
Sensors and 
Actuators  
in Smart Cities

Mohammad Hammoudeh and Mounir Arioua

www.mdpi.com/journal/jsan

Edited by

Printed Edition of the Special Issue Published in JSAN

Sensor

Bo
ok
s

M
DP
I



Sensors and Actuators in Smart Cities

Special Issue Editors
Mohammad Hammoudeh
Mounir Arioua

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade

Bo
ok
s

M
DP
I



Special Issue Editors

Mohammad Hammoudeh

Manchester Metropolitan University

UK

Mounir Arioua

Abdelmalek Essaadi University

Morocco

Editorial Office

MDPI

St. Alban-Anlage 66

Basel, Switzerland

This edition is a reprint of the Special Issue published online in the open access journal Journal of Sensor

and Actuator Networks (ISSN 2224-2708) from 2013–2014 (available at: http://www.mdpi.com/journal/

jsan/special issues/smart cities).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year, Article number, page range.

First Editon 2018

ISBN 978-3-03842-873-2 (Pbk)

ISBN 978-3-03842-874-9 (PDF)

Articles in this volume are Open Access and distributed under the Creative Commons Attribution

(CC BY) license, which allows users to download, copy and build upon published articles even

for commercial purposes, as long as the author and publisher are properly credited, which ensures

maximum dissemination and a wider impact of our publications. The book taken as a whole is
c© 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons

license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Bo
ok
s

M
DP
I



Table of Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Mohammad Hammoudeh and Mounir Arioua

Sensors and Actuators in Smart Cities
doi: 10.3390/jsan7010008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Tianyu Zhang, Qian Zhao, Kilho Shin and Yukikazu Nakamoto

Bayesian-Optimization-Based Peak Searching Algorithm for Clustering in Wireless
Sensor Networks
doi: 10.3390/jsan7010002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abdelhamied A. Ateya, Ammar Muthanna, Irina Gudkova, Abdelrahman Abuarqoub,

Anastasia Vybornova and Andrey Koucheryavy

Development of Intelligent Core Network for Tactile Internet and Future Smart Systems
doi: 10.3390/jsan7010001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Jie Jiang, Riccardo Pozza, Kristrún Gunnarsdóttir, Nigel Gilbert and Klaus Moessner
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1. Scope and Aim

With the city, from its earliest emergence in the Near East between 4500 and 3100 BCE, came a
wide range of new discoveries and inventions, from synthetic materials to wheeled vehicles. Through
its dense population, irrigation, social continuity and physical security, emerged civil engineering,
monumental construction, sculpture, mathematics, arts and law. Today, there is an enormous set
of ideas and notions with respect to our ways of living, e.g., the ramp and the lever, which are
still fundamental to cities’ environmental, social, and economic structures. Modern-day smart cities
compete for the introduction of smart technologies and applications to improve key areas of urban
communities, such as system automation, sustainability, and quality of life. Technology research
experts paint thrilling images of futuristic cities. What’s glossed over, however, is the sensor and
actuator technologies that enable these smart cities; in particular, the reliable, heterogeneous, wireless
networks specifically designed to provision communication across a countless number of sensors
embedded in almost everything.

The world is on the verge of a new epoch of innovation and change with the emergence of Wireless
Sensor Networks (WSN). The convergence of smaller, more powerful processors, smart mobile devices,
low-cost sensing, big data analytics, cloud hosting and new levels of connectivity allowed by the
Internet is fuelling the latest wave of Machine-to-Machine (M2M) technology. The merits of this
marriage of machines and the digital world are multiple and significant. It holds the potential to
dramatically alter the way in which most global industries, such as buildings, rail transportation,
power grids and healthcare operate on daily basis. WSNs expand to include our vehicles and homes, as
well as newly developed wearable and implanted sensors, which brings fundamental transformations
to many aspects of daily life.

WSN innovations promise to integrate and optimise smart buildings, autonomous vehicles,
power grids, etc., to enable a successful transition towards smart, user-driven and demand-focused
city infrastructures and services [1,2]. There is a wide range of current smart cities applications,
which make our lives easier and more efficient, e.g., a smart phone application that let users find free
parking spaces in the centre of town. However, cities are notoriously inefficient. As populations grow,
everything from garbage collection and public transport becomes more expensive and complex. Away
from increasing spending, there is also a demand from citizens for smarter services driven by sensor-
and actuator-based infrastructure.

In this Special Issue, we accepted submissions that focus on implementing intelligent sensing
infrastructure to solve the smart cities conundrum. This Special Issue attracted contributions from
academic researchers in computer science, communication engineering and physics, as well as
information technology industry consultants and practitioners, in various aspects of sensors and
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actuators for smart cities. In the next section, we present a brief review of the papers published,
highlighting their objectives and contributions.

2. A Review of Contributions in this Special Issue

Zhang et al. [3] address the challenge of large scale data analytics for smart cities. Typically,
multi-modal sensor data collected from cyber physical environments, such as smart cities, must
be processed before it can be can be used by data discovery, integration and mash-up protocols.
With heterogeneous, noisy and incomplete data, clustering algorithms are used to organise the data
in a dataset into clusters. The authors propose a new peak searching algorithm that uses Bayesian
optimisation to find probability peaks in a dataset to increase the speed and accuracy of data clustering
algorithms. This proposed clustering algorithm was thoroughly evaluated in simulation and results
show that it significantly decreases the required number of clustering iterations (by 1.99 to 6.3 times),
and produce clustering which, for a synthetic dataset, is 1.69 to 1.71 times more accurate than it is for
traditional expectation-maximization (EM). Moreover, the algorithm correctly identified the outliers in
a real dataset, decreasing iterations by approximately 1.88 times, while being 1.29 times more accurate
than EM at a maximum.

Ateya et al. [4] contribution addresses the development of intelligent core network for Tactile
Internet and future smart systems. Tactile Internet is an extremely low latency communication network
with high availability, reliability and security. Tactile Internet is predicted to bring a new dimension to
human-to-human and human-to-machine interaction in a multitude of different smart city aspects
such transport, power grid, education, healthcare and culture. This paper presents a Tactile Internet
system structure, which employs software defined networking in the core of the cellular network and
mobile edge computing at multi-levels. The contribution focuses on the structure of the core network.
The proposed system is simulated under reliable environmental conditions and results shows that it
achieved a round trip latency of orders of 1ms by the reducing the number of intermediate nodes that
are involved in the communication process.

Jiang et al. [5] address the problem of establishing a good measure of the agreement between
the activities detected from sensor-generated data and those recorded in self-reported data.
The contribution reports on a trial conducted in three single-occupancy households from which data is
collected from a set of sensors and from time use diaries completed by the occupants. The authors
demonstrate the application of Hidden Markov Models with features extracted from mean-shift
clustering and change points analysis. Then, a correlation-based feature selection is applied to
reduce the computational cost. Finally, a method based on Levenshtein distance for measuring the
agreement between the sensor-detected activities and that reported by the participants is demonstrated.
The authors conclude their paper by an exciting discussion on lessons learnt on how the features
derived from sensor data can be used in activity recognition and how they relate to activities recorded
in time use diaries.

Taking the work in the previous contribution [5] one step further, Castro et al. [6] present a
system based on the Internet of Things (IoT) to Human Activity Recognition (HAR) that monitors
vital body signs remotely. The authors employ machine learning algorithms to determine activities
that occur within four pre-defined categories (lie, sit, walk and jog). Evaluation using advanced
real-world hardware platform shows that the proposed system is able to give feedback during and
after the activity is performed, using a remote monitoring component with remote visualization and
programmable alarms. This system was successfully implemented with a 95.83% success ratio.

The contribution of Riouali et al. [7] addresses another vital area of sensing and actuation in
smart cities. The authors present a road traffic management system based on wireless sensor networks.
This paper introduces the functional and deployment architecture of this system with particular focus
on the data analytics component, which uses a new extension of batches Petri nets for modelling road
traffic flow. The evaluation of the proposed system was performed using a real world implementation
of visualization and data analysis components.
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Voutos et al. [8] present a social environmental sensor network integrated within a web GIS
platform. Controls, user interface and extensions of the proposed system are presented. The key novel
aspect of this contribution is the fact that the gathered data from the proposed system carries spatial
information, which is fundamental for the successful correlation between pollutants and their place of
origin. The latter is implemented by an interactive Web GIS platform operating oversight in situ and
on a timeline basis.

Catania et al. [9] contribute a user-generated services composition in smart multi-user environments.
In this contribution, the focus is on security issues raised by services generated by users, User-Generated
Services (UGSs). UGSs are characterized by a set of features that distinguish them from conventional
services. To cope with UGS security problems, the authors introduce three different policy management
models, analysing benefits and drawbacks of each approach. Finally, a cloud-based solution that enables
the composition of multiple UGSs and policy models, allowing users’ devices to share features and
services in IoT based scenarios is proposed.

Obinikpo et al.’s [10] contribution demonstrates how big sensed data meets deep learning for
smarter health care in smart cities. Healthcare lends itself as a natural fit for IoT technology and
smart city concepts. The authors advocate that integrating sensory data (hard sensing) with external
data sources (soft sensing, e.g., crowd-sensing) could reveal new data patterns and information.
This research addresses this challenge through hidden perception layers in the conventional artificial
neural networks, namely by deep learning. The paper starts by reviewing deep learning techniques
that can be applied to sensed data to improve prediction and decision making in smart health services.
Then, a comparison and taxonomy of these methodologies based on types of sensors and sensed data is
presented. Finally, a thorough discussions on the open issues and research challenges in each category
is given.

Arbia et al.’s [11] contribution targets smart city critical infrastructure, particularly, an IoT enabled
end-to-end emergency and disaster relief system. This paper presents a new enhancement for an
emergency and disaster relief system called Critical and Rescue Operations using Wearable Wireless
sensors networks (CROW 2). CROW 2 addresses the reliability challenges in setting up a wireless
autonomous communication system to offload data from the disaster area (rescuers, trapped victims,
civilians, media, etc.) back to a command centre. The proposed system connects deployed rescuers
to extended networks and the Internet. The system integrates heterogeneous wireless devices and
different communicating technologies to enable end-to-end network connectivity, which is monitored
by a cloud-based IoT platform. The overall performance of CROW 2 is evaluated using end-to-end
link quality estimation, throughput and end-to-end delay. Finally, the system architecture is validated
through deployment and motion detection and links unavailability prevention are highlighted.

3. Conclusions and Remarks

Sensors and actuators are the building blocks for the forth industrial revolution. They have
already transformed the way humans perceive their environment. Sensor-enabled smart cities are
paving the way for a more sustainable future, from urban planning to social conscience. The papers
published in this special issue put humans at the centre of smart cities. From traffic management
to assisted living, human centred design of smart city services is a detrimental factor to the success
of smart cities. It is evident that we are still at the start of the smart cities revolution and the full
economical, environmental and social benefits are yet to be achieved.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: We propose a new peak searching algorithm (PSA) that uses Bayesian optimization to find
probability peaks in a dataset, thereby increasing the speed and accuracy of clustering algorithms.
Wireless sensor networks (WSNs) are becoming increasingly common in a wide variety of applications
that analyze and use collected sensing data. Typically, the collected data cannot be directly used
in modern data analysis problems that adopt machine learning techniques because such data lacks
additional information (such as data labels) specifying its purpose of users. Clustering algorithms
that divide the data in a dataset into clusters are often used when additional information is not
provided. However, traditional clustering algorithms such as expectation–maximization (EM) and
k-means algorithms require massive numbers of iterations to form clusters. Processing speeds are
therefore slow, and clustering results become less accurate because of the way such algorithms form
clusters. The PSA addresses these problems, and we adapt it for use with the EM and k-means
algorithms, creating the modified PSEM and PSk-means algorithms. Our simulation results show
that our proposed PSEM and PSk-means algorithms significantly decrease the required number
of clustering iterations (by 1.99 to 6.3 times), and produce clustering that, for a synthetic dataset,
is 1.69 to 1.71 times more accurate than it is for traditional EM and enhanced k-means (k-means++)
algorithms. Moreover, in a simulation of WSN applications aimed at detecting outliers, PSEM
correctly identified the outliers in a real dataset, decreasing iterations by approximately 1.88 times,
and PSEM was 1.29 times more accurate than EM at a maximum.

Keywords: peak searching; clustering; Gaussian mixture model; Bayesian optimization;
Gaussian process; outlier detection

1. Introduction

Over the past decade, wireless sensor networks (WSNs) have been widely applied in applications
that involve analyzing collected data to improve quality of life or secure property. For example,
sensor nodes are present in homes, vehicle systems, natural environments, and even satellites and
outer space. These sensors collect data for many different purposes, such as health monitoring,
industrial safety and control, environmental monitoring, and disaster prediction [1–4]. In such WSN
applications, sensing data can be manually or automatically analyzed for specific purposes. However,
in the age of big data, an increasing amount of sensing data is required for precise analysis in the WSN
applications. Consequently, it is difficult or, in some cases, even impossible to manually analyze all of
the collected data.

There are several conventional ways to automatically manage the collected data. The most typical
and the easiest method is to set threshold values that correspond to sensing events. Events are triggered
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once the data exceed these thresholds. However, the thresholds in large-scale WSNs vary, and change
due to environment changes. Moreover, precise analysis results cannot be obtained through the use of
thresholds alone.

A complementary approach uses supervised machine learning. In this approach, a model is
trained that can categorize sensing data into the different states required by an application. However,
because sensing data labels are required in the training phase, extra work is required to manage
the data. This process is particularly difficult when the dataset is large. Moreover, if the sensing
environment changes, certain labels must also change. It is difficult to maintain a functional model
under conditions where labels change frequently; this affects the analysis results.

Unsupervised machine learning methods are feasible and well-studied, and are not associated
with the data labeling problems described above. Clustering is an important and common
method in such approaches. In clustering, the overall features of the dataset are extracted. Then,
the data are divided into clusters according to their features. As a result, data labeling is not
required, and the data-labeling difficulties that occur in supervised approaches can be avoided.
However, in state-of-the-art clustering methods such as the expectation-maximization (EM) [5] and
k-means [6] algorithms, a massive number of iterations must be performed in order to form clusters,
and a significant amount of computation time is required. Furthermore, because these algorithms
use random starting data points as initial center points to form clusters, and because the number of
clusters is not precisely determined, the clustering results become less accurate. To address these
problems, in this paper, we propose a peak searching algorithm (PSA) for improving clustering
algorithm capabilities.

Our approach should be applicable to different dataset distributions. Therefore, the collected
sensing dataset is considered to be generated by a Gaussian mixture model composed of several
different Gaussian distributions. If the number of Gaussian distributions and appropriate initial center
points are known, clustering algorithms can appropriately divide the dataset into different clusters
because each Gaussian distribution corresponds to a cluster. The proposed PSA employs a Bayesian
optimization (BO) strategy that uses a Gaussian process [7]. Bayesian optimization is typically used
for hyper-parameter optimizations; to the best of our knowledge, our approach is the first to use BO
to improve clustering. Moreover, other Bayesian theorem based algorithms, such as [8–11], are also
appropriate optimization strategies for training online and offline machine learning algorithms.

Given a collected dataset, the PSA searches for the data points with the highest probability values
(i.e., peaks in the dataset). A Gaussian distribution peak is a point that corresponds to the mean.
By searching the peaks, we can obtain appropriate initial center points of Gaussian distributions,
hence, the corresponding clusters. This method overcomes the difficulties associated with the hard
determination of starting data points in traditional cluster algorithms, thereby reducing the number of
iterations. By using the PSA, cluster algorithms can form clusters using peak points instead of random
starting points, which improves the clustering accuracy.

We used simulations to investigate the potential of the proposed PSA for improving algorithm
performance. To measure performance improvements, we applied the PSA to the EM and
k-means algorithms. We refer to these modified algorithms as PSEM and PSk-means, respectively.
The simulation results showed that, for PSEM and PSk-means, the required numbers of clustering
iterations were significantly reduced by 1.99 to 6.3 times. Additionally, for synthetic datasets, clustering
accuracy was improved by 1.69 to 1.71 times relative to the traditional EM and enhanced version of
k-means, i.e., k-means++ [12].

The proposed method can accurately group data into clusters. Therefore, any outliers in a dataset
can be clustered together, making them possible to identify. Because outliers obviously reduce the
capabilities of the WSN applications, we also conducted a simulation using a real WSN dataset from
the Intel Berkeley Research lab (Berkeley, CA , USA). This allowed us to compare the outlier-detection
capabilities of PSEM and EM. Our simulation results showed that PSEM correctly identified outliers,
decreased iterations by approximately 1.88 times, and improved accuracy by 1.29 times at a maximum.
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The remainder of this paper is organized as follows. Section 2 outlines related works, while
Section 3 introduces BO. Section 4 describes the proposed PSA and Section 5 presents the simulation
results. Section 6 presents a discussion of this work. Section 7 summarizes key findings, presents
conclusions, and describes potential future work.

2. Related Works

This section describes the techniques used in the clustering algorithms, which are used to
automatically divide a collected dataset into different clusters. There are two main types of clustering
approaches. The first is based on parametric techniques. To cluster a dataset, the parameters of
the statistical model for a dataset must be calculated. The EM algorithm is a parametric technique.
The second type of clustering approach uses non-parametric techniques, in which the calculated
parameters of a statistical model are not required for clustering a dataset. k-means and k-means++ are
non-parametric techniques.

We describe the two clustering approaches in the following subsections. Moreover, because outlier
detection is critical in the WSN applications, we describe some relevant outlier detection approaches.

2.1. Parametric Techniques

Parametric techniques assume that a dataset is generated from several parametric models, such as
Gaussian mixture models. The clustering process is conducted by calculating the parameters of each
Gaussian model, and assuming that data points in the same cluster can be represented by the same
Gaussian model. Usually, a Gaussian model is chosen as the default model because it conforms to the
central limit theorem [13,14] parametric techniques used. From the collected dataset, they calculated
detailed a priori estimates of statistical parameters for the assumed statistical model (for example,
the mean, median, and variance). This allowed them to fit statistical models.

EM [5] is a famous and widely used algorithm for clustering datasets using parametric techniques.
The EM algorithm first calculates responsibilities with respect to given parameters (means and
variances). This is referred to as the E-step. Then, the EM algorithm uses the responsibilities to
update the given parameters. This is referred to as the M-step. These two steps are iteratively
executed until the parameters approach the true parameters of the dataset. When those parameters are
determined, the Gaussian models in the Gaussian mixture model are fixed. Therefore, clustering can
be accomplished using the Gaussian models.

There are many benefits associated with parametric techniques: (i) such techniques assign a
probability criterion to every data point to determine whether or not it belongs to a cluster; and (ii) such
techniques do not require additional information (for example, labels on data points that indicate their
statuses). On the other hand, parametric techniques cannot be deployed in a distributed way because
a significant number of data points are required to estimate the mean and variance. Thus, methods
that use parametric techniques are deployed in a centralized way.

2.2. Non-Parametric Techniques

Some algorithms use non-parametric techniques, which cluster datasets without using statistical
models. Non-parametric techniques make certain assumptions, such as density smoothness.
Typical methods use histograms, as in [15–17]. Histogram-based approaches are appropriate for
datasets in low-dimensional spaces because the calculations in histogram-based techniques have an
exponential relationship with the dimensions of a dataset. Therefore, this type of approach has low
scalability to problems with larger numbers of data points and higher-dimensional spaces.

One typical non-parametric cluster algorithm is k-means [6]. In k-means, when candidate cluster
centers are first provided to the algorithm, the number of centers is equal to the number of clusters.
Then, k-means is used to calculate the sum of the distances from the center of each cluster to
every data point. These two steps are iteratively executed, and k-means updates the given cluster
centers by minimizing the calculated sum. When cluster centers are determined, clusters are formed.
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However, k-means cannot guarantee that the candidate centers will be close to the true cluster centers.
The iterations and clustering accuracy of the algorithm are not satisfying.

To overcome the disadvantages of k-means, Arthur and Vassilvitskii [12] proposed k-means++,
which is based on the k-means algorithm. k-means++ and k-means are different because k-means++
uses the number of k values to execute a calculation that identifies the appropriate data points to use
as the initial centers. In contrast, in the k-means algorithm, the initial centers are randomly selected,
which increases the number of clustering iterations. Therefore, k-means++ requires fewer iterations
than k-means.

In conclusion, there are disadvantages associated with the use of both parametric and
non-parametric techniques in the WSNs. Parametric techniques can only estimate a model
when sufficient data is available, and they are therefore difficult to use in a distributed way.
While non-parametric techniques can be executed in a distributed way in the WSNs, they cannot
provide a probability criterion for detection. Moreover, both techniques require a massive number of
iterations to form clusters and use random starting data points. These require significant computing
power and have low accuracy.

2.3. Outlier Detection in WSN Applications

Outliers are very common in collected datasets for two reasons. First, sensor nodes are vulnerable
to failure because the WSNs are often deployed in harsh environments [18–21]. Outliers are commonly
found in datasets collected by the WSNs installed in harsh environments [22,23]. Second, noise
in wireless signals and malicious attacks both create outliers [24,25], which obviously reduce the
WSN capabilities.

The clustering methods are also used for outlier detection in the WSN applications. For instance,
to robustly estimate the positions of sensor nodes, Reference [26] used the EM algorithm to iteratively
detect outlier measurements. The EM algorithm was used to calculate variables that could indicate
whether or not a particular measurement was an outlier. Reference [27] conducted similar work
using EM algorithms to detect outliers. Additionally, Reference [28] proposed a novel flow-based
outlier detection scheme based on the k-means clustering algorithm. This method separated a dataset
containing unlabeled flow records into normal and anomalous clusters. Similar research by [29] used
k-means to detect heart disease. However, approaches using EM and k-means to detect outliers suffer
from the previously mentioned problems of clustering iteration and accuracy. The approach that we
introduce later in this paper can solve such problems.

3. Bayesian Optimization

Before a dataset can be divided into clusters, the starting data points of clusters in the dataset must
be determined. In particular, the number of peak points (a peak point is a data point corresponding to
the maximum probability) in a dataset corresponds to the number of clusters. In this study, we use
BO to identify peak points. Typically, we do not know the form of the probability density function
p(x). Nevertheless, we can obtain the approximate value f (x) of p(x) at data point x, with some
noise. For example, we can approximately compute the density of a certain volume. This density is an
approximate value of the probability density (see Section 4). However, obtaining the maximum density
can be computationally expensive because of the large number of data points. To reduce computation
costs, we used BO [30,31], a very powerful strategy that fully utilizes prior experience to obtain the
maximum posterior experience at each step. This allows the maximum density to be approached.
Thus, fewer data points are required to obtain the maximum density. In the following subsection,
we introduce the Gaussian process used in BO.

3.1. Gaussian Process

In BO, a Gaussian process (GP) is used to build a Gaussian model from the provided information.
The model is then updated with each new data point. Assume that a set of data points contains t
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elements: {x1, x2, · · · , xt}. We use the notation x1:t to represent the set of data points. Each of these
points exists in a D-dimensional space. An example data point is xi = (xi1, · · · , xiD).

There is an intuitive analogy between a Gaussian distribution and a GP. A Gaussian distribution
is a distribution over a random variable. In contrast, the random variables of a GP are functions.
The mean and covariance are both functions. Hence, function f (x) follows a GP and is defined
as follows:

f (x) ∼ GP(m(x), k(x, x′)), (1)

where m(x) is the mean function, and k(x, x′) is the kernel function of the covariance function.
Suppose that we have a set of data points x1:t and their corresponding approximate probability

density { f (x1), f (x2), · · · , f (xt)}. We assume that function f (xi) can map a data point xi to
its probability density p(xi) with some noise. For concision, we will use f1:t to represent
the set of functions for each data point { f (x1), f (x2), · · · , f (xt)}. For the collected dataset,
D1:t = {(x1, f1), (x2, f2), · · · , (xt, ft)} is the given information. For convenience, we assume that
D1:t follows the GP model, which is given by an isotropic Gaussian N (0, K) whose initial mean
function is zero and covariance function is calculated using K, as follows: (k(xi, xj) consists of the
kernel functions)

K =

⎡⎢⎣k (x1, x1) · · · k (x1, xt)
...

. . .
...

k (xt, x1) · · · k (xt, xt)

⎤⎥⎦
Once, we have calculated K, we build a GP model from the information provided.
A new data point xt+1 also follows ft+1 = f (xt+1). According to the GP properties, f1:t and ft+1

are jointly Gaussian: [
f1:t
ft+1

]
= N

(
0,

[
K k
kT k (xt+1, xt+1)

])
where

k =
[
k (xt+1, x1) k (xt+1, x2) · · · k (xt+1, xt)

]
Moreover, we want to predict the approximate probability density ft+1 of the new data point xt+1.

Using Bayes’ theorem and D1:t, we can obtain an expression for the prediction:

P ( ft+1|D1:t, xt+1) = N
(

μt(xt+1), σ2
t (xt+1)

)
(2)

where

μt (xt+1) = kTK−1 f1:t,

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k (3)

We can observe that μt and σ2
t are independent of ft+1 and that we can calculate ft+1 using the

given information.

3.2. Acquisition Functions for Bayesian Optimization

Above, we briefly describe how to use the given information to fit a GP and update the GP
by incorporating a new data point. At this point, we must select an appropriate new data point
xi+1 to use to update the GP, so that we can obtain the maximum value of f (xi+1). To achieve
this, we could use BO to realize exploitation and exploration. Here, exploitation means that we
should use the data point with the maximum mean in the GP because that point fully uses the given
information. However, this point cannot provide additional information about the unknown space.
Exploration means that a point with a larger variance in the GP can provide additional information
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about the unknown area. The acquisition functions used to find an appropriate data point are designed
on the basis of exploitation and exploration. There are three popular acquisition functions: probability
of improvement, expectation of improvement, and upper confidence bound criterion.

The probability of improvement (PI) function is designed to maximize the probability of
improvement over f (x+), where x+ = argmaxxi∈x1:t

f (xi). The resulting cumulated distribution
function is:

PI(x) = P
(

f (x) ≥ f (x+) + ξ
)

= Φ
(

μ(x)− f (x+)− ξ

σ(x)

)
(4)

where ξ is the exploration strength, which is provided by the user.
The expectation of improvement (EI) is designed to account for not only the probability of

improvement, but also the potential magnitude of improvement that could be yielded by a point.
The EI is expressed as

EI(x) =

{
(μ(x)− f (x+)− ξ)Φ(Z) + σ(x)φ(Z) i f σ(x) > 0

0 i f σ(x) = 0
(5)

Z =

⎧⎨⎩
μ(x)− f (x+)−ξ

σ(x), i f σ(x) > 0

0, i f σ(x) = 0
(6)

The upper confidence bound (UCB) criterion uses the confidence bound, which is the area
representing the uncertainty between the mean function and variance function in Equation (3).
The UCB is compared with the other two acquisition functions, and is relatively simple and intuitive.
In detail, it directly uses the mean and variance functions obtained from the given information.
A potential new data point is presented by the sum of (i) the mean function, and (ii) a constant ν times
the variance function. That is, given several potential new data points, the data point with the largest
UCB will be selected as the next new data point. Moreover, ν, which is greater than 0, indicates how
many explorations are expected. The UCB formula is

UCB(x) = μ(x) + νσ(x) (7)

These three acquisition functions are suited to different datasets, and allow us to obtain an
appropriate new data point. The BO algorithm (Algorithm 1) is shown below.

Algorithm 1: BO

1 for i = 1, 2, . . . do

2 Fit a GP to the given information D1:t;
3 Use acquisition functions to find a data point x that has the maximum value μ(x|D1:t) over

GP;
4 Calculate the value of f (x) at xi;
5 Augment the dataset D1:t+1 = {D1:t, (xi, fi)} and update the GP;
6 end

4. Peak Searching Algorithm

In this section, we first introduce some preliminary information related to our proposed algorithm.
Then, we explain the algorithm.
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4.1. Preliminary Investigations

In most cases, the environment can be represented as a collection of statuses that indicate whether
or not certain events have occurred. Such events include fires, earthquakes, and invasions. The data
points collected by the sensor nodes contain measurements that describe the statuses of these events.
One can assume that the collected dataset is generated by a Gaussian mixture model (GMM) because the
data points contained in the dataset are collected from the normal environment, or from natural events.
Thus, before fitting a GMM, it is necessary to clarify the peaks of the GMM because each peak is a point
that has the largest probability corresponding to a Gaussian distribution. Therefore, we need to know
the probability of each data point when we search for the dataset peaks. Although the probability
density function is unknown, it can be approximated using alternative methods, which are shown
as follows.

One type of method assumes that the set of data points exists in a D-dimensional space.
The probability of data point x can then be approximated as follows: (i) set x as the center of a volume
with side h. Figure 1 shows an example of a volume in 3D space, where the length of each side is h;
and (ii) the density of the volume with center x, calculated using Equation (8) [31], is approximately
equal to the probability at data point x. The density p(x) in this formula depends on the length of side
h in the volume and the number T (that is, the number of neighbors of data point x in the volume).
N is the total number of data points in the dataset and hD is the size of the volume. Thus, to search
for the peaks, we must calculate the densities of all of the different data points using Equation (8).
However, this is computationally expensive:

p (x) =
T

NhD . (8)

Figure 1. A volume in three-dimensional space.

Another method fixes h and applies a kernel density estimator [31]. In this case, the probability of
data point x can be calculated as

p(x) =
1

NhD

T

∑
i=1

K
(

x − xi
h

)
, (9)

where K(•) is the kernel function and T is the number of data points in a volume with side h.
Then, the largest value of p(x) occurs along the gradient of Equation (9), which is

∇p(x) =
1

NhD

T

∑
i=1

K′
(

x − xi
h

)
. (10)

By setting Equation (10) equal to zero, we can calculate the point along the gradient that has
the largest p(x). With this method, we do not need to search through the unimportant data points,
which reduces the time required to identify peaks. However, Equations (9) and (10) are difficult to
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solve. Moreover, the length of side h affects the peak search results. Firstly, it supposes that all of the
volumes have the same size because they have the same h. Secondly, an inappropriate h value will lead
to an incorrect result. In particular, h values that are too large cause over-smoothing in high-density
areas, while h values that are too small cause significant noise in low-density areas. To overcome these
shortcomings, we introduce the PSA, which we describe in the following subsection.

4.2. The Algorithm

We propose a peak searching algorithm (PSA) that does not consider parameter h. We will use
simulations to investigate the details of the PSA, which can be used to improve the speed and accuracy
of clustering algorithms such as EM and k-means.

In Equation (10), x−xi
h is a vector that starts at point x and ends at neighboring point xi. Because a

kernel function is used to calculate the inner product of the vector, in this case, the inner product is
equal to the vector mode. Moreover, it calculates the largest p(x) and the location of data point x
where x on the vector at 1

NhD times the mode of the vector. Therefore, the largest probability for finding
the peak lays on this vector. This allows us to concentrate only on the vector, without considering
constants 1

NhD and h. Hence, we propose using Vx to represent the vector in the PSA as

Vx =
∑T

i=1(x − xi)

‖∑T
i=1(x − xi)‖

. (11)

In Equation (11), only Vx is searched. A significant amount of non-important space is not searched.
However, many probabilities must be calculated along Vx. Moreover, because there are too many
data points on the vector Vx, it becomes impossible to search for the best data point with the largest
probability in a limited amount of time. Hence, we apply BO when searching for the largest probability
along Vx. BO optimizes the method for searching the maximum probability value mentioned in
Algorithm 1. However, as we mentioned in Section 3, the form of probability function p(x) is not
known, and it can instead be represented by an approximate probability function, which is f (x)
in Algorithm 1 line 4. Therefore, in this paper, we use Equation (8) to calculate the approximate
probability function, which we use in the proposed algorithm. Equation (8) is simpler and more
practical for finding dataset peaks. The following describes the details of the proposed PSA.

Next, we will explain how the PSA works in accordance with Algorithm 2. The initializing
step requires a number of starting data points from which to begin the search for peaksbecause
the dataset may contain multiple peaks. Therefore, the PSA randomly selects M starting points,
{x(1), x(2), · · · , andx(M)}. For convenience, we will use starting point x(j) to describe the details of the
method. Vector x(j) is calculated using Equation (11) in line 1. The peak searching process shown
in Figure 2 contains four steps. In Step 1, the PSA uses Algorithm 1 to search for the peak. That is,
data point x(j)

i , which has a maximum probability along V (j)
x . The probability denoted by p

(
x(j)

i

)
is

calculated using Equation (8) as shown in line 4. In Step 2 in line 5, a new vector V (j)
xi is calculated on

the basis of x(j)
i and its T neighboring data points. In Step 3, the method searches for the peak x(j)

i+1

along V (j)
xi in line 6. Notice that data points x(j)

i and x(j)
i+1 are possible dataset peaks. Step 4 starts from

line 7 to 14, and the method repeats these steps until the difference between p
(

x(j)
i

)
and p

(
x(j)

i+1

)
gets

close enough to zero. At this point, data point x(j)
i+1 is selected as a dataset peak. The same four steps

are used with the other starting data points to identify all peaks in the dataset.
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Algorithm 2: PSA

1 Given a starting data point x(j), and calculate the V (j)
x ;

2 i = 0 ;
3 while True do

4 Search for Max p
(

x(j)
i

)
along V (j)

x by using Algorithm 1 ;

5 Set x(j)
i as a peak and calculate V (j)

xi with x(j)
i ’s K neighbors;

6 Search for Max p
(

x(j)
i+1

)
along V (j)

xi by using Algorithm 1 ;

7 if
∣∣∣p (x(j)

i

)
− p

(
x(j)

i+1

)∣∣∣ < ε then

8 x(j)
i+1 is a peak of the dataset ;

9 break ;
10 else

11 Set x(j)
i+1 as a peak and calculate V (j)

xi+1 with x(j)
i+1’s T neighbors ;

12 V (j)
x ← V (j)

xi+1 ;
13 i ← i + 1 ;
14 end

15 end

Figure 2. Peak searching.

5. Simulation and Analysis

In this section, we investigate the efficiency of the proposed PSA. Because the PSA is a method for
improving clustering algorithms, we must use it in state-of-the-art clustering algorithms to evaluate the
extent to which the PSA can improve those algorithms. As mentioned in Section 2, EM and k-means
are common clustering algorithms. Here, variations of those algorithms using the PSA are referred to
as PSEM and PSk-means, respectively. In PSEM and PSk-means, the PSA first searches the peaks of
the collected dataset. Then, EM and k-means use the obtained peaks as the initial starting points to
start clustering. In the simulations, we assume that the collected datasets follow GMMs, and that the
number of peaks found by the PSA is equal to the number of Gaussian distributions.
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We conducted simulations using synthetic datasets and a real dataset. In simulations with
synthetic datasets, we compared the accuracies and iterations of PSEM and PSk-means with those of
the original EM (OEM), k-means, and k-means++ algorithms. Moreover, because recall and precision
are important evaluation indicators, we also used the simulations to compare recalls and precisions.
In the simulation using a real dataset, we simulated our methods in order to detect outliers. Because
a real dataset could be either isotropic or anisotropic, and because k-means has a weak effect on
anisotropic datasets, we only compared PSEM to OEM for the real dataset.

5.1. Simulation on Synthetic Datasets

5.1.1. Synthetic Dataset

We generated two synthetic datasets, whose data points contained two features. Each dataset
was generated using a GMM that contained two different Gaussian distributions. The Gaussian
distributions in the first dataset were isotopically distributed; their true peaks (means) were (1, 1)
and (2, 2) and their variances were 0.6 and 0.5, respectively. The Gaussian distributions in the
second synthetic dataset were transformed using the following matrix to create anisotropically
distributed datasets: [

0.6 −0.6
−0.4 0.8

]
.

The two synthetic datasets are shown in Figure 3. The two synthetic datasets are appropriate for
these types of simulations because they can represent both easy and difficult clustering situations. This
allows us to evaluate the effects of our algorithm.

Figure 3. Synthetic dataset.

5.1.2. Simulations and Results

To estimate the extent to which the PSA can improve clustering capabilities, we compared PSEM
with the original EM (OEM) algorithm. Both PSEM and OEM use EM to fit a GMM, and have a time
complexity of O(N3), where N is the number of data points. Hence, we cannot use time complexity to
compare PSEM and EM. Computational efficiency can also be measured from the number of iterations.
The EM algorithm contains two steps: the E-step and the M-step. These two steps are iteratively
executed to fit a GMM, and are the core calculations of this algorithm. Hence, we compared the
number of iterations in PSEM (i.e., how many E-steps and M-steps were executed) with the number
of iterations in OEM. Note that the OEM algorithm does not use PSA, so its calculations start at
randomly selected initial starting points.
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PSEM and OEM were executed 200 times for the two different datasets. Figure 3 shows 200 peak
searching results for PSA. The dark crosses indicate the peaks identified by PSA. We can see that,
in the isotropically distributed dataset, the identified peaks are very close to the true peaks. In the
anisotropically distributed dataset, the identified peaks are also close to the true peaks. Figure 4
illustrates the number of iterations (y-axis) for each size of dataset (x-axis). In the peak searching step,
three different acquisition functions are used (UCB, EI, and PI), and their calculation efficiencies are
compared. According to the results shown in Figure 4, there were 3.06 to 6.3 times fewer iterations for
PSEM than OEM. In other words, the PSA improved the calculation efficiency of OEM by 73.9% to
86.3%. Moreover, we can see that there is no obvious difference between the three acquisition functions.q

Figure 4. Comparison of iterations: OEM.

Because we wanted to fairly estimate the extent to which the proposed PSA improves clustering
capabilities, we compared the PSA to k-means++ in another simulation. k-means++ uses a special
method to calculate its initial points, and its clustering method increases the speed of convergence.
Note that both PSk-means and k-means++ are based on k-means, which has a time complexity O(N2T),
where N is the number of data points and T is the number of iterations. Similarly, we cannot use time
complexity to compare calculation efficiencies. However, we can compare the number of iterations
required for PSk-means to that required for k-means++. Both of these algorithms were executed
200 times with the two different datasets, and the results are shown in Figure 5.

Figure 5. Comparison of iterations: k-means++.

The simulation results are shown in Figure 5. The average number of iterations for PSk-means is
reduced by 1.04 to 1.99 times compared with the number of iterations for k-means++. In other words,
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the PSA improved the calculation efficiency of OEM by 51% to 67%. Additionally, there was no
obvious difference between the three acquisition functions.

5.1.3. Performance Estimation of Clustering

Accuracy, precision, and recall are three commonly used measurements for estimating machine
learning algorithm performance. Therefore, we adopt these measurements to quantify the performances
of our proposed algorithm. In simulations, a dataset containing two clusters is generated by GMM. To
explain these measurements, we assume that the two clusters are cluster A and cluster B. Data points
belonging to cluster A are considered to be positive instances, while those that belong to cluster B are
considered to be negative instances. If a data point from cluster A is correctly clustered into cluster
A, it is a true positive (TP) result. Otherwise, it is a false positive result (FP). Similarly, if a data point
from cluster B is correctly clustered into cluster B, that is a true negative (TN); otherwise, it is a false
negative (FN). Overall accuracy can be calculated as follows:

accuracy =
TP + TN

TP + FP + TN + FN
. (12)

Recall is equal to the ratio of TP to the total number of positive instances. It is based on the total
positive instances, and shows how many positive instances can be detected by the algorithm. It is
calculated as

recall =
TP

TP + FN
. (13)

From a prediction standpoint, Precision indicates how many TPs occur in the detected positive
instances. It presents the proportion of TP to the total number of data points that are detected as
positive, which is equal to TP + FP. Precision is calculated as

precision =
TP

TP + FP
. (14)

We estimated the accuracy, precision, and recall of the PSk-means and PSEM clustering
algorithms, and compared the values with those for k-means, k-means++, and OEM. We repeated
this estimation 200 times for each dataset; the average accuracy of each algorithm is shown in
Figures 6 and 7. The isotropic datasets shown in Figure 3 are difficult to cluster because the two
clusters partially overlap and their centers are very close together. We can see from the simulation
results shown in Figure 6 that the estimations of k-means, k-means++, and OEM are similar. However,
PSk-means and PSEM show a great improvement over their original algorithms. The accuracy of
PSk-means is 1.69 times higher than that of k-means++, while that of PSEM is 1.71 times higher than
that of OEM. The recall of PSk-means is 1.66 times higher than that of k-means++, and the recall of
PSEM is 1.83 times higher than that of OEM. Moreover, the precision of PSk-means is 1.64 times
higher than that of k-means++’s. The precision of PSEM is 1.84 times higher than that of OEM.
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Figure 6. Measurements for isotropic dataset.

Figure 7. Measurements for anisotropic dataset.

The results for the anisotropic datasets are shown in Figure 7. Because the anisotropic datasets
are elliptical, as shown in Figure 3, and the two datasets are very close together, the datasets are
very difficult to cluster. As a result, k-means and k-means++ exhibit low estimation performance,
and PSk-means yields little improvement. However, the accuracy of PSEM was 1.48 times higher than
that of OEM, and its recall and precision were 1.44 and 1.48 times higher, respectively, than they were
for OEM. Accordingly, we can see that the PSA can improve clustering accuracy.

5.2. Simulation on a Real Dataset from Intel Berkeley Research Laboratory

We used a real sensor dataset from the Intel Berkeley Research Laboratory [32] to assess outlier
detection performance. In the simulation, we only considered two features for each data point:
temperature and humidity. Each sensor node contained 5000 data points, which are shown in Figure 8.

Because the original dataset did not provide any outlier information or labels, we manually
cleaned the data by removing values that fell outside a normal data range. All of the remaining data
points were considered to be normal. Table 1 lists the normal data ranges.
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Figure 8. Dataset from Intel Berkeley Research Laboratory.

Table 1. Normal data ranges.

Range Average

Temperature (◦C) 21.32–28.14 23.14
Humidity (%) 26.39–44.02 37.69

After completing this step, a uniform distribution was used to generate artificial outliers.
Temperature outliers were generated within a range of (27–30) ◦C, and humidity outliers were
generated within a range of (42–46)%. Thus, some outliers can fall inside the normal range with
the same probability. Outliers were then inserted into the normal dataset. We produced four different
cases, in which the outliers accounted for 5%, 15%, 20%, and 25% of the total normal data points.

