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Editorial

Recent Advances in Forensic Anthropological Methods and Research
Eugénia Cunha 1,2 and Ann H. Ross 3,*

1 Centre for Functional Ecology (CEF), Laboratory of Forensic Anthropology, Department of Life Sciences,
University of Coimbra, 3000-456 Coimbra, Portugal; cunhae@ci.uc.pt

2 National Institute of Legal Medicine and Forensic Sciences, 1169-201 Lisbon, Portugal
3 Human Identification & Forensic Analysis Laboratory, Department of Biological Sciences, North Carolina

State University, Raleigh, NC 276995, USA
* Correspondence: ahross@ncsu.edu

This Special Issue, “Recent Advances in Forensic Anthropological Methods and Re-
search”, with thirteen articles covers a wide range of highly diverse topics within forensic
anthropology. Topics ranging from innovative approaches to critical reviews have received
much attention, with more than thirteen thousand views during the past year. This is
unequivocal proof of the interest in this Special Issue. Authors representing Europe, the
United States, Australia, and South Africa embody the breadth of the present-day research
being conducted in forensic anthropology.

In regard to estimating biological profiles (e.g., biological sex, age at death, population
affinity, and stature), there are three articles focusing on age at death. One manuscript
by Niel, Chaumoître, and Adalian [1] addresses bias due to altered growth trajectories in
estimating juvenile aging in fetuses and infants. Two manuscripts discuss aging adults,
considered to be the Achilles heel of forensic anthropology. A paper by Dias, Manco,
Corte Real, and Cunha [2] proposes a blood–bone–tooth model using DNA methylation to
predict age in forensic contexts. This paper presents an interesting alternative for aging
the dead and the living, and brings new insights into the development of multitissue age
prediction models as applied to blood, bone, and teeth. The third adult age estimation
article by Navega, Costa, and Cunha [3] proposes a new method based on a multifactorial
macroscopic analysis and deep random neural network models. Within the generic factors
of identity (i.e., biological profile), the ever-polemic topic of population affinity is discussed
and illustrated using geometric morphometric and spatial analysis methods within Latin
America. Ross and Williams [4] argue that there is a benefit to and necessity of embracing
studies that employ population structure models to better understand human variation
and the historical factors that have influenced it.

Within the realm of individualizing factors, Butaric, Richman, and Garvin [5] discuss
the potential factors that might affect the reliability of using frontal sinuses for personal
identification. Their study investigates how slight deviations in orientations affect sinus
size and outline shape, which could potentially impact identification.

New approaches are illustrated by the article by Procopio, Mein, Starace, Bonicelli,
and Williams [6], which shows that bone proteomics is a well-founded resource with
which to identify microbially driven versus extrinsically driven bone diagenesis. Another
novel subject is the review by Marquez-Grant and colleagues on the effects of various
drugs on the skeleton, including prescription and recreational drugs, that could affect
forensic anthropological analyses [7]. Another new approach by McWhirter and colleagues
describes how to accurately individualize skeletons from commingled remains using mesh-
to-mesh value comparisons for pair matching skeletal elements [8].

A topic with increasing attention is forensic facial comparison, which is the subject of
one paper by Bacci and coworkers that discusses relevant terminology, the validity as well
as reliability of the Facial Identification Scientific Working Group’s list of morphological
features, and proposes standards for CCTV equipment [9].
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The need to know the attributions of each area of expertise in forensic anthropology
is discussed by Passalacqua, Pilloud, and Congram [10], who call attention to ethical
procedures and requisite qualifications. Furthermore, they emphasize the need to develop
standards and best practice guidelines.

One of the main reasons why forensic anthropologists are called to testify in court is
because of traumatic injuries to skeletal tissues. The article of de Boer, Berger, and Blau [11]
discusses and examines the concept of ‘degree of force’ as well as why it is considered a
pertinent issue in legal proceedings.

One of the big challenges in skeletal traumatic injuries interpretation is to perform
discrimination among BFT and thermal-induced trauma. Keys and Ross [12] conducted
an experiment that found that blunt force trauma signatures remained after burning. It
concludes that there are distinct patterns attributed to thermal fractures and blunt force
fractures.

Nonhuman skeletal remains continue to be part of the routine cases of forensic an-
thropologists. The Garvin team [13] assesses the utility of quantitative methods for distin-
guishing human from nonhuman remains and presents additional resources for species
identification.

We can consider that we have accomplished our aims of presenting a wide array of
methods and topics that are unquestionably relevant to the practice of forensic anthropology.
The quality of expertise has to derive from modern and updated research.

A teoria orienta, a experiência decide.

Author Contributions: Conceptualization, E.C. and A.H.R.; writing—original draft preparation, E.C.
and A.H.R.; writing—review and editing, E.C. and A.H.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Adult Skeletal Age-at-Death Estimation through Deep
Random Neural Networks: A New Method and Its
Computational Analysis
David Navega 1,2,* , Ernesto Costa 3 and Eugénia Cunha 1,2

1 Centre for Functional Ecology (CEF), Laboratory of Forensic Anthropology, Department of Life Sciences,
University of Coimbra, 3000-456 Coimbra, Portugal; eugenia.m.cunha@inmlcf.mj.pt

2 National Institute of Legal Medicine and Forensic Sciences, 3000-548 Coimbra, Portugal
3 Centre for Informatics and Systems of the University of Coimbra (CISUC), Evolutionary and Complex

Systems Group (ECOS), Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra,
Portugal; ernesto@dei.uc.pt

* Correspondence: dsnavega@gmail.com

Simple Summary: Age-at-death is of paramount importance in forensic analysis of skeletal remains.
In addition to sex, stature, and population affinity, it constitutes baseline information in the iden-
tification process of deceased individuals. Despite its long tradition, in anthropological research
age-at-death estimation poses many challenges and unanswered questions. It is undisputedly among
the most difficult tasks of the forensic anthropologist and its results are often subject to a lackluster
performance. In this study, we assessed computationally the efficiency of a holistic approach to
skeletal age estimation based on a new proposal for macroscopic examination and the use of machine
learning-based models for data analysis. Our results suggest that this approach is key for accurate
and efficient age-at-death estimation based on skeletal remains analysis.

Abstract: Age-at-death assessment is a crucial step in the identification process of skeletal human
remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable
accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-
estimation, in this work we propose a new method based on a multifactorial macroscopic analysis
and deep random neural network models. A sample of 500 identified skeletons was used to establish
a reference dataset (age-at-death: 19–101 years old, 250 males and 250 females). A total of 64 skeletal
traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from
a function approximation perspective and a regression approach is used to infer both point and
prediction interval estimates. Based on cross-validation and computational experiments, our results
demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute
error) inferred across the entire adult age span and informative estimates and prediction intervals
can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to
the community.

Keywords: forensic anthropology; age-at-death estimation; machine learning; neural networks

1. Introduction

Forensic anthropology (FA) has become a major component of forensic sciences. Dur-
ing recent decades, a profound change, a true paradigm change, has taken place and
forensic anthropology has transformed itself into a discipline with its own theoretical and
conceptual corpus and research agenda. It can be stated that the discipline and its attributes
have evolved significantly. In fact, this evolution has been so marked and drastic that it can
be argued that even some of the most experienced and long-term practicing anthropolo-
gists may have trouble conceptualizing and being fully proficient in the many areas now

3



Biology 2022, 11, 532

covered by the discipline [1,2], or in even being able to foresee all possible interdisciplinary
and technological developments. Nonetheless, biological profile estimation from human
skeletal remains constitutes a pivotal task and inferring age-at-death, sex, stature, and
population affinities is a fundamental step of the anthropological analysis in the context of
the medico-legal identification process.

In the identification process of human remains, age-at-death is a major screening
factor that helps reduce the universe of possible matches. Therefore, an estimate of this
biological parameter is a normal request from police forces and judicial entities [3]. This
process relies on a meticulous analysis of skeletal and dental structures with an association
with chronological age-at-death. Although this is a topic in which significant research has
been performed in recent decades, skeletal age estimation of adult remains continues to
present many unanswered questions and challenges, especially for the elderly. Determining
how to handle age estimation using multiple skeletal age-related traits remains among
the problems most commonly identified for which a satisfactory solution has not yet been
presented and research further is required [3–10]. Moreover, computational and statistical
methods employed in the creation of age estimation techniques have been a topic of debate
and contention [11–24].

The present work aims to lay a foundation to tackle some of the challenges of mor-
phoscopic adult skeletal age estimation, especially in terms of its holistic or multifactorial
aspect. Several authors argue in favor of multifactorial age estimation to obtain precise and
accurate age estimates [9,16,25]. Nonetheless, multifactorial age estimation poses its own
challenges and limitations, and is a topic with a clear lack of consensus [5,10]. Conceptually
multifactorial age estimation can be argued as being the most effective approach for age
estimation because morphological indicators display different age-related trajectories and
have different underlying biological processes.

The symphyseal face of the pubic bone, for instance, has been systematically studied,
ranging from the pioneering studies that established the morphological analysis of this
skeletal marker as an age estimation technique, to modern fully computational frameworks
for age estimation [26–34]. However, other skeletal markers and regions that can convey im-
portant age-related information, such as the degeneration of vertebral bodies, joint margins,
or the roughening of muscle and tendon attachment sites, have received scarce attention as
aging markers. The unimpressive accuracy and precision associated with the multiple iter-
ations of pubic symphysis aging techniques, one of the most used and favored techniques
for age estimation [5], underlines the idea that further developments and over-analysis of
specific skeletal markers in isolation is not likely to result in substantial improvements over
the state-of-art of adult age estimation, but rather a more comprehensive array of skeletal
markers and features provide a more fertile ground for further developments [35,36].

A multifactorial morphoscopic approach to skeletal analysis does not solve, in itself,
the many difficulties faced in the age-at-death assessment. In fact, if not correctly designed,
this approach can become methodologically cumbersome from a data collection and analy-
sis perspective. From an analytical and statistical perspective, collecting more data from
the skeleton increases the chance of encountering issues of redundancy, multicollinear-
ity, and a dimensionality that hinders the straightforward interpretability and pragmatic
value of morphoscopic analysis. From a practical point of view, a more comprehensive
analysis of the age-related skeletal features requires a higher level of expertise on how
to collect the skeletal features. This issue is of great relevance for approaches that rely
on morphoscopic analysis of the skeleton. Moreover, in forensic contexts it is common
that the skeletal remains are somehow fragmentary or incomplete due to a multitude of
taphonomic factors, which means that not all age-related traits will be available for every
unidentified deceased. From a practitioner’s perspective, this translates into the need for
computational and software tools that can fit or train age-at-death estimation models on a
case-by-case basis.

To cope with the difficulties and needs of multifactorial age estimation, novel methods
and techniques can be developed by resorting to statistical and machine learning, data

4
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science, and artificial intelligence tools and approaches. More than constantly evolving,
machine learning, artificial intelligence and data science are ubiquitous, and have various
successful applications within forensic anthropology in domains such as biological profiling
or craniofacial identification [13,15,37–41].

This work aims to provide a new method, and its computational analysis, for multifac-
torial skeletal age-at-death estimation of adult humans supported by a machine learning
approach based on a deep randomized neural network. This manuscript is in its essence
methodological, presenting both a new macroscopic technique for skeletal analysis and a
detailed explanation of a computational framework to obtain age-at-death estimates and
model their uncertainty. New age-at-death estimation software, DRNNAGE, that translates
the in silico key points of the work presented here into an actionable tool, was developed
and is a major research product.

2. Materials and Methods
2.1. Dataset
2.1.1. Sampled Identified Skeletal Collections

To implement and pursue a computational analysis of the novel age-at-death estima-
tion method proposed in this work, a reference dataset of 500 individuals was constructed.
A total of 99 features were collected covering all key traditional age-related and other
under-explored skeletal traits. Accounting for laterality, 64 unique traits can be analyzed
from the axial and appendicular skeleton using the new macroscopic scoring method,
whose rationale and details are described and explored in Section 2.2.

The 500 individuals were sampled from two identified skeletal collections hosted at the
Department of Life Sciences at the University of Coimbra, Portugal—the Coimbra Identified
Skeletal Collection (CISC) and the 21st Century Identified Skeletal Collection (XXI-ISC). The
CISC consists of 505 individuals with age-at-death ranging from 7 to 96 years representing
skeletons from the Cemitério da Conchada, that were born between 1817 and 1924 and died
from 1904 to 1938 [42]. The XXI-ISC collection is currently composed of 302 skeletons of
both sexes, mostly represented by elderly individuals. This collection represents Portuguese
nationals who died between 1982 and 2012 and were exhumed between 1999 and 2016 from
a main cemetery in Santarém. More details are found in [43,44]. Demographic parameters
of the sampled individuals in our study are detailed in Table 1. All sampled individuals
presented fully developed long bones. No individual was excluded due to pathology
or taphonomy.

Table 1. Demographic characterization of reference data sampled from the CISC and
XXI-ISC collections.

CISC XXI-ISC Pooled Collections Pooled Sex

Female Male Female Male Female Male

n 168 166 82 84 250 250 500
Age-at-Death Mean 48.482 45.331 81.841 74.881 59.424 55.260 57.34

(AGE) Std. Dev. 19.483 18.171 12.889 15.082 23.556 22.141 22.93
Min. 19 19 38 25 19 19 19
Max. 95 96 101 96 101 96 101

Year of Birth Mean 1877.286 1879.994 1923.866 1930.560 1892.564 1896.984 1894.774
(YOB) Std. Dev. 21.252 19.948 13.137 14.424 28.969 30.096 29.591

Min. 1830 1836 1904 1908 1830 1836 1830
Max. 1911 1917 1970 1982 1970 1982 1982

Year of Death Mean 1925.768 1925.325 2005.707 2005.440 1951.988 1952.244 1952.116
(YOD) Std. Dev. 6.597 7.343 3.707 3.919 38.051 38.452 38.214

Min. 1910 1910 2000 1995 1910 1910 1910
Max. 1936 1936 2012 2011 2012 2011 2012

The sampled reference dataset is composed of 250 male and 250 female individuals
who died at the age of 19 to 101 years old (mean = 57.34, SD = 22.93). Age-at-death distribu-
tion is homogenous across the age span represented, with the exception of individuals over
95 years old (Figure 1). A homogenous and uniform age-at-death distribution is a simple
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yet vital strategy to cope with the problem of age-mimicry [45] and to guarantee that the
targeted age span is fully represented.
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Sampled individuals were born between 1830 and 1982 and died between 1910 and
2012. Despite the large temporal frame represented, there is a continuum and a wide
range over the age-at-death distribution that makes this sample particularly suited for
age-related research.

2.1.2. Data Management and Processing

As previously mentioned, multifactorial age estimation poses many challenges that
are mostly related to data management and processing. Two common problems that arise
are redundancy and missing data. Redundancy is always involved when bilateral or paired
data is collected. The human body is not fully symmetric; yet it is not expected that the
left and right diverge drastically under normal conditions. Missing data in FA results
mostly from taphonomic factors. To cope with redundancy and missing values, a strategy
based on domain heuristics and imputation techniques was pursued. For bilateral traits,
the left side was selected as the main source of data. If the left score for a given bilateral
trait was missing, the right side was used as a surrogate value. Once this first heuristic
was applied, the remaining missing values were imputed using a simple nearest neighbor
(k = 1) procedure by substituting all missing value of given individual by the values of
the nearest neighbor. Jaccard similarity on one-hot encoded data was used to compute the
nearest matches. The followed procedure minimized redundancy and dimensionality by
reducing the number of skeletal features from 99 to 64. A simple nearest neighbor with
k = 1 according to Beretta and Santianello [46] is the preferred strategy to preserve the
structure of a dataset. The authors demonstrated that more advanced algorithms reduced
imputation error but introduced significant data distortion. To increase the volume and
age-related variability of the data available, sexes were pooled. Although this choice seems
arbitrary, it is important to note that, in FA, sex is usually estimated during casework.
Pooled data models balance out the potential and pitfalls of sex-specific models and their
mis-specifications.

Missing values represented 9.52% of the total entries of the data table when bilateral
data were considered, and 6.89% when the domain heuristic described was first applied as
a naïve imputation mechanism and strategy to handle bilateral data redundancy.
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2.2. A Novel Technique for Macroscopic Age-At-Death Estimation

A key contribution of the present work to the topic of macroscopic skeletal age esti-
mation in adults is the proposal of new scoring schemes for well-established and under-
explored skeletal traits that can be used as biomarkers in age-at-death assessment. The
development of a new scoring system emerged from the necessity for standardization of a
data collection, and a generation mechanism that was more aligned with a multifactorial
approach to age estimation and more suitable multivariate data analysis, while keeping in
mind practical aspects such as observation error and ease of application.

The proposed morphoscopic method strives to be comprehensive and to incorporate
features from as many skeletal elements as possible. Envisioning the whole skeleton as
a biomarker for age estimation, it is more likely that the overall skeletal patterns exhibit
a stronger and monotonic relationship with age-at-death, which is pivotal for accurate
predictions. The rate and nature of overall skeletal changes also have a greater chance
to be consistent across individuals since a holistic approach can encapsulate intra and
interpersonal variation with greater finesse [35]. Analyzing multiple traits also offsets the
intrinsic limitation to specific traits when analyzed on their own [47].

Following a component-based approach, up to 64 unique skeletal traits can be scored
using the scheme outlined in the next subsections. The covered skeletal traits encode
both developmental and degenerative aspects from different anatomical regions. Despite
the large number of features analyzed in this proposal, all skeletal features are limited to
morphological variables with no more than three classes or stages. Such specifications
were established during the several iterations of the development and refinement of the
system proposed, and by following guidelines from the literature. Shirley and Montes [48]
empirically addressed the old methodological debate of phase versus component-based
approach. Their study quantified the observation error of a phase and a component-based
method, and the results suggests that a component-based approach offers a more objective
scoring if the number of coding possibilities in each component does not exceed three levels
of expression.

The following subsections provide a brief overview of the existing scoring methods
for specific skeletal region or traits, the novel scoring schemes proposed in this work, and
the rationale and difficulties faced during method development. Due to the constraints of
space and manuscript presentation, full descriptions of the trait scoring systems developed
in this study are provided in Tables S1–S15 of the Supplementary Material. The skeletal
scoring systems are also embedded in the developed software (see Section 2.6.4).

2.2.1. Cranial and Palatine Suture Scoring

The scoring system used for the cranial and palatine sutures consists of a modification
and binarization of the proposal by Boldsen et al. [19]. This system was selected because
it incorporates much of the rationale of older methods for scoring ectocranial sutures
(neurocranium) and the palatine sutures [49–56]. The simplification to a binary scoring
system resulted from the difficulty during preliminary and training sessions to differentiate
and consistently score the adjacent stage (i.e., open to juxtaposed or partially obliterated to
punctuated). The scoring scheme described in Table S2 should be applied to nine sutural
segments from the palatine, the sagittal, coronal, and lambdoid sutures (Table S1).

2.2.2. Vertebrae Development and Degeneration Scoring

The fusion of the bodies of the first and second sacral vertebrae is also part of the
skeletal markers analyzed in the proposed protocol. This skeletal feature is one of the few
developmental traits that persist through early adulthood. Its usefulness as an indicator
to distinguish young adults was demonstrated by several researchers [57–59]. This trait
was assessed with a binary scale described in Table S3. To incorporate both metamorphic
and degenerative traits of the vertebral column, a three-stage scoring scheme was devised,
building upon previous work from Snodgrass [60], Watanabe and Terazawa [61], and Albert
et al. [62]. The first two methods focus on the degeneration and osteophyte formation on
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the margins of the vertebral bodies, whereas the last work focuses on the development
of the vertebral epiphyseal rings and body morphology. The proposed system, Table S4,
applies to superior and inferior surfaces of the third to seven cervical vertebrae, the first to
fifth lumbar vertebrae, and the superior surface of the first sacral vertebra. Table S5 lists all
features analyzed in the axial skeleton (excluding sacral auricular surfaces).

2.2.3. Joint and Musculoskeletal Degeneration Scoring

Osteoarthrosis and entheseal changes have been traditionally analyzed in physical
anthropology and bioarcheology as markers of health and biomechanical stress, and tenta-
tive indicators of physical activity patterns. According to Milner and Boldsen [35], who
advocate a more detailed analysis of this type of skeletal marker, these features collectively
contribute to an increase in accuracy and precision of age estimation. The authors base
such an assertion on empirical evidence from an experience-based procedure where these
types of skeletal traits were extensively used. Several reasons can be noted for why os-
teoarthrosis and entheseal changes have been overlooked or not systematically analyzed
in the past as age markers. Broadly speaking, due to their degenerative nature and late
onset, it is believed that they provide limited information, distinguishing only in a broad
sense young from older individuals. More specifically, osteoarthrosis increases with age
but has a complex and multifactorial etiology that hinders or masks its relationship with
age-at-death. Entheseal changes have traditionally been assessed as musculoskeletal stress
markers and as tentative clues to infer physical and occupational activity. This possible
relation to activity can interfere in the expression and variation of entheseal morphology
and affects its relationship with the aging process. However, recent and systematic studies
conducted on identified skeletal collections show that age-at-death is one of the most
relevant factors, or even the only one with statistical significance, in the expression of such
skeletal traits [63–70].

Developing a scoring procedure for these features proved to be one of the most chal-
lenging aspects of method development. The difficulties faced were mostly related to the
fact that analyzing joint and musculoskeletal degeneration involves many skeletal elements,
which translate into high dimensionality of the collected data. This high dimensionality
poses two major problems: increased chance of collinearity, which poses computational
issues, and loss of pragmatic value. To tackle the high dimensionality and subsequent
issues found when scoring joint and musculoskeletal degeneration, a new binary procedure
was developed. The system retains the analysis of the type of traits evaluated in Buikstra
and Ubelaker [71] and Henderson et al. [72] but simplifies the scoring to a simple absence
or presence of degenerative traits as a whole for any particular anatomical structure. The
generic binary scoring system both for joint and musculoskeletal degenerative changes
are presented in Tables S7 and S8. The scoring system applies to five major anatomical
complexes from the upper and lower limb: shoulder, elbow, hip, knee, and ankle (Table S6).
To enhance the analysis of these traits we provide specific scoring descriptions for Stage 1
of some traits (Table S9).

2.2.4. Clavicle Sternal and Acromial Ends Scoring

The macroscopic analysis of the clavicle has a long standing in skeletal age estimation.
Nonetheless, its focus has been mostly in the epiphyseal fusion of the sternal end [73–76].
Sternal epiphyseal fusion of the clavicle is a key trait to obtain precise age estimate in young
adult individuals due to the late total development of this structure around the 30 s. Falys
and Prangle [73] were the first to propose a method to score post-epiphyseal changes in
the clavicle for age estimation purposes. The authors suggest a scoring system focused on
surface topography, porosity, and marginal osteophyte formation, providing a regression
model for age estimation. A new scoring scheme that integrates both developmental and
degenerative changes in the sternal and acromial ends of the clavicle is proposed. A full
description of the traits analyzed is available in Table S10.
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2.2.5. First Rib Costal Face and Tubercle Scoring

The metamorphosis of the sternal end of the ribs emerged in the mid-1980s as a new
age estimation technique. İşcan, Loth and colleagues described multiple morphologic
features that characterize the metamorphosis of the sternal end of the ribs, with particular
emphasis on the fourth rib costal face [77–80]. This approach proved to be an effective
alternative to existing methods. Nonetheless, several disadvantages have been pointed
out, such as the difficulty in identifying the fourth rib in disarticulated skeletal remains
and the fact the morphology of the costal face is not the only component of the age-related
changes in rib morphology. To address these problems, Kunos et al. [81] described a
new age estimation method based on the metamorphosis of the costal face, head, and
tubercle of the first rib. The first rib has the key advantage of having a morphology
that is straightforward to individualize. DiGangi et al. [82] improved upon the work of
Kunos et al. [81] and proposed a revised method for age estimation based on the costal face
and tubercle morphology. A new scoring method is proposed in this study that build upon
previous work by Kunos et al. and DiGangi et al. [81,82]. This new system simplifies the
scoring of the costal face morphology to a three-stage coding and the morphology of the
tubercle is evaluated in a binary fashion (Table S11).

2.2.6. Pubic Symphysis Scoring

The metamorphosis of pubic symphysis is the most popular osteological marker
used in adult skeletal age estimation. The previous attention paid to this anatomical
structure is not misplaced; however, the over-reliance on this indicator can be explained
by the progressive metamorphic features that have enough expression variation to allow
an exhaustive morphological description using different scoring schemes and different
types of supporting materials such as casts. A simple component-based system was
developed focused on the metamorphic and degenerative changes in three features of this
structure: rim development, topography, and texture of the symphyseal face. These three
components are assessed with a three-stage coding system emphasizing early metamorphic
or development traits, such as the presence of billowing (a pattern of transverse ridges and
furrows) and late degenerative traits, such as the flattening and erosion of the symphyseal
face. A full description of the scoring system is given in Table S12. The proposed system is
based on previous work by Todd [30,31] and Brooks and Suchey [26].

2.2.7. Sacral and Iliac Auricular Surfaces (Sacroiliac Joint) Scoring

The description of age-related changes in the sacro-iliac joint can be traced back to
Sashin [83] and Schunke [84], but its usage as an age indicator its mostly due to the work
of Lovejoy and colleagues [85] and Buckberry and Chamberlain [86] on the chronological
metamorphosis of the iliac auricular surface, and the age estimation method by Passalac-
qua [59] based on metamorphic and degenerative changes in the sacrum.

To incorporate age-related features of the sacro-iliac joint, a two-component-based
system was developed to assess textural and marginal changes in the sacral and iliac
auricular surface. The iliac and sacral auricular surfaces undergo textural changes that are
characterized by the transition from a smooth, finely grained surface to a granular, irregular
and porotic surface. The margins that delimit the surface tend to manifest osteophytic
activity as age progresses. Both the texture and margin features refer to the entire structure
but very often the degenerative changes, in particular the margin, are more pronounced in
specific areas such as the inferior and anterior apexes. Full features descriptions are given
in Tables S13 and S14.

2.2.8. Acetabulum Scoring

Several age-related changes can be documented in the acetabulum and used for age
estimation [87–94]. One key aspect of the acetabulum is the late onset of the age-related
changes and its durability and resistance to taphonomic factors. To incorporate this skeletal
element in our protocol, a three-stage scoring system for the changes occurring on the
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rim, posterior horn, and acetabular fossa was developed. In the spirit of Calce [90], who
simplified the method developed by Rissech et al. [91,92], the foundation of the scoring
system presented in Table S15 is based on a simplification and adaptation of the method
proposed by San-Millán et al. [87,95].

2.2.9. Scoring Reliability: Intra-Observer Error

To assess the reproducibility of this new proposed scoring system, 50 individuals
were randomly selected and rescored on all possible traits (m = 99) by the first author. For
bilateral traits, only the left side was used for further intra-observer reliability analysis
(first author) to avoid issues that arise from non-independent ratings. Kendall’s W [96] was
computed as a concordance coefficient to assess consistency between scoring sessions. This
metric ranges from 0 (no agreement) to 1 (perfect agreement).

2.3. Feature Analysis Via Sphering and Marginal Correlation Analysis

To assess the relationship of the analyzed traits with age-at-death, we inspected
marginal correlation coefficients using Spearman’s correlation coefficient (ρ) and Pearson’s
eta coefficient (η2). In addition to these two coefficients, we also computed marginal
correlations adjusted for inter-trait correlation following Zuber and Strimmer [97]. This
technique aims to cope with the myopy of univariate feature selection methods by com-
puting marginal correlations of decorrelated predictors with the target class. First, the
data centered and scaled, and then transformed by applying a linear basis that enforces
orthogonality among predictors while maintaining the maximum relationship with the
original standardized predictors. After this transformation, also known as the Mahalanobis
transform or sphering, the predictors covariance matrix is the identity matrix (no correla-
tion). The authors called the adjusted marginal correlations CAR scores and proved that
ranking based on these quantities provides a fast and optimal procedure for feature ranking
and selection. We suggest [97,98] as primers on feature selection and data sphering based
on this approach.

2.4. Randomized Neural Networks: Theory and Implementation

From a computational perspective, age-at-death estimation can be viewed as a function
approximation problem, y = f ∗(x), and constitutes one of the core reasons why artificial
neural networks were chosen as the predictive technique in this work. In age-at-death
estimation, y = f ∗(x) maps the input skeletal traits (x) to an age-at-death (y). ANNs are
function approximation machines that define the mapping y = f (x; θ), where θ are the
parameters or network weights that result in the best approximation [99].

Artificial neural networks are a class of connectionist, biologically inspired computa-
tional models that enable learning from data for a multitude of tasks, such as classification,
regression, representation learning, and data compression and generation. ANNs are, in a
broad sense the result of two components: architectural design—that is how many layers
and neurons comprise the network; and an optimization algorithm—how the parameters
of the network are learnt.

In its basic implementation, an ANN is composed of three layers: an input layer,
a hidden layer, and an output layer. Two sets of weights are embedded in the network
structure: one connecting the inputs to the hidden layer and the other connecting the
hidden layer to the output layer. In a neural network, the input is transferred to the hidden
layer by means of a non-linear activation function. An activation function and the set of
weights define a node of the hidden layer. Such nodes are also known as artificial neurons.
An artificial neuron, the key component of an ANN, is a mathematical operator in the
form of:

h(x) = g(
p

∑
i=1

xiωi + b) (1)

where g() is an activation or transfer function, xi and ωi are the i-th components of the
input, and the weight vector b is the neuron bias. Artificial neurons are, in essence, non-
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linear functions with learnable parameters, which ultimately expand the ANN model
representational capacity to be able to approximate any output function.

A key aspect of ANN is their flexibility and modularity, which due to their capability
can be applied to a vast array of heterogeneous data types and domains. The explosion in
the availability and capacity to store and analyze data in the form of images, video, audio,
and unstructured text has led to the development of novel ANN training algorithms and
architectures, and a transition from shallow (single hidden layer) to deep (multi-layer)
networks. It is important to note that not all ANNs are formulated and trained in the
same manner. There are specialized architectures to tackle; for instance, data in the form
of images that make use of computational operations, such as convolutions and pooling.
However, a transversal aspect of modern ANNs is their use of gradient-based learning
algorithms, where the parameters of a network are iteratively fine-tuned. Gradient-based
learning enables end-to-end training and state-of-the-art performance in many complex
tasks, but it is costly and requires considerable amounts of technical knowledge to leverage
an ANN to its full potential.

A counterintuitive, yet highly efficient, approach to the training of ANN models is to
randomly assign and fix a subset of parameters (i.e., hidden weights) of the network and
recast the optimization component to a simpler least squares estimation problem [100,101].
In the context of ANNs, randomization as an intrinsic mechanism of model learning can
be traced back to late 1980s and early 1990s, with the proposal of randomized radial
basis functions network (RBF) and the random vector functional link network (RVFL)
models [102–106]. However, the recent interest in randomized algorithms for training
feed-forward neural networks can be attributed to the re-emergence of this approach in the
guise of the controversial extreme learning machine (ELM) algorithm [107–110]. According
to [111], there is no need to rename this strategy for training neural networks, since all
key elements have been previously proposed [102–106], and some of the minor changes
introduced by the ELM algorithm, such as the omission of direct links between the input and
output layer—present in the RVFL network—can have a deleterious effect in performance.
Nonetheless, the ELM algorithm acted as a foundation for many innovations in the field
of randomized artificial neural networks (RANNs), such as the development of highly
efficient algorithms to compute and cross-validate the output layer analytically [112,113],
and its evolution from a framework restricted to shallow networks to a set of techniques
and algorithms capable of deep, multi-layered network architectures [114–118].

2.4.1. Efficient Training and Regularization in Randomized Neural Networks

In randomized neural networks, the elements of ωi, the hidden layer weights, are
randomly generated from a suitable probability distribution and are not optimized. Only
the output weights are learned from data by solving a least squares estimation (LSE)
problem expressed as:

β = H†Y (2)

where β are the output layer weights, H† is the Moore–Penrose pseudo-inverse of the
matrix H, which defines the hidden layer, and Y is a column vector storing the network
target output, in our case, age-at-death. H† can be computed using several methods; a
common approach is through orthogonal projection using Equation (3):

H† = (HT H)
−1

HT (3)

From Equations (2) and (3), it is trivial to show that the use of this algorithm yields
an age estimate as Ŷ = Hβ, and that the output layer is in fact an ordinary least squares
linear regression built on the non-linear feature mapping induced by the hidden layer of
the neural network.

It has been noted [119] that one can keep the algorithmic simplicity of the least squares
solution, while improving its performance and generalization capability by adding a
penalty to the output weights. Such a penalty, C, stabilizes the inversion of matrix H and
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shrinks the coefficients of the output layer towards zero; smaller coefficients lead to smaller
error rates on unseen data. Imposing such a constraint on the output weights is a process
known as shrinkage or regularization, which in the neural network literature is also named
weight decay. This type of regularization is also referred as L2-norm regularization or
Tikhonov regularization.

The solution of a regularized RANN is obtained by fitting a ridge regression model [120]
as the output layer. The ridge solution, βridge, is obtained by substituting Equation (3)
as follows:

H† = (HT H +
I
C
)
−1

HT (4)

I refers to the identity matrix with dimensions matching HT H. Regularization is of
paramount importance when training a randomized neural network for age estimation.
The solution of the network is obtained by minimizing the squared error as the objective
function. LSE-based neural networks lead to unbiased solutions but with high variance if
not properly regularized due to the randomness of the initialization [112]. Regularization
shrinks the size of the output coefficients towards zero, which is consistent with the theory
that smaller weights result in better generalization of neural networks [121,122].

Since the output layer in a RANN is solved as a least squares estimation problem,
fortunately, there exist highly efficient, analytical, and closed formulations to assess the
leave-one-out (LOO) error, as shown by Shao and Er [112] using Allen’s [123] Prediction
Sum of Squares (PRESS) statistic:

ELOO =
1
n

n

∑
i=1

(
yi − ŷi
1− hii

)
2

(5)

where hii is the i-th diagonal element of the hat or projection matrix, which is the matrix
that maps the hidden layer parameters to the predicted values of the network, in our case
age-at-death. Shao and Er [112] have demonstrated that computing the projection matrix
of the network and finding the optimal regularization parameter, C, under leave-one-out
cross-validation (LOO-CV), can be achieved with computational efficiency by performing a
singular value decomposition (SVD) of the hidden layer, which, given such an operation, is
written as H = UΣVT . Using SVD, the network estimate can be written as:

Ŷ = Hβ

Ŷ = H(HT H + I
C )
−1

HTY
Ŷ = U(ΣTΣ + I

C )
−1

ΣTUTY
(6)

where U
(

ΣTΣ + I
C

)−1
ΣTUT is the projection matrix and it can be noted that only

(
ΣTΣ + I

C

)−1
ΣT affects the projection matrix for different values of C. Σ is a diagonal

matrix whose element are expressed as φi =
σ2

ii
σ2

ii+
1
C

, where σii is the i-th singular value

from the decomposition of H. SVD makes the regularization of the neural network highly
efficient because the diagonal of the projection matrix, which is needed to calculate the
LOO error using Equation (6), can be obtained from the following Hadamard products
(matrix element-wise multiplication):

γ = U ◦ ΓT = U ◦ (Θ ◦UT) (7)
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where Θ =
(

ΣTΣ + I
C

)−1
ΣT . The diagonal elements of the projection matrix, hii, can be

obtained by performing a column-wise sum of the elements of γ. The LOO predictions of
the network can be obtained analytically as follows:

ŷi =
yi − f (xi)

1− hatii
(8)

In addition to this highly efficient computational strategy to train a randomized
neural network, data standardization and the addition of Gaussian noise to several of the
components of the network can also improve performance and accuracy.

2.4.2. From Shallow to Deep Randomized Neural Networks

The mathematical and network formulation presented above pertain to a randomized
weights single layer network architecture. Navega and Cunha [124] introduced this model
in skeletal age estimation in the formulation of the ELM network (no direct links in the
network) and applied it to several traits of the sacroiliac joint. However, several authors
proposed different techniques to extend the RANN to deeper architectures [114–118]. To
increase the deepness of the network, one can resort to fully randomized approaches or use
autoencoding strategies and stack multiple autoencoding RANNs to build a multi-layer
network. In this work, due to its simplicity, we follow the proposal of Shi et al. [118] to
train deep randomized network models (DRNNs). Following the authors, the first layer of
the network is defined as:

H(1) = g(XW(1)) (9)

where X is the input matrix, in our case skeletal traits. Every subsequent layer (j > 1) is
defined as:

H(j) = g(H(j−1)W(j)) (10)

where H(j−1) is the previous layer. One can also allow connections from the input to all
hidden layers and define the hidden layer as:

H(j) = g([H(j−1) X]W(j)) (11)

where W1 and W j are the weight matrices between the input-first hidden layer and the
inter-hidden layers, respectively. These matrices are randomly assigned and held fixed
during the training. The input to output layer is then defined as:

D =
[

H(1) H(2) . . . H(j−1) H(j) X
]

(12)

The design of the deep network is very similar to that of a shallow RANN, and it can
be easily seen that the input to output layer consists of non-linear features induced by the
hidden layers concatenated to the original input of the network. When the input is reused
directly in the output layer, the network is classified as a network with direct link or skip
layers. As mentioned above, this is the key difference between ELM and RFVL networks.

2.4.3. Deep Random Neural Networks as Implicit Ensemble Models

One key advantage of the randomized approach used in this study is that it can enable
implicit neural ensemble models [118]. Rather than applying Equation (2) once to solve the
output layer weights (solution), Equation (2) can be re-used along the depth of the network
for each H(j) computed from Equations (9) or (10), and obtain an intermediate age-at-death
estimate. The final age-at-death estimate can be then obtained by averaging all estimates
along the network depth. This feature stabilizes the predictions and offers a different
mechanism to train an ensemble model other than training each model independently.
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2.5. Regression Uncertainty Modeling and Prediction Intervals

The approach followed in this work relies heavily on regression. In
Sections 2.4.1 and 2.4.2, we presented the foundation for mathematical age-at-death pre-
diction using RANN models as a regression task. However, we focused only on how
point estimates can be obtained, that is, the conditional expectation of age-at-death given a
specific skeletal pattern of an individual. Mapping the uncertainty of the point estimate
is essential in forensic anthropology, which means that a predictive interval for a preset
confidence level should also be part of the analysis and the subsequent report.

In the current work, we follow a simple and generic approach based on modeling
the conditional variance associated with each point estimate (network prediction). We
recast the prediction interval construction as a regression problem and, using LOO net-
work predictions, we build a regression uncertainty model (RUM) by regressing absolute
residuals on predicted age-at-death. We then scale the predicted residual by 1.2533 to
obtain a standard deviation associated with each age estimate. The scaling factor is the
ratio of the standard deviation to the absolute deviation [125,126]. Assuming normality of
the variance around each point estimate, the prediction interval associated with an ANN
model is given by the quantiles of a Gaussian or truncated Gaussian parameterized with
the conditional mean and standard deviation inferred from the ANN and its associated
RUM. The key advantage of this approach is its simplicity compared to likelihood meth-
ods [15–17,20,23,127–129] or conformal prediction theory, as in [113,124,130]. In addition
to the numerical interval, this approach also allows visualization, as illustrated by Figure 2.
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Figure 2. Prediction interval visualization using a (truncated) Gaussian uncertainty model.

2.6. Computational Analysis: Design, Parameterization, Metrics, and Software
2.6.1. Experimental Design

To assess the performance of DRNN and Gaussian RUM models in multifactorial
age estimation from macroscopic skeletal traits we followed a simple template for robust
metric assessment based on a resampling Monte Carlo cross-validation (MCCV) scheme.
This works as follows: for a given iteration of the scheme, split the dataset into disjoint
train and test partitions. Using the training partition, fit a DRNN and RUM models by
making use of Equations (5)–(7) to optimize the regularization parameter C and obtain
leave-one-out predictions. C is optimized as 2x with x ∈ {−6,−4, . . . , 12} . With the trained
DRNN and RUM models, we predict the age-at-death of the testing sample/partition and
compute the MCCV performance metrics. For a given set of skeletal traits, this procedure
is repeated 1000 times (B = 1000). The training partition is set as 80% of the total data
(400 of 500) and the test partition as the remaining (100 of 500). This sampling procedure

14



Biology 2022, 11, 532

was performed without replacement. The core of our computational analysis is organized
in two experiments, from now on referred to as experiments A and B:

(A) The first experiment we conducted was designed to provide a baseline of the accuracy
obtained by fitting DRNN models to blocks of traits that have standard or traditional
analytical framing. For instance, we fitted models to different anatomical complexes
or sets of traits that mimic existing aging standards, i.e., a model for the sutures or the
pubis symphysis.

(B) Our second computational experiment consisted of simulated different proportions
of available traits from 90% to 10%. The objective of this experiment was to assess
model performance in a more realistic scenario where the forensic anthropologist has
skeletal traits available on a case-by-case basis.

In both experiments we computed 95% predictive intervals (95% PI) by setting the
uncertainty of parameter σ = 0.05.

2.6.2. Network Parameterization

A key aspect of any ANN model is its architecture, that is, how many neurons (or
nodes) and layers comprise the network. To leverage the full potential of the DRNN,
and to maximize its training speed and efficiency, rather than search for the optimal
architecture, we developed a simple heuristic based on the work of Lappas [131]. The
author demonstrated that the size of a single layer perceptron can be estimated from the
number of samples available. Using his work as a foundation, we propose the following
heuristics for setting the architecture of a DRNN. The width, size, or number of neurons of
each layer was set as:

S = 2blog2 (8(
√

2k/k))c, k = log2(n) (13)

where n is the number of samples. The depth or number of layers was set as:

L = 2blog2(k)c, k = log2(n) (14)

Following Equations (13) and (14) as a simple heuristic allows us to have predictable,
parsimonious network architectures. In this way, the network allows many computing
units for randomized feature extraction distributed over several layers without incurring
overparameterization. This heuristic also leverages the simplicity of training a deep neural
network using the same mechanisms of a shallow one, while exploiting an implicit ensemble
framework (Section 2.4.3). For our experiments, applying the described heuristic defines
the network architecture with a rectangular topology comprising eight layers of 32 neurons
each, for a total of 256 randomized units.

DRNNs are computationally cheap nonlinear models built by combining regularized
linear regression with nonlinear features obtained by using an activation function, g(.), with
random weights. In this work, we used the rectified linear unit (ReLU) as the nonlinearity
of the networks. The ReLU is defined as g(z, w) = max(0, zw), where z and w are the
layer input and random weight matrices. Since the regularization process involved in
the training process described in this work is not scale invariant, during network training
normalization by mean centering and variance scaling, Equation (6) was performed on the
matrices X, XW, H, and Y. The output of the network was later rescaled before computation
of the performance metrics.

ANN architecture selection and design is a non-trivial task often performed through
very expensive and complex computational strategies and procedures. The heuristic used
and architecture selected in this work emerged from trial-and-error experimentation during
the development of the rwnnet software package (see Section 2.6.4). This parameterization
leverages the benefits and key features of randomized neural networks—fast training and
prediction with minimum technical knowledge, given that the model is fully described
through linear algebra and matrix operations.
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2.6.3. Performance Metrics

In our analysis, we evaluate four parameters that any model used in regression task
should have, especially one used for age estimation. An age-at-death prediction model—
regardless of its underlying mathematical algorithm—should be accurate, unbiased, valid,
and efficient. Accuracy refers to the ability of the model of the model to predict age with
minimal error. The most straightforward metric to assess this parameter is the mean
absolute error (MAE) computed as:

MAE =

n
∑

i=1
|yi − ŷi|

n
(15)

where yi and ŷi are the known and predicted values, respectively, and n is the number of
evaluated samples.

A model should be unbiased, that is, free of systematic error. A typical pattern of bias
or systematic error in age estimation models is the over-estimation of young individuals
and under-estimation of the elderly. A robust and comprehensive way to assess bias (β̂e)
is by computing the slope of the regression line of the residuals, ei = yi − ŷy, on known
values. When minimal to no bias is presented, this value should be close to zero. A positive
slope suggests a systematic bias, such as the one describe previously. Bias is computed as:

β̂e =
∑ (yi − y)(ei − e)

∑ (yi − y)2 (16)

where y and e are the means of the known and residual values.
The validity of model, in the context of our study, refers to the ability of a model to

contain the known age within the predictive interval and within a reasonable margin close
to the nominal uncertainty level allowed. For instance, for an uncertainty level (alpha) of
0.05 (or 5%) we expect that the coverage of the correct proportion of individuals within the
predictive interval is close to 0.95 (or 95%). As a validity measure, we compute:

P(α) = ∑n
i=1 δ(yi, li, ui)

n
(17)

where δ(yi, li, ui) is an indicator function with δ(yi, li, ui) = 1, if yi ≥ li ∧ yi ≤ ui and
δ(yi, li, ui) = 0, and li and ui are the values of the lower and upper ends of the predictive
interval, respectively.

Finally, a model should thrive to be efficient. Efficiency in this context refers to the
width or range of the prediction intervals associated with the regression uncertainty model.
A method or model is efficient when it outputs the narrowest predictive interval possible
while also maintaining its validity. We compute our measure of efficiency as follows:

PIW = Q(u− l, τ), with τ ∈ {0.5; 0.025; 0.975} (18)

where Q(.) is a quantile function and τ a given quantile. One can see that we compute
the median of the predictive interval width and its associated 95% confidence interval
(quantile-base).

2.6.4. Software

All computational work was performed using the R and C++ programming languages
with all key software components written by the first author. To perform this work, the
rwnnet, rumr, rmar, and lsmr packages were used. These packages are available from
the respective repositories of the GitHub profile of the first author, https://github.com/
dsnavega (accessed on 18 March 2022).

Novel software, DRNNAGE, that operationalizes age-at-death estimation following
the macroscopic and computational techniques described in this work, was also devel-
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oped and is live as a web application at https://osteomics.com/DRNNAGE (accessed
on 18 March 2022).); its source is available at https://github.com/dsnavega/DRNNAGE
(accessed on 18 March 2022).). In its current state, we strongly recommend that end users ap-
proach their analysis using only default parameters. All problems detected and suggestions
should be directed to the corresponding author.

3. Results
3.1. Intra-Observer Scoring Error

Overall, the new proposed macroscopic scoring technique presented high intra-
observer consistency based on the results on Kendall’s W concordance coefficient [96].
With the exception of RD01 and FM01, 0.751 and 0.716, respectively, all skeletal traits
presented a concordance coefficient higher than 0.800. The global average of this coefficient
was 0.907. All traits presented a statistically significant concordance between scoring ob-
tained by the first author in two different sessions. The high concordance observed can
be explained by the simplicity of the scoring systems used with the large number of traits
that were binary coded. Further inter- and intra-observer error analysis is required by an
independent third party, due to the nature of the methods employed.

3.2. Marginal Correlation Analysis

Marginal correlation analysis showed that all traits have a statistically significant
relationship with age-at-death. The cranial sutures showed the lowest marginal correla-
tion (ρ: 0.297–0.519, η2: 0.088–0.249), with palatine sutures explaining less than 10% of
the variation in observed age-at-death. The axial traits—cervical and lumbar vertebrae—
exhibited a moderate to strong monotonic relationship and explained variation with age-
at-death (ρ: 0.794–0.845, η2: 0.639–0.725). A similar correlation and explained varia-
tion pattern were observed for the clavicle traits (ρ: 0.710–0.851, η2: 0.507–0.729), first
rib traits (ρ: 0.763–0.776, η2: 0.590–0.607), iliac auricular surface traits (ρ: 0.731–0.789,
η2: 0.539–0.631), and the acetabular traits (ρ: 0.782–0.818, η2: 0.625–0.674). A slightly
lower marginal correlation was observed for the pubic symphysis traits (ρ: 0.711–0.731,
η2: 0.523–0.549) and sacral auricular surface traits (ρ: 0.632–0.704, η2: 0.398–0.499). Traits
from the upper and lower limbs presented a wider range of correlation (ρ: 0.380–0.789,
η2: 0.145–0.628). When analyzed in the context of feature ranking based on marginal corre-
lations adjusted for inter-trait correlation (CAR scores), the suture traits score was among
the worst predictors and its decorrelated components showed no statistically significant
relationship with age-at-death. The several appendicular degenerative traits—HM04, UL01,
RD01, FM01, FM02, and TB01—also showed no statistically significant correlation when
assessed on a Mahalanobis transformed space. Ranking based on CAR scores showed that
the top-ranking traits came from all anatomical regions rather than a specific indicator.

3.3. Computational Model Assessment

Results from the two in silico experiments performed to assess DRNN models in
age-at-death estimation are reported in Tables 2–5. Models based solely on the cranial
sutures exhibited the worst performance among all models produced, having a median
MAE of 15.300 (Table 2) and a median predictive interval width (PIW) of 68.144 years,
which renders the cranial sutures an inaccurate and inefficient set of traits.
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Table 2. Monte Carlo cross-validation metrics for DRNN models built on pre-specified skeletal
traits sets.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

Sutures Median 15.300 0.656 0.950 68.144 51.699 69.759
(m = 9)

95% CI
13.586 0.590 0.900 66.054 46.361 68.312
17.206 0.732 0.990 69.741 55.776 70.963

Axial Median 8.185 0.198 0.960 38.754 33.732 40.842
(m = 16)

95% CI
7.365 0.137 0.920 37.102 32.272 39.215
9.139 0.260 0.990 40.091 35.029 42.191

Appendicular Median 7.583 0.167 0.960 37.378 29.109 39.541
(m = 23)

95% CI
6.678 0.103 0.910 35.412 27.613 38.014
8.523 0.231 0.990 39.079 30.399 41.061

Clavicle Median 8.949 0.244 0.960 49.234 17.354 51.610
(m = 2)

95% CI
7.798 0.169 0.920 39.064 15.981 49.962
10.192 0.307 0.990 52.688 18.617 53.098

First Rib Median 9.500 0.277 0.950 48.936 24.334 49.637
(m = 2)

95% CI
8.138 0.204 0.900 46.879 22.499 47.687
10.831 0.351 0.990 50.903 26.078 51.533

Pubic symphysis Median 10.897 0.370 0.940 51.210 26.905 56.954
(m = 3)

95% CI
9.371 0.280 0.870 48.688 24.520 54.799
12.542 0.459 0.980 55.558 29.058 58.802

Sacroiliac complex Median 8.523 0.223 0.950 44.668 20.378 47.969
(m = 6)

95% CI
7.380 0.145 0.890 39.350 18.596 46.017
9.742 0.288 0.990 47.547 21.915 49.720

Acetabulum Median 8.886 0.229 0.970 42.978 31.727 45.742
(m = 3)

95% CI
7.758 0.162 0.920 41.201 29.897 43.891
10.006 0.287 1.000 44.509 33.240 47.304

Degenerative traits Median 6.962 0.147 0.970 33.732 28.882 35.122
(m = 39)

95% CI
6.084 0.085 0.920 32.460 27.570 33.488
7.814 0.200 1.000 34.935 30.019 36.656

Standard traits Median 6.609 0.147 0.950 34.245 12.927 41.087
(m = 16)

95% CI
5.561 0.087 0.890 29.701 11.833 39.097
7.598 0.202 0.990 37.857 14.169 42.833

All Median 5.925 0.117 0.950 30.010 15.631 36.081
(m = 64)

95% CI
5.101 0.060 0.900 26.817 14.464 34.612
6.728 0.170 0.990 33.191 16.811 37.515

Table 3. Leave-one-out cross-validation metrics for DRNN models built on pre-specified skeletal
traits sets.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

Sutures Median 15.245 0.655 0.953 68.120 51.782 69.796
(m = 9)

95% CI
14.683 0.616 0.940 66.377 46.429 68.371
15.751 0.692 0.963 69.708 55.878 70.996

Axial Median 8.156 0.200 0.960 38.825 33.594 40.881
(m = 16)

95% CI
7.896 0.184 0.953 37.468 32.131 39.279
8.394 0.213 0.968 39.872 34.902 42.234

Appendicular Median 7.557 0.169 0.960 37.534 29.035 39.599
(m = 23)

95% CI
7.278 0.155 0.948 35.996 27.542 38.082
7.823 0.184 0.970 38.920 30.319 41.109

Clavicle Median 8.943 0.245 0.963 49.216 17.336 51.768
(m = 2)

95% CI
8.606 0.228 0.953 47.184 15.969 50.112
9.248 0.263 0.970 51.238 18.597 53.252
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Table 3. Cont.

Accuracy Bias Validity Efficiency

Traits MAE ^
βe

P(α) PIW PIW 95% CI

First Rib Median 9.409 0.275 0.950 48.897 24.356 49.811
(m = 2)

95% CI
9.067 0.255 0.938 47.036 22.502 47.862
9.751 0.296 0.960 50.829 26.102 51.724

Pubic symphysis Median 10.898 0.370 0.932 51.113 27.029 57.040
(m = 3)

95% CI
10.436 0.343 0.922 48.668 24.616 54.949
11.315 0.398 0.945 53.003 29.217 58.909

Sacroiliac complex Median 8.438 0.220 0.950 44.765 20.350 48.037
(m = 6)

95% CI
8.075 0.200 0.940 42.461 18.607 46.091
8.741 0.239 0.960 46.755 21.893 49.800

Acetabulum Median 8.833 0.229 0.965 43.051 31.541 45.832
(m = 3)

95% CI
8.490 0.210 0.955 41.302 29.726 43.995
9.116 0.247 0.975 44.535 33.054 47.395

Degenerative traits Median 6.929 0.147 0.963 33.744 28.816 35.194
(m = 39)

95% CI
6.694 0.133 0.953 32.530 27.499 33.566
7.154 0.157 0.973 34.829 29.946 36.715

Standard traits Median 6.561 0.145 0.948 34.283 12.952 41.170
(m = 16)

95% CI
6.277 0.132 0.935 32.464 11.853 39.222
6.855 0.157 0.960 36.027 14.122 42.921

All Median 5.899 0.118 0.950 30.057 15.558 36.141
(m = 64)

95% CI
5.677 0.110 0.940 28.758 14.403 34.644
6.121 0.127 0.963 31.485 16.668 37.620

Table 4. Monte Carlo cross-validation metrics for DRNN models built on different fractions of
available skeletal traits.

Accuracy Bias Validity Efficiency

Available Traits % MAE ^
βe

P(α) PIW PIW 95% CI

90% Median 5.964 0.120 0.950 30.354 15.851 36.215
(m ≈ 57)

95% CI
5.136 0.062 0.900 27.067 14.466 34.554
6.773 0.169 0.990 33.422 18.081 37.705

80% Median 6.026 0.121 0.950 30.498 16.004 36.261
(m ≈ 51)

95% CI
5.211 0.061 0.900 27.183 14.213 34.498
6.851 0.172 0.990 33.584 18.492 37.902

70% Median 6.072 0.125 0.950 30.805 16.206 36.454
(m ≈ 44)

95% CI
5.152 0.062 0.900 27.528 14.001 34.600
6.924 0.180 0.990 34.004 19.666 38.405

60% Median 6.131 0.125 0.950 30.964 16.352 36.649
(m ≈ 38)

95% CI
5.316 0.065 0.900 27.513 13.893 34.672
7.049 0.179 0.990 34.320 20.532 38.692

50% Median 6.237 0.129 0.950 31.479 16.717 36.969
(m ≈ 32)

95% CI
5.293 0.064 0.900 27.820 13.757 34.930
7.180 0.179 0.990 34.854 22.119 39.250

40% Median 6.360 0.134 0.950 32.125 17.165 37.429
(m ≈ 25)

95% CI
5.441 0.074 0.900 28.500 13.910 35.075
7.380 0.193 0.990 35.636 23.292 40.166

30% Median 6.570 0.140 0.950 33.163 17.933 38.137
(m ≈ 19)

95% CI
5.565 0.075 0.900 29.036 13.905 35.393
7.651 0.201 0.990 36.916 25.407 40.861

20% Median 6.951 0.153 0.950 35.263 19.946 39.694
(m ≈ 12)

95% CI
5.857 0.086 0.900 31.082 14.074 36.427
8.139 0.218 0.990 39.625 28.892 43.619

10% Median 8.026 0.196 0.950 39.618 26.914 43.025
(m ≈ 6)

95% CI
6.592 0.119 0.900 34.681 15.495 38.368
9.683 0.276 0.990 46.043 34.276 49.479
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Table 5. Leave-one-out cross-validation metrics for DRNN models built on different fractions of
available skeletal traits.

Accuracy Bias Validity Efficiency

Available Traits % MAE ^
βe

P(α) PIW PIW 95% CI

90% Median 5.942 0.121 0.953 30.276 15.745 36.278
(m ≈ 57)

95% CI
5.699 0.110 0.940 28.748 14.339 34.599
6.198 0.131 0.965 31.797 18.048 37.772

80% Median 5.970 0.122 0.953 30.476 15.941 36.332
(m ≈ 51)

95% CI
5.702 0.108 0.940 28.860 14.162 34.574
6.235 0.132 0.965 31.963 18.470 37.938

70% Median 6.028 0.124 0.953 30.711 16.182 36.518
(m ≈ 44)

95% CI
5.737 0.108 0.938 28.960 14.013 34.697
6.376 0.137 0.965 32.583 19.643 38.435

60% Median 6.078 0.125 0.953 30.975 16.342 36.716
(m ≈ 38)

95% CI
5.768 0.108 0.938 29.070 13.872 34.756
6.441 0.140 0.965 33.017 20.569 38.732

50% Median 6.173 0.128 0.953 31.502 16.684 37.040
(m ≈ 32)

95% CI
5.819 0.111 0.938 29.410 13.724 34.989
6.648 0.146 0.968 33.900 22.110 39.305

40% Median 6.305 0.132 0.953 32.146 17.153 37.511
(m ≈ 25)

95% CI
5.903 0.114 0.935 29.839 13.905 35.130
6.797 0.153 0.968 34.565 23.287 40.214

30% Median 6.501 0.138 0.953 33.097 17.923 38.203
(m ≈ 19)

95% CI
6.046 0.118 0.935 30.583 13.899 35.468
7.096 0.163 0.965 35.986 25.377 40.943

20% Median 6.957 0.154 0.953 35.321 19.986 39.742
(m ≈ 12)

95% CI
6.316 0.127 0.935 32.096 14.117 36.479
7.674 0.184 0.968 38.931 28.768 43.707

10% Median 7.952 0.192 0.955 39.733 26.846 43.076
(m ≈ 6)

95% CI
6.968 0.154 0.940 35.229 15.515 38.419
9.214 0.256 0.973 46.437 34.087 49.551

Modeling based on specific anatomical regions resulted in a DRNN with a median
MAE ranging from 7.583 to 10.897 years (Table 2); focusing solely on this metric, it is
reasonable to state that, on its own, different anatomical regions perform similarly in age
estimation. The same can be said for the metrics of bias, validity, and efficiency. Predictive
interval width is perhaps the most distinctive metric for practical applications. Anatomical
regions with strong developmental signs, such as the clavicle or the pubis, tend to provide
narrower predictive intervals for younger individuals.

Combining traits from different regions provided an improvement over models built
on specific anatomic regions. Using 16 traits from standard age-related traits—clavicle,
first rib, pubic symphysis, sacroiliac complex (auricular surfaces, S1 body surface, and
S1-S2 fusion), resulted in a MAE of 6.609 (5.561–7.598, 95% CI) and reduced the prediction
bias considerably when compared to any model built on the same anatomical regions
independently (Table 2), and a PIW of 34.245 (12.927–41.087, PIW 95% CI). A model based
only on degenerative traits (m = 39) resulted in a MAE of 6.962 (6.084–7.814, 95% CI) and
median PIW of 33.732 (28.882–33.122, PIW 95% CI). From our results, multifactorial age
estimation models provide improved efficiency, as reflected in narrower predictive intervals
(Figures 3–5).
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95% CI 
13.586 0.590 0.900 66.054 46.361 68.312 
17.206 0.732 0.990 69.741 55.776 70.963 

Axial Median 8.185 0.198 0.960 38.754 33.732 40.842 
(m = 16) 

95% CI 
7.365 0.137 0.920 37.102 32.272 39.215 
9.139 0.260 0.990 40.091 35.029 42.191 

Appendicular Median 7.583 0.167 0.960 37.378 29.109 39.541 
(m = 23) 95% CI 6.678 0.103 0.910 35.412 27.613 38.014 

8.523 0.231 0.990 39.079 30.399 41.061 
Clavicle Median 8.949 0.244 0.960 49.234 17.354 51.610 
(m = 2) 

95% CI 
7.798 0.169 0.920 39.064 15.981 49.962 

10.192 0.307 0.990 52.688 18.617 53.098 
First Rib Median 9.500 0.277 0.950 48.936 24.334 49.637 
(m = 2) 

95% CI 
8.138 0.204 0.900 46.879 22.499 47.687 

10.831 0.351 0.990 50.903 26.078 51.533 
Pubic symphysis Median 10.897 0.370 0.940 51.210 26.905 56.954 

(m = 3) 
95% CI 

9.371 0.280 0.870 48.688 24.520 54.799 
12.542 0.459 0.980 55.558 29.058 58.802 

Sacroiliac complex Median 8.523 0.223 0.950 44.668 20.378 47.969 
(m = 6) 

95% CI 
7.380 0.145 0.890 39.350 18.596 46.017 
9.742 0.288 0.990 47.547 21.915 49.720 

Acetabulum Median 8.886 0.229 0.970 42.978 31.727 45.742 
(m = 3) 

95% CI 
7.758 0.162 0.920 41.201 29.897 43.891 

10.006 0.287 1.000 44.509 33.240 47.304 
Degenerative traits Median 6.962 0.147 0.970 33.732 28.882 35.122 

(m = 39) 
95% CI 

6.084 0.085 0.920 32.460 27.570 33.488 
 7.814 0.200 1.000 34.935 30.019 36.656 

Standard traits Median 6.609 0.147 0.950 34.245 12.927 41.087 
(m = 16) 

95% CI 
5.561 0.087 0.890 29.701 11.833 39.097 

 7.598 0.202 0.990 37.857 14.169 42.833 
All Median 5.925 0.117 0.950 30.010 15.631 36.081 

(m = 64) 
95% CI 

5.101 0.060 0.900 26.817 14.464 34.612 
 6.728 0.170 0.990 33.191 16.811 37.515 

  

Figure 5. Predictive efficiency of full traits, DRNN-RUM model, α = 0.1.
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From Figures 3–5, we can also observe that multifactorial models provide accurate and
efficient estimates across the entire adult lifespan, solving the problem of open-ended and
unspecific age-at-death estimates for the elderly. Figure 4 illustrates the importance of non-
standard traits to accurately predict advanced age-at-death. Based solely on degenerative
traits of the vertebrae, limb joint, and musculoskeletal attachment sites, we can obtain
estimates for the elderly that are comparable to more classical traits (Figure 3) or full-set
models (Figure 5). The downside of relying solely on this type on indicator for age-at-death
estimation is the wider intervals for young adults with no degenerative traits (95% PI
~18 to 46 years vs. ~18 to 32 if traits with sharp developmental stages are present).

The best performing models in experiment A were those built on the full feature set
(m = 64), with a mean absolute error of 5.925 (5.110–6.728, 95% CI), and PIW of 30.010
(15.63–36.081, PIW 95% CI) years. The prediction bias for this model was 0.117 (0.060–0.170,
95% CI), which represents a two-to-six-fold reduction in the prediction bias compared
to other models built on specific anatomical regions individually (Table 2). Results from
experiment B (Tables 4 and 5) showed that similar results can be obtained using different
proportions of traits selected at random.

An important remark to make regarding our results based on the two computational
experiments is that analytical LOOCV, implicitly performed during model optimization,
showed little to no disparity with the results obtained during the repeats of the Monte
Carlo cross-validation procedure (B = 1000 repeats) where 20% of the data was used as a
proper test set.

The accuracy of our approach can be visualized in Figure 6, where a scatter plot of
known vs. predicted age-at-death is depicted. From this figure, one can infer that the
predictions obtained using our approach maintain a similar level of error—dispersion
around the identity line (dashed red line)—across the entire adult age span, and slightly
more accurate for individuals under 40 years. For individuals over 90 years old at death,
there is an observable under-estimation. It is also possible to visualize, Figure 7, that a deep
RANN model using multiple traits produces minimally biased estimates.
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Regarding the validity of the models trained in our computational experiments, results
show that the predictive intervals contained the known age-at-death without significant
deviation from the nominal level of uncertainty (median of P(α) ~ 0.95, with variation
between 0.87 and 0.99). Multifactorial models also show a systematical reduction in
prediction bias when compared to models based only on a specific anatomical structure.

4. Discussion

The main objective of this work was to investigate the fundamental issue of age-at-
death estimation in the forensic analysis of human remains, and propose a new method
and its computational analysis from a perspective of multifactorial analysis of the adult
skeleton. Several age estimation methods have been previously developed, focusing on
specific anatomical structures or regions such as the cranium, the ribs, or the pelvic joints.
Nonetheless, it is well known that no single skeletal indicator is capable of producing
accurate and efficient age estimates across the entire human age span. Determining how
to report age estimates using multiple indicators or traits remains an open issue, with
experts resorting to different heuristics that often are not standardized and lack a valid
computational or statistical grounding [5]. In the literature, there are techniques that use
multiple skeletal indicators for age estimation but are often limited to the cranial sutures
and the pelvic joints [20,23,132]. More generic procedures for multifactorial analysis have
also been proposed [133,134], but with poor adoption in forensic casework because they
require seriation or advanced mathematical knowledge to be put into action.

The current study provides strong support for multifactorial or multi-trait analysis
of the skeleton as a way of obtaining accurate and efficient age estimates across the entire
span of adulthood. Results from computational experiment A suggest that using each
skeletal indicator or anatomical region separately provides limited improvement over
existing methods. One striking remark from this experiment was the performance of
the models solely based on the axial (vertebrae) and appendicular (limbs) skeleton. In
previous studies, these traits have been considered to be only useful for providing a
general estimate or limited in value for age prediction [135,136]; nonetheless, our results
are consistent with those of more recent publications that assess their predictive utility
and urge reconsideration of these traits as valid age-related traits [64,66]. For instance, if
these traits all present a Stage 0, one can infer without any computation that the age-at-
death of the deceased is between approximately 18 and 46 years (Figure 4, considering
σ = 0.1). Our results also indicate that the inclusion of these traits is pivotal to solve the
problem of open-ended age intervals and poor age estimation for the elderly. On their
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own, degenerative axial and appendicular traits allow estimation of the age-at-death of the
elderly with an improved accuracy and efficiency compared to more standard traits such
as the pelvic joints (i.e., pubic symphysis, acetabulum, iliac auricular surface). The neural
model based on the full set of traits described in the novel macroscopic age estimation
proposed here provided the best performance results in respect to all metrics analyzed.
This can be attributed to the fact that having more features allows the deep neural models
to operate at their maximum potential regarding what they do best—extracting novel
features from existing ones using, in our case, random weights and a non-linearity (ReLU
function) as a mechanism to combine multiple traits, which ultimately allows the output
layer to operate in a non-linear regime, despite it being, in practice, a regularized linear
model. Moreover, the multitude of traits scored also permits the models to encapsulate the
intra- and inter-variability of skeletal morphology with greater finesse, which is manifested
as more efficient (narrower) predictive intervals that reflect the heteroskedastic nature
associated with the senescence process.

Although the main goal of the computational experiment A was to establish a baseline
of performance of multifactorial age-at-death estimation compared to more traditional
modeling approaches based on specific anatomical blocks or regions, experiment B aimed
to assess the performance of neural models for age-at-death estimation in a more realistic
setting, where the expert may not be able to use the pre-specified models or the full set of
traits due to the availability of skeletal elements or the multitude of factors that make it
impossible to score all traits defined in this macroscopic technique. This computational
experiment also provides, both directly and indirectly, answers to several questions that
may arise regarding the approach and technique used, and proposed in this work from a
more pragmatical and casework view: Does the skeleton need to be complete to reap the
maximum benefits of this protocol? Which combination of traits works best or is necessary?
How practical is the method?

The results demonstrated that the accuracy of the full-set model (m = 64) can be
maintained to large degree using smaller random combinations of traits, which ultimately
are dictated on a case-by-case basis in a forensic setting. Once again, this can be explained
by the capacity of the neural models to extract and combine information from the skeletal
traits in an optimal way in terms of prediction. It is important to note here that models
based on randomized proportions of traits presented performance metrics superior to
most models based on specific anatomical regions, which reinforces our thesis that the
multifactorial or multi-trait models are crucial for improving the state-of-art in forensic
skeletal age estimation.

