlo (MCMC) algorithm, with the basic summary as follows. For a given candidate EOS,
the algorithm first computes a series of solutions to the Tolman-Oppenheimer-Volkoff
(TOV) equation using the publically available TOVL code described in Bernuzzi and Nagar
[36] and Damour and Nagar [17], and then accepts the EOS if and only if it satisfies three
weak physical constraints:

1. Causality of the maximum mass NS is preserved (i.e., the maximum sound speed cs
is less than the speed of light c below the maximum stable central density);

2. The maximum stable mass of a non-rotating NS, Mmax, is greater than 1.97M�, and
3. Λ2 < 800 for the 1.4M� NS.

The full details of parameterization and the MCMC algorithm can be found in
Godzieba et al. [14]. With this scheme, we generate a set of 1,966,225 phenomenologi-
cal EOSs.

To study the multipole Love relations, for each EOS in our data set, we solve the TOV
equation for sixteen evenly spaced central densities between ρc = 3.09 × 1014 g/cm3 and
the maximum stable central density of that EOS, and then extract Λl for l = 2 through
l = 8 from each solution.

To study the RM–Λ̃ relation, we follow a similar procedure. First, we choose a fixed
value of M. Next, for each EOS in a random sample of a quarter of all EOS in the data set,
we generate twenty random binary NSs (BNSs). We uniformly sample the binary mass
ratio q = m2/m1 (where m2 ≤ m1) on the interval 1/2 ≤ q ≤ 1. This range is not intended
to represent the complete range of values that q could take in Nature, but rather simply to
capture the general behavior of q based on observational and theoretical considerations.
Observations of the most massive known pulsars indicate that Mmax � 2M� [37–42], and
the analysis of GW170817 suggests that Mmax � 2.3M� [43–47]; though, as we await
upcoming precision measurements of millisecond pulsar radii by NICER, we cannot as
of yet categorically rule out the possibility of extreme EOSs with Mmax < 2.5M� [48].
Meanwhile, the least massive known pulsar has a mass of 1.17M� [49], and, depending
on the true nuclear EOS, the minimum stable gravitational mass, Mmin, could be as low
as 1.15M� [50]. Hence, q ≥ Mmin/Mmax ≈ 1/2, and the vast majority of BNSs, being far
from either mass extreme, will fall well within this range.
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Each q is then converted into the actual binary masses m1 and m2 using the value of
M and Equation (3):

m1 = Mq−3/5(1 + q)1/5, m2 = Mq2/5(1 + q)1/5. (5)

The TOV equation is then solved with the corresponding EOS for NSs with these two
masses, and Λ2 is extracted from both solutions to compute Λ̃. We apply this procedure for
twelve different values of M between 0.9M� and 1.4M�. The Λ̃ values are then plotted
versus RM for eight different values of M. These RM values are pulled from our EOS
data set.

3. High-Order Multipole Relations

From our phenomenological EOS data set, we compute 21,994,104 valid individual NS
solutions to the TOV equation as our statistics for analyzing the multipole Love relations.
Λ3, Λ4, Λ5, Λ6, Λ7, and Λ8 are plotted against Λ2 in Figure 1, and one can appreciate
the universality of each relation across a vast range of scales. (We observe that all the
intersections between the six curves lie around Λ2 ∼ 100, but we are not sure why this is
the case.) As in the authors’ previous work [14], we employ a fitting function of the form

ln Λl =
6

∑
k=0

ak(ln Λ2)
k, (6)

which is an extended version of the fitting function originally used by Yagi and Yunes [11].
The fitting parameters�a = {ak} for each relation are given in Table 1.

Figure 1. Universal multipole Love relations for l = 3 through l = 8 from the collection of phe-
nomenological EOSs. We use the fitting function function in Equation (6), and the fit to each relation
is plotted in red.

Table 1. Fitting parameters�a = {ak} of the multipole Love relations given in Equation (6).