5.2.1. Setting of WSNs

PSEM and OEM were run for a real dataset from the Intel Berkeley Research Laboratory.
The deployment of the WSNs is shown in Figure 9. There were 54 sensor nodes, each of which
had a Mica2Dot sensor for collecting humidity, temperature, light, and voltage values. Temperatures
were provided in degrees Celsius. Humidity was provided as temperature-corrected relative humidity,
and ranged from 0–100%. Light was expressed in Lux (1 Lux corresponds to moonlight, 400 Lux to a
bright office, and 100, 000 Lux to full sunlight), and voltage was expressed in volts, ranging from 2–3.
The batteries were lithium ion cells, which maintain a fairly constant voltage over their lifetime; note
that variations in voltage are highly correlated with temperature. We selected data from 10 sensor
nodes (nodes 1 to 10) to test our method, and used only humidity and temperature values.

In this simulation, we assumed that the WSN was hierarchical and consisted of classes. (“Cluster”
is used in the WSNs to describe a group of sensor nodes. However, “cluster” can also refer to a group
of similar data points in data mining. In this paper, we use “class” instead of cluster to describe a
group of sensor nodes). Each class contained one class head (CH) and other member sensor nodes
(MSNs). The MSNs sent the data points collected over a certain time period to the CH, which used
the proposed method to monitor whether the dataset collected from its members contained outliers.
The configuration of the WSNs is shown in Figure 10.
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Figure 9. Floor plan of Intel Berkeley Research Laboratory.

Figure 10. WSN configuration.

5.2.2. Results

Using the real dataset, we tested the proposed PSEM and compared it with the OEM. The CH
executed the PSEM or OEM to detect outliers, and sent outlier reports to the base station. We generated
four different datasets, containing 5%, 15%, 20%, and 25% outliers. (Figures 11 and 12).

Figure 11. Accuracy of real dataset.
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Figure 12. No. of iterations for dataset.

It was relatively easy to detect outliers in the test dataset containing only 5% outliers because
the proportion of outliers was so low. Thus, the accuracy of our method approached 100% for 5%
outliers. In contrast, the accuracy of the OEM was only approximately 85%. In the other datasets,
more outliers fell within the normal dataset. In such cases, it was difficult to detect the outliers;
the accuracies of both methods decreased as the proportion of outliers increased. However, PSEM
remained more accurate than OEM. In the worst case, with 25% outliers in the test dataset, its accuracy
of PSEM was approximately 80%, while the accuracy of OEM was only approximately 60%. That is,
PSEM was about 1.09 to 1.29 times more accurate than OEM. Moreover, Figure 12 shows the number
of iterations was 1.52 to 1.88 times lower for PSEM, meaning that PSEM improved the calculation
efficiency of OEM by 60% to 65.2%. Because accuracy and iteration numbers are very important metrics
for assessing the clustering algorithm efficiency, this simulation result demonstrated the practical
significance of PESM, and, therefore, of the PSA.

6. Discussion

In this section, we describe other important aspects of the WSNs, such as WSN power
consumptions and lifetime. We also discuss the advantages and disadvantages of the proposed method.

Because most sensor nodes in the WSNs are powered by batteries, sensor node power
consumptions, WSN lifetime, and energy efficiency are also important problems affecting the quality
of a WSN. Mostafaei et al. [33] proposed an algorithm PCLA to schedule sensors into active or sleep
states, utilizing learning automata to extend network lifetime. Our previous work attempted to extend
battery life by reducing peak power consumption. We scheduled sensor execution times [34], and used
optimized wireless communication routes to reduce energy consumption, with the goal of prolonging
network lifetimes [35,36]. If the proposed PSA can be applied in such approaches to analyze data
using clustering methods, then energy consumption can be further reduced. Because the PSA can
reduce clustering iterations, the required computational power decreases, leading to energy savings.

The proposed algorithm has advantages and disadvantages. In conventional clustering methods
such as EM and k-means, cluster-forming procedures are started at random data points. There are
two disadvantages associated with this. First, correct clusters may not be able to form from random
starting points. Second, because random staring points may not occur near cluster centers, massive
iterations may be needed to update random points to approach the cluster centers. However, because
the PSA can identify the peak points near cluster centers, it is a better approach for forming clusters
than an algorithm starting from a random point. Therefore, clustering algorithms using the PSA can
form clusters more accurately. Moreover, using peak points as the starting points to form clusters can
significantly reduce clustering iterations because peak points are the desired points.
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There are some disadvantages associated with the PSA. The PSA use BO and are, therefore,
affected by the problems associated with BO. A particular issue is that a priori design is critical
to efficient BO. As mentioned in Section 3, BO uses GPs to build Gaussian models with Gaussian
distributions, making the resulting datasets transcendental. If a dataset does not have a Gaussian
distribution, the PSA may be less efficient. Another weak point of the PSA is that it is centralized. It is
not suited for highly distributed WSNs where data analyses are conducted at each sensor node.

7. Conclusions

In this paper, we proposed a new PSA for improving the performance of clustering algorithms
(i.e., for improving accuracy and reducing clustering iterations). BO is used to search for the peaks of a
collected dataset in the PSA. To investigate the efficiency of the PSA, we used the PSA to modify EM
and k-means algorithms. The new algorithms were named PSEM and PSk-means, respectively.

Using simulations, we investigated the performance of PSEM and PSk-means relative to that
of OEM and k-means++. We conducted simulations using both synthetic datasets and a real dataset.
For synthetic datasets, PSEM and PSk-means reduced iterations by approximately 6.3 and 1.99 times,
respectively, at a maximum. Moreover, they improved clustering accuracy by 1.71 times and 1.69 times,
respectively, at a maximum. On a real dataset for outliers’ detection purpose, PSEM reduced iterations
about 1.88 times, and improved clustering accuracy by 1.29 times at a maximum. These results show
that our proposed algorithm significantly improves performance. We obtained the same conclusions
by illustrating the recall and precision improvements for PSEM and PSk-means.

In the future, we will improve this method so that it can be used with high-dimensional data, such
as images collected by a camera. Moreover, we would like to deploy the peak searching algorithm with
sensor nodes, in order to allow CHs to obtain peak searching results from their neighbors; this will
reduce the calculation time required for the peak search. Thus, clustering can be implemented in the
sensor node and communication costs can be reduced.
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Abstract: One of the main design aspects of the Tactile Internet system is the 1 ms end-to-end latency,
which is considered as being the main challenge with the system realization. Forced by recent
development and capabilities of the fifth generation (5G) cellular system, the Tactile Internet will
become a real. One way to overcome the 1 ms latency is to employ a centralized controller in the core
of the network with a global knowledge of the system, together with the concept of network function
virtualization (NFV). This is the idea behind the software defined networking (SDN). This paper
introduces a Tactile Internet system structure, which employs SDN in the core of the cellular network
and mobile edge computing (MEC) in multi-levels. The work is mainly concerned with the structure
of the core network. The system is simulated over a reliable environment and introduces a round
trip latency of orders of 1 ms. This can be interpreted by the reduction of intermediate nodes that are
involved in the communication process.

Keywords: Tactile Internet; 5G; latency; NFV; SDN; MEC

1. Introduction

Tactile Internet is expected to be a novel approach in the human-to-machine (H2M)
communication by moving from the content delivery to the skill-set delivery. The main application
that is supported by the Tactile Internet system will be the haptic communication in real time [1]. It will
be a revolution in the area of information and communication technology with enormous applications
in many fields [2]. Powered by the 5G cellular network, Tactile Internet will provide a way for human
to transfer their tough and actuation in real time form.

Tactile Internet is one of the main use cases of the near future 5G cellular system, as announced by
International Telecommunication Union (ITU) [3]. Through the Tactile Internet, physical habits will be
communicated remotely. The construction of the Tactile Internet system can be viewed as three main
parts as presented in Figure 1 [4]. The network part connects the master and the slave parts through a
huge infrastructure of fiber cables and network elements. Here, we consider this part to enable live
time communication between transmitter and receiver by means of employing modern technologies
throughout the cellular network.
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Figure 1. General view of Tactile Internet System.

Designing Tactile Internet system and realizing it meets some challenges that are presented
in [5]. The main challenge is the 1 ms end-to-end latency. The end-to-end latency differ from the
user plane latency and can be defined as the time duration starts from the transmission of a small
data packet from the transmitter’s application layer and ends by the reception of the data by the
receiver’s application layer, including the response feedback that is dedicated by the communication
process [6]. Thus, the end-to-end latency depends on the number of network nodes that are involved
in the communication process. In order to reduce the round trip latency and achieve the 1 ms
latency requirement for the Tactile Internet system, the number of network nodes involved in
the communication process should be reduced and bring them as near as possible to the user
equipment. This is can be achieved by employing software defined networking (SDN), network
function virtualization (NFV), and mobile edge computing (MEC) with the 5G cellular system.

SDN, NFV, and MEC technologies provide powerful solutions for the challenges that are
associated with the design of 5G cellular system and Tactile Internet system, specially the 1 ms
latency. Thus, the academia and the industry pay a great attention to the research and development
in these areas. In today’s cellular networks, the network services are handled by means of various
network functions that are connected in static manner [7]. Thus, it is not easy to add new services,
this is because the cost, energy and integration difficulties of hardware required. To overcome these
problems NFV and SDN are developed.

NFV provides fixed network functions by means of software run on a virtualized environment,
which increases the flexibility of the overall system. NFV employs virtualization technologies on
programmable hardware, such as storage devices, general purpose servers, and switches to separate the
software implementation of network functions from the dedicated hardware. In another word, NFV set
up the network functions by means of software virtualization techniques on commodity hardware [8].
Several projects are launched, for developing open source, commercial solutions, and standardizations
for NFV. The most important projects are the Service Programming and Orchestration for Virtualized
Software Networks (SONATA) project and Management and Orchestration (MANO) project. SONATA
is constructed with a vision of increasing the programmability and flexibility of 5G cellular system.
It aims to make the service platforms easier and modular to be suitable for the requirements of the
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different service providers. Also, it stands with the network function orchestration and provides a
development model for the developers [9]. MANO is an open source project that was developed by
European Telecommunications Standards Institute (ETSI) [10].

SDN is a new approach that provides a dynamic and cost effective network structure by the
physical separation of data forwarding plane and control plane. The control plane is the network
part that gives the appropriate decision to handle traffic [11–13]. The data plane is the other part
of the network, which forward traffic in respond to the control plane. The control signal moves
from the control plane to the data plane by means of an open standard interface protocol, such as
OpenFlow protocol and ForCES protocol [14]. SDN allows for the network operator to configure,
control, and manage the network through customized software known as application programming
interfaces (APIs). SDN is mainly presented to simplify the network hardware and increase the network
flexibility [15].

Dawn of the software networks is supported by the recent development in NFV and SDN
technologies. NFV and SDN technologies are not reliant on each other, but they complete each
other [16]. Both technologies arise the advantage of employing inexpensive programmable hardware.
The early generations of SDN technology were corresponded with data centers, campus networks,
and private networks. By the time that SDN find its way to the core of cellular networks. On the
other hand, NFV aims to replace the Middleboxes that are used in cellular networks from hardware
appliance to software running on commodity hardware (i.e., less expensive general server hardware).

Employing SDN and NFV provides a way for performing the recent important concept of network
slicing. The network slice may be viewed as a group of network functions worked together with a
specific radio access technology (RAT) to achieve a certain use case of the network [17]. In another
word, a network slice is a way of supporting communication service by means of a special connection.
Network slicing allows network operator to set up multiple logical networks (each for a certain
use case) on the same physical infrastructure [18].

One way to improve the cellular network efficiency is to offload network operations to cloud
units that are employed at the edge of the cellular system. This is the idea behind the recent paradigm
launched by the cellular network operators and known as MEC. MEC is the way of carrying cloud
computing capabilities to the edge of the cellular network one hop away from the user equipment.
European Telecommunications Standards Institute (ETSI) is one of the leading organizations in the
research of MEC and the standardization of this technology. The latest progress in MEC platforms and
their cellular uses are summed in [19]. The main benefit of employing MEC in cellular networks is the
reduction of end to end system latency. Moreover, it provides a higher system bandwidth and reduces
the network congestion by providing away for offloading data.

In this paper, we introduce a network structure for the Tactile Internet system employs SDN at
the core of the network and enable NFV. The system uses MEC in multilevel hierarchical. In (Section 2,
the related works to the proposed system is discussed. In Section 3, the system structure is proposed.
In Section 4, the system is simulated over a reliable environment. Finally, Section 5 gives the conclusion.

2. Related Works

Moving from traditional Evolved Packet Core networks to next generation of cellular systems
requires the involvement of a smart controller at the core of the network. The controller manages all of
the operations inside the network. In this part, we present the main works that are concerned with
the development of a centralized controller for delay sensitive networks. We analyze each work and
provide similarities and differences between each work and our system.

In [20], the authors present a SoftCell cellular system that enables the system operator to achieve
service policies at high levels. The proposed system reduces the forwarding table’s size and aggregates
traffic in multiple dimensions at various switches in the network. The system employs an access
switches at the base stations, which are software switches. Access switches can classify packets that
have arrived at the base station and handle the required state and bandwidth. SoftCell employs the
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components of the traditional Evolved Packet Core cellular network with a controller at the core
network with certain functions. The controller installs the switch rules and implements the signaling
rules that are used between hosts. The system is suggested for deployment to the core of LTE existing
networks. The system improves the flexibility and scalability of the LTE cellular system. The main
problem with the system is the capability of the core network controller and it still mainly depends on
the gateways (SGW, PGW) at the core network.

Recently, there are a number several approaches speak about employing SDN at the core network
of cellular system. These are the most relates works. In [21], the problems and transport challenges
to realize the 5G system. The authors suggested a structure for the core network based on SDN and
employ the edge computing. In [22], a network coding is developed and employed with SDN to reduce
Latency in 5G cellular system. The network coding is achieved through a software router that acts as a
virtual network function. The main problem with the system is that they did not consider the MEC;
however, they mainly concerned with the coding and SDN. The system is mainly introduced for 5G
and the Internet of Things [23–25].

In [26], an optimized framework for a virtual network is introduced to reduce end-to-end delay
in LTE-A cellular networks. A central controller is employed in the core network and used mainly for
slicing the physical resources. The authors employ Virtual Network Embedding (VNE) algorithm to
map the virtualized networks on substrate network. The system model consists of destination edge
routers and only single gateway. The edge router is responsible for the mobility management based on
a distributed mobility management (DMM) scheme that is applied to the system. The system mainly
concerned with the path optimization and network virtualization. The system achieves better latency
performance and increases the user mobility. MEC is not involved in the structure and the system may
be seen as a modification for the LTE-A cellular system.

In [27], a 5G based SDN architecture is introduced, with the dense deployment of small cells.
Employing small cell concept raises the challenge of frequent handover and the latency dedicated with
the handover process. Authors provide a system structure to overcome these challenges by using SDN
controller at the core network. Another main function of the controller is the allocation of radio access
resources and overcoming challenges that are associated with the deployment of multiple radio access
technologies. The system is mainly concerned with the problem of latency of the handover process.
SDN controller defines three types of programmed interfaces that make the system able to predict the
user is movement, and thus handle the handover process in less time.

Each work of the previous works employs a controller at the core network for certain functions.
All of these functions provide system with a high efficiency in terms of bit rate and latency. Since the
main requirement of the Tactile Internet system is the ultra-low latency, intelligent controller should be
deployed at the core of the network to achieve the desired latency.

3. System Structure

Tactile Internet system requires a very high availability and reliability, and ultra-low latency.
This put high constraints on system components in terms of context, content, and mobility. Tactile
Internet system requires an end-to-end latency of millisecond. This contains both the transmission
delay (including reaction transmission (feedback)) and the processing delay. The time between
stimulation and response should be in one millisecond. In another word, the end-to-end latency
should be less than the human reaction time [28]. In this work, we provide a frame work for the Tactile
Internet system, which can solve the problem of millisecond latency and achieves other requirements
from the Tactile Internet system.

Our Tactile Internet system may be generally viewed as a three layer system that is based on
the proposed 5G system structure, as suggested by Next Generation Mobile Networks (NGMN) [6].
As illustrated in Figure 2, the three layer system is based on the three main technologies; MEC, SDN,
and NFV. The whole structure is based on the 5G cellular system, which decouples the hardware and
software, and provides an APIs to facilitate the control and management of the system.
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Figure 2. System structure viewed as a three layer system.

The first layer is the physical hardware resource layer, which includes the cellular network
infrastructure (5G/Tactile user devices, fiber cables, cloud units, and networking nodes).

User devices may be a master robot or a 5G smart phone that have enough capabilities to be
configured in the network [29]. The master robot is a haptic device that represents the human interface
system. Haptic device has the ability to translate the human input to a haptic input by means of coding
techniques [30]. Using haptic devices users can feel and touch objects in remote environments and also
can control them.

Cloud units are employed at the edge of the network based on the concept of MEC. We built a
multi-level cloud based Tactile Internet system in [5,31], which can be used as the cloud part in this
layer. The multi-level cloud system moves from the idea of centralized cloud to the heterogeneous
distributed cloud units. Cloud units are employed in levels, the first level includes Micro-clouds with
small storage and processing capabilities connected to each cellular base station (eNB) [5]. The second
level employs more efficient cloud units with higher processing and storage capabilities, known as
Mini-clouds. Each Mini-cloud unit connects and controls a group of Micro-cloud units through a
very high speed fiber connections. The final level of cloud units is the main cloud unit with powerful
storage and processing capabilities centered at the core network. Main cloud unit connects, controls,
and monitors all Mini-cloud units connected to the core network. Also it acts as the gateway to the
huge central cloud units that are employed faraway. Figure 3 illustrates the different levels of cloud
units [5].
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Figure 3. Multi-level cloud layers for Tactile Internet system.

Introducing multi-level cloud units to the Tactile Internet infrastructure, achieves variety of
benefits that can be summarized in the following points [31]:

1- provides the offloading for the workload of the end user,
2- reduces the traffic load flow to the core network,
3- achieves better efficiency in terms of network congestion,
4- provides new services by accessing the network parameters through the BS,
5- provides higher security, and
6- reduces the end-to-end latency.

Reducing the end-to-end latency is achieved by reducing the communication path, as the cloud is
one hop away from the user’s equipment. The time passed in the core of the network has not existed,
as there is no data passed to the core network.

The second layer is the software deployment layer, which maintains libraries for all of the
functions that are needed in the network. These libraries are software functions and modules that
can be used in the desired location in the network. Also, the radio access parameters and other
configuration parameters of the network are located in this layer. The final layer is the application
layer, which defines the services and applications that are required by system operators.

The three layers of the system are connected through the system management and orchestration
interface. This interface is responsible for managing the operation of the first two layers based on
the business application in the higher layer. The management and control tasks of the interface
are performed through APIs. The management and orchestration interface is connected to the first
layer through APIs to perform, the system configuration and monitoring of status and performance.
Also, the software and parameters of the second layer can be fetched at any time by the managing
interface through APIs. The link between the application layer and the management and orchestration
interface allows the interface to perform network slicing for each application or map it to an existing
slice [6].

In order to perform these critical and various tasks, the management and orchestration interface
employs SDN/NFV technologies. SDN technology is one way that is used to overcome the problem of
one millisecond round trip delay concerned with the Tactile Internet system and the future 5G cellular
system. Moreover, SDN provides efficient solutions for achieving network flexibility and efficiency.
The core network of cellular network will be based on SDN technology [32]. SDN works based on the
separation of the data plane and the control plane. The two plans are linked through the OpenFlow
interface protocol.

Figure 4 illustrates the end-to-end structure of our proposed Tactile Internet system.
The end-to-end system structure consists of user devices, RAN (eNBs), cloud units, access switches,
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OpenFlow switches, Middleboxes, and, finally, SDN controller. Each base station (eNB) is connected to
the network through an access switch, which powerfully performs packet classification on traffic from
user devices. The access switches is software switches such as Open vSwitch [33].

 

Figure 4. End-to-end system structure.

The whole network is connected through OpenFlow switches that manage data packets and
forward traffic based on their flow tables. Middleboxes are commodity hardware that represents a way
for the network operators to add extra functionalities, such as firewall and network address translation.
The major requirements of the functions and services that are introduced by these Middleboxes are the
efficient use of resources and the system protection from attacks. All of these elements represent the
data plane of the network.

The last part of the system is the central controller (SDNC), which represents the control plane of
the network. By means of programming and control logic, SDNC can execute functions and operations
in the control plane. SDNC maintains the global information of the edge and core network devices
include; OpenFlow switches, access switches, Middleboxes, RAN, and cloud units. SDNC manages
and controls the edge and core network devices mentioned through the OpenFlow protocol. Table 1
contains some of the existing controllers that can be used as an SDNC with the OpenFlow protocol.

Functionally, switches that are used in the tactile system can be viewed as a packet forwarding
devices with single or multiple flow tables [34]. Two types of switches are deployed in the OpenFlow
based network, pure switches, and hybrid switches. Pure switches support only OpenFlow and fully
depended on the SDNC. In the other side, hybrid switches, which are more commercial, have the
ability to support OpenFlow with the traditional operations and protocols.

OpenFlow protocol is the signaling standard used for the communication between SDNC and
OpenFlow switches. In other words, the instructions from SDNC to other network devices are
transferred through the OpenFlow protocol [35]. Each OpenFlow node communicates with the SDNC
via a secured OpenFlow channel. OpenFlow switches build their forwarding tables and build the
packet processing rules based on the instructions delivered from the SDNC via the OpenFlow protocol.
These instructions are deduced from the flow table received from the SDNC. The flow table can be
viewed as a set of flow entries. Each of these entries holds a set of instructions to the node [36].

There are only three types of exchanged messages between SDNC and OpenFlow switches that
are legalized by the OpenFlow protocol. The first kind is the controller-to-switch messages. This type
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refers to all messages initiated and moved from the controller to any switch, for the issues that are
related to Handshaking, configuring the switch, checking status of the switch, and even modifying
the switch. A summary of all available controller-to-switch messages supported by OpenFlow 1.4 are
collected in Table 2, with the fields and entities of each one [37].

The second type represents all messages transferred from the switch to the SDNC; these messages
are referred to as asynchronous messages. Table 3 summarizes all of the asynchronous messages used
be OpenFlow 1.4; also, the function and structure of these messages are pointed [37]. The third type is
the message exchanged in both directions between SDNC and a switch. These messages are referred to
as symmetric messages and have various forms and functions. One of the main symmetric messages is
the echo request/response messages that are used by the switch or the SDNC to check latency and
measure bandwidth. Another important symmetric message is the error messages that are used to
report a connection problem. Error messages are mainly used by the switch to report a request failure.

SDNC improve system performance in many terms, such as system latency and user’s mobility.
One important aspect to reduce the round trip latency is to reduce the number of intermediate nodes
that are involved in the communication process and this is introduced by employing SDNC. Moreover,
SDNC can foresee the user’s mobility as it has access to all features of the user device (including;
device type, location, billing information, etc.), which improves the critical radio access processes,
such as handover. In other words, employing SDNC reduces the round trip latency, achieves handover
process easily, and also reduces the handover latency.

On way to illustrate the benefits of our system is to compare it with the latest traditional Evolved
Packet Core cellular network [38]. In the traditional Evolved Packet Core networks, all data traffic
flow through the Evolved Packet Core network including the Packet data Gateway (PGW) and the
Serving Gateway (SGW). This represents a load on these gateways and leads to an increase in round
trip latency. Unlike the traditional systems, our proposed system employs SDN, which removes this
barrier and reduces the round trip latency by reducing the number of intermediate nodes that are
involved in the communication process.

Figure 5 illustrates this comparison between two systems. While, in Figure 5b, the two eNBs
belong to the same Mini-cloud unit, but in Figure 5c, the two eNBs belong to different Mini-cloud
units. Another important aspect is that the SDN structure allows and facilitates adding or changing
network functions, which is not offered by the traditional systems. Moreover, network slicing can be
done through the SDNC which will be the main feature of the Tactile Internet and 5G systems.

Summing up, the advantage of the proposed structure can be summarized in the following points:

1- the system is more flexible, as routing can be established easily through SDNC,
2- the system is reliable as it relay on the open flow protocol and other standardized technologies,
3- the network function virtualization can be easily implemented powered by the use of SDNC,
4- the requirements for achieving a certain quality of service (QoS) of the system can be supported

by SDN. As the system can define and implement new rules through SDN switches and
Middleboxes and

5- the system provides higher scalability than traditional packet core networks. This is because the
SDNC takes into account the control process only and not involved in data flow.
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Figure 5. (a) Evolved Packet Core cellular network; (b) First case of the proposed system; (c) Second
case of the proposed system.

4. Simulation and Results

In this section, the proposed structure for the Tactile Internet system is simulated over a reliable
environment, and the results are discussed.

4.1. Simulation Environment and Experiment Set Up

There are a number of efficient simulation environments and frameworks that are used to simulate
and evaluate the performance and attributes of SDN and MEC based networks. One of the most
efficient, reliable, and powerful frameworks is the CloudSim environment and its related extension
projects. CloudSim is a Java based simulation framework that enables simulation, experimentation,
and modeling for cloud based networks [48]. CloudSimSDN is a Java based simulation framework
that is built on top of CloudSim [49]. This framework is developed mainly for simulation purposes of
SDN and cloud based systems.

In CloudSimSDN, the SDNC is programmable and it allows for the testing of VM management
policies and workload scheduling algorithms [50]. Furthermore, the centralized controller is
responsible for dynamically managing resources in data centers. Based on [49], the authors prove
that CloudSimSDN simulator provides much features and facilities with better or at least the same
performance as Mininet simulation environment. Also, it gives the ability for the modifications
and extensions.

We consider two simulation cases with the topology illustrated in Figure 5b,c. In the first case,
the two hosts belongs two different base stations (eNBs), but the two eNBs are connected to the same
Mini-cloud. In the second case, the two hosts are in different cells and the cells are connected to
different Mini-cloud units. The round trip delay is considered to be the performance of our system.
The simulation process is repeated multi-times, with different bandwidth for each time but with the
data size is the same in each case. All important simulation parameters used are illustrated in Table 4.
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Table 4. Simulation parameters.

Simulation Parameter Value

OpenFlow Switch processing delay 5 μs
SDN Controller processing delay 0.5 μs

Arrival rate of the Micro-cloud unit λi 15
The communication latency inside the cellular cell 100 μs

Bandwidth Variable
Micro-cloud RAM, Storage 1024 Mb, 1 Gb
Mini-cloud RAM, Storage 2048 Mb, 5 Gb

4.2. Simulation Results and Analyses

Figures 6 and 7 illustrate the results for the first and the second simulation cases. From simulation
results, the round trip delay is decreased with the increase of the system bandwidth. For the second
case, the round trip delay is higher than that of the first case, this is because the core network controller
is not involved in the communication process as the Mini-cloud unit manages and performs the
communication process. Based on [6,51] the user bit rate for the future 5G cellular system will range
from 1 Gbps to 10 Gbps. For the least expected bit rate (1 Gbps), the proposed tactile system affords a
round trip delay of 0.95 ms for the first simulation case and 1.22 ms for the second case. Moreover,
as the bit rate is raised above 1 Gbps the round trip delay gets below the previous values which make
the proposed structure get ride off the challenge of 1 ms round trip latency.

Based on the 3GPP release 13, the LTE system achieves round trip latency of 16 ms for the
100 Mbps bit rate and 8 ms for 1 Gbps based on release 15 [52,53]. Thus, the proposed system can
improve the latency efficiency and provides a way for Tactile Internet realization. When compared
to the traditional Evolved Packet Core network based on the 3GPP release 15, the proposed system
achieves 88% reduction of the round trip latency for the first case and 84% for the second case, which is
the worst.

Figure 6. Simulation results for the first case.
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Figure 7. Simulation results for the second case.

5. Conclusions

SDN, NFV, and MEC technologies are solutions to overcome the challenges associated with the
realization of Tactile Internet system, especially the 1 ms round trip latency. Employing SDN at the
core network of cellular system reduces the latency and efficiently improves the system performance.
This is because SDNC can efficiently manage and establish an efficient and flexible routing path
between any two end points. Thus, it can reduce the number of intermediate nodes that are involved
in communication process. The proposed structure for the Tactile Internet system, which employs
SDN at the core of the network and multi-level cloud units, poses a round trip latency of orders of ms.
Thus, this structure is helpful and effective for building the Tactile Internet system.
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Abstract: Understanding home activities is important in social research to study aspects of home life,
e.g., energy-related practices and assisted living arrangements. Common approaches to identifying
which activities are being carried out in the home rely on self-reporting, either retrospectively
(e.g., interviews, questionnaires, and surveys) or at the time of the activity (e.g., time use diaries).
The use of digital sensors may provide an alternative means of observing activities in the home.
For example, temperature, humidity and light sensors can report on the physical environment where
activities occur, while energy monitors can report information on the electrical devices that are
used to assist the activities. One may then be able to infer from the sensor data which activities are
taking place. However, it is first necessary to calibrate the sensor data by matching it to activities
identified from self-reports. The calibration involves identifying the features in the sensor data that
correlate best with the self-reported activities. This in turn requires a good measure of the agreement
between the activities detected from sensor-generated data and those recorded in self-reported data.
To illustrate how this can be done, we conducted a trial in three single-occupancy households from
which we collected data from a suite of sensors and from time use diaries completed by the occupants.
For sensor-based activity recognition, we demonstrate the application of Hidden Markov Models
with features extracted from mean-shift clustering and change points analysis. A correlation-based
feature selection is also applied to reduce the computational cost. A method based on Levenshtein
distance for measuring the agreement between the activities detected in the sensor data and that
reported by the participants is demonstrated. We then discuss how the features derived from sensor
data can be used in activity recognition and how they relate to activities recorded in time use diaries.

Keywords: sensors; time use diaries; activity recognition; time series; Internet of Things;
social research

1. Introduction

Social researchers take a great interest in household practices, among other things,
family dynamics and child-rearing (e.g., [1,2]), practices around meals [3], sleep [4], assisted living
arrangements and mobile health solutions (e.g., [5,6]), homeworking [7] and energy-related
practices [8]. Existing social research methods are both qualitative and quantitative, and often some
combination of the two are used for pragmatic and constructivist purposes [9].

Qualitative methods are used to acquire rich in-depth data. Observations and open-ended
interviews are particularly effective in capturing the meanings participants attach to various aspects of
their everyday lives and relations (e.g., [10]). Quantitative methods such as questionnaires and surveys
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capture qualitative information in formalised ways for computational processing, and are widely
used in large scale studies on demographics, household economics and social attitudes (e.g., [11,12]).
Time-use diaries are also used to log activity sequences [13], and to seek evidence of life changes and
social evolution [14]. Efforts to harmonise time use surveys across Europe have delivered guidelines
(HETUS) [15] on activity coding for analysing the time use data, but interviews and observations are
commonly used to cross-validate what goes on, and to calibrate and amplify the meaning of the diary
evidence, including the use of activity sensors and video cameras [16].

Sensor-generated data are becoming widely available and the topic of activity recognition [17] has
thrived in recent years with applications in areas such as smart homes and assisted living. Researchers
have investigated activity recognition methods using data obtained from various types of sensors,
for instance, video cameras [18], wearables [19] and sensors embedded in smartphones [20]. Such rich
contextual information has been used in various activity specific studies. For example, Williams et al. [4]
discuss the use of accelerometers to study people’s sleep patterns. Amft and Tröster [21] study people’s
dietary behaviour by using inertial sensors to recognise movements, a sensor collar for recognising
swallowing and an ear microphone for recognising chewing. Wang et al. [22] help in detecting elderly
accidental falls by employing accelerometers and cardiotachometers.

Numerous algorithms have been proposed for general activity recognition in the literature,
most of which are based on the assumption that by sensing the environment it is possible to infer
which activities people are performing. Dynamic Bayesian Networks (e.g., [23]), Hidden Markov
Models (e.g., [24]) and Conditional Random Fields (e.g., [25]) are popular methods due to their ability to
recognise latent random variables in observing sequences of sensor-generated data. Other approaches
rely on Artificial Neural Networks (e.g., [26]). A more detailed discussion will be given in Section 2.

To evaluate the adequacy of inferences about activities derived from sensor data, records of what
activities are taking place from direct observation can be used to obtain the so-called “ground truth”.
In the literature, there are three main types of approaches. The first relies on video cameras to
record what participants are doing during an experiment. For example, Lin and Fu [23], use multiple
cameras and floor sensors to track their participants. Although the data quality can be guaranteed
in a controlled lab, this method is very intrusive and difficult to deploy in an actual home. A second
common way of establishing ground truth is by asking participants to carry out a predefined list of
tasks, again, in a controlled environment. For example, Cook et al. [27] ask their participants to carry
out scripted activities, predetermined and repeatedly performed. Both of these methods correspond
with social research methods, such as questionnaires, surveys and interviews, in generating what
Silverman calls “researcher-provoked” data [28]. The outcomes may suffer the bias introduced by the
researchers in provoking participants’ activities as opposed to observing them without interference.
The third type of approach relies on human annotators to label sensor-generated data manually.
For example, Wang et al. [29] conducted a survey with their participants to have a self-reported
record of their main activities, and compared it to the annotated data based on video recordings.
This type of approach relies heavily on the annotator’s knowledge of participants’ activities and
their understanding of participants’ everyday practices, but may also be challenged by discrepancies
between the research-provoked survey and video data and non-provoked sensor-generated data.

In this study, we consider two data sources. The first is “digital sensors” that generate activity
data based on activity recognition derived from sensor-generated environment data (referred to as
sensor data or sensor-generated data in the rest of the paper). The second is “human sensors” that
generate activity data from participants’ self-reported time-use diaries (referred to as time use diary
or self-reported data in the rest of the paper). To make inferences from sensor data about human
activities, it is first necessary to calibrate the sensor data by matching the data to activities identified by
the self-reported data. The calibration involves identifying the features in the sensor data that correlate
best with the self-reported activities. This in turn requires a good measure of the agreement between
the activities detected from sensor-generated data and those recorded in self-reported data.
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To illustrate how this can be done, we conducted a trial in three residential houses, collecting
data from a set of sensors and from a time use diary recorded by the occupant (human sensor) from
each house over four consecutive days. The sensors captured temperature, humidity, range (detecting
movements in the house), noise (decibel levels), ambient light intensity (brightness) and energy
consumption. For activity recognition, we adopt an unsupervised learning approach based on
a Hidden Markov Model, i.e., only sensor-generated data are used to fit the model, which allows
the model to discover the patterns by itself rather than fitting the model with unreliable labels
from the time use diaries. We apply mean shift clustering [30] and change points detection [31] for
extracting features. To reduce computational cost, we adopt a correlation-based approach [32] for
feature selection. To compare the data generated by the two types of sensors, we propose a method for
measuring the agreement between them based on the Levenshtein distance [33].

The contributions of this paper are three-fold. First, we present a new data collection framework
for recognising activities at home, i.e., a mixed-methods approach of combining computational and
qualitative types of non-provoked data: sensor-generated and time use diary. Secondly, we investigate
the application of several feature extraction and feature selection methods for activity recognition
using sensor-generated data. Thirdly, we propose an evaluation method for measuring the agreement
between the sensor-supported activity recognition algorithms and the human constructed diary.
Compared to our previous work [34], this paper has the following extensions: (1) we add an illustration
of the trial setup procedure and discuss the design of the procedure; (2) we use a larger data set of
three households and investigate three more activity types; (3) we demonstrate the use of feature
selection in activity recognition to harness the exploration of feature combinations; and (4) we further
the analysis of results by triangulating with evidence from household interviews.

The rest of the paper is organised as follows. In Section 2, we discuss related work. In Section 3,
we give an introduction to the home settings. Thereafter, in Section 4, we describe the data collected
for this study, including both the sensor data and the time use diary data. In Section 5, we show how
features are extracted and selected and introduce our activity recognition algorithm. In Section 6,
we present the metric for evaluating agreement between activities recognised by the sensor-generated
data and what is reported by the participant, and give an analysis of the results based on the evidence
gathered from household interviews. Finally, we conclude our work with some possible extensions in
Section 7.

2. Related Work

In this section, we discuss the works that have been recently published in the area of automated
activity recognition in home-like environments in terms of the sensors they use, the activities they
detect, and the recognition methods they adopt or propose.

Early works (e.g., [23,35]) were concerned with designing frameworks for providing services
based on the prediction of resident action. For example, Lin and Fu [23] leveraged K-means clustering
and domain knowledge to create context out of raw sensor data and combined this with Dynamic
Bayesian Networks (DBNs) to learn multi-user preferences in a smart home. Their testbed allows
location tracking and activity recognition via cameras, floor sensors, motion detectors, temperature
and light sensors in order to recommend services to multiple residents, such as turning on TV or lights
in various locations or playing music.

More recently, the CASAS smart home project [36] enabled the detection of multi-resident
activities and interactions in a testbed featuring motion, temperature, water and stove (ad-hoc) usage
sensors, energy monitors, lighting controls and contact detectors for cooking pots, phone books and
medicine containers. Using the testbed, Singla et al. [37] applied Hidden Markov Models (HMMs)
to perform real-time recognition of activities of daily living. Their work explores seven types of
individual activities: filling medication dispenser, hanging up clothes, reading magazine, sweeping
floor, setting the table, watering plants, preparing dinner, and 4 types of cooperative activities: moving
furniture, playing checkers, paying bills, gathering and packing picnic food. Validated against the same
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data set, Hsu et al. [25] employed Conditional Random Fields (CRFs) with strategies of iterative and
decomposition inference. They found that data association of non-obstructive sensor data is important
to improve the performance of activity recognition in a multi-resident environment. Chiang et al. [38]
further improved the work in [25] with DBNs that extend coupled HMMs by adding vertices to model
both individual and cooperative activities.

The single-occupancy datasets from CASAS also attracted many researchers. For example,
Fatima et al. [39] adopted a Support Vector Machine (SVM) based kernel fusion approach for activity
recognition and evaluated it on the Milan2009 and Aruba datasets. Fang et al. [40] evaluated
the application of neural network for activity recognition based on a dataset of two volunteers.
Khrishnan and Cook [41] evaluated an online sliding-window based approach for activity recognition
on a dataset of three single-occupancy houses. The authors showed that combining mutual information
based weighting of sensor events and adding past contextual information to the feature leads to better
performance. To analyse possible changes in cognitive or physical health, Dawadi et al. [42] introduced
the notion of activity curve and proposed a permutation-based change detection in activity routine
algorithm. The authors validated their approach with a two-year smart home sensor data. In these
works, different kinds of sensors were used such as temperature and light sensors, motion and
water/stove usage sensors. The recognised activities range from common ones such as eating and
sleeping to more specific ones like taking medication.

ARAS [43] is a smart home data set collected from two houses with multiple residents. The
two houses were equipped with force sensitive resistors, pressure mats, contact sensors, proximity
sensors, sonar distance sensors, photocells, temperature sensors, and infra-red receivers. Twenty-seven
types of activities were labelled such as watching TV, studying, using internet/telephone/toilet,
preparing/having meals, etc. With the ARAS dataset, Prossegger and Bouchachia [44] illustrated the
effectiveness of an extension to the incremental decision tree algorithm ID5R, which induces decision
trees with leaf/class nodes augmented by contextual information in the form of activity frequency.

With a mission of elderly care, the CARE project [45] has carried out research on automatic
monitoring of human activities in domestic environments. For example, Kasteren et al. [46]
investigated HMMs and CRFs for activity recognition in a home setting and proposed to use Bluetooth
headsets for data annotation. Fourteen state-change sensors were placed on the doors, cupboards,
refrigerator and toilet flush. Seven types of activities were annotated by the participants themselves,
including sleeping, having breakfast, showering, eating dinner, drinking, toileting and leaving
the house. Two probabilistic models, HMM and CRF, were investigated for activity recognition.
Kasteren et al. [24] provided a summary of probabilistic models used in activity recognition and
evaluated their performance on datasets of three households with single occupant. Further work by
Ordonez et al. [47] evaluated transfer learning with HMMs on a dataset of three houses with the same
setting of sensor deployment and labelled activity types, showing potential of reusing experience on
new target houses where little annotated data is available.

Besides probabilistic models, neural network models are becoming popular in recognising
human activities. For example, Fan et al. [26] studied three neural network structures (Gated Recurrent
Unit, Long Short-Term Memory, Recurrent Neural Network) and showed that a simple structure
that remembers history as meta-layers outperformed recurrent networks. The sensors they used
include grid-eye infrared array, force and noise sensors as well as electrical current detectors. For their
model training, the participants performed scripted activities in a home testbed: eating, watching TV,
reading books, sleeping and friends visiting. Singh et al. [48] showed that Long Short-Term Memory
classifiers outperformed probabilistic models such as HMM and CRF when raw sensor data was used.
Laput et al. [49] proposed a general-purpose sensing approach with a single sensor board that is
capable of detecting temperature, humidity, light intensity and colour, motion, sound, air pressure,
WiFi RSSI, magnetism (magnetometer) and electromagnetic inference (EMI sensor). The sensors were
deployed in five different locations including a kitchen, an office, a workshop, a common area and
a classroom. For activity recognition, a supervised approach based on SVM and a two-stage clustering
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approach with AutoEncoder were used. The authors showed the merit of the sensor features with
respect to their contribution to the recognition of 38 types of activities.

While several other approaches exist for activity recognition and capture, they mostly employ only
wearable sensors (i.e., see [19] for a recent survey), and thus cannot be applied in multi-modal scenarios
of smart-home settings with fixed, unobtrusive and ambient sensors. In addition, due to the time-series
nature of activity recognition in the home environment, supervised algorithms not incorporating the
notion of temporal dependence might lead to poor performance in activity recognition, so such works
are not reviewed here.

Time use diaries are widely used for collecting activity data. To validate time use diaries,
Kelly et al. [16] tested the feasibility of using wearable cameras. Participants were asked to wear
a camera and at the same time keep a record of time use over a 24-hour period. During an interview
with each participant afterwards, the visual images were used as prompts to reconstruct the activity
sequences and improve upon the activity record. No significant differences were found between the
diary and camera data with respect to the aggregate totals of daily time use. However, for discrete
activities, the diaries recorded a mean of 19.2 activities per day, while the image-prompted interviews
revealed 41.1 activities per day. This raises concerns of using the data collected from time use diaries
for training activity recognition models directly.

In this work, we use a suite of fixed sensors. For activity recognition, we build our model
based on HMMs. In particular, we investigate the use of mean shift clustering and change points
detection techniques for feature extraction. A correlation-based feature selection method is applied to
reduce computational cost. Our work differs from similar studies in that we adopt a mixed-methods
approach for the problem of recognising activities at home, and we evaluate its effectiveness using
a formal framework.

3. Experiment Setting

For this work, we installed a suite of sensors in three households. The data collected by the
sensors were encrypted and sent to a central server over the Internet.

3.1. Sensor Modules

We used six types of sensor modules, as summarised in Table 1.