Finding an optimal or minimum number of traits is, from a combinatorial and practical
point of view, an intractable problem, for which a solution can only be approximated with
such a large number of traits (m = 64). However, such a solution would be computational
wasteful and of little pragmatic value because, as in the situation of the full trait set, the
optimal or minimum trait set can result in a non-applicable model due to the availability of
skeletal elements during casework. This is the main reason why, in our study, we opted for
a randomized evaluation of smaller traits set. Ultimately, we developed the DRNNAGE
software to operationalize the age estimation procedure described in this manuscript, in a
manner that is flexible and practical for the expert applying it, bearing in mind that each
case will be limited by its own available skeletal traits. DRNNAGE allows the expert to
compute the optimal network and associated uncertainty model based only on the traits that
the forensic expert can score. Thus, in that regard, the usefulness of the estimates obtained
is limited by biology and taphonomy itself, rather than the technical implementation.

From a practitioner perspective, marginal correlation analysis and the performance of
the developed models clearly suggest that there is room for improvement in our approach
regarding the issue of the traits to be used. For instance, our results suggest that there is
little to be gained from including the cranial sutures, which, from a predictive modeling
standpoint, resulted in the worst model on its own using our scoring protocol. Similar con-
clusions were reached by Jooste et al. [137], who also investigated the cranial sutures in the
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context of a multifactorial approach. To maximize the potential of the framework proposed
in this work, it is important to bear in mind that domain and expert knowledge is of utmost
importance; this can also be said of any other machine learning or computationally heavy
approach. The practical aspect of this method can be improved if applied with the rationale
of the well-known Two-Step Procedure proposed by Baccino et al. [138]. This procedure
and heuristic for age-at-death estimation suggests age indicators should be combined
logically or hierarchically rather than by brute force (i.e., averaging). In the context of
our proposal, this translates into the following: if several traits with sharp metamorphic
or developmental stages exhibit Stage 0—i.e., clavicle sternal end, S1-S2 fusion, pubic
symphysis components—a neural model is trained using those traits and the other traits are
ignored. The same rationale can be applied if the traits that encode a strong degenerative
signal, such as the vertebrae and limb traits, are scored with their maximum stage (Stages 1
or 2). In this case, we have demonstrated that age estimation can be accurate and efficient
when relying solely on these traits. As a final remark and suggestion to improve age
estimation with our method, but also with any other method that employs a multifactorial
or multi-trait approach, rather than focusing on an optimal or minimal number of traits to
use, one should focus on the representational power of the traits analyzed and, whenever
possible, use traits that represent both metamorphic and degenerative aspects of the skeletal
development and senescence, as argued by Winburn [88].

The present work provides a solution to the problem of multifactorial age estimation
based on the macroscopic analysis of the skeleton. Multifactorial skeletal age estimation
is systematically noted as being the most accurate way to achieve an age estimation in
adults, but is obtained through a plethora of procedures and heuristics that are often
subjective and lack a clearly well-defined statistical or computational rationale [3,5]. As
noted by Ritz-Timme et al. [3], a comparison of different methods with regard to their
performance based on published data is an exercise that can only be undertaken with
severe limitations and caution. The existing methods have been developed on samples of
differing sizes, unbalanced age distributions, and different population backgrounds. There
is no standardized array of statistical parameters used to assess an age estimation method,
and different statistical procedures have been applied. In many cases, there is a lack of
detail regarding the procedures used, and often only an incomplete analysis performance
is pursued (i.e., focusing only on MAE and point estimate accuracy). In the context of
our research subject, these limitations are exacerbated by the fact that, to the best of our
knowledge, no other study in the literature has pursued a systematic analysis of adult
skeletal age estimation using such a vast and diverse array of morphoscopic traits based on a
single reference dataset. Nonetheless, a brief analysis of the most recent and comprehensive
validation studies clearly demonstrates that our multifactorial approach offers improved
accuracy (MAE < 8 years) in relation to other skeletal age estimation methods [137,139–141].
Independent validation of the method and software tools proposed here on samples from
different temporal and biogeographic origins are of utmost importance to ascertain the
broader impact and significance in archaeology, forensic anthropology, and medicine.

Artificial intelligence, statistical, and machine learning approaches are now ubiquitous
in forensic and biological sciences. Several cases in the literature illustrate the usefulness of
such approaches in adult macroscopic age-at-death estimation [13–15,22,24,124]. Although
these approaches usually allow for flexible and non-parametric modeling with improved
predictive performance, it also results in more opaque or black-box models from a non-
expert perspective. These approaches also require proper validation and model selection
techniques to avoid overfitting [142]. In this study, we applied a resampling approach to
cross-validation based on Monte Carlo cross-validation for fair model assessment, and
we also used a robust, analytical, computationally efficient leave-one-out cross-validation
strategy to set the regularization parameter of the networks developed in experiments A
and B. Randomization rather than optimization of the hidden layers, combined with an
efficient C++ implementation of our models, allowed the construction of software that
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enables on-the-fly computation and validation (LOOCV) of deep architecture models for
any combination of traits with minimal to no technical knowledge on the part of the user.

The problem of interpretability and explainability is a current issue in computational
systems using machine learning techniques and constitutes an active topic of research in
artificial intelligence [143]. A detailed methodological and implementation analysis will
be the focus of a future work, but we briefly describe here how we handle the issue of
explainability and interpretability in age-at-death using the neural networks with our soft-
ware. As previously stated, we can look at the neural network fitted using the techniques
described in this manuscript as a regularized linear model operating on the non-linear
features extracted by the hidden layers concatenated with the original input (skip layer).
We can exploit this property and use the intuitive and additive nature intrinsic to linear
models and build a linear surrogate model to explain or interpret any neural network and
its predictions.

In DRNNAGE, we regress the cross-validated predictions of the DRNN model on the
original input of the network. We decorrelate the input data using the previously described
sphering technique and standardize it to zero mean and unit variance. This results in a
surrogate model where the intercept or baseline is the average of network estimates, and
a new estimate can be “explained” by the sum of the contributions of individual traits to
arrive at an approximation of the network estimate (Figure 8).
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Our results suggest that a regression-based framework produces accurate age estima-
tion in adult individuals. Prediction intervals can be estimated with ease and computational
efficiency. Bayesian approaches [16,20,23] could have been used for this purpose but they
encapsulate a different philosophy to data analysis and are more restrictive in regard to as-
sumptions, parameterization, and computational efficiency compared to the ANN approach
we pursued here. Recent contributions suggest that Bayesian approaches do not radically
improve age-at-death estimation or outperform regression-based approaches [144,145].

The predictive modeling or function approximation approach pursued in this work
is, at the same time, its strongest point and its key limitation. Although neural networks
as function approximation machines allowed us to obtain individual accurate age esti-
mates, a predictive modeling strategy—regardless of the underlying algorithm—can only
demonstrate that there is an efficient mapping in the form of y = f ∗(x). Such a strategy
does not explain the underlying biology of the skeletal traits. Fully understanding the
biology of the skeletal traits used in age estimation is perhaps the greatest challenge of
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this problem, and perhaps the solution for more refined age estimation based solely on the
skeletal morphology.

Despite the promising results, the current research did not emerge in a vacuum, nor has
it any pretension to be a one-size-fits-all solution to skeletal age estimation, because it was
inspired by significant work that was previously developed on this topic, see [16,19,24,35,140].

An important technical and methodological aspect that deserves a detailed analysis in
the future is intra- and interobserver error. The results demonstrate the proposed scoring
method is highly reproducible. This can be explained by the fact that most traits are
encoded in a binary fashion; nonetheless, more data are required from an independent
third party that applies the method as described here.

One last aspect that deserves discussion is the dataset employed in this study. The
constructed dataset aimed to be uniform and homogeneous in respect to age-at-death and
sex. At the moment, it only represents Portuguese nationals over a broad time span; thus,
it would be important to expand the dataset to include individuals from other regions,
and ascertain possible population and temporal differences in the performance of the
proposed method.

5. Conclusions

The work presented here is an important and valuable contribution to the field of
age-at-death estimation. Our results clearly demonstrated that a multifactorial approach
improves accuracy and precision over single anatomic regions, as established in traditional
adult skeletal aging methods. Multifactorial neural models introduce a two-to-six-fold
reduction in the mean absolute error and prediction bias compared to standard models.
This research also demonstrated that it is possible to produce informative age estimates for
the elderly and that nonstandard skeletal traits are pivotal in the later stage of the adult age
span. As an age estimation technique developed with forensic casework as its applicational
domain, proper validation by other researchers and practitioners is most needed as we
are aware that our results, as solid as they are, reflect only in silico performance and cross-
validation. This work clearly demonstrated that neural network models offer excellent
predictive accuracy. A current issue to be further investigated in future research work is
the problem of interpretability and explainability. We briefly alluded to how this problem
can be tackled using a global surrogate modeling approach, but other techniques will
be investigated in the future so that age-at-death estimation can be approached with
computationally accurate and intelligible techniques.
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Simple Summary: Forensic anthropologists analyze human remains to assist in the identification
of the deceased, predominantly by assessing age-at-death, sex, stature, ancestry and any unique
identifying features. Whilst methods have been established to create this biological profile of the
skeleton, these may be influenced by a number of factors. This paper, for the first time, provides an
overview from a reading of the clinical and pharmacological literature to explore whether the intake
of drugs can affect the skeleton and whether these may have implications for forensic anthropology
casework. In effect, drugs such as tobacco, heroin, and prescription medications can alter bone
mineral density, can increase the risk of fractures, destroy bone and changes to the dentition. By
considering how drugs can affect the skeleton, forensic anthropologists can be aware of this when
attempting to identify the deceased.

Abstract: Forensic anthropologists rely on a number of parameters when analyzing human skeletal
remains to assist in the identification of the deceased, predominantly age-at-death, sex, stature,
ancestry or population affinity, and any unique identifying features. During the examination of
human remains, it is important to be aware that the skeletal features considered when applying
anthropological methods may be influenced and modified by a number of factors, and particular to
this article, prescription drugs (including medical and non-medical use) and other commonly used
drugs. In view of this, this paper aims to review the medical, clinical and pharmacological literature
to enable an assessment of those drug groups that as side effects have the potential to have an adverse
effect on the skeleton, and explore whether or not they can influence the estimation of age-at-death,
sex and other indicators of the biological profile. Moreover, it may be that the observation of certain
alterations or inconsistencies in the skeleton may relate to the use of drugs or medication, and this
in turn may help narrow down the list of missing persons to which a set of human remains could
belong. The information gathered from the clinical and medical literature has been extracted with
a forensic anthropological perspective and provides an awareness on how several drugs, such as
opioids, cocaine, corticosteroids, non-steroidal anti-inflammatory drugs, alcohol, tobacco and others
have notable effects on bone. Through different mechanisms, drugs can alter bone mineral density,
causing osteopenia, osteoporosis, increase the risk of fractures, osteonecrosis, and oral changes. Not
much has been written on the influence of drugs on the skeleton from the forensic anthropological
practitioner perspective; and this review, in spite of its limitations and the requirement of further
research, aims to investigate the current knowledge of the possible effects of both prescription and
recreational drugs on bones, contributing to providing a better awareness in forensic anthropological
practice and assisting in the identification process of the deceased.
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1. Introduction

Amongst the requests forensic anthropologists undertake, one major role is to assist
in the identification of the deceased through primarily the analysis of human skeletal
remains [1–4]. In this regard, during the post-mortem examination of the remains, the
anthropologist may be asked to provide information on the biological profile of the individ-
ual; this can include the estimation of age-at-death, sex, stature, ancestry (or population
affinity), and identifying any unique features [5]. Age-at-death estimation may involve
the assessment of skeletal maturation, dental development, and morphological changes in
areas such as the pubic symphysis, the rib end, and the auricular surface of the ilium [6,7].
Biological sex estimation may involve an analysis of the pelvic bones, the skull, possibly
complemented by metric data [8]. Stature will be estimated by applying bone measure-
ments to an equation [9]; whilst ancestry may be estimated using morphoscopic or metric
analyses [10–12]. The skeleton will also be examined for any identifying features such
as non-metric traits, evidence of surgery and pathological conditions, that may assist in
narrowing down the list of missing persons whose remains are being analyzed [3,5,13].

However, it is important to remember that skeletal indicators considered for the recon-
struction of the biological profile are influenced by a number of factors including age, sex,
disease, genetics, lifestyle, diet, and pertinent here, possibly the use of prescription drugs
(medical and non-medical) and other commonly used drugs, such as those drugs of abuse.
Indeed, the medical literature describes how various drugs can affect the skeleton [14] and
thus modify characteristic bone quality, appearance, shape and size of skeletal areas [15],
which are used for the reconstruction of the biological profile.

The United Nation Office for Drug and Crime estimates that about 275 million people
worldwide made use of drugs at least once in 2019, a number that has been increasing by
the millions in recent years [16]. Moreover, according to the World Health Organization
(WHO), drug use led to approximately 450,000 deaths in 2015 [17]. These figures, added to
the number of people that regularly take (prescribed) drugs for medical reasons, show the
scale of the phenomenon and in turn the importance of considering the impact of drugs on
the skeleton during forensic anthropological casework.

This theme has not been thoroughly investigated in the context of skeletal analysis
in forensic anthropology. To date, published literature in this area has so far explored
only a minimal part of these effects. For instance, the investigation of particular bone
manifestations of cocaine abuse trough CT scans [18]; discussing how homeostasis can
change due to alcohol and drug use, affecting the ability to accurately assess estimation of
age-at-death [19,20]; or experimental approaches with human analogues on opioids [21].
The presence of drugs in bones has been studied mainly in skeletal toxicology, where the
substance is detected analytically [22–27], but very little has been done macroscopically
with imaging or by direct examination of the bones.

The main aim of this paper, therefore, is to present and discuss the potential skeletal
effects of different medications and drugs based on a review of the literature. This has
two advantages: (1) to consider these possible effects when assessing the biological profile
through the estimation of age-at-death, sex, stature, etc. from the skeleton; (2) explore
whether any changes to the skeleton may be specific to a particular drug or class of drugs,
which may then in turn assist with identification, in particular if the medical history of the
deceased is available. Although this review is not exhaustive, the final overall aim is to
also provide an awareness for the forensic anthropological practitioner, and highlight the
importance of further research on this topic.
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2. Materials and Methods

To achieve the aims of this paper, medical, clinical, pharmacological and forensic an-
thropological literature was researched in several scientific databases; and scientific journals
and medical books were accessed. The analysis of the literature was divided into two steps:
first, the general relationship between drugs and bone health was investigated; second,
specific research was carried out on the different drugs that may have bone involvement as
side effects.

The literature search was performed between November 2019 and October 2021 and
built from a previous MSc thesis [28], using the keywords “bone/s”, “drug/s”, “medi-
cation/s” on several databases including PubMed (Medline), Scopus, Science Direct and
Web of Science, as well as Google. Once specific drugs were identified, a more directed
research was run using their names to further investigate their effects on bones and a
number of drug databases were consulted including Vademecum (www.vademecum.es,
accessed 28 October 2021), the Spanish Agency for Medicine (CIMA https://cima.aemps.
es/cima/publico/home.html#quees, accessed 28 October 2021), Substance Abuse and
Mental Health Administration (SAMHA https://www.samhsa.gov/, accessed 28 October
2021), Alcohol and Drug Foundation (ADF https://adf.org.au/drug-facts/#list, accessed
28 October 2021), National Cancer Institute (https://seer.cancer.gov/seertools/seerrx/,
accessed 28 October 2021), UK Government website (https://www.gov.uk/guidance/find-
product-information-abut-medicines, accessed 28 October 2021), and the US Food and
Drug Administration (FDA https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm,
accessed 28 October 2021). Moreover, the Prescription Drugs and Over-the-Counter (OTC)
Drugs identified, the official product label was reviewed to check whether the suspected
adverse reaction was consistent with those described in the product label (The European
Summary of Product Characteristics (SmPC) and the United States Prescribing information
(USPI). No restriction regarding the date of publication was applied. Teeth and oral health
were examined briefly as this is the remit of the forensic odontologist, rather than the
forensic anthropologist.

The results were summarized and organized in two tables by class and type of drug,
showing their reported effect on bones and if any, the area of the skeleton most commonly
involved. In addition, it was reported whether they could potentially affect sex and age
estimation or any other biological profile parameter.

3. Results

The information collected from the literature shows that commonly used drugs (with
the potential for misuse or addiction such as prescription opioid, tobacco and alcohol),
prescription drugs and even over-the-counter drugs, if taken long term and/or in high
doses, have the potential to cause numerous health issues, including bone modifications at
different levels [14].

The most commonly used drugs (with the potential for misuse and addition), defined
as psychoactive drugs, can be categorised as stimulants, narcotics (opioids), depressants,
hallucinogens and marijuana (cannabis) [29]. As will be seen in later sections of this paper,
among stimulants, the principal drugs that can have a detrimental effect on the skeleton
are cocaine, amphetamines, and nicotine (i.e., the main component of tobacco). Opioids
include morphine and its derivatives, methadone and heroin. Alcohol and others (such as
benzodiazepines and barbiturates) are depressant drugs with proved side effects on bones,
while amongst hallucinogens, ecstasy can also be associated to bone disease. Opioids
can be prescription medications, and along with some over-the-counter medications (i.e.,
nonsteroidal anti-inflammatory drugs and paracetamol), can lead to addiction and are
commonly abused. However, side effects which affect the skeleton can also occur by taking
controlled doses of other prescribed drugs that usually do not cause addiction but are exten-
sively used in clinical medicine. These medications include corticosteroids, antiresorptive
drugs, gonadotropin releasing hormones (GnRH) agonists, gastric acid suppressants or
proton pump inhibitors, thyroid hormones and antiretroviral, antidepressant, antipsychotic,
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antiepileptic, antidiabetic, and antithrombotic drugs. These are included in more detail in
the following section.

3.1. Effects of Drugs on Bone

This section includes the drug classes that, as a result of the research undertaken
for this paper, can have an adverse effect on bone. This paper avoids brand names or
trademarks and mainly provides classifications that are either generic or according to
effect (therapeutic classification), chemical components or mechanisms (pharmacological
classification). Brief definitions are provided, alongside a brief overview of their use and
how they can affect the skeleton. For each drug, and whenever applicable, macroscopic
bone lesions are described as well as their potential effect on the process of age-at-death
and sex estimation in forensic anthropology practice. This review is not extensive, at least
in its bibliography, but it provides an insight into how medication and drugs of abuse
can modify the skeleton, which is an important consideration for forensic anthropologists.
A small mention to dental disease and oral pathology, as well as cartilage, is included at
the end. Limitations and interpretations are discussed later.

3.1.1. Cocaine

Cocaine is an alkaloid derived from the leaves of the Erythroxylum coca plant. It is cur-
rently used as an intraoperative local anaesthetic and vasoconstrictor, but it also represents
one of the most common drugs of abuse [30]. Recreational cocaine is often contaminated
by various additive compounds, such as levamisole, which can be directly responsible for
the effects of the drug and/or its local and systemic complications, or act as a contributing
factor [31,32]. Cocaine can be administered through intravenous injection, nasal insufflation
(the most common), inhalation (smoking), direct application on mucous membranes or
chewed and rubbed on the gum. The way cocaine is administered will influence the effect
of the drug on bones [30]. In fact, the intranasal use (insufflation) is responsible for one of
the most important effects of cocaine on bones, the cocaine-induced midline destructive
lesion (CIMDL), characterized by the destruction of the nasal septum, lateral nasal walls
and/or hard palate [33–35]. Rubin [18] defined this condition as any significant bone
damage of the midfacial region clearly caused by the use of cocaine and identifiable in
human skeletal remains. Its pathogenesis is mainly related to the vasoconstrictive effect of
cocaine, leading to ischemic necrosis, combined with the chemical irritation of adulterants,
direct trauma from the use of paraphernalia and possible superinfection [34]. Thus, after
repetitive and frequent snorting, the blood vessels of the nasal mucosa become atrophic and
irritated, resulting in localised ischemia and ultimately in necrosis, erosion and destruction
of the osteocartilaginous tissue. Septal perforation tends to be observed first, and the lesion
then progresses and involves the nasal lateral walls with saddle-nose or alar deformities,
the hard palate with oro-nasal fistulas, and even the maxillary sinuses and orbital walls
due to chronic inflammation and infection of the sinuses [36–38]. Rubin [18] considers
how forensic anthropologists should consider someone as a cocaine abuser where there
is lack of new bone formation to repair the lytic lesions. These destructive lesions are
primarily located in the vomer, in the palate (palatine bones) and inferior nasal conchae;
with other bones affected being the ethmoid, maxillary sinuses, sphenoid and orbit [18].
One clinical case showed also an extension of CIMDL into the neck area, especially with
some destruction and instability of the atlanto-axial joint [39].

3.1.2. Opioids

These are naturally found in the opium poppy and can be prescription medications
often referred to as painkillers, although are often used non-medically or recreationally.
Their use is widespread, and data has shown that it has been taken illegally since adoles-
cence [40]. Three most commonly used opioids are covered here: morphine, methadone,
and heroin.
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The use of morphine to manage chronic pain is widespread. However, as it would
appear that it inhibits osteoblastic activity and certain hormones such as gonadotropin-
releasing hormone (GnRH) [41,42], it has been shown that opioids can induce osteoporosis
and thus increase osteoporosis risk fracture [43]. This reduction in bone density and
thus leading to osteoporosis has been demonstrated in some human and non-human
experimental studies [44], although other factors, leading to this lower bone mass density,
need to be considered [45]. The risk of fracture in morphine users also increases, especially
in common osteoporotic fractures such as those found at the hip, spine, and forearm; a risk
increased by loss of postural balance and falls due to side effects of the drug [46]. This, in
turn, although not with all opioids, leads negatively to bone healing, and bone non-union
may result [47]. Moreover, as it affects cell proliferation and apoptosis [48], experimental
studies on rats have shown that morphine in mothers have effects on the primary and
secondary ossification and longitudinal growth of their offspring [48,49].

With regard to methadone, Kim and colleagues [50] investigated the low bone mineral
density (BMD) in patients taking part in a methadone maintenance program in Boston.
Using dual energy X-ray absorptiometry (DXA) combined with surveys and medical
records, the study found that BMD of 83% of the study sample were below normal, with
35% of those within the osteoporosis range, and 48% of those in the osteopenia range. This
in turn, resulted in a higher fracture risk for those who were taken methadone [51]. Similar
studies have been undertaken on male and female subjects yielding different results, with
more significant bone loss in the former than in the latter [52,53]. This association may be
related to the effect opioids have on bone metabolism, in particular inhibiting osteoblastic
(bone formation) activity [54].

Heroin is made by adding two acetyl groups to the molecule morphine. As heroin can
alter several body functions, chronic abusers present with altered bone metabolism and re-
duced trabecular bone mass, which according to Pedrazzoni et al. [55] is attributable partly
to hypogonadism. Wilczek, H., and Stĕpán, J. [56] investigated the effects of prolonged use
of heroin and noted, focusing on the femoral neck and forearm, that it is associated with
accelerated bone turnover, resulting in osteopenia. However, after one year of treatment
with methadone, bone turnover rate was restored. In addition, a Spanish study noted the
presence of septic arthritis in heroin users, affecting especially the sacroiliac, costoclavicular,
hip and shoulder joints [57]. In fact, intravenous drug injection in heroin addicts has been
associated with osteomyelitis. In a study by Allison et al. [58], out of 215 patients injecting
drugs, 59% had osteomyelitis and 25% septic arthritis. In fact, septic arthritis at the pubic
symphysis has been found to have intravenous drug injection as a risk factor [59]. Similar
associations with osteomyelitis have been found in other studies in the last decades where
joint disease and infectious skeletal lesions have been present, usually in the limbs and
sites where the injections have taken place [60]. A number of cases since the 1980s have
also reported cervical osteomyelitis in intravenous drug use [61,62].

There are also other drugs in this group, such as Desomorphine, a synthesized opioid
from codeine which has been associated with skeletal infections at the site of skin ulcers
due to injection, followed by necrosis and gangrene in some cases, and amputation [63,64].
Due to the toxic substances in the manufacturing process of this highly addictive drug, as
well as the injectable equipment and hygiene, the risk of infection is much larger and more
severe than that of any other drug with the same administration [64]. Some of these drugs
have also shown to cause necrosis of the mandible and maxilla [65,66].

3.1.3. Amphetamines

As stimulants, they speed up the transmission between the brain and different parts
of the body. There are different types of amphetamines, some being prescribed to treat
disorders such as attention deficit hyperactivity disorder (ADHD) and other conditions
(https://www.dea.gov/sites/default/files/2020-06/Amphetamines-2020_0.pdf (accessed
29 October 2021)). The most potent form is methamphetamine (METH). The main route
of administration is orally, but can also be injected intravenously, or taken by insufflation,
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inhalation and suppository. Amphetamines decrease bone mass and strength due to
the drug effect on the central nervous system, closely linked to bone metabolism and
affecting bone turnover [67]. A strong correlation has been found in the literature between
methamphetamine users and lower bone density and osteoporosis [51]. For example,
Katsuragawa [68] found a decrease in bone mass and integrity in the calcaneus of drug
users. In addition, Mosti and colleagues [69] examined loss of bone density by assessing
whether it was localized (specifically, to the hip or lumbar spine), or generalized. The study
found a general loss of bone density through DXA scans and also a reduction in lower
limb muscle strength [69]. A number of reported cases, have also found that apart from
loss of bone density, osteonecrosis or osteomyelitis can be found in the jaw [70], as well as
maxillary sinusitis [71]. Any effects on dental and oral health are reported in a separate
section below.

3.1.4. Cannabinoids

Cannabinoids are the chemical components found in the Cannabis plant (Marijuana).
The main psychoactive chemical is tetrahydrocannabinol (THC). The drugs can be smoked,
inhaled or eaten. Cannabis (marijuana) or hemp are legally accepted in some regions and
countries as they also demonstrated health benefits [72]. Indeed, the chemical components
activate the endocannabinoid receptors of the body and brain resulting in a feeling of
happiness, but they can also affect bone homeostasis [72,73] (http://www.thedrugswheel.
com/; https://adf.org.au/drug-facts/cannabinoids/ (accessed 29 October 2021)). Studies
have shown a significant decrease in bone mass density and bone quality among smokers
of marijuana with respect to non-smokers [74]. Paradoxically, depending on the age
of the individual, cannabis can also help with bone loss and has been used to manage
osteoporosis [75]. However, no correlation was found between cannabis consumers and
bone density in a study on the femur and lumbar spine in a U.S. study [76]. The positive
and negative effects are still unclear at present [72,77]. The effects of Marijuana on teeth is
covered in a separate section below.

3.1.5. Alcohol

Alcohol is a depressant like diazepam or benzodiazepines, thus slowing down the
message between the brain and the body, and hence its vital functions. Depending on the
amount taken and body composition, however, it can also act as a stimulant. A number of
publications have examined the association between alcohol and bone disease in adoles-
cents and adults [78–80]. The effects of light consumption, long-term and binge-drinking
have been investigated in clinical studies [79]. It has been demonstrated that alcohol can
affect bone proliferation and lead to low bone density (leading to osteopenia and possibly
osteoporosis) and strength due to a remodeling imbalance [81–83]. However, this is de-
pendent on the pattern of consumption and intake [84,85]. One study revealed that 12%
of fractures in middle-aged men, could be avoided if alcohol, as well as smoking, were
eliminated [86]. Alcohol can also inhibit osteoblast proliferation and thus be detrimental to
fracture healing [87]. One paper in forensic anthropology suggested that an individual’s
age-at-death may have been overestimated from the skeletal remains of a person who suf-
fered from alcoholism. The case presented cortical thinning, ‘light’ bones, as well as various
skeletal fractures in different stages of healing; although these characteristics may more
likely be secondary to alcoholism than due to the age of the individual [20]. Furthermore,
osteonecrosis associated with alcoholism has been identified and widely reported in the
clinical literature, especially avascular necrosis of the femoral head [88,89]. Much informa-
tion is also available relating to alcohol and pregnancy, which is not covered in detail here,
but it is worth mentioning a number of skeletal anomalies affecting cranial suture such as
craniosynostosis in the fetus due to alcohol consumption during pregnancy [90].
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3.1.6. Tobacco

There has been much research on the impact of smoking (nicotine and tobacco) on health,
some of which has focused on bone health [91,92]. Amongst the skeletal complications caused
by smoking are lower BMD [93,94] although this is still debatable [95–97], higher fracture
risk [97], and delayed bone fracture healing and further complications [98–100]. A study on
young adult (18-19 years) men, smokers vs. non-smokers, showed a reduction in BMD and also
reduced cortical thickness in radius and tibia [101]. This in turn leads in smokers to an increase
in fractures, especially osteoporotic fracture sites such as the spine, hip, wrist or major long
bone shafts, but not to the skull [86]. Scolaro et al. [102] further demonstrates complications
with fracture healing and nonunion in some instances. This delayed healing may be related
to poor bone mineralization and smoking impairing Type I collagen fibrils [103] as well as
other factors [104]. Complications of smoking on oral health are explored later, as well as in
cartilage [105,106]. Pathological conditions may also be considered as a result or in association
with tobacco, for instance an increase in degenerative joint disease in the vertebrae [107] or
children in a smoking intrauterine and post-uterine environment where their skeletal growth
and development may be affected [108].

3.1.7. Oral Glucocorticoids

Glucocorticoid-induced osteoporosis is the most common iatrogenic cause of sec-
ondary osteoporosis. The direct effect that this class of drugs has on the skeletal structure is
drug-induced osteoporosis if used long-term [109]. These drugs also affect the endocrine
system, which controls a number of different hormone mechanisms, causing disorders
such as hypogonadism, which again can affect bone turnover and decrease BMD [110].
Glucocorticoids are a class of corticosteroids, which regulate the metabolism of glucose in
the body and are widely used in the medical sector for conditions that are caused by inflam-
mation, such as asthma, allergies, auto-immune diseases and sepsis [111]. Prolonged or
incorrect use of these can result in osteoporosis, osteonecrosis, high fracture risk and slower
fracture repair [109,112]. Slower fracture repair especially callus formation and healing has
also been observed in mice [113]. In children, glucocorticoids will result in short stature,
delayed growth and maturation, unless reversed with growth hormone therapy [114,115].
This delayed growth can occur within three months of treatment with glucocorticoids and
skeletal deformity may result from long-term treatment in children [116]. It may delay
carpal bone age as observed in a Chinese study [117], a consideration relevant if estimation
age in the living [118].

3.1.8. Non-Steroid Anti-Inflammatory Drugs (NSAIDs)

Non-steroidal anti-inflammatory drugs (NSAIDs) are some of the most prescribed
medications worldwide, with analgesic, anti-inflammatory, antipyretic and platelet an-
tiaggregant functions [119,120]. This heterogeneous group of drugs acts by blocking
cyclooxygenase enzymes (cox-1 and cox-2), which in turn inhibits prostaglandins synthesis,
which has an important role in bone turnover by influencing both osteoblast and osteoclast
activity [121–123]. Several studies have explored the effects of NSAIDs on fracture healing,
as these drugs are commonly used for fracture and postoperative pain control following
orthopaedic surgery [124,125]. However, some of these studies report how NSAIDs may
delay bone healing [119,126–130]. An increased incidence of nonunion fractures, malunion
and infections are observed, with examples of case reports of this in the femoral shaft
and the spine [120,125,131–134]. However, some of this data has been extrapolated from
animal studies, while human trials have not always reported strong evidence of this associ-
ation [87,124,135,136]. NSAIDs also seem to impair entheses (tendon-to-bone) healing [123]
and accelerate cartilage degeneration in osteoarthritis [137,138]. Regarding skeletal trauma,
not all NSAIDs have been found associated with an increased risk of fractures [139]. For
instance, diclofenac and naproxen have been associated with an increase fracture risk in
hip, spine, and forearm; while others showed either a higher BMD, with a potentially lower
fracture risk [136,140]; or did not show any association (e.g., aspirin) [119,141–143]. This
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positive effect on BMD (total and hip) was observed with increasing doses, whereas it
decreases at low doses, potentially increasing the fracture risk [134,139,144]. In paediatrics,
no effects on bone have been reported on low dose and short duration therapy [129,145].
By contrast, if chronically prescribed during pregnancy, and depending on the gestation
period, NSAIDs may have adverse skeletal effects on the fetus and newborn, including
presence of cleft palate, decreased skeletal development, decreased vertebral and fracture
callus mineralization, decreased fetal length, fused ribs, incomplete ossification of the
cervical arch, deformation of lumbar arch, and absent sacral arch [146].

3.1.9. Paracetamol

Paracetamol (acetaminophen) is a drug with analgesic, antipyretic and mild anti-
inflammatory properties, and is one of the most used medications worldwide [147]. Its
mechanism of action involves the cyclooxygenase (COX) and cannabinoids pathways,
decreasing prostaglandins production and in turn affecting bone turnover [140]. However,
despite its very wide usage, very few studies have explored the potential link between this
drug and bone health [148]. Changes in BMD and bone fragility with an increased risk of
fractures have been the most studied [143]. Several authors have reported no difference
in BMD between paracetamol users and non-users [147,149]. No significant differences
were found according to dose and pattern of users (intermittent vs. continuous) [143].
By contrast, other studies have shown a decrease in BMD over time, although smaller
than other analgesics such as NSAIDs and opioids [150]. Similar results are found when
investigating the risk of fractures [139,140,143]. The risk of fracture has been reported for
the spine, hip, and forearm, and it is not dose-dependent [139]. Moreover, the effects of
this drug on proliferation and differentiation of osteoblasts, if used in the early phases of
healing, may impair bone regeneration and implant osseointegration [148]. In contrast,
other studies have not supported this association, for example Vestergaard et al. [143]
detected slightly higher levels of alkaline phosphatase, a marker of bone turnover. Since
conflicting results have been found so far on the effects of paracetamol on bone, and little
is known about them [143], further studies are therefore needed to better investigate and
understand the impact of this drug on bone health [140].

3.1.10. Gonadotropin Releasing Hormone Agonists (GnRHa)

Gonadotropin releasing hormone agonists (GnRHa) are commonly used for treat-
ment of several conditions, including breast cancer, prostate cancer, endometriosis, gender
dysphoria and central precocious puberty (CPP) [151,152]. They act on the pituitary-
hypothalamic-gonadal axis inducing secondary hypogonadism and reducing the pro-
duction of sex steroid hormones in both sexes, oestrogens in women and androgens in
men [152,153]. These hormones influence osteoblasts and osteoclasts activity, with impor-
tant functions in bone turnover including bone growth and maturation [154,155]. Due to sex
hormones deprivation, bone turnover is accelerated with suppressed bone formation and
increased bone resorption. Therefore, GnRHa may have a detrimental effect on bone health
causing reduction of BMD and increasing the risk of osteoporosis and fractures, as reported
by several studies [153]. GnRHa are extensively used as adjuvant endocrine therapy in
breast and prostate cancer [152], leading to a cancer treatment-induced bone loss [154].
This accelerated bone loss involves trabecular bone (spine) and is greater in women than in
men ([152], resulting in a BMD reduction estimated between 5% and 10% in spine and hip
after one year, and continuing to decrease in long-term therapy ([153]. GnRHa therapy also
increases the risk of osteoporosis and fractures, with a longer therapy duration and a higher
number of doses predicting a greater risk [156,157]. In women, lumbar spine and femoral
neck fractures are the most commonly affected. In men, the radius, vertebra and hip/femur
are the most frequently fractured bones [152]. GnRHa have been used to reduce pelvic pain,
but this in turn has shown to lead to a reduction in BMD in the lumbar spine, hip/proximal
femur and radius after 6 months of treatment, sometimes followed by a partial or complete
recovery after a withdrawal of 6 months-1 year [155,158–161]. Differences have also been
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observed between different GnRHa, with leuprolide acetate having a greater detrimental
effect on BMD than buserelin for example [155]. Whilst short-term therapy would unlikely
cause bone loss, little data is available on the long-term consequences with regard to low
BMD and fracture risk [155]. These drugs are also used in gender dysphoria and CPP in
children and adolescents. The effects on bone are of concern due to the hormonal sup-
pression occurring in puberty [162], potentially delaying or attenuating peak bone mass
(PBM) although this is still not fully understood [163]. A decrease in BMD was observed in
lumbar spine and femoral neck in transgender individuals [163,164] as well as in CPP, but
with the latter showing reversible effects after withdrawal [151,165]. Nonetheless, attaining
a normal PBM does not seem to be impaired [162].

3.2. Proton Pump Inhibitors

Proton pump inhibitors (PPI) are considered relatively safe and are widely used
as acid-suppressor medicine to treat acid-related diseases (e.g., gastroesophageal reflux,
peptic ulcers, heart-burn, dyspepsia, chronic cough, prevention of gastric injuries from
NSAIDs and surgery) [166].). They are a class of drug that act on the cells that line the
gastrointestinal tract and reduce acid production, allowing the lining to heal, or to prevent
an ulcer from occurring [167]. There is a large body of evidence that demonstrates an
association between PPI therapy and risk of fractures, in particular a moderate increased
risk of any fractures in particular to the hip and spine, with a stronger association of
hip fractures with increased duration of PPI treatment, as well as an association between
PPI therapy and osteoporosis [166,168]. The association between PPI use and BMD is
debatable, with some studies showing BMD loss [169] and others concluding an absence of
correlation [166,170]. Two main factors may explain the association between PPI therapy
and increased fracture risk as well as osteoporosis. Firstly, decreased calcium absorption has
been noted in patients taking PPI, which would cause an increased rate of bone resorption;
however, there are various factors, which may influence calcium absorption (e.g., dietary
calcium intake and time of medication) [166]. Secondly, a selection bias and the absence of
adjustment for cofounders (which include a large number of comorbidities and medication):
older and sicker patients tend to be treated with PPI, and frailty and old age are risk factors
for fractures [166,168].

3.3. Antiretroviral Therapy

Antiretroviral therapy (ART) are drugs that are taken to treat and prevent mortality and
morbidity by retrovirus infections, such as human immunodeficiency virus (HIV). These drugs
help control the virus by lowering the viral load, preventing transmission, and increasing life-
expectancy rather than actually curing the disease [171]. Whilst there may be about a dozen drugs
to treat HIV, it is a combination of these that are prescribed for therapy. HIV is already known to
affect the skeletal system through low BMD, osteoporosis, osteonecrosis and more rarely, osteoma-
lacia, as well as fractures and HIV-induced infections and inflammations [172–174]. Osteonecrosis
is commonly present in the proximal femora and may be bilateral [175,176]. (Regarding ART,
several studies have demonstrated an association between long-standing ART and lower BMD
in HIV individuals [173,174,177–179], although other research reported no determining effect of
ART on BMD [180]. Overall, low BMD in HIV patients results from a multifactorial interaction
between HIV infection, conventional risk factors for osteoporosis, ART-related complications
and HIV/AIDS-related conditions (e.g., muscle wasting, kidney disease, vitamin D deficiency
and hypogonadism) [177,181–183]. In addition to low BMD, both long-standing HIV and ART
have been reported to be associated to osteopenia, osteoporosis, osteonecrosis, osteomalacia and
a higher rate of fractures [173,179]. Indeed, ART has a direct effect on the bone metabolism by
exacerbating bone loss (with a reported 2–6% loss in BMD) at the femora, lumbar spine, and hips;
which are sites susceptible to fractures [173,179,183]. Lastly, neuropathy may be another potential
complication of ART [184,185], which may indirectly impact the skeletal system by leading to
conditions such as neuropathic arthropathy (Charcot joint) [186,187].
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3.4. Anti-Depressant Drugs

Patients that suffer with depression often have low levels of serotonin, which is a neuro-
transmitter found mainly in the gastrointestinal tract, platelets and the central nervous system
(CNS) and is a contributor to feelings of wellbeing and happiness (InformedHealth.org (inter-
net). Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006.
Depression: how effective are antidepressants? (Updated 18 June 2020) (accessed October 2021)).
In some countries they are the most used therapeutic medications [188]. It also regulates the
skeletal response to parathyroid hormone due to its receptors that are found on osteoblasts
and osteocytes. Two commonly prescribed classes of drugs are selective serotonin re-uptake
inhibitors (SSRIs) and tricyclic anti-depressants (TCAs) [189]. This paper focuses mainly on
SSIRs, which seem to be associated to bone metabolism [190,191]. Bone loss density, rapid bone
loss in certain age groups and an increase in osteoporosis in men has been shown in those taking
anti-depressant drugs [192–194] and thus a risk of osteoporotic fracture [195,196]. Furthermore,
in an experimental animal study, sertraline was shown to impair and disrupt bone healing with
significant decrease in trabecular thickness ([197,198].

The link between fracture risk and SSIRs has been widely noted, however, depression
itself has been shown to correlate with a decreased bone mineral density and increase
fracture risk [199]. Although, taking into consideration the psychological condition of the
individual receiving treatment, there is a likely chance that there will be other lifestyle risk
factors, which may influence bone mineral density and increased fracture risk, such as
smoking, increased alcohol consumption and physical inactivity [189]. Thus further work
is required to show any link with depression, drugs and bone health [193,200].

3.5. Anti-Epileptic Drugs

Chung & Ahn [201] discuss the effects of anti-epileptic drugs (AED) and their effect
on bone in children being treated for epilepsy. The authors examined bone density scans
on a number of skeletal areas including the upper and lower limbs, the ribs, pelvis, and
spine in a sample of 78 epileptic and 78 control patients, and concluded that the former
group, which was treated with AED, had lower bone density. Lower bone density in those
taking AED seems to correlate in other studies for different anatomical regions [202–204].
Other studies in adults have shown no known significant differences between short-term
and long-term use of these drugs in the overall skeleton, but significant differences when
specific bones are taken into account, such as the tibia and innominates [205]. It has been
suggested that the reason for this lower BMD is that anti-epileptic drugs directly inhibit
osteoblast function as well as inhibiting intestinal calcium absorption [109]. This reduction
in bone mass density also increases fracture risk. In adults, the association with osteopenia
and osteoporosis has been demonstrated [206,207], with increased fracture rates associated
to the drugs as well as the result of seizures. Although the results are conflicting [208],
generally speaking these drugs will lead to low bone density as well as an increased risk
of fractures [209,210]. Reduced levels of Vitamin D have also been observed with AED
intake [211,212] and also retarded growth and stunting [213].

3.6. Antidiabetic Drugs

These medications, including insulin, exist to control and maintain glucose or sugar
levels in the blood and thus more commonly used to manage diabetes, adversely affect
bone metabolism [214], especially by impairing osteoblast function and activating osteo-
clastogenesis [215]. This may ultimately lead to a decrease in low bone mineral density,
decrease bone strength related to low bone turnover, alteration of the microstructure, and
a risk of osteoporotic fractures such as at the hip [216,217]. This is of course also drug
type dependent [218,219]. For example, thiazolidinedione in particular is associated with
secondary osteoporosis and an increased fracture risk [219–221]. Overall, antidiabetic
drugs are linked to an increase risk of osteoporosis, fractures and possibly osteoarthritis
too [218,222,223], although this latter is not yet clear [224].
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3.7. Antiresorptive Drugs

These drugs include a class termed bisphosphonates. These inhibit osteoclastic activ-
ity and although bisphosphonates are likely to control osteolysis in tumors and disease
progression [225,226], they also do have other effects, for instance osteonecrosis of the
jaws and more frequently in the mandible [227,228]. Osteonecrosis of the jaw (ONJ) is a
well-known complication of antiresorptive or antiangiogenic therapy for the management
of osteoporosis and other cancer-related conditions [229]. Available data indicate that 5% of
patients exposed to antiresorptive agents may develop ONJ, depending on the duration of
therapy. Oral surgical procedures, tooth extractions and infection of the mandible and/or
maxilla are considered the main risk factors for developing ONJ when receiving antiresorp-
tive therapy [228]. A study by Gupta and Gupta [227] indicates that osteonecrosis tends
to develop in the jaw because it has a higher remodeling rate than other bones, making it
more prone to the effect of bisphosphonates. The three most common sites for ONJ are
(1) nonhealing dentoalveolar sites or dental extraction sites; (2) traumatized tori (palatal
and/or mandibular); and (3) exposure of portions of the mylohyoid bridge [227,230,231].
Osteomyelitis and abscesses may also be present and in living individuals exposed bone
too [231,232].

Bisphosphonates with denosumab are the most commonly used antiresorptive drugs
and although they cause osteonecrosis of the jaw [233] when used to treat malignant disease,
they are used to treat osteoporosis and the risk of fracture associated from it [234,235].

3.8. Antithrombotic Drugs

Antithrombotic drugs can be antiplatelets (e.g., aspirin) or anticoagulants (e.g., heparin,
warfarin) and prevent blood clots from forming. A number of groups would appear
through a literature review to affect bone health, primarily linked to osteopenia [236].
Some anticoagulants such as heparin may result in lower bone mass density, influencing
bone metabolism and resulting in an increased risk of osteoporotic fractures [237,238].
Impaired fracture healing may also take place [239]. One study on warfarin demonstrated
an association with a decrease in BMD in the calcaneus of patients compared to non-patients
through examination with a quantitative ultrasound [240]

3.9. Other Drugs

This paper has not covered all drug groups, all the different classes of drugs, nor
the combination of taking several classes together and how this may affect the skeleton.
Nevertheless, it is worth mentioning here a number of other drugs that may have a
significant effect on the skeleton too. For example, Depot Medroxyprogesterone Acetate
(DMPA) or Depo-Provera is a contraceptive drug that both adult and adolescent females
may take. It works by inhibiting luteinizing hormone (produced and released by the
pituitary gland) and follicle stimulating hormone (also released from the pituitary gland
and important for the reproductive system in men and women), which in turn decreases
oestrogen production [118], thus resulting in decreased bone mineral density and increase
risk of osteoporosis during its use. Most bone loss occurs in the first two years of use and
mainly seen in the vertebral column and hips – and so this is where most fractures are seen.
A study conducted using a group of physically active female army recruits indicated that
there was a marked increase in stress fractures in the calcaneus of the individuals taking
DMPA [109].

Amongst the hormone therapy drugs, aromatase inhibitors (AI) which has been used
to treat a number of diseases such as breast cancer, does result in bone loss and a risk of
fractures [241,242]. Another hormone treatment is thyroid hormone therapy (THT), which is
used to compensate for an underactive thyroid. Patients with hypothyroidism undertaking
THT may or may not see skeletal changes. The literature provides conflicting reports on
BMD, with some studies showing BMD loss while others found no changes [243–245].

Antineoplastic drugs are chemotherapy drugs and highly toxic but used to treat cancer.
Since there are almost 2000 medications under this class of drug (https://seer.cancer.gov/
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seertools/seerrx/, accessed 31 October 2021), it is impossible to cover here, especially when
in different forms. It is worth indicating that some side effects will include lower BMD,
bone marrow suppression, haematological complications including anaemia, periapical
lesions possibly leading to osteomyelitis, etc. [246–250].

It is also worth mentioning antipsychotic medications or agents, used to manage
and/or treat patients with psychosis (e.g., in patients with schizophrenia, bipolar disorders,
etc). Antipsychotic drugs have a physiological effect on bone, as they increase the concen-
tration of prolactin, which lowers oestrogen and testosterone levels potentially leading to
bone loss [251]. One study indicated that the risk of a hip fracture was increased 5-fold in
older women and 6-fold in older men taking antipsychotic drugs [109]. In one study, it was
also noted that in young men and pre-menopausal women these drugs lower bone mineral
density as much as 20% in the spine [252].

3.10. Oral Pathology

Although already introduced above, it is worth providing an overview of the dental
and oral (bone) complications that can arise in patients taking some of these drugs. In
forensic cases, this is the remit of the forensic odontologist, but nevertheless it is important
for forensic anthropologists to be aware of these changes, in addition to other factors that
may affect oral pathology such as lifestyle or oral hygiene practices.

Tomita et al. [67] indicate that in a very short space of time, rampant caries is often
found in methamphetamine users (“meth mouth”). In addition to caries, periodontal
disease and tooth loss [253], partly due to the reduction of saliva in the mouth and other fac-
tors [254]. Cocaine can also damage teeth and the surrounding soft tissue, as one common
method for consumption is by rubbing the powder against the gums or gingivae. Cocaine
reduces salivary pH leading to dental erosion, and there is a higher risk of periodontal
disease and tooth loss [255–259]. Smoking or eating cannabis has also similar effects [260].

Tooth discoloration can be caused by medication such as antihistamines and antibiotics
amongst others [261–263]. Furthermore, enamel hypoplasia as well as microdontia and
hypodontia can be found in children treated with antineoplastic drugs [250]. Smoking
tobacco can also cause tooth discoloration [264] although there are many other factors
influencing color staining in teeth [265].

With regard to the alveolar bone and further involvement of some of the drugs
included above such as anti-resorptive drugs and antineoplastic drugs can result in os-
teonecrosis of the jaw [63,64].

3.11. Other Skeletal Involvement

As the skeleton is also composed of cartilage and cartilage degeneration will affect
some of the indicators forensic anthropologists use in reconstructing the biological profile,
it is necessary to point out how some drugs and medications can affect cartilage. For
example, smoking tobacco has been found to be associated with cartilage loss and defects
in the cartilage of offspring [106]. This association resulting in osteoarthritis has also been
proven in other studies. Amin and colleagues [105] found that men with knee osteoarthritis
who smoke sustain greater cartilage loss and have more severe knee pain than men who do
not smoke. One area of interest may be the calcification of cartilage, whether costal (sternal
end of the rib) or any other (e.g., thyroid cartilage). Premature calcification of cartilage has
been attributed to a number of aetiologies [266]. However, chondrocalcinosis as well as
chondritis has also been attributed to certain drugs such as corticosteroids, bisphosphonates
and others [267–270].

As forensic anthropologists during recovery of human remains, we may encounter
urinary or renal stones or calculi. These can also be drug induced [271,272].

3.12. Summary of Results and Further Observations

Taking all the above information gathered from an exhaustive literature search in
the medical, clinical, pharmacological and other disciplines; it can be understood that
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medication and the abuse of drugs can have an effect on the skeleton. These include loss
of bone density often leading to osteoporosis and risk of fractures, necrosis, joint disease,
delayed maturation, delayed fracture healing, cartilage calcification, and oral pathologies
(Table 1). Whist some of these drugs may affect the skeleton generally, some studies have
focused on particular regions or elements and some medications definitely only involve
certain areas (Table 1), such as the vertebrae, long bones, mandible or maxilla. These may
influence the estimation of the biological profile related to age-at-death estimation, sex
estimation and other parameters or features used to identify the deceased. Table 1 should
assist forensic anthropologists in their awareness of how certain medical histories and
the associated use of certain drugs may affect the skeleton. This may be an important
consideration when reconstructing the biological profile. In addition, some of these skeletal
alterations may reflect a person that was using certain medication(s) and thus it may also
be able to help with narrowing down the list of missing people.

Table 1. Summary of the effects of drugs on bone, as taken from the literature review for this paper.
For references or bibliography, see the main body of text.

Drug Effect on Bone Location

Cocaine

Cocaine-induced midline destructive lesion
(CIMDL) and other nasal deformities, septum
perforation, infection (e.g., maxillary sinusitis)

Periodontitis, dental caries, (ante-mortem) tooth
loss, dental erosion.

Nasal septum, nasal walls, hard palate, maxilla
and orbital walls.

Dentition.

O
pi

oi
ds

Morphine
Osteoporosis, osteopenia, increase risk of fracture,

longitudinal growth,
skeletal development.

Not specific. Some fractures may be at sites such
as hip, spine, forearm but not always attributed

to osteoporosis. Cartilage affected during
growth and development.

Methadone
Increased risk of osteoporosis and osteopenia,

increased risk of fracture, decrease in bone mineral
density.

Not specific. Some fractures may be at sites such
as hip, spine, forearm but not always attributed

to osteoporosis.

Heroin
Decrease bone mineral density, osteoporosis,

osteopenia, septic arthritis, bone turnover,
osteomyelitis.

Not specific. Septic arthritis in sacroiliac,
costoclavicular, hip and shoulder joint.

Sometimes osteomyelitis in long bones at sites
where injections.

Amphetamines

Osteonecrosis, Osteoporosis, Osteopenia, loss of
bone density, maxillary sinusitis, osteomyelitis

‘Meth mouth’: Dental caries, periodontal disease,
tooth loss, periodontitis, dental caries, dental

erosion.

Loss of bone density throughout body.
Osteonecrosis of jaw.

Sinuses
Dentition (‘Meth mouth’).

Cannabinoids
Possible loss of bone density, leading to
osteoporosis and increased fracture risk.

Periodontal disease.

Not specific.
Dentition.

Alcohol
Effect on osteoblast proliferation, lower bone
density, osteopenia, osteoporosis, increased

fracture, poor fracture healing, avascular necrosis.

Throughout skeleton. This effect may depend on
sex, age and lifestyle factors, patterns of

drinking, volume of alcohol, etc. Avascular
necrosis of femoral head.

Tobacco
Bone density, bone fractures, delayed haling of

fractures or non-union.
Periodontitis.

Throughout skeleton. Sites of osteoporotic
fractures. No fractures to skull.

Dentition.

Oral
Glucocorticoids

Increased risk of osteoporosis, decrease in bone
mineral density, fracture risk, slow fracture
healing, delayed maturation, short stature.

Not specific.
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Table 1. Cont.

Drug Effect on Bone Location

Non-steroidal
anti-inflammatory drugs

(NSAIDs)

Delayed fracture and entheses healing.
Fracture nonunion/malunion.

Possible cartilage degeneration.
Increase/decrease in BMD (type and

dose-dependent).
Possible increased/decreased fracture risk.

Possible skeletal effects in fetus and newborn
(therapy during pregnancy).

Changes not specific, observed hip, femur, spine,
and forearm

In fetus/newborn—cleft palate, fused ribs,
decreased vertebral mineralization, deformation

of lumbar arch, absent sacral arch, incomplete
ossification of cervical arch, absent/hemicentric

body of thoracic or lumbar vertebra.

Paracetamol
Possible decrease in BMD.

Possible increased risk of fractures (at low doses).
Possible impairment of implant osseointegration.

Observed in spine, hip, forearm.

Gonadotropin-releasing
hormone (GnRH)

agonist

Decrease in BMD (potentially reversible after
treatment).

Increased risk of fractures.
Osteoporosis.

Possible delay/attenuation of PBM.

Trabecular bone (lumbar spine), but also
observed in hip, proximal femur, and radius.

Proton pump inhibitors
Increased risk of fractures.

Osteoporosis.
Possible decrease in BMD.

Any site, but in particular at the hips and lumbar
vertebrae.

Antiretroviral therapy

Decrease in BMD, osteopenia, osteoporosis,
osteonecrosis, osteomalacia, increased risk of

fractures.
Charcot joint (indirectly).

Throughout the skeleton, particularly at the
femora, lumbar vertebrae and hips.

Osteonecrosis on proximal femora, sometimes
bilateral.

Antidepressant drugs

Reduced estrogen production.
Osteoporosis.

Increased risk of fracture.
Decrease in bone mineral density.

Throughout skeleton. Osteoporotic fracture sites.

Anti-epileptic drugs
Decrease in bone mineral density and osteoporosis,

increased risk of fracture, retarded growth and
stunting.

Throughout skeleton.

Antidiabetic drugs
Decrease in bone mineral density, alteration of
bone microstructure, increase risk of fractures,

possibly osteoarthritis.

Throughout skeleton but increase risk in fracture
particularly related to osteoporotic fracture sites.

Antiresorptive drugs Osteonecrosis of the jaw. In particular the mandible.

Antithrombotic drugs Decrease in bone mineral density, increase risk of
fractures and impaired fracture healing.

Throughout skeleton. Fractures at osteoporotic
fracture sites.

Table 2 summarizes those drugs that particularly lead to loss of bone mineral density,
potentially osteoporosis and risk of fracture. An additional column for bone destruction as
also been included.

In addition, it is worth stating that apart from knowing the effects of drugs on bone
there is potential to investigate these post-mortem through toxicological analysis of the
bone. As drugs can be incorporated into bone through superficial arteries, born in the
periosteal network, which later diffuse into the peripheral layer of the compact bone; or they
can circulate through deep arteries and nutrient foramina toward the spongy bone tissue
to terminate in the bone trabeculae and bone marrow; within the bone matrix, drugs can
remain for instance in hydroxyapatite and be incorporated into the inorganic matrix through
bone remodeling. Through these mechanisms, drugs can be preserved and detected in bone
tissue even after a long post-mortem interval [18,27]. As evidenced in Table 3, toxicological
analyses have been performed on various bone samples such as the cranium, rib, femur,
vertebra, clavicle, and iliac crest [27,273,274]. As a result, the literature (Table 3) reports the
detection of MDA (amphetamine), ketamine (anesthetic), pregabalin and carbamazepine
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(anticonvulsant drugs), diphenhydramine (antihistamine drug), atenolol and bisoprolol
(antihypertensive drugs), caffeine, cocaine and its metabolite (stimulants), THCCOOH
(metabolite of THC, a cannabinoid), laudanosine (metabolite of atracurium, a curare), as
well as many antidepressants, antipsychotic drugs, benzodiazepines and opioids.

Table 2. Summary of effects on bones according to the drug class discussed in this paper. The
absence of any information in the cells does not necessarily mean that these changes do not occur in a
particular drug, but it has not been noted in the literature consulted for this paper. Code: Y = yes.

Decreased
BMD/Osteoporosis Increased Risk of Fractures Bone Destruction/Osteonecrosis

Cocaine Y

Methadone Y Y Y

Heroin Y Y Y

Amphetamines Y Y

Cannabinoids Y?

Alcohol Y Y Y

Tobacco Y Y

Oral glucocorticoids Y Y

NSAIDs Possibly Y (low doses) Possibly Y (when BMD is
decreased)

Paracetamol Possibly Y Possibly Y

GnRH agonist Y Y

Proton pump inhibitors Y Y

Antiretroviral therapy Y Y Y

Antidepressant drugs Y Y

Anti-epileptic drugs Y Y

Antidiabetic drugs Y Y

Antiresorptive drugs Y

Antithrombotic drugs Y Y

Table 3. Table that summarizes substances so far detected in bone through toxicological analyses in
different studies. The table lists the substances, the study, the site of sampling, and the number of
skeletons analyzed in the study.

Class of Molecules Drugs Bone Samples Number of Individuals
Analyzed Reference

A
m

ph
et

am
in

es

MDA Cranium 7 [27]

A
ne

st
he

ti
cs

Ketamine Cranium,
rib 19 [190]
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Table 3. Cont.

Class of Molecules Drugs Bone Samples Number of Individuals
Analyzed Reference

A
nt

ic
on

vu
ls

an
t

dr
ug

s

Pregabalin Rib 3 [189]

Carbamazepine Femur 36 [275]

A
nt

id
ep

re
ss

an
ts

Amitriptyline

Iliac crest, vertebra 39 [22]

Femur 36 [275]

Femur 6 [23]

Rib 7 [276]

Citalopram
Cranium, rib 19 [190]

Iliac crest, vertebra 39 [22]

Dothiepin Femur 36 [275]

Doxepin Femur 36 [275]

Duloxetine Rib 7 [276]

Mianserin Femur 36 [275]

Moclobemide Femur 36 [275]

Nordoxepin
(Metabolite of doxepin) Femur 36 [275]

Nortriptyline Femur 36 [275]

Trazodone Cranium, rib 19 [190]

Venlafaxine
Cranium, rib 19 [190]

Rib 7 [276]

A
nt

ih
is

ta
m

in
e

dr
ug

s

Diphenhydramine Iliac crest, vertebra 39 [22]

A
nt

ih
yp

er
te

ns
iv

e
dr

ug
s

Atenolol Rib 2 [277]

Bisoprolol Rib 2 [277]

A
nt

ip
sy

ch
ot

ic
s

Chlorpromazine Femur 36 [275]

Clozapine Femur 36 [275]

Haloperidol Cranium, rib 19 [190]

Mesoridazine Femur 36 [275]

Promazine Cranium, rib 19 [190]

Quetiapine
Cranium 19 [190]

Rib 3 [189]

Thioridazine Femur 36 [275]

Be
nz

od
ia

ze
pi

ne
s

Alprazolam Cranium, rib 19 [190]

Bromazepam Femur 6 [23]

Delorazepam
Vertebra, rib 7 [27]

Cranium, rib 19 [190]

Diazepam

Cranium vertebra, rib 7 [27]

Cranium, rib 19 [190]

Iliac crest, vertebra 39 [22]

Femur 36 [275]

Femur 6 [23]

Flurazepam Cranium, rib 19 [190]
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Table 3. Cont.

Class of Molecules Drugs Bone Samples Number of Individuals
Analyzed Reference

Lorazepam Cranium 7 [27]

Cranium, rib 19 [190]

Lormetazepam Cranium, rib 19 [190]

Nordiazepam

Vertebra 7 [27]

Cranium, rib 19 [190]

Iliac crest, vertebra 39 [22]

Femur 36 [275]

Femur 6 [23]

Oxazepam Femur 36 [275]

Temazepam Femur 36 [275]

C
an

na
bi

no
id

s

THCCOOH
(Metabolite of THC) Rib 7 [27]

C
ur

ar
e

Laudanosine
(Metabolite of atracurium) Iliac crest, vertebra 39 [22]

O
pi

oi
ds

6-MAM Rib 6 [278]

Buprenorphine Vertebra 7 [27]

Codeine

Iliac crest, vertebra 39 [22]

Femur 36 [275]

Femur 6 [23]

Clavicle 3 [279]

Meperidine Iliac crest, vertebra 39 [22]

Methadone

Cranium vertebra, rib 7 [27]

Rib 6 [278]

Femur 36 [275]

Morphine

Rib 6 [278]

Femur 6 [23]

Femur 1 [280]

Clavicle 3 [279]

Norpropoxyphene
(Metabolite of propoxyphene)

Iliac crest, vertebra 39 [22]

Femur 36 [275]

Oxycodone
Iliac crest, vertebra 39 [22]

Femur 36 [275]

Propoxyphene Iliac crest, vertebra 39 [22]

Femur 36 [275]

Tramadol
Cranium, rib 19 [190]

Rib 6 [278]

St
im

ul
an

ts

Caffeine Femur 36 [275]

Cocaine
Cranium, rib 19 [190]

Femur 6 [23]

Benzoylecgonine
(Metabolite of cocaine)

Vertebra, rib 7 [27]

Cranium, rib 19 [190]

Rib 6 [278]

Iliac crest, vertebra 39 [22]

Femur 6 [23]

Although further research is required, results have shown that these drugs can be
detected years after death.
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4. Discussion

The aim of this paper is to increase awareness for forensic anthropologists on the
effects that medication and drugs can have on the skeleton. This awareness will help with
any considerations in forensic practice but it also opens new avenues for research. Prior
to discussing the specific implications for biological profile and personal identification,
a number of limitations need to be highlighted first.

4.1. Limitations

One of the limitations to highlight is that many if not most of these medications or
drugs have similar effects on bones, and rarely are any of these changes pathognomonic
to a specific drug, let alone other factors that can influence the alteration to the skeleton.
For example, many of the drug classes described above will result in lower bone mineral
density, and increase risk of osteoporosis and osteoporotic fractures. In turn, some drugs
induce osteoporosis, for example, but osteoporosis can also occur as a natural disease.

A second and important limitation is that this study has taken each class of drug
separately. Whilst a person may take one specific medication, this paper has not considered
a combination of different drug classes and its effect on the skeleton. For example, the
consumption of opioids in addition to prolonged alcohol ingestion. Furthermore, the effects
after drug intake must be examined in detail to assess how long before any effects are
reversed. This is beyond the scope of this paper.

Another difficulty in interpreting bone changes possibly related to drugs is that these
may be influenced by a number of variables, including dosage, method of administration,
and duration of treatment. All of these will have a different effect on the skeleton. One
such example is cocaine, which if snorted, can cause destruction of the palatine and nasal
bones [30]. The biological age of the individual as well as sex may also influence the effects
on the skeleton.

Similar to palaeopathology or pathological alterations to the skeleton, diagnosis will
be reliant on bone preservation, bone condition, skeletal completeness, distribution of the
lesions over the skeleton, if unilateral or bilateral, etc. In addition, if bone mineral density
is to be observed it is likely that specific imaging techniques are necessary, rather than a
direct visual assessments of the bones.

As with many of the other drugs, a full understanding of each drug and its relation
to the skeleton is not always clear, and is often dependent on age, sex and lifestyle factors.
Moreover, to be more relevant to the forensic anthropologist, a more specific description of
the skeletal lesions may be required, for example detailed information on osteonecrosis of
the jaw including shape and dimensions of lesion, etc.

4.2. Implications for Forensic Anthropology: Effects on Age-at-Death, Sex Estimation and
Other Parameters

As there has not been a published study in forensic anthropology regarding specifi-
cally how these drugs affect age and sex estimation methods, no definitive answer can be
given. However, having observed some of the effects on the skeleton with some drugs, it
can be hypothesized that some of these are likely to affect the indicators for age-at-death
and sex estimation. Importantly, there may be issues around age estimation in the living,
especially around skeletal growth. For age-at-death estimation, costal cartilage or pubic
symphysis morphology may have been affected. For instance, if the individual presents
with osteoporotic bones but is otherwise young, drugs such as corticosteroids, glucocorti-
coids, aromatase inhibitors and Depo-Provera could have resulted in this decreased bone
density. Sex hormones may alter some sexual diagnostic features with more gracile bones
and smaller muscle attachments, thus analysis of sex could be estimated incorrectly.

4.2.1. Implications for Personal Identification

Alterations of bone mineral density, such as osteopenia and osteoporosis, and their
consequent increased risk of fractures are the most common effects of drugs on bones
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as reported by the literature. However, due to their non-specificity, it is not possible to
directly link these bone changes to the use of particular therapy drugs or drugs of abuse, as
they could also be the outcome of normal ageing, other pathological conditions (such as
endocrine disorders, eating disorders, immobilization, marrow-related disorders, disorders
of the gastrointestinal or biliary tract, renal disease, and cancer) [281] and traumatic events;
all potentially unrelated to the consumption of drugs. Table 4 proposes some possible
influences of drugs in the reconstruction of the biological profile.

Table 4. Awareness of how drugs could affect biological profile reconstruction in forensic anthropology.

Possible Effects Observations

Age-at-death

Delayed maturation, pre-mature (costal)
cartilage calcification, pubic symphysis
morphology, joint disease, osteoporosis,

tooth loss.

Likely age overestimation in adults. May
require imaging such as body CT scans.

Moreover, similar effects when estimation
the age of a living person. If anomalies in

age indicators perhaps enquire re
medication and lifestyle environment.

Sex estimation Possible morphological changes in pelvis
and skull.

Misdiagnosis. Research in transgender
individuals required too.

Physical attributes (stature, ancestry or
population affinity)

Morphological assessment of nasal area
may be altered by drug abuse.

Stunted growth.
Ancestry estimation, stature.

Unique features Osteonecrosis of the jaw, dental problems,
fracture patterns.

May be able to indicate some possible
medications or be consistent with

medication intake.

In addition, results from forensic toxicology as seen in Table 3, in conjunction with
skeletal changes that may be drug related, could help identification by adding to the
biological profile.

5. Conclusions

Given the number of people taking drugs (including drugs of abuse and prescription
medication) today, the aim of this paper was to present the main drugs that according
to the medical and anthropological literature consulted for this paper have the potential
to affect the skeleton directly. Through an extensive literature review, the information
was evaluated and extrapolated from a forensic anthropology perspective, considering the
impact for the reconstruction of a biological profile when studying unidentified human
remains; or at least increase an awareness of possible alterations of the skeleton due to drugs
and medication. The list of drug categories included here is more generic and does not
address particular names of drugs or brands, or venture in any detailed characteristics of
any alteration. Nevertheless, it provides an awareness on how drugs can possibly influence
age-at-death, sex, stature and ancestry or biological affinity estimation, amongst other traits
such as pathological conditions.

A number of questions arise from this review. One is that further research could target
how medication may be affecting particular landmarks or refining those bone characteristics
(e.g., location, dimensions, unilateral vs. bilateral, etc.), which may be used for biological
reconstruction in forensic casework. Second, is that it may be worth seeing in terms of
research what medical history a deceased had and explore whether this may have left
any traits observed on their remains. Furthermore, it may be possible to consider medical
history during our analysis of the individual, with regard to medication, in particular
if forensic anthropologists have a medical background, or in conjunction with forensic
pathologists and odontologists. As stable isotopes are also being used in forensic casework,
a more in depth understanding of bone turnover may be worth exploring.

