informatics

S Cafia b le »
Interactive
Visualization

Edited by
Achim Ebert and Gunther H. Weber

Printed Edition of the Special Issue Published in Informatics

=z
www.mdpi.com/journal/informatics rM\D\Py

Scalable Interactive Visualization

Special Issue Editors

Achim Ebert
Gunther H. Weber

MDPI e Basel ¢ Beijing ® Wuhan ® Barcelona e Belgrade

ml\DPI

F

Special Issue Editors

Achim Ebert Gunther H. Weber
University of Kaiserslautern University of California
Germany USA

Editorial Office

MDPI

St. Alban-Anlage 66
Basel, Switzerland

This edition is a reprint of the Special Issue published online in the open access journal
Informatics (ISSN 2227-9709)) in 2017 (available at:
http://www.mdpi.com/journal/informatics/special_issues/interactive_visualization).

For citation purposes, cite each article independently as indicated on the article
page online and as indicated below:

Lastname, F.M.; Lastname, F.M. Article title. Journal Name Year, Article number,
page range.

First Edition 2018

ISBN 978-3-03842-803-9 (Pbk)
ISBN 978-3-03842-804-6 (PDF)

Cover photo courtesy of Achim Ebert.

Articles in this volume are Open Access and distributed under the Creative Commons Attribution
license (CC BY), which allows users to download, copy and build upon published articles even for
commercial purposes, as long as the author and publisher are properly credited, which ensures
maximum dissemination and a wider impact of our publications. The book taken as a whole is
© 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the
Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Table of Contents

About the Special Issue Editors v
Preface to ”Scalable Interactive Visualization” vii

Daniel Haehn, John Hoffer, Brian Matejek, Adi Suissa-Peleg, Ali K. Al-Awami,
Lee Kamentsky, Felix Gonda, Eagon Meng, William Zhang, Richard Schalek,
Alyssa Wilson, Toufiq Parag, Johanna Beyer, Verena Kaynig, Thouis R. Jones,
James Tompkin, Markus Hadwiger, Jeff W. Lichtman and Hanspeter Pfister
Scalable Interactive Visualization for Connectomics
doi: 10.3390/informatics4030029 e e e 1

Sathish Kottravel, Riccardo Volpi, Mathieu Linares, Timo Ropinski and Ingrid Hotz
Visual Analysis of Stochastic Trajectory Ensembles in Organic Solar Cell Design

doi: 10.3390/informatics4030025 e 32
Mark Taylor

TOPCAT: Desktop Exploration of Tabular Data for Astronomy and Beyond

doi: 10.3390/informatics4030018 52

Sizhe Wang, Wenwen Li and Feng Wang
Web-Scale Multidimensional Visualization of Big Spatial Data to Support Earth Sciences—A
Case Study with Visualizing Climate Simulation Data
doi: 10.3390/informatics4030017 70

Boris Kovalerchuk and Dmytro Dovhalets
Constructing Interactive Visual Classification, Clustering and Dimension Reduction Models
for n-D Data
doi: 10.3390/informatics4030023 e e 87

Bjorn Zimmer, Magnus Sahlgren and Andreas Kerren
Visual Analysis of Relationships between Heterogeneous Networks and Texts: An Application
on the IEEE VIS Publication Dataset
doi: 10.3390/informatics4020011 114

Steffen Frey
Sampling and Estimation of Pairwise Similarity in Spatio-Temporal Data Based on
Neural Networks
doi: 10.3390/informatics4030027 e 134

Han Kruiger, Almoctar Hassoumi,Hans-Jrg Schulz, Alex Telea, Christophe Hurter
Multidimensional Data Exploration by Explicitly Controlled Animation
doi: 10.3390/informatics4030026 e 154

Jun Wang, Alla Zelenyuk, Dan Imre and Klaus Mueller
Big Data Management with Incremental K-Means Trees-GPU-Accelerated Construction
and Visualization
doi: 10.3390/informatics4030024 175

Di Jin, Aristotelis Leventidis, Haoming Shen, Ruowang Zhang, Junyue Wu and
Danai Koutra
PERSEUS-HUB: Interactive and Collective Exploration of Large-Scale Graphs
doi: 10.3390/informatics4030022 190

iii

Joris Sansen, Gaélle Richer, Timothé Jourde, Frédéric Lalanne, David Auber and
Romain Bourqui
Visual Exploration of Large Multidimensional Data Using Parallel Coordinates on Big Data
Infrastructure
doi: 10.3390/informatics4030021

About the Special Issue Editors

Achim Ebert, Prof. Dr., Achim Ebert holds a degree and a doctor in Computer Science. He is the co-head
of the Computer Graphics and HCI lab at the University of Kaiserslautern. He is also a member of the
lead personnel of DFG's International Research Training Group (IRTG) “Physical Modeling for Virtual
Manufacturing Systems and Processes”. His current research topics include information visualization,
immersive scenarios, and human-computer interaction. He participated or led several national and
international research projects in the area of visualization and HCI, both with an academic or industrial
focus. He has founded and is co-heading the IFIP working group 13.7 on Human-Computer Interaction
and Visualization. He has published more than 200 refereed publications. Achim Ebert acts as a member
of many international program committees (e.g., ACM and IEEE) and as a reviewer for several journals
and conferences.

Gunther H. Weber, Prof. Dr., Gunther H. Weber received a Ph.D. in computer science, with a focus on
computer graphics and visualization, from the University of Kaiserslautern, Germany in 2003. He is
currently a Staff Scientist in the Computational Research Division at the Lawrence Berkeley National
Laboratory (LBNL), where he serves as Deputy Group Lead of the Data Analysis and Visualization Group
in the Data Science and Technology Department. Gunther Weber is an Adjunct Associate Professor of
Computer Science at the University of California, Davis. His research interests include computer
graphics, scientific visualization, data analysis with using topological methods, parallel and distributed
computing for visualization and data analysis applications, hierarchical data representation methods, and
bioinformatics. He has extensive experience in working with researchers from diverse science and
engineering fields, including applied numerical computing, combustion simulation, gene expression,
medicine, civil engineering, cosmology, climate and particle accelerator modeling. Dr. Weber has
authored or co-authored over 80 publications, five of which won best paper awards. He has served as
principal investigator (PI) or Co-PI on several Department of Energy (DOE) and National Science
Foundation (NSF) projects. He is a reviewer for major funding agencies (DOE, NSF), conference
proceedings and journals. Dr. Weber served as co-organizer, co-chair and program committee member of
more than 40 internationally recognized conferences.

>1004MIdAN

Preface to “Scalable Interactive Visualization”

Data available in today's information society is ever growing in size and complexity-i.e.,
unstructured, multidimensional, uncertain, etc.-making it impossible to survey and understand this data.
Traditionally, most of these datasets are stored and depicted as huge tables, hindering efficient retrieval of
salient information-similarities, outliers, structures, origin, etc. Interactive visualization provides an
interface to this data that can help gleaning valuable information from it, thus supporting better data
understanding by significantly reducing cognitive load on the analyst. Two fundamental concepts,
visualization and interaction, form the basis of the underlying scientific methods. Combining these
concepts connects two key research areas in computer science: visualization and human-computer
interaction (HCI) and brings together practitioners from many disciplines. The result is highly multi-
disciplinary work with significant impact.

Interactive visualization has virtually unlimited applications, including analysis of complex data
sets ("big data"), virtual reality environments, augmented reality, mobile environments, cooperative work,
computer-supported surgery, large-scale simulations, experimental and observational data, and sensor
networks. However, truly interactive visualizations are hard to design and implement. Researchers have
to solve multiple problems, e.g., transforming complexity into simplicity, efficient algorithms and
implementations, guaranteeing real-time performance, scaling to multiple platforms and user types,
minimizing and managing data transfer, and efficient parallel implementations.

This Special Issue covers recent work in the field of Interactive Visualization as well as trends for
future development. It contains several examples of applying interactive visualization to spatial and
abstract data understanding problems. Furthermore, it describes new visualization techniques and
metaphors addressing growing data size and complexity, and it introduces multiple systems developed
for visualizing Big Data. The single contributions presented in this special issue can be categorized into
one of the four subjects: “Applying Interactive Visualization to Spatial Data” (Haehn et al., Kottravel et al.,
Taylor, and Wang et al.), “Applying Interactive Visualization to Abstract Data” (Kovalerchuk et al. and
Zimmer et al.), “New Visualization Technqiues and Metaphors” (Frey, Kruiger et al., and Wang et al.),
and “Visualization Systems for Big Data” (Jin et al. and Sansen et al.).

While providing a snapshot of the current state of the art in Interactive Visualization, this special
issue can only outline some of the most prominent problems and potential solutions in this area. Instead
of providing a final answer to these issues, it offers a glimpse into an exciting area of growing importance.

Achim Ebert and Gunther H. Weber
Special Issue Editors

vii

>1004MIdAN

informatics MBPY

Article
Scalable Interactive Visualization for Connectomics

Daniel Haehn 2*, John Hoffer 12, Brian Matejek 12 Adi Suissa-Peleg 12 Ali K. Al-Awami 3,
Lee Kamentsky 12 Felix Gonda 12, Eagon Meng 12 William Zhang 12 Richard Schalek 2,
Alyssa Wilson 2, Toufiq Parag %, Johanna Beyer %, Verena Kaynig %, Thouis R. Jones 12,
James Tompkin 4, Markus Hadwiger 3, Jeff W. Lichtman 2 and Hanspeter Pfister >

1 Harvard Paulson School of Engineering and Applied Sciences, Harvard University,

Cambridge, MA 02138, USA; john@hoff.in (J.H.); bmatejek@seas.harvard.edu (B.M.);
adisuis@seas.harvard.edu (A.S.-P.); lee_kamentsky@g.harvard.edu (L.K.); fgonda@g.harvard.edu (EG.);
emeng@college harvard.edu (E.M.); williamzhang26@hotmail.com (W.Z.); paragt@g.harvard.edu (T.P.);
jbeyer@g harvard.edu (J.B.); vkaynig@gmail.com (V.K.); thouis@gmail.com (T.R.].);
james_tompkin@brown.edu (J.T.); pfister@seas.harvard.edu (H.P.)

2 Harvard Brain Science Center, Harvard University, Cambridge, MA 02138, USA;

rschalek@fas.harvard.edu (R.S.); wilsond@fas.harvard.edu (A.W.); jeff@mcb.harvard.edu (J.W.L.)

Computer, Electrical and Mathematical Sciences and Engineering,

King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;

ali.awami@kaust.edu.sa (A.K.A.); markus.hadwiger@kaust.edu.sa (M.H.)

Computer Science Department, Brown University, Providence, RI 02912, USA

* Correspondence: haehn@seas.harvard.edu

4

Academic Editors: Achim Ebert and Gunther H. Weber
Received: 7 July 2017; Accepted: 24 August 2017; Published: 28 August 2017

Abstract: Connectomics has recently begun to image brain tissue at nanometer resolution, which
produces petabytes of data. This data must be aligned, labeled, proofread, and formed into
graphs, and each step of this process requires visualization for human verification. As such,
we present the BUTTERFLY middleware, a scalable platform that can handle massive data for
interactive visualization in connectomics. Our platform outputs image and geometry data suitable for
hardware-accelerated rendering, and abstracts low-level data wrangling to enable faster development
of new visualizations. We demonstrate scalability and extendability with a series of open source
Web-based applications for every step of the typical connectomics workflow: data management
and storage, informative queries, 2D and 3D visualizations, interactive editing, and graph-based
analysis. We report design choices for all developed applications and describe typical scenarios of
isolated and combined use in everyday connectomics research. In addition, we measure and optimize
rendering throughput—from storage to display—in quantitative experiments. Finally, we share
insights, experiences, and recommendations for creating an open source data management and
interactive visualization platform for connectomics.

Keywords: scientific visualization; connectomics; electron microscopy; registration; segmentation;
proofreading; graph analysis

1. Introduction

The grand challenge of connectomics is to completely reconstruct and analyze the neural
“wiring diagram” of the mammalian brain, which contains billions of interconnected nerve cells [1-4].
Deciphering this vast network and studying its underlying properties will support certain aspects of
understanding the effects of genetical, molecular, or pathological changes at the connectivity level.
This may lead to a better understanding of mental illnesses, learning disorders, and neural pathologies,
as well as provide advances in artificial intelligence [5]. As such, the field of connectomics is rapidly

Informatics 2017, 4,29 1 www.mdpi.com/journal/informatics

Informatics 2017, 4,29

growing, with hundreds of neuroscience labs world-wide eager to obtain nanoscale level descriptions
of neural circuits. However, there are many problems in analyzing the individual synaptic connections
between nerve cells and signal transmission to other cells, not least of which is scale: connectomics
occurs at both the nano and peta scales, as electron microscopy (EM) data at a resolution sufficient to
identify synaptic connections produces petabytes of data.

The process of producing a wiring diagram suitable for interactive visualization and analysis at
this scale has many steps, and each step brings its own challenges (Figure 1). Throughout this process,
interactive visualization is key to helping scientists meet these challenges.

Acquisition Registration Segmentation Proofreading Analysis

Dojo 3DXP
Guided Proofreading Neural Data Queries

MBeam viewer RHAligner RhoANAScope
Figure 1. The typical connectomics workflow includes several steps: image tiles of brain tissue are
acquired using an electron microscope, registered in 2D and 3D, and automatically segmented into neurons.
Since the output of the automatic segmentation is not perfect, it is mandatory to proofread the result prior
to any analysis. Each step of the workflow requires visual exploration, for which we have developed
open source software tools (listed below each step).

Acquisition: The process begins with a brain sample, which is embedded into resin, cut into
slices, and imaged with an electron microscope. The imaging process is fallible, and can cause severe
noise and contrast artifacts. Fast and scalable 2D visualizations enable quick signal-to-noise ratio
and contrast assessments across image tiles during acquisition. Rapid progress in automatic sample
preparation and EM acquisition techniques make it possible to generate a 1 mm?® volume of brain
tissue in less than six months, with each voxel of size 4 x 4 x 30 nm? resulting in 2 petabytes of image
data [6,7].

Registration: Each brain slice is imaged in tiles independently in 2D, and so the resulting images
must be aligned into a larger 2D section. Then, a stack of sections must be aligned into a 3D scan. Here,
visualizing stitched tiles and sections allows quick human assessment of alignment quality in addition
to computing quantitative measures [6].

Segmentation: Given the stack of sections, the cell membrane borders and synaptic connections
between cells must be discovered, and this requires both manual and automatic labeling methods [8,9].
The resulting segmentations are stored as label volumes which are encoded as 64 bits per voxel to
support the labeling of millions of nerve cells (neurons) and their connections (synapses). Visualization
of sections of the aligned scan in 2D and renderings in 3D helps us assess segmentation and
classification quality.

Proofreading: All available segmentation methods make mistakes [10], and so the results must
be proofread by humans before any biological analysis occurs [11-13]. For proofreading, intelligent
interactive visualization tools are key to minimizing the time committed.

Analysis: At this point, our connectomics data consists of cell membrane annotations for all
neurons, and synaptic annotations where neurons connect. This information can be modeled as
a graph. Nodes in the graph represent individual neurons and the edges between nodes resemble
synaptic connections. The edges can be weighted by quantitative measures, e.g., number of connections
or neuron type. This connectivity graph can be flattened and visualized in 2D or rendered in 3D. Typical

Informatics 2017, 4,29

analysis tools for connectomics range from abstract visualizations which focus on higher level aspects
to lower level biologically-correct visualizations [14,15].

Each step from acquisition to analysis requires interactive visual exploration: both to check the
quality of the results and to explore the data for insights. However, these tools must be able to scale to
the large data at hand.

To this end, we present the scalable BUTTERFLY middleware for interactive visualization of
massive connectomics datasets. This system integrates Web-based solutions for data management and
storage, semantic queries, 2D and 3D visualization, interactive editing, and graph-based analysis.

Our systems were developed in collaboration with neuroscientists, working on the
only-slightly-more-modest goal of imaging a whole rodent brain (Mus musculus, BALB/ ¢ strain, females
of age P3, P5, P7, P60, with a fresh volume of 1 cm®, brainstem upwards; as well as Rattus norvegicus).
Like humans, mice and rats are vertebrate mammals which learn. Many of the brain structures in these
rodents are found in humans, and many conditions in humans can be found in rodents at the genetic
level [16]. Currently acquired EM image stacks represent only a fraction of a full mouse brain (1 um?,
0.01%) but are multiple terabytes in size, which provides us with many difficult scalable interactive
visualization problems. Our solutions to these problems enable the analysis of the connectome at nano
scale and can help lead to scientific discoveries, e.g., Kasthuri et al. [5] recently disproved that physical
proximity is sufficient to predict synaptic connectivity.

The Butterfly middleware unifies connectomics tools from each stage of the pipeline. It integrates
with the following visualization applications for multi-user environments:

e MBeam viewer, a tool to quickly assess image quality and contrast during acquisition.

e RHAligner, visualization scripts for debugging the registration process.

¢ RhoANAScope, a visualizer for image data and label overlays during segmentation.

* Dojo, an interactive proofreading tool with multi-user support [11].

* Guided Proofreading, a machine learning proofreading tool to correct errors quickly [12].
e 3DXP, a 3D visualization of neuron geometries.

* Neural Data Queries, a system for semantic queries of neurons and their connections.

All visualization components are Web-based and are part of a multi-user environment. This avoids
duplication of the massive connectomics datasets since the majority of the data stays on the server and
only a small subset is transferred for each user interaction. To maintain code quality, we use continuous
integration and automated testing of each code base change. All software tools are available as free
and open source software. In addition, we provide a VirtualBox distribution including all reported
visualization tools and the Butterfly middleware. The distribution includes various test data such that
the visualization tools can be used in an existing network environment with minimal configuration.

This paper describes the motivation and design decisions for data management and visualization,
as well as implementation details of the Butterfly integration with our front-end applications. We relate
the stages of the connectomics pipeline, the end-user tools, and the Butterfly middleware. We report on
performance and scalability of our visualization landscape, and describe a series of everyday use-cases
with neuroscience experts. Finally, we provide insights and recommendations for creating an open
source data management and interactive visualization platform for connectomics.

2. Related Work

An overview of existing visualization tools for connectomics is given by Pfister et al. [17].
The article describes visualizations at different scales: (a) macroscale connectivity, with data coming
from functional magnetic resonance imaging, electroencephalography, magnetoencephalography,
and diffusion tensor imaging [18]; (b) mesoscale connectivity, obtained from light and optical
microscopy; and (c) microscale connectivity, which enables imaging at the nanometer resolution using
electron microscopes. Recent advances in sample preparation have further enabled nano-imaging [19]

Informatics 2017, 4,29

and a description of many techniques in this emerging field is given by Shaefer [20]. While our work
targets microscale connectomics, in this section we also relate to works at the other two scales.

Visualization tools for connectomics mainly focus on three different areas: (1) visualization to
support the segmentation and proofreading of volumes; (2) visualization to explore high-resolution
segmented volume data; and (3) visualization to analyze neuronal connectivity. Most visualization
tools for connectomics are standalone applications, requiring high-performance workstations and
modern GPUs [21-25]; thus, it is harder for these tools to achieve general scalability across both
compute and users.

Visual proofreading of segmentations is supported by several tools [21-23,26], mostly targeting
expert users and offering many parameters for tweaking the proofreading process. However, none of
these tools run in a distributed setting and allow non-expert users to correct erroneous segmentations.
Several applications allow distributed and collaborative segmentation of connectomics volumes.
EyeWire [27] is an online tool where novice users participate in a game to earn points for segmenting
neuronal structures using a semi-automatic algorithm. D2P [28] uses a micro-labor workforce approach
via Amazon Mechanical Turk where boolean choice questions are presented to users and local decisions
are combined to produce a consensus segmentation. Both tools are designed for non-expert users.
For experts, Catmaid [29] and the Viking Viewer [30] are collaborative annotation frameworks which
allow users to create skeleton segmentations for large data sets. More recently, Neuroblocks [13]
proposed an online-system for tracking the progress and evolution of a large-scale segmentation project.

Visualization tools for exploring high-resolution segmented volume data typically run on
powerful GPU systems and employ complex multi-resolution strategies. Hadwiger et al. [24] present
a volume visualization system for large EM volumes, which was later extended to segmented EM
volumes [25]. Several systems, such as Neuron Navigator [31] and Connectome Explorer [15] support
interactive or visual queries to further explore these typically very large data sets.

Most visualization tools for connectomics focus on the analysis step and explore the connectivity
between neurons that is extracted from the segmented data volumes. Several systems [32,33] are based
on WebGL [34] and run directly in a Web browser. Ginsburg et al. [32] propose a rendering system
which combines brain surfaces with tractography fibers to render a 3D network of connected brain
regions. Similar visualizations can be created using the X toolkit [35], which offers WebGL rendering
for neuroimaging data, and SliceDrop [36], which is a Web-based viewer for medical imaging data
including volume rendering and axis-aligned slice views. Neuroglancer [33] provides different 2D and
3D visualizations for large datasets.

Notable efforts to allow exploration and reusability of published connectome findings exist.
Paired with the scalable brain atlas visualization tool [37], the CocoMac database contains findings on
connectivity of the macaque brain [38]. Bota et al. [39] introduce the Brain Architecture Management
System, which stores and infers relationships about nervous system circuitry. Query results are here
visualized as network diagrams and represented as tabular data. The neuroVIISAS system provides
similar visualizations and pairs them with slice-based renderings [40].

Other stand-alone viewers exist with similar network visualization features. The Connectome
Viewer Toolkit [41] targets the analysis of macroscopic neuronal structures and brain region
connectivity, whereas the Viking Viewer [30] displays a connectivity graph on a cell level. More
recently, neuroMap [42] uses circuit wiring diagrams to represent all possible connections of neurons.
For nanoscale connectomics, Neurolines [14] allows neuroscientists to analyze the connectivity on the
level of individual synapses.

Some research and development has been conducted towards producing a central data
management platform for the full connectomics workflow with visualization capabilities. Notable
efforts are DVID [43], a centralized data service offering version control and distributed access, and The
Boss [44], a cloud-based storage service. Both systems manage data sources in their own specific format
and support Neuroglancer for visualization.

Informatics 2017, 4,29

Our proposed Butterfly middleware is different from this approach as it provides a platform for
creating visualizations for connectomics without having to deal with data wrangling or other low-level
issues. Using the middleware, it is possible to concentrate development effort towards the front end
rather than the back end. We also propose a series of integrated applications which allow users to
visualize connectomics data and debug problems for every stage of the connectomics pipeline.

3. Overview

We designed the Butterfly middleware to integrate and unify data management of visualization
tools for every step of the connectomics pipeline (Figure 2). Different data formats and their access are
abstracted to support a variety of data queries. This reduces heterogeneity among tools, interfaces,
and data formats. We use several data management and visualization concepts to enable scalable and
interactive applications.

Linked Views

MBeam viewerl |RHAIigner| |RhoAN.AScope| |D<;jo||Guided Proofreadingl |3D.XP||NeuraI Data Queries

MFOVs Tiles 5| Sections Scans (Cross-)Sections

MFOVs 4| Labels Sections Geometry

Sections & | Synapses Labels Queries

& | Membranes
Segmentation Editing
Butterfly
Middleware
Database
Raw Data Tilespec HDF5 Precomputed Mipmaps JSON
Image Stacks
Network File System

Figure 2. Our software system includes tools tailored to each stage of the connectomics pipeline,
which requires exploring and interacting with data stored in different ways on a network file system
(XFS storage): The MBeam viewer enables image quality assessment during image acquisition by
rendering multi-beam-field-of-views (MFOVs) from raw microscope data. The RHAligner scripts allow
for the monitoring and debugging of the alignment process by rendering the tilespec format which
separates transformations and data. RhoANAScope visualizes sections and the corresponding neuron
labels, synapse segmentations, and membrane probabilities during segmentation. Dojo and Guided
Proofreading are two interactive applications to correct errors in the labeled sections and volumes.
For analysis, 3DXP enables the visualization of neuron geometry by rendering meshes. The Neural
Data Query application program interface (API) allows querying neurons for their synaptic connections
by including JSON formatted data structures. The Butterfly middleware integrates and unifies these
heterogeneous applications within a multi-user environment by abstracting data access and supporting
a variety of data requests. Besides data integration, our middleware enables linked visualizations for
several important use-cases between RhoANAScope, Dojo, and 3DXP (Section 11).

3.1. Volumetric EM Image Data

Volumetric EM image data is often organized hierarchically with different dimensions (Table 1).
We demonstrate this with the Zeiss MultiSEM 505 electron microscope with which we capture our
imagery. This microscope simultaneously captures 61 image tiles, each of roughly 3000 x 2700 pixels,
to achieve acquisition rates of approximately 1 terapixel per hour [6,7]. Each simultaneous capture is
called a multi-beam field-of-view, or MFOV. Multiple MFOVs are stitched into a section, which represents
a two-dimensional slice of tissue. Thousands of sections are combined into a single 3D scan of tissue.

Informatics 2017, 4,29

Table 1. Our electron microscopy data form a hierarchy of different types and dimensions. Multiple
image tiles are acquired at nanometer resolution as an MFOV, and then stitched in sections. Thousands
of sections are stacked into a scan. There is a large difference between image data and segmentation
data due to the 64 bit encodings required to represent potentially billions of neurons. For segmentation
data, we report average compression rates of 700 x using the Compresso scheme [45]. For images, we
assume a resolution of 4 x 4 x 30 nm? per voxel and 8 bit encoding. The Butterfly middleware and its
applications have been tested on Scan A (100 um®), acquired using the Zeiss MultiSEM 505 electron
microscope. Scan B is yet to be acquired using the same hardware.

T Digital Physical I Si Segmentation Size
ype Dimensions Dimensions mage size (Compressed)

Tile 3.1k x 2.7 k pixels 0.78 x 0.68 um? 8.5 MB 68.2 MB (97.0 KB)

MFOV 30 k x 26 k pixels 115 x 100 um? 520 MB 42 GB (5.9 MB)

Section 200 k x 170 k pixels 810 x 700 pum? 3.6 GB 29.1 GB (41.6 MB)

Scan A (100 um®) 26 k x 26 k x 3394 voxels 100 x 100 x 100 um® 2.2 TB 18.3 TB (26.2 GB)

Sean B(1mm?®) 260k x 260 kx 33,940 voxels 1 x 1 x 1 mm? 22PB 18.3 PB (26.2 TB)

3.2. Data Management Concepts

Connectomics data includes several different data types and data structures. This is driven by
different use cases and the goal of performant random access.

Image formats: We acquire image volumes of the mammalian brain at nanometer resolution.
Our data is typically anisotropic across sections with in-plane section resolution roughly 7.5 times
higher than between sections (4 x 4 x 30 nm per voxel). Each section of a scan is a gray-scale image
typically with 8 bits per pixel. We can store sections individually in general formats such as JPEG,
PNG, or TIFE. We also store a collection of sections as volumetric data as HDF5 or multi-page TIFF
containers. HDF5 allows random access without loading the full volume into memory.

Tiled storage: A single section of a volume can be many gigabytes in size. For scalable and efficient
processing and storage, a section is typically stored split into multiple files using a row/column scheme.
Individual tiles are usually of fixed power-of-2 dimensions to enable GPU texture mapping without
conversion (e.g., 1024 x 1024 pixels), but can also be arbitrarily sized. Thus, metadata is required to
understand a tiled image format. MFOVs are an example of tiled storage.

Label formats: Our labels are segmentation volumes including cell membranes as well as pre- and
post-synaptic connections. Neuron segmentations can contain billions of values to uniquely identify
each cell. This requires encoding with 32 or 64 bits per pixel, for which HDF5 is the preferred
data format. For visualization, we color each identifier using a look-up table with neighboring cells
colored distinctly.

Mipmap structures: Mipmaps (i.e., image pyramids, or image quad-trees) are hierarchical
sequences of an image at different resolutions [46]. These are created by iteratively downsampling each
image by a factor of two in each dimension until the entire image is reduced to a single pixel. For images,
we use bilinear downsampling, while for labels we use nearest-neighbor downsampling to not alter
the identifiers. Mipmaps are usually pre-computed to allow fast data access, but require a storage
overhead of 33 percent. We store each mipmap level as tiled images, generating no representations
smaller than a single tile. This reduces some storage overhead and allows partial loading for scalability.

Database: We store relations between label structures with unique identifiers, as well as
dimensions and statistics, in a object-oriented database for fast access. This way, we can use queries to
explore relationships of neurons and synapses or to request metadata.

Distributed storage and computation: Connectomics requires distributed processing and storage
mechanisms to deal with large data. Typically, data is stored on a network file system and interactively
explored or edited from client workstations. This is important to avoid unnecessary copies of datasets;
however, parallel access of data has to be handled through a transaction mechanism to avoid conflicts
between users [47].

Informatics 2017, 4,29

Compression: The massive connectomics image and label volumes require compression for
storage and for transfer from server to client. We compress EM images using JPEG encoding with
average compression ratios of 2—4x. To compress label volumes, we must consider two important
components: the per-pixel labels and the per-segment shapes. We use Compresso [45], which is
specifically tailored to compress label volumes as it decouples these two components and compresses
each separately over congruent 3-D windows. Often, Compresso is paired with an additional
general-purpose compression scheme to further reduce the data size; with LZMA, we can compress
the label volumes by a ratio of 600-1000 x on average.

3.3. Scalability Through Demand-Driven and Display-Aware Web Applications

Efficient connetomics visualizations must provide easy access to large data for many people
working across the pipeline. We tackle these problems by building web applications backed by
scalable server software. A web-based visualization removes the need for any client-side installation,
and multiple users can access the applications at the same time across all kinds of devices
such as phones, tablets, laptops, and workstations. Data management is handled by the server,
with connectome data being much larger than the total available CPU or GPU memory on a single
workstation. The challenge is to minimize data loading and transfer while allowing full-fledged
exploration of any size of data. To enable interactive visualizations, we use display-aware and
demand-driven rendering. These techniques only transfer and render data which is actually displayed
to the user [48,49]. This enables scalability since the resolution of the viewport limits the required
data access to a small subset of the full-resolution data. The Butterfly middleware implements this
as follows:

Tiled image transfer and rendering: Image data is usually transferred from a server to a client
for visualization. Similar to the concept of tiled storage, this transfer usually also involves sending
requested data in chunks. These chunks are significantly smaller than the client display and are
typically rendered once they arrive to reduce the waiting time for the user.

On-the-fly mipmapping: To avoid processing and reduce storage overhead, it is possible to
create a mipmap structure of image and segmentation data on-the-fly. This means full resolution data
(typically stored as image tiles) can be downsampled on demand to provide lower-resolution levels
of the mipmap hierarchy. This includes a trade-off between how many image tiles need to be loaded
from disk for the requested mip level, and how large the image tiles are for transfer and rendering.
The MBeam viewer uses this concept. We measure throughput based on different tile sizes for storage
and for transfer and rendering (Sections 4 and 9).

Cut-out service: Demand-driven rendering can be realized using a cut-out service. Such service
receives a query for a part of a larger nano-scale image or segmentation volume. The first step is
to calculate which image tiles and which mipmap levels are required to deliver the requested part.
The cut-out service loads the relevant image tiles at a pre-computed mipmap or, if applicable, generates
the mip-level on the fly. The final part of the cut-out logic involves conversion to a requested format
including compression, and then responding with the data. We named the Butterfly middleware after
a balisong knife, as the cut-out service is one of the core components.

Scalable Editing: Beyond simply providing data, the proofreading stage of the connectomics
workflow also requires interactive data editing [11]. Dynamic data structures such as lookup-tables
enable non-destructive editing by storing an edit decision list separately from the actual image data,
which then informs the rendering process. This allows simple undo, and reduces the data processing
and transfer required for edits, especially across users. Once changes are ready to be committed,
the modifications target only a small sub-volume of the larger dataset via a cut-out service. This first
edits at full resolution, then recomputes the mipmap structure.

The Butterfly middleware makes the use of these data management and scalability concepts
transparent as it provides a central access point to connectomics data for our visualization tools.
From a user perspective, data processing is no longer limited to (smaller) copies of datasets on single

Informatics 2017, 4,29

workstations, reducing data duplication and communication overhead. From a developer’s perspective,
this reduces maintenance costs and code duplication, and makes it easy to support new data sources
and file formats.

4. Visualization during Acquisition

4.1. Motivation

The Zeiss MultiSEM 505 electron microscope can generate roughly 1 terapixel per hour split
across many 61-tile MFOVs and sections [6]. Neuroscientists must look at each tile to assess whether
acquisition was of sufficient quality, otherwise the relevant area of the physical sample needs to be
located and tagged for re-scanning. Previously, this task was performed in our lab with the preview
function of Windows Explorer on a local machine, which does not allow the tiles to be viewed in their
natural MFOV or section layouts. This assessment procedure is inefficient, slows down the acquisition
process, and limits the microscope’s effective throughput.

4.2. Data

The microscope provides estimates of the 2D locations of image tiles and multiple MFOVs
in a section (Figure 3). This alignment method uses a very low-resolution image of the physical
sample to identify the borders of each MFOV in a section, and the positions of the acquisition beams
are used to align tiles within an MFOV. Imprecise alignment arises from this low-resolution data,
from reduced sample points, and from vibrations (which leads to mandatory re-calibrations of beams).
The microscope moves the stage to acquire another MFOV. However, this method is fast, and a more
sophisticated alignment process would slow down the throughput of the microscope. The alignment
coordinates are written to text files for each MFOV and for each section. Acquired data is stored on
a network filesystem, typically as JPEG files. In addition to full resolution tiles, the microsope stores
thumbnail versions of all image tiles (840 x 744 pixels or less). For contrast normalization, the Zeiss
MultiSEM 505 generates a pixel-wise lookup table across all image tiles of one MFOV. The lookup
table is stored in text files as base64 encoded arrays.

4.3. The MBeam Viewer

To improve the tile review workflow, we developed the MBeam Viewer (The MBeam viewer is
freely available as open source software at https://github.com/rhoana/mb). This is Web-based to
allow both local and remote neuroscientists to inspect tiles. The viewer visualizes tiles within their
contextual MFOV and section. As the microscope generates data from across the sample and places new
tiles onto the filesystem, the Butterfly server sends them immediately to the MBeam viewer to update
the rendering. The user is able to zoom, pan, and scroll through different sections of the acquired data.
Seeing the broader context allows our neuroscientists to identify erroneous regions both within and
across tiles. The most frequent errors are unfocused images due to specimen height variations, dirt on
the specimen, and tape edge errors. Another error is non-uniform contrast and brightness within an
MFOV: each of the 61 beams is an independent detector, and so histogram equalization is required
between the output images. Due to image content differences between the beams, this equalization
can fail. Further, if beam alignment fails, then gaps form between individual image tiles. All of these
errors can be detected quickly with our system.

Informatics 2017, 4,29

(a) MFOV (b) Section (c) Coarse alignment

Figure 3. The MBeam viewer visualizes data during image acquisition using the Zeiss MultiSEM
505 electron micoscope. (a) An individual multi-beam field-of-view (MFOV) is visualized, consisting
of 61 images which are coarsely aligned using coordinates from the microscope. Each individual
image is 3128 x 2724 pixels in size, resulting in roughly 30 k x 26 k pixels for each MFOV. Multiple
MFOQOVs are stitched together as one section within an image volume. The MBeam viewer visualizes
such sections with possibly hundreds of MFOVs. (b) 44 MFOVs stitched to roughly 200 k x 170 k
pixels. Demand-driven rendering and on-the-fly mip-mapping enable user interaction in realtime.
(c) The zoomed-in view shows the full resolution of the data and stitching artifacts due to coarse
alignment (yellow arrow).

Observations of the traditional process of quality assessment during acquisition have led to the
following design choices:

D1. Remote and collaborative visualization: Our data collection occurs four floors underground
to protect the electron microscope from vibrations. It is important that each of the microscope
technicians, pipeline developers, and neuroscientists are able to quickly assess scan quality. Hence,
the MBeam viewer frontend is remotely accessible via a Web browser and supports region of interest
sharing for collaborative viewing.