Relation a0 a1 a2 a3 a4 a5 a6

Λ3–Λ2 −0.82195 1.2110 1.0494 × 10−2 1.6581 × 10−3 −3.1933 × 10−4 1.8607 × 10−5 −3.5027 × 10−7

Λ4–Λ2 −1.6887 1.4719 7.1803 × 10−3 5.4042 × 10−3 −8.3262 × 10−4 4.6940 × 10−5 −8.9092 × 10−7

Λ5–Λ2 −2.6473 1.7485 −5.1199 × 10−4 9.7085 × 10−3 −1.3990 × 10−3 7.8465 × 10−5 −1.5055 × 10−6

Λ6–Λ2 −3.7032 2.0313 −1.0038 × 10−2 1.4083 × 10−2 −1.9640 × 10−3 1.1029 × 10−4 −2.1380 × 10−6

Λ7–Λ2 −4.8568 2.3209 −2.2063 × 10−2 1.8533 × 10−2 −2.5050 × 10−3 1.4020 × 10−4 −2.7305 × 10−6

Λ8–Λ2 −8.2442 2.6203 −1.8152 × 10−2 2.5720 × 10−2 −3.6087 × 10−3 2.0231 × 10−4 −3.9399 × 10−6
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In Figure 2, we show the 68%, 95%, and 99.7% relative error of each fit. For each line
in the error plot, the corresponding percentage of data points lie below it. We restrict our
attention to the domain 1 < Λ2 < 104, as this is the range of Λ2 most relevant to current
LIGO measurements. The estimate error of each Λl over this range stays mostly flat with
a slight downward trend. (The small ripples that can be seen in the error plots over this
range are simply artifacts of how the distribution of NS solutions was computed.) The
universality of the multipole relations weaken gradually as l increases, as can be seen in
the increasing thickness of the distributions in Figure 1. This then increases the maximum
estimate error of Λl for larger l despite the faithfulness of each fit to the shape of the
corresponding relation (see Figure 1). While 95% of estimate errors are smaller than ∼7%
for the Λ3–Λ2 relation, 95% are only smaller than ∼50% for Λ8–Λ2.

(a) (b) (c)

(d) (e) (f)

Figure 2. 68%, 95%, and 99.7% relative errors of the fits to (a) Λ3–Λ2, (b) Λ4–Λ2, (c) Λ5–Λ2, (d) Λ6–Λ2,
(e) Λ7–Λ2, and (f) Λ8–Λ2 relations. The small ripple in the error seen at small values of each Λl is
simply an artifact of how the distribution of NS solutions were generated. The fits are faithful to the
shape of the curves of the relations; however, universality weakens and the distributions of points
spread out as l increases, resulting in the maximum error of the estimate increasing with l.

The phase of a GW in waveform modelling is affected by the highest order out to
which one carries finite-size corrections (The leading-terms of the finite-size correction
from Λl is given in [12]). We demonstrate this with a baseline model of a binary with
m1 = m2 = 2.7M� and Λ1 = Λ2 = 1000 using the spin-aligned effective-one-body
waveform model TEOBResumS [18]. Often when universal relations are not employed, all
finite-size effects are dropped except for the leading-order (l = 2) effect. In the baseline
model, just the l = 2 correction alone contributes a phase difference of 36.7 radians
compared to a waveform model with no tidal corrections. Further corrections from the
l = 3 and l = 4 effects using the Λ3–Λ2 and Λ4–Λ2 relations, respectively, incur an
additional 2.89 radians. Finally, including the l = 5, 6, 7, and 8 corrections using the
relations given in this work adds 0.02 radians of dephasing on top of that. (The dephasing
between the l ≤ 8 waveform model and models with fewer corrections is plotted in
Figure 3 as a function of time. For all models, most of the dephasing is accumulated in
the last 5 milliseconds before the merger.) Combined, the l > 2 corrections contribute 2.91

229



Universe 2021, 7, 368

radians of dephasing. This demonstrates the importance of the multipole Love relations
for faithful waveform modelling.

The dephasing of the l > 4 corrections are currently smaller than GW detector
uncertainties, but this could only have been known after fitting to the l > 4 multipole
relations. Additionally, with the greater sensitivity of future detectors, the l > 4 finite-size
effects will start to come into view. The order out to which one should carry finite-size
corrections in the waveform analysis of actual GW data is dependent on several factors
(the EOS model, the signal-to-noise ratio of the merger, etc.); however, in general it is
recommended that corrections up to l = 4 be included in the analysis of data from current
detectors [12,14,27].