Although these modifications on the skeleton are not uniquely specific to a given
substance, they can suggest drug intake in the differential diagnosis. This is therefore an
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important piece information to be considered in forensic anthropological practice as it may
implement the biological profile with unique information and improve accuracy in the
application of standard methods and the interpretation of results. However, more research
is needed to characterize with precision the effects of drugs on bones, and to clarify their
influence on anthropological methods, for instance through the examination of skeletons
with a known medical history of drug use. The knowledge reviewed in this study may be
used in support or as basis for further research in forensic anthropology, but also potentially
in the medical and pharmacological fields for/such as data to be shared more specifically.
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Simple Summary: In forensic anthropology, estimating the age-at-death of young juvenile skeletons
is crucial as a direct determinant of legal issues in many countries. Most methods published for
this purpose are based on either maturation or growth processes (two essential components of
development) and focus on “normal” (i.e., nonpathological) growth. However, when the osseous
remains available for study are from an individual that experienced an altered growth process,
age estimation may be biased, and accounting for this would be helpful for potentially avoiding
inaccuracies in estimation. In this research, we developed a method based on the combined evaluation
of both maturation and growth. Maturation is evaluated by the conformation of the pars basilaris, a
bone at the skull base that provides an indirect estimate of brain maturation, while growth is assessed
using femoral biometry. The method was tested on two medical validation samples of normal and
pathological individuals. The results show that it was possible to identify “uncoupling” between
maturation and growth in 22.8% of the pathological individuals. Highlighting potential uncoupling
is therefore an essential step in assessing the confidence of an age estimate, and its presence should
lead experts to be cautious in their conclusions in court.

Abstract: The coupling between maturation and growth in the age estimation of young individuals
with altered growth processes was analyzed in this study, whereby the age was determined using a
geometric morphometrics method. A medical sample comprising 223 fetuses and infants was used to
establish the method. The pars basilaris shapes, quantified by elliptic Fourier analysis, were grouped
into consensus stages to characterize the maturation process along increasing age groups. Each pars
basilaris maturation stage was “coupled” to biometry by defining an associated femur length range.
The method was tested on a validation sample of 42 normal individuals and a pathological sample of
114 individuals whose pathologies were medically assessed. Couplings were present in 90.48% of the
normal sample and 77.19% of the pathological sample. The method was able to detect “uncoupling”
(i.e., possibly altered growth) in more than 22.8% of samples, even if there was no visible traces of
pathology on bones in most cases. In conclusion, experts should be warned that living conditions
may cause alterations in the development of young individuals in terms of uncoupling, and that the
age-at-death estimation based on long bone biometry could be biased. In a forensic context, when age
has been estimated in cases where uncoupling is present, experts should be careful to take potential
inaccuracies into account when forming their conclusions.

Keywords: forensic anthropology; age estimation; femur length; pars basilaris shape; inverse Fourier
transform; geometric morphometrics
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1. Introduction

Estimating an individual’s age-at-death from skeletal remains is one of the major issues
in biological and forensic anthropology when assessing a biological profile. In the case of
young individual skeletons, age-at-death is crucial to any analysis of biological remains. In
forensic anthropology, a fetus’s legal personality is dependent on fetal age estimation, with
the resulting social, ethical, and economic consequences [1], and the assessment of fetal
viability and legislation on abortion and infanticide are also directly dependent on fetal
and infant age estimation—hence contributing to the need and importance of developing
reliable and accurate methods.

Several fetal and infant age-at-death estimation methods have been established. Most
of these are osteometric, radiographic, or ultrasound methods [2–20]. They can be devel-
opment based, which aim to estimate physiological age based on maturation processes
(e.g., skeletal morphology, appearance and maturation of secondary ossification centers,
maturation of dental germs), or biometric based, which rely on growth processes (e.g.,
crown–rump length, cranial and abdominal perimeters, and the maximum length of long
bones).

However, the question of living conditions and, therefore, the context in which the
development of a young juvenile took place can remain unanswered. Most methods assume
that these conditions are “favorable” or “normal”, though these can obviously be disturbed
by any pathological conditions experienced by the mother or child. In other words, the
ontogenetic trajectory—the child’s developmental trajectory—is likely to be altered.

It is generally accepted that brain maturation is the best criterion to establish physio-
logical age during early development, regardless of the environmental or socioeconomic
conditions, even in cases of fetal or maternal pathologies [21–23]. The brain unfortunately
undergoes rapid autolysis after death (within approximately 48 h) and can no longer be
studied, but it has an influence on skull base osseous structures [24–31]. Therefore, these
structures can be considered to be indirect and taphonomically resistant testaments of brain
maturation.

To establish a biometric age, it is accepted that femoral length is the most reliable and
accurate estimation indicator [3,7–9,32]. Nevertheless, growth-based age estimation may be
biased in cases of growth delay or growth advancement caused by pathological conditions.
These conditions are difficult to detect because most pathologies leave little or no trace on
fetal and infant bones. Sherwood et al. [32] demonstrated that diseases causing abnormally
short femurs (such as trisomy 21 or Turner syndrome) or abnormally long femurs (such as
spina bifida) can lead to inaccuracies of up to almost four weeks in fetuses when estimating
age at death.

Therefore, when only using femoral length without considering possible alterations in
developmental conditions, one cannot know whether the age at death will be underesti-
mated, correct, or overestimated with respect to the chronological age (real age).

Our biological hypothesis is that the physiological age (maturation) is more reliable
and stable than the biometric age (growth), and that these two “different kinds of ages”
are coupled for nonpathological individuals. Accepting this hypothesis, it can be argued
that living conditions, whether they are simply “changing” or truly “unfavorable” to
development, influence biometric growth more than maturation.

This “coupling” or agreement between maturation and growth processes could be
used to assess and control fetal and infant age-at-death estimation, targeting individuals
with growth variation due to possible pathological conditions. As a consequence, the
demonstration of the “uncoupling” of these two processes would be an indication, or
even serve as an alert, that the accuracy of the age-at-death estimation of a young juvenile
skeleton must be considered with great caution.

As a direct indicator of skull base maturation and therefore an indirect indicator of
brain (and thus general) maturation, we chose to use the pars basilaris of the future occipital
bone [33–36]. We quantified its degree of maturation with geometric morphometric analyses
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from its outline shape. The estimation of biometric age (growth) was based on the maximum
diaphyseal length of the femur.

These two bones are both dense and compact [11,37,38], and they are generally found
to be in good preservation states considering forensic and archaeological contexts [11,37].

Using computerized tomography (CT) scan imaging of fetuses and infants with non-
pathological conditions, the aim of our study was to develop a method based on the
expected coupling between maturation and growth to detect possible growth variation.

Once established on a medical imaging sample (learning sample) of nonpathological
individuals, the method was applied to a separate validation medical sample of non-
pathological individuals and another sample of individuals whose pathologies were fully
documented.

If an individual presents the “normal” (i.e., nonpathological) coupling variability
established by the learning sample, the hypothesis of an alteration of his ontogenetic
trajectory can be proposed. It is then necessary to discuss the potential reason for this
alteration (growth delay or advancement in connection or otherwise with an identified
pathology). Regardless, this study shows that estimated age must be considered with
caution.

2. Materials and Methods
2.1. Sample

An anonymized database composed of 1136 individuals aged between 11 weeks in
utero and 20 years old was compiled within UMR 7268 ADES (AMU-CNRS-EFS). From
this, a medical imaging sample of 379 individuals aged 16 weeks in utero to approximately
one and a half years (17.7 months) was derived.

2.1.1. Normal and Pathological Development

The studied population was divided into three samples. A learning sample (A)
comprising 223 fetuses and infants with nonpathological conditions (77 girls, 115 boys, and
31 of unknown sex) ranging from 16 fetal weeks to 77 postnatal weeks (mean age: 33.28 fetal
weeks; Figure 1) was used to establish the method. A second sample (B) comprising 42
fetuses and infants ranging between 18 fetal weeks and 61 postnatal weeks (mean age:
34.69 fetal weeks; Figure 1) was used as a separate validation sample. Given that the
available age classes were not homogeneous for normal individuals, random selection by
age classes was conducted to ensure a good representation of age; the selection comprised
approximately 85% for the learning sample and 15% for the validation sample.

For our analyses, the ages of fetuses (based on accurate reports of the mother’s last
normal menstrual period and ultrasound data obtained at 10 weeks of gestation, which is
an obligatory examination under French law) and infants were expressed in weeks: from
16 to 38 weeks for fetuses and from 39 to 115 weeks for postnatal individuals. This means
that a “45-week-old” individual is actually an individual aged 45 weeks minus 38 weeks
(average length of pregnancy), which corresponds to 7 postnatal weeks.

Nonpathological conditions were essential for sample A and B individuals. The
conditions considered for mothers were the absence of congenital disease, diabetes, or
arterial hypertension. The nonpathological conditions of fetuses (such as the absence
of external or visceral malformation, the absence of bone anomaly on a CT scan, the
absence of cerebral anomaly on MRI, and normal karyotypes) were established based
on multidisciplinary ante mortem and post mortem examinations conducted by medical
experts of the prenatal diagnosis center. Concerning infants, CT scans allowed us to verify
developmental normality. Examinations were performed in cases of road accidents, sudden
or unexpected infant death syndrome, and forensic investigations.

Fetuses and infants with identified pathological conditions were included in a third
sample (C) comprising 114 fetuses and infants (61 girls, 47 boys, and 6 of unknown sex)
ranging from 16 fetal weeks to 47 postnatal weeks (mean age: 27.24 fetal weeks) (Figure 1C).
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Figure 1. Age (in weeks) and sex distribution of the learning sample (A) comprising 223 individuals
and the validation sample (B) comprising 42 individuals. Age (in weeks) and sex distribution of the
pathological sample (C) comprising 114 individuals.

2.1.2. Pathologies Groups

Depending on the pathological conditions, the following subgroups were established:

- Constitutional bone diseases or CBD (Ellis–van Creveld syndrome, thanatophoric
dysplasia, achondroplasia, Jeune syndrome, facial femoral syndrome, VACTERL
association, and harlequin ichthyosis = 14%);

- Growth disorders or conditions justifying differentiated growth or GD (intrauterine
growth retardation, macrosomia/diabetes, and twin pregnancy = 39%);

- Localized anomalies or LA (skull, polymalformative syndrome, limbs, and spine = 23%);
- Cerebral anomalies or CA (21%);
- Chromosomal anomalies or CHRA (trisomy 21 and trisomy 18 = 3%).

The same individual could be classified in several types of pathologies, such as a
localized anomaly and a cerebral anomaly.

2.2. Data Acquisition

The ante mortem and post mortem CT scans of sample A, B, and C individuals were
collected from the Picture Archiving and Communication System (PACS) in the hospital
of Marseilles (Assistance Publique—Hôpitaux de Marseille, France). Individuals were
scanned using a helical CT scanner (Somatom Sensation Cardiac 64; Siemens, Erlangen,
Germany). The scanning parameters were as follows: voltage of 100–140 kVp, amperage
of 50–180 mAs, 512 × 512 pixels, resolution of 0.25–4.87 pixels per mm, voxel size of
approximatively 0.5 × 0.5 × 0.6 or 1 mm3, and a slice thickness of 0.6–1 mm. These high-
resolution native slices recorded in the Digital Imaging and Communications in Medicine
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(DICOM) format were anonymized before being used in the study, in accordance with the
standards of the French National Consultative Ethics Committee for health and life sciences
(CCNE) and the Helsinki Declaration of 1975 concerning the privacy and confidentiality of
personal data.

2.3. Bone Reconstruction

Before reconstructing the femur and pars basilaris in three dimensions (3D), region of
interest (ROI) segmentation on the DICOM slices was performed with the ImageJ®v1.51
software (National Institutes of Health, Bethesda, MD, USA) to separate the bone from
adjacent tissues. The threshold value was obtained by calculating a threshold mean value
(TMV) [38], which is an average of the half-maximum height (HMH) values [39]. The TMV
was used in Avizo Standard Edition (v.7.0.0®, Visualization Sciences Group, SAS, Berlin,
Germany) to reconstruct the 3D bone surfaces.

Since there are no significant differences between the right and left femur in young
juveniles [3,9,10,40–42] and convention suggests that the left femur is preferred, we only
measured the right femur when the left was not available.

2.4. Maturation Criterion: Elliptic Fourier Analysis of the Pars Basilaris

The complete protocol was described by Niel et al. [43] and was used in this study.

2.4.1. Outline Process

Briefly, we defined a homologous reference plane for all the pars basilaris in the inferior
(external) view. This was defined thanks to two type II and one type III landmarks [44].
Type II landmarks are the most posterior point of the left and right horns, and a type III
landmark is the central point of the anterior surface. All landmarks were digitized on 3D
reconstructed surfaces using Avizo Standard Edition® software.

This step allowed us to project all reconstructions in the same 2D plane and with the
same orientation. Then, outline shapes were quantified according to 150 equally linearly
spaced points digitized along the pars basilaris contour with the tpsDig2 v.2.17® digitiza-
tion program [45]. Finally, the contour data of the pars basilaris were normalized using
generalized Procrustes analysis (GPA) [46–49] based on four type II and III homologous
landmarks [44] called control points [46].

2.4.2. Measurement Error

Repeatability (intra-observer error) and reproducibility tests (inter-observer error)
were realized to validate the protocol on 30 randomly selected individuals in sample A.
Repeatability was tested by the same observer repeating the protocol twice several weeks
apart; for reproducibility, a second observer applied the protocol once.

2.4.3. Harmonics Number

With EFA, one may wonder what the appropriate number of harmonics is, since
this number determines the accuracy of the contour reconstruction. The following two
paragraphs of text is the explanation as reproduced from Niel et al. pp. 37–38 [43]:

According to the Nyquist theorem [50], the harmonic number must be less than half
the number of sampled outline points. Consequently, on the 150 points sampled for EFA,
only the first 74 harmonics were retained for analysis. Given that we cannot retain all
the Fourier coefficients for our analysis” (74 harmonics × 4 coefficients = 296 coefficients),
because the measurement error is expected to increase with harmonic ranks, the percentage
of error on harmonic coefficients was calculated using a Procrustes analysis of variance
(ANOVA) on the three sessions [51]. This procedure calculated the mean sums of squares
for the four coefficients of each harmonic to observe the evolution of error according to the
rank of the harmonics (in percentage). Only the first harmonics, showing an acceptable
digitization error rate, were retained for further analyses. An error rate under 35% is
considered to be reasonable in an outline analysis using EFA [51].
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The assessment of the total percentage of measurement error was then performed
using a Procrustes ANOVA [51–55] adapted to elliptic Fourier coefficients [51]. The Fourier
coefficients of the coupled series are used in the Procrustes ANOVA with the number
of harmonics previously defined. The intra- and interindividual variances were directly
calculated from the means of the sums of squares and crossed products corresponding
to individuals and residual sources of variation [51]. These residuals, representing the
variability between the two sessions, correspond to the measurement error [55].

2.5. Coupling between Maturation and Growth Process
2.5.1. Maturation Criterion: Shape Stages

Maturation stages were established on the pars basilaris shapes of the nonpathological
learning sample A to visualize the pars basilaris morphological changes through time. With
this sample, consensus shapes from 4 to 26 weeks with overlap every 2 to 13 weeks were
created, which enabled us to have intermediate shapes and, thus, a continuous vision of
maturation from 16 weeks in utero to 77 postnatal weeks. Thus, 19 stages of consensus
shapes, defined by the mean of 5–52 shapes depending on stages, were obtained (Table 1).
Then, to visualize and compare the morphology of each consensus shape, the pars basilaris
outlines were reconstructed from Fourier coefficients with the inverse Fourier transform
function [56–58].

Table 1. Sample A: age group (in weeks), number of weeks, and number of individuals according to
the 19 pars basilaris maturation stages as well as femoral growth in percentiles (minimal values of
0–10, 10, 50, and 90 and maximal value of 100 + 10, in millimeters).

Stage Age Group
(Weeks)

Number of
Weeks

Number of
Individuals

Percentiles

0–10 10 50 90 100 + 10

1 16–19 4 9 22.11 25.57 30.09 35.33 40.08
2 18–21 4 34 23.41 31.58 37.93 41.12 46.34
3 20–23 4 52 27.71 34.73 39.42 44.36 51.21
4 22–25 4 36 32.25 36.88 43.19 47.18 54.30
5 24–27 4 28 33.41 43.17 49.34 54.97 58.60
6 26–29 4 37 38.74 48.04 52.20 56.72 63.89
7 28–31 4 50 43.60 51.15 56.70 60.42 65.57
8 30–33 4 51 46.62 56.22 59.28 62.54 72.43
9 32–35 4 36 51.58 58.09 62.53 66.44 81.15

10 34–37 4 23 61.72 63.59 65.56 71.68 75.91
11 36–40 5 14 61.55 65.66 71.14 76.48 79.70
12 38–44 7 8 71.60 73.41 77.71 88.29 102.87
13 41–51 11 9 79.18 82.26 90.68 94.95 96.20
14 44–57 14 15 75.98 85.46 94.79 104.14 105.43
15 51–66 16 13 87.78 94.42 103.51 111.75 122.13
16 58–78 21 10 97.49 107.55 112.40 117.30 118.52
17 67–92 26 9 104.94 111.99 117.91 135.63 164.87
18 79–104 26 7 121.72 123.99 132.02 151.45 155.06
19 92–115 24 5 131.92 132.13 149.79 152.05 154.46

2.5.2. Growth Criterion: Femoral Lengths

Femoral diaphysis lengths were measured (in millimeters) on Avizo Standard Edition®.
Percentiles were calculated from sample A according to each maturation stage of the pars
basilaris and used as growth criteria (Table 1). To include a greater range, a margin of
ten percentiles was added at each extreme, calculated as the difference between 0 and
10 percentiles and between 100 and 90 percentiles, thus providing 0–10 percentiles and
100 + 10 percentiles, respectively (Table 1).
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2.6. Statistical and Morphometric Analyses
2.6.1. Bilateral Femoral Asymmetry and Sex Effect on the Variables

Between-sex comparisons of the pars basilaris shapes were explored using nonparamet-
ric multivariate ANOVA (MANOVA) [59], and the between-sex comparison of the femoral
lengths was performed using Kruskal–Wallis rank sum testing. The bilateral femoral
asymmetry was explored using a t-test.

2.6.2. Application of the Coupling Method in Samples B and C

Each pars basilaris of samples B and C was tested, one at a time, by comparison with the
19 stages representing the maturation consensus shapes. Once the outlines were quantified
with EFA after the GPA procedure, assigning a maturation stage to the tested pars basilaris
was realized by calculating the Euclidian distance (or Procrustes distance) between the
centroids of the 19 consensus stages and the tested (compared) shape [60,61]. The minimal
distance between the centroid of the tested pars basilaris and one of the 19 consensus shapes
allowed for the assignation of a stage to the pars basilaris.

For growth, the measurement of the tested individual femoral length was compared
to the range expected for the defined maturation stage (Table 1). If this measurement was
found to be within the expected range, we considered that growth corresponded to the
maturation stage values and there was “coupling”. Then, it could be concluded that growth
was “normal” (i.e., nonpathological). On the contrary, if growth did not correspond to the
maturation stage values, then “uncoupling” had occurred.

Analyses were performed using RStudio (developed for R software—Version 1.1.383—
® 2009–2017 RStudio, Inc., Boston, United States) and the software packages Momocs [62],
Morpho [63], geomorph [64], car [65], gap [66], efourier, and iefourier functions [56].

3. Results
3.1. Quantification of Pars Basilaris Shapes
3.1.1. Number of Harmonics

The percentage of measurement error was inferior to the threshold defined at 10%
for the first 14 harmonics, corresponding to 56 Fourier coefficients per individual. This
allowed us to faithfully reconstruct the outline of the pars basilaris (Figure 2).
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3.1.2. Measurement Error

The percentage of measurement error for the outline protocol is 1.13% for repeatability
and 1.96% for reproducibility for the selected first 14 harmonics. This protocol is reliable
and reproducible.

3.2. Between-Sex Differences and Femoral Length

The nonparametric MANOVA showed that there were no significant shape differences
between sex groups (F = 1.503, df = 2, p = 0.199) and the femoral lengths were not sig-

69



Biology 2022, 11, 200

nificantly different between sex groups (p = 0.706). Additionally, there was no bilateral
asymmetry (p = 0.239) between the right and left femoral diaphysis.

3.3. Coupling between Maturation and Growth

The maturation and growth criteria are summarized in Figure 3. Each maturation
stage corresponds to a range of femur lengths defined by the lower bound (0–10 percentiles)
and the upper bound (100 + 10 percentiles), corresponding to the extremes.
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Method Application

The method was applied to the validation sample B and the pathological sample
C to verify whether growth and maturation were coupled or, in other words, whether
the individual’s growth corresponded to the values expected by their maturation stage
(Figure 3).

In sample B, we observed coupling in 90.48% of samples. The four cases where
uncoupling was detected correspond to two growth delays (−4.82 and −1.70 mm) and two
growth advancements (+1.26 and +13.13 mm). These values were calculated by subtracting
the femoral length of the tested individual (XT) at the upper (Is) or lower (Ii) values of the
expected interval for the maturation stage, depending on whether individual measurement
was inferior or superior to the interval.

For a measurement inferior to the interval:

XT − Ii = −x or growth delay,

For a measurement superior to the interval:

XT − Is = +x or growth advancement.

In sample C, 26 individuals (22.81% of the sample) showed uncoupling. Most of them
were girls (61.5%). Uncoupling in these cases corresponded to 14 cases of growth delay
(from −23.02 to −1 mm) and 12 cases of growth advancement (from +0.43 to +6.61 mm).

Regarding the subgroups of pathological conditions for uncoupling, LA was the
most represented (29%), followed by CBD (26%) and GD (26%) in equal parts; CA was
the least represented (19%). More precisely, individuals in the LA subgroup who were
most likely to have uncoupling were those presenting a cranial anomaly (45%), followed
by polymalformative syndromes (33%) and limb anomalies (11%). In the GD subgroup,
IUGR was the most common pathology (50%), followed by macrosomia/diabetes (37%).
Then, among individuals with CBD, uncoupling was more frequently observed for the
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thanatophoric dysplasia cases (25%) and in relatively equal parts for the other diseases.
Finally, CA was the least frequent in uncoupled individuals (19%) (Figure 4).
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them were girls (61.5%). Uncoupling in these cases corresponded to 14 cases of growth 

delay (from −23.02 to −1 mm) and 12 cases of growth advancement (from +0.43 to +6.61 

mm). 

Regarding the subgroups of pathological conditions for uncoupling, LA was the 

most represented (29%), followed by CBD (26%) and GD (26%) in equal parts; CA was 

the least represented (19%). More precisely, individuals in the LA subgroup who were 

most likely to have uncoupling were those presenting a cranial anomaly (45%), followed 

by polymalformative syndromes (33%) and limb anomalies (11%). In the GD subgroup, 

IUGR was the most common pathology (50%), followed by macrosomia/diabetes (37%). 

Then, among individuals with CBD, uncoupling was more frequently observed for the 

thanatophoric dysplasia cases (25%) and in relatively equal parts for the other diseases. 

Finally, CA was the least frequent in uncoupled individuals (19%) (Figure 5). 

 

Figure 5. Chart summarizing the subgroups and the detailed pathological conditions for individu-

als in the medical imaging sample with uncoupling. IUGR = intrauterine growth retardation. 

Figure 4. Chart summarizing the subgroups and the detailed pathological conditions for individuals
in the medical imaging sample with uncoupling. IUGR = intrauterine growth retardation.

4. Discussion
4.1. The Fetus and Infant Sample

In France, since the advent of prenatal diagnosis centers (Decree 97–578 of 28 May
1997, consolidated on 11 May 2018, France), fetuses have been systematically examined in
cases of medically interrupted pregnancy or spontaneous death (miscarriages and in utero
deaths). A panel of experts’ analyses medical records follows ante mortem (CT scan in
utero) and post mortem (complete visceral examination, histological study, fetal karyotype,
placenta examination, description of external and visceral abnormalities, and front and
profile radiography) examinations. After respecting a strict anonymization protocol, we
could access these examinations records and be informed about malformations (bone or
visceral), chromosomal abnormalities, or even the precise determination of the cause of
death.

For sudden and unexpected infant death and forensic cases, CT scans and autopsies
are performed only with the written consent of the parents. Not all parents agreed, which
is why there were few available exams. Moreover, sudden and unexpected infant death
generally occurs before the age of one year according to the High Authority for Health,
which stated in its 2007 report that 80% of sudden infant deaths occur before the age of
6 months, with a peak at 2–3 months. This is consistent with the age distribution of our
study sample.

For children aged more than 1 year, we could access some rare autopsy reports and
some ante mortem CT scans, which are mostly performed for infants who have fallen or
have been in a car accident. Cases are rather rare, and when they exist, the whole body is
rarely examined to avoid unnecessary radiation. For our analyses, however, we required
images that at least included the portion of the body from the skull base to the proximal
end of the tibia. All of these elements made it difficult for us to obtain a large sample of
fetuses and infants and almost impossible to have homogeneous age groups.

The second difficulty in studying young individuals concerns the CT scan quality. We
first sorted the CT scans according to their image quality as excellent, average, or poor.
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This sorting forced us to rule out many examinations that were not exploitable for our
study (due to flowing bone surfaces, incomplete bone, and irregular contours). It should be
recalled that fetal X-ray exposure increases the risk of malformation (teratogenic effects)
and long-term cancer induction (carcinogenic effects) [67], so the dose of radiation should
be as low as possible.

In the case of a postmortem CT scan, the dose of radiation may be higher because the
same ethical concerns are no longer relevant. These obtained slices were generally of high
or excellent quality and therefore represent the largest part of our studied material.

4.2. Quantification of Shape

Geometric morphometric methods and EFA have already been used to quantify the
pars basilaris shape changes and intrastage variability during the second and third trimesters
of fetal life [43]. EFA is suitable for considering the curved morphology and small thickness
of this bone, since it is difficult to digitize homologous landmarks on the surface. This
difficulty, combined with the fact that the only definable landmarks are not linked to the
overall object geometry, oriented us toward a mathematical description of the outline to
analyze the global shape of the pars basilaris.

As explained by Niel et al., 2019 (pp. 40–41) [43], outline analysis (and, more specifi-
cally, Fourier descriptors) provide complex and detailed information regarding the shape.
Additionally, this method has been frequently used for discriminating biological forms
quantifying morphological differences [46,51,57,58,68–75], as the use of ellipses means
that the shape description in EFA is global and therefore helpful for describing bones
with curved edges [70,76]. This indicates that it is perfectly suited for characterizing the
morphology of the pars basilaris.

In the development of the method, a few available landmarks were used to define the
reference plane and normalize the Fourier descriptors. The normalization of the control
point using GPA [46] prevents the homology problems encountered in specimen alignment
on the major axis of the first ellipse, which is conventionally used for the normalization of
Fourier descriptors [77]. This method was not adapted to pars basilaris because the ratio
between the length and width changes as the child develops [11,18,37,78,79]. It has also
been shown that among the various normalization methods, the one using the control point
with GPA is the most appropriate to use for bones with a few homologous landmarks and
circular contours [70,76], such as the pars basilaris.

4.3. Interest in the Pars Basilaris

Because of its early formation, between the 10 and 14 gestational weeks [11,78–85], and
its robustness, the pars basilaris is one of the elements of the future adult occipital bone most
used to establish age-at-death estimation methods for fetuses and infants. Methods using
this bone generally use conventional morphometry and/or bone size ratio [11,15,18,37,78],
but they do not consider the shape, which might be valuable in improving age estimation.

Thanks to geometric morphometric methods based on Cartesian landmark coordinates,
some researchers have been interested in shape to document the skull base changes through
development, though with no intention of age estimation. Shape is defined as the geometric
properties of an object that are invariant to scale, rotation, and translation, whereas the
form of an object includes both its shape and size [60,86] (Needham equation: form = shape
+ size) [87].

Transposed onto our biological or forensic anthropology context concerning bones, the
shape corresponds to bone maturation and the size corresponds to growth. The advantage of
geometric morphometric methods is their ability to precisely quantify and visualize morpho-
logical variation through powerful statistical tools [60,86]. Based on these methods, previous
studies have described the fetal cranial base development as a whole [30,36,78,88,89], but the
pars basilaris morphology has rarely been separately analyzed.

Moreover, most morphometric methods focus on a single anatomical area to estimate
age. We believe that the multiplication of age estimators, in addition to increasing re-
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liability and accuracy [90], would minimize estimation errors [32,78,91], an idea that is
consistent with some previous studies [79,92,93]. For example, according to Tocheri and
Molto [91], linear measurements of the pars basilaris make it possible to refine the estimated
age according to the degree of dental eruption and the maximum length of the femoral
diaphysis.

Other studies have shown that femoral length coupled with histological study and
the combination of several fetal measurements (biparietal diameter, head circumference,
abdominal perimeter, and femur and radius length) improve the accuracy of fetal age
estimation [92,93]. Additionally, the pars basilaris maximum length is significantly correlated
with age, crown–rump length, and humerus length [94]. These studies demonstrate that it
is possible to refine age estimation through the use of conventional morphometry together
with a combination of several parameters.

4.4. Morphology of the Pars Basilaris

In the literature, several authors have used traditional morphometry to demonstrate
that the pars basilaris dimensions evolve during fetal and infant development [18,23,78,79],
and the bone characteristics intensify with age [23]. The morphological characteristics of
the pars basilaris are used not only in anatomy but also in biological anthropology, as they
can give an idea about the fetal and infant age [11,15,18,37,78,79].

Using geometric morphometric methods, shape analysis confirms the increase in
morphological changes from 18 to 41 gestational weeks [43]. The conclusions of our own
study allow researchers to precisely quantify and visualize shape changes of the whole pars
basilaris during prenatal development and after birth for the first time.

By studying pars basilaris shapes, forensic anthropologists will gain a better idea of
fetus or infant ages since each maturation stage is associated with an age interval. In
addition, regarding the WHO definition of viability (more than 22 amenorrhea weeks) and
the term of a pregnancy, maturation stages higher than 3 can indicate whether a fetus is
viable, and stages 11 and 12 are helpful for marking the term of the pregnancy.

4.5. Maturation and Growth Criterion

In our method, femoral length was chosen as the growth criterion because of its strong
relationship with age, and the pars basilaris shapes gathered in 19 consensus stages were
used to characterize maturation. The grouping of shapes into stages based on consensus
shapes with overlaps enable one to obtain a logical continuity of maturation for fetuses and
infants while also allowing one to compensate for the low number of individuals of certain
age groups.

Growth was defined according to the maturation stages, and we used percentiles,
since we sometimes had few individuals per stage. As in any inferential approach based
on population sampling and because we are aware that the variability in femur size is
not limited to that observed in our samples, which were sometimes of limited size, we
widened the range. For this, extreme percentiles were added to either side of the 0 and
100 percentiles. As with growth charts, the use of percentiles allows for growth to be
precisely “quantified” with limited statistical bias. Thus, for a given stage, if the length of
the femur is below or above the extreme percentiles, growth is considered to be altered.

4.6. The Two Main Advantages of This Coupling Method

The method established in this study makes it possible to analyze the link between the
biometric (growth) and physiological (maturation) age of fetuses and infants by coupling
the maturation process estimated by means of the pars basilaris outline and the growth
process estimated by means of the femoral diaphyseal length.

The results obtained from the nonpathological validation sample (B) are encouraging
for the fetus and infant age-at-death estimation. We reported coupling in 90.48% of samples,
so not only can our method confirm the “overall normality” of this nonpathological sample
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(first advantage), but we can also be confident when using a method with femoral length to
assess age (second advantage).

Only 4 out of the 42 individuals of sample B showed uncoupling, and they never
exceeded a shift of two stages of pars basilaris maturation. According to medical reports,
these individuals did not have any identified pathological conditions, but in addition to
the variability that we tried to include as much as possible in our learning sample (A),
several factors can explain uncoupling, such as parity [95–99], parent general height and
build [100,101], and the overall progress of the pregnancy, including the exchanges between
the fetus and the placenta [100,102–110]. These appear to just have a slightly different
variability from our learning sample and confirm that no method can be expected to be
100% reliable due to normal human variability.

4.7. Pathological Uncoupling

As previously mentioned, age estimation from femoral length may be biased since the
individual may have had abnormal growth [32], which is not necessarily visible at first sight.
This is particularly true when there are no visible bone deformations or malformations such
as those which can be seen on fetuses with thanatophoric dysplasia type I-II, osteogenesis
imperfecta type IIA, hypophosphatasia, achondrogenesis type IA-II, or diastrophic dyspla-
sia group) [111]. For example, a small stature is found in trisomy 21 fetuses, whose femoral
lengths are smaller than normal [112,113] and there are no obvious bone deformations that
alert about this pathological state. Additionally, various chromosomal abnormalities or
chronic utero-vascular insufficiencies can bias estimations of fetal biometric age [32].

Disease-related bone conditions are not always visible on a skeleton because, for the
lesions caused by these conditions to be visible, the individual must be immunologically
affected enough to allow disease development yet strong enough to survive it [114]. For
example, there are no visible traces on fetal or juvenile human osteological remains of
individuals affected by plague, whooping cough, smallpox, measles, scarlet fever, or
even osteomyelitis or congenital syphilis, since the disease causes death before any bony
stigmas can develop. Thus, childhood disease is not obviously observable from a skeleton,
especially when the skeleton is moderately preserved [37].

In our study, uncoupling concerns: localized anomalies, constitutional bone diseases,
growth disorders, and cerebral anomalies. Cerebral anomalies are related to size anoma-
lies and malformations: there is one case of cerebral hypotrophy, one case of cerebral
gliosis, one case of hydrocephalus, one case of bilateral frontal paraventricular cysts, one
case of infection with necrotizing and viro-induced malformative ventriculoencephali-
tis cytomegalovirus, and one case of agenesis of the corpus callosum associated with
microcephaly. Constitutional bone diseases form a heterogeneous group of conditions
responsible for insufficient stature or abnormalities in the structure of the bone, whether
or not associated with deformities [115]. Among these, uncoupling indicated one case
of achondroplasia, one case of Ellis–van Creveld syndrome, one case of Jeune syndrome
(or asphyxiating thoracic dysplasia), two cases of thanatophoric dysplasia, one case of
femoral-facial syndrome, one VACTERL-type association case, and one case of harlequin
ichthyosis.

For all the affected individuals, the femur growth did not match pars basilaris matura-
tion. Some authors have further stated that the femoral length is the most suitable biometric
parameter for distinguishing bone dysplasias: fetuses with a femur below 30% the mean
for gestational age would have achondroplasia; fetuses with a femur between 40% and 60%
the mean for gestational age would have thanatophoric dysplasia or type II osteogenesis
imperfecta; and fetuses with a femur below 80% the mean for gestational age would be
affected by hypochondroplasia, achondroplasia, or type III osteogenesis imperfecta [116].

For uncoupling in individuals with growth disorders, two individuals were found to
have diabetes, one macrosomia, four IUGR, and the last one had a twin pregnancy. All
these abnormalities or simple variations in growth (twin pregnancy is not necessarily a
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pathological pregnancy) could lead to either growth delays or advancements depending
on the description of the symptoms, evidence for which can be retrieved with this method.

However, not all individuals in our pathological sample showed systematic uncou-
pling since the growth disorders associated with each disease depend on several factors
such as their origin, their arrival during pregnancy, and their severity. This is the reason
why only a few cases were detected. For example, the severity of macrosomia varies
according to maternal, pregestational, and gestational diabetes, regardless of association
with obesity [117,118]. Macrosomia is also associated with the mother’s age (the more
advanced, the higher the risk) and parity (the more pregnancies the mother has had, the
greater the risk) [118]. Unfortunately, this information cannot be verified since it had not
been entered into our database.

Regarding IUGR, a fetus will develop this condition if it cannot achieve its genetic
potential for growth due to genetic or external phenomena modifying this potential, or
because an abnormality during pregnancy causes growth restriction [119]. Again, the
severity of IUGR depends on its cause, the timing of its occurrence during pregnancy, and
the duration of the intrauterine aggression [119]. Generally, fetuses with IUGR catch up in
terms of their height during the second year of life, often as early as one year [120–122]. A
child over 3 years of age who has still not caught up to his height should be taken care of
by a pediatrician endocrinologist for in-depth examinations on stature delay, with a view
initiating growth hormone treatment from the age of four [121–124]. It should be added
that in cases of IUGR, cerebral maturation is generally not affected [125,126].

Additionally, there are variations in growth for multiple pregnancies compared to
single pregnancies. For twins, a difference in the mean weight for gestational age is noted
from 30 weeks [119]. The differences in growth between twins can be explained by the type
of pregnancy; if it is monochorial–biamniotic, the transfusion–transfused syndrome is the
first explanation. In bichorium–biamniotic pregnancies, the difference can be explained by
a malformation of one of the twins. Placental anomalies and poor fetoplacental exchanges
(nutritional, hypoxic, or toxic) can also explain growth anomalies [119].

Finally, the uncoupling of individuals with one or more localized anomalies concern:
Skull anomalies in four cases:

- (1–2) Two microcephaly cases (one was associated with craniosynostosis);
- (3) One ossification defect of the vault with the enlargement of the fontanelles and the

presence of Wormian bones in the parietal and occipital region;
- (4) One severe hydrocephalus;

An anomaly of the limbs for one case:

- Anomaly of the femurs with shortening and curving;

An anomaly of the spine for one case:

- A spina bifida;

Three cases of polymalformative syndrome:

- One case with arthrogryposis, club feet, clenched hands, 11 pairs of slender ribs and
platyspondyly;

- One case with abnormalities of the spine and ribs, as well as retrognathism;
- One case with anomalies of the spine, a short thorax, and a malposition of the four

limbs (clenched hands, knees in extension, and club feet).

Finally, the cases of uncoupling highlighted by our method suggest that when mat-
uration and growth do not match, experts must be prepared for a possible anomaly or
variation in growth that risks biasing the age as estimated from femoral length.

Thus, the proposed method should be used in forensic anthropology for age estimation
to verify whether growth has been altered by possible pathological conditions. This appears
to be crucial in forensic contexts, where age estimation should be as accurate as possible
to assess viability, set at 22 weeks of amenorrhea or a weight of 500 g according to WHO
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recommendations, to determine whether an individual came to term and to provide an
unbiased age-at-death for police investigations.

To improve this method in the future, it would be of interest to include more healthy
individuals to reduce the age range for some stages in order to provide greater precision in
determining the consensus shape. The inclusion of samples from various origins would
also allow the method to be used in different populations, and it could also be used in a
clinical setting for screening for abnormal growth.

5. Conclusions

This study was focused on characterizing the link between maturation and growth
by analyzing bone shape and biometry. The use of geometric morphometric methods
and elliptical Fourier analysis enabled us to precisely quantify the pars basilaris shape
changes from 16 fetal weeks to approximately one and a half years (17.7 months) in an
unprecedented way.

By considering the coupling between the maturation and growth process, it is possible
to detect potential anomalies or variations in growth. It is important to remember that it
is difficult to macroscopically detect bone anomalies that could alert one to this possible
variation and that the application of age-at-death estimation methods can be biased since
they were established from reference populations with normal development but that the
targeted individuals do not necessarily meet this condition.

In cases of uncoupling, experts should be warned that living conditions have altered
the development of a young individual and that the age-at-death estimation based on long
bone biometry may be biased. In a forensic context, the detection of uncoupling must
lead an expert to be careful in their conclusions regarding the age determined for a young
juvenile.
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IUGR Intrauterine Growth Retardation
LA Localized Anomalies
MANOVA Multivariate Analysis Of Variance
MRI Magnetic Resonance Imaging
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Simple Summary: Human remains are often burned in an effort to conceal the identity of the victim
and/or obscure traumatic injuries related to the death event. Thermal exposure can produce artifacts
resembling trauma and disguise preexisting trauma. However, there is a paucity of experimental
studies with varied results addressing the differentiation of thermally induced artifacts from traumatic
signatures. To address this gap in the literature, we conducted a small-scale study using domestic
pigs as correlates to test the impact of thermal alteration on blunt force trauma to the cranium. Two
tools (e.g., hammer and crowbar) were utilized to manually inflict injuries on the human analogs
before controlled burning in an outdoor environment. The results of this experiment demonstrated
that the most diagnostic variable to differentiate thermally induced alternations from blunt force
fractures was fracture pattern.

Abstract: In forensic scenarios involving homicide, human remains are often exposed to fire as a
means of disposal and/or obscuring identity. Burning human remains can result in the concealment
of traumatic injury, the creation of artifacts resembling injury, or the destruction of preexisting
trauma. Since fire exposure can greatly influence trauma preservation, methods to differentiate
trauma signatures from burning artifacts are necessary to conduct forensic analyses. Specifically,
in the field of forensic anthropology, criteria to distinguish trauma from fire signatures on bone is
inconsistent and sparse. This study aims to supplement current forensic anthropological literature
by identifying criteria found to be the most diagnostic of fire damage or blunt force trauma. Using
the skulls of 11 adult pigs (Sus scrofa), blunt force trauma was manually produced using a crowbar
and flat-faced hammer. Three specimens received no impacts and were utilized as controls. All
skulls were relocated to an outdoor, open-air fire where they were burned until a calcined state was
achieved across all samples. Results from this experiment found that blunt force trauma signatures
remained after burning and were identifiable in all samples where reassociation of fragments was
possible. This study concludes that distinct patterns attributed to thermal fractures and blunt force
fractures are identifiable, allowing for diagnostic criteria to be narrowed down for future analyses.

Keywords: forensic anthropology; forensic science; blunt force trauma; thermal alteration;
thermal fractures

1. Introduction

Trauma interpretation is arguably one of the most valuable services a forensic anthro-
pologist can perform to assist criminal investigative proceedings. This is evidenced by
the consistent theme of trauma-focused research in the forensic anthropology literature,
spanning several decades [1–12]. Special interest is, in part, due to the fact that biomechani-
cal signatures of skeletal trauma are not fully understood [13–16]. As such, considerable
research replicating traumatic force has been produced to document the resultant charac-
teristics seen on bone [1–11,13]. Efforts to identify the source of trauma are only half of
the assessment, as it is imperative for the timing of the injury to be established as well.
To interpret injury timing, characteristics of the defect are noted concerning the reaction
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of the immediate surrounding bone [8,9,13–16]. Following visual observation of trauma,
it is assigned to an ante-, peri-, or postmortem temporal context [3,4,8]. By establishing
the timing of the defect, the anthropologist can provide insight into whether the injury
potentially contributed to the death event [3,4,8,13–16].

Although the characteristics of blunt force impact are the focus of many
studies [1–4,6–8,11,13,16], there is still much ambiguity surrounding trauma assessment.
Major issues encountered when interpreting skeletal trauma include the influence of the
deposition environment, endogenous and exogenous taphonomic processes, postmortem
disturbance from scavengers, or relocation to secondary deposition sites [17–22]. All of
these variables introduce the potential for trauma alterations that must be accounted for
during skeletal analysis [17–22]. Although the variables influencing trauma interpretation
differ from case to case, and even across elements of the same skeleton, the laws of bone
biomechanics that guide these analyses stay constant [6,13–16]. The main consideration
is that wet or living bone will respond to slow loading force (e.g., blunt force) by first
absorbing the force through plastic deformation until the force overloads the bone causing
it to fail (e.g., break) [6,11–14]. Plastic deformation is expressed in the bone as crushing
of the cortical layer into the internal cancellous region, as the bone slowly absorbs force
without exceeding its yield strength. Per contra, when a bone is exposed to rapid force, such
as is seen with gunshot trauma, it will react as a more brittle material and fracture with little
to no associated plastic deformation [6–8,13–16]. This brittle reaction is also characteristic
of postmortem dry bone breakage [17–26]. Both plastic deformation and complete bone
failure leave distinct signatures on the bone when observed both macro- and microscopi-
cally [6–8,17–26]. There is general agreement that if the biomechanics of bone’s reaction to
force remain as a constant variable, then interpreting the timing of traumatic injury should
be possible despite postmortem taphonomic events and alterations [6–8,17–23].

Although the structural reactions of traumatized bone are well understood, post-
depositional events can complicate interpretation. Taphonomic processes can introduce
secondary fractures, alter fracture margins, or conceal impact sites [6,24–26]. Due to this,
trauma signatures are addressed in variable depositional environments [1–11,15–28] to
identify criteria that can be informative for trauma identification in specific contexts. How-
ever, few studies have addressed the influence of thermal alteration on blunt force trauma,
specifically on the cranium. In forensic contexts, it is not uncommon for decedents to be
disposed of by means of fire, as perpetrators of a crime often correlate the idea of a quick
coverup with burning the body until only ash remains [20,21,24–28]. However, bodies
exposed to fire burn slowly and are often recovered with intact skeletal or fleshed elements
remaining [21,24–28]. When bodies are exposed to fire for a significant time, heat will alter
the bone by degrading its organic components, leaving only the mineral structure [6,23–28].
The organic components, which are quickly dehydrated and destroyed from thermal modi-
fication, are what allow plastic deformation in living bone [6,12–15]. Therefore, thermal
fractures express features similar to bone impacted by rapid force [6,17–22,25–28]. Further
investigation is needed to understand the modifications caused by thermal exposure to per-
imortem trauma, as conclusions from the existing literature are unclear, inconsistent, and
without validation [1,3–7]. Research derived for applications in forensic contexts is unique
in its necessity for the method to pass the rigors required in legal proceedings [29–32]. All
methods applied in forensic testing must be guided by strict sets of procedures and criteria.
Thus, this research aims to identify characteristics that are indicative of fracture origin in
thermally altered remains. Specifically, this paper highlights the characteristics of thermal
and mechanically derived fractures of the cranium using Sus scrofa analogs, this being one
of the most commonly traumatized regions in forensic contexts.

2. Materials and Methods

This study used 11 adult pigs as proxies for human remains, due to an established
similarity in tissue thickness and structure between humans and pigs [2,3,11]. The pigs
were procured from a local pork center and were humanely euthanized the morning of the
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experiment with a blank bullet (following NC laws for humane slaughter) and shipped
via cooling container to the pick-up site, where they were then transferred to the forensic
laboratory. The samples consisted of skulls containing the complete cranium and mandible,
and all were disarticulated from the axial skeleton prior to experimentation. No soft tissue
was removed before experimentation, as removing tissue before blunt force trauma would
not be consistent with an actual forensic event [24]. Of the 11 samples, 3 of the specimens
were used as non-traumatized controls but were still subjected to burning. The remaining
eight samples were divided into two groups, each containing four specimens (Table 1). One
group was manually struck with a rounded crowbar and the other a flat-faced hammer.
Two types of tools were used due to the different surface areas. Two samples of each group
were traumatized with the head lying supine and the other two with the head positioned
in the horizontal plane. This positioning allowed the recreation of forensic scenarios where
a decedent is struck standing up (horizontal) or fallen (supine) with a buttressed surface
creating secondary fractures opposite the initial impacts. Each specimen was struck on the
frontal, zygomatic, parietal, and nasal bones. Samples were traumatized several times until
fractures could be manually felt and then radiographed to document perimortem fracture
patterns (Figure 1). Following radiographic documentation, the samples were taken to the
burn site.

The burn site was located on the North Carolina State University dairy farm and the
fire was constructed within a livestock feeding trough surrounded by cinderblock walls
(Figure 2). An open-air, outdoor fire was implemented for this research, as this type of
deposition is commonly encountered with forensic burning scenarios [1,5,24–26]. Materials
involved in the creation and maintenance of the fire included wood logs and coals from
previous fires. No accelerants were used in the process. Each sample was positioned
with the head in the horizontal plane and maintained this position for the duration of the
burn cycle (Figure 3). Specimens were placed directly on top of the logs in two rows, and
documentation of the progressive thermal destruction was noted via photographs during
the experiment. Total burn time was 1 h and 40 min, and the samples were burned until
the calcined bone was seen across the samples. Once the degree of burning was sufficient
to produce largely calcinated bone, the logs were removed from the fire to slowly decrease
the temperature until the samples only remained on ash. The samples were left within the
fire pit overnight to allow the specimens to completely cool before removal. The following
morning the skulls and associated fragments were collected by hand from the pit, placed
within individual containers, and returned to the laboratory for analysis.

Table 1. Sample distribution. Tool column indicates classification of instrument used during manual
trauma. Position lists skull pose during trauma. Identifier # lists the classification system assigned to
samples throughout experimentation.

Group Tool Position Identifier #

1

Control-NA NA C1

Control-NA NA C2

Control-NA NA C3

2

Crowbar Supine CBS1

Crowbar Supine CBS2

Crowbar Horizontal CBH1

Crowbar Horizontal CBH2

3

Hammer Supine HS1

Hammer Supine HS2

Hammer Horizontal HH1

Hammer Horizontal HH2
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Figure 1. Radiographic image of sample CBH1. (a) Pre-burn radiograph of a specimen after manual
trauma with a crowbar. Red dotted lines denote the area containing blunt force trauma. (b) Close-up
image of the area within the red rectangle. Red arrows point to areas of incomplete fractures as a
result of blunt force trauma, with associated fragments still attached.

Figure 2. Burn site.
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Figure 3. Sample placement.

Laboratory analysis began with preprocessing photographs of each skull to document
differential soft tissue destruction and note any thermal signatures before soft tissue re-
moval. Following photography, any loosely adhering soft tissue was removed with a fine,
soft-bristled brush. The skulls were reconstructed by refitting fragments using an adhesive.
Control samples were analyzed first so that features of thermal fractures could be noted and
established before comparison with the traumatized specimens. Location of fracture origin
and termination, fracture type, skeletal color changes, and areas of soft tissue survival were
recorded. Traumatized samples were reconstructed in the same manner as the controls and
their pre-burning radiographs were compared post-burning (Figures 4 and 5).

Figure 4. Radiographic image of specimen HH1. Red arrows point to areas of inwardly crushed bone,
with displaced fragments.
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Figure 5. Post-processing reconstruction showing fragment association retaining depressed im-
pact area.

3. Results

All three controls showed similar thermal alterations, which consisted largely of
longitudinal fractures. These longitudinal fractures were inter-connected by transverse
fractures or terminated transversely into an adjacent suture. In essence, thermal fractures
appeared as patterns of long, rectangular fractures all over the cranium. Further, thermal
fractures were found to be associated with cranial foramina and sutures. Thermal fracture
propagation consistently originated from cranial sutures or foramina and terminated into
longitudinal fractures or nearby sutures Figures 6 and 7. This finding was also highlighted
in the study of Macoveciuc et al. (2017), who noted that due to the lack of accessory
(traumatic) fractures in controls, heat accumulation caused fractures to originate from areas
of the bone that could more easily vent, in this case being foramina and sutures. Thermal
degradation was further characterized by cortical flaking and patina, a result of the rapid
loss of organic components in the bone, and curved transverse fractures due to tissue
regression [6,7,15,17–21].

Traumatized samples featured distinct characteristics observed only in the specimens
that underwent mechanical force, which included the post-burning retention of plastic
deformation, and impact areas that featured comminuted fracturing (Figure 8). Only
green (e.g., wet, living) bone can respond to force as plastic deformation, as the impacted
surface absorbs compressive force causing the opposite (internal) surface to tear from
tension [6,12–14]. In all of the samples, blunt force fractures retained the pre-burning
depressed areas and, in some samples, fragments were still connected to the associated
fragment through an incomplete fracture. Due to the loss of the more pliable, organic
components which allow for plasticity in bone, burning bone responds as a brittle material
incapable of plastic deformation [6–9]. Only traumatized regions of the crania exhibited
features of depressed fractures Figure 9. When considering fracture type, blunt force
impacts were almost exclusively associated with comminuted fractures, a feature absent
in controls or untraumatized regions. This difference in fracture type, being primarily
longitudinal or comminuted, allowed for easier identification of suspect areas of trauma.
The summary of fracture type and occurrence is presented in Table 2.
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Figure 6. Red lines denote cranial sutures. White arrows point out thermal fractures originating and
terminating within other sutures or foramina.

Figure 7. Red lines denote cranial sutures. Red arrows point out thermal fractures originating and
terminating within other sutures or foramina.
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Figure 8. Sample CBH2 (a) A longitudinal thermal fractures interconnected with transverse fractures,
B blunt force trauma retained showing depressed region with associated fragments, C comminuted
fracture at impact site; (b) closer image of impact sites B and C.

Figure 9. Hammer sample (a) region of impact exhibiting retained plastic deformation; (b) closer
image of depression.
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Table 2. Summary of fracture pattern observations.
√

indicates presence of feature, X indicates
absence of feature.

Sample
Defect Observed

Longitudinal Transverse Comminuted Curved Transverse Depressed Patina Delamination

C1
√ √

X
√

X
√ √

C2
√ √

X
√

X
√ √

C3
√ √

X
√

X
√ √

CBS1
√ √ √ √ √ √ √

CBS2
√ √ √ √ √ √ √

CBH1 X X
√ √ √ √ √

CBH2
√ √ √ √ √ √ √

HS1
√ √ √ √ √ √ √

HS2
√ √ √ √ √ √ √

HH1
√ √ √ √ √ √ √

HH2
√ √ √ √ √ √ √

4. Discussion

The results of this pilot study demonstrated that consistent patterns of thermal alter-
ation were noted that allowed for the differentiation of perimortem trauma after burning.
Further, we did not find that thermal alterations obscured the blunt force trauma in any of
the samples. Since this study incorporated the analyses of criteria noted to be of diagnostic
value in similar research [1,3,6,7], the results of these analyses are discussed further.

4.1. Skeletal Biomechanics: Fracture Type & Morphology

Post-burning analyses found that the structural reactions between wet and brittle/dry
bone were maintained, as fracture type and morphology reflected the material state of
the bone when fractured. Plastic deformation was identified as areas of inwardly crushed
bone with associated fragments still partially or completely attached. Although thermal
exposure altered impact areas, exhibited as patina and flaking on fractured surfaces, the
areas of impact retained the general morphology of the impact (as noted on pre-burn
radiographs). In cases where no plastic deformation was retained, impact areas could
be identified through the reassociation of fragments using an adhesive. Reassociated
fragments displayed impact areas of clustered comminuted fractures (a feature absent in the
thermally altered controls). Thermally altered controls consistently exhibited longitudinal,
transverse, combination longitudinal-transverse, patina, and curved transverse (i.e., from
tissue regression), but did not display any areas of comminuted patterns or depressions due
to plasticity. Blunt force samples also presented these thermal alterations. However, regions
of trauma were easily identified as variations from these thermal characteristics. In highly
fragmented specimens, where the structural integrity of the cranium is lost and plastic
deformation is absent, we find that identifying fracture patterns after fragment reassociation
most consistently indicated the presence of trauma. Diagnostic importance has been given
to fracture type and morphology in previous studies, and this study supports that these
variables are indicative of fracture cause [1,3,6,7].

4.2. Fracture Origin and Termination

By first assessing the controls, location patterns of thermal fracture origin and termi-
nation were established. Thermal fractures appeared to originate and terminate in areas
of the skull where thermal venting was present. That is, thermal fractures could be traced
to cranial foramina or sutures and terminated within adjacent foramina and sutures. This
finding is consistent with other studies that conclude that the pressure of high temperatures
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within the cranium is released through natural vents, or openings, within the skull [1,6,7].
The pressure and heat released from this venting cause associated fractures to appear from
these openings. The samples subjected to blunt force trauma showed the same fracture
location patterns. However, locations of trauma deviated from this pattern as a cluster of
comminuted fractures with no clear association to suture or foramina origins. Although
fracture origin is variable when caused by traumatic force, thermal fractures are consistently
associated with natural areas of thermal venting.

4.3. Skeletal Color Change

Previous suggestions [6,7] regarding color change as an indicator to differentiate
fracture origin (e.g., due to thermal venting or burn progression) were not found to be
useful in diagnosis for this experiment. Color changes appeared inconsistent in pattern or
progression, exhibited as sporadic calcined islands surrounded by charred rings. Although
potentially helpful for charting thermal degradation for remains consisting of a more
complete body, these variables were not found to be of diagnostic value in this study.
However, our study supports previous studies that fractures propagating into green or wet
bone are associated with blunt force and perimortem trauma [1,6,7].

4.4. Tissue Thickness and Soft Tissue Survival

After evaluating body positioning and tissue thickness, it was observed that tissue
regression and subsequent first areas of bone to burn reflected the general thickness of the
tissue covering the bone, regardless of the position of the crania. The first areas to burn
followed a pattern from the facial and snout regions, these being the least protected by
muscle or tissue, with the thick tissues of the mandible burning last. The variability of
tissue thickness across each skull created highly differential degrees of burning. Overall,
facial regions were nearly calcinated while the mandible retained green bone under the
lower facial muscles. Each skull consistently exhibited this pattern of tissue regression.
After burning concluded, the only surviving tissues were those of the posterior portion of
the mandible. Further, it appeared that fat acted as an accelerator of thermal destruction,
while muscle acted as a protector. It was noted that regions of the skulls that were highly
cartilaginous or fatty, such as the ears, burned more quickly than regions of the skull in
more direct contact with the fire or with more densely concentrated muscle.

5. Conclusions

After incorporating analyses deemed to be of diagnostic value or indicative of blunt
force trauma after thermal exposure in other studies, we found that the most valuable
variable to identify the cause of fracture (e.g., blunt force or thermal alteration) is the
fracture pattern. The result of this study found that tissue thickness is more indicative of
thermal progression than body positioning and warrants further study when evaluating
the progression of thermal destruction across skeletal elements.
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Simple Summary: Frontal sinus patterns are unique amongst individuals. When faced with an
unknown decedent, investigators can compare the frontal sinus pattern observed in postmortem
radiographs to antemortem radiographs of the suspected individual to make a positive identification.
Ideally, the antemortem and postmortem radiographs are oriented in the same exact position, but this
can be challenging. This study investigates how slight variations in radiographic orientation affect
sinus outlines and potentially impact identification. Frontal sinus models were created from CT scans
(21 individuals) and digitally oriented across three clinically relevant views. From each standard
orientation (looking straight ahead), eight 5◦ deviations were obtained in horizontal (left/right),
vertical (up/down), and diagonal (e.g., left-up vs. right-down) directions. Within and between
individual differences in sinus size and outline shape were assessed. Sinus breadth remained
relatively stable across deviations, while sinus height was affected by small vertical deviations.
Although radiographic vertical deviations resulted in statistical differences, impacts on outline
matches were minimal. However, practitioners need to take particular care in matching radiographic
orientation for smaller and/or discontinuous (right and left sides separated) sinuses, which are
more likely to lose part of the sinus in more inferiorly oriented views and, thus, could affect various
methods of sinus identification.

Abstract: The utility of frontal sinuses for personal identification is widely recognized, but potential
factors affecting its reliability remain uncertain. Deviations in cranial position between antemortem
and postmortem radiographs may affect sinus appearance. This study investigates how slight
deviations in orientations affect sinus size and outline shape and potentially impact identification.
Frontal sinus models were created from CT scans of 21 individuals and digitally oriented to represent
three clinically relevant radiographic views. From each standard view, model orientations were
deviated at 5◦ intervals in horizontal, vertical, and diagonal (e.g., left-up) directions (27 orientations
per individual). For each orientation, sinus dimensions were obtained, and outline shape was
assessed by elliptical Fourier analyses and principal component (PC) analyses. Wilcoxon sign rank
tests indicated that sinus breadth remained relatively stable (p > 0.05), while sinus height was
significantly affected with vertical deviations (p < 0.006). Mann–Whitney U tests on Euclidean
distances from the PC scores indicated consistently lower intra- versus inter-individual distances
(p < 0.05). Two of the three orientations maintained perfect (100%) outline identification matches,
while the third had a 98% match rate. Smaller and/or discontinuous sinuses were most problematic,
and although match rates are high, practitioners should be aware of possible alterations in sinus
variables when conducting frontal sinus identifications.

Keywords: human identification; frontal sinus shape; outline analysis; elliptical Fourier analysis;
computed tomography; radiology
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1. Introduction

The potential of radiographic comparisons and forensic identification based on frontal
sinus morphology, in particular, has been recognized since the 1920s [1–18]. Frontal sinus
morphology is highly individualized with differences noted even between monozygotic
twins, which makes them an ideal candidate for identification [2–4,19]. If antemortem
radiographic images containing the frontal sinus are available for a suspected decedent, a
comparison with postmortem radiographs can provide a fast and inexpensive method of
identification, similar to radiographic dental comparisons. Comparisons can also frequently
be made on fragmented or even burned remains. Specific methods for radiographic frontal
sinus identification range from qualitative visual assessments [1,3,19,20] to the use of
metrics and/or coded traits [7,8,17,21,22], and outline analyses [15,16,23]—all of which rely
at least partly on sinus shape as defined by the presence of right/left sinus lobes, as well as
the individual scallops and arcades that give the sinus their distinctive outlines.

All frontal sinus radiographic methods also require a postmortem radiograph taken in
the same orientation as the antemortem record. Antemortem radiographs reflect standard
clinical views typically used in sinus or head-and-neck imaging, with three common orien-
tations being Caldwell’s, posterior–anterior (PA)-frontal, and Water’s view [24]. Forensic
anthropologists are more familiar with the Frankfort Horizontal orientation of the cranium
and may be inclined to take postmortem radiographs in this anthropological orientation;
further, several studies on frontal sinus variation utilize this orientation [25,26]. These
orientations vary in the positioning of the head/cranium relative to the film and the trajec-
tory of the X-rays. As such, the appearance of the frontal sinus on the two-dimensional
radiographs may be altered based on the radiographic orientation chosen.

Given the potential effects of orientation on radiographic representation, practition-
ers acquiring postmortem radiographs should aim to position the cranium in a similar
orientation as the antemortem view. Still, obtaining a perfect alignment, however, can be
challenging. Owing to this, several previous studies have investigated how slight variations
in skull orientation affect the radiographic presentations of frontal sinus morphology and
individual identification methods [25–29]. Overall, studies suggest that even 5◦ degrees
of varying orientation may affect sinus morphology. However, these previous studies are
limited in scope. For example, when testing their outline-based method, Christensen [28]
was only able to effectively measure two crania in a single clinical view. Silva et al. [25]
investigated how varying 10◦ vertical orientations affects frontal sinus breadth, but only
incorporated a single individual and limited analyses to PA-frontal view. It is possible that
the degree of error introduced is dependent on sinus size and complexity. So, the degree
of shape deviation obtained from these limited studies may depend on the frontal sinus
morphology of the single individual used in the error analysis.

In each of the above studies, the physical placement and repositioning of the crania
was done by the technicians and could add human error/bias given the challenges of
obtaining perfect alignments. In fact, Hashim et al. [29] found that repositioning of crania
on radiographic tables, even after only a short time has passed between repositioning
(less than one minute) results in significantly different sinus presentations. To account for
this, Riepert et al. [27] utilized a specialized program that simulates radiographs from CT-
derived data. These authors digitally re-oriented crania in 4◦ and 8◦ variations. Ultimately,
they found that frontal sinus breadth and height presented with high degree of variability
across the orientations, but the inter-individual uniqueness of the sinus was such that these
variations did not result in misidentifications. More recently, Nikolova et al. [26] utilized
an industrial µCT scanner to obtain radiographic images, which allowed re-orientation of
crania using more precise means via a computer-automated tilting gantry. They compared
linear measures of the frontal sinus across 10 orientations at 5◦ intervals, starting from the
Frankfort Horizontal plane at −20◦ to a view at 45◦ with the midpoint being 0◦. Overall,
they found significant differences in height and breadth measures at 5◦ vertical variations
from the 0◦ midpoint. While the use of an industrial scanner allowed hands-free vertical
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tilting of the cranium, they were unable to incorporate lateral movements. Further, they
did not test for implications of these findings to forensic identification methods.

There is a need to more thoroughly understand how minor deviations in radiographic
orientation may affect forensic frontal sinus identifications, given the severe consequences
of a mistaken identification or erroneous exclusion of identity. This study aims to assess how
5◦ vertical, horizontal, and diagonal (i.e., combined 5◦ vertical and horizontal) deviations
in orientation from standard views affect frontal sinus shape as captured by outlines
using a sample of computed tomography (CT) scans from 21 individuals. The increased
sample size, inclusion of horizontal, vertical, and diagonal deviations, and testing of three
standard radiographic orientations builds upon the previous literature, providing a more
comprehensive study and the ability to directly compare results from the same sample
across the orientations and deviations. This study also tests how these varying orientations
may directly affect forensic identification, with a focus on the frontal sinus outline method
devised by Christensen [15,16,28]. This method was chosen as it is one of the most cited
methods for forensic sinus identification [30] and provides a means of capturing overall
frontal sinus shape, which can then be quantitatively analyzed. The results of this study
will help guide best practices in forensic frontal sinus identifications.

2. Materials and Methods
2.1. Materials

This study utilizes computed tomographic (CT) scans originating from the Robert J.
Terry Anatomical Collection, National Museum of Natural History, Smithsonian Institution
(Washington, DC, USA) [31]. The current sample included 21 adult crania (aged 20 to
95, average age = 51.667), with 13 African American (7 females, 6 males) and 8 European
American (6 males, 2 females) individuals. The 21 crania were selected from a larger
sample of CT scans publicly available from Lynn Copes’ website [32,33]. Only individuals
possessing frontal sinuses above the supraorbital line, with no obvious signs of pathologies
affecting the frontal sinus were utilized. Additional sample information and scanning
protocols are provided by Copes [32,33]. Although the sample does not encompass broad
ranges of temporal, population, or specific age variations, the crania included displayed
a wide range of sinus size and morphology. Thus, this methodological study is able
to assess effects of deviations on a broad range of individual sinus morphologies, as
appropriate for our question. Although some studies have documented patterns in frontal
sinus morphology between population, sex, or age groups or with variables such as body
size and craniofacial morphology, these relationships are relatively weak [34–36], and the
underlying factors contributing to such a high degree of frontal sinus variation, whether
within or across groups, are unknown. These variations are described as differences in
sinus appearance, size, and shape— all variables included in the present study. Thus,
although this study does not include a highly diverse sample, the results of the analyses
should be applicable across groups.

For this study, the CT scans were imported into the program Amira5.6 [37], where
semi-automatic processes were used to segment the frontal sinus, effectively creating a
virtual endocast, and model the cranium following a previous study [38]. Both objects were
digitally rendered and saved as two stereolithographic (.stl) models. Although there were
two models, they maintained the same coordinate space and could be manipulated (e.g.,
oriented) together as if they were a single object. Care was taken not to employ smoothing
techniques or any processing techniques that would alter frontal sinus morphology.

2.2. Sinus Orientations

The aim of the study was to assess how minor deviations from common radiological
views could affect the observed sinus morphology and how that may impact forensic
identification methods. When deciding which radiological orientations to include in
the study, common clinical and anthropological radiographic orientations (i.e., Frankfort
Horizontal, PA-frontal, Caldwell’s, Water’s view) were considered. Specific definitions
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of these clinical views can vary by source, with some definitions focusing on soft tissue
structures (e.g., nose against film) or the resultant radiographs (e.g., alignment of the
petrous portions within the orbits), instead of specific osteometric landmarks. Clinical
orientations for head radiography depend on both the positioning of the head relative to
the X-ray film, as well as the angle of the beam trajectory. Given that this study utilizes
CT scans to reduce subjectivity in positioning of these minor deviations in orientation, we
could not emulate changes in beam trajectory (i.e., the CT scans are most similar to an X-ray
beam trajectory perpendicular to the film); thus, this limitation was also considered when
choosing which radiographic views to test. Priority was also given to orientations used in
past frontal sinus and orientation studies for comparative purposes.

Given the above considerations, three radiographic planes were chosen for evaluation:
Frankfort Horizontal, Orbitomeatal, and Porion-Alveolar (see Figure 1). The Frankfort
Horizontal Plane (FHZ) was chosen for several reasons: it is used in several clinical
settings, particularly for occlusal and temporomandibular evaluations [39–42]; it is a
common orientation in frontal sinus identification research [7,43–45]; it has been utilized in
previous studies specifically investigating the role of varying orientations on frontal sinus
morphology [25–27]; and it is most familiar to forensic anthropologists. For FHZ, crania
are oriented such that the left-sided landmarks of porion (superior aspect of the external
auditory meatus) and orbitale (most inferior margin of the orbit) are aligned in one axial
plane, with left and right porion as level as possible (Figure 1, middle). For this study, FHZ
was considered as the intermediate view, as the remaining views alter the crania inferiorly
and superiorly relative to FHZ.
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Figure 1. Standard cranial views utilized in this study from left to right: Orbitomeatal Line (OML),
Frankfort Horizontal Plane (FHZ) and Porion-Alveolar Line (PAL). Dashed line represents the axial
plane of orientation, see text for details.