D2. Scalable visualization with on-the-fly mipmapping: Data from the microscope is stored
on a high-performance network filesystem to optimize throughput and match the acquisition speed
of the microscope. When viewing this data, the resolution of a single image tile (3 k x 2.7 k pixels)
roughly matches the resolution of a typical off-the-shelf computer monitor. Assessing the quality
of one tile at a time is simply not practical and contextual views of an MFOV or a section increase
the assessment speed. Therefore, the Butterfly server creates mipmap representations of each tile
to provide zoomed-out overviews. These representations are created online to avoid additional file
input and output operations and to reduce storage overhead. Then, the viewer combines a caching
mechanism with demand-driven rendering. When a tile is requested for display, we directly send it to
the client and render it, resulting in a streaming effect of sequentially appearing tiles. Tile requests
always start in the center of the current view and fan out, and are responsive to user pans, zooms,
or scrolls. There is a trade-off between visualization response and mipmap generation time and we
quantitatively evaluate this design choice in Section 9.

D3. Discovery of MFOVs, sections, and scans: The electron microscope writes data into a
directory tree on a network filesystem. A directory holding a typical scan contains thousands of
sub-directories for each section, with each of those holding hundreds of sub-directories for each MFOV.
Listing such a hierarchical directory structure on a network filesystem is slow, and so data change
detection is slow. This also adds many disk operations to the storage system. However, the MBeam
viewer needs to detect when new data arrives and whether this data is of type MFOV, section, or

Informatics 2017, 4,29

scan. Instead of walking through all directories, we find new data by probing the coordinate text files
written by the microscope. These files are stored in fixed relative locations and follow a hierarchical
pattern which allows us to distinguish data types without directory traversal. This way, data can be
written sequentially during acquisition, and we can detect when a researcher moves data around
manually. We present the data structure in the frontend and indicate the data type which can be
selected for visualization.

D4. Interactive overlays and image enhancement: Acquisition quality can differ between
individual image tiles. The MBeam viewer overlays additional information such as tile, MFOV,
and section identifiers on top of the image data. This way, the user is able to match poor quality
images with the actual data on the network filesystem and in the physical sample to instantiate
re-capturing. It is also possible to perform client-side contrast and brightness adjustments for the
current view to aid in the visual identification of low-quality tiles.

Our collaborating neuroscientists use the MBeam viewer everyday, and the streaming overview
provided is a significant improvement over simply using a file browser. Zeiss, the manufacturer of the
MultiSEM 505 electron microscope, installed the MBeam viewer for internal use, liked the simplicity
and the open source nature, and extended their microscope control software with similar functionality.

5. Visualization of Registration

5.1. Motivation

The acquired images need to be precisely aligned in 2D and 3D to enable further automatic
and semi-automatic processing. For this, we apply a compute-intensive stitching mechanism [50].
This process needs to be monitored and debugged, and parameters need to be fine-tuned. During
this process, we store each modification of the input data as a copy so that we can revert back to the
original input.

5.2. Data

To compensate for non-linear distortions in our 2D and 3D images, we refine a rigid registration
with an elastic process. First, we calculate a scale-invariant feature transform (SIFT) [51] per 2D image
tile to detect local keypoints. Then, we minimize a per-tile rigid transformation distance between
matched features in each pair of adjacent overlapping tiles.

To align the image stack in 3D, we use the method of Saalfeld et al. [50] to find a per-section elastic
(non-affine) transformation. This process begins by finding an approximate affine transformation for
each MFOV from a section to an adjacent section. This is followed by overlaying an hexagonal grid
onto each section, and matching each vertex to a pixel in an adjacent section using a block matching
algorithm: a small image patch around each vertex of the grid is compared against a constrained area
in the adjacent section. These blocks are different than the tiles of an MFOV to incorporate oxverlap
between tiles. Finally, a spring-based optimization process minimizes the deformation between grid
points and outputs a transformation for each image tile. We expand this process to non-neighboring
sections to overcome acquisition artifacts. Further, we create a parallel implementation and optimize
the elasticity parameters for our datasets.

5.3. The RHAligner Plugin

We inspect MFOV alignment quality by clustering transformations based on the angles of one
of the internal triangles of the hexagonal MFOV shape. Changes in these angles represent squash
and shear effects. We visually inspect MFOVs whose clustered angles are far from a cluster center.
For this, visualizations are key to monitor, debug, and fine-tune the alignment process. This process
can fail if the data is noisy or when the optimization process does not find a solution. We have
developed the RHAligner plugin (The RHAligner plugin is freely available as open source software at

10

Informatics 2017, 4,29

https://github.com/rhoana/rh_aligner) for Butterfly to support the visualization of the alignment
steps. Several requirements for inspecting the registration lead to the following design choices:

D1. Store transformations and data seperately: Computed transformations during registration
are stored for each image tile in a specification format called tilespec [52]. Meta information such as
the dimensions of a tile, the file path, and the list of different transformations are stored as part of
this JSON data model. This format resulted from a collaboration with neuroscientists at the Janelia
Research Campus. Storing transformations separately allows flexibility during the alignment process
since the image data itself is not modified. This flexibility is needed to tweak alignment of tiles within
MFOVs, sections, and scans.

D2. Visualization of SIFT features: The first step of the alignment process is the computation of
one scale-invariant feature transform [51] per image tile. If these features do not describe the image
tile properly, all successive steps fail. We visualize the SIFT features as overlays on top of the original
image tile as shown in Figure 4a.

D3. Illustration of overlap between tiles: We use SIFT features of overlapping tiles to replace the
coarse alignment of image tiles within an MFOV. To debug and monitor this process, we visualize SIFT
feature matches between tiles (Figure 4b).

D4. Online rendering of transformations: We added a tilespec reader to the Butterfly
middleware. This lets us use the MBeam viewer to visualize the aligned data in 2D and scroll through
the stack (Figure 4c). We inspect the alignment of a scan using a zoomed-out view of sections and
concentrate on larger neurons while scrolling through the scan. The movement of large structures is
relatively easy to track in grayscale images and interruptions due to false alignment are clearly visible.
This allows us to find regions which require further refinement.

D5. Abstracted visualization of section alignment: We stitch MFOVs together in 2D sections
and perform block matching with adjacent sections in 3D. An MFOV itself is roughly 520 megabytes
in size and rendering a section containing hundreds of MFOVs is slow even with display-aware
and demand-driven visualization. We add an abstracted visualization of stitched sections to the
RHAligner (Figure 4d-f). It is possible to quickly assess the section alignment of adjacent sections
using this technique.

Dé6. Visualize displacement of blocks within an MFOVs: Once we identify failing alignment in
a section, we need to know which MFOVs are misaligned—specifically, which blocks of the MFOVs.
For this, we visualize the displacement of blocks within each MFOV using vector fields (Figure 4g—i).
These renderings are lower resolution to be scalable. However, this makes it difficult to see the arrows
of the vector field for large datasets. Therefore, we color code the direction of each displacement
according to its angle. If a displacement is larger than a user-defined threshold, we highlight the
vectors in white.

Debugging the alignment is manual since the uniqueness of each dataset requires fine tuning
of the alignment computation. The developed visualization scripts are used by experts to assess
alignment quality and quickly find difficult areas which need parameter optimization. Once the data
is fully aligned and the transformations are finalized, we harden the transformations and store the
modified scans as volumetric data within HDF5 containers.

11

Informatics 2017, 4,29

(8) (h) G
Figure 4. We create visualizations to monitor and debug the registration process. (a) We visualize
scale-invariant feature transform (SIFT) features within an image tile. (b) We visualize these features
when looking at overlapping tiles. (c) We render aligned MFOVs before and after the registration.
(d) A correct transformation can be seen where the MFOVs appear to be slightly rotated clockwise.
(e) Here we see an erroneous transformation for one MFOV. Further examination reveals that the
mismatched MFOV (yellow arrow) is incorrectly matched with the features of the neighboring section.
(f) This visualization shows a case where most MFOVs are incorrectly transformed. This is caused by a
large rotation of the neighboring section, which has severe impact on the accuracy of SIFT features.
The vector fields in the bottom row show the displacement of each single match between adjacent
sections (after an affine alignment to align these two sections). We color code by angle. (g) A “normal”
matching. The sections are more or less on top of each other, but after the affine alignment the top and
bottom parts (purple) are stretched to the bottom left, and the middle (yellow) is stretched towards the
top right. Some white arrows are outliers. (h) A case where one MFOV was not pre-aligned properly,
and so all its arrows are white. (i) A case where the pre-alignment gave bad results. (j) The color map
for visualizing the displacement angles.

12

Informatics 2017, 4,29

6. Visualization of Segmentation

6.1. Motivation

Registered connectomics data is ready to be automatically segmented. We find cell membranes
of neurons using an automatic segmentation pipeline [9]. This is a difficult and often error-prone
task. These errors take two forms: merge errors, where two neurons are fused together, and split errors,
where one neuron is split apart. These errors happen within a section and across sections. We report
classification results on the SNEMI3D challenge [10] as variation of information scores of VI?:'Z ore > 0.9
in Knowles-Barley et al. [9,53]. We also detect where neurons exchange information through synaptic
connections. Errors can occur during synapse detection when synapses are not found or falsely labeled.

To find regions of error and to debug the segmentation pipeline, we need to look at feature maps
such as membrane probabilities. We also need to visually assess segmentation quality and synapse
detection since ground truth segmentations are sparse and time-consuming to generate. Similar to
visualizations of the alignment process, visualizations aid the complicated process of parameter tuning.

6.2. Data

We use a state-of-the-art automatic labeling of neurons [8,9,53]. Cell membrane probabilities
are generated using a convolutional neural network (CNN) based on the U-net architecture [54].
The probabilities are encoded as gray-scale images, then used to seed an implementation of the 3D
watershed algorithm which generates an oversegmentation using superpixels. Then, we agglomerate
superpixels with a parallel implementation [55] of Neuroproof [56,57]. The resulting segmentations
contain labelings of millions of different neurons. For scalability, we run the segmentation steps in
parallel as part of a distributed processing framework. We split a scan into blocks of fixed size which
we segment in parallel. Once computed, the blocks are merged to create the segmentation of a full scan.

Synapse Detection. Concurrent with the automatic neuron segmentation, we also detect synaptic
connections. For this, we use another U-net classifier to label the pre- and post-synaptic pixels near the
synaptic connection. We find the synaptic polarity by combining this output with our cell membrane
segmentation. Unfortunately, the combined segmentation and synaptic polarity detection method is not
yet published and further details will appear in a future paper. Detection performance of Flgre > 0.8
can be expected [58].

For segmentations, HDF5 containers are our format of choice. This file format is widely supported
and random access is possible without loading the entire volume into memory. Calculated features
such as membrane probabilities and synaptic connections are also stored in HDF5 containers.

6.3. RhoANAScope

Visual inspection of segmentation output is required. For this, we developed RhoANAScope
(RhoANAScope is freely available as open source software at https:/ /github.com/rhoana/butterfly /
bfly/static), a viewer for neuron and synapse segmentations. RnoANAScope visualizes sections and
scans of gray-scale EM image data. It supports overlaying multiple layers to match image data to
segmentation output or feature maps. Standard interactions such as zooming, panning, and scrolling
through the stack enable the exploration of large datasets. To be scalable, we use Web-based
demand-driven and display-aware rendering with GPU acceleration. We designed RhoANAScope
as follows:

D1. Visualize grayscale images with multiple overlays: The inputs to our automatic
segmentation pipeline are fully aligned scans. The pipeline uses these scans to compute membrane
probabilities and to generate a cell membrane segmentation. The membrane probabilities and the
membrane segmentation overlap spatially with the gray-scale EM scan. Our task is to overlay the
data to debug and understand these outputs. RhoANAScope is designed to support multiple layers of
image data blended using user-configured opacity values. This way, we can see the original image
data while looking at probabilities and membrane output to understand the classifications. We show a

13

Informatics 2017, 4,29

section with cell membrane segmentation overlays in Figure 5a, and with synapse detection overlays
in Figure 5b. We show membrane probabilities in Figure 5c.

D2. Colorize neighboring neurons: When rendering segmentation layers, we colorize the
labelings to distinguish between neighboring neurons. The colorization involves a look-up procedure
which maps the identifier to an RGB color. We use the following formulas to map labels to RGB
color values:

R = ((107x) mod 700) mod 255 1)
G = ((509x) mod 900) mod 255 ()
B = ((200x) mod 777) mod 255 3)

For a given id x, we set each byte for red, green and blue to cycle approximately every seventh id

% =~ %) for R, every other id (% ~ %) for G, and every fourth id (% ~ %) for B, The exact values
chosen preserve dramatic changes between neighboring values while adding subtle differences to
allow 233,100 unique colors for sequential ID values. The resulting colorization is shown in Figure 5a.

D3. GPU accelerated rendering: Sections can be very large and any overlay doubles the amount
of rendered data. We use demand-driven and display-aware rendering for scalability. However, we
use GPU accelerated rendering to process the overlays. This way, we can add additional processing
such as adding segment borders or applying a color map in cases where looping through the pixels on
the CPU is too slow.

D4. Support multiple input formats: We mainly use HDF5 containers for storing segmentations
to support random access without loading a full scan into memory. This is not always fast, and other
connectomics tools aid scalability by storing sections separately as HDF5 or by providing a JSON type
descriptor of the data (e.g., Neuroglancer [33]). We abstract the input format by using the butterfly
middleware and support these different storage methods. Adding support for a new file format
requires extending Butterfly by adding another derived input source.

D5. Index multiple data sources: During segmentation, different parameters result in different
results. This means scans can have many alternate segmentations, and keeping track is difficult.
RhoANAScope uses the Butterfly middleware to query directories for their datasets. This mechansism
detects file types and meta information (such as dimensions, pixel encodings etc.) and creates a
searchable listing of available datasets.

D6. Compression: Storing connectomics data can quickly add up to multiple terabytes or
petabytes of data. We support the efficient and segmentation-map-specific Compresso algorithm
for reading data and also for transferring data from butterfly to RhoANAScope [45].

(a) Neurons (b) Synapses (c) Membranes

Figure 5. Cont.

14

Informatics 2017, 4,29

Detected Synapses

A

Undetected Synapse |

(d) Detected Synapses

Figure 5. We developed RhoANAScope: a Web-based visualizer for neuron and synapse segmentations
at scale. RhoANAScope visualizes segmentations on top of image data using WebGL. (a) Individual
neurons are colored according to their cell membranes. (b) Pre- and post-synaptic markers are colored
as green and blue, and indicate information pathways between neurons. (c) We use membrane
probabilities to debug the automatic segmentations. (d) RhoANAScope is scalable to large data by
implementing display-aware and demand-driven rendering, and supports multiple overlays. Here,
we match a groundtruth segmentation of synapses with the output of our automatic synapse detection
to view undetected synapses (red arrow) versus detected synapses (yellow arrows). Please note that
the synapse detection visualized here is not complete.

Automatic segmentation of 2D nanoscale images is a complex process. We use RnoANAScope
to understand the output of our pipeline and to visually assess segmentation quality, but also as an
every-day viewer for segmented connectomics data.

7. Interactive Visualization for Proofreading

7.1. Motivation

The output of our segmentation pipeline is not perfect. Labeled connectomics data, on average,
requires hundreds of manual corrections per cubic micron of tissue [22]. As mentioned previously,
the most common errors are split errors, where a single segment is labeled as two, and merge errors,
where two segments are labeled as one. With user interaction, we can join split errors (Figure 6a),
and we can define the missing boundary in a merge error (Figure 6b). This manual error correction is
called proofreading.

15

Informatics 2017, 4,29

X
X
X X

select click 1 click2 click 3

(a) Correcting split errors (b) Correcting merge errors

confirm result

1710 Label
W/S: nextprevious sice
©NX: zo0m Infout
Z: mark problem

lock/unlock segment

gle segmentation

A: toggle borders
E/D: increase/decrsass opagiy
ESC: discand spliadjust or sstiool
TAB: confirm adjust §
15: toggle wol

adjusted labal
splitted label 3
merged labels 1330 and
removed merge for label
3/31/2014 9:41:02 AM User memed labels and

(c) Interactive proofreading using Dojo

(d) Collaboration in 2D (e) 3D

Figure 6. The output of our automatic segmentation pipeline requires proofreading to correct split and
merge errors. These errors can be fixed with simple user interaction: (a) Split errors can be corrected by
joining segments; and (b) merge errors can be corrected by drawing the missing boundary. Including
these interactions; (c) we build the interactive proofreading tool Dojo with a minimalistic user interface,
display-aware and demand-driven visualization, and integrated 3D volume rendering. Proofreaders
can collaborate, each with cursors in (d) 2D and (e) 3D. The exclamation mark in (e) is used to request
help at a specific region within the data.

16

Informatics 2017, 4,29

7.2. Data

After automatic segmentation, we compute mipmap representations of scans and their
corresponding segmentation data. Each section of a scan is stored as a separate mipmap with each
mip level stored as tiled images. This allows partial access when requesting zoomed out views of data.
However, editing the segmentation then requires partial rebuilding of the mipmap if the image data
is changed.

In practice, each mipmap representation includes meta information regarding the dimensions,
tiling, data format, and encoding stored within an XML descriptor. The data is organized as a
hierarchical directory structure, with zoom levels grouping sub-directories for each section. Then, each
section is stored tiled as a row/column format.

7.3. Proofreading Applications

Proofreading is necessary to interactively correct segmentation errors before analysis. For this,
we propose Dojo (Dojo is freely available as open source software at https://github.com/rhoana/
dojo.), a Web-based proofreading application that supports multiple users. We evaluated Dojo and
other proofreading software with novices trained by experts as part of a quantitative user study
(between-subjects experiment) [11], and designed mechanisms for quality control [13].

7.3.1. Interactive Proofreading Using Dojo

Dojo enables proofreading in 2D with users able to zoom, pan, and scroll through the stack
(Figure 6¢). To visualize, we use GPU accelerated demand-driven and display-aware rendering in 2D,
and we also incorporate 3D volume rendering. We made the following design choices:

D1. Minimalistic user interface: A proofreading tool has to be simple and easy to understand.
This is especially true if we wish to support use by non-experts. The user interface of Dojo is designed
to be parameter free and have limited options available through icons (Figure 6c¢). Textual information
is presented small but still readable. This way, the proofreader can focus on the actual data and the
task of finding errors.

D2. Interactive splitting and merging: Users of Dojo need to be able to correct split and merge
errors efficiently. To correct split errors, the user clicks on one incomplete segment and then on the
segments to be joined (Figure 6a). For merge errors, Dojo allows users to split a single segment into
two or more by drawing a line across a segment (Figure 6b). Then, the best split line is calculated
by using the user input as seed points for a watershed algorithm. Both interactions require minimal
interaction and give immediate feedback.

D3. Three-dimensional volume rendering: In Dojo, proofreading happens when viewing a single
2D section. However, we also include 3D volume rendering to visualize segments in the context of the
full scan. In a controlled experiment between novice users, we observed that this feature especially
allowed non-experts to better understand the three-dimensional property of connectomics data [11].

D4. Dynamic merge table and partial mipmapping: Proofreading requires many corrections of
segmentation data. Since our data results from an oversegmentation (Section 6), more split errors
than merge errors exist. We use a segment remap table to allow merge operations without actually
modifying the image data. Merging a segment with another segment is achieved by adding a look-up
or redirection entry to the segment remap table. This dynamic data structure is stored separately from
the data and is applied during rendering. For split errors, we calculate which parts of the mipmap
need to be updated to properly adjust the segmentation data. This is scalable because each mip level is
stored as individual image tiles.

D5. Collaborative editing: Proofreading of larger volumes can be sped up when multiple users
correct the data at the same time. In Dojo, we synchronize the modifications of the segmentation data
among all connected users via Websockets. This can result in many transfers depending on how many
clients are connected. Therefore, we limit the transfer to coordinates and meta information and deliver

17

Informatics 2017, 4,29

updated segmentation tiles on request. If two or more users work on the same region of segmentation
data, the other users’ cursors are shown as small colored squares (Figure 6d). In 3D, the cursors are
displayed as colored pins pointing to a position within the scan. In addition to cursor sharing, users
can actively mark an area of the data to seek help from other users (Figure 6e).

Our experiments have shown that the majority of proofreading time is spent by users looking for
errors. To reduce this time, we propose the Guided Proofreading system [12] which suggests errors
and corrections to the proofreader.

7.3.2. Guided Proofreading

Using classifiers built upon a convolutional neural network (CNN), the Guided Proofreading
system (Guided Proofreading is freely available as open source software at https://github.com/
VCG/guidedproofreading) detects potentially erroneous regions in an automatic labeling. Then, we
present the proofreader with a stream of such regions which include merge and split errors and their
corrections. This way, proofreading can be hastened with a series of yes/no decision, which is faster
than manual visual search using Dojo.

D1. Split error detection via CNN: We trained a split error classifier based on a CNN to check
whether an edge with an automatic segmentation is valid. By choosing a CNN over other machine
learning methods, we enable the classifier to learn features by itself rather than using hand-designed
features. Our CNN operates only on boundaries between segments and, in particular, on a small
patch around the center of such boundaries. We use the grayscale image, the membrane probabilities,
a binary mask, and a dilated border mask as inputs. The architecture of our split error classifier uses
dropout regularization to prevent overfitting (Figure 7a).

D2. Merge error detection using the split error classifier: We reuse the split error classifier to
detect merge errors. We generate potential borders within a label segment using randomly-seeded
watershed, and then test whether each border is a split error. If our CNN reports a valid split, we
assume that this border should exist, and therefore we should split the label segment in two.

D3. Single-click corrections: We perform merge and split error detection as a pre-processing step
and sort them by probability of error confidence. The Guided Proofreading system then presents the
most likely errors one-by-one to the user and also shows a potential correction. Then the proofreader
can decide whether to accept or reject a correction with a single click.

Our experiments show that Guided Proofreading reduces the average correction time of 30 s with
Dojo to less than 5 s on average. Correcting segmentations of large connectomics datasets still takes a
long time, but proofreading applications make this more feasible by supporting multiple users and
simple operations. We are currently exploring new ways to proofread synaptic connections.

&l

Image 4X75x75 64x73x73 64x36x36 48x34x34 48x17x17 48x16x15 48x7x7 48x5x5 48x2x2 512 2

B! e

_

Label Input Convolution Pooling Convolution Pooling Convolution Pooling Convolution Pooling Dense Dense
(Max) (Max) (Max) (Max) ReLU Softmax
Dropout Dropout Dropout Dropout Dropout
Border p=2 p=2 p=2 p=2 p=5

(a) A classifier for detecting split errors

Figure 7. Cont.

18

Informatics 2017, 4,29

(b) The Guided Proofreading user interface

Figure 7. The Guided Proofreading system reduces the time spent finding potential errors by proposing
candidate errors and corrections. (a) The system is informed by a convolutional neural network (CNN)
with a traditional architecture. The CNN uses a patch of image data, membrane probability, binary cell
mask, and cell border overlap to decide whether a split error between two neurons exists. (b) Then, we
present the proofreader with a stream of regions and candidate corrections. Thus, proofreading can be
hastened with a series of yes/no decisions, which is about 6 x faster than using Dojo.

8. Network Analysis

8.1. Motivation

Analysis is the final step of the connectomics pipeline. Segmented and proofread data includes cell
membrane annotations for all neurons and the synaptic connections between them. This information
represents a (partial) wiring diagram of the mammalian brain, and this network can be modeled as a
weighted graph (i.e., weighted by number of synaptic connections). Such a graph structure is three
dimensional, dense, and can be hard to analyze due to the large size. To better understand the data,
we need visualizations that render it in 3D and show the biological properties of neurons and their
connections. However, typical analysis concentrates on a subset of our data. This means we also need
sophisticated methods to query and filter our large wiring diagram.

8.2. Data

As previously mentioned, segmentation data and synaptic connections are typically stored as
HDEFS5 files containing the full scan, or as tiled mipmap data structures. The generated neuron and
synapse information is stored as a graph structure in JSON files. We parse these files and store the
connection information in a database as part of the Butterfly middleware, so that we can perform
efficient indexing and querying.

19

Informatics 2017, 4,29

8.3. Tools for Network Analysis

8.3.1. 3DXP

To prepare for 3D analysis, we generate meshes representing neuron geometries by performing
marching cubes [59] on our volumetric segmentation data. We have developed 3DXP (3DXP is freely
available as open source software at https://github.com /rhoana/3dxp), a Web-based application for
exploring volumetric image data and neuron geometries in 3D (Figure 8). This application is fully
interactive and allows researchers to analyze individual neurons and their connections by zooming,
panning, and scrolling through the scan. We designed 3DXP with the following choices in mind:

(a) Neurons (b) Soma (c) Synapes

Figure 8. Three-dimensional polygonal mesh reconstructions of automatically-labeled connectomics
data using our Web-based 3DXP software (downsampled to 3 k x 3 k x 1.6 k voxels). Since the
reconstructions are hundreds of megabytes in size, we stream and render the geometries progressively.
The displayed scenes show: (a) twenty neurons stretching through a 100 um? volume; (b) multiple cell
bodies (soma) visualized; (c) a dendrite with two synaptic connections. All scenes are interactive with
zoom, pan, and scroll interactions. It is also possible to mouse click on a mesh region to open other
visualizers for further data exploration, e.g., in Dojo.

D1. Progressive rendering: For collaborative research, a shareable dynamic visualization allows
more interactivity with the data than statically-generated images or videos. While the visuals must be
simple enough to transfer over an internet connection, the most valuable information from detailed
connectomics emerges when we can show highly detailed reconstructions. Progressive rendering
provides such a solution through multiple meshes of varied levels of detail. 3DXP applies the
existing format of POP Geometry [60] to direct bandwidth to the neural projections closest to the
interactive camera.

D2. Parallel computation: Rendering meshes at several levels of detail takes too much time to
compute on demand for each request. With 3DXP, we precompute meshes at multiple resolutions
for all segmentation identifiers in the reconstructed volume. To reduce the number of days required
to generate meshes for millions of neurons over trillions of voxels, we divide the full volume into
a grid. The volumetric grid allows the parallelization of both mesh generation and conversion to
the multiresolution format across any number of simultaneous connected machines with limited
memory usage.

D3. Correspondence to EM imagery: The rendered meshes when viewed in isolation provide
no indication of the raw data provided as input to the reconstruction. To show the position of a
surface within a brain region, 3DXP displays the meshes alongside axis-aligned sections from the
electron microscopy image volume. Our researchers need to ensure individual EM scans match at

20

Informatics 2017, 4,29

the corresponding depth of a given mesh, so we transfer highly downsampled images of each scan.
The users freely move up and down through scans scaled to match the reconstructed meshes.

D4. Animation: Visualizing more neural projections in 3D corresponds to increasing visual
complexity. An informative and visually appealing solution involves laying a single EM section to
obscure all structures deeper than a given region of interest. The 3DXP viewer supports the creation of
animations that interpolate between chosen camera positions, each linked to a single EM section. The
user saves each given viewpoint as a keyframe linked to a single section. 3DXP can then step through
each section at a constant rate in an animation, moving gradually through the saved viewpoints.

D5. Interoperability: While a 3D visualization is useful, it only partially supports a full
understanding of a given volumetric reconstruction. Therefore, we designed the 3DXP viewer to
work seamlessly with the 2D tiled image viewers in our system. A user can identify the coordinates of
any point on a rendered mesh to immediately view it in 2D. In particular, the interoperability with the
Dojo editor allows the discovery of segmentation errors in an exploratory 3D view to immediately
facilitate manual corrections in a more focused and higher resolution editing environment.

8.3.2. Neural Data Queries

To query, filter, and parse the relationship of neurons and their connections, we developed the
Neural Data Queries system (Figure 9). This system offers a well documented API to request the
following information: all synaptic connections in a region of interest, the center of a specific synapse,
pre- and post-synaptic neurons of a specific synapse, all neurons in a region of interest, the center of a
neuron, and all synapses of a neuron. While the Neural Data Queries system returns numeric or text
data, it is possible to use this information to render specific neurons and their connections using our
visualizers. For this, we report the following design choices:

D1. Interoperability: To facilitate communication between 3D mesh and 2D image viewers,
the Butterfly middleware supports neural data queries within a shared naming convention and single
coordinate frame. For viewers where synapse data is not displayed, a query containing only the
coordinates of a region of interest returns a list of the included synapses. Further requests return
the information needed for a particular viewing task: either the specific coordinates, or the neuron
segments joined by the synapse.

D2. Support for automation: The neural data queries consist of the number of elemental requests
needed to express the spatially-embedded connectivity graph over many short and fast queries. Rather
than attempt to enumerate all the complex queries of an embedded graph, the neural data queries
often return a single property of a single entity. An automated client can request “the synapse location
between neuron A and neuron B” in multiple neural data queries. If any ID value in “synapses of
neuron A” occurs in the list of “synapses of neuron B”, then a third request can be made for the location
of the shared synapse.

D3. Informative feedback: The RhoANAScope viewer makes use of many small neural data
queries to asynchronously index all tiled images available for viewing. A single request lists all
experiments, which trigger requests for all samples per experiment, then all datasets per sample,
and ultimately all tiled image channels per dataset. When manually querying the API, the Butterfly
system facilitates manual indexing through helpful error messages for humans. Without any
parameters, Butterfly suggests a list of experiments. In response to requests, including a misspelled
channel, Butterfly suggests valid channels. The response is the same for any missing or invalid
parameter such that humans can interact with the API without prior knowledge.

21

Informatics 2017, 4,29

Query
/api/entity_feature?feature=synapse_parent&experiment=e&sample=s&dataset=d&channel=c&id=10

Response

{ "synapse_parent_pre": 888, "synapse_id": 10, "synapse_parent_post”: 999 }

Query

/api/entity_feature?feature=synapse_keypoint&experiment=e&sample=s&dataset=d&channel=c&id=10

Response

{ "y": 12800, "x": 12800, "z": 1700 }

Figure 9. Two neural data queries and responses show separate properties of a given synapse.
Both synapse_parent (top) and synapse_keypoint (bottom) queries request a field of data for synapse
label 10 in dataset d of sample s in experiment e. The channel c refers to the tiled volume containing a
reconstruction of synapse segments. The top request returns both neuron segment labels representing
the presynaptic input and postsynaptic output of the provided synapse. The bottom request returns
the coordinates of the center of the requested synapse.

We specifically designed the Neural Data Queries system together with neuroscientists to support
targeted data exploration. Targeted data queries provide endpoints specific to neural reconstructions.
API endpoints provide the center coordinates of any neuron ID with a cell body or any synapse ID
value. Most importantly, we can return all synapses in a region, all synapses of a neuron, and both
neurons for any given synapse. A configuration file listing file paths matches tiled images with the
corresponding files for center coordinates and synapse connectivity. An efficient database integrated
in Butterfly ensures that each query response is generated in less than 5 s.

9. Performance and Scalability Experiments

All 2D client visualization applications in our system request a view onto a scan volume from
the Butterfly server. When a client requests a viewport that is smaller in pixel size than the files in
storage, the server must load and transfer subsections from each file, e.g., for a zoomed-in view. When
a client requests a viewport that is larger in pixel size than the files in storage, the server must load and
combine many image files before transfer, e.g., for a zoomed-out view. For far-zoomed-out views, this
combination requires loading many hundreds of files, which can be slow. To provide a faster response,
the client sequentially requests only tiles within the total-requested viewport. These are independent
of the tiles on network file storage. The server then sends these tiles as parts of the viewport of the
client where they are displayed.

Each 2D client application opens with a zoomed-out view completely containing a full tiled image
at the lowest available resolution. For an overview of the full volume at a low resolution, users can scroll
through all full tiled images in the stack. The speed of this interactive overview depends on the time to
load and transfer a full tiled image at a mipmap level within the viewport dimensions. By considering
the most zoomed-out view, we compare transfer times without calculating the variable number of tiles
needed for many possible zoomed-in views. We measure this tile transfer from the storage system as a
second experiment, which applies to pre-computed and on-demand mipmap scenarios.

To optimize client tile transfers of arbitrary sizes from storage systems with an arbitrary numbers
of files, we present results from two sets of experiments designed to separately test performance
of client tile transfer and file storage. Given the optimal client tile size, the optimal bit rate to read
files from a network file system reduces the overhead for each transfer. These experiments measure
throughput from data on the network file system to a Web-based client viewer application, and are
indicative of the general performance of all reported visualization tools. In this sense, they measure

22

Informatics 2017, 4,29

the scalability of our display-aware and demand-driven rendering (Figure 10). We measure both client
tile size and file size by the pixel dimensions of the square tiles (denoted either as N x N or N? pixels.)

File Storage Tile Transfer
Experiment Experiment

2D Visualization

Network File System Middleware

Figure 10. We record throughput of a generalized scalable visualization pipeline, to inform best-practice
Butterfly parameter settings. This pipeline replicates the general setup of all reported 2D visualization
tools. First, we load data from a network file system. Our middleware then processes these files and
transfers tiled images to a 2D visualizer. Our experiments include the file storage experiment and the tile
transfer experiment.

Client Tile Transfer Experiment: We measure both the time to transfer a single tile to an image
viewer and the time to transfer data that is split into multiple tiles. This helps to answer the question:
Which tile size best enables streaming when transferring data from server to client viewer? The size of the
client-requested image tiles affects the transfer time from the server, where the optimal client tile size
for each request should minimize both the delay between an individual tile appearing in the client and
the duration until all tiles fill the client display.

File Storage Experiment: We measure loading speed for a full section of data using different-sized
files in storage to answer the question: Which file size is most efficient to read connectomics imagery in a
network environment? The size of the image files in storage affects the file read rate from network file
storage, where the optimal tiled storage system should minimize the time to load tiles from the file
system. For this experiment, we assume we want to read a fixed number of pixels from disk.

9.1. Client Tile Transfer Experiment

We measure the time to serve an image of 4096 x 4096 pixels from server memory. We send the
full image to the viewer as one or more tiles, each fulfilling a separate image request. Because the total
data transferred is constant, the time to serve the full image reflects the bit rate for data transfer to the
viewer. For one tile of 4096 pixels, four tiles of 20482 pixels, 16 tiles of 10242 pixels, and 64 tiles of 5122
pixels, we measure the total time from the start of the first request until the last response completes the
full image. The full image transfer time divided by the total number of tiles directly gives the mean
time to transfer a single tile to the client. The single tile transfer time also measures the delay between
updates to the rendered image. With an increased mean time to transfer a single tile, the user sees tiles
render at a slower frequency.

9.1.1. Experimental Setup

The client tile transfer experiment starts a Tornado [61] server from a Python 2.7.11 interpreter on
a single CentOS Linux machine on the Harvard Odyssey research computing cluster (The Harvard
Odyssey cluster is supported by the FAS Division of Science, Research Computing Group at Harvard
University). The viewer contacts the server through an SSH tunnel on the Harvard network from
Google Chrome v54 on an Ubuntu Xenial Linux distribution. Before sending data, the server divides
a tile of 4096 x 4096 pixels from an existing EM image into all 64 tiles of 512 x 512 pixels needed
for the first condition. In Chrome on the client, the first request opens HTML and JavaScript for
an OpenSeadragon viewer. The viewer starts a timer when ready to make asynchronous requests.
After the last image tile arrives, the viewer sends the full duration to the server.

23

Informatics 2017, 4,29

9.1.2. Experimental Results

For the client tile transfer experiment, one-way ANOVA tests showed significance across all
500 repetitions. When measuring time for the full image (F(3,1996) = 21,119, p < 0.001) or time per
tile (F(3,1996) = 140,190, p < 0.001), the four conditions of tile size show a significant effect at the
p < 0.05 level for tiles of 512, 1024, 2048, or 4096 pixel edges.

Relative to a bulk transfer of 4096 x 4096 pixels, Figure 11b shows a longer time to transfer of
64 tiles of 512 pixels, and shorter transfer times for 16 tiles of 1024 pixels or 4 tiles of 2048 pixels. Post
hoc comparisons (after Bonferroni correction) indicate that a full image transferred in tiles measuring
1024 pixels in significantly less time than in those measuring 2048 pixels (t = —17.6, p < 0.001),
4096 pixels (t = —123, p < 0.001) or 512 pixels (t = —234, p < 0.001). For all sizes measured, a full
image of 4096 x 4096 pixels transfers the fastest in tiles of 1024 x 1024 pixels. The second fastest tiles
of 2048 pixels transfer a full image in 8.0% more time on average than tiles of 1024 pixels.