Figure 3. An example of dephasing between different waveform models (one with no tides, one with
only the l = 2 correction, and one with all corrections up to l = 4) and the full model (all corrections
up to l = 8). The overall dephasing is very small between the l ≤ 4 model and the full model. Most
of the dephasing is accumulated in the last 5 milliseconds, just a few orbits prior to the merger.

4. RM-Λ̃ Relation

We analyze the R1.4-Λ̃ relation at twelve different fixed values of the chirp mass M,
which are given in Table 2. We compute between 750,000 and 1,000,000 valid individual
binaries for each value of M. Several example plots of the relation are shown in Figure 4.
The relation’s dependence on the binary mass ratio q is illustrated by the coloring of the
points in these plots. Each point in the plot represents a BNS. Points with smaller values of
q are plotted on top. An important conclusion to draw from these plots is that the relation
does not depend upon both stars having the same radius [19]. For M � 1.25M�, the
relation remains fairly tight for all values of q. Further, for M � 1.1M� (The smallest
physical value M can take is when m1 = m2 = Mmin ≈ 1.15M� (see Section 2). Using
Equation (3), this gives us M � 1.001M�. Since we permit m1 and m2 to be less than
1.15M�, we are able to reach as low as M = 0.9M�.), the relation actually becomes tighter
as q decreases (i.e., as the radii of the two stars differ more and more), which can be
understood by considering the definition of Λ̃ in Equation (2). For fixed R1.4, the range
of possible values Λ̃ can take is constrained by q. When q = 1, the masses of the binary
can span the range from the minimum to the maximum mass, Mmin ≤ m1 = m2 ≤ Mmax.
Hence, min (Λ2) ≤ Λ2,1 = Λ2,2 ≤ max (Λ2), and min (Λ2) ≤ Λ̃ ≤ max (Λ2). As q
decreases, the bounds for both m1 and m2 shrink and no longer overlap, causing the same
to happen for Λ2,1 and Λ2,2. This, as we see, also shrinks the bounds on Λ̃. Thus, we expect
the relation to tighten as q decreases.
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Table 2. Fitting parameters of the general R1.4-Λ̃ relation given in Equation (7) for different values
of M.

M/M� α (km) β

0.900 11.832 6.7621
0.950 11.668 6.5775
1.000 11.548 6.4189
1.045 11.473 6.3020
1.100 11.412 6.1972
1.150 11.377 6.1515
1.180 11.359 6.1513
1.219 11.330 6.1906
1.250 11.302 6.2441
1.300 11.228 6.4147
1.350 11.102 6.7139
1.400 10.921 7.1305

(a) (b)

(c) (d)

Figure 4. Example fits to the R1.4-Λ̃ relation for (a) M = 1.045M�, (b) M = 1.18M�,
(c) M = 1.219M�, and (d) M = 1.4M�. Each point represents a BNS and is colored according
to the value of the binary mass ratio q = m2/m1. Points with smaller values of q are drawn on top.
The upper limit on the value of Λ̃ for each M derives from the Λ2 < 800 cutoff for the 1.4M� NS
imposed on the EOSs generated by our algorithm (see Section 2). The relation does not depend on
both NSs having the same radius, and indeed for M/M� � 1.1 it becomes tighter as q decreases.
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We construct a fitting function for the R1.4-Λ̃ relation by considering a slightly gener-
alized form of Equation (4):

RM � α
M
M�

(
Λ̃

800

)1/β

, (7)

where, in this case, M = 1.4M�. Here the proportionality constant α and the inverse
exponent β are the fitting parameters and, consequently, will be dependent on M. These
fits are also shown in Figure 4. The fitting parameters for all values of M are given in
Table 2. A sense of the accuracy of the estimated value of R1.4 from the fit can be gathered
from Figure 5, where we plot the 68%, 95%, and 99.7% relative error of the example fits.
Overall, the estimates are accurate to within O(10%) error for all values of M, and are, in
fact, accurate to within ∼5% for most values of R1.4.