The Orbitomeatal Line (OML) was chosen as it is commonly referenced in clinical
radiographic views, such as PA-frontal views, with X-ray beam trajectories following this
axis and perpendicular to the film. Thus, not only is this view easy to replicate with CT
scans, but antemortem radiographs obtained for forensic identification may frequently
be in this position due to their use for evaluating the midfacial regions. For this view,
crania are oriented such that the center of the external auditory meatus and the middle of
the orbital cavity are aligned in the same axial plane, with left and right sides as level as
possible. Note, Cruz and Gasperini [46] found that the OML is approximately 15◦ from
FHZ, with the cranium rotated more inferiorly in OML.
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The third view, which we termed the Porion-Alveolar Line (PAL), was primarily
chosen for comparative purposes, as it represents a superior rotation of the head and is
utilized in several previous studies investigating the effect of orientation on frontal sinus
morphology. Following Silva et al. [25] and Nikolova et al. [26], we obtained this view
by rotating the cranium 20◦ superiorly from FHZ (Figure 1, right). It is important to note,
however, that these previous studies misleading refer to this orientation as “Caldwell view,”
which does not match the clinical definition. Clinically, Caldwell’s view is obtained by
having the patient put their forehead and nose against the X-ray film and then orienting
the X-ray beam at a 15–20◦ angle to the film [24]. In this orientation, the head position
resembles the OML view, but the X-ray beam traverses from the occipital bone (near lambda)
through the mid-orbit region. The superior rotation of the cranium 20◦ from FHZ (as done
by Silva et al. [25] and Nikolova et al. [26]), rotates the head in the opposite direction as the
clinical Caldwell head orientation and results in an X-ray beam trajectory passing through
the porion and the maxillary alveolus, very different from that of actual Caldwell’s view.
Further, the end result of Caldwell’s view should consist of the petrous pyramids located
in the lower third portion of the orbits [24], which is not evident in the figures provided by
Nikolova et al. [26]. While we find this view informative for reasons below, we do not use
the “Caldwell” notation in this study. Instead, we refer to it as the Porion-Alveolar Line
(PAL), as this more accurately reflects the beam trajectory through the cranium. Despite
not being defined as a typical clinical view, we include PAL here for comparative purposes
given that these previous studies used this orientation, found that it was the most stable in
terms of frontal sinus morphology across varying vertical orientations, and provided the
clearest view of the sinus [25,26]. Its incorporation also provides additional insight into how
superior vertical inclination of the cranium may affect frontal sinus morphology. Given the
relationship of FHZ and OML axes, the PAL orientation can be inferred to be approximately
30◦ superiorly rotated from the OML line. While Water’s view, defined as 45◦ superior
rotation from the OML view, is a clinical view that could have been investigated, it was
not specifically tested in this study given that its extreme superior rotation has already
been shown to be highly susceptible to vertical deviations [24,27,47]. Further, preliminary
investigations in the current study indicated that Water’s view would result in several
instances where the frontal sinus would be eliminated completely from view. The PAL
view provides a test of a less-extreme vertical orientation.

2.3. Frontal Sinus Outlines

The associated frontal sinus and cranial models for each individual were imported
into the program 3DSlicer [48]. The models were oriented into these three main orientations
(FHZ, OML, PAL) using cranial landmarks, and then eight additional views varying in
5◦ intervals from each of the main orientations, resulting in 27 radiographic views per
individual. The Transformation module was used to digitally rotate the models to the
defined degrees and alleviate human error in obtaining the 5◦ rotations. Within each view,
the 5◦ deviations were defined from the standard orientation as horizontal deviations
(5◦ left; 5◦ right), vertical deviations (5◦ up; 5◦ down), and diagonal deviations (5◦ left and
up; 5◦ right and up; 5◦ left and down; 5◦ right and down). These are illustrated in Figure 2;
note the cranial model is included for interpretative purposes only and was not included
when obtaining sinus outlines as described below.

Following previous studies [15,16,23,28], the inferior border of the frontal sinus was
demarcated at the level of the superior orbital margin in each view; the sinus remaining
below the line was deleted from view using the Model Clipping tool in 3DSlicer. Once
oriented correctly with the inferior border demarcated, the cranial model was hidden
from the view, leaving the properly oriented and clipped sinus model above the superior
orbital margin. The background was set as black, the sinus model set at white, and a 10 cm
scalebar was added. A two-dimensional (2D) image was then captured of the sinus and
scalebar using the Annotations Screen Capture module in 3DSlicer. This resulted in a total
of 567 images for 21 individuals.
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The 2D images were then imported into ImageJ [49] where they underwent further
processing. First, image sizes were increased to 3000 pixels. Given that outline analyses
require a single continuous outline, if the right and left lobes of the frontal sinus were
separated (i.e., discontinuous) they were connected by a white line (set as 2 pixels thick).
Additionally, each image was scaled according to the 10cm scale bar obtained from 3DSlicer,
and frontal sinus area, maximum breadth (taken parallel to the supraorbital line), and
maximum height (taken perpendicular to the supraorbital line) were collected using the
Measurement tools in ImageJ. Maximum breadths and heights were taken twice by the
same observer and then averaged.

Following Christensen [15,16,28], frontal sinus outlines were based on the external
contour of the sinus, with the supraorbital line demarcating the inferior boundary. El-
liptical Fourier analysis (EFA) was conducted on the outlines to quantitatively capture
outline shape as a series of harmonics. Unlike other morphometric methods, EFA does
not require homologous landmarks (which the frontal sinus lacks); instead, the outline
shape is captured by harmonics, and resultant elliptical Fourier coefficients can be used
to assess sinus shape (see [50] for a general review of EFA in forensic anthropology). EFA
analyses were conducted using the SHAPE software [51] where the frontal sinus outlines
were automatically digitized based on the 2D images of the white sinus models against the
black background. The outlines were converted into numeric codes, referred to as “chain
codes,” using the CHC module. Next, the CHC2NEF module was used to convert the codes
into elliptical Fourier coefficients represented by 20 harmonics and normalized by the first
harmonic. The resulting coefficients were then subjected to a principal component analysis
(PCA) using the Princomp module, and the effective PCs (i.e., those with proportions larger
than 1/ncoefficients) were retained for all subsequent statistical analyses.

2.4. Statistical Analyses

Unless otherwise noted, all analyses were conducted in SPSS v28 [52], using a sig-
nificance of 0.05. Initial exploration of the data indicated several measures violated the
assumption of normality (i.e., Shapiro–Wilks p-values < 0.05). To be conservative, non-
parametric statistics were utilized for all analyses. Spearman’s Rho correlation analyses
were conducted to gain initial insights into how the PCs varied. To test for significant
differences in sinus morphology due to varying orientations within each of the three views,
Wilcoxon sign ranked tests were conducted. Owing to the assumption that investigators
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would place crania as close to the antemortem image as possible, and in order to reduce
the number of pair-wise comparisons, we focused our analyses on the deviations from
the standard orientation within each view, versus investigating orientations across the
three major views. Specifically, the effects of the 5◦ variations on sinus variables (i.e., area,
breadth, height, PCs) in the standard FHZ, OML, and PAL views were tested against their
eight respective deviations in orientation. Due to multiple tests in this section, we applied a
Bonferroni correction: significant differences were considered at the 0.006 alpha-level (0.05
divided by eight tests, per standard view). Descriptive statistics and plots were used to
interpret differences and trends observed between the views and deviated orientations.
Visualizations of the PCs and original sinus outlines were also utilized when interpreting
how the orientations affected sinus shape.

The final portion of this study was to test the implication of varying orientation on
frontal sinus identification. To accomplish this, multivariate Euclidean distances were cal-
culated across the effective PCs between each varying orientation, both within individuals
(intra-individual distances) and among different individuals (inter-individual distances).
The assumption was that the intra-individual distances should be significantly less than
the inter-individual distances. Three Euclidean distance matrices—one for each view—
were created using the program PASSaGE2.0 [53]. Mann–Whitney U tests were conducted
to statistically compare the pooled intra-individual distances (all orientations; n = 36 dis-
tances per individual, with 756 distances per view) to pooled inter-individual distances (all
orientations; n = 1620 per individual, with a total of 34,020 distances per view). Using a
one-tailed hypothesis, these analyses allowed us to directly test whether inter-individual
distances were significantly greater than the intra-individual distances within each view.
To test whether a specific view (FHZ, OML, or PAL) was less/more reliable than others,
a Kruskal–Wallis analysis was conducted to test for significant differences in the intra-
individual distances among the three views. If significant, follow-up Mann–Whitney U
tests were conducted to directly test for specific differences among the three views. These
analyses were conducted in SPSSv28 using a significance of 0.05, unless otherwise noted.

Finally, to assess whether the slight deviations from standard orientations could affect
forensic frontal sinus matches as based on Christensen’s outline method [15,54], we also
took each outline (n = 189; 21 individuals and 9 outline views) and determined which
outline they most closely matched to (i.e., least Euclidean distance). This was carried out
within each of the standard views (i.e., all FHZ compared to all other FHZ outlines). If the
deviations in orientations do not grossly affect positive identification, then the smallest
distance (closest match) should be to an outline within the same individual and not an
outline from a different individual.

3. Results

The PCA yielded eight effective PCs explaining a cumulative 92.57% of the variation.
The results of Spearman’s Rho correlation analyses between the PCs and sinus variables are
presented in Table 1. In terms of the sinus dimensions, PC1 most closely approximates sinus
height, as indicated by the higher correlation coefficients, compared to PC2 and PC3. More
specifically, PC1 (35.77% of the variation) largely tracked height and breadth dynamics;
individuals with negative PC1 scores expressed superior inferiorly flatter sinuses (i.e., rela-
tively larger breadth than height) compared to positive PC1 scores. PC2 (24.20%) appears
to capture sinus complexity; outlines with more negative PC scores have several large
“loops” and “indentations”, with some of the indentations approaching the supraorbital
line, while those with more positive PC scores lack these indentations. PC3 (13.53%) tracks
relative height changes in the outline, with negative PC3 scores representing sinuses with a
distinctly higher midline (i.e., similar to a mountain peak) compared to lateral areas and
positive PC3 scores representing sinuses with more equally distributed heights across the
outline (i.e., similar to a plateau). The remaining PCs each explain less than 10% of the
variation and were not univariately analyzed further.
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Table 1. Results of Spearman’s Rho correlation analyses (with correlation coefficients and p-values)
between sinus variables and the principle components (PCs) representing >10% of variation.

Area Breadth Height PC1 PC2 PC3

Area - 0.900 0.921 0.666 0.465 0.067
p-value - <0.001 * <0.001 * <0.001 * <0.001 * 0.111

Breadth 0.900 - 0.873 0.615 0.295 −0.249
p-value <0.001 * - <0.001 * <0.001 * <0.001 * <0.001 *

Height 0.931 0.873 - 0.840 0.380 0.019
p-value <0.001 * <0.001 * - <0.001* <0.001 * 0.658

PC1 0.666 0.615 0.840 - 0.092 0.068
p-value <0.001 * <0.001 * <0.001 * - 0.029 * 0.104

PC2 0.465 0.295 0.380 0.092 - 0.109
p-value <0.001 * <0.001 * <0.001 * 0.029 * - 0.009 *

PC3 0.067 −0.249 0.019 0.0368 0.109 -
p-value 0.111 <0.001 * 0.658 0.104 0.009 * -

* Bold text with asterisk indicates significance at the alpha level of 0.05.

Table 2 provides descriptive statistics for PCs 1–3 in each orientation, along with the
Wilcoxon sign ranked tests between the standard (i.e., non-deviated) view and each 5◦

variation of that view. PC1 and PC3 present with more significant differences compared
to PC2, which likely relates to their relationship with size-related (i.e., relative height
and breadth) shape changes. All significant differences occur within the FHZ and OML
views and all significant differences involve some deviation in a vertical component (i.e.,
left-straight and right-straight deviations did not result in any significant differences). As
individuals are oriented further inferiorly, they tend to display significantly shorter heights
relative to breadth (i.e., more negative-loading PC1 and PC3s). This can be seen in Figure 3,
which shows PC1–PC3 values (with associated contours) against 5◦ vertical and horizontal
deviations (diagonal views not pictured).

The interpretations of the PC results were confirmed by analyzing the sinus area,
height, and breadth measurements. Table 3 provides descriptive statistics for these variables
in each orientation, along with the Wilcoxon sign ranked tests between the standard and
each varying 5◦ orientation within each view (e.g., FHZ standard vs. FHZ left up). OML
and FHZ displayed significant differences in area and height for most views, while PAL
only displayed significant differences in height. Again, deviations without any vertical
component (i.e., right straight and left straight) did not result in significant differences.
There were no significant differences in breadth among the 5◦ deviations and any of the
three standard views. These results are best illustrated in Figure 4, which shows individual
area (top graph), height (middle graph), and breadth (bottom graph) dimensions against
5◦ vertical and horizontal orientations (diagonal views not pictured). Note the relatively
stable breadth dimensions, with one exception in the OML down view (see discussion).

Table 2. Median and inter-quartile range (IQR) statistics for PC1–PC3 across the three views and
varying orientation. Wilcoxon sign rank tests (Z scores and significance) also provided for each
orientation versus respective standard view.

Orientation
PC1 PC2 PC3

Median (IQR) Z Median (IQR) Z Median (IQR) Z

OML Standard −0.075 (0.187) − 0.009 (0.109) − −0.044 (0.094) −
Straight Down −0.090 (0.184) −2.798 * 0.005 (0.082) −0.261 −0.042 (0.097) −2.450

Straight Up −0.055 (0.174) −3.424 * 0.022 (0.109) −3.076 * −0.018 (0.069) −3.389 *
Right Straight −0.079 (0.191) −1.477 −0.004 (0.128) −2.138 −0.046 (0.090) −1.373
Right Down −0.058 (0.171) −2.798 * 0.040 (0.144) −1.651 −0.015 (0.065) −2.768 *

Right Up −0.065 (0.177) −3.076 * 0.004 (0.071) −0.052 −0.052 (0.076) −2.763 *
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Table 2. Cont.

Orientation
PC1 PC2 PC3

Median (IQR) Z Median (IQR) Z Median (IQR) Z

Left Straight −0.068 (0.185) −1.408 0.005 (0.123) −0.226 −0.030 (0.077) −2.450
Left Down −0.065 (0.187) −2.555 0.017 (0.133) −1.651 −0.009 (0.061) −3.250 *

Left Up −0.099 (0.163) −3.111 * 0.008 (0.095) −0.087 −0.047 (0.072) −1.929

FHZ Standard 0.027 (0.188) − 0.012 (0.119) − 0.025 (0.066) −
Straight Down −0.009 (0.193) −2.798 * −0.005 (0.118) −1.547 −0.001 (0.058) −3.667 *

Straight Up 0.018 (0.180) −1.964 0.019 (0.115) −2.868 * 0.034 (0.070) −3.215 *
Right Straight −0.013 (0.206) −0.226 0.021 (0.167) −0.365 0.028 (0.069) −0.921
Right Down −0.031 (0.204) −2.728 * −0.011 (0.152) −0.261 −0.004 (0.075) −3.806 *

Right Up 0.004 (0.179) −0.904 0.027 (0.127) −2.763 * 0.027 (0.066) −2.589
Left Straight −0.016 (0.175) −0.956 0.026 (0.179) −0.608 0.025 (0.073) −1.477
Left Down −0.009 (0.188) −3.041 * 0.013 (0.171) −0.504 0.018 (0.070) −2.311

Left Up 0.007 (0.195) −0.991 0.028 (0.173) −1.130 0.033 (0.075) −3.945*

PAL Standard 0.021 (0.163) − 0.042 (0.118) − 0.042 (0.062) −
Straight Down 0.029 (0.155) −1.894 0.028 (0.120) −2.346 0.032 (0.079) −1.130

Straight Up 0.006 (0.163) −2.207 0.054 (0.121) −0.365 0.027 (0.087) −1.790
Right Straight 0.037 (0.177) −0.365 0.040 (0.132) −0.365 0.034 (0.071) −1.095
Right Down 0.030 (0.164) −2.103 0.030 (0.108) −2.103 0.034 (0.077) −0.295

Right Up 0.007 (0.165) −1.721 0.042 (0.116) −0.400 0.026 (0.089) −0.504
Left Straight 0.014 (0.147) −0.156 0.048 (0.119) −0.261 0.040 (0.066) −0.261
Left Down 0.023 (0.162) −1.581 0.045 (0.133) −0.956 0.041 (0.079) −0.017

Left Up −0.004 (0.162) −2.207 0.055 (0.126) −1.130 0.026 (0.087) −0.747

* Bold text with asterisk indicates significance at the Bonferroni-adjusted alpha level of 0.006.
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Figure 3. PC1 (top), PC2 (middle), and PC3 (bottom) values plotted against vertical orientations (left)
and horizontal orientations (right) for each view; circles with same color scheme represent the same
individual across all graphs (legend provided). PC contours also provided, with thick blue lines
representing constructed +2 standard deviations (above) and −2 standard deviations (below) relative
to the mean; black dashed lines representing actual outlines from an individual near the extremes of
the axes. D, down; S, straight; U, up; R, right; L, left.
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Table 3. Median and inter-quartile range (IQR) statistics for sinus variables across the three views
(Orbitomeatal Line, OML; Frankfort Horizontal Plane, FHZ; and Porion-Alveolar Line, PAL) and
varying orientations. Wilcoxon sign rank tests (Z scores and significance) also provided for each
orientation versus respective standard view.

Orientation
Area (cm2) Height (cm) Breadth (cm)

Median (IQR) Z Median (IQR) Z Median (IQR) Z

OML Standard 5.037 (7.077) − 1.505 (1.287) − 5.815 (2.769) −
Straight Down 5.251 (7.719) −3.146 * 1.394 (1.209) −3.181 * 5.783 (2.823) −1.303

Straight Up 6.681 (7.064) −3.597 * 1.638 (1.239) −3.806 * 5.862 (2.753) −0.800
Right Straight 4.867 (7.640) −0.382 1.553 (1.399) −0.226 5.846 (2.866) −0.678
Right Down 5.458 (6.929) −2.728 * 1.567 (1.316) −3.163 * 5.780 (2.785) −0.608

Right Up 5.222 (6.370) −3.563 * 1.385 (1.247) −3.667 * 5.859 (2.864) −0.417
Left Straight 6.160 (6.903) −0.896 1.496 (1.204) −1.717 5.757 (2.754) −1.304
Left Down 6.332 (7.014) −3.041 * 1.678 (1.356) −3.250 * 5.763 (2.698) −1.512

Left Up 5.450 (6.715) −3.563 * 1.451 (1.235) −3.389 * 5.801 (2.757) −1.981

FHZ Standard 7.129 (7.775) − 1.875 (1.347) − 5.838 (2.742) −
Straight Down 7.063 (7.337) −3.007 * 1.762 (1.342) −3.233 * 5.793 (2.731) −0.463

Straight Up 7.806 (7.385) −3.493 * 1.866 (1.292) −3.007 * 5.836 (2.734) −1.565
Right Straight 7.118 (7.689) −0.504 1.793 (1.428) −0.574 5.770 (2.807) −0.205
Right Down 6.956 (7.918) −3.389 * 1.739 (1.386) −4.015 * 5.788 (2.779) −0.017

Right Up 7.367 (7.826) −3.424 * 2.019 (1.262) −2.798 * 5.836 (2.859) −1.026
Left Straight 7.015 (7.363) −0.678 1.879 (1.366) −0.330 5.814 (2.709) −1.321
Left Down 6.534 (7.482) −3.736 * 1.738 (1.391) −3.910 * 5.788 (2.743) −2.312

Left Up 7.525 (7.555) −2.485 1.965 (1.298) −3.245 * 2.709 (2.753) −1.651

PAL Standard 8.002 (7.883) − 1.945 (1.196) − 5.775 (2.708) −
Straight Down 8.446 (7.853) −1.095 2.050 (1.348) −3.233 * 5.780 (2.753) −0.417

Straight Up 8.084 (7.420) −2.033 1.897 (2.169) −3.007 * 5.790 (2.729) −1.363
Right Straight 8.081 (8.182) −1.303 1.958 (1.237) −0.574 5.869 (2.840) −0.037
Right Down 7.999 (7.664) −0.226 2.041 (1.249) −4.015 * 5.854 (2.765) −0.672

Right Up 7.948 (7.542) −1.721 1.932 (1.093) −2.798 * 5.812 (2.799) −0.485
Left Straight 8.119 (7.747) −0.817 1.920 (1.214) −0.330 5.897 (2.710) −1.547
Left Down 7.730 (16.219) −0.261 2.028 (1.303) −3.910 * 5.875 (2.730) −1.095

Left Up 7.741 (7.408) −2.172 1.930 (1.140) −3.245 * 5.770 (2.657) −0.672

* Bold text with asterisk indicates significance at the Bonferroni-adjusted alpha level of 0.006.

PC Distances

Figure 5 provides histograms of the intra-individual and inter-individual distances for
each standard view, while Table 4 provides the descriptive statistics and Mann–Whitney U
Test results. For each of the three views, the intra-individual distances were significantly
lower than the inter-individual differences (all p-values < 0.005). When comparing the
intra-individual distances across the three views, a Kruskal–Wallis test indicated significant
differences (test statistic = 118.22; p < 0.001). Follow up Mann–Whitney U tests on the
intra-individual distances found that the significant differences between all views: OML
versus FHZ (Z = −3.277; p = 0.001); OML versus PAL views (Z = −10.676; p < 0.001);
and FHZ versus PAL views (Z = −7.252; p < 0.001). Figure 6 provides a boxplot for the
intra-individual distances, by individual and view. Notably, the median and range of
intra-individual distances are higher among OML views for most individuals compared to
the FHZ and PAL views.
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Table 4. Median and interquartile range (IQR) values, with Mann–Whitney U results for the multi-
variate PC intra- and inter-individual distances across the three views: Orbitomeatal Line (OML),
Frankfort Horizontal Plane (FHZ), and Porion-Alveolar Line (PAL).

View
Intra-Distances Inter-Distances

Z
Median (IQR) Median (IQR)

OML 0.053 (0.045) 0.222 (0.144) −43.681 *
FHZ 0.048 (0.043) 0.253 (0.145) −44.868 *
PAL 0.035 (0.033) 0.225 (0.136) −46.183 *

* Bold text with asterisk indicates significance at the 0.05 level.
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Figure 6. Box and whisker plots illustrating medians and quartiles for intra-individual distances for
each individual in the three views: Orbitomeatal Line (OML), Frankfort Horizontal Plane (FHZ), and
Porion-Alveolar Line (PAL).

Still, all three views showed high reliability in outline matching. For the PAL and
FHZ views, all 189 outlines matched with outlines from their same individual, for a correct
match rate of 100%. The OML view had a correct match rate of 98.94%, with only two
instances where outlines most closely matched to a different individual. Interestingly, both
mismatched instances included the same two individuals, but different paired orientations:
TC1154R left-up to TC1155 right-straight and TC1154R straight-down to TC1155 left-
straight. Visual assessment of these outlines suggests striking morphological similarities,
as seen in Figure 7. Overall, these results suggest that although the 5◦ deviations returned
statistical differences in the Wilcoxon sign rank tests, these deviations are not likely to
impact forensic sinus matches in practice, particularly for the PAL and FHZ views.
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4. Discussion

Several studies suggest that when using the frontal sinus as an identification method,
postmortem radiographs should be taken as closely as possible to the antemortem ori-
entation [1,19,55,56]. However, a perfect alignment match can be challenging, if not im-
possible, and small deviations between the radiographic comparisons (e.g., 5◦) is highly
likely [29,57,58]. The current study investigated how small 5◦ deviations in vertical, hor-
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izontal, and diagonal axes may affect frontal sinus morphology within three clinically
relevant views based on the Orbitomeatal Line (OML), Frankfort Horizontal Plane (FHZ),
and the Porion-Alveolar Line (PAL).

In terms of overall sinus dimensions, the current study found that sinus breadth
remained relatively stable throughout the deviations, while sinus height was more affected
by small variations in vertical orientation. This effect is illustrated in Figure 4 (middle
left), which shows the progression of change in sinus height from the most inferiorly
oriented view (OML straight-down) to the most superiorly oriented view (PAL straight-up).
Changes affecting sinus height dimensions will also affect shape variables (PCs) related to
sinus height–breadth dynamics (i.e., height relative to breadth). This effect was evident
in the Wilcoxon sign rank tests, whereby deviations in vertical orientations resulted in
significant differences in PC1 and PC3, both of which capture aspects of sinus height
relative to breadth. As further support, horizontal changes without vertical re-alignment
(e.g., simply looking left-straight or right-straight) did not present significant differences
from the standard views. As discussed further below, these results are important for
forensic frontal sinus matching methods that utilize measures of sinus height or variables
associated with sinus height (e.g., area, height/breadth indices, or outlines).

When comparing the three standard views, the PAL view showed to be the most stable,
with the OML view the least stable, in terms of minor deviations altering sinus morphology.
While the PAL view had significant differences in measured height with vertical deviations,
all other measured and PC variables appear unaffected. Further evidence for reduced
reliability in the OML view comes from the analyses on the Euclidean distances, which
showed a higher range of intra-distance variation compared to the other views (Figure 5).
As the OML view was the most inferiorly rotated of the three views investigated here, this
suggests that more superiorly oriented radiological views are more stable in frontal sinus
identifications. This is likely true up until a certain extent, as previous studies have shown
that Water’s view (involving a superior rotation approximately 10◦s higher than our PAL
view) can be highly affected by orientation deviations and drastically affects the appearance
of craniofacial structures [47]. In terms of morphological stability, frontal sinus dimensions
seem to be more stable across varying orientations within more moderate views, such as
the PAL and FHZ views utilized here. This is consistent with previous publications [25,26].
In fact, Nikolova et al. [26] found that sinus dimensions in their “Caldwell” view (the same
view as our PAL view; see materials/methods) was the least affected by deviations in
orientations.

However, previous studies also noted a more drastic alteration of sinus breadth versus
height, which is contrary to the results found in the current study. Of several craniofacial
measures, Riepert et al. [27] found frontal sinus breadth presented with some of the highest
deviations with varying orientations. Nikolova et al. [26] found that any 5◦ inferior vertical
orientations of the cranium from their standard “Caldwell”/PAL position resulted in a
significant decrease in sinus breadth, while superior vertical orientations resulted in an
increase in breadth. This likely relates to the fact that most sinuses are widest near their
inferior base and the inferior border was determined at the superior orbital margin. As
such, a superior tilting of the cranium would result in the base of the sinus being more
prominent, while inferior tilting of the cranium would result in the base of the sinus dipping
below the superior orbital line. Silva et al. [25] also found that 10◦ vertical deviations from
their standard “Caldwell”/PAL position resulted in narrowing of breadths, likely due to
the lateral edges of the sinus being lost from view in either direction.

There could be several reasons why the current study did not also find significant
differences in breadth. First, it should also be noted that the Silva et al. [25] study focused on
relatively large degrees of variations (10◦); there is a possibility that significant differences
in sinus breadth would not have been found in smaller degrees of orientation, such as
the 5◦s measured here. Additionally, crania were manually repositioned to obtain each
varying degree, which could have introduced an additional potential source of error [29].
As another consideration, both Silva et al. and Nikolova et al. utilized radiographic
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images, which incorporate measures of distortion inherent to radiographs, including issues
of superimposition and magnification, that were not investigated here with CT-derived
models. Yanagisaw and Smith [24] (p. 112) note that “the posterior tilt of the head . . .
causes some distortion of the frontal sinuses because their vertical axes are not parallel
to the film and the space between the frontal sinuses and the film is considerable.” It
could very well be that these radiographic sources of visualization error more greatly affect
sinus breadth versus height, which the current study did not capture (see Section 4.2) also
see [27,58].

4.1. Effect on Sinus Identification

Still, despite significant differences between several orientations and views found in
the current study, these deviations do not seem to largely affect potential identification
as assessed by outline analyses (e.g., the Christensen method [15,24]). For all three views,
Mann–Whitney U tests indicate that the intra-individual differences were significantly
lower than the inter-individual differences. All three views also had high instances of
true-positive matches, with OML at 98%, FHZ at 100%, and PAL at 100%. These results
are similar to Christensen [15], who found that while there was some overlap where
individual outlines most closely matched another individual, such occurrences were rare.
Overall, this suggests that in most cases—regardless of varying 5◦ orientations or views—
an individual’s outlines more closely resemble each other than outlines of other individuals.
This is likely due to the already high inter-individualistic aspect of sinus morphology [27],
which supersedes more subtle differences related to orientation. However, given that
two outlines for the OML view did incorrectly match with another individual, caution is
warranted when applying such quantitative methods of sinus identification. Although the
outlines that erroneously matched in this study were strikingly similar (Figure 7), a simple
visual assessment could likely distinguish the two. This suggests that current quantitative
methods are not yet capable of distinguishing subtle differences or performing the complex
interpretations undertaken by human observation. Thus, while there is a push to move
towards more quantitative and objective methods in the forensic sciences (particularly
in the U.S. since the Daubert guidelines [59,60] and 2009 National Academy of Sciences
Report [61]), such methods may be more susceptible to noise and minor deviations.

Certain frontal sinus morphologies may also be more unique than others, and addi-
tional analyses are required to assess whether certain sinus variables (e.g., size, degree
of complexity, etc.) are more prone to deviation issues or mismatches in larger and more
diverse outline samples. There is already some indication that frontal sinus size affects
the reliability of identification rates. As previously noted by Christensen [28] and Smith
et al. [62], smaller sinuses are typically less complex (e.g., in terms of arcade number)
and, thus, less diagnostic for identification purposes. Further, even slight vertical and/or
horizontal variations could cause a smaller sinus to be partially, or even entirely, eliminated
from view. Along these lines, the current study points to caution warranted when using
identification methods on discontinuous sinuses and/or sinuses that have smaller lobes or
lower arcades near the superior orbital border. In such cases, even small 5◦ variations may
drastically alter the shape of the sinus. In the current study, this is best seen in Figure 4
(bottom, left), which shows the case of a single individual whose breadth was drastically
smaller in the OML straight-down versus other views. Figure 8 investigates the OML
outlines of this individual further. Note how, when in standard OML view, the individual
outline presents with two distinct sinus lobes, with the anatomically right sinus being
smaller (indicated by the large arrow) than the left; the left lobe also possesses a small
arcade on its lateral edge (small arrow). As the individual is re-oriented inferiorly, the
right lobe and smaller arcade completely disappear from view. This change would result
in drastically different PC scores, particularly in terms of PC1 and PC3, which both track
height-breadth dynamics. In a real-case scenario, if an investigator only had two images for
this individual (e.g., straight-down and standard, see Figure 8), a true positive identification
could be missed.
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4.2. Limitations and Future Directions

While this study provides a preliminary understanding on how deviations in ra-
diographic orientations can affect frontal sinus identification methods, there are several
considerations for future studies. First, although we modeled this study based on the
EFA method developed by Christensen [15,16,28,54], it was slightly modified from original
analysis. Both studies utilized EFA, a standard method of comparing closed outlines, but
the collection and analyses of these outlines differed. Using conventional radiographic
images, Christensen manually traced outlines on acetate paper, then digitally converted
the images into x, y coordinates. The act of manual tracing has potential for error due to
differences in tracing the contours. The incorporation of 3D models here (see Materials and
Methods) allowed the automatic capturing of outline shape without the potential effect (no
matter how minimal) of manual tracing error. Further, unlike Christensen who utilized the
x, y coefficients of the outline harmonics as their primary variable, we conducted a PCA
to obtain PCs as our shape variables. The use of PCA has the advantage of simplifying
the dataset, which are easier to analyze and interpret. In both approaches, the overall
results were the same: the use of EFA on outline shape analyses provides a relatively robust
method for frontal sinus outline identification, at least for larger continuous sinuses (see
above). Still, additional studies further testing the inter- and intra-reliability of this method
across a wide range of sinus sizes and observers is necessary to fully validate this method.
Along these lines, additional studies focusing on relationships between frontal sinus pat-
terns and body size and/or cranial–facial morphology would be beneficial. Indeed, while
several studies attempt to discern such relationships across diverse human populations,
such studies are conflicting and no consensus of the underlying factors explaining sinus
morphology have been reached (for more discussion, see [34,36,38]). Further, the direct
implications (if any) of these variations on frontal sinus morphology, particularly outline
shape, to forensic identifications are lacking in the literature.

Of importance to consider here is that all frontal sinus identification methods, whether
based on coding, metric, visualization, or outlines, take the same variables (e.g., height
vs. breadth, arcade/scallop number and presentation, presence/absence of sinus lobes)
into consideration when attempting to corroborate or negate a potential match. While
we focused on a single outline method, the other methods could also be affected by the
varying orientations altering sinus shape described here. For example, a coding method
incorporating the number of arcades or presence/absence of sinus lobes (e.g., [7,22]) would
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understandably be affected if a lobe or arcade became unviewable with certain orienta-
tions. Additional testing across wider ranges of identification methods and among more
diverse samples is needed to determine if any single method is more robust to alteration in
orientations compared to others.

Finally, the primary limitation of this study is that it does not directly emulate real-life
scenarios, largely due to the incorporation of CT-derived models versus radiographs. While
using 2D images of the segmented sinuses emulates the 2D view obtained in traditional
radiographs, the CT-derived sinuses would not have been affected by radiographic-specific
parameters, such as radiographic quality, magnification, distortion or human error in
degree placement. Overall, CTs have several benefits over radiographs: they allow a clearer,
3D view of the sinuses, can be oriented in any direction, and digitally derived models can
be modified to showcase soft tissue, if needed, or not [63]. Further, emerging technological
advantages in the clinical sector will likely result in investigators being presented with more
antemortem images from CT scans [64]. Owing to this, several studies attempt to create
frontal sinus identification methods based on CT scans and digitally derived sinus models
specifically [8,9,17,65–72]. However, in terms of postmortem images, all investigators may
not have the time, resources, or experience to obtain and evaluate CT scans, let alone go
through the process of creating frontal sinus models for identification purposes. Access to
such technology may vary depending on geographic regions as well. While postmortem
virtual autopsies utilizing CT scans (sometimes referred to as virtopsies or postmortem CTs)
are relatively common among European countries [73], their incorporation in the United
States is lagging. In fact, a relatively recent article from 2018 indicated that only four U.S.
agencies have CT equipment available for regular use [74].

Although postmortem analog radiographs may still be more likely (at least in certain
regions), we avoided two potential sources of error by utilizing digital frontal sinus models
versus traditional radiographs in the current study. First, we more accurately and precisely
positioned the cranium using digital means, avoiding error introduced by manual re-
positioning crania on the X-ray tables [26,29]. Second, since the act of digitally or manually
tracing outlines may impose additional error, we obtained 2D images of the models to
automatically digitize frontal sinus outlines. Both steps allowed us to directly test the
actual effect of varying orientation on this method, without additional sources of error
and/or bias. However, this also means that the major sources of error introduced in
varying orientations on frontal sinus morphology—issues of distortion, magnification, and
superimposition of radiographs—could not be taken into consideration here. These effects
were assessed by Nikolova et al. [26] who directly tested how changes in radiographic
images taken from an industrial µCT scanner distorted actual linear measures. By directly
comparing radiographic linear measures to a virtual frontal sinus endocast (i.e., model),
they found breadth is more distorted than height dimensions. However, while they used
an industrial µCT scanner, which has a fixed X-ray tube and flat panel detector similar
to conventional radiography, it is unclear whether the beam passed through the crania
from a posterior–anterior or anterior–posterior direction—an important distinction, as
the differing orientation of the beam will pass through different layers of superimposed
structures, varying the effects of distortion. In the clinical setting, the radiographic beams
are typically aligned posteriorly–anteriorly through the cranium, which avoids direct
radiation that could harm the patient’s orbital contents. But, there is further distortion of
the sinus morphology as the beam travels through the present soft tissue, such as brain
matter [75]. Future studies directly comparing frontal sinus identification methods between
mixed modalities (e.g., CT scans vs. traditional radiographs) and with the presence/absence
of soft tissue would be informative.

4.3. Recommendations on Sinus Identifications

While there will hopefully be a move to include more advanced imagining technology
at medicolegal agencies globally, we offer several recommendations when using the frontal
sinus as an identification method with analog radiographs. Firstly, it is obvious that
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practitioners should aim to orient the cranium as close as possible to the antemortem
comparative image. Besides the position of the skull, this may also involve matching the
direction of X-ray (e.g., anterior–posterior or posterior–anterior) and the angle at which
the X-ray enters the skull and encounters the film. For example, in true Caldwell position
while the head is oriented horizontally to the film, the X-ray beam is oriented at a 15–20◦

angle. With this in mind, forensic anthropologists conducting radiographic comparisons
for personal identification should ideally have training in radiographic techniques. An
increase in collaborations between clinicians, radiographic technicians, and medicolegal
practitioners can ensure a better understanding of radiological practices and consensus on
terminology.

In terms of application, the results presented here can help practitioners differentiate
explainable from unexplainable differences when conducting radiographic comparisons
of frontal sinus morphologies. Although this study focused on one sinus outline method
of identification, understanding the sinus shape variations that are expected with slight
orientation differences can be used to better interpret the results of other sinus identifi-
cation methods. Differences in vertical orientation of the crania can be expected to affect
sinus height and/or the presence of smaller lobes/arcades, particularly those near the
supraorbital border. In such cases, identification methods that rely on height measurements
or counts of lobes/arcades should be avoided. If applied, a visual comparison should be
used to confirm results, taking into account these expected changes with orientation, to
ensure that a correct identity is not erroneously excluded due to these methodological
errors. Keep in mind that such variation may be more drastic in more extreme views,
such as Water’s view (common in clinical settings) and/or the OML view assessed here.
Ultimately, although there is a push in forensics towards more quantitative methods such
as EFA/outline analyses, coding methods, and metric analyses for the frontal sinus, these
more objective methods may be more sensitive to slight deviations in the capture of the
radiographic frontal sinus. Until more robust methods of quantitatively describing the
frontal sinus morphology are developed or the use of CT technology becomes more com-
monplace across medicolegal agencies globally, visual comparisons, albeit more subjective,
are likely more capable of interpreting such explainable differences between radiographs.

5. Conclusions

Overall, the current study found that the EFA outline method for identification de-
veloped by Christensen [15,16,28] is relatively robust to small 5◦ variations in orientation.
However, in conjunction with previous studies, it is evident that reliability of frontal sinus
identification methods is largely contingent on the view being imitated, the directional-
ity of the deviation, and actual sinus morphology. Furthermore, based on our results,
Christensen’s EFA outline method would appear to be most reliable on larger sinuses,
particularly those that are superior inferiorly tall and medio-laterally wide without discon-
tinuous lobes (i.e., the right and left sinuses are touching), although additional testing is
needed to validate this method. For any method (e.g., outline, coding, and linear), caution is
warranted when attempting to identify individuals with small sinuses, particularly sinuses
possessing smaller discontinuous lobes.

In terms of clinical views, small degrees of varying orientation within an intermediate
range of standard clinical views (e.g., FHZ, PAL, and true Caldwell view) would be more
reliable compared to other views. Caution is highly warranted if attempting to match
antemortem radiographs taken in more extreme vertical orientations, including those
based on the Orbitomeatal Line (e.g., posterior–anterior frontal view) and/or or Water’s
view, as small deviations from that standard view can have more drastic effects on the
presentation of sinus morphology. Finally, the results of this CT-based study should be
considered limited, as additional sources of distortion common in traditional radiographs
(e.g., angulation, magnification, presence of soft tissue, and superimposition) will likely
have greater alterations to sinus morphology, particularly breadth, than that presented
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here. The results of this study assist practitioners in better understanding and interpreting
explainable and unexplainable differences between radiographs.
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Simple Summary: Forensic anthropologists are commonly asked to determine whether bones are
of human origin and, if not, to which species they belong. Current practice usually relies on visual
assessments rather than quantitative analyses. This study aimed to test the utility of basic bone
metrics in discriminating human from nonhuman elements and assigning faunal species. A database
of more than 50,000 skeletal measurements was compiled from humans and 27 nonhuman species.
Equations and classification trees were developed that can differentiate human from nonhuman
species with upwards of 90% accuracy, even when the bone type is not first identified. Classification
trees return accuracy rates greater than 98% for the human sample. These quantitative models
provide statistical support to visual assessments and can be used for preliminary assessment of a
bone’s forensic significance at a scene. The statistical models, however, could not classify species at
acceptable rates. For species identification, a freely available web tool (OsteoID) was created from
the study data, where users can filter photographs of potential bones/species using a few basic
measurements and access 3D scans and additional resources to facilitate identification. OsteoID
provides an important resource for forensic anthropologists lacking access to large comparative
skeletal collections, as well as other disciplines where comparative osteological training is necessary.

Abstract: Although nonhuman remains constitute a significant portion of forensic anthropological
casework, the potential use of bone metrics to assess the human origin and to classify species of
skeletal remains has not been thoroughly investigated. This study aimed to assess the utility of
quantitative methods in distinguishing human from nonhuman remains and present additional
resources for species identification. Over 50,000 measurements were compiled from humans and
27 nonhuman (mostly North American) species. Decision trees developed from the long bone data
can differentiate human from nonhuman remains with over 90% accuracy (>98% accuracy for the
human sample), even if all long bones are pooled. Stepwise discriminant function results were
slightly lower (>87.4% overall accuracy). The quantitative models can be used to support visual
identifications or preliminarily assess forensic significance at scenes. For species classification, bone-
specific discriminant functions returned accuracies between 77.7% and 89.1%, but classification
results varied highly across species. From the study data, we developed a web tool, OsteoID, for
users who can input measurements and be shown photographs of potential bones/species to aid
in visual identification. OsteoID also includes supplementary images (e.g., 3D scans), creating an
additional resource for forensic anthropologists and others involved in skeletal species identification
and comparative osteology.

Keywords: forensic anthropology; medicolegal death investigation; forensic significance; compara-
tive osteology; human osteology; skeletal morphology; nonhuman
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1. Introduction

Forensic anthropologists are commonly approached by law enforcement, coroners, and
medical examiners with an unknown skeletal element and faced with a simple question: is
this human [1,2] Well-trained forensic anthropologists know the human skeletal system in
meticulous detail, and unless the skeletal element has been highly modified (e.g., extreme
fragmentation, burning, etc.), they can usually differentiate human from nonhuman remains
without hesitation [3]. Forensic anthropologists visually assess the bone, determining the
element type (e.g., humerus, femur, tibia, etc.) and whether it is consistent with human
anatomy based on its size (given its developmental state), shape, and bony features [3].
This macroscopic assessment is usually concluded without metric analyses.

If the bone is human, it is of forensic significance and will be subjected to a com-
prehensive osteological analysis. If the bone is nonhuman, a forensic anthropologist is
faced with an inevitable follow-up question: what is it? This question is more than mere
curiosity because it provides verifiable evidence to support the forensic anthropologist’s
nonhuman designation [3]. An incorrect faunal species identification can affect the forensic
anthropologist’s credibility, even if it is not of forensic importance. Similarly, responding
to the inquiry by stating that it is not important or that you do not know does not instill
confidence or foster positive relationships with agencies. In some cases, the animal species
may provide investigators additional evidence or context regarding the circumstances of
death. For example, if the remains of a cat are found intermixed with human remains, it
may suggest that a suspect disposed of a house pet along with the decedent in an attempt
to conceal the human remains.

Faunal species identification, however, can be challenging for practitioners given
the number of bones in a skeleton, variety of potential species, and similar morphology
amongst related species [4]. While forensic anthropologists are required to be experts on the
human skeleton, zooarchaeological training, while ideal, is not a requirement, and expertise
in comparative osteology can vary greatly amongst practitioners. When determining the
nonhuman species of skeletal remains, practitioners are fortunate if they have access to
comparative osteological collections to assist with identifications. Such collections take
time and resources to build or require proximity and unrestricted accessibility to an already-
established collection. Various comparative osteology texts are available [5–13], each
with their own advantages and limitations; they vary in cost, comprehensiveness, species
included, photographic quality, and target audience. Texts are also most useful if the user
knows the element type in advance and/or already suspects a certain species. Reliable and
easily accessible online resources are limited, and internet searches for images of specific
faunal elements can return mixed results.

The primary goal of this project was to develop additional, freely-available resources
to support forensic anthropologists and medicolegal personnel in skeletal species identifi-
cation based on simple measurements. Saulsman et al. [14] report discriminant functions
derived from eight traditional long bone metrics that can differentiate human from five
Australian nonhuman species with accuracy rates at or above 95%. Their sample sizes were
limited to 50 human and 50 nonhuman individuals (ten per species). Given their promising
results, this study aimed to test the utility of similar bone metrics in differentiating much
larger samples of human and nonhuman specimens and classifying species, with a focus on
species commonly encountered in North America. Although a handful of measurements
cannot capture specific distinguishing bony features, traditional morphometric analyses can
capture overall bone size and shape (i.e., form), which are variables considered subjectively
during visual assessments of species.

In addition to the morphometric analyses, this study also aimed to develop a freely
available searchable online database that uses basic metrics and visual aids (i.e., pho-
tographs and 3D scans) to help forensic anthropologists and medicolegal personnel (amongst
others) determine species from skeletal elements. These resources would benefit practition-
ers without access to extensive comparative collections and would be accessible in the field
via the use of a smart phone or other device. Beyond the scope of forensic anthropology,
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this skeletal species identification tool may be useful to students, archaeologists, wildlife
forensic specialists, biologists, veterinarians, and others, including the general public who
may wish to learn more about bones they encounter through various activities.

2. Materials and Methods

The study sample included skeletal data from humans and 27 faunal species fre-
quently found in North America (20 mammals, 5 birds, 2 turtles—see Table 1), which
included species that approximate human sizes (e.g., deer, horse, elk, moose, cow, pig,
domestic dog, and black and brown bears). The species included are also commonly
presented in comparative osteology texts used by forensic anthropologists [5–9] and
encountered in forensic anthropological analyses [1]. To facilitate database searching,
analogous measurements needed to be obtainable from each specimen included, regard-
less of species or element type. Thus, long bones were chosen as the main focus for this
study (humerus, radius, ulna, radio-ulna, femur, tibia, fibula, and fused metapodials).
For birds, the tibiotarsus was included with the tibia data, and the carpometacarpus and
tarsometatarsus were included with the fused metapodials. The scapula, sacrum and
os coxae were also included given the ability to take maximum lengths and breadths
and their diagnostic morphologies. The original measurement list consisted of max-
imum lengths, proximal and distal maximum breadths (medio-lateral) and depths
(antero-posterior), midshaft minimum and maximum diameters, and a few unique
measurements for certain elements (e.g., femoral head diameter, acetabular diameter).
Von den Driesch [15] was used as a guide when establishing the measurements.

These measurement data were collected from skeletal remains curated at the following
institutions: Smithsonian National Museum of Natural History, Washington, DC; American
Museum of Natural History, New York City, NY; Mercyhurst University, Erie, PA; Washburn
University, Topeka, KS; University of California, Davis, CA; and Des Moines University,
Des Moines, IA. Additional data were included from published papers and available
datasets [16–34]. In some cases, published data of specimens outside of North America were
included in the study to increase sample sizes if the species was the same as that commonly
encountered in North America (e.g., domestic dogs and cats). Inclusion in the study
required specimens to be of skeletal maturity; specimens in advanced stages of epiphyseal
fusion were included to increase faunal sample sizes where necessary. This original dataset
consisted of 59,442 measurements from 18,867 bones from 5207 individuals/animals).
Species averages, standard deviations, and minimum/maximum ranges were calculated
for each measurement. Photographs of exemplar specimens were taken from multiple
standard views (e.g., six views for long bones) for incorporation into the web tool.

A subset of the data (47,688 measurements collected from 16,315 long bone elements)
was subjected to linear discriminant function (DFA) and decision tree analyses to evaluate
potential methods of human versus nonhuman and species classifications (Table 1). This
subset included maximum length (MaxL), maximum mediolateral width of the proximal
epiphysis (MaxPW), maximum mediolateral width of the distal epiphysis (MaxDW), maxi-
mum anteroposterior depth of the distal epiphysis (MaxDD), maximum diameter of the
midshaft (MaxMidD), and minimum diameter of the midshaft (MinMidD) collected from
humeri, radii, ulnae, femora, and tibiae. Element-specific measurements (e.g., femoral
head diameter) were excluded to permit pooled analyses across element types. Maxi-
mum proximal depth was excluded due to measurement difficulty in certain elements
(e.g., tibia depending on tuberosity location, ulna, and radio-ulna). Step-wise DFA us-
ing Wilk’s lambda and a leave-one-out cross-validation were performed on the human
versus pooled nonhuman samples of all long bones (replicating a situation where the
element type is unknown), and then separately for each bone. DFA was used to assess
human versus nonhuman classification for commonly collected univariate variables (MaxL,
MaxPW, and MaxDW) and variables grouped by bone region (e.g., distal measurements
and midshaft measurements) for application in cases when the unknown element is in-
complete/fragmented or taphonomic modifications preclude some measurements. Finally,

119



Biology 2022, 11, 25

stepwise discriminant functions were also run to assess potential ability to classify the
28 species using both pooled-bone and bone-specific samples. Variables input into the step-
wise analyses were chosen to maximize sample sizes and discriminatory power. Box’s M
was used to assess homogeneity in variance–covariance matrices, and Kolmogrov–Smirnov
tests were performed to evaluate data normality.

Table 1. List of species from which data and photos were collected and sample sizes by element.

Class Genus Species Common Name Humerus Femur Radius Tibia Ulna 1

Aves Anas platyrhynchos Mallard Duck 31 28 31 30 31
Aves Aquila chrysaetos Golden Eagle 21 23 20 19 23
Aves Branta canadensis Goose 34 34 32 31 34
Aves Gallus gallus Chicken 31 31 31 32 31
Aves Meleagris gallopavo Turkey 35 35 32 35 34

Mammalia Alces alces Moose 19 17 20 21 27
Mammalia Bos taurus Cow 15 16 13 17 12
Mammalia Canis familiaris Domestic Dog 84 147 75 147 76
Mammalia Canis latrans Coyote 64 65 57 65 58
Mammalia Canis lupus Wolf 44 45 38 45 38
Mammalia Capra hircus Goat 83 3 79 80 3
Mammalia Cervus canadensis Elk 34 33 31 32 31
Mammalia Didelphis virginiana Opossum 34 34 35 33 33
Mammalia Ovis/capra 2 aries/hircus Sheep/Goat 2 1 1 0 1
Mammalia Equus caballus Horse 31 33 33 30 33
Mammalia Felis catus Domestic Cat 40 39 39 39 38
Mammalia Homo sapiens Human 2714 2700 2672 2684 463
Mammalia Odocoileus hemionus Mule deer 31 32 34 32 38
Mammalia Odocoileus virginianus White-Tailed Deer 33 39 35 39 35
Mammalia Ovis aries Sheep 77 18 147 104 63
Mammalia Procyon lotor Racoon 36 37 36 39 37
Mammalia Sus scrofa Domestic Pig/Boar 20 17 7 17 8
Mammalia Sylviagus floridanus Eastern Cotton-Tail Rabbit 36 34 34 32 33
Mammalia Urocyon cinereoargenteus Gray Fox 39 42 39 40 42
Mammalia Ursus americanus American Black Bear 38 34 18 19 18
Mammalia Ursus arctos Brown Bear 48 46 18 22 19
Mammalia Vulpes vulpes Red Fox 43 41 41 42 40
Testudines Chelydra serpentina Snapping Turtle 30 30 30 30 30
Testudines Terrapene carolina Common Box Turtle 31 31 27 31 31

Totals 3778 3685 3705 3787 1360
1 For the human and nonhuman comparisons, individual measurements were taken from fused radio-ulna
elements and included as radius or ulna. For the development of the web tool, both the individual radius and
ulna measurements and combined maximum lengths/widths for the fused radio-ulna were included for search
purposes. 2 A few specimens were labeled as “Sheep/Goat” in the collection and thus entered this way for human
versus nonhuman analyses but were excluded from species analyses.

Decision trees were developed from the same data set and evaluated for classifying
human versus the pooled nonhuman samples and classifying species using both the pooled-
bone sample and bone-specific subsamples. The decision trees were created using a CRT
(Classification and Regression Trees) growth model with a Gini impurity measure splitting
criterion and a maximum tree depth of five levels. CRT uses stepwise variable selection
to create a decision tree where each node is split using the variable that best maximizes
the purity of the resulting nodes (i.e., homogeneity of the dependent variable) [35,36]. CRT
also uses surrogate variables (those that result in a similar outcome pattern) to replace
missing data, thereby maximizing sample sizes. The minimum number of cases for nodes
was set at 100 for parent nodes and 50 for child nodes. Equal prior probabilities were used
across groups. Tree pruning was implemented, set at one standard error in order to avoid
overfitting [35,36]. A split-sample validation was applied, with the model generated from a
training sample (70% of the data), which was then validated on the test sample (remaining
30% of the data). For the trees classifying human from nonhuman remains, human was set
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as a target variable and a misclassification cost of ten was assigned to misclassifications
of human bone as nonhuman. This reflects the more severe forensic implications in erro-
neously assigning a human bone as nonhuman as compared to misclassifying a nonhuman
bone as human.

The linear discriminant function analyses represent more traditional classification
approaches but have statistical assumptions such as multivariate normality and homogene-
ity of variance–covariance matrices [37–39]. Decision trees do not rely on these statistical
assumptions [40–42]. All statistical analyses were performed in SPSS v.28 (IBM Corpora-
tion, Armonk, NY, USA). We hypothesized that the multivariate DFA and decision trees
would be able to adequately differentiate human from nonhuman remains when single
elements were assessed, given that these morphometric parameters are used during visual
assessments of remains. The pooled-bone sample is expected to provide less accurate
results, given the compounded effects of variation within and between species and element
types. The results of the DFA and decision trees were used to make informed decisions
about the development of the skeletal species identification web tool, with the possibility
of integrating the methods into the tool depending on their performance.

3. Results
3.1. Descriptive Statistics

Sample sizes, minimum and maximum values, averages, standard deviations, and
the ranges between two negative and two positive standard deviations (~95% confidence
interval) were calculated per measurement and species (38 measurements collected across
28 species). Given the forensic aim to distinguish human from nonhuman remains, as well
as the extensive dataset, Table 2 presents only the human summary statistics. This table
may act as a general guide to assess whether a bone falls within the human size ranges;
note, however, that there is always a small possibility of a human bone falling outside these
values, given that samples may not represent the complete global variation of past and
present populations. Descriptive statistics for nonhuman measurements by species are
provided in the Supplementary Materials (Tables S1–S11).

3.2. Morphometric Human Versus Nonhuman Classification

When the human long bone measurements are compared to those of the pooled non-
human long bones, Box’s M indicates significant differences in the variance–covariance
matrices (p < 0.001 for all analyses). This is true for both the pooled-bone and bone-specific
samples. Kolmogrov–Smirnov results indicate that the nonhuman variables are not nor-
mally distributed, while the human data generally do not differ significantly from normality
(p > 0.05). These results are unsurprising given the unequal sample sizes and range of
nonhuman species being pooled (Table 1). DFA has been suggested to be robust against sta-
tistical violations [42]. For this reason and the exploratory nature of the analyses, the DFAs
were performed despite the violation of statistical assumptions to provide comparison to
the decision tree results and informed decisions about the web tool development.

The results of the human versus nonhuman DFA classification are summarized
in Table 3, including overall cross-validated accuracy, group-specific cross-validated
correct classifications, and sample sizes for each model. Note that DFA requires that
all measurements are present for each element in the analysis, resulting in significant
decreases in sample sizes for some models due to missing data. In each analysis, the
cross-validated results were the same or similar to the original classification results.
There are some classification biases, but in most cases, the human correct classification is
higher than the nonhuman. Of the univariate analyses, maximum lengths performed the
best with overall classification rates above 90% for all elements except for the ulna and
a 79.5% classification rate for the pooled-bone analysis. The human classification rates
using only maximum length were over 99% for all bones except the ulna (96.8%). The
DFAs assessing regional measurements (two midshaft variables or two distal variables)
provided results similar to or lower than the univariate maximum length results, with a
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few exceptions. The ulna midshaft had a 90.0% correct classification, outperforming the
length results, and the humerus midshaft accuracy was much lower than the length at
67.1% (vs. 94.1% for maximum length).

Table 2. Descriptive statistics from the human sample, including counts, minimums, maximums,
averages, standard deviations, and two standard deviation ranges per element and measurement.

Bone Meas 1 N Min Max Ave SD −2SD +2SD

Humerus

MaxL 2567 225 397 309 23 262 356
MaxPD 94 35 56 46 4 37 55
MaxPW 411 38 62 49 4 41 58
MaxDD 94 22 37 28 3 22 35
MaxDW 1867 42 77 59 6 47 70

MidMaxD 425 16 32 23 3 17 28
MidMinD 440 11 24 18 2 13 23

Radius

MaxL 2531 180 309 236 20 196 276
MaxPD 380 15 31 23 2 18 28
MaxPW 380 15 31 23 2 18 27
MaxDD 89 17 36 25 4 17 32
MaxDW 89 21 42 33 4 25 41

MidMaxD 454 10 21 16 2 12 19
MidMinD 454 8 74 12 3 5 19

Ulna

MaxL 406 211 334 263 20 222 303
MaxPW 257 14 35 26 3 19 32

MidMaxD 477 10 24 17 2 12 21
MidMinD 477 9 19 13 2 9 17

Femur

MaxL 2630 344 550 433 33 367 499
MaxPD 89 37 59 46 5 36 56
MaxPW 89 71 105 87 8 72 103
DiamH 1077 35 61 44 4 37 52
MaxDD 89 46 92 63 7 49 78
MaxDW 2563 58 98 77 6 64 90

MidMaxD 457 14 39 27 3 21 33
MidMinD 457 17 39 27 3 21 33

Tibia

MaxL 2589 159 472 357 32 294 421
MaxPW 1867 50 94 71 6 58 84
MaxDD 82 30 52 39 4 31 47
MaxDW 415 40 63 52 4 43 60

MidMaxD 420 19 44 33 4 25 42
MidMinD 82 15 28 21 3 16 26

Fibula MaxL 429 282 463 366 27 312 421

Os Coxae
MaxL 91 166 237 202 16 170 233

DiamA 1526 39 63 49 4 41 57

Sacrum
MaxL 90 89 157 114 13 88 141

MaxPW 90 90 138 111 9 93 129

Scapula MaxL 92 127 210 178 17 145 212
1 Measurement abbreviations: MaxL = maximum length, MaxPW = maximum proximal width (medio-lateral),
MaxDD = maximum distal depth (antero-posterior), MaxDW = maximum distal width (medio-lateral),
MidMaxD = maximum diameter at midshaft, MidMinD = minimum diameter at midshaft, DiamH = femoral
head diameter, DiamA = acetabulum diameter.

As expected, the pooled-bone DFAs did not perform as well as the bone-specific
analyses for morphometric human versus nonhuman classification. The pooled-bone
univariate analysis of maximum distal width performed the best (87.9%), which may
be because ulnae were excluded from this analysis (distal ulna measurements were not
collected) thereby removing one confounding element. Maximum length correctly classified
79.5% of the sample composed of 11,129 human bones and 5254 nonhuman bones.
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Table 3. Linear DFA accuracy results and sample sizes for human (Hum) and nonhuman (Non)
classifications summarized by element and variables. Overall accuracy is bolded. Var(s) = variable(s),
NHum = human sample size, NNon = nonhuman sample size.

Var(s) Pooled-Bone Humerus Femur Radius Tibia Ulna

MaxL

79.5%
Hum: 79.3%;
Non: 80.0%
NHum = 11,129;
NNon = 5254

94.1%
Hum: 99.9%;
Non: 78.0%
NHum = 2567;
NNon = 920

95.4%
Hum: 100.0%;
Non: 83.2%
NHum = 2630;
NNon = 981

95.4%
Hum: 99.8%;
Non: 79.3%
NHum = 2531;
NNon = 697

95.0%
Hum: 99.5%;
Non: 83.9%
NHum = 2589;
NNon = 1062

78.5%
Hum: 96.8%;
Non: 69.1%
NHum = 406;
NNon = 797

MaxPW

74.8%
Hum: 68.8%;
Non: 79.2%
NHum = 3383;
NNon = 4668

75.4%
Hum: 85.4%
Non: 69.8%
NHum = 410;
NNon = 733

85.4%
Hum: 100.0%;
Non: 83.8%
NHum = 89;
NNon = 822

46.1%
Hum: 61.8%;
Non: 39.7%
NHum = 380;
NNon = 946

93.4%
Hum: 99.7%;
Non: 78.8%
NHum: 1867;
NNon = 817

74.3%
Hum: 70.8%;
Non: 76.5%
NHum = 257;
NNon = 404

MaxDW

87.9%
Hum: 92.9%;
Non: 82.1%
NHum = 5021;
NNon = 4345

92.0%
Hum: 97.9%;
Non: 81.2%
NHum = 1868;
NNon = 1024

94.8%
Hum: 100.0%;
Non: 80.3%
NHum = 2560;
NNon = 908

69.7%
Hum: 83.1%
Non: 68.1%
NHum = 89;
NNon = 745

89.6%
Hum: 100.0%;
Non: 84.9%
NHum = 415;
NNon = 923

–

MaxDD &
MaxDW

78.9%
Hum: 64.3%;
Non: 80.0%
NHum = 230;
NHn = 3007

96.3%
Hum: 100.0%;
Non: 96.21%
NHum = 26;
NNon = 850

96.1%
Hum: 97.0%;
Non: 96.1%
NHum = 33;
NNon = 720

86.4%
Hum: 82.0%;
Non: 87.3%
NHum = 89;
NNon = 448

86.2%
Hum: 92.7%
Non: 85.4%
NHum = 82;
NNon = 735

–

MidMaxD &
MidMinD

64.4%
Hum: 49.0%;
Non: 73.1%
NHum = 1767;
NNon = 3089

67.1%
Hum: 62.0%;
Non: 69.9%
NHum = 347;
NNon = 714

90.2%
Hum: 86.4%;
Non: 92.7%
NHum = 457;
NNon = 711

87.9%
Hum: 88.3%;
Non: 87.6%
NHum = 436;
NNon = 443

87.2%
Hum: 84.8%
Non: 87.5%
NHum = 66;
NNon = 537

90.0%
Hum: 94.4%;
Non: 85.3%
NHum = 461;
NNon = 428

Stepwise 1

90.3%
Hum: 95.6%;
Non: 87.9%
NHum = 1408;
NNon = 3088
MaxL, MidMaxD,
MidMinD

96.7%
Hum: 99.6%;
Non: 90.7%
NHum = 1862;
NNon = 891
MaxL, MaxDW

98.1%
Hum: 99.9%;
Non: 93.0%
NHum = 2552
NNon = 906
MaxL, MaxDW

91.4%
Hum: 100.0%;
Non: 86.8%
NHum = 327;
NNon = 621
MaxL, MaxPW

89.4%
Hum: 92.2%;
Non: 83.4%
NHum = 1773
NNon = 807
MaxL, MaxPW

87.4%
Hum: 93.7%;
Non: 77.7%
NHum = 254;
NNon = 166
MaxL, MaxPW,
MidMaxD,
MidMinD

1 All variables were included in the stepwise DFA and those retained in the function are listed in each column
with the results.

The multivariate stepwise DFAs returned correct human versus nonhuman classification
rates above 90% for the humerus, femur, and radius and just below 90% for the tibia and
ulna (Table 3). Maximum length was utilized in all the stepwise functions and had the
highest weight. For the humerus (n = 2753) and femur (n = 3458), a function including
maximum length and maximum distal width returned accuracy rates of 96.7% and 98.1%,
respectively. Other functions for the humerus and femur returned higher classification rates
(99.5% for the humerus and 99.7% for the femur), but given the variables included in these
functions, sample sizes decreased to around 1100. Equations associated with the multivariate
discriminate functions are provided in the Supplementary Materials (Table S12).

The decision tree results outperformed the DFA results for human versus nonhuman
classification (Table 4) and were derived from larger samples in both the training and
test sets. With all bones pooled, decision trees that evaluated all measurements correctly
classified 90% or more of the training and test samples, except for the ulna test sample
(89.3%). The region-specific pooled-bone analyses had lower accuracy rates (ranging from
76 to 89% correct) but still outperformed the DFA. With the exception of the ulna test
sample, all training and test samples had correct human classification rates of 98% or higher.
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The ulna test sample correctly classified 94.5% of the human sample. Using four basic
measurements, the decision tree presented in Figure 1 results in an overall accuracy of
91% and human classification accuracy of 99.6%; this is for the pooled-bone sample (i.e.,
without first identifying which bone is present). Although the nonhuman classification
rate is lower (75%), this bias is expected given that we assigned higher misclassification
costs to the human sample. The terminal nodes of the decision tree (Figure 1) indicate the
number/percentage of human and nonhuman elements that fell within that node as well
as associated sample sizes. Note that the “total” row depicts the percentage of the original
input sample. The terminal nodes vary in their accuracy rates (75.2 to 99.8%), but only one
of five terminal nodes had accuracy rates below 90%. This node (node 7) consists of ~17%
of the total sample and represents those elements in which the multivariate sizes overlap
between human and nonhuman species. For example, a deer metatarsal may approximate
a human radius based on the measurements. Decision trees associated with the results in
Table 4 are presented in the Supplementary Materials (Figures S1–S9).

Table 4. Decision tree results and sample sizes for human (Hum) and nonhuman (Non) classifications
summarized by element and variables. Acc = accuracy, N = sample size. See Supplementary Materials
(Figures S1–S9) for the decision trees.

Bone Input
Training Sample Test Sample Tree Variables

Total
Acc

Hum
Acc Non Acc Hum N Non N Total

Acc
Hum
Acc Non Acc Hum N Non N

Pooled All 6 91.4% 99.6% 75.4% 8211 4253 91.0% 99.6% 75.0% 3487 1865
MaxL,

MidMaxD,
MaxDW &

MaxPW
Pooled Distal 83.3% 98.8% 64.8% 3650 3052 82.9% 98.9% 64.5% 1495 1300 MaxDD &

MaxDW
Pooled Mid 77.2% 99.7% 61.9% 1603 2356 75.7% 99.4% 59.6% 689 1016 MidMaxD &

MidMinD
Pooled Length 88.3% 99.9% 64.5% 7696 3763 88.7% 99.8% 63.2% 3433 1491 MaxL
Humerus ALL 6 99.1% 99.3% 98.4% 1914 741 97.9% 98.6% 96.3% 776 323 MaxL &

MidMinD
Femur ALL 6 96.7% 99.4% 89.5% 1853 694 96.4% 99.6% 86.9% 837 290 MaxL only
Radius ALL 6 95.1% 98.6% 86.2% 1894 734 94.9% 98.6% 85.2% 778 298 MaxL &

MidMaxD
Tibia ALL 6 94.9% 98.4% 86.5% 1854 776 94.0% 97.8% 84.4% 830 327 MaxDW &

MaxPW
Ulna ALL 4 92.5% 98.7% 89.2% 318 590 89.3% 94.5% 86.5% 145 267 MidMinD &

MaxPW

3.3. Morphometric Skeletal Species Identification

Correct species classification rates from the stepwise DFAs are summarized in Table 5.
The pooled-bone analysis had an overall 40.4% accuracy rate, which, although better than
the a priori classification rate (3.6%), can lead to numerus classification issues. For this
model, 20 species had correct classification rates below 50%, with only two species (eastern
cotton-tail rabbit and common box turtle) with classification rates above 75% (both above
90%). Bone-specific DFAs performed better, with overall accuracies ranging from 78 to
89%. The humerus DFA had the most accurate classifications with 18 species above 90%
and none below 50%. The humerus DFA performed the worst for brown bear (55.6%),
domestic dog (53.7%), and pig (50.0%). Domestic dog had classification issues across all
DFAs given the high degree of variation in dog sizes and morphologies. Species within
the same genus were commonly misclassified (e.g., domestic dogs and coyotes, brown
bears and black bears, etc.), given their similarity in morphology and substantial overlap
in body size. Human classification rates for the bone-specific DFAs ranged from 76.8%
(ulna) to 100.0% (humerus, femur, and radius). All stepwise DFAs retained all variables
in the final functions, and maximum length was consistently the most important variable.
Ultimately, while the overall species classification rates for the bone-specific DFAs are
acceptable, results varied greatly by taxa, suggesting that the DFAs should only be used as
a general guide and should not be relied on as final determinants of species identification.
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listed at each level would be measured, and based on the provided sectioning point, the user would 
move down the tree to the next level. This process would continue until arriving at a terminal node 
where classification would be assigned. Terminal nodes are outlined in red. Group classification is 
highlighted in yellow and bolded at each node. Percentages and counts of bones classified to each 
group in the training and testing samples are presented, as well as the total percentage of the sample 
represented in that node. Overall correct classification for the test sample is 91.0% (99.6% for human 
and 75.0% for nonhuman elements). This decision tree corresponds with the first line in Table 4. 
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5. The pooled-bone analysis had an overall 40.4% accuracy rate, which, although better 
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(eastern cotton-tail rabbit and common box turtle) with classification rates above 75% 
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Figure 1. Decision tree developed to classify human (Hum) versus nonhuman (Non) elements from
a pooled-bone sample (i.e., all long bones pooled). Working from the top of the tree, the variable
listed at each level would be measured, and based on the provided sectioning point, the user would
move down the tree to the next level. This process would continue until arriving at a terminal node
where classification would be assigned. Terminal nodes are outlined in red. Group classification is
highlighted in yellow and bolded at each node. Percentages and counts of bones classified to each
group in the training and testing samples are presented, as well as the total percentage of the sample
represented in that node. Overall correct classification for the test sample is 91.0% (99.6% for human
and 75.0% for nonhuman elements). This decision tree corresponds with the first line in Table 4.