Table 1. Sensor Modules.

Sensor Modules Measurement

Sensor Box

Temperature sensor °C
Humidity sensor %
Light Sensor μW

cm2

Ranging sensor cm
Microphone dB SPL

Energy monitor watts

The first five sensor modules are encapsulated in a sensor box, as shown in Figure 1a,
coordinated by a Seeeduino Arch-Pro [50]. The temperature and humidity sensor HTU21D [51]
is managed via an I2C interface and sampled periodically by the client application deployed on the
ARM core. An Avago ADPS-9960 light sensor [52] , also managed via an I2C interface, is used to
sample ambient light measured in μW

cm2 . The GP2Y0A60SZ ranging sensor from Sharp [53] is an analog
sensor with a wide detection range of 10 cm to 150 cm, which is sampled via a 12 bit ADC and
converted through the manufacturer’s calibration table. Finally, the MEMS Microphone breakout
board INMP401 [54] is used to sample noise levels in the environment via an ADC and the values are
converted to decibels (dB SPL).
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The other sensor module used in this work is a commercial electricity monitoring kit from
CurrentCost [55], as shown in Figure 1b. It features a current transformer (CT) clamp, a number of
individual appliance monitors (IAMs) and a transmitter to measure the energy consumption in watts
of the whole house as well as the individual appliances.

(a) (b)

Figure 1. Sensor Modules: (a) Sensor Box; and (b) Electricity Monitor.

Compared to the works discussed in Section 2, the sensor modules used for this work require
little effort on part of the participants.

3.2. Demonstration and Installation

For each household, we first set up an interview with the participants, in which we demonstrate
the workings of the sensor platform to demystify the experiment, e.g., to show what kinds of data are
collected, and what can be seen in the data. Figure 2 shows the interface of our sensor data collection
and visualisation platform. Participants can interact with the sensors, e.g., turn electrical equipment
on and off, move in front or make loud noise around a sensor box, breathe on it, etc., and see in real
time the changes of corresponding sensor readings.

range

temperature

light

humidity

sound

range

temperature

light

humidity

sound

Figure 2. Demonstration Interface.

Thereafter, we ask the participants to give a tour of their house and explain what goes on at
different times in different rooms, who is involved, and so on. However, they are free to omit any
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room or area of the house. A sketch of the floor plan with markings of potential places for installing
sensors is produced in the meantime.

After the interview, another appointment is made for sensor installation. During the installation,
the participants guide the researchers around the house and negotiate the location for placing
the sensors.

3.3. Trial Households

Three trial households are included in the experiment presented here, each with a single occupant.
Table 2 shows the house composition and the sensor deployment.

Table 2. Sensors installed in each trial home.

Household Rooms
Sensor Boxes

(Location Installed)
Electricity Monitors

(Appliances Attached)

1

Master bedroom Next to bed

Guest bedroom Next to bed Teasmade

Kitchen Entrance;
Food preparation area

Washing machine;
Microwave; Kettle

Living room with
dining space Entrance; Sitting area TV

Living room Sitting area

Hallway On the wall

2

Bedroom Next to bed

Kitchen Cooking area Washing machine; Kettle,
Toaster, Bread maker

Living room with
dining space Dining area; Sitting area TV; Ironing/Vacuum

Living room Sitting area Laptop

Study Book shelf

Hallway On the wall

3

Bedroom Next to bed

Kitchen Food preparation area;
Cooking area

Washing machine; Kettle,
Toaster

Dining room
combined with study

Sitting area; Next to
desktop computer Desktop computer

Living room Sitting area

First utility room Near entrance

Second utility room Near entrance

Hallway On the wall Vacuum cleaner

For all the three houses, there was at least one sensor installed in each room, except bathrooms
which do not have electrical outlets in the UK. The number of sensor boxes installed in each room
depends on the size of the room. The locations where the sensor boxes were installed were meant
to cover as much as possible of the room space but were sometimes constrained by the availability
of power supply. A selection of more commonly used home appliances were attached to individual
energy monitors. Their energy consumption as well as the total consumption for each of the households
were also recorded.
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4. Data Sets

In the experiment, two types of data were collected, sensor-generated data and time use diaries.
The time use diaries cover a period of four consecutive days for all three households between June and
July 2017 from 6:00 a.m. on the first day until 5:50 a.m. on the last day. The sensor-generated data set
covers an extended period from 6:00 p.m. on the previous day of the starting date (time use diary)
and to 12:00 p.m. of the last day (time use diary). The reason for such an extension is to incorporate
the relevant signals before and after the recorded time use which will be illustrated in Section 5.1.

4.1. Sensor-Generated Data

The sensor-generated data consists of readings from the six types of sensor modules as shown in
Table 1.

The data from sensor boxes were collected around every three seconds. An example reading from
a sensor box is shown as follows:

{“Box_ID”: 123, “Timestamp”: 2016-12-13 09:00:00, “Temperature”: 20,
“Humidity”: 50, “Sound”: 45, “Range”: 100, “Light”: 583}

For range, the lowest values among samples at 1000 Hz within each period of three seconds was
collected, i.e., the distance to the nearest object that has been detected in the period of three seconds.
This is to minimise the number of false negative detections which may happen when only collecting
samples at a point of time every three seconds. Noise level (sound) is derived from an on-device
conversion of air pressure changes (sampling at around 1000 Hz) to decibels (dB). The readings from
all the other sensor modules are sampled once every three seconds.

The data from electricity monitors (IAMs) was collected around every six seconds. An example
reading from an IAM is shown as follows:

{“IAM_ID”: 123, “Timestamp”: 2016-12-13 09:00:00, “Watts”: 100}

The sensor boxes can capture various environmental changes but not all the changes are caused
by human activities. For example, the weather can be an important factor influencing temperature and
humidity. By carefully modelling the changes, we may be able to distinguish those caused by human
activities from those caused by external factors as they differ in terms of magnitude and frequency.

Table 3 shows the statistics about the total number of readings of the sensor-generated data used
in this work with respect to the three households.

Table 3. Sensor Data Set Statistics.

Household Sensor Boxes Energy Monitors Total

1 1, 052, 439 × 5 353, 487 5, 615, 682
2 918, 374 × 5 356, 310 4, 948, 180
3 1, 183, 008 × 5 298, 397 6, 213, 437

The multiplier 5 in the second column indicates that each reading from a sensor box consists of
five data attributes corresponding to the five sensor modules as shown in Table 1.

4.2. Time Use Diary

During the four days of the experiment, the occupant from each household was asked to keep
a diary of time use based on the HETUS model [15]. The participants were asked to update the diary
at 10-minute intervals except sleeping and keep track of the 10 minutes interval using their own
preferred method, e.g. setting up a timer. The diary was paper-based and the participants were given

51

Bo
ok
s

M
DP
I



J. Sens. Actuator Netw. 2017, 6, 32

instructions on how to fill the diary using pens and shorthand. For example, an arrow can be used to
mark an activity that takes longer than 10 minutes. However, given the heavy workload of filling such
a diary, it is very likely that the participants may not have strictly followed the guidelines, as will be
further illustrated in Section 6.1.

Table 4 gives a partial sample of what is recorded: the participant specifies for every 10 minutes
what he or she has been doing primarily (and possibly secondarily) in which location/room (possibly
with the assistance of or involving devices). For each household, there is at least one activity recorded
by the occupant at each of the 10 minutes slots over the course of four days, which produces in total
576 data points from the diary.

Table 4. Time use diary example.

Time Primary Activity Secondary Activity Location Devices

08:00–08:10 Preparing meal Listening to radio Kitchen Kettle, Radio
08:10–08:20 Eating Watching TV Living room TV

...
...

...
...

...

18:00–18:10 Preparing meal ——– Kitchen Oven
18:10–18:20 Preparing meal ——– Kitchen Oven

In this study, we focus on seven types of home activities that have been recorded in the time
use diaries: sleeping, preparing meal, making hot drink (tea or coffee), eating (breakfast, lunch or dinner),
watching TV, listening to radio, and doing laundry. It has to be noted that these are not the only activities
the participants reported in their diaries. These seven activity types are selected because they were
reported by the occupants from all the three households and occur at a relatively higher frequency or
last for a relatively longer time. Table 5 shows a summary of how many times each type of activity
occurred and their duration in each household.

Table 5. Number of occurrences and time spent for each type of activity in the data set.

Activity
Household 1 Household 2 Household 3

Number of
Occurrences

Percentage
of Time

Number of
Occurrences

Percentage
of Time

Number of
Occurrences

Percentage
of Time

Sleeping 5 36.94% 5 31.08% 5 40.28%
Preparing meal 8 2.08% 10 2.78% 7 3.47%
Making hot drink 13 2.26% 11 1.91% 2 0.52%
Eating 10 4.17% 8 3.65% 8 3.30%
Watching TV 13 16.15% 2 1.39% / /
Listening to radio / / 15 10.42% 6 17.88%
Doing Laundry 1 0.17% 6 1.04% 2 2.43%

Household 1 does not have a radio while the occupant had the TV turned on a lot of the time.
Household 3 does not have a TV while the occupant had the radio turned on a lot of the time.
Notice that for each household the total percentage of time designated to the seven activity types does
not sum up to 100% because other activities carried out by the occupants are not listed in the table.

4.3. Data Reliability

In this section, we analyse the reliability of sensor-generated data in parallel form via the Pearson
correlations between readings from each pair of sensors that are of the same type and placed in the
same room (see Table 2). Table 6 summaries the correlations.
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Table 6. Pearson correlation between the readings from pairs of sensors placed in the same room.

Sensor Reading Temperature Humidity Light Range Sound

Household 1 (kitchen) 0.94 0.75 0.90 0.56 0.88
Household 1 (living/dining room) 0.93 0.89 0.95 0.21 0.86
Household 2 (living/dining room) 0.49 0.62 0.85 0.33 0.57
Household 3 (kitchen) 0.90 0.92 0.97 0.29 0.80
Household 3 (dining room/study) 0.83 0.90 0.71 0.20 0.57

It can be seen that sensor readings from the same type of sensor in the same room have a strong
correlation except for the readings from all pairs of ranging sensors and the pair of temperature sensors
in Household 2 (living/dining room). The relatively low correlations between ranging sensors may
relate to the fact that: (1) ranging sensors have a limited sensing capability (up to 150 cm); and (2) one
of our guidelines of installing sensors is to cover as much room space as possible, i.e., ranging sensors
(sensor boxes) are placed to capture movements in different parts of the room. Therefore, it is expected
that only one of the ranging sensors is triggered at any given time. As for the pair of temperature
sensors, the relatively low correlation may be due to their positions in the room, i.e., one of the sensor
boxes is placed near the window and the other is placed away from the window.

In Section 6, we will further discuss inter-rater/observer reliability by means of the agreement
between sensor-generated data and human recorded time use diary.

5. Recognising Activities

Sensor-generated data provides a digital means of looking into the life of a household. Such data
in itself does not tell directly what is taking place but it provides rich contextual information drawn
from the aggregate of environmental variables. Our objective in this section is to investigate what
kinds of features can be drawn from the sensor-generated data and how such features can be used for
activity recognition.

5.1. Feature Extraction

Activities give rise to changes in sensor readings. For example, when cooking, the temperature may
rise in the kitchen because of the heat emitted from the hob, humidity levels go up and range readings
may fluctuate intensively because of the physical movements involved. These types of changes in
the sensor-generated data are essential to better understand the context of activities and to recognise
their occurrence.

There are two types of patterns in the sensor readings observed in our experiments. The first
type is clusters, i.e., absolute values of sensor readings appear naturally in clusters. For example,
the readings of the ranging sensor are either the maximum value during periods when nothing comes
in and out of range or distinctly much smaller values. The second type relates to the distribution
changes of sensor readings along the time dimension, thus taking into account both time dependency
and value changes between sensor readings.

Accordingly, we investigate the application of three methods for extracting features from
sensor-generated data. The first, mean shift [30], aims at clustering the readings of sensor data into
different value bands. The second method, change points detection [31], aims at finding meaningful
points of change in the sequences of sensor-generated data. The third method, change points gap
detection, which is based on the second method, aims at identifying the length of stable periods of
readings in sensor-generated data. In our experiment setting, we apply these three feature extraction
methods upon the re-sampled data, which is detailed in the next section.
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5.1.1. Re-Sampling

To align with the time use diary and synchronise the data from the different sensors (sensor box
and energy monitors), we re-sample the sensor data with bins of 10 minutes. Re-sampling is done
using the maximum values for temperature, humidity, brightness, noise level, and the minimum
values for range. To cover the time use diary and give buffers for feature extraction, we re-sample and
use the sensor data from 6:00 p.m. on the day before the period of the time use diary to 12:00 p.m.
on the day after that. The re-sampling results 685 data points (observations) for each sensor.

5.1.2. Mean Shift

Mean shift is a non-parametric clustering method that does not require prior knowledge of the
number of clusters. It is based on an iterative procedure that shifts each data point to its nearest
local mode, by updating candidates for centroids to be the mean of the data points within its
neighbourhood [30].

Given a set of data points S in a n-dimensional Euclidean space X, mean shift considers these
data points as sampled from some underlying probability density function and uses a kernel function
for estimating the probability density function. In this work, we chose to use a flat kernel K with
a bandwidth h, as defined below:

K(x) =

{
1 if ‖x‖ ≤ h,

0 otherwise.

The sample mean at x ∈ X is

m(x) =
∑s∈S K(s − x)s
∑s∈S K(s − x)

The difference m(x)− x is called mean shift and the mean shift algorithm is the procedure of
repeatedly moving data points to the sample means until the means converge. In each iteration, s is
updated by m(s) for all s ∈ S simultaneously. As a result, all the data points are associated with
a centroid/cluster. Applying this procedure to the re-sampled raw sensor readings, each data point
in the re-sampled dataset is represented by the index of its associated cluster. The implementation is
based on python scikit-learn [56].

As an example, the lower parts of Figures 3 and 4 show the results of features extracted via the
mean shift clustering algorithm. The data depicted in the upper parts of the two figures are from range
and noise-level readings in the living room (with dining space) of Household 1. The readings for range
generate two clusters with indices of 0 and 1. A straightforward explanation is that the cluster with
index 0 represents the times when no movements are detected in the room and the cluster with index
1 represents the times when movements are detected. As for the noise level, four clusters are generated
with indices of 0, 1, 2, and 3, in which the cluster with index 0 represents the times when the kitchen is
relatively quiet while the other three clusters represent increasingly higher levels of noise.
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Figure 3. Mean shift clustering of range readings from a sensor box in the living room (with dining
space) of Household 1.

Figure 4. Mean shift clustering of noise-level readings from a sensor box in the living room (with
dining space) of Household 1.

5.1.3. Change Points Detection

Change points detection is a method of estimating the times at which the statistical properties of
a sequence of observations change [31].

Given a sequence of data, x1:n = (x1, . . . , xn), a change is considered to occur when there
exists a time τ ∈ {1, . . . , n − 1} such that the statistical properties of {x1, . . . , xτ} differ from that
of {xτ+1, . . . , xn}, e.g., in mean or variance. In the case of multiple changes, a number of change points
τi, i ∈ {1, . . . , m} are identified, that split the sequence of data into m + 1 segments.

The parameters of the change points distribution are estimated via maximum likelihood by
minimising the following cost function:
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m+1

∑
i=1

[C(x(τi−1+1):τi
)] + β f (m)

where C is a cost function for assuming a change point at τi in the time series data and β f (m) is
a penalty function to avoid over fitting (i.e., too many change points).

For our sensor data, we focus on detecting the changes of mean in the sensor readings. A manual
setting is used for the penalty function so that the number of change points can be adjusted. The change
points detection algorithm is the pruned exact linear time (PELT) [57] which is computationally efficient
and provides an exact segmentation. By applying the change points detection algorithm upon the
re-sampled data, we obtain a sequence of 1s and 0s, where “1” represents the presence of a change
point and “0” as absence. The implementation is based on the R package introduced in [58].

As an example, Figures 5 and 6 show the change points detected from the temperature and
humidity readings in the kitchen of Household 2. The change points are indicated by the vertical
grey lines.

Figure 5. Change points of temperature readings from a sensor box in the kitchen of Household 2.

Figure 6. Change points of humidity readings from a sensor box in the kitchen of Household 2.

5.1.4. Change Point Gaps

Change points detected in sensor signals indicate changes in the home environment, which may
be caused by human activities. While the time periods during which no change of sensor signal is
detected may on the other hand indicate the lasting of some activities. For instance, when the house
is asleep we can expect a long gap between changes that are detected in electricity consumption and
brightness in the house, i.e., from the time of going to bed to getting up, as shown in Figures 7 and 8.
Therefore, the length of gaps between change points can also be a useful feature to identify occurrences
of activities. Given a sequence X = (x1, . . . , xn) where xi = 1 represents the presence of a change point
and xi = 0 represents the absence of a change point, the length of gaps between change points with
respect to xi is calculated as follows:

gap_cp(xi) =

{
k − j if xi = 0,

0 otherwise.
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where j < i < k, xj = xk = 1, ∀l ∈ {j + 1, . . . , k − 1} : xl = 0.
In the experiment, we apply the above gap detection to the change points inferred from each type

of sensor reading.

Figure 7. Gaps between change points in the electricity readings from the CT clamp connected to the
electricity main of Household 3.

Figure 8. Gaps between change points in the brightness readings from the sensor box in the bedroom
of Household 3.

Figure 7 shows big gaps between changes in the total energy consumption, indicated by the width
and height of the bars, detected between midnight and early morning every night. A similar and
aligned pattern can be found in the brightness of the bedroom as shown in Figure 8.

In this section, we presented three kinds of features (mean-shift clustering, change points, and gaps
between change points) that can be extracted from the sensor-generated data, which expands the
number of data values in each observation by three times. That is, for Household 1, there are
140 features extracted from the sensor readings of eight sensor boxes and six energy monitors;
for Household 2, there are 123 features extracted from the sensor readings of seven sensor boxes
and six energy monitors; and, for Household 3, there are 150 features extracted from the sensor
readings of nine sensor boxes and five energy monitors. After feature extraction, we truncate the
feature data points in the extended periods to match the time use diary. This reduces the number of
feature data points from 685 to 576 for each type of sensor reading. The series of feature data points is
at the frequency of one per 10 minutes.
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5.2. Feature Selection

For different types of activities, some features are more relevant than the others. Given the size of
the feature sets, it is intractable to evaluate all the possible subsets of the features. To this end, a feature
selection process is necessary for finding a subset of features that can effectively describe the data while
reducing irrelevant or highly-correlated inputs [59]. In this work, we adopt the approach proposed
in [32], which is based on the heuristic that takes into account the usefulness of individual features for
predicting the class labels along with their inter-correlations. A formalisation of the heuristic is given
by [60]:

MeritS =
krc f√

k + k(k − 1)r f f

where MeritS represents the heuristic “merit” of a feature subset S containing k features, rc f is the mean
feature-class correlation ( f ∈ S), and r f f is the average feature-feature inter-correlation. The numerator
indicates how predicative of the class a group of features is, while the denominator indicates how
much redundancy there is within the group.

Following the proposal in [32], the metric of symmetrical uncertainty [61] is used for calculating
feature-feature and feature-class correlations. Symmetrical uncertainty is based on the concept of
information gain [62] while compensating for its bias towards attributes with more values and
normalising its values to the range from 0 to 1.

As an example, Figures 9 and 10 show the feature-feature correlations between the sensor readings
(temperature and range) of the two sensor boxes installed in the kitchen of Household 1, and the
feature-class correlation between the sensor readings of electricity consumption and seven activity
types in Household 3. The prefixes, MS_, CP_ and Gap_CP_, represent the feature extracted via the
mean shift clustering, the change points detection, and the gaps between the detected change points.
We can see in Figure 9 that the features extracted from the temperature readings of the two sensor boxes
have much higher correlations than that of the features extracted from the range readings. That is, the
temperature readings from the two sensor boxes have high redundancy, and thus it is likely that the
feature selection algorithm will only keep one of them. In Figure 10, we can see that there is a strong
correlation between the occurrences of laundry activity and the features based on the readings of the
energy monitor attached to the washing machine. Therefore, for recognising laundry activity, such
features should be kept.
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Figure 9. Correlations between the features of temperature and range readings from two sensor boxes
installed in the kitchen of Household 1.

Figure 10. Correlations between the activities recorded by the occupant from Household 3 and the
features of electricity consumption.

In the experiment, we run the feature selection algorithm upon the data from each combination
of households and activities. The implementation is based on the python package scikit-feature [63].
As a result, an “optimal” subset of features is returned per activity type per household. Since the feature
selection algorithm is based on correlation rather than prediction results directly, their performance is
not guaranteed. Thus, we evaluate all the prefixes of the feature array returned by the feature selection
algorithm in the task of activity recognition and find the best subset in terms of the agreement between
the recognition results and the time use diaries.
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5.3. Recognition Method

Hidden Markov models (HMMs) have proven to be effective in modelling time series data [64].
They are a good fit for recognising activities from sensor-generated data in the sense that they are
capable of recovering a series of latent states from a series of observations.

An HMM is a Markov model whose states are not directly observable but can be characterised
by a probability distribution over observable variables. In our case, the hidden states correspond to
the activities performed by the participant and the observations correspond to the sensor readings.
There are two assumptions in HMMs, as illustrated in Figure 11. The first is that the hidden state yt

depends only on the previous hidden state yt−1. The second is that the observation xt depends on the
hidden state yt.

· · · yt−1 yt yt+1 · · ·

xt−1 xt xt+1

Figure 11. Graphical representation of a Hidden Markov Model.

An HMM is specified using three probability distributions: (i) the initial state probability
distribution; (ii) the transition probability of moving from one hidden state to another; and (iii) the
emission probability of a hidden state generating an observation. The parameters of these three
probability distributions can be estimated by maximising the joint probability:

P(y, x) = P(y1)P(x1|y1)
T

∏
t=2

P(yt|yt−1)P(xt|yt)

For each type of activity in each household, we built HMMs using the feature sets selected by the
method presented in Section 5.2. We parameterize the HMMs with two hidden states (either an activity
is occurring or not occurring) and multinomial emissions since input features are discrete values.
When fitting HMMs to the data, we do not prescribe the labels for the hidden states. Thus, the activity
labels (indicting whether an activity is occurring or not) in the time use diaries are randomly assigned
to the hidden states by HMM fitting algorithm. For each type of activity, we evaluate both possible
assignments of activity labels to the two hidden states of HMMs. This allows the HMMs to discover
the patterns by itself rather than fitting models with unreliable labels from the time use diaries. In this
way, the application of HMM is unsupervised as the model is fitted only with sensor-generated data.

For each of the seven types of activity shown in Table 5, we fitted the HMMs n times with each
subset of features returned by the feature selection algorithm explained in Section 5.2 using randomised
initial states. The implementation is based on python hmmlearn [65]. Only the model with the highest
agreement is considered as the one recognising the designated activities. Other HMMs with lower
agreement may detect other non-relevant activities or not even activities. In this work, we use n = 1000
which is manually tuned.

In the next section, we describe how to evaluate the agreement between HMM models and time
use diaries, i.e., how sequences of hidden states returned by the HMMs are related to the sequences of
activities recorded in the time use diary.
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6. Agreement Evaluation

6.1. Evaluation Metric

In the previous section, we introduced the activity recognition framework. By fitting a HMM
to the data generated by the sensors, sequences of hidden states can be extracted. In this section
we illustrate how to evaluate the agreement between state sequences generated by the HMMs
and the activity sequences recorded in the time use diary, which provides a quantification of
inter-rater/observer reliability.

A time use diary may contain misreports in several ways. First, the start and end time of individual
activities may not be accurately recorded, i.e., either earlier or later than the actual occurrence. This is
called time shifting. Secondly, there might be activities that occurred but were not recorded, which are
missing values. Pairwise comparison like precision and recall may exaggerate the dis-similarity
introduced by such noise. Thus, we need an agreement evaluation metric that is able to alleviate
the effect.

A suitable metric for this task is the Levenshtein distance (LD), a.k.a., edit distance [33] which has
been widely used for measuring the similarity between two sequences. It is defined as the minimum
sum of weighted operations (insertions, deletions and substitutions) needed to transform one sequence
into the other. Compared to the pair-wise evaluation framework upon sequence data, LD based method
can deal with the aforementioned problems of misreports. However, it is more computation intense.

Formally, given two sequences s and q, the Levenshtein distance between these two sequences
Ds,q(|s|, |q|) is defined by:

Ds,q(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Di0 = ∑i
k=1 wdel(sk) for 1 ≤ i ≤ |s|

D0j = ∑
j
k=1 wins(qk) for 1 ≤ j ≤ |q|

min

⎧⎪⎪⎨⎪⎪⎩
Ds,q(i − 1, j) + wdel(si)

Ds,q(i, j − 1) + wins(qj)

Ds,q(i − 1, j − 1) + 1(si 
=qj)
wsub(si, qj)

for 1 ≤ i ≤ |s|, 1 ≤ j ≤ |q|.

where 1(si 
=qj)
is an indicator function that equals 0 when si = qj and equals 1 otherwise. The three lines

in the min bracket correspond to the three operations transforming s into q, i.e., deletion, insertion and
substitution. wdel , wins and wsub are respectively the costs associated with the deletion, insertion and
substitution operations.

The inputs to the function of Levenshtein distance, in our case, are two sequences of labels with
respect to a type of activity. One is generated by the HMMs and the other is the corresponding
activity labels recorded in the time use diary. The elements of both sequences are composed of two
values: “0” indicating the absence of the activity and “1” indicating the presence of the activity. In our
agreement evaluation, we attempt to minimise the difference introduced by slight time shifting and
mis-recording of activities. For these reasons, we set the costs of the three types of operations wdel , wins
and wsub as follows. For substituting “1” with “0”, the cost is set to 0.7; for substituting “0” with “1”,
the cost is set to 1.0. This gives less penalty to cases of false positive than to cases of false negative,
i.e., the agreement is lower when the activities recorded in the time use diaries are not recognised
from the sensor data. The costs of inserting and deleting ‘0’ are set to 0.4. This is to reduce the penalty
introduced by time shifting. We set the cost of inserting and deleting ‘1’ to 100 to disable these two
operations. The output is the minimum cost of the operations that are needed to transform predicated
sequences to the ones recorded in time use diaries and lower values indicate higher agreements. The
implementation is based on the python package weighted-levenshtein [66].

The costs of deletion, insertion and substitution are used to differentiate their influence upon the
perceived agreement. The absolute difference between these costs will be investigated in future work.
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6.2. Results and Analysis

In this section we discuss the results from applying the aforementioned activity recognition
method to the collected data and compare them to the interview data of the corresponding households.
Table 7 lists the set of features that achieves the best agreement in terms of the Levenshtein distance
(LD) between the activity sequences generated by the HMMs and that recorded in the time use diary.

Table 7. Feature sets achieve best agreement with respect to the seven types of activities.

Household Activities Feature Sets LD

1

Sleeping (MS_light_living/dining-room,
Gap_CP_light_bedroom) 11.9

Preparing
meal (MS_watts_total, MS_watts_microwave) 6.0

Making hot
drink (MS_watts_kitchen-appliances) 5.1

Eating (MS_watts_total) 17.0

Watching TV (MS_watts_TV) 16.6

Doing
laundry (MS_watts_washing-machine) 0.7

2

Sleeping (CP_light_kitchen(1), CP_light_bedroom,
MS_temperature_living/dining-room(2)) 16.7

Preparing
meal (MS_watts_kitchen-appliances) 11.2

Making hot
drink (MS_sound_kitchen(1)) 11.6

Eating (MS_watts_kitchen-appliances,
MS_range_living/dining-room(2)) 11.0

Watching TV (MS_watts_TV) 4.8

Listening to
radio

(CP_range_hallway, MS_watts_kitchen-appliances,
MS_range_bedroom) 37.3

Doing
laundry

(CP_watts_total, CP_watts_kitchen-appliances,
CP_watts_washing-machine) 12.1

3

Sleeping (Gap_CP_range_living-room) 5.9

Preparing
meal (MS_range_kitchen(2), MS_watts_PC) 26.1

Making hot
drink

(CP_humidity_second-utility,
CP_temperature_kitchen(2),

CP_humidity_bedroom)
1.7

Eating (MS_range_kitchen(2),
CP_temperature_dining-room/study(1)) 16.0

Listening to
radio (MS_sound_living-room) 37.2

Doing
laundry

(MS_watts_washing-machine,
CP_watts_washing-machine) 2.6

For the sleeping activity of Household 3, the best agreement is achieved by the feature capturing
the gaps between the changes of movements in the living room. According to the interview data,
we know that the living room is the geographical centre of the house, i.e., the passage to transit between
kitchen, dining/study area and the sleeping area. The occupant keeps busy at home and spends a lot
of time in the dining/study area and the living area.
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For the activity of making hot drink, the feature identifying humidity changes in the utility room
and bedroom of Household 3 is contained in the subset of features that achieves the best agreement.
A further investigation of the time use diary shows that when making coffee in the kitchen in the
mornings the occupant shaves in the bathroom which is located next to the utility room and bedroom.
The humidity change in this case is very likely caused by the humid bathroom.

The overlaps between the subsets of features that achieve the best agreement in recognising
activities of preparing meal and eating show the close relation between the two types of activities.
This demonstrates that sensor insensitive activities may be recognised via sensor readings from their
causal/correlated activities. In this case, the recognition of preparing meal can help recognise eating.

For the laundry activity, since we have an energy monitor attached to the washing machine
of each household, it is expected that using the features capturing the energy consumption of the
washing machine would achieves the best agreement. However, for Household 2, the feature subset
that achieves the best agreement also contains the changes of the energy consumption of the kitchen
appliances as well as that of the total energy consumption. A further investigation of the time use
diary shows that when doing laundry the occupant quite often cooks or makes coffee around the same
time. However, among the three households, the agreement between the HMM and the time use diary
for laundry activity in Household 2 is the lowest, which may indicate the possibility of misreport or
that the reported laundry activities involve other elements, such as sorting, hanging out, folding, etc.

Among the seven types of activities, listening to radio has the lowest agreement (the largest value
in LD) between the detection from the sensor-generated data and the records in the time use diaries.
In case of Household 2, the time use diary tells us that the occupant listens to radio in the bedroom
while getting up, in the kitchen while preparing meals and in the dining area when having meals.
Similarly, the occupant in Household 3 listens to radio in the kitchen when preparing meal and in the
living room when relaxing. In both cases, the occupant is using more than one device for listening to
radio in more than one place.

For illustration, we plot the comparison of each type of activity detected from the sensor data
and that recorded in the time use diaries (Figures 12–18). In each figure, the upper part shows the
state sequences generated by an HMM using the specific set of features, and the lower part shows the
activity sequences recorded in the time use diary (TUD). The black bins represent the time slices when
a particular activity is detected/recorded.

Figure 12. Recognising the activity of preparing meal in Household 1 with feature set (MS_watts_total,
MS_watts_microwave).
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Figure 13. Recognising the activity of making hot drink in Household 1 with feature set
(MS_watts_kitchen-appliances).

Figure 14. Recognising the activity of eating in Household 2 with feature set
(MS_watts_kitchen-appliances, MS_range_living/dining-room(2)).

Figure 15. Recognising the activity of listening to radio in Household 2 with feature set
(CP_range_hallway, MS_watts_kitchen-appliances, MS_range_bedroom).

Figure 16. Recognising the activity of watching TV in Household 2 with feature set (MS_watts_TV).

64

Bo
ok
s

M
DP
I



J. Sens. Actuator Netw. 2017, 6, 32

Figure 17. Recognising the activity of doing laundry in Household 3 with feature set
(MS_watts_washing-machine, CP_watts_washing-machine).

Figure 18. Recognising the activity of sleeping in Household 3 with feature set
(Gap_CP_range_living-room).

The activity durations generated by the HMMs mostly overlap with those recorded in the time use
diary, with some local shifts along the time line. The only exception in these seven plots is the activity
of listening to radio in Household 2, which suggests that the features being used are not sufficient
enough to distinguish the occurrences of such activities. In some cases, radio is used as background,
which does not necessarily constitute the activity of listening to the radio.

7. Conclusions

In this paper, we presented a mixed-methods approach for recognising activities at home.
In particular, we proposed a metric for evaluating the agreement between the predicted activities from
models trained by the sensor data and the activities recorded in a time use diary. We also investigated
ways of extracting and selecting features from sensor-generated data for activity recognition.

The focus of this work is not on improving the recognition performance of particular models but
to present a framework for quantifying how activity recognition models trained by sensor-generated
data can be evaluated on the basis of their agreement with activities recorded in time use diaries.
We demonstrate the usefulness of this framework by an experiment involving three trial households.
The evaluation results can provide evidence about which types of sensors are more effective for
detecting certain types of activities in a household. This may further help researchers in understanding
the occupant’s daily activities and the contexts in which certain activities occur. The agreement between
the sensor-generated data and the time use diary may also help to validate the quality of the diary.

This is an on-going research, investigating the use of digital sensors for social research,
using household practices as a testbed. As this is written, we are in the process of collecting data from
three types of households: single occupant, families with children and ≥2 adults. There are several
directions to consider for extending this work. We are adding a wearable wristband sensor to the
setting to detect the proximity of participants to each sensor box via Bluetooth RSSI (received signal
strength indicator). Such data will give us a more accurate reading of presence and co-presence of
particular occupants in different parts of their home, while also helping us in obtaining more accurate
start and end times of certain activities. We will continue to investigate other activity recognition
methods and feature selection techniques. In addition, we are interested in employing post and
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assisted labelling mechanisms, for example, by asking participants to assign an agreement score to
the activity sequences generated by our activity recognition models. In this way, another layer of
agreement can be added to the evaluation.
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Abstract: This paper presents a novel system based on the Internet of Things (IoT) to Human Activity
Recognition (HAR) by monitoring vital signs remotely. We use machine learning algorithms to
determine the activity done within four pre-established categories (lie, sit, walk and jog). Meanwhile,
it is able to give feedback during and after the activity is performed, using a remote monitoring
component with remote visualization and programmable alarms. This system was successfully
implemented with a 95.83% success ratio.

Keywords: e-health; human activity recognition (HAR); Internet of Things (IoT); rule tree classifier;
C4.5; Bayesian classifier

1. Introduction

The Internet of Things, IoT, is a new concept in which all sensing objects can be connected to
the internet to have remote and constant access to its measurements (data). This access allows for
taking action in a faster way, with better results and much more data involved [1,2]. The data that
compose these kinds of systems can go from temperature [3], outdoor location [4], indoor location
[5], storage stock, humidity or other industry related variables [6]. In short, any sensor that can be
connected to the Internet makes part of an IoT paradigm [7].

In such a way, classical applications of pervasive computing can be upgraded to an IoT scheme
for an activity recognition application: Human Activity Recognition (HAR). These applications,
in their classical approach, have been researched, evaluated and developed to the point that several
commonly available products have HAR systems built in. This can be seen on some fitness trackers,
references [8,9], which have HAR systems built into the mobile applications of their manufacturer.
These applications usually register and analyze daily and sleep activity [10]. The HAR system consists
of sensing the person’s positioning and movement, performing a feature extraction and a classification
of those features to decide which activity was performed in a pre-selected list of activities [11–13].
The HAR systems have several methods to perform recognition, the most common one being an
artificial vision assisted system [14,15]. This kind recognition can be seen in commercial products
such as the Microsoft KinectTM [16]. Despite the many benefits and high popularity, in both usability
and research, of vision assisted HAR, it presents several disadvantages for subjects such as accuracy,
coverage and cost. Another method that can overcome these challenges are on-body sensors systems
or wearable assisted HAR [17]. This kind of approach relies on wearable sensors present throughout
the body, which help to perform the recognition [18]. This method can either require that the subject
wear one [19,20] or more [21] for pre-established periods of time. Some systems even require that
the device(s) have to be permanently worn by the person [22]. These devices could be those within
another device such as a smartphone [23,24].
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In this paper, we present a more detailed and novel version of an HAR-IoT system that employs a
single device with occasional usage, as seen in [20] presented at the International Conference on Future
Networks and Distributed Systems (ICFNDS) 2017. This system is intended to be used by patients
with chronic heart diseases, patients that have their health status in a non-critical condition but still
need constant monitoring. The presented system focuses on the daily routine, activity and physical
therapy that each patient must have as part of their recuperation process. Although an IoT approach
needs a security analysis [25,26], our approach to the IoT does not rely on a wireless sensor network
(WSN) [27], the data information is not sensitive to outside listeners [28] and, as previously stated,
the focus of the paper is to validate the presented approach to HAR-IoT systems.

The HAR-IoT system uses a specialized hardware for vital signs monitoring including embedded
heart, respiration and body acceleration sensors. The activity recognition was implemented using
a classifier that uses the information gathered by this hardware. Two different methods were
implemented for the classifiers: Bayes [29] and C4.5 [30]. An (IoT) cloud based component was
integrated [31,32] to perform different tasks, such as: remote consultation [33], feedback and therapy
control for both duration and quality [34] or even an online classification service [35]. This component
also grants remote access to the data and configurable alerts for the activity done, if needed. This paper
presents a novel interaction between a traditional HAR system and an IoT system with a different
approach to the classical feature extraction in an HAR system, which resulted in a 95.83% success ratio
with a notable small training data set.

This work will be presented as follows: in Section 2, the system architecture is explained and
complemented with the system description in Section 3. Section 4 focuses on explaining the feature
extraction method and the classifier information. The experiments and results are presented in
Section 5, and, finally, the conclusions are shown in Section 6.

2. System Architecture

The proposed system is composed of two main modules: a traditional HAR system that can be
implemented on any mobile and non-mobile device, and an e-health application of any recognition or
surveillance system used in a health care related subject. These modules work independently, but the
novelty of the approach lays with the increase of availability and decrease response times.

2.1. HAR Systems

An HAR system is a specific application of pattern recognition and expert systems.
This recognition works in two phases: a training phase and a recognition phase. Although both
have similar steps, the training phase has a priori information of the activities done and the recognition
phase uses the knowledge of the training phase to have accurate recognition. This means that the
recognition phase is highly dependent on the training phase success.

2.1.1. Learning/Training Phase

The learning or training phase is the first phase of any recognition algorithm. This phase is
in charge of establishing the relations between the data and the activities. It has three main steps
(Figure 1):

1. Data collection: The data collection step conducts the data acquisition from all the sensors
available for the system. The sensor available will be dependent on the kind of device that the
recognition is built for. This step needs an activity log of every activity performed detailing the
time, the type and duration. The training phase must consider all possible activities, needing all
to be performed, preferably, in an aleatory manner without a correlation in activity, duration or
any other factor that might be involved in the recognition. It is important to note that the data
collection is done without any signal processing as all processing and analysis is done during the
feature extraction step.
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2. Feature extraction: The feature extraction step has several possibilities depending on the kind
of sensors and variables types that are involved during the data collection step. There can
be structural features and statistical features. The structural features are those that try to find
interrelation or correlation between the signals. This also means that the signal can fit a previously
defined mathematical function to the current state of the variables. The statistical feature extraction
performs a transformation on the signal using statistical information. These features could be
the mean of the signal, standard deviation, correlation, etc. The most common transformations
performed are the Fourier and Wavelet transforms. During this step, it is common to perform
signal processing to eliminate noise, reduce the range of the signal or perform other kinds of
processing to better extract the relevant features for each activity.

3. Learning: The learning or the final step of the training phase is the development of a recognition
model that is learned from the data set, the activity log and the relevant features to properly
recognize any activity. This step is highly dependent on the training data set, which is the reason
for the strict methodology and rigorous logging on the data collection step. There are many
recognition models that can go from a rule tree based on signal parameters, neural networks,
statistical base algorithms or fuzzy logic, each one having their advantages and disadvantages.
Based on the complexity, response time and available resources, the model must be selected to
best fit the system demands.

Figure 1. Learning process of an HAR system.

2.1.2. Recognition Phase

The recognition phase is the final phase of an HAR system. It does the recognition of the activity
performed using the training phase result. The recognition phase has three main steps (Figure 2):

1. Data collection: The data collection step does the data acquisition of all the sensors available for
the recognition. The sensor available will be dependent on the kind of device that the recognition
is built for. Unlike the learning phase, there is not any prior knowledge of the activities performed,
so there is no need, either choice, to have an activity log. It is important to note that the data
collection is done without any signal processing, as all processing and analysis is done during the
feature extraction step.

2. Feature extraction: The feature extraction step has several possibilities according to the kind
of sensors and variable types that are involved during the data collection step. There can be
structural features and statistical features. The structural features are those that try to find
interrelation or correlation between the signals. This also means that the signal can fit a previously
defined mathematical function to the current state of the variables. The statistical feature performs
transformation on the signal using statistical information. This could be using the mean of the
signal, standard deviation, correlation, etc. The most common transformations performed are
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the Fourier and Wavelet transforms. During this step, it is common to perform signal processing
to eliminate noise, reduce the range of the signal or perform other kinds of processing to better
extract the relevant features for each activity.

3. Recognition: The recognition or the final step of the training phase is the inference of the activity
performed using the gathered data and extracted features on the previous steps using the
recognition model of the training phase. This step decides which of the possible activities
were done with a percentage of accuracy, which depends on the recognition model. This step
is the most time-consuming part of any HAR system and, according to the selected model and
available resources, this time and accuracy change.

Figure 2. Recognition process of an HAR system.

2.2. E-Health Applications

An IoT solution gathers information from the available sensors, people and/or electronic devices.
If the data source, application, user or place of implementation are related to the healthcare industry,
it is called an e-health solution. These kinds of applications provide a novel approach to the
healthcare system, which bring new and better services such as constant monitoring of patients
and remote consultation services. All of these services provide a faster and reliable healthcare industry
with almost zero waiting time, changing the classical approach of the healthcare system from a reactive
service to a preemptive industry.

In this project, the main focus is to improve the healthcare services that take care of patients for
which their health status is not in a critical condition, but they still need constant monitoring. To better
understand the proposed solution, it is necessary to discuss and understand the general scheme of
a remote patient service, especially home remote patient monitoring. The general architecture of a
remote patient service (Figure 3) includes a variety of sensor and/or medical devices to measure
relevant variables of the patient that include but are not limited to:

• Heart Rate.
• Respiration rate.
• Weight.
• Oxygen saturation.
• Posture.
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Figure 3. Basic scheme in an e-health system.

