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Preface to ”Industry 4.0—From Smart Factory to

Cognitive Cyberphysical Production System and

Cloud Manufacturing”

In the last five years, the new industrial paradigm—Industry 4.0—became a global research

trend. Now, it is evolving and moving toward Industry 5.0. From the very beginning, it was clear that

the smart factory concept will be its main enabler. The smart factory is seen as a place where virtual

and reality meet, supported by the industrial Internet of Things and the cyber-physical production

system. Today, a step forward toward the cognitive system has been made. It is something that goes

beyond smart, as it is more than big data analytics. The cognitive system can learn and adapt to new

situations and to new market demands, completely autonomous or with some human support. These

cognitive systems require brand new algorithms and decision-making systems.

This Special Issue addressed some of these problems. The modern multiobjective algorithms

and multicriteria decision-making methods are applied to various real-world industrial problems:

green and sustainable machining, microscale machining, cyber-physical production networks, the

optimization of assembly lines, and cybersecurity. Furthermore, a review of the Industry 4.0 evolution

toward Industry 5.0 is presented with a special focus on the people. This increase in the influence of

human-centricity became a very important topic, especially in distinguishing Industry 4.0/5.0 from

transhumanism ideas.

Marko Mladineo

Editor
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Abstract: The industry is a key driver of economic development. However, changes caused by
introduction of modern technologies, and increasing complexity of products and production, directly
affect the industrial enterprises and workers. The critics of the Industry 4.0 paradigm emphasized its
orientation to new technologies and digitalization in a technocratic way. Therefore, the new industrial
paradigm Industry 5.0 appeared very soon and automatically triggered a debate about the role of,
and reasons for applying, the new paradigm. Industry 5.0 is complementing the existing Industry 4.0
paradigm with the orientation to the worker who has an important role in the production process,
and that role has been emphasized during the COVID-19 pandemic. In this research, there is a brief
discussion on main drivers and enablers for introduction of these new paradigms, then a literature-
based analysis is carried out to highlight the differences between two paradigms from three important
aspects—people, organization, and technology. The conclusion emphasizes the main features and
concerns regarding the movement towards Industry 5.0, and the general conclusion is that there is a
significant change of the main research aims from sustainability towards human-centricity. At the
end, the analysis of maturity models that evaluates enterprises’ readiness to introduce features of
new paradigms is given as well.

Keywords: Industry 4.0; Industry 5.0; people; Operator 5.0; organization; technology; COVID-19

1. Introduction

In the last decade, we have been witnesses of transformations inside production
systems, especially in the field of digitalization [1]. Information and communication
technologies (ICT) are involved in every step of production [2]. This causes the various
complexities in several aspects: technological, logistical, organizational, and environmental.
A complex transformation process is taking place that needs to be effectively managed. The
application of new technologies has significant impact on people at work and in everyday
life [3]. People are involved in the process of transforming industrial paradigms, whether
they work as workers in the industry or as customers that require a specific product from the
industry [4]. As important participants, both workers and customers need to be flexible in
adapting to new working conditions and open to learning and sharing knowledge [5]. An-
other important segment in industry affected by paradigm transformations is organization.
Today, the organization is characterized by decentralization, where the decision-making
process has been delegated by top managers to workers who are lower-level managers and
sometimes to blue-collar workers [6]. The idea behind the decentralization is to quicken the
decision-making process by those who have the most information and ability to react in real
time. However, to support this idea, the application of new technologies and digitalization
is crucial. The data collection and processing bring the proper information [7] so the worker
can react fast.

Energies 2022, 15, 5221. https://doi.org/10.3390/en15145221 https://www.mdpi.com/journal/energies1
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A new industrial paradigm, Industry 5.0, appeared very soon after Industry 4.0 and
triggered a debate about the role of, and reasons for, applying the new paradigm. The
Industry 4.0 is based on the concept of smart factory, where smart products, machines,
storage systems, and data unite in the form of the cyber-physical production systems [8,9].
In the technical aspect, Industry 4.0 has improved the human–machine interaction, but in
the socially sustainable aspect, technological transformations of Industry 4.0 should care-
fully consider the central role of humans [10]. The role and importance of employees was
emphasized during the COVID-19 pandemic, and the pandemic itself triggered rethinking
of the Industry 4.0 paradigm [11,12]. Consequently, the idea of Industry 5.0 appeared as the
extension to Industry 4.0 with social and environmental dimension [13]. On the one side,
Industry 5.0 is focused on the workers’ skills, knowledge, and abilities to cooperate with
machines and robots [14,15], and on the other side, on flexibilities in production processes
and environmental impact.

The obstacles to introduce Industry 4.0, arising from technological and organizational
points of view, lead to rethinking the process about the shortcomings of the Industry 4.0
approach. Several drivers encourage thinking and discussion about the new paradigm.
One of the important drivers is personalized product, where customers participate in
product design and production for adaptation of the product to their own needs [16,17].
Other drivers originate from the inability of the SMEs (small and medium enterprises)
to implement the Industry 4.0 approach [18,19]. There are lot of studies in the context
of Industry 4.0 for SMEs, which are pillars of the economy in many countries because of
their contribution to gross domestic product (GDP). The new technologies require high
investments and knowledge of how to use them and integrate in existing environments to
achieve the best results in production [20]. The important question is: Which technologies
should the enterprise use to achieve the best results [21]? This opens the question about
the assessment of readiness for changes [22–24]. Whatever question is opened, it is always
necessary to start with the key enablers of production. This is where the rethinking process
is justified with the aim of highlighting the human-centric perspective.

The topics from this article hold a crucial place in each branch of industry. The purpose
of this paper is to discuss the main connections between the basic driving concepts of Indus-
try 4.0 and Industry 5.0, but also to emphasize the key enablers: people, organization, and
technology, in theoretical and practical context. The key enablers are intensively studied
for the last decade in the context of industry progress. The intention of this work is to
achieve better understanding of the appearance of Industry 5.0, referring to the key publi-
cations which are cited to highlight the directions of research in this field. As a reminder of
past trends, Figure 1 shows the transformations through the paradigms according to the
important participants and segments of industries. Additionally, better understanding of
the appearance of Industry 5.0 represents the base to rethink real industry processes and
possibilities to apply appropriate concepts that best suit specific challenges that industry
faces, to achieve the best results in each aspect: people, organization, or technology.

The rest of the paper is organized as follows. Section 2 emphasizes basic driving
concepts for each paradigm and the flow of the scientific papers collection. Section 3
introduces the review of existing literature, summarizes main transformations to move
towards each paradigm, and represents the connection between key enablers and people,
organization, and technology in a practical context. Section 4 discusses the importance
of represented connections in Section 3 and readiness to introduce any features of new
paradigms. Section 5 gives the concluding remarks.
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Figure 1. Transformations through the paradigms according to the important participants and
segments of industries.

2. Basic Driving Concepts of Industry 4.0 and Industry 5.0

Industry 4.0 is based on the concept of smart factories. The smart factory initiative
was founded by partners from industry and academy as an environment for test future
technologies [25] and to learn by doing. There are important key drivers [26,27]:

• Internet of Things, services and data that enable the communication between objects.
By placing the intelligence into objects, they are turned into smart objects able not only
to collect information from the environment and interact or control the physical world,
but also to be interconnected to each other through Internet, to exchange data and
information [28–30].

• Cloud computing is a driver which supports the Internet of Things, enabling the
access to large datasets and its processing to generate new useful information through
different types of reports. However, the cybersecurity is a pressing issue; ref. [31]
defines cybersecurity as a set of tools, policies and best practices, security concepts,
guidelines, risk approaches, actions, assurance, and technologies necessary to protect
the cyber environment, organization, and user’s assets.

• Cyber-physical system (CPS) is defined as a new generation system with integrated
computational and physical capabilities that can interact with people through new
modalities [32,33].

• Artificial intelligence supports the cyber-physical system for filtration of the multitude
data incoming from different sensors in a production system and analyzes it through
the reports. It offers the data-driven predictive analytics and capacity to assist decision-
making in highly complex, nonlinear, and multistage production [34,35].

• Augmented reality (AR) represents the integration of the virtual and real environments
where objects in the real world are enhanced by computer-generated information or ob-
jects with the help of different technologies. AR can be combined with human abilities
to provide efficient and complementary tools to assist manufacturing tasks [36].

• Simulation is a powerful tool used for decision making. The application of simulation
methods is becoming increasingly relevant as developments in the field of digitaliza-
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tion lead to more comprehensive, efficient, embedded, and cost-effective simulation
methods [37].