As might be expected, the decision tree results attempting to classify species were not
successful. While tree overall classification rates were over 70% for all analyses except the
ulna, none of the trees produced 28 terminal nodes to classify each species. To classify each
species would require too many levels and branches; thus, the trees opted for preserving
overall classification rates by focusing on those species with the highest counts.
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Table 5. Stepwise DFA species classification results. The right side of the table presents the number
of species that fell within each accuracy range (i.e., <50%, 50–75%, 75–90%, or >90%). Vars = variables
included in final function, Acc = Accuracy, Hum = human.

Bone N Vars Total Acc Hum Acc
Number of Species

<50% 50–75% 75–90% >90%

Pooled 2737 All 6 40.4% 68.9% 20 6 0 2
Humerus 735 All 6 89.1% 100.0% 0 6 4 18

Femur 744 All 6 79.3% 100.0% 1 4 14 8
Radius 462 All 6 83.9% 100.0% 4 5 8 10
Tibia 548 All 6 77.7% 92.9% 3 5 5 14
Ulna 420 All 4 79.2% 76.8% 4 2 6 7

3.4. Web Tool for Species Identification

Both the DFA and decision tree results suggest that a simple equation or tree cannot
be used to adequately identify skeletal species. When forensic anthropologists visually
evaluate skeletal remains, they mentally process the bone dimensions to consider
possible species, using the overall bone size and shape to narrow down potential
species. Ultimately, however, visual comparisons and specific bony features are used to
make final species identifications.

To facilitate this species identification process, we utilized the metric data and images
from our study sample to develop an online, freely available species identification tool:
OsteoID [43]. The home page asks users to first identify the bone, providing diverse exem-
plars for each element (humerus, femur, radius, radio-ulna, ulna, tibia, fibula, metapodials,
scapula, sacrum, and os coxae), demonstrating the common general morphology of specific
elements across most species. There is also an option to “Search All” if the user cannot
confidently determine bone type. Once an option is selected, the user is brought to a new
page where they can narrow the search by common name, scientific name, or by bone
length, proximal width, and distal width. At any point, the user can search additional fields
in the side bar.

Maximum length, proximal width and distal width were chosen as the web tool
filtering variables for several reasons. First, they were found to be the easiest to measure
reliably, even with little or no osteological experience. In addition, the DFA and decision
tree analyses revealed maximum length to be the most important variable in species
identification, followed commonly by maximum distal width; including distal depth did
not exclude many more species. Finally, the midshaft measurements are instrumentally
defined (i.e., users need to take the maximum length and divide it by two to determine
the correct location to take the midshaft maximum and minimum diameters) and require
calipers. These factors make application in the field difficult and limit utility to those with
osteological backgrounds.

To determine the searchable range for each species/bone measurement, the minimum,
maximum, and two standard deviations above and below the mean were calculated.
The smallest value (whether two standard deviations below the mean or the observed
minimum) was used as the lower search limit, while the largest value (either two standard
deviations above the mean or the observed maximum) was used as the upper search limit.
This created a conservative size range, which is important given that the dataset does not
likely encompass the full size range of each species. For elements in the database missing
one or more measurements, a range of 0–1000 mm was assigned so that it would not be
automatically eliminated during searches.

As possible bones/species are narrowed, thumbnails show multi-views of the bones
by species as well as a list of the possible measurement ranges. Clicking on the thumbnails
opens a larger image in a new window. By opening in a new window, multiple possible
matches can be opened and placed side-by-side if needed. Most figures have six views of
the exemplar element (anterior, posterior, medial, lateral, proximal, and distal) and include
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the maximum length range on the image, a scale bar, and, when possible, a penny was
added for more intuitive sizing. Genus, species, collection, bone, and side information is
also provided. Some images have been annotated to point out distinctive features. The user
ultimately makes their final species classification based on visual comparisons. This web
tool is also compatible for use on smartphones and thus is accessible in the field.

Informational tabs on the home screen describe the web tool and its development,
provide instructions on utilizing the web tool (including measurement images), and
answer frequently asked questions. Users are reminded that filtering the bones/species
by measurements only works for skeletally mature specimens and are instructed on
how to identify skeletal maturity. In numerus places, users are reminded that if a bone
has any possibility of being human, they need to contact the local law enforcement
agency immediately.

Finally, a tab also refers the user to additional resources [43]. This includes references
to other texts or websites as well as a link to a Dropbox folder where they can find additional
project resources. In this folder, users can find the images included in the web tool, as
well as images of other elements such as carpals and tarsals, which were not included
in the main web tool given that measurements were not collected from these elements.
Three-dimensional surface scans of many of the elements are also provided, which can be
downloaded by users to view for comparison or 3D print. These 3D prints may be used to
build or supplement comparative osteology collections. We are continuously expanding
these Supplementary Materials and uploading them to additional digital repositories
(e.g., [44]). Finally, the project data can also be accessed in this folder, as well as on
Dryad [45].

4. Discussion
4.1. Human Versus Nonhuman Determination

Nonhuman remains comprise a significant portion (25–30%) of total cases assessed by
forensic anthropologists [1–3] and can represent more than 90% of skeletal cases submitted
to medical examiner offices [1]. Although forensic anthropologists mentally assess bone size
and shape when determining skeletal species, only one other published study was found
that assessed the utility of basic long bone osteometrics in differentiating human from
nonhuman remains. Saulsman et al. [14] created discriminate functions from a sample of 50
human and 50 nonhuman specimens from five Australian species. Their study illustrated
the potential utility of such quantitative methods, with accuracy rates over 95%, but it was
limited by sample sizes and species inclusion.

Our results, where more than 16,000 long bones were assessed quantitatively to
develop predictive models, support their findings. From this extensive dataset, we provide
discriminant functions and decision trees that can be used to assist or support human
versus nonhuman determinations from long bones. Even when all elements are pooled,
the DFA and decision trees return over 90% accuracy, with correct classifications of human
remains over 95% (99.6% for the decision tree). Thus, high accuracy rates can be achieved
even without first distinguishing the specific bony element present. If the bone is first
identified and bone-specific methods are applied, accuracy increases further for all models
except the tibia-specific and ulna-specific discriminant functions, which were slightly lower.
The ulna performed the worst across most analyses, which may partly be due to the lack
of distal measurements collected for this element. Generally, the decision tree presented
slightly higher overall accuracy rates as compared to the DFAs.

When assessing the human versus nonhuman origin of skeletal remains, we recom-
mend the use of the decision trees presented in this paper and Supplementary Materials
compared to the discriminant functions, given (1) their higher accuracy rates, (2) their use
of more available data and split-validation, and (3) their lack of statistical assumptions [42].
The better performance of decision trees may also reflect the incorporation of multiple
sectioning points into the model (one at each node) as compared to a single sectioning
point with discriminant functions. In addition, decision trees provide classification rates
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at each of the nodes, providing a more realistic view of accuracy and confidence in the
classification for any specific set of measurements. For example, if a bone falls into the
node 7 in Figure 1, the results indicate about a 75% probability that the bone is human,
despite an overall model accuracy rate of 91%. Decision trees are intuitive, transparent,
and easy to apply [40,41,46]. While the concept of decision trees is not new to forensic
anthropology [39,40,47–50], the method remains underutilized in practice.

Another advantage to decision tree models is that they allow users to assign higher costs
to certain sets of misclassifications [36], in this case to the misclassification of human remains
as nonhuman. In forensic anthropology, misclassifying human remains as nonhuman could
prevent decedent identification, leaving family members without closure and impeding
possible criminal investigations. In contrast, the biggest cost of misclassifying a nonhuman
element as human is the unnecessary expenditure of time and resources spent in securing a
scene and contacting an expert for final determination. The decision trees presented here
assist in reducing the possibility of both of these scenarios. A death investigator called to a
scene with a bone could have the decision tree printed on a single sheet of paper (or access
it via the OsteoID website on their smartphone) and, using a tape measure, can easily follow
the branches of the tree for a preliminary assessment of human versus nonhuman. Because
of the integrated misclassification costs, the trees are more likely to incorrectly assign a
nonhuman bone as human than vice versa; thus, the result is conservative and anything
close to matching human form will be treated as if it is human and of forensic significance
until determined otherwise (ideally by a trained forensic anthropologist). At the same time,
resources are not wasted on scenes containing remains that are clearly not human. Thus, the
models presented here can act as a triaging tool.

While some may argue that all bones discovered should be assessed by a forensic
anthropologist, this is not realistic and does not represent current practice. Forensic anthro-
pologists typically receive elements that are believed to possibly be human. Those remains
that the finder, law enforcement agent, or those consulted by the law enforcement agent
(including physicians and veterinarians) deem as not human are frequently not referred
to medicolegal agencies or forensic anthropologists. If referred to medicolegal agencies,
their non-anthropological personnel may also determine that the remains received are
not human and not worth consulting with a forensic anthropologist. Resources, such as
the models and web tool presented here, can assist these individuals who are already
undertaking these triaging roles to make more informed decisions. If the decision trees,
discriminant functions, visual comparison with the web tool images and/or context of the
remains suggest that they may be of human origin, the medicolegal agency and forensic
anthropologist should be consulted for final determinations. The forensic anthropologist,
in turn, may find these resources useful in supporting their designations or confirming the
particular faunal species (discussed below).

Not surprisingly, the most accurate human versus nonhuman functions and decision
trees include measurements from multiple regions of the bone, which may not be possible
in cases involving fragmented remains. Consequently, the use of only specific bone regions
was tested as part of this study for application to larger bone fragments. Univariate analyses
were performed on maximum lengths to reflect cases in which erosion to the epiphyses
could affect proximal and distal elements. Models were created from only the distal
measurements (width and depth) and from only the midshaft measurements (maximum
and minimum diameters) for use in cases limited to these fragmented regions. The length
and distal epiphyseal region-specific analyses produced higher accuracy rates than the
midshaft measurements (except for the ulna). This is expected given that maximum length
and distal width were commonly the most important variables in the more inclusive
models. For the femoral decision tree, despite inputting all six variables, the tree output
only used maximum length and was able to correctly classify over 96% of the total sample
and over 99% of the human sample. The region-specific discriminate functions developed
per bone (Supplemental Table S12) produced accuracy rates above 85% for all functions
except the humeral midshaft (67.1%). These results are slightly higher than the region-

128



Biology 2022, 11, 25

specific DFA results presented by Saulsman et al. [14]. While the results suggest that these
models may be useful tools when assessing fragmented remains as human or nonhuman,
caution is still warranted given that classification rates are only moderately high, and
additional evidence (e.g., presence of morphological features, application of a second
method) should be provided to support the conclusion. Saulsman and colleagues [14] also
warn against estimating the midshaft location on humeral fragments because deviations
2 cm above or below the actual midshaft location significantly altered their classification
rates; results from femoral and tibial deviations were more robust. Application of the
models to burned fragments must also consider the possibility of bone shrinkage with the
thermal modification [51].

The most conservative approach for assessing the human origin of skeletal remains
using osteometrics would be to compare specimen measurements with the minimum,
maximum, and 95% confidence intervals for human remains presented in Table 2 and
at least preliminarily consider anything that falls within that range, or very close to that
range, as potentially human pending further analysis. OsteoID [43] will return images of
human bones if the input measurements fall anywhere within the min/max or standard
deviation ranges compiled from the sample of >2700 individuals. Practitioners must always
consider the small possibility that their unknown specimen can be an outlier, perhaps lying
at the extremes of the human distribution which may not have been captured in this study.
Pathological conditions that affect body size (e.g., dwarfism, gigantism, etc.), although rare,
could also affect results [52,53].

In highly fragmented or taphonomically-modified remains, morphometric and visual
assessments may not be applicable. Other evidence, such as cortical bone thickness and
trabecular bone density may be factored into the decision [4,54,55], although research
by Rerolle et al. [56] suggests that corticomedullary index may not be as distinctive in
humans as previously suggested. Several papers state that nutrient foramen location and
morphology can assist in human versus nonhuman distinctions [57,58]. Microscopic (his-
tomorphological) or molecular methods can also be utilized [59–63] to determine human
origin, but they require greater expertise and specialized equipment, are more time inten-
sive, and are destructive to the specimen [3]. Even histomorphological techniques cannot
provide 100% accuracy in distinguishing human from nonhuman species, with certain
faunal species (e.g., large mammals) and bone types (e.g., presence of only Haversian bone)
shown to be particularly problematic [60]. Publications also differ on opinions of the use of
osteon circularity in determining human origin of bone [62,63].

4.2. Species Identification

The quantitative methods of species identification were less successful than those
assessing human origin. While these results are likely impacted by uneven sample
sizes across the 28 species, they also reflect morphological and size similarity between
some species. For example, brown bear and black bear long bones are morphologically
similar [41,64–67], especially as represented by these few basic measurements; thus,
small brown bears and large black bears may be misidentified. Sheep and goat long
bones are also difficult to differentiate [29,68]. Domestic dogs pose many issues, not
just because of their similarity to other canids included in this study (e.g., coyotes and
wolves) [69,70] but also because of their high degree of variability in both morphology
and size [71,72]. The DFA species classification rates were significantly higher than
chance, but the probability of species misidentification remains relatively high. The
application of a discriminant function to classify an unknown specimen into one of
28 groups would also be impractical to do by hand, thereby requiring computer usage.
Ultimately, practitioners must rely on visual comparisons of more subtle morphological
differences in making the final faunal species designations.

In facing these challenges of species identification, the OsteoID website [43] is
particularly useful. Users can input basic measurements to narrow down the potential
species and are presented with photographic images of the possible identifications.
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Thus, the measurements are used as a filtering tool, but the final identification is still
based on visual comparison. With the use of visual comparisons, OsteoID can be
used for identifying fragmented elements. Supplemental resources provided on the
website can also be utilized in skeletal identifications, such as access to the metric
database, a link to this publication and associated Supplementary Materials, 3D scans
of numerous elements, and lists of other useful texts and websites. Photographs of
additional elements (e.g., carpals) not included in the web tool are provided and will be
continually updated. The web tool can easily be modified if future minimum/maximum
values need revision. There is also the possibility of expanding the database and web
tool to include additional species/specimens in the future.

As an online, searchable, comparative osteology collection that includes photographs,
data, and 3D scans, OsteoID [43] provides forensic anthropologists with a centralized
location for free resources to facilitate skeletal species identification. Practitioners with
less zooarchaeological training or lacking access to physical comparative collections will
benefit most from these resources when determining faunal species. The web tool and
online resources can be accessed from smart phones and other devices while at the scene.
With the download of free third-party applications, even the 3D bone models can be
viewed on smart phones. The 3D models also can be downloaded and 3D printed to create
comparative collections. Beyond forensic anthropologists, forensic pathologists, medical
examiners, coroners, crime scene and death investigators, and law enforcement personnel
may find OsteoID useful when making preliminary assessments. In situations where scene
personnel have reason to believe that remains are nonhuman and typically would have
dismissed the remains as not forensically significant, they can use the OsteoID resources
to visually confirm that the morphology is not consistent with a human and perhaps
find a faunal species match. In cases in which there is any possibility that remains are
human, expert opinions should still be obtained. Modified remains or those that are more
diagnostically difficult will require a forensic anthropologist’s expertise, but OsteoID can
reduce time and cost expenditures for diagnostically nonhuman remains. Bioarchaeologists,
zooarchaeologists, veterinarians, and biologists may also find the OsteoID web tool and
resources useful, and the general public may find interest in learning more about remains
encountered. Presently, there are multiple social media groups where individuals post their
skeletal finds and group participants provide species identifications. Given that OsteoID is
publicly available, it contains multiple disclaimers urging anyone with remains that could
potentially be human to leave them in situ and to contact local authorities. Finally, the
photographs and 3D scans made available via the website can be used to train students in
comparative osteology and the data may be used by researchers in other studies.

4.3. Limitations and Future Directions

Given that all forensic anthropologists rely partly on bone form (i.e., size and gen-
eral shape) when assessing human origin, using bone metrics to create a quantitative
classification method seems simple and logical. However, our study illustrates several
challenges to this work. Firstly, it is difficult to find measurements that can be collected
consistently across diverse species and bones. Limiting our measurements to maximum
lengths, breadths, and depths allowed us to increase the range of animals and skeletal
elements in our dataset for pooled analyses, but it excludes aspects of discrete morpho-
logical features used in visual assessments of species identification. While the general
morphometric variables were able to successfully differentiate human from nonhuman
remains (similar to the results of Saulsman et al. [14]), visual assessments that consider
specific bone features are necessary for accurate faunal species identification.

Because the methods developed here are dependent on size and epiphyseal breadths,
only skeletally mature specimens could be included in quantitative analyses (and re-
sultant functions and models are only applicable to skeletally mature specimens). At
least partial fusion of both the proximal and distal epiphyses should be observed prior
to utilizing the discriminant functions or decision trees. Skeletally mature specimens
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of certain species can be hard to locate, especially domesticated species which may be
butchered as juveniles [73]. The species curated at museums vary and again tend not
to focus on domesticated species or may not curate full skeletons, especially for larger
mammals where space becomes a challenge.

Unequal sample sizes from different species could have biased our classification results,
particularly with human versus nonhuman analyses. Although a high degree of faunal
variation is captured in the pooled nonhuman sample, there is a smaller representation of
some of the largest mammalian species. Given that humans also have relatively large body
sizes, this may be driving some of the classification bias, as the models may be more likely
to classify all large bones (human or nonhuman) as human given the large human sample
sizes. Indeed, larger animals such as moose, brown bear, horse, cow and elk were more
commonly misclassified as human, which could explain the relatively higher human and
lower nonhuman classification rates in the discriminant functions. Misclassifying some
of these species elements as human instead of nonhuman in preliminary forensic contexts
is less costly than erroneously classifying human elements as nonhuman; following the
preliminary human classification, a forensic anthropologist would then be consulted for a
more formal assessment that would identify the error.

The smaller sample sizes in some nonhuman species are also less likely to capture the
true population size variation and thus impact DFA species classifications. The human
sample size, however, which is of greatest forensic significance, is sufficiently large, and
the nonhuman sample sizes exceed those of previous publications [14]. Furthermore, not
all measurements were available for all specimens. Data obtained from the literature
frequently had some but not all the study measurements, meaning that in the DFAs, many
of those cases were excluded.

The species included in the metric database are not exhaustive, and it is unclear how
a specimen from an excluded species would classify. This study was limited to species
commonly encountered in North America that were accessible at collections but does not
include, for example, marine mammals. Further validation of the developed methods is
needed, and if more data can be collected from additional species and specimens, revised
models may be more appropriate. Future data collection for human versus nonhuman
determinations should focus on adding greater samples of larger-bodied mammals. While
increased samples of larger-bodied fauna may decrease model accuracy rates, it is possible
that the models may still be able to confidently differentiate human from nonhuman
specimens given the distinct functional anatomy of humans [3,74,75].

Preliminary analyses using a subsample of the humeral and femoral data suggest that
machine learning and random forest models may be able to further increase morphometric
classification rates for human versus nonhuman designations and species assignments [76].
Random forest models are a machine learning approach in which numerous decision trees
are created from random subsamples, and their predictions are combined through aver-
aging to produce a final classification [46–48]. This machine learning technique increases
classification stability and alleviates potential issues of overfitting [58]. The downside of
random forest models is their complexity. Because random forest model results are based
on the combined results of hundreds or thousands of trees, there is no final model/tree that
can be presented or applied to cases [46]. This ensemble approach is considered a “black
box” method [41] meaning that it is mathematically complex and difficult to understand
and explain in terms of application [77], which can be a disadvantage in court testimony.
Furthermore, for broad application, a software program would need to be created to run
the random forest models with new unknown specimens.

5. Conclusions

The tools presented in this study do not diminish the need for forensic anthropologists.
Caution must still be used given the high cost of misclassifying a human bone as nonhuman,
and forensic anthropologists or other experts should be consulted in situations where
there is any possibility that remains may be human. Still, the resources developed and
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provided here may be used to preliminarily assess whether remains are potentially human
and determine the number of resources to expend on a found bone (e.g., whether or
not a scene needs to be preserved, etc.). Forensic anthropologists or other medicolegal
personnel can use the resources to support classifications and faunal species identifications.
These resources may also be beneficial to other disciplines where skeletal remains are
encountered or training in comparative osteology is beneficial, including wildlife forensics,
bioarchaeology, zooarchaeology, veterinary medicine, and biology.
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available measurements and a pooled-bone sample. Figure S2: Human versus nonhuman decision
tree derived from only distal bone measurements and a pooled-bone sample. Figure S3: Human
versus nonhuman decision tree derived from only midshaft measurements and a pooled-bone sample.
Figure S4: Human versus nonhuman decision tree derived from only maximum length measurements
using a pooled-bone sample. Figure S5: Human versus nonhuman decision tree for the humerus,
derived from all available measurements. Figure S6: Human versus nonhuman decision tree for
the femur, derived from all available measurements. Figure S7: Human versus nonhuman decision
tree for the radius, derived from all available measurements. Figure S8: Human versus nonhuman
decision tree for the tibia, derived from all available measurements. Figure S9: Human versus
nonhuman decision tree for the ulna, derived from all available measurements. Table S1: Descriptive
statistics for humeral measurements collected by species. Table S2: Descriptive statistics for femoral
measurements collected by species. Table S3: Descriptive statistics for radial measurements collected
by species. Table S4: Descriptive statistics for radio-ulnar measurements collected by species. Table S5:
Descriptive statistics for ulnar measurements collected by species. Table S6: Descriptive statistics for
tibial measurements collected by species. Table S7: Descriptive statistics for fibular measurements
collected by species. Table S8: Descriptive statistics for scapular measurements collected by species.
Table S9: Descriptive statistics for sacral measurements collected by species. Table S10: Descriptive
statistics for pelvic measurements collected by species. Table S11: Descriptive statistics for fused
metapodial measurements collected by species. Table S12: Select discriminant functions for human
versus nonhuman classification.
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Simple Summary: When giving evidence in court, forensic pathologists and anthropologists are
often asked for their opinion on the amount, or degree of force required to cause a specific injury. Such
‘degree of force’ questions are considered difficult, if not impossible to answer due to many theoretical
and practical issues. This paper explores these issues and provides a possible solution. First, the
logical underpinnings of the question on the ‘degree of force’ are explored. Then the experimental
research on ‘degree of force’ is reviewed and the limitations with applying this research to everyday
forensic casework are discussed. In the second part of the paper, it is argued that these limitations do
not, however, mean that a forensic pathologist or anthropologist cannot add anything of value to the
discussion. The application of Bayes’ theorem helps to circumvent many of the problems. The final
part of the paper is dedicated to a detailed discussion of how it can be applied to the issue of ‘degree
of force’.

Abstract: Forensic pathologists and anthropologists are often asked in court for an opinion about the
degree of force required to cause a specific injury. This paper examines and discusses the concept
of ‘degree of force’ and why it is considered a pertinent issue in legal proceedings. This discussion
identifies the implicit assumptions that often underpin questions about the ‘degree of force’. The
current knowledge base for opinions on the degree of force is then provided by means of a literature
review. A critical appraisal of this literature shows that much of the results from experimental
research is of limited value in routine casework. An alternative approach to addressing the issue is
provided through a discussion of the application of Bayes’ theorem, also called the likelihood ratio
framework. It is argued that the use of this framework makes it possible for an expert to provide
relevant and specific evidence, whilst maintaining the boundaries of their field of expertise.

Keywords: degree of force; skeletal trauma; forensic pathology; forensic anthropology; review;
evidence; opinion; likelihood ratio; Bayes’ theorem

1. Introduction

“ . . . force alone is woefully inadequate and often (particularly in a legal environment)
misleading in describing an impact”. [1], p. 283

The concept that skeletal trauma occurs when a force exceeds the strength or maximum
threshold of bone elasticity is well established [2,3]. In forensic pathology and anthropology,
descriptions of the application of a force to the body are typically divided into three
groups of causation: blunt force, sharp force and high or low energy ballistic force. While
the potential results of these forces on the human body have been well documented in
the biomechanical [3–5] and forensic medical literature [1,6,7], correlating the amount
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of force applied to the body to a specific injury or fracture outcome has proven more
difficult. Nonetheless, when providing expert opinion in court about skeletal injury,
forensic pathologists and anthropologists are often asked their opinion about the cause and
specifically, the amount or the ‘degree of force’ that was required.

The relationship between injury morphology and applied force is complex, and
opinions on the ‘degree of force’ are therefore fraught with difficulties. This paper provides
an overview of the concept of ‘degree of force’ in forensic pathology and anthropology and
in doing so, provides an aid for practitioners when giving evidence on this issue. While
the paper focuses on skeletal injuries, much of the discussion also applies to the same issue
when interpreting soft tissue injuries.

2. Why Is the ‘Degree of Force’ Considered to Be Important?

In order to understand why the issue of ‘degree of force’ appears to be so pertinent in
criminal cases it is necessary to reflect briefly on the purpose of a criminal court proceeding,
and the role of the expert witness. Although differences between jurisdictions exist, a
criminal court proceeding typically aims to determine whether enough evidence is available
to convict the defendant for the alleged crime. This process is traditionally dialectic, with
prosecution and defence both trying to convince the trier-of-fact of their respective positions,
usually by presenting evidence. The opinion of the expert witness, like other evidence, can
assist the trier-of-fact in weighing the competing positions of prosecution and defence.

Within this context, opinions on the ‘degree of force’ have been considered useful to
help the trier-of-fact to reconstruct the events that led up to and resulted in death. In other
words, such opinions are intended to help the trier-of-fact choose between various scenarios.
The high frequency with which forensic pathologists [8–11]; forensic anthropologists, and
forensic physicists [12] are confronted with the question suggests that such an opinion
is considered particularly helpful by the court. This perceived value of opinions on the
‘degree of force’ appears to be based on three assumptions, namely that proportional
relationships exist between:

1. The intent of an offender/assailant, and the amount of force they use;
2. The amount of force that an offender/assailant uses, and the amount of force that is

actually transferred to the body of the decedent;
3. The amount of force that is applied on the body of the decedent, and the severity

of injury.

If all three assumptions are valid, the conjecture is that knowing the ‘degree of force’
may help to differentiate between intentional or accidental injuries, and therefore, help to
conclude if a crime was actually committed. Furthermore, since the seriousness of a crime
ordinarily influences sentencing decisions [13], intent is an important aspect of culpability
in many jurisdictions. An expert opinion that can inform on intent can therefore have an
impact on sentencing [14].

3. Forensic Expert Responses to the Question of ‘Degree of Force’

Questions relating to the ‘degree of force’ may be asked in various forms. Typically,
however, the expert is asked the question in a simplistic form: “what degree of force is
required to cause this skeletal injury?” The expert is subsequently expected to provide an
estimate of that amount of force, based on the combination of observations, knowledge,
and experience.

Anecdotal information, largely obtained from discussions amongst forensic experts,
indicates there is variation in their responses. The general consensus is that a specific
answer (i.e., including a number expressing the amount of force) cannot be provided. As a
result, experts may provide a response along the lines of “I am unable to comment” or “I
can comment, but without a degree of precision”. Other types of responses include “the
force was sufficient to result in a skeletal injury”; or “clearly there has been enough force to
fracture a bone”. Since such comments only reiterate the facts that are already known, it
may be argued that these opinions are as uninformative as “no comment”.
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To simplify the issue, some experts choose to use a qualitative three- or four-point
scale to describe the amount of applied force. This approach has also been described in the
literature, with verbal descriptions such as “mild”, “moderate” and “severe” force used by
Nolan et al. [15]; and “mild”, “moderate”, “considerable” and “severe” force by Gilchrist
et al. [16] and Sharkey et al. [17]. A definition of what these specific categories mean, or
how the expert should choose between them, however, remains largely undiscussed. In a
study pertaining to stab injuries, Gilchrist and colleagues [16] stated that a mild level of
force would “typically” be associated with penetration of skin and soft tissue, moderate
force with injuries that penetrate cartilage or rib bone, and severe force with injuries that
penetrate dense bone and cause visible damage to the knife’s blade. But these definitions
are not generally accepted, and the limitations of using these vague and relative terms have
been previously noted [8,15].

Overall, there is no consensus on how an expert should answer a question on the
‘degree of force’. This lack of consensus has served as a justification for research which has
sought to quantify the degree of force in various types of injuries.

4. Evidence for the Relationship between Degree of Force and Injury Outcome

A range of experimental studies have been undertaken to investigate and correlate
the relationship between degree of force and injury outcome. This research ordinarily
focuses on the method of injury, rather than on the type of tissue injured. For instance,
research has included the investigation of degree of force and sharp force trauma involving
knives [8,16,18], as well as stabbing involving other implements such as screwdrivers [19].
Such research has used pork skin [15,18] as well as synthetic materials such as foam [20,21],
silicone rubbers [22,23] and modelling clay [24] as substitutes for human skin. Research
investigating the relationship between degree of force and blunt force trauma has also been
undertaken. This research has mostly focused on understanding the force required to cause
head injuries, including brain injuries [25] and skull fractures [26]. As experimental models,
researchers have used human skulls [27] as well as those of pigs [17,26] and monkeys [28],
in addition to computer simulations [29].

Despite the use of these various experimental models, different anatomical parts of the
body, and different types and amounts of force, the results of these experimental studies
are difficult to apply to forensic casework. This shortcoming becomes more apparent
when reconsidering the previously mentioned three assumptions that underpin the alleged
validity of the ‘degree of force’ question.

Experimental research has predominantly focused on the third assumption: the rela-
tionship between the force applied to the body, and the severity of injury. Consequently,
such research only addresses one part of the issue at hand. Further, the highly controlled
settings typical of experiments do not (and cannot) take into account the many intrinsic and
extrinsic variables that influence the relationship between applied force and injury outcome.
Intrinsic variables include the sex and age of the deceased, and the specific anatomical
region impacted (e.g., head vs. chest). The anatomical region, and therefore the skeletal
element, is also important to consider, as different bones differ in their density, flexibility,
and design (e.g., the area of impact may be buttressed by other anatomical structures) [27].
In addition to the health status which affects bone plasticity [30], individual variation in
bone morphology must also be considered (e.g., skull thickness [31–33]). Overall, while the
results of experimental research may be interesting as a means of demonstrating the biome-
chanical properties of human (and non-human) tissue, they are not directly transferable to
forensic casework.

Published research focused much less on the first and second assumptions that under-
pin the ‘degree of force’ question, that is, the relationship between ‘intent’ and ‘force used’,
and between ‘force used’ and ‘force transferred’. The difference between ‘force used’ and
‘force transferred’ is an often-overlooked issue in experimental settings but is, nonetheless,
relevant in forensic casework. In many instances the relationship between these two forces
is not proportional. Consider, for example, a situation in which a perpetrator exerts what
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may be described as a ‘relatively minimal’ force (e.g., a gentle, yet intentional push) which
nonetheless results in what is described as ‘severe trauma’ (e.g., multiple comminuted
fractures due to a fall from height). In other settings the relationship between ‘force used’
and ‘force transferred’ may be proportional, but there is no way of knowing the extent to
which one is influenced by the other. For example, in the case where a perpetrator uses an
implement that modifies the force that is used (e.g., a baseball bat, a hammer, or a knife).
Extrinsic variables such as the effect of the size, shape, elasticity, and mass of the impacting
implement [17,27] are important in this regard. The directionality of the impact is also of
interest [12] as well as its speed (because bone is viscoelastic, that is, responds differently
depending on the speed at which a load is applied). The direction-ality and speed of impact
relate directly to the relative position of perpetrator and victim and the dynamics of the
event. When all these variables are considered, it becomes appar-ent that the same amount
of force used by a perpetrator can, depending on the circumstances, result in different
amounts of force being transferred (applied) to the body of the victim.

The assumed relationship between the intent of the perpetrator and the force that is
used is also rarely considered in empirical research. Although it is intuitively true that the
intention to inflict grievous bodily harm results in a large amount of force being used, it is
not necessarily so that unintentional behaviour results in less force. Consider, for example,
scenarios of self-defence, in which forcefully fending off an attack can cause serious harm
to the attacker. Moreover, one study showed that when volunteers were asked to use ‘mild’,
‘moderate’ or ‘severe’ force, the resultant amounts of (stabbing) force were too similar to
reliably infer the ‘intent’ of the volunteer [15]. The sex and age of the perpetrator have been
noted as important variables to consider in this [12,15]. However, these are only two of a
multitude of interacting variables that may be of relevance.

Overall, while the findings from experimental research can perhaps support claims
about the potential effects of force on the human body, the data seem of limited use to
provide informative opinions on the ‘degree of force’. It may be argued that, in fact, the
results from experimental research reinforce the idea that the ‘degree of force’ is an issue
associated with great complexity and uncertainty, while its relevance is very limited.

5. Taking a Different Approach: Applying Bayes’ Theorem

Given the complexity and uncertainty associated with providing an opinion on the
‘degree of force’, an alternative approach is to use probability, described as “a tool to handle
uncertainty” [34]. The difficulties surrounding the issue can perhaps be addressed by
applying the laws of logic and probability, using Bayes’ theorem. This theorem describes
the logical underpinnings of the process by which probabilities are updated based on
observations [35]. Many textbooks and journal articles provide introductions to Bayes’ the-
orem, and explain why its use is the logically correct way to interpret and present forensic
evidence [34,36–38]. Bayes’ theorem has been applied in a range of forensic disciplines
including pathology [39,40], anthropology [41,42], entomology [43], biometrics [44], and
biomechanics [45], and to address different questions such as time since death [46], manner
of death [47], and identification [48,49], including disaster victim identification [50–52] and
missing persons investigations [53]. To date, however, Bayes’ theorem has not yet been
applied to address the issues associated with opinions on the ‘degree of force’.

Bayes’ theorem, which in forensic science is also referred to as ‘the likelihood ratio
framework’, is best explained by the equation in odds form:

P(H1)
P(H2)

× P(E|H1)
P(E|H2)

=
P(H1|E)
P(H2|E)

With:
P(Hx) = prior probability of proposition x

P(E|Hx) = probability of the evidence E, given proposition x

P(Hx|E) = posterior probability of proposition x, i.e., given the evidence E
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This can also be written as:

prior odds × likelihood ratio = posterior odds

It should, however, be kept in mind that this equation only shows the logical relation-
ship between the probabilities of observations and propositions. The theorem therefore
remains valid in the absence of numerical data.

5.1. Prior Odds

The prior odds are given by the ratio of the probability of proposition H1 and that of
H2, without considering the expert’s observations, that is, the evidence (E). Because the
prior odds are based on all information outside the expert’s evidence, assessing the prior
odds would take the expert outside their area of expertise.

5.2. Likelihood Ratio

To provide an opinion while staying within their area of expertise, the expert needs
to focus on the likelihood ratio (LR) only. The LR is the ratio of two probabilities: the
probability of their observations (E) given one proposition is true, and the probability of the
same observations given an alternative (mutually exclusive) proposition is true. Assessing
these two probabilities relies directly on the experience and expertise of the expert. This
process does not necessarily imply using statistics and calculations: the same logic applies
with or without the use of numerical data.

5.3. The Posterior Odds

The posterior odds take all the evidence into account: they equal the prior odds
multiplied by the LR. Since the posterior odds require the prior odds, the posterior odds
are also outside the forensic pathologist or anthropologist’s area of expertise.

6. A Hypothetical Case Example

The utility of the application of this framework to the issue of ‘degree of force’ can
be illustrated by the following hypothetical case. The partially skeletonized remains
of an adult male were located at the bottom of a mine shaft. The individual’s skull
was fragmented. The remains were examined by a forensic pathologist and a forensic
anthropologist. Reconstruction of the skull fragments revealed two concentric, patterned
impact fractures: one in the left fronto-temporal region, and the other in the left temporo-
parietal region. There was also a linear defect on the right posterior aspect of the occipital
bone. In their joint report, the forensic pathologist and anthropologist concluded that these
observations indicated multiple impacts, and that the cranial trauma was a reasonable
cause of death. Eventually, a person was arrested in relation to the matter and the case
went to trial. In court, the experts were asked their opinion on the ‘degree of force’ required
to produce this fragmentation and patterned injury.

While the experts can try to answer this question, as previously discussed, many
limitations preclude the provision of a robust opinion. Using vague terms such as ‘mild’,
‘moderate’, ‘severe’ and ‘extreme’ to describe force does not overcome these limitations.
These restrictions do not, however, mean the expert cannot add anything of value to
the discussion.

7. The Need for Propositions

When applying Bayes’ theorem, the expert’s opinion is used as evidence to help give
weight to one of two propositions, most often the positions of the prosecution and defence.
For instance, in the hypothetical case outlined above, the prosecution may allege that the
decedent was beaten to death with a shovel and then dumped in the mine shaft. In contrast,
the defence may propose that the skull fractures were the result of a fall following a verbal
altercation between the decedent and the defendant. As discussed previously, information
about the ‘degree of force’ is just an intermediate step in addressing the larger issue: which
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of the two propositions is correct. If the court is focused on one specific injury and only
enquires about the ‘degree of force’ required, these propositions are not made explicit to
the expert. Consequently, the full meaning of the pathological/anthropological findings
cannot be borne out.

Only when provided with propositions, can the expert provide the most relevant evi-
dence. For instance, in the hypothetical case, the expert could clarify that the propositions
provided by prosecution and defence both imply that substantial force was applied to the
skull, and therefore, an opinion on the ‘degree of force’ is of no use to distinguish between
the two propositions. Further, by focusing on ‘degree of force’, other observations made by
the expert remain undisclosed. In the hypothetical case example such information includes
the findings that the victim had a minimum number of three impacts, both sides of the
skull were impacted, and that there were two patterned impression fractures and one linear
fracture. These details are all potentially useful to the court proceedings, especially when
the expert is provided with some case circumstances.

8. How Does the Expert Assess Evidential Strength (An LR)?

Instead of requesting an opinion on the ‘degree of force’, a more appropriate question
for the expert may be: “to what extent do your observations support scenario A (that
the decedent was assaulted with a shovel and dumped in the mineshaft) vs. scenario B
(that the decedent fell into the mineshaft)?” When confronted with these propositions, the
expert can apply Bayes’ theorem, and therefore provide the evidential strength of their
observations (an LR).

But how are experts supposed to assess an LR? Where do they get ‘the numbers’
from? It is important to remember that the use of probability does not imply statistics and
calculations [34], and that a lack of data does not preclude the application of logic. LRs
can be used qualitatively. However, the LR framework cannot mitigate gaps in scientific
knowledge. If the expert thinks there is insufficient scientific knowledge to provide an
opinion, it is their professional obligation to say so. In that situation the expert’s opinion
represents an LR of 1, which simply means that in the expert’s opinion, their observations
do not assist in distinguishing between the two propositions.

In the hypothetical case the observations of the two concentric, left-sided patterned
impact fractures in the fronto-temporal and temporo-parietal regions, and the right-sided
linear defect in the occipital region are the relevant evidence (E). The first question is,
therefore, to what extent does the expert expect (or is surprised by) these observations
if scenario A (H1) is true? How probable is the presence of a linear fracture when hit
with a shovel? And would such an impact result in multiple concentric, patterned impact
fractures? Moving to scenario B (H2), what is the probability of the observations if the
deceased just fell in the shaft without being beaten? Answers to these questions rely
on the expert’s observations. Ideally, however, they would also be informed by some
(preferably undisputed) information on the case circumstances. In this case this information
would include details about the structure (walls and bottom), height, and width of the
mine shaft. To obtain an LR the expert finally needs to relate the expectation for the
observations under both propositions to one another, because it is their ratio that determines
the evidential strength. It is important to remember that having a low expectation for the
observations under one proposition does not imply support for the other proposition, since
the observations could be even more improbable under the alternative proposition.

Suppose that in the hypothetical case the mine shaft was dug into soil, did not
contain any rocks, and was six meters deep. In these circumstances there is a much higher
expectation for the three fractures under scenario A (the decedent was assaulted with
a shovel and dumped in the mineshaft) than under scenario B (the deceased just fell in
the shaft without being beaten). Suppose the probability of the observations is assessed
to be higher by a factor of hundreds for scenario A versus scenario B. If the opinion
scale as defined in the ‘Guideline for Evaluative Reporting’ by the European Network of
Forensic Science Institutes (ENFSI) [54] is used, LRs in the range between 100 and 1000
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are represented as ‘moderately strong support’. With reference to that scale, the expert
would report that the observations offer ‘moderately strong support’ for scenario A over
scenario B. The ‘moderately strong support’ is the qualitative LR in this example. This LR
does not imply that scenario A is the most probable scenario, as other evidence (prior odds)
could point to scenario B. It does, however, mean that this expert opinion offers moderately
strong support for the case of the prosecution. How to best communicate (verbal) LRs is
discussed in more detail in [55].

Note how the propositions enable the expert to use all their observations to answer the
question, instead of focusing on one (often out of context) single element (i.e., the degree of
force). This approach increases the amount of information that can be used for the opinion.
Instead of being constrained to the limited empirical evidence for the relationship between
force and injury morphology, the expert can now use other sources of information as well.
For instance, the expert can refer to published literature which provides an evidence base
for the types of skull fractures associated with different categories of trauma (e.g., [27,56]),
or fracture patterns, i.e., the number, location and morphology of skull fractures in falls [57]
vs. assaults [58].

Making the question explicit in the form of propositions allows the expert to provide
an LR. It furthermore clarifies the issues most relevant to the court and therefore allows
the expert to maximize the relevance of their evidence. Moreover, as previously discussed
in various other publications dedicated to the application of Bayes’ theorem in forensic
science, it helps to maintain the separate roles of the trier-of-fact and the expert, and helps
to interpret evidence in a logically correct way. Thus, when asked the right question, the
expert can appropriately draw on their expertise and therefore, inform the court in the
most meaningful way.

9. Conclusions

Questions relating to the ‘degree of force’ often implicitly assume that such an opinion
assists the court in establishing whether an injury was caused accidentally or intentionally.
As demonstrated in this paper, this assumption is flawed, since theoretical and practical
limitations preclude a connection between the ‘degree of force’ and intent. Similar to
forensic biomechanical injury assessment, providing an opinion about the ‘degree of force’
does not occur in a vacuum [45], that is, all lines of evidence must be considered. The use
of Bayes’ theorem helps to accomplish this, and therefore enables the expert to maximize
the full potential of their evidence.
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Simple Summary: DNA methylation age estimation is one of the hottest topics in forensic field
nowadays. Age estimation can be improved under a multidisciplinary approach, the role of a forensic
anthropologist and forensic epigeneticist being crucial in the establishment of new basis for age
estimation. The development of epigenetic models for bones and tooth samples is crucial in this
way. Moreover, developing models for age estimation using several samples can be a useful tool
in forensics. In this study, we built two multi-tissue models for age estimation, combining blood,
bones and tooth samples and using two different methodologies. Through the Sanger sequencing
methodology, we built a model with seven age-correlated markers and a mean absolute deviation
between predicted and chronological ages of 6.06 years. Using the SNaPshot assay, a model with
three markers has been developed revealing a mean absolute deviation between predicted and
chronological ages of 6.49 years. Our results showed the usefulness of DNA methylation age
estimation in forensic contexts and brought new insights into the development of multi-tissue models
applied to blood, bones and teeth. In the future, we expected that these procedures can be applied to
the Medico-Legal facilities to use DNA methylation in routine practice for age estimation.

Abstract: The development of age prediction models (APMs) focusing on DNA methylation (DNAm)
levels has revolutionized the forensic age estimation field. Meanwhile, the predictive ability of
multi-tissue models with similar high accuracy needs to be explored. This study aimed to build
multi-tissue APMs combining blood, bones and tooth samples, herein named blood–bone–tooth-
APM (BBT-APM), using two different methodologies. A total of 185 and 168 bisulfite-converted DNA
samples previously addressed by Sanger sequencing and SNaPshot methodologies, respectively,
were considered for this study. The relationship between DNAm and age was assessed using simple
and multiple linear regression models. Through the Sanger sequencing methodology, we built a
BBT-APM with seven CpGs in genes ELOVL2, EDARADD, PDE4C, FHL2 and C1orf132, allowing us
to obtain a Mean Absolute Deviation (MAD) between chronological and predicted ages of 6.06 years,
explaining 87.8% of the variation in age. Using the SNaPshot assay, we developed a BBT-APM with
three CpGs at ELOVL2, KLF14 and C1orf132 genes with a MAD of 6.49 years, explaining 84.7% of the
variation in age. Our results showed the usefulness of DNAm age in forensic contexts and brought
new insights into the development of multi-tissue APMs applied to blood, bone and teeth.

Keywords: DNA methylation (DNAm); epigenetic age estimation; multi-tissue age prediction models
(APMs); Sanger sequencing; SNaPshot

1. Introduction

Age estimation is one of the most important issues in forensic contexts. Among
the parameters of the biological profile, the estimate of adult’s age at death has always
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been problematic in forensic anthropology since skeletal aging continues to be largely
unknown, and all the available methods continue to fail in the approximation to the real
age. In other words, there is a discrepancy between biological and chronological ages; the
older, the worse. Despite significant research that has been conducted to face problems
of adults’ age at death, there is not a model of age prediction that can be considered very
satisfactory. In particular, aging the elderly is lacking age indicators that can discriminate
among individuals of seventy, eighty and ninety. Apart from that, the methods that can be
applied always depend both on the state of completeness and preservation of the human
remains. In forensic anthropology practice, there are many situations where the targeted
age indicators are missing and where alternatives are needed. That is the case of some
burned remains, dismembered bodies and incomplete bodies, among others. On the other
hand, in the case of a fresh body of an unidentified victim, where physiognomic traits are
no longer available and with no suspicion of identity, age is always a needed parameter.
In those situations, an alternative is also required. Although imaging methods could be a
good alternative, we here argue that the genetic approach by means of DNA methylation
(DNAm) is also a good choice.

DNAm analysis for age estimation has emerged in the forensic field in recent years.
Several age-related markers have been investigated in different tissues, including blood,
saliva, buccal swabs, sperm, teeth and bones, allowing the development of tissue-specific
age prediction models (APMs) with high accuracy [1]. The development of multi-tissue
APMs brought many advantages in forensics, since they can be applied to several contexts
with different types of samples. However, the discovery of universal biomarkers of age
applied simultaneously to many tissue types can be a challenge, since it has been observed
that only a few markers can work well as multi-tissue age predictive markers [2].

To our knowledge, only three reports addressed multi-tissue DNAm age prediction in
human individuals. Horvath [3] assessed methylation information of 353 CpGs, developing
a highly accurate multi-tissue age predictive model showing a strong correlation between
predicted and chronological ages (R = 0.97), and revealing a median absolute difference
between chronological and predicted ages of 2.9 years (training set) and 3.6 years (test set).
The high accuracy can be explained by the larger number of CpGs included in the model.
However, a high number of age markers can also bring a challenge for forensic casework
application. Moreover, in the Horvath model a larger error (around 10 years) was observed
in several tissues suggesting that the best markers for one tissue may not be the best for
another. Using published databases, Alsaleh et al. [4] identified a small set of 10 CpG
sites and built a multi-tissue model for blood, semen, saliva, menstrual blood and vaginal
secretions with a Mean Absolute Deviation (MAD) from chronological age of 3.8 years.
Jung et al. [2] developed a multi-tissue APM applied to blood, buccal swabs and saliva
with DNAm captured by a SNaPshot assay using five CpGs located at ELOVL2, FHL2,
C1orf132, KLF14 and TRIM59 genes. The multi-tissue model showed high accuracy with a
MAD from chronological age of 3.553 years. This MAD value was similar to that reported
in the same study when developing tissue-specific APMs (MAD = 3.17 years in blood;
MAD = 3.82 years in buccal swabs; MAD = 3.29 years in saliva). In addition, Jung and
colleagues [2] have observed that the FHL2 gene is more tissue-specific, revealing strong
positive age correlation values in saliva and blood, and a weak age correlation in buccal
swabs. They observed also that ELOVL2 and TRIM59 seem to work as better multi-tissue
markers than FHL2, C1orf132 or KLF14.

Our group previously assessed the methylation information of age-correlated CpG
sites in genes ELOVL2, FHL2, EDARADD, PDE4C, C1orf132, TRIM59 and KLF14, cap-
tured by Sanger sequencing and SNaPshot methodologies [5–8]. Several tissue-specific
APMs were developed, including for blood [5–7], teeth [8] and bones [8]. Considering
the scarcity of multi-tissue APMs developed until now, the present study aimed to re-
examine the obtained DNAm levels for these highly age-correlated genes combining the
previously addressed tissues to test for a multi-tissue blood–bone–tooth age prediction
model (BBT-APM).
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2. Materials and Methods
2.1. Population Sample

A total of 185 samples (76 females, 109 males; aged 1–94 years old) from living and
deceased individuals from blood, bones and teeth previously addressed for DNAm levels
by Sanger sequencing in genes ELOVL2 (9 CpGs), EDARADD (4 CpGs), FHL2 (12 CpGs),
PDE4C (12 CpGs) and C1orf132 (6 CpGs) [5,6,8], and 168 samples (67 females, 101 males;
1–94 aged years old) from living and deceased individuals previously analyzed using a
SNaPshot assay for 5 specific CpG sites in genes ELOVL2, FHL2, KLF14, C1orf132 and
TRIM59 [7,8], were considered for this study. The same samples were addressed in both
methodologies; however, some samples failed PCR amplification and were excluded from
further analysis, which explains the difference in number between the two methods. The
age distribution of each training set was shown in Table S1.

Peripheral blood samples from healthy living individuals of Portuguese ancestry were
collected from users of Biobanco—Hospital Pediátrico de Coimbra and other hospitals;
blood samples from deceased individuals were collected during routine autopsies, after
consulting RENNDA (Registo Nacional de Não Dadores) in Serviço de Patologia Forense
da Delegação do Centro do Instituto Nacional de Medicina Legal e Ciências Forenses
(INMLCF) and from Bodies Donated to Science (BDS), before the embalming method in
Departamento de Anatomia da Faculdade de Medicina da Universidade do Porto (FMUP).
Fresh bone samples (rib) were collected, after consulting RENNDA, during autopsy in
Serviço de Patologia Forense das Delegações do Centro e Sul do INMLCF. Tooth samples
(molars) from living individuals were collected in dentist offices, after written informed
consent, and tooth samples from deceased individuals (molars) were collected from BDS in
Departamento de Anatomia da FMUP. We excluded individuals with known diseases or
other clinical conditions that could influence DNAm levels. All blood and bone samples
from dead bodies were collected within five days after death.

The herein developed multi-tissue APM using Sanger sequencing includes: 65 blood
samples from healthy individuals (42 females, 23 males; aged 1–94 years old), 68 blood
samples from deceased individuals (15 females, 53 males; aged 24–91 years old), 23 tooth
samples (15 females, 8 males; aged 26–88 years old) and 29 bone samples (4 females,
25 males; aged 26–81 years old). For the multi-tissue APM developed by SNaPshot,
55 blood samples from healthy individuals (34 females, 21 males; aged 1–94 years old),
59 blood samples from deceased individuals (13 females, 46 males; aged 24–91 years old),
23 tooth samples (15 females, 8 males; aged 26–88 years old) and 31 bone samples (5 females,
26 males; aged 26–81 years old) were considered.

The study protocol was approved by the ethical Committee of Faculdade de Medicina
da Universidade de Coimbra (n◦ 038-CE-2017). For living individuals, written informed
consent was previously obtained from adult participants and from children’s parents under
the age of 18 years.

2.2. Sanger Sequencing of C1orf132 in Blood Samples from Living Individuals

As the C1orf132 gene was not previously addressed in blood samples from living indi-
viduals using the Sanger sequencing methodology, the genomic DNA extracted from blood
samples of living individuals using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
was bisulfite converted using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine,
CA, USA), and submitted to polymerase chain reaction (PCR) amplification using the
Qiagen Multiplex PCR kit (Qiagen, Hilden, Germany) for a selected region of C1orf132, as
previously described [5]. Sequencing was performed in the ABI 3130 sequencer (Applied
Biosystems, Foster City) with Big-Dye Terminator v1.1 Cycle Sequencing kit (Applied
Biosystems), using primers and conditions previously described [5].

2.3. Statistical Analyses

Statistical analyses were performed using IBM SPSS statistics software for Windows,
version 24.0 (IBM Corporation, Armonk, NY, USA). Linear regression models were used
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to analyze the relationships between DNAm levels at CpG sites and chronological age.
The simple linear regression coefficients from the highest age-correlated CpGs from each
gene for Sanger sequencing data, and from each age-correlated CpG site addressed by
SNaPshot, were used to predict the age of individuals in the combined set of blood, bone
and tooth samples. For both methodologies, all the statistically significant age-correlated
CpG sites were combined for analysis using the stepwise regression approach for selection
of the relevant variables to be included in a multi-locus BBT-APM. We calculated the
Spearman correlation value, the mean absolute deviation (MAD) and the root mean square
error (RMSE) between chronological and predicted ages for the combined training set of
samples in both methodologies. For both the training sets, each obtained MAD value was
interpreted as either correct or incorrect using a cutoff value according to the standard
error (SE) of the estimate calculated for each APM.

In addition, the MAD values were calculated for subsets of four distinct age categories
(<30 years, 31–55 years, 56–79 years, >80 years) for each training set used in Sanger
sequencing and SNaPshot methodologies.

Validation of the BBT-APMs was performed by 3-fold cross-validation that consists of
randomly removing a set of samples from the training set and to develop three independent
multiple linear regressions on the remaining samples. Subsequently, each model is used
to predict the age of the removed samples assigned as validation sets. An additional
validation was performed by splitting the complete data set into two subsets (training
and validation sets) and independent regression was calculated for the training set and
applied to the validation set. All the independent linear regression equations developed for
validation purposes included the same CpG sites that have been selected for development
of the final multi-tissue APM for each methodology.

3. Results
3.1. Multi-Tissue BBT-APM using Sanger Sequencing

DNAm levels of 43 CpGs located at ELOVL2 (9 CpGs), EDARADD (4 CpGs), FHL2
(12 CpGs), PDE4C (12 CpGs) and C1orf132 (6 CpGs) were assessed in a combined train-
ing set of 185 samples, including blood, teeth and bones from Portuguese individuals
(76 females, 109 males; aged 1–94 years) using the bisulfite PCR sequencing methodology.
The simple linear regression analysis showed that the strongest age-correlated site in each
gene was: ELOVL2 CpG6 (R = 0.759, p-value = 6.87 × 10−36), explaining 57.3% of the
variation in age; FHL2 CpG1 (R = 0.692, p-value = 1.11 × 10−27), explaining 47.6% of the
variation in age; EDARADD CpG3 (R = −0.682, p-value = 1.21 × 10−26), explaining 46.2% of
the variation in age; C1orf132 CpG1 (R = −0.654, p-value = 5.67 × 10−24), explaining 42.5%
of the variation in age and PDE4C CpG2 (R = 0.613, p-value = 1.79 × 10−20), explaining
37.2% of the variation in age (Table 1 and Supplementary Table S2). A clear positive age
correlation was observed for ELOVL2 CpG6, PDE4C CpG2 and FHL2 CpG1 markers, and
a clear negative age correlation was observed for EDARADD CpG3 and C1orf132 CpG1
markers (Supplementary Figure S1). The predicted age of individuals was calculated using
the simple linear regression coefficients for the individual strongest age-associated markers
allowing us to obtain MAD values of 12.01 years for ELOVL2 CpG6, 13.23 years for C1orf132
CpG1, 13.52 years for EDARADD CpG3, 13.16 years for FHL2 CpG1 and 13.58 years for
PDE4C CpG2 (Table 1).

Simultaneously testing the 35 significant age-associated CpGs from ELOVL2 (nine CpGs),
EDARADD (three CpGs), FHL2 (nine CpGs), PDE4C (eight CpGs) and C1orf132 (six CpGs)
using stepwise regression analysis allowed us to select a multi-locus APM combining
seven CpGs (EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2 CpG5, PDE4C CpG5,
PDE4C CpG9, C1orf132 CpG3). The multiple regression analysis combining these CpGs
enabled an age correlation (R) value of 0.940 (p-value = 7.36 × 10−79), explaining 87.8%
of the variation in age (corrected R2 = 0.878) (Table 1). The formula to predict age of
individuals built with the multiple linear regression coefficients (Supplementary Table
S3) was as follows: 26.852 − 24.767 × DNAm level EDARADD CpG3 + 68.537 × DNAm
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level FHL2 CpG5 − 51.319 × DNAm level FHL2 CpG11 + 57.461 × DNAm level ELOVL2
CpG5 + 41.449 × DNAm level PDE4C CpG5 − 66.397 × DNAm level PDE4C
CpG9 − 27.418 × DNAm level C1orf132 CpG3. The correlation between predicted and
chronological ages was 0.915 (Spearman correlation coefficient) with a MAD from chrono-
logical age of 6.06 years (RMSE = 7.60) (Figure 1). Correct predictions were 73%, assuming
that chronological and predicted ages match around eight years, according to the standard
error of estimate calculated for the final APM (SE = 7.86).
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Figure 1. Predicted age versus chronological age using the multi-locus multi-tissue APM developed
for ELOVL2, FHL2, EDARADD, PDE4C and C1orf132 genes including blood samples from living
individuals (1), blood samples from deceased individuals (2), bone samples (3), tooth samples from
living individuals (4) and tooth samples from deceased individuals (5). The corresponding Spearman
correlation coefficients (r) are depicted inside each plot.

The accuracy of the developed BBT-APM was tested through a threefold cross val-
idation in the training set of 185 samples showing a MAD of 6.27 years (RMSE = 6.27)
(mean value obtained for the three test sets). This value was very close to the MAD of
6.06 (RMSE = 7.60) obtained in the whole training set. The validation by splitting the over-
all training set into two sets of 117 and 68 samples (training and validation sets) allowed
us to obtain an independent MAD value for the training set of 6.09 years (RMSE = 7.55);
applying the model on the validation set, a MAD of 6.08 years (RMSE = 7.64) was obtained.
Both independent MAD values were very close to the MAD of 6.06 (RMSE = 7.60) obtained
in the whole training set.

3.2. Multi-Tissue BBT-APM Using SNaPshot Methodology

DNAm levels at five CpG sites from the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59
genes obtained through a SNaPshot assay were simultaneously addressed in a combined
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set of 168 samples, including blood, bones and teeth (67 females, 101 males; 1–94 aged
years old). DNAm levels of ELOVL2, FHL2, KLF14 and TRIM59 genes revealed a posi-
tive correlation with age, and DNAm levels of C1orf132 showed a negative correlation
(Supplementary Figure S2). Testing the individual DNAm association with chronological
age for the five CpG sites, the strongest correlation was observed for ELOVL2 (R = 0.772,
p-value = 1.54 × 10−34), explaining 59.4% of the variation in age, followed by C1orf132
(R = −0.693, p-value = 2.49 × 10−25), explaining 47.7% of the variation in age, FHL2
(R = 0.686, p-value = 1.36 × 10−24), explaining 46.8% of the variation in age, KLF14
(R = 0.677, p-value = 6.57 × 10−24), explaining 45.6% of the variation in age and TRIM59
(R = 0.584, p-value = 1.17 × 10−16), explaining 33.7% of the variation in age (Table 2). The
simple APMs for each CpG site allowed us to obtain MAD values from a chronological age
of 10.95 years for ELOVL2, 12.10 years for C1orf132, 12.63 years for FHL2, 12.74 years for
KLF14 and 13.64 years for TRIM59 (Table 2).

Applying the stepwise regression approach to the five CpG sites, only the CpGs
located at ELOVL2, KLF14 and C1orf132 genes were selected for the development of a final
multi-locus APM. The three selected CpGs revealed in the multiple regression analysis a
very strong correlation with age, R = 0.922 (p-value = 3.14 × 10−67), explaining 84.7% of
the variation in age (corrected R2 = 0.847) (Table 2). Predicted age through the multivariate
regression coefficients was as follows (Supplementary Table S4): 29.220 + 96.850 × DNAm
level ELOVL2 + 208.747 × DNAm level KLF14 − 33.437 × DNAm level C1orf132. This
BBT-APM allowed us to obtain a MAD from chronological age of 6.49 years (RMSE = 8.42)
(Table 2). Correct predictions were 73.8% considering the cutoff of 9 years, according to the
standard error of estimate calculated for the final APM (SE = 8.53). The obtained Spearman
correlation value between predicted and chronological ages was 0.893 (Figure 2).
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Figure 2. Predicted age versus chronological age using the multi-tissue APM developed for ELOVL2,
C1orf132 and KLF14 genes including blood samples from living individuals (1), blood samples from
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samples from deceased individuals (5). The corresponding Spearman correlation coefficients (r) are
depicted inside each plot.
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The model accuracy of the final APM with DNAm levels of ELOVL2, KLF14 and
C1orf132 markers was evaluated through a threefold cross validation in the training set of
168 samples, producing a MAD (mean value obtained for the three test sets) of 6.73 years
(RMSE = 6.75). This value was very close to the MAD of 6.49 (RMSE = 8.42) obtained in
the whole training set. The validation by splitting the overall training set into two sets
of 113 and 55 samples (training and validation sets) allowed us to obtain an independent
MAD value for the training set of 6.06 years (RMSE = 7.81). Applying the model on the
validation set, a MAD of 7.45 years (RMSE = 9.60) was obtained.

3.3. Differences between Predicted and Chronological Ages with an Increase in Age

Evaluating the model performance obtained with the two developed multi-tissue
BBT-APMs according to different age ranges (Table 3), we observed an increase in the MAD
values between predicted and chronological ages with the increase in age of individuals.
For both Sanger sequencing and SNaPshot methodologies, the value of MAD was the
largest for the age group >80 years and the smallest for age group <30 years (Table 3).

Table 3. Evaluation of mean absolute deviation (MAD) between chronological and predicted ages
according to four age-range groups in the training set of blood, bone and tooth samples using
both methodologies.

Method

Age Range Sanger Sequencing SNaPshot

N MAD (Years) N MAD (Years)

<30 years 33 4.73 23 5.51

31–55 years 58 6.37 56 6.23

56–79 years 74 5.67 68 6.74

>80 years 20 8.81 21 7.37

4. Discussion

In the past decade, several specific epigenetic clocks with high accuracy have been
developed using many tissue types [9–16]. However, the discovery of DNAm age-related
markers with similarly high accuracy across different types of tissues (universal markers)
remains a challenging task in the forensic field [17]. Evidence from previous studies shows
that each age-correlated marker reveals a specific ability to predict chronological age,
as each tissue type can be affected by different intrinsic or environmental factors. Eipel
et al. [16] reported that using a specific APM with methylation information of age-correlated
markers selected in one tissue-specific type can lead to a decrease in model accuracy in
age prediction if applied to a different tissue. This should be related to the tissue-specific
differences in epigenetic patterns [18–20]. Thus, a careful selection of age-associated CpGs
and the validation of these proposed markers in each tissue type should be the first step
for the development of multi-tissue APMs.

In fact, until now, only a few studies have explored the predictive ability of multi-
tissue APMs [2–4]. In this study, we re-examined DNAm levels of ELOVL2, FHL2, PDE4C,
EDARADD, C1orf132, TRIM59 and KLF14 genes, previously captured in different tissue
types (blood samples from living and deceased individuals; tooth samples from living
and deceased individuals; fresh bone samples collected during autopsies) by Sanger
sequencing and SNaPshot methodologies to build multi-tissue APMs. We developed
simple linear regression APMs for the best-selected CpG sites from each gene, and multi-
locus multi-tissues APMs using the best combination of CpGs selected by the stepwise
regression approach.

DNAm levels captured by bisulfite Sanger sequencing allowed the development of a
final APM with seven CpGs (EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2 CpG5,
PDE4C CpG5, PDE4C CpG9, C1orf132 CpG3), revealing a very strong age correlation value
(R = 0.940), highly significant (p-value = 7.36 × 10−79) and explaining 87.8% of the variation
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in age. The BBT-APM developed with 185 Portuguese individuals (aged 1–94 years old)
allows us to predict age with a moderate accuracy showing a MAD from chronological age
of 6.06 years.

Regarding methylation information captured by the SNaPshot methodology, the final
multi-locus multi-tissue APM combines three CpG sites located at ELOVL2, KLF14 and
C1orf132 genes. This BBT-APM developed in 168 samples revealed a very strong age
correlation value (R = 0.922), with a MAD from chronological age of 6.49 years.

In Table 4, we resume in brief the difference in results obtained with both methodologies.
The multi-tissue APMs developed herein allows prediction of age of the individuals

based on evaluation of DNAm levels captured from several types of samples, including
blood, bone and teeth. The final models revealed an accuracy (MAD value) of about 6 years,
being more accurate than the majority of anthropological approaches applied to adults’
age estimation. When comparing the results with the ones retrieved by anthropological
methods, it becomes clear that our method has clear benefits in relation to methods such as
Suchey–Brooks’, where age ranges are particularly large, mainly for old individuals.

Table 4. Comparison between Sanger sequencing and SNaPshot methodologies.

Method Sanger Sequencing SNaPshot

CpGs and genes included in
the APM

7 CpGs located at 5 genes
(EDARADD CpG3, FHL2 CpG5, FHL2 CpG11, ELOVL2

CpG5, PDE4C CpG5, PDE4C CpG9, C1orf132 CpG3)

3 CpGs located at 3 genes
(ELOVL2, KLF14, C1orf132)

Age correlation value 0.940 0.922

Variance in age explained 87.8% 84.7%

Accuracy (MAD) 6.06 years 6.49 years

Results
Using the Sanger sequencing methodology, more CpGs and genes were included in the APM,

but higher age correlation, higher explained variance in age, and a better
accuracy in age prediction (lower MAD value) were obtained.

Comparing the herein developed multi-tissue APMs with the tissue-specific APMs
previously developed by our group, we can observe that through Sanger sequencing,
the blood-living APM [6] revealed a MAD of 5.35 years, which is a slightly lower value
comparing with the BBT-APM (MAD = 6.06 years). However, for blood samples from
deceased individuals [5], the tissue-specific APM revealed a similar accuracy with a MAD
of 6.08 years. The tissue-specific APMs developed through the SNaPshot assay for blood
samples revealed MAD values of 4.25 and 5.36 years for living and deceased individuals,
respectively [7]. However, although these models have a better accuracy than the herein
developed BBT-APM using the SNaPshot methodology (MAD = 6.49), they can only be
applied to blood samples.

Regarding bones, we have previously obtained through Sanger sequencing and SNaP-
shot methodologies MAD values of 2.56 and 7.18 years, respectively [8]. Thus, we can
observe that for age prediction in bones using Sanger sequencing, it is more advantageous
to apply the tissue-specific model compared with the BBT-APM (MAD = 6.06 years). How-
ever, using the SNaPshot methodology we obtained a similar prediction accuracy for both
the specific bone-APM (MAD = 7.18 years) and the BBT-APM (MAD = 6.49 years). In re-
gards to tooth samples, the tissue-specific models previously developed [8] revealed MAD
values of 11.35 years and 7.07 years using Sanger sequencing and SNaPshot methodologies,
respectively, which is a lower accuracy in comparison with the BBT-APMs developed in
this present study (MAD = 6.06 and 6.49 years, respectively).