(a) (b)

(c) (d)

Figure 5. 68%, 95%, and 99.7% relative errors of the fits to the R1.4-Λ̃ relation for (a) M = 1.045M�,
(b) M = 1.18M�, (c) M = 1.219M�, and (d) M = 1.4M�. The error overall stays below O(10%),
with 95% of the estimates generally below 4–5% error, for all values of M.

We can extend our fitting results to all M ∈ [0.9M�, 1.4M�] by fitting the dependence
of α and β on M. We construct the rational fitting functions

α(x) =
∑3

k=0 pkxk

∑2
k=0 qkxk

km and β(x) =
∑2

k=0 pkxk

∑2
k=0 qkxk

, (8)
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where x = (M/M� − μM)/σM, μM = 1.1537, and σM = 0.15927. These fits, which are
in excellent agreement the values in Table 2, are shown in Figure 6. The fitting parameters
�p = {pk} and �q = {qk} for α(x) and β(x) are given in Table 3. What is interesting is that
the inverse exponent β is not monotonic. Rather, it has a minimum at M = 1.1661M�.
A possible contributor to this effect is the decrease in the variety of possible binaries as
M increases. The maximum value M could take for a given EOS is found by letting
m1 = m2 = Mmax in Equation (3), which yields Mmax = 2−1/5Mmax. For 1/2 ≤ q ≤ 1, m1
and m2 are bounded by

21/5M ≤ m1 ≤ min (121/5M, Mmax), (9)

(3/8)1/5M ≤ m2 ≤ 21/5M. (10)

Table 3. Fitting parameters �p = {pk} and �q = {qk} for α and β as functions of x = (M/M� −
μM)/σM, where μM = 1.1537 and σM = 0.15927 for several values of M. The fitting functions are
given in Equation (3).

M/M� p0 p1 p2 p3 q0 q1 q2

1.4 β(x) 404.40 −96.991 26.475 - 65.755 −15.259 1
α(x) 224.75 −24.553 11.832 −1.8434 19.758 −1.9914 1

1.5 β(x) 502.01 −119.44 32.193 - 79.153 −16.598 1
α(x) 282.86 −29.568 12.893 −2.2628 24.833 −2.3357 1

1.6 β(x) 642.10 −152.88 40.447 - 98.054 −18.391 1
α(x) 386.63 −42.102 14.780 −3.0054 33.942 −3.2743 1

1.7 β(x) 877.56 −210.98 54.468 - 129.67 −21.419 1
α(x) 598.97 −73.554 18.854 −4.5818 52.655 −5.7193 1

1.8 β(x) 1442.2 −356.28 88.775 - 206.20 −29.608 1
α(x) 1291.3 −192.50 32.831 −10.064 113.87 −15.207 1

1.9 β(x) 2734.1 −709.62 174.36 - 380.72 −46.815 1
α(x) 3282.2 −592.78 80.705 −27.980 291.00 −48.054 1

2 β(x) 63,061 −19,071 3663.7 - 8959.4 −1478.5 1
α(x) 9986.9 −2011.9 232.61 −82.091 887.58 −167.09 1

2.14 β(x) 93,209 −34,415 6102.8 - 12,686 −2286.4 1
α(x) 58,353 −18,272 1904.6 −609.58 5234.8 −1543.2 1

Hence, as M increases, the relation becomes gradually dominated by (1) EOSs with
Mmax ≥ 21/5M and (2) only those BNSs from each EOS that lie in the increasingly narrow
range in Equation (9). This decrease of BNS variety could play a role in the non-monotonic
behavior of β(x).