Figure 11a shows that transfer time increases for larger tiles of 2048 pixel sides relative to smaller
tiles of 1024 pixel sides. The mean delay between individual tiles greatly differs between tiles measuring
1024 and 2048 pixels. Post hoc comparisons after correction indicate that a single 1024 x 1024 pixel tile
loads in much less time than a single 2048 x 2048 pixel tile (t = —247, p < 0.001). While any given
image contains four times as many tiles of 1024 pixels as tiles of 2048 pixels, each tile of 2048 pixels
takes on average 123 milliseconds longer to transfer than each tile of 1024 pixels.

2.0 2.0
B

15 ° 15 i N
_ * ° °
3) B *
2 2
o o
3 g B
g0 g 10
o o H
E g H
[S [S

05 05

o
0.0 . 0.0
512 1024 2048 2096 512 1024 2048 2096
Tile size (side length in pixels) Tile size (side length in pixels)
(a) Mean time to serve one image tile (b) Time to serve full image

Figure 11. One experiment uses two metrics measured in seconds to evaluate tiled image transfer to an
OpenSeadragon client. (a) The time to send a single client tile depends on the size of the tile and the bit
rate. The sides of a single square tile range from 512 to 4096 pixels. Tiles of the two smaller sizes each
arrive in less than 40 ms. Tiles measuring 2048 and 4096 pixels per side each arrive in approximately
160 ms and 960 ms, respectively. (b) Only the bit rate affects the time to send a full tiled image of
4096 pixel sides. Sending the full section in one tile of 4096 x 4096 pixels takes 960 ms, but a division
into 64 square tiles of 512 x 512 pixels increases that time to 1200 ms. Tiles of 1024 and 2048 pixel sides
reduce the time to 590 ms and 640 ms, respectively.

9.2. File Storage Experiment

We measure the bit rate to load from file system divisions of a full 32,768 x 32,768 pixel image,
which is at the scale of a single MFOV. We measure the total time to load one file of 32,768 pixels, four
files of 16,3842 pixels, 16 files of 81922 pixels, or 64 files of 40962 pixels as square tiles ranging in length
from 5122 to 40962 pixels. This simulates a server that delivers tiles of a given size from multiple files
of equal or larger size. Therefore, the solid lines in Figure 12 begin by loading each file as a single tile.
This experiment isolates the effects on performance of repeated access to multiple files.

24

Informatics 2017, 4,29

Rate to read tile sizes from file sizes

500 -~ one tile per file |
= ¢—% 4096 pixel tiles
2 400 3% 2048 pixel tiles |
§ L ¢—¢ 1024 pixel tiles
g 300 7 6—6 512 pixel tiles |1
@
£
< 200+ .
[
13
2
100
e, e
12 1024 2048 4096 8192 16384 32768
(4096 files) (1024 files) (256 files) (64 files) (16 files) (4 files) (1 file)

Stored file size in pixels
(total number of files)

Figure 12. Rate to read various tile sizes from several file sizes. A server loads all tiles from an image
stored on a network file system at a rate given by the number of separate TIFF files used to store the
data. The server can use square tiles of variable area to load the full section of 32,768 x 32,768 pixels.
The four different colored lines represent square tiles of length 512, 1024, 2048, and 4096. The negative
slopes of all solid lines show loading speed decreases with larger files for any given tile dimensions.
For any tile size above 512 pixels, the tiles load the fastest from files of the same size. The black dotted
line shows that it is most efficient to read an entire file in a single section. Error bars represent one
standard deviation above and below the mean over 75 trials.

9.2.1. Experimental Setup

The file storage experiment runs entirely from a Python 2.7.11 interpreter in parallel on fourteen
similarly configured CentOS Linux machines on the Harvard Odyssey research computing cluster. For any
given condition, the program first stores 32,768 x 32,768 pixels of random noise into a number of tiff files
of sizes ranging from 512 x 512 pixels through 32,768 x 32,768 pixels. Each trial repeats all conditions in
one uniquely labeled folder, and all file names contain an integer sequence unique within a given trial.

After writing all files for a given condition to the network file system, the program separately
measures the time to load each tile from part or all of the corresponding file. The sum of all loading
times then gives the time to load a constant 32,768 x 32,768 pixels from the network file system
regardless of the number of files or size of tiles.

9.2.2. Experimental Results

For the file storage experiment, one-way ANOVA tests showed significance at the p < 0.05 level for
each line in Figure 12 across all 75 repetitions. When tile size equals file size, files from 512 through 4096
pixels significantly affect bit rate (F(3,296) = 367, p < 0.001). For tiles of 512 pixels, files from 512 through
32,768 pixels significantly affect bit rate (F(6,518) = 947, p < 0.001). For tiles of 1024 pixels, files from 1024
through 32,768 pixels significantly affect bit rate (F(5,444) = 1033, p < 0.001). For tiles of 2048 pixels,
files from 2048 through 32,768 pixels significantly affect bit rate (F(4,370) = 564, p < 0.001). For tiles of
4096 pixels, files from 4096 through 32,768 pixels significantly affect bit rate (F(3,296) = 548, p < 0.001).

The dotted black line in Figure 12 gives the bit rate when only one image tile loads from any
given file. The rates increase along this line when loading from larger files. Relative to loading single
tiles from 1024 pixel files, single tiles load more quickly from 2048 pixel files (t = 16.2, p < 0.001).
Compared to 2048 pixel files, single tiles also load at faster rates from 4096 pixel files (t = 10.0,
p < 0.001). As further analysis shows, the trend favoring large files only holds when the size of the
tiles loaded at each instant can be arbitrarily increased.

Each solid line in Figure 12 gives the bit rate when one or more tiles of a constant size load from
any given number of files. The rates decrease along these lines when loading tiles of fixed dimensions
from smaller sections of larger files. Relative to loading 1024 x 1024 pixel tiles from files of 4096 pixels,
tiles of the same size load more quickly from files of 2048 pixels (f = 24.2, p < 0.001). Compared to

25

Informatics 2017, 4,29

files of 2048 pixels, tiles of 1024 x 1024 pixels also load at a slightly higher rate from tiles of 1024 pixels
(t =3.61, p < 0.001).

The tiled image transfer experiment shows tile dimensions of 1024 x 1024 pixels both optimally
reduce delays between individual tiles and loading times for a viewport of 4096 x 4096 pixels. Given
a constant tile size of 1024 pixels, the tiled image storage experiment suggests a division of the
image volume into files also measuring 1024 pixels. However, when external constraints limit the
division of the image volume into larger flies than 4096 x 4096 pixels, larger tile sizes on the scale of
2048 x 2048 pixels should be considered to prevent the limits of the network file system from hindering
the transfer of image tiles to the viewers.

10. Implementations and Distribution

We choose the following implementations for the described applications.

The Butterfly middleware: We implement our middleware in Python and use the Tornado [61]
Web framework to provide the server. We use OpenCV for image processing and mipmap generation.

MBeam viewer: This application is written in HTML5/Javascript and uses the OpenSeaDragon [62]
rendering framework.

RHAligner: The alignment framework and visualization scripts are written in Python and
use OpenCV.

RhoANAScope: This is an HTML5/Javascript Web frontend and uses the OpenSeaDragon [62]
rendering framework combined with our developed viaWebGL (Rendering via WebGL in
OpenSeaDragon is available as open-source software at http://github.com/rhoana/viawebgl/) plugin
to use GPU accelerated rendering.

Dojo: The proofreading application Dojo uses a custom WebGL rendering engine and is written
in HTML5/Javascript. We use Websockets to support collaborative editing and to synchronize any
changes among all proofreaders. For volume rendering, we use the XTK WebGL library [35], which
enables volume rendering of medical imaging data.

Guided Proofreading: This classifier is developed in Python using the Nolearn [63] machine
learning library. The user interface is written in HTML5.

3DXP: This visualizer renders using the X3DOM WebGL library [64] and the user interface
including keyframe recording is written in HTML5/]Javascript.

Neural Data Queries: This API is written in Python and integrated into the Butterfly middleware.
We use MongoDB [65] for the database.

10.1. Data Access API

The Butterfly middleware provides an application program interface to abstract data access
by providing a cut-out service. This abstraction layer enables the requesting client application to
not care whether data is stored as pre-computed mipmaps, or if different zoom levels need to be
computed online. Further, the client is agnostic to file formats and data storage schemes. For example,
segmentations can be stored with different bitrates depending on the number of encoded structures
(Section 3.2). The data access APl is the core feature of the Butterfly middleware and is documented
online (The Butterfly data access API is documented at https://github.com/microns-ariadne/ariadne-
nda/blob/master/specs/finished.md).

10.2. Distribution

All applications described in this paper are available as open source software and can be
installed individually. However, we also provide a downloadable virtual machine image (Installation
instructions for the Butterfly virtual machine image are given at https://github.com/Rhoana/bflyVM)
based on Ubuntu linux, bundled with pre-configured installations of Butterfly and all visualization
applications. This way, interested users can download the virtual machine, link to a network file system,
and immediately access the bundled tools via a Web-browser from anywhere in the local network.

26

Informatics 2017, 4,29

11. Use Case: Splitting Merged Somas

While we have designed each tool to function optimally for separate tasks in the analysis
of connectomics imagery, it is also possible for information gained in one interface to inform the
interaction in others. To demonstrate this, we present a method for solving the problem of splitting
merged somas in nano-scale images, with linked views across several applications.

Gravitational centers of brain cells appear in the segmentation data as large uninterrupted round
regions with a single identifier. These regions were segmented using membrane probabilities as
described in Section 6. Given an identifier of a cell body within the scanned volume (soma, obtained
through visual inspection), 3DXP opens the surface mesh of the identifier in an interactive 3D viewer.
For a correct segmentation, we expect any mesh with a cell body to branch into thinner projections that
continue past the edge of the volume or terminate in small synaptic connections. Any neuroscience
researcher would immediately notice when 3DXP instead shows the projections of one soma grow
seamlessly into another cell body.

A single surface mesh with two distinct globular masses indicates that the neuron segmentation
contains two mistakenly-merged neurons. After noticing such a mesh, a researcher can visually search
various views in 3DXP to inspect unlikely- and unevenly-shaped patterns in the thin projections. When
clicking to identify a region of interest, the coordinates automatically open to the corresponding view
in the Dojo proofreading tool. In Dojo, the user can follow the contours of the EM image to create a
new segmentation label to separate the two merged neurons. After 3D agglomeration on the resulting
segmentation, the researcher can separately analyze the two neuron segments.

Figure 13 shows one way a 3D view in 3DXP informs 2D proofreading in Dojo. In addition to
improving the current segmentation through proofreading, the software presented here allows analysis
of intermediate results to improve the algorithms behind future segmentation. The RhoANAScope
viewer can maintain a central directory of all initial EM images, intermediate membrane potentials,
and resulting segmentation volumes. Upon finding an unusual error while making corrections in Dojo,
a researcher can open the corresponding membrane potentials in RhoANAScope to understand the
source of the error in the automated process.

(a) 3DXP (b) Dojo

Figure 13. Cont.

27

Informatics 2017, 4,29

B, . 2

(c) Dojo—Split mode

Figure 13. Three steps in the use case of splitting connected cell bodies. In (a), a single green label
includes two large cell bodies. Therefore, the one label contains the joined reconstruction of two
neurons. A neural process runs from a broad base off the lower cell body. While the projection correctly
passes narrowly behind one branch of the upper neuron, the tip of process mistakenly merges with the
surface of the upper soma at a small point shown in red. In (b), the dojo editor displays the false merge
between the large upper soma and the small neural process (upper right). Using the same segmentation
available to the 3D view, both neurons display as parts of one green segment. In (c), a detailed view
shows the same false merge with the segmentation label removed. The membrane between the large
soma and the small projection displays as a darkened band in the EM image section. The green line,
drawn by the user, allows the separation of the falsely merged neurons.

12. Conclusions

The Butterfly middleware makes working with connectomics datasets easier and more convenient.
The simple application programming interface abstracts away the low-level problems that occur when
working with massive datasets so that neuroscientists and computer scientists in this field can focus
on connectomics as opposed to data management. We demonstrate the scalability and extendability of
Butterfly with applications tailored towards every step of the connectomics workflow and provide
all developments presented in this paper as open source software to the community. As the field of
connectomics matures, more novel and sophisticated visualizations will be needed. We hope Butterfly
will help us all to develop these future visualizations.

Supplementary Materials: The following are available online at https://github.com/Rhoana/butterfly /wiki/
Supplemental-Material, UML Diagram of the Butterfly middleware and Video.

Acknowledgments: This research is supported in part by NSF grants 1IS-1447344 and 1IS-1607800, by the
Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center
(Dol/IBC) contract number D16PC00002, and by the King Abdullah University of Science and Technology
(KAUST) under Award No. OSR-2015-CCF-2533-01.

Author Contributions: Daniel Haehn is the principal architect of the landscape surrounding the Butterfly
middleware and contributed to all presented software tools. John Hoffer performed major engineering of the
presented applications. Brian Matejek worked on compression and provided theoretical insights. Adi Suissa-Peleg
worked on alignment and performed software engineering. Eagon Meng developed the initial Butterfly image
server. William Zhang worked on 3D visualization. Lee Kamentsky developed the segmentation framework.
Richard Schalek and Alyssa Wilson acquired connectomics imagery. Ali K. Al-Awami, Felix Gonda, Toufiq Parag,
Johanna Beyer, Verena Kaynig, Thouis R. Jones, and James Tompkin provided expert knowledge as well
as guidance. Markus Hadwiger, Jeff W. Lichtman and Hanspeter Pfister supervised the project. All authors
contributed to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

28

Informatics 2017, 4,29

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Lichtman,].W. The Big and the Small: Challenges of Imaging the Brain’s Circuits. Science 2011, 334, 618-623.
Seung, S. Connectome: How the Brain’s Wiring Makes Us Who We Are; Houghton Mifflin Harcourt:
Boston, MA, USA, 2012.

Hagmann, P. From Diffusion MRI to Brain Connectomics. Ph.D. Thesis, Université de Lausanne de
Nationalité Suisse et Originaire de Daniken, Lausanne, Switzerland, 2005.

Sporns, O.; Tononi, G.; Kotter, R. The Human Connectome: A Structural Description of the Human Brain.
PLoS Comput. Biol. 2005, 1, doi10.1371/journal.pcbi.0010042.

Kasthuri, N.; Hayworth, K.J.; Berger, D.R.; Schalek, R.L.; Conchello, J.A.; Knowles-Barley, S.; Lee, D.;
Vazquez-Reina, A.; Kaynig, V.; Jones, T.R.; et al. Saturated reconstruction of a volume of neocortex. Cell 2015,
162, 648-661.

Suissa-Peleg, A.; Haehn, D.; Knowles-Barley, S.; Kaynig, V.; Jones, T.R.; Wilson, A.; Schalek, R.; Lichtman,].W.;
Pfister, H. Automatic Neural Reconstruction from Petavoxel of Electron Microscopy Data. Microsc. Microanal.
2016, 22, 536-537.

Schalek, R.; Lee, D.; Kasthuri, N.; Peleg, A_; Jones, T.; Kaynig, V.; Haehn, D.; Pfister, H.; Cox, D.; Lichtman, J.
Imaging a 1 mm?® Volume of Rat Cortex Using a MultiBeam SEM. Microsc. Microanal. 2016, 22, 582-583.
Kaynig, V.; Vazquez-Reina, A.; Knowles-Barley, S.; Roberts, M.; Jones, T.R.; Kasthuri, N.; Miller, E.;
Lichtman, J.; Pfister, H. Large-scale automatic reconstruction of neuronal processes from electron microscopy
images. Med. Image Anal. 2015, 22, 77-88.

Knowles-Barley, S.; Kaynig, V.; Jones, T.R.; Wilson, A.; Morgan, J.; Lee, D.; Berger, D.; Kasthuri, N.;
Lichtman, J.W.; Pfister, H. RhoanaNet Pipeline: Dense Automatic Neural Annotation. arXiv 2016,
arXiv:1611.06973.

IEEE ISBI Challenge: SNEMI3D—3D Segmentation of Neurites in EM Images. 2013. Available online:
http:/ /brainiac2.mit.edu/SNEMI3D (accessed on 21 August 2017).

Haehn, D.; Knowles-Barley, S.; Roberts, M.; Beyer, J.; Kasthuri, N.; Lichtman, J.; Pfister, H. Design and
Evaluation of Interactive Proofreading Tools for Connectomics. IEEE Trans. Vis. Comput. Graph. 2014,
20, 2466-2475.

Haehn, D.; Kaynig, V.; Tompkin, J.; Lichtman, JJW.; Pfister, H. Guided Proofreading of Automatic
Segmentations for Connectomics. arXiv 2017, arXiv:1704.00848.

Al-Awami, AK., Beyer, J; Haehn, D.; Kasthuri, N.; Lichtman, J.W.; Pfister, H.; Hadwiger, M.
NeuroBlocks—Visual Tracking of Segmentation and Proofreading for Large Connectomics Projects.
IEEE Trans. Vis. Comput. Graph. 2016, 22, 738-746.

Al-Awami, A.; Beyer, J.; Strobelt, H.; Kasthuri, N.; Lichtman, J.; Pfister, H.; Hadwiger, M. NeuroLines:
A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity. IEEE Trans. Vis. Comput. Graph.
2014, 20, 2369-2378.

Beyer, J.; Al-Awami, A.; Kasthuri, N.; Lichtman,].W.; Pfister, H.; Hadwiger, M. ConnectomeExplorer:
Query-Guided Visual Analysis of Large Volumetric Neuroscience Data. IEEE Trans. Vis. Comput. Graph. 2013,
19, 2868-2877.

Lichtman, J.W.; Pfister, H.; Shavit, N. The big data challenges of connectomics. Nat. Neurosci. 2014,
17,1448-1454.

Pfister, H.; Kaynig, V.; Botha, C.P; Bruckner, S.; Dercksen, V.J.; Hege, H.C.; Roerdink,].B. Visualization in
Connectomics. arXiv 2012, arXiv:1206.1428v2.

Margulies, D.S.; Bottger, J.; Watanabe, A.; Gorgolewski, K.J. Visualizing the human connectome. Neurolmage
2013, 80, 445-461.

Hayworth, K.J.; Morgan, J.L.; Schalek, R.; Berger, D.R.; Hildebrand, D.G.C.; Lichtman, J.W. Imaging ATUM
ultrathin section libraries with WaferMapper: A multi-scale approach to EM reconstruction of neural circuits.
Front. Neural Circuits 2014, 8, doi:10.3389/ fncir.2014.00068.

Schaefer, H.E. Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine;
Springer: Berlin/Heidelberg, Germany, 2010; Charpter 2.

Janelia Farm. Raveler. 2014. Available online: https:/ /openwiki.janelia.org/wiki/display/flyem/Raveler
(accessed on 27 August 2017).

29

Informatics 2017, 4,29

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Knowles-Barley, S.; Roberts, M.; Kasthuri, N.; Lee, D.; Pfister, H.; Lichtman,].W. Mojo 2.0: Connectome
Annotation Tool. Front. Neuroinform. 2013, doi:10.3389 / conf.fninf.2013.09.00060.

NeuTu: Software Package for Neuron Reconstruction and Visualization. 2013. Available online:
https:/ /github.com/janelia-flyem /NeuTu (accessed on 20 May 2017).

Hadwiger, M.; Beyer, |.; Jeong, W.K,; Pfister, H. Interactive Volume Exploration of Petascale Microscopy
Data Streams Using a Visualization-Driven Virtual Memory Approach. IEEE Trans. Vis. Comput. Graph. 2012,
18, 2285-2294.

Beyer, J.; Hadwiger, M.; Al-Awami, A.; Jeong, W.K,; Kasthuri, N.; Lichtman,].W.; Pfister, H. Exploring the
Connectome: Petascale Volume Visualization of Microscopy Data Streams. IEEE Comput. Graph. Appl. 2013,
33,50-61.

Sicat, R.; Hadwiger, M.; Mitra, N.J. Graph Abstraction for Simplified Proofreading of Slice-based Volume
Segmentation. In Proceedings of the 34th Annual Conference of the European Association for Computer
Graphics, Girona, Spain, 6-10 May 2013.

Kim, J.S.; Greene, M.].; Zlateski, A.; Lee, K.; Richardson, M.; Turaga, S.C.; Purcaro, M.; Balkam, M.;
Robinson, A.; Behabadi, B.F.; et al. Space-time wiring specificity supports direction selectivity in the retina.
Nature 2014, 509, 331-336.

Giuly, RJ.; Kim, K.Y.; Ellisman, M.H. DP2: Distributed 3D image segmentation using micro-labor workforce.
Bioinformatics 2013, 29, 1359-1360.

Saalfeld, S.; Cardona, A.; Hartenstein, V.; Tomancak, P. CATMAID: Collaborative annotation toolkit for
massive amounts of image data. Bioinformatics 2009, 25, 1984-1986.

Anderson, J.; Mohammed, S.; Grimm, B.; Jones, B.; Koshevoy, P; Tasdizen, T.; Whitaker, R.; Marc, R.
The Viking Viewer for connectomics: Scalable multi-user annotation and summarization of large volume
data sets. J. Micros. 2011, 241, 13-28.

Lin, C.Y,; Tsai, K.L.; Wang, S.C.; Hsieh, C.H.; Chang, H.M.; Chiang, A.S. The Neuron Navigator: Exploring the
information pathway through the neural maze. In Proceedings of the 2011 IEEE Pacific Visualization
Symposium, Hong Kong, China, 1-4 March 2011; pp. 35-42.

Ginsburg, D.; Gerhard, S.; Calle, J.E.C.; Pienaar, R. Realtime Visualization of the Connectome in the Browser
using WebGL. Front. Neuroinform. 2011, doi:10.3389/ conf.fninf.2011.08.00095.

Neuroglancer: WebGL-Based Viewer for Volumetric Data. 2017. Available online: https://github.com/
google/neuroglancer (accessed on 29 May 2017).

Khronos Group. WebGL Specification. 2014. Available online: http:/ /www.khronos.org/registry /webgl/
specs (accessed on 31 March 2014).

Haehn, D.; Rannou, N.; Ahtam, B.; Grant, E.; Pienaar, R. Neuroimaging in the Browser using the X Toolkit.
Front. Neuroinform. 2012, doi: 10.3389/conf.fninf.2014.08.00101.

Haehn, D. Slice:Drop: Collaborative medical imaging in the browser. In Proceedings of the ACM SIGGRAPH
2013 Computer Animation Festival, Anaheim, CA, USA, 21-25 July 2013; p. 1.

Bakker, R.; Tiesinga, P.; Kotter, R. The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases
and Related Content. Neuroinformatics 2015, 13, 353-366.

Stephan, K.E.; Kamper, L.; Bozkurt, A.; Burns, G.A.P.C.; Young, M.P; Koétter, R. Advanced database
methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). Philos. Trans. R.
Soc. Lond. B Biol. Sci. 2001, 356, 1159-1186.

Bota, M.; Dong, H.W.; Swanson, L.W. Brain architecture management system. Neuroinformatics 2005, 3, 15-47.
Schmitt, O.; Eipert, P. neuroVIISAS: Approaching Multiscale Simulation of the Rat Connectome.
Neuroinformatics 2012, 10, 243-267.

Gerhard, S.; Daducci, A.; Lemkaddem, A.; Meuli, R.; Thiran, J.; Hagmann, P. The connectome viewer toolkit:
An open source framework to manage, analyze, and visualize connectomes. Front. Neuroinform. 2011, 5,
doi:10.3389/ fninf.2011.00003.

Sorger, J.; Buhler, K.; Schulze, F; Liu, T.; Dickson, B. neuroMap—Interactive graph-visualization of the fruit
fly’s neural circuit. In Proceedings of the 2013 IEEE Symposium on Biological Data Visualization (BioVis),
Atlanta, GA, USA, 13-14 October 2013; pp. 73-80.

DVID. Distributed, Versioned, Image-Oriented Dataservice. 2016. Available online: https:/ /github.com/
janelia-flyem/dvid /wiki (accessed on 14 January 2016).

30

Informatics 2017, 4,29

44. The Boss: A Cloud Based Storage Service Developed for the IARPA MICrONS Program. 2017.
Available online: https:/ /docs.theboss.io/ (accessed on 29 May 2017).

45. Matejek, B.; Haehn, D.; Lekschas, F.; Mitzenmacher, M.; Pfister, H. Compresso: Efficient Compression of
Segmentation Data For Connectomics. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Quebec City, QC, Canada, 10-14 September 2017.

46. Williams, L. Pyramidal parametrics. In Proceedings of the 10th Annual Conference on Computer Graphics and
Interactive Techniques, Detroit, MI, USA, 25-29 July 1983; ACM: New York, NY, USA, 1983; Volume 17, pp. 1-11.

47. Kaiser, G.E. Cooperative Transactions for Multiuser Environments. In Modern Database Systems; ACM
Press/Addison-Wesley Publishing Co.: New York, NY, USA, 1995; pp. 409-433.

48. Jeong, WK; Johnson, M.K.; Yu, L; Kautz, J.; Pfister, H.; Paris, S. Display-aware image editing. In Proceedings
of the 2011 IEEE International Conference on Computational Photography (ICCP), Pittsburgh, PA, USA,
8-10 April 2011; pp. 1-8.

49. Beyer,].; Hadwiger, M.; Jeong, W.K.; Pfister, H.; Lichtman, J. Demand-driven volume rendering of terascale
EM data. In Proceedings of the International Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 2011, Vancouver, BC, Canada, 7-11 August 2011; p. 57.

50. Saalfeld, S.; Fetter, R.; Cardona, A.; Tomancak, P. Elastic volume reconstruction from series of ultra-thin
microscopy sections. Nat. Methods 2012, 9, 717-720.

51. Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20-25 September 1999; IEEE Computer
Society: Washington, DC, USA, 1999; p. 1150.

52. Janelia Farm. The Tilespec JSON Data Model. 2015. Available online: https://github.com/saalfeldlab/
render/blob/master/docs/src/site/ markdown/data-model.md (accessed on 27 August 2017).

53. Nunez-Iglesias,].; Kennedy, R.; Parag, T.; Shi, J.; Chklovskii, D.B. Machine Learning of Hierarchical Clustering
to Segment 2D and 3D Images. PLoS ONE 2013, 8, doi:10.1371/journal.pone.0071715.

54. Ronneberger, O.; Fischer, P,; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCALI), Munich, Germany, 5-9 October 2015; Springer: Berlin, Germany, 2015; Volume 9351, pp. 234-241.

55. Nguyen, Q. Parallel and Scalable Neural Image Segmentation for Connectome Graph Extraction; Massachusetts
Institute of Technology: Cambridge, MA, USA, 2015.

56. Nunez-Iglesias, J.; Kennedy, R.; Plaza, S.M.; Chakraborty, A.; Katz, W.T. Graph-based active learning of
agglomeration (GALA): A Python library to segment 2D and 3D neuroimages. Front. Neuroinform. 2014, 8,
d0i:10.3389/fninf.2014.00034.

57. Parag, T.; Chakraborty, A.; Plaza, S.; Scheffer, L. A Context-Aware Delayed Agglomeration Framework for
Electron Microscopy Segmentation. PLoS ONE 2015, 10, doi:10.1371/journal.pone.0125825.

58. Santurkar, S.; Budden, D.M.; Matveev, A_; Berlin, H.; Saribekyan, H.; Meirovitch, Y.; Shavit, N. Toward
Streaming Synapse Detection with Compositional ConvNets. arXiv 2017, arXiv:1702.07386.

59. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques,
Anaheim, CA, USA, 27-31 July 1987.

60. Limper, M.; Jung, Y.; Behr, J.; Alexa, M. The POP Buffer: Rapid Progressive Clustering by Geometry
Quantization. Comput. Graph. Forum 2013, 32, 197-206.

61. Dory, M.; Parrish, A.; Berg, B. Introduction to Tornado; O'Reilly Media, Inc.: Sebastopol, CA, USA, 2012.

62. OpenSeaDragon. 2016. Available online: http://openseadragon.github.io/ (accessed on 27 August 2017).

63. Nouri, D. Nolearn: Scikit-Learn Compatible Neural Network Library. 2016. Available online: https:/ /github.
com/dnouri/nolearn (accessed on 27 August 2017).

64. Behr, J.; Eschler, P; Jung, Y.; Zollner, M. X3DOM: A DOM-based HTML5/X3D Integration Model.
In Proceedings of the 14th International Conference on 3D Web Technology, Darmstadt, Germany,
16-17 June 2009; ACM: New York, NY, USA, 2009; pp. 127-135.

65. Chodorow, K.; Dirolf, M. MongoDB: The Definitive Guide, 1st ed.; O'Reilly Media, Inc.: Sebastopol, CA, USA, 2010.

® © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

31

informatics MBPY

Atrticle
Visual Analysis of Stochastic Trajectory Ensembles in
Organic Solar Cell Design

Sathish Kottravel !, Riccardo Volpi 2, Mathieu Linares 2, Timo Ropinski 3 and Ingrid Hotz *

1 Department of Science and Technology, Linkoping University, 60174 Norrkoping, Sweden;

sathish.kottravel@liu.se

Department of Physics, Chemistry and Biology, Linkoping University, 58183 Linkoping, Sweden;
ricvo@ifm.liu.se (R.V.); mathieu@ifm.liu.se (M.L.)

Institute for Media Informatics, Ulm University, 89081 Ulm, Germany; timo.ropinski@uni-ulm.de
* Correspondence: ingrid.hotz@liu.se

3

Academic Editor: Gunther H. Weber and Achim Ebert
Received: 31 May 2017 ; Accepted: 26 July 2017; Published: 1 August 2017

Abstract: We present a visualization system for analyzing stochastic particle trajectory ensembles,
resulting from Kinetic Monte-Carlo simulations on charge transport in organic solar cells. The system
supports the analysis of such trajectories in relation to complex material morphologies. It supports
the inspection of individual trajectories or the entire ensemble on different levels of abstraction.
Characteristic measures quantify the efficiency of the charge transport. Hence, our system led to
better understanding of ensemble trajectories by: (i) Capturing individual trajectory behavior and
providing an ensemble overview; (ii) Enabling exploration through linked interaction between 3D
representations and plots of characteristics measures; (iii) Discovering potential traps in the material
morphology; (iv) Studying preferential paths. The visualization system became a central part of
the research process. As such, it continuously develops further along with the development of
new hypothesis and questions from the application. Findings derived from the first visualizations,
e.g., new efficiency measures, became new features of the system. Most of these features arose from
discussions combining the data-perspective view from visualization with the physical background
knowledge of the underlying processes. While our system has been built for a specific application,
the concepts translate to data sets for other stochastic particle simulations.

Keywords: stochastic trajectory ensemble visualization; organic solar cell design; charge transport

1. Introduction

In the quest to tap renewable energies, the development of organic solar cells plays an important
role as they can be manufactured in high throughput at low prices. Additionally, the flexibility of these
cells offers many benefits compared to conventional solar cells. Unfortunately, despite organic solar
cells are already used in a few commercial products, their comparably low efficiency currently forbids
a wide-spread use.

The efficiency of an organic solar cell is directly related to its molecular structure, which is usually
formed by two aggregations of molecules (donor and acceptor) that are sandwiched between two
electrodes. When photon absorption occurs it leads to the formation of excitons (electron-hole pairs),
which are transported to the electrodes, whereby the donor transports the holes and the acceptor the
electrons. The time to reach the electrodes is determined by the molecular structure of the donor as
well as the acceptor, and inversely proportional to the efficiency of the cell. Thus, to improve the
efficiency of organic solar cells, it is mandatory that the underlying physical principles regarding
charge transport are better understood, and that an optimal molecular structure can be predicted.
Kinetic Monte-Carlo simulation is a tool frequently used in this context to better understand the

Informatics 2017, 4,25 32 www.mdpi.com/journal/informatics

Informatics 2017, 4, 25

behavior of charge transport, by establishing a relation between the material structure and a solar
cell’s properties [1-3]. By simulating a multitude of charges traversing the sandwiched region large
charge-transport trajectory ensembles are obtained. Understanding of these charge-transport trajectory
ensembles and their connection to the molecular structure is key to be able to design more efficient
organic solar cells [4].

In this paper, we propose an analysis system composed of a set of linked spatial visualizations
together with plots of structure-aware trajectory measures. The structure of the data is similar to
trajectories resulting from tracking of movement data and thus the exploration concepts are similar.
However, an efficient exploration system requires a configuration targeted specifically toward the
needs of the application. Accordingly, novel concepts were also needed for the proposed system.
A central requirement for the charge trajectory analysis is relating the stochastic microscopic data to
macroscopic efficiency measures. To achieve this, the concept of charge-flow lines has been introduced.
They mimic the macro-level behavior of charges resulting in typical flow descriptors as flow direction
and velocity. The morphology of the solar cell under investigation serves as context.

Thus, within this paper, we make the following contributions:

e We propose a set of linked visualization techniques that enable the investigation of dense
charge-transport trajectory ensembles by exploiting trajectory abstraction and relating trajectories
to a solar cell’s morphology.

e We propose novel geometric measures to analyze the efficiency of individual trajectories and
trajectory ensembles based on the concept of charge flow lines.

e We discuss how these components are integrated into a single visualization framework, which

supports domain experts when visually analyzing organic solar cell simulations.

The remainder of the paper is structured as follows. In the next section, we briefly describe the
application background and describe the visual analysis tasks we have identified as being essential
when exploring the data at hand. In Section 2, we summarize the most important recent work that
inspired the development of our framework. Section 3 starts with an overview of the proposed
visualization framework, and introduces the applied visualizations and the novel efficiency measures.
In Section 4, we describe the technical details. To demonstrate the effectiveness of our framework
we apply it to simulation results with different levels of complexity, with respect to the underlying
physical model, and discuss the findings made in Section 5. Finally, the paper concludes in Section 6.

1.1. Application Task Characterization

In the following, we will describe how the visual analysis tasks have been developed since they
play a central role for the configuration of the system. The overall goal has been to gain a deeper
understanding of the process of charge transport based on the simulation results. However, as it is
often the case when scientists look at their data for the first time, there were no clear questions to start
from and the analysis has been driven by the question: ‘Let’s see what we will find.” More specific
tasks have then been gradually identified within a close collaboration between visualization experts
and theoretical physicists who perform the simulations. The visualization system has been developing
continuously by new hypotheses that have been developed during the visual exploration, see Figure 1.

The first task, which we call the Overall Efficiency (OE), aims to give an overview of the data in
its most original form. This means displaying the trajectory ensemble as a whole and allow simple
interaction to inspire new questions to guide the further development of the system. This matches
the visual-information seeking mantra: Overview first, zoom and filter, then details-on-demand. During
the configuration of the system the visualization tasks have been shifting more and more from a
microscopic to a macroscopic view. This reflects a generalization of the questions starting from the
modeling perspective on the quantum mechanical level to questions related to large-scale properties as
the efficiency of the probe. The macroscopic view has to a large extend been new to the physicists and
triggered many new ideas for the design of the simulation. Understanding of the interaction between
the scales is what finally paves the way for the further development of the technology.

33

Informatics 2017, 4, 25

New hypothesis |

New hypothesis

Data Exploration |

Physical Model
Development

New
Visualizations

Figure 1. The visualization system has become an essential part of the scientific process in the
applications and the specific tasks toward the system have been developing continuously. New
hypotheses that are developed during the visual exploration trigger new tasks and new visualization
methods as specific efficiency measures used for statistical plots and line abstraction.