According to the signal properties and signal availability, the data is transmitted via the Internet
to a database. Inside the database, the data can be constantly analyzed, displayed or even take action,
usually in the form of alarms, to give a better healthcare service. The constant availability of the
data implies a full time monitoring of the relevant data of the patient, which makes it easier to detect
an abnormality on the patient. This also means that the medical record of the patient gets a huge
amount of data, opening the possibility of performing a more integral and objective medical diagnosis.
This will reduce the cost service, improve the recuperation time and will improve the efficiency on the
healthcare system overall.

The lower cost service is associated with the fact that the patient will assume the high expenses
related to it, accommodation and infrastructure related costs. There is also a reduction in staffing cost,
as the remote monitoring implicates that the qualified personnel for the care services does not need to be
present at the patient location, and one person can be in charge of the tracking of more than one patient
at a time, with the help of the data analytics of the system. In addition, at their homes, the patient’s
recuperation process can be accelerated, as a remote care service greatly minimizes the exposure of the
patient to others’ diseases, comparing this scenario to a classical hospitalization environment.

Having the patient data in real time will improve any treatment, as the adjustments of the quantity,
methodology and other factors of the treatment can be adjusted in the same manner. This follows a
paradigm to change from a situational response to a situation prevention and avoid high risk scenarios.
This real-time management allows the procedures to be simpler and more efficient. Consequently,
there will be great improvement on the quality of life of patients undergoing remote monitoring
services, with stress levels lowering because of their home accommodation rather than in a hospital.
The implemented solution will be described in further sections.

3. System Description

The goal of this prototype is to implement an HAR-IoT system, which needs to be able to
measure physiological variables, have an HAR component that works according to the sensor
data, and implement a cloud system for data storage and remote display. Intelligent alarms can
be programmed according to different levels following the hospital requirements.
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The system’s block diagram is composed of three main elements (wearable, the smartphone
application and the cloud ). This diagram is shown in Figure 4:

• Wearable: The selected wearable is the Bioharness (Zaphyr, Annapolis, Maryland, US).
This wearable is capable of measuring several physiological variables (for more information,
see Section 3.1) and connect to a smartphone via Bluetooth.

• Smartphone application: This application has three main components. The data reception that
handles the communication and storage of the raw sensor data of the wearable. The HAR
classifier, which recognizes the kind of movement done at that moment using the raw sensor
data, a classifier algorithm and a machine learning process. Furthermore, a local visualization is
responsible for displaying raw sensor data and the activity recognized.

• Cloud: The cloud component receives all the raw data of the wearable and the activities recognized
by the HAR classifier. All the data is stored and can be consulted online using a web browser.

Figure 4. Solution architecture.
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3.1. Hardware Component

The selected wearable device (Figure 5) was the ZephyrTM Bioharness 3 model K113045.
This is a device that measures physiological variables [36]. It can measure heart rate, heart rate
variability, and respiratory rate, it has a built-in accelerometer for posture and several activity analysis.
These sensors are embedded on an elastic band that must be worn at chest height and pressured
against the skin. The strap design allows it to be used under regular clothes, at any given place such as
the work place, home and/or health centers.

Figure 5. ZephyrTM Bioharness reference K113045.

The Bioharness 3 has a special characteristic that allows the device to not require the use of
electrolytic gel nor any adhesive material for its proper operation, unlike other skin-contact devices.
The device has an internal storage in which all the physiological data is saved as it performs
measurements. When the Bioharness 3 connects via Bluetooth (class 1) to another device, it sends the
storage data to the device. If the Bioharness 3 is connected while performing measurements, the data
sent is the last measurement done. The strap of the Bioharness is washable and the plastic where all
the sensors are can be submerged up to 1 m under water. Table 1 contains the detailed information as
provided by the manufacturer.

Table 1. Bioharness 3 specifications.

Parameter Value

HR Range: 25–240 BPM
BR Range: 4–70 BPM

Acc. Range: ±16 g
Battery type: Rechargeable Lithium Polymer
Battery Life: 26 h per charge

3.2. Software Component

The software components of the system have two separate environments. The first is a smartphone
application to gather, analyze, locally visualize and send the data to the cloud and is implemented for
Android devices. The other one is a cloud environment. This allows for remote visualization of the
raw data and activity recognition, and can have several configurable alarms.
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3.2.1. Smartphone Application

The gathering of data, analysis and patient local interface of the project was implemented in
a smartphone application compatible with Android 4.1 or higher. This application, as seen in the block
diagram (Figure 4), has the following main functions:

• Data reception: The application has to receive Bioharness information packages using Bluetooth
protocol. Then, the system has to discriminate the packages to get all the individual
sensors’ information.

• HAR classifier: With the raw sensor data, the app uses a classifier algorithm to build a recognition
model to estimate the current activity.

• Local visualization: All the latest sensor data can be seen in the mobile screen, in conjunction with
the latest recognized activity.

Both the sensor’s raw data and the recognized activity is sent to the cloud system using either
HTTP or Message Queue Telemetry Transport (MQTT) protocols.

3.2.2. Cloud

For the cloud environment, a platform called Ubidots was selected, which is a Colombian enterprise
that offers cloud services for IoT solutions. This is an integrated solution that covers all necessary
services to successfully implement small to medium solutions at a low cost. The services include:
data storage (up to 500.000 data points), remote visualization (several widgets), basic data manipulation
(basic algebraic operations) and programmable email and Short Message Service SMS alarms.

This platform was used to visualize the history of the activities recognized, heart rate,
respiration rate, posture and the acceleration values. The alarms were configured for heart rate
and respiration having minimum and maximum levels alerts. The last alarm was configured for
a maximum level of the peak acceleration (behavior that indicates a fall) (Figure 6).

Figure 6. Example of the data visualization on the cloud service.
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4. HAR System

Having the data collected, the next step is to perform the activity recognition. To do this,
we performed a two-phase recognition algorithm. The first step is the feature extraction, which
uses the raw data to create a set of features that are the input of the second phase: the classification
phase.

The classification phase can be either a training step (see Section 2.1) that generates the recognition
model or a recognition step that uses the recognition model and the extracted features to determine
the activity performed.

4.1. Feature Extraction

The feature extraction is an algorithm that standardizes the raw data set, which reduces the
amount of data to process. It performs analysis over the data set, such as structure detection,
transformations or statistical functions. This allows the data to be organized in standard forms
(mathematical functions) with an emphasis on how well the data explains these standard forms (fit).
This process reduces the raw data to a finite and concrete set of aspects of the signal, which reduces
the complexity of the recognition model.

For each available sensor, there can be several features that can be extracted and, if not well
proposed, the classification problem can become an overdetermined system. To avoid an indeterminate
problem, there are several options to decrease the amount of features used in the classification. To select
the features and reduction methods appropriate to the problem, it is first necessary to see which data
is available. For this project, the available data is:

1. Heart Rate.
2. Respiration Rate.
3. Posture.
4. Three-axis acceleration (X, Y,Z).
5. Peak Acceleration.
6. Electrocardiogram (ECG) magnitude.

In this case, most signals are time series measurements with low variability, meaning that the
most appropriate feature extraction method is a structure detector without any prior processing [18].
The only exception to this is the three-axis acceleration, as these kinds of signals are too fluctuating
and oscillatory to use a structure detection without pre-processing.

To decrease the unwanted behavior of the signal, two methods can be used: a principal component
analysis (PCA) or a discrete cosine transform (DCT). Both extract the most relevant information of the
signal, and the PCA uses statistical procedures to get a set of linearly uncorrelated variables. On the
other hand, DCT uses a only real domain Laplace transform to get the frequency components of the
signal. In this case and for this kind of signal, the best results are obtained using PCA over DCT [37].

The structure detection algorithm searches for the best fitting mathematical function for the
selected data, a minimization of the mean square error between the data and the function (Equation (1)):

n

∑
t=1

(Y(t)− Ŷ(t))2 with Ŷ(t) = f (Y(t)). (1)

The structural detectors, f (Y(t)), can be either lineal or nonlineal functions. These functions
have different parameters that describe the behavior of the function. Modifying these parameter
allows for fitting each signal iteration to a structure with a unique set of parameters. These parameters
become the features selected to perform the recognition. To avoid a high cost search in mathematical
structures, a few structures were selected. This was done according to the usual behavior and range of
the available signals. Table 2 presents the selected mathematical functions from which the algorithm
will try to fit the signals. This table also presents the different parameters that describe the functions,
their restrictions, characteristics or formulas that define them.
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Table 2. Attribute counting: value and probability.

Structure Formula Parameters

Linear: Constant f (Y(t)) = a a = 1
n

n

∑
t=1

Y(t)

Linear: line f (Y(t)) = a + b ∗ t a = Y − b ∗ t, b =

n

∑
t=1

(t − t)(Y(t))− Y

n

∑
t=1

(t − t)2

Y = 1
n

n

∑
t=1

Y(t), t =
1
n

n

∑
t=1

t

Non-Linear: Exponential f (Y(t)) = a ∗ |b|t + c a, b, c ∈ �
Non-Linear: Sine f (Y(t)) = a ∗ Sin(t + b) + c a ∈ �, b ∈ �, c = Y

Non-Linear: Triangle f (Y(t)) =

{
a + b t ≤ c
a + 2bc − bt c < t

a, b, c ∈ �

Non-Linear: Trapezoid f (Y(t)) =

⎧⎪⎨⎪⎩
a + bt t ≤ c
a + bc c < t ≤ d
(a + bc + bd)− (bt) t > d

a, b, c, d ∈ �

The implemented algorithm that performs the feature extraction takes into account the current
data set, the parameters of the structure with a priority on the less resource-consuming structures.
The serial steps of this algorithm are:

1. Get the current data set.
2. Iterate and execute the linear structural detectors.
3. Calculate the mean square error for the best fitting lineal structures.
4. If the error is high enough, iterate and execute the nonlineal detectors.
5. Calculate the mean square error for the best fitting nonlineal structures.
6. Select the structure with the lowest error.
7. Pass the function parameters as the features to the classifier.

4.2. Classifier

There are several classifier algorithms that could work on an HAR system. The main kind of
classifiers are:

• Rule trees: The rule tree, or decision tree is a hierarchy based model, in which all the features are
mapped as nodes and each possible value for the feature is presented as a branch. These kinds
of classifiers have a computational complexity of O(log(n)) , for n features. The most common
decision trees models are D3/4/5, CLS, ASSISTANT, CART and C4.5.

• Bayesian methods: The Bayesian methods use conditional probabilities to calculate the likelihood
of an event according to a set of features and their probabilities. The most common Bayesian
methods are the Bayesian network and the naive Bayes, the later one being a special case that
considers all features to be statistically independent of one another.

• Iteration based learning: The iteration based learning (IBL) are methods that learn the similarities
and relations between features according to the training data set. These methods rely on high
computational resources, large data sets and high storage capacities.

• Support vector machines: Support vector machines (SVM) have been widely used in HAR systems.
They are based on several kernel functions that transform all the features to a higher degree space
gaining information and relations between the features and the activities.

• Artificial neural networks: The artificial neural networks, (ANN or NN), use a weighted network
to perform an analysis of the features and the activities performed. It imitates the neural synapses
on biological brains to successfully recognize patters and models.
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Following the requirements and constraints of the project, either IBL, SVN or ANN can be used,
as the limited resources of the device in which the algorithm will be implemented prevent a successful
implementation of these classifiers. Only a rule tree or Bayesian method could be implemented for this
project. One algorithm of each kind of classifier was implemented in the mobile device to analyze the
performance and the best was implemented in the system.

4.2.1. Rule Tree Classifier

For the rule tree classifiers, the C4.5 algorithm was selected. This algorithm uses different sets of
rules according to the training data set, which divide the data set in different sections (gains) following
the feature’s relation to the activity to be recognized (attribute).

In Figure 7, a small example of this algorithm can be seen. The decision branches are probabilities
of the feature to be in a certain location, which are expressed as binary variables. This algorithm has
the following process to generate the rule tree:

1. Root calculation: To select a starting point, root node selection, it uses the feature with the highest
gain, as it covers the most possible cases with the first iteration.

2. New branch search: The branch selection is done for each new node. It looks at the different
features that the node can interact with and evaluates the possibility to recognize an attribute.
The highest probability is assigned as a branch.

3. New node selection: After the branch is assigned, the algorithm evaluates the new node
probability of attribute selection and selects a feature with the highest chance of attribute
recognition.

4. Iteration: Iterate the steps 2 and 3 until the probability of attribute recognition is 1, which means
it is the end of a branch. With the end of the branch, a rule is produced and associated with
that attribute. If, after the iterations of all possible attributes a branch end has not been found,
the starting node changes to the second highest gain.

5. Search through all attributes in the current node: Steps 2–4 are needed to be repeated until all
attributes have a rule associated.

Figure 7. Example of the decision tree of a C4.5 Algorithm.

4.2.2. Bayesian Classifier

For the Bayesian classifier, a Naive Bayes algorithm was selected. This algorithm is based on the
conditional probabilities of an activity being performed for each given set of features. It assumes that
all features are statistically independent from one another. The algorithm begins by counting and
identifying all the features available (attributes) and the activity to be recognized (classes). The rules
are generated by using the conditional probability of the attribute for a determined class. This is done
for all possible classes (Equation (2)):

P(C|x) = P(C)p(x|C)
P(x)

. (2)
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This means attributes times classes number of rules in a single problem. After all rules are
calculated, a conditional calculation of the rule for a given set of attributes and class is performed.
It selects the higher probability rule to be assigned to the class (Figure 8).

Figure 8. Example of the probability tree of the Bayes algorithm.

4.2.3. Classifier Selection

To test each classifier performance, each classifier was implemented in the target device and was
presented with a single binary output problem. The problem consisted of a question: ¿Can I go out to
play?. To solve this, there were four features to evaluate it. Table 3 presents all attributes and the class
with the possible values.

Table 3. Classifier’s test problems.

Feature/Class Possible Values

Feature: Outlook Sunny: Overcast: Rain
Feature: Temperature Cool: Mild: Hot

Feature: Humidity Normal: High
Feature: Windy Strong: Weak
Class: Outcome Play: No Play

The training data set consisted of 14 samples, with no statistical correlation between instances.
With this, each algorithm generated its own set of rules. The resulting rule sets were five rules for a
C4.5 algorithm (Figure 9) and 36 for the Naive Bayes algorithm (Figure 10).

As expected, the Naive Bayes algorithm has a much larger rule set because it combines all the
features, and then produces a rule with the probability obtained with the number of times found in the
training set rule. The rule is maintained even when it does not provide useful information, unlike the
C4.5 algorithm, which deletes them. The results of this test concluded that the C4.5 algorithm is the
best suited for this project. Because the proposed prototype will have 18 features, the rule set size of the
Naive algorithm will be much larger than the one of the C4.5, implicating a less cost efficient algorithm.
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Figure 9. The classifier’s test problem: C4.5 rule tree.

Figure 10. The classifier’s test problem: Naive Bayes decision tree.

5. Experiment and Results

This project presents an HAR-IoT system that uses an Food and Drug Administration (FDA)-certified
strap that measure several physiological variables, in conjunction with an Android application that
has a C4.5 classifier and PCA to improve the results and a cloud-based system for remote visualization
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of the strap raw data and the classifier outcome. In this section, the experiment setup used to validate
the system will be described in addition to the results obtained after the experiment being successful.

5.1. Experiment Description

The experiment had two phases: Learning and Recognition. During the training phase, three
different test subjects (students with similar body types, age and weight) were performed several
physical activities in a pre-established order (lie, sit, lie, walk, sit, jog, sit, jog and walk) while wearing
the Bioharness. Each activity needs to be performed for a time frame of four minutes without changing
activity or stopping. This time frames are divided in eight smaller frames that are called windows,
which need to be at least 15 s long, as it is the minimum amount of time for the variable detection by
the Bioharness. These windows were selected to have twice the amount of time, which is a balance
between the length of the activity and the amount of data gathered for each activity. During the whole
learning phase, the sensors acquire the data and the classifier generates the rules for the recognition.
In addition, all data is available in the cloud to supervise the exercises in a remote location (if needed).

For the feature extraction, a single structure detector was selected: a straight line. This is due to
the convergence time, meaning that we obtained two features per signal, and this resulted in size of the
resulting matrix being twice the number of signals, in the columns, and the number of time windows,
in the rows. As this classifier works only with qualitative values, all probabilities were assigned a
qualitative equivalent. Therefore, using the mean values of each feature, a qualitative value can be
assigned. If the value is less than the mean, it is assigned as low and high, otherwise.

After the classifier generates the rules (recognition model), the recognition phase can start.
During this phase, the prototype will extract, evaluate and detect the user activity based on the
recognition model that was found during the learning phase. This phase does not have a time frame
and can start or stop at any given time. Finally, for redundancy purposes, a text file with the data
recorded from each instance is created.

5.2. Learning Phase Results

The training data set was composed of 74 time windows (Figure 11). As the activities that require
more energy could have changes with an exhaustion factor during a prolonged experiment, a recurrent
rest was included to have the best and more consistent results (inclusion of sitting periods of time
between walking and jogging activities). The learning phase ended with the following qualitative
assignments (Table 4).

Figure 11. Training data set: activity count.
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Table 4. Qualitative assignment.

Feature # In Low Low Probability # In High High Probability

heart rate 1 62 0.837 12 0.162
heart rate 2 4 0.054 70 0.945

respiratory rate 1 45 0.608 29 0.391
respiratory rate 2 10 0.135 64 0.865

posture 1 17 0.230 57 0.770
posture 2 1 0.013 73 0.986

acceleration peak 1 57 0.770 17 0.229
acceleration peak 2 39 0.527 35 0.473
amplitude ECG 1 58 0.783 16 0.216
amplitude ECG 2 73 0.986 1 0.013
acceleration X 1 3 0.040 71 0.959
acceleration X 2 2 0.027 72 0.973
acceleration Y 1 9 0.122 65 0.878
acceleration Y 2 2 0.027 72 0.973
acceleration Z 1 12 0.162 62 0.837
acceleration Z 2 2 0.027 72 0.973

After the feature extraction phase, the algorithm proceeds generating the rule tree to that specific
training data set (Figure 12). For this project, there were 13 rules in total having a single recognition
model for the different subjects that were involved during this phase (Table 5).

Figure 12. Final decision tree based on the C4.5 algorithm.
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Table 5. Final rule set based on the C4.5 algorithm.

R# Condition Output

1 Post A=L; Ÿ A=H Lie
2 Post A=L; Ÿ A=L Sit
3 Post A=H; PAcc A=L; Z̈ A=L Sit
4 Post A=H; PAcc A=L; Z̈ A= 1; Resp A, ECG A=L; Resp B=H; Ÿ A=H; PAcc B=H Sit
5 Pos A=H; PAcc A=L; Z̈ A=1; Resp A=L; Ẍ A=H, ECG A=L; Resp B=H; Ÿ A=H; PAcc B=L Sit
6 Post A=H; PAcc A=L; Z̈ A=1; Resp A=L; Ẍ A=H, ECG=L, Resp B=H, AccY A=L Walk
7 Post A=H; PAcc A=L; Z̈ A=H; Resp A=L, AccX=L; ECG A=L; Resp B=L Sit
8 Post A=H; PAcc A=L; Z̈ A=H; Resp A=L; Ẍ A=H, ECG A=H Sit
9 Post A=H; PAcc A=L; Z̈ A=H; Resp A=L; Ẍ A=L Jog

10 Post A=H; PAcc A=L; Z̈ A=H; Resp A=H; Resp B=H Walk
11 Post A=H; PAcc A=L; Z̈ A=L; Resp A=H; Resp B=L Sit
12 Post A=H; PAcc A=H; ECG B=L Jog
13 Post A=H; PAcc A=H; ECG B=H Walk

During the implementation phase, one of the test subjects was randomly asked to perform a total
of 72 activity windows that were recollected. For these 72 windows, in 69 of them, the activity was
successfully recognized, with only three that were wrongly classified. The confusion matrix of this
implementation is present in Table 6. Likewise, a time series displaying each activity done and its
activity recognized can be seen in Figure 13 and the same data in Table 7.

Table 6. Offline confusion table.

Lie Sit Walk Jog Total Error C

Lie 16 0 0 0 16 0
Sit 0 23 1 0 24 0.042

Walk 0 2 14 0 16 0.143
Jog 0 0 0 16 16 0

Total 16 25 15 16 72
Error O 0 0.08 0.066 0 0.0417

Table 7. Table of results of the implementation phase.

Min:Sec Activity Classified Score

0:00–4:00 Lie Lie True
4:30–8:00 Sit Sit True

8:30–12:00 Lie Lie True
12:30–13:00 Walk Sit False
13:30–16:00 Walk Walk True
16:30–20:00 Sit Sit True
20:30–24:00 Jog Jog True

24:30 Sit Sit True
25:00 Sit Walk False

25:30–28:00 Sit Sit True
28:30–32:00 Jog Jog True
32:30–36:00 Walk Walk True
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Figure 13. Results of the implementation phase.

6. Conclusions

This project successfully developed and implemented a novel human activity recognition system
using a smartphone, the Bioharness 3 and a cloud system. For feature extraction, we used structural
functions and, for pre-processing, a PCA algorithm was used. For the classifier, both the C4.5 and
the Naive Bayes rules were implemented on the target hardware, but the C4.5 was selected instead
of Naive Bayes due to the size of the rule set. The prototype in implementation phase got a score
of 95.83% in the classification success. The project can be improved by adding more light-weight
algorithms, different structural functions and the usage of more features. As future work, we presented
the following path that contributed to the improvement of the presented project:

1. The comparison between the performance using multiple different structural functions:
having different structural functions can optimize the resource consumption and decreasing
the computational load of the classifier.

2. The broadening of the training data and robustness of the system: the system was implemented
as a proof of concept of an HAR-IoT system, with a few users. These kinds of systems to be
implemented in a product or in a trial must be trained with a high amount of data sets, as the
recognition models should be trained user-independently so the recognition works independently
from the subject using it. With our system, the test subjects were students with similar body
types, ages and weights, which resulted in a functional system. For the later implementation,
the system should have more training data. To improve the classification, another set of features
such as mean, variance or percentile could be used along with the features we used to have more
information. In addition, another recognition model could be used.

3. The implementation of the classifier on the cloud: The mayor constraint that the system present
is the limited hardware available for the classifier. If the cloud resources can be available to
perform the classification, more complex and better algorithms can be integrated into the system.
There could even be a classifier redundancy system in which both the local application and the
cloud system perform classification.
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Abstract: One of the most critical issues in modern cities is transportation management. Issues that
are encountered in this regard, such as traffic congestion, high accidents rates and air pollution etc.,
have pushed the use of Intelligent Transportation System (ITS) technologies in order to facilitate the
traffic management. Seen in this perspective, this paper brings forward a road traffic management
system based on wireless sensor networks; it introduces the functional and deployment architecture
of the system and focuses on the analysis component that uses a new extension of batches Petri
nets for modeling road traffic flow. A real world implementation of visualization and data analysis
components were carried out.
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1. Introduction

The continous development in highly integrated microelectronics technologies and Information
and Communication technology (ICT) have made the wireless sensor networks (WSNs) concept a reality.
WSNs, that feature high flexibililty, good scalability and reliability, are emerging as one of the most
promising solutions to sense, collect, process and disseminate information from various environmental
phenomena. WSN has been widely utilized in various fields including transportation [1], environmental
monitoring [2], healthcare [3], battlefield monitoring and surveillance [4], inventory tracking [5],
security monitoring [6], civil applications [7,8], and so on. It consists of tiny wireless-capable
sensor devices that are battery powered, sense the surrounding environment and have wireless
communication, data storage, computation and signal processing capabilities. The data collected from
sensor devices is usually sent to a centralized node called sink (or base station) that can act as user
interfaces or gateway with other networks [9].

Nowadays, the concept of modern city has emerged to be complex systems that, on one hand
invest in human and social capital and in deployment of advanced information and communication
technologies, and yet, on the other hand, demand huge quantities of resources and discharge waste
into environment [10]; although cities cover only 2.8% of Earth’s surface area, they consume 75% of its
global resource and produce an equivalent proportion of waste and pollution that leads to a massive
negative impacts [11,12].

The world population has continued to grow rapidly and its concentration in cities keeps rising
at an ever-faster pace. It has been projected that the total population in urban areas will jump from
3.6 billion to 6.3 billion by 2050, which means approximatively 67% of the world population. This mass
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urbanization is bringing with it an inescapable tide of issues such as environment pollution, traffic
congestion, energy consumption and inefficient transport systems.

Strictly linked to transportation, one of the most critical issues in modern cities is transportation
management. Issues such as traffic congestion and high accidents rate affects environment, economies
and human health [13], have pushed the use of Intelligent Transportation System (ITS) technologies
in order to facilitate the traffic management or planning to do so in the coming years especially
in developing countries [14].

The use of WSNs in Intelligent Transportation System applications such as traffic monitoring and
traffic light control has been experiencing a rapid growth [15,16].

Traffic road modeling is a crucial element in traffic management [17,18]. It grows unceasingly
clear and has attracted considerable attention of both academic researchers and industry practitioners.
There are various criteria for categorizing traffic flow models, according to the level of detail, whether
they operate in continuous or discrete time (or even event-based), or whether they are deterministic or
stochastic [19–21].

Based on the level of detail provided to describe traffic and also the mathematical formulas, Traffic
flow can be analyzed macroscopically, microscopically or mesoscopically [22,23]:

Macroscopic models deal with traffic at a high aggregate level. For example, the traffic variables
are represented using aggregated characteristics as density, flow rate and velocity.

Microscopic models are based on the explicit consideration of the interactions between individual
vehicles within a traffic stream.

Mesoscopic models or kinetic models: The traffic flow is described at an intermediate level of
detail. The family of mesoscopic models describes the behavior of individuals in aggregate terms
for instance in probability distributions. Thus, traffic is modeled as groups of traffic entities that are
governed by flow laws without taking into consideration interactions between individual vehicles.

Petri nets modelling have been approached to study traffic flow at the macroscopic level and we
have adopted them as a basis to model the road traffic flow [24].

Petri net are suitable to represent urban traffic systems because they allow representation of
states that are distributed, deterministic, concurrent and continuous, and can model shared resources,
synchronous and asynchronous communications etc. Moreover, Petri net is a useful formalism for
optimizing traffic control and management system. Batch Petri net is an extension of Petri nets; it has
been introduced for modelling systems with discrete evolution, continuous evolution and accumulation
phenomena. Batch petri nets are proven to be efficient and accurate representation of systems with
accumulated continuous elements [25,26]. However, they aren’t able to express accurately all rules
and situations in traffic applications such as traffic that has to stop when approaching an intersection
and give way rules. We have proposed in [24] an extension of Batch Petri nets that generalize the
traffic flow modelling, enable the representation of some complex cases and address the issue of
improving energy efficiency in road network monitoring since it involves the minimum number of
sensors to capture traffic flow and simulate its evolution over time. To exploit this modelling for
managing the traffic dynamicity, we have designed a global system based on wireless sensor networks
for achieving energy efficiency during traffic flow monitoring and providing an accurate traffic state
estimate and prediction of the overall network. In this paper, we present an overview of the system
with its functional architecture and a description of the flow in case of a chosen scenario.

This article is an extended and revised version of our earlier conference paper [27].
The main addition with regard to the conference paper consists in presenting an enhanced
architecture of WSN-based traffic management system, and containing additional details about the
developed prototype.

The rest of the paper is organized as follow. In Section 2, the related works are reviewed.
Our solution, WSN-based traffic management system with its functional architecture and components
are described in Sections 3 and 4 highlights the data analysis component of the proposed WSN
based traffic management including the used model for road traffic flow evolution. Details for the
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deployment architecture as well as prototype of the system analytics and visualization components are
reported in Section 5. Section 6 concludes the paper along with description of the intended future work.

2. Related Work

In [28], a scheme that uses a multi-hop replay wireless sensor network (WSN) to monitor urban
transport vehicles has been presented and a traffic monitoring system based on WSN that is applicable
to all types of city environment was designed. The nodes are distributed dynamically based on the
traffic flow forecasts and their statistical law of mobility in order to monitor the important roads
that are easily blocked and find out the time changing law of traffic congestion, and then put focus
on monitoring them. The paper proposed the use of gray model in order to forecast the traffic flow.
Gray model is simple and doesn’t require a huge amount of available data like many other methods.
However, one of its disadvantages is that it cannot deal with non-linear structure of data which
decreases its efficiency and competitiveness in forecasting road traffic flow on complex networks.

A wireless sensor network based monitoring system has been proposed in [29] with dynamic
mathematical model for managing road traffic in important intersections of a city. It aims at reducing
congestion by broadcasting the traffic status when it comes to a congested status. Monitoring and
calculating the congestion level on the most important intersections is not always a relieable approach
since too many cars on intersections is only one reason of traffic congestion. Other causes such as
double parking and events that may change traffic dynamics at any place within roads are not taking
into consideration.

Nafi et al. [30] presents a Vehicular Ad-hoc Network (VANET) based predictive road traffic
management system (PRTMS). PRTMS is simple and uses a modified linear prediction algorithm
to estimate traffic intensities at different intersections using a vehicle to infrastructure (V2I) scheme.
However, the proposed system architecture, which relies mainly on information received from vehicles
and V2I communications requires a significant power resources.

In [31], A traffic congestion detection system was presented that combines vehicle-to-vehicle
(V2V), vehicle to infrastructure and infrastructure-to-infrastructure (I2I) connectivity and big data.
The system aims at decreasing travel time and reducing CO2 emissions by allowing drivers to identify
traffic jam and change accordingly their routes. The proposed system monitors, processes and stores
large amounts of data into a Cassandra table which is one of the open-source distributed NoSQL
databases. Through a series of algorithms, a big data cluster identifies vehicular congestion and
informs drivers so that they can make real time decisions and avoid it. A weakness of this work is
that the system cannot answer queries. For instance, it cannot evaluate the impact of upcoming events
such as road works on traffic flow state.

Iwasaki et al. [32] proposed a method for stop line detection using thermal images taken with
infrared cameras under different weather conditions. According to the first method, the windshield
of a vehicle and its surroundings are used as the target of pattern recognition. The vehicle detection
process involves spatio-temporal image processing by computing standard deviations of pixel values,
vehicle pattern recognition by using Viola-Jones detector [33,34] that considers the windshield and its
surroundings as the target of pattern recognition, and correction procedures for misrecognized vehicles.

Since the vehicle detection accuracy decreases in low temperatures because the temperature of
the windshield is usually similar to that of the windshield exterior, Iwasaki et al. proposed a second
method, to deal with this limitation, that detects vehicles based on tire thermal energy reflection area
on the road surface. The method is based on the idea that the temperature difference between the tires
and the road surface is considerably high in cold weather. By combining both methods, the overall
vehicle detection accuracy was highly maintained under various environmental conditions and an
automatic traffic flow monitoring was achieved by computing the number of vehicles in the target
area and the degree of movement of each vehicle.

Another approach proposed in [35] uses vehicles as mobile sensors for sensing the urban traffic
and send the reports to a traffic-monitoring center (TMC) for traffic estimation. The so-called probe
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vehicles (PVs), i.e., taxis and buses that are equipped with the necessary devices to transmit traffic
conditions to the TMC at regular time intervals, and floating cars (FCs), such as patrol cars for
surveillance, report periodically their speed and location to traffic-monitoring center.

Since PVs cannot cover all roads in most of the time, a Matrix Completion (MC) has been
proposed to reconstruct data in empty rows in the collected probe data. In order to facilitate MC based
estimation and improve its performance, Du et al. proposed a floating car control algorithms. However,
the proposed approach doesn’t take into account different sources of traffic data and correlation of
road sections.

Based on the previous studies and literature reviews, the challenge of designing a monitoring
energy-efficiency system while ensuring the accuracy of traffic flow estimation and prediction
remains open.

The system we propose aims at enabling energy-efficient management and providing accurate
estimation and prediction of road traffic by:

• Modelling the traffic in order to predict its evolution in accordance with deploying of the minimum
number of sensors.

• Estimating vehicles dispatched in a road intersection using statistical models
• Taking into account events for predicting traffic status

3. WSN-Based Traffic Management System (WTMS)

In this section we present functional architecture of our management system. The system takes
advantage of WSNs technology, traffic modelling and data learning approaches for dealing with
traffic-related challenges and leading to more efficient and safer travels. Before turning to this
discussion we introduce an overview of the system.

3.1. Overview of the WTMS

The proposed road traffic management system aims to monitor the road network and proactively
provide information about traffic flow. It takes input from various sources, mainly road sensors,
and internet to ingest weather and events information such as national celebrations, sportive events
(soccer games etc.). Data afforded from vehicles, especially neighboring traffic flow and average speed,
can be included in the system’s input in order to refine better the output and the final model, and then
model the road network and the traffic flow dynamics spatially as well as temporally, and yield to an
overall traffic flow of road network.

This allows the cars, buses, taxis to respond to the city’s needs on the fly.
Raw data always goes through at least one filter before being delivered to models and estimation

algorithms. The output of these models is used in various applications such as adaptive traffic
signal control and dynamic route guidance and is sent to third parties for consumption or analysis.
Consequently, reliable information can be shareable with the public over internet. For instance,
the road users can be informed of the traffic congestion and real time traffic situations through
mobile applications.

In the following section we briefly describe the WTMS through its components.

3.2. WTMS Architecture

Our WSN-based Traffic Management System is composed of several components which are:
Data Acquisition, Data Preprocessing, Data analysis, Visualization and Reports, System Settings and
Administration, Traffic data repositories and finally Applications. All these components use Data
Communication component. Figure 1 illustrates the functional architecture of the system. In the next,
we describe each component.
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Figure 1. Traffic management system (WTMS) architecture.

3.2.1. Acquisition Component

Data acquisition consists of gathering the raw data and passing it to data preprocessing component.
The data can be acquired in different formats and it draws from heterogeneous sources. This component
has to ingest all needed information that will be sent to the other components in a unified format. Data
acquisition contains two subcomponents:

Real-time raw data feeds

Real time data feeds are collected through sensors. This data includes traffic volume, average
speed, roadway conditions. This part of system has to deal with two approaches of data acquisition:

• Pull-based approach: it allows users to selectively acquire and query the data at preferred point
in time, within a specific time interval or within a user-defined frequency acquisition.

• Push-based approach: In this approach, data acquisition is executed in regular periods. Data are
disseminated proactively through sensors, i.e., the sensors can decide when to send data to a
centre node such as a sink.

Adding to roadside sensors, other sources of data can be taken into consideration such as vehicles,
especially regarding the movement count estimates, and traffic.

Data unification

Data unification means the integration of data culled from raw sensor data and a variety of other
structured of unstructred sources such as scheduled events, weather information, road works etc. and
the representation of this heterogeneous data in the same unified format.

3.2.2. Data Preprocessing

This component is responsible for the preparation of raw data for further utilisation and providing
the cleaned data; the collected data must undergo a preprocessing step where it must be checked,
filtered and completed in order to avoid as much noise as possible and being usable by models. Data
preprocessing includes:

Data filtering and refining

Data in real-world contain redundant information. Data filtering and refining is the process of
cleaning data by filtering duplications, data that contradicts itself and noise and ensuring data integrity.
This is essential for obtaining consistent modeling results.
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Data imputation and validation

Due to sensors malfunction, measurements can be erroneous, missed or corrupted. Therefore,
some preliminary tasks need to be performed for effeciently analyzing the data such as data imputation
and data validation. In this step, imputing missing values and examining data quality and reliability
are performed.

3.2.3. Data Analysis

Data analysis aims at turning recieved data into information that guides effective decision making
through estimating the current traffic state and traffic flow dynamics evolution over time and space.
To this end, Data analysis has two aspects: offline machine learning for knowledge discovery and
runtime compenents for applying the knowledge during the execution.

Offline machine learning includes:

Models training

This component carries out the necessary machine learning tools to train models based on new data.

Models

It consists of mathematical equations and parameters that are trained and calibrated, but are
improved using additional knowledge.

The runtime part is composed of road traffic state estimation and road traffic state prediction:

Road traffic state estimation

It is the most mandatory component of the system since it transforms multisource traffic data
into useful traffic information and provides the basis for additional application and practices. In this
subcomponent, we use the generalized nondeterministic batch Petri net formalism to model the road
traffic for each segment in one hand. In another hand, the necessary models, when needed, are
deployed and executed.

Road traffic state prediction

Given historical information, or driving correlation and dependencies among the road network,
this module is performing short and long-term predictions using models that were built offline. We aim
at predicting traffic flow from few minutes to several hours ahead.

3.2.4. Visualization and Reports

The output of models can be used for further analysis. Converting models results into well-formed
forms for analysis, visualization or end-user information is a real benefit from data analysis component.
This can simply enhance decision making. In addition, analyzed data and reports can help traffic planner
to make well-informed decisions and interact fast to different traffic situations and evaluate or design
transportation facilities. Or on another side, it can enhance the individual traffic participants’ navigation.

Visualization applications refer to a web-based tool that provides a holistic view of the overall
road network while displaying the emergency events as well such as congestion. Reporting and Query
refers to tools that offers traffic reports for advising travelers and traffic managers and planners and
allows users to interactively query up-to-date information. Management UI is a set of user interfaces
for that enables traffic planners and managers to set up traffic and roads parameters such as road
length, maximum velocity and traffic signal cycle lengths and to enhance their interventions through
broadcasting notifications and alerts to travelers.
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3.2.5. System Settings and Administration

System settings and administration component handles prepares the sensor infrastructure, it allows
configuration of sensor data, that are needed for applications, and intervals. It allows displaying and
modifying all configurations. This includes security policies, user roles and database administration.

3.2.6. Traffic Data Repositories

It supports the storing of raw traffic data and archiving of historical data for use as needed.
The stored data concerns the data aggregated from sensors, the necessary data structure for modelling the
traffic flow, the historical data to train the machine learning or statistical models to achieve prediction, etc.

3.2.7. Communication and Data Exchange

This allows the network to communicate the traffic information and exchange data between its
various components.

In the next section we will focus on the data analysis component and more precisely on generalized
nondeterministic batch Petri net model that we adopt for this system.

4. Road Traffic State Estimation

Road traffic flow is a very complex phenomenon. To approach its dynamic evolution we proposed
the generalized nondeterministic batch Petri net [24] since it deals with both continuous and discrete
states that characterize traffic flow and allows modeling its behavior along roads for complex cases.

4.1. Background on Triangular Batches Petri Net

In this section, we introduce Petri nets concepts and the theoretical background of our extension
of batches Petri nets model.

4.1.1. Petri Nets

In his PhD Thesis, Carl Adam Petri introduced Petri nets in order to represent the global state of
a system as composed of a set of local states [36]. Petri nets are both a graphical and mathematical
tool for design, modeling and formal analysis of various discrete event systems [37]. Being a graphical
tool, it allows to easily represent the different interactions in a complex system such as concurrency,
parallelism, synchronization, non-determinism, communication, alternatives and so on by means of
only few elements types. Being a mathematical tool, it allows to fomally model these interactions and
analyze the properties of the modeled system [38].

A Petri net can be defined as a directed graph that consists of two types of nodes interpreted as
places and transitions where an arc can only connect two nodes of different types [39]. Places are drawn
as round shapes (circles or eclipses) to model different states of a system. Transitions are depicted as
rectangular shapes (rectangles or bars) to represent events or activities that can cause the change of
a system state. An arc connects a place to a transition or vice versa, it models the flow of processes
through the system and the abstract relationship between a place and a transition. The dynamic
behavior of a system is introduced by means of tokens into places where every place holds either zero
or more tokens that are graphically appear as solid dots in places. At any given time, the distribution
of tokens among the places, termed Petri net marking, determines the current state of the modeled
system. A marked Petri net consequently is used to study dynamic behavior of the modeled system.

Formally, a Petri net is quadruplet N = (P, T, Pre, Post) where:

– P and T are, respectively, disjoint non-empty finite sets of places and transitions;
– Pre: P × T → N is the backward incidence matrix, Post: T × P → N is the forward

incidence matrix.
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Over the years, several extensions of the original Petri net model have been developed, we
mention in the following paragraph some of them in order to better understand the proposed model
in this paper.

4.1.2. Generalized Batch Petri Nets

Hybrid Petri nets (HPN) contain two parts: a discrete part and a continuous part since they
include discrete and continuous places and transitions. For instance, in traffic system, traffic lights are
modeled as discrete places and transitions and road sections can be modeled by continuous places as
can be illustrated in Figure 2.

Figure 2 shows an example of signalized street with its HPN model where PC = (p1, p2) is the
set of continuous places representing the two sections of the road, PD = (p4, p5) is the set of discrete
places that models the signal system switching between red and green. TC = (t1, t2, t3) is the set of
continuous transitions model the limit between two sections and TD = (t4, t5) is the set of the discrete
transitions which represent the delay associated with every section for switching between green and
red lights.

Figure 2. Signalized road and the HPN model.

Batches Petri nets are a modeling tool for systems with accumulation. The new with this extension
of HPN is the introduction of batch concept; a batch (βr) is a group of entities whose movement
through a transfer zone (i.e., a portion of road), and is characterized by continuous variables, namely
the length, the density, and the head position. Thus, batch places represent the delays on continuous
flow and batch transitions behave like continuous transitions are associated with a maximum flow.

4.1.3. The Triangular Batches Petri Net

In the following, some of the main definitions of triangular batches Petri nets are presented.

Definition 1. The triangular batches Petri net can be defined by the following elements:
A triangular batch Petri net is 6 − tuplet N = (P, T, Pre, Post, γ, Time) where
P is a non-empty finite set of places partitioned into discrete (PD), continuous (PC) and batch places (PB):

P = PC ∪ PD ∪ PB; Continuous places are used to model variables real values; While discrete places are used in
modelling variables with integer values; Batch Places are used to model transfer zones whose elements move at
the same speed.
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T is a non-empty finite set of transitions partitioned into discrete (TD), continuous (TC) and batch
transitions (TB).

Pre, respectively Post: (PD × T → N) ∪ ((PC ∪ PB)× T → R ≥ 0) are defining the weight of arcs
directed from places to transitions and the weight of arcs directed from transitions to places.

γ : PB → �4 ≥ 0 is the batch place function. It associates with each batch place pi ∈ PB the 4 − uplet
of continuous characteristics g(pi) = (Vi, dmax

i , Si, Φmax) that represents, respectively, a speed, a maximum
density, a length and a maximum flow.

Time: it represents the firing delay in case of discrete transitions and the maximal firing flow in case of
continuous or batches transitions.

For analysis of Petri net, two notions are needed: Preset and Postset since they are crucial in
modelling, respectively, pre-conditions and post-conditions of a system changes.