• Autonomous robots can detect problems and independently adjust their tasks to
ensure that processes runs smoothly. However, there are levels of robot autonomy,
ranging from teleoperation to fully autonomous systems, that influence human–robot
interaction [38].

These elements enable the connectivity of the virtual and real world in order to achieve
better results in production with maximum profit. A completely profit-driven approach
is not sustainable for the long term. Instead of taking technology as a crucial element,
the document of European Commission [39] sees three key drivers as the center of new
industrial paradigm Industry 5.0 (Figure 2):

• Human-centric approach, which places human needs at the heart of the production
process, asking what technology can do for workers and how can it be useful.

• Sustainability, which focuses on reuse, repurpose, and recycle of natural resources and
reduce of waste and environmental impact.

• Resilience, which implies an introduction of robustness in industrial production. This
robustness provides support through flexible processes and adaptable production
capacities, especially when a crisis occurs.

Figure 2. Industry 5.0 with three key drivers.

According to the European Commission, Industry 5.0 is a necessary evolutionary step
of Industry 4.0 because of following important issues [40]:

• Industry 4.0 is not the right framework to achieve Europe’s 2030 goals, because
the current digital economy is a winner-takes-all model that creates technological
monopoly and giant wealth inequality.

• Industry 5.0 is not a technological leap forward, but a way to see the Industry 4.0
approach in a broader context, providing regenerative purpose and directionality to the
technological transformation of industrial production for people–planet–prosperity.

• Industry 5.0 is a transformative model that reflects the evolution of our thinking
post-COVID-19 pandemic, by taking into consideration learnings from the pandemic
and the need to design an industrial system that is inherently more resilient to future
shocks and truly integrates social and environmental principles.

The next important thing is to identify key enablers in the enterprise, which correlate
with the abovementioned drivers of Industry 5.0. Schiele et al. [41] are interpreting Industry
4.0 future within technology, business, society, and people. Similarly, Sony and Naik [42]
are investigating the integration of Industry 4.0 with people, infrastructure, technology,
processes, culture, and goals. Akcay Kasapoglu [43] is focused on the aspect of leadership
and organization during the process of Industry 4.0 transformation. Kayikci et al. [44] are
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investigating perspectives of people, process, performance, and technology in the Industry
4.0 food supply chain. Kiepas [45] is, similar to Oks et al. [46], simplifying the focus on
key enablers, narrowing them to the three most important: humans (people), organization,
and technology.

Therefore, a search was carried out within the Scopus database to explore papers
related to Industry 4.0/5.0 and three most important enablers: people, organization, and
technology (Figure 3). The literature reviews and state-of-the-art papers were excluded
from the search.

 

Figure 3. Flow of the scientific papers collection using the Scopus database.

Combinations of Industry 4.0 and Industry 5.0 with each of three enablers resulted in
six categories of papers. However, the “Industry 4.0 & Organization” category resulted in
276 papers and “Industry 4.0 & Technology” resulted in 2893 papers, so only the 50 most
cited papers were analyzed from each of these two categories. This collection of scientific
papers gave scientific perspective to this research.

From the practical real-life perspective, some of the manufacturing industry analyses
were used. The analysis of Industry 4.0 implementation in the German manufacturing
industry by Veile et al. [47] was inspired by Oks et al. and used the same focus on humans
(people), organization, and technology. Furthermore, in the analysis of Croatian manufac-
turing companies, the questionnaires were given to CEOs to identify basic objectives, main
priorities, and the most important aspects regarding how to move towards new industrial
paradigms [48]. Again, profound analysis of the results collected with questionnaires
identified people, organization, and technology as key enablers [49]. As mentioned, studies
have pointed out that each of the three enablers has its important subareas. The most
important of them are shown in Figure 4.
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Figure 4. The key enablers to move towards new paradigms: people, organization, and technology.

3. Review of Key Enablers in Practical Context of Industry 4.0 and Industry 5.0

Currently, there are many useful studies about the new technologies characteristic for
Industry 4.0, its introduction, and benefits [27]. The studies that emerged from the literature
seek a clear vision of how Industry 4.0 impacts business models and organizations [50,51].
However, it is stated how smaller efforts have been devoted to the role of humans in the future
factory, the appropriate organizational models, the approaches for long-term value creation,
and the outcomes on society [52]. These linked aspects in terms of technology, people, their
employability, and sustainability-related issues are crucial for long-term improvement.

Figure 5 summarizes the literature review on Industry 4.0 in relation to people, or-
ganization, and technology. The research topics of each enabler were identified and their
distribution is presented. Furthermore, the main research aims of analyzed papers were
identified in correlation with drivers of Industry 5.0: human-centricity, sustainability, and
resilience (Figure 5a).

The same summarization of the literature review on Industry 5.0 is presented in Figure 6.
The most interesting fact is a switch in research aims. The sustainability was a major research
aim in Industry 4.0, but in Industry 5.0 the human-centricity becomes a major research aim. As
already mentioned, the lack of human perspective was a major disadvantage of Industry 4.0
and its main critic [39]. Another interesting fact is the rise of ethical research, with a significant
share of research on ethical business and on ethical technology, as well. It is also connected with
human-centricity and sustainability of Industry 5.0.

Regarding technology, Industry 4.0 was oriented to every emerging technology. How-
ever, with Industry 5.0, some of the emerging technologies are receiving more research
focus, and research interest for some others is declining. This change in trends is presented
in Figure 7. Again, rise of interest for human–machine interaction and artificial intelligence
shows that more focus is being placed on use of technology as a support to the everyday
tasks of the human worker. The Industrial Internet of Things has become a major technology
research topic, because the 5G cellular network has become a standard nowadays.

3.1. Towards Human-Centricity

In the context of transformation towards Industry 4.0, in the literature exists the
awareness that skills, knowledge, and abilities of people are important in the CPS. Operator
4.0 appeared as the operator of the future. The vision of Operator 4.0 aims to create trusting
and interaction-based relationships between humans and machines [53]. The ideal type
of the factory worker of the future is participative and proactive [54]. There is still a lack
of understanding of the interplay between humans and technology [55]. Even though
Industry 4.0 was directed to the workers with disabilities (Figure 5), there was not enough
adaptation of technology to people. On the one side, people need enough space to develop
their skills and use their own creativity, and on the other side, they need technology only

6
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as an aid for harmonious collaboration, not to replace their work. This emphasize on
human-centricity is now directed towards all workers (Figure 6), not only towards people
with disabilities. Operator 5.0 should collaborate with the equipment by using its own
physical, sensorial, and cognitive capabilities in an environment that provides safe work
and technological assistance in the segments of work that are necessary for the operator,
while technologies provide real-time information for making timely decisions.

The limitations for decision-making originate from lack of information, necessary for
people for decision-making, which has changed now that the Internet of Things exists. At
the moment, there are new technologies and algorithms able to collect huge amounts of
data and sort and filter them, in order to use them for decision-making [56–58].

The development of modern tools in ergonomics with the help of Industry 4.0 technolo-
gies is becoming of more and more interest in many studies. The International Ergonomics
Association offers three main domains of ergonomics: physical ergonomics (working pos-
tures, repetitive movements, material handling, safety, and health), cognitive ergonomics
(mental workload, decision-making, skilled performances, motor response, trainings, and
human–computer interactions), and organizational ergonomics (organizational structures,
design of working times, processes, communication, and cooperative work) [59].

 

Figure 5. Industry 4.0 literature review: (a) Main research aims correlated to Industry 5.0 drivers;
(b) research topics for Industry 4.0 and people; (c) research topics for Industry 4.0 and organization;
(d) research topics for Industry 4.0 and technology.

7
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Figure 6. Industry 5.0 literature review: (a) Main research aims correlated to Industry 5.0 drivers;
(b) research topics for Industry 5.0 and people; (c) research topics for Industry 5.0 and organization;
(d) research topics for Industry 5.0 and technology.

The main domains of ergonomics [60]:

• Physical domain—the Industry 4.0 technologies help with the automatization of
manual repetitive tasks or hard-muscular tasks [61]; the devices to use on workplace
are improving ergonomic feedback and new digital technologies improve internal
logistics and transportation [62].

• Cognitive domain—the Industry 4.0 technologies help through virtual models to improve
perception and create timely interactions; augmented reality devices contribute to the
reduction of mental workload [63]; data sharing is improving cognitive ergonomics.

• Organizational domain—Industry 4.0 provides hybrid production systems to bridge
the gap between humans and machines, which affects work organization and requires
future skill development.