The pertinent questions that arose during the development of the system can be summarized as
follows. Morphology Efficiency (ME): Understand the general distribution of charges and the impact of
the morphology geometry on the distribution and the transport properties. Thereby the individual
trajectories have not been considered as very interesting. Charge Interaction (CI): A complementary
question is the role of charge interactions for the charge transport. These questions involve the
inspection of individual charge pair trajectories but also the morphology and especially the material
interface as context. For these questions the fully detailed trajectories hide the trends of the transport
and there is a demand for abstraction and macroscopic views and measures to quantify the efficiency.
Simulation Evaluation (SE): Orthogonal to the questions targeting toward understanding the underlying
physics, is the evaluation of the performance of the simulation and its parameter settings. Therefore
it is important to easily inspect the plausibility of the results and identify outliers. For this purpose
almost all proposed visualizations are useful whereby simple geometric settings are of advantage.

The derived tasks suggest the employment of a two-dimensional visualization parameter space.
One dimension pertains to the level of detail and abstraction ranging from a micro-level to a macro-level
view. The second dimension relates to the number of trajectories that are investigated ranging from
the entire ensemble to single trajectory analysis. We divide the parameter space into four quadrants as
illustrated in Figure 2. The proposed methods and derived task are placed into this space to provide
an overview.

1.2. Organic Solar Cell Design

To understand the benefits of the proposed visual analysis framework, some information
regarding the application background needs to be provided first. The efficiency of an organic solar
cell is determined by the efficiency of the different steps from photon absorption to charge collection.
As these are directly related to the structure, different structures for such cells have been investigated.
The simplest consisting of a layer of an organic semiconductor between two electrodes. However, the
performance of a cell can be improved by having two layers of organic materials: the donor and
the acceptor [5] (see Figure 3a,b). In a working solar cell, photons are absorbed generating excitons,
which then diffuse toward the interface as illustrated in Figure 3a,b and form a charge transfer (CT)
state. The CT states then split into free electrons and holes that can be collected at the electrodes.
While Figure 3a shows this case for a single exciton, Figure 3b illustrates the existence of two excitons.
After the charge carriers are freed, they may still move back to the interface and recombine. Here, two

34

Informatics 2017, 4, 25

types of recombination can occur: geminate and nongeminate. Geminate recombination is when
two charge carriers resulting from the absorption of the same photon recombine. Nongeminate
recombination occurs when two free charge carriers originating from different photons recombine
with each other at the interface.

Context Rendering
Charge Coverage
Trajectory Tubes
Density Projection
Augmented Tubes
Animation of Transport
Summary Plot

) Mutually Exclusive

ADetail vs. Overview
000! (ecl0@)0 0@
F IV

Macro,Level
—e00@o0@0e

(

Task Groups

T OE , OF :Overall Efficiency

Charge Interaction

Micro Level

0000 (ecole®)000@ S
Ered—ios Single ME Morphology Efficiency

. SE : Simulation Evaluation

Figure 2. Our visualization parameter space can be roughly divided into four quadrants micro-level vs.
macro-level of detail, ensemble vs. single trajectory). The parameter space can be investigated using
several visualization techniques, which are associated with the four identified task groups. To move
between the single and the ensemble level, brushing-and-linking is realized using plots.

The morphology of the donor-acceptor interface in an organic solar cell has a large impact on the
efficiency of the solar cell. Excitons can only diffuse 10 nm before decaying, so the donor and acceptor
should be sufficiently mixed, as otherwise the excitons could not reach the interface before decaying.
An example of a more complex morphology is illustrated in Figure 3c,d. However, once separated,
the charge carriers need pathways to their respective electrodes. If, for example, an electron is in an
acceptor domain that is completely surrounded by the donor, there is no path for the electron to travel
to the electrode. Consequently, it is important to establish a morphology-efficiency relationship and
determine for instance how the domain size and tortuosity influence the different processes, such as
transport of the exciton, dissociation of the CT, and free charge carriers transport.

Because of the amorphous nature of the material and the probabilistic nature of the competitive
processes at play in a solar cell, stochastic methods such as the Monte-Carlo approach are applied.
In our setup, a kinetic Monte-Carlo code is used where the hoping rates are calculated based on
the Marcus Equation [6] using a multi-scale approach [1,2]. Based on the simulation parameters,
these simulations result in a variety of data, whereby we focus on the analysis of the trajectory
ensembles in combination with the morphology data. The trajectories are realizations of possible
charge propagations based on a physically accurate transition probability from molecule to molecule.
Each trajectory represents a sequence of discrete positions associated with one specific molecule and
an associated dwell time. Along a trajectory, charges jump back and forth and may be trapped in
some regions due to multiple physical fields interacting with the charges. To get a representative
description of the charge movement an ensemble of trajectory-pairs representing one CT is computed,
whereby each trajectory of the ensemble is represented as a discrete series of molecule identifiers
and the dwell time at the respective molecule. All trajectories of one ensemble start at the same
position. Thus, trajectories usually do not represent shortest paths within the constraints of the
morphology. The morphology of the material consists of two materials, the acceptor and the donor

35

Informatics 2017, 4, 25

material. It is represented as a volumetric data set generated by an ergodic process, whereby binary
values (donor = 1, acceptor = 0) are used to mask the voxels.

(a) (b)

Figure 3. Illustration of the different organic solar cell setups. A simple organic solar cell consists of
two layers while single (a) or multiple excitons can be considered (b). More complex morphologies
reduce interface distances and can also be considered with single (c) or multiple excitons (d). We use
a color scheme assigning red to donor material and trajectories and blue to acceptor material and
trajectories for all visualizations.

1.3. Some Details about the Data

The data is a result of a kinetic Monte-Carlo simulation consisting of two parts: the geometry
information of the material morphology and the charge trajectories. The morphology is represented as
a volumetric data set, where each voxel encodes the material type, acceptor or donor, as a binary value.
The interface between the acceptor and the donor is presented by an isosurface for the isovalue of 0.5.
The morphology serves as a container for the donor and acceptor molecules. In the setting of our
simulations the molecules are placed on a regular grid thus corresponding to the morphology data set.
The morphology is the most important context information for the trajectories. For all visualizations
we use a color schema assigning blue to donor material and electron trajectories and red to acceptor
material and whole trajectories, if not stated differently.

The charges are always attached to one molecule. The transport is modeled as a probabilistic
process for charges hopping from one molecule to the next according to a quantum-mechanical
transition probability. Each charge trajectory thus consists of a series of molecule-IDs augmented with
information such as dwell time and the type of the charge (electron or hole). Since the trajectories
represent a stochastic process they are not smooth. Often, charges hop frequently back and forth
between neighboring molecules. Each simulation run represents one possible path of a charge pair,
a hole and an electron, which influence each other. The initial configuration for all trajectories of the
entire ensemble are the same. This concerns the initial position of the charge pair and the morphology.
The simulation assumes periodic boundary conditions, meaning a charge leaving the volume on one
side will enter it again on the opposite side.

2. Related Work

In the following, we summarize previous work that is mostly related to our work. Thereby we
focus on (i) previous visualization systems developed for similar applications in solar cell design;
(ii) visualization and analysis of trajectory and movement data; (iii) rendering methods for lines;
(iv) related ensemble visualization; and (v) efficiency measures for stochastic particle movements.

(i) Related applications. The work most closely related to our visualization system is the work by
Aboulhassan et al. [7]. They are concerned with the same application, the design of efficient organic
solar cells and the task of exploring the efficiency of the charge transport. However, from a data
perspective of the system it differs a lot from our work. Their system has been designed to explore
structural characteristics of the morphology [8] while we focus on the explicit charge trajectories
resulting from a Monte-Carlo simulation. Therefore, they propose a topological approach for the

36

Informatics 2017, 4, 25

simplification of the morphology and distill a geometric backbone as simplification of the complex
structure. Geometric bottlenecks for the charge transport are extracted from the backbone. Previously,
the same authors developed a system for visual design of solar cell crystal structures [9]. To analyze
these structures, the user can exploit semantic rules to define clusters of atoms with certain geometric
properties. While the idea of knowledge-assisted exploration plays also an important role in our system,
we focus on the exploration of the charge trajectories, which is a complementary task. Accordingly, we
also do not discuss molecular visualization techniques, which would be required to explore the actual
solar cell structure. Instead we refer to the recent state-of-the-art report by Kozlikova et al. [10], which
covers most relevant techniques.

(ii) Analysis and visualization of trajectory and movement data. The analysis of trajectories is also a
central task when dealing with motion tracking and movement data. Even though the applications are
very different the data structure has some similarities. In both cases one deals with a large numbers of
trajectories that are not smooth and allow crossings. Some challenges related to overplotting and clutter
are similar. In an overview article about visual analytics of movement by Andrienko et al. [11,12]
they classify the related work into four categories: Looking at trajectories, looking inside trajectories,
bird’s-eye view on movement, and investigating movement in context. These categories are also
related to our parametrization of the visualization space. However, there are also some essential
differences. The charge trajectories are three-dimensional and thus cannot easily be embedded in
two-dimensional map representations. There are no interactions between trajectories for different
ensemble members and the movements of the charges has a stochastic character. Therefore, filtering
and efficiency measures are in general not transferable.

(iii) Trajectory visualization. Our application deals with a vast amount of trajectories, which
need to be explored within the morphological context. Therefore, effective visualization of dense
line sets is important. Several approaches to tackle similar problems have been developed for flow
data or in medical context for fiber visualization. A typical approach is focus and context technique
that enables an occlusion-free view into the trajectories, such that the trajectory under investigation
becomes visible. An early work using this concept for flow data visualization has been presented
by Doleisch et al. [13]. Flow features in focus are emphasized whereas the rest of the data are shown
as context. Gasteiger et al. [14] applied the idea for the visualization of blood flow data. The focus
and context technique employed by our system has been inspired by these approaches, whereby the
morphology of the solar cell provides the context. Besides an occlusion-free view, an unambiguous
perception of the visualized trajectories is important. There exist many approaches for rendering of large
sets of lines. Much effort has been put on improving the spatial perception of occluding and overlapping
lines. One way to approach this problem is to use illuminated lines [15,16]. Applying tubes or other
geometries for the line rendering allows for more advanced methods. Techniques have been proposed
reaching from the use of halos, ambient occlusion and the use of smart transparency. Such methods have
been combined for enhanced molecular visualization by Tarini et al. [17]. Techniques exploiting halos
have been frequently applied for the rendering of fibers in the medical field [18-21]. Schroder et al. [22]
enhance illuminated lines with ambient occlusion in combination with transparency and halos to
achieve a good depth perception and thus improve the visual quality of dense integral line rendering.
A further trend to enhance the expressiveness of renderings in the use of illustrative visualizations.
An overview of related methods for flow visualization is presented by Brambilla et al. [23]. To convey
information about local flow properties, Everts et al. [24] proposed to augment flow lines with strips.
We adopted this method for the visualization of properties of the charge flow lines derived from the
charge trajectories. Another way to deal with large set of lines is to use filtering methods using line
predicates as proposed by Salzbrunn et al. [25].

Most of the above described methods are however not appropriate for the rendering of the
original charge trajectories, which are stochastic in their nature and non-smooth. Charges are hopping
back and forth frequently between same spots, whereby the individual hops are not of particular
interest in contrast to the dwell time in certain regions. A method that is well suited to highlight

37

Informatics 2017, 4, 25

regions where the charges preferably stay is the method of trajectory density projection for vector
field visualization by Kuhn et al. [26]. This is an efficient approach for large amount of trajectories
reducing the clutter and occlusion due to the number of curves exploiting capabilities of modern
graphics hardware. The rendering results in images giving a good impression of the distribution and
density of trajectories. To combine the rendering of our charge flow lines, which are explicit geometry
with the density distribution volume data, we intended to adopt an approach by Lindholm et al. [27].
They propose a hybrid data visualization method based on a depth complexity histogram analysis.
But for sake of simplicity we used approach by Henning [28] since we assumed the geometry of
charge flow lines to be opaque.

(iv) Ensemble visualization. An important aspect of our application is the interplay between the
ensemble of trajectories and the individual lines. Ensembles receive more and more attention in the
field of visualization, which is especially challenging for vector data. Typical visualizations are a
combination of spaghetti plots of lines with appropriate statistical plots. Examples from the field of
weather forecast can be found in Sanyal et al. [29] or Wilson et al. [30]. Ferstl et al. [31] use a clustering
of flow lines, which are then visualized using variability plots representing the distribution of each
cluster. These variability plots have some similarity with our charge coverage visualization.

(v) Efficiency measures. For the analysis and characterization of complex trajectories diverse
measures have been used. Bos et al. [32] introduced angular statistics to reflect the multi-scale dynamics
of pathlines in turbulent flows. Their measure reflects the multi-scale dynamics of high-Reynolds
number turbulence. Savage et al. [33] also use an angular measure to characterize the diffusion process
of charges in context with the analysis of perfluorosulfonic acid membranes. They investigate the
caging effect of water and the hydrophobic moieties on the motion of the excess proton. In their method,
they consider the relative angle between the vectors of motion for two successive time intervals as
a probe of the directional changes in the diffusion process. Burov et al. [34] analyze random walks
considering the distribution of relative angles of motion between successive time intervals, which
provides information about the underlying stochastic processes. Some of these measures are related to
our transport efficiency measures; however, none fits our setting of charges moving within a discrete
regular grid within a constrained geometry. Instead of analyzing angles on multiple scales, we consider
the effective distance and velocity of the charges on multiple scales.

3. Trajectory Exploration Framework

To explore the data on all levels, we have designed a framework that combines multiple spatial
views on different levels of abstraction with statistical plots. It enables selection of trajectories and
a detailed inspection of those. It allows to explore the data starting with overview representations
and drilling down to more detailed visualizations in both dimensions of the visualization parameter
space: moving from ensembles to individual trajectories and from macro-level to micro-level views.
Thereby, we exploit typical visualization concepts like multiple linked views, focus and context
visualization and brushing and linking. Figure 4 shows an example screen shot of the proposed system.
In the following we first describe the various spatial views Section 3.1 then we discus the set of plots
and efficiency measures that have been introduced Section 3.2.

3.1. Spatial Views

For each quadrant of the visualization parameter space a set of spatial visualizations are provided,
which are described briefly in the following. For all visualization one can chose between the original
simulation volume or an expended volume respecting the periodic boundary conditions unfolding the
trajectories, see Figure 5. To encode the temporal aspect of the data we use color or animation, steered
by a time slider.

38

Informatics 2017, 4, 25

Selected trajectory Selected trajectory embedded in the Ensemble distribution as
effective velocity as texture morphology and charge coverage volume density porjection

- T

Five trajectories selected for closer inspection

Figure 4. Screenshot of the system with annotations: It supports the exploration of the trajectory
ensemble on different levels of detail. Single trajectories can be selected in qualitative plots
(here effective distance a charge has traveled), which then can be inspected as isolated flow lines
or with respect to the charge coverage volume within the morphology. An overview of the ensemble
distribution provides contextual information.

= e —

. /1 7.8
4 /
4
v 73 . L
{ 2 7

/ .
i . Iy (o i

Figure 5. The simulation uses periodic boundary conditions, meaning that charges leaving the volume
on one side will enter it again on the opposite side. Thus the trajectories are disrupted and the resulting

density distribution misleading. The system supports a periodic continuation of the volume to get an
untangled representation. The image on the left (bottom) represents raw data in the original simulation
volume in contrast to the same data in the extended volume shown on the right. The image on the top
left shows a slice through the morphology. The image in the center results from a periodic continuation
of the morphology with one selected flow line. The original volume is highlighted by a red square.

3.1.1. Quadrant I: Ensemble Visualization, Microscopic View

The visualizations provide the most direct view on the data, Figure 6¢. Thereby the morphology
represents the context and the entire ensemble is in focus. Even though the individual trajectories are not
of interest, the trajectories are still plotted in their original form as solid lines with all details. An example
is shown in Figure 5. This visualization suffers heavily from over-plotting and is mostly useful for
debugging purposes. However, it allows the domain scientists to quickly grasp the transport activity of
charges in a material and has been used frequently to get a first impression of the data and its correctness.

3.1.2. Quadrant II: Ensemble Visualization, Macroscopic View

From an macroscopic ensemble perspective, Figure 6a, often the trajectory details are not of much
interest. In that case, it makes sense to switch to the macroscopic view. It only displays the density
distribution and the coverage of all trajectories highlighting regions in the morphology where the

39

Informatics 2017, 4, 25

charges dwell for a longer time. We provide thereby two options for trajectory rendering. The charge
coverage volume focuses on displaying coverage by generating a volume representing the frequency of
charge-visits for each location in the morphology, see Figure 10a. The trajectory density projection [26]
accumulates transparent slightly smoothed trajectories in one image, see Figure 10b for a simple
morphology and Figure 13c for a complex morphology. These renderings allow conclusions about the
transport efficiency with respect to the morphology and the detection of possible traps.

3.1.3. Quadrant IIl and IV: Inspection of Individual Trajectories

When exploring a few selected trajectories, Figure 6b,d-h, the context is not only given by the
morphology but can also include the entire ensemble. Moving from microscopic to macroscopic
view can be considered as a smooth transition from the stochastic data to smooth lines. For all these
visualizations we consider pairs of trajectories consisting of an electron and a hole. They can influence
each other and should always be inspected jointly. Thereby the lowest level of abstraction is the direct
representation of the trajectory data. It renders every charge jump from one molecule to the next.
The resulting trajectories are aligned to the grid structure defined by the molecular structure, Figure 6d.
On the other end of the scale one can either look at the charge coverage volume for the selected
trajectory or a gradual simplification of the trajectory. Due to the strong stochastic character of the
trajectories, simple Gaussian smoothing does not give the desired results. Therefore, we introduced flow
lines capturing the trend of the large-scale movement. Flow lines are motivated by the transition from
the Brownian motion of water molecules to a continuous flow description. The detailed construction
of the lines will be described in Section 4.1.

For any simplification level one can chose between tube and ribbon rendering. For a higher
level of abstractions the lines can also be augmented with derived attributes emphasizing the large
scale flow properties like velocity and flow direction, which are not well defined for the original data.
For their visualization color, textures and arrows are used. The effective velocity is encoded using
stripe patterns displaying equal time intervals.

Macro Level

Ensemble

Micro Level

(©) v

Figure 6. Trajectory visualization on different levels of abstraction. (a,c) visualization of multiple charge
trajectories together with ribbon arrows giving a hint of the general trend of the charge movement.
(b,d) show one selected trajectory with micro and macro abstraction level and rendering options.
(e-h) show single trajectory abstractions. (e) The stripe pattern is a measure for the effective velocity
of the charge. The time the charge needs for one stripe is constant. (f) Arrow representation added
to simplified trajectory representation. (g) Direct rendering of raw trajectory represented using tube
rendering. (h) Charge coverage volume visualization of single trajectory.

40

Informatics 2017, 4, 25

3.2. Statistical Plots and Efficiency Measures

The plots represent characteristic measures relevant for the assessment of the simulation data.
They serve as a basis for the interaction and filtering of the data and are linked to the spatial renderings.
Thereby trajectories of interest can be selected in the plots as well as in the spatial representations. As for
the spatial plots we always consider a pair of electron and hole. To be able to distinguish the different
charge types we assign positive values to electron-related measures and negative values to hole-related
measures. Trajectory plots associate characteristic measures to the trajectories. The x-axis represents the
straightened charge trajectories (hop-id or time), e.g., Figure 11a—d. Parallel coordinates relate different
efficiency measures for the individual trajectories, Figure 11e. Morphology Composition plots allow to
investigate the material composition in the neighborhood of a selected charge position, Figure 7.

Essential for the effectiveness of the statistical plots are the attributes that are displayed. Therefore,
much emphasis has been put on the design of expressive measures for the efficiency of the charge
transport. The derivation of the measures described below, has already been a result of the first visual
exploration of the data in close collaboration with the physicists. The goal of the measures is to get
a qualitative impression of the efficiency of the charge transport from creation to collection at the
electrodes. The measures can be related to (i) individual trajectories, (ii) charge pairs, or (iii) the
morphology. All measures can be explored on an ensemble or single trajectory basis.

(i) Trajectory-based measures

These measures have the purpose to equip the macro-level charge flow lines with measures that
are commonly related to flow. A central measure is the effective velocity, which describes the
macro-level charge velocity. The measures can be adapted to the chosen level of detail via a scale
parameter r. The unit for r is intermolecular distance.

e Escape time t,(M;,). The escape time t,(M;,) of a charge from molecule M; with respect to
scale r is defined as the time the charge needs to leave the r-neighborhood of the molecule,
see Figure 8c. It is high in regions where the charge is trapped for a longer time. The dwell
time at a molecule corresponds to the escape time for r = 1.

e Effective velocity v.(M;,). The effective velocity ve(M;,) = r/t.(M;, r) is directly related to
the escape time. Low velocity hints at low efficiency in the charge transport, this can be due
to traps in the morphology or a strong inter charge interaction.

o Lffective distance traveled dyy (t)—The effective distance is the Euclidean distance of the current
charge position to the start position as function of time. This measure is related to the escape
time but allows a stronger focus on the geometry of the trajectory.

e Tortuosity T(t)—Tortuosity sets the actual path length I(t) of the trajectory in relation to the
effective distance traveled T(t) = I(t)/de(t).

(i) Charge pair related measures

The morphology of the material is not the only critical aspect for the efficiency of the charge
transport. There is also a strong interaction between individual charge pairs influencing their
transport. If charge pairs come very close to each other, this comprises the risk of recombination,
which means that the charge is lost for the entire process.

e Pair distance d,(t)—This distance measure keeps track of the Euclidean distance of a hole
and an electron created in one CT state. In the optimal case this would be a monotonously
increasing function of time.

e Minimal distance to charge of other kind dpy;,(t)—In the case of multiple CT states a
recombination is not only possible with the own "partner’ (geminate recombination) but
with all charges of the complementary type (nongeminate recombination). In this way it is a
generalization of d).

41

Informatics 2017, 4, 25

(iii)

Minimal distance to charge of same kind d,,;,—Charges of the same type interact with each
other and can thus reduce the effective transport. This measure gives an overview over the
distribution of the charges within the material. Charges of the same type interact with each
other and can thus reduce the effective transport. This measure gives an overview over the
distribution of the charges within the material.

Morphology related measures

The morphology is a critical parameter for the design of the solar cells. While a large interfacing
surface is advantageous for the creation of CT states, a complex morphology can crate traps for
the charge transport.

Distance to interface djye, fm(M,-)—This distance is the shortest distance of molecule M; to
the material interface. It is computed once for each morphology. As distance metric we
use a Manhattan metric following the molecular grid structure. Thus the distance roughly
corresponds to the minimal number of charge transitions necessary to reach the interface.
Since recombination of charges only happens at the material interface it is favorable that the
charges keep a certain distance to the interface.

Morphology Composition plots—Through these plots the morphology composition
(acceptor-donor ratio) can be investigated. It displays the acceptor-donor material ratio in the
neighborhood surrounding a charge. For a single trajectory, the ratio is plotted for the entire
transportation (Figure 7b). For ensembles, the morphology ratio at a specific time (Figure 7c) is
plotted. The acceptor-donor ratio is computed for a spherical region. The spherical region is
divided into eight octants illustrating the distribution in each octant. (Figure 7d).

(b)

Number of Donors
in spherical region
Number of Acceptors
in each octant of
spherical region

Acceptors
Acceptors

Time
A

Donors

144
S
a
3
8
g
<

()

Figure 7. Interactive plots of morphology composition of single trajectory and ensemble. (a) selected
distance measure at a certain time step, with one selected trajectory pair highlighted (b) acceptor-donor
ratio along selected trajectory. (c) morphology composition of all trajectories at a specific time step
t = 0.4. (d) stack and radial plot for octant acceptor-donor ratio of selected trajectory at specific time.

42

Informatics 2017, 4, 25

@ start Point (M,)
@ cna Point (M,)

O center of spherical
bound (

@ First exit point (M)

(b) () (d)

Figure 8. Different simplifications can be applied to a trajectory. The red lines are the acceptor trajectories
and the grey-blue lines the donor trajectories. (a) One raw trajectory pair, (b) charge flow line with
abstraction level r = 4 in comparison with Gaussian smoothing 1 = 4. The charge flow line is colored
with respect to time (same color for donor and acceptor). (c) The escape time measures the time a charge
needs to leave the r-neighborhood of a molecule for the first time. (d) charge flow line computation.

4. Technical Details

In this section we summarize few technical details that are necessary for the implementation and
rendering of flow lines.

4.1. Charge Flow Lines

As the trajectories are the result from a Monte-Carlo simulation of charges jumping between
discrete locations they are bound to the grid of the molecular structure and are very tortuous at the
same time (Figure 8a). To get a better impression of the trend of the trajectories we propose two
different approaches for simplification: smoothing and charge flow lines.

Trajectory smoothing corresponds to a simple Gaussian smoothing taking only every
n-th sampling position into account. The parameter n can be interactively adjusted, which is
especially useful for the density projection rendering where we typically used a value of n = 4.
Gaussian smoothing mostly improves the rendering results; however, it is not suitable to highlight
macroscopic flow properties as effective charge velocity. Since the complexity of the trajectories
changes considerably along the trajectory no global smoothing factor would lead to satisfactory results.
Therefore we introduced the notion of flow lines to convey the trend of the movement of the charge.
It is defined on various abstraction levels, expressed by a scale factor . The generation of flow lines can
be interpreted in analogy to the transition of the stochastic Brownian movement of molecules in a flow
and the macro-level description as a smooth line with direction and velocity. To generate a flow line
the trajectory is sub-sampled ignoring all transitions within a sphere of radius r, compare Figure 8b.
The time the charge needs to escape the sphere defines its effective velocity on the abstraction level 7.
The radius is defined in units of the molecular grid cell size. As described above, the charge flow lines
are rendered as solid lines with arrows encoding the direction of movement. An example of different
abstraction levels for one charge trajectory is shown in Figure 8. The local trajectory complexity is
reflected by its tortuosity and is also an important indicator for local transport efficiency.

4.2. Ribbon Computation

We use ribbons mostly for the representation of trends in the movement of charges based on the
concept of flow lines introduced above. The ribbon computation uses a moving frame of reference for
the flow lines, see Figure ¢ f. This frame is determined by its tangent, its normal, and its binormal.
The normalized tangent t; = (P; — P;_1)/|P; — P;_1] is approximated by the direction of the line

43

Informatics 2017, 4, 25

segment. To obtain a stable normal computation, especially in region with low curvature, we introduce
a weighted normal propagation

niy = (LTt X i)i+ (i X tioa)
TUTA =[xt)+ (4 % tig)]

The weight |t; X t;_1| is a measure for the stability of the normal. If it is close to 1 the previous
normal has no influence, if it is close to zero (f; is parallel to ¢;_1) the previous normal is propagated.
For placement of ribbon arrows we compute the curvature of the line and the high curvature segments
are filtered out. Figure 9d,g,h, shows ribbon arrow segments that are placed using this approach.

(a) (b) () (d)
(9) (h)

Figure 9. Top row illustrates various single trajectory representations on a synthetic data. Velocity is

(e)

color mapped. Bottom row represents ribbon representation, which uses desired curvature range for
placement of arrows and co-ordinate frame correction applied.

5. Use Cases

The visualization system became an integral part in the research project for organic solar cell
design and the understanding of charge transport in complex materials. Typical for basic research
projects is that questions and new tasks are developing at the same pace as getting new insights
and answers. For that reason, there are only few tasks that are frequently performed in exactly the
same way. In the following we describe two scenarios, in which the system has be used and insights
that have been derived. We put the tasks into the context of the task classification introduced in
Section 1.1. We start with a simple setting focusing on the simulation evaluation (Task SE). To illustrate
scenarios where the exploration is driven by a domain specific task with the goal of gaining new
insight (Tasks OE, CI and ME) we consider a more complex setting using a complex morphology.
For all visualizations we use color-coding of red for acceptor and blue for donor material, the interface
between the two regions is rendered as a green transparent surface. The observations discussed in the
following sections summarize the reasoning of our partners when exploring the data with our system.

5.1. Scenario 1—Simple Planar Interface One CT

This scenario refers to a simple planar interface between the donor and acceptor material of
the solar cell considering one CT, which corresponds to one charge pair. The ensemble consists of
100 different realizations of charge paths, whereby all paths start at the same location and diffuse
toward the electrodes, which are placed on the top and the bottom of the volume. This configuration
is of special interest for the evaluation of the simulation correctness and parameter setting (Task SE)
since for this simple case there are clear expectations toward the results.

44

Informatics 2017, 4, 25

Derived insights: The distribution of the ensembles is expected to be approximately uniform, which
is confirmed by the trajectory coverage visualization for the entire ensemble in Figure 10a. The slight
variations that are visible in the charge coverage volume are due to the stochastic sampling of the
space of possible charge trajectories using 100 realizations.

(b) (0)

Figure 10. Scenario 1: Simulation evaluation (SE) of the flat morphology with one charge pair.
The images show different rendering options for the entire ensemble (a) trajectories embedded in a
charge coverage volume visualization, trajectories reaching the electrode are displayed as spheres
colored by time they need to reach the electrode, (b) density projection of trajectories; for one selected
trajectory embedded in the charge coverage volume (c) original trajectory colored by progression time
(d) flow line displaying the effective velocity as stripe texture.

The spheres on the top and bottom of the volume highlight the locations where the charges reach
the electrodes, their color displays the time-to-electrode for the respective trajectory. The ensemble
density projection shown in Figure 10b allows a more detailed view into the volume highlighting
preferred locations. As to expect for this setting, the region exhibiting the highest density is the area of
the joint starting point in the center of the image. Figure 10c,d show one selected trajectory with a long
time-to-electrode value. Even though the time the charge needed to get to the electrode is relatively
high it is continuously moving in the expected direction and the path and its effective velocity appear
plausible. The progression plots shown in Figure 11 confirm these findings. After a short time of strong
interaction with the partner charge the charges continuously move toward the electrodes. All plots
show that the two charges have a very symmetric behavior. Inspecting selected trajectory. plot (b) and
(c) express the long interaction time of the charges until they finally separate and then quickly diffuse
toward the electrodes. Plot (a) shows that during the interaction time the charges even visit their initial
position again. A qualitatively similar behavior can also be observed for other charge pairs whereas
the specific point in time where the charges start traveling independently strongly varies. This can also
be seen in the parallel coordinates plot where it seems that there is no clear correlation between the
time and the effective distance traveled. However, there is a strong correlation between the distance to
the interface and the distance to the other charge. Plot (d) showing the escape time, expresses a general
decrease of the escape time over time, which is confirmed in the parallel coordinate plot. The higher
escape times at the beginning of the trajectory are a hint that the charge interaction traps the charges
and slows their movement down due to attracting forces. All these measures that are represented in
the parallel coordinates plot can be used to filter out and explore trajectories of interest. In summary,
all the plots and spatial renderings support the reasoning and understanding of the most significant
physical effects controlling the efficiency of the transport.

45

Informatics 2017, 4, 25

Distance To StartPo]

\cceptor/Donor

EscapeTime

(9 (d)

Time DistanceTravelled Distance To Interface Distance Between Pairs Escape Measure Type (Acceptor/Donor) Indices

(e)

Figure 11. The plots of the derived measures for the ensemble highlighting one selected trajectory,
the x-axis of all plots is time, which is also encoded in the color of the trajectories. The y-axis are
(a) effective distance travelled from start point; (b) distance between the charge pairs; (c) shortest
distance to the interface; (d) escape time for a radius of 10 units; (e) parallel coordinates of all the
measures (a) through (e).

For some of the simulation runs a surprising observation has been made in the visualizations
of the charge coverage volume. There, charges exhibited a tendency to stick close to the interface
for a very long time never reaching the electrodes, Figure 12a. A closer inspection of the trajectories
in temporal animations and in flow line representations made clear that this is due to the strong
interaction between the charge pairs. The strength of this effect only became aware to the physicist
through these visualizations. A similar observation was later also made for the complex morphology,
Figure 12b. While it was possible to find an explanation of this effect, it was not expected in this clarity
and it motivated us to make changes in the parameter setting for the external field that drives the
diffusion process of the charges. This observation also lead to the introduction of a new efficiency
measure the ‘distance between charge pairs” shown in Figure 11b. These plots show the time it takes
for charge pairs to separate and finally take off toward the electrodes. An inspection of the parallel
coordinates plot of the efficiency measures also strengthened this explanation and makes it clear that
the effect is not related to a long escape time.

46

Informatics 2017, 4, 25

(a) (b)

Figure 12. These images show examples of simulations ((a) Flat Interface, (b) Complex Interface) where
the charge transport shows an unexpected behavior. The interaction between the two charges (donor
in blue/acceptor in red) is so strong that they stick together for the entire simulation time. They never
reach the electrode. The strength of this effect only became visible to the physicist through these
visualizations. This observation led to a reconsideration of several simulation parameters and the
introduction of the ‘distance between charge pairs’ as additional efficiency measure.

5.2. Scenario 2—Complex Interface Exploration

The second scenario is an exploration of the results of an ensemble simulation for a complex
morphology considering one respective two CTs, which is one respective two charge pairs moving
from the start point to the electrodes. The three tasks OE, CI and ME have been driving this exploration.
We started the exploration with overview representations, Figure 13, for the entire ensemble and use
one exemplary plot where some trajectories showed a behavior that draws interest. In the second part
we explore these trajectories in more detail, Figure 14.

The collection of the entire ensemble within the morphology is displayed in Figure 13.
The columns give an impression of the temporal evolution of the charge transport. The rows provide
different ensemble visualizations for the four time steps. The top row (a) shows the charge coverage
volume within the morphological context and the highlighted endpoints of the trajectories colored by
time-to-electrode. The second row (b) shows only the trajectories without the morphology. The third
row (c) uses the density projection plot highlighting preferred regions for the trajectories. The last
row (d) shows the linked plots of the progression of the distance to the interface. They are composed
of a summary plot overlying the evolution of the entire ensemble (left) individual trajectories that
can be used for selection (right). A vertical line in these plots specifies the selected time step for the
respective column.

Derived insights. The volume coverage visualization in row (a) shows that the charge paths of the
ensemble are widely distributed within the volume. However, it also can be seen that they preferably
move in the right direction, donor (blue) charges upward and acceptors (red) charges downward
toward the respective electrode not being dragged in the wrong direction by the morphology, row (b).
The locations where the charges reach the electrode do not have any preferred area on the electrode
shown by the distribution of the spheres on the electrodes. Also the time-to-electrode value seems not
to correlate to the location where the charge reaches the electrode. The density plots in row (c) highlight
regions where the charges stay for a longer time. Besides the starting location and the electrodes there
are some ‘chambers’ in the morphology, which show a higher density. The plots give insight into the

47

Informatics 2017, 4, 25

charge interaction (Task CI) showing the trend that most trajectories initially stay close to the start
position for some time until the charges escape the attraction of the partner charge and finally start
moving toward the electrodes.

The patterns visible in the other plots are very different as compared to the simple morphology.
While the dwell time in the simple morphology decays rapidly, the distribution of the dwell time for
the complex topology stays the same for the entire time. The charges interact much longer with each
other staying closely together and following similar paths. The escape time shows much higher peaks.
A high escape time is a measure for a trapping of the charges. Symmetric behavior to the donor and
acceptor hints at trapping due to CT effects and charge interaction. In the cases where we only see
high values for one charge, the trapping must be related to other morphology effects.

Individual trajectory inspection—The second part of the exploration was focused on details of the
data as required for task CI and ME. Three selected trajectories with peculiar behavior were detected in
the effective-distance-travelled plot, Figure 14. The trajectories are analyzed using one of the trajectory
plots. In Figure 14, time of charge transport is mapped to the x-axis and the distance from the start
point of charge transport to the y-axis. Acceptor and donor can be distinguished in all images by the
color red and blue respectively. The three rows refer to the three selected trajectories.

Derived insights. The plot gives hint about outlier trajectories and the CT can be examined within
this context. Trajectory (1) in Figure 14 has expected charge transport, in contrast to trajectory (2)
and (3). In trajectory (2), one of the charge pairs stopped propagation much earlier than the other.
In trajectory (3), there was some transport in the beginning of the simulation and the propagation
stopped before they started propagating again in the end. This indicates a long pause during the CT.

(b)

()

Figure 13. Cont.