Definition 2 (Preset and Postset). Let m =| P | and n =| T | be the number of places and transitions in a
TrBPN, respectively. The preset of a place p (resp. of a transition t) is defined as ·p = {t ∈ T | Post(p, t) > 0}
(resp. ·t = {p ∈ P | Pre(p, t) > 0}) and the postset is defined as ·p = {t ∈ T | Pre(p, t) > 0} (resp.
·t = {p ∈ P | Post(p, t) > 0}).

Batches are moving at different speeds. For controlling this, the concept of controllable batch is
introduced.

Definition 3 (Controllable batch). Additionally to the three basic characteristics of a batch, a controllable
batch (Cβr) is characterized also by the speed. Cβr(τ) = (lr(τ), dr(τ), xr(τ), vr(τ)) ∈ �+×�+×�+×�+.
An instantaneous batch flow of (Cβr)(τ) is given by: φr(τ) = vr(τ) · dr(τ).

The marking of the batch place is a series of batches ordered by their head positions.

The moving of batches and their evolution depend on the state of batch places and are governed
by various functions, namely: Creation, Destruction, Merging and splitting.

Definition 4 (Dynamics of controllable batches). For every batch place, four continuous dynamic
functions can change the values of its batches and then change its marking.

Creation: A controllable batch Cβr(τ) = (0, dr(τ), 0, vr(τ)), is created inside a batch place pi and added
to its marking if its input flow is not null i.e., With

dr(τ) =
φin

i (τ)

vi(τ)

Destruction: A controllable batch is destroyed, if its length is null i.e., lr(τ) = 0 and it is not a created
batch i.e., xr(τ) 
= 0, such that Cβr(τ) = 0 and removed from the marking.

Merging: A controllable batch is obtained from the fusion of two batched, if they are in contact with the same
density and the same speed. Consider the two controllable batches: (Cβr)(τ) = (lr(τ), dr(τ), xr(τ), vr(τ))

and Cβh(τ) = (lh(τ), dh(τ), xh(τ), vh(τ)) with xr(τ) = xh(τ) + lr(τ), vr(τ) = vh(τ) and dr(τ) = dh(τ),
(Cβr)(τ) becomes (Cβr)(τ) = (lr(τ) + lr(τ), dr(τ), xr(τ), vr(τ)) and Cβh(τ)is destroyed Cβh = 0.

Splitting: A controllable can be split into two batches in contact with same density and the same speed.

The aforementioned models aren’t able to express accurately some rules and situations in
traffic applications such as priority roads, traffic that has to stop when approaching an intersection.
For example, the traffic behavior can change significantly due to the type of intersections whether
they are right-of-way or roundabout, the presence of road signs or not. Therefore, taking into
consideration non deterministic time based traffic dynamics will lead to improve modelling accuracy
and generalization.
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4.2. Our Extension: Generalized Nondeterministic Batch Petri Net

The batch Petri net that will be presented in this section is based mainly on the same principles
as triangular batch Petri net such as triangular fundamental diagram, generalizes the traffic flow
modelling and tackles other cases of road networks. We extend the existing formalization to support,
on one hand, dependencies between traffic flow dynamics and external conditions, and on the other
hand, events that change dynamics at any place within roads.

To illustrate this, consider the following example:

Example 1. At T-intersection, the batch coming from section S2 and aiming to turn left, it must give way to
the oncoming batch from section S1. Figure 3 illustrates this giving way case.

Figure 3. T-intersection with give way rule, as depicted in the example.

By considering the above example and other such situations, the traffic behavior or the batch
is not only depending on simple delay times or flow rules but can also depend on more complex
uncontrollable events that may even change completely the batch characteristics. In the triangular
batches Petri net modeling, these cases and others are not modeled precisely or are not considered;
For instance, in the example mentioned above, the batch (coming from S2) doesn’t have necessary the
same behavior since the batch can be divided according to the other traffic behaviors (batch coming
from S1); the condition that has to be filled is neither delay time nor flow rule, the traffic has to stop
and wait for the way to be clear.

The proposed generalized nondeterministic batch Petri net (GNBPN) seeks to complete Petri net
formalism by adding new non-deterministic time based transitions which we call untimed transition
in order to formally represent changes that depend on external conditions (i.e., vehicles move at
intersections only when the road ahead is empty). This allows us to include uncontrollable events
which cannot be fixed in time. Moreover, we enrich the model to take into consideration relationships
to previous observed changes at a given station and/or to neighboring roads at the same time; for
instance, at fork, splitting a traffic flow into more accurate proportions can depend on temporal and
spatial information (presence of an event, roadworks, etc.). The benefit of the added statistical feature
is to enhance the firing rule of batch transitions.
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Generalized nondeterministic batch Petri net (GNBPN) is defined formally as follows [24]:
(P, T, Pre, Post, C, f , Prio, E) Where:

1. P, Pre and Post are respectively the set of places, the pre-incidence and the
post-incidence matrices;

2. T is a finite set of transitions that are partitioned into the three set of timed (Tt), untimed (Tu)

and batch (TB) transitions T = Tt ∪ Tu ∪ TB;
3. C is the “characteristic function”. It associates with every batch place three continuous

characteristics (Vi, dmax
i , Si, Ns) that represent respectively speed, maximum density, and length

and the total number of segments of the batch place;
4. f : is an application that associates a non-negative number to every transition:

• if tj ∈ Tt, then f (tj) = dj denotes the firing delay associated with the timed transition
expressed in time unit;

• if tj ∈ TB, then f (tj) = Φj denotes the maximal firing flow associated with the batch
transition expressed in entities/time unit and estimated by statistical models in case of
multiple outputs;
We use the symbol f to refer to firing rules of transitions which can depend on both delay
times and flow rules.

5. Prio is the priority of a transition according to the output flow of a place, ∀tj ∈ Tu. This priority’s
feature is added to support non-deterministic time based transitions.

For better understanding of the concept of GNBPN model, we illustrate the primitives of the
proposal petri net using the example of T-intersection where the batch, coming from section S2 and
aiming to turn left, must give way to the oncoming batch from section S1 (Figure 3). The Sections S1

and S2 are represented respectively, by batch places p1, p2. The intersection is modelled by the batch
place p21. While the maximum inputs flow of S1 and S2 are modelled by the batch transitions t1 and t2.

The give way rule within intersection is modelled by the untimed transition t23 representing that
vehicles at section S2 have to wait until the traffic ahead clears the intersection. Maximum flows Φ13, Φ21

and Φ3 of batch transitions t13, t21 and t3 represent, respectively, the maximum output flow of Sections
S1 and S2 and the maximum input flow of section S3. The associated model is shown in Figure 4.

Figure 4. Generalized nondeterministic batch Petri net representation of traffic flow of the use case.
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5. Implementation

This section presents a deployment architecture that uses wireless sensor network and then
it introduces an implementation of Visualization component and Traffic Modelling and Analytics
component of the WTSM.

5.1. Deployment Architecture of WTMS

All nodes in this network are connected directly to a base station or via a relay node if needed
and share their data. On another hand base stations model the traffic flow based on the received data
and then output the current traffic flow state. Consequently, they send the estimated traffic flow to the
Control manager that evaluates all the received traffic flow estimations and provides an overall traffic
estimation for the network. Such that, if congestion is detected, the Control manager broadcasts an
alarm notification to the authorities in order to take appropriate decision. The system deployment
architecture is illustrated in Figure 5.

The proposed system is mainly made up of the following elements:

• Sensor nodes: are responsible for detecting traffic flow at points of interest namely the beginning of
roads, and sending the real time measurements to the sensor head;

• Relay nodes: are intermediate sensor nodes that are used in case the network is wide and a
multi-hope communication is needed;

• Sensor head: The duty of the sensor head is to aggregate the physical traffic parameters that were
captured by sensor nodes like density, velocity and to send the aggregated data to the base station.

• Base station: The major purpose of base stations is to model and simulate the received traffic flow
in the corresponding region and provide its dynamic evolution over time.

• Control manager: provides more coherent traffic flow of the overall road network, while dealing
with some of the most common critical situations such as congestion.

Figure 5. Major components of the proposed architecture.
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Following is a simple use case representing the WSN based traffic management system and how
it can operate when detecting traffic flow in road network.

The scenario consists of two intersections IS1 and IS2 where two roads cross each other as
depicted in (Figure 6). At least two sensors are positioned preceding every road to detect and transmit
the data that consist mainly of velocity, density and length of the entering vehicles. These data are
collected in the base station so as to model the traffic flow and estimate its evolution within the network.

Suppose at time T0, different batches of vehicles are detected within roads R1 and R2 (Arrows
blue and red) by a set of sensors that are positioned at the beginning of these roads. Sensor S1 will
transmit information about velocity, length and density to the corresponding base station BS1, through
the sensor head, where generalized nondeterministic batch Petri modeling will perform and output
the traffic flow evolution at every section of roads i.e., the velocity, the length, the density and the time
when vehicles will be there. The same process will be carried out for sensor 2 and BS2. Consequently,
a control manager will model the whole network based on the output of every base station.

Figure 6. A simple scenario of the proposed traffic management.

5.2. Prototyping

A prototype has been developed in order to implement the data analysis component and more
precisely the proposed GNBPN model and check its applicability. To this end, we have proposed
a preliminary architecture consisting of the following elements: Web interface, two sensors and a
base station.

The web interface is meant to allow the system administrator to save the characterestics of each
road within the network mainly its maximum speed, maximum density and length.

The sensors are meant to detect a batch of vehicles and determine its average speed and density.
The base station is meant to execute the batch evolution model GNBPN based on the inserted

parameters through the web interface and the detected values received from sensors.
The suggested prototype aims mainly at implementing a simplified version of GNBPN model.

This simplified version is used to study the dynamic evolution of a vehicles batch that is moving in a
certain section of the road, in order to predict whether congestion may occur at the level of the entire
road or not.

To perform the calculations necessary to determine the vehicles batch evolution within a section,
the algorithm takes as inputs:
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• The characteristics of the vehicles batch, which are:

– db: The density of vehicles batch (veh/km);
– xb: The position of vehicles batch;
– vb: The speed of vehicles batch (km/h).

• The characteristics of the road R:

– LR: The length of the road (km);
– Dmax

R : The maximum density (veh/km);
– VR: The maximum speed (km/h);
– Φmax

R : The maximum flow (veh/h).

Once the algorithm is executed, it yields the output vector A which contains four values describing
the evolution of the batch, namely:

• t: The travel time needed to reach the end of the road;
• db: The updated density of vehicles batch;
• xb: The updated position of vehicles batch;
• vb: The updated speed of vehicles batch.

Figure 7 shows the Arduino IDE with a sample of the simplified sketches loaded.

Figure 7. screen of the Arduino IDE program with a sample sketches loaded of GNBPN model.

The development of the prototype involved the use of two HC-SR04 ultrasonic sensors for
detecting the vehicles batch and sending the measurements to the base station, a MAMP Web Server
and an Intel Galileo Gen 2; the intel Galileo Gen 2 development board is used as a base station on the
one hand, and as data aggregation platform on the other hand. This board plays the role of sensor head
since it performs an aggregation operation over sensor measurements such as aggregating vehicles
speed. Also, Intel Galileo Board performs the simplified version of Batches Petri nets algorithm using
the aggregated data and the input parameters, that were given through the web interface, to determine
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whether a congestion will occur or no. Figure 8a shows the used Intel Galileo Gen 2 connected to two
HC-SR04 ultrasonic sensors.

(a) (b)

Figure 8. The main elements of the proposed prototype. (a) HC-SR04 ultrasonic sensors with Intel
Galileo Gen 2; (b) Web Interface for inserting road parameters.

The current deployed version of the model is totally based on installation on Galileo gen 2 boards.
The software installation process consists of the following steps:

– Setting up the computer for development with the Galileo Gen 2 board by installing arduino
integrated development environment (IDE) software;

– Writing and Uploading the code: Once the code is created, it has to be compiled and uploaded to
the Galileo board.

The system contains a web interface as well for inserting the required parameters for the model
such as maximum density, maximum speed and maximum length of a road.

Figure 8b shows the web interface screen. The data inserted is thus sent and stored into a XAMPP
based database server.

In this work, the HC-SR04 ultrasonic sensors have been chosen to detect vehicles batch and
measure its speed and density. They operate on 5 V and provide 2 to 400 cm or 1” to 10 feet non-contact
measurement function with high accuracy and stable readings (up to 3 mm accuracy).

The HC-SR04 ultrasonic sensors consist of a transmitter and a receiver. The transducer transmits
eight 40 kHz pulses of ultrasonic pulses which travel through the air until it meets an object that
these pulses are reflected back by the object. The waves reflected by the objects and received by the
transducer are used to compute the speed and density of vehicles’ batch by Intel Galileo Gen 2.

Intel Galileo Gen 2 Development board is powered by intel Quark System-on-Chip (SoC) ×1000
and operating at speed up to 400 MHz. it runs on an embedded Linux Kernel and it ensures saving
data on the SD card and transmitting them using internet.

The advantage of using Intel Galileo Gen 2 is the ease of writing Arduino’s sketches in order to:

– Obtain the parameters that have already been stored via the web interface into a database
– Interact with sensors for computing cars speed and density
– Perform the simplified version of GNBPN model
– Transmit the result and save it into XAMPP based database server

Figure 9 represents a workflow diagram for the developed prototype.
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Figure 9. The flow diagram of the developed prototype.

On another hand, based on our GNBPN model and estimation methods, we have developed
color-coded visualizer that is used for viewing different segments of road network and estimating
traffic evolution on (i) the same segments (temporal prediction) and (ii) related segments (spatial
prediction). Different features are taken into consideration such as displaying traffic situations and
computing travel times along possible routes for origin-destination pair etc. The visualizer takes the
knowledge derived from models and turns it into easy and interpretable accessible visualizations that
include near real-time road traffic flow, and road traffic prediction. Interaction with the system can be
ensured through mobile applications or web portal (users) and dashboard (managers).

Figure 10 depicts a sample of the visualizer that we have developed. For instance, Figure 10a
shows the level of congestion of a section that is characterized by flux, density, length and maximum
speed. As for Figure 10b, it is an exploratory example of an event covers a circular geographical area,
as well as the affluence that indicates its impact vis-à-vis the sections concerned.

(a) (b)

Figure 10. Illustration of the road network visualizer application. (a) The main characteristics of a road
section; (b) An event occurs in a geographical area.

We have used google map APIs for developing our color-coded visualizer described in the
previous section and we have proceeded with customizing it by adding modules for CRUD operations
on road segments using Java 8 and MySQL.
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6. Conclusions

This paper presents a novel wireless sensor networks based system for road traffic management
while detailing the deployment and the functional architectures.

The paper exhibits an implementation of two elements of the proposed system: Visualization and
data analysis components. We are currently working on various components of the system :

• Implementation of the complete algorithm of our traffic state evolution
• Estimation of intersection turning movements and its implementation
• Using NoSQL database for data storage
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Abstract: We live in an era where typical measures towards the mitigation of environmental
degradation follow the identification and recording of natural parameters closely associated with
it. In addition, current scientific knowledge on the one hand may be applied to minimize the
environmental impact of anthropogenic activities, whereas informatics on the other, playing a key
role in this ecosystem, do offer new ways of implementing complex scientific processes regarding
the collection, aggregation and analysis of data concerning environmental parameters. Furthermore,
another related aspect to consider is the fact that almost all relevant data recordings are influenced
by their given spatial characteristics. Taking all aforementioned inputs into account, managing such
a great amount of complex and remote data requires specific digital structures; these structures
are typically deployed over the Web on an attempt to capitalize existing open software platforms
and modern developments of hardware technology. In this paper we present an effort to provide
a technical solution based on sensing devices that are based on the well-known Arduino platform and
operate continuously for gathering and transmitting of environmental state information. Controls,
user interface and extensions of the proposed project rely on the Android mobile device platform
(both from the software and hardware side). Finally, a crucial novel aspect of our work is the fact
that all herein gathered data carry spatial information, which is rather fundamental for the successful
correlation between pollutants and their place of origin. The latter is implemented by an interactive
Web GIS platform operating oversight in situ and on a timeline basis.

Keywords: IoT; GIS; Wireless Sensor Network; environmental monitoring; participatory

1. Introduction

The methodology of identifying and recording natural parameters is straightly connected to
environmental degradation, while modern technological achievements have created new prospects
of interaction between human and their living environment [1]. Technological solutions derive from
complex scientific processes, which offer integrity, scientific relevance and applied continuously could
also serve as a stepping stone to minimize environmental impact [2]. The increased accessibility to
cutting edge technologies and the variety of skill-set held by the average citizen, generate prospects
of novel methodology for protecting and preserving the environment. This study focuses on the
development of a prototype platform that records the environmental state of any given place.
Open-source technologies (software and hardware) are playing a pivotal role on the implementation
of the platform. More specifically, the proposed platform is supported by recording devices based on
the Arduino family of boards. Code development take place at all stages of the project and have been
implemented exclusively through open-source applications. The monitoring device is calibrated prior
deployment, taking into consideration the parameters of each component (software and hardware).
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The scarcity and degradation of renewable or non-renewable natural resources are signaling
disturbances in the planet’s geochemical cycles as well as the reduction of biological diversity
and genetic stock [3]. Human activities are characterized as the main source of climate change [4].
It is commonly accepted that the ecosystems of major cities have played an important role on the
environmental crisis due to the unceasing accumulation of population within them. Moreover,
cities present particular vulnerabilities to climate change and its effects [4]. The multidimensional
concept of a human’s Quality of Life (QoL) [5] is shaped, among others, by the perceived environmental
nuisance, under subjective criteria. QoL deals with the study and documentation of the concept of
quality of everyday life, through the synergy of both subjective and objective criteria.

Enriching human activities with technological solutions may act as a springboard to minimize
environmental impacts on everyday life. Towards this goal, one of the most promising, yet affordable
solutions is the concept of the “Internet-of-Things” (IoT) [6]. IoT denotes the computerization and
the utilization of everyday digital objects for the further enrichment of Internet data. It presents new
means of interaction between man, machines and computers, indicating natural and essential modus
operandi for humans and their environment. Moreover, recent advances in the fields of electronics have
allowed consumer mobile Internet-enabled devices (e.g., smart-phones, tablets, smart-watches, etc.)
to be equipped or even expandable with numerous features, that allow or facilitate interdisciplinary
applications related to human and natural activities. The embodiment of GPS receivers within the
aforementioned devices, the usage of novel methods of analytics, as well as means of presentation
of geographical data have keenly contributed on broadening environmental science applications in
conjunction with the advanced computing.

Finally, the notion of “participatory sensing” [7] has allowed the contribution and access of
individuals and or groups to a single core knowledge, allowing users to become active members
within digital communities. The rapid growth of computing power on mobile devices has realized
large scale environmental sensing, mainly through broad access and visualization provided by web
GIS applications.

The herein presented research methodology includes both design and implementation steps.
Principles of environmental monitoring [1] guide the deterministic modeling that encloses certain
research variables of the case study [8]. In addition to the theoretical approach, software structures
are designed according to the system’s demand. Accurate environmental sensing depends on the
appropriate design and function of hardware elements. Furthermore, communication infrastructure
is essential for seamlessly feeding the system from end to end. Subsequently, the recording device
is manufactured according to the type of studied physical quantities and networking restrictions.
The device needs to be developed and calibrated accordingly in order to follow the system’s
standardized procedures. Further visualization and analysis is essential to this work because in
order to locate and possibly recognize sources of environmental degradation. This purpose serves
a Geographic Information System (GIS) platform which is integrated to a web interface developed
specifically for this study.

The rest of this paper is organized as follows: In Section 2, we present related research work
concerning various applications of remote sensor networks. Then, in Section 3, we present the details
regarding hardware components that have been used. Section 4 presents in detail the implementation
framework of the of the proposed platform. Results that occurred upon the deployment of the platform
into real-life use cases are presented in Section 5 and the proof-of-concept is laid out in Section 6.
Finally, the discussion regarding the conclusions and future prospects of the proposed framework is
presented in Section 7.

2. Related Work

Recent technology advancements have driven Wireless Sensor Network (WSN) systems to become
a feasible solution for many innovative applications [9,10]. Several systems that rely on low-power
embedded micro-controller platforms have been proposed [9,11]. Such systems make use of the digital
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and analog I/O ports of platforms for sensor extensions alongside with custom or open source software
components. For instance, Ferdoush and Li [10] proposed a system based upon several hardware
and software elements. They focused on the development and integration processes. The overall
architecture of their system included a base station and a number of distributed wireless sensor
nodes. On the hardware side, both nodes and the base station are developed in an assemblage
of micro-controllers (uC), a radio transceiver and an environmental sensor measuring humidity
and temperature. Specifically, base stations are implemented using a Raspberry Pi Model B [11],
taking advantage of its advanced processing capabilities compared to the Arduino Uno [12], which has
been used to incorporate the sensors. Connectivity is established with the help of XBee Pro S2B
module [13] Data manipulation is performed by applications that have been installed in both sensors
and base station. A gateway application that has been installed in the micro-controllers assists the
on-board functionality and acts as an intermediate for the sensor network and the MySQL database.
Furthermore, the whole system is monitored by a web application which is controlled by the end user
and offers data visualization capabilities. Overall, the system proposed by Ferdoush and Li is low cost,
compact and could be easily managed with reduced complexity. On the other hand it has only been
deployed for indoor monitoring of temperature and relative humidity and the end user is provided
with low data visualization capabilities. Although it shares several fundamental characteristics with
our proposed system, we believe that it is strongly differentiated on many aspects. Within our approach,
communication is based on Bluetooth protocol and GPRS/WiFi connectivity. Moreover, our approach
is structured around cloud computing services and its main aspect is the transmission of produced
environmental information; i.e., it has been designed for outdoor use producing seven environmental
variables. Finally, our approach strongly focuses on spatial characteristics of natural phenomena and
we integrate this on every aspect of our deployment.

Similarly, Kumar and Kumaraswamy [14] developed a WSN using open-source hardware
platforms for small-scale ecological monitoring and knowledge collection. Both Raspberry pi and
a microcontroller were used as a sensor node and base station setup. Each node has embedded
software capable to handle recordings to the base station, which is supported by a user friendly web
application. Communication is executed by ZigBee protocol (IEEE 802.15.4 standard), which complies
to three types of network topology (star, cluster-tree and mesh). Their proposal is adaptive to many
ecological monitoring applications due to its compatibility with several open source hardware and
software platforms.

Indoor Environmental Quality (IEQ) is a concept which concerns the work of Salamone et al. [15].
Therein, a WSN has been developed on the purpose of aggregating a set of different categories of
comfort, well-being and satisfaction of users of buildings. Sensor nodes were based on an Arduino
Uno and monitored air speed, radiant temperature, luminosity and CO2. Their system, namely
nEmOs project, is implemented for recurrence monitoring and improvement of conditions and energy
efficiency of buildings. The network’s communication is based on WiFi and sensor readings are sent
to the Xively [16] cloud service. The notion of base stations is not adopted; instead, an Android App
has been developed for the purposes of data distribution and node management. Comparison of
the proposed sensor nodes with existing commercial tools indicated a difference of more than 5% in
accuracy. Overall, nEmOs may be characterized as a useful monitoring model for confined spaces.
The main differences with the proposed system is that contains further sensing complexity which
is also applied outdoors. However both approaches aim at the estimation of environmental quality
through a series of low cost and open source tools.

The direction of sensing the natural outdoor environment has been adopted by [9]. Their work
refers to small distance dense deployment strategy of automated early fire detection through cluster
distributed sensor nodes operating with low energy demands. The sensors are deployed to fixed
positions in forest areas, feeding base stations (cluster-heads) with specific metrics, which, on their turn,
forward the gathered information to a data sink. Network topology includes “adaptive mechanisms”
related to fire detection and uses both flat and hierarchical structure. An important technical aspect of
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the project is the correlation between energy consumption and network performance due to the remote
exposure of sensors in adverse conditions. This is achieved by sensing temperature and humidity
fluctuations that point out fire threat. An integrated automated monitoring system that relies on
network design and implementation has been implemented. It showcases the depth of functional
capabilities in automated sensing methodology. The data used are spatial aware and obtain specific
fixed positions in the research area. From our perspective, geographical location offers correlated
information regarding location and time depending on the environmental aspect in question (humidity
or temperature). Likewise, user related capabilities of event aware sensors offer reactive mechanisms.
In the proposed system, nodes adjust their sensing parameters according to spatial transitions and
warn the end user for abnormal or dangerous fluctuations of the environmental quality.

Sensor related applications and services in automotive vehicles is a direction followed by corporate
industries [17]. A moving vehicle can be a source of sensory data that are difficulty acquired by a single
system or network. Produced variables benefit drivers and third parties gathering information for
environment monitoring, passenger awareness and vehicle operation. Sensory data derive from
embedded hardware and network functions supported by vehicles ECU (Electronic Control Unit) and
are supported by Global Positioning System’s (GPS) operation. The dissemination of data support
further implementation on urban and public sensing provide benefits to global information sharing
and access with the aid of mobile phones and handled devices, opening novel application domains.
Automated environmental data generation through vehicles may considerably widen the source of
sensing data while enabling further development of supporting infrastructures (e.g., networking).
Built in sensing in vehicles fails to support hardware customization due to restricted production.
Nevertheless, social aware passengers convey the potential expansion of environmental sensing
inter-connectivity by integrating portable sensor technology into vehicle capabilities [18].

Precision agriculture is a wealthy field of application for automated monitoring as it has been
highlighted by both Srbinova et al. [19] and Keshtgary and Delijoo [20] which have both developed
WSN systems for improved quality in farming. They both followed the common WSN schema of nodes
and base stations while showcasing efficient processes of gathering and distributing environmental
parameters. Both studies engaged into the structure of network topologies, attempting to optimize
quality in arable areas. More specifically, Srbinova et al. used communication protocols with low
connection rates based on energy efficient time frames. Also, Keshtgary and Delijoo concentrated on
the creation of performance metric typeset for a bivariate topological model. The initial iteration locates
nodes at edge of each field and the latter distributes them randomly. Precision agriculture through
WSN distinguishes external factors of monitoring to provide profundity on this field of study. Sensor
networks require input from complementary components to complete monitoring and operational
routines such as an irrigation system to control water level and humidity.

Hur and Eisenstadt [21] proposed a “low power wireless monitoring system” for mosquito and
pathogen related research. The system’s purpose is to transmit information regarding humidity,
temperature, wind speed and direction and location data for better control of mosquito populations
and to prevent the spread related diseases. They’ve deployed a set of fixed, power autonomous and
weather proof wireless climate monitoring devices based on a microcontroller that communicates to
a Web based service through a low power Adaptive Network Technology (ANT) module. Moreover,
the device security is enhanced through a radio-frequency identification unit (RFID) for secure control
and manual user login of the module. The series of data is presented to a web browser application
equipped with extensive graphical capabilities, and therein location related information is presented
to a Google Maps based platform. Although our project embodies similar concepts, this work is
specialized in population control and disease prevention. Additionally, sensors are geostationary and
do not feature open source software and hardware properties.

The three year design and deployment of WSN by Naumowicz et al. [22] aimed at seabird
monitoring on Skomer Island (a UK National Reserve, located off the west coast of Pembrokeshire,
Wales). The research team developed a real-world deployable sensor network to investigate the habitat
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of Manx Shearwater (Puffinus puffinus) seabird. The project is based on battery powered sensor
nodes communicating bi-directionally via Micro-Mesh-Protocol. The sealed devices were based on
generic extension boards (MSB430MS) and installed near the entrance of the bird’s habitat (burrow)
monitoring air temperature and humidity, movement on the entrance (passive infrared PIR), identity of
individual bird (were marked previously with RFID tags) and weight of individual gird (with custom
made scales). Recordings were initially saved in a SD card and selectively parsed to the repository
through Micro-Mesh. Data and nodes were controlled by a custom built firmware with low level API
based on ScatterWeb of Freie Universitat Berlin. Remote deployed and custom developed WSNs offer
dependable recordings on specific implementations, but lack repeatability and broad applicability.

More et al. [23] proposed a “test-bed for real-world Habitat Monitoring System (HMS)” by
acquiring remote physical environmental data. Their project can be implemented in any remote
location using the Arduino Uno board, WI-FI connectivity and a Graphical User Interface (GUI).
The nodes are consisted by a sensing, a power and a communication unit, which are monitoring
temperature, humidity and light, while transmitting them towards a base station. The platform
supports live data visualization on a hourly basis and the GUI manages the recorded data through
a database built for this purpose. The project of More et al. is an adaptable platform focused in easy
deployment at specific remote areas. Our project is concentrated in the spatial aspect of monitoring,
proffers portable operation and is compatible with modern mobile devices.

Simbeye et al. [24] dealt with the development of special nodes in order to monitor environmental
parameters in aquaculture. Their method concerned the evaluation of monitoring an aquaculture
system by deploying for the duration of six months two sensor network nodes in fish ponds. The overall
framework consists three monitoring components: “smart sensor nodes”, gateway/coordinator
nodes—both based on the ZigBee platform—and a PC as monitoring center. The environmental
conditions were analyzed through specific software operating on every system component and
presented real-time and total recordings in a GUI. The methodology of water monitoring allows
to avoid fish mortality and could be applied in various fields of environmental sensing.

The adherence of proper hygiene practices in public health institutions is a subject studied by Bal
and Abrishambaf [25] through the implementation of IoT and WSN technologies. Their prototype
system aims at monitoring hand hygiene compliance rates through cloud-connected monitoring
stations to monitor hand hygiene events in real-time and in large scale. The proposed platform is
consisted by a network of “smart hand washing” nodes, which are embedded in a wireless domain
through Zigbee communication protocol and UHF-RFID modules. The nodes are divided into Soap
Dispenser and Faucet categories that both integrate embedded microprocessors, various sensors and
actuators. The automatic soap dispenser, based on Arduino PRO-mini, initiates the hygiene sequence
once it is actuated by the user and it is followed by the faucet, based on Raspberry Pi 3, which
finalizes the hygiene activity. Networking is based on wireless local area network that establishes
communication among nodes and cloud services (Database and Clients) where lower and higher
level programming languages have employed on the purpose to measure compliance while counting
hand-hygiene occurrences and their total duration. Bal and Abrishambaf proposed a novel approach
on public health related human actuated events, outwit the scope of environmental sensing and
outdoor monitoring.

The survey of Noel et al. [26] dealt with applications of WSN to Structural Health Monitoring
(SHM) which is referred to the monitoring of critical infrastructures in order to expand their lifespan
through “early damage detection”. This application requires the deployment of numerous sensors
throughout a structure for damage localization. Applied WSN for SHM are based on the selection
of sensor and sensed parameters—mainly focused on structure’s acceleration and velocity through
piezoelectric accelerometers. SHM requires the management of a large amount of data with dense
population of sensor nodes. Delay in sampling rate depends on the prospect of the monitoring
procedure, e.g., long-term allows long delays. Network scalability is highlighted as an important
factor in meeting each SHM application quality due to the required “sheer quantity of data collection
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and transmission” and is related to the maximum network node time-synchronization step. Network
architecture is improved through hierarchical relationship between a base station and several sensor
nodes. Synchronization among the nodes and the base station is implemented by specialized
algorithms that are dependent to Time Synchronization Error (TSE) factor. Furthermore, optimal
placing of sensor nodes originate from civil engineering perspective and determines the effectiveness
of structural information collection. Relatively to scalability, placement is related to network’s
lifespan, overall connectivity, robustness and decision regarding the implemented routing protocol.
Energy efficiency determines network lifespan and affects system operation. Clustering is highlighted
as a common technique to improve scalability, simplify routing, extend network lifespan and conserve
bandwidth. In addition to the aforementioned, an SHM is capable of carrying several features such
as Mobile Phone Sensing (MPS) that extends the system to the capabilities of smartphones (e.g., GPS,
accelerometers, cameras etc). WSN consist an effective tool with SHM applications that requires
extensive research prior deployment. The common ground between environmental monitoring and
SHM is found on sensor locality, network architecture and communication protocols.

System intelligence in supply chain is provided by the integration among RFID and WSN.
Mirsahi et al. [27] suggested an identification and detection system with intercommunicated devices
that fulfil several requirements of the user. Based on the analytical Petri Net toolbox the authors
proposed a system of “smart nodes” capable of environmental monitoring, location identification
and organizing products. Their system is performance oriented by impromptu providing different
functions related to the operation of automated guided vehicles (AGV).

Recent research work on the subject of environmental sensing and WSN indicates the popular
applicability of IoT projects in several fields of application. In contrast to most of the aforementioned
works we consider the significance of spatial and temporal elements in environmental monitoring.
Non-linearity of natural phenomena is optimally monitored through the recognition of environmental
processes over time and space [28]. Therefore embedded location tracking arise as the distinctive
factor of our integrated system along with the potential of widespread implementation by public and
private bodies. We propose an adaptable monitoring system based on integrated IoT, web services
and popular development platforms that utilizes off the shelf hardware components and portable
devices. The system functionality is based on the deployment of sensor nodes in conjunction with
an ever available android compatible device. Furthermore, it is adaptable in terms of power supply
and communication protocols. The monitoring procedure can be implemented by non-expert users
and mainly focuses on qualitative assessment of the perceived environment. Environmental physical
quantities are visualized and simplified onto geographical overlay on the prospect of rapid decision
making. In conclusion, the proposed platform could be adapted to various environmental sensing
applications and is capable for further customization.

3. Implementation

As expected, the proposed integrated system is based on the application of Information and
Communication Technologies (ICT). As a result the technical aspect of this work is divided into two
distinct parts: hardware development and networking. These allow the system to obtain, carry and
disseminate physical variables through a tree type network topology comprised by sensor nodes,
base stations and a server (as message broker). Additionally, the conjunction between sensor nodes
and base stations operates through merging measurements and location tracking in order to detect
spatial trends in reference to environmental deterioration factors. Also, the network supports on the fly
visualization capabilities through numerical and cartographic representation. The latter is implemented
by heat maps that provide an optimal apprehension of environmental quality on any given location
through variable clustering. In this study the heat map is considered to be an environmental assessment
system, visualizing the synchronization of physical quantities and spatial position.

Individual values of each variable are aggregated into a geographical matrix on which data are
graphically represented through a color scheme. Warmer color variations commonly correspond to
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dense data concentration and therefore density is related to higher values. The proposed platform
is based on distributed recording that assist the aggregation of data, hence the indication of spatial
fluctuations in concentration of pollution factors. Each variable refers to its corresponding range
(Noise Pollution: 30 to 80 dbA) and is categorized accordingly on the map. Beside individual metrics,
integrated environmental quality can be detected through a Global variable. Global Environmental
Quality is an assessment methodology attempting to integrate the total of measured variables into
a heat map visualization on which non-dense data are considered as noise.

3.1. Hardware

The system developed within this study may be seen as an extension of a wireless sensor network
and consists of several hardware parts. The system aims at monitoring the immediate conditions
related to the perceived environment. Its hardware components consisted by a control unit and several
sensors able to record and disseminate the ambient conditions of a given area. The components need
to comply with the conditions of replace-ability, availability and programmability in order to facilitate
ease of operation and reproduction. Electronic prototyping offer several off the shelf solutions that
follow the aforementioned criteria.

The sensing device is developed using an Arduino developing board. More specifically, we opted
for the Arduino YUN [29] which may be easily deployed for both portable and fixed operation due
to its networking capabilities and expand-ability. Arduino platform offers low power consumption
among popular open source development boards. Additionally, Arduino offers distinctive Digital
and Analogue pins, enabling connectivity with several sensors, actuators and modules. The YUN
model offers extensive wired and wireless connectivity capabilities along with Arduino’s Integrated
Development Environment (IDE). The latter is based on C and C++ languages, which loads
cyclic programming loops directly through the device’s firmware. Physical quantities of specific
environmental variables are produced by 5 sensor modules that have been connected on the YUN
(Table 1). In addition to monitoring tasks the YUN operates as a communication node that transmits
the measurements through WiFi (while being fixed) and Bluetooth (while being mobile). The selected
sensor modules have been selected based on low cost and their range of calibration, taking into
consideration as many variables as possible. The schematic of the sensor node, built using an Arduino
YUN is illustrated in (Figure 1). The selected components are depicted in Table 1 and they have been
selected based on their low price and adequate accuracy for the proposed application, i.e., accuracy
was sufficient for the goal of qualitative assessment of environmental parameters. We should note
that the necessary source code for the sensor node and the mobile phone has been made publicly
available (Mobile Sensor: https://goo.gl/oKqw5a, Fixed Sensor: https://goo.gl/9RJvRU, Android
App: https://goo.gl/BuPUoh.

Table 1. Expansions, Functions and Units used on the recording devices.

Expansion Type Model Function Measurement Unit

Temperature, Humidity DHT 22 Temperature, Rel. Humidity, Heat Index ◦C, % Humidity, % ◦C
Photometer TEMT 2000 Luminosity Lux (lx)
Microphone MAX 4466 Noise Pollution/ Noise Intensity dBm

Gasses microparticles MQ-7 Carbon Monoxide (CO) ppm
Gasses microparticles MQ-4 Methane (CH4) ppm

When being fixed, the system is directly connected to WiFi, while being portable, An Android
device (i.e., a typical smart-phone) complements the system’s hardware in order to provide connection
to the Internet. More specifically, the smart-phone acts as a base station that receives and transmits flow
of data from the sensors to the server. Furthermore it may also offer extensive control and real-time
visualization features for the purpose of complete monitoring operation.
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Figure 1. Sensor Circuit schema.

The selection of the aforementioned hardware components attempts to tackle the common
problem of insufficient energy resources, especially in mobile operation (Figure 2). The Arduino
platform is known to offer several solutions for connecting to power sources, while having a relatively
small energy footprint. In our case, the YUN is connected to a typical power bank via USB. This way,
the system is able to provide portability, elongated operating times as long as effortless connectivity.

Figure 2. Sensor node in bulk form.

In normal conditions each node’s energy requirements averaging 10 mA/h. Using a portable
power supply with a nominal power of 2000 mAh it is estimated that each node can reach optimal
operation of 200 h. Unfortunately, an external battery cannot be used in full capacity thus mobile
operating life of the sensor module is estimated between 12 to 17 h.

3.2. Network Architecture

Data management and storage are the main activities of the proposed sensor network and are
supported by exploiting both preexisting hardware capabilities and also extensions of the YUN.
It is worth noting that several distribution methodologies exist for both portable and fixed monitoring
devices. Portable sensors are dependable to the Android device in order to assert its networking
capabilities (Figure 3). Consequently the YUN transmits the data via Bluetooth connection to the mobile
device, which then is responsible to forward these readings to the server for further manipulation.
On the other hand, fixed nodes set aside Android connectivity and directly forward the readings
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through WiFi. Both module types are time synchronous through a Unix Timestamp [30] function that
is embedded on deployment. Additionally, during mobile monitoring the system validates time-stamp
with satellite timing provided by GPS Atomic Clock [31]. This technique expands the recording
accuracy of the system’s recognition of time related patterns.

Figure 3. Communication architecture.

A Client-Server schema has been developed for the purpose of the study, utilizing open source
software and Cloud Computing technologies. Supportively an MQTT [32] broker has been set up in
order to insure the continuity of operation between base station and the server. Heroku [33] is a cloud
platform-as-a-service (PaaS) on which a server has been deployed through Node.js [34] to host the
operation of the database. Both database design and implementation have been developed through
the non-relational Database Management System MongoDB [35]. Therein, every recording is handled
as a GeoJSON [36] element by the database to be used subsequently by the Android app. A fragment
of the transmitted data in GeoJSON format is depicted below:

{ "_id": {

"$oid": "58188b45914b700011f6dbf1"

},

"deviceId": "mob001",

"sensorType": "mobile",

"timestamp": {

"$date": "2016-11-01T14:32:03.000Z"

},

"geo": {

"type": "Point",

"coordinates": [

23.77108281,

37.94333254

]

},

"humidity": 38.2,

"temperature": 24.8,

"heatIndex": 24.33,

"luminocity": 56,

"methane": 4.73,

"co": 38.66,

"noise": 39

}
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4. Application Framework

The Android platform has been designed to offer numerous hardware and software capabilities
to assist development and functioning of heterogeneous types of applications. Upon investigation,
the aforementioned capabilities have been proven to fulfill the requirements of the proposed system
and its dependencies on complex tasks that require hardware components and are related to the flow
of collected data. The implemented app has been designed to exploit the Bluetooth, GPRS, WiFi and
GPS capabilities of the mobile phone, which are the prerequisites in terms of the phone’s specifications
so as to enable data acquisition and collection from the YUN, location tracking and data transmission.
Data may then be forwarded to services for database provisioning and cartographic representation.

To avoid message flooding, the app’s operating sequence is initiated by the pairing between the
sensor and the Android device via Bluetooth and consists of several intervals of predefined duration.
Each recording consisting of a set of measurements from all sensors is instantly transmitted as a string
message to the phone. This message is enhanced with the exact geographic location of the device and
a time stamp (Figure 4). The message is then transformed to the GeoJSON format and transmitted to
the MQTT broker, which then forwards it to the server. This flow of data to the dynamic repository
enables the interactive mapping operations that allow cartographic representation of the recorded
data. The latter is implemented in the server that stores all recordings to the MongoDB database and
additionally manages and analyzes the content through logical queries.

The two-way communication among fixed sensor nodes and the server is implemented using the
MQTT protocol, which enables message interchange through topics using a publishing subscribing
procedure. Moreover, since MQTT is an extremely lightweight protocol, designed to require small
code footprint and network bandwidth, guarantees a significantly small message size. Moreover,
it is available for many heterogeneous devices and programming languages and fully compatible
with all platforms that have been used within our system. Data sharing infrastructure is based on
a network server acting as a web service. It consists of a Node.js server and an MQTT broker, both
deployed on the Heroku cloud development platform. Ultimately, a non relational database model
has been selected for data management and storage of the recordings. MonogDB manages data as
individual text documents (JSON) with distinct structure (field and values). In addition to the server,
database is based on mLab [37] cloud storage service. Finally, the Android App is developed with Ionic
framework [38] that offers simplicity whereas supporting Angular.Js front-end development standard.
Ionic utilizes ngCordova [39] framework which functions on top of npm Javascript package [40].
The app is equipped with functional and visualization capabilities, allowing the user to control,
monitor and assess environmental quality (Figure 5).

118

Bo
ok
s

M
DP
I



J. Sens. Actuator Netw. 2017, 6, 27

Figure 4. Android App schema.

Figure 5. Data Acquisition on the Android application; Presented values within each line are: Relative
Humidity, Temperature, Heat Index, Luminosity, CH4 ppm, CO ppm, dB, longitude, latitude.