Previous reports using DNAm levels for the development of multi-tissues APMs [2–4]
showed higher prediction accuracy in age estimation (MAD values of 2.9, 3.55 and 3.8 years).
In our study, the obtained higher MAD values (6.06 years in Sanger sequencing and
6.49 years in SNaPshot) can be explained by sample size, population variability or the
laboratory methodologies for DNAm assessment. Of note, both developed BBT-APMs
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included CpGs from the ELOVL2 gene revealing the powerful of this age-associated gene
for the development of multi-tissue APMs in forensic contexts. It has been shown that
ELOVL2 is a stable epigenetic marker, revealing a high performance as a multi-tissue
predictor [2,13,14,21]. This locus has been used as a powerful age-correlated marker in
many tissue-specific APMs developed for blood, tooth, bones and buccal swabs, revealing
similar patterns of high accuracy in all APMs [2,10–15,22–30]. Moreover, it has been
shown that CpGs from the other genes addressed in the present study also revealed higher
age correlation values in blood samples [2,5–7,10–12,23,24,26,28–30], bones [8,13,14] and
tooth samples [8,15,23,27], being promising markers to be selected for development of
universal APMs.

Several aspects should be highlighted for future potential applicability of the herein-
developed multi-tissues APMs.

In this study, both BBT-APMs revealed a general decrease in model accuracy (increase
in MAD value) with the increase in age, in accordance with previous studies [3,11,12,26,30],
revealing that age estimation based on DNAm levels can have a better performance in
younger age ranges. Indeed, younger individuals show lower values of MAD reflecting a
high accuracy in the APMs, comparing to older ages. This reflects larger differences between
biological and chronological ages with the increase in age, related to the accumulation of
specific alterations in DNAm patterns of each individual with aging due the stochastic or
environmental factors, being accepted as the epigenetic drift contribution [31–33].

The possibility that postmortem changes can alter the methylation status among
specific loci should also be hypothesized, and this issue needs future clarification. As
reported in previous studies from our group, comparing blood samples from living and
deceased individuals [6,7], it is important for forensic casework application to know the
healthy status of the sample donor. This is a paramount issue because the most developed
APMs until now have been built using samples of living individuals. It has been observed
that ancient DNA (aDNA) can suffer postmortem miscoding lesions, as deamination [34,35].
Postmortem deamination is a spontaneously chemical process that occurs due to the
hydrolytic deamination of cytosine (C) residues into uracils (U) [34]. If DNA damage
in the form of deamination occurs, the expected residues in PCR amplification could be
different after bisulfite conversion. Bisulfite conversion is a chemical modification, which
mediates the deamination of unmethylated C to U, appearing after PCR amplification as
thymine (T), but leaves methylated C (5mC) intact. Therefore, if postmortem cytosine
deamination occurs, both unmethylated C and 5mC appear as T after PCR amplification of
bisulfite-converted samples, which could disturb the measurement of DNAm levels. As
hydroxymethylcytosine (5hmC) is an oxidative product of demethylation of 5mC [36,37],
in case of postmortem deamination, the 5hmC concentration can also be affected. Despite
this, the stability of 5mC patterns in aDNA has been reported, when preserved aDNA
samples were analyzed [38,39]. Moreover, Pedersen et al. [40] assessed to DNAm levels of
permafrost hair samples collected from a Paleo-Eskimo with 4000 years old, and predicted
age at death. This reveals the reliability on the assessment of DNAm levels to predict age
in ancient samples.

An additional important issue for forensic practice is the effect of postmortem interval
(PMI) on DNAm levels captured from aged forensic samples of different tissues. Data
obtained from such forensic samples should be interpreted with caution due to the very
low amount and degradation of the obtained DNA. A previous study developed by Zbieć-
Piekarska et al. [24] showed the stability of prediction accuracy using bloodstains that
differed in time of storage. The authors evaluated DNA concentrations from bloodstains
that had been deposited previously on tissue paper and kept at room temperature during
5, 10 and 15 years, observing a significant decrease in DNA concentration, a decrease
in number of positive PCR amplifications and an increase in average degradation index.
However, they did not observe an effect on the rate of corrected predictions, reporting
that “the prediction success rate seemed not to correlate inversely with increasing time of
storage” [24]. Hence, it seems that DNA degradation affects DNA concentration and, con-
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sequently, the rate of positive PCR amplifications; however, the accuracy of age prediction
is not affected in positive PCR amplification samples.

The major drawback of our study was the limited number of samples, mainly in bones
and teeth. We recognize that larger sample sets have greater statistical power and may be
more representative of DNAm changes related to different age groups and different types
of tissues, leading to the development of more accurate APMs. Another relevant factor
that should be considered is the existence of some diseases or clinical conditions or even
some life routines such as smoking or drinking, which may interfere with methylation
data. For samples of deceased individuals, despite having access to medical reports of
each case, information related to possible clinical conditions was unknown in many cases.
Lastly, the use of different methodologies for evaluation of DNAm levels across studies
can influence the accuracy of APMs. In particular, bisulfite sequencing or SNaPshot
methodologies are semi-quantitative methods and thus may not be the optimal tool for
precise DNAm analysis.

DNAm analysis is considered a promising method for age estimation in the future.
If we question how easy it is to use it and how long it takes to apply it, we argue that in
those laboratories supported by genetic facilities provided with the needed equipment,
the results can be retrieved in two or three days. In comparison with the more traditional
approaches, it takes longer, but in terms of the delivery of the final report, it does not imply
any delay. Furthermore, it should be noted that any method that involves DNA analysis
turns out to be more expensive, but it also tends to be more reliable. However, it should
be emphasized that the development of universal APMs based on DNAm levels is at the
beginning of age estimation research and, therefore, the herein proposed BBT-APMs can be
a starting point for future research.

5. Conclusions

In conclusion, in this study we re-examined DNAm levels of ELOVL2, FHL2, PDE4C,
EDARADD, C1orf132, TRIM59 and KLF14 genes previously captured by Sanger sequencing
and SNaPshot methodologies across several tissues. Two multi-tissue BBT-APMs were
developed using blood, tooth and bone samples from Portuguese individuals. To the best of
our knowledge, the two BBT-APMs developed herein for the Portuguese population are the
first multi-tissue APMs using bones and teeth. Moreover, despite being very often found in
forensic contexts, the development of tissue-specific APMs using bones or teeth is scarce in
forensic research. By Sanger sequencing, a moderate accuracy of 6.06 years was obtained
in the BBT-APM using seven CpGs from genes ELOVL2, FHL2, PDE4C, EDARADD and
C1orf132. Using the SNaPshot assay, the BBT-APM developed with methylation data from
C1orf132, ELOVL2 and KLF14 genes revealed a MAD from chronological age of 6.49 years.
Both methodologies revealed similar accuracy for use in multi-tissue APMs being both
simple, rapid, cost-effective and easily available in forensic laboratories. Therefore, both
BBT-APMs developed herein can be a promising tool for age estimation in forensic contexts.

This article, a priori, could appear too technical and a little far away from the forensic
anthropology reality. However, we argue that a bridge between forensic genetics and
forensic anthropology can be achieved, once the needed complicities between the experts
involved are well established. In practical terms, what we here advise is an integrated
evaluation of the case by the forensic anthropologist, along with the pathologist in charge
of the case. If, for instance, the case is a fresh body without any physiognomic traits and
where identification is unknown, blood is the best option for DNAm age estimation. If,
on the other hand, blood is no longer available due to the state of decomposition of the
body, a decision can be made to recover both bone and teeth to perform DNAm studies.
What does that imply in practical terms? It means that the result will take 2 or 3 days to be
known, that the needed equipment is necessary as well as the adequate kits. While those
ones are more expensive than the blood ones, it is a good option in particular when the
most adequate skeletal age indicators are damaged or no longer available. Having said
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that, we argue that we should strive to implement the procedures here described in the
Medico–Legal facilities in order to turn DNAm a routine practice for age estimation.
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methodology. Figure S2: Correlations between DNAm levels and chronological age in 168 samples,
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and teeth from living and deceased individuals, obtained through SNaPshot methodology. Table S1:
Age distribution of the sample sets analyzed by Sanger sequencing and SNaPshot methodologies.,
Table S2: Univariate linear regression analysis of the 43 CpG sites in ELOVL2, FHL2, EDARADD,
PDE4C and C1orf132 loci in 185 samples including blood from living and deceased individuals, teeth
from living and deceased individuals and bone collected during autopsies. Table S3: Statistical
parameters obtained in a multiple regression model with the seven CpGs in genes ELOVL2, FHL2,
EDARADD, PDE4C and C1orf132 selected by stepwise regression approach, in blood, bone and tooth
samples. Table S4: Statistical parameters obtained in a multiple regression model with the three
CpGs in genes ELOVL2, C1orf132 and KLF14, selected by stepwise regression approach, in blood,
bone and tooth samples.
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Simple Summary: Forensic anthropologists often face the task of analysing a mixed group of skeletal
remains or matching a solitary bone with the rest of a skeleton to determine if it belongs to the
same individual. One of the best ways to do this is by pair-matching left and right bones of the
same type. Common pair-matching methods experience issues such as high levels of subjectivity,
lack of reliability, or expensive cost of implementation. This study explores the application of the
relatively new method, mesh-to-mesh value comparison (MVC), which matches paired bones based
on morphological shape to determine the likelihood that they derive from the same individual.
This study sought to expand on the success found in past publications using MVC and to see how
well it performed on a sample of clavicles, a bone known for having a high degree of bilateral
variability, of 80 modern Turkish individuals. This study also explored whether MVC can reliably
match fragmented bones to their intact counterpart. Results show MVC successfully matched 88.8%
of paired clavicles and suggest the method continues to be a promising avenue for pair-matching
that is not affected by ancestry and may be applicable to fragmented remains with further study.

Abstract: Many cases encountered by forensic anthropologists involve commingled remains or
isolated elements. Common methods for analysing these contexts are characterised by limitations
such as high degrees of subjectivity, high cost of application, or low proven accuracy. This study
sought to test mesh-to-mesh value comparison (MCV), a relatively new method for pair-matching
skeletal elements, to validate the claims that the technique is unaffected by age, sex and pathology. The
sample consisted of 160 three-dimensional clavicle models created from computed tomography (CT)
scans of a contemporary Turkish population. Additionally, this research explored the application of
MVC to match fragmented elements to their intact counterparts by creating a sample of 480 simulated
fragments, consisting of three different types based on the region of the bone they originate from. For
comparing whole clavicles, this resulted in a sensitivity value of 87.6% and specificity of 90.9% using
ROC analysis comparing clavicles. For the fragment comparisons, each type was compared to the
entire clavicles of the opposite side. The results included a range of sensitivity values from 81.3%
to 87.6%. Overall results are promising and the MVC technique seems to be a useful technique for
matching paired elements that can be accurately applied to a Modern Turkish sample.

Keywords: forensic anthropology; MVC; 3D modelling; pair-matching; computed tomography;
fragmentation; clavicle
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1. Introduction

Commingled assemblages and isolated skeletal elements are often encountered in
the archaeological record as well as in contemporary forensic-related fieldwork [1,2]. The
concept of commingled remains refers to a single context in which there is a mixing of
fragmented or whole skeletal elements belonging to two or more individuals [3,4]. The
definition of commingled assemblages can be further specified as a mixing of the remains to
the degree in which further scientific study is necessary to differentiate the various compo-
nents [4]. The commingled nature of the context can arise through a multitude of processes
including animal scavenging, abiotic taphonomic processes, and human activity [4–6].
These atypical contexts provide unique challenges in determining the ideal method to sort
and analyse the associated osteological material in the pursuit of answering important
questions relevant to the study of past populations or forensic investigations [6,7]. Multiple
individual burials have often been observed as a regular practice in the Paleolithic period
and throughout history [2,4,8,9]. In the more recent past, mass killings have led to many
forensic anthropologists encountering an increasing number of sites with commingled
remains [4,6]. One of the primary steps for approaching these challenges is to quantify the
skeletal elements, define the minimum number of individuals, and then re-associate as
many of the skeletal elements as possible in order to individualise the sample [6,8,10].

The most commonly applied method for re-association is the visual examination
for similarities in size, shape, and taphonomic changes in order to pair-match skeletal
elements [11]. Despite its popularity and longstanding application, there are several
limitations to the visual assessment method, most of which stem from the subjective nature
inherent in its application. There is no way to standardise observations made by distinct
observers and conclusions can be difficult to justify, something that would be a huge
detriment to forensic contexts. The accuracy of results is also quite heavily varied as it
depends almost entirely on the level of experience held by the individual carrying out the
assessment [12].

Another approach often employed for the re-association of human remains is os-
teometric sorting, which is also concerned with the attempt to pair match left and right
skeletal elements. Osteometric sorting can be defined as the “formal use of size and shape
to sort bones from one another” [12] (p. 1) and relies upon the metric analysis of different
bones and the application of statistical regression formulae to match them with other bones
from the same individual [11,13]. The underlying concept is that the degree of robusticity
and overall size will be similar amongst all skeletal elements belonging to the same indi-
vidual. The technique makes an attempt to move beyond the subjective nature of visual
assessment by employing statistical models and formulae in order to increase replicability
amongst different observers as well as to provide an avenue for quantifying the differences
between size and robusticity which would allow for stronger justifications to be made
when publishing or presenting resulting pair match conclusions [11,12]. There are many
benefits to the technique and include the low cost of utilisation, quick return of results,
and low error rates [12]. While it is an improvement upon the previously discussed visual
observation method and its heavily subjective nature, there are still many limitations that
can be encountered in the use of osteometric sorting. One major limitation is the failure of
the method to consider the bilateral asymmetry that may exist within an individual [12,14].
It is well-known that handedness and other factors affect the size and morphology of bones
and thus it is erroneous to ignore the effects this asymmetry may have on the expression
of robusticity and size within an individual [14]. Another situation in which osteometric
sorting may fall short is when attempting to sort individuals of a similar size [12]. This can
be a major limitation in a diverse range of settings including, but certainly not limited to,
martial-related commingled contexts where most individuals are young adult males from
a similar population [9].

While DNA testing is a proven method for re-associating elements, it is also extremely
costly and time-consuming and many protocols for dealing with complex commingling
include the sorting of remains utilising other less expensive methods prior to the eventual
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application of DNA analysis, arguably making DNA a last, supplementary step to consider
when sorting human remains instead of a primary, stand-alone method [15]. The level of
preservation and the degree of taphonomic alterations are additional limitations in the use
of DNA analysis for re-associating skeletal elements.

New methodologies employed virtual tools of re-association and pair matching. For
example, in a relatively new study, the researchers utilised a sample of 111 metacarpals
originating from 17 individuals to perform a pair-matching test. Two-dimensional pho-
tographs were utilised to place landmarks on the metacarpals. The hypothesis of the study
was that “shape differences would be smaller in bones belonging to the same individual
than in those belonging to different individuals” [16] (p. 120). The underlying concepts and
theories behind the method are laudable and the consideration of ways in which shape can
be quantified is extremely promising and intriguing for the future of pair-matching. Prelim-
inary results showed a range of accurately identified pairs from 75.6% by one observer to
82.9% by the second observer with incorrect pairs made by both [16]. The major limitations
of this technique would involve the small simple size, the overall lack of validation studies,
the high degree of variability between observer rates of accuracy, and the slightly difficult
to reproduce methodology.

Other novel methodologies have focused on the realm of 3D digital analysis in an
attempt to overcome the shortcomings of the traditional 2D osteometric sorting method
upon which they are based, specifically when applied to high degrees of bilateral asym-
metry [17,18]. The first of which utilises digital 3D analysis techniques to compare the
46 variables including dihedral angles, cross-sectional area, and cross-sectional perimeter
comparisons. The results showed true positive rates between 0.976 and 1.0 [17]. Similarly,
Fancourt et al.’s [18] next-generation osteometric sorting uses 3D computer-automated anal-
ysis of data points forming a loop around the perimeter of a bone [18]. The authors found
that the 3D analysis outperformed the original 2D osteometric sorting [18]. The promising
result from both publications demonstrates the effectiveness of using 3D computerised
methods to overcome shortcomings of pre-existing sorting methods.

Recently, a novel virtual method of pair-matching elements in commingled situations
was proposed [19]. The mesh-to-mesh value comparison (MVC) method is based on the
digital comparison of three-dimensional mesh geometries created from white light-scanned
or computed tomography data of skeletal elements. This method has been employed with
great success for pair-matching geometries of intact skeletal antimeres, that is, left and
right sides, in humeri [19], parietal bones [20], and phalanges [21]. MVC is carried out by
comparing the three-dimensional geometry of two skeletal elements and determining a
numerical value which demonstrates the amount of similarity of the two elements [19].
The fundamental concept is that two paired elements belonging to the same individual will
exhibit greater degrees of similarity than two elements belonging to different individuals.
While this concept is not new and is a principal consideration in other pair matching
techniques such as osteometric sorting and visual assessment, the traits MVC utilises to
determine the similarity between bones is unique. The way the similarity values are gener-
ated in MVC is essentially by overlapping two bone models in the same three-dimensional
space to determine the places in which the shapes differ and by how much. One of the
novel features of MVC is that the method utilises all of the spatial data available and it does
so in a three-dimensional landscape. This differs from the other pair-matching methods
previously mentioned which focus on characteristics such as size or visual observations as
well as from other geometric morphometric methods which rely on a limited number of
specific landmarks on the bone as opposed to taking into consideration the entire external
morphology and topography of the element in question, as MVC does [16]. MVC uses a
“mesh-to-mesh” value which quantifies the difference between two meshes, or models,
in millimetres; the lower a mesh-to-mesh value, the more similar the models are. The
algorithms utilised to determine a mesh-to-mesh value are based on Iterative Closest Point
(ICP) comparison algorithms [19].
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Parietal bone pair-matching seemed to be the most successful with 98% sensitivity and
100% specificity [20], followed by the humeri with 100% sensitivity and 60% specificity [19].
Drawbacks on the method include the need for special skills in manipulating 3D data,
building 3D models from scans, and securing mesh quality which makes the method time-
consuming. Yet, the use of ROC analysis allows the method to be adjusted on the question
at hand, that is whether two bones are more likely to belong to the same individual or if
excluding that they do is the most probable outcome. This can be achieved by adjusting
sensitivity and specificity levels.

Pre-existing methods of re-association commingled remains are varied and diverse.
However, many are hindered by limitations such as a high cost of implementation, high
degree of subjectivity, low level of accuracy, or a lack of validation studies confirming a
proven, replicable accuracy rate of success [4,12,17,18,22,23]. Another important issue is
that in many places, there are no available skeletal collections which can be utilised to
develop or test these methods for a variety of reasons including ethical concerns, inability to
macerate, excavate, or examine remains or due to the lack of documented material. Recently,
studies utilising computed tomography (CT) scan data have become more popular and
are viewed as a potential solution when physical skeletal material is inaccessible [24,25].
Specifically, there is a current need for techniques which can be accurately applied to the
population of Turkey; The Human Rights Association in Turkey produced a report in
2014 discussing the location of 348 mass graves in Turkey containing the remains of 4201
individuals requiring analysis and identification [24] (p. 90). It is especially important
that techniques employed by researchers involved in human rights-related excavations
worldwide and regardless of time period are as accurate and cross-validated as possible
due to the sensitive nature of the investigations. The use of CT scans from the contemporary
Turkish population is an ideal approach to solve the current problem concerning the lack
of anthropometric data in the country [24].

In this vein, the present study adopted the MVC methodology [19–21,26] to investigate
its utility in pair-matching clavicles, a paired element that has received limited attention
in pair-matching studies. In addition to developing a method for complete clavicles, the
study aims to pair-match fragments for the first time, as these can be often encountered in
commingled situations. The sample derives from Turkey and the development of a virtual
method of pair-matching is an adequate fit for the application in mass graves in the lack of
skeletal reference collections in the country as described above.

2. Materials and Methods
2.1. Sample

For this project, a total of 160 clavicles from randomly selected computed topography
(CT) scans taken of 80 individuals were used (Table 1). The CT scan data utilised originates
from Tepecik Training and Research hospital in Turkey, were taken in 2016 for a different
project, and the files were anonymised prior to receipt by the researcher. The CT scans are
in radiological position and were performed using a 64 slice CT scanner (Siemens Solutions,
Erlangen, Germany). The scanning parameters are 80 kV, 115 mAs, with a slice thickness of
1 mm and 512 × 512 matrix.

Table 1. Biological information of the Modern Turkish sample used in this study.

Sex Number (Total) Healed Fractures Under 28 Years

Male 54 4 6
Female 106 5 10

Total 160 9 16

The entire sample included 27 males and 53 females. Ages ranged from 15 to 65
with an average age of 42.5 years. There were eight individuals under the age of 28. The
sternal epiphysis of the clavicle does not completely fuse until age 23 for females and 25
for males while visibility of the epiphyseal scar may remain until age 27–29 [27]. Nine of
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the clavicles in the sample displayed evidence of healed fractures. These were deliberately
included in the sample for comparison and results were analysed with the 9 fractured
clavicles included as well as with them removed to determine the effect it would have on
the attempted pair-matching.

2.2. Methods
2.2.1. Segmentation

3D models were created with semi-automated segmentation using the Amira 5.2.2
software package following a modified version of that described by Karell et al. [19] in the
first publication of the MVC method. Figure 1 illustrates a model of a left clavicle.

Biology 2021, 10, x FOR PEER REVIEW 5 of 16 
 

 

while visibility of the epiphyseal scar may remain until age 27–29 [27]. Nine of the clavi-
cles in the sample displayed evidence of healed fractures. These were deliberately in-
cluded in the sample for comparison and results were analysed with the 9 fractured clav-
icles included as well as with them removed to determine the effect it would have on the 
attempted pair-matching. 

Table 1. Biological information of the Modern Turkish sample used in this study. 

Sex Number (Total) Healed Fractures Under 28 Years 
Male 54 4 6 

Female 106 5 10 
Total 160 9 16 

2.2. Methods 
2.2.1. Segmentation 

3D models were created with semi-automated segmentation using the Amira 5.2.2 
software package following a modified version of that described by Karell et al. [19] in the 
first publication of the MVC method .Figure 1 illustrates a model of a left clavicle. 

 
Figure 1. A completed model of the left clavicle belonging to individual 82. Created with Amira 
5.2.2. 

2.2.2. Simulation of Fragments 
Following the segmentation process in Amira, the interior of the model was filled 

using the Fill Holes tool found in the Segmentation Editor. Once this was completed, the 
models were randomly cropped within the segmentation editor to create three different 
types of fragments; a fragment of the region adjacent to and including the medial epiph-
ysis, which will be referred to as the sternal fragments, one consisting of portions of the 
midshaft, referred to as midshaft fragments, and one including the lateral epiphysis which 
will be referred to as the acromial fragments. This action was carried out for all 160 clavi-
cles to create 160 models of each fragment type (480 in total) as seen in Figure 2. 

 
Figure 2. Examples of simulated fragments created using Amira 5.2.2.: (a) acromial fragment type, 
(b) midshaft fragment type, (c) sternal fragment type. 

Figure 1. A completed model of the left clavicle belonging to individual 82. Created with Amira 5.2.2.

2.2.2. Simulation of Fragments

Following the segmentation process in Amira, the interior of the model was filled
using the Fill Holes tool found in the Segmentation Editor. Once this was completed, the
models were randomly cropped within the segmentation editor to create three different
types of fragments; a fragment of the region adjacent to and including the medial epiphysis,
which will be referred to as the sternal fragments, one consisting of portions of the midshaft,
referred to as midshaft fragments, and one including the lateral epiphysis which will be
referred to as the acromial fragments. This action was carried out for all 160 clavicles to
create 160 models of each fragment type (480 in total) as seen in Figure 2.
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2.2.3. Mirroring

Following the segmentation and creation of the three-dimensional models, the right
clavicles were imported into the Autodesk Netfabb software package and mirrored to create
mirrored-rights. This step was carried out to ensure that all models can be appropriately
compared once imported into the Viewbox 4.1 beta software.
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2.2.4. Alignment

Once all of the right sided models were mirrored, all clavicle models were aligned
using the Flexscan 3D software. First, the models were manually aligned as closely as
possible. Once they appeared to all be in the same three-dimensional space and orientated
in the same direction the alignment and fine-alignment actions were applied to the set.
Following this step, the models were exported individually as OBJ files. The purpose for
this step in the overall process is to eliminate any three-dimensional distance between
the models and serves to reduce the amount of time the alignment step takes during the
Viewbox Mesh comparison analysis.

2.2.5. Hollowing

Following the Flexscan alignment process, the models were subjected to a “hollowing”
procedure using the Viewbox 4.1 beta software. That is the removal of any internal
information and keeping only the external surface data for analysis. The nature of the
mesh-to-mesh comparison involves only the morphological shape of the exterior surface of
the bone models which makes the internal data irrelevant. Hollowing the models serves
the purpose of reducing the amount of data that will need to be processed in the mesh
similarity comparison process which will help to reduce the overall computing time. The
average amount of data removed from each model was 27%.

2.2.6. Mesh-to-Mesh Value Comparison Using Viewbox

Following the previously described methods for creating and preparing the models,
the sample was analysed to generate a mesh comparison value using the Mesh Similarity
Tool in the Viewbox 4.1 beta software package. The mesh-to-mesh value is defined as the
square root of the mean distances between the points of the two meshes.

The foundational algorithm utilised in the mesh comparison process within Viewbox
4.1 beta is a Trimmed Iterative Closest Point (Trimmed ICP) algorithm. Trimmed ICP has
been lauded as a particularly useful moderation of the original ICP which performs well
when conditions of three-dimensional comparisons involve the presence of shape defects
and measurement outliers [28].

To compare all of the left and right models a folder was created with all models
together and selected as the ‘Mesh Folder’. A random model was selected as the reference
mesh and the option to ‘compare all meshes in mesh folder to each other’ was chosen.
Once all the proper parameters were set the mesh similarity was calculated and completed
with a processing time of 21 h and 14 min; however, this time did not require any active
input by the user.

Comparisons were carried out for the left and right clavicles, as well as comparisons
of the fragmentary models to the complete clavicle models of the opposite side. Once
the mesh values were generated for each sample, the generated Excel spreadsheets with
the comparison values were used to perform two types of analysis in order to determine
sensitivity and specificity values.

2.3. Mesh Value Analysis
2.3.1. Lowest Common Value Comparison

The lowest common value comparison method utilises a matrix method for selection
in which the lowest mesh-to-mesh values for both the left and right sides must agree
in order for a match to be determined. This method was developed by the authors of
the original publication about mesh-to-mesh value comparison as an alternative to the
previously attempted method of determining a threshold value to use in order to determine
matches. As discussed by Karell et al. [19], the use of the cut off threshold value plus
two standard deviations did capture almost all of the true matched pairs; however, it also
included 51 values that were not true matches. Thus, an improved method for analysis was
determined to be necessary [19]. The alternative method was shown to be a better method
for selecting true pairs, at least for the humeri in the study. The lowest value comparison
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method utilises a matrix method for selection in which the lowest mesh-to-mesh values for
both the left and right sides must agree in order for a match to be determined. The benefit
of this is that there should, in theory, be fewer false matches made.

The process of carrying out lowest value comparison method is executed within
Microsoft Excel. This process involves formatting the Viewbox 4.1 beta produced results
spreadsheets to determine the lowest three matches for each comparison. Through the use
of sorting, macros, and relative references, the lowest agreed upon match by both paired
elements is determined and a determination is made whether each row and column match
is a true positive, true negative, false positive, or false negative.

A true positive value indicates that the value has been selected as the true match by
Viewbox 4.1 beta and is also a known true match based on known sample data. A true
negative will be a row in which there are no values selected and there is also no known
true match for the model. For the purposes of this study, true negatives were only possible
once data were intentionally deleted as original CT scan data were 100% paired. Thus, 20%
of the results of each comparison sample were randomly removed to create a portion of
true negatives. A false positive is a value in which the comparison method has selected a
cell as containing a match but based on previous sample knowledge it is not a true pair.
A false negative is when a model is not matched to any other model through the lowest
value comparison process but does in fact have a true match.

Following the determination of all rows and columns, all the determinations were
used to calculate sensitivity and specificity. Sensitivity was calculated as follows:

Sensitivity =
True Positives

(True Positives + False Negatives)

Specificity was calculated using the following equation:

Speci f icity =
True Negatives

(True Negatives + False Positives)

2.3.2. Receiver Operating Characteristics (ROC)

A ROC curve is a plot in which the sensitivity is plotted in function of the 100%
specificity rate at different cut-off points of a specific parameter [29–31]. The plot of a ROC
curve allows for the area under ROC curve (AUC) to be calculated. The AUC is a value
which measures the success rate a specific parameter has when differentiating between
two groups. For the purposes of mesh-to-mesh value comparison, this means that the
AUC indicates how well the MVC method would perform with pair-matching. Through
the creation of a ROC curve graph, it is possible to determine sensitivity and specificity
values. The relationship between sensitivity and specificity is important when it comes to
the analysis of ROC curves. A ROC curve of a test which has a perfect discrimination with
a sensitivity and specificity of 100% will pass through the upper left corner of the graph.

3. Results

A total of 640 models, 160 intact clavicles, and 480 simulated fragments were compared
and assessed to determine sensitivity and specificity using both variations of statistical
analysis of the MVC method. Results are presented in Table 2.

3.1. Lowest Common Value Comparison
3.1.1. Entire Clavicle Models

To determine how well the automated version of the MVC method carried out the
pair matching comparison for the clavicle models, two different methods of analysis were
performed. The first method of analysing results is known as the lowest value comparison
method and was carried out using Microsoft Excel.

This method was developed by the authors of the original publication about mesh-
to-mesh value comparison as an alternative to the previously attempted method of deter-
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mining a threshold value to use in order to determine matches. As discussed by Karell
et al. [19], the use of the cut-off threshold value plus two standard deviations did capture
almost all of the true matched pairs. However, it also included 51 values that were not true
matches, thus an improved method for analysis was determined to be necessary [19]. The
alternative method was shown to be a better method for selecting true pairs, at least for the
humeri in the study. The lowest value comparison method utilises a matrix method for
selection in which the lowest mesh-to-mesh values for both the left and right sides must
agree in order for a match to be determined. The benefit of this is that there should, in
theory, be fewer false matches made.

The process of carrying out lowest value comparison method is executed within
Microsoft Excel. This process involves formatting the Viewbox 4.1 beta-produced results
spreadsheets to determine the lowest three matches for each comparison. Through the use
of sorting, macros, and relative references, the lowest agreed upon match by both paired
elements is determined and a determination is made whether each row and column match
is a true positive, true negative, false positive, or false negative.

The analysis of the 160 complete clavicles utilising the lowest common value compari-
son method yielded a sensitivity of 88.8% and specificity of 42.5% (Table 2).

To determine the impact of pathology and age, separate analyses were performed. A
sample of 144 models with the pathological specimens included but the under-28 individu-
als excluded was analysed and yielded a sensitivity of 81.8% with a specificity of 0% due
to the absence of any true negatives. Similarly, a sample of 151 models was analysed with
the under-28 clavicles included while excluding the pathological specimens, which yielded
a sensitivity of 82.8% and a specificity of 26.1% (Table 2).

3.1.2. Simulated Fragment Models

The comparisons for the sternal fragment type yielded a sensitivity of 65.4% and
a specificity of 52.6%. The acromial fragment type produced a sensitivity of 54% and a
specificity of 40%. The midshaft fragment type comparison produced a sensitivity value of
31.3% and specificity of 37.8% (Table 2).

3.2. ROC Analysis
3.2.1. Entire Clavicle Models

A ROC curve analysis of the data containing the match mesh-to-mesh values for the
total sample of 160 entire clavicles produced an AUC value of 0.94 with a standard error of
0.0131 and a p-value of <0.0001 (Figure 3a). The sensitivity was 87.6% and the specificity
was 90.9% (Table 2).
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The ROC analysis of the data containing the entire clavicles with the healed fractures
removed yielded an AUC value of 0.953 with a standard error of 0.0106 and a p-value of
<0.001. The sensitivity was 89.5% and the specificity was 90.1%.

A separate ROC analysis performed on the sample of entire clavicles with the models
belonging to individuals under the age of 28 removed produced an AUC of 0.940 with
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a standard error of 0.0131 and a p-value of <0.0001. The sensitivity was 87.6% and the
specificity was 90.98% (Table 2).

3.2.2. Simulated Fragment Models

ROC analysis performed on the results of the comparison of left sternal fragments
to right clavicles produced an AUC value of 0.895 with a standard error of 0.0150 and a
p-value of <0.001 (Figure 3b). The sensitivity was 83.8% and the specificity was 83.5%.

ROC analysis performed on the results of the comparison of left midshaft fragments
to right clavicles produced an AUC value of 0.848 with a standard error of 0.0162 and a
p-value of <0.001 (Figure 3c). The sensitivity was 81.3% and the specificity was 74.8%.

ROC analysis performed on the results of the comparison of left acromial fragments
to right clavicles produced an AUC value of 0.934 with a standard error of 0.0132 and a
p-value of <0.001. The sensitivity was 87.5% and the specificity of 87.9%.

Table 2. Results of all comparisons analysed in this study using both LCV and ROC statistical methods.

LCV ROC

Sensitivity Specificity Sensitivity Specificity

160 clavicles 88.8% 42.5% 87.6% 90.9%
151 clavicles

(Pathological specimens excluded) 82.8% 26.1% 89.5% 90.1%

144 clavicles
(Under age 28 excluded) 81.8% 0% 87.6% 90.98%

160 acromial fragments 54% 40% 87.6% 87.9%
160 midshaft fragments 31.3% 37.8% 81.3% 74.8%
160 sternal fragments 65.4% 52.6% 83.8% 83.5%

Figure 4a illustrates an example of a true match after aligning and comparing the two
models (left, mirrored-right) using a colour map. Blue indicates small differences in shape
while red indicates large differences. Figure 4b illustrates a mesh-to-mesh comparison of a
non-pair.
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4. Discussion
4.1. Comparisons with Other Studies and Methods

The human clavicle is one of the most variable bones in the skeleton in terms of
morphological, anatomical, and biomechanical characteristics and has been described
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as “non-conformist” [27,32,33]. Not only are the clavicles between different individuals
extremely diverse but studies have noted a high degree of bilateral asymmetry amongst
clavicles belonging to the same individual [27,34]. Clavicles have been extensively studied
for several reasons, the most notable being the high rate at which it survives in a good
degree of preservation due to the high proportion of compact bone as well as the utility of
the medial epiphysis in terms of estimating age at death extending into the third decade of
life [27,35,36]. For these reasons, the clavicle was selected to be the focus of this study.

One of the primary aims of this work was to determine the degree of success that can
be expected when applying the automated version of mesh-to-mesh value comparison to
pair-matching clavicles. The only studies published, to date, on this method (Table 3) are on
humeri [19], temporal bones [20], mandibular fossae and condyles [26], and phalanges [21].

Table 3. LCV results of this study compared to previous MVC publications by Karell et al. (2016,
2017) and Acuff et al. (2021).

Sample Author Sensitivity Specificity

45 mixed ancestry humeri
(24 individuals) Karell et al., 2016 95% 60%

120 Modern Greek temporals
(60 individuals) Karell et al., 2017 98% 100%

70 Cretan mandibular condyles
(35 individuals) Acuff et al., 2021 88.58% 0%

69 Cretan mandibular fossae
(35 individuals) Acuff et al., 2021 91.17% 100%

160 Modern Turkish clavicles
(80 individuals) This study 88.8% 42.5%

160 acromial fragments
(80 individuals) This study 54% 40%

160 midshaft fragments
(80 individuals) This study 31.3% 37.3%

160 sternal fragments
(80 individuals) This study 65.4% 52.6%

When compared to the LCV results of the Karell et al. humeri and temporal studies,
the degree of accuracy found in this study is notably lower [19,20] (Table 3). The rate of
sensitivity for the automated version of MVC when applied to the sample of 45 humeri is
95% while the resulting sensitivity in this study is 88.8% when analysed with the lowest
value comparison (LCV) method. This discrepancy is not wholly unexpected as the clavicle
is a much more irregular bone than the humerus and is known for expressing a marked
degree of bilateral asymmetry [25,27]. The results are still positive and continue to place
the automated mesh-to-mesh value comparison among the more accurate methods for
pair-matching.

The 2021 study applying MVC to mandibular condyles and fossae experienced similar
results to this study when using LCV analysis, yielding a sensitivity of 88.58% for condyles
and 91.17% for fossae. These results are very close to those yielded in the comparisons of
160 clavicles in this study which may suggest that mandibular epiphyses and clavicles both
perform similarly in MVC comparisons.

A previous study exploring pair-matching phalanges using the MVC method yielded
the most promising and thorough ROC analysis results [21]. In that study, the best pair-
matching bone was found to be the proximal phalanx of digit 3 and they found a sensitivity
of 87.5% and specificity of 92.4%. This is similar to the 87.6% sensitivity and 90.9% speci-
ficity yielded by comparing the entire clavicles in this study.
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4.2. Analysis Method: LCV vs. ROC

A third primary intention of this study was to explore the differences between the two
types of analysis, LCV and ROC, and to determine which performs better when applied to
MVC results.

The first type of analysis considered, lowest common value comparison (LCV), has
many benefits. The underlying concept is that the lowest match of both the left and right
sided models must agree or else it is not determined to be a match. This is especially
useful in situations where it is important not to falsely match elements. Additionally, LCV
comparison is performed using Microsoft Excel making it a very accessible process as
there are no highly specialised software packages which require advanced training or high
purchase costs to complete the analysis.

The benefits of the ROC curve analysis are likewise numerous. With the creation
of a ROC curve, various types of insight into the data are gained. The additional option
to create an interactive dot diagram is extremely useful in certain situations. With the
interactive dot diagram, it is possible to choose whether sensitivity or specificity is more
important and adjust the threshold in order to determine which values fall below a certain
sensitivity-specificity percentage. One situation in which calculating a ROC threshold
would be useful is when it is possible to carry out DNA analysis following the MVC
process. For example, a mesh-to-mesh value comparison could be undertaken utilizing an
interactive ROC dot diagram with 100% sensitivity selected which would mean that the
overall number of potential matches would be reduced to those that performed well in the
MVC process but with 100% sensitivity, no potential matches would be missed. It would
then be simple to perform a DNA analysis on all bones that fall under the line determined
by the diagram and then use the results from that analysis to determine the actual true
match. This would reduce both the monetary expense as well as the waiting time inherent
in the process of carrying out DNA analysis by reducing the original number of elements
sent for analysis. This approach would greatly expedite the process as it takes significantly
less time to perform an MVC match test than to analyse the DNA of every element in a
given assemblage in the pursuit of individualisation.

In addition to the previous benefits, the ROC curve analysis automatically utilises
bootstrapping which results in a greater sample size, making accuracy results more re-
liable [29].Last, the ROC analysis is much less time consuming for the researcher than
completing an LCV analysis and is something that could even be put into practice in the
field or in situations where spending hours on the computer is not ideal or possible.

The ideal method for analysing results produced using the automated MVC method
cannot be determined without consideration of the type of sample, situation, and expected
result of study. In this study, both LCV and ROC performed similar in regard to sen-
sitivity for the entire clavicle models while ROC performed significantly better for the
fragment comparisons.

4.3. The Effect of Age and Pathology

In addition to the inherent morphology of the clavicle and the effect this may have on
the overall success rate of MVC, there are other factors that may have affected the accuracy
results in this study. One of these factors is the inclusion of clavicles exhibiting evidence
of healed fractures in the sample. In an attempt to determine what effect the presence of
these nine healed fractured clavicles may have on the overall study, a separate sample
excluding pathological bones was prepared and analysed. The LCV analysis yielded results
in which the sample without the fractured clavicles was slightly less sensitive while the
ROC analysis produced the opposite results. However, both methods produced similar
sensitivity and it can be argued that the difference in accuracy is negligible and thus the
presence of healed fractures in the sample was not a major hinderance or a factor that seems
to have made a great impact on the overall performance of the MVC method. These results
are interesting as they imply that the presence of observable pathology is not something
that must be greatly considered when employing the automated version of MVC. Skeletal
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pathology is a factor that is a common issue for several osteological analysis methods.
While the analysis of the effect of pathology in this study was not a key aim and is in no
way a conclusive statement on the performance of MVC for pathological samples, these
results open an interesting new avenue of future research into the abilities of MVC.

The late-maturing nature of the clavicle is another factor worth consideration when
attempting to compare the results of pair-matching clavicles to other studies relying on
more typical long or other bones [19–21,26]. The sample used in this study included eight
individuals under the age of 28 years old. The medial epiphyseal scar can remain visible
late into the third decade [27,37]. It is also a commonly reported issue, especially amongst
observers with little experience in working with x-rays and CT scans, to miss the medial
epiphyseal flake or to be unable to observe the signs of the epiphyseal scar when creating a
3D model of a clavicle [35].

While the clavicle models belonging to these younger individuals were included in
the overall sample of 160 clavicles, separate ROC and LCV analyses were completed on a
sample with those models in question removed. The results show that when relying on the
LCV method of analysis, the inclusion of the clavicles belonging to younger individuals had
a positive effect on the results as the sensitivity was approximately 3% greater in the sample
where they were included. The results of the ROC analysis were almost identical amongst
both the samples indicating that the inclusion of the younger models has essentially no
impact when using ROC statistics for analysis. These results could indicate several potential
conclusions. It is possible that the errors made during the segmentation process when
attempting to observe the flakes or epiphyseal scars were minimal, that the individuals
discussed happen to have clavicles that are distinct, and thus pair-matching performs well
in their case or, most plausibly, that the sample is too small to have a marked effect on the
results. While it is interesting to consider that age is not a factor that negatively affects
the MVC process, it should be taken into consideration that a thorough exploration of this
concept would require a greater sample of younger individuals.

4.4. The Effect of Fragmentation

The exploration of how the automated version of MVC handles the pair matching of
fragmentary or incomplete remains was another key aim of this study. Since the application
of MVC to incomplete remains has not been thoroughly explored by other researchers to
date, that aspect of this study was highly exploratory in nature. A recent study by Acuff
et al. applied the MVC method to isolated portions of bone using the mandibular condyles
and fossae as a sample [26]. The difference in this study is that the MVC comparisons
were made between clavicle fragments and their intact clavicle counterpart as opposed to
matching bone fragments to other fragments consisting of the same isolated portion of the
entire bone.

The most highly performing fragment type were the fragments which consisted of
the area near the lateral epiphysis which are referred to as the acromial fragments in this
study. The ROC analysis produced an overall sensitivity of 87.5% and specificity of 87.9%
(Table 4) which is only slightly lower than the results of the entire clavicle comparison. The
LCV analysis yielded significantly lower results, showing an overall sensitivity of 65.7%
and specificity of 40%. These results indicate that the MVC method may have the potential
to match fragmentary remains and suggests that future explorations of matching fragments
would benefit from focusing on the ROC analysis as it performed significantly better than
the LCV. Considering that the fragments are being compared to entire clavicles as opposed
to other fragment types, the success is expected to be lower as there is a large portion of
the bone which is absent and thus cannot be compared. The potential logic underlying the
improved performance of the acromial fragments when compared to the other two types
of fragments can be related back to the morphology of the clavicle. Studies have often
found this lateral retrocurved section to be one of the most variable regions of the clavicle,
making it much more diverse in shape than the midshaft or medial epiphyseal (sternal)
sections [25].
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Table 4. Summary table of MVC fragment comparison results.

Fragment Type LCV Sensitivity LCV Specificity ROC
Sensitivity ROC Specificity

Sternal 55.4% 56.5% 83.8% 83.5%
Midshaft 40.5% 37.8% 81.3% 74.8%
Acromial 65.7% 40% 87.5% 87.9%

Entire clavicles 88.8% 42.5% 87.6% 91.1%

The second-best performing fragment type was the medial epiphysis area which, in
this study, was referred to as the sternal fragment type. The sternal fragments produced an
average LCV sensitivity of 55.4%, specificity of 56.5%, and a ROC sensitivity of 83.8% and
specificity 83.5% (Table 4). These results are still positive as even the lower performing LCV
method yielded a percentage greater than 50% while the ROC results are more promising.

By far the worst performing fragment type was the ones that are made up on the
central aspect of the clavicle and referred to as the midshaft fragments. The resulting ROC
analysis yielded a sensitivity of 81.3% and specificity of 74.8% while the LCV yielded a
sensitivity of 40.5% and specificity of 37.8%. While the ROC results are still positive, the
LCV comparison results are extremely low and less significant than random chance when
it comes to determining a true match. The possible logic behind the poor performance of
the midshaft fragments is the fact that there is very little variation in shape amongst this
area of clavicles. Unlike either epiphyseal area, there are also few notable bony landmarks
which aid in the creation of a diverse or unique shape.

5. Conclusions

Pair-matching skeletal elements with the goal of re-associating remains to individu-
alise skeletons is one of the most useful approaches to the study of commingled or isolated
contexts involving human osteological material. While traditional methodology can be
complex and varies greatly between situations, the pre-existing techniques have been
proven to be lacking and are often difficult to reproduce between observers or highly
dependent on the subjectivity of the researcher. Innovative new methods have investigated
the incorporation of machine learning algorithms, computer software, three-dimensional
modelling, and increasing utilisation of statistical formulae to combat the issues faced by
pre-existing techniques [16–19,38]. The continual improvement in methodology available
for the approach to sorting commingled assemblages is vital as multiple individual contexts
are increasingly encountered by both osteoarchaeologists and forensic anthropologists.
Thus, the expectation of the degree of accuracy and support for any conclusions made by
research carried out in the field of osteological analysis as a whole continues to increase [6].

It is commonly acknowledged that the degree of accuracy involved in creating a
biological profile of an individual skeleton tends to be greater when techniques that are
either population-specific or shown to be unaffected by ancestral background are employed,
making the population-specific validation of methods for analysis exceedingly critical.
Through the course of this study, the MVC method for pair matching skeletal elements was
analysed and attempts were made to validate its application to a contemporary Turkish
sample of 160 three-dimensional clavicle models originating from computed tomography
(CT) scans of 80 individuals of mixed age and sex. The overall results did not negate
any of the claims made in the original publication and provide further evidence that the
MVC process is a promising technique to employ when confronted with large- or small-
scale commingled assemblages [19]. Fragmentary remains are often a roadblock when
attempting to employ any method of analysis and this study hoped to determine whether
that is indeed also the case for MVC. Results were mixed but promising and further research
is necessary to determine the degree of accuracy that could be expected when attempting to
pair match fragmentary or incomplete remains. This study also provided further support
for the continued use of CT scan data as a stand-in for physical skeletal collections when
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necessary and the positive effect this can have on the validation of methods for specific
populations lacking in skeletal material available for research purposes.
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Simple Summary: Facial identification is an emerging field in forensic anthropology, largely due
to the rise in closed circuit television presence worldwide, yet there is little published research in
it. Our research group has conducted a series of studies testing the validity and reliability of the
facial identification practice of morphological analysis. In this paper, we summarize the results of our
studies and other latest advances in facial identification practice. In addition, we present a review of
relevant technical literature on the limiting factors imposed on facial identification by closed circuit
television, while making recommendations for practice and the future of this research niche based on
a combination of our results and the technical know-how available. Facial identification research
is a multidisciplinary task, with involvement from the field of anatomy, forensic anthropology,
photography, image science, and psychology, among others. The value of this brief review is the
bridging of these multiple disciplines to discuss the relevant needs and requirements of facial
identification in forensic practice and future research.

Abstract: Global escalation of crime has necessitated the use of digital imagery to aid the identification
of perpetrators. Forensic facial comparison (FFC) is increasingly employed, often relying on poor-
quality images. In the absence of standardized criteria, especially in terms of video recordings,
verification of the methodology is needed. This paper addresses aspects of FFC, discussing relevant
terminology, investigating the validity and reliability of the FISWG morphological feature list using a
new South African database, and advising on standards for CCTV equipment. Suboptimal conditions,
including poor resolution, unfavorable angle of incidence, color, and lighting, affected the accuracy of
FFC. Morphological analysis of photographs, standard CCTV, and eye-level CCTV showed improved
performance in a strict iteration analysis, but not when using analogue CCTV images. Therefore,
both strict and lenient iterations should be conducted, but FFC must be abandoned when a strict
iteration performs worse than a lenient one. This threshold ought to be applied to the specific CCTV
equipment to determine its utility. Chance-corrected accuracy was the most representative measure
of accuracy, as opposed to the commonly used hit rate. While the use of automated systems is
increasing, trained human observer-based morphological analysis, using the FISWG feature list and
an Analysis, Comparison, Evaluation, and Verification (ACE-V) approach, should be the primary
method of facial comparison.

Keywords: human identification; facial identification; CCTV; photography; forensic facial compari-
son; morphological analysis; FISWG; face mapping; disguises

1. Introduction

Cameras and photographic imagery have been used in surveillance, identification,
and detection of criminals as early as the 19th century [1]. Anthropological standards have
been used to depict portraits of regular criminals for law enforcement registries, similar
to today’s mugshot system. These registries were intended as a means for witnesses and
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victims to conduct a facial review of potential suspects. However, the lack of standardiza-
tion in image capture processes made these registries ineffective. The advent of judicial
photography, in the late 19th century, incorporated anthropometry and relied on stan-
dardized conditions of image capture, featuring the well-known anterior and lateral facial
views with neutral expression and stance [1,2] routinely used to this day by many police
departments throughout the world. The facial anthropometry application was abandoned
in favor of the more accepted fingerprint identification system [3], yet the facial image
capture standards it relied on endured in facial depiction practices throughout the 20th
century [1].

Depicting faces [1], facial anthropometry [2], and facilitating crime scene investiga-
tions [4,5] have relied on the use of photography in a forensic context almost since its
development [1]. Probably the most recognized use of photography in a forensic setting,
and its derivative in the form of video recording, is surveillance. Closed-circuit television
(CCTV) was the natural progression of improved use of video technology that allowed for
consistent monitoring and review of potential criminal activities [6]. CCTV surveillance
systems have since the 1990s become increasingly more common and relied upon through-
out the world [7–10] and are in fact considered by many communities the norm in public
areas [11,12].

Deployment of CCTV surveillance is considered to act as a deterrent for local crime
in monitored areas [8,13,14], often shifting criminal incidents to nearby unmonitored
areas instead of completely eliminating them [10]. However, perhaps its most valuable
contribution is its frequent use in criminal investigations [8,15]. An analysis of CCTV
data in the United Kingdom showed that when CCTV data are available, criminal activity
is substantially more likely to be resolved [15]. When the data were not of use, it was
primarily due to its lack of availability or some fixed parameter of the surveillance system
being suboptimal, such as the incident not being covered by CCTV, the system being
faulty, or the images being of insufficient quality [15]. The criteria of usefulness of CCTV
recordings vary greatly based on the intended use.

Other than general surveillance and criminal activity monitoring, facial examination
is often of interest for the data extracted from many CCTV surveillance systems. This has
become more evident as the deployment of CCTV systems and increases in crime have
led to an increase in demand for facial identification [16–18]. This rise in demand is a
direct outcome of the increased availability of image data, from both CCTV data [7,16] and
photographic and video evidence from other sources, such as mobile phones [19].

Forensic facial identification falls under the discipline of facial imaging, which in-
volves the use of visual facial data to assist the identification process [20]. Through the
analysis of photographic or video evidence, forensic facial identification is routinely uti-
lized to associate persons of interest to criminal activity [17]. Craniofacial identification
involves multiple disciplines, such as facial approximation, facial composites and sketches,
age progression and regression, photographic superimposition, molecular photofitting,
facial depiction, and facial comparison [20]. Some of these techniques, such as facial ap-
proximation and facial composites and sketches, have been researched in some depth [20].
However, forensic facial comparison (FFC) for identification remains largely untested,
despite its increasing demand [17,21].

Understanding that forensic facial comparison is a niche of research that needs further
development requires the use of clear terminology. A colloquial confusion in terminology
between facial identification and recognition is prominent throughout many discussions.
This misnomer has been discussed by Schüler and Obertová [22], who clarified that identi-
fication is reliant on perfect agreement, which is different from recognition, understood as
the innate psychological process humans employ at a glance to recognize a face, usually
based on familiarity. Therefore, to attempt facial identification from a forensic anthropologi-
cal perspective, a strict process of facial comparison is employed. Due to the innate process
of recognition in any forensic facial comparison process, the distinction needs to be made
clear. Recognition is employed generally as part of the investigative process of facial com-
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parison and is holistic, rapid, and methodologically inconsistent with a high predisposition
to error [23,24]. Identification, however, requires further systematic analysis involving
standardized, detailed, comprehensive, and meticulously recorded methodology [22]. As
such, forensic facial comparison must involve the human-based detailed examination of
facial images for identity confirmation [25–27].

Another prominent misconception in facial identification (ID) involves the misuse of
the term “facial recognition” to specifically refer to automated or semi-automated facial
recognition systems, with this being fully adopted by many in the field of automated
facial recognition (e.g., [28,29]). To avoid this miscommunication, certain studies refer
to automated facial recognition as facial recognition technology (FRT) or systems [30];
however, this practice is not universally applied.

The misnomer of FRT and facial ID is often closely associated to the misconception
of FRT being considered the ideal approach to facial ID. FRT systems apply a variety of
computer-based methods to attempt confirmation of facial identity [29,31] and have proven
high levels of accuracy in constrained circumstances [28,29]. While great advances have
been achieved in the field of FRT [28,32], it remains associated with high false positive
rates [32,33], strong racial biases [34], and other ethical concerns around privacy and
consent that require resolution prior to the employment of FRT in a legal context. Most
concerns revolve around the reliance of FRT systems on biometric information [35] and
highly standardized images [36–38], which are often not available in the realistic unstan-
dardized organization of most surveillance installations. As a result, while there are strong
commercial and government incentives to deploy FRT systems, in part due to their large
market share (USD 3.72 billion) [39], they are still reliant on human-based validation in
their operating loops [40]. The need for human validation is further enhanced by the lack
of varied databases used to develop and test these FRT systems [41]. Hence, until further
varied and realistic databases are used to test and develop these FRTs, human observer-
based facial image comparison is considered the preferred approach to facial ID [25,42–44]
and will likely persist as the validation method of choice despite the improvement and
widespread deployment of FRT systems.

Understanding the limitations and permissible applications of FRTs is crucial to
conducting research in both FFC and FRT. The misconceptions and assumptions around
FRT and FFC may pose a risk of driving researchers and funders away from conducting
research in facial identification. This is primarily because most funders and new researchers
would consider facial identification, and particularly FFC, as redundant in an era where
FRT has become the norm. Despite these misconceptions, human-based facial identification
methods, which are currently employed routinely in the judicial system, rely on forensic
facial comparison [17,42].

Facial examination, also referred to as forensic facial comparison (FFC), must be ap-
plied using the Analysis, Comparison, Evaluation, and Verification (ACE-V) approach [27],
commonly used in other forensic practices, such as fingerprint identification [45]. The
ACE-V methodological approach is meant to integrate principles of the scientific method
in forensic comparisons in order to enhance their implementation and reliability [45].

In the past, approaches to FFC included photo-anthropometry, facial superimposition,
and morphological analysis (MA) [20,27], with morphological analysis being the currently
accepted method as advised by both the Facial Identification Scientific Working Group
(FISWG) (https://fiswg.org/index.htm accessed on 30 October 2021) and the European
Network of Forensic Science Institutes (ENFSI) (https://enfsi.eu/ accessed on 30 October
2021) [27,46]. Application of MA relies on the detailed examination of specific facial
features to reach a conclusion with regard to the similarity or dissimilarity of two or more
faces [27]. The facial features are assessed subjectively, evaluated, and compared between
the faces [27]. The selection of individual facial features often depends on the feature
list utilized. Feature lists generally include both overall face composition and structure,
individual anatomical feature components (e.g., hairline shape, ear helix morphology, nasal
alae protrusion, etc.), and distinguishing characteristics such as scars, blemishes, piercings,
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and tattoos (e.g., [47]). The current standard feature list used for facial comparison relies
on criteria developed by the FISWG for facial comparison by MA [47]. An example of how
this analysis is conducted is shown in Figure 1, using sample facial images from the Wits
Face Database [41].
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Figure 1. Example of a forensic facial comparison analysis process between a wildtype (WT) photograph and a standardized
(ST) photograph from the Wits Face Database [41] sample images in the SAPS court chart format. The individual facial
features are numbered, analyzed, compared, and evaluated between the two images using the FISWG feature list [47].
Features marked in blue indicate morphological similarity between the two images, while features marked in red indicate
morphological dissimilarity. In the example provided, skin color appears different due to lighting discrepancies in the
two images (red 1); however, skin texture appears similar (blue 1). The facial images used for Figure 1 are images of
the corresponding author of the present manuscript and are part of the sample images of the Wits Face Database [41],
reproducible under an open access license distributed under the terms of the Creative Commons Attribution License. This
license permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The images can be found in the Wits Face Database data note, including the supplementary material for the Wits Face
Database [41].

Recently, our research group (https://www.wits.ac.za/anatomicalsciences/hviru/
accessed on 30 October 2021) has conducted a series of validation studies to test the
validity and reliability of FFC using the FISWG list (https://fiswg.org/index.htm accessed
on 30 October 2021) of morphological features [21,41,48,49]. The aim of this paper is to
summarize the results of these findings, thus elucidating the reliability and potential uses
of FFC. Potential areas of caution and observed shortcomings are also discussed. Finally,
recommendations as to the minimum standards for CCTV equipment are given, as well as
guidelines for future directions in research.
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2. Development of an African Facial Image Database

Although various facial databases exist (e.g., [50–61]), none of these were suitable for
the systematic and blind testing envisaged for the purposes of the current stream of research
on FFC validation. Some of these databases have small numbers of faces (e.g., [62,63])
or contain low-resolution images (e.g., [51,64]). As these databases were developed with
different purposes in mind [65], and, with the exception of one [55], do not contain African
faces, a new database was needed. A database containing African faces would also be
invaluable in future research on the African continent.

Such a database was developed for the purposes of these studies, but due to the
magnitude of such an undertaking, currently only males are included. This new Wits
Face Database includes a total of 622 unique African male individuals aged between 18
and 35 at the time of recording, each with 10 photos associated to them, in five different
views (anterior, left and right lateral, and left and right 45◦) [41]. The 10 photographs
were captured with high-resolution midrange cameras across two different conditions: a
controlled setting with uniform background and obscured clothing at a subject-to-camera
distance (SCD) of 1.5 m and an uncontrolled setting with a mixed background and visible
clothing at an SCD of 5 m. This brought the total to 6220 facial photographs [41]. Out
of the 622 participants, 337 (54.2%) were also recorded under different CCTV recording
conditions [41]. The first group, recorded under a standard digital IP CCTV installation
at approximately 3 m height, included 89 individuals; the second group, recorded at an
eye-level digital IP installation (1.7 m installation height), included 76 participants; the
third group included 107 participants, recorded by an older analogue CCTV installation
(2.5 m height); and the last group, recorded by the same digital IP CCTV camera as the
first group, included 34 and 31 participants wearing caps and sunglasses, respectively [41].
Throughout the CCTV data, large amounts of data loss were experienced, particularly with
the internet protocol (IP) CCTV cameras, due to corruption, compression, and intermittent
connectivity (Table 1).

Table 1. Composition of the Wits Face Database [41] CCTV data and detailed data loss experienced during database
development as a result of the CCTV systems’ technical limitations.

Database Cohort Organization Unique
Individuals Photographs Corresponding

CCTV 1 Recordings Data Loss (%)

ST 2 CCTV 1—ST 2 Photographs 98 980 89 9.2%
Eye-level CCTV 1—ST 2 Photographs 108 1080 76 29.6%

ST 2 CCTV 1 with Cap—ST 2 Photographs 45 450 34 24.4%
ST 2 CCTV 1 with Cap—ST 2 Photographs 41 410 31 24.4%

Total IP 3 CCTV 1 Data 292 2920 230 21.2%
Analogue CCTV 1—ST 2 Photographs 111 1110 107 3.6%

CCTV 1 Grand Totals 403 4030 337 16.4%
1 CCTV = closed-circuit television; 2 ST = standard; 3 IP = internet protocol.

While the inclusion of males only is a good step towards expanding the diversity in
populations included in face databases, the non-existence of a female database remains a
notable limitation to be aware of. In principle, the FISWG feature list should be generic
enough to make it applicable across sex and population groups, but facial variations may
potentially lead to variations in accuracies and reliability based on the biases and abilities
of the observers. The existence of a within-group face recognition advantage (previously
called own- or cross-race bias) has been well described and may play a role in the reported
accuracies of FFC [66–71]. It is, therefore, essential that future databases include faces
that are representative of all major populations. The newly developed database is now
the largest African database of CCTV recordings and matching high-resolution facial
photographs. It is available for all bona fide research that meets the criteria as set out
by the Human Research Ethics Committee (HREC) (Medical) of the University of the
Witwatersrand [41,72].
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3. Outcomes of Validation Studies

Various standards exist worldwide as to how to express the levels of confidence when
it comes to possible matches. In Australia, for example, facial comparison experts are
expected to present evidence strictly in descriptive terms, which can lead to suggestive
language, based on the expert’s prejudice and opinion [26]. In England and Wales, FFC
experts report on comparisons based on the Bromby scale of support [73], where the scales
of support force experts to conclude whether two compared faces are a match regardless
of image conditions or quality [26]. The Bromby scale is also inherently arbitrary with no
clear distinction between each step of the scale. To alleviate these uncertainties, experts
from the South African Police Services (SAPS) make use of a five-point scale that reflects
the ability of an expert to analyze a given set of images, as well as the confidence level of
a specific conclusion [17]. For application and testing, this scale was slightly adjusted to
allow statistical testing to reflect an order of severity of conclusion. Namely, a score of 1 was
assigned to confident positive identifications, a score of 2 to inconclusive identifications
that showed some level of morphological similarity on certain specific facial features, a
score of 3 that represented an inconclusive identification with overall holistic similarity of
two faces compared, a score of 4 as a negative identification, and a score of 5 indicating
impossible to analyze due to insufficient visibility of landmarks [21]. A visual overview of
these outcomes is shown in Figure 2.

Morphological analysis on data derived from the newly developed Wits Face
Database [41,72] using the FISWG feature list [47] was found highly accurate and reliable
when comparing optimal standardized photographs to wildtype (informal) unstandardized
photographs [21]. In an analysis of 75 sets of faces (each containing nine no match com-
parisons and one positive match comparison or 10 no match comparisons—compared to a
target image, total n = 750 comparisons), the chance corrected accuracy and reliability were
found to be almost perfect in optimal photographs (99.1% and 92.1%, respectively) [21]. In
the analysis of 100 face sets (n = 1000 comparisons) with standard digital CCTV record-
ings as the target image, a lower accuracy (82.6%) and reliability (74.3%) were noted [21]
(Figure 2). The lower performance of MA in standard CCTV was ascribed to the variation
of conditions of the different equipment and its installation. Specifically, images obtained
from the standard CCTV system were of poorer quality than the high-resolution controlled
and wildtype photographs, due to a number of reasons. Firstly, the image resolution of the
standard digital CCTV camera was lower (4MP) than that of the photographic cameras
(18MP) [21]. Secondly, the CCTV field of view was broader and less focused on the face,
partly due to the SCD being approximately 3 m. As such, a larger area was captured at
a lower resolution, effectively reducing the actual resolution of the recorded faces [21].
Thirdly, between the CCTV camera and the captured face, an angle of incidence of 27◦

was formed, which appeared to limit visibility of the face, potentially shifting relative
proportions of facial features [21]. The change in perspective and the limitations it placed
on the facial comparison process likely contributed to the lower accuracy and reliability
seen in the standard CCTV conditions [21].

Image lighting was also markedly different between photographs and CCTV record-
ings, making facial characteristics reliant on color (i.e., skin tone, luminescence, and color)
redundant, since they appeared different even between matching images [21]. Variations in
lighting also contributed to over-exposure of certain features, effectively limiting their util-
ity in facial comparison [21]. Beyond these discrepancies and concerns, the almost perfect
accuracies and the low false positive rates identified (<1.6%) (Figure 2) are encouraging
for the use of MA in a legal context from both optimal photographs and standard CCTV
installations [21].
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Figure 2. Visual summary of the validation studies testing morphological analysis across realistic photographic and CCTV
conditions [21,48,49] using sample photographs and CCTV stills from the Wits Face Database [41]. Images (A) to (F) are
samples of the target images from each set of conditions analyzed that were compared to the central image arising from the
standardized photographs captured for each participant. All major statistical results and the details of the conditions of
each comparison cohort are presented. Representative images of each condition are arranged from A to F in a clockwise
order according to descending chance-corrected accuracy. The conditions of analysis were as follows: wildtype informal
photographs (A) of similar quality to the standardized photographs; eye level digital CCTV still images (B); standard digital
CCTV still images (D) with sunglasses (C) and with brimmed caps (E); and monochrome analogue CCTV still images (F).
Key: CCA = chance corrected accuracy; FPR = false positive rate; FNR = false negative rate; OA = observer agreement; RES
= resolution; SCD = subject-to-camera distance; AOI = angle of incidence; N = number of comparisons. The facial images
used for Figure 2 are images of the corresponding author of the present manuscript and are part of the sample images of the
Wits Face Database [41], reproducible under an open access license distributed under the terms of the Creative Commons
Attribution License. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited. The images can be found in the Wits Face Database data note, including the supplementary
material for the Wits Face Database [41].

Following on the first set of analyses under fairly optimal conditions, a second set
of tests was done on 130 face sets (n = 1300 comparisons), arranged as described above,
recorded on a low-resolution suboptimal analogue CCTV system. The results were found
to be much poorer, with accuracies as low as 33.1% with extremely high false negative
rates (75.2%) and questionable reliability (37.8%) [48] (Figure 2). The contributing factors
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to this decrease in accuracy were a pronounced angle of incidence (22◦), lack of color,
and particularly the low-resolution images [48]. However, determining which of these
specific factors contributed the most to the low accuracy is not possible by study design,
but the decreased quality of the images seems to be the most problematic factor [48].
The contribution of lacking color, however, is questionable, as facial examiners in certain
countries conduct their comparisons in greyscale with the consideration that color can be
considered misleading. This effect of color was also observed in a previous study, where
attempting to match skin color between images proved futile due to lightning discrepancies
between images [21]. Irrespective of the specific contribution, the combination of these
factors was highly disruptive to the facial comparison analysis—even more so than the
inclusion of disguises [49].

The above suboptimal comparisons were contrasted to 95 face sets (n = 950 compar-
isons) recorded at eye-level with a digital IP CCTV camera. As can be expected, eye-level
digital CCTV images were found to yield better results than the standard CCTV installa-
tion [21,48]. An effective 0◦ angle of incidence and a much smaller SCD of 0.8 m seem to
have simulated the most ideal CCTV conditions for facial comparison [48]. In fact, eye-level
digital CCTV recording-based facial comparisons were almost as accurate (97.3%) and
reliable (77.3%) as the standardized photograph to unstandardized photograph compar-
isons [21,48] (Figure 2). This outcome is telling of the factors that may have played the
biggest role being angle of incidence and SCD, since the standard CCTV and the eye-level
CCTV were identical cameras installed at different conditions [21,48]. However, to assess
the extent of the influence these factors had on facial comparison, further targeted testing
of these individual factors is required.

During the analysis of the data from the facial comparisons, two iterations were
conducted—the strict and the lenient iterations. Under a strict iteration, only a confident
positive identification was taken as a match, while under the lenient iteration, even
inconclusive analyses with some morphological similarity in facial features were con-
sidered as matches along with the positive identification [17,21]. When reviewing the
performance of MA in the analogue CCTV data, it was noted that a significantly altered
performance resulted under different levels of analysis strictness. A strict iteration
resulted in a worse performance in the analogue CCTV comparisons than across all other
comparisons (photographs, standard CCTV, and eye-level CCTV) [48]. All other analyses
from the various CCTV and photographic images showed improved performance under
a strict iteration [21,48,49]. This outcome advocates that under particularly suboptimal
conditions, such as analogue CCTV, even a strict approach to the analysis is ineffective in
improving performance. However, the decreased accuracy under a strict iteration may
be worth considering as a marker of suboptimal conditions. Effectively, when a strict iter-
ation results in lower performance of MA in a particular dataset than a lenient iteration,
that dataset should be viewed as being below a usable threshold for facial comparison.
As such, recordings that perform worse in a strict iteration, particularly in cases where
target exclusion is not possible, should be avoided for positive identification. Effectively,
when testing the performance of MA in a given dataset extracted from a specific CCTV
installation, both a strict and lenient iteration should be conducted. Should the strict
iteration perform worse than the lenient iteration, then the specific CCTV installation
that yielded that footage should be considered below a usable threshold for the purpose
of FFC. This consideration of statistical analyses is included in our recommendations on
how to conduct MA.