48

Informatics 2017, 4, 25

|
|

Figure 13. Overview visualizations for different time steps (columns). The selected time step is

(d)

highlighted in the plots in the last row as vertical lines. The upper rows show different volumetric
visualizations of the ensemble focusing on the different tasks. (a) charge coverage volume within
context morphology (Task OE); (b) progression of the trajectory ensemble with time (Task OE, ME);
(c) density projection of the trajectory ensemble (Task ME); (d) summary plot distance to start position
(Task OE, CI).

Figure 14. Three selected charge trajectories are analyzed as above using one of the summary plots.
Plot uses time of charge transport along x-axis and y-axis as distance from the start point of charge
transport (negative distance is used to differential acceptor and donor pairs in red and blue respectively).
This measure allows the user to inspect if charge flow digresses. In this case Trajectory 1 wobbles
in a small coverage region for some time before they split apart to reach the electrode. Trajectory 2,
on the other hand has shorter transport time for the acceptor and longer transport time for the donor.
Trajectory 3 jumps rapidly from start to end. Context rendering.

6. Conclusions

In summary, we have presented a framework for the exploration of ensembles of charge trajectories
in the context of material morphology. Our partners have considered all individual visualizations
and plots as useful; however, the special merit of the system lies in the combination of the plots
and visualizations. This allows us to focus on individual trajectories as well as the ensemble as
distribution. Thereby, the distribution gives insight into the overall efficiency of the solar cell design.
The exploration of individual trajectories is useful to analyze the effect of the morphology on the charge
transport. Many aspects of the data were accessible for the first time to our partners. Most importantly,

49

Informatics 2017, 4, 25

all the plots and renderings have supported the reasoning about the characteristics of the charge
transport in organic solar cells and the performance of the simulation itself. It inspired many vivid
discussions, which help to understand the most significant physical effects controlling the efficiency of
the transport. In several cases, the findings influenced the next simulation run and the adjustment
of the simulation parameters. The discussions also inspired many new ideas for follow-up work.
The efficiency measures that are now part of the system have been developed on the basis of the first
versions of the visualization system and thus prove the usefulness of the visualization system. In the
future will integrate other physical fields involved in the simulation into the exploration framework as
context information. It is further planned to extend the system to less regular molecular structures and
more diffuse interfaces, which is ongoing work for our collaboration partners. Many of the concepts
derived for this application can also be of use for other applications that are concerned with ensembles
of stochastic trajectories.

Acknowledgments: This work was supported through grants from the Swedish e-Science Research Centre (SeRC)
and has been developed in the Inviwo framework (www.inviwo.org).

Author Contributions: All authors have been contributing essential in the development of the concepts of the
visualization system and writing the paper. Sathish Kottravel is mainly responsible for the implementation of the
visualisation system. Mathieu Linares and Riccardo Volpi are the Physicists that performed the simulation of the
charge transport and are responsible for the data generation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jakobsson, M.; Linares, M.; Stafstrom, S. Monte Carlo simulations of charge transport in organic systems
with true off-diagonal disorder. |. Chem. Phys. 2012, 137, 114901.

2. Volpi, R; Stafstrom, S.; Linares, M. A consistent Monte Carlo simulation in disordered PPV. J. Chem. Phys.
2015, 142, 094503.

3. Volpi, R; Kottravel, S.; Norby, M.S.; Stafstrom, S.; Linares, M. Effect of Polarization on the Mobility of C60:
A Kinetic Monte Carlo Study. J. Chem. Theory Comput. 2016, 12, 812-814.

4. Volpi, R.; Linares, M. Organic Solar Cells. In Specialist Periodic Reports—Chemical Modelling; RSC: London,
UK, 2016; Volume 13.

5. Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183-185.

6. Marcus, R.A. On the Theory of Oxidation, Reduction, Reactions Involving Electron Transfer. J. Chem. Phys.
1956, 24, 966.

7. Aboulhassan, A.; Baum, D.; Wodo, O.; Ganapathysubramanian, B.; Amassian, A.; Hadwiger, M. A Novel
Framework for Visual Detection and Exploration of Performance Bottlenecks in Organic Photovoltaic Solar
Cell Materials. Comput. Graph. Forum 2015, 34, 401-410.

8. Wodo, O.; Tirthapura, S.; Chaudhary, S.; Ganapathysubramanian, B. A graph-based formulation for
computational characterization of bulk heterojunction morphology. Org. Electron. 2012, 13, 1105-1113.

9. Aboulhassan, A.; Li, R; Knox, C.; Amassian, A.; Hadwiger, M. CrystalExplorer: An Interactive
Knowledge-Assisted System for Visual Design of Solar Cell Crystal Structures. EuroVisShort 2012,
doi:10.2312/PE/EuroVisShort/EuroVisShort2012 /031-035.

10. Kozlikova, B.; Krone, M.; Lindow, N.; Falk, M.; Baaden, M.; Baum, D.; Viola, I; Parulek, J.; Hege, H.C. Visualization
of Biomolecular Structures: State of the Art. EuroVisSTAR2015 2015, d0i:10.2312/eurovisstar.20151112.

11. Andrienko, N.; Andrienko, G. Visual analytics of movement: An overview of methods, tools and procedures.
Inf. Vis. 2012, 12, 3-24.

12. Andrienko, G.; Andrienko, N.; Bak, P.; Keim, D.; Wrobel, S. Visual Analytics of Movement; Springer:
Berlin, Germany, 2013.

13. Doleisch, H.; Hauser, H.; Gasser, M.; Kosara, R. Interactive Focus + Context Analysis of Large,
Time-Dependent Flow Simulation Data. Simulation 2006, 82, 851-865.

14. Gasteiger, R.; Neugebauer, M.; Beuing, O.; Preim, B. The FLOWLENS: A focus-and-context visualization
approach for exploration of blood flow in cerebral aneurysms. IEEE Trans. Vis. Comput. Graph. 2011,
17,2183-2192.

50

Informatics 2017, 4, 25

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Zockler, M.; Stalling, D.; Hege, H.C. Interactive visualization of 3d-vector fields using illuminated
stream lines. In Proceedings of the IEEE Conference on Visualization (Vis '96), San Francisco, CA, USA,
27 October—1 November 1996; pp. 107-114.

Schussman, G.; Ma, K.L. Anisotropic Volume Rendering for Extremely Dense, Thin Line Data. In Proceedings
of the IEEE Conference on Visualization ‘04, Austin, TX, USA, 10-15 October 2004; pp. 107-114.

Tarini, M.; Cignoni, P.; Montani, C. Ambient Occlusion and Edge Cueing to Enhance Real Time Molecular
Visualization. IEEE Trans. Vis. Comput. Graph. 2006, 12, doi:10.1109/TVCG.2006.115.

Everts, M.H.; Bekker, H.; Roerdink, J.; Isenberg, T. Depth-Dependent Halos: Illustrative Rendering of Dense
Line Data. IEEE Trans. Vis. Comput. Graph. 2009, 15, 1299-1306.

Eichelbaum, S.; Hlawitschka, M.; Scheuermann, G. LineAO—Improved Three-Dimensional Line Rendering.
IEEE Trans. Vis. Comput. Graph. 2013, 19, 433-445.

Isenberg, T. A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractography.
In Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Springer International
Publishing AG: Gewerbestrasse, Switzerland, 2015; pp. 235-256.

Diaz-Garcia, J.; Vazquez, P.P. Fast illustrative visualization of fiber tracts. In Advances in Visual Computing;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 698-707.

Schroder, S.; Obermaier, H.; Garth, C.; Joy, KI. Feature-based Visualization of Dense Integral
Line Data; OASlcs-OpenAccess Series in Informatics. In Proceedings of the IRTG 1131 Workshop 2011,
Kaiserslautern, Germany, 10-11 June 2011; Volume 27.

Brambilla, A.; Carnecky, R.; Peikert, R.; Viola, I.; Hauser, H. Illustrative Flow Visualization: State of the Art,
Trends and Challenges. STARs 2012, 75-94, d0i:10.2312/conf/EG2012/stars/075-094.

Everts, M.H.; Bekker, H.; Roerdink, J.B.; Isenberg, T. Interactive illustrative line styles and line style transfer
functions for flow visualization. arXiv 2015, arXiv:1503.05787.

Salzbrunn, T.; Garth, C.; Scheuermann, G.; Meyer, J. Pathline Predicates and Unsteady Flow Structures.
Vis. Comput. 2008, 24, 1039-1051.

Kuhn, A.; Lindow, N.; Giinther, T.; Wiebel, A.; Theisel, H.; Hege, H.C. Trajectory Density Projection for
Vector Field Visualization, Eurovis Short Papers. In Proceedings of the EuroVis 2013, Leipzig, Germany,
17-21 June 2013.

Lindholm, S.; Falk, M.; Sunden, E.; Bock, A.; Ynnerman, A.; Ropinski, T. Hybrid Data Visualization Based
On Depth Complexity Histogram Analysis. Comput. Graph. forum 2014, 34, 74-85.

Scharsach, H. Advanced GPU raycasting. In Proceedings of the CESCG 2005, Budmerice, Slovakia,
9-11 May 2005; pp. 69-76.

Sanyal, J.; Zhang, S.; Dyer, J.; Mercer, A.; Amburn, P.; Moorhead, R.J. Noodles: A Tool for Visualization of
Numerical Weather Model Ensemble Uncertainty. IEEE Trans. Vis. Comput. Graph. 2010, 16, 1421-1430.
Wilson, A.T.; Potter, K.C. Toward visual analysis of ensemble data sets. In Proceedings of the 2009 Workshop
on Ultrascale Visualization (UltraVis '09), Portland, OR, USA, 16 November 2009; ACM: New York, NY, USA,
2009; pp. 48-53.

Ferstl, E; Biirger, K.; Westermann, R. Streamline Variability Plots for Characterizing the Uncertainty in Vector
Field Ensembles. IEEE Trans. Vis. Comput. Graph. 2015, 22, 767-776.

Bos, WJ.T.; Kadoch, B.; Schneider, K. Angular Statistics of Lagrangian Trajectories in Turbulence.
Phys. Rev. Lett. 2015, 114, 214502.

Savage, J.; Voth, G.A. Persistent Subdiffusive Proton Transport in Perfluorosulfonic Acid Membranes.
J. Phys. Chem. Lett. 2014, 5, 3037-3042.

Burov, S.; Tabei, SM.A.,; Huynh, T; Murrell, M.P; Philipson, L.H.; Rice, S.A.; Gardel, M.L,;
Scherer, N.E; Dinner, A.R. Distribution of directional change as a signature of complex dynamics.
Proc. Natl. Acad. Sci. USA 2013, 110, 19689-19694.

® (© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

51

informatics MBPY

Article

TOPCAT: Desktop Exploration of Tabular Data for
Astronomy and Beyond

Mark Taylor

H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK;
m.b.taylor@bristol.ac.uk

Academic Editors: Achim Ebert and Gunther H. Weber
Received: 27 May 2017; Accepted: 24 June 2017; Published: 27 June 2017

Abstract: TOPCAT, the Tool for OPerations on Catalogues And Tables, is an interactive desktop
application for retrieval, analysis and manipulation of tabular data, offering a powerful and flexible
range of interactive visualization options amongst other features. Its visualization capabilities focus
on enabling interactive exploration of large static local tables—millions of rows and hundreds of
columns can easily be handled on a standard desktop or laptop machine, and various options
are provided for meaningful graphical representation of such large datasets. TOPCAT has been
developed in the context of astronomy, but many of its features are equally applicable to other
domains. The software, which is free and open source, is written in Java, and the underlying
high-performance visualisation library is suitable for re-use in other applications.

Keywords: interactive visualization; astronomy; tabular data; exploratory data analysis

1. Introduction

1.1. Source Catalogues

Astronomy is a discipline with a long history of collecting, storing and analysing data. This comes
in various forms, including images, spectra and time series, but one of the most important is the
source catalogue, a list of observed astronomical objects such as stars or galaxies, each with a fixed set
of features. These features are mostly numeric and typically include quantities such as central sky
coordinates, brightness in one or several wavebands, apparent size, ellipticity parameters and so on.

A catalogue is thus naturally represented as a table with a certain number of rows (one for each
observed object) and columns (one for each feature). An early example is the Catalog of Nebulae and
Star Clusters published by Charles Messier in 1781 [1], containing data in six columns for 103 celestial
objects, each observed individually by eye. More recent examples are often, though not always,
considerably larger; the features for modern catalogues are extracted automatically from image data
obtained by highly sophisticated telescope instrumentation, and for the largest sky surveys can run
to hundreds of columns such as the Sloan Digital Sky Survey [2], and/or the order of a billion rows
such as the Gaia mission [3]. These numbers, of course, are expected to rise in the future, for instance
in upcoming experiments such as ESA’s Euclid satellite (http://sci.esa.int/euclid/) and the Large
Synoptic Survey Telescope (https://lsst.org/). Many other catalogues however may contain only
a few tens or thousands of objects identified as a particular astronomical type or of interest for a
particular study. In some cases catalogues can be represented by a single table, in others as complex
relational databases.

A number of technologies exist for accessing such data, including bulk download of full or
partial tables in domain-specific (VOTable [4], FITS [5]) or generic (Comma-Separated Value) file
formats, and remote access to relational databases using SQL-like query languages. A family of
“Virtual Observatory” standards (see e.g., [6-8]), developed since 2002 by a group of interested parties

Informatics 2017, 4,18 52 www.mdpi.com/journal/informatics

Informatics 2017, 4,18

known as the International Virtual Observatory Alliance (IVOA) (http:/ /www.ivoa.net/), enables
standardised access to many thousands of such catalogues, which are mostly available without usage
restrictions, hosted by a large network of data servers around the world.

1.2. TOPCAT Application

TOPCAT (http://www.starlink.ac.uk/topcat/), the Tool for OPerations on Catalogues And
Tables [9], is a desktop Java GUI application for retrieval, analysis, and manipulation of tables. It has
been developed in the context of astronomy and the Virtual Observatory, with the aim of providing a
toolkit for astronomers to perform all the mechanical operations they routinely require on catalogues,
so they can focus on extracting scientific meaning from this hard-won data.

It has been under more or less continuous development since 2003, and is in 2017 a mature
application with an active user base in the thousands, spread over six continents, including
undergraduates, amateur astronomers, and research scientists. A number of factors have contributed to
its popularity in the astronomy community, including astronomy-specific capabilities such as celestial
coordinate system handling, table joins using sky positions, and Virtual Observatory data access,
as well as more generic items such as its powerful expression language and support for large datasets,
alongside a responsive development model, high-quality support, ease of installation and a relatively
shallow initial learning curve.

This paper however describes just one aspect of TOPCAT’s operation, its capabilities for
exploratory visualisation, especially as applicable to generic (not necessarily astronomical) tabular
data. Its distinctive combination of features compared to other visualisation applications includes:

e the ability to work with large datasets, without any special preparation of the data or prior
assumptions about the visualisations required

e provision of many options to explore high-dimensional data, that can be adjusted interactively
with rapid visual feedback

e meaningful representation of both high and low density regions of very large point clouds

The rest of the paper discusses these capabilities and outlines some of the underlying
implementation. Section 2 describes TOPCAT’s relatively unsophisticated approach to data access
which can nevertheless, by using robust technologies such as file mapping, deliver high performance
results, as well as providing a platform that is easy to deploy and install. Sections 3 and 4 explore
the visualisation capabilities offered, principally representation of point clouds in one, two and three
dimensions, including the optionally weighted “hybrid density map/scatter plot” which provides a
unified view of high and low density regions in very crowded plots; the use of linked views for exploring
high-dimensional data is also discussed. Sections 5 and 6 examine the difficult issue of providing a
comprehensible user interface to control the highly configurable plots on offer, including mention of
the command-line interface STILTS. Section 7 goes into some detail about the implementation of certain
performance-critical parts of the code and Section 8 gives a few examples of its, currently minority,
use in fields other than astronomy. Sections 9 and 10 conclude with information about availability of
the software.

The visualisation framework described here corresponds to that introduced in version 4 of the
application, released in 2013.

2. Application Overview

2.1. Data Access

TOPCAT uses a traditional model of data access for visualisation, in which the user identifies and
retrieves to local storage one or more static tables, and then works with them. This makes it unsuitable
for direct visualisation of extremely large datasets, but it turns out in most cases to be possible for
users working with very large astronomical catalogues to preselect and download a subset of interest,
by restricting for instance to a given sky region or class of astronomical object; TOPCAT provides a

53

Informatics 2017, 4,18

wide range of astronomy-specific options for selective acquisition of such data. In many other cases,
users will be concerned with much smaller catalogues where data volume is not an issue.

Given this approach, it is important to be able to access large data files on local disk efficiently.
TOPCAT’s preferred input format is the FITS binary table [5]. This binary format lays out columns and
rows in a predictable pattern on disk, so that files can be mapped into memory for sequential or random
access, giving effectively instant load time and without encroaching on Java’s limited heap space; for
more explanation of this technique and its benefits in this context see [10]. However, other formats
such as the more common Comma-Separated Values (CSV) are also supported. In this case direct file
mapping is not useful, but for large CSV tables the data is copied on load into a temporary binary file
which can itself be mapped, allowing similar access but with a significant load time. Another option is
to use TOPCAT to convert from CSV to FITS format before use.

We note that more sophisticated data access models are in use by other visualisation applications,
for instance running the computation on a remote data-hosting server and transmitting only the
resulting images to be displayed in a browser or other desktop application (e.g., the Gaia archive
visualisation service [11]), or retrieving and caching relevant data subsets on demand for local
rendering as required by user navigation actions (e.g., Aladin-Lite [12]) or moving the user to the
data using centralised high-performance visualisation facilities which may include large-scale display
hardware alongside High Performance Computing capability (e.g., [13]). Such techniques can avoid
wholesale transfer of an impractically large dataset without requiring the user to identify any particular
subset of interest, and can deliver excellent interactive experiences. They also however suffer from some
limitations. Visualisations which are intrinsically data intensive will have large resource requirements,
consuming centralised resources while in progress which may be expensive and scale poorly to large
numbers of users. In some cases, efficient server-side visualisation makes use of pre-computed data
structures such as indexes or hierarchical multi-resolution maps, which may be expensive to compute
but once in place can support rapid navigation and interaction. This can work well, but it generally
requires prior information (or assumptions) about what visualisations are going to be required. In the
case that there are many columns, and a user may want to plot not just any pair of columns against
each other, but arbitrary functions based on available columns, it is typically not possible to ensure
that the appropriate pre-calculated data structures are in place. As a general rule, coordinating client
and server software adds a layer of complexity which can make software development slower and
harder, and often impacts reliability. These techniques are also not suitable in the absence of network
connectivity. TOPCAT’s low-tech approach on the other hand has the benefits of reliability, network
independence and above all flexibility in terms of the visualisation options available.

2.2. Usage Model

As well as its traditional approach to data access, TOPCAT supports a straightforward usage
model: it is a standalone application running CPU-based code, and suitable for use on low-end desktop
or laptop computers. The visualisation is multi-threaded to maintain GUI responsiveness, but does
not currently distribute the bulk of its computation across multiple cores for efficiency (though it may
do so in future). If GPUs are present they are not used except for normal graphical operations.

This generally low-tech approach can nevertheless deliver performant interactive visualisation
for quite large datasets, and has the benefit that barriers to use are low.

2.3. Expression Language

One of the features of TOPCAT not directly related to visualisation is its provision of a powerful
expression language which allows evaluation of simple or complex expressions involving column
names. In general, wherever a coordinate is supplied for plotting, either a column name or an
expression can be used, making it very easy to plot arbitrary functions or combinations of columns.
The expression language can also be used to define row selections algebraically.

54

Informatics 2017, 4,18

The implementation of this feature is based on JEL, the Java Expressions Language, available
from https:/ /www.gnu.org/software/jel/.

3. Visualising Point Clouds

A source catalogue may contain tens or hundreds of columns, and interesting relationships may be
lurking between pairs or higher-order tuples of these features. Often, an interesting result is to identify
a subset of rows occupying a particular region in some multidimensional parameter space whose axes
may be table columns, or linear or non-linear combinations of columns. Physically, this corresponds to
identifying a sub-population of observed astronomical objects sharing some physical characteristics,
for instance a group of stars formed from the same primordial dust cloud. TOPCAT does not attempt
to provide automated support for discovering such relationships, for instance by implementing data
mining algorithms. Instead, it aims to provide the user with a flexible toolkit of options to display
different aspects of the data, in order to pick out trends, associations or interesting outliers by eye.

Many, though not all, of these options are variations on the theme of a scatter plot in two or three
dimensions of some point cloud in multi-dimensional space. A scatter plot can be an excellent tool for
presenting a relationship between known variables, but it presents two main problems. First, if the
dimensionality of an association is greater than that of the plot, the association may be masked. Second,
if the number of points is large compared to the area on which they are plotted, data can be obscured.
These issues can to some extent be addressed by providing a range of plotting and interaction options,
and are discussed in the following subsections.

3.1. High-Dimensional Plots

To represent a relationship between two variables by plotting points on a two-dimensional
plotting surface is straightforward. This can be extended to three dimensions by using various
techniques for representing points in a 3-d space, though visual interpretation tends to be harder in
this case. TOPCAT supports both options, though the 3-d representation is at present restricted to a
2-d projection whose 3-d nature only becomes apparent from user interaction with the mouse (rotation,
zooming, navigation).

To visualise a higher-dimensional relationship however, spatial positioning is not enough,
so TOPCAT provides various ways to modify the representation of each point according to additional
features. Distinct sub-populations can be identified using markers of different colours, sizes or shapes,
individual points can be labelled with per-object text labels, and additional numeric features can be
encoded using:

colour from a selected colour map

marker size

X/Y marker extent

error bars aligned with the axes

vector with magnitude and orientation

ellipse primary/secondary radius and orientation

The user can combine these options freely; some examples are shown in in Figure 1.

In principle quite a large number of features can be encoded in this way, for instance one
could represent seven dimensions on a 2-d scatter plot by marking coloured ellipses with text
labels. In practice however, especially if the number of points is large, there are limits to what
is visually comprehensible.

55

Informatics 2017, 4,18

3.0
3.0 2.5
2.0
2.5
o
© 1.5
£
N
g
£ 2.0
1.0
1.5

umag-gmag

Figure 1. Options for high-dimensional visualisation. The left hand figure uses marker colour and
shape to indicate three non-positional numeric features. The right hand figure uses arrows to represent
points in six-dimensional phase space, the positions and velocities of simulated galaxies [14]; redshift
is additionally shown by colour-coding.

3.2. Subset Selection and Linked Views

An alternative approach to understanding high-dimensional data is to extract sub-populations for
further examination. A common workflow is to make a scatter plot in one parameter space, identify
by eye a subset of points falling within a sub-region of that space and then replot the subset in a
second parameter space to reveal some relationship evident in the subset but not the full dataset.
This sequence may often be iterated to narrow down a sub-population of interest. This can be seen as a
somewhat crude way to identify clusters that would be evident in a much higher dimensional space
by combining multiple 2-dimensional views, but it is a powerful technique, and falls into the category
of linked views [15,16].

@ ®
30
All ° All
20 o Cluster 6 o Cluster
10 °
- 0 8
I
5
g 10 % 10
£ 2 £
g
_30 12
—40
14
—50
—60 16
—40 -20 0 20 40 0 05 1.0 15
¥ /mas.yr ! jmag — kmag

Figure 2. Linked views for row subsets. The user has identified the region in plot (a) by dragging
the mouse, and the same subset of rows shows up in an interesting subregion of the different plot in
(b). In this case each point represents a star in the region of the Pleiades open cluster [17]; (a) shows
apparent velocity across the sky, while (b) characterises stellar classification. Those stars with similar
motion, identified as the “Cluster” subset in (a), were formed in the same environment and therefore
have similar physical characteristics, hence trace out a distinct path in (b).

56

Informatics 2017, 4,18

TOPCAT allows the user to define subsets in various graphical and non-graphical ways, one
of the most powerful being to drag out with the mouse an arbitrary shape over a region of a plot.
Such subsets, once defined, can be plotted separately in any other plot of the same table, and also
distinguished for other processing operations. An example is given in Figure 2.

3.3. Row Highlighting and Linked Views

Another aspect of linked plots in TOPCAT is that when the user highlights a plotted point by
clicking on it, any point in other visible plots representing the same row is automatically highlighted.
At the same time, if the underlying data is displayed in an table browser window, the corresponding
row is highlighted so that the data values in all columns can easily be seen. The same operation works
in reverse, so clicking a row in the table browser window will highlight any corresponding points in
currently visible plots.

The application can also be configured so that some Activation Action takes place when a row is
selected by user action in either of these ways. A typical activation action might be to display an image
associated with the table row in question, for instance the original photograph that supplied the data,
e.g., available from a URL column in the table. TOPCAT can perform basic image display internally,
or communicate with external specialised display applications in order to achieve this kind of thing.
This coordinated row-highlighting behaviour can be especially useful for investigating outliers.

[l cuse prot
[[Plane Piot [[fvers subsets prot Ewort
Window Layers Subsets Plot Export Help i ‘E;‘ @ cﬁa D ‘j]
[—|_Atadinva.0 a7 e |%|Bla

File Edit Image Catalog Overl

=2 Location| 7:41:53.26 -47:5
DSS ~SDSS +2MASS +WISE *GAl

9_mag_abs_gaia

| ToPCAT(8): Table Browser
Window Subsets Help

S8 O X

Table Browser for 6: TAP_4_gaiadrl.tgas_source,extcat hipparco:
P2 Do you know that you can editsave th source.id ra ec ! b ecl_lon ecl 2
4| B451346635439803312 | 326.58252 | -54.45808 | 340.76062 | 46.77521 | 308.16005 | -39.26(%
55 | B461349865254290304 | 326.53733 | -94.31216

56 | 4660402338 706045536 | 58.15444 | -66.82375
2267589487854002754 | 284.40832 | 72.84261

- = ource,extcathi
arid wink

5506418484613605360 | 115. 46879 “06004 | 261.01261 | 12

46604778957 11599232 | 569649 42 | 291.01826 | 42 7

46604048E0482362240 | 57.65300 34416 | 280.51607 | 42.15083 04542 | -77. 21!
4569567255451021952 | 59.7178 63144 | 27940626 | -41.67145 20180 | -77.89 3:519]
45505013846 71531008 | 58.12103 | -55.02553 | 279.80226 | —42.21071 10855 | 77.28< |

T — D

Figure 3. Linked highlighting of table rows. A user has clicked on an outlier in the 2-d plot (center),
highlighting it with a “target” cursor. This automatically causes the same row to be highlighted in
other ways: the target cursor marks the relevant point on the 3-d plot (right) and the row is flagged
in the table data browser (bottom). In this case TOPCAT has also been configured to communicate
with the external image display application Aladin [18] (left), which is caused to display a sky image
corresponding to the highlighted row. This interaction makes it easy to see here that the relevant
star is very close to another one; it is likely that this contamination of sources has led to a spurious
brightness value, resulting in its anomalous position in the 2-d plot. Data show a Gaia-Hipparcos
colour magnitude diagram and 2MASS colour image.

Informatics 2017, 4,18

The communication with external display applications mentioned above, if required, can be done
by invoking methods of Java classes supplied at runtime, or invoking system commands, or using the
messaging protocol SAMP [19] implemented by a number of astronomy tools, including Aladin [18],
SAOImage DS9 [20], Astropy [21] and others. This latter option in fact provides for inter-process
exchange of both single rows and row subsets, allowing linked views between cooperating applications,
as well as just within TOPCAT.

For an example of all this in action, see Figure 3.

3.4. High-Density Plots

TOPCAT aims to be able to explore tables containing many rows. The answer to the question,
“how many?”, is of course constrained by available resources of computation and user time, but in
general the target is: as many as possible. The larger the dataset that can be explored interactively,
the fewer decisions the user will need to take in pre-selecting data, and the more relationships are
potentially available for discovery.

There are two main aspects to consider when attempting to satisfy this requirement. The more
obvious concerns resource usage: will the computation require more memory than is available, and will
it be fast enough to provide a fluid experience? These questions are discussed in Section 7. But there
is also a question of what constitutes a visually faithful and comprehensible representation of a very
large number of points. In particular, how can one represent a scatter plot when the number of points
to plot exceeds the number of pixels available?

- Transparent Contour

e

Density

Figure 4. Various representations of a 2-dimensional point cloud available within TOPCAT. Flat simply
plots markers at each point, obscuring the density structure. Transparent plots partially transparent
markers, giving some indication of overdense regions, however regions over a certain density threshold
are saturated. Contour is a somewhat smoothed contour plot. Grid is a 2-d histogram on a grid
of fixed size rectangular bins; various options are available for combination within bins including
mean, median, min, max etc. Density structure is clear, but resolution is lost and outliers are poorly
represented. Density is a hybrid density map/scatter plot with a configurable colour map, showing
both high-density structure and individual outliers. Auto is a standard profile of the hybrid map used
by default, with a fixed colour map scaling that fades from a dataset’s chosen colour to black; multiple
overplotted datasets can be distinguished by using different base colours. Data representa V vs. B-V
colour-magnitude diagram of 139,000 stars from the globular cluster w Centauri [22].

58

Informatics 2017, 4,18

Simply plotting the points as opaque markers loses information where there are many points
per pixel, since it is not possible to see how many points are overplotted. A number of options exist
to address this, such as painting partially transparent markers, drawing contours, or binning data
to generate colour-coded two-dimensional histograms (also known as density maps). Very often
for source catalogues however, the outliers are just as important as the statistical trends, so both
the low and high density regions of the plot must be represented faithfully. Contour plots and
density maps do not work well for low-density regions, while transparent points are suitable for small
variations in density but lose information at one or both ends of the density spectrum if there is a
large density range. Use of a density map or contour plot also inhibits the row highlighting behaviour
described in Section 3.3, since single points are not represented. To address this issue, a hybrid density
map /scatter plot has been introduced, which is a convolution of a single-pixel density map with
a shaped marker, and represents both high and low density regions of the plot well in the same
display, resembling a smoothed density map at high density and a normal scatter plot at low density.
This hybrid representation, which is the default plotting mode, also works particularly well when
navigating a large point cloud: zooming in turns a high-density into a low-density region, so the plot
transitions smoothly from a density map to a normal scatter plot. It is described in more detail in [23].
TOPCAT provides all these options and others for plotting large and small point clouds in two or three
dimensions. Some examples are shown in Figure 4.

Colour-coding points to express extra dimensions as discussed in Section 3.1 presents additional
issues in high-density regions, since multiple colours may be overplotted in the same pixel. To address
this problem, TOPCAT offers a weighted generalisation of the hybrid density map/scatter plot,
as illustrated in Figure 5.

100

st

Figure 5. Various representations of a 2-dimensional point cloud with a third dimension indicated
by colour. Aux paints opaque coloured markers, which works for low-density regions, but at high
density the appearance is noisy and depends on row sequence, since points painted later obscure earlier
ones. Grid is a 2-d histogram weighted by the third coordinate; points in the same bin are averaged,
but some spatial resolution is lost. Weighted is a hybrid density map/scatter plot but with pixel bins
weighted by the third coordinate, providing clarity in both low and high density regions. The weighting
combination method in the latter two cases is configurable; in this case the median has been used. Data
are as for Figure 4 with the third coordinate indicating probability of cluster membership.

3.5. Navigation

It is impossible to understand all the information in a point cloud consisting of millions of
points from a static image, particularly if it is presented on a grid of, say, 100,000 pixels. But it is
often possible to identify what might be a region of interest from a plot that represents the density
structure and outliers appropriately, and zoom in on such a region for closer inspection, down to
the features of individual objects. Interactive navigation of plots is therefore a crucial feature for
exploratory visualisation.

59

Informatics 2017, 4,18

The basic user interface for navigating 2-dimensional plots is fairly straightforward, namely that
dragging a mouse around the screen will drag the plot with it, while rolling a mouse scroll wheel
will zoom in or out around the current mouse position. Plots in TOPCAT in many cases have no
natural aspect ratio, so various options are provided for anisotropic zooming: dragging the middle
button will drag out a “window” rectangle with any required aspect ratio to become the new field of
view, while dragging the right button stretches or shrinks the field of view in the X and Y directions
independently according to the drag position. It is also possible to control the X or Y fields of view
separately by performing the windowing or stretching gestures near the relevant axis. Keyboard
modifiers are available for mice lacking all three buttons or a scroll wheel. The isotropic drag/zoom
navigation gestures are generally intuitive for users of other GUI applications. The anisotropic zooming
capabilities offer very flexible 2-d navigation, but they are less intuitive and advertising them well is
difficult, so many users may not be aware of their proper use.

Allowing navigation through a 3-d scatter plot is a more difficult user interface problem. In this
case, TOPCAT uses the default-button drag to rotate the visualised cube, and the mouse wheel to
zoom in or out around the cube center. These gestures are intuitive. Translating the volume within
the cube however is harder to do. Some mouse gestures are assigned to drag and stretch along the
cube plane most nearly parallel to the screen projection plane, but it is difficult to use these to zoom
in on a region of interest. More useful is the right-click; this takes the point under the current cursor
position and translates it to the center of the cube, so that subsequent zoom actions will zoom in and
out around it. However, since in 3-d the cursor position represents a line of sight rather than a unique
point, this presents a problem: which of the positions under the cursor should be the new plot center?
To break this degeneracy, the point chosen is the center of mass (mean depth) of all the points plotted
along the line of sight. The effect is that when clicking on a single point, the point position is used,
while when clicking on a dense region, the center of the region is used. This re-centering navigation
works very well in practice for navigating to regions of interest in 3-d point clouds, though again the
UI may not be obvious to all users.

Visual feedback is given as quickly as possible in all these cases. Typically the screen is updated
at better than 10 frames per second up to a million or so rows for one of the standard scatter plots;
for larger datasets or more complex plots the response may be more sluggish. To improve user
experience, an adaptive “sketch” mode is in effect by default. If refreshing a frame takes more than
a certain threshold time (0.25 s), fast intermediate plots based on a subsample of the data are drawn
while a navigation action is in progress, the subsampling fraction being chosen depending on how
long the full plot appears to take. When the user has stopped dragging/zooming and enough time has
elapsed for the full plot to be drawn, the display is refreshed from the full dataset. In most cases this
gives a good compromise between responsive and accurate behaviour, though for certain plot types
the intermediate sketched frames can prove confusingly different from the final, correct, frame.

4. Other Plot Types

Although the main focus of the visualisation in TOPCAT is representing point clouds of various
sorts, it has other visualisation capabilities too. One important category is depicting weighted or
unweighted frequency data, which is a kind of point cloud in one dimension. The most common
visualisation for this kind of data is a histogram, but a number of variations are available including
smoothed representations with choices of fixed-width or adaptive smoothing kernels with various
functional forms, a range of normalisation types, cumulative binning, control over bin width and
phase, etc. Some of the options are illustrated in Figure 6.

60

Informatics 2017, 4,18

1.0
. 08
(€]
c
[
=]
g 06
£
8
=04
€
2
02
0 T T
0.02 005 01 02

|1l

Figure 6. Some histogram-like plots. Shown here are three different representations of the same
one-dimensional dataset: a traditional histogram, a Kernel Density Estimate which uses a smoothing
kernel to avoid the quantisation implied by histogram binning, and a “densogram” that represents
point density using a colour bar.

A number of other more specialised plot types are also offered, for instance analytic function
plotting, line plots to trace samples against an independent variable, axes annotated with time
coordinates, spectrograms, and some fairly basic data fitting algorithms.

There are also comprehensive facilities for plotting data with positions specified by latitude and
longitude on the celestial sphere, including a range of sky projections, sky coordinate system grid
annotations, and binning schemes suitable for spherical geometry. These sky plotting capabilities may
also be used for data situated on other spheres, such as (an approximation to) the surface of the Earth.

5. Configuration User Interface

TOPCAT currently provides around thirty different plot layer types (fixed shape marker, variable
size marker, error ellipse, histogram, ...) with seven different shading modes (flat, auto, transparent,
weighted, ...), on half a dozen different plot geometries (2-d and 3-d Cartesian, spherical polar, celestial
sphere, ...). Each of these options has typically 5-10 associated configuration variables. All of these
options have been introduced to support anticipated, and in many cases actual, requirements for
making sense of real user data.