Base station’s role on this application is to collect and transmit data to a repository. In addition to
this, our project exploits the plethora of android platform capabilities. It offers the user live reading and
control alongside with geographical overlay of the recordings. The embedded Web Map is developed
through the Mapbox platform that represents current and past recordings along with their spatial
representation (Figure 6). It provides user an extended apprehension of environmental quality in any
given place and time the sensors are deployed.
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Figure 6. Luminosity map, Athens.

5. Use Case Scenarios

The system has at its disposal multiversal capabilities which allows repeatability among various
cases. Assessing environmental quality is a complex multi-parameter procedure and a deployment
schema has been created for the purpose of the specific research work. At the operational level,
the recording device may be used for both portable and fixed operation while on both occasions requires
Internet access for data transmission. Portable sensors depend on Android for spatial recordings and
network connection. While being fixed, they have predefined location and autonomous connectivity.

The latter is fastened in specific building infrastructures with the aim of providing the system
with continuous baseline data. This operates as a filtering mechanism that minimizes the possibility
of spatial errors. On the other hand mobile measurements supply the monitoring system with risk
indicators on a given route the sensor has “passed through”. Repeated traverses on the same route or
on specific spatial points could possibly indicate spatial propagation of nuisance derivatives. The main
idea is situated at the operation of the sensor on systematic itineraries by frequent commuters based
on un-complicated reproduction of methodology.

Human is an indispensable factor on implementing the aforementioned complex monitoring
procedure. The evaluation of the receptive environment is based on criteria originating from qualitative
measurements [5]. Small scale implementation and minimum resources restrict wider operation with
several nodes dispatched into different locations. The application requires continuous operation of
at least two sensing devices (portable and fixed) in order to replete the database with spatial and
numerical records and subsequently produce optimal representation and highlight probable system
errors or weaknesses. Therefore three realizable user oriented scenarios are determined, depending on
spatial dispersion of the sensor nodes.
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5.1. Individual

Based on the aforementioned every individual may implement the proposed monitoring
methodology on his everyday commute. Sensing could be applied by vehicle users, cyclists, walkers or
hikers who follow specific itineraries thus to enrich the repository with spatial oriented data. The screen
of the Android device projects an immediate visualization of environmental quality of the crossed area.

5.2. Social

Project’s low cost and ease reproduction into multiple iterations facilitate further propagation
on a larger scale. Their data inputs will be gathered in clusters, improve collection and enhance
interpretation. Beyond hobbyists and enthusiasts the proposed WSN possibly attracts citizen and
community groups. Widely employed Android devices urge large scale monitoring processes in
residential areas. The proposed WSN could be implemented by local community and school groups,
NGOs, tour operators and in general groups with interest into environmental sensing methodology.

5.3. Smart City Infrastructure

The increase of world’s population and the shortage of natural resources incline towards
the widespread use of information and communication technology (ICT) [41] in everyday life.
Efficient changes in urban environments are powered by the trends of Smart Cities under the condition
of meeting the needs of the city and its citizens while assisting the management of infrastructure and
services [41].

Promoting involvement of state supported facilities in educational and environmental awareness
activities. Public buildings and infrastructures operate constantly and are network connected.
These edifices consist the ideal point of research interest, thus accommodate a vast number of activities
and services. On the other hand private organizations will meliorate their image on environmental
corporate social responsibility and assist on further environmental awareness activities.

The adoption by state owned vehicles (e.g., refuse trucks) and public transportation
(e.g., bus, tram) services generate surplus value in relation to public service. Most of public vehicles
follow the same routes on a daily basis creation a dynamic field of operation that potentially produces
baseline data.

6. Validation

The proposed WSN was carried out in a broad area of Athens, Greece employing a deployed
pair of fixed and portable sensors. The area of study was mostly set at central Athens region for
both node types. Data emanated from recordings deployed on recurrent itineraries by car, bicycle
or pedestrian use. Likewise a fixed node was set on different positions for varied time periods.
This indicates that the comprehensive implementation of the system requires continuous operation of
two or more devices (portable and stationary) in order to replete the Database of records (spatial and
numerical). The minimum number of deployed devices used on this research as a detection mechanism
for outlying erroneous factors. Subsequently, the expected number of recordings function positively
for the further development of the platform, in order to egress errors and reveal system weaknesses
for future implementation.

On strictly technical terms, there were few initial inconsistencies between modules and
Arduino YUN, which impaired the sensing functionality. Eventually, debugging help solve some
of these issues, nevertheless the complex configuration caused erroneous recordings. MQ sensors
(Gasses micro-particles) use an internal heater in order to operate in temperatures higher than 50 ◦C [42],
therefore are particularly affected by extreme temperature fluctuations and often produce inaccurate
readings. Joint operation with a temperature sensor scale down potential inconsistencies. Additionally,
noise pollution is a complex variable that needs specialized equipment [43]. A thirty-second stride
per measure was applied so to increase accuracy of noise nuisance responsiveness by the microphone
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module. The effectiveness of each time step was validated with controlled measurements of a calibrated
decibel meter. In addition to sensory there were few connectivity issues between YUN and the Android
device. This came as a result of firmware incompatibilities, which resolved by further debugging and
the use of different Android devices, with no measurable documentation on this matter.

The most considerable barrier the research came up against is incomplete data, which lead to
challenging endeavors regarding automated environmental assessment. Ultimately manual data
normalization allowed the production of a final assessment map (Figure 7), carried out by data
aggregation (Global Environmental Quality) according to heat map methodology.

Figure 7. Global Environmental Quality Assessment map, Athens.

7. Conclusions and Future Work

The proposed system offers an automated methodology of monitoring the environmental quality.
The system’s potential is emphasized through the continuous network supply from several devices
(nodes) simultaneously, the low resources and energy requirements and both its quantitative and
qualitative assessment capabilities. Furthermore it supports various hardware extensions with
the derived variables to offer dynamic representation capabilities on a Web GIS environment.
Data generalizations caused measurement inaccuracies and hardware–software compatibility issues,
which are assessed specifically on every occasion. We should emphasize herein that towards
a cost-efficient and open source solution, with minimal implementation time, the way to go is a bottom
up approach, such as the one we have followed, i.e., to select off-the-shelf tested solutions in order
to compose the full system. We also feel that such an approach may be easily adopted by everyone,
e.g., hobbyists, enthusiasts, students, researchers etc., who may easily and at a low cost create their
own nodes and connect them to the platform, towards a fully social environmental network. Of course,
we should emphasize that any single-board open platform such as the Raspberry Pi [44] or any
other platfrom that supports digital and analog sensors and the MQTT protocol may be used for the
construction of the sensor node.

The results prospect for further continuation of the research work. Map visualization of
geographical variables in web GIS may be further optimized. Additionally, the system allows greater
specialization capabilities on recording and development of both hardware and software structures.
The implementation scenarios are capable to broaden in many other applications. The importance
of channeling the research methodology to the public through crowd-sourcing is appearing while
embedding big data methodology. The construction of an integrated Spatial Sensor Web Network
requires the adoption of SensorML [45] standard and Sensor Web Enablement SWE [46] action to
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further support and enrich existing repositories. Implementing manual normalization generated the
need for further research on machine learning methodology outward of the server in favor of big
data aggregation techniques. Finally, the proposed system could be integrated with small effort on
an IoT-ready platform that supports the MQTT protocol, such as the SYNAISTHISI platform [47],
which is an integrated platform that allows humans, systems, machines, and devices for the creation
and management of services. Initial experiments indicated that the proposed sensors may be
seamlessly integrated within the SYNAISTHISI ecosystem. Also, transformation of all processing
units into services is straightforward within SYNAISTHISI. This way, the desirable scalability should
be guaranteed.
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Abstract: The increasing complexity shown in Smart Environments, together with the spread of social
networks, is increasingly moving the role of users from simple information and services consumers
to actual producers. In this work, we focus on security issues raised by a particular kind of services:
those generated by users. User-Generated Services (UGSs) are characterized by a set of features that
distinguish them from conventional services. To cope with UGS security problems, we introduce three
different policy management models, analyzing benefits and drawbacks of each approach. Finally,
we propose a cloud-based solution that enables the composition of multiple UGSs and policy models,
allowing users’ devices to share features and services in Internet of Things (IoT) based scenarios.

Keywords: user generated services; smart environments; IoT

1. Introduction

The possibility for everyone to create custom content and services, in a simple and reliable
way, has been introduced in recent years and is currently supported by a plethora of web based
platforms, such as IFTTT [1], OpenMashup [2], and APIANT [3] (formerly known as We-Wired Web).
These solutions carry out the composition of services with two different approaches: (i) by aggregating
data, existing services, and user’s defined tasks; and (ii) by simply creating new views of existing
content. The results of these compositions can be referred to as User-Generated Services (UGSs) and
User-Generated Content (UGC), respectively [4,5].

The Internet of Things (IoT) vision [6], which emerged in recent years due to a convergence
of different communication/computing technologies, is leading to the diffusion of everyday-life
Internet-capable objects, such as smartphones, Smart TVs, and health monitoring devices. Thus,
IoT represents the ideal ecosystem for composite UGSs and UGC, making users able to generate
new content and services not only from scratch, but also gathering data from objects and the
environment [7–9]. This process, however, may give rise to several security issues due to the
composition of the service-related Access Control Policies (ACP). For example, when an application
developer assembles existing services that have their own security policies, he must ensure that the
resultant policies do not conflict with the existing ones [10].

This scenario highlights the increasing importance that User-Generated Content and Services are
going to assume in the short term. In particular, it is important to outline that there are substantial
differences between traditional Web Services based on the Service-Oriented Architecture (SOA)
paradigm and User-Generated Services, even more when the latter are integrated in an IoT scenario [11].
In fact, while the first ones are “always on” and regulated by access control policies that usually do
not need to be updated frequently, the second ones may be subjected to more frequent changes due to
users’ actions and context. Let us consider, for example, social networks: when users perform common
tasks such as adding/removing content (photos, videos, etc.) or updating the list of friends, the related
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policies change accordingly. Therefore, we can affirm that, unlike what happens for classical services,
policies associated with UGC or UGSs may change very frequently. In addition, the access to a UGS
may be regulated by pieces of contextual information connected to the service owner.

Let us consider the following example of context-dependent access control policy: a user belonging
to the group “colleagues” can automatically access my gallery via bluetooth when all the following
rules are satisfied: (i) My battery charge level is at least 35%; (ii) I’m at my workplace; and (iii) I’m
not driving. It is easy to imagine that the user’s context may change very rapidly and in a way that
implies the continuous change of the current active policy for a device. This is just another example
showing how UGSs represent a new class of services that substantially differ from traditional ones.

In this paper, which extends our prior work [12], we first analyze how the composition of services
whose access control depends on context-aware policies further complicates the policy enforcement on
the resulting composite service. Then, we define three models of policy management that capture the
different possibilities available for UGSs. Finally, we demonstrate how a cloud-based approach can
be exploited to support such policy models using commonly available open-source components and
standard web technologies. The implementation of this approach has been built on top of webinos [13]
platform, to which the authors contributed.

2. Reference Scenario

As the number of devices such as smartphones, tablets, in-car-devices and so on, increases,
the whole electronic industry ecosystem is switching from “multi-user per device” to “multi-device per
user” environments. Adopting the terminology and concepts we introduced in the webinos project [7],
the set of devices associated with a given user can be considered as virtually contained (registered)
inside the user’s Personal Zone (PZ) and might also be shared with others, that is, registered in
multiple PZs.

Figure 1 shows two PZs belonging, respectively, to the users Alice and Bob. Alice’s PZ contains a
smartphone and a camcorder while Bob’s contains only a Smart TV. Despite a single device that could
be “shared” among several PZs, it is owned by a unique user that is responsible for its policies and
whose management may also be delegated to other users/entities. An example policy for Alice’s PZ
could be the following:

Alice’s relatives are allowed to see her smartphone’s gallery pictures on their Smart TV when she is
connected through Wi-Fi.

Figure 1. A simple representation of Personal Area Networks.

Each user can set policies for devices registered in his/her PZ. In the case that a device is shared
among multiple users (i.e., PZs) and its behavior is regulated by multiple policies (e.g., one for
each user), the one written by the owner takes priority over the others. For the sake of simplicity, in the
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following, we will use the name of the PZ owner to refer to a generic device registered in his/her
PZ. For example, a request from Carol is to be intended as a request coming from one of the devices
registered in her PZ.

Many different issues could arise when services regulated by context-aware policies are composed.
These issues may be experienced for instance considering the scenario depicted in Figure 2, in which
services Videostream and Screenshot are provided by Alice to Bob and by Bob to Carol. In general:

• Videostream allows users to receive a video stream from Alice’s camcorder/smartphone;
• Screenshot allows users to take snapshots of contents reproduced on Bob’s Smart TV.

Figure 2. An example of User-Generated Services composition: the Screenshot service can make use of
the Videostream service to provide content.

Let us consider the following:

Example 2.1. Alice’s policies for Videostream service are:

1. Alice’s parents are always allowed to use Videostream service;
2. Alice’s relatives are allowed to use Videostream service only when Alice is in Catania;
3. Every other subject is not allowed to use Videostream service.

Moreover, Bob’s policies for Screenshot service are:

1. Only Bob’s house guests are allowed to use Screenshot service;
2. Every other subject is not allowed to use Screenshot service.

Both Alice’s and Bob’s policies specify contextual constraints: Alice is willing to offer her service
toward her relatives only if she is in Catania (so this policy depends on Alice’s context), and Bob’s
policy instead allows only people who are inside Bob’s house (so this policy depends on subject’s
context). Let us imagine that Bob invites Carol (Alice’s aunt) to his home to watch a video and suppose
that Carol takes some screenshots of this video with her smartphone using the Smart TV provided
service. When Bob’s Smart TV receives a screenshot request from Carol, it checks its policies and allows
Carol’s smartphone to access the service, according to Bob’s policy. This scenario might raise some
problems if Carol tries to take screenshots of content owned by Alice. In this case, even supposing
that Bob (his Smart TV) is aware of Alice’s policies at the time that a request from Carol is received,
it is not possible to enforce the request if Alice’s context information (i.e., location) is not available.
In fact, Alice may consider her location as a “private” information or it could not be accessible at that
specific moment.

If Bob decides to allow a Carol’s request only enforcing his policy (regardless of Alice’s decision),
the situations listed in Table 1 may occur:
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Table 1. Potential situation of conflict between Alice’s policy and actual data sharing.

# Alice’s Context Alice’s Policy Conflict?

1 A is in Catania C is A’s relative NO
2 A is in Catania C isn’t A’s relative YES
3 A isn’t in Catania C is A’s relative YES
4 A isn’t in Catania C isn’t A’s relative YES

According to Alice’s and Bob’s policies, case 1 is the only that does not cause any conflict between
Alice’s and Bob’s authorization decisions. On the contrary, the conditions considered in cases 2, 3, and
4 lead to conflicting situations that Bob does not take into account Alice’s policies and related context
information at the enforcement time.

This is just one example of the issues that may arise when multiple UGSs are composed. In the
rest of the paper, we will analyze these issues and propose different solutions to cope with them.

3. Security Policy Issues in UGS Composition

The behavior of IoT Services (either traditional or user-generated) is regulated by security access
control policies that restrict the access to services to external subjects, represented by applications or
other services. In the UGSs scenario, when a user assembles existing services, he/she has to guarantee
that the policy of the composite service is coherent with policies of all the other involved services
(the component services). For example, suppose that Bob wants to create a new service making use of
another one provided by Alice. When Carol requires access to this new service, Bob cannot decide
whether to allow or deny Carol’s request only evaluating his policy: he also should know Alice’s
decision toward Carol’s request.

In order to avoid ambiguity, it is necessary to define the notation we adopted to describe our
case studies.

Let D be the set of service providers di, for example, in the considered scenario, the devices of an
IoT ecosystem. Let Si be the set services si,j, where si,j is the j-th service provided by di. Furthermore,
let Pi be the set of policies pi,k, where pi,k denotes the set of policies for all the services provided by the
device di. Finally, let Ci,j be the set of the component services used to produce the composite service si,j.

For example, Figure 3 shows a graph representation for a user-generated service
composition where:

• Each node is a service provider, e.g., a device owned by a user providing/consuming services;
• Each edge from dx to dy indicates a service provided by dx that is requested by dy.

Note that s2,1 is a composite service having s1,1 as component service, that is, C2,1 = {s1,1}.
In particular, three main aspects must be considered in the UGSs composition with regard to the access
control policy. These aspects are:

• Dynamicity: service related policies may change frequently;
• Context Awareness: policies may depend on contextual information (e.g., user’s context);
• Degree of Privacy: users could want to set restrictions on the disclosure degree of their policies

towards other subjects (users/services).

These features that characterize UGSs composition may cause new issues to arise as compared
with the traditional service composition.
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Figure 3. Graph formal representation of User-Generated Services (UGSs) composition.

3.1. Dynamicity

In fast changing environments, to promptly react to policies’ changes, a security policy
infrastructure with the following features is required:

• It should be able to update/synchronize composite services’ policies when component services’
policies change. For example, referring again to Figure 3, if the policies related to service s1,1

change, it is necessary to synchronize the policies of all composite services that have s1,1 as a
component service (in this case only s2,1);

• It should define efficient strategies to ensure that any change in component services’ policies does
not lead to conflicting authorization decisions taken by the security policy of the composite service.

In this perspective, already discussed techniques based on static composition of policies
such [10,14] may not be suitable for highly dynamic environments.

3.2. Context Awareness

The use of policies referring to contextual information further complicates the authorization
decision process to grant access to composite services. In the policy example related to Figure 2, Bob
can take a conflict-free decision against a Carol’s request only if he knows Alice’s context. However it
is not available to Bob since only Alice knows her context and it may be changed at the time of
Carol’s request. Contextual policies, therefore, add additional difficulties in user-generated service
composition. In particular, the policy manager of the composite service provider needs to know remote
contextual information from which the component services’ policies depend on. We call this “context
synchronization problem”.

3.3. Degree of Privacy

UGSs composition can lead to policy disclosure. To avoid this, the service provider that assembles
a composite service, referred in the following as intermediate provider, has to ensure that its policy is
compliant with all the component services’ policies. This is possible only if he knows all the policies
that represent the behavior of each component service toward all the possible subjects. In many cases,
especially in the UGS scenario, this could be a serious privacy problem since policies contain sensitive
information that the owner of the component service might want to disclose partially (partial privacy)
or not at all (full privacy) to other users. If all the component services adopted full privacy on their
policies, the intermediate service provider would be unable to ensure any compliant authorization
decision against a composite service’s access request. Similar problems might arise also in the case of
partial privacy. In addition, contextual user information could be in turn under partial or fully privacy
restrictions, as it often refers to sensitive user’s data.

4. Proposed Policy Models

By definition, UGSs are intended as composed services provided by different users. This implies
that one of the main issues to address is to ensure the desired privacy criteria to each user involved
in the composition process. Ensuring privacy does not only mean specifying a policy to decide who
can see content (or use a service), but it also means to protect that policy. For example, in the case
of UGC (e.g., in Facebook), the policy “I do not want John to see one of my photos”, apart from
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preventing John to see that content, should imply that John will not be able to to know that he is not
allowed to see one of my photos. This problem is even more significant in the case of context-aware
policies, where the result of the enforcing may depend on sensitive information whose privacy must be
protected. In the following, we introduce three approaches that, taking into account different degrees
of privacy, can be used to cope with issues related to dynamicity and context-awareness. Depending
on how the policy content is distributed and managed across the devices, we can distinguish the three
different models described in the following subsections. These three policy enforcement techniques
were primarily designed to preserve privacy (both policy content and user context). They also
consider some approaches to cope with the dynamicity of the user context which directly impacts on
the enforcement.

4.1. Distributed Policy Enforcement

Distributed Policy Enforcement (DPE) is the solution we propose in the case of full privacy degree
for the component services’ policies. The DPE approach is based on a distributed algorithm for policy
enforcement that involves all the providers (partners) that take part in the service composition process.
In this way, each partner is characterized by a “non disclosure” policy strategy that prevents the
composite service provider from knowing partner’s policies. Using DPE, an authorization decision to
deny access to a service is taken only if the individual decisions of all partners have been collected
and at least one of them is of the type Deny. The Policy Composition Algorithm (PCA) is therefore
of type Deny-Override. When a provider receives an access request to its composite service, it firstly
evaluates the request locally and if necessary forwards this request to all the providers involved in the
service composition.

We can see in detail how this method works considering Figure 3. Let us suppose d2 is Bob’s
Smart TV, which is composing a service s1,1 offered by Alice camcorder d1 to provide the Screenshot
service s2,1. When Carol requires through her smartphone d3 access to s2,1, the Policy Enforcement
Point (PEP) of Bob’s PZ firstly enforces local policy to decree whether Carol is allowed, and if not, it
straight out rejects the request. On the contrary, if Bob’s policy allows Carol, Bob’s PEP forwards the
incoming request to Alice’s PEP (on behalf of Carol). At this stage, Alice’s policy manager enforces
the local policy and evaluates whether Carol can indirectly access s1,1. Finally, Alice’s PEP sends the
decision to Bob’s PEP, which issues (or not) the service s2,1.

As direct consequence, this method is agnostic to dynamic policy changes of component services.
Any change, in fact, is taken into account thanks to the distributed nature of the policy enforcement:
each partner takes part in the final decision on the basis of its policy decision. This technique also
works well in context based policy systems: the authorization decision of each service’s partner will
take into account also any other useful contextual information. From a practical point of view, there is
a main drawback: this approach may lead to a composite service that could never work due to conflicts
among component service’s policies. In addition, from a performance point of view, an overhead
is introduced by every enforcement. For example, when the intermediate service node forwards an
access request to the partners, it has to transfer to them all the requestor’s identity information plus the
information about the required resources. On the other hand, there are no performance degradation
issues due to policy or context synchronization.

4.2. Local Policy Enforcement

When providers’ policies do not contain sensitive information, they could be stored and evaluated
by intermediate providers. Local Policy Enforcement (LPE), unlike DPE, requires policy evaluation
only for those service providers that supply a composite service. This means, for instance, that the
intermediate provider d2, in addition to its set of policies P2, could store the set P1 of the component
service s1,1 and evaluate it whenever a request is received (such as from d3).

In general, an intermediate provider who stores all component’s sets of policies could compose
them and then, for each access request, evaluate the composite policy. As already mentioned,
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deriving from several component policies a composite policy in which there are neither conflicts
nor redundancies is quite complex. For this reason, in a UGS scenario, where policies are dynamic and
may change frequently, we can affirm that evaluating each single policy is preferable to extracting a
composite policy. In this kind of evaluation, an authorization decision that denies service access to a
subject is taken if at least one of the component policy returns a “deny” response. The PCA algorithm
is therefore of type Deny-Override.

As shown in Section 2 (policy example of Figure 2), given that Bob knows that when Alice is
in Catania she is willing to provide Videostream service to Carol, he cannot know at the enforcement
time where Alice is and thus he cannot allow or deny Carol. Therefore, to evaluate the policy of a
component service, an intermediate provider must know the remote context. Two different approaches
enable policy enforcement by intermediate providers when context-dependent policies can be adopted.
The first approach assumes that Bob stores Alice’s policy set that contains n context-dependent policies.
However, only a subset of these policies is currently active: those related to the current Alice’s context.
Thus, Alice sends Bob only information about her context and Bob uses this information to understand
which of the policies contained in the policy set are active (applicable). This exchange could happen
according to two strategies: (a) Alice tells Bob her context information whenever her context changes;
(b) Bob asks Alice her context information whenever he receives a request (e.g., from Carol). If Alice’s
context changes frequently, it could be better to adopt approach (b). On the contrary, if Alice’s context
rarely changes, the proposed variant (a) may be preferable. The second approach considers that Bob
knows only the current active subset of Alice’s policies. In this case, Alice sends to Bob those policies
enabled by her context.

Since LPE expects that composite service providers keep component services policies, it is
necessary to update these every time they change. As shown in Figure 4, if n users (providers)
require the s1,1 service in their composition process, Alice’s policy manager has to synchronize the
policy in all the involved providers each time the policy for s1,1 is changed.

Synchronization could be a burdensome task as a provider (e.g., Alice) should maintain
information about all the “follower” providers, and it is even more problematic if the provider
that supplies the service is a resource-constrained device.

Figure 4. Service provisioning to multiple devices.

In those cases when not only the policy but also the context relative to a service provider may
change, knowing these policies might be not enough to be able to evaluate them. As aforementioned,
in both of the two approaches, Alice needs to realize when her context changes so that she can
advise Bob about sending him her actual policy/context information. Therefore, there is the need
to automatically spot every context change. For this purpose, we propose an extension of XACML
(eXtensible Access Control Markup Language) architecture (Figure 5) that introduces the Context
Listener component. The choice of using XACML as a basis for this work is mainly due to the flexibility
and fine grained levels of customizability given by this standard. In detail, the Context Listener
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reads the policy obtained through the PAP (Policy Administration Point) module and stores both
context-dependent parameters and relative boundaries. For example, if a policy rule was

“Permit if battery level is greater than 35%”,

the Context Listener will store “battery_level” as a parameter and “greater than 35%” as related boundary.
Using this information, the Context Listener can reorganize a user’s policy on the basis of his/her
context. In particular, the current values of context-dependent parameters affect the policy selection.
For example, the pseudo code reported below may represent the logic followed by the Context Listener
to choose the current policy:

if (context_params1 < boundary1)
current_policy = P1

if (context_params2 > boundary2)
current_policy = P2

Thus, the Context Listener periodically polls the PIP (Policy Information Point) module to obtain actual
values for the contextual parameters (such as current battery level) and checks whether these values
remain within the boundaries defined by the policy. When at least one of the parameters, included in
the rule, exceeds its boundary, the Context Listener communicates to interested intermediate providers
the current user’s context or policy.

In summary, LPE can be adopted if there are no privacy concerns, but the synchronization process
requires an overhead that, as we will show in Section 5, may be not acceptable in the case of devices
with reduced performance as, for example, mobile phones.

Figure 5. XACML (eXtensible Access Control Markup Language) extension with Context Listener.

4.3. Policy’s Context Obfuscation

Local Policy Enforcement requires distribution of policies or parts of them. The process to
exchange this kind of data requires some mechanisms to assure content authenticity and avoid
tampering. Privacy is the other main aspect to cope with in situations such as this one, where personal
information (i.e., contextual data) are exchanged. In fact, the policies themselves are privacy sensitive
information because they can contain users’ preferences (i.e., rules that are applied to specific subjects)
and may depend on context parameters (e.g., users’ location details). Policy Information Points are
allowed to elicit, from remote providers (i.e., users’ devices), personal contextual data in order to allow
policy enforcement. This means that, knowing user’s policy and the relative decision toward a request,
it could be possible to retrieve information about user’s context. This obviously leads to privacy issues.

In literature, the problem of policy’s content protection is faced in different works as, for example,
in [15] where the authors propose techniques based on encryption. Our proposal relies on obfuscation
methods in order to mask sensitive information sending the policy structure in plain text.
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Suppose that Alice chooses the following policy for the Videostream service:

1 <policy-set id="Alice’s policyset">
2 <policy algorithm="permit-overrides">
3 <target>
4 <subject param="cert" match="Carol.cert"/>
5 <resource param="service" match="videostream"/>
6 </target>
7 <rule id="5ABE" effect="permit">
8 <condition>
9 <context param="location" match="home"/>
10 </condition>
11 </rule>
12 <rule effect="deny"/>
13 </policy>
14 <policy>
15 <target>
16 <subject id="F3MK"/>
17 </target>
18 <rule effect="deny"/>
19 </policy>
20 </policy-set>

Since this policy depends on Alice’s context (specifically on Alice’s location), giving it in plain-text
to Bob could give rise to privacy issues: Bob, in fact, knowing the policy, could realize that Alice is
at home at the instant when Carol is allowed to get Videostream service. This information does not
concern Bob: he only should know that Carol will be able to get Videostream service (indirectly through
Screenshot service) when a certain Alice’s context will be active, but he should not know which one it is.
The policy stored by Bob’s devices would be the following:

1 <policy-set id="Obfuscated Alice’s policyset">
2 <policy algorithm="permit-overrides">
3 <target>
4 <subject param="cert" match="Carol.cert"/>
5 <resource param="service" match="videostream"/>
6 </target>
7 <rule id="5ABE" effect="permit" obfuscated>
8 <condition>
9 <context param="E67QF1" match="AR7MG6"/>
10 </condition>
11 </rule>
12 <rule effect="deny"/>
13 </policy>
14 <policy algorithm="deny-overrides">
15 <target>
16 <subject id="F3MK" obfuscated/>
17 </target>
18 <rule effect="deny"/>
19 </policy>
20 </policy-set>

In this way, using LPE, Alice will transfer to Bob the pair < E67QF1, AR7MG6 > representing
her context, instead of the sensitive information < location, home >.
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4.4. Partial Disclosure Policy Enforcement

Describing DPE and LPE, we pointed out some benefits and drawbacks of both solutions.
DPE solves problems related to dynamic policy/context changes and privacy issues related to policy
disclosure, but it could be very difficult to generate a new service without any knowledge about
policies related to component services. This, in fact, may lead to having composite services that do not
work properly. For instance, if Bob decides to provide s2,1 only after 5:00 p.m. without knowing that
Alice is willing to provide s1,1 only before 3:00 p.m., his service will never work. On the other hand,
with LPE approach, intermediate providers know component policies: this could involve privacy
problems (as discussed in previous sections), but it represents the best way, for an intermediate
provider, to supply a working service. For these reasons, we want to introduce a new approach
that can be considered as somewhere in between DPE and LPE: we call it Partial Disclosure Policy
Enforcement (PDPE).

According to the idea behind PDPE, when an intermediate provider wants to supply a composite
service to a set of known subjects, he can obtain from the component service provider not the whole
policy but only the information regarding these subjects. PDPE thus consists of two phases:

1. the initialization phase, in which an intermediate provider (Bob) can “negotiate” the policy
disclosure with the component provider (Alice) requiring only the policy’s information toward a
pre-determined set of subjects;

2. the incremental update phase, in which the intermediate provider requires additional information
every time a new subject (which is not included in the original set of the considered subjects)
requires access to the service.

The first phase can be optional as an intermediate provider could not negotiate the policy
disclosure for a first set of subjects building this initial set when a subject requires the service the
first time.

For example, suppose Bob does not know Alice’s policy for s1,1. When Carol requires s2,1 Bob
informs Alice who sends back to Bob the piece of her policy regarding Carol. From that moment
onwards, Bob stores this partial policy, enforcing it every time Carol requires s2,1 service. Whenever a
new subject (e.g., David) requires s2,1, Bob repeats the procedure, and so on. Since even partial policies
may depend on user’s contextual information, PDPE employs the same approaches shown in Figure 5
to overcome problems related to policy/context changes. In addition, it might apply the obfuscation
technique already discussed previously.

4.5. Considerations

The proposed approaches mainly differ in the amount of policy’s information revealed by
component service providers to intermediate providers. However, all of the discussed approaches
can be combined to meet different users’ security requirements. Consider the scenario in which Bob
wants to provide a service that shows a Google Map decorated with his and his friends’ preferred
restaurants. This scenario is represented in Figure 6. Alice and David provide two services that give
information about their preferred restaurants. We can note that all the considered approaches are
employed: Google, using PDPE, gives Alice only a piece of its policy (only the parts related to those
subjects that Bob wants to consider), Alice, indeed, does not bother about privacy issues and gives Bob
her whole policy (LPE). Finally, David does not want Bob to know his policy, so he adopts DPE.
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Figure 6. An example of hybrid service composition scenario in which sz,1 composes all the other
provided services, i.e., Cz,1 = {Maps, sx,1, sy,1}.

5. A Cloud Approach

5.1. Mobile Constraints

As aforementioned, the broad diffusion of IoT devices, combined with the presence of platforms
able to simplify interactions among them, represent the starting point for the spread of User-Generated
Services. In some cases, these services could strictly depend on devices’ features and local context.
If we consider, for example, the scenario depicted in Section 2 we can find out that the service created by
Alice is provided thanks to the presence and the features of her smart device. This scenario is just one
example that points out that the next step is represented by those services that are not only generated
but also provided by users through their devices (User Provided Services or UPSs). Limitations may
be due to the utilization of kind of devices that are not supposed to work as providers. This is the
case of smartphones and handsets in general. In fact, it is possible to recognize problems of at least
three categories, which are performance, scalability and presence. For what concerns performance, it
is clear that providing a service that is resource consuming (e.g., in terms of CPU time, memory and
bandwidth) may reduce the usability of devices’ main functionalities. Scalability issues are related to
the number of users that can concurrently access our self-provided service.

The last point regards presence: some devices could be not reachable in any moment due to a
temporary lack of connectivity (for example, a car or a smartphone inside a tunnel or in a place without
coverage) or just because they are running out of battery. As is known, devices might provide services
or contents and can regulate access to them via context-based policies. In the first case, the device
presence is obviously needed to guarantee the service availability, and, in the second case, it is needed
to gather the context information without which the policy to access or handle the remote content
cannot be enforced. It is also important to notice that the problems described in previous sections still
remain. In fact, it is difficult to properly handle policy disclosure and cope with the synchronization
process of context and policy, especially in the case of many actors.

5.2. Architecture

In order to cope with the issues described in previous sections, we propose another structure
that differs from the one depicted in Figure 3, introducing a new component, namely service mediator.
The structure of this architecture is shown in Figure 7.
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Figure 7. Cloud-based architecture for UGSs composition management.

This architecture still allows using the already described policy models and their combinations:
however, it is important to point out that, in this case, the policy is enforced by components in the
cloud and not by intermediate providers.

The role of the service mediator, which is intended to be a cloud component, is manifold; in fact,
it is possible to recognize at least the following functionalities: (a) synchronizing user’s preferences,
context information and policies; (b) resolving problems related to “device presence”; (c) reducing
the disclosure of sensitive data, context information and policies; (d) providing unified service
discovery; (e) integrating logic to switch among different policy and context exchange approaches;
and (f) enhancing scalability and performance.

One of the main advantages of a cloud approach regards synchronization (a). In fact, compared to
the peer-to-peer model presented in the first part of this paper, a cloud based architecture simplifies the
process of exchanging and keeping up to date the information needed. This might be done, for example,
through a publish/subscribe notification system. Furthermore, such a publish/subscribe mechanism
could be useful to resolve presence related issues (b), enabling users and devices to leave online records
of taken decisions, context information and other data, also when they are disconnected. This problem,
as mentioned before, is very relevant in the case of constrained devices. If we consider, for example,
the scenario presented in Section 2 adding the clause that Alice allows Bob to record her videostream
and reuse it with the aforementioned restrictions, the knowledge of Alice’s location becomes very
important. For obvious reasons, it is not possible to know Alice’s location at any moment (e.g., all her
devices ran out of battery), but, with the cloud approach here presented, it is possible to communicate
and preserve context information, e.g., the last location available, for a more accurate evaluation.

The cloud approach also limits disclosure of personal data (c). In fact, the service mediator
component could be the only point where sensitive information is stored. In addition, it enforces
remote access requests on behalf of the remote service provider with the advantage of limiting exchange
of policies, contextual information and sensitive data.

Devices can expose services registering them in the cloud. There the service mediator can: make
them discoverable (d), manage their status and, as already mentioned, regulate remote access to them
through policies. The service mediator could also contain some logic in order to switch between the
different policy management models described. This smart switching system can allow users to change
the desired degree of privacy at run time.

The gain in terms of scalability and performance (f) is due to the fact that the service provider will
not be directly contacted by clients because exposed services will be accessed by the service mediator.
It will be able to multiplex a service or serialize access to it in the case he cannot directly provide that
service. Considering again the Videostream service, it is easy to imagine that a solution like the one
proposed—with a server that acquires the videostream (service provider) and multiplexes it to other
consumers—can reduce the provider’s workload.
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As a demonstrator prototype of the proposed approach, a policy management component has
been implemented through the webinos foundation platform in order to expose devices’ features to
other devices registered in the virtual area called Personal Zone (PZ). The PZ has the main role of
providing, in a simple manner, access to local and remote services, thus creating also an abstraction
from underlying communication technologies. In particular, the approach proposed in webinos’ makes
use of the architecture depicted in Figure 8. In this architecture, the component called Personal Zone
Hub (PZH) implements the behavior of the service mediator.

Figure 8. Webinos general architecture.

The PZH is the element in which the devices belonging to a PZ are registered. It enables the
communication between devices of the same or a different PZ, allows the discovery of other PZHs
and manages the synchronization process (e.g., of user’s preferences, policy and context data). A PZH
also controls security aspects. In fact, it is the certificate authority that issues certificates for each
PZP registered in a PZ. These certificates allow mutually authentication and also encryption of the
messages exchanged among devices in the zone.

The other main component of webinos architecture is the PZP that runs on each webinos enabled
device and manages the communication between the device and the main hub (PZH). The PZP also
stores the information that should be synchronized with the hub in the case it is not reachable in order
to start the synchronization process when the PZH again becomes available. The PZP is responsible for
the local discovery of features/services, accessible through a set of APIs (Application Programming
Interfaces) that expose some capabilities of the underlying Operating System.

From this description, it is possible to notice that the structure proposed by webinos well suits
the cloud approach where the service mediator is an extension of the PZH able to manage not only
security and synchronization aspects but also service multiplexing. Choosing webinos as a basis for
our work made it possible to move the focus on privacy/security issues, removing the necessity of
implementing a new system from scratch to synchronize policies, context information and user’s
preferences. Furthermore, webinos provides full specifications for over 30 APIs to manage, for example,
authentication, discovery of devices and services, context, contacts, filesystem, media content and
streams, sensors and actuators, simplifying the creation of multi-user/multi-device/multi-domain
applications in several Operating Systems, such as Android, Windows, MacOs, GNU/Linux, Chrome
OS and Firefox OS [16].

The webinos platform provides privacy protection and access control features to meet the privacy
and security requirements of web applications and users. This means protecting against malware and
other users who may attempt to access more data than they should or simply avoid the unnecessary
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disclosure of personal data. To satisfy these requirements, webinos relies on the strong identification of
web applications, users and devices, combined with a least-privilege access control, based on XACML.
It is an OASIS standard that describes: (i) an XML (eXtensible Markup Language) representation for
both a policy language and an access control decision request/response language, and (ii) a data-flow
model for policy enforcement and relative involved actors. In webinos, the XACML architecture has
been adapted using PrimeLife extensions [17], allowing for making access control decisions based on
both the request context and user preferences.

The root element defined by XACML is a PolicySet that is made up by both a set of policies
(containing at least one policy) and Policy Combination Algorithms (PCA) that take the authorization
decision from each policy as input and apply some standard logic to come up with a final decision.
Each XACML policy is in turn made up of a Target and a set of Rules.

A Target is basically a set of simplified conditions for the Subject, Resource and Action that must
be met for a PolicySet, Policy or Rule to apply to a given request. Each Rule represents the core logic
for a policy, and it is made up of a Condition (which is a boolean function and may contain nested
sub-conditions) and an Effect (a value of Permit or Deny that is associated with successful evaluation
of the Rule).

The Data-flow model introduced by XACML is shown in Figure 9. In short, a Policy Enforcement
Point (PEP) is responsible for intercepting a native request for a resource and to forward this to the
Context Handler (CH). The CH will form an XML request based on the requester’s attributes, the
resource in question, the action, and other information pertaining to the request. The CH will then
send this request to a Policy Decision Point (PDP), which will look at the request and some policy
that applies to the request, and come up with an answer about whether access should be granted.
That answer (in XML format) is returned to the Context Handler, which translates this response to the
native response format of the PEP. Finally, the PEP, based on the response, allows or denies access to
the requester. A more detailed description about XACML is provided by [18] while a description of
webinos is presented in [19].

The object model depicted in Figure 9 shows the main components of the webinos policy
framework. Both the PZP and PZH enforce policies using standard XACML components,
supplemented by:

• The Decision Wrapper creates the initial policy enforcement query based on incoming requests;
• The Access Manager makes the final decision by combining pieces of information from XACML

access control and Data Handling Decision Function (DHDF);
• The DHDF Engine provides privacy and data handling functionalities;
• The Request Context manages all contextual information; it stores all the data and credentials

released by a user in a given session;
• The PDP Cache (PDPC) stores PDP decisions that could be shared among personal devices.

139

Bo
ok
s

M
DP
I



J. Sens. Actuator Netw. 2017, 6, 20

PIP

Context 
Handler PAP PDPC

PZP

PDP

Data   
Reader

Request 
Context

Credential 
System

Obligations

PEP

DHDF  
Engine

Access 
Manager

Decision 
Wrapper PZP / PZH

Access 
Requestor

Remote
Access

Requestor

Overlay 
Network

PZ’s copy of
PAP / PDPC / PIP

Figure 9. XACML-based Data-flow model of webinos.

5.3. Considerations on Design Choices

This work brings together two innovative aspects related to the world of next-generation services.
The first is to imagine an extension of the concept of User Generated Content to services, thereby
defining User Generated Services as services that are both directly generated and provided by users,
for example through their devices (e.g., smartphone, TV, and car). The possibility of composing
services to create new ones is certainly one of the key aspects of the SOA paradigm. In the case of
UGSs, the composition of multiple services provided by different users introduces a number of privacy
issues that have been the main focus of this work. In particular, the management of access control and
privacy of a service is managed through policies that, in the case of composite services, are in turn
composed, with the risk of creating inconsistencies or conflicts that may invalidate user preferences.
The methods presented in previous sections are thought to mitigate the impact that fast changing
user-centered environments, characterized by the presence of UGSs and the manipulation of sensitive
data, may suffer from not as fast or approximate policies’ updates. In facts, when existing services are
put together, it is necessary to guarantee that the policy of the resulting composite service is coherent
with policies of all the component services to avoid conflicting authorization decisions taken by the
security policy of the composite service.

The second innovative aspect concerns the possibility to have service access governed by
policies that depend on the user’s context. It is important to consider that changes in user-centered
environments are usually reflected in a physical (e.g., position and speed) and a logical (e.g., preferences
and contacts in social networks) context, each of which contributes to increasing the dynamics to take
into account while composing services. This introduces a further complexity in policy enforcement,
as it is necessary to know the context of all the users involved in the composition of a service in
order to decide whether or not to grant access to that service. In addition, due to the fact that the
context of a user is characterized by a strong variability, applying caching strategies is not easy since
policy constraints may change along with the context itself. For these reasons, we have considered
implementing strategies for composing UGS that consider variations in the context of the users
involved in the composition.