Across all of our studies, the best measure of accuracy was found to be the chance
corrected accuracy (CCA) [21,48,49]. CCA was calculated by conducting a weighted
Cohen’s kappa (with squared weighting) on the assigned scores for each comparison
contrasted to the actual true match-up information for each comparison trial. This is
different to the normal hit rate or raw accuracy, which simply indicates the amount of
correctly scored trials irrespective of the degree of error or the sample composition. This
is also different to the balanced accuracy that is calculated when computing a confusion
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matrix analysis, which is effectively the sum of the sensitivity and specificity divided
by two [74]. In the studies’ results, CCA varied the most and was seen as the most
representative measure of accuracy, particularly when compared to the simple hit rate and
balanced accuracy. These two accuracies presented skewed results towards true negatives
due to the studies being conducted under a one-to-many comparisons context, an approach
to facial analysis also seen as the harshest testing criteria for automated facial recognition
systems [75,76]. As a result, the non-chance corrected accuracies appeared deceptively
higher due to the high prevalence of true negative matches, despite other measures of
performance indicating a more questionable outcome. With this consideration, future
FFC studies should consider making use of CCA as their primary measure of accuracy as
opposed to hit rate, historically the most common measure of accuracy.

Beyond the optimization of surveillance system installations specifically for facial
comparison, an additional limiting factor investigated in these studies were the effects
of disguises on facial comparison. We specifically investigated the effect of sunglasses
(n = 390) and brimmed caps (n = 420) on FFC performance [49] (Figure 2). Overall, the
performance of MA in faces disguised with sunglasses was markedly high (90.4%) [49],
in fact surpassing the performance of facial comparison under the same standard CCTV
conditions without sunglasses (82.6%), but not better than the photographic (99.1%) [21] or
eye-level CCTV data (97.3%) [48] (Figure 2). This unusual consequence of sunglasses on
facial comparison has also been observed by Davis and Valentine, who tested live subject
to image identification [77]. These authors [77] suggested that the instruction that was
given to participants conducting face matching tasks to rely on the external facial features
with subjects disguised by sunglasses apparently increased their ability to recognize a face
disguised by sunglasses. External facial features are in fact considered the most reliable
set of features in unfamiliar face matching, as corroborated by other studies [78,79]. In
FFC, conducted using the FISWG feature list, a methodical approach with a focus on
all facial features including the external ones was followed. As a result, this methodical
approach may have indirectly contributed to avoiding the limitation that sunglasses would
normally pose on this comparison cohort. In contrast, faces disguised by brimmed caps
yielded an exceedingly low CCA (68.1%) [49], yet not nearly as low as the analogue CCTV
comparisons (33.1%) [48] (Figure 2). The limitations posed by brimmed caps appeared to
have been compounded by the large angle of incidence of the standard CCTV recordings
as well as the strong natural lighting from the sun. These two conditions, in conjunction
with the brimmed caps, created shadows over the face, obscuring an even greater number
of facial features, resulting in large-scale information loss [49]. This effectively rendered
comparison much more difficult, as less than the lower half of the face and the ears could
be evaluated [49].

Eyeglasses and various types of hats have historically been viewed as the most in-
conspicuous and common disguises [25,80,81]. Although the specific effects of various
disguises have been discussed broadly, only one study has attempted applying MA to a
disguised sample [49]. Despite their lack of testing in MA, in face matching recognition,
brimmed caps were found to increase error rates over other comparison tasks [81]. Brimless
caps and glasses, on the other hand, appear to have a less pronounced effect on match
accuracy, varying by the method employed [82,83].

The success of MA in disguised faces was credited in large part to the FISWG feature
list [47]. The use of even rudimentary feature instructions or even partial feature lists
is able to increase the performance of facial comparison analyses [84–86], with a more
pronounced effect noted for trained experts [84]. Our results from the disguised test of
MA [49] reinforce these outcomes of other studies, further supporting the use of feature
lists in MA.
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4. Discussion

This paper summarized the outcomes of our recent studies testing MA and the FISWG
feature list across varied conditions of facial CCTV images and photographs. In addition,
it presented and discussed the major limitations of FFC. MA of faces, using a feature
list, is accurate and valid, particularly when conditions are optimal (e.g., high-resolution
photographs and high-resolution CCTV with limited perspective distortion/angle of in-
cidence). Image quality had the most notable effect on facial comparison performance
(analogue CCTV recordings), while brimmed caps were found to be the second-most limit-
ing condition. Across both of these conditions, the major limiting factor appeared to be
overall loss of facial feature information, with caps obscuring almost half of the face and the
poor quality of analogue video material making most of the facial details indistinguishable.

4.1. Influence of CCTV Installations

To determine the minimum criteria for facial examination across various CCTV instal-
lations, a more thorough understanding of the conditions imposed on footage by specific
installations is needed. This is of particular relevance with the continuing global increase
in the installation and usage of CCTV systems that has been seen across private, public,
and commercial sectors in the last two decades [7,46,87,88]. This increase can be attributed
to multiple factors; however, two major drivers include advancements in computing and
CCTV system production and a reduction in the associated costs [7]. The vast global
increase in CCTV deployment has led directly to an increase in available data for use in
potential criminal surveillance and related investigations.

While this global increase in CCTV data is beneficial to criminal investigation and facial
comparison, there is a concerning lack of standardization of required installation, recording
conditions, and image quality [20,82,89–92]. As a result, the usefulness of CCTV-derived
facial images is difficult to assess and makes facial comparison challenging in contrast
to controlled photographs and mugshots. These limitations along the CCTV imaging
chain are often acknowledged; however, few studies have assessed their implication in
facial comparison accuracies [21,48,82,92–94]. Successful facial identification assessment is
hindered by inconsistent recording conditions and poor image quality. Facial comparison
accuracy and data quality are, thus, directly correlated [95,96], especially in terms of
individual accuracy variation across multiple analysts [97] and individual analyst ability
overestimation [98].

CCTV camera placement is one of the major limitations in terms of recording con-
ditions. Most surveillance systems are put in place in order to monitor large crowds or
entry/access points and do not have FFC in mind. The placement of the camera is based on
the field of view that can be monitored and is then complemented by the mounted height
above ground. Camera height relative to subject distance gives the angle of incidence, and
this is an important, and often detrimental, component for extracting facial details from
recordings.

Typical surveillance camera mount heights are between 2.5 and 3 m on building
exteriors and ceiling height for indoor surveillance [99]. The main justification behind
these mounting heights is that it lowers the risk of cameras being vandalized, stolen, or
obstructed. The problem with these standardized mounting heights is that they translate to
a steep angle of incidence. This in turn reduces image quality and obscures relevant facial
detail as a result of the increased SCD and subsequent loss of useable resolution [48,49].
This is particularly important in facial comparison, as the amount of visible facial features
and the view in which the face is seen are crucial for successful identification [100]. People
also tend to naturally tilt their heads inferiorly by 15–20◦ when walking [100], thereby
further exacerbating this problem. The current recommended angle of incidence limit is
15◦, as any steeper angle would result in significant loss of facial detail [100]. Eye-level
mounted cameras at 1.8 m ground height provide an approximate 0–15◦ angle of incidence
with the subject and provide the most optimal capture of facial detail even with natural
head tilt [48]. Further individual variations in facial view, or pose, are additional factors
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that may further affect facial comparison, even at eye-level CCTV placement, particularly
under poor quality and capture conditions [48,101,102]. Our reports [48] show an overall
better and more reliable performance of MA in a digitally captured sample (IP cameras) at
eye-level height (1.7 m) compared with a suboptimal sample at an angle of incidence of 27◦

(mount height of 3.1 m) [48]. In contrast, our analogue CCTV data, captured at an angle of
incidence of 22◦ and height of 2.5 m, performed worse overall, although it is unclear if this
was because of camera position or poor image quality [48].

Camera placement, particularly in relation to positioned angle and mounted height,
dictates the monitoring area, while the camera lens, its focal length, as well as the sensor,
specifically its size and number of pixels, dictate the field of view, image quality, level of
optical distortion, and noise present [99]. The distance between the camera and a subject or
target will then affect the image composition, which directly affects target size on sensor
or picture height, and level of perspective distortion [92,103,104]. All of these factors and
components will affect the usefulness of an image for facial detection and subsequent
comparison analysis. Monitoring a large crowd outside a building, for example, requires
5% of picture height, while detecting a specific target requires 10% [99]. A potential target
must occupy more than 400% of screen height in order to conduct facial examination,
and a minimum of 1 mm must be represented per pixel of the whole image (ISO62676
recommendations) [99]. Considering the conservative European standards for facial image
comparison [105], a minimum of the top quarter of a subject must be included on screen
height and the face would need to represent a minimum of 1000 pixels per meter of screen
height [99]. As such, for each inch (2.5 cm) of a face represented in an image, a minimum of
25.4 pixels is required [99]. For this minimum pixel density to be maintained at set SCDs,
certain lens focal lengths need to be utilized. For example, at a 5 m distance from camera to
subject, a focal length of 4.2 mm is necessary on a 1

2 ” sensor HD CCTV camera [99], which is
considered a common IP camera type. The longer the focal length of the lens, the narrower
the field of view; simultaneously, the smaller the camera sensor, the smaller the viewing
angle and the higher the noise. Bigger sensors and higher pixel counts are, in theory, always
better for security and forensic applications, especially in low-light performance; however,
bigger optics are then also required, which increases camera size, weight, power, and most
importantly, cost.

Lighting conditions can pose further challenges in recording optimal footage. Facial
details may be lost to over- or under-exposure of a subject and may not be retrievable
through post-processing [99]. In outdoor locations, the position of the sun and related
shadows, the amount of ambient lighting based on time of day, or the combination of
multiple light sources or reflective materials near the subject or camera all could lead
to unbalanced exposure. This then ties to the sensitivity of the camera sensor and its
dynamic range capability. Most modern IP cameras are better suited to handling high-
contrast environments, but older analogue systems generally provide either over- or under-
exposed coverage with limited middle grounds [99]. Harsh and high-contrast lighting
conditions often create artificial boundaries on viewed objects, altering appearances and
reducing the accuracy of facial identification [99]. Over- and under-exposed footage
may render an analysis impossible, based on multiple facial features being completely
unrecognizable [21,106].

The capability of the camera is the primary factor in terms of low light or night-
time conditions. Without the addition of directed lighting or dedicated “night-vision”
cameras, CCTV systems must incorporate cameras that can record with infrared radiation
(IR) and convert to visible light [107,108]. The accuracy of FFC has not been tested
under IR conditions in our recent work and remains to be done in future studies. Most
modern analogue and IP cameras are able to switch between day/night recording
automatically and have IR LEDs built in to illuminate the target area. The range of the IR
is generally limited to 20 m for midrange cameras on the market. This IR source of light
could itself over-expose the subject dependent on SCD and other reflective materials
present [99]. In addition, the IR footage is recorded in monochrome, and therefore,
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includes the same limitations and challenges of traditional black and white CCTV footage
in facial comparison [93], although in the current work, color was found to not be of
much importance. Lens distortion effects and optical aberrations are more pronounced
in IR cameras because of the longer wavelengths of IR [108]. Lastly, IR recording
is subjected to image alterations and other artefacts based on converter quality and
functioning [108]. Experimentally, IR recordings are difficult to conduct with subjects,
as recording conditions need to be in low-to-zero light levels. There is a significant lack
of research on IR CCTV recording in the context of facial identification and testing, and
further validation of MA on a sample of IR surveillance data of comparable quality and
conditions to the standard CCTV camera should be conducted.

As discussed above, placement and recording conditions of CCTV systems are
crucial for reliable data capturing and use, especially in a forensic evidence context.
This is inclusive of its installation in terms of network, software, and hardware. Many
complications can arise as a result of these factors. Some examples experienced when
attempting to develop the Wits Face Database [41,72] included inconsistent IP network
connection and coverage, power outages, imminent weather problems, theft, and finally
data loss, corruption, and tampering. Analogue CCTV systems for the most part do
not provide remote video access and therefore require a physical storage and viewing
location, limiting flexibility. These systems by default record at lower resolutions and
require immediate local storage on a DVR device. This generally translates to a reduced
amount of data loss and corruption compared to digital systems. Digital video can be
recorded with varying rates of resolution, frame rate, and levels of compression [90]. The
linkage of digital IP cameras to the internet allows for transmission of recorded footage
for remote viewing, which requires high processing, storage, and data transmission
capabilities. Digital video is, thus, more prone to occasional partial or complete data
corruption or loss and is more perceptible to anti-forensic techniques, such as removing,
hiding, and corrupting or wiping evidence from recorded footage [109–112]. In light of
these threats, forensic readiness is needed in modern CCTV systems from both physical
and cyber-attacks.

Little data exist describing the types and quantity of data loss incurred in CCTV
systems globally and how this impacts surveillance and criminal investigations. Our
studies [41] found approximately 21.2% loss of IP CCTV data and approximately 3.6% loss
of analogue CCTV data during the establishment of the Wits Face Database (Table 1). CCTV
data loss was noted in both IP and analogue cameras; however, the majority of corrupt or
permanently lost data occurred with the digital IP camera systems. The CCTV systems
utilized were an existing network at the university with no local storage and immediate
transfer to a central server. During data transfer, any interruptions or fluctuations in local
area network traffic or connectivity would result in data loss or irreparable corruption [41].
Studies utilizing existing CCTV systems and recordings are subjected to these types of
data loss and corruption unless equipment is personally procured and installed. Data
capture delays and reduced sample sizes are a considerable limitation when developing or
expanding facial image databases.

The above discussed recommendations and primary limitations are generally not
adhered to or considered, as is reflected in the actual data handed over to or available to
law enforcement. Oftentimes, these data are of a subpar quality as a result of the numerous
limitations as well as outdated camera systems [82]. Even with this subpar quality data
and its limited utility, in a judiciary context, they may still successfully be implemented
and should not be excluded until thoroughly reviewed first [113]. Thorough consideration
of available evidence is in line with the ENFSI recommendations of triaging image data by
their quality to ascertain fruitful use of FFC and efficient caseload management [114].
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CCTV system installation and recording conditions are purpose driven and situation-
ally applicable. They differ vastly to one another in terms of functionality, reliability, and
environmental fit. System installation, hardware, and software need to be balanced in
order to achieve the best result in terms of cost. Most systems are notably still lacking in
applicability for facial comparison and are primarily disadvantaged not by installation and
recording conditions but by image quality [20,82,89,90,92].

The poorer the derived image, whether it be from a photograph or CCTV footage,
the lower the amount of extractable information. Image quality itself is a combination
of multiple factors and related artefacts, with some of the relevant ones being resolution,
pixelation, and noise. All of these are conditions that can vary notably across the various
types of CCTV systems.

Analogue CCTV systems generally have lower resolutions and higher noise (grain)
and often only record in monochrome. These cameras have been the global standard,
and only in the last five years have we seen a large shift to internet protocol (IP) cam-
eras [115,116]. The lower resolution leads to higher noise when attempting to enlarge the
captured image for analysis and produces low clarity images [99,113].

The lack of color in most analogue recordings has a large impact in subsequent
analysis, particularly in facial comparison [93]. Color plays an important role in face
detection and recognition in humans, even when image quality is poor [117,118]. CCTV
systems in general do not accurately capture color information from a scene [119] and
have been deemed mostly unreliable in a forensic context [91,120]. Subject illumination
as well as the color, orientation, and texture of objects are the primary variables dictating
the accuracy of captured color information in CCTV [91]. When conducting MA using
the FISWG facial feature list [47], color is the first component, and therefore, inaccurate
image color data may lead to a decreased accuracy in performance. While color was
easily disregarded in the majority of the analyses conducted in our studies, considering
its contribution and consistency across CCTV recordings and photographs may be
important for future studies.

More modern and commonly used internet protocol (IP) CCTV systems generally
record full color at much higher resolutions with lower noise, as a result of high-spatial
frequency blocking, overall leading to better extractable information for analysts [107].
Digital video is also a lot more flexible in recording and streaming quality compared with
analogue in terms of video resolution, frame rate, and compression [90].

Poor quality CCTV recordings and extracted images have been shown to affect face
matching ability in both novice and experts and leads to high overall false positive rates [82].
Image pixelation or spatial quantization, as a part of overall image quality, also drastically
affects face matching ability [121]. Highly pixelated images can reduce face matching
abilities by up to 50% in trained individuals when compared to a high-quality image
sample [94,98]. In general, all forms of facial comparison accuracy will suffer when
using low-resolution analogue CCTV images, even if image quality is good in other
respects [48,81,93,122].

If we consider the SCD, the further away the subject, the greater the loss in detail in
terms of representation of the face on the image. A minimum horizontal pixel count of 10–16
per face for a known face [121,123,124] and 20 pixels for an unknown face [92] is considered
the bare minimum for successful identification in frontal view. Based on relative subject
size on screen, Vitek et al. [125] recalculate Utochkin’s [126] recommendations to 35 pixels
for a known individual and 83 pixels for an unknown individual. If we are considering the
effects of pixelation in a forensic setting, one needs to address the performance of matching
accuracies and any form of potential enhancement, such as image blurring and reducing
image size, when viewing [92]. Another important factor along the CCTV imaging chain
not discussed here is that of the display fidelity and how the image is viewed on screen
and the type of screen or monitor used [91].
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Subject-to-camera distance can also result in facial distortion that alters facial pro-
portions and shapes. While not exclusively investigated in the context of MA, previous
work by Stephan and colleagues has looked at the SCD induced distortion and craniofacial
superimposition [103,104,127]. Stephan [103] identified that discrepancy in camera-to-face,
or skull, distances between photographs to be compared, presented with varying degrees
of perspective distortion of facial features. At shorter distances, particularly below 6 m,
the distortion was found to be more pronounced [103]. While distance-based perspec-
tive distortion is even more important in methods applying facial morphometry since at
distances below 1 m a difference of 100 mm in SCD between the compared images can
result in perspective distortion greater than 1% [103]. While perspective distortion would
expectedly affect morphological comparison of facial features, the qualitative approach
of MA and the large number of features being compared in each analysis would likely
mitigate any small degrees of perspective distortion of compared images. However, further
study into the effect of perspective distortion on qualitative assessment of facial features
would be necessary.

The last, but important, limitation to consider in terms of image quality is video
compression. As mentioned previously, digital video quality and corresponding file size
can be made smaller in three ways—decreasing frame rate (e.g., 60 fps down to 5 fps);
decreasing video resolution (e.g., Common image format (CIF) to Quarter CIF); and finally,
by employing video compression [90,125,128]. Software video compression manipulates
the spatial and temporal redundancy of moving frames in the form of CODECs, such as
MPEG-4, Wavelet, H.265/HEVC, and JPEG [90,125,128]. Compression allows for large
quantities of captured data to be stored in highly reduced sizes either temporarily or perma-
nently but sacrifices image quality. Both distortion and artefacts occur when compression
is introduced, hindering facial identification [90,125,129]. Keval and Sasse [90] found that
the number of correct identifications of faces by untrained viewers decreased by 12–18%
as MPEG-4 quality decreased and by 4–6% as Wavelet quality decreased (92–32 Kbps for
both compression formats). They recommend a minimum of 52 Kbps video quality using
MPEG-4 in order to achieve reliable and effective facial identification [90], albeit these re-
sults are for untrained practitioners and lower qualities would likely be reliable for trained
FFC practitioners as well, perhaps not at the same magnitude. Vitek et al. [125] found
correct identifications decreased from 88 to 48% as HEVC encoding quality decreased
(30 kbps–15 kpbs) and they recommend 20 Kbps as a minimum threshold value. Compres-
sion employed in CCTV systems is lossy and, once performed during recording, cannot be
removed or reversed. The types of distortion seen are pixelation, basis patterns, ringing,
and blurring [99,130]. Recent advancements have been made improving FRT performance
in light of compression artefacts; however, these artefacts remain a primary concern and
drastically reduce accuracy and reliability [129]. An overview of the above-discussed
various limiting factors of CCTV data in the application of MA and their specific effects in
the process of facial comparison is presented in Table 2.

Table 2. Summary of CCTV systems’ technical limitations in the application of morphological analysis.

General Limitations Specific Limitations Effects

Camera placement

• Camera height above ground
[21,48,49,99,100]

• Angle of incidence [21,48,49,100]
• Subject-to-camera distance

[103,104,127]

• Image composition affected—target
size and screen/picture height
[21,48,99]

• Reduction of observable facial
features [21,48,49,100]

• Perspective distortion [103,104,127]
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Table 2. Cont.

General Limitations Specific Limitations Effects

Camera specifications

• Analogue or digital [82,115,116]
• Sensor size [99]
• Pixel count [48,99]
• Lens focal length [99]

• Reduced image quality [21,48,99]
• Image distortion and artefacts [99]

Lighting conditions
• Ambient lighting [99,107,108]
• Infrared vision [93,107,108]

• Loss of facial detail [48,49]
• Shadows and overexposure form

artificial boundaries and altered
facial appearance [49,106]

• Optical distortions [99]

Image quality

• Resolution [21,48]
• Pixelation [48,92]
• Noise/grain [99]
• Video compression [90]
• Color [48]

• Low clarity [99,103]
• Reduced useable detail

[21,48,82,90,92]
• Face matching ability reduced

[21,48,90,125,129]

Data loss and corruption

• Network infrastructure [41,72]
• Software [99]
• Hardware [41,99]
• Imminent weather [41]
• Power outages [41]
• Compression rate [90]
• Anti-forensic techniques [109–112]

• Inconsistent network connection
and coverage—transfer corruption
[41]

• Partial or complete data loss [41]
• Data tampering and removal

[109–112]

In consideration of our results, only two particular CCTV camera specifications under
limited conditions and installation variations were tested [21,48,49]. However, there is a
large number of manufacturers that produce CCTV equipment with different specifications,
requirements, and support. Testing the extent to which various market standard CCTV
cameras can affect facial comparison would be an ideal goal to strive towards. However,
before attempting such a level of fine-tuning of facial comparison practice and require-
ments, broader aspects should be investigated. These would include investigating the
contributions of each of the various aspects that appeared to contribute to a decrease in
MA performance, particularly in an attempt to determine empirical thresholds for suitable
image quality across various specifications and not only image resolution. Therefore, the
common factors described above that affect quality should be investigated. For instance,
developing a thorough understanding of distance-related distortion effects on MA between
images from CCTV cameras and photographs could generate awareness of which features
are altered more notably, and hence, increase inaccuracy at unfavorable distances. This is an
important consideration for future work due to the varied conditions most CCTV systems
are installed under and tailored to. The alternative of comparing faces captured under
the exact same conditions would likely be more effective; however, it may not be feasible
or cost-effective outside of an experimental scenario. In addition, the time discrepancy
between a first set of images from a CCTV recording and a recapture for analysis may intro-
duce further limitations on the equipment and conditions of image capture (e.g., different
lighting, damaged camera, etc.). In addition, studying the precise effect of camera angle
of incidence on MA in isolation would also contribute to improving its application. Clear
thresholds for determining the angle steepness that significantly inhibits facial comparison
will aid in screening the utility of current image data and to guide future surveillance
system installation planning. Incorporating the average head tilt in these investigations
would further contribute to perfecting these standards beyond the experimental scenario.
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Actual digital image quality and minimum resolution allowing for facial comparison
to take place should also be investigated. Based on this study’s conclusions with regard
to low-resolution analogue CCTV, further investigations are needed in order to define a
clear, quantifiable lower-end threshold that permits analysis. However, based on the actual
accuracies and the approximate sizes of faces in each CCTV setting, it would appear that
when a face is composed of approximately 18 × 26 pixels or less, such as the analogue
CCTV setting employed in our study [48], FFC analysis would be severely compromised.
This is a suggested preliminary lower threshold as despite conditions being mostly similar
between standard CCTV and analogue CCTV, in terms of angle of incidence and SCD, faces
in the standard CCTV were composed of approximately double the number of pixels (41 ×
52 pixels) and a much higher accuracy and reliability were obtained [21]. This threshold
remains well below Vitek et al.’s [125] and Utochkin’s [126] recommendations (minimum
of 83 pixels for unknown faces). Developing clear, experimentally tested lowest acceptable
quality thresholds, particularly under different settings and conditions, will aid both the
surveillance industry and the forensic analysts conducting analyses. A useful consideration
for future studies investigating all aspects of image quality in facial comparison would
be to use an image quality scoring system. An example of such a scale was presented by
Schüler and Obertová [22]. Implementing this scale in conjunction with the FISWG feature
list for MA could aid in identifying a threshold of confidence for the analysis process based
on image quality.

Despite these uncertainties, from our earlier results, we recommend that CCTV system
installations transition towards the use of high-definition cameras installed at eye-level
heights. However, this would limit the cost-effectiveness of CCTV installations, as one
camera would have a more limited field of view at the lower height [99]. As such, more
cameras would need to be installed to cover areas previously covered by a single or pair
of cameras [99]. Installing eye-level IP CCTV cameras would invariably place these sys-
tems at higher risk of vandalism and sabotage; however, the authors think this risk and
increased cost are worthwhile in the context of facial comparison analyses, considering
the significantly higher accuracy obtained when comparing faces recorded on these types
of installations. Angle of incidence close to zero, allowing for more closely matching face
views, in conjunction with high-resolution footage and the resulting quality of the facial
image (at a minimum representation of a face being 41 × 52 pixels) are ideal for FFC
application. While no clear benefit or shortfall of color recordings were isolated, based
on the qualitative assessment of the analyses conducted, the authors would recommend
the inclusion of color CCTV to allow for a wider range of feature list applications, such as
the inclusion of color-based features in the FISWG feature list. However, we would also
recommend the removal of color-based features as discrepancies in lighting are common
between realistic recordings and ideal photographs captured for comparison. The resulting
analysis of facial feature descriptors relying on color, or other factors that can vary easily
and unknowingly, such as luminescence, in response to slight variations in lighting con-
ditions should be reconsidered or removed from feature lists, as they were found either
unreliable or unusable in most comparisons.

4.2. Feature List Usage, Disguises, and Training

Both the FISWG and the ENFSI recommend MA as the best practice for forensic facial
identification [27,125]. In addition, FISWG advises against the use of photo-anthropometry
for facial image comparison and recommends superimposition only to be utilized in
conjunction with MA [27]. FISWG developed and made freely available an extensive
facial feature list for use in MA [51,54]. This list includes 18 facial components, each
with associated descriptors, as well as a nineteenth descriptive component for use with
uncategorized features [51,54]. The FISWG feature list is also the most exhaustive list
available, including over 130 facial component characteristics and over 290 characteristic
descriptors [51].
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The application of facial feature lists, such as the FISWG one, is different from
previous feature-based comparison methods that involved facial feature classification
schemes. These classification schemes were used as a way for an analyst to score each
facial feature into categories based on descriptive qualities (e.g., pointed chin, broad nose
bridge, etc.) [59]. The FISWG approach instead expects a facial analyst to subjectively
describe the compared faces by providing an extensive list of features and descriptors to
use in order to make statements based on similarities and dissimilarities [27,51]. This
descriptive approach is preferred as classification schemes are viewed as prone to high
inter-observer error [55,59,109]. In addition, for classification schemes to be effective,
they need to be tailored to specific populations, which has only been considered by
two studies to date [58,127]. Population homogeneity, however, can be problematic
for classification schemes, since high prevalence of a feature classification in a given
population could result in an overlapping score, leading to erroneous false positive
matches [60]. On the other hand, classification schemes may be too restrictive and make
scoring near impossible under certain circumstances [26]. In this series of studies, the
FISWG feature list was found to greatly aid both in the training of the analyst as well
as during the analysis process to achieve mostly high accuracies and good reliability
levels with the exception of the lowest quality of CCTV recordings. The feature list
was also found to be applicable to African male faces due to its descriptive nature, as
opposed to population-specific classification schemes. Certain descriptors were found
cumbersome to utilize; for example, as mentioned above, skin color and luminance were
often ignored due to a mismatch, despite confirmation that two faces were indeed the
same. A revision of some of these descriptors would be required to optimize the analysis
process and applicability of the FISWG feature list to a broader number of settings and
CCTV conditions.

In addition, while the importance of a feature list in MA is undeniable, combining
a systematic approach and a feature list must involve the option to discard potential
dissimilarities when it is justifiable to do so. This is possible with large feature lists such as
the FISWG one, which allows for exclusion of questionable or hard to analyze features. A
smaller feature list be employed would compromise the exclusion of dissimilar features
that could be justified as dissimilar due to image conditions, leading to the false exclusion
of a positive face match due to features varying under the different image conditions. To
this end, a threshold of the number of minimum features required to conduct an analysis
should be investigated as neither the feature list [47] nor the concluding statements [17]
provided one.

A further consideration to improve the applicability of the FISWG and any other
feature lists would be to develop specific criteria to be applied for comparisons under
different disguised or obstructed faces. Once established, these criteria could be included
in analyst training to prioritize features by type of disguise. This approach would be
applicable in settings where facial features may not be visible due to data loss or any other
physical obstructions. This could prove particularly useful as the forms of “acceptable
disguises” change throughout time—for example the use of face masks currently due to
the spread of COVID-19. Face masks, which can vary in shape, size, and the resulting
proportion of the face covered, have been shown to reduce automated facial recognition
performance by 5 to 50% depending on the specific algorithm and extent of the face
covered [76]. The deleterious effect in performance seemed to vary based on the color and
shape of the masks as well [76]. It would, hence, be crucial to consider face masks in further
tests of MA under disguised conditions as their impact on human observer-based facial
comparison has not yet been considered.
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While the current studies validated MA when the FISWG guidelines [27,47] were
used, an array of further studies is required. To continue this work, the Wits Face Database
will need to be updated and expanded to include many more possible permutations
of analysis, including female individuals, cosmetic make-up treatments, and face mask
disguises. Future studies should also attempt to quantify the acceptable loss of facial feature
information in order to successfully compare faces across a multitude of possible situations.
Once that goal is achieved, better guidelines and practice frameworks can be created
for legal procedures involving FFC by MA. Our recommended method of conducting
MA is shown in Figure 3. This approach outlines the stepwise process of applying the
recommended image quality triage by the ENFSI [114] to FISWG’s ACE-V application [27]
of the FISWG feature list [47] and then subdivided by intended use in a research or judicial
context. Based on the application context, different approaches are used for verification; in
addition, research use of MA would require further statistical analyses (Figure 3).

Based on the outcomes of our group’s studies, expanding current training programs
and developing new ones to increase the competence of facial comparison experts will
be crucial for consistent and reliable application of FFC. The application of a feature
list and an ACE-V approach by members of the public in forensic facial comparisons
is not sufficient to achieve expertise. Training experts with the explicit role to conduct
FFC analyses, with the use of the FISWG feature list and an ACE-V approach, is of
utmost importance in a judicial context [131]. The role of expertise is particularly
relevant in FFC, since unfamiliar face matching is considered complex and unreliable
on all accounts [97,122]. Experts, in fact, perform notably better than members of the
public [42], even when image quality was taken into consideration [132]. This expertise
undoubtably arises from training in the nuances of faces, such as facial expressions
and ageing changes, and acceptable anatomical variations and image-based variations
between faces, beyond just the inclusion of the use of a feature list. The need for
adequate training of all FFC practitioners is vital to the good standing of the practice and
its admissibility in a legal context. Particularly when considering that certain countries
may experience a shortage of expertise and heavy caseloads, such as South Africa, where
only 30 trained specialists in the entirety of the national police force are trained to
conduct FFC and testify in court to defend their conclusions [17].

The FISWG has put forward a document describing guidelines for training and
expertise requirements of FFC analysts and trainers [133]. While these guidelines are
crucial to the development of training courses, to the authors’ knowledge, no formal
standardized training or certification platforms exist for FFC [17]. A recent study on the
performance of informal training courses on facial comparison suggested that there are
large discrepancies between courses in improvement of facial examiner expertise [134].
We hope our recommended stepwise process to the applications of MA (Figure 3) will
aid in streamlining both MA training and application. Recently, members of our research
group proposed an outline for a training course with a three-tiered approach offered
to the police force [17]; it inadvertently follows most of the proposed guidelines from
FISWG. The first tier of training involves developing basic background knowledge of facial
anatomy, evidence evaluation, image science, facial recognition psychology, and court
proceedings, among other topics [17]. The second tier involves training in detailed MA
using the FISWG standards and developing court-ready reports and charts [17]. The third
tier is a national specific tier that involves advanced training in court proceedings and
evidence presentation as well as troubleshooting from past casework in order to also train
experienced peer reviewers [17], who are vital to the ACE-V application of MA. While this
approach to training has not been experimentally tested, the trained police members have
found success in their roles as facial examiners.
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Figure 3. Flow diagram of the recommended morphological analysis process. This approach to morphological analysis
uses an ACE-V method in conjunction with the FISWG feature list [47], with the inclusion of the ENFSI’s image quality
triaging [114] and the use of the South African Police Services (SAPS) scoring criteria [17] as adapted for research appli-
cation [21]. Statistical analyses for research use are also recommended based on our recent work [48] to allow for more
detailed result interpretation and comparison among future studies.
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5. Conclusions

The outcomes and recommendations arising from these studies should be considered
under the limitations of the investigative approach deployed. These studies attempted
to simulate real-world conditions, with its array of limitations, in a select number of
scenarios. These scenarios included ideal comparable photographic images, standard
digital CCTV, eye-level installation digital CCTV, standard monochrome analogue CCTV,
and two common disguises—sunglasses and brimmed caps. The varied circumstances of
facial data were pre-set under certain conditions to attempt some level of standardization
required for experimentation. In doing so, although realistic, the conditions were limited
to the major questions broadly investigated by each study [21,48,49]. Although these broad
categories were considered as realistic examples of CCTV image quality and conditions,
there are multiple factors that influence the quality of an image for facial identification.
Image quality relies on more than just equipment resolution capacity; it involves lighting
conditions, angle of incidence, SCD, distortions, color, visibility of features, and more.
In testing the specific conditions outlined in each of the above studies, controlling for or
identifying which of the multiple limiting factors contributed to the poor performance
of MA would be impossible. Even when within likely tolerable degrees, these limiting
factors cannot be isolated from one another in certain circumstances. However, with this
baseline of conditions and considerations, future studies can be tailored to the specific
limitations that CCTV imposes on FFC in a highly controlled setting to determine the exact
contribution of each of these limiting factors to the accuracy of MA.

With these concerns and limitations clearly stated, future studies should be focused to
target specific limiting factors individually in order to develop a clear threshold for image
data to be usable for facial comparison. While other approaches to facial identification as a
whole may also be gaining popularity, such as the increasing performance of automated
systems [31,75,76] and the deployment of super-recognizers [135,136], continued research in
forensic facial comparison by MA is crucial as the most universally applicable and reliable
method. The importance of MA-based FFC is especially noteworthy in law enforcement
applications, where the majority of available image data is of low to poor quality [113].
As such, the authors strongly advise that trained human observer-based MA, using the
FISWG feature list [47] and an ACE-V approach [27], should remain the principal method
of facial comparison for identification purposes, as recommended by both the FISWG and
ENFSI [27,114].
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Simple Summary: Forensic anthropology in the United States is a specialization within the overall
field of anthropology. Forensic anthropologists are specially educated and trained to search, recover,
and examine human remains within a medicolegal context. Over time, forensic anthropology has
become increasingly specialized and distinct from other specializations within anthropology. As
such, we argue that forensic anthropology should be considered its own discipline, with a unique
knowledge base, separate from other similar forms of anthropology, such a bioarchaeology. We argue
that forensic anthropologists have unique expertise, making them the only type of anthropologist
qualified to perform medicolegal examinations of human remains. Finally, we contend that to
perform or represent yourself as a forensic anthropologist without the appropriate expertise is ethical
misconduct. The value of this paper is that it explains the importance of expertise and knowledge,
and how forensic anthropology has diverged from other specializations of anthropology enough to
be considered its own discipline.

Abstract: This paper explores the current state of forensic anthropology in the United States as a
distinct discipline. Forensic anthropology has become increasingly specialized and the need for
strengthened professionalization is becoming paramount. This includes a need for clearly defined
qualifications, training, standards of practice, certification processes, and ethical guidelines. Within
this discussion, the concept of expertise is explored in relation to professionalization and practice, as
both bioarchaeology and forensic anthropology have different areas of specialist knowledge, and
therefore unique expertise. As working outside one’s area of expertise is an ethical violation, it is
important for professional organizations to outline requisite qualifications, develop standards and
best practice guidelines, and enforce robust preventive ethical codes in order to serve both their
professional members and relevant stakeholders.

Keywords: forensic anthropology; bioarchaeology; qualifications; expertise; knowledge; ethics;
education; professionalization; standards

1. Introduction

Bioarchaeology and forensic anthropology are two closely related specializations of
biological anthropology that examine human remains to understand the life experience
and biological parameters of the individuals from which the remains are derived. In this
treatment, we focus specifically on these two disciplines as they are closely linked by their
study of anatomically modern human skeletal remains. We also limit our focus to the
United States, recognizing that there are distinct education, practice, and professional quali-
fication standards in different countries; in part stemming from different national/regional
education systems and legal statutes. While forensic anthropology and bioarchaeology
have different goals, both disciplines use similar approaches and sometimes the same
methods to examine human remains, typically, gross skeletal material (to include bones
and teeth) to determine such parameters as species (to ensure the remains are human in
origin), sex (sometimes gender in conjunction with other contextual information), age
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(sometimes stage-of-life/life history), and stature (living height). Both disciplines also
perform more complex analyses examining such characteristics as population variation in
terms of biological distance (sometimes called ancestry/population affinity/boaffinity),
antemortem and perimortem trauma, taphonomic modifications (sometimes postmortem
interval), anomalous and pathological conditions, skeletal indicators of biological stress,
and inferential data using archaeological context (sometimes mortuary patterns).

Bioarchaeology and forensic anthropology derive from biological anthropology, but
are, at least in their ideal forms as practiced in the model of the United States, hybrids of
both biological anthropology and archaeology. Both disciplines require the understanding of
human bone biology as well as archaeological context and taphonomic changes to generate
comprehensive conclusions about the lives (and in some cases the death or death event) of
individuals. They draw from agency theory regarding the introduction of human remains
into the archaeological record usually via culturally intentional actions for various purposes
that can reflect culture and cultural identity more broadly [1]. Additionally, both are firmly
entrenched in anthropology through their biocultural approach to understanding human
biological adaptation, or the interpretation of skeletal modifications (during life, at death,
and after death) through a cultural lens.

In the current paradigm, it is not uncommon for an individual trained in one sub-
discipline of biological anthropology to offer expertise and services in another, and this
is particularly common between bioarchaeology and forensic anthropology. In fact, Ube-
laker [2] p. 137, claimed, “[t]he symbiotic and dynamic relationship of these academic areas
greatly improves the quality of the applications of each”. Contrarily, Juarez [3] argued
that a focus on the commonalities between bioarchaeology and forensic anthropology is
problematic as it does not emphasize the differences and boundaries of each discipline.
Thompson [4] p. 68, agrees that viewing the work of a forensic anthropologist as being
easily done by any trained osteologist is “a misperception of what the subject involves
through focusing on methods while ignoring context”. While, Ross [5] argued that forensic
anthropologists are inherently more stringent in analyses and could do all that a bioarchae-
ologist can do, but not vice versa. While we agree with Ubelaker [2] in that both disciplines
benefit from each other, we also agree in concept with Juarez, Thompson, and Ross in that
both disciplines are becoming increasingly complex and specialized, such that education
and training in one discipline do not translate into competency or expertise in the other.

This disagreement has precipitated the need for increased professionalization in
terms of standardizing education, defining qualifications, defining and implementing
ethical codes, and reconsidering the roles played by professional organizations within
both bioarchaeology and forensic anthropology. We view all these issues as interwoven
and each influencing the other; however, thus far, they have not been explicitly addressed
comprehensively in the literature.

As both bioarchaeology and forensic anthropology have grown significantly in the last
few decades, it has become prudent to explore their differences and similarities and the need
for their individualization and professionalization in terms of defining qualifications (i.e.,
education and training needed to demonstrate adequate knowledge to perform discipline-
related tasks in an applied setting) and expertise. These topics must also be framed as
issues that would best be addressed by professional organizations, as disciplinary leaders
harnessing the power of their communities of practitioners. This exercise is not a means of
academic gatekeeping; but rather a means to identify minimum standards and best practices
of what to expect at a minimum from an individual practicing a particular profession [6,7].

The goal of this paper is to consider both bioarchaeology and forensic anthropology
as unique disciplines, having diverged due to increasing specialization and scholarly
distancing; thus, bioarchaeologists and forensic anthropologists have their own unique
areas of expertise and spheres of practice. While bioarchaeology and forensic anthropology
can vary greatly in their education and practice globally, we focus on the practice of these
subdisciplines within the United States. For overviews of forensic anthropology in other
countries, there are several excellent treatments to which the reader can refer, e.g., [8–28]. In
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this treatment, we begin with a brief discussion on the trend of increasing specialization and
decreasing overlap in educational programs and scholarship between the two disciplines.
We follow with a definition and discussion on the scholarship of expertise and its relevance
to considering bioarchaeology and forensic anthropology as unique expertise. We then
expand this discussion within the context of professional qualifications, primarily in regard
to the role of ethical codes and professional organizations. Next, we provide an overview
of qualifications and their importance in relation to expertise, education, and practice,
followed by a discussion of how to codify expertise and practice using best practice
recommendations and standards documents, which are becoming ever more popular
within the forensic sciences and may soon be required for practice within that context.
Finally, we conclude with recommendations for the future, a call for greater consideration
of the importance of qualifications as a means of respecting both the remains of those we
study and their extant next-of-kin/communities, and provide a glossary (Glossary) defining
several of the terms used throughout this paper for standardization and clarification.

The Divergence of Bioarchaeology and Forensic Anthropology

Early versions of both bioarchaeology and forensic anthropology were originally
practiced by physicians, anatomists, and biological anthropologists with interests in the
examination of the human skeleton. The examination of skeletal remains, as well as the
types of research questions addressed, have always been dependent upon the contexts
from which the remains were derived. When skeletons within archaeological contexts
are excavated, researchers want to know about the life experiences of these individuals.
Hypotheses may be formulated to pursue research around migration, diet, stress, vio-
lence, social structure, disease loads, activity levels, disability, mortuary practices, fertility,
demography, growth and development, and life history, among many others, e.g., [29–41].

When modern skeletons are discovered, anthropologists and the medicolegal com-
munity want to know the identity and circumstances of the death of that individual. To
pursue identification, they may estimate the individual’s biological profile (i.e., age, ances-
try/population affinity, sex, and stature), describe individualizing features, and compare
ante- and postmortem data, e.g., [42–53]. They are also interested in the circumstances
surrounding the death event, illustrated by perimortem trauma and taphonomic alterations,
and potentially estimating a postmortem interval, e.g., [54–57]. Research also exists on the
applicability of indicators of biological stress as part of the identification process [58] and
investigations into gross human rights violations and structural violence [59–61]. How-
ever, the collection or analysis of such data is not routinely performed as part of forensic
anthropological casework (i.e., reports provided in a medicolegal context).

Over the past several decades, various methods have been developed to best ad-
dress the research agendas of each discipline, with differing foci based on the context-
dependent nature of these investigations. Academically, these differing research agendas
have increasingly diverged into academic programs and graduate advisors specializing
in bioarchaeological or forensic anthropological approaches. In doing so, bioarchaeology
and forensic anthropology have slowly deviated in terms of professional conferences at-
tended [62], academic advisors and institutions, bodies of literature, venues of publication,
and professional memberships. Through this divergence, they have become more and
more isolated from each other, developing separate communities of practice with separate
“social lives” [63]. All scientific disciplines essentially function in this manner, effectively
“mold[ing] their disciplines by pedagogically fashioning their disciples” [64] p. 381. The
choices made by academic hiring committees for future directions of a program are the
same as those made by graduate student advisors in that they are purposeful, active choices,
which intentionally shape future generations of pedagogy [64–68].

It is unclear precisely when individuals in the United States studying human skeletons
from archaeological contexts, being educated in biological anthropology, began to identify
as bioarchaeologists, or when individuals studying human skeletons in medicolegal contexts
being educated in biological anthropology began to identify as forensic anthropologists; that
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is, as opposed to identifying as biological/physical anthropologists. It is likely that as
each subdiscipline increased in popularity, practitioners began to self-identify as one or
the other. According to Snow [69] and Tersigni-Tarrant and Langley [70], individuals
began identifying as forensic anthropologists in the 1970s; however, this trend grew in
the 1980s when forensic anthropology began to gain popularity from the work of William
Bass, Walter Birkby, William Maples, and their graduate students (John Williams, personal
communication 2019).

In the 1990s, bioarchaeology began to increase in visibility with the passage of the
Native American Graves Protection and Repatriation Act (NAGPRA), which required
trained osteologists to assist in repatriation efforts. Additionally in the 1990s, two forma-
tive publications in bioarchaeology were released: Standards for Data Collection from Human
Skeletal Remains [71] and Clark Spencer Larsen’s [72] Bioarchaeology: Interpreting Behavior
from the Human Skeleton. It is likely, then, that around the 1980s and 1990s individuals
began to identify as either bioarchaeologists or forensic anthropologists, pursuing graduate
advisors based on such foci and graduate programs with discipline-specific education pro-
grams. While there are some individuals who practice both and who consider themselves
a bioarchaeologist and a forensic anthropologist, this number has likely decreased over
the past several decades based on our observation of the subdisciplines, and may continue
to do so as each becomes more specialized. An increase in full-time applied positions for
forensic anthropologists [73] has also surely influenced this trend.

Considering the divergence of bioarchaeology and forensic anthropology, Buikstra et al. [74]
found large increases in publications focusing on bioarchaeology and forensic anthropology
starting in the 1970s, corresponding with the incipient formalization of both areas of study.
However, Buikstra et al. [74] also demonstrated that while bioarchaeological literature
was found in a variety of anthropological journals, forensic anthropological literature was
increasingly published in the Journal of Forensic Sciences to the exclusion of other more
anthropologically focused journals. Bethard [75] also demonstrated this trend by practicing
forensic anthropologists certified by the American Board of Forensic Anthropology (ABFA).
Bethard [75] found that based solely on the focus of dissertation subjects, representing
the focus of graduate research projects, forensic anthropologists have increasingly pur-
sued forensic anthropological research topics, rather than bioarchaeological or other more
general biological anthropology topics, particularly since 2005.

Only recently have the first journals dedicated to bioarchaeology or forensic anthro-
pology been established. Arguably, the first journal dedicated to bioarchaeology was the
International Journal of Osteoarchaeology, established in 1991 and published by Wiley. Al-
though, like the term osteoarchaeology itself, this journal has a heavy European focus and
includes many publications on the analysis of non-human remains. It was not until 2017
that the journal Bioarchaeology International was established, published by the University
of Florida Press [76]; this journal was followed one year later in 2018 by the first journal
dedicated to forensic anthropology, Forensic Anthropology [77], also published by University
of Florida Press (Gainesville, FL, USA).

Martin [78] p. 163, points out that bioarchaeologists have long been critical of forensic
anthropological work as being “merely technical expertise”. She fully admits that she
used to be one of those bioarchaeologists who questioned “where is the anthropology in
forensic anthropology?” [78] p. 163; yet, she has changed her viewpoint on the topic in
a recognition that forensic anthropology is not an atheoretical practice. Martin is more
hopeful on the integration of the interests of bioarchaeology and forensic anthropology, and
has been involved in editing volumes that promote this integration of bioarchaeological
and forensic anthropological approaches to research questions, e.g., [79,80]. She offers the
term “forensic bioarchaeologist” as a means to promote this cross-disciplinary effort [78].
The term “forensic bioarchaeologist” was previously introduced by Scott and Connor [81],
Skinner and colleagues [82], and Jessee and Skinner [83]. The latter two used it as a means
of integration of archaeological methods and theory into medicolegal investigations of
mass graves. Of particular pertinence to this discussion, Skinner et al. (2003) promoted
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guidelines for bioarchaeological practice in a forensic context. Nevertheless, the term
“forensic bioarchaeologist”, has generally not been adopted.

Conversely, Steadman [84] discourages the use of such a term, arguing that it may
serve to obscure the lines between forensic anthropology and bioarchaeology. In an
academic sense, this may be “harmless” [84] p. 251; however, the term may cause confusion
in the public about the distinction between the two disciplines, which she feels could
potentially be problematic for jurors. We too argue the term could blur the boundaries
of qualifications and expertise between the two disciplines, which is challenging for law
enforcement and those working in the medicolegal realm. The further confounding of
the two subdisciplines is also evidenced by the American Journal of Physical Anthropology’s
manuscript submission system. In this system, authors must designate a manuscript by
“subfield”, with the only relevant choice for bioarchaeology or forensic anthropology being:
“Bioarchaeology [including forensics]”.

We agree with Martin [78] p. 163, and Ubelaker [2] (as discussed previously) that the
subdisciplines of bioarchaeology and forensic anthropology are independent and comple-
mentary and while they may differ in focus, contextual application, and specific hypotheses,
they can learn much from each other. We firmly believe that a clear standardization of
education, training, and qualifications is the best way for this mutual appreciation and
professionalization to be achieved. The first step in this process is recognizing a lack of
cross-disciplinary expertise, which can be achieved through a broader understanding of
what constitutes expertise, as we discuss further below.

2. Disciplinary Expertise

As we argued above and as others have demonstrated [74,85], while lacking published
qualifications, bioarchaeology and forensic anthropology have developed into their own
disciplines each with their own areas of expertise, bodies of literature, analytical methods,
theoretical models, and education programs. However, it is important to discuss what ex-
pertise is and how it is created to fully appreciate the implications of differing expertise (and
thus different disciplinary skills). Typically, we consider experts to have authoritative knowl-
edge or skill in a particular area, while laymen are non-professional individuals lacking ex-
pertise [29,30,86–88]. A depth of literature has emerged relatively recently examining expe-
rience, expertise, and the sociology of scientific knowledge, e.g., [63,86,88–107]. We include
a brief discussion of this literature here for some of the same reasons Collins [93] p. 127,
was motivated to pioneer this avenue of inquiry, “to persuade sociologists [here, anthropol-
ogists] to reflect upon their expertises”.

Collins and Evans [108], present models of various forms of specialist expertise along
a two- or three-dimensional spectrum [97,98,100]. Within specialist expertise exist two
main types of knowledge, “Ubiquitous Tacit Knowledge” and “Specialist Tacit Knowledge”
(Table 1). The first, “Ubiquitous Tacit Knowledge” (i.e., information) may be generated
simply via reading without interacting with the appropriate contributory experts, this
is knowledge that is easily accessible and therefore common knowledge. The novice
level of “Ubiquitous Tacit Knowledge” is considered “beer mat” (knowledge of very
superficial facts about a topic that you might find on a beer mat/coaster). The next level is
“popular understanding”, which can be achieved through popular non-fiction books and
general media. “Primary source knowledge” involves engaging with the primary literature;
however, this literature still only provides “a shallow or misleading appreciation of science
in deeply disputed areas”, which is far from obvious for the uninitiated [108] p. 22.

“Specialist Tacit Knowledge” must be acquired via interactions and enculturation with
practicing professionals [100], and serves as the necessary knowledge base(s) to practice a
discipline. Specialist Tacit Knowledge ranges from “interactional expertise” to “contribu-
tory expertise” [108]. Interactional expertise is essentially the ability to interact with other
experts using their language/jargon and understanding the concepts being discussed, but
lacking the full expertise to practice [102]. Contributory expertise is traditional technical
expertise, where the practitioner is the contributory and interactional expert, meaning they
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are able to discuss/interact with other individuals at a complex level and able to perform
complex disciplinary tasks competently [105]. With these definitions of types of knowledge,
expertise can be defined as “the mastery of the tacit knowledge of a domain of practice, with
interactional expertise being mastery of the domain’s language, and contributory expertise
being the ability to competently engage in the practices of that domain” [104] p. 99.

Table 1. Levels of expertise based on Collins and Evans (2007).

SPECIALIST
EXPERTISES

UBIQUITOUS TACIT KNOWLEDGE SPECIALIST TACIT KNOWLEDGE

Knowledge That Is Easily Accessible (i.e., Ubiquitous)
Exclusive Knowledge That Must Be Acquired

via Interactions and Enculturation with
Practicing Contributory Experts

Beer Mat
Knowledge

Popular
Understanding

Primary Source
Knowledge Interactional Expertise Contributory

Expertise

Knowledge of very
superficial facts

about a topic such
that you might find

on a beer
mat/coaster

Knowledge based on
popular non-fiction

books and the
general media

Knowledge based on
engaging with the
primary literature.

This represents having
enough expertise about
a discipline to interact
with its contributory
experts performing

their work, but lacking
the technical

knowledge to perform
it yourself.

This represents having
enough expertise to

contribute
to a discipline through

its technical and
scholarly practice

Note that literature still
only provides “a

shallow or misleading
appreciation of science

in deeply disputed
areas” (Collins and

Evans 2007:22)

“Scientists themselves tend to have contributory
expertise in their narrow specialism and

interactional expertise in cognate specialisms”.
(Collins 2004:141)

As both bioarchaeology and forensic anthropology share many common lower-level
knowledge areas, individuals educated in either discipline have some specialist knowl-
edge of the other, representing what Collins and Evans [108] refer to as Primary Source
Knowledge. For example, both may use the same method to estimate the sex of skeletal
remains. However, as specialization increases, there is less and less overlap in knowledge,
and the expertise required to interpret method results and generate reports becomes more
exclusive. For example, bioarchaeologists must understand the historical context of the
samples they are analyzing and when possible, work with descendent communities; while
forensic anthropologists must understand jurisdiction, chain of custody, and admissibility
of evidence.

These distinctions in knowledge area and specialist expertise are important, as without
the appropriate “Specialist Tacit Knowledge”, practitioners/researchers may perform tasks
inappropriately and/or incorrectly. As Collins and Evans [108] p. 22, state: “it can be
shown that what is found in the literature, if read by someone with no contact with the
core-groups of scientists who actually carry out the research in disputed areas, can give
a false impression of the content of the science as well as the level of certainty”. In other
contexts, this concept is often referred to as the Dunning–Kruger effect, or essentially the
ignorance of one’s ignorance [109–112]. Individuals have just enough knowledge to under-
stand the primary literature, but not enough to fully grasp the nuances of this material or
how to properly discuss or apply it. The implications of which are that bioarchaeologists
and forensic anthropologists, as contributory experts in their respective disciplines, can be
ignorant of their lack of cross-disciplinary expertise. Collins and Evans state: “Encultura-
tion” is the only way to master an expertise which is deeply laden with tacit knowledge
because it is only through common practice with others that the rules that cannot be written
down can come to be understood” [108] p. 24. Essentially, as knowledge becomes more
specialized, individuals interested in acquiring this knowledge must rely on practitioners’
practices (i.e., experiential training programs) rather than literature (i.e., educational pro-
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grams) [104]. Returning to bioarchaeology and forensic anthropology, essentially, the only
way to develop contributory expertise in one of these disciplines is through enculturation
in a bioarchaeological or forensic anthropological educational and/or training program
supervised by a contributory expert in that discipline. This is not to say that individuals
cannot be experts in both disciplines, rather it means that dual expertise requires individu-
als to develop contributory expertise in both bioarchaeology and forensic anthropology. As
Collins and Evans [108] point out, lacking such enculturation at the level of contributory
expertise leads to overconfidence and poor performance (i.e., the Dunning–Kruger effect).

It is important to reiterate here that the focus is on education and training by other
contributory experts, working towards building a body of knowledge and practical skills in
a way that is consistent with how the discipline (i.e., other contributory experts) operates.
This “enculturation” is not a form of limiting access to knowledge, but rather as means of
acquiring knowledge in such a way that the learner will develop interactional expertise
(being able to have high-level discussions with other contributory experts, using the
appropriate processes) and contributory expertise (being able to use methods, technology,
etc., in such a way that it contributes to the greater body of scholarly knowledge of a
discipline). This is not a new concept and is essentially how academia currently operates.
That is, students attend graduate school at programs that have education programs in
which they are interested, working with advisors doing work similar to what they want
to do as professionals. While academia is not without its major flaws, the argument here
is simply that training and education are critical to gaining the requisite skills to perform
disciplinary tasks. The arguments presented here are the first step in recognizing the need
for developing expertise, the next step would be to develop such training and education
programs. As a discipline, we can and should critically evaluate what this training looks
like and how we define demonstrable expertise in a way that is inclusionary and equitable.

3. Ethics, Expertise, and the Role of Professional Organizations

Professional organizations like the American Academy of Forensic Sciences (AAFS),
the American Association of Physical/Biological Anthropologists (AAPA/AABA), the
Society for American Archaeology (SAA), and the American Anthropological Association
(AAA) exist largely to provide individuals in that profession opportunities to network,
organize, and serve and engage with the public. Additionally, these organizations typi-
cally provide professional development and continuing education opportunities, which
is why student members are often encouraged to join as a means to facilitate disciplinary
enculturation and entrée into the profession at large, which can also serve to provide them
with the necessary expertise to practice their discipline. Further, organizational ethical
codes should address qualifications so as to define the proper education and/or training
to perform discipline-related tasks. Such a definition would prevent an individual from
performing applied work outside their area of expertise, which is an ethical violation. Here,
we first outline the need for professional ethical guidelines, and then we revisit the role
these organizations can play in providing qualifications for members.

4. Why Do We Need Professional Ethical Guidelines?

A professional is someone who: (1) possesses a body of special knowledge (i.e., contrib-
utory expertise), (2) practices within an ethical framework (i.e., adheres to a code of ethics
and avoids conflicts of interest), and (3) fulfills a societal need [6,7,113]. Professionalism is
conduct associated with a particular profession. Both bioarchaeology, e.g., [114–119] and
forensic anthropology, e.g., [120–124] have extensive literature regarding ethical conduct
and practice. However, ethical codes are typically established, and presumably enforced,
by professional organizations. Ethical codes are used to: (1) establish conduct that is meant
to be pursued by practitioners of a discipline (altruistic behavior); (2) establish conduct that
must be avoided (i.e., misconduct), and (3) provide potential negative outcomes for practi-
tioners engaging in misconduct [113,125]. Professional ethics are typically presented in the
form of either aspirational guidelines or preventive standards [126]. Aspirational ethical
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codes are meant to promote human wellbeing and present a number of guiding and/or
motivational behaviors that an organization would like its members to follow/achieve.
Preventive ethical codes are enforced by an adjudicating committee within an organization
that performs an investigation when a complaint of misconduct alleges that an individual
acted unethically [113]. The content of ethical codes for professional organizations vary,
but should generally be structured to ensure members avoid unprofessional conduct, so as
to maintain the credibility of the profession and professional organization. Without clear
professional ethics, a discipline does not have guidelines for acceptable or unacceptable
behavior, such that there can be no good or bad conduct, and all actions must be treated
equally [127] p. 233.

In terms of the meaningful implementation of professional ethics, there are two
essential issues that must be addressed. The first is that ethical codes must be detailed
enough so that specific types of conduct considered to be unethical are demonstrably so.
Second, ethical codes must be enforceable, with negative outcomes for individuals found
guilty of misconduct. The importance of these issues is perhaps most easily demonstrable
in terms of U.S. politics, where ethical guidelines are often ignored when ethical misconduct
is not actually against the law, and the language of ethical guidelines is vague and not
rigorously enforced [128–130]. As Josephson states: “there is a big difference between
what you have the right to do and what is right to do” [131] p. 4. Unfortunately, the
same is also the case in most professional organizations in which bioarchaeologists and
forensic anthropologists are members. This is important as the law is meant to represent
and enforce values for society as a whole, but is often not specific enough to cover many
activities pertinent to a particular profession. Professional ethical codes more directly
address discipline-specific values and behaviors.

Because ethical codes are tied to specific organizations, they only apply to the mem-
bers of those organizations. This means that organizational membership (or lack thereof)
plays an important role in establishing and policing the conduct of a profession and its
body of practitioners, based on each organization’s ethical code. It also means that each
organization should consider the ramifications of its membership requirements in terms of
professional qualifications and access to students and non-experts, and how this allows the
organization to serve its role within its professional community. Therefore, professional
organizations serve a role of providing opportunities for gaining expertise through encul-
turation by interacting with additional contributory experts, and are positioned to provide
sanctions when a member practices outside of their expertise, which could be seen as an
ethical violation.

5. The Need for Disciplinary Qualifications

Bioarchaeology has no official or widely accepted published documents in the public
or private sector regarding qualifications for bioarchaeological practice, or for the education
or training of its practitioners. Currently, anyone claiming to have the appropriate training
in bioarchaeology can be employed to perform applied bioarchaeological tasks. This is
particularly true in contract archaeology (i.e., cultural resource management [CRM]), where
it may be difficult to find qualified osteologists who are also available at the time of the
excavation. These companies may then be forced to hire individuals with little osteological
training to excavate and perform analyses.

As a recognition of the need for standardized qualifications, there have been some
movements to define minimum qualifications to perform osteological analysis and ex-
cavation. Within the Code of Colorado Regulations, under Section 13 “Unmarked Hu-
man Graves”, point G states, “Pursuant to 24-80-1302(4)(e), the physical anthropological
study of human remains shall be conducted by a qualified physical anthropologist with
the credentials comparable to those required for principal investigators, as set forth in
Section 5 of these regulations” (https://www.sos.state.co.us/CCR/GenerateRulePdf.do?
ruleVersionId=541&fileName=8%20CCR%201504-7, accessed on 16 July 2021). The quali-
fications outlined for principal investigators include a graduate degree in anthropology,
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archaeology, or history with experience in Colorado archaeology; one year of professional
experience; four months of supervised field and analytic experience; and the ability to
complete research.

The Wisconsin Historical Society has taken this a step further to establish specific
guidelines to be a “qualified archaeologist for burial sites or a qualified skeletal analyst”.
Their mandatory requirements include a graduate degree in anthropology, at least one
year of professional experience or specialized training, at least four months of supervised
experience, and the ability to complete a project. The full list of requirements and appli-
cation instructions can be found on their website: https://www.wisconsinhistory.org/
Records/Article/CS14963, accessed on 16 July 2021. The Society for California Archaeol-
ogy (SCA) recently sent out an email to members with a draft outline for “recommended
qualifications for field osteologists working in California”. Very generally, this guideline
would recommend a master’s degree in anthropology and field experience dealing with
human remains. There are additional qualifiers such as course work in human osteol-
ogy, experience with NAGPRA, and a field school with an osteological focus, among
others. The guidelines have not been published and are currently out for public com-
ment (https://form.jotform.com/90855960158972, accessed on 16 July 2021). Of note, the
guidelines would not be enforceable by the SCA, but would serve as recommendations for
employers. These guidelines for qualifications address specialist expertise by requiring
not only advanced education but also having already worked as a professional and having
been supervised to gain enculturation.

Within forensic anthropology, Galloway and Simmons [132] identified deficiencies in
the standardization of education and training in forensic anthropology over two decades
ago. As a result, more formal efforts were taken up by the Scientific Working Group for An-
thropology (SWGAnth) to establish guidelines for Qualifications [133], and Education and
Training [134]. However, these documents were never widely adopted, nor are they enforce-
able. Passalacqua and Pilloud [85] surveyed practicing forensic anthropologists and found
large variations in terms of graduate coursework taken by the survey participants. The
survey also demonstrated a lack of consensus among practicing forensic anthropologists in
what constituted appropriate education and training in forensic anthropology. However,
there was overwhelming agreement that clear standards for education are needed, with a
high degree of support (96%) for developing an accreditation for forensic anthropology
educational programs. Additionally, Langley and Tersigni-Tarrant [135] outlined a model
to develop qualifications in forensic anthropology based on medical education. In this
model, there would be a set of core competencies demonstrated via various “entrustable
professional activities”. Once core competencies are clearly identified and agreed upon,
appropriate training and certification (to demonstrate expertise) could be implemented.

There are currently no certifications for the profession of bioarchaeology, however, job
ads in the United Kingdom for osteologists have added “professional grade membership
of the CIFA [Chartered Institute for Archaeologists]” as a desired criterion; which is func-
tionally a certification (albeit not necessarily focused on the analysis of human remains).

While no widely supported guidelines or standards currently exist in terms of edu-
cation and training, or qualifications within forensic anthropology, there are certification
processes see, [7] for an overview. In Europe, the Forensic Anthropology Society of Europe
(FASE) and the Royal Anthropological Institute (RAI) oversee certification processes. In
Latin America, the Asociación Latinoamericana de Antroplogía Forense (ALAF) also has
a certification process. In the United States, the ABFA has a certification process, and is
currently the only accredited certifying body for forensic anthropology.

While these certifications may exist, there is still a lack of clear qualifications (i.e.,
who can practice and how do you educate/train practitioners) within both subdisciplines.
This lack of standardized qualifications is problematic as there are no widely agreed-upon
standards for determining who is and who is not an expert and thus capable to perform
tasks as a bioarchaeologist or a forensic anthropologist. As both disciplines are specialized,
it can be difficult for outside agencies to accurately judge the qualifications and requi-
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site expertise of individuals applying to perform these types of analysis. For example,
with very few exceptions there are no standards in bioarchaeology to determine who can
perform work for NAGPRA repatriation, osteological analysis, or excavation in CRM, or
at academic archaeological sites. Nor are there requirements demonstrating expertise to
teach bioarchaeological field-schools, or meaningful certifications or competencies gained
through attending a field school. All of these things can be problematic for the adequate
interpretation of archaeological sites and human remains with an irreplaceable loss of data
and information (when analyses are permitted), particularly in cases of repatriation and
reburial. Moreover, while there is a certification process within forensic anthropology, there
is no legal requirement that a forensic anthropologist must be certified in order to perform
such analyses in a medicolegal context. In fact, any such self-identified specialist can be
tasked to perform this work. Contracting unqualified individuals to perform forensic
anthropological casework can result in improper conclusions, which can hinder identifi-
cation efforts (or worse, misidentify a person) and could have enormous consequences
during the litigation process, for the analyst, their employer and, critically, for the family of
the deceased.

The ramifications of the differences in the disciplines are that if an individual without
the appropriate education and training acts beyond their professional expertise, they are
misrepresenting their qualifications and could potentially do harm to the research project,
field recovery, forensic case/investigation, descendant populations (as occurred with the
well-known example of “The Ancient One”, also known as Kennewick Man [136–138],
and/or the entire discipline; and are thus acting unethically. As such, professionals and
professional organizations should be critically concerned about qualifications, expertise,
and ethical practice. It cannot be expected that law enforcement agencies, attorneys, CRM
firms, museums, or a medicolegal authority be trained in examining the nuances of an
anthropological degree to determine who is and who is not qualified to be a bioarchaeolo-
gist or forensic anthropologist. There must be clear published standards that go beyond
education in skeletal analysis as work in bioarchaeology and forensic anthropology has
become increasingly specialized and individuated.

6. Conclusions: A Way Forward

We attempted to demonstrate that bioarchaeology and forensic anthropology have
evolved and diverged into two separate disciplines, each encompassing its own suite of
literature, education, training, and qualifications. Additionally, we attempted to illustrate
the connection between expertise, ethics, and professional organizations as important as-
pects to the advancement of, and professional practice in, both bioarchaeology and forensic
anthropology. Both disciplines are in need of the development of standardized education
and training programs that reinforce best practice models for their applied foci. Once
appropriate models for education and training have been defined, it can become possible
for practitioners to demonstrate expertise to achieve credentials in a more meaningful and
demonstrable way. Professional organizations should be leading these efforts in addition
to establishing robust and enforceable ethical codes and tailoring their membership in such
a way as to support the further professionalization of their disciplines.

Thus far, bioarchaeology and forensic anthropology have not fully embraced stan-
dardization of practice or qualifications—although forensic anthropology is ahead in this
regard [7]. This shortfall is probably due in part to the largely academic focus of both
bioarchaeology and forensic anthropology and the lack of familiarity with program ac-
creditation in anthropology generally (although this is common, if not required, in many
other academic disciplines, including many of the sciences). However, the accreditation
of academic programs specializing in bioarchaeology or forensic anthropology may be a
relatively straightforward way to ensure the generation of expertise and qualifications.
The generation of consensus-based qualifications (via graduate-level education) for these
subdisciplines would not necessitate large changes in curricula within anthropology de-
partments. Rather, these programs may need to make small adjustments to fit the required
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definitions for accreditation. For example, the definition of qualifications to be a bioarchae-
ologist could be graduate courses in osteology, bioarchaeology, archaeological theory, and
a field school; courses that many bioarchaeologists would readily take and are currently
offered by graduate programs. Further, this coursework could be modeled to allow for the
development of competency of various related applied skills. For example, the osteology
course could provide modules on human vs. non-human identification, or the field school
could provide verification of expertise to adequately excavate and document skeletal mate-
rial within an archaeological context. For forensic anthropology, graduate coursework with
a forensic focus, osteology, and a forensic archaeological field school could be required.
Competency could be demonstrated via mock or mentored casework.