One could, of course, consider more generally the relation between Λ̃ and the radius of
a NS with some mass M, RM. We pursue this thought by looking at RM–Λ̃ for M/M� = 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, and 2.14. Just as for the R1.4-Λ̃ relation, we utilize the fitting function
in Equation (4), and then find α and β as functions of x using Equation (8). In Table 3,
we show the fitting parameters �p = {pk} and �q = {qk} of α(x) and β(x) for each M.
The tightness of the RM–Λ̃ relation (and thus the general quality of the estimate from
the fit) is dependent on both M and M. We illustrate this in Figure 7 by plotting the
approximate uncertainty of the estimated value of RM as a function of M for several values
of M. Since our EOSs and BNSs do not come from prior probability distributions, we non-
stringently define the uncertainty here as the half-width of the symmetric interval centered
at ΔRM = RM − R(fit)

M = 0 that encloses 95% of the data points in the histogram of ΔRM for
fixed M. Interestingly, the uncertainty for each M reaches a minimum at some particular
value of M, with the minimum uncertainty for each M being around 0.2 km in the range
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of M we considered. The minima for M = 1.4M� through 1.8M� are visible in Figure 7.
This reveals that there is an optimal M for each M such that RM is maximally constrained
by the RM–Λ̃ relation at that M. Thus, for example, a chirp mass of M ≈ 1.05M� would
yield the best estimate of R1.4, while a chirp mass of M ≈ 1.4M� would yield the best
estimate of R1.8. Further, there appears to be a linear dependence of the optimal M on M;
however, a wider range of M would need to be considered to confirm this. The change
in the variety of BNSs as M increases, as previously described, may contribute to this.
At larger M, the relation becomes dominated by larger mass NSs; thus, the relation may
become more sensitive to the radii of larger mass NSs as M increases.

Figure 6. Fitting parameters α and β of the R1.4-Λ̃ relation as functions of M/M�. β(x) does not
vary monotonically with x, but has a minimum.

Figure 7. The approximate uncertainty of the estimated value of RM computed using the RM–Λ̃
relation as a function of M. Each curve is colored according to the value of M (given in units of
M�). The uncertainty is defined as the half-width of the symmetric interval centered at ΔRM =

RM − R(fit)
M = 0 that encloses 95% of the data points in the histogram of ΔRM. For every M, there is

an optimal value of M such that this uncertainty is minimized.
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The RM–Λ̃ relation, then, allows one to use any binary to place a robust, EOS-agnostic
constraint on RM using just Λ̃ and M. This offers great prospects for the upcoming LIGO
O4 run and for third-generation detectors. The O4 run expects to see 10+52

−10 detections
within a search volume of 1.6× 107 Mpc3 year [51]. Every BNS detection can be transformed
into a maximum constrain on some RM. However, even the weaker constraints afforded by
RM–Λ̃ are of still great utility. Just 10 weak constraints on R1.4 using the R1.4-Λ̃ relation
will yield a reliable value for R1.4. Further, a reduction in statistical uncertainty thanks
to increased sensitivity improves the effectiveness of universal relations, as, for example,
the systematic errors of fits to multipole relations are generally smaller than statistical
uncertainty [12].

5. Conclusions

We supplement the tool set of GW analysis and waveform modelling by presenting
entirely new fits to several universal relations between high-multipole-order dimensionless
gravitoelectric tidal deformabilities Λl and to the universal relation for BNS between the
radius of the 1.4M� NS, R1.4, and the reduced tidal deformability Λ̃. We compute these
utilizing a data set of nearly two-million phenomenological EOS sampled from across a
broad parameter space using an MCMC algorithm.

First, we present fits to the multipole relations. Previous fits [12,14] had been made
to just the Λ3–Λ2 and Λ4–Λ2 relations. We extend the library of fits by looking at the
Λ5–Λ2, Λ6–Λ2, Λ7–Λ2, and Λ8–Λ2 relations. The tightness of the relations weakens as
l increases. Consequently, though the fits are faithful to the shapes of the relations, the
maximum estimate error of the fits increases to the order of 50% for Λ8. The inclusion
of the finite-size effects of the l < 4 multipoles in waveform analysis can incur as much
as 0.02 radians of dephasing compared to including only the l ≤ 4 effects. Collectively,
the l > 2 effects contribute as much as 2.91 radians of dephasing, and it is recommended
that finite-size corrections for l > 2 multipoles be included in the analysis of GW data
wherever they are at least comparable to detector uncertainties. The full usefulness of these
l > 4 relations in GW data analysis will be realized with the increased sensitivity of the
upcoming third-generation GW detectors like LIGO III [22], the Einstein Telescope [23,24],
and Cosmic Explorer [25], as the finite-size effects of these multipole orders are currently
smaller than measurement error.