Then, it was important to consider the spread of constrained devices that are part of everyday
life. To expose UGSs within these devices, it was necessary to take into account different factors, and
in particular, the fact that resources needed to expose/exploit UGSs, as far as possible, should not
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compromise the normal functioning of the device. The cloud-based solution, proposed in this section,
has been designed to overcome these limitations regarding performance, scalability, and presence
(the latter, in terms of power consumption and network coverage) and to exploit the other policy
models introduced in this work. Finally, although the proposed methods introduce an overhead due
to the transfer of policy or context information, they provide greater security and privacy protection in
scenarios likely to become common over the next few years.

6. Related Work

The scientific interest in UGSs and UGC is growing in these last years. In [5], the authors
presented a comprehensive survey of the state-of-the-art UGSs and defined UGSs by comparison with
the concept of UGC, describing advantages and limitations of each approach. Ref. [4] introduces some
guidelines to support users in the services’ creation and management. In [20], the requirements to let
the vision of the “super prosumer” become true are investigated. In particular, they review the current
technologies that enable an easy creation and discovery of mobile services and list the identified
requirements for UGSs. The interest in this topic is further motivated by the result of diverse studies
that evaluate, for example, the impact of UGSs and especially UGC on society [21,22], tourism [8],
and advertising [23]. With regard to aspects explicitly focused on service composition, some works
were proposed to prevent conflicting behaviors when policies are composed. In [14], authors propose
a security policy composition mechanism which semi-automatically derives the policy consistency
rules. In addition, Ref. [10] presents an approach that merges existing policies and restrictions into a
new policy to remove redundancy and inconsistencies. It is important to point out how the process of
policy composition might be very expensive from a computational perspective; as a consequence, these
solutions can only be applied if we assume static policies (i.e., not changing over the time), so that
the composition process can be performed only once off-line, when the composite service is made up.
Another approach, proposed in [24], adopts a filtering phase and a differential evolutionary based
algorithm to compose services taking into account service providers’ mobility.

The composition and deployment of UGSs has also been investigated from the IoT perspective.
In [11], the authors proposed an infrastructure to enable developers and designers to dynamically
query, select, and use running instances of real-world services. More specifically, Ref. [25] analyzed the
notion of ubiquitous services of IoT in connection with their usage in the context of social networks.
Other works focused on particular domains of IoT services, such as [26], introducing an interconnection
framework for mobile Health (mHealth), or [27,28] where the composition service is enabled by means
of a semantic ontology. Some important contributions in this field have been directed through the
definition of policy models suitable for context-aware scenarios, as in [28–30]. Access control systems
should be able to support and understand existing and new context information types in order to
address access control requirements. To make this possible, the authors of [31] presented an extensible
access control solution based on XACML (eXtensible Access Control Markup Language) making
it able to understand new attributes’ data types and the functions that are used in the policy to
evaluate the users’ requests. Another interesting work is [32], which proposed an access control policy
model based on context and the role that can be appropriate for web services. The model takes into
account contextual information to define and perform access control policies. It works with contextual
information from users, environments and resources to execute dynamic role assignment and constrain
the authorization decision. Another approach to address conflicts in context-aware policies is presented
in [33], where authors propose a framework in which the policy is chosen at run time based on context
information. Recently, the authors of [34] presented a generic framework, OntCAAC (Ontology-based
Context-Aware Access Control), modelling dynamic contexts and corresponding access control policies
exploiting semantic technologies.

In conclusion, several works have addressed typical problems related to UGSs such as dynamic
policy change and context-aware policies; however, to the best of our knowledge, none of these works
has yet taken into account the kind of issues assuming the perspective of UGSs composition as the
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main challenge. The main contribution of this work is to introduce different models that are explicitly
focused on a composite service scenario and present a concrete architecture that could address most of
the critical issues described here.

7. Conclusions

The composition of User-Generated Services in an IoT environment introduces several security
related challenges. In this work, three different approaches have been analyzed showing the available
trade-off in policy management. Finally, a cloud based architecture that is flexible enough to embrace
the different policy enforcement models has been introduced, together with a prototype based on
the webinos foundation platform. Future work will focus on the support of those constrained devices,
such as very simple sensors, that can be identified but cannot hold policies to regulate access to their
features and data.
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Abstract: With the advent of the Internet of Things (IoT) concept and its integration with the smart
city sensing, smart connected health systems have appeared as integral components of the smart city
services. Hard sensing-based data acquisition through wearables or invasive probes, coupled with
soft sensing-based acquisition such as crowd-sensing results in hidden patterns in the aggregated
sensor data. Recent research aims to address this challenge through many hidden perceptron layers in
the conventional artificial neural networks, namely by deep learning. In this article, we review deep
learning techniques that can be applied to sensed data to improve prediction and decision making in
smart health services. Furthermore, we present a comparison and taxonomy of these methodologies
based on types of sensors and sensed data. We further provide thorough discussions on the open
issues and research challenges in each category.

Keywords: wearable sensors; biosensors; smart health; deep learning; machine learning; analytics

1. Introduction

Smart cities are built on the foundation of information and communication technologies with
the sole purpose of connecting citizens and technology for the overall improvement of the quality of
lives. While quality of life includes ease of mobility and access to quality healthcare, amongst others,
effective management and sustainability of resources, economic development and growth complement
the fundamental requirements of smart cities. These goals are achieved by proper management and
processing of the data acquired from dedicated or non-dedicated sensor networks. In most cases,
the information gathered is refined continuously to produce other information for efficiency and
effectiveness within the smart city.

In the Internet of Things (IoT) era, the interplay between mobile networks, wireless
communications and artificial intelligence is transforming the way that humans live and survive
via various forms of improvements in technological advancements, more specifically improved
computing power, high performance processing and huge memory capacities. With the advent of
cyber-physical systems, which comprise the seamless integration of physical systems with computing
and communication resources, a paradigm shift from the conventional city concept towards a smart
city design has been coined as the term smart city. Basically, a smart city is envisioned to be ICT
driven and capable of offering various services such as smart driving, smart homes, smart living, smart
governance and smart health, just to mention a few [1]. ICT-driven management and control, as well
as the overwhelming use of sensors in smart devices for the good and well-being of citizens yields
the desired level of intelligence to these services. Besides continuously informing the citizens, being
liveable and ensuring the well-being of the citizens are reported among the requirements of smart
cities [2]. Therefore, the smart city concept needs transformation of health services through sensor and
IoT-enablement of medical devices, communications and decision support. This ensures availability,
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ubiquity and personal customization of services, as well as ease of access to these services. As stated
in [3], the criteria for smartness of an environment are various. As a corollary to this statement, the
authors investigate a smart city in the following dimensions: (1) the technology angle (i.e., digital,
intelligent, virtual, ubiquitous and information city), (2) the people angle (creative city, humane city,
learning city and knowledge city) and (3) the community angle (smart community).

Furthermore, in the same vein, Anthopoulus (see [4]) divides the smart city into the following eight
components: (1) smart infrastructures where facilities utilize sensors and chips; (2) smart transportation
where vehicular networks along with the communication infrastructure are deployed for monitoring
purposes; (3) smart environments where ICTs are used in the monitoring of the environment to acquire
useful information regarding environmental sustainability; (4) smart services where ICTs are used for
the the provision of community health, tourism, education and safety; (5) smart governance, which
aims at proper delivery of government services; (6) smart people that use ICTs to access and increase
humans’ creativity; (7) smart living where technology is used for the improvement of the quality of
life; and (8) smart economy, where businesses and organizations develop and grow through the use
of technology. Given these components, a smart health system within a smart city appears to be one
of the leading gateways to a more productive and liveable structure that ensures the well-being of
the community.

Assurance of quality healthcare is a social sustainability concept in a smart city. Social
sustainability denotes the liveability and wellbeing of communities in an urban setting [5]. The large
population in cities is actually a basis for improved healthcare services because one negligence or
improper health service might lead to an outbreak of diseases and infections, which might become
epidemic, thereby costing much more in curtailing them; however, for these health services to be
somewhat beneficial, the methods and channels of delivery need to be top-notch. There have been
various research studies into the adequate method required for effective delivery of healthcare. One of
these methods is smart health. Smart health basically is the provision of health services using the
sensing capabilities and infrastructures of smart cities. In recent years, smart health has gained wide
recognition due to the increase of technological devices and the ability to process the data gathered
from these devices with minimum error.

As recent research states, proper management and development of smart health is the key to
success of the smart city ecosystem [6]. Smart health involves the use of sensors in smart devices and
specifically manufactured/prototyped wearable sensors/bio-patches for proper monitoring of the
health status of individuals living within a smart city, as shown in Figure 1. This example depicts a
scenario for air quality monitoring to ensure healthier communities. Smart city infrastructure builds
upon networked sensors that can be either dedicated or non-dedicated. As an integral component of
the smart city, smart health systems utilize devices with embedded sensors (as non-dedicated sensing
components) for environmental and ambient data collection such as temperature, air quality index
(AQI) and humidity. Besides, wearables and carry-on sensors (as the dedicated sensing components)
are also utilized to acquire medical data from individuals. Both dedicated and non-dedicated sensory
data are transmitted to the data centres as the inputs of processing and further decision making
processes. To achieve this goal, the already existing smart city framework coupled with IoT networking
needs to be leveraged.
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Figure 1. Smart health embedded within a smart city. An example scenario is illustrated to detect the
air quality indicator to ensure healthier communities (figure produced by Creately Online Diagram,
Cinergix Pvt. Ltd., Mentone, Australia).

In other words, a smart city needs to provide the required framework for smart health to grow
rapidly and achieve its aim. Ensuring the quality of big sensed data acquisition is one key aspect
of smart health challenges, and the ability to leverage these data is an important aspect of smart
health development, as well as building a sustainable smart city structure [7–9]. Applications of smart
health within smart cities are various. For example, Zulfiqar et al. [10] proposed an intelligent system
for detecting and monitoring patients that might have voice complication issues. This is necessary
since a number of services within the smart cities are voice enabled. As such, any disorder with the
voice might translate into everyday service problems within the smart city. The same problem has
been studied by the researchers in [11], where voice data and ECG signals were used as the inputs
to the voice pathology detection system. Furthermore, with the aim of ensuring air quality within a
smart city, the researchers in [12] developed a cloud-based monitoring system for air quality to ensure
environmental health monitoring. The motivation for environmental health is ensuring the wellness of
communities in a smart city for sustainability. The body area network within a smart city can be used
for ECG monitoring with the aim of warning an individual of any heart-related problem, especially
cardiac arrest [13], and also helps in determining the nature of human kinematic actions with the aim
of ensuring improved quality of healthcare whenever needed [14]. Data management of patients is also
one of the applications of smart health in smart cities that is of paramount importance. As discussed
in [15], proper management of patient records both at the data entry and application levels ensures that
patients get the required treatment when due, and this also helps in the development of personalized
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medicine applications [16]. Furthermore, the scope of smart health in smart cities is not limited to the
physiologic phenomena in human bodies; it also extends to the environment and physical building
blocks of the smart infrastructure. Indeed, the consequences of mismanaged environment and/or
physical structures are potentially unhealthy users and communities, which is not a sustainable case for
a smart city. To address this problem, the researchers in [17] created a system to monitor the structural
health within a city using wireless sensor networks (WSN). It is worth mentioning that structural
health monitoring also leads to inferential decision making services.

With these in mind, calls for new techniques that will ensure proper health service delivery
have emerged. As an evolving concept, machine intelligence has attracted the healthcare sector by
introducing effective decision support mechanisms applied to sensory data acquired through various
media such as wearables or body area networks [18]. Machine learning techniques have undergone
substantial improvements during the evolution of artificial intelligence and its integration with sensor
and actuator networks. Despite many incremental improvements, deep learning has arisen as the most
powerful tool thanks to its high level abstraction of complex big data, particularly big multimedia
data [19].

Deep learning (DL) derives from conventional artificial neural networks (ANNs) with many
hidden perceptron layers that can help in identifying hidden patterns [20]. Although having many
hidden perceptron layers in a deep neural network is promising, when the concept of deep learning
was initially coined, it was limited mostly by computational power of the available computing systems.
However, with the advent of the improved computational capability of computing systems, as well as
the rise of cloudified distributed models, deep learning has become a strong tool for analysing sensory
data (particularly multimedia sensory data) and assisting in long-term decisions. The basic idea of
deep learning is trying to replicate what the human brain does in most cases. Thus, in a sensor and
actuator network setting, the deep learning network receives sensory input and iteratively passes it to
subsequent layers until a desirable output is met. With the iterative process, the weights of the network
links are adapted so as to match the input with the desirable output during the training process.
With the widespread use of heterogeneous sensors such as wearables, medical imaging sensors,
invasive sensors or embedded sensors in smart devices to acquire medical data, the emergence and
applicability of deep learning is quite visible in modern day healthcare, from diagnosis to prognosis to
health management.

While shallow learning algorithms enforce shallow methods on sensor data for feature
representation, deep learning seeks to extract hierarchical representations [21,22] from large-scale data.
Thus, the idea is using deep architectural models with multiple layers of non-linear transformations [23].
For instance, the authors in [24] use a shallow network with a covariance representation on the 3D
sensor data in order to recognize human action from skeletal data. On the other hand, in the study
in [25], the AlexNet model and the histogram of oriented gradients features are used to obtain deep
features from the data acquired through 3D depth sensors.

In this article, we provide a thorough review of the deep learning approaches that can be applied
to sensor data in smart health applications in smart cities. The motivation behind this study is that
deep learning techniques are among the key enablers of the digital health technology within a smart
city framework. This is due to the performance and accuracy issues experienced by conventional
machine learning techniques under high dimensional data. Thus, it is worth noting that deep learning
is not a total replacement of machine learning, but an effective tool to cope with dimensionality
issues in several applications such as smart health [26]. To this end, this article aims to highlight the
emergence of deep learning techniques in smart health within a smart city ecosystem and at the same
time to give future directions by discussing the challenges and open issues that are still pertinent.
In accordance with these, we provide a taxonomy of sensor data acquisition and processing techniques
in smart health applications. Our taxonomy and review of deep learning approaches pave the way for
providing insights for deep learning algorithms in particular smart health applications.
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This work is organized as follows. In Section 2, we briefly discuss the transition from conventional
machine learning methodologies to the deep learning methods. Section 3 gives a brief overview
of the use of deep learning techniques on sensor network applications and major deep learning
techniques that are applied on sensory data, while Section 4 provides insights for the smart health
applications where deep learning can be used to process and interpret sensed data. Section 5 presents
outstanding challenges and opportunities for the researchers to address in big sensed health data by
deep learning. Finally, Section 6 concludes the article by summarizing the reviewed methodologies
and future directions.

2. Analysis of Sensory Data in E-Health

2.1. Conventional Machine Learning on Sensed Health Data

With the advent of the WSN concept, machine learning has been identified as a viable solution to
reduce the capital and operational expenditures on the design of the network, as well as to improve
the lifetime of the network [27]. Presently, the majority of the machine learning techniques use a
combination of feature extraction and modality-specific algorithms that are used to identify/recognize
handwriting and/or speech [28]. This normally requires a dataset that is big in volume and powerful
computing resources to support tremendous amount of background tasks. Furthermore, despite
tedious efforts, there are always bound to be certain issues, and these perform poorly in the presence
of inconsistencies and diversity in the dataset. One of the major advantages of machine learning in
most cases is feature learning where a machine is trained on some datasets and the output provides
valuable representation of the initial feature.

Applications of machine learning algorithms on sensory data are various such as
telemedicine [18,29,30], air quality monitoring [31], indoor localization [32] and smart
transportation [33]. However, conventional machine learning still has certain limitations such as
inability to optimize non-differentiable discontinuous loss functions or not being able to obtain results
following a feasible training duration at all times. These and many other issues encountered by machine
learning techniques paved the way for deep learning as a more robust learning tool.

2.2. Deep Learning on Sensed Health Data

In [34], deep learning is defined as a collection of algorithmic procedures that ‘mimic the brain’.
More specifically, deep learning involves learning of layers via algorithmic steps. These layers enable
the definition of hierarchical knowledge that derives from simpler knowledge [35]. There have been
several attempts to build and design computers that are equipped with the ability to think. Until
recently, this effort has been translated into rule-based learning, which is a ‘top down’ approach
that involves creating rules for all possible circumstances [36]. However, this approach suffers from
scalability since the number of rules is limited while its rule base is finite.

These issues can be remedied by adopting learning from experience instead of rule-based learning
via a bottom-up approach. Labelled data form the experience. Labelled data are used as training input
to the system where the training procedure is built upon past experiences. The learning from experience
approach is well suited for applications such as spam filtering. On the other hand, the majority of the
data collected by multimedia sensors (e.g., pictures, video feeds, sounds, etc.) are not properly labelled
[37].

Real-world problems that involve processing of multimedia sensor data such as speech or face
recognition are challenging to represent digitally due to the possibly infinite the problem domain. Thus,
describing the problem adequately suffers especially in the presence of multi-dimensional features,
which in turn leads to an increase in the volume of the space in such a way that the available data
become sparse, and training on sparse data would not lead to meaningful results. Nevertheless,
such ‘infinite choice’ problems are common in the processing of sensory data that are mostly acquired
from multimedia sensors [38]. These issues pave the way for deep learning as deep learning algorithms
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have to work with hard and/or intuitive problems, which are defined with no or very few rules on high
dimensional features. The absence of a rule set enforces the system to learn to cope with unforeseen
circumstances [34].

Another characteristic of deep learning is the discovery of intricate structure in large datasets.
To achieve this, deep learning utilizes a back propagation algorithm to adjust the internal parameters
in each layer based on the representation of the parameters in the previous layer [34]. As such, it can
be stated that representation learning is possible on partially labelled or unlabelled sensory data.

Acharya et al. [39] used deep learning techniques (specifically CNN) in the diagnosis and detection
of coronary artery disease from the signals acquired from the electrocardiogram (ECG) and achieved
an accuracy of 94.95%. The authors in [38] proposed the use of deep neural networks (DNN) for
the active and automatic classification of ECG signals. Furthermore, in order to detect epileptic
conditions early enough, deep learning with edge computing for the localization of epileptogenicity
using electroencephalography (EEG) data has been proposed in [40]. Emotional well-being is a key
state in the life of humans. With this in mind, the authors in [41] classified positive and negative
emotions using deep belief networks (DBN) and data from EEG. The aim is to accurately capture
the moment an emotional swing occurs. Their work yielded an 87.62% classification accuracy. The
authors in [42] designed a BGMonitor for detecting blood glucose concentration and used a multi-task
deep learning approach to analyse and process the data, and to make further inferences. The research
yielded an accuracy of 82.14% when compared to the conventional methods.

3. Deep Learning Methods and Big Sensed Data

3.1. Deep Learning on Sensor Network Applications

Sensors are key enablers of the objects (things) of the emerging IoT networks [43]. The aggregation
of sensors forms a network whose purpose amongst others is to generate and aggregate data for
inferential purposes. The data generated from sensors need to be fine-tuned prior to undergoing any
analytics procedure. This has led to various methods to formulate proper and adequate processing
of sensed data from sensor and actuator networks. These methods are dependent on the type and
applications of the sensed data. Deep learning (one of such methods) can be applied on sensor and
actuator network applications to process data generated from sensors effectively and efficiently [44].
The output of a deep learning network can be used for decision making. Costilla-Reyes et al. used a
convolutional neural network to learn spatio-temporal features that were derived from tomography
sensors, and this yielded an effective and efficient way of performance classification of gait patterns
using a limited number of experimental samples [45]. Transportation is another important service
in a smart city architecture. The ability to acquire quality (i.e., high value) data from users is key to
developing a smart transportation architecture. As an example study, the authors in [46] developed a
mechanism using a deep neural network to learn the transportation modes of mobile users. In the same
study, the integration of a deep learning-driven decision making system with a smart transportation
architecture has been shown to result in 95% classification accuracy. Besides these, deep learning helped
in the power usage pattern analysis of vehicles using the sensors embedded in smart phones [47].
The goal of the study in [47] is the timely prediction of the power consumption behaviour of vehicles
using smart phones. The use of sensors in healthcare has been leading to significant achievements, and
deep learning is being used to leverage the use of sensors and actuators for proper healthcare delivery.
For instance, in assessing the level of Parkinson’s disease, Eskofier et al. [48] used convolutional
neural networks (CNN) for the classification and detection of the key features in Parkinson’s disease
based on data generated from wearable sensors. The results of the research proved that deep learning
techniques work well with sensors when compared to other methods. Moreover, deep learning
techniques, particularly CNNs, were used in estimating energy consumption while using wearable
sensors for health condition monitoring [49]. Furthermore, by using sensory data generated from an
infrared distance sensor, a deep learning classifier was developed for fall detection especially amongst
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the elderly population [50]. Besides these, with respect to security, combining biometric sensors and
CNNs has resulted in a more robust approach for spoofing and security breach detection in digital
systems [51]. Yin et al. [52] used a deep convolution network for proper visual object recognition as
another application area of deep learning in the analysis of big sensed data, whereas for early detection
of deforestation, Barreto et al. [53] proposed using a multilayer perceptron technique. In both studies,
the input data are acquired via means of remote sensing.

3.2. Major Deep Learning Methods in Medical Sensory Data

In this subsection, we discuss the major deep learning methods that are used in e-health
applications on medical sensory data. The following are the major deep learning methods in e-health,
and a table of all notation used is given as Table 1.

Table 1. Basic notations used in the article. Notations are grouped into three categories: stand-alone
symbols, vectors between units of different layers and symbols for functions.

Notations Definition

x Samples
y Outputs
v Visible vector
h Hidden vector
q State vector

W Matrix of weight vectors
M Total number of units for the hidden layer

wij Weights vector between hidden unit hj and visible unit vi
Sj Binary state of a vector
sq

i Binary state assigned to unit i by state vector q
Z Partition factor
dj Biased weights for the j-th hidden units
ci Biased weights for the i-th visible units
zi Total i-th inputs
vi Visible unit i

w2
kj Weight vector from the k-th unit in the hidden Layer 2 to the j-th output unit

w1
ji Weight vector from the j-th unit in the hidden Layer 1 to the i-th output unit

W1
ji Matrix of weights from the j-th unit in the hidden Layer 1 to the i-th output unit

E(q) Energy of a state vector q
σ activation function

Pr(q) Probability of a state vector q
E(v, h) Energy function with respect to visible and hidden units

pd f (v, h) Probability distribution with respect to visible and hidden units

3.2.1. Deep Feedforward Networks

Deep feed-forward networks can be counted among the first generation deep learning models and
are based on multilayer perceptrons [34,54]. Basically, a feed-forward network aims at approximating
a function f *. A mapping y = f (x; Θ) is defined by a feed-forward network to learn the value of the Θ
parameters by approximating with respect to the best function. Information flow in these networks is
usually from the variables x being evaluated with respect to the outputs y.

During training, the aim is to ensure matching of f (x) to f *(x), where each example of x is
accompanied by a label y ≈ f *(x). In most cases, the learning algorithm decides how to use these
layers in order to get the best approximation of f *. Since these layers do not obtain the desired output
from the training data, they are referred to as hidden layers such as Layer 2 in the illustration in
Figure 2 below.
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Figure 2. A basic deep feed-forward network.

A typical model for the deep forward network is described as follows. Given K outputs y1, ..., yk
for a given input x and the hidden layer, which consists of M units, then the output is formulated as
shown in Equation (1) where σ is the activation function, W(1)

ji denotes the matrix of weights from unit

j of hidden Layer 1 to the output unit i. In the equation, w(1)
ji and w(2)

ki stand for the weight vector from
unit j of hidden Layer 1 to output unit i, and the weight vector from unit k of hidden Layer 2 to output
unit i, respectively.

yk(x, w) = σ(
M

∑
j=1

w(2)
kj h(

M

∑
j=1

w(1)
ji xi + W(1)

ji ) + w(2)
ki ) (1)

3.2.2. Autoencoder

An autoencoder is a neural network that is trained to copy its input to its output [22,55]. In most
cases, an autoencoder is implemented as a three-layer neural network (see Figure 3) by directly
connecting output units back to input units. In the figure, every output i is linked back to input i.
The hidden layer h in the autoencoder represents the input by a code. Thus, a minimalist description
of the network can be made by two main components as follows: (1) an encoder function h = f (x);
(2) a decoder function that is used to reconstruct the input, r = g(h). Previously, autoencoders were
used for dimensionality reduction or feature learning, but currently, the main purpose of autoencoder
use is generative modelling because of the connection between autoencoders and latent variables.

Figure 3. Autoencoder network.
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Below are the various types of autoencoders.

• Undercomplete autoencoders [54] are suitable for the situation where the dimension of the code is
less than the dimension of the input. This phenomenon usually leads to the inclusion of important
features during training and learning.

• Regularized autoencoders [56] enable training any architecture of autoencoder successfully by
choosing the code dimension and the capacity of the encoder/decoder based on the complexity of
the distribution to be modelled.

• Sparse autoencoders [54] have a training criterion with a sparsity penalty, which usually occurs in
the code layer with the purpose of copying the input to the output. Sparse autoencoders are used
to learn features for another task such as classification.

• Denoising autoencoders [22] change the reconstruction error term of the cost function instead of
adding a penalty to the cost function. Thus, a denoising autoencoder minimizes L(x, g( f (x̄))),
where x̄ is a copy of x that has been distorted by noise.

• Contractive autoencoders [57] introduce an explicit regularizer on h = f (x) making the derivatives
of f as small as possible. The contractive autoencoders are trained to resist any perturbation of
the input; as such, they map a neighbourhood of input points to a smaller neighbourhood of
output points.

3.2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) replace matrix multiplication with convolutions in at least
one of their layers [54,58,59]. CNNs have multiple layers of fields with small sets of neurons where
an input image is partially processed [60]. When the outputs of these sets of neurons are tiled, their
input regions overlap, leading to a new representation of the original image with higher resolution.
This sequence is repeated in each sublayer. It is also worth mentioning that the dimensions of a CNN
are mostly dependent on the size of the data.

The CNN architecture consists of three distinct layers: (1) the convolutional layer, (2) pooling
layer and (3) fully-connected layer. Although it is not a requirement for the CNNs, as illustrated in
Figure 4, fully-connected layers can follow a number of convolutional and subsampling layers.

Figure 4. CNN architecture.

• Convolutional layer: The convolutional layer takes an m×m× r image as the input, where m and r
denote the height/width of the image and the number of channels, respectively. The convolutional
layer contains k filters (or kernels) of size n × n × q, where n < m and q can be less than or equal
to the number of channels r (i.e., q ≤ r). Here, q may vary for each kernel, and the feature map in
this case has a size of m − n + 1.

• Pooling layers: These are listed as a key aspect of CNNs. The pooling layers are in general
applied following the convolutional layers. A pooling layer in a CNN subsamples its input.
Applying a max operation to the output of each filter is the most common way of pooling.
Pooling over the complete matrix is not necessary. With respect to classification, pooling gives an
output matrix with a fixed size thereby reducing the dimensionality of the output while keeping
important information.
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• Fully-connected layers: The layers here are all connected, i.e., both units of preceding and
subsequent layers are connected

3.2.4. Deep Belief Network

The deep belief network (DBN) is a directed acyclic graph that builds on stochastic variables.
It is a type of neural network composed of latent variables connected between multiple layers [36,61].
Despite the connections between layers, there are no connections between units within each layer.
It can learn to reconstruct its inputs, then is trained to perform classification. In fact, the learning
principle of DBNs is “one layer at a time via a greedy learning algorithm”.

The properties of DBN are:

• Learning generative weights is through a layer-by-layer process with the purpose of determining
the dependability of the variables in layer � on the variables in layer �′ where � denotes the index
of any upper layer.

• Upon observing data in the bottom layer, inferring the values of the latent variables can be done
in a single attempt.

It is worth noting that a DBN with one hidden layer implies a restricted Boltzmann machine
(RBM). To train a DBN, first an RBM is trained using constructive divergence or stochastic maximum
likelihood. The second RBM is then trained to model the defined distribution by sampling the hidden
units in the first RBM. This process can be iterated as many times as possible to add further layers to
the DBN.

3.2.5. Boltzmann Machine

As a special type of neural network, the Boltzmann machine (BM) consists of nodes that are
connected symmetrically as shown in Figure 5, where neurons help a BM make on/off decisions [62].
In order to identify features that exhibit complex data regularities, a BM utilizes learning algorithms
that are well-suited for search and learning problems.

Figure 5. Boltzmann network.

To visualize the operation of a BM better, suppose unit i is able to continuously change its state.
First, the node calculates the total input zi, which is formulated as the sum of bi (bias) and all the
weights on the connections from other units as formulated in Equation (2). In the equation, wij denotes
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the weights on connections between i and j, and sj is defined as in Equation (3). The probability for
unit i is formulated as shown in Equation (4).

zi = bi + ∑
j

sjwij (2)

sj = {1, i f j is on
0, i f j is o f f . (3)

Pr(si = 1) =
1

1 + e−zi
(4)

If all neurons are updated sequentially, the network is expected to reach a BM distribution with
state vector probability q and energy E(q) as shown in Equations (5) and (6), respectively

Pr(q) =
e−E(q)

∑u e−E(u)
(5)

E(q) = −∑
i

sq
i bi − ∑

i<j
sq

i sq
j wij (6)

With a view toward discarding the local optima, the weights on the connections could be chosen
in such a way that each energy of the individual vectors represents the cost of these vectors. Learning
in BM takes place in two different manners; either with hidden units or without hidden units.

There are various types of BM, and some of them are listed below:
Conditional Boltzmann machines model the data vectors and their distribution in such a way that

any extension, no matter how simple it is, leads to conditional distributions.
Mean field Boltzmann machines compute the state of a unit based on the present state of other

units in the network by using the real values of mean fields.
Higher-order Boltzmann machines have structures and learning patterns that can accept complex

energy functions.
Restricted Boltzmann machines (RBMs): Two types of layers (i.e., visible vs. hidden) are included

in the RBMs with no two similar connections [21,55].
In order to obtain unbiased elements from the set 〈sisj〉data, the hidden units h need to be

conditionally independent of the visible unit v. However, heavy computation is required to get
unbiased samples from 〈sisj〉data [63].

Mathematically, the energy function of an RBM is given as formulated in Equation (7) and has
a probability distribution as shown in Equation (8). In the equations, dj and ci stand for the biased
weights for the hidden and visible units, respectively, whereas Z in the probability distribution function
denotes the partition factor.

E(v, h) = −∑
i

civi − ∑
j

djhj − ∑
i

∑
j

viwi,jhj (7)

pd f (v, h) =
1
Z

e−E(v,h) (8)

Upon learning one hidden layer, the outcome can be treated as the input data required for training
another RBM. This in turn leads to cascaded learning of multiple hidden layers, thus making the entire
network be viewed as one model with improvements done on the lower bound [64].

4. Sensory Data Acquisition and Processing Using Deep Learning in Smart Health

Accurate data acquisition and processing is key to effective healthcare delivery. However,
ensuring the accuracy of the acquired data has been one of the typical challenges in smart healthcare
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systems. This is due to the nature of data needed for quality assurance of healthcare delivery and the
methods used for data acquisition. This phenomenon in the acquisition of sensory data in healthcare
applications has led to the development of innovative techniques for data acquisition with the aim
of complementing the “already in use”, but upgraded methods. Due to these improvements in
data acquisition methods, processing and interpreting sensory data have experienced an upward
improvement, as well. These improvements have recently translated into improved quality of
healthcare delivery. In this section, we briefly discuss the methods of sensory health data acquisition
and processing as they relate to deep learning. Furthermore, we discuss how the generated sensory
data types are processed using deep learning techniques. Figure 6a presents a brief taxonomy of
data acquisition and processing. Data acquisition is performed mainly via wearables and probes as
dedicated sensors and via built-in sensors of mobile devices as non-dedicated sensors.

(a) (b)

Figure 6. Data acquisition methods and processing techniques. (a) Taxonomy of sensory data
acquisition and processing techniques; (b) types of wearables/carry-ons.

4.1. Sensory Data Acquisition and Processing via Wearables and Carry-Ons

Wearables and carry-ons have appeared as crucial components of personalized medicine aiming
at performance and quality improvement in healthcare delivery. All wearables are equipped with
built-in sensors that are used in data acquisition, and these smart devices with built-in sensors are
in various forms as shown in the Figure 6b. The sensors in smart watches acquire data for the heart
rate, movement, blood oxygen level and skin temperature. The virtual reality (VR) goggle captures
video/image data, whereas the emotive headset senses mostly the brain signals. The wrist band and
bracelets sense heart rate, body mass index (BMI), movement data (i.e., accelerometer and gyroscope)
and temperature. Mobile devices provide non-dedicated sensing by acquiring sensory data regarding
location, movement and BMI. While they all have similar functions, sensing functions mainly depend
on the situations or needs for which they are required. The sensors embedded in these devices are
the main resources for data acquisition and generation. The data output can be in the form of signals,
images or videos; all with various importance and usefulness.

Processing of data generated from wearables and carry-ons is done based on the data types.
Deep learning techniques used in this regards are also dependent on the data types and intended
applications. This section aims to discuss the various deep learning methods used to process various
data types generated from wearables and carry-ons.

• Image processing: Deep learning techniques play a major role in image processing for health
advancements. Prominent amongst these methods are CNN, DBN, autoencoders and RBM.
The authors in [65] use CNNs to help create a new network architecture with the aim of
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multi-channel data acquisition and also for supervised feature learning. Extracting features
from brain images (e.g., magnetic resonance imaging (MRI), functional Magnetic resonance
imaging (fMRI)) can help in early diagnosis and prognosis of severe diseases such as glioma.
Moreover, the authors in [66] use DBN for the classification of mammography images in a bid to
detect calcifications that may be the indicators of breast cancer. With high accuracy achieved in
the detection, proper diagnosis of breast cancer becomes possible in radiology. Kuang and He
in [67] modified and used DBN for the classification of attention deficit hyperactivity disorder
(ADHD) using images from fMRI data. In a similar fashion, Li et al. [68] used the RBM for
training and processing the dataset generated from MRI and positron emission tomography (PET)
scans with aim of accurately diagnosing Alzheimer’s disease. Using deep CNN and clinical
images, Esteva et al. [69] were able to detect and classify melanoma, which is a type of skin
cancer. According to their research, this method outperforms the already available skin cancer
classification techniques. In the same context, Peyman and Hamid [70] showed that CNN performs
better in the preprocessing of clinical and dermoscopy images in the lesion segmentation part of
the skin. The study argues that CNN requires less preprocessing procedure when compared to
other known methods.

• Signal processing: Signal processing is an area of applied computing that has been evolving
since its inception. Signal processing is an utmost important tool in diverse fields including the
processing of medical sensory data. As new methods are being improved for accurate signal
processing on sensory data, deep learning, as a robust method, appears as a potential technique
used in signal processing. For instance, Ha and Choi use improved versions of CNN to process
the signals derived from embedded sensors in mobile devices for proper recognition of human
activities [71]. Human activity recognition is an important aspect of ubiquitous computing and
one of the examples of its application is the diagnosis and provision of support and care for
those with limited movement ability and capabilities. The authors in [72] propose applying a
CNN-based methodology on sensed data for the prediction of sleep quality. In the corresponding
study, the CNN model is used with the objective of classifying the factors that contribute to
efficient and poor sleeping habits with wearable sensors [72]. Furthermore, deep CNN and deep
feed-forward networks on the data acquired via wearable sensors are used for the classification
and processing of human activity recognition by the researchers in this field [73].

• Video processing: Deep learning techniques are also used for processing of videos generated
from wearable devices and carry-ons. Prominent amongst these applications is the human
activity recognition via CNNs to process video data generated by wearables and/or multimedia
sensors [74–76].

4.2. Data Acquisition via Probes

Data acquisition using probes was an early stage data gathering technique. Their development
has been made possible using technological enhancements attached to these probing tools. With these
enhancements, acquiring sensory readings of medical data has become possible. Probes can be in
the form of needles, drills and sometimes knocks, with feedbacks generated via the technological
enhancements attached to the probing tools. Probes have seen a revolution since modern science and
traditional medicine are being harmonized, with both playing vital roles in healthcare delivery.

Data generated via probes are usually in the form of signals. Processing probe data requires
certain deep learning techniques that are augmented in most cases for this purpose. As an example,
Cheron et al. [77] used the invasive electrode injection method to acquire signals needed to formulate
the kinematic relation between electromyography (EMG) and the trajectory of the arm during
movements. To this end, the authors used a dynamic recurrent neural network to process these
signals and showed the correlation between EMG and arm trajectory.
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4.3. Data Acquisition via Crowd-Sensing

Mobile crowd-sensing is a non-dedicated sensing concept where data are acquired using built-in
sensors of smart devices. As the capabilities of smart devices such as smartphones and tablets have
tremendously improved during the last decade, any smartphone today is equipped with tens of built-in
sensors. Thus, ubiquity, improved sensing, computing and communication capabilities in mobile smart
devices have enabled these devices to be used as data acquisition tools in critical applications including
smart health and emergency preparedness [78,79]. This type of data acquisition involves users moving
towards a particular location and being implicitly recruited to capture required data by the built-in
sensors in their smart devices [80]. Crowdsensing envisions a robust data collection approach where
users have the leverage and the ability to choose and report more data for experimental purposes in
real time [81]. Consequently, this type of data acquisition increases the amount of data required for any
purpose especially for the applications under smart health and smart cities [82]. Moreover, it is worth
noting that crowd-sensed data are big especially in volume and velocity; hence, application-specific and
effective processing methods are required to analyse crowd-sensed datasets. Application-specific data
analytics techniques are required for the following reason in mobile crowd-sensing: Besides volume
and velocity, the variety and heterogeneity of sensors in mobile crowd-sensing are also phenomenal,
which results in producing a gigantic amount of data, which might be partially labelled in some cases.

As an example smart health application where mobile crowd-sensed data are used, Pan et al. [83]
have introduced AirTick, which utilizes crowd-sensed image data to obtain air quality information.
To this end, AirTick applies Boltzmann machines as the deep learning method on the crowd-sensed
image to process the data for eventual results. Furthermore, the authors in [84] have introduced
a proposal for cleaner and healthier neighbourhoods and have developed a mobile crowd-sensing
application called SpotGarbage, which allows users to capture images of garbage in their locality and
send them to the data hub where the data are analysed. In the SpotGarbage application, CNNs are
used as the deep learning method to analyse the crowd-sensed images.

Based on the review of different data acquisition techniques and the corresponding deep learning
methodologies applied to sensed data under those acquisition techniques, a brief review is presented
in Table 2. The table provides a summary of data acquisition techniques, their corresponding data
types and some examples of the deep learning techniques used.

Table 2. Summary of data acquisition methods, data types and examples of deep learning technique
used. Three types of data acquisition categories are defined, which acquire images, one-dimensional
signals and videos. CNN, DBN, restricted Boltzmann machine (RBM) and BM are the deep learning
methods that are used to analyse big sensed data.

Data Acquisition Technique Data Type Deep Learning Technique

Wearables
Image CNN [65,69,70], DBN [66,67], RBM [68],
Signal CNN [71–73]
Video CNN [74–76]

Probes Signal RNN [77]

Crowd-sensing Image BM [83], CNN [84]

5. Deep Learning Challenges in Big Sensed Data: Opportunities in Smart Health Applications

Deep learning can assist in the processing of sensory data by classification, as well as prediction
via learning. Training a dataset by a deep learning algorithm involves prediction, detection of errors
and improving prediction quality with time. Based on the review of the state of the art in the previous
sections, it can be stated that integration of sensed data in smart health applications with deep learning
yields promising outcomes. On the other hand, there are several challenges and open issues that need
to be addressed prior to realization of such integration. As those challenges arise from the nature of
deep learning, sensor deployment and sensory data acquisition, addressing those challenges paves the
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way towards robust smart health applications. As a corollary, in this section, we introduce challenges
and open issues in the integration of deep learning with smart health sensory data; and pursuant
to these, we present opportunities to cope with these challenges in various applications with the
integration of deep learning and the sensory data provided.

5.1. Challenges and Open Issues

Deep learning techniques have attracted researchers from many fields recently for sustainable and
efficient smart health delivery in smart environments. However, it is worth noting that the application
of deep learning techniques on sensory data still experiences challenges. Indeed, in most smart health
applications, CNNs have been introduced as revolutionized methodologies to cope with the challenges
that deep learning networks suffer. Thanks to the improvements in CNNs, to date, CNN has been
identified as the most useful tool in most cases when smart health is involved.

To be able to fully exploit deep learning techniques on medical sensory data, certain challenges
need to be addressed by the researchers in this field. The challenges faced by deep learning techniques
in smart health are mostly related to the acquisition, quality and dimensionality of data. This is due
to the fact that inferences or decisions are made based on the output/outcome of processed data.
As seen in the previous section, data acquisition takes place on heterogeneous settings, i.e., various
devices with their own sampling frequency, operating system and data formats. The heterogeneity
phenomenon generally results in a data plane with huge dimensions. The higher the dimension gets,
the more difficult the training of the data, which ultimately leads to a longer time frame for result
generation. Moreover, determining the depth of the network architecture in order to get a favourable
result is another challenge since the depth of the network impacts the training time, which is an
outstanding challenge to be addressed by the researchers in this field.

Value and trustworthiness of the data comprise another challenge that impacts the success of
deep learning algorithms in a smart health setting. As any deep learning technique is supposed to be
applied to big sensed health data, novel data acquisition techniques that ensure the highest level of
trustworthiness for the acquired data are emergent.

Uncertainty in the acquired sensor data remains a grand challenge. A significant amount of the
acquired data is partially labelled or unlabelled. Therefore, novel mechanisms to quantify and cope
with the uncertainty phenomenon in the sensed data are emergent to improve the accuracy, as well as
the efficiency of deep learning techniques in smart health applications.

Furthermore, data acquisition via non-dedicated sensors is also possible in smart cities sensing [85].
In the presence of non-dedicated sensors for data acquisition in smart health, it is a big challenge to
know how much data should be acquired prior to processing. Since dedicated and non-dedicated
sensors are mostly coupled in smart health applications, determining the amount of data required
from different wearables becomes a grand challenge, as well. Recent research proposes the use
of compressing sensing methods in participatory or opportunistic sensing via mobile devices [86];
hence, data explosion in non-dedicated acquisition can be prevented. However, in the presence of
non-dedicated sensing system, dynamic determination of the number of wearables/sensors that can
ensure the desired amount of data is another open issue to be addressed prior to analysing the big
sensed data via deep learning networks.