This offers a great deal of flexibility for specifying a visualisation, but equally presents a serious
problem of complexity: how does the user, especially the non-expert user, navigate all these options to
look at some data? Packaging this flexibility in a comprehensible and usable GUI is perhaps the single
most difficult problem in developing an application of this kind.

Addressing this from the user perspective, the application is designed on the principle that the
user should always see some kind of reasonable plot with minimal effort.

In practice, this means that if the user hits one of the top-level Plot buttons in the application’s
main window, a reasonable plot is shown, if at all possible. If the user hits the Plane Plot button,
a scatter plot is displayed of the two first numeric columns of the currently-selected table; an example
is shown in Figure 7. The bounds of the plot region are automatically adjusted to display all the points
in the selected dataset. The shading mode (Auto from Figure 4) is one which works well for both small
and large datasets. This default plot is unlikely to be the one the user wants to see, but it is easier to
take an existing GUI and modify its default settings, with instant visual feedback at every step, than to
be presented with a lot of blank fields to fill in before any result is shown. The controls visible in the
same plot window make it obvious how to choose a different table or different columns for the plot. It
is somewhat less obvious how to modify the plot by changing marker characteristics, overplotting
other datasets, adding error bars or contours, changing axis scaling or annotation etc, but by exploring
the various tabs and list items the user can explore and adjust the various options in as much detail as

61

Informatics 2017, 4,18

they require. In this way each user can benefit from as much configuration effort as they are willing to
expend, rather than being scared off by an initial need to understand the tool in detail. Comprehensive
documentation is provided for each feature, accessible from a help button at the top of the window,
though it is more of a pleasant surprise than a general expectation that confused users will seek and
read this material.

| Prane Plot REE
Win, Layers Subsets Plot Export Help

almle|el]aEel 8] @]x]

e

|5 k| P

Position | Subsets | Form |

o Forms g
e e T
S @ mark
e g [vias]
210) @ xvcorr | Density Shader: | T vinidis [~
2: tgas_sou .
X % V@@ contour shader ctip: Q0= [peraun
0 2e4 404 64 T 1.085 1.2e5 $ 00 ll 4: 2mpzfies Shader Flig:
He
$ &1y Funciion shader Quantise: ® (———— [a] O
8 b/ P scans: fos_[|00

Density subrange;, —_}———————)

o

Position | subsets | Form |

Table:[22: hip_mainfits [~ X Error: [pmra_error =] [P
x WP [} Y Error: [pmdec_error ~| [P
¥ [vmag [=1l«p] XY Correlation: |pmra_pmdec_corr ~| D]

Global Sty
Ellipse: [4p]
cotor: [H | ~][<]»] [@]CTBy subset

Subset Sty ‘

Position: Count 118,217 | 118,218 {s"hm__ O visivte
Re) G L=

Figure 7. TOPCAT’s Plane Plot window. The left hand panel is what appears as soon as the user opens
the window; some default plot is displayed. It is easy to see how to change the data to be plotted.
The right hand panel shows the control panel from the bottom of the plot window (here it has been
expanded and floated out into its own window), as configured for controlling a much more complicated
plot. Each of the controls towards the right can be adjusted interactively with instant effects on the
displayed plot. The various tabs and list items provide more configuration options for other aspects of
the plot.

This approach provides a GUI that is usable by novices to produce basic plots, but which can
also be exploited by experts for very detailed control. However, the question of providing a usable
interface for configuring complex plots is not a solved problem in TOPCAT; it also becomes more
acute as additional plot types and options are added. While many users do manage to use the various
combined features to perform sophisticated visualisations it is probably the case that only a minority
understand the full range of available capabilities.

6. Alternative Interfaces

This paper mainly discusses the GUI application TOPCAT. However, it is possible to access the
visualisation functionality in a number of ways from outside of that application, and many of the same
remarks apply.

Alongside TOPCAT is a suite of command-line tools by the name of STILTS (STIL Tool Set) [24],
which provides scriptable access to most of the functionality available from TOPCAT. Both are based
on the table access library STIL (Starlink Tables Infrastructure Library), and all of these items are
developed and maintained, with some other partially related software, in a single group of packages
collectively known as Starjava. These packages are available at the from the URLs http:/ /www.starlink.
ac.uk/stilts/ and http:/ /www.starlink.ac.uk/stil/.

62

Informatics 2017, 4,18

STILTS provides commands that can generate all the visualisations available from TOPCAT’s
GUI, and in fact most of the figures in this paper were generated using STILTS, since its scriptable
nature makes it more suitable for careful preparation of published figures than TOPCAT’s point and
click operation.

The output of STILTS, like that of TOPCAT, can be to various bitmapped or vector graphics file
formats (including PNG, GIF, PDF and PostScript) or to an interactive window on screen that allows
the same mouse-controlled navigation actions as TOPCAT.

The classes used for visualisation in both cases form a library known informally by the name
plot2. These classes have not so far been formally packaged as a separate product, but are contained
within the STILTS jar file and can be used independently of either the TOPCAT or STILTS applications,
to provide high performance static or interactive visualisation within third party Java applications.
Depending on what functionality is required, the code required for this is licensed under the LGPL or
GPL. Some more background on this possibility is described in [25].

As explained in Section 7.1, plotting from STILTS is actually more scalable than that from TOPCAT.
While there is no fixed limit on the size of tables loaded into TOPCAT, it is not really intended for use
with tables more than a few tens of millions of rows; interactive use is generally sluggish on such data,
and in some cases memory usage can be high. STILTS visualisation on the other hand is in most cases
able to stream data within a fixed (and quite small) memory footprint, so it is possible to generate
static plots of arbitrarily large data sets quite easily. Figure 8 shows an all-sky density plot generated
from a 2 billion row table in about 30 min.

90
75 75
60 60
45 45

30 30

NIy y & e

L —

-45 -45
-60 -60
.75 75

Figure 8. Plot of a large table: A map representing simulated density on the sky of stars in the Milky
Way [26]. This figure (originally from [25]) was generated from a 2 billion row table in about 30 min on
anormal desktop computer.

7. Implementation Notes

The user experience-driven requirements of usability with large datasets, fast navigation, flexible
configurability and instant visual feedback place considerable constraints on the implementation.
In this section we outline some of the strategies in place to deliver these features.

7.1. Scalability

The first requirement, built into the whole of the TOPCAT application and its underlying libraries,
is to be able to process tables with large row counts Ny in fixed memory if at all possible. This means
that generating a plot must not, unlike many off-the-shelf Java plotting libraries, allocate an object
or other storage for each input row or plotted point. Instead, where possible, the plotting system
uses data structures that scale with the number of pixels rather than the number of rows. This rule is
violated in some cases, for instance if the number of rows can be determined to be small, or in a few

63

Informatics 2017, 4,18

cases where it is unavoidable such as z-stacking points for 3-d plots, but most of the common plot
types obey it.

To support this model, the various plot layer implementations work with an abstraction of the
data that simply iterates over each row, returning typed values (typically double precision scalars,
though in some cases boolean, string or array values) for the required coordinates at each step. For each
iteration they can then either paint directly to the graphics system or populate some limited-size data
structure that will be used for graphics operations later in the rendering process.

The harnessing code can then decide how to deliver the iteration over the data values from the
original table. The TOPCAT application reads the relevant values into in-memory primitive arrays once
it is known what coordinates are required, ensuring maximal subsequent access speed, since actually
extracting these values from the underlying loaded tables may be somewhat time-consuming. This does
entail some Niow-scale memory usage, though usually at an acceptable level, e.g., only 16 bytes per
row for a 2-d scatter plot. However the STILTS application writing to a static image file simply iterates
over the rows of the underlying table without intermediate caching, thus requiring little additional
storage. These different strategies have different benefits: TOPCAT, having prepared the data for a
given visualisation at the expense of some memory usage can plot subsequent frames using the same
data (e.g., the results of user navigation) as quickly as possible. STILTS (in its default configuration)
may take longer for each frame of an animation sequence but can process arbitrarily large tables in
a small memory footprint. In the common case where STILTS is painting to a single static frame,
the benefits for subsequent replots would not be useful.

7.2. Responsive User Interface

As discussed in Section 5, the visualisation user interface contains many controls, each of which
may change the appearance of some or all parts of the plot; the axes or one or more of the data layers
contributing to a particular visualisation. A responsive user interface requires that whenever one
of these controls is adjusted, the display is updated accordingly. However, regenerating the whole
plot from scratch may be expensive for a large or complex plot, so this should be avoided where
possible. In some cases (e.g., changing the plot colour of a currently hidden dataset) perhaps no replot
is required at all. In other cases (e.g., axis annotations only are changed) some parts of the plot must be
redrawn but the results of previous computations could be re-used. Or perhaps (e.g., coordinate data
is replaced by a different table column) the whole thing needs to be redrawn. In general various parts
of the plotting computations can be cached, and a great deal of effort goes into working out, whenever
the controls are adjusted, which computations from the previous plot can be re-used.

The way this works is that every time a user control is adjusted, it triggers a replot action.
This calculates a set of label objects for each of several plot characteristics such as the currently visible
region of parameter space, the set of table data required for each plot layer, the per-layer configuration
style options etc. Together, this set of labels completely characterises the plot. These label objects
are small and cheap to produce, so multiple replot actions per second (for instance, as a user drags a
slider) are in themselves easy to service, and this step can be done on Swing’s Event Dispatch Thread
(EDT) without impairing the responsiveness of the overall application GUL If this is the first plot to be
produced in a given window, these labels are stored for later reference, and then fed back to the plot
components that generated them, providing instructions to draw the plot which is then calculated and
displayed. However, on subsequent plots in the same window, the plotting system performs various
comparisons of the labels for the new frame with those that specified the previous frame. Specifically,
Java’s Object . equals method is used for label comparison, so these label objects must be written with
carefully implemented equality semantics. If the set is exactly equivalent to that for the previous frame,
no replot needs to be done. In general, some recalculation or redrawing will be needed, but less than
would be required for regenerating the whole plot from scratch. This computation prepares a new
plot bitmap on a worker thread, which it passes on completion back to the EDT for display in the plot
window. A queue of replot requests is maintained, and if a new one comes in while another is waiting

64

Informatics 2017, 4,18

to be performed, the older one is discarded. Whether requests in progress are aborted depends on
some logic to decide whether the new request looks like a minor (navigation) or major (plot new data)
configuration update.

The details of the selective caching that underlies this are quite complicated, but an example may
be illustrative. A plot layer performs its plotting in two stages: in the planning stage it is given the
opportunity to produce a plan object that may represent the results of expensive computations, and in
the painting stage it is given back the same plan to use in order to perform actual graphical output.
Management, including optional caching, of the plan objects is done by the plotting application and
not the layer itself. If the layer can determine that a plan equivalent to the one it needs to produce for
the currently requested plot is already available, because the management level has cached it from an
earlier invocation, it can skip the planning stage and use the previously calculated plan for the painting
stage instead. Hence: a density map layer might generate a plan containing a grid of bins populated by
the expensive work of iterating over the table rows, and then in the painting stage simply transfer this
grid to a bitmap using some configuration-determined colour map. If a subsequent invocation uses
the same grid data but a different colour map, because the user has adjusted the colour map controls
but not moved the grid, it can repaint the image (cheap) without requiring a rescan of the table data
(expensive). The result is that the user can adjust colour map parameters with instant visual feedback
even for a large dataset.

7.3. Configuration Option Management

As discussed above, many configuration options are available to control the data layers that
combine to form a given visualisation, along with the details of the axis representation and annotation,
legend display, plot dimensions, font selection etc.

In order to reduce the implementation complexity associated with these hundreds of options,
each one is represented by a standard object known internally as a ConfigKey. Each of these keys can
supply user-directed metadata (name, description), value type (which may just be a number or some
more complex type like a colour map or marker shape), a sensible default value, a GUI component for
specifying values, and methods for mapping between typed values and string representations. It is
important that the default values of all keys taken together to specify a given plot will combine to give
some reasonable default plot as discussed in Section 5.

Different components of the plotting system make use of these keys to build the user interface
and gather configuration information without hard-coded knowledge of each plot and layer type.
A harnessing application needs to establish which plot type and layers are in use, interrogate them for
their ConfigKeys, and then acquire values for each key that can be fed back to the plot components
to generate the plot. In TOPCAT’s case it sets up plot window controls by stacking the relevant
GUI components ready for adjustment by the user, while STILTS interrogates the list of name-value
pairs supplied on the command line. Other front ends based on name-value pairs have also been
implemented, including a cgi-bin interface for HTTP operation and a Jython front-end to STILTS; both
are available and documented within the STILTS distribution itself, as the STILTS server task and the
JyStilts application respectively.

The user documentation for each plot type can also be generated programmatically at
documentation build time by interrogating each key for its user metadata; around 130 of the 400 pages
in the PDF version of the STILTS user document are auto-generated from ConfigKey objects in this way.

The result of organising the configuration options in this uniform way is that new configuration
options can be introduced easily by making only localised changes to plot type or layer type code;
no corresponding updates to the Ul code or hand-written documentation are required.

8. Use Beyond Astronomy

TOPCAT has been developed for astronomers, with the support of funding agencies whose
responsibility is to the astronomy community. The large majority of its use to date has been within

65

Informatics 2017, 4,18

astronomy, mostly for use with source catalogues. It is also applied to other types of astronomical table
such as time series and event lists, and within some related but distinct fields such as planetary and
solar system science.

However, though it has much functionality that is specific to astronomy (understanding of sky
coordinate systems, data access using astronomy file formats and Virtual Observatory protocols, table
join techniques appropriate for the celestial sphere) many of its capabilities are suitable for any kind of
tabular data, and some adventurous groups in other disciplines are also making enthusiastic use of it.

One example is the group of P. Pognonec from Université Nice, who use it for work investigating
cellular events such as proliferation, mitosis and cell death. They report TOPCAT as their
preferred option for visualising with dotplots and histograms the large tables (ten million cells with
50-100 parameters) of data produced by image analysis of high throughput microscopy acquisitions.
An example is shown in Figure 9. Another is operational and laboratory work by H. Rydberg in the
company Sustainable Waste and Water, City of Gothenburg in Sweden, where it is used especially for
interactive analysis of long time series data concerning water quality; see Figure 10. In this case the
capability to ingest large raw datasets without prior aggregation and navigate interactively makes it
possible to clean data and identify trends over a wide range of timescales. The author has also had
other informal reports of TOPCAT’s sporadic use in bioinformatics, finance, urban transport planning
and flight testing.

While the current funding arrangements do not prioritise support outside of astronomy, the
author is very interested to hear of potential or actual uses in other domains, and willing to supply
modest support, for either casual use or adapting the application or underlying libraries to other
requirements. One missing feature that should be noted when considering applying the software more
widely is its weak support for categorical data, which is not very common in TOPCAT’s core use cases.
However, enhancements in this area are possible in the future.

1700

1600

1500

1400

1300

0 20 40 60 80 100 120 140 180 180 200 220 240 260 280 300 320 340 360 380
Time

Figure 9. Growth and division of cells over time. Cell mass, represented by one colour for each distinct
cell, increases until mitosis, when it is replaced by two daughter cells. In this plot the grey cell has
become “blocked”, losing mass slowly instead of dividing. Credit: P. Pognonec, Université Nice.

66

Informatics 2017, 4,18

Days with acid in Chemically Enhanced Backwash
Waimml - Feed water temperature 0.4 - 14 °C
0.4 Raw water hardness management
~ Reference pilot plant 2011

/_\ “ Current pilot plant 2017

o
@

TMP bar
14
@

1
S

Proportion CEBs with acid

o
o

0.1

Figure 10. Time series (decimal month January-September) of Trans Membrane Pressure over two
different ultrafiltration pilot plants in Gothenburg Sweden (7.7M rows). (Top) Two series of correct
but noisy raw data, obviously not suitable for mean aggregations; (Bottom) Exactly the same data as
top display, clarified by use of subsets, transparency, quantile smoothers, marking by auxiliary Y axis,
histogram by time as event marking, and densograms for additional quantitative variable as well as
operational information. Credit: H. Rydberg, Sustainable Waste and Water, City of Gothenburg.

9. Software Availability

TOPCAT is written in pure Java, and distributed as a single jar file depending only on the Java
Standard Edition (Java SE), currently version 6 or later. The wide availability and excellent portability
and backward compatibility characteristics of the Java platform mean that it can therefore be installed
and run very easily on all widely used desktop and laptop computers. The jar file, as well as a
MacOS DMG file, can be downloaded from the project web site http:/ /www.starlink.ac.uk/topcat/.
Other information including comprehensive tutorial and reference documentation, full version history,
pointers to mailing lists etc can be found in the same place. The package has also recently been made
available as part of the Debian Astro suite [27].

The software is available free of charge under the GNU Public Licence, and the source code is
currently hosted on github (https://github.com/Starlink/starjava/).

10. Conclusions

TOPCAT is a GUI application for manipulating tables, that amongst other capabilities provides
sophisticated visualisation capabilities for tabular data. It is a traditional desktop application,
requiring neither exotic hardware nor server support. It has been developed within the context
of astronomy and is widely used in that field, but is suitable, along with its command-line counterpart
STILTS and underlying Java libraries, for visualising many other kinds of tabular data. The
focus is on highly configurable interactive plots of both small and large (multi-million-row) tables,
offering many variations on the representation of point clouds in one, two or three dimensions,
with the aim of revealing expected and unexpected relationships at multiple scales in large and
high-dimensional datasets.

67

Informatics 2017, 4,18

Acknowledgments: Development of TOPCAT’s current visualisation capabilities has been supported by a number
of grants from the UK’s Science and Technology Facilities Council. The features described here have benefitted
greatly from advice, comments and feedback from its active user community. Special thanks to Henrik Rydberg
and Philippe Pognonec for their input on use in non-astronomical contexts. The author also thanks the anonymous
referees whose constructive comments have improved the paper.

Contflicts of Interest: The author declares no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1.

10.

11.

12.

13.

14.

15.
16.

Messier, C. Catalogue des Nébuleuses & des amas d’Etoiles (Catalog of Nebulae and Star Clusters); Technical Report;
Memoirs of the Royal Academy of Sciences for 1771: Paris, France, 1781. (In French)

Stoughton, C.; Lupton, R.H.; Bernardi, M.; Blanton, M.R.; Burles, S.; Castander, EJ.; Connolly, A.J.;
Eisenstein, D.J.; Frieman, J.A.; Hennessy, G.S.; et al. Sloan Digital Sky Survey: Early Data Release. Astron. J.
2002, 123, 485-548.

Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne,].H.J.; Mignard, E; Drimmel, R.; Babusiaux, C.;
Bailer-Jones, C.A.L.; Bastian, U.; Elteren, A.K; et al. Gaia Data Release 1. Summary of the astrometric,
photometric, and survey properties. Astron. Astrophys. 2016, 595, A2.

Ochsenbein, F; Taylor, M.; Williams, R.; Davenhall, C.; Demleitner, M.; Durand, D.; Fernique, P,; Giaretta, D.;
Hanisch, R.; McGlynn, T.; et al. VOTable Format Definition Version 1.3. IVOA Recommendation 20
September 2013. arXiv 2013, arXiv:1110.0524.

Hanisch, R]J.; Farris, A.; Greisen, EW.; Pence, W.D.; Schlesinger, B.M.; Teuben, PJ.; Thompson, RW.;
Warnock, A., III. Definition of the Flexible Image Transport System (FITS). Astron. Astrophys. 2001,
376, 359-380.

Arviset, C.; Gaudet, S.; IVOA Technical Coordination Group. IVOA Architecture Version 1.0. IVOA Note
23 November 2010. arXiv 2011 arXiv:1106.0291.

Dowler, P; Rixon, G.; Tody, D. Table Access Protocol Version 1.0. IVOA Recommendation 27 March 2010.
arXiv 2010, arXiv:astro-ph.IM/1110.0497.

Plante, R.; Williams, R.; Hanisch, R.; Szalay, A. Simple Cone Search Version 1.03. IVOA Recommendation
22 February 2008. arXiv 2008, arXiv:astro-ph.IM/1110.0498.

Taylor, M.B. TOPCAT & STIL: Starlink Table/VOTable Processing Software. In Astronomical Society of the
Pacific Conference Series, Proceedings of the Astronomical Data Analysis Software and Systems XIV, Pasadena,
CA, USA, 24-27 October 2004; Shopbell, P., Britton, M., Ebert, R., Eds.; Astronomical Society of the Pacific:
San Francisco, CA, USA, 2005; Volume 347, p. 29.

Taylor, M.B.; Page, C.G. Column-Oriented Table Access Using STIL: Fast Analysis of Very Large Tables.
In Astronomical Society of the Pacific Conference Series, Proceedings of the Astronomical Data Analysis Software
and Systems XVII, London, UK, 23-26 September 2007; Argyle, R.W., Bunclark, PS., Lewis, J.R., Eds,;
Astronomical Society of the Pacific: San Francisco, CA, USA, 2008; Volume 394, p. 422.

Moitinho, A.; Krone-Martins, A.; Savietto, H.; Barros, M.; Barata, C.; Falcdo, A.]J.; Fernandes, T.; Alves, J.;
Gomes, M.; Bakker, J.; et al. Gaia Data Release 1: The archive visualisation service. Astron. Astrophys. 2017,
in press.

Boch, T.; Fernique, P. Aladin Lite: Embed your Sky in the Browser. In Astronomical Society of the Pacific
Conference Series, Proceedings of the Astronomical Data Analysis Software and Systems XXIII, Waikoloa Beach
Marriott, HI, USA, 29 September—3 October 2013; Manset, N., Forshay, P., Eds.; Astronomical Society of the
Pacific: San Francisco, CA, USA, 2014; Volume 485, p. 277.

Carbon, D.E; Henze, C.; Nelson, B.C. Exploring the SDSS Data Set with Linked Scatter Plots. I. EMP, CEMP,
and CV Stars. Astrophys.]. Suppl. 2017, 228, 19.

Springel, V.; White, S.D.M.; Jenkins, A.; Frenk, C.S.; Yoshida, N.; Gao, L.; Navarro, J.; Thacker, R.; Croton, D.;
Helly, J.; et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature
2005, 435, 629-636.

Tukey,].W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977.

Goodman, A.A. Principles of high-dimensional data visualization in astronomy. Astron. Nachr. 2012, 333,
505-514.

68

Informatics 2017, 4,18

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Altmann, M.; Roeser, S.; Demleitner, M.; Bastian, U.; Schilbach, E. Hot Stuff for One Year (HSOY). A 583
million star proper motion catalogue derived from Gaia DR1 and PPMXL. Astron. Astrophys. 2017, 600, L4.
Bonnarel, F; Fernique, P.; Bienaymé, O.; Egret, D.; Genova, E; Louys, M.; Ochsenbein, F.; Wenger, M.;
Bartlett,].G. The ALADIN interactive sky atlas. A reference tool for identification of astronomical sources.
Astron. Astrophys. Suppl. 2000, 143, 33-40.

Taylor, M.B.; Boch, T.; Taylor,]. SAMP, the Simple Application Messaging Protocol: Letting applications talk
to each other. Astron. Comput. 2015, 11, 81-90.

Joye, W.A; Mandel, E. New Features of SAOImage DS9. In Astronomical Society of the Pacific Conference
Series, Proceedings of the Astronomical Data Analysis Software and Systems XII, Baltimore, MD, USA, 13-16
October 2002; Payne, H.E., Jedrzejewski, R.1., Hook, R.N., Eds.; Astronomical Society of the Pacific:
San Francisco, CA, USA, 2003; Volume 295, p. 489.

Robitaille, T.P; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A_;
Price-Whelan, AM.; Kerzendorf, WE,; et al. Astropy: A community Python package for Astronomy.
Astron. Astrophys. 2013, 558, A33.

Bellini, A.; Piotto, G.; Bedin, L.R.; Anderson, J.; Platais, I.; Momany, Y.; Moretti, A.; Milone, A.P,; Ortolani, S.
Ground-based CCD astrometry with wide field imagers. IIl. WFI@2.2m proper-motion catalog of the globular
cluster w Centauri. Astron. Astrophys. 2009, 493, 959-978.

Taylor, M.B. Visualizing Large Datasets in TOPCAT v4. In Astronomical Society of the Pacific Conference Series,
Proceedings of the Astronomical Data Analysis Software and Systems XXIII, Waikoloa Beach Marriott, HI, USA,
29 September-3 October 2013; Manset, N., Forshay, P., Eds.; Astronomical Society of the Pacific: San Francisco,
CA, USA, 2014; Volume 485, p. 257.

Taylor, M.B. STILTS—A Package for Command-Line Processing of Tabular Data. In Astronomical Society of
the Pacific Conference Series, Proceedings of the Astronomical Data Analysis Software and Systems XV, San Lorenzo
de EI Escorial, Spain, 2-5 October 2005; Gabriel, C., Arviset, C., Ponz, D., Enrique, S., Eds.; Astronomical
Society of the Pacific: San Francisco, CA, USA, 2006; Volume 351, p. 666.

Taylor, M.B. External Use of TOPCAT’s Plotting Library. In Astronomical Society of the Pacific Conference Series,
Proceedings of the Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV), Calgary, AB, Canada, 5-9
October 2014; Taylor, A.R., Rosolowsky, E., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA,
2015; Volume 495, p. 177.

Robin, A.C.; Luri, X.; Reylé, C.; Isasi, Y.; Grux, E.; Blanco-Cuaresma, S.; Arenou, F; Babusiaux, C.;
Belcheva, M.; Drimmel, R.; et al. Gaia Universe model snapshot. A statistical analysis of the expected
contents of the Gaia catalogue. Astron. Astrophys. 2012, 543, A100.

Streicher, O. Debian Astro: An open computing platform for astronomy. arXiv 2016, arXiv:astro-ph.IM/1611.07203.

® (© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

69

informatics MBPY

Atrticle

Web-Scale Multidimensional Visualization of Big
Spatial Data to Support Earth Sciences—A Case Study
with Visualizing Climate Simulation Data

Sizhe Wang "2, Wenwen Li I* and Feng Wang !

1 School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302, USA;
wsizhe@asu.edu (S.W.); fwang80@asu.edu (EW.)

School of Computing, Informatics and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85281, USA

* Correspondence: wenwen@asu.edu; Tel.: +1-480-727-5987

Received: 16 March 2017; Accepted: 24 June 2017; Published: 26 June 2017

Abstract: The world is undergoing rapid changes in its climate, environment, and ecosystems
due to increasing population growth, urbanization, and industrialization. Numerical simulation
is becoming an important vehicle to enhance the understanding of these changes and
their impacts, with regional and global simulation models producing vast amounts of data.
Comprehending these multidimensional data and fostering collaborative scientific discovery requires
the development of new visualization techniques. In this paper, we present a cyberinfrastructure
solution—PolarGlobe—that enables comprehensive analysis and collaboration. PolarGlobe
is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe
system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated
volume rendering techniques, value and spatial filters, and vertical profile visualization to improve
rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this
study, the climate simulation dataset produced by the extended polar version of the well-known
Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe
is also easily extendable to enable data visualization for other Earth Science domains, such as
oceanography, weather, or geology.

Keywords: virtual globe; octree; vertical profile; big data; scientific visualization

1. Introduction

The world is undergoing significant environmental and global climate change due to
increasing population growth, urbanization, and industrialization [1-4]. These changes [5-7]
are exemplified in the Earth’s polar regions, as evidenced by melting sea ice [8] and glacier retreat [9],
which significantly affect the living environment of wildlife and biodiversity in these areas. To better
understand these climate phenomena and their driving mechanics, there exists an urgent need for new
data, techniques, and tools to support scientific studies and the development of effective strategies to
mitigate their negative influences [10].

Climate simulation has been considered a critically important means to address the aforementioned
research challenges [11]. Global or regional climate models, such as WRF (Weather Research
and Forecasting), are often used by the climate modeling community to unveil the historical
climate trajectory and make projections for future changes. Through long-duration computations,
these simulation models often generate very large climate data [12]. It is estimated that worldwide
climate simulation data will reach hundreds of exabytes by 2020 [13]. Besides falling into the category
of “big data” due to its size, climate data is multidimensional in nature. In other words, the time-series

Informatics 2017, 4,17 70 www.mdpi.com/journal/informatics

Informatics 2017, 4,17

data not only spread across a geographic area on the Earth’s surface (horizontal dimension), but they
also occupy different altitudes with varying pressure levels (vertical dimensions).

Scientific visualization is considered an effective vehicle for studying such complex, big volume,
and multiple dimension data [14]. By providing visual representations and analytics, visualization
has the capability to validate hypothesis, uncover hidden patterns, and identify driving factors
of various climate and atmospheric phenomena [15]. Nonetheless, the scientific visualization
community still faces challenges in efficient handling of big data, the complex projection between the
viewport coordinate system and the raw geospatial dataset, and finding innovative ways to present
the voluminous data in order to reveal hidden knowledge. With the widespread adoption of Web
technology, there is also an urgent demand for a Web-based visualization platform to allow web-scale
access, visualization, and analysis of spatial dataset.

This paper introduces our PolarGlobe solution, a Web-based virtual globe platform that supports
multi-faceted visualization and analysis of multi-dimensional scientific data. Built upon the popular
Cesium 3D globe system, the PolarGlobe tool has the advantage of being seamlessly integrative with
Web browsers, eliminating the need to install or configure any plug-ins before data viewing. In addition,
an emerging graphics language (WebGL) is utilized to operate the GPU (Graphics Processing Unit) and
develop functions for data rendering. The remainder of this paper is organized as follows: Section 2
reviews relevant works in the literature; Section 3 introduces the visual analytical techniques being
applied to the PolarGlobe system; Section 4 demonstrates the PolarGlobe GUI (graphic user interface);
Section 5 describes a number of experiments to test system performance; and Section 6 concludes this
work and discusses future research directions.

2. Literature Review

In this section, we organize the review of previous works from two perspectives: (1) previously
established visualization platforms and (2) key techniques employed to support such visualization.

2.1. Popular Visualization Platforms for Climate Research

Visualization has a long tradition in supporting climate research [16]. Standard 2D presentation
techniques such as time/bar charts, 2D maps, and scatterplots are most frequently used in analyzing
climate data [17]. Popular visualization tools, such as UV-CDAT (Ultrascale Visualization Climate
Data Analysis Tool) [18], provide great support for data regridding, exploratory data analysis,
and parallel processing of memory-greedy operations [19]. However, these tools suffer great limitations
in the context of cyberinfrastructure and big data science [20]. For instance, users need to download
and setup the software in order to get access to the tools. To visualize a scene, users also need to write
corresponding (python) code, which often requires a long learning curve. As climate simulation data
is becoming multi-dimensional, the lack of support in multi-dimensional data analysis poses many
challenges for visualizing these data, especially those with time-series stamps. Moreover, in most tools,
data is visualized as an individual piece without being integrated with terrain and morphology data
to enhance understanding.

Overcoming these limitations has become a significant research thread of virtual globe
visualization. Inspired by the vision of “Digital Earth” (by former US vice president Al Gore) [21],
a number of virtual globe tools have been developed to digitally depict our living planet. Popular ones
include Google Earth [22], NASA WorldWind (National Aeronautics and Space Administration; [23],
and Microsoft Virtual Earth [24]. Using these tools, climate data visualization can be integrated into
the actual terrain and Earth scene. Sun et al. (2012) developed a geovisual analytical system to
support the visualization of climate model output using Google Earth [25]. Varun et al. [26] developed
iGlobe, an interactive visualization system that integrates remote sensing data, climate data, and
other environmental data to understand weather and climate change impacts. Helbig et al. [27]
presents a workflow for 3D visualization of atmospheric data in a virtual reality environment.
HurricaneVis [28] is a desktop visualization platform that focuses on scalar data from numerical

71

Informatics 2017, 4,17

weather model simulations of tropical cyclones. Leveraging the power of graphics cards, multivariate
real-time 4D visualization can also be achieved [29]. These works demonstrate a great advantage in data
visualization over traditional approaches that rely solely on 2D maps and scatter plots. However, most
of these applications are desktop-based or require pre-installation and configuration, limiting their
widespread use and adoption by Internet users.

As cyberinfrastructure evolves, research that develops web-based visual analytical tools has
gradually increased. For instance, Fetchclimate [30] and the USGS (United States Geological Survey)
National Climate Change Viewer (UCCV) [31] provide solutions for environment information retrieval
and mapping. Similar online visualization applications have also been applied to other geoscience
disciplines such as hydrology [32-34], oceanography [35], and polar [20,29], etc. Open source packages,
such as Cesium [36] or NASA’s new WebWorldWind [37], are also exploited to construct web-based
environmental applications [38,39]. Though these existing studies provide a satisfying solution to 2D
spatiotemporal data visualization, they have very limited capability at visualizing high-dimensional
spatiotemporal climate data.

2.2. Key Techniques in Multidimensional Visualization of Spatial Data

Spatiotemporal multidimensional data visualization is a hotspot in the field of scientific
visualization. The existing work varies from organizing and visualizing time-varying big data
to applying multiple visual analytic techniques for planning, predicting, and decision-making.
There are two key issues in developing an efficient web-based visual analytic tool.

The first is efficient management and transmission of big data from the server to client end.
With the popularity of ‘big data’ in both academia and industry, increasing research focuses
on managing big data for scientific visualization [40,41]. Others address big data usage on
visualization in emerging environments [42,43]. In climate study, Li and Wang [39] proposed a video
encoding and compression technique to efficiently organize and transmit time-varying big data over
successive timestamps.

The second is exploiting visualization techniques to provide real-time realistic visualization.
Wong et al. [44] assembled multiple information visualization and scientific visualization techniques
to explore large-scale climate data captured after a natural phenomenon. Li et al. [45] implemented
a volume rendering technique for visualizing large-scale geosciences phenomena, i.e., dust storms.
An octree data structure, in combination with a view-dependent LOD (Level of Detail) strategy, is used
to index 3D spatial data to improve rendering efficiency. Liang et al. [46] further improved this method
to introduce a volumetric ray-casting algorithm to avoid loss of accuracy. The algorithm avoids over- or
under-sampling when converting geospatial data from a spherical coordinate system to a Cartesian
coordinate system for visualization. To boost rendering performance, GPU is always employed for
parallel rendering [47,48]. In order to present volumetric data from multiple facets, these techniques
need to be extended to include more novel visual effects for a comprehensive visual exploration.

In the next section we describe, in detail, our proposed techniques, including an enhanced octree
model to support efficient visualization and analysis of climate data in a cyberinfrastructure environment.

3. Methodology

3.1. Three-Dimensional Data Volume Rendering

The goal of this section is to explain the creation of a panoramic view of climate variables on and
above the Earth’s surface. To accommodate the multivariate characteristics of climate data (horizontal
and vertical), we developed a volume rendering technique to present the variances in the north polar
region and its upper air [49]. To take full advantage of highly detailed datasets such as reanalysis
data, point clouds visualization is adopted. To support this visualization strategy, a value filter and
a region filter were also developed to provide more perspectives and enable a better understanding of
various climate phenomena. Challenges in efficiently transferring large datasets between client and

72

Informatics 2017, 4,17

server, and rendering big data in the client browser, were also addressed. For instance, there are almost
4 million points at a single timestamp in the climate simulation data we adopted [50]. To overcome
these obstacles, an enhanced octree-based Level of Detail (LOD) method is utilized in the point
cloud visualization.

The LOD strategy is adopted, because it is a widely-used technique in multi-dimensional
visualization that decreases total data volume while boosting rendering and data transfer speed
at the same time [51]. Based on the principle that the further the data is observed, the fewer details
will need to be shown, the loading and rendering of 3D volume data can be greatly improved.
When the octree-based LOD is applied to 3D volume visualization, the data size is reduced by a power
of eight (2%). Because our goal is to realize Web-scale visualization for multi-dimensional data such
that people from any place of the world can access the system, the octree is implemented on both
the backend (Web server side) and frontend (client browser side). The server side is responsible for
preparing the LOD data to respond to clients’ requests. The frontend deals with acquiring the proper
LOD data and rendering them in the browser using WebGL (Web Graphics Language). We describe
the implementation of these two parts in detail below.