There are already movements to define qualifications within bioarchaeology and
forensic anthropology; however, these should be codified by professional organizations
and linked to education and training. Within bioarchaeology, there are regional movements
to define qualifications to perform bioarchaeological work, but these efforts are in their
earliest stages. As there is currently no professional organization for bioarchaeology, these
steps are being taken by other organizations, such as the SCA, the Register of Professional
Archaeologists (RPA), and the state governments in which the work is being performed.
These qualifications are still vague and may not be broadly enforced or accepted by the
professional community at large. It may be necessary for this work to be undertaken as a
working group within the AAPA/AABA, or independently as is being done with forensic
anthropology via the Organization of Scientific Area Committees for Forensic Science
(OSAC) and the American Academy of Forensic Science Standards Board (ASB). Again,
the definition of these qualifications would not serve as a means to hamper research or
scientific integrity or as a means of keeping people out of the disciplines, but would aid in
determining who is capable of performing disciplinary tasks in an applied setting. It may
also be beneficial for bioarchaeology to develop a national certification process similar to
the ABFA, which could serve to illustrate requisite expertise or competencies to employers
and stakeholders.

Within forensic anthropology, the OSAC and ASB are developing and have published
best practice recommendations and standards for performing various disciplinary tasks. As
part of this initiative, there is a consideration for education and training, and qualifications;
however, these specific documents are not yet finalized. There is already a mechanism to
review and approve education programs within the forensic sciences, the Forensic Science
Education Programs Accreditation Commission (FEPAC). However, this organization
does not currently oversee forensic anthropology programs. Still, the FEPAC model
could provide a way forward for accrediting forensic anthropology (and bioarchaeology)
educational programs, if necessary. Additionally, the ABFA certification process could be
updated and improved to adequately illustrate competencies as outlined by the OSAC and
ASB documents.

While this work is being undertaken to improve and standardize both disciplines,
there is still very little consequence for not following existing standards or ethical codes.
Platitudes on misconduct without operational enforcement mechanisms are not useful.
As performing work beyond one’s qualifications is unethical, we argue that professional
organizations need to more clearly define ethical codes with enforceable consequences.

Bioarchaeology and forensic anthropology do not operate in a vacuum. Both disci-
plines examine the remains of deceased humans, and every action, use for, and result from
that examination affects the beneficiaries and stakeholders associated with those human
remains [139]. While not commonly considered, there has been a recent push to acknowl-
edge that the dead retain their humanity and thus should be granted rights [113,140–143].
Additionally, human subjects have next-of-kin, be they direct living relatives, or more
distantly related descendant-communities. As those performing these analyses are often
responsible for the curation/custody of these remains, we must acknowledge that we have
an ethical and moral responsibility to act in the best interests of these individuals and
their next-of-kin (usually defined in open dialogue with relatives and kin). The analyses
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we perform are used to reach conclusions that are presented in reports, publications, and
other media, available to not only the research subject’s next-of-kin, but also the public at
large. Bioarchaeological reports may be used to understand past human lifeways and as
one part of the process for repatriation and return to descendent communities. Forensic
anthropology reports may be used not only to bring closure to a family, but in court to
adjudicate innocence or guilt. The conclusions of our work have meaning and reflect upon
the identity and lives of the deceased as well as the communities from which they came.

When we consider the importance of this type of work, we should want to ensure that
the individual performing an analysis is an expert, and we owe that commitment to our
communities and the individuals we study. Incorrect analyses and erroneous conclusions
cause harm. As such, we should want to ensure that our students are being educated in the
methods and skills necessary to perform their work and best serve not just their discipline,
but their research subjects. Further, we should want to ensure that the quality of work
we perform as professionals continues to be held to a high standard by generating and
following best practices and/or standards for analytical decisions in applied practice. We
should do these things, not just because they are the right thing to do, but as a service to
those upon which we base not only our work, but also our entire careers.
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Glossary
Accreditation A credential used to demonstrate that an organization (e.g., a university, medical

examiner’s office, forensic anthropology laboratory) meets a set of published
standards [7]. Most forensic anthropology laboratories are accredited under
ISO/IEC 17020 or 17025.

Best Practice Procedures, methods, and/or techniques that have been accepted as preferable
over others as they produce superior results and comply with legal and/or ethi-
cal requirements.

Beneficiaries agents (e.g., victims, families, communities, NGOs) that can be considered
interested parties (i.e., stakeholders) in the investigation, benefiting from the
forensic services provided and the resolution of the investigation to varying
degrees [139].

Certification A credential provided by a professional organization demonstrating that an indi-
vidual has met the knowledge and/or skills required to pass their certification
process [7]. For example, the ABFA provides a certification and is accredited by
the Forensic Specialties Accreditation Board.

Competency The application of knowledge, skills, and abilities to correctly complete specific
disciplinary tasks [7].

Contributory
Expertise

Traditional technical expertise, where the practitioner is the contributory and
interactional expert [105].

Credential Verifiable document used to demonstrate completion of education and/or train-
ing (e.g., transcripts, licenses). Frequently used to “acknowledge, restrict, or
protect the use of a title, and/or activities” [7,144] p. 220.

Education Formal academic coursework from an accredited school, college, or university,
resulting in a degree [113,145].

Expert An individual possessing authoritative knowledge or skill in a particular area,
which can be demonstrated via credentials and/or certification [7,87] pp. 29–30.

Expertise The mastery of not only the salient, but also the tacit, areas of knowledge of a
field of inquiry, which includes the ability to use the language of the field of
inquiry as well as to engage fully in its practices [104].
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Guideline (i.e.: best practice documents) Published documents providing recommendations
for how to perform a particular action or process. Guidelines are typically vet-
ted and published by accredited organizations. Their content must be based
on practitioner and stakeholder consensus. Guidelines are typically more de-
tailed/descriptive than standards, but are also open to interpretation [7].

Interactional
Expertise

The ability to interact with other experts using their language/jargon and under-
stand the concepts they are discussing [102].

Qualifications Education and training needed to demonstrate adequate knowledge to perform
discipline-related tasks in an applied setting [7].

Should Something that is not mandatory, but is professionally considered best practice.
Shall A practice that is professionally considered mandatory.
Specialist Tacit
Knowledge

Serves as the requisite knowledge base(s) to practice a discipline [100].

Standard (i.e.: formal standards) Published documents providing mandatory rules for how
to perform a particular action or process. Standards are typically vetted and pub-
lished by accredited organizations. Their content must be based on practitioner
and stakeholder consensus [7]. Any deviation from published standards can be
considered poor practice and a breach of ethics.

Training Formal structured process of teaching and assessment at a laboratory or other
non-educational institution, often resulting in a certificate [7,113,145].

Ubiquitous Tacit
Knowledge

Knowledge that is easily accessible and therefore ubiquitous [100].
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Simple Summary: Within the practice of forensic anthropology ancestry is oftentimes used as a proxy
for social race. This concept and its implications were explored via a content analysis (2009–2019)
of the Journal of Forensic Sciences. Our findings revealed antiquated views of race based on the
trifecta of continental populations (Asia, Europe, and Africa) continue to be pervasive in the field
despite scientific invalidation of the concept of race decades earlier. Moreover, our employment of
modern geometric morphometric and spatial analysis methods on craniofacial coordinate anatomical
landmarks from several Latin American samples produced results in which the groups were not
patterned by ancestry trifecta. Based on our findings we propose replacing the assumption of
continental ancestry with a population structure approach that combines microevolutionary and
cultural factors with historical events in the examination of population affinity.

Abstract: One of the parameters forensic anthropologists have traditionally estimated is ancestry,
which is used in the United States as a proxy for social race. Its use is controversial because
the biological race concept was debunked by scientists decades ago. However, many forensic
anthropologists contend, in part, that because social race categories used by law enforcement can be
predicted by cranial variation, ancestry remains a necessary parameter for estimation. Here, we use
content analysis of the Journal of Forensic Sciences for the period 2009–2019 to demonstrate the use of
various nomenclature and resultant confusion in ancestry estimation studies, and as a mechanism
to discuss how forensic anthropologists have eschewed a human variation approach to studying
human morphological differences in favor of a simplistic and debunked typological one. Further, we
employ modern geometric morphometric and spatial analysis methods on craniofacial coordinate
anatomical landmarks from several Latin American samples to test the validity of applying the
antiquated tri-continental approach to ancestry (i.e., African, Asian, European). Our results indicate
groups are not patterned by the ancestry trifecta. These findings illustrate the benefit and necessity
of embracing studies that employ population structure models to better understand human variation
and the historical factors that have influenced it.

Keywords: race; ancestry; population affinity; craniofacial variation; geometric morphometrics

1. Introduction

Forensic anthropology is a sub-discipline of biological anthropology, the science of
studying what it means to be human via our biology. Forensic anthropologists are experts
in human skeletal anatomy, growth, and development; expertise that we use in medicolegal
death investigations for the recovery and analysis of human skeletal remains. A significant
part of our analysis is the creation of the biological profile, an evaluation of four criteria
that may assist with identification: age-at-death, sex (for adult skeletons), stature, and
ancestry [1]. The estimation of ancestry is one of the most difficult (and controversial)
parameters of the biological profile. It is often conflated with social race and ethnicity
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by medical examiners, law enforcement, forensic practitioners, and government agencies.
Further, some practitioners have questioned the validity of estimating this parameter
and if the estimation could even hinder identification because of racial bias on the part
of investigative agencies [2–4]. Part of the reason its use is so controversial is that the
biological race concept, namely, that the human species can be divided into biological
races, was debunked decades ago [5]. In the 1990s there was discord within biological
anthropology stimulated by a paper by Lieberman and colleagues [6], presented earlier
in 1987 at the American Association of Physical Anthropologists annual meeting that
reported 50% of the biological anthropologists polled believed in the race concept. Forensic
anthropologists argued that it was a pragmatic decision to include “race” in their forensic
case reports as “race” was used by law enforcement and medicolegal death investigators
working the missing and unidentified cases [7]. Thus, in 1992 a name change from “race” to
“ancestry” was proposed as a less loaded term [7]. This has been rationalized by the notion
that we can connect craniofacial morphology (i.e., size and shape variants of skull bone
features) to social race categories (e.g., United States Census categories) [8,9]. However,
some biological anthropologists questioned the ethics of even estimating this parameter
fearing that its continued use would endorse racist views and be complicit in the social
injustices faced by underrepresented groups [2,10–12].

In a search for the term “ancestry” in the titles of the Journal Forensic Sciences (JFS)
between the years of 2009–2019, 20 articles used “ancestry” and in 2010 and 2011, two
articles still used “race.” The term ancestry appeared 24 times in the keywords between
2009–2019, with four papers using samples identified as black, white, and Hispanic. Five
papers used samples identified as black and white, which included a paper on South African
blacks and whites. There were 12 papers with various iterations of “Hispanic” (i.e., South West
Hispanics); as well as papers that defined their samples as Prehistoric Native Americans; those
that use a few country names (e.g., Japanese, Guatemala, Germany, Thailand, etc.); and
a paper on Native American, Japanese, and Thai samples. This literature review clearly
illustrates the lack of purpose, consensus, and consistent usage of the nomenclature;
suggesting that the transition from race to ancestry was primarily a linguistic change
(see [13] that covers the problems with nomenclature). The many iterations of “Hispanic”
are a result of the 2008 migrant death symposium at the American Academy of Forensic
Sciences annual meeting dealing with the difficulty of identifying unidentified border-
crossers (UBCs) in the United States. Interestingly, the term Hispanic is still commonly used
even though it has no biological meaning [14], and going as far back as 1992, pioneering
forensic anthropologist Alice Brues understood that “Hispanics” from South Florida, the
Southwest, and Texas should not be grouped under one umbrella because they represented
different population migrations to the US [14,15].

The results of this literature review also illustrate the return to antiquated and over-
simplistic views of race based on the trifecta of continental populations from Asia, Europe,
and Africa used by typologists of the early 20th century, have regained popularity [16]. In
part, this is because the reference databases we rely on to compare cranial measurements
of an unknown person were constructed using such categories. However, this facile
presumption ignores underlying microevolutionary mechanisms such as drift, migrations,
and mutation that are responsible for human variation and diversity. Studies of global
populations reveal that human craniofacial morphology fits a neutral evolutionary model
because contiguous populations more frequently exchange genes and/or share common
ancestry [17].

Therefore, rather than studying population affinity via an assumption of continental
ancestry, we instead advocate for a population structure approach. The benefit of such
an approach is that it allows us to understand how microevolutionary factors such as
genetic drift act in concert with cultural factors (i.e., marriage patterns) and historical
events (i.e., epidemics, colonization) to influence human variation. A population structure
approach is empirically driven, meaning that it is based on firm observations without
phylogenetic assumptions and by operational approaches that are hypothesis-driven by
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meaningful questions [18]. When comparing populations one can select various types of
characters for investigation such as morphology, physiology, behavior, and/or ecology.
However, common mistakes made in the selection of a character for estimating similarity
is a failure to identify the biological factors that the characters represent (i.e., their heredity)
and assumptions that they are all equally informative in providing evidence of group
(i.e., phenetic) similarity [18]. One example of the former is with the use of the skull trait
variant post-bregmatic depression [3,4]. As noted, a major consideration in the application
of a population structure approach is to account for historical events such as population
influxes and settlements, religious secularization, language differences, temporality, and
spatial patterning that would be impacted by microevolutionary forces [19].

Myopically, forensic anthropology abandoned the study of human biological variation
based on a strong foundation of examining human variation through a population struc-
ture lens grounded in microevolution, and instead re-embraced a typological approach
that looks a lot like “race” of the early years [20,21]. Therefore, it is clear that a broad
synthesis to better understand the underlying patterns of modern human variation that
would disclose the underlying population structure of the group(s) under study is needed.
Such information would also be of use to biological anthropology more broadly. Here, we
use craniofacial coordinate anatomical landmarks from Latin American samples while em-
ploying modern geometric morphometric and spatial analysis methods to test the validity
of applying the antiquated tri-continental approach to ancestry. These samples were chosen
given the stated problems with the comprehensive, non-critical use of the “Hispanic” label
for anyone from Latin America or Spain, and in an attempt to partition out how different
historical socio-political events within Latin America have influenced biological variation.
Further, we discuss how situating such approaches within a microevolutionary framework
can enrich our understanding of how major historical events influence human variation
and population structure.

2. Materials and Methods
2.1. Samples

The sample totals 397 modern adult individuals and includes individuals from Latin
America (Chile, Colombia, Cuba, Guatemala, Panama, Puerto Rico, and Peru); and com-
parative skeletal samples from Spain and enslaved Africans from Cuba were included
to explore the effects of colonialism and the Transatlantic Slave Trade on the population
structure of the region. Males and females were analyzed separately when this information
was available (see Table 1). Some samples were small due to poor preservation in tropical
environments. To incorporate all of the observed biological information and to increase
sample sizes males and females were pooled as it has been found that sex variation is
negligible within each population included in population [22]. Latitude and longitude were
recorded based on present-day political boundaries. The sample composition is presented
in Table 1.

While we acknowledge the value data collected from such samples continue to con-
tribute to discussions of human variation, it should also be noted that the history and
ethics of human skeletal collections, in general, is often dubious. Such body harvesting all
too often occurred under the umbrella of scientific racism, without the permission of the
deceased or next of kin, and disproportionately targeted marginalized populations.

Sixteen type 1 and 2 standard anatomical craniofacial landmarks (for a total number
of landmarks 16 × 3 dimensions = 48) that should reflect the among-group variation were
utilized in the analyses (Table 2 and Figure 1). The landmarks selected were those that
are of particular interest in forensic anthropology and that would allow for broader shape
coverage. To mitigate the effect of small sample sizes, a PCA was used as a dimension-
reducing technique and limiting the number of variables [23,24].

223



Biology 2021, 10, 602

Table 1. Sample composition and provenience.

Group N Provenance Latitude Longitude

Chile
♀= 34
♂= 37

Juan Munizaga Collection,
Universidad de Chile, Santiago, Chile −33.45 −70.67

Colombia
♀= 11
♂= 53

Antioquia modern skeletal collection,
Escuela Nacional de Criminalística,

Medellín, Colombia
6.230833 −75.5906

Cuba 19 Cemetery Collection, Museo de
Montane, Havana, Cuba 23.11359 −82.3666

Enslaved
Africans 25 Morton Collection, University of

Pennsylvania, US −8.83833 13.23444

Guatemala ♂= 71 Provided by Kate Spradley 14.62843 −90.5227

Puerto Rico ♂= 5 University of Rio Piedras, Puerto Rico 18.46633 −66.1057

Panama 10 Insituto de Medicina Legal, Panama 8.983333 −79.5167

Peru 7 C.A. Pound Human ID Lab, University
of Florida, US −12.0464 −77.0428

Spain
♀= 58
♂= 67 Oloriz Collection, Madrid, Spain 40.41678 −3.70379

Table 2. Anatomical landmarks and associated numbers.

Landmark Number Anatomical Landmarks

1, 2 Asterion, bilateral
3 Bregma

4, 5 Dacryon, bilateral
6, 7 Ectoconchion, bilateral
8,9 Frontomalare temporale, bilateral
10 Lambda
11 Nasion
12 Subspinale

13, 14 Zygomaxillare, bilateral
15, 16 Zygoorbitale, bilateral

2.2. Landmark Precision and Reliability

Only type 1 and type 2 landmarks were included as they have been found to be reliably
reproducible [25]. The landmarks included are those that were found to meet the less than
5 percent error threshold for digitizing and intra-observer error [25]. The coordinate data
were collected using a Microscribe G2X digitizer with a reported average error rate of
239 mm [26]. These samples are part of the reference database for the classification software
3D-ID [27] and prior to inclusion in the software, data underwent extensive error checks
via mapping (i.e., visualization) of all individuals using the Generalized Procrustes analysis
or GPA function in Morpheus et al. [28].

2.3. Geometric Morphometrics

Before statistical analyses can be performed, coordinate data must first undergo a
GPA transformation using the software MorphoJ, which is freely available for downloading
and developed by Klingenberg [29]. GPA brings all specimens into a common coordinate
system, after it translates, rotates, and scales each individual. The advantage of this method
is that morphological shape and size can be examined separately, with shape defined as all
of the geometric information that remains after the effects of location, scale, and rotational
effects are removed [30,31]. Centroid size is defined as a measure of geometric scale that is
mathematically independent of shape [31]. To reduce the dimensionality, a principal com-
ponent analysis (PCA) of the covariance matrix was performed on the GPA-transformed
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coordinate data and these principal components were utilized for ensuing statistical analy-
ses [31]. A canonical variates analysis (CVA) was performed to examine the most amount
of the variation with the least dimensions possible of the a priori groups [29]. A generalized
distance measure (or Mahalanobis distance) was used to examine group similarity [29]. A
discriminant function analysis (DFA) was performed to visualize morphological variation
between the consensus configurations of each group. The phenetic (e.g., morphological)
among-group variation was examined using ANOVA for centroid size. Among-group
variation for shape was analyzed using MANOVA of the principal components scores
derived from MorphoJ. The ANOVA and MANOVA procedures were performed in JMP®

Pro 14.1 [32].
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2.4. Hierarchical Clustering

Average linkage hierarchical (or agglomerative) clustering was conducted using the
generalized distance matrix to examine group similarity [33,34]. The process begins with
each population sample in a single cluster, then in each successive iteration, it merges the
closest pair of clusters until all the data is in one cluster. The cluster analysis was performed
in JMP® Pro 14.1 [32].

2.5. Spatial Analysis

Moran’s I, a product-moment coefficient, was used to measure the spatial autocor-
relation of shape (PC1 as only one variable can be utilized) and centroid size, which is a
measure of genetic similarity between individuals with reference to geographic separation
(latitude/longitude). Spatial correlograms were computed to evaluate the spatial autocor-
relation coefficients for all pairs of localities at specified geographic distance classes [35],
and were performed using the freeware software GeoDa v1.14.0 [36].
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3. Results
3.1. Geometric Morphometrics

Forty-one PC scores were generated from the covariance matrix, which were used
as new variables in the subsequent statistical analyses. The ANOVA shows that size is
significantly different among the groups (Centroid size: (F (11, 385) = 22.35, p ≤ 0.0001). The
MANOVA (of 41 principal component scores derived by MorphoJ) also detected significant
shape variation (Shape: Wilks’ Lambda 0.0058, df = 451, 3706.6, F = 5.12, p ≤ 0.0001).
The anatomical landmarks used here are in the same location on each skull; this property
enables evaluation and observation of any distinctions in overall cranial shape and size
between groups. Morphological variation is illustrated via wireframe graphs that depict
the magnitude and direction of shape change between two mean configurations with the
direction of change depicted from light (light blue) to dark (blue). The starting shape is that
of one sample mean configuration that is deformed into a target shape (second sample)
mean configuration to visualize the differences. The groups illustrated were selected
according to the clusters produced by the hierarchical cluster analysis. The similarity
between the Chilean male mean configuration (light blue) and the Spanish male mean
configuration (blue) is visualized showing little to no variation in the placement of the
anatomical landmarks (Figure 2).
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correspond to the landmarks in Table 2.

To illustrate the importance of a population approach, Panama and Colombia, Panama
and enslaved Africans, and Panama and Spanish consensus configurations were compared
based on known historical events (i.e., conquest, colonialism, and slavery). The morpholog-
ical differences between the Colombians and the Panamanians show that the Colombians
(light blue) have shorter and narrower crania than Panamanians (blue), depicted by the
more posteriorly and inferiorly placed anatomical landmarks bregma and lambda and
more superiorly placed anatomical landmarks asterion and zygomaxillare (Figure 3). It also
shows that Colombians have a longer upper facial height with the anatomical landmark
nasion positioned more superiorly and a more inferiorly placed anatomical landmark
zygomaxillare. Enslaved Africans (light blue) have longer and narrower cranial vaults with
anatomical landmark lambda more posteriorly placed and asterion more anteriorly placed
compared to Panamanians (blue). The wireframe depicting the starting shape of Pana-
manians (light blue) shows that they have shorter cranial vaults and a shorter and more
projecting upper face as evidenced by the more anteriorly placed anatomical landmarks
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subspinale, bregma, and lambda, and more inferiorly positioned anatomical landmarks
bregma and zygomaxillare than the Spaniards’ target shape (blue), see Figure 3.
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3.2. Hierarchical Clustering

The dendrogram produced from the hierarchical cluster analysis using the general-
ized distance matrix shows two distinct clusters: (1) Chile/Spain and (2) Panama, Cuba,
Guatemala, and Colombia which branch off the Chile/Spain cluster. The enslaved African
sample clusters with Peru, and Puerto Rico is the most dissimilar. This is further illustrated
by the constellation plot (Figure 4), which arranges the samples as endpoints. The length
of a line between cluster joints represents the distance between them. The plot shows that
the most distinct group is the sample from Puerto Rico, which is three times the distance
from the Colombian samples and closest to Peru and enslaved African samples. Chileans
and Spaniards are closer to each other than to the rest of the groups.
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3.3. Spatial Analysis

The spatial autocorrelation for shape (using PC1 accounting for 21 percent of the
total variance) and size show that the groups are spatially patterned and heterogeneous
indicated by the positive and significant Z-scores (Table 3). While the correlograms show
the autocorrelations decreasing with increased distance, the pattern is generally non-
monotonic, meaning the pattern is not clinal as would be expected under an isolation-by-
distance model such as kinship [35], for both shape and centroid size. Autocorrelations are
expected to be positive at closer distances and negative at greater distances (Figure 5). The
correlograms do not support a clinal pattern.

Table 3. Moran’s I results for shape using the first principal component and size using centroid size
with reference to geographic location.

Moran’s I Observed Expected Std Dev Z PR > Z

PC1 0.0695 −0.0025 0.0022 32.5 0.001
CS 0.0027 −0.0025 0.0026 2.0 0.027
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4. Discussion

Even though forensic anthropology as a discipline has moved away from using the
term “race” to that of “ancestry”, the early critics of race estimation in forensics questioned
whether the underlying approach to ancestry would change. Thirty years have passed since
this initial criticism and as evidenced by the research published during this time period,
ancestry studies have not advanced past the typological (see for example [37]). It is also
clear that current research is not fundamentally grounded in an evolutionary framework to
understand what has shaped modern human craniofacial [3,4]. The studies surveyed as
part of our content analysis show an over-simplistic, typological, tri-continental approach
that underscores the need for a paradigm shift to a population structure approach, which
incorporates the study of population affinity to understanding modern human biological
variation. This paradigm shift can be applied through meaningful hypotheses and avoiding
thoughtless comparisons of one sample to another without purpose (e.g., Thai to European
Americans, etc.) and by utilizing non-racialized and appropriate reference samples in foren-
sic classification software. For example, implementing nomenclature changes and sample
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selection in existing commonly used forensic software such as Fordisc [38], which uses in-
consistent terms such as “White, Black, Hispanic, Guatemala, and Japanese”, which reflect
continental-level, biologically meaningless, and/or country labels; and AncesTrees [39],
which uses prehistoric samples that are not applicable for forensic use with antiquated six
race categories based in typology, would be a good path forward.

In a recent regional population structure study of pre-contact New World craniofacial
variation, Ross and Ubelaker [40] demonstrated that craniofacial variation was a complex
interplay between the environment and microevolutionary forces and not the result of a
single mechanism. They demonstrated that generally, these pre-Contact populations were
spatially patterned, consistent with an isolation-by-distance model. However, they also
found a weak association between shape-related variation and altitude, and climate. In
the present study, a similar population structure approach was applied to modern Latin
American samples to test whether the antiquated trifecta approach to ancestry was valid.
Our results demonstrate that Puerto Rico is the most different from the others; Spain and
Chile are the most similar to each other compared to the other samples; Panama, Cuba,
Guatemala, and Colombia link to the Spain and Chile cluster; and Peru and enslaved
Africans form a separate cluster.

The Spanish conquistadors brought enslaved Africans with them beginning as early
as 1501 to the Caribbean coast of Panama to colonize the New World [41]. Before the arrival
of the Spaniards, there were an estimated 25,000 Amerindians in Panama; by 1522 their
population estimates were 13,000 [41]. As a result of the decimation of these Indigenous
populations resulting from epidemics and warfare, the Spaniards forced migrations of
neighboring Indigenous populations from Panama and Nicaragua; and during Pizarro’s
expedition to Peru in 1527, 10,000 Amerindians were forcibly displaced to Peru [41]. The
association of the Spanish and Chilean samples can be therefore explained through the
complex history of conquest and colonialism.

The city of Santiago, Chile was founded in 1542 by Spanish conquistador Pedro
de Valdivia. However, the Spanish conquest of Chile was delayed by a long war with
Auracanian Indians [42]. During the colonial period, entire Indian populations were
decimated by disease and forced labor [42]. From the time of European arrival, slavery
of abducted Africans was present, primarily on the Caribbean coast of South America
(e.g., Venezuela and Colombia) and in Ecuador and Peru, as well as [42]. Recent work
focused on La Isabela, the settlement established after Christopher Columbus’ second
voyage to what is now the Dominican Republic, suggests that at least one person of African
origin was present [43]. The influence of the Transatlantic Slave Trade was detected here
by the hierarchical cluster analysis linking Peru and the enslaved African samples. The
constellation plot further elucidates the relationship among the groups and illustrates that
while the sample from Puerto Rico is the most dissimilar, it is closest to the Peru-enslaved
African cluster, followed by Colombia, Guatemala, Cuba, and Panama—all depicting
early contact with the Spanish conquistadors that brought enslaved Africans. The spatial
analysis was used to assess if there was a spatial pattern based on geographic location.
While Moran’s I was significant and positive for both shape and size, the correlograms show
that they are not clinal. The morphological variation for pre-contact populations suggests
heterogeneity from the initial population diffusion into the New World prior to European
contact [40]. While there is a morphological spatial pattern of modern Latin Americans they
do not show a monotonic decrease with distance, but rather indicate repeated population
migrations and expansions such as European colonization, the Transatlantic Slave Trade,
and forced migrations of Indigenous groups [44]. The argument that there are no races, only
clines (or a neutral evolutionary model because neighboring populations more frequently
exchange genes and/or share a common ancestry) is not supported here. This finding
illustrates a more complex mechanism of modern craniofacial variation and underscores
the need for applying a population structure and evolutionary lens to the practice of
forensic anthropology.
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We use Panama with its complicated history, which has been coveted since the Spanish
conquest for its geographic feature as a land bridge of the American continents between
the Atlantic and Pacific Oceans, to illustrate the complex nature of assessing population
affinity in forensic practice. During the Spanish colonial period, jurisdiction for the Panama
territory passed from the Viceroyalty of Lima to Bogotá in the 18th century; it finally gained
independence from Spain in 1821 but was part of the Republic of Colombia until 1903 [41].
Importantly, before Panama’s split from Colombia, in 1847, a United States merchant set
out to build a railroad across the Isthmus that would combine land and sea and open
up the Pacific [45,46]. During its construction, a workforce was brought from across the
globe (e.g., Austria, China, Colombia, England, France, Germany, India, Ireland, and
Jamaica) with thousands dying of malaria, yellow fever, and hardships from the tropical
environment [47]. Another important milestone after the failed attempt by the French in
the late 1800s was the enormous federally funded undertaking by the United States from
1904–1914 to build an interoceanic canal, a massive earthwork project the likes of which
had never been attempted [40,47].

These trans-isthmus ventures brought thousands of migrant workers (~60% from the
West Indies) to Panama. The racial contrast of the workers to the engineers and project
leaders is crucial to understanding the societal organization and marginalization in the
Panama Canal Zone [40]. The colonial caste system transformed into the rigid racial
categories imposed by the United States in the Panama Canal Zone, which segregated the
workforce both physically and geographically. The Panama Canal Zone was a socialist
experiment divided by the white elite minority and the West Indian majority. European
Americans showed open disdain for the Panamanians which combined with a culture
of flagrant inequality inherited from Spain [40,47]. This segregation, an apartheid not
witnessed in any other 20th-century Latin American country [40], was still unmistakable
as late as 1986 when the first author graduated from secondary school in the former
Zone. Given the complexity of Panama’s history, our results are therefore not surprising
when viewed against this backdrop. An analysis that rather solely focused on rigid
ancestral categories would not have been able to pinpoint Panamanians’ dissimilarity to
neighboring countries, in particular to Colombia with their shared history under colonial
rule. In modern forensic anthropology, all of these heterogeneous groups would have been
erroneously designated under the label “Hispanic.”

The results of the present study demonstrate that there is substantial diversity in Latin
American populations, typically organized into the biologically meaningless grouping
of “Hispanic” in contemporary forensic practice. Furthermore, this study obviates the
rejection of the tricontinental approach to ancestry estimation and underscores the need for
applying a population structure approach with an evolutionary lens to not only understand
factors that have influenced craniofacial morphology but test hypotheses about population
movements and the impact of major historical events such as conquest and slavery.

5. Conclusions

In 2000, Smay and Armelagos [2] stated that “it was interesting that the word race
was being replaced by the less provocative term ancestry”, while also indicating they
doubted that the logic behind race would change and that the analysis of races using
exclusive categories based on folk taxonomy would continue simply under a different
name—they were right. Ancestry has become a synonym for race. Given our current global
political climate, continuing to type individuals in this way lends credence to existing
power structures and socioeconomic inequalities. A mere word change is like putting
lipstick on a pig, an ineffective attempt at beautifying and obfuscating something whose
unsightly features are still evident. We need a fundamental, structural, and thoughtful
shift in our paradigm beginning with hypotheses driven by meaningful questions and
careful selection of informative characters for investigation. We need a return—or rather,
beginning—to investigating real human biological variation.
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Simple Summary: Understanding the origin of bone degradation led by bacterial decomposition is
essential in order to allow for the creation of better models to estimate the time elapsed since death
for forensic casework, as well as for the preservation of archaeological specimens over the course
of time. Within this study we applied modern proteomic technologies in order to evaluate how
proteins in decomposing rat bones are affected by different post-mortem conditions, such as different
depositional environments (buried versus exposed samples) and different sample types (whole
carcasses versus fleshed limbs versus defleshed bones), over a period of 28 weeks. We found that the
abundance of specific proteins was associated either with a microbial-led type of decomposition or
with a specific post-depositional environment. Overall, this study shows that proteomic analyses
can be useful to identify microbially- versus non-microbially driven decomposition, and that specific
proteins—such as bone marrow and plasma proteins—can be more affected than others by extrinsic
agents, whereas calcium-binding proteins seem to be more affected by microbial degradation.

Abstract: The evaluation of bone diagenetic phenomena in archaeological timescales has a long his-
tory; however, little is known about the origins of the microbes driving bone diagenesis, nor about the
extent of bone diagenesis in short timeframes—such as in forensic contexts. Previously, the analysis
of non-collagenous proteins (NCPs) through bottom-up proteomics revealed the presence of potential
biomarkers useful in estimating the post-mortem interval (PMI). However, there is still a great need
for enhancing the understanding of the diagenetic processes taking place in forensic timeframes,
and to clarify whether proteomic analyses can help to develop better models for estimating PMI
reliably. To address these knowledge gaps, we designed an experiment based on whole rat carcasses,
defleshed long rat bones, and excised but still-fleshed rat limbs, which were either buried in soil or
exposed on a clean plastic surface, left to decompose for 28 weeks, and retrieved at different time
intervals. This study aimed to assess differences in bone protein relative abundances for the various
deposition modalities and intervals. We further evaluated the effects that extrinsic factors, autolysis,
and gut and soil bacteria had on bone diagenesis via bottom-up proteomics. Results showed six
proteins whose abundance was significantly different between samples subjected to either microbial
decomposition (gut or soil bacteria) or to environmental factors. In particular, muscle- and calcium-
binding proteins were found to be more prone to degradation by bacterial attack, whereas plasma
and bone marrow proteins were more susceptible to exposure to extrinsic agents. Our results suggest
that both gut and soil bacteria play key roles in bone diagenesis and protein decay in relatively short
timescales, and that bone proteomics is a proficient resource with which to identify microbially-driven
versus extrinsically-driven diagenesis.

Keywords: taphonomy; bone proteomics; PMI; microbial decomposition; bioerosion; forensic sciences
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1. Introduction

Bones are among the longest-preserved biological tissues in nature. Nevertheless, it is
known that their preservation in both exposed conditions and buried contexts is affected by
a multitude of extrinsic environmental variables, including physical and chemical environ-
mental agents, scavengers, soil hydrology and pH, temperature, and microorganism-driven
bioerosion [1]. Bone diagenetic processes have been extensively investigated over long
timescales (e.g., in the archaeological records), with the aim of better understanding the
taphonomic processes driving bones’ preservation and their ultimate conversion into fossil
specimens [2–4], as well as the origin of the microbes driving bioerosion [5]. In particular,
the effects of microbial attack and bone hydrolysis, resulting from intrinsic (i.e., derived
from gut) or extrinsic (i.e., derived from soil and environment) microorganisms on the bone
structure, are still a debated topic in archaeology and in palaeontology, and researchers
have not yet fully agreed on which source can be considered to be the major driver for
bone bioerosion [1,6]. In addition, these processes are less well understood when consider-
ing shorter timeframes (e.g., in forensic contexts), even though early taphonomy studies
may benefit a wide range of fields, including forensic sciences, in addition to archaeology,
biomolecular archaeology, and palaeontology.

Biomolecules in bones have been successfully found in a variety of archaeological
and fossil records [7–10], as well as in forensic contexts (e.g., human bones collected from
caseworks or cemeteries) [11,12], or in situations simulating forensic scenarios (e.g., using
animal proxies to conduct bone proteomic studies) [13,14]. In particular, proteins have
been shown to survive better than DNA [9,15]. Bone proteomics is a promising tool
with which to evaluate chronological bone degradation through the evaluation of the
survival of collagen [16] and of the decay of non-collagenous proteins (NCPs) [17–19].
Several studies show that bone collagen content can be halved in less than a thousand
years [20], depending on burial conditions, with microbial attack having a strong impact
on its persistence, particularly for bones that have been buried/located in relatively cold
regions, such as northern Europe [21]. In neutral conditions, bone collagen is considered
to be predominantly stable and insoluble [22]. On the one hand, collagen is protected by
the strong linkage with the mineral matrix of the bone, and on the other hand, it protects
the hydroxyapatite from dissolution [22]. Collagen deterioration through hydrolysis is a
complex process mainly driven by bacterial collagenases, despite the fact that chemical
(non-enzymatical) hydrolysis can also happen in situations involving the presence of high
temperatures or extreme pHs [23]. Enzymatically-driven hydrolysis requires the access of
collagenases to the collagen helix—a situation that occurs only when there is enough space
among crystallites to allow the penetration of the enzymes [23], such as when the matrix
has been partially dissolved by the presence of, for example, acid metabolites generated
by the putrefaction of the soft tissues during the cadaveric decomposition [22]. Bacterial
proteases are not able to function at acidic pHs, so the environment should become more
alkaline/neutral to allow collagenases in bones to work [20].

Despite the great number of works aimed at understanding the mechanisms behind
collagen survival within bones, less is known regarding the degradation and subsistence
of NCPs [24]. Various studies on archaeological and palaeontological bones suggested
that NCPs may survive better than collagen, due to their strong affinity to the mineral
matrix of the bone [17,25,26]. However, there are limited experimental studies exploring
the mechanisms and the quantitative degradation of NCPs in forensic timeframes. A work
based on the burial of swine carcasses showed that the majority of changes in the proteome
occur in the first four months of the PMI [13]. The study highlighted two different be-
haviours: proteins for which the relative abundance significantly decreased during the first
months, to then become more stable (plasma proteins); and proteins showing some degree
of stability in the initial stages of decomposition, followed by a drastic decrement (muscle
proteins) [13]. These findings are also supported by a study by Creamer and Buck [27], who
employed luminol to prove the time-dependent degradation of haemoglobin—a methodol-
ogy that can be applied to classify skeletal human remains as forensic or archaeological.
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In addition to haemoglobin, transferrin has always attracted attention, as it has been consid-
ered a reliable indicator of PMI, although it is not directly extracted from bone tissue [28].
Despite its potential, its degradation was seen to be highly temperature-dependent [28]
and, therefore, not the most suitable biomarker for long PMIs when temperature can fluc-
tuate considerably. The degradation of the muscle proteins identified in bone samples was
previously interpreted as a link to the complete decomposition of superficial soft tissues at
prolonged PMIs [13]. This finding is also supported in the literature, where similar patterns
were seen for muscle proteins extracted from muscular tissue after various PMIs [29,30].

In order to understand the phenomena involved in the degradation of proteins in
bones, it is essential to illustrate the changes to which a corpse is subjected from its
death, as well as the role of microbial communities—also referred to by certain authors
as the necrobiome—which are among the main agents involved in post-mortem tissue
decomposition [31]. The first late post-mortem change is the autolytic process, which
takes place just after death and is caused by the breakdown of cellular membranes, which
causes the release of hydrolytic enzymes able to digest the surrounding tissues. During
this process, the body environment is rapidly converted from an aerobic to an anaerobic
one, allowing anoxic bacteria from the gut (endogenous bacteria) to multiply and the body
to enter the putrefactive stage, which generally starts 1 hour post-mortem and lasts for
48 h [6]. Throughout putrefaction, the second stage of late post-mortem changes, bacteria
transmigrate from the gut to the rest of the body via the blood vessels in a matter of
hours [32,33], reaching the bones within a day of death [22]. The activity of endogenous
bacteria via reductive catalysis results in bloating of the corpse, due to the accumulation of
gases [22] that would eventually lead to abdominal rupture and the exposure of internal
tissues, offering an ideal environment for exogenous microbial communities present in the
soil and in the surrounding air [34–36]. These exogenous communities proliferate due to
the richness of the nutrients offered by the decomposing corpse, replacing the endogenous
communities [37]. With the progression of decomposition, specific bacterial species are
attracted in a quite predictable way, regardless of the type of burial environment. For this
reason, the microbial succession in soil has been studied by several authors as a means of
estimating the PMI [38,39].

Although the post-mortem microbial succession has attracted significant interest for
PMI estimation, the origin of the bacteria responsible for bone diagenesis is still hugely
debated [1,5,6]. A study conducted by Damann et al. [40] identified changes in the abun-
dances of Firmicutes, Actinobacteria, Acidobacteria, and Proteobacteria within human
ribs at various decomposition stages. In particular, they found a predominance of gut
bacteria during the earlier decomposition stages (e.g., partially skeletonised remains), and
of soil bacteria during the advanced decomposition stages (e.g., dry remains) [40]. There
is a consensus in the current literature that microbes (both bacteria and fungi) can affect
the internal microstructure of bones [1,41,42]. White and Booth [1] proposed gut bacteria
as the main drivers of the bone diagenetic processes; Reiche et al. [43] suggested instead
that soil microbes are mainly responsible for bone diagenesis in archaeological samples.
However, given the depth of burials, and the reduced number of soil microbial commu-
nities found at the average burial depth in contrast with shallower burial depths [44],
it may be possible that soil microbes alone are not uniquely responsible for the degree of
diagenesis observed in the work of Reiche et al. [43]. Jans [22] seems to attribute more
importance to endogenous bacteria as drivers for bone bioerosion, whereas, more recently,
Turner-Walker [5] suggested that soil bacteria are essential for bone diagenesis, and stated
that the “hypothesis that bacterial tunnelling arises from gut bacteria, although plausible,
is unproven”.

One aspect that should never be neglected is the importance of the depositional
environment, which can also lead to measurable physical and chemical changes to the
microstructure of the bone, due to microbial interactions between the hard tissue and the
surrounding environment [43,45]. This introduces a large number of factors that have
to be considered when evaluating the decomposition and decay of a corpse; therefore,
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systematic experiments are necessary in order to limit these variables and isolate the ones
of interest. Thus, ultimately, both the decomposition process [46,47] and the depositional
environment [37,47,48] can have strong effects on the extent of bone diagenesis, which
seems to occur at different rates in buried bones when compared with exposed ones [49].

The present work represents a preliminary study that aims to fill the knowledge
gaps concerning early bone diagenesis in forensic timeframes through the innovative ap-
proach of bone proteomics. We consider here the existence of three main microbial groups:
endogenous microbes (derived predominantly from the gut), aerobic environmental mi-
crobes (present in the air surrounding exposed carcasses), and soil microbes (exogenous
bacteria in the burial environment). We focused specifically on the proteomic alterations
observed in bones exposed predominantly to the combined action of autolysis coupled
with the effects that endogenous and environmental bacteria, soil bacteria, or environmen-
tal bacteria alone can have on bodies, over short timescales. It should be noted that the
presence of the “environmental bacteria” also implies the contemporaneous presence of
other living species (e.g., insects) able to colonise the decomposing bodies. The deposition
times ranged between 4 and 28 weeks, and the combination between different “sample
types” (whole remains, excised fleshed limbs, and defleshed bones) and “depositional
environments” (exposed on a clear plastic surface in an outdoor environment or buried in
soil) allowed the evaluation of the effects that these different microbial groups had on the
bone proteomes. The objective of this approach is to evaluate the presence of proteomic
alterations over short/forensic timescales, and assess the effects that specific decomposers
and environmental variables have on them. We were able to clarify the potential that bone
proteomics has in the evaluation of early diagenetic processes, and to elucidate some of the
mechanisms underlying the NCPs’ preservation within bones in specific conditions within
short timescales.

2. Materials and Methods
2.1. Field Experiment and Sample Composition

Eleven black rats (Rattus Rattus) were purchased frozen from a reptile centre (Northa-
mpton Reptile Centre), operating in accordance with the Animal Welfare Act 2006, com-
pliant with ethical research standard practices. We used animal models in order to test
different post-mortem conditions with minimal interindividual variability. The animals
were flash frozen within ~2 h after death, delivered frozen, and stored at −20 ◦C until the
beginning of the study. Five rats (named “whole body” and “control” for the purpose of
this paper) were not subjected to any dissection, so they were intact until the beginning
of the experiment. Six rats were used to obtain either back limbs (named “fleshed limb”)
or back limb bones (named “defleshed bone”). Prior to dissection, they were defrosted
overnight at 4 ◦C. Although we are aware of the effects that freeze-thawing can have on
intrinsic bacterial communities [50] and on soft tissues and cell structures [51], several
studies have showed that bacteria are able to survive during freezing procedures [52,53],
so we are confident that this experimental choice has not impaired the correct evaluation
of the decomposition phenomena associated with the presence of intrinsic bacteria in
this study.

The experimental samples were buried at the University of Huddersfield’s animal
taphonomic facility (HuddersFIELD), from mid-November 2018 to May 2019. The facility
is situated on grassy farmland in West Yorkshire (UK). Local temperature and rainfall
information was collected using a local weather station, World Weather Online, and
can be found at (https://www.worldweatheronline.com/halifax-weatheraverages/west-
yorkshire/gb.aspx, accessed on 1 November 2019). Average monthly temperature and
rainfall readings/values were recorded from November 2018 to May 2019—the duration of
the field experiments (Supplementary Materials, Figure S1).

The samples were deposited in either exposed or buried conditions. The exposed
samples were placed into two large plastic boxes, one box for each tissue type (e.g., one box
for the whole rats, one for the excised fleshed limbs). The boxes were open, had holes
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drilled in the base to allow drainage of rainwater, and were placed within large, locked wire
cages in order to protect them from large scavengers. The buried samples were placed into
smaller, soil-filled 3-L boxes, in order to prevent disturbance of the samples by scavengers.
The samples were placed on top of ~1.35 L of Godwins topsoil and further covered with
1.35 L of the same topsoil. These boxes were closed and their lids were weighted down to
protect the contents from scavengers. Upon collection, the defleshed bones were cleaned
of any soil or debris using distilled water. The whole remains and the excised fleshed
limbs were defleshed where necessary using a #10 scalpel. All bones were cleaned using
distilled water and then stored in the freezer until further preparation. Each bone specimen
was placed into a small clean polythene bag and gently broken into smaller fragments
with a mortar. Three small fragments (sized ~3–4 mm2) were used as biological replicates
(named “A”, “B”, and “C”) for each of the samples used (Table 1). As a result, we totalled
39 samples that were subjected to further proteomic extraction and analysis.

Table 1. Samples used for proteomics, with the sample codes, depositional environment, sample type, post-mortem
timescale, and proteomics code associated with them.

Sample Codes Depositional Environment Sample Type Timescale in Weeks Proteomics Code

CTRL A-B-C Control Control 0 NP25-26-27
w12 BB A-B-C Buried Defleshed 12 NP28-29-30R
w12 EW A-B-C Exposed Whole body 12 NP31-32-33
w12 EF A-B-C Exposed Fleshed limb 12 NP19-20-21
w20 BB A-B-C Buried Defleshed 20 NP4-5-6
w20 EW A-B-C Exposed Whole body 20 NP1-2-3
w20 EF A-B-C Exposed Fleshed limb 20 NP7-8-9
w24 BB A-B-C Buried Defleshed 24 NP34-35-36
w24 EW A-B-C Exposed Whole body 24 NP37-38-39
w24 EF A-B-C Exposed Fleshed limb 24 NP22-23-24
w28 BB A-B-C Buried Defleshed 28 NP10-11-12
w28 EW A-B-C Exposed Whole body 28 NP13-14-15
w28 EF A-B-C Exposed Fleshed limb 28 NP16-17-18

2.2. Protein Extraction

Proteins were extracted following the protocol proposed by Procopio and Buckley [54].
Briefly, each bone fragment was placed in a separated 1.5-mL tube and decalcified with
1 mL of 10% formic acid (Fisher Scientific, Loughborough, UK) for 6 hours at 4 ◦C. The
acid-soluble fraction was discarded, and the pellet was then treated with 6 M guanidine
hydrochloride (Sigma-Aldrich, Gillingham, UK)/100 mM TRIS buffer (Thermo Fisher
Scientific, Paisley, UK) with an adjusted pH of 7.4 for 18 h at 4 ◦C. The acid-insoluble
fraction was then exchanged with 50 mM ammonium acetate (Scientific Laboratories
Supplies, Nottingham, UK) using 10 kDa molecular weight cut-off filters (Vivaspin®500
from Sartorius, Göttingen, Germany), and the proteins were then reduced with 5 mM
dithiothreitol (Fluorochem, Hadfield, UK) for 40 min at room temperature, alkylated using
15 mM iodoacetamide (Sigma-Aldrich, UK) for 45 min in the dark at room temperature, and
quenched by adding 5 mM dithiothreitol. Proteins were digested using trypsin (Promega,
Southampton, UK) for 5 hours at 37 ◦C, and then frozen. We added 1 v/v% trifluoroacetic
acid (Fluorochem, Hadfield, UK) to the samples prior to their desalting and purification,
in order to bring them to a final concentration of 0.1 v/v% trifluoroacetic acid. The purifi-
cation was achieved using OMIX C18 pipette tips (Agilent Technologies, Stockport, UK),
in accordance with the manufacturer’s instructions. The peptides were finally eluted into
100 µL of 50 v/v% acetonitrile (Thermo Fisher Scientific, UK)/0.1 v/v% trifluoroacetic
acid. Samples were then left in the fume cupboard with lids open in order to dry them
completely at room temperature prior to their submission for LC–MS/MS analysis.
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2.3. LC–MS/MS Analysis

Samples resuspended in 5 v/v% ACN/0.1 v/v% TFA were analysed via LC–MS/MS
using an Ultimate™ 3000 Rapid Separation LC (RSLC) nano LC system (Dionex Corpora-
tion, Sunnyvale, CA, USA) coupled to a Q Exactive™ Plus Hybrid Quadrupole-Orbitrap
Mass Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Peptides were separated
on an EASY-Spray™ reverse phase LC Column (500 mm × 75 µm diameter (i.d.), 2 µm,
Thermo Fisher Scientific, Waltham, MA, USA) using a gradient from 96 v/v% A (0.1 v/v%
FA in 5 v/v% ACN) and 4 v/v% B (0.1 v/v% FA in 95 v/v% ACN) to 8 v/v%, 30 v/v%,
and 50% B at 14, 50, and 60 min, respectively, at a flow rate of 300 nL min−1. Acclaim™
PepMap™ 100 C18 LC Column (5 mm × 0.3 mm i.d., 5 µm, 100 Å, Thermo Fisher Scientific)
was used as trap column at a flow rate of 25 µL min-1 kept at 45 ◦C. The LC separation
was followed by a cleaning cycle with an additional 15 min of column equilibration time;
then, peptide ions were analysed in full-scan MS scanning mode at 35,000 MS resolution
with an automatic gain control (AGC) of 1e6, injection time of 200 ms, and scan range of
375–1400 m/z. The top 10 most abundant ions were selected for data-dependent MS/MS
analysis with a normalized collision energy (NCE) level of 30, performed at 17,500 MS
resolution with an AGC of 1 × 105 and maximum injection time of 100 ms. The isolation
window was set to 2.0 m/z, with an underfilled ratio of 0.4%, and dynamic exclusion was
employed; thus, one repeat scan (i.e., two MS/MS scans in total) was acquired in a 45 s
repeat duration, with the precursor being excluded for the subsequent 45 s.

2.4. Protein Identification and Statistical Analysis

Peptide mass spectra were then searched against the SWISS-PROT database using the
Mascot search engine (version 2.5.1; www.matrixscience.com, accessed on 10 December
2019) for matches to primary protein sequences, specifying the taxonomy filter as Rattus rat-
tus. This search included the fixed carbamidomethyl modification of cysteine, which results
from the addition of DTT to proteins. In the light of our aims, deamidation (asparagine
and glutamine) and oxidation (lysine, methionine and proline) were also considered as
variable modifications. The enzyme was set to trypsin, with a maximum of two missed
cleavages allowed. It was assumed that all spectra held either 2+ or 3+ charged precursors.

Progenesis QI for Proteomics software (version 4.2; Nonlinear Dynamics, Newcastle,
UK) was used to identify the proteins and assess their relative abundance in each sample.
The relative abundance of the proteins present in the samples is calculated by the software
by measuring the peptide ion abundances as a result of the sum of the areas under the
curve (AUC) for each peptide ion. The software normalizes each LC–MS/MS run against a
reference run automatically selected as the normalization reference, in order to consider
and to correct the systematic experimental variations that can occur between different
runs; then, it enables protein comparisons between different experimental conditions,
and the identification of protein expression changes. Peptide ions with a score of <23,
indicating identity or extensive homology (p < 0.05), were excluded from the analysis
based on the Mascot evaluation of the peptide score distribution. To further increase the
reliability of the obtained results, proteins with a peptide count of <2 were also excluded
from further analysis.

STRING software (version 11.0) was used to visualize links among the identified
proteins, and to evaluate the significance of their interactions [55]. The confidence score set
for showing interactions was set to “medium = 0.400”.

Statistical analysis was carried out on arcsinh normalised data [56], in the same
way in which the Progenesis software operates. Principal component analysis (PCA)
was performed on the normalized abundance values exported from Progenesis, using R
software with the factoextra and ggplot2 packages, using proteins sorted by their ANOVA
FDR adjusted p values (or “q value”) in order to exclude the proteins that showed similar
relative abundances across different conditions (and that did not contribute to cluster
separations). Protein abundances were considered to have significantly contributed to
the explanation of the variance between different groups of samples when their ANOVA
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p < 0.05. For post-hoc analysis, Tukey’s HSD test was employed with significance set at
p < 0.05 for pairwise comparison.

3. Results

Overall, 67,490 MS/MS spectra were acquired from the LC–MS/MS analyses, and
were searched against the SWISS-PROT database using Mascot. After the refinement steps
previously mentioned, 2,539 search results (ions) were matched, and after the exclusion of
proteins matched with less than 2 unique peptides, we obtained 168 proteins. In order to
exclude the possibility that the proteomic results were associated with differences in the
PMIs of the specimens, we grouped samples exclusively based on their PMIs, and plotted
them on a PCA graph (Figure 1A). The samples did not cluster in clearly and defined
positions, apart from the control samples, and the variability explained by summing the
first and second components was less than 50%. To verify that the clustering was not
affected by the inclusion of the control group in the model, we excluded those from the
PCA (Figure 1B). Moreover, in this case, no clear clusters were identified, and samples
belonging to different PMIs overlapped on both dimensions without any clear trend.
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Figure 1. PCA plot representing the samples grouped by their PMIs; (A) including control samples, and (B) excluding
control samples. The same-coloured icons indicate the same PMI, as reported in the legend. Control (CTRL) = 0 weeks
PMI. Protein abundances used for the PCAs were the ones whose q values were significant between the different conditions
(n = 90, q < 0.05). The bigger icons in the plot for each group represent the centroids of the samples in the group.

Samples were then grouped based on the depositional environment and on the sample
type, in order to test whether or not the bone proteome was affected by it and, consequently,
whether any variation in bone diagenesis could be observed via the analysis of the bone
proteome. Results showed a significant difference in the proteomes of the three distinct
sample types, and it was possible to identify specific proteins responsible for the variance
observed, particularly when comparing the exposed fleshed samples with either the buried
defleshed bones or the exposed whole bodies (Figure 2). The only situation in which it
was not possible to identify proteins with significant q values was the exposed whole
bodies versus the buried defleshed bones, meaning that the two groups shared a similar
proteomic profile. The reported PCAs were able to cluster both fleshed and defleshed
limbs (Figure 2B), and fleshed limbs versus whole bodies (Figure 2C), with models able
to explain 58.4% and 61.2%, respectively, of the total variance between the two groups.
We were also able to find the specific proteins that contributed the most to the variance
observed in the PCAs (Figure 2E,F; red arrows).
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Figure 2. PCA plots (top) and variable maps (bottom) representing the samples grouped respectively in: (A,D) buried
defleshed bones vs. exposed fleshed limbs; (B,E) exposed fleshed limbs vs. exposed whole bodies; and (C,F) buried
defleshed bones vs. exposed fleshed limbs vs. exposed whole bodies. In each cluster, a bigger coordinate with the same
colour was calculated as the centroids of the samples in the group. The same-coloured icons indicate the same condition.
The ellipse shows a cluster categorised by the same condition (confidence interval of 0.95). Protein abundances used for the
PCAs were the ones that were statistically significant according to their q values.

Starting from the significant contributors that were able to discriminate different
groups of samples, we selected the ones that were significant (q < 0.05) both for fleshed
limbs versus defleshed bones and for fleshed limbs versus whole bodies. We obtained six
proteins in this manner, which differed in abundance when tested by post-hoc pairwise
comparisons: apolipoprotein A-II (APOA2), leukocyte elastase inhibitor A (ILEUA), bone
marrow proteoglycan (PRG2), annexin A2 (ANXA2), voltage-dependent anion-selective
channel protein 1 (VDAC1), and myosin-4 (MYH4) (Figure 3). APOA2 is a plasma protein
produced by the liver and commonly found in bone tissue [57]; ILEUA and PRG2 are bone
marrow proteins [58,59]; ANXA2 is a bone specific protein associated with osteoclasts and
bone tissue formation [60]; and MYH4 and VDAC1 are both skeletal muscle proteins [61,62].
When uploaded on the STRING software, these six proteins did not show significantly
more interactions then expected, as predictable from the very small set of proteins (n = 6).
However, according to Gene Ontology (GO) terms, we found functional enrichments for
the molecular functions “binding” (n = 5; strength 0.56), “protein-containing complex
binding” (n = 4; strength 1.45), and “anion binding” (n = 4; strength 1.04), for the biological
processes “regulation of cellular metabolic process” (n = 5; strength 0.93), “response to
stimulus” (n = 5; strength 0.72), and “regulation of catabolic process” (n = 4; strength 1.72),
as well as for the cellular components “protein-containing complex” (n = 4; strength 0.859)
and “extracellular space” (n = 3; strength 1.26) (Figure 4).
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Figure 3. Boxplots with the relative abundances (arcsinh normalised) of (A) APOA2, (B) ILEUA,

(C) PRG2, (D) ANXA2, (E) MYH4, and (F) VDAC1. Fleshed exposed limbs are represented in blue,

defleshed buried bones in yellow, and exposed whole bodies in red. The plots provide extended p 

values for multivariate ANOVA and coded significance for Tukey’s HSD test (p < 0.0001 ‘****’; p < 

0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’; p > 0.05 ‘ns’). 
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Figure 3. Boxplots with the relative abundances (arcsinh normalised) of (A) APOA2, (B) ILEUA, (C) PRG2, (D) ANXA2,
(E) MYH4, and (F) VDAC1. Fleshed exposed limbs are represented in blue, defleshed buried bones in yellow, and exposed
whole bodies in red. The plots provide extended p values for multivariate ANOVA and coded significance for Tukey’s HSD
test (p < 0.0001 ‘****’; p < 0.001 ‘***’, p < 0.01 ‘**’, p < 0.05 ‘*’; p > 0.05 ‘ns’).
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Figure 4. Functional enrichments in GO terms (molecular functions, biological processes, and cellular components) for the
six proteins identified as being significant among the groups. For each GO class, different colours and symbols represent a
specific GO term.

When examining the pairwise relationships between the different groups, it was clear
that fleshed limbs differ from the other two groups. In particular, the abundance of APOA2
(Figure 3A) seemed to be significantly lower in fleshed limbs compared to both defleshed
bones and whole bodies. These latter two groups did not show any significant differences
between one another. ILEUA2 and PRG2 were also less abundant in fleshed limbs than
in the other two sample types, and showed significant differences between fleshed limbs
and both defleshed bones and whole bodies (Figure 3B), and between fleshed limbs and
whole bodies (Figure 3C). In contrast, ANXA2 and VDAC1 were more abundant in limbs
covered in flesh compared to the remaining groups, and the differences were moderately-
to-highly significant (Figure 3D,F). Finally, MYH4 showed a significant difference between
fleshed limb and whole-body deposition, and a less strong (but still significant) difference
between fleshed limbs and defleshed bones (Figure 3E). The same trend also applies when
the different type of depositional environment is taken into consideration, as defleshed
bones were buried, whereas fleshed limbs and whole bodies were placed on the plastic
surface and exposed to environmental factors (such as humidity, insects, environmental
microorganisms, etc.).

4. Discussion

This work was aimed at understanding whether significant differences could be
found among the proteomes extracted from limb bones deposited/buried into different
depositional environments and subjected to different post-mortem conditions, which
should have involved different causative agents and impacted the progression of bioerosion
and early diagenetic phenomena, over a relatively short period of time ranging from 0 to
28 weeks. In order to do so, we examined the proteomes collected from either exposed
whole remains, exposed fleshed back limbs, or buried defleshed bones.

To evaluate which parameters might have contributed the most to the observed
proteomic results and associated diagenetic phenomena, it is important to summarize
which variables were expected to take place in decomposition in the various sample
types and depositional environments tested. Whole bodies exposed to the surface were
subjected to the effects of autolysis and to the combined action of both intrinsic bacteria and
environmental aerobic bacteria and insects (e.g., blowflies). In this case, the environmental
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conditions (e.g., temperature, humidity, rainfall, etc.) have also directly impacted the
decomposition rate of the carcasses. A very similar situation can be expected for the fleshed
limbs exposed on the surface, with the main difference being that limbs disarticulated from
the rest of the body may or may not have been colonised by gut bacteria, depending on
the speed at which those bacteria travelled along the vascular system reaching the limbs
(and consequently the bones) post-mortem and prior to their dissection. Hence, overall,
the effects that internal bacteria had on bone diagenesis and bioerosion should be limited
in comparison with those observed on whole carcasses. Finally, the last scenario is the
one that differs the most from the other two; in this last case, buried defleshed bones were
subjected predominantly to the action of exogenous (e.g., soil) bacteria, soil insects, and
autolytic phenomena, and only in a minor way by the presence of intrinsic gut bacteria
that eventually managed to reach the bones prior to their disarticulation. Moreover, the
environmental conditions affected the decomposition of these samples in a less direct
way, due to the surrounding soil matrix that protected them from, for example, drastic
temperature changes, direct rainfall, and changes in humidity.

Within this work we did not find significant differences in relation to specific PMIs,
but we observed a clear difference between the proteomes of the exposed fleshed limbs and
those of the exposed whole remains or buried defleshed bones. In particular, we highlighted
six proteins whose abundance was significantly affected by the sample type and by the
environmental deposition.

Between the proteomes from the exposed fleshed limbs (subjected predominantly to
autolysis and to environmental microorganisms and factors) and from the buried defleshed
bones (subjected predominantly to the action of autolysis and soil bacteria), we found
APOA2 to be the greatest contributor among the six proteins with different abundances
within the various conditions tested. APOA2 is a plasma protein, and was seen to be
significantly less abundant in fleshed exposed limbs compared to the other two groups
(Figure 3A). No significant differences were shown between buried bones and whole bodies.
This suggests that the presence of a cut on the limb (e.g., following the excision of the
limb from the body) and the following exposure of the tissues to the external environment
allows the bodily fluids (including blood) to flow out faster compared with the whole
carcasses. Additionally, bones exposed to external factors (including insects and bacteria,
but also environmental conditions) can be subjected to considerably more protein decay
than bones either “protected” by an intact carcass or surrounded by soil. It is frequent to
find plasma and muscle proteins in bones as residuals from surrounding soft tissues, even
when muscles are carefully removed (e.g., in the example of defleshed bones, Procopio and
Buckley, data not published). Overall, this could explain the decrease in the number of
plasma proteins found in specimens taken from the fleshed limbs group.

These possible interpretations are supported by the fact that the carcasses did not
reach the complete skeletonization stage (according to their total body scores in accordance
with the table proposed by Adlam and Simmons [63], data not shown) at the end of the
experiment, with bone exposure being only <50% of the scored area.

We also noticed similar behaviour for two bone marrow proteins—namely, ILEUA
and PRG2—although their contribution to the observed variance was smaller than that
found for APOA2. These bone marrow proteins showed similar abundances in the buried
bones and in the whole-body samples, but were notably less abundant in the exposed
fleshed limbs. This further supports our interpretation that the burial environment and
the entire body mass could function as protection from external environmental conditions,
reducing the time of exposure of the bone to the mechanical action of rain. These results
indicate that bone marrow and plasma proteins are degraded in a faster way in the exposed
fleshed limbs in comparison with exposed whole bodies and buried bones, although the
reasons for this finding are still not entirely clear, and warrant further investigation. It does
not seem illogical that this behaviour is linked to groups of proteins with a lower affinity
for hydroxyapatite and bone collagen [17]. In the theoretical absence of soil or gut bacteria,
proteins of these groups are mostly degraded by autolysis and bioerosion, while mineral-
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binding proteins have shown more longevity and, therefore, represent an ideal target for
archaeological research [4,24,46].

MYH4, ANXA2, and VDAC1 were found to be more abundant in the fleshed samples
than in the whole ones or in the buried bones, indicating that these proteins may have been
attacked by bacteria (either gut or soil bacteria) more than by the extrinsic factors. ANXA2
is a calcium-binding protein involved in osteoclast formation and bone resorption [64].
The higher abundance found in the exposed fleshed limbs could reflect the fact that proteins
more intimately connected to hydroxyapatite are less prone to degradation from autolytic
processes and environmental factors, but are attacked by the microbial action during bone
diagenesis, even in relatively short forensic time frames. Again, for this protein significant
differences were only found between fleshed limbs and the remaining two groups, but not
between defleshed bones and whole bodies. These findings support what was previously
stated for plasma and marrow proteins. The presence of both gut and soil bacteria here
plays a major role in reducing the abundance of proteins with high calcium ion affinity.
Despite no significance difference being found between the two groups, and so between the
two distinct bacterial sources, Figure 3D shows the detrimental effect of microbial action
on this protein.

MYH4 and VDAC1 behaved in a similar way to ANXA2. Both of these proteins are
highly expressed in the skeletal muscle: myosins are well known for their ATPase activity
in the skeletal muscle that allows muscle contraction [65], while VDAC1 is involved in
the transport of ATP in the sarcoplasmic reticulum of the skeletal muscles (in addition to
mitochondria) [66]. The abundance of these proteins was constantly reduced in the presence
of either gut or soil bacteria, as shown by the very small deviations from the median
recorded for the defleshed bones and for the whole-body samples. The identification
of muscle proteins through bone proteomic analyses is not new or surprising, and has
been previously shown where the PMI was not long enough to allow for the complete
decomposition of the soft tissues and of the proteins associated with them [13,14]. The fact
that muscle proteins were degraded more effectively in the samples where gut bacteria were
present (e.g., whole bodies) than in the exposed limbs was expected, since the autolytic
processes on muscle tissue normally take place in the first 24–28 h post-mortem [67],
and after this period, gut bacteria are the main drivers of additional tissue degradation.
Additionally, the low abundance of muscle proteins in buried bones can be explained by
the action of soil bacteria combined with the reduced amount of skeletal muscle tissue
available at the starting point of the decomposition (after defleshing).

Despite the promising results, the present study is not without limitations. One of
these is the use of rats instead of the more commonly used pigs as analogues for humans
in decomposition studies. However, it is not uncommon to find forensic studies where
small animals (such as rats or mice) have been used instead of pigs in order to increase the
sample size and the reproducibility of the results among biological replicates (e.g., same
breed, age, food intake, etc.) [38]. Additionally, to further improve the understanding of
bone taphonomic phenomena and bioerosion via proteomics, future studies should include
more frequent timepoints for sample collection, and could be expanded to prolonged
timescales, with an increased number of samples and with the inclusion of an additional
indoor/laboratory depositional environment that will exclude the presence of environmen-
tal bacteria in order to simplify the model and the interpretation of the results. This will
eventually allow for a better interpretation of the interactions between different factors and
bone proteomes by implementing more explanatory statistical analyses.

5. Conclusions

Overall, these findings suggest that, despite the fact that bone proteomics does not
allow for the distinction between protein degradation caused by different sources of
bacteria—such as gut or soil bacteria—it does allow for the discrimination of samples
subjected either to bioerosion or to the action of extrinsic factors. This study allowed us
to understand how and which NCPs are more degraded in different scenarios, ultimately
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providing insights into the survival of bone biomolecules within different conditions.
More specifically, the results reported in the present study show that muscle proteins and
calcium- and collagen-binding proteins are more prone to degradation by bacterial attack
than by hydrolytic and extrinsic processes, even after relatively short timeframes, such as
the ones investigated in our study. On the other hand, plasma and bone marrow proteins
seem to be protected by the presence of an intact body mass or by the burial environment.
To conclude, proteomic analyses show the potential to reveal information that cannot
be obtained with more classical approaches regarding taphonomic events occurring in
relatively short timeframes, and this should be considered for future studies aimed at
better understanding the extent of diagenesis in various conditions, and of the decay of the
biomolecules in bones.
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collected at the HuddersFIELD site and average monthly rainfall at the HuddersFIELD site during
the field experiment.
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