In addition to all this, ensuring trustworthiness of the acquired sensory data prior to deep learning
analysis remains an open issue, while auction and game theoretic solutions have been proposed to
increase user involvement in the trustworthiness assurance stage of the data that are acquired via
non-dedicated sensors [87,88]. In the presence of a collaboration between dedicated and non-dedicated
sensors in the data acquisition, coping with the reliability of the non-dedicated end still requires
efficient solutions. It is worth noting that deep learning can also be used for behaviour analysis of
non-dedicated sensors in such an environment with the aim of eliminating unreliable sensing sources
in the data acquisition.
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Last but not least, recent research points out the emergence of IoT-driven data acquisition
systems [78,89].

5.2. Opportunities in Smart Health Applications for Deep Learning

In this section, we discuss some of the applications of deep learning. To this end, we categorize
these applications into three main groups for easy reference. Table 3 shows a summary of these
applications together with the deep learning methods used under the three categories, namely
medical imaging, bioinformatics and predictive analysis. The table is a useful reference to select
the appropriate deep learning technique(s) while aiming to address the challenges and open issues in
the previous subsection.

Table 3. Smart health applications with their respective deep learning techniques on medical sensory
data. Applications are grouped into three categories: Medical imaging, bioinformatics and predictive
analysis. Each application addresses multiple problems on sensed data through various deep
learning techniques. DNN, deep neural network.

Application Problem Deep Learning Techniques References

Medical Imaging

Neural Cells Classification CNN [65]
3D brain reconstruction Deep CNN [90]
Brain Tissue Classification DBN [67,68]
Tumour Detection DNN [65,66]
Alzheimer’s Diagnosis DNN [91]

Bioinformatics
Cancer Diagnosis Deep Autoencoder [92]
Gene Classification DBN [93]
Protein Slicing DBN [94,95]

Predictive Analysis Disease prediction and analysis
Autoencoder [96]

RNN [97]
CNN [97,98]

• Medical imaging: Deep learning techniques have actually helped the improvement of healthcare
through accurate disease detection and recognition. An example is the detection of melanoma.
To do this, deep learning algorithms learn important features related to melanoma from a group
of medical images and run their learning-based prediction algorithm to detect the presence or
likelihood of the disease.

Furthermore, using images from MRI, fMRI and other sources, deep learning has been able to
help 3D brain construction using autoencoders and deep CNN [90], neural cell classification using
CNN [65], brain tissue classifications using DBN [67,68], tumour detection using DNN [65,66]
and Alzheimer’s diagnosis using DNN [91].

• Bioinformatics: The applications of deep learning in bioinformatics have seen a resurgence in
the diagnosis and treatment of most terminal diseases. Examples of these could be seen in
cancer diagnosis where deep autoencoders are used using gene expression as the input data [92];
gene selection/classification and gene variants using micro-array data sequencing with the
aid of deep belief networks [93]. Moreover, deep belief networks play a key role in protein
slicing/sequencing [94,95].

• Predictive analysis: Disease predictions have gained momentum with the advent of learning-based
systems. Therefore, with the capability of deep learning to predict the occurrence of
diseases accurately, predictive analysis of the future likelihood of diseases has experienced
significant progress. Particular techniques that are used for predictive analysis of diseases are
autoencoders [96], recurrent neural networks [97] and CNNs [97,98]. On the other hand, it is worth
mentioning that in order to improve the accuracy of prediction, sensory data monitoring medical
phenomena have to be coupled with sensory data monitoring human behaviour. Coupling of data
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acquired from medical and behavioural sensors helps in conducting effective analysis of human
behaviour in order to find patterns that could help in disease predictions and preventions.

6. Conclusions

With the growing need and widespread use of sensor and actuator networks in smart cities, there is
a growing demand for top-notch methods for the acquisition and processing of big sensed data. Among
smart city services, smart healthcare applications are becoming a part of daily life to prolong the lifetime
of members of society and improve quality of life. With the heterogeneous and various types of data
that are being generated on a daily basis, the existence of sensor and actuator networks (i.e., wearables,
carry-ons and other medical sensors) calls for effective acquisition of sensed data, as well as accurate
and efficient processing to deduce conclusions, predictions and recommendations for the healthiness
state of individuals. Deep learning is an effective tool that is used in the processing of big sensed data
especially under these settings. Although deep learning has evolved from the traditional artificial
neural networks concept, it has become an evolving field with the advent of improved computational
power, as well as the convergence of wired/wireless communication systems. In this article, we
have briefly discussed the growing concept of smart health within the smart city framework by
highlighting its major benefits for the social sustainability of the smart city infrastructure. We have
provided a comprehensive survey of the use of deep learning techniques to analyse sensory data
in e-health and presented the major deep learning techniques, namely deep feed-forward networks,
autoencoders, convolutional neural networks, deep belief networks, Boltzmann machine and restricted
Boltzmann machine. Furthermore, we have introduced various data acquisition mechanisms, namely
wearables, probes and crowd-sensing. Following these, we have also linked the surveyed deep learning
techniques to existing use cases in the analysis of medical sensory data. In order to provide a thorough
understanding of these linkages, we have categorized the sensory data acquisition techniques based
on the available technology for data generation. In the last part of this review article, we have studied
the smart health applications that involve sensors and actuators and visited specific use cases in those
applications along with the existing deep learning solutions to effectively analyse sensory data. To
facilitate a thorough understanding of these applications and their requirements, we have classified
these applications under the following three categories: medical imaging, bioinformatics and predictive
analysis. In the last part of this review article, we have studied smart health applications that involve
sensors and actuators and visited specific problems in those applications along with the existing deep
learning solutions to effectively address those problems. Furthermore, we have provided a thorough
discussion of the open issues and challenges in big sensed data in smart health, mainly focusing on the
data acquisition and processing aspects from the standpoint of deep learning techniques.
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Abstract: In this paper, we present a new enhancement for an emergency and disaster relief
system called Critical and Rescue Operations using Wearable Wireless sensors networks (CROW2).
We address the reliability challenges in setting up a wireless autonomous communication system
in order to offload data from the disaster area (rescuers, trapped victims, civilians, media, etc.)
back to a command center. The proposed system connects deployed rescuers to extended networks
and the Internet. CROW2 is an end-to-end system that runs the recently-proposed Optimized
Routing Approach for Critical and Emergency Networks (ORACE-Net) routing protocol. The system
integrates heterogeneous wireless devices (Raspberry Pi, smart phones, sensors) and various
communicating technologies (WiFi IEEE 802.11n, Bluetooth IEEE 802.15.1) to enable end-to-end
network connectivity, which is monitored by a cloud Internet-of-Things platform. First, we
present the CROW2 generic system architecture, which is adaptable to various technologies
integration at different levels (i.e., on-body, body-to-body, off-body). Second, we implement
the ORACE-Net protocol on heterogeneous devices including Android-based smart phones and
Linux-based Raspberry Pi devices. These devices act as on-body coordinators to collect information
from on-body sensors. The collected data is then pushed to the command center thanks to
multi-hop device-to-device communication. Third, the overall CROW2 system performance is
evaluated according to relevant metrics including end-to-end link quality estimation, throughput and
end-to-end delay. As a proof-of-concept, we validate the system architecture through deployment
and extracted experimental results. Finally, we highlight motion detection and links’ unavailability
prevention based on the recorded data where the main factors (i.e., interference and noise) that affect
the performance are analyzed.

Keywords: tactical multi-hop routing protocol; Internet-of-Things; optimized routing approach for
critical and emergency networks; disaster relief system; body-to-body communication

1. Introduction

According to the United Nations Office of Disaster Risk Reduction (UNISDR), the financial impact
due to natural and man-made disasters is paramount. It is reported that by 2030, the global average of
annual losses due to disasters is forecasted to increase and reach 415 billion USD [1]. These losses surely
decrease when a preventive communication strategy is ready to be triggered in a disaster incident.
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Indeed, two recent crises showed how important communication alternatives could be during the
disaster relief operations. (1) In March 2011, a 9.0 magnitude earthquake caused a tsunami of 30 feet
in Japan, the fourth-largest earthquake on record (since 1900), and six nuclear reactors in Fukushima
Daiichi plant were affected (two pools of reactors exploded). Japan’s Fire and Disaster Management
Agency confirmed that 22,000 people are dead or missing. During the Fukushima disaster, emergency
teams and the army were using classic High Frequency (HF) military radio communication without
data transmission. Local taxi drivers were coordinating rescue operations using their on-board radio
communication devices traditionally used for reservations. (2) In January 2010, Haiti earthquake, of a
7.0 magnitude, was another example of the use of Very High Frequency (VHF) radio communication
and satellite phones. During the 24 h after the disaster, disaster task forces did not have a clear vision
of the whole situation. Such catastrophes’ relief operations are impossible to conduct without an
alternative data communication system immediately deployable and operational.

To that end, we have recently proposed a new routing protocol called Optimized Routing
Approach for Critical and Emergency Networks (ORACE-Net) [2]. ORACE-Net is a multi-hop routing
protocol, which rates every end-to-end link with regards to its quality (i.e., end-to-end link quality
estimation). This metric varies according to the nodes’ mobility, which is the most relevant criteria for
reliable emergency systems.

Our previous work [3] was constrained by the following factors: First, there were no real on-body
sensors. We generated data for a fictitious network on the mobile nodes as the application layer
payload. Second, the initial experimental results indicate that the average disconnections increase
significantly when the end-to-end route has more than two hops. Third, as the achieved results were
collected in an indoor scenario, several wireless devices were causing interference on the deployed
network and consequently reducing the global network performance. Fourth, with reference to one
of the most studied problem in network design, the Capacitated Network Design Problem (CNDP)
detailed in [4] on the basis of the results in [5], we re-studied the number of deployed nodes with
regards to the network traffic uncertainty. Indeed, eight nodes caused an overhead on the routing layer
and made the routing process too slow and, consequently, the round trip time was high. Thus, we
reduced the number of deployed tactical nodes to four. It is important to note here that this given
number of tactical devices must be carefully selected according to the area dimensions. Bertsekas
in [6] provides a complete study of the discrete network optimization problems, and Marotta et al.
in [7] propose a heuristic that can be used to warm-start the solution process of the solver, accelerating
the convergence towards the optimum. The latter proposed solution approach would be perfect for
selecting the optimal number of tactical nodes considering traffic uncertainty in discrete network
optimization problems. For small and medium-sized networks (up to 25 nodes), an analytical study
given in [8] consists of a reference to converge to an optimized network design independently of
the traffic uncertainty. Finally, according to the collected results, we were unable to evaluate the
throughput accuracy due to the significant number of disconnections and high round trip time delay.

Some of the benefits of this paper are addressing the above limitations and improving the
proposed routing approach behavior, in particular the average throughput, the round trip time delay
(RTTDelay) and the end-to-end link quality estimation (E2ELQE). This work provides the following
main contributions:

• The Critical and Rescue Operations using Wearable Wireless sensors networks (CROW2) system
is one of the rare proof-of-concept implementations of emergency ad hoc autonomous systems.
Unlike the detailed works in Section 2, as an application layer payload, we use real-time human
vital signs (motion data, heartbeat, magnetometer, etc.) collected from the on-body sensors
and pushed to the IoT platform. The evaluation of the proposed system is realized on a real
indoor test-bed under realistic conditions. Indeed, we experimentally investigate the mobile
devices’ behavior with regards to key performance metrics, such as throughput, end-to-end delay,
end-to-end link quality estimation during sensing and disseminating data onto the IoT platform.
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• The implemented scenario is a reference experiment for researchers and professionals to
evaluate concretely the trade-off between the

{
E2ELQE, throughput

}
and

{
RTTDelay, jitter

}
in

the disaster relief context [9]. Additionally, this work emphasizes the difference between UDP
and TCP transport mode performances in disaster relief applications and may be considered as a
reference for upcoming application implementations with regards to the bandwidth limitations.
Moreover, the realized experiment advises also on the optimal hop count to guarantee the
required throughput for the critical applications (medical support, military, firefighters, press and
media, etc.).

• The proposed system is back-ended by an IoT platform. Indeed, at the IoT platform level, we
prove the system’s capability for mobility pattern recognition and prediction. Then, we discuss
the overall interference affecting the mobile devices behavior for the considered indoor scenario.
The proposed system shows also a global connectivity status of all of the deployed devices during
the disaster relief operations.

The remainder of this paper is organized as follows: In Section 2, we present research works
proposed recently related to the emergency relief operation systems. In Section 3, we introduce the
CROW2 system generic architecture. In Section 4, we focus on the implementation technologies in
accordance with the on-body and body-to-body communications. In the last section, we describe the
experimentation scenario, and we discuss the obtained results. Finally, we conclude by summarizing
the paper’s contributions, and we present some promising directions for future research.

2. Related Works

When conducting disaster relief operations, two relevant challenges arise: (i) setting up an
immediate emergency wireless network to inter-connect on-the-field rescuers with trapped survivors;
and (ii) relaying the emergency network to the Internet and extended networks.

Chen et al. in [10] classify the applications into three main classes: (i) remote health and
fitness monitoring, (ii) military and training and (iii) intelligent biosensors for vehicle area networks.
Moreover, the authors in [10] discuss a list of research projects and implementations, in particular
the Advanced Health and Disaster Aid Network (AID-N) [11], which targets disaster and public
safety applications. AID-N uses a wired connection for BAN communication and mesh and ZigBee
for the Body-to-Body Network (BBN). Off-body communication in AID-N is fulfilled through WiFi,
cellular networks and the Internet. AID-N aims to sense pulse, blood pressure, temperature and
ECG. Negra et al. in [12] focus more on the following major medical applications: (i) telemedicine and
remote patient monitoring, (ii) rehabilitation and therapy, (iii) biofeedback and (iv) ambient assisted
living. The latter work discusses also the QoS requirements for the medical context.

Recently, research trends have aimed at relying on large-scale LTE/4G-enabled networks to
inter-connect deployed devices during disaster relief operations. For instance, the authors in [13]
introduced the Device-to-Device (D2D) communication scheme to allow user equipment (UE) to
communicate within the reachable neighborhood. The proposed scheme sets up an ad hoc wireless
network, which relies on the base stations evolved NodeBs (eNBs) at the network startup. Therefore,
the solution still depends on the 4G network infrastructure. Definitely, the unavailability of the 4G
backbone causes the unavailability of the proposed D2D wireless network.

We cite among, other works, approaches that studied and implemented alert messaging systems,
such as the Reliable Routing Technique (RRT) [14] and TeamPhone [15]. Both approaches consist
of setting up a smartphone messaging system, which is able to send alert notifications by bridging
cellular networks or over ad hoc and opportunistic networks. These proposed systems seem to solve
the connectivity issues on-the-field between rescuers and trapped survivors. However, devices in
the disaster area may only communicate within one hop. Devices select one next hop only, and no
neighborhood discovery is done. Thus, RRT and TeamPhone are not topology-aware and do not
consider external network extension with the Internet or other networks.
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The authors in [16] propose a localization-based and network congestion adaptive approach
called “DistressNet”. DistressNet is claimed to be efficient in congestion avoidance during disaster
relief operations; however, this approach is not appropriate for indoor rescue operations due to its
localization mechanism, which renders multi-hop algorithms inefficient. The authors in [17] adopted
the WiFi Direct standard for the “Emergency Direct Mobile App”, which is intended to divide the set
of smart phones into groups communicating in peer-to-peer mode assured by WiFi Direct. One of
the devices is selected as the Group Owner (GO) and acts as the access point for its group and as a
gateway elsewhere. The rest of the devices act as Group Relays (GR). The network topology formation
in this strategy causes an important delay. Additionally, with regards to the high mobility imposed by
the emergency context, the network topology update (i.e., GO negotiation and election, GR selection)
increases data transmissions latency.

The earliest proposed schemes aim to enhance the on-body devices’ transmission reliability and
to improve the energy efficiency. Chen et al. in [18] proposed a novel Cross-Layer Design Optimization
(CLDO) scheme. Indeed, the design of CLDO relies on the three lower layers (i.e., PHY, MAC and
network layer). Power consumption is firstly optimized by selecting optimal power relays. Then, the
remaining energy in leaf nodes is utilized to increase the lifetime and the reliability. An optimal packet
size is given for energy efficiency. Chen et al. claim that an inevitably slight overhead accompanies
CLDO processing for different factors. First, during network initialization, complex procedures are run.
Second, the algorithm uses a certain number of iterations, which influences the overall performance.
Third, CLDO lacks the capacity to manage dynamic location situations.

Another approach presented by Tsouri et al. in [19] relies on Dijkstra’s algorithm augmented with
novel link cost function designed to balance energy consumption across the network. This latter
technique avoids relaying through nodes, which spent more accumulated energy than others.
Indeed, routing decisions are made based on the energy optimization. The authors claim that the
proposed approach increases the network lifetime by 40% with a slight increase of the energy consumed
per bit. However, this work does not fulfill the operational application requirements, which rely on the
BBN network for connectivity and routing.

D’Andreagiovanni et al. in [4] introduced a new approach able to handle the uncertainty
that affects traffic demands in the Multi-Period Capacitated Network Design Problem (MP-CNDP).
Additionally, a hybrid primal heuristic based on the combination of a randomized fixing algorithm
was proposed by the authors based on ant colony optimization and exact large neighborhood
search. This previous strategy has been improved by D’Andreagiovanni et al. in [20]. The authors
adopt a best performance solution based on the min-max approach algorithm, which relies on a
combination of a probabilistic fixing procedure, guided by linear relaxations, and an exact large
variable neighborhood search, which has been proposed in [4]. D’Andreagiovanni et al. extended
their preliminary work [20] by the new Integer Linear Programming (ILP) heuristic to solve the design
problem. Furthermore, new techniques detailed in [21] fix the variables expressing routing decisions
and employ an initial deterministic fixing phase of the variables modeling the activation of relay
nodes. Experiments conducted in this work show that the proposed approach outperforms the existing
optimization solvers’ strategies.

Miranda et al. in [22] implemented and evaluated a complete Common Recognition and
Identification Platform (CRIP) for the healthcare IoT. CRIP enables a basic configuration and
communication standardization of healthcare ‘things’. Security and privacy and health devices’
integration are also covered within this approach. Miranda et al. deployed CRIP according to different
communication standards, such as NFC, biometrics (fingerprints) and Bluetooth.

The above proposed approaches are limited for various reasons according to two main classes
(O: Operational; T: Technical): (O1) the implemented network is not open to be connected to extended
networks (i.e., Internet or military communication platforms); (O2) no command center is considered
on-the-field for operations conduct, and therefore, nodes only share their status between each other;
(O3) limited services (i.e., alert messages, notifications, etc., only); (T1) nodes in the network have no
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visibility on the neighborhood and the network topology; (T2) routes (which do not exist for some
non-multihop approaches) are neither updated according to the quality of the links’ variations based
on the mobility, nor according to energy efficiency and commanding proximity. To summarize the
various protocols and systems, a benchmark comparison is given in Table 1.

Table 1. Recent implemented disaster management systems benchmark. RRT, Reliable Routing Technique.

Protocols and Systems
Wireless
Standard

Multi-Hop
Topology

Awareness
Infrastructure
Dependency

Network
Extensibility

Sensing Devices
Integration

RRT [14] N/A No No No No N/A
DistressNet [16] ad hoc WiFi Yes Yes No No N/A
Disaster 4 G [13] LTE/4G Yes Yes Yes Yes N/A

Emergency Direct [17] WiFi Direct No Yes No No N/A
TeamPhone [15] ad hoc WiFi/SMS No No Yes No N/A

CROW2 (this work) ad hoc WiFi Yes Yes No Yes Yes

3. The CROW2 System

The Critical Rescue Operation using Wearable Wireless sensor networks (CROW2) is a standalone
system that enables a wireless ad hoc network in order to connect human beings (rescuers, trapped
survivors, civilians, media and press, etc.) to each other, from one side, and to the Internet (or any
extended network), from the other side, during disaster relief operations. The overall objectives and
challenges to be addressed were initially described in [23].

3.1. History of the CROW2 System

The CROW2 system is realized under the CROW2 project. Among the contributions of the project,
notably, we proposed realistic channel models and simulation environment for Body Area Networks
(BAN) and Body-to-Body Networks (BBN or B2B) [24]. We evaluated the IEEE 802.15.6 WBAN
standard under the realistic channel, radio and mobility models; in particular, the proposed MAC
protocols were compared for application-specific design; additionally, new dynamic MAC protocols
were proposed in [25,26]. Furthermore, at the MAC layer, the IEEE 802.15.6 standard’s proposed
coexistence schemes for co-channel were evaluated in order to investigate the impact of interference
from co-located BANs [24].

For that, we studied and compared the effectiveness of distributed and cluster-based architectures
for Body-to-Body communications (BBNs or B2B). Then, various routing protocols among different
classes including proactive, reactive, geographic-based and gradient-based were simulated and
evaluated in [2]. Finally, we proposed a new optimized routing protocol specifically designed for
the emergency and disaster relief communication networks. The routing protocol was implemented
and evaluated on the WSNet [27] simulator within a realistic disaster mobility pattern. Finally, we
implement the entire system on real mobile devices (smart phones and Raspberry Pi devices) for
performance assessment within this paper.

3.2. CROW2 System Architecture

The CROW2 system is a set of wireless distributed devices equipped with wireless sensors
intended to collect real-time data (i.e., vital signs, stress level, locations, ambient intelligence [28], etc.)
from Wireless Body Area Network (WBAN) nodes towards a cloud IoT platform. Figure 1 depicts the
general architecture of the next generation WBAN. A node in the proposed system could be either:
(i) tactical (deployed by rescuers while moving inside the disaster area) or (ii) mobile (carried on-body
by rescuers or trapped survivors). Tactical nodes establish a wireless tactical backbone, which extends
the network coverage. Mobile nodes, being in proximity of the tactical backbone, could route packets
through it as depicted in Figure 2b. We call these tactical devices ORACE-Net Tactical Devices (OTDs).
Mobile devices carried on-body rely on both the OTDs and the other mobile devices to route data.
Data collected from deployed nodes (i.e., tactical and mobile) are routed through the network towards
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the Command Center node (CC node). The CC node is a tactical command center deployed as a
gateway allowing the emergency network to be linked to wide infrastructure networks (e.g., Internet,
military platforms, other emergency networks, etc.). The CC node is also the node through which
the operations’ commanders send their instructions to the rescuers and the rescuers send back their
feedback to the CC node. It is important to note here that multiple CC nodes could be deployed and
activated in the case of single CC failure.

Figure 1. General architecture of the wireless body-area-network system. BAN: Body-Area-Network, BBN:
Body-to-Body communication, Off-Body communication: all non-BAN and non-BBN communications.

(a)

Figure 2. Cont.

172

Bo
ok
s

M
DP
I



J. Sens. Actuator Netw. 2017, 6, 19

(b)

Figure 2. (a) CROW2 system layer-based architecture. BT: Bluetooth, ZB: ZigBee, WF: WiFi, WB:
WBAN. For the CROW2 system, we considered Bluetooth between sensors and the coordinator and
WiFi IEEE802.11n between WBANs and the Command Center node (CC node). (b) Multi-hop aspect in
CROW2; Data are routed from/through mobile/tactical nodes towards the Internet. MQTT, Message
Queuing Telemetry Transport.

3.3. CROW2 System Enhancement

As depicted in the layer-based architecture in Figure 2a, CROW2 consists of two Wireless Body
Area Networks (WBANs), or more, connected to a cloud IoT platform through the CC node. Each
WBAN node is composed of: (i) a WBAN coordinator, which is a wireless device with advanced energy
and communication features, (ii) on-body sensors, which may feature different communications
technologies (i.e., Bluetooth IEEE802.15.1, WiFi IEEE802.11a/b/g/n, ZigBee IEEE802.5.4 and WBAN
IEEE802.15.6). Sensors are connected among one of the previous technologies to the WBAN coordinator.
The BBN routing is assured by the ORACE-Net routing protocol according to the architecture depicted
in Figure 1. As the payload at the application layer, we deployed an Message Queuing Telemetry
Transport [29] client (on tactical and mobile devices) to push data to the IoT platform.

The CROW2 system is improved through this work. Compared to our previous work [3], we have
installed on-body sensors provided by Shimmer [30]. Therefore, the current system payload consists
of real sensed vital sign data from the human body towards the IoT platform. To improve connectivity
and mitigate interference, we reduced the tactical devices (OTDs) to four. Additionally, we reduced
the number of active indoor wireless access points, since we assume that during the disaster, they will
be damaged.

4. CROW2 System Implementation

In this section, we explain how the CROW2 system is implemented. We present first the
on-body communication; then, we present the body-to-body communication implementation. Finally,
we describe the off-body components’ implementation, in particular the Labeeb-IoT platform.
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4.1. On-Body Communication

WBAN covers the communication between the coordinator (which is the main on-body device
responsible for communication with other BANs and off-body devices) and the rest of the on-body
or under skin sensors. For the CROW2 system, on-body communication is established between
sensors (i.e., Shimmer [31]) and the Android mobile application (i.e., Labeeb-IoT Shimmer Sensing
Android App).

Shimmer sensors [31] are sensing devices capable of measuring physical quantities
(e.g., acceleration, gyroscope X, Y, Z and angle, triple axis magnetic field, pressure, etc.) and sharing
them via Bluetooth. Shimmer provides a Service Development Kit (SDK) that affords the possibility
to read real-time data from the sensor by an Android or IOS mobile application. We place the
Shimmer sensor on-body as shown in Figure 3. Once connected via Bluetooth, our mobile application
(Labeeb-IoT Shimmer Sensing Android App) starts reading data from the sensor and sharing them
with the IoT platform.

Figure 3. Real-time data collected by the ORACE-Net Mobile Device (OMD), routed through the
ORACE-Net network and then displayed on the Labeeb-IoT platform.

The Labeeb-IoT Shimmer Sensing Android App is responsible for collecting data from sensors
and transmitting them onto the Labeeb-IoT platform using the Message Queuing Telemetry Transport
(MQTT) protocol [29]. Figure 4a depicts a screenshot from the live activity of the mobile app with the
different real-time sensed parameters before being pushed to the Labeeb-IoT platform.
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(a) (b) (c)

Figure 4. (a) A screen-shot from the Labeeb-IoT Shimmer sensing mobile app, which collects data from
Shimmer [31] sensors and pushes them to the Internet of Things platform (Labeeb-IoT). (b) Testbed:
a photo of the ORACE-Net mobile devices displaying the real-time events (received "Hello" and
Advertisement ("ADV") packets) and the current route. (c) The Labeeb-IoT [32] interface shows the
variation of the sensed data from the Shimmer sensor connected to the mobile node.

4.2. Body-To-Body Communication

Body-to-body communications consist of the communications between coordinators (i.e., mobile
devices) carried by the rescuers, survivors and also the communications between coordinators and
tactical devices, as shown in Figure 2b. The ORACE-Net routing protocol assures routing between
CROW2 devices. With regards to the operational requirements of a disaster relief mission, we assume
that the first rescue teams reaching the incident area deploy wireless tactical devices (i.e., OTDs) to
enable a wireless ad hoc tactical network on site. We describe these in the two following subsections.
The implementation of the ORACE-Net routing protocol is describe for: (i) ORACE-Net Tactical
Devices (OTDs) (ii) and ORACE-Net Android Mobile Device (OMD). Both devices are depicted in
Figure 5.

4.2.1. Android Mobile Devices

These devices are designed based on the ORACE-Net Android application, which is a mobile app
coded in Java and deployed on Android v4.2.2 CyanogenMod 10.0 distribution. This mobile app is
dedicated to route data through the emergency network based on the ORACE-Net routing protocol.
The ORACE-Net Android application is implemented at the user level as depicted in Figure 6a.
It exploits the features of the Linux operating system at the kernel layer through the Dalvik Virtual
Machine. Figure 6b depicts the ORACE-Net mobile application components, which are: (1) events
listener, (2) broadcast receivers, (3) services, (4) content providers and (5) display activities. The
relevant component in the architecture is the events listener, which triggers the rest of the tasks. An
events listener is used to catch events (e.g., unicasted, multicasted or broadcasted packets, clicked
button, typed text, etc.). In the ORACE-Net Android application, the events listener is implemented as
a socket with a multi-cast IP address/Port: 224.0.0.1/10000. A similar socket is implemented with the
C-language on Linux for the tactical deployed devices. Received packets through the events listener
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are handled by the broadcast receivers component to be hulled. Particularly, the content provider
allows the application to share the application output with other servers or platforms. Figure 4b is a
screenshot of the ORACE-Net mobile app showing the received/transmitted Hello and Advertisement
(ADV)packets, the next-hop and the hop count to the CC node.

Figure 5. Experimentation scenario and data flow from deployed nodes to the Labeeb-IoT platform.
The Command Center (CC node) is placed at the Back Gate (BG); ORACE-Net Mobile Devices (OMD)
are mobile devices carried by the rescuers to which Shimmer sensors are connected via Bluetooth. The
tactical ORACE-Net network is established through ORACE-Net Linux Tactical Devices (OTD). All
collected data go through the CC node to the Labeeb-IoT platform. A real-time dynamic topology
website instantly displays the network topology.

Figure 6. (a) ORACE-Net system-oriented stack over Linux and Android. (b) ORACE-Net Android
application architecture.
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4.2.2. ORACE-Net Tactical Devices

These tactical devices are implemented based on Linux applications. Indeed, we implemented
the ORACE-Net protocol on Raspbian v8.0, a free operating system based on Debian optimized for
the Raspberry Pi hardware. Linux libraries are used to operate various protocol events (i.e., socket
connections, packets encapsulation, multicasting and broadcasting). We use shell scripts to display the
status and statistics and to manage the processes of the protocol. The logging system in the tactical
devices is based on the operating system logging service Syslog. Finally, data are pushed to the
Labeeb-IoT platform via the MQTT protocol client installed on every OTD.

4.3. Off-Body Communication

Communication between the CC node and the Labeeb-IoT platform covers the off-body
communication of the CROW2 system, as depicted in Figures 1 and 5.

The Internet of Things (IoT) is an emerging technology developed for smart living solutions.
IoT solutions are online platforms capable of receiving sensed real-time data from diverse types of
devices (including sensors, actuators, coordinators, gateways, etc.) that could be deployed in a vast
geographic area. Such platforms are able to collect, store, publish and analyze data according to many
parameters. With respect to the MQTT standard [29], the Labeeb-IoT platform uses a publish/subscribe
architecture in contrast with the HTTP request/response paradigm architecture. Publish/subscribe is
event-driven and enables messages to be pushed by clients using the MQTT protocol. The MQTT client
communicates with the broker using predefined methods (e.g., connect, disconnect, subscribe, publish).
Labeeb-IoT offers various APIs and RESTful and/or JavaScript Object Notation (JSON) web services.

In our experiments, ORACE-Net devices (mobile and tactical) push continuously and instantly
the following data to the Labeeb-IoT platform: (1) device identifier (DeviceId), (2) device location
(Location), (3) device neighbors’ list (Neighbors), (4) next-hop to the CC node (NHCC), (5) E2ELQE and
(6) Hopcount to the CC node. Data are stored in the platform database and then could be extracted and
displayed on Labeeb-IoT as shown in Figure 4c.

5. Experimentation

5.1. Deployment Scenario and Experimental Setup

In our experiments, we consider a disaster scenario in our office, Qatar Mobility Innovations
Center (QMIC), in Qatar Science and Technology Park (QSTP). Our test-bed consists of four Raspberry
Pi devices (Raspberry Pi Foundation, Cambridge, UK) and two rooted Samsung Galaxy S3-I9300 smart
phones (Samsung Electronics Co. Ltd., Suwon, South Korea) with the ORACE-Net routing protocol
implemented. The office map is shown in Figure 5. The scenario is as follows: rescue teams access
the office from the Back Gate (BG). First, they deploy the CC node in a trusted and safe location (near
the entrance gate) where they are connected to the Internet through an Ethernet or WiFi access point
(these links could be provided with military microwave or satellite connections). Upon their entrance
inside the office, rescuers start deploying tactical devices (OTD) as base stations in order to have
the maximum wireless network coverage in the operations area. Two to five OTDs are deployed (as
shown in Figure 5). Mobile nodes (smart phones) carried by the rescuers are connected (to the CC
node) through the tactical network. Shimmer sensors are connected to ORACE-Net mobile devices via
Bluetooth. Since the experimentation area is limited, we reduced the Raspberry Pi’s and smart phone’s
WiFi antenna transmission power to 0 dBm. Experimentation parameters and configuration settings
are detailed in Table 2.
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Table 2. Experimentation parameters and configuration settings.

General Settings

Parameter Setting

ORACE-Net Tactical Devices
4 (Raspberry Pi 2)
OS: Raspbian v8.0

Mobile nodes
2 (Samsung Galaxy S3-I9300, rooted)
OS: Android 4.2.2 CyanogenMod 10.0

Wireless mode Ad hoc

ESSID CROW2

Wireless standard IEEE 802.11n/2.412 GHz (Channel 1)

Transmission power 0 dBm

Experiment area 30 m × 150 m

CC-node connection
Ethernet to Internet
Ad hoc WiFi to ORACE-Net network

Experimentation duration 30 min/iteration

Power batteries
- Smart phone: 2100 mAh Li-Ion (3.7 v)
- Raspberry-Pi: 10,000-mAh Li-ion (12 v)
- CC-node: 12 V power supply

ORACE-Net Protocol Settings

Application layer
MQTT client used for pushing
data to the Labeeb-IoT platform

MQTT msgsize/intervals 30 Kb/1 s

Hello/ADV packet size 20/25 bytes

Hello/ADV intervals 3 s

Multicast address/port 224.0.0.0/10000

Shimmer Sensing Settings [30]

Wireless standard Bluetooth IEEE 802.15.1

Sensed data
Pressure, Temperature, Gyroscope
(x, y, zaxis-angle), acceleration (x, y, z),
magnetometer (x, y, z), battery level

Device/Body 1 (with multiple sensors)

Buffer [31] 1024 bytes

Message interval 1 s

5.2. Results and Discussion

In this subsection, we present the results of the experiment aimed to evaluate the CROW2 system
performance based on the ORACE-Net routing protocol on a real test-bed. To do so, we consider the
following metrics: throughput and jitter, End-to-End delay (E2Edelay) and End-to-End Link Quality
Estimation (E2ELQE). Throughput is the maximum amount of data processed for sending from the
source node (i.e., ORACE-Net mobile device) to the destination node (i.e., Labeeb-IoT platform). “Jitter”
is the amount of variation in latency/response time (typically in milliseconds). Reliable connections
consistently report back the same latency over and over again. Much variation (or ‘jitter’) is an
indication of connection issues. Jitter is a relevant indicator of the network performance because
it defines what kind of applications the network is able to support. The E2ELQE is calculated by
the ORACE-Net protocol to estimate end-to-end links. The E2Edelay is the round trip time delay
recorded from the source node to the destination node. This latter metric informs also about nodes’
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disconnections. In addition to the above performance metrics, we discuss the collected data from the
IoT platform to detect motions and prevent unavailability. Finally, we discuss the overall approximate
interference and noise affecting the indoor signal using an academic version of the AirMagnet software.

5.2.1. Throughput and Jitter

The average throughput and jitter recorded on the mobile device over the time during the
experiment plotted by UDP/TCP packets is depicted in Figure 7. These results are collected using local
Linux logging tools, runnable also on Android (i.e., iptraf and trafshow). It can be seen that the UDP
throughput is higher than the TCP throughput. Indeed, the TCP protocol uses connected mode, and
it is highly optimized to make reliable use of the link. Therefore, this decreases the throughput and
increases the jitter compared to UDP because of the handshake mechanism for the pre-/post-connection
process. However, UDP is used for real-time data (e.g., voice and video over IP) and recommended for
high-latency links.

Figure 7. Average TCP and UDP throughput (Mbit/s) and jitter (ms) per hop count.

Now, with regards to the hop counts, UDP and TCP throughput averages within one hop are
38.8 and 32.71 Mb/s, respectively. Throughput decreases when the hop count increases to reach 18.47
and 9.87 Mb/s for UDP and TCP, respectively, within three hops. According to the authors of [33],
a minimum data rate of 10 Mb/s is required for audio, medical imaging and video and hundreds of
kbps for other WBAN applications. It is perceived that CROW2 achieved a real throughput higher
than the data rate requirements. It is also important to note that the throughput is expected to decrease
significantly starting from four hops based on the behavior shown in Figure 7. The average throughput
reduction is accompanied by jitter increase. Recorded jitter values increase also following the same
pattern as the throughput. It is important to note here that the maximum accepted jitter for the video
streaming application must be less than 40 ms according to [34] and under 30 ms according to Cisco
for interactive video (video-conferencing) [35]. Indeed, jitter reaches 9.227 ms with TCP mode within
three hops, which stays under the limits of the use of video-streaming. According to the results of
throughput and jitter, we conclude that the recommended hop count that guarantees throughput
for audio/video streaming and files (i.e., photos, reports, etc.) might be less than or equal to three
hops, according to the standard definition video (3 Mb/s). The CROW2 system assures an acceptable
throughput and jitter for routes less than or equal to three hops with regards to the required thresholds
cited above.

5.2.2. End-To-End Delay and Link Quality Estimation

Figure 8 depicts the average round trip time delay (E2Edelay) recorded from the OMD to the
Labeeb-IoT platform versus E2ELQE. It can be seen that the E2ELQE decreases with the rise of E2Edelay.
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Indeed, E2Edelay exceeds 1 s when E2ELQE reaches less than 0.7 between 1030 and 1070 s. The same
behavior appears between 1155 and 1175 s. E2ELQE and E2Edelay are proportional. An E2ELQE equal to
zero means that the link is disconnected; the same link shows an infinite E2Edelay. Figure 8 shows also
the effectiveness of the metric used in the ORACE-Net routing protocol (i.e., E2ELQE). The route update
mechanism based on the optimal E2ELQE then is validated by our experiment. Indeed, ORACE-Net
prevents the link quality degradation, then looks for a better route with optimized link quality, delay
and disconnection avoidance.

Figure 8. ORACE-Net on-body mobile device behavior: round trip time delay and link
quality estimation.

5.2.3. Motion Detection and Link Unavailability Prevention

On-body sensors carried by the rescuers push data regularly to the IoT platform. Based on the
type of recorded data, we can extract several human behaviors. For instance, gyroscope data recorded
and depicted by the Labeeb-IoT platform in Figure 9 inform about human mobility. Sensors placed
on the hand detect and send gyroscope variations tending to zero when the human has stopped and
is not moving. Small variations may be distinguished in the first part of the figure when the human
is walking and higher variations of the gyroscope when he/she is running. Figure 10 depicts the
gyroscope angle variations over more than 2000 s. The gyroscope angle informs about the movement
direction. Furthermore, some vital sign information may help the command center to switch rescue
teams and send support there; we cite for example magnetometer and heart beat variations reflecting
the stress level. All collected data on the IoT platform side could provide also the connectivity status
for every deployed node, as can be seen in Figure 10. Disconnected nodes inform about the unavailable
intermediate links or network over-saturation.
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Figure 9. Gyroscope records over 5 min during the experiment. The X-axis is real time.

Figure 10. Gyroscope angle variation over 2200 s of the experiment.

5.2.4. Interference Score and Noise

As given by Table 2, the CROW2 ad hoc network is configured on WiFi Channel 1. Figure 11a
shows a sample of the interference score recorded indoors along 25 s. Interference varies from 0–53 dBm
(as the maximum peak recorded). We assumed during our previous work [3] that the overall network
achievements were affected by the indoor interference caused by WiFi access points, microwaves, etc.
Thus, we have recorded the interference score and noise to verify whether these facts affect the overall
behavior of the emergency network or not. The recorded interference is important compared to the
Received Signal Strength Indicator (RSSI), so the signal is notably affected by the interference. However,
the overall interference score is likely to decrease because the wireless infrastructure devices and access
points are mostly out-of-order post-disaster. Figure 11b shows a sample of real-time variation for
signal and noise strength as a percentage for Channel 1 during 50 s. The noise floor is given by the
red curved waves, and the Signal-to-Noise Ratio (SNR) is depicted in yellow color. The figure shows
that the signal strength varies between 3 and 50%. To conclude, interference clearly affects the RSSI
and, then, the overall performance of the system. Interference is an important factor that must be
considered in indoor emergency operations.
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Figure 11. (a) Interference score (in dBm) recorded over 25 s on the channel at 2.412 GHz (AirMagnet
WiFi Analyzer Limited Edition). (b) Screen-shot of signal and noise (as a percentage) recorded over
50 s (AirMagnet WiFi Analyzer Limited Edition).

6. Conclusions

In this article, we presented the CROW2 system, an IoT end-to-end emergency and disaster relief
system. CROW2 is implemented based on the ORACE-Net routing protocol, especially designed for
the disaster context. To evaluate the performance of the proposed system, we deployed the routing
protocol and the payload applications on two different platforms (Raspberry Pi and Android smart
phone). We equipped a rescuer with on-body sensors connected to a smart phone via Bluetooth. The
entire system uses an IoT platform as a back-end to push, record, publish and analyze sensed data.
The performance of the system is investigated according to the following relevant metrics: average
throughput and jitter, average end-to-end delay and average link quality estimation. We emphasized
also motion detection and links’ unavailability prevention based on the collected data. Finally, we
sampled the indoor interference score and noise to estimate its impact on the system behavior. It can
be concluded that the CROW2 system outperformed the given requirements for wireless body-to-body
communications in terms of throughput and jitter. However, being effected by the indoor environment,
the behaviors of E2ELQE and E2Edelay are moderately fair. This article validates a few research works,
especially simulation-based ones, with a real implementation and experiment. Further, it highlights
also the limitation of other theoretical proposals, specifically those adopting low power consumption
wireless standards for body-to-body communications. This work could be considered as a reference
to researchers for real wireless body-to-body implementation using a dedicated routing protocol
for the disaster relief context. It is also a reference for routing and technology standards’ adoption
for similar use cases. As future works, an outdoor experiment could be conducted to provide a
complete overview of the system behavior in different situations. Furthermore, a study supported by
implementation could be provided to advise on the optimal number of tactical devices for both indoor
and outdoor scenarios. An autonomous disaster mode in wireless devices may be proposed based on
the ORACE-Net routing approach.
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Abbreviations

The following abbreviations are used in this manuscript:

WBAN Wireless Body Area Networks
CROW2 Critical and Rescue Operations for Wearable-WSNs
E2ELQE End-to-End Link Quality Estimation
E2Edelay End-to-End Delay
RTT Round Trip Time
ORACE-Net Optimized Routing Approach for Critical and Emergency Networks
Labeeb-IoT an IoT Platform (www.labeeb-iot.com)
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