3.1.1. Data Preparation at the Server Side

Though the octree can be built from original data and kept in the memory of the server for
responding to requests from clients from time to time, this is not only time consuming, which will
keep the user waiting longer to acquire the LOD data, but it is also a great burden on the server’s
memory, especially when the data volume is big or multiple data sources are in use. To overcome
these limitations, we adopted a strategy that pre-processes the original data and produces different
LOD data as files. In order to prepare the LOD data, the first task is to decompose the original data
volume (which consists of numerous points distributed in a 3D grid) into multiple special cubes.
These cubes are considered special because their length, measured by the number of points along
one side, should be a power of 2. This length will be evenly cut along each side of the cube by 2.
Such decomposition ensures an evenly increasing ratio of data size along with the increasing LOD.
The iterative decomposition process continues until every cube contains only one point—the highest
LOD. The following equation can be used to determine the length L of the initial cube:

L= Z(floor(logé‘/l)-%—l) 1)

where M is the minimum size amongst the length, width, and height of the original data volume,
and floor() is a function to receive the integer part of a floating number, given any positive input.

In Equation (1), L is the minimum power of a power of 2 number that is no smaller than M.
After identifying the size of the initial cube, the decomposition process starts by dividing the cube
into eight equally sized sub-cubes. The sub-cubes generated after the first decomposition are called
the roots of the octrees. For convenience, let us state that the roots are at level 0. Because each cube
is represented by one data value, a generalization process should be invoked to derive this value.
A typical approach is to average the values on all the grid points falling in the cube. This process
requires extra storage in order to store the generalized value for the cubes that share the same root.

To address this data challenge, we propose a new octree multi-level storage strategy, or differential
storage, to reduce data redundancy across octree layers. The idea comes from differential backup that
saves only the changes made in a computer system since the last backup. For our purposes, each
higher layer of the octree only stores the differential or incremental dataset(s) from its precedent layers.
These values are a sample from the original data points rather than averaged from them. Figure 1
demonstrates a design of the proposed octree with differential storage support. This data structure
saves substantial storage space. For example, we estimate saving approximately 14% of the storage
space for a three-layer octree using this data structure.

73

Informatics 2017, 4,17

Once the octree model is established, all cubes and sub-cubes are indexed. The root contains
eight initial cubes with index from 0 to 7. As the decomposition continues, every cube is split into
eight sub-cubes of the same size until the LOD reaches the highest level n. The naming of each
sub-cube follows the patterns of (1) the name of its parent cube+; and (2) its index (from 0 to 7). Hence,
the sub-cubes with the same root have the same prefix in its name. The strategy used to record data
is what distinguishes levels 1 and higher from level 0. At level 7, all the generalized data derived from
the same roots are written in a single file whose filename contains the level number and the index of
the root recorded at level n—1. Those sub-cubes with no grid points are ignored. Using this strategy,
the web server can rapidly locate the LOD data with a specified region and level. It repeats the process
applied to level 1 until level 7 is reached. It then splits every cube produced in level n—1 to get 8 n
sub-cubes where no more than one point in a cube exists. The generalized data values, as well as
some necessary metadata (such as the range of value variation and the maximum LOD), are recorded
in a single file for data initialization at the client side.

Figure 1. Differential-storage-enhanced octree model.

3.1.2. Data Rendering on the Client Side

Thus far, LOD data is prepared at all levels. The server will return the data by specifying the root
index and the LOD as parameters in the request. The client side is now able to access any data it needs.
The workflow at the client side starts with retrieving the data at level 0 from the server for initialization.
Using the indices recorded in level 0 data, the whole data volume is split up into multiple cubes
(differed by their indices) for rendering, management, and further operation. If the cubes have been
initialized or a user changes the view perspective, the rendered data will be refreshed by updating
the LOD information in each cube. Since the location of each cube is known, the distances from
the viewport to all cubes are a fixed number at all levels. For a given cube, the data at which LOD
should be rendered is decided by the below equation:

[C
LOD = e (2

where dist denotes the view distance, and C is a constant value which needs to be adjusted by
user experience.

Applying this equation, the data with higher details are loaded as the view distance decreases.
Giving the calculated level and its own index, the cube sends a request to the server and retrieves
the desired LOD data. Once a request is sent, the level in the unit is marked and temporarily cached
in memory for future rendering purposes. This way, repeated requests for the same data are avoided.

Data loading and rendering performance are greatly enhanced with the proposed LOD strategy,
especially when the data is observed from a long distance. If the view distance becomes very short or
the observer dives inside the data cubes, however, a large portion or even all of the data is loaded at
the highest LOD. This may keep the user waiting a long time and can greatly impede the efficiency

74

Informatics 2017, 4,17

of visualization. To resolve this issue, we developed a perspective-based data clipper to eliminate
the invisible parts of the data.

The data clipping strategy adopts popular interactive clipping techniques in volume
visualization [52] and the WebGL implementation of clipping pixels, in order to remove the data
not visible in the current viewport. Benefitting from the decomposition of the whole data volume,
the clipping process can be achieved by checking whether the centers of the decomposed cube
are within the viewport by applying the following equation:

cp = VP-ep 3)

where ep denotes the vector consisting of the visual coordinates of the position at the center of
a decomposed cube with a number 1 appended (e.g., [x, y, z, 1]). VP is the view-projection matrix
with a 4 x 4 dimension, produced by how a user views the scene and the view projection setting.
cp is the desired vector, from which whether a point is within the viewport or not can be determined.

For convenience, the elements of the vector cp are sequentially marked as Xy, Yelip, Zetip, and weiip,
and the following calculation is performed:

Xclip

Xviewport = 4)
4 Welip
Yelip

Yoiewport = (5)
P Welip
Yelip

Zoiewport = (6)
P Welip

If Xoiewports Yoiewports AN Zyjewport bOth Tange from —1 to 1 (boundaries excluded), the decomposed
units are determined to be visible. In this case, the data point is reserved and rendered. The data points
that do not fall in the above range are disregarded.

3.2. Data Filtering

This point cloud visualization provides an overview of the entire multi-dimensional data volume.
By adjusting the size or transparency of the points, the internal variation of the data may also
be observed. However, when millions of points are being simultaneously rendered in the viewport,
the information that a user needs may still be hidden. In order to uncover important details of the data,
we suggest three strategies to filter the data points and reveal only the data variables of interests to
end-users in both space and time.

First, a value-based filter is introduced in the system. This approach has a great advantage for
3D visualization. Specifically, filtering the value range requires that only part of the data points need
to be rendered. For example, high temperature values can be filtered out to allow scientists to focus
on analyzing cold spots. These cold spots or regions will form a particular shape and temperature
variance will be differed by colors. This function allows users to investigate data variation by colors as
well as by shape.

Second, a filter of data by regions is developed to regional studies as well as global studies.
For instance, geographical coordinates of the boundary information can filter data within a country
or state. To accomplish this task, point-in-polygon operations are performed for each data point
in the original dataset after orthogonal projection. However, this may present a problem when
the boundary polygons are complex, as computing time for determining the relationship of
a polygon and a point substantially increases as the number of the vertices in the polygon increases.
In order to reduce the computing burden, a generalization process is applied to the polygon before
the point-in-polygon calculation.

75

Informatics 2017, 4,17

In our work, the Douglas-Peucker line simplification algorithm is adopted [53]. The algorithm
performs as follows: (1) for every two vertices in the polygon that share the same edge, if the distance
between them is under a threshold, they will be merged into a new one—the midpoint of the shared
edge; (2) Step 1 is repeated until there are no pairs of points whose interval is less than the threshold.
It should be noted that while this simplification process helps accelerate the filtering speed, it could
also affect result accuracy. Our preliminary experiments show that with the proper threshold, the time
cost of filtering regional points is greatly reduced with little impact on filtering precision.

The last filter targets the vertical variation. Drawing lines on the surface of Earth, the values on
the vertical slices of the data volume along those lines are extracted and rendered in a special way.
This process is explained in the following section.

3.3. Vertical Profile Visualization

A vertical profile image provides a cross-sectional view of a cubical data. x dimension of
the cross-sectional view is a user-defined path along the Earth’s surface, and y dimension is normally
elevation for spatial data. Interactive vertical profile visualization has the capability to intuitively
demonstrate the inner structure and information inside a 3D volume, and reveal the variation of
a specific factor in a vertical direction (perpendicular to the Earth’s surface), which is very helpful
in climate research [54]. Generally, this function is developed in three steps. The first is a response to
user requests that involve drawing a polyline on the Earth’s surface, indicating a trajectory of interest,
e.g., along the east coastline of Greenland. The second is generation of an image according to the original
three-dimensional data. Each pixel in the image displays the climate variable values at coordinates
(x, z), where the x-axis is the location along the trajectory, and the z-axis shows the location changes on
the 29 vertical pressure levels of the raw data. The third step is displaying the image on the ground
along the user-defined polyline. Three software modules are developed to handle the above tasks.

The Interactive Module (Figure 2) handles user input. The Image Generator Module acquires
the data defined from the user input and converts it to a smooth image, showing the variation from
ground to space as well as along the drawn polyline. The 3D Primitive Module projects the image
from the Image Generator Module on a blank wall created on the surface of the virtual Earth.

Vertical
Profile

3D Primitive 1

Image Generator

Module Module

Interactive l

Figure 2. The workflow for creating a vertical profile.

We built the Interactive and 3D Primitive Modules on the open source library Cesium—a very
popular virtual globe platform that supports the rendering of spatial data in a 3D virtual space.
The following algorithm was developed to generate the image demonstrating the change in some
variables along a specific path inside the data cube.

Given that 3D gridded data is being visualized, a horizontal slice of the data means that the vertical
dimension is the value distribution in a given study area, identified by latitude and longitude,
at a certain altitude. Note that some data might use pressure levels as the vertical dimension, but can
be converted to altitude during preprocessing, if preferred. When we look at the data cube, it would
look like columns of data points neatly standing on the Earth’s surface. When a path of interest is drawn
on the Earth’s surface, we first need to determine all the nearby columns as the gridded data is not
continuous on a 2D surface. The key idea is to rasterize the polyline representing the path. Figure 3

76

Informatics 2017, 4,17

shows an example. Taking a horizontal data slice as a reference, the user-input vector is rasterized on
a grid. The highlighted data points falling on the path of interest are extracted for all horizontal data
slices to generate the vertical profile image.

Rasterize selection—l

00 000O0O0ODO [TT1 00 0000O0O0O
©00000O0O0O 00 000O0O0OOS®
00 00O © o 00 o0o0 e ® o
o o 00000 o e © 0000
00 000O0O0ODO ®© 000000O0O
00 00O0O0O0O0O [1] 00 00O0O0O0OO0O

LGet corresponding dataJ

Figure 3. Rasterization of a user-input trajectory of interest on the Earth’s Surface.

Rasterization is valid only when all the columns are evenly distributed in a grid, which means there
is a specific map projection applied to the data. However, the projection of the input polyline may not
always be the same as the one adopted in the original data source. For example, the polyline retrieved
using the API was provided by Cesium is WGS (World Geodetic System) 84 [55], while the data used
for our study is an azimuthal equidistant projection [56]. In this case, a re-projection process is required
before rasterization. The projection information of a data source can usually be found in its metadata.

The next task is to sequentially project the selected columns on a planar coordinate system, whose
axes stand for elevation and distance. In this way, a 2D grid can be built. This step unfolds the wall
and lays it on a plane (if a user draws a complex path rather than a straight line). Figure 4a shows
an example of the selected data points along a user chosen path. Only one image is produced and
projected on 3D primitives, rather than multiple images that correspond to all the facets of the folded
wall. In this new planar coordinate system, the distance between every two neighboring columns
should be the same as the one in the 3D space. The great circle distance between the locations where
the columns stand determines this. A final image (Figure 4b) is then generated by interpolating all
the data points falling in the image region to generate the raw image matrix. Finally, this matrix
is converted to a RGB image with proper color mapping.

Temperatrue (K)

16000 ° ° ° ° ° ° ° ° ° . . e o
14000 ° ° ° ° ° ° ° ° ° ° ° ° °
7 120006 N ° ° ° . ° ° ° ° ° ° ° °
= 10000 ° ° ° ° ° ° ° ° ° ° ° . .
£ ° ° ° o °

S so00p ° ° ° ° ° ° ° ° 9 2 ° ° °
2 6000 o o ° ° ° ° ° ° ° ° o ° ° °
° o ° ° ° ° o ° ° ° ° ° ° °
40000 o o o ° o ° ° ° ° ° ° ° °
3 ° ° o ° ° ° ° ° ° ° ° ° °
20000 ° ° ° ° ° ° ° ° ° ° ° ° °
e ° ° ° ° ° ° ° ° ° ° ° ° °

0 5000 10000 15000 20000 25000 30000 35000 40000

Selection [m]

@

Height [m]

0 5000 10000 15000 20000 25000 30000 35000 40000
Selection [m]

(b)

Figure 4. An example of generating a vertical profile image through interpolation: (a) An illustration of
selected data points (clustered as columns) along a path on the Earth’s surface; (b) Color-coded image
after 2D interpolation (temperature increases from blue to red).

77

Informatics 2017, 4,17

4. Graphic User Interface

Figure 5 demonstrates the PolarGlobe GUIL The climate data used in the visualization is the air
temperature output from the Polar version of the WRF Model. This data covers 20 degree latitude
and north, and contains 29 vertical layers differed by pressure levels. The spatial resolution
is 30 km. By applying a predefined color map, this panoramic view of data clearly shows the change
in temperature with a cold spot on top of the Greenland ice sheet.

PolarGiobe: 4D Climate Data Visualization

Data Control January 1st, 2012

> A N

Saved Events Select an Event

Point Cloud View

LEERRREEREL

4338845333

Figure 5. Graphic User Interface of PolarGlobe (http:/ /cici.lab.asu.edu/polarglobe2): (a) a screenshot
of temperature visualization in the whole study area; (b) a close look at the distribution of air
temperature in Alaska, US on 1 January 2012; (c) a view of temperature of Alaska from the side;
(d) the value filtering effect (Air temperature higher than —20 degree Celsius for data presented
is shown here); (e) the vertical profile view and statistics.

A spatial filter can be applied to make further exploration of the air temperature data at an area
of interest, such as Alaska, US. Once “Alaska” is selected from the dropdown menu of the spatial
region, the original data cube (temperature data at all pressure layers) is cut by the geographical

78

Informatics 2017, 4,17

boundary of Alaska. Figure 5b,c demonstrates the temperature data in the winter (1 January 2012),
from different angles. It can be seen that it is much warmer along the coast of the Gulf of Alaska and
inland (near the south) than in other parts. This observation can be verified by conducting a value
filtering in the PolarGlobe system (see results in Figure 5d).

When an inner structure of the data volume needs to be examined, our vertical profile visualization
will serve this purpose. Figure 5e shows the temperature change along 65 degree North near Alaska and
northwest Canada. It can be observed that the near surface temperature in Canada along the trajectory
of interest is higher than that in Alaska, and the value keeps increasing when moving toward the east.

5. Experiments and Results

This section provides quantitative analysis of the performance improved by the proposed methods
for accomplishing real-time and interactive visualization of the voluminous dataset. The experiments
were conducted on a Dell workstation with 8 cores at 3.4 GHz and 8 gigabytes memory size.

5.1. Performance on Data Loading and Rendering

To accelerate data loading speed, we introduced the enhanced octree-based LOD and viewport
clip to filter out the invisible part of the data volume to reduce data size to be loaded. This experiment
provides a comparison in terms of data loading time, using: (1) the non-optimized approach,
in which the entire dataset will be loading for visualization; (2) the approach that adopts only
the LOD; and (3) the one with both the LOD and viewport clip, applied to reveal the advantages of
the optimization strategy. In the experiment, we assume a user is viewing the Earth from space and
his eye sight falls on the location of 75° W, 60° N on the Earth’s surface. As he looks closer or further,
the angle remains the same and only the view distance changes. The loading efficiency under the three
scenarios is compared and results are shown in Figure 6.

65
— R R L 4
52
&
£
e 39
_%D =4#=Non-optimized
S
§ 9% =i=10D Only
% #=L0D + Clip
a
13
- - T y ™, r
0 ———fe—l Ak
128000 64000 32000 16000 8000 4000 2000 1000

View Distance (unit:km)

Figure 6. Comparison of data loading time before and after applying optimization strategies as the view
distance becomes shorter. (Error bars are smaller than the plot markers).

It can be observed from Figure 6 that data loading with no optimization takes much more time
than in the other two situations, no matter how far away a user views the data volume. When the view
distance is below 8 million meters, the loading time with LOD-adopted is comparable to the LOD + Clip.
Beyond that view distance, the LOD with data clipping presents a conspicuous advantage over

79

Informatics 2017, 4,17

the LOD alone. As expected when data volume is observed in shorter distances, a greater amount of
points are filtered out because of their invisibility (the smaller the data volume being loaded, the less
computation burden on the graphic processor). Therefore, a higher rendering performance (in terms
of frame rate) can be achieved. We also compare the rendering performances by their frame rates
when refreshing the data volume. Similar results are presented in Figure 7. In Figure 7, an interesting
bell-shaped curve is shown for our proposed LOD + Clip method. At the distances of 6000 km and
4000 km, the frame rate drops to about half of that at other distances. This is due to the reason that
these distances are close enough to load the data at a higher level of detail, but not close enough to
clip the data volume, since most of the data volume remains in the viewport. This fact can be cross
validated with the results in Figure 6 (at the given two distances); there is, in fact, an increase in the data
loading time. The data-loading curve starts to drop when the view distances move below 4000 km for
the LOD + clip method (dashed line in Figure 6).

i S—

)
E 52
o
o
wv
o
A 39
]
£
é = o @ @
}1,(; 26 == A== Non-optimized
E —&—LOD Only P |
T 1 LOD + Clip ”
£ -
- e o -
- e amfpe— = =—h
0
128000 64000 32000 16000 8000 4000 2000 1000

View Distance (unit:km)

Figure 7. Comparison of data rendering performance, before and after applying optimization strategies.

5.2. Experiment on Accuracy vs. Efficiency in Spatial Filtering and Generalization

As mentioned, we introduced a simplification process for determining spatial boundaries.
This clips the original data volume to support the spatial filtering operation. Knowing that an increasing
level of simplification introduces a larger error in the boundary data, and thus affects the accuracy of
the results, we implemented the filtered grid points. Here the level of simplification was determined
by a distance tolerance, used to determine which neighboring vertices should be kept or deleted.
The resulting accuracy was measured by the ratio of correctly filtered grid points, using the simplified
boundary versus the results obtained by using the original boundary.

We used the boundary of Wisconsin, US as the test data (125,612 vertices in total). Figure 8
illustrates the results. The results reveal a rapid decline of time cost when distance tolerance begins
to increase in the simplification process. Here, the unit of this distance tolerance is a degree of
latitude /longitude. Accuracy, on the other hand, remains at 100% until the tolerance value is set
higher than 0.0064. Hence, the threshold 0.0064 is an ideal parameter setting for spatial boundary
simplification that maximizes both filtering efficiency and data accuracy.

80

Informatics 2017, 4,17

100.0% 100
97.59
% 80

95.0% —_
o, 60 =
] . g
S 92.5% s Time cost 3
[¥] w
= == AcCUr E
< acy 40 £

90.0%

87.5% 20

85.0% 0

original 0.0001 0.0004 0.0016 0.0064 0.0256 0.1024 0.4096
Simplification tolerance (Unit: degree of latitude /longtiude)

Figure 8. A comparison between time cost and data accuracy in spatial filtering after applying
simplification to the spatial boundary.

5.3. Impact of Interpolation on the Efficiency of Vertical Profile Generation and Visualization

Although interpolation is only a small part of implementing vertical profile visualization, it has
the greatest impact on efficiency in generating a profile. This step is needed, since our original test data
has a relatively coarse resolution—30 km, and the data points are not evenly distributed within space
(see illustration in Figure 4). The time cost of the interpolation is affected by three factors: (1) the number
of input points, namely, how many data values will be selected as the reference for interpolation;
and (2) the number of output points. This is a measure of the resolution of the interpolated image by
the total number of pixels, and (3) which interpolation method is used. We designed two experiments
to reveal the impact of these three factors on the interpolation performance.

In the first one, we controlled the number of output points (the total pixel numbers of the output
image) at 160,000 and compared the performance of different types of interpolation methods by altering
the number of input points. Here, the comparison is applied to three types of interpolation which all
meet the demand in our case. They are nearest neighbor interpolation [57], linear interpolation [58],
and cubic precision Clough-Tocher interpolation [59]. In the second experiment, we controlled
the number of input points at 5000 and changed the number of output points. The results of the two
experiments are presented in Figures 9 and 10, respectively.

Both figures show that, when either the number of input points or output points increases,
an increase in interpolation time can be observed. In addition, it is obvious that linear interpolation
achieves the highest efficiency, while the nearest neighbor performs the worst. This is because
the nearest neighbor interpolation requires the construction of a KD-tree during the processing,
which costs more time. However, the speed is not the only indicator used to evaluate an interpolation
method. It is more important to figure out how well an interpolation method emulates our data.
Therefore, a third experiment was conducted to test the precision of interpolation.

We choose 10,353 points as the data in this experiment. These 10,353 points consist of 357 columns.
In other words, 357 points in the original data grid were selected along a user drawn path on the Earth’s
surface. This number is related to the density of the raw data points. On each column, there exists
29 data points (since the raw data’s z dimension is 29, representing 29 pressure levels). To evaluate

81

Informatics 2017, 4,17

the accuracy in the interpolation, part of all the data points were selected and served as the input for
interpolation (we call it train data). The rest is used as test/ground truth data.

0.875
e=ie== Clough-Tocher
== @®== | inear
0.7 w== Nearest Neighbor
20525 1 -
I
o
o
£
& 0.35
0.175 ‘ . : ' — o
\M k _; — =0 = -— Q= = = b
-
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Input Points

Figure 9. A comparison of efficiency by different interpolation methods, as the number of input
points increases.

7
=== Clough-Tocher
== A== [inear -
525 == Nearest Neighbor -
> - =
3 =
O 35 o
()
£
s =
1.75 N
- . —0

o*ﬂf‘__x_-i—*—r—h—l--‘-"
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Pixels in the Interpolated Image (k)

Figure 10. Efficiency of different interpolation methods, as the required resolution of the interpolated
image increases.

For the simulated output points, there are two values associated with them: s; (the interpolated
values); and the real values (;). The accuracy J is calculated using the Normalized Euclidean Distance
(NED) between the two vectors, composed respectively by the interpolated and real values:

1
0= NED @)

82

Informatics 2017, 4,17

2
i—1)

NED = f (s ®)
i=1

n

where 1 denotes the number of the points in the test data. When a higher NED is observed, a lower
accuracy value ¢ will be obtained. Figure 11 demonstrates the accuracy of each interpolation approach
by changing the sampling ratio between train and test data.

3.75

et Clough-Tocher g | inear === Nearest Neighbor

Precision
I
%)
(%31

=
wn

'.Z-w—-—;.--—-\..__,._ "
0 - —
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

Sampling Ratio (ratio between training and test data)

Figure 11. A comparison of accuracy across different interpolation methods, as the number of training
data used for interpolation decreases.

As shown, the accuracy of interpolation rapidly declines as fewer training data are selected,
as reflected by a decreasing sampling ratio. This is especially true for linear and Clough-Tocher
interpolations. On the other hand, these two methods still perform better than the nearest neighbor
interpolation at each sampling rate. Clough-Tocher interpolation performs a bit better than linear
interpolation when the sampling ratio is controlled above 1/8. When the ratio is below 1/8, we observe
very similar resultant accuracy values. Synthesizing results from all three experiments, linear
interpolation is the best fit in our visualization system, with real-time requirement due to its fast
speed and high accuracy.

6. Conclusions

This paper introduces PolarGlobe, a Web-based virtual globe system to allow Web-scale access
of big climate simulation data. Different from previous work, our proposed platform does not
require installation of plugins. This substantially reduces the learning curve of the software tool.
Technically, the major contributions of this work include: (1) a server-client architecture powered up by
a new differential-storage-enhanced octree model to support efficient spatial indexing, transmission,
and rendering of big climate data; (2) a combined value and spatial filter to enable perception-based
visualization and interactive data exploration; and (3) vertical profile visualization to allow examination
of variations in climate variables on a cross-section inside the data cube. Although primarily tested
on climate simulation data, visualization techniques can be widely applied to other Earth science
domains, such as oceanography, hydrology, and geology. We believe this platform will provide strong
support to scientists for testing models and validating hypotheses, as well as for the general public to
understand different components of the Earth system and its interactions.

83

Informatics 2017, 4,17

In the future, we will enhance the PolarGlobe system in the following directions: first, methods
will be developed to effectively present multivariate geoscientific data for an integrated analysis;
second, strategies for visualizing vector data on the globe will also be exploited; and third, we will
extend the current visualization capability with advanced data mining or spatial analysis capability,
to equip PolarGlobe as not only a system for visualization but also for knowledge discovery.

Acknowledgments: This project is supported by the National Science Foundation (PLR-1349259; BCS-1455349;
and PLR-1504432).

Author Contributions: Sizhe Wang and Wenwen Li originated the idea of the paper. Sizhe Wang developed
the algorithm and the PolarGlobe system, with assistance from Feng Wang. Sizhe Wang, Wenwen Li wrote
the paper. Feng Wang assists with some graphics and references. All authors discussed the implementation details
of the work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dasgupta, S.; Mody, A.; Roy, S.; Wheeler, D. Environmental regulation and development: A cross-country
empirical analysis. Oxf. Dev. Stud. 2001, 29, 173-187. [CrossRef]

2. Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs,]. M. Global change and
the ecology of cities. Science 2008, 319, 756-760. [CrossRef] [PubMed]

3. Tacoli, C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ. Urban.
2009, 21, 513-525. [CrossRef]

4. Li, Y;LiY,; Zhou, Y,; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization
and the environment. . Environ. Manag. 2012, 98, 127-133. [CrossRef] [PubMed]

5. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686-688.
[CrossRef] [PubMed]

6. Goudie, A.S. Dust storms: Recent developments.]. Environ. Manag. 2009, 90, 89-94. [CrossRef] [PubMed]
Meehl, G.A.; Zwiers, F; Evans, J.; Knutson, T. Trends in extreme weather and climate events: Issues related
to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 2000, 81, 427-436.
[CrossRef]

8. Mitrovica,].X.; Tamisiea, M.E.; Davis,].L.; Milne, G.A. Recent mass balance of polar ice sheets inferred from
patterns of global sea-level change. Nature 2001, 409, 1026-1029. [CrossRef] [PubMed]

9. Cook, AJ,; Fox, AJ.; Vaughan, D.G.; Ferrigno,].G. Retreating glacier fronts on the Antarctic Peninsula over
the past half-century. Science 2005, 308, 541-544. [CrossRef] [PubMed]

10. Sheppard, S.R. Visualizing Climate Change: A Guide to Visual Communication of Climate Change and Developing
Local Solutions; Routledge: Florence, KY, USA, 2012; p. 511.

11. Giorgi, F; Mearns, L.O. Approaches to the simulation of regional climate change: A review. Rev. Geophys.
1991, 29, 191-216. [CrossRef]

12. Chervenak, A.; Deelman, E.; Kesselman, C.; Allcock, B.; Foster, I.; Nefedova, V.; Lee, J.; Sim, A.; Shoshani, A;
Drach, B. High-performance remote access to climate simulation data: A challenge problem for data grid
technologies. Parallel Comput. 2003, 29, 1335-1356. [CrossRef]

13. Overpeck,].T.; Meehl, G.A.; Bony, S.; Easterling, D.R. Climate data challenges in the 21st century. Science
2011, 331, 700-702. [CrossRef] [PubMed]

14. Gordin, D.N.; Polman,].L.; Pea, R.D. The Climate Visualizer: Sense-making through scientific visualization.
J. Sci. Educ. Technol. 1994, 3, 203-226. [CrossRef]

15. Van Wijk, J.J. The value of visualization. In Proceedings of the IEEE Visualization VIS 05, Minneapolis, MN, USA,
23-28 October 2005; pp. 79-86.

16. Galton, F. Meteographics, or, Methods of Mapping the Weather, Macmillan, London; British Library:
London, UK, 1863.

17. Nocke, T.; Heyder, U.; Petri, S.; Vohland, K.; Wrobel, M.; Lucht, W. Visualization of Biosphere Changes
in the Context of Climate Change. In Proceedings of the Conference on Information Technology and Climate
Change, Berlin, Germany, 25-26 September 2008.

84

Informatics 2017, 4,17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Santos, E.; Poco, J.; Wei, Y; Liu, S.; Cook, B.; Williams, D.N.; Silva, C.T. UV-CDAT: Analyzing Climate
Datasets from a User’s Perspective. Comput. Sci. Eng. 2013, 15, 94-103. [CrossRef]

Williams, D. The ultra-scale visualization climate data analysis tools (UV-CDAT): Data analysis and
visualization for geoscience data. IEEE Comp. 2013, 46, 68-76. [CrossRef]

Li, W.; Wu, S.; Song, M.; Zhou, X. A scalable cyberinfrastructure solution to support big data management
and multivariate visualization of time-series sensor observation data. Earth Sci. Inform. 2016, 9, 449-464.
[CrossRef]

Gore, A. The Digital Earth: Understanding our planet in the 21st century. Aust. Surv. 1998, 43, 89-91.
[CrossRef]

Sheppard, S.R.; Cizek, P. The ethics of Google Earth: Crossing thresholds from spatial data to landscape
visualisation. J. Environ. Manag. 2009, 90, 2102-2117. [CrossRef] [PubMed]

Boschetti, L.; Roy, D.P; Justice, C.O. Using NASA’s World Wind virtual globe for interactive internet
visualization of the global MODIS burned area product. Int. |. Remote Sens. 2008, 29, 3067-3072. [CrossRef]
Boulos, M.N. Web GIS in practice III: Creating a simple interactive map of England’s strategic Health
Authorities using Google Maps API, Google Earth KML, and MSN Virtual Earth Map Control. Int.].
Health Geogr. 2005, 4, 22. [CrossRef] [PubMed]

Sun, X.; Shen, S.; Leptoukh, G.G.; Wang, P; Di, L.; Lu, M. Development of a Web-based visualization platform
for climate research using Google Earth. Comput. Geosci. 2012, 47, 160-168. [CrossRef]

Varun, C.; Vatsavai, R.; Bhaduri, B. iGlobe: An interactive visualization and analysis framework for
geospatial data. In Proceedings of the 2nd International Conference on Computing for Geospatial Research
& Applications, Washington, DC, USA, 23-25 May 2011; p. 21.

Helbig, C.; Bauer, H.S.; Rink, K.; Wulfmeyer, V.; Frank, M.; Kolditz, O. Concept and workflow for 3D
visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ. Earth Sci.
2014, 72, 3767-3780. [CrossRef]

Berberich, M.; Amburn, P; Dyer, J.; Moorhead, R.; Brill, M. HurricaneVis: Real Time Volume Visualization of
Hurricane Data. In Proceedings of the Eurographics/IEEE Symposium on Visualization, Berlin, Germany,
10-12 June 2009.

Wang, F; Li, W.; Wang, S. Polar Cyclone Identification from 4D Climate Data in a Knowledge-Driven
Visualization System. Climate 2016, 4, 43. [CrossRef]

Li, Z,; Yang, C.; Sun, M.; Li, J.; Xu, C.; Huang, Q.; Liu, K. A high performance web-based system for analyzing
and visualizing spatiotemporal data for climate studies. In Proceedings of the International Symposium
on Web and Wireless Geographical Information Systems, Banff, AB, Canada, 4-5 April 2013; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 190-198.

Alder, J.R.; Hostetler, S.W. Web based visualization of large climate data sets. Environ. Model. Softw. 2015, 68,
175-180. [CrossRef]

Liu, Z.; Ostrenga, D.; Teng, W.; Kempler, S. Developing online visualization and analysis services for NASA
satellite-derived global precipitation products during the Big Geospatial Data era. In Big Data: Techniques and
Technologies in Geoinformatics; CRC Press: Boca Raton, FL, USA, 2014; pp. 91-116.

Van Meersbergen, M.; Drost, N.; Blower,].; Griffiths, G.; Hut, R.; van de Giesen, N. Remote web-based 3D
visualization of hydrological forecasting datasets. In Proceedings of the EGU General Assembly Conference,
Vienna, Austria, 12-17 April 2015; Volume 17, p. 4865.

Hunter, J.; Brooking, C.; Reading, L.; Vink, S. A Web-based system enabling the integration, analysis, and 3D
sub-surface visualization of groundwater monitoring data and geological models. Int. . Digit. Earth 2016, 9,
197-214. [CrossRef]

Moroni, D.F; Armstrong, E.; Tsontos, V.; Hausman,].; Jiang, Y. Managing and servicing physical
oceanographic data at a NASA Distributed Active Archive Center. In Proceedings of the OCEANS 2016
MTS/IEEE Monterey, Monterey, CA, USA, 19-23 September 2016; pp. 1-6.

AGI. Cesium-WebGL Virtual Globe and Map Engine. Available online: https://cesiumjs.org/ (accessed on
17 January 2015).

Brovelli, M.A.; Hogan, P.; Prestifilippo, G.; Zamboni, G. NASA Webworldwind: Multidimensional
Virtual Globe for Geo Big Data Visualization. In Proceedings of the ISPRS-International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences 2016, Prague, Czech Republic,
12-19 July 2016; pp. 563-566.

85

Informatics 2017, 4,17

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Voumard, Y.; Sacramento, P.; Marchetti, P.G.; Hogan, P. WebWorldWind, Achievements and Future of
the ESA-NASA Partnership (No. e2134v1). Available online: https://peerj.com/preprints/2134.pdf
(accessed on 18 April 2017).

Li, W.; Wang, S. PolarGlobe: A web-wide virtual globe system for visualizing multidimensional, time-varying,
big climate data. Int.]. Geogr. Inf. Sci. 2017, 31, 1562-1582. [CrossRef]

Cox, M.; Ellsworth, D. Managing Big Data for Scientific Visualization, ACM Siggraph: Los Angeles, CA, USA,
1997; Volume 97, pp. 146-162.

Demchenko, Y.; Grosso, P.; De Laat, C.; Membrey, P. Addressing big data issues in scientific data infrastructure.
In Proceedings of the IEEE 2013 International Conference on Collaboration Technologies and Systems (CTS),
San Diego, CA, USA, 20-24 May 2013; pp. 48-55.

Baccarelli, E.; Cordeschi, N.; Mei, A.; Panella, M.; Shojafar, M.; Stefa, J. Energy-efficient dynamic traffic
offloading and reconfiguration of networked data centers for big data stream mobile computing: Review,
challenges, and a case study. IEEE Netw. 2016, 30, 54-61. [CrossRef]

Cordeschi, N.; Shojafar, M.; Amendola, D.; Baccarelli, E. Energy-efficient adaptive networked datacenters for
the QoS support of real-time applications. . Supercomput. 2015, 71, 448-478. [CrossRef]

Wong, P.C.; Shen, HW.; Leung, R.; Hagos, S.; Lee, T.Y.; Tong, X.; Lu, K. Visual analytics of large-scale climate
model data. In Proceedings of the 2014 IEEE 4th Symposium on Large Data Analysis and Visualization
(LDAV), Paris, France, 9-10 November 2014; pp. 85-92.

Li,J.; Wu, H.; Yang, C.; Wong, D.W.; Xie, J. Visualizing dynamic geosciences phenomena using an octree-based
view-dependent LOD strategy within virtual globes. Comput. Geosci. 2011, 37, 1295-1302. [CrossRef]
Liang, J.; Gong, J.; Li, W.; Ibrahim, A.N. Visualizing 3D atmospheric data with spherical volume texture on
virtual globes. Comput. Geosci. 2014, 68, 81-91. [CrossRef]

Kruger, J.; Westermann, R. Acceleration techniques for GPU-based volume rendering. In Proceedings of
the 14th IEEE Visualization 2003 (VIS'03), Seattle, WA, USA, 13-24 October 2003; p. 38.