Next, we analyze the R1.4-Λ̃ relation. The original derivation of the relation [19] yields
an expression, given in Equation (4), that is linearly dependent on the chirp mass M of the
BNS. Fitting the relation for different fixed values of M reveals any nonlinear dependence
the relation may have on M and allows us to compute an expression that more accurately
estimates R1.4. We do this for twelve different values of M between 0.9M� and 1.4M�,
using the fitting function in Equation (7). We then interpolate the fitting parameters to all
M ∈ [0.9M�, 1.4M�] by fitting them as functions of M. The accuracy of the estimate of
R1.4 for any value of M is found to be quite good. 95% of the estimates are within ∼5%
of R1.4.

We then consider a generalized form of the relation RM–Λ̃ for a generic NS mass M.
We perform the same analysis as for the R1.4-Λ̃ relation for seven other values of M. We
find that the level of uncertainty in the estimate of RM depends on both M and M. There
is, in fact, an optimal value of M for each M such that RM is maximally constrained by the
relation at that value of M. Therefore, this relation will be an excellent tool for combining
the results from multiple GW detections of BNSs into constraints on NS radii.

The parameter space of possible EOS explored by our MCMC algorithm to com-
pute our EOS data set can be further restricted with the inclusion of possible future
LIGO/Virgo/KAGRA O4 constraints, laboratory constraints, such as those from heavy-
ion collisions [52] and PREX [53], X-ray burst observations from NICER [54–56], and by
combining the phenomenological EOSs with results from pQCD calculations [57].
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The authors wish to make the following corrections to their paper [1]:
In Section 4, we accidentally swapped the numerators in the definitions of the fitting

functions α(x) and β(x) in Equation (8). The definitions are corrected as

α(x) =
∑3

k=0 pkxk

∑2
k=0 qkxk

km and β(x) =
∑2

k=0 pkxk

∑2
k=0 qkxk

, (8)

where x = (M/M� − μM)/σM, μM = 1.1537, and σM = 0.15927.
As a consequence of this error, Table 3 in Section 4 has the fitting parameters for α(x)

and β(x) incorrectly labelled. Additionally, it was not originally made clear in the table that
we fix q2 = 1 for all fits. The table is corrected to Table 3. All other results are unaffected by
these corrections. The authors would like to apologize for any inconvenience caused to the
readers by these changes.

Table 3. Fitting parameters �p = {pk} and �q = {qk} for α and β as functions of x = (M/M� −
μM)/σM, where μM = 1.1537 and σM = 0.15927 for several values of M. The fitting functions are
given in Equation (3).

M/M� p0 p1 p2 p3 q0 q1 q2

1.4 β(x) 404.40 −96.991 26.475 - 65.755 −15.259 1
α(x) 224.75 −24.553 11.832 −1.8434 19.758 −1.9914 1

1.5 β(x) 502.01 −119.44 32.193 - 79.153 −16.598 1
α(x) 282.86 −29.568 12.893 −2.2628 24.833 −2.3357 1

1.6 β(x) 642.10 −152.88 40.447 - 98.054 −18.391 1
α(x) 386.63 −42.102 14.780 −3.0054 33.942 −3.2743 1

1.7 β(x) 877.56 −210.98 54.468 - 129.67 −21.419 1
α(x) 598.97 −73.554 18.854 −4.5818 52.655 −5.7193 1

1.8 β(x) 1442.2 −356.28 88.775 - 206.20 −29.608 1
α(x) 1291.3 −192.50 32.831 −10.064 113.87 −15.207 1

1.9 β(x) 2734.1 −709.62 174.36 - 380.72 −46.815 1
α(x) 3282.2 −592.78 80.705 −27.980 291.00 −48.054 1

2 β(x) 63,061 −19,071 3663.7 - 8959.4 −1478.5 1
α(x) 9986.9 −2011.9 232.61 −82.091 887.58 −167.09 1

2.14 β(x) 93,209 −34,415 6102.8 - 12,686 −2286.4 1
α(x) 58,353 −18,272 1904.6 −609.58 5234.8 −1543.2 1
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