Digitalization, as a new direction in ergonomics, aims to improve working conditions
and the quality of workplaces. The systems to support ergonomics should immediately
inform workers about new conditions that appear and about their influence on workers in
accordance with analyses that clearly point out requirements for organizationally-technical
changes [64]. Other challenges can be found in the studies about the assessment and
optimization of postural stress and physical fatigue to identify critical factors and to
optimize the assembly operations and workload capabilities at early design stages [65].

8
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Figure 7. From Industry 4.0 toward Industry 5.0: Change of research topics on technology.

The development of technology, namely, in terms of better adaptation to human needs,
is oriented towards the following [66]:

• Networked sensors with low-level intelligence that, at the same time, reduce network
overload while allowing exchange of important data.

• Creation of the digital twins, which provides monitoring of production and predicting
possible scenarios [67].

• Virtual training for workers to avoid possible dangerous situations while learning
specific tasks, for example, in critical review for trainings in construction safety [68],
numerous VR/AR systems were proven as efficient, usable, and applicable for training
and education; however, there are some challenges to deal with for improvement.

• Artificial intelligence, which enables the learning process for different machines or
robots, so they are able to learn from humans and perform tasks based on this knowl-
edge [34,69].

Special attention should be paid to the interaction between humans and robots, ma-
chines, or any other elements of the system. There are efforts in the literature to create
frameworks for evaluation of the human and robot collaboration. In [70], five dimensions
from the aspect of human factor in human–robot collaboration are emphasized for the
evaluation: workload, trust, robot morphology, physical ergonomics, and usability. The
example of a framework where trajectory prediction serves to avoid potential collisions
and plan recognition serves to boost the efficiency of collaboration is included in [71]. The
integration of the human–robot collaboration in assembly systems is shown in [72], but
taking into consideration operations parameters such as waiting times, parallel activities,
and functional delays.

By placing human beings back at the center of industrial production, aided by tools, for
example, collaborative robots, Industry 5.0 not only gives consumers the products they want
today, but gives workers jobs that are more meaningful than factory jobs have been in well
over a century [73]. New jobs are, among other things, aimed at programming, organizing
and planning, training, and maintenance. It is clear that knowledge in data science, machine
learning, and artificial intelligence is very useful for the future jobs. The fear of jobs
disappearing when introducing new technologies is justified because there are situations
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where automatization of processes with machines or robots can replace human work [74];
however, in the background there are many newly created jobs that enable the introduction
of mentioned automatization process [75]. To survive an increasingly competitive market,
enterprises need people who are able to manage the changes and should be capable of
moving from technology to solutions and from solutions to operations, which requires a
broad skillset [76]. Bridging the skills gap requires novel user-facing technologies—such as
augmented reality (AR) and wearables—for human performance augmentation to improve
efficiency and effectiveness of staff delivered through live guidance [77].

The human-centric approach is firmly attached to Lean management, i.e., its phi-
losophy of the people’s engagement in process improvement from shopfloor workers to
managers [78]. Lean, as a set of enterprise management tools, represents a strong support
for organizing production, managing production, product development, and relationships
with suppliers and consumers. To support the sustainable organization, there are stud-
ies where Lean management is supported by new technologies characteristic of Industry
4.0 [79]. Lean management is not only based on theory, but is applicable in practice, as
many successful companies around the world have proven. Many companies are leading
by example, e.g., Toyota production system [80]. They invest very large amounts of money
and effort in the development of their own efficient production systems based on lean
principles. Many papers carried out research to define frameworks and Lean tools that
companies need [81–83]. Design and implementation of such a program of continuous
improvement can significantly reduce production losses and the company can be more
competitive in the market.

3.2. Towards Sustainability

With adoption of new technologies, it is inevitable to develop new business models.
By using smart data, this development has to be exploited for anchoring new, sustainable
business models [84]. Designing better business models requires insight into rebound
effects and the potential for companies to influence sustainability impacts regarding en-
vironmental, social, and economic segments [85]. The main challenges in building the
sustainable business model are the balance between profits, social and environmental
benefits, reconfiguration of resources and processes for new business models, integration
of technologies with business model as a multidimensional and complex task, and usage of
the existing business modeling methods and tools [86]. Nevertheless, a significant business
model was developed by the European Foundation for Quality Management (EFQM):
the EFQM 2020 model [87]. It represents an updated EFQM business excellence model
with focus on sustainability, and the model is aligned with the United Nations Sustainable
Development Goals. It shares many features with Industry 4.0, especially in the context of
transformation and improved organizational performance [88].

In the literature, it is stated how the usage of Industry 4.0 technologies has positive ef-
fects on organizational performances. Analysis of the data collected by Duman [89] showed
improvements in organizational performance after the usage of Industry 4.0 technologies.
Important organizational performance indicators, such as production amount and speed,
capacity, quality, and profitability, increased and costs decreased after introduction of the
Industry 4.0 technologies. Other studies support this opinion of the positive relationship
between Industry 4.0 technologies and organizational performances [90–93].

An important dimension of introduction of technologies related to Industry 4.0 and
5.0 is the efficient usage of energy. New technologies always have an environmental impact,
i.e., on the one side, digital technologies demand energy, but on the other side, they save
energy. This opens a question: To what extent do industrial paradigms affect environmental
sustainability, and is society prepared to deal with those challenges [94]? The adoption
of new technologies has negative impacts on the environment, such as air pollution and
intensive use of raw materials and energy [95]. However, by adoption of new technologies,
the energy can be reduced by analyzing data during the production process and across
the supply chain [96]. Furthermore, the process of the technology selection should include
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environmental and social criteria in order to select technology that is greener and more
sustainable, although it can be less productive, at the same time [97].

The important aspect of sustainability and technology is in information logistical waste
in the process. The problem with waste of information is recognized during the design and
production process and through the supply chain [98,99]. The wastes in the process are
related to three parts of data processing: data generation and transfer, data processing, and
data storage and data utilization [100]. In data generation, its selection, and evaluation, it is
important to collect as much data as necessary and as little as possible to evaluate them
according to the content, meaning, and origin. Waste in form of wait periods and data
storage matters, particularly regarding data availability in real time. Latencies in the system
as well as unprocessed data lead to delays which affect processes. Transfer, movement,
and search especially include manual activities, and information is not available in real
time, especially when it is written on paper. For data collection or any other work with
data, the manual activities should be avoided. The continuous improvement within the
manufacturing processes can only be gained by linking and analyzing data.

In existing research about the sustainable energy by using Industry 4.0 technologies,
there are data of about 10 to 30 percent of energy reduction for using augmented reality, 5
to 27 percent for using additive manufacturing, around 70 percent of energy savings by
using the cloud computing, and 11 to 14 percent global energy reduction using big data
and analytics [101].

Another important aspect which has received more attention within Industry 5.0 is
the question of ethical use of technology [102,103]. This aspect is closely related to human-
centricity, but it is overlapping with sustainability, because low ethical standards produce
unsustainable society. Unfortunately, Industry 4.0 also has an ideological aspect in the con-
text of philosophies of transhumanism and posthumanism [104]. These philosophies attack
the historical practice in which technology is subordinated to humans, never vice versa. It
must be said that, in a way, Industry 4.0 was subordinating human workers to technology.
However, the approach of Industry 5.0 is completely ethical and it subordinates technology
to the human worker, as the European Commission’s document clearly states [39]: “Rather
than asking what we can do with new technology, we ask what the technology can do
for us”.

From Section 3.2. and Figure 5a, it is visible how Industry 4.0 relies on technology to
achieve sustainability through different segments of data collection and analysis towards
cloud computing. However, from Figure 6a, it is clear how Industry 5.0 is oriented towards
human-centricity to resolve mentioned questions of technology adaptation to the human
workers, including important ethical aspects.

3.3. Towards Resilience

Resilience, as the ability to withstand disruptions and catastrophic events [105], which
relies on people, has not been significantly represented in the concept of Industry 4.0 by the
research community. At the moment, there is strong orientation of the literature towards
resilience in the context of technology [12], which will be discussed in the below paragraph.
It is rarely explored how to rely on people when it comes to resilience. In the developed
resilience model by [106], people are one of the most important components because they
are the first ones to detect the anomalies and their training and education, awareness
building, and leadership, as well as skill and talent, are crucial factors. The strategic human
resource management is instrumental in developing requisite knowledge, skills, abilities,
and other attributes and in invoking the appropriate collective routines and processes to
generate the resilience outcomes [107]. The strategic human resource management can be a
critical point [108].

Organizational resilience is a multidisciplinary concept that has its internal and exter-
nal factors. It represents the ability to overcome the problems caused by internal or external
factors. An organizational resilience implies the understanding of the situation, adaption
to the new situation, and managing the vulnerabilities. The firm’s capacity for developing
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resilience is derived from a set of specific organizational capabilities, routines, practices,
and processes by which a firm orients itself, acts to move forward, and creates a setting of
diversity and adjustable integration [107]. Management risk is an important internal factor
for resilience. It includes risk plans and prevention techniques. Many studies emphasize
information visibility as a crucial factor. Implementation of the key technologies has a
positive impact on resilience [109]. New technologies offer the ability to track information
that supports organizational resilience. There are positive and negative experiences with in-
troduction of new technology and expectations of it. Each technology should be introduced
with special care and consideration about what data it can generate and what benefits it
can bring for organization.

Industry 4.0 brought many challenges from the aspects of security, resilience, and
efficiency of digital data and systems. Cloud computing is an IT architectural model
where computing services are abstracted and delivered to customers on demand, in a
self-service way, independent of device and location [110]. Even though there is advanced
technology, the information integration across industrial segments, levels, and processes is
still a challenge. There are three major integrations in Industry 4.0: horizontal integration,
vertical integration, and end-to-end integration. Since the vertical integration represents
supply chains, horizontal integration represents collaborative networks [111], also known
as production networks, manufacturing networks, and social manufacturing [112]. The
COVID-19 pandemic has shown that supply chains can be easily broken, so the collaborative
networks are also seen as emergent networks that can replace a broken supply chain and
increase the resilience of the manufacturing industry [113].

To achieve integration, it is necessary to change simple information systems to the
smart platform [49,112]. In the smart platform there are often high data flow rates and inten-
sive processing requirements, which can cause insufficient system resources for processing
to maintain high reliability and resilience [114]. Another challenge is lack of confidence of
the industry users in using new technologies, especially from the aspect of data security.
To address this, the blockchain technology can support Internet of Things technologies
for information exchanges during the different processing stages within a trusted net-
work. Potential applications of blockchain in Industry 4.0 are expected to contribute the
following [115]:

• Resilience—being a decentralized peer-to-peer network, blockchain has no single point
of failure; it is a durable and immutable ledger; transactions once recorded cannot
be altered.

• Scalability—the computing capability of blockchain network scales up as more and
more peers join the network.

• Security—all transactions on the blockchain are secured by strong cryptography; as
everyone on the network knows about all transactions, they can be easily audited and
cannot be disputed.

• Autonomy—blockchain can enable all the components of the CPS to carry out mu-
tual transactions autonomously without the need for a trusted third party; every
component has a blockchain account.

However, the blockchain technology is not always an appropriate choice for every
firm and has its own challenges, so the need for the blockchain technology in Industry
4.0 can be evaluated according three areas: data exchanges, trusted payments, and data
storage [116]. Table 1 summarizes the connection between key enablers for Industry 4.0
and Industry 5.0 and people, organization, and technology.
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Table 1. The connection between key enablers for Industry 4.0 and Industry 5.0 and people, organiza-
tion, and technology in a practical context.

People Organization Technology

Human-
centricity

• Operator 5.0 should
collaborate with the
equipment by using own
physical, sensorial, and
cognitive capabilities.

• Main domains of
ergonomics (physical,
cognitive, and
organizational).

• Digitalization to improve the
quality of workplaces.

• Better adaptation of
technology to human needs.

• Special care regarding the
interaction between humans
and machines.

• Sustainability

• People who can manage the
changes and should be
capable of going from
technology to solutions and
from solutions to operations.

• New jobs and knowledge.

• New business models to
influence sustainability
impacts regarding
environmental, social, and
economic segment.

• Lean management
as support.

• Energy reduction.
• Efficient usage of energy.
• Information logistical waste

in the process.
• Data analysis for

energy reduction.

• Resilience

• People are one of the most
important components
because they are the first
ones to detect the anomalies,
and their training and
education, awareness
building, and leadership, as
well as skill and talent are
crucial factors.

• A set of specific
organizational capabilities,
routines, practices,
and processes.

• Implementation of risk plans
and prevention techniques.

• Collaborative production
networks.

• Decentralized peer-to-
peer network.

• The information integration
across industrial segments,
levels, and processes.

• Data security.
• Smart platforms for

collaborative networks.

4. Discussion

The main guideline of why this review and analysis of paradigm shift from Industry
4.0 to Industry 5.0 relies on three segments: people, organization, and technology, comes
from existing literature and previous research. In addition, these segments are essential
for any manufacturing company, so this paper leads the reader through the basic concepts
of each paradigm and essential segments in practical context. The connection between
basic concepts of paradigms and these three segments, as is represented in the third section,
is important:

• To achieve the goals of each paradigm, where it is crucial to be aware how key enablers
are interconnected.

• To review the company’s weak points according to the connections of key enablers, so
as to know the areas of further action for improvement.

• To rethink the human centricity approach in a company’s environment, to adapt
technology and organization to people and provide good working conditions as
people deserve.

• To assess the sustainability when introducing the change from technological, organiza-
tional, or any other aspect.

• To question one’s own ability to adapt to changes imposed by either external or
internal factors affecting the company.

• To improve a company’s organizational performances.
• To strike a balance between effort and investment in change in terms of manpower,

organization, and technology.

Another crucial part which follows up on the importance of the connection between
the basic concepts of paradigms is the readiness to introduce any feature of new paradigms.
The production system or the process that is observed should be ready for that step.
A wide range of maturity models are dedicated to the aspects of technical and social
systems maturity [117]. The maturity models are increasingly being applied in the area
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of information technologies [118,119], but especially in digital readiness [120]. There is
strong interest from authors in development of maturity models as crucial to adopt new
technologies. There are several maturity and readiness models related to Industry 4.0.
Through a brief review of existing maturity and readiness models, it is visible that their
assessment approaches have a lot in common (Table 2). Models are focused on items for the
maturity indication and the range of items’ levels. However, in Table 2 it is visible how these
models do not cover basic driving concepts characteristic for Industry 5.0. In the models
there is a very poor orientation towards human-centricity, sustainability, or resilience.

Table 2. A brief review of some of the existing maturity and readiness models.

Model Year Ref.

Approach (Oriented to People (P), Organization (O),
and Technology (T),

Human-Centric (Hc), Sustainability (S), Resilience (R))

P O T

Hc S R

The Connected
Enterprise

Maturity and
Readiness Models

2014 [121]

The maturity model is part of the 5 stages (with
5 dimensions) for Industry 4.0. The main focus is on
networks, control, working data, analytics, and supply
chain relationships.

-
-

O
-

T
-

IMPULS 2015 [122]

The six key dimensions of Industry 4.0 are the foundation
for the Readiness model: strategy and organization, smart
factory, smart operations, smart products, data-driven
services, employees. These six dimensions are used to
develop a six-level model for measuring Industry
4.0 readiness.

P
-

O
-

T
-

Digital Operations
Self-Assessment 2016 [123]

The model is called “Blueprint for digital success” and it is
conducted through 4 stages and 7 dimensions, identifying
needs for action as well as classifying current maturity
levels. It is focused on digitalization.

P
-

O
-

T
R

Industry 4.0
Maturity Model 2016 [23]

There are nine dimensions in the Industry 4.0 Maturity
Model and maturity levels are examined under five levels.
Level 1 means that companies have lack of attributes
supporting concepts of Industry 4.0, and level 5 means
that companies can meet all requirements of Industry 4.0.

P
-

O
-

T
-

SIMMI 4.0
Maturity model 2017 [124]

SIMMI is a System Integration Maturity Model Industry
4.0 which assesses the IT landscape through the four
dimensions: vertical integration, horizontal integration,
digital product development, cross-sectional
technology criteria.

-
-

O
-

T
-

Smart
Manufacturing
Maturity Model

2018 [125]

There are five dimensions of SME maturity model: finance,
people, strategy, process, and product. Technical
dimensions are not included in this model. The main focus
is on manufacturing operations’ performance.

P
-

O
-

-
-

Industry 4.0
technologies
assessment

2020 [22]

The maturity model includes the technologies
characteristic for Industry 4.0, it allows to compare various
technologies in terms of their contribution to the three
dimensions of sustainability (economic, environmental,
and social).

-
-

-
S

T
-

The assessment of the company’s readiness and maturity to introduce any aspect
of new paradigms represents the basis. Furthermore, the reasons for introduction are
different. In the literature, is stated how the intentions to use Industry 4.0 technologies are
more influenced by the expected increase in efficiency than by pressures from suppliers,
customers, or even competitors [126]. On the other side, other results yield that the
market uncertainty of the business is a significant driver for adoption of Industry 4.0
technologies [127]. For whatever reason, the broader consequences of this introduction
should be considered, as well as the human aspect. Additionally, a useful aspect will be the
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development of a measurement system that can give information about how organization
and production benefit from the introduction of the concepts of new paradigms.

5. Conclusions

This review and analysis of paradigm shift for the people, organization, and technology
highlights the challenges to introduce the concepts of new paradigms in each essential
segment of manufacturing. In contrast with previously published reviews, the goal of
this review was to develop a connection matrix between key enablers for Industry 4.0
and Industry 5.0 and essential segments of each manufacturing: people, organization, and
technology. People will always be the main drivers of the activities in the production system.
The humans that create and manage production systems need support in preparation of
infrastructure and resources for introduction of new technologies. In further steps, they
need support in transferring the knowledge from a virtual to physical world, and vice
versa. This requires future research in domains of adaptation of technology to humans.
Significant effort should be made in areas of data collection and interpretation through
different useful reports, so that people can make their decisions based on the real-time data.
In parallel, there is an effort to create robots that are autonomous and that can collaborate
with people. However, these efforts should be made keeping in mind the influence on
the sustainability and resilience. On the one side, there are organizational, social, and
ergonomic aspects where technology should be at people’s disposal, but on the other side,
there is energy reduction to satisfy environmental aspects. The crucial aspect is balance
between all essential segments in the context of new paradigms, but always keeping human
in the center. Generally, the Industry 5.0 paradigm brought the change of main research
objectives from sustainability towards human-centricity. From the managerial perspective,
it means focusing on workers’ education and lifelong learning, instead of focusing on
purchase of new technology, or similar. In comparison with Japan and South Korea, the
USA and EU are still not investing enough in education of workers, which is becoming an
essential issue. Furthermore, it is also important to consider the limitations of this research
that are mainly linked to search criteria (keywords). Sometimes the keywords for the paper
are not properly selected; thus, applying the keywords filter during the search excludes
some high-quality papers, and perhaps includes some papers of lower quality. The future
research could use wider search criteria, such as filtering of abstract instead of keywords,
in order to create more profound analysis of this topic. Finally, in the future research, the
proposed connection matrix can be extended and discussed within the context of specific
subareas (i.e., specific subarea for technology can be augmented reality) and all effects
of subareas can be seen from the aspect of basic driving concepts and key enablers for
each paradigm.
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Abstract: The era of Industry 4.0 is characterized by the use of new telecommunications ICT tech-
nologies and networking of the economy. This results in changes both in the way businesses operate
and in customer expectations of products offered on the market. The use of modern ICT technologies
has made it possible to create cyber-physical systems based on intelligent machines and devices
that communicate with each other in real time and allow the integration of resources from different
companies to carry out joint production projects. Today’s consumer expects products tailored to their
needs and expectations. These expectations can be met by leveraging the potential of highly special-
ized manufacturing service companies centered around e-business platforms. The article presents
the results of research using bibliometric analysis and the results of surveys conducted among small
and medium-sized enterprises. The concept of e-business platforms supporting rapid prototyping
of temporary networks of companies capable of manufacturing personalized products in the envi-
ronment of Industry 4.0 is presented. The task of the platform is to integrate a customer expecting
personalized production with a network of companies having adequate production resources.

Keywords: cyber-physical networks; Industry 4.0; small and medium enterprises; personaliza-
tion; servitization

1. Introduction

The Fourth Industrial Revolution introduces new changes in industry, economy and
society [1]. Companies operating in today’s market are beginning to understand the need
for change, especially in the use of modern communication technologies and building
a competitive advantage on the market through innovative action. The combination of
industrial technologies with modern information and communication technologies (ICT)
is the basis of concept proposed by German experts called Industry 4.0 (I 4.0) [2]. This
concept is the result of the need to increase the level of industrial production in Western
Europe (independence from production coming from the markets of the Middle East) on
the one hand, and on the other hand the opportunities offered by the process of digitization
and networking of the economy [3]. The Industry 4.0 concept is understood as a joining
of intelligent resources and enterprise systems, as well as the introduction of changes in
production processes’ management which are able to increase production efficiency and
flexibility and guarantee a high level of production personalization [4].

Industry 4.0 is called the Fourth Industrial Revolution and is understood as using
intelligent technologies in companies and a new approach to people’s lives in which mobile
devices play an important role in communication. Social networks and unlimited access to
information increase consumers’ awareness, which results in their growing requirements
from products offered on the market [5]. In this case, a modern and innovative approach is
needed in the production management of both the enterprise and the network of enterprises
that will radically increase flexibility, productivity and customer orientation [6]. According
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to Reischauer, the Industry 4.0 concept is understood as “policy-driven innovation dis-
course in manufacturing industries that aims to institutionalize innovation systems that
encompass business, academia, and politics. This view clarifies the core identity of Industry
4.0, the intended outcome of Industry 4.0, and the stability of this intended outcome” [7].

Today’s customers expect tailor-made products, according to their personal prefer-
ences and needs. They expect an impact on the configuration of manufactured products,
but at the same time they require a price similar to the products offered in mass produc-
tion [8,9]. Products are expected to be better tailored to the needs of consumers and even
involve them in the design and manufacturing of products through B2C systems. There is
a growing demand for personalized products [10].

This means that there is a need for changes in the functioning of modern companies,
which must change the business model and focus on the development of service offerings
as a complement to the product offerings. In the organization and management sciences,
more and more attention is being paid to the importance of services in the production
process of goods. Adding services to the modus operandi of modern companies in order to
create additional value for the customer is defined as “servitization” [11] or “service infu-
sion” [12,13]. Servitization helps build better customer–manufacturer interaction, makes
better use of resources, and provides networking opportunities [14]. This may particularly
concern the sector of small and medium enterprises which, unlike large enterprises with
great development potential, see an opportunity for development in the conditions of
Industry 4.0 in cooperation and narrow specialization [15]. Creating network forms of
cooperation is not only an excellent opportunity for manufacturing personalized products
and services, but also for dynamizing business models within the concept of Industry
4.0 and a chance to increase the competitiveness of enterprises. The idea of a production
network means generating common production orders using fully automated processes
of individual network partners, where communication takes place via the internet, and
the necessary data is stored in the cloud (cloud computing). The cooperation within the
network covers the whole chain of creating value for the customer—from designing the
product, through its manufacturing, delivery and use together with offering complemen-
tary services (servitization). In the literature, this type of network is also called “Innovative
Manufacturing Network of Smart Factories” [16], “Virtual Enterprise Network” [17], “Mod-
ular Production Networks” [18] or “Network of Enterprises” [19]. However, focusing on
services for networks and development of own know-how requires solving a number of
problems resulting from a lack of business models of cyber physical networks of small and
medium enterprises [20].

Hence, there is a need for research in the development of business models and concepts
for the formation of networks using intelligent resources for the realization of specific
personalized products in interaction with the customers. The article emphasizes the need
to create e-business platforms that bring together, on the one hand, enterprises offering
services and resources for joint implementation of customized production and, on the other
hand, customers expecting products tailored to their needs. The main aim of the article
is to present the concept of an e-business platform supporting the rapid prototyping of
temporary enterprise networks capable of producing personalized products in the Industry
4.0 environment. Furthermore, the article proposes a concept of a methodology for rapid
network prototyping that guarantees personalized production orders’ execution according
to customer specifications. In the paper the following hypothesis: “The organization of
e-business platforms of small and medium-sized enterprises will allow the integration of
enterprise resources for the formation of cyber-physical networks under the conditions of
the fourth industrial revolution” is considered.

2. Challenges of the Fourth Industrial Revolution—State of Research

Industry 4.0 is based on the application of intelligent machines, robots, means of
transport and equipment within the cyber-physical system, which contains all activities of
product development (product conceptualization, virtual documentation creation, virtual
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designing, 3D model printing, laboratory and industrial testing, modelling and simulation
and lastly production in the real environment) [21]. In addition, the Industry 4.0 concept
uses advanced computer-aided systems for design, production management, logistics, sales,
service and recycling of products. Dynamic integration of intelligent and autonomous
modules of the entire process of production preparation, production and delivery of the
product to the customer takes place using IoT technology and information stored in big data
and cloud computing. At the same time, a high level of high-efficiency production processes
and the meeting of customer expectations is ensured [22]. The Industry 4.0 concept is aimed
at significantly improving production efficiency by better using the available resources of
enterprises within network cooperation and supply chains [23–25].

Industry 4.0 means the technical integration of all components of cyber-physical
systems (CPS) in production and logistics processes through using the Internet of Things
(IoT) and the Internet of Services (IoS) [26]. The Industry 4.0 concept requires new business
models, reorganization of service and work processes and changes in value chains [27–29].

Under the conditions of the Fourth Industrial Revolution, there is a shift in the manu-
facturing paradigm towards customized production [30]. The need for customer orienta-
tion and offering customers highly personalized products at low prices means the need
to change the existing strategies of enterprises. Successively, there is a greater level of
interaction between the producer and the customer. Customers are more and more often
involved in the creation and even final assembly of a product (e.g., IKEA). In terms of
personalization, there are several basic dimensions [31]:

1. One-customer market—personalization is implemented at the individual level so that
the customer feels that they are the exclusive or preferred recipient of the service
or product.

2. Mass effectiveness—mass customized products are not completely new, as in the case
of craft production. In this model, the idea is to customize the product to individual
preferences, but with limited fulfillment costs [32].

3. Customer co-creation—companies in today’s economy are forced to continually adapt
due to increasingly complex and turbulent market conditions. Customer involvement
in the design process should not be considered in terms of cost minimization but
the chance to obtain higher value. Personalization, in this case, means active interac-
tion with customers. In this case, creating new experiences and building customer
satisfaction is more important than just creating a physical product [33].

4. User experience—producers should better understand the hidden needs of the cus-
tomers instead of the standard exploration of the market potential. Personalization
requires that the product be adaptable and configurable in every dimension, i.e.,
basic structure, design or packaging. It means better meeting the expectations of the
individual preferences of the customer [34].

5. Customer-centric companies mean a personalized approach to production. By better
integrating the supply chain with the customer, it is possible for the customer to
design products online. A highly flexible supply chain will allow for unit production,
but on an industrial scale in real-time. This means adopting a production strategy to
order, which will lead to very short production lead times and the use of machines
with short changeover times [35]. The supply of raw materials and semi-finished
products will be based on demand forecasts derived from the demand. Machines
will be designed to minimize setup times to accommodate changes in demand, batch
sizes, specifications and other parameters [36].

Industry 4.0, by offering incredible technological developments, makes the boundaries
between products and services increasingly blurred, enabling a company to transform from
a product-based to a service-oriented approach [37]. Servitization represents a significant
change in a company’s business model, making service activities an engine of growth for
the company. The infusion of services takes place when the importance of the services
offered increases in relation to the product offer [38].
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The concept of servitization usually encompasses enterprises that produce goods to
which services are additionally provided. In manufacturing companies, it involves the
development and delivery of new services or complex systems that integrate the goods
and services provided (product and service solutions). The manufacturing enterprise is
moving from exchanging goods with the customer to providing complex solutions [39]. For
manufacturing companies, servitization implies a significant change in the perception of
the business being run and the vision of its future shape. It is about shifting from a model
that focuses on the physical, one-off product sold (possible repairs) to one that relies on
regular services around that product [40]. With increasingly complex, high-tech equipment,
customers are relying more than ever on their product vendors for expert service. Instead
of focusing solely on selling a product, manufacturers are reinventing their strategy to meet
the growing needs of customers, resulting in the sale of an entire service system around
the product.

Servitization requires significant changes in many areas of a company’s operations,
and often requires a change in its business model. The product must be seen as a plat-
form for providing a service. It must be accompanied by solutions that customers want.
Indeed, these solutions are often captured in product–service systems and product–service
combinations [41]. Customers only derive value from them if they actually receive the
service—hence, the concept of use value. Servitization can be understood as the process of
building revenue streams for producers from services. There are three levels of it that can
be offered by producers [42]:

Level I: basic services—goods and spare parts, once they leave the factory, cease to be
a problem for the manufacturer; at the same time, they also cease to be a source of revenue.

Level II: intermediate services—product repair, maintenance, overhaul, technical as-
sistance, training, condition monitoring, and product maintenance provide manufacturers
with a constant source of revenue.

Level III: advanced services—take after-sales services to a higher level of customer
interaction, they are more relationship and customer-oriented than just selling and main-
taining the product. In many cases, advanced services are provided in a subscription model
in which the customer pays, for example, for hours of music listened to or pages printed.

The potential benefits of competing through advanced services are increased rev-
enues and profits, better alignment with customer needs, enhanced product innovation,
building new revenue streams, increased customer loyalty and setting higher barriers
to competition [43]. Servitization is usually a subscription model and can be applied to
most industries. It is a way to keep companies profitable and competitive in an era where
the financial aspects of design and production are increasingly threatened by emerging
markets and the life cycle of manufactured products, which is expected to lengthen due
to environmental considerations. The need to include additional services, including con-
sulting, is to improve the efficiency and profitability of the company [44]. Producing
personalized products and incorporating services into their offerings is designed to meet
customer needs [45,46].

3. Materials and Methods

Bibliometric analysis and survey research on a selected group of Polish small and
medium-sized enterprises were used to prove the need for research in the field of orga-
nization of e-platforms and business models of cooperation of small and medium-sized
enterprises within cyber-physical networks.

Bibliometric analysis is a method used to observe the development of science, man-
ifested, inter alia, by creating a network of research connections and the emergence of
new, multidisciplinary fields of science. It allows you to identify the internal logic of the
development of science [47]. The use of this method in the article made it possible for
the reliable assessment of the research results to date and the number of publications and
quotations in the analyzed area of research. The bibliometric analysis was conducted within
the systematic literature review (SLR) steps [48]. They focus on classification of research
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contributions and subjective criteria for selecting papers. The search for scientific publi-
cations was conducted using the Web of Science (WoS) core collection and Scopus. Based
on the methodology adopted in the study, the following steps were proposed: planning,
implementation and reporting (Figure 1).

Figure 1. Bibliometric analysis based on methodology SLR. Source: own study.

The search was divided into three stages, each of which led to specific results, thereby
increasing knowledge of industrial networks, SME and Industry 4.0. The different stages
of the search along with the results they led to are shown in Figure 2.

The bibliometric analysis was intended to provide answers to the following questions:

1. Do authors dealing with industrial networks link this concept to Industry 4.0?
2. Do authors studying the SME sector describe the implementation of Industry 4.0 for

this sector?
3. Do the authors dedicate industrial networks to SME?

Furthermore, the research material consisted of the results of a pilot survey conducted
among Polish production enterprises from the SME sector. The conducted research con-
cerned small and medium-sized production enterprises representing the metalworking
sector. The processes which characterized this sector involved shaping and reshaping
metals to create useful objects, parts, assemblies, and different structures. The research was
conducted in the period from September 2018 to January 2019. The research was carried
out using the CAWI method (computer-assisted web interview), and 50 enterprises took
part in the survey (the sample was purposive). All small and medium enterprises agreed
to fill the questionnaire and participated in the survey. The only criterion for selecting
companies for the study was their size and sector of industry (production). The question-
naire was validated. The pilot surveys were conducted among 15 experts of production
management. The questionnaire was revised with their comments. The questionnaire
consisted of 12 questions. For the presentation of the results, several answers were selected
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that identified expectations and barriers related to the introduction of the Industry 4.0
concept and future cooperation of small and medium-sized enterprises. The main purpose
of the survey was to demonstrate the need to develop the concept of rapid prototyping
of cyber-physical production networks and the terms of cooperation within the network
proposed in the article.

Figure 2. Search stages with results. Source: own elaboration.

4. Results

4.1. Bibliometric Analysis—Results

The body of knowledge related to SME research, industrial networks and Industry
4.0 is spreading significantly. The bibliometric analysis focused precisely on these three
thematic/research areas. The focus was exclusively on academic articles, published be-
tween 1990 and 2020, in English. The beginning of the search period was defined as 1990,
as this was the beginning of the Third Industrial Revolution, in which automation played a
major role, enabling industrial networks.

For each research area, articles were searched under the category “Topic” (TS), which
includes title, abstract, keywords defined by the authors; and “KeyWords Plus” (words
and phrases extracted from the titles of cited articles). This allowed us to show the number
of publications from each area. In the further part of the analysis, the search was narrowed
down to articles in which the authors indicated as keywords (AK): industrial networks,
SME and Industry 4.0, which guarantees the concentration of the article around this specific
topic. The research areas were then combined to see how many articles were published in
relation to “industrial networks AND Indsutry 4.0”, “SME AND Industry 4.0”, and “SME
AND industrial networks”. Detailed search data are included in Table 1.
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Table 1. Detailed search data from Web of Science and Scopus databases.

Database

Web of Science Scopus

Year range 1990–2020 1990–2020
Languages English English

Type of document Article Article
Field Tags: Number of articles

“Industrial networks”
TS = “industrial networks” 432 836
AK = “industrial networks” 114 387

“SME”
TS = “SME” 8.995 22.111
AK = “SME” 1.990 8.647

“Industry 4.0”
TS = Industry 4.0 5.371 3.877
AK = Industry 4.0 1.220 2.615

Advanced Search
TS = “industrial networks” AND “Industry 4.0” 22 30
AK = “industrial networks” AND “Industry 4.0” 2 7

TS = “SME” AND “Industry 4.0” 44 138
AK = “SME” AND “Industry 4.0” 11 55

TS = “SME” AND “industrial networks” 5 16
AK = “SME” AND “industrial networks” 0 2

Of the three research areas searched, the largest group were articles relating to small
and medium enterprises (WoS—TS:8.995, AK: 1.990; Scopus—TS: 22.111, AK:8.647). A
smaller group were articles on Industry 4.0 (WoS—TS:5.371, AK; 1.220; Scopus—3.877;
AK: 2.615). The smallest group was the articles from the field of “industrial networks”
(WoS—TS: 432, AK: 114; Scopus—TS: 836, AK: 387).

Through the bibliometric analysis, it was found that industrial networks are combined
with Industry 4.0, which is due to the fact that Industry 4.0 technologies are dedicated to
this type of collaboration. Although the research area of SMEs is the largest, the issues of
industrial networks and Industry 4.0 are rarely addressed in relation to SMEs; this indicates
a definite research gap.

The final stage of the bibliometric analysis was a qualitative analysis of the articles
that were extracted during the advanced search. It provided information—what issues are
addressed by their authors. Thus, for the search:

• AK = “industrial networks” AND “Industry 4.0” (2 and 7 articles)—the following
issues were identified: Data management, teaching and learning, internet of things,
Blockchain, Cybersecurity, Digital twin, Digitalization, Supply chain, Command and
control, covert channel, data exfiltration, stealth attacks, Distributed Systems, Internet
of Things, manufacturing, data management, Performance analysis.

• AK = “SME” AND “Industry 4.0” (11 and 55 articles)—the following issues were identi-
fied: production control, smart manufacturing, innovation, digitalization, automation,
internet of things, simulation and modeling, e-Services, Supply Chains, Business
Model, Mass customization, innovation, Internet of things, Cyber physical systems.

• AK = “SME” AND “industrial networks” (0 and 2 articles)—the following problems
were identified: cluster, collaboration, Productivity.

4.2. Results of a Survey of Small and Medium-Sized Enterprises

On the basis of the survey, key problems and expectations of selected companies were
identified, which include the implementation of the Industry 4.0 concept in their strategy.
On the one hand, the surveyed companies plan to adapt to Industry 4.0 technology in
the future, and on the other hand, they do not have a strictly developed implementation
plan (92% of respondents). Interesting from the point of view of the concept proposed
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in the article are the results concerning the expectations of SMEs that can support the
implementation of the Industry 4.0 concept (Figure 3):

• Professional IT systems (platforms) to support networking of enterprises (80% of respondents).
• Business models dedicated for network cooperation of SMEs (72% of respondents).
• Training on how to implement Industry 4.0 (67% respondents).
• Europeanprogramssupportingthe Industry4.0 technologies’ implementation(55% respondents).

Figure 3. Expectations of SMEs that can support the implementation of the Industry 4.0 concept.
Source: own elaboration.

They also indicate the main concerns related to the implementation of Industry
4.0 technology (Figure 4):

• High consulting costs in the field of new technologies (78% respondents).
• Low level of return of investment (75% respondents).
• Lack of qualified employees in the field of new technologies (67% of respondents).
• Lack of knowledge about technologies dedicated to Industry 4.0 (65% respondents).
• Problems with cooperation within networking (55% respondents).
• Low level of automation and digitization of production (45% respondents).

Figure 4. The main concerns of the Industry 4.0 technologies’ implementation. Source: own elaboration.

Moreover, the surveyed companies, in general, are concerned about networking. The
main problems with network cooperation were indicated as follows (Figure 5):

• Low level of cybersecurity for network cooperation (79% respondents).
• Lack of effective business models for the cooperation of small and medium enterprises

(72% respondents).
• Logistical problems (67% of respondents).
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• Disloyalty of network partners (45% of respondents).
• Difficulties in searching for partners for the networks (41% of respondents).
• Problem with co-responsibility for product quality (34% of respondents).

Figure 5. Main problems with network cooperation. Source: own elaboration.

5. Discussion

5.1. Business Model of the Network of Cooperating Enterprises of Industry 4.0

The ongoing development of a knowledge-based economy expressed in an intensive
transfer and diffusion of innovations has a significant impact on changes in business models
and business processes [49]. New forms of competitiveness and cooperation are emerging.
This means that today’s enterprise must abandon the patterns of the past and move from
the old rules of operation envisioned for a resourceful enterprise to the formula of an
intelligent, virtual and networked enterprise. The creation of network forms of cooperation
is an excellent opportunity to dynamize business models within the concept of Industry
4.0 and a chance to increase competitiveness of enterprises [50]. This is confirmed by the
results of bibliometric studies, which show that the technologies of Industry 4.0 enable and
even facilitate and intensify the establishment of cooperation between companies within
industrial networks. This is also confirmed by research among enterprises that confirms the
need for cooperation throughout the implementation of the Industry 4.0 concept. Surveyed
enterprises expect support in the field of European programs supporting the Industry
4.0 technologies’ implementation and business models defining the terms of cooperation.

Today’s economies are characterized by turbulent markets and globalization. This
means for enterprises permanent changes and an intense increase in competition. There
is an intensive development of technologies enabling the networking of the economy,
greater integration of supply chains and cooperation of enterprises. The success of an
enterprise is determined by access to real-time data and unlimited communication in a
virtual environment [51]. The enterprise in the Industry 4.0 concept is seen as an intelligent
module to be used in the value chain. The size of the enterprise is no longer important.
In the cyber physical network, each enterprise offers various capabilities that can be used
throughout the logistics chain within the Industry 4.0 concept. Modern enterprises should
focus on the growth of the innovative technologies used, the level of highly qualified
staff and the openness to unrestricted communication and networking. Meanwhile, the
openness to unlimited communication using cloud computing, big data, and Internet of
Things continues to grow rapidly. The key steps for companies to adapt to networking are
shown in Figure 6.
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Figure 6. The key steps for companies to adapt to networking. Source: own elaboration.

The idea of a cyber-physical production network means the production order execu-
tion within shared intelligent resources of the individual network partners and communica-
tion between resources take place using real-time data and IoT [20]. An important feature
of the cyber-physical network is that all network partners have access to the necessary
information in real-time, regardless of the geographic location of the required resources.
Thanks to the direct communication of intelligent resources, the partnership development is
intensified based on combining key resources and competencies. Combining the resources
of various enterprises into a network contributes to gaining a competitive advantage in the
market and better orientation to the customer’s needs [52].

However, in order to achieve the benefits of cooperation in the network, it is necessary
to overcome the problems related to their creation, especially when the partners are enter-
prises from the SME sector. The process of selecting partners is complicated. Choosing a
network partner requires checking, among others, partner’s available production capacity,
modern technology including intelligent resources, the quality level of services offered,
experience, real-time communication ability, etc. [53]. Each of these areas has a major
impact on the results of network creation. An equally important problem is the lack of
trust, the need to invest in modern technologies and intelligent resources that are able to
cooperate within the cyber-physical networks. This is especially true for the SME sector,
which, due to high implementation and server costs, are only to a limited extent able to
use advanced technologies. Similarly, the surveyed small and medium-sized enterprises
indicate problems related to network cooperation and network forming. The most impor-
tant ones include the low level of cybersecurity for network cooperation indicated by 72%
of the respondents. More than half of the respondents emphasized logistical problems.
Slightly less than half of the enterprises underlined difficulties in searching for partners for
the networks and the problem of the disloyalty of network partners.

In the next stage, enterprises should reduce unnecessary infrastructure costs and
decide on the key area of specialization in the network. This will allow for investments
and, consequently, the development of narrow competencies and know-how that will be
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attractive to cyber-physical networks. Such an approach should guarantee a high level
of use of available resources in the network and ensure the company’s competitiveness
in the market. The adoption of strategic goals focused on the implementation of modern
technologies requires the next stage of transformation, consisting of the identification of in-
telligent resources and technologies required in CPS networks (German National Academy
of Science and Engineering 2011). The last stage is to supplement the necessary resources
and establish cooperation with the platform, the task of which is to organize temporary
cyber-physical networks for the purpose of executing customer orders. Unfortunately,
most of the surveyed small and medium-sized enterprises emphasized the high costs of
consultancy in the field of new technologies (78% of respondents) and a low level of return
on investment (75% of respondents). This can generate serious resistance to the successful
implementation of network collaboration and the Industry 4.0 implementation.

The additional motivating factor to take the risk of investing in new technologies
supporting the organization of cyber-physical networks is the positive experiences of
enterprises, often presented in the literature. The partners cooperating in the network
can offer products and services that better meet the needs of customers. The narrow
specialization of enterprises, a high level of customization and the use of common resources
will allow for the production of more complex and innovative products [54]. In addition, the
functioning of enterprises in the network allows them to gain new experience and develop
know-how. This is an advantage for both the enterprise and the network. The exchange of
knowledge based on mutual relations increases the innovativeness of the offered products
and services of the network [55]. Therefore, solving the problems of creating cyber-physical
networks and cooperation of small and medium-sized enterprises is the basis for taking
advantage of the opportunities offered by the implementation of the Industry 4.0 concept.
The condition for the development of efficiently functioning networks is the development
of a model of cooperation between enterprises. Created networks as CPS should ensure
the collection, processing and access to data resulting from the implementation of physical
material flow processes in the network. The implementation of joint production projects
takes place using IoT and big data technologies used to enable unlimited communication of
intelligent resources, at the same time with negligible participation of the supervising staff.
The construction of the model, therefore, requires the identification of the conditions for
the functioning of the enterprise in the cyber-physical production networks, the creation
of temporary networks, scheduling and control of geographically dispersed intelligent
resources or financial settlements of partners providing resources for production. First of
all, the cyber-physical network requires an initial assessment of the technological potential,
know-how, employees’ competencies and resource sharing ability. This process is also
focused on the production in the company [56]:

• The possibility of reducing the technological gap and ensuring technological readiness.
• Appropriate socio-technological potential.
• The ability to quickly implement innovations.

Cyber-physical production networks are characterized not only by a higher degree of
functional integration but also by guaranteed easier access to the data generated by these
systems (online) [57]. By networking and sharing data, enterprises are able to produce
more efficiently and quickly meet customer needs. High flexibility is achieved by reducing
the setup time it takes for machines to meet new requirements. Production tools can (in
most cases) modify their operation on their own, adapting to new tasks—all it takes is
the application of the appropriate command from the machine software [58]. This allows
producers to execute small-batch production and even one or few products designed and
produced as per the specification of customers, at the cost of standard mass production [56].
One of the key problems is network planning. Hence, the proposal of a concept based on
building capability exchange platforms oriented towards personalized production.

31



Energies 2021, 14, 5273

5.2. The E-Business Platforms for Creating Cyber-Physical Industry Networks

One of the ways of integrating small and medium enterprises and their resources to
carry out joint ventures oriented to the needs of the modern customer is building e-business
platforms. The need to organize e-platforms is indicated by as many as 80% of the surveyed
enterprises. In contrast, the literature review conducted shows a distinct lack of such
solutions for SMEs. The professional IT systems (platforms) to support the networking
of enterprises are, on the one hand, to contact the customer specifying a personalized
product and, on the other hand, to integrate the resources of enterprises involved in a
cyber-physical network organized for the order execution. The platform is the interface
between the customer and the producer. Through the proposed offer of both products and
services, the customer can specify the product and even participate in the design of a new
product online. The companies around the platform have the know-how to offer design,
manufacturing and transport services to temporarily established networks, to which the
resources of those companies are selected that are available at the time and guarantee the
timely execution of the order. Figure 7 presents the e-business platform concept.

Figure 7. The e-business platform concept. Source: own elaboration.

In the Fourth Industrial Revolution era, the enterprise will be an intelligent module
that is part of an integrated network of enterprises offering services to realize personal-
ized products execution. Enterprises using the Industrial Internet of Things (IIoT) and
cloud computing technologies provide real-time information about the status of intelligent
resources (e.g., availability time, utilization cost, etc.) to the e-platform.

Overall, the platform is an excellent brokerage tool that, on the one hand, allows
enterprises to plan tasks related to the execution of a new production order based on the
specifications of the network customer, and on the other hand, allows them to collect and
analyze data about the availability of enterprise resources. Based on the data provided
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by the resources, an appropriate algorithm based on the checking of sufficient conditions
compares the generated plan for the execution of the order with the availability of resources
offered by network partners. The result is a set of acceptable variants of cyber-physical
networks and a detailed schedule of resource operation. From the acceptable variants, one
variant is selected which has the shortest execution time or execution cost, which has a
significant impact on the price. In the proposed approach, the customer decides which
criterion is taken into account.

The methodology for planning a cyber-physical network is based on a sequence of
checking of sufficient conditions. The proposed algorithm takes into account the constraints
related to the availability of intelligent resources, the cost of their use, logistical constraints
taking into account the distance between partners and the cost of transporting components
in the physical material flow. In the proposed approach of cyber-physical networks’
planning, three phases can be distinguished. The outline of the methodology is shown in
Figure 8.

Figure 8. Outline of a platform planning methodology for cyber-physical networking. Source:
own elaboration.

The first phase, called the “application phase”, is the development of the design of the
personalized product and the planning of the manufacturing operations that are associated
with the production and delivery of the product to the customer. In this phase, the e-
platform customer makes contact through an online e-commerce application and makes
product specifications by selecting available product options and variants regarding shape,
size, color or additional specific product features. In future, more advanced platform cases,
the customer will be able to co-design the product through an intuitive computer-aided
design (CAD) tool and create the product from scratch by selecting components from an
available component library. After the product is accepted by the customer and sent for

33



Energies 2021, 14, 5273

realization, the system will automatically create a plan of production operations selecting
the appropriate manufacturing technology and production documentation.

In the next phase, the “declaration phase”, the companies with adequate resources
provide real-time information about the availability of production resources and informa-
tion related to the cost of their use. The real-time transfer of information is possible by
using the Industry 4.0 technologies (Industrial Internet of Things (IIoT), cloud computing
and big data).

In the third phase, network variants are formed on the basis of the selection of re-
sources for production operations, taking into account the succession of operations and
logistical aspects related to the transportation of all materials and components during the
production process for each of the acceptable network variants. At the same time, the cost
of order execution is determined, which is the basis for determining the product price.
As a result of this phase, a set of production networks representing a set of resources of
different companies is obtained. Each variant is characterized by the time and cost of
product realization. The final variant of the network is selected by the customer based
on these two criteria. The price and lead time accepted by the customer means that the
network is formed, and the production stages are launched in the individual enterprises of
the network.

The proposed network formation approach uses a sequence of checks of sufficient
conditions, the fulfilment of which guarantees the execution of the planned production
order based on the analysis of data on available resources transmitted in real time from
individual resources. The proposed planning approach allows for rapid prototyping of
network variants. The proposed planning methodology is less labor and time consuming
in contrast to the modeling and simulation methods and ad-hoc approach often used in
such network planning cases. Nowadays, small and medium enterprises do not have
effective methods for rapid network planning, especially in terms of partner selection and
resource planning to fulfill customer-oriented orders. Hence, further development of the
proposed concept seems to be a justified direction for further research in this area. The
presented research results in the context of the considerations of other authors presented
in the discussion confirm the correctness of the adopted hypothesis. The organization
of e-business platforms of small and medium enterprises will allow the integration of
enterprise resources in order to form cyber-physical networks in the conditions of the
Industry 4.0 concept.

6. Conclusions

Based on the bibliometric analysis, industrial networks are often considered in scien-
tific papers alongside Industry 4.0. This is due to the nature of the Industry 4.0 technologies’
orientation towards networking the economy and the use of dispersed, intelligent resources
along the entire value chain. Although the research area of SMEs is the largest, the issues of
industrial networks including production networks and Industry 4.0 are rarely addressed
in relation to SMEs, indicating a definite research gap.

The concept of Industry 4.0 achieves a high level of resource integration through
unlimited communication of resources and integration of enterprises offering manufac-
turing services. Adding services to the core product offerings of enterprises to create
additional value for the customer—defined as servitization—allows building better inter-
action between the customer and the producer. In addition, servitization makes better use
of enterprise resources and provides opportunities for networking. This may particularly
concern the sector of small and medium enterprises, which, in contrast to large enterprises
with high development potential, see an opportunity for development in the conditions of
Industry 4.0 in cooperation and narrow specialization.

Based on a conducted survey, the SME sector has indicated many expectations, e.g.,
need for professional IT systems (platforms) to support network cooperation, new business
models and training in the area of Industry 4.0 implementation. The surveyed enterprises
also indicate the key problems related to the implementation of the Industry 4.0 concept.
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The main problems concern network cooperation, e.g., difficulties in searching for partners
for the networks, low level of cybersecurity for network cooperation, the disloyalty of
network partners, lack of business models and business platforms. The other important
concerns are as