Wang, F; Wang, G.; Pan, D.; Liu, Y.; Yang, Y.; Wang, H. A parallel algorithm for viewshed analysis
in three-dimensional Digital Earth. Comput. Geosci. 2015, 75, 57-65.

Drebin, R.A_; Carpenter, L.; Hanrahan, P. Volume rendering. Comput. Graph. 1988, 22, 65-74. [CrossRef]
National Center for Atmospheric Research Staff. The Climate Data Guide: Arctic System Reanalysis
(ASR). Available online: https://climatedataguide.ucar.edu/climate-data/arctic-system-reanalysis-asr
(accessed on 22 June 2017).

Luebke, D.P. Level of Detail for 3D Graphics; Morgan Kaufmann: San Francisco, CA, USA, 2003.

Weiskopf, D.; Engel, K.; Ertl, T. Interactive clipping techniques for texture-based volume visualization and
volume shading. IEEE Trans. Vis. Comput. Graph. 2003, 9, 298-312. [CrossRef]

Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent
a digitized line or its caricature. Cartogr. Int.]. Geogr. Inf. Geovis. 1973, 10, 112-122. [CrossRef]

Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y. Climate effects of black carbon aerosols in China and India.
Science 2002, 297, 2250-2253. [CrossRef] [PubMed]

Malys, S. The WGS84 Reference Frame. National Imagery and Mapping Agency. 1996. Available online:
http:/ /earth-info.nga.mil/GandG/publications/tr8350.2 / wgs84fin.pdf (accessed on 10 March 2017).
Hinks, A.R. A retro-azimuthal equidistant projection of the whole sphere. Geogr.]. 1929, 73, 245-247.
[CrossRef]

Parker, J.A.; Kenyon, R.V.; Troxel, D.E. Comparison of interpolating methods for image resampling.
IEEE Trans. Med. Imaging 1983, 2, 31-39. [CrossRef] [PubMed]

De Boor, C.; De Boor, C.; Mathématicien, E.U.; De Boor, C.; De Boor, C. A Practical Guide to Splines; Springer:
New York, NY, USA, 1978; Volume 27, p. 325.

Mann, S. Cubic precision Clough-Tocher interpolation. Comput. Aided Geom. Des. 1999, 16, 85-88. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses /by /4.0/).

86

informatics MBPY

Atrticle

Constructing Interactive Visual Classification,
Clustering and Dimension Reduction Models for
n-D Data

Boris Kovalerchuk * and Dmytro Dovhalets

Department of Computer Science, Central Washington University, Ellensburg, WA 98926, USA;
Dmytro.Dovhalets@cwu.edu
* Correspondence: Boris. Kovalerchuk@cwu.edu

Academic Editors: Achim Ebert and Gunther H. Weber
Received: 31 May 2017; Accepted: 19 July 2017; Published: 25 July 2017

Abstract: The exploration of multidimensional datasets of all possible sizes and dimensions is a
long-standing challenge in knowledge discovery, machine learning, and visualization. While multiple
efficient visualization methods for n-D data analysis exist, the loss of information, occlusion, and
clutter continue to be a challenge. This paper proposes and explores a new interactive method for
visual discovery of n-D relations for supervised learning. The method includes automatic, interactive,
and combined algorithms for discovering linear relations, dimension reduction, and generalization for
non-linear relations. This method is a special category of reversible General Line Coordinates (GLC).
It produces graphs in 2-D that represent n-D points losslessly, i.e., allowing the restoration of n-D
data from the graphs. The projections of graphs are used for classification. The method is illustrated
by solving machine-learning classification and dimension-reduction tasks from the domains of image
processing, computer-aided medical diagnostics, and finance. Experiments conducted on several
datasets show that this visual interactive method can compete in accuracy with analytical machine
learning algorithms.

Keywords: interactive visualization; classification; clustering; dimension reduction; multidimensional
visual analytics; machine learning; knowledge discovery; linear relations

1. Introduction

Many procedures for n-D data analysis, knowledge discovery and visualization have
demonstrated efficiency for different datasets [1-5]. However, the loss of information, occlusion,
and clutter in visualizations of n-D data continues to be a challenge for knowledge discovery [1,2].
The dimension scalability challenge for visualization of n-D data is present at a low dimension of
n = 4. Since only 2-D and 3-D data can be directly visualized in the physical 3-D world, visualization
of n-D data becomes more difficult with higher dimensions as there is greater loss of information,
occlusion and clutter, Further progress in data science will require greater involvement of end users
in constructing machine learning models, along with more scalable, intuitive and efficient visual
discovery methods and tools [6].

A representative software system for the interactive visual exploration of multivariate datasets
is XmdvTool [7]. It implements well-established algorithms such as parallel coordinates, radial
coordinates, and scatter plots with hierarchical organization of attributes [8]. For a long time, its
functionality was concentrated on exploratory manipulation of records in these visualizations. Recently,
its focus has been extended to support data mining (version 9.0, 2015), including interactive parameter
space exploration for association rules [9], interactive pattern exploration in streaming [10], and time
series [11].

Informatics 2017, 4,23 87 www.mdpi.com/journal/informatics

Informatics 2017, 4,23

The goal of this article is to develop a new interactive visual machine learning system for solving
supervised learning classification tasks based on a new algorithm called GLC-L [12]. This study expands
the base GLC-L algorithm to new interactive and automatic algorithms GLC-IL, GLC-AL and GLC-DRL
for discovery of linear and non-linear relations and dimension reduction.

Classification and dimension reduction tasks from three domains: image processing,
computer-aided medical diagnostics, and finance (stock market) are used to illustrate the method.
This method belongs to a class of General Line Coordinates (GLC) [12-15] where the review of the
state of the art is provided. The applications of GLC in finance are presented in [16]. The rest of this
paper is organized as follows. Section 2 presents the approach that includes the base algorithm GLC-L
(Section 2.1) the interactive version of the base algorithm (Section 2.2), the algorithm for automatic
discovery of relations combined with interactions (Section 2.3), visual structure analysis of classes
(Section 2.4), and generalization of algorithms for non-linear relations (Section 2.5). Section 3 presents
the results for five case studies using the algorithms presented in Section 2. Section 4 discusses and
analyses the results in comparison with prior results and software implementation. The conclusion
section presents the advantages and benefits of proposed algorithms for multiple domains.

2. Methods: Linear Dependencies for Classification with Visual Interactive Means

Consider a task of visualizing an n-D linear function F(x) = y where x = (x1, x2, ... , X;;) is an n-D
point and y is a scalar, y = c1x1 + X2 + €3X3 + ... + CyXy + Cpyq. Such functions play important roles
in classification, regression and multi-objective optimization tasks. In regression, F(x) directly serves
as a regression function. In classification, F(x) serves as a discriminant function to separate the two
classes with a classification rule with a threshold T: if y < T then x belongs to class 1, else x belongs to
class 2. In multi-objective optimization, F(x) serves as a tradeoff to reconcile 1 contradictory objective
functions with ¢; serving as weights for objectives.

2.1. Base GLC-L Algorithm

This section presents the visualization algorithm called GLC-L for a linear function [12]. It is used
as a base for other algorithms presented in this paper.

Let K= (ky, ky, ... , kuy1), ki = ¢i/Cmax, where cyar = Imax;—1.n41(ci) |, and G(x) = kyx1 + kpxo +
... .+ kuxyy + ky11. Here all k; are normalized to be in [—1,1] interval. The following property is true
for F and G: F(x) < T if and only if G(x) < T/cpax. Thus, F and G are equivalent linear classification
functions. Below we present steps of GLC-L algorithm for a given linear function F(x) with coefficients
C=(c1,¢2 .-+, Cus1)-

Step 1: Normalize C = (c1, ¢, ... , Cus1) Dy creating as set of normalized parameters
K=(ki, ky, ... , kns1): ki = ci/cpuax. The resulting normalized equation y, = k1x1 + kpxp + ... +
knxn + ky11 with normalized rule: if ¥, < T/cyuax then x belongs to class 1, else x belongs to class 2,
where y;, is a normalized value, v, = F(x)/cpuax. Note that for the classification task we can assume
cn+1 = 0 with the same task generality. For regression, we also deal with all data normalized. If
actual 14t is known, then it is normalized by Cqy for comparison with vy, Yact/Cinax-

Step 2: Compute all angles Q; = arccos(|k;) of absolute values of k; and locate coordinates X; — X,
in accordance with these angles as shown in Figure 1 relative to the horizontal lines. If k; < 0, then
coordinate X; is oriented to the left, otherwise X; is oriented to the right (see Figure 1). For a given
n-D point x = (x1, x2, ... , x), draw its values as vectors x1, x, . .. , x;; in respective coordinates
X1 — Xy (see Figure 1).

Step 3. Draw vectors x1, Xz, ... , X, one after another, as shown on the left side of Figure 1. Then
project the last point for x;, onto the horizontal axis U (see a red dotted line in Figure 1). To simplify,
visualization axis U can be collocated with the horizontal lines that define the angles Q; as shown
in Figure 2.

Step 4.

88

Informatics 2017, 4,23

Step 4a. For regression and linear optimization tasks, repeat step 3 for all n-D points as
shown in the upper part of Figure 2a,b.

Step 4b. For the two-class classification task, repeat step 3 for all n-D points of classes 1 and
2 drawn in different colors. Move points of class 2 by mirroring them to the bottom with
axis U doubled as shown in Figure 2. For more than two classes, Figure 1 is created for each
class and m parallel axis U; are generated next to each other similar to Figure 2. Each axis U;
corresponds to a given class j, where m is the number of classes.

Step 4c. For multi-class classification tasks, conduct step 4b for all n-D points of each pair of
classes i and j drawn in different colors, or draw each class against all other classes together.

This algorithm uses the property that cos(arccos k) = k for k € [—1,1], i.e., projection of vectors x;
to axis U will be k;x; and with consecutive location of vectors x; , the projection from the end of the
last vector x;, gives a sum kjx1 + kpxp ++ kyx,; on axis U. It does not include k;;11. To add k;1, it
is sufficient to shift the start point of x; on axis U (in Figure 1) by k;;,1. Alternatively, for the visual
classification task, k;;+1 can be omitted by subtracting k;;+1 from the threshold.

Figure 1. 4-D point A = (1,1,1,1) in GLC-L coordinates X; — X4 with angles (Q1,Q2,Q3,Q4) with vectors
x; shifted to be connected one after another and the end of last vector projected to the black line. X; is
directed to the left due to negative k;. Coordinates for negative k; are always directed to the left.

0 ‘ U

a0, G\ A
£ N | Z
@ ®) ©

Figure 2. GLC-L algorithm on real and simulated data. (a) Result with axis X; starting at axis U
and repeated for the second class below it; (b) Visualized data subset from two classes of Wisconsin
breast cancer data from UCI Machine Learning Repository [17]; (¢) 4-D point A = (—1,1,—1,1) in two
representations Aj and A, in GLC-L coordinates X; — X4 with angles Q; — Q.

89

Informatics 2017, 4,23

Steps 2 and 3 of the algorithm for negative coefficients k; and negative values x; can be
implemented in two ways. The first way represents a negative value x;, e.g., x; = —1 as a vector
x; that is directed backward relative to the vector that represent x; = 1 on coordinate X;. As a result,
such vectors x; go down and to the right. See representation A; in Figure 2c for point A = (-1,1,—1,1)
that is also self-crossing. The alternative representation A, (also shown in Figure 2c) uses the property
that k;x; > 0 when both k; and x; are negative. Such k;x; increases the linear function F by the same
value as positive k; and x;. Therefore, A, uses the positive x;, k; and the “positive” angle associated
with positive k;. This angle is shown below angle Q; in Figure 2c. Thus, for instance, we can use x; = 1,
ki = 0.5 instead of x; = —1 and k; = —0.5. An important advantage of A; is that it is perceptually simpler
than A;. The visualizations presented in this article use A, representation.

A linear function of n variables, where all coefficients ¢; have similar values, is visualized in
GLC-L by a line (graph, path) that is similar to a straight line. In this situation, all attributes bring
similar contributions to the discriminant function and all samples of a class form a “strip” that is a
simple form GLC-L representation.

In general, the term c;,4 is included in F due to both mathematical and the application reasons.
It allows the coverage of the most general linear relations. If a user has a function with a non-zero c;1,
the algorithm will visualize it. Similarly, if an analytical machine learning method produced such a
function, the algorithm will visualize it too. Whether c;; is a meaningful bias or not in the user’s task
does not change the classification result. For regression problems, the situation is different; to get the
exact meaningful result, c;,11 must be added and interpreted by a user. In terms of visualization, it
only leads to the scale shift.

2.2. Interactive GLC-L Algorithm

For the data classification task, the interactive algorithm GLC-IL is as follows:

e Itstarts from the results of GLC-L such as shown in Figure 2b.

e Next, a user can interactively slide a yellow bar in Figure 2b to change a classification threshold.
The algorithm updates the confusion matrix and the accuracy of classification, and pops it up for
the user.

e Anappropriate threshold found by a user can be interactively recorded. Then, a user can request
an analytical form of the linear discrimination rule be produced and also be recorded.

e A user sets up two new thresholds if the accuracy is too low with any threshold (see Figure 3a
with two green bars). The algorithm retrieves all n-points with projections that end in the interval
between these bars. Next, only these n-D points are visualized (see Figure 3b).

o At this stage of the exploration the user has three options:

(a) modify interactively the coefficients by rotating the ends of the selected arrows (see
Figure 4),

(b) run an automatic coefficient optimization algorithm GLC-AL described in Section 2.3,

(c) apply a visual structure analysis of classes presented in the visualization described
in section.

90

Informatics 2017, 4,23

Figure 3. Interactive GLC-L setting with sliding green bars to define the overlap area of two classes for
further exploration.(a) Interactive defining of the overlap area of two classes; (b) Selected overlapped
n-D points.

Figure 4. Modifying interactively the coefficients by rotating the ends of selected arrows, X, and Xy
are rotated.

For clustering, the interactive algorithm GLC-IL is as follows. A user interactively selects an n-D
point of interest P by clicking on its 2-D graph (path) P*. The system will find all graphs H* that are
close to it according to the rule below.

Let P* = (p1, p2, ..., pn) and H* = (hy, hy, ... , hy), where p; = (pi1, pi2) and h; = (hj1, hjp) are 2-D
points (nodes of graphs),

T be a threshold that a user can change interactively,

L(P, T) be a set of n-D points that are close to point P with threshold T (i.e., a cluster for P with T),

L(P, T) = {H: D(P*, H*) < T}, where D(P*, H*) < T < Vi | |p; — h;| | <T,and

I Ilp; — hi1 | be the Euclidian distance between 2-D points p; and h;.

The automatic version of this algorithm searches for the largest T, such that only n-D points of the

class, which contains point P, are in L(P, T) assuming that the class labels are known,

max T: {H € L(P, T) = H € Class(P)},
where Class(P) is a class that includes n-D point P.

2.3. Algorithm GLC-AL for Automatic Discovery of Relation Combined with Interactions

The GLC-AL algorithm differs from the Fisher Linear Discrimination Analysis (FDA), Linear
SVM, and Logistic Regression algorithms in the criterion used for optimization. The GLC-AL
algorithm directly maximizes some value computed from the confusion matrix (typically accuracy),
A = (TP + TN)/(TP + TN + FP + FN), which is equivalent to the optimization criterion used in the

91

Informatics 2017, 4,23

linear perceptron [18] and Neural Networks in general. In contrast, the Logistic Regression minimizes
the Log-likelihood [19]. The GLC-AL algorithm also allows maximization of the truth positive (TP).
Fisher Linear Discrimination Analysis maximizes the ratio of between-class to within-class scatter [20].
The Linear SVM algorithm searches for a hyperplane with a large margin of classification, using the
regularization and quadratic programming [21].

The automatic algorithm GLC-AL is combined with interactive capabilities as described below.
The progress in accuracy is shown after every m iterations of optimization, and the user can stop
the optimization at any moment to analyze the current result. It also allows interactive change of
optimization criterion, say from maximization of accuracy to minimization of False Negatives (FN),
which is important in computer-aided cancer diagnostic tasks.

There are several common computation strategies to maximize accuracy A in [—1,1]"*! space of
coefficients k; Gradient-based search, random search, genetic and other algorithms are commonly used
to make the search feasible.

For the practical implementation, in this study, we used a simple random search algorithm that
starts from a randomly generated set of coefficients k;, computes the accuracy A for this set, then
generates another set of coefficients k; again randomly, computes A for this set, and repeats this process
m times. Then the highest value of A is shown to the user to decide if it is satisfactory. This is Step 1
of the algorithm shown below. It is implemented in C++ and linked with OpenGL visualization and
interaction program that implements Steps 2-4. A user runs the process m times more if it is not
satisfactory. In Section 4.1, we show that this automatic step 1 is computationally feasible.

Step 1:
best_coefficients = []
whilen >0
coefficients <- random(—1, 1)
all_lines =0
for i data_samples:
line=0
for x data_dimensions:
if coefficients[x] < 0:
line = line — data_dimensions[x]*cos(acos(coefficients[x]))
else:
line = line + data_dimensions[x]*cos(acos(coefficients[x]))
all_lines.append(line)
/ /update best_coefficients
n—
Step 2: Projects the end points for the set of coefficients that correspond to the highest A value
(in the same way as in Figure 4) and prints off the confusion matrix, i.e., for the best separation of
the two classes.
Step 3:

Step 3a:

1: User moves around the class separation line.
2: A new confusion matrix is calculated.

Step 3b:

1: User picks the two thresholds to project a subset of the dataset.

2: n-D points of this subset (between the two thresholds) are projected.
3: A new confusion matrix is calculated.

4: User visually discovers patterns from the projection.

92

Informatics 2017, 4,23

Step 4: User can repeat Step 3a or Step 3b to further zoom in on a subset of the projection or go
back to Step 1.

Validation process. Typical 10-fold cross validation with 90-10% splits produces 10 different
90-10% splits of data on the training and validation data. In this study, we used 10 different 70-30%
splits with 70% for the training set and 30% for the validation set in each split. Thus, we have the same
10 tests of accuracy as in the typical cross validation. Note that supervised learning tasks with 70-30%
splits are more challenging than the tasks with 90-10% splits.

These 70-30% splits were selected by using permutation of data. The splitting process is as follows:

(1) indexing all m given samples from 1 tom, w= (1,2, ... ,m)

(2) randomly permuting these indexes, and getting a new order of indexes, 7(w)
(3) picking up first 70% of indexes from 7t (w)

(4) assigning samples with these indexes to be training data

(5) assigning remaining 30% of samples to be validation data.

This splitting process also can be used for a 90-10% split or other splits.
The total validation process for each set of coefficients k includes:

(i) applying data splitting process.

(i) computing accuracy A of classification for this k.

(iii) repeating (i) and (ii) t times (each times with different data split).
(iv) computing average of accuracies found in all these runs.

2.4. Visual Structure Analysis of Classes

For the visual structure analysis, a user can interactively:

e Select border points of each class, coloring them in different colors.

Outline classes by constructing an envelope in the form of a convex or a non-convex hull.
Select most important coordinates by coloring them differently from other coordinates.
Selecting misclassified and overlapped cases by coloring them differently from other cases.
Drawing the prevailing direction of the envelope and computing its location and angle.

Contrasting envelopes of difference classes to find the separating features.

2.5. Algorithm GLC-DRL for Dimension Reduction

A user can apply the automatic algorithm for dimension reduction anytime a projection is made
to remove dimensions that don’t contribute much to the overall line in the x direction (angles close to
90°). The contribution of each dimension to the line in the horizontal direction is calculated each time
the GLC-AL finds coefficients. The algorithm for automatic dimension reduction is as follows:

Step 1: Setting up a threshold for the dimensions, which did not contribute to the line significantly
in the horizontal projection.

Step 2: Based on the threshold from Step 1, dimensions are removed from the data, and the
threshold is incremented by a constant.

Step 3: A new projection is made from the reduced data.

Step 4: A new confusion matrix is calculated.

The interactive algorithm for dimension reduction allows a user to pick up any coordinate arrow
X; and remove it by clicking on it, which leads to the zeroing of its projection. See coordinates X, and
X7 (in red) in Figure 5b. The computational algorithm for dimension reduction is as follows.

93

Informatics 2017, 4,23

Step 1: The user visually examines the angles for each dimension, and determines which one is
not contributing much to the overall line.

Step 2: The user selects and clicks on the angle from Step 1.

Step 3: The dimension, which has been selected, is removed from the dataset and a new
projection is made along with a new confusion matrix. The dimension, which has been removed,
is highlighted.

Step 4:

Step 4a: The user goes back to Step 1 to further reduce the dimensions.
Step 4b: The user selects to find other coefficients with the remaining dimensions for a better
projection using the automatic algorithm GLC-AL described above.

P B S S SR L B N A P

(@

Figure 5. Interactive dimension reduction, angles for each dimension are shown on the bottom.
(a) Initial visualization of two classes optimized by GLC-AL algorithm; (b) Visualization of two classes
after 2nd and 7th dimensions (red) with low contribution (angle about 90°) have been removed.

2.6. Generalization of the Algorithms for Discovering Non-Linear Functions and Multiple Classes

Consider a goal of visualizing a function F(x) = c11x1 + C10X12 + Co1X0 + ConXo? + C3X3 + ... + CpXy +
cn+1 With quadratic components. For this F, the algorithm treats x; and x;? as two different variables
X;1 and X, with the separate coordinate arrows similar to Figure 1. Polynomials of higher order
will have more than two such arrows. For a non-polynomial function F(x) = c1f1(x1) + caf2(x2) + . ..
+ Cufu(xn) + Cue1, which is a linear combination of non-linear functions f;, the only modification in
GLC-L is the substitution of x; by f;(x;) in the multiplication with angles still defined by the coefficients
c;. The rest of the algorithm is the same. For the multiple classes the algorithm follows the method
used in the multinomial logistic regression by discrimination of one class against all other k-1 classes
together. Repeating this process k times for each class will give k discrimination functions that allow
the discrimination of all classes.

3. Results: Case Studies

Below we present the results of five case studies. In the selection of data for these studies, we
followed a common practice in the evaluation of new methods—using benchmark data from the
repositories with the published accuracy results for alternative methods as a more objective and less

94

Informatics 2017, 4,23

biased way than executing alternative methods by ourselves. We used two repositories: Machine
Learning Repository at the University of California Irvine [17,22], and the Modified National Institute
of Standards and Technology (MNIST) set of images of digits [23]. In addition, we used S&P 500 data
for the period that includes the highly volatile time of Brexit.

3.1. Case Study 1

For the first study, Wisconsin Breast Cancer Diagnostic (WBC) data set was used [17]. It has
11 attributes. The first attribute is the id number which was removed and the last attribute is the class
label which was used for classification. These data were donated to the repository in 1992. The samples
with missing values were removed, resulting in 444 benign cases and 239 malignant cases. Figure 6
shows samples of screenshots where these data are interactively visualized and classified in GLC-L for
different linear discrimination functions, providing accuracy over 95% of these data. The malignant
cases are drawn in red and benign in blue.

—lc N2l el N

*
=Ll L NL | =
(9

Figure 6. Results for the Wisconsin breast cancer data showing the training, validation, and the entire
data set when trained on the entire data set. (a) Entire training and validation data set. Best projections
of one of the first runs of GLC-AL. Coefficients found on the entire data set; (b) Data split into 70/30
(training and validation) showing only 70% of the data, using coefficients and the separation line
found on the entire data set in (a); (c) Showing the 30% (validation set). Using the coefficients and the
separation line same as in (a). Accuracy goes up.

Figures 6 and 7 show examples of how splitting the data into training and validation affects the
accuracy. Figure 6 shows results of training on the entire data set, while Figure 7 shows results of

95

Informatics 2017, 4,23

training on 70% of the data randomly selected. The visual analysis of Figure 7 shows that 70% of data
used for training are representative for the testing data too. This is also reflected in similar accuracies
of 97.07% and 96.56% on these training and validation data. The next case studies are shown first on
the entire data set to understand the whole dataset. Accuracy on the training and validation data can
be found in Section 3.4, where a 70/30 split was also used.

Predicted Class

o

LY

L B oo o N L2 NL - £ 2 £ N

@ (b)

L4 NL - £ £ £ N
(c)

Figure 7. Results for the Wisconsin breast cancer data showing the training, validation, and the
entire data set when trained on the training set. (a) Data are split using 70% (training set) to the find
coefficients with the projecting training set. Best result from the first runs of GLC-AL; (b) Using the
coefficients found by the training set in (a) and projecting the validation data set (30% of the data);
(c) Projecting the entire data set using the coefficients found by the training set in (a).

96

Informatics 2017, 4,23

Figure 8a shows the results for the best linear discrimination function obtained in the first 20 runs
of the random search algorithm GLC-AL. The threshold found by this algorithm automatically is
shown as a yellow bar. Results for the alternative discriminant functions from multiple runs of the
random search by algorithm GLC-AL are shown in Figure 8b,c and Figure 9.

B

-

(a) (b

PR B .Y
©

Figure 8. Wisconsin breast cancer data interactively visualized and classified in GLC-L for different
linear discrimination functions. (a) Data visualized and classified using the best function of the first
20 runs of the random search with a threshold found automatically shown as a yellow bar; (b) Data
visualized and classified using an alternative function from the first 20 runs with the threshold (yellow
bar) at the positions having only one malignant (red case) on the wrong side and higher overall accuracy
than in (a). (c) Visualization (b) where the separation threshold is moved to have all malignant (red
cases) on the correct side with the tradeoff in the accuracy.

97

Informatics 2017, 4,23

El AP d =L A
®)

<l £ L = N2
(9

Figure 9. Wisconsin breast cancer data interactively projecting a selected subset. (a) Two thresholds are
set from Figure 8c for selecting overlapping cases. (b) Overlapping cases from the interval between
two thresholds from (a). (¢) Overlapping cases from the interval between two thresholds, with the 2nd
dimension with low contribution removed without decreasing accuracy.

In these examples the threshold (yellow bar) is located at the different positions, including the
situations, where all malignant cases (red cases) are on the correct side of the threshold, i.e., no
misclassification of the malignant cases.

Figure 9a—c shows the process and results of interactive selecting subsets of cases using two
thresholds. This tight threshold interval selects heavily overlapping cases for further detailed analysis
and classification. This analysis removed interactively the 2nd dimension with low contribution
without decreasing accuracy (see Figure 9c).

98

Informatics 2017, 4,23

3.2. Case Study 2

In this study the Parkinson’s data set from UCI Machine Learning Repository [22] was used.
This data set, known as Oxford Parkinson’s Disease Detection Dataset, was donated to the repository
in 2008. The Parkinson’s data set has 23 attributes, one of them being status if the person has
Parkinson’s disease.

The dataset has 195 voice recordings from 31 people of which 23 have Parkinson’s disease.
There are several recordings from each person. Samples with Parkinson’s disease present are colored
red in this study. In the data preparation step of this case study, each column was normalized between
0 and 1 separately.

Figures 10 and 11 show examples of how splitting the data into training and validation sets
affects the accuracy. Figure 10 shows results of training on the entire dataset, while Figure 11 shows
results of training on 70% of the data randomly selected. The visual analysis of Figure 11 shows that
70% data used for training is also representative for the validation data. This is also reflected in similar
accuracies of 91.24% and 88.71% respectively. The rest of illustration for this case study is for the entire
dataset to understand the dataset as a whole. Accuracy on the training and validation can be found
later in Section 3.4, where a 70/30 split was also used.

ficcuracy is

LS LLL LSS Loy N
(@ (b)

LS LLoL L33 Lads M o
(©)

Figure 10. Results with Parkinson’s disease data set showing the training, validation and the entire data
set when trained on the entire data set. (a) Training and validation on the entire dataset. Best projections
of one of the first runs of GLC-AL. Coefficients found on the entire data set; (b) Data split into 70/30%
(training /validation) showing only 70% of the data, using the coefficients and the separation line found
on the entire data set in (a). (c) Showing the 30% (validation set). Using coefficients and the separation
line the same as in (a). Accuracy goes down.

99

Informatics 2017, 4,23

B N O A N e e R P

@ (b)

s A L SR A RS N AN e PRI

(0)

Figure 11. Results with Parkinson’s disease data set showing the training, validation and the entire data
set when trained on the training set. (a) Data is split. Using 70% (training set) to find the coefficients.
Projecting training set, best from the first runs of GLC-A; (b) Using coefficients found by the training
set in (a) and projecting the validation dataset (30% of the data); (c) Projecting the entire data set using
coefficients found by the training set in (a).

The result for the best discrimination function found from the second run of 20 epochs is shown
in Figure 12a. In Figure 12b, five dimensions are removed, some of them are with angles close to 90°,
and the separation line threshold is also moved relative to Figure 12a. In Figure 12c, the two limits for
a subinterval are set to zoom in on the overlapping samples.

In Figure 12d, where the subregion is projected and 42 samples are removed, the accuracy only
decreases by 4% from 86.15% to 82.35%. Out of those 42 cases, 40 of them are samples of Parkinson’s
disease (red cases), and only 2 cases are not Parkinson’s disease.

With such line separation as in Figure 12a—c, it is very easy to classify cases with Parkinson’s
disease from this dataset (high True Positive rate, TP); however, a significant number of cases with no
Parkinson’s disease are classified incorrectly (high False Positive rate, FP).

This indicates the need for improving FP more exploration, such as preliminary clustering of the
data, more iterations to find coefficients, or using non-linear discriminant functions. The first attempt
can be a quadratic function that is done by adding a squared coordinate X;? to the list of coordinates
without changing the GLC-L algorithm (see Section 2.5).

100

Informatics 2017, 4,23

=LASL) ALS S IR AN e wmL A LX EXN LS SN o o

©) @

Figure 12. Additional Parkinson’s disease experiments. (a) Best projection from the second run
of 20 epochs. (b) Projection with 5 dimensions removed. Separation line threshold is also moved.
Accuracy stays the same; (c) Two limits for a subinterval are set; (d) Only cases for the subinterval are
projected with the separation line moved. Accuracy drops.

3.3. Case Study 3

In this study, a subset of the Modified National Institute of Standards and Technology (MNIST)
database [23] was used. Images of digit 0 (red) and digit 1 (blue) were used for projection with
900 samples for each digit. In the preprocessing step, each image is cropped to remove the border.
The images after cropping were 22 x 22, which is 484 dimensions.

Figures 13 and 14 show examples of how splitting the data into training and validation changes
the accuracy. Figure 13 shows the results of training on the entire data set, while Figure 14 shows the
results of training on 70% of the data, which are randomly selected. The visual analysis of Figure 14
shows that 70% of the data used for training are also representative for the validation data. This is
also reflected in similar accuracies of 91.58% and 91.44% respectively. The rest of this case study is
illustrated on the entire data set to understand the dataset as a whole. Accuracy on the training and
validation can be found later in Section 4.1, where a 70/30 split was also used.

101

Informatics 2017, 4,23

Figure 13. MNIST subset for digits 0 and 1 dataset showing training, validation, and the entire data set
when trained on the entire data set. (a) Training and validation on the entire data set. Best projections
of one of the first runs of GLC-A. Coefficients found on the entire data set; (b) Data split into 70/30%
(training /validation) showing only 70% of the data, using coefficients and separation line found on the
entire data set in (a); (c) Showing the 30% (validation set). Using the coefficients and the separation line
same as in (a). Accuracy goes down.

102

Informatics 2017, 4,23

Figure 14. MNIST subset for digits 0 and 1 data set showing training, validation, and the entire data
set when trained on the training set. (a) Data is split. Using 70% (training set) to find the coefficients.
Projecting training set, best from the first runs of GLC-A; (b) Using the coefficients found by the training
set in (a) and projecting the validation dataset (30% of the data); (c) Projecting the entire data set using
the coefficients found by the training set in (a).

Figure 15a shows the results of applying the algorithm GLC-AL to these MNIST images. It is
the best discriminant function of the first run of 20 epochs with the accuracy of 95.16%. Figure 15b
shows the result of applying the automatic algorithm GLC-DRL to these data and the discriminant
function. It displays 249 dimensions and removes 235 dimensions, dropping the accuracy only slightly
by 0.28%. Figure 15¢ shows the result when a user decided to run the algorithm GLC-DRL a few more
times. It removed a total of 393 dimensions, kept and projected the remaining 91 dimensions with the
accuracy dropping to 83.77% from 93.84% as shown in Figure 15b.

Figure 15d shows the result of user interaction with the system by setting up the interval (using
two bar thresholds) to select a subset of the data of interest in the overlap of the projections. The selected
data are shown in Figure 16a. Figure 16b shows the results of running GLC-AL algorithm on the
subinterval to find a better discriminant function and projection. Accuracy goes up by 5.6% in
this subinterval.

103

Informatics 2017, 4,23

cted Class

(©)-

Figure 15. Experiments with 900 samples of MNIST dataset for digits 0 and 1. (a) Results for the best
linear discriminant function of the first run of 20 epochs; (b) Results of the automatic dimension
reduction displaying 249 dimensions with 235 dimensions removed with the accuracy dropped
by 0.28%; (c) Automatic dimension reduction, which is run a few more times removing a total of
393 dimensions and keeping 91 dimensions with dropped accuracy; (d) Thresholds for a subinterval
are set (green bars).

Next, the automatic dimension reduction algorithm GLC-DRL is run on these subinterval data,
removing the 46 dimensions and keeping and projecting the 45 dimensions with the accuracy going
up by 1% (see Figure 16¢). Figure 16d shows the result when a user decided to run the algorithm
GLC-DRL a few more times on these data, removing 7 more dimensions, and keeping 38 dimensions,
with the accuracy gaining 6.8%, and reaching 95.76%.

104

Informatics 2017, 4,23

© @

Figure 16. Experiments with a 900 samples of MNIST dataset for digits 0 and 1 doing automatic
dimension reduction. (a) Data between the two green thresholds are visualized and projected;
(b) GLC-AL algorithm on the subinterval to find a better projection. Accuracy goes up by 5.6%
in the subregion; (c) Result of automatic dimension reduction running a few more times that
removes 46 dimensions and keeps 45 dimensions with accuracy going up by 1%; (d) Result of
automatic dimension reduction running a few more times that removes 7 more dimensions and
keeps 38 dimensions with accuracy going up 6.8% more.

3.4. Case Study 4

Another experiment was done on a different subset of the MNIST database to see if any visual
information could be extracted on encoded images. For this experiment, the training set consisted of all
samples of digit 0 and digit 1 from the training set of MNIST (60,000 images). There was 12,665 samples
of digit 0 and digit 1 combined in the training set. The validation set consisted of all the samples of
digit 0 and digit 1 from the validation set of MNIST (10,000 images). There was 2115 samples of digit 0
and digit 1 combined in the validation set. The preprocessing step for the data was the same as for
case study 3, where pixel padding was removed resulting in 22 x 22 images.

A Neural Network Autoencoder which was constructed using Python library Keras [24] encoded
the images from 484 (22 x 22) dimensions to 24 dimensions. The Keras library originally was
developed by Frangois Chollet [25]. We used Keras version 1.0.2 running with python version 2.7.11.
The Autoencoder had one hidden layer and was trained on the training set (12,665 samples). Examples
of decoded images can be seen in Figure 17. The validation set (2115 images) was passed through the
encoder to get its representation in 24 dimensions. The encoded validation set is what has been used

105

Informatics 2017, 4,23

in this case study images) was passed through the encoder to get its representation in 24 dimensions.
The encoded validation set is what has been used in this case study.

() (b) () (d)

Figure 17. Examples of original and encoded images. (a) Example of a digit after preprocessing;
(b) Decoded image from 24 values into 484. Same image as in (a); (c) Another example of a digit after
preprocessing; (d) Decoded image from 24 values into 484. Same image as in (c).

The goal of this case study is to compare side-by-side GLC-L visualization with parallel
coordinates. Figure 18 shows the comparison of these two visualizations using 24 dimensions found
by the Autoencoder among the original 484 dimensions. Figure 18a,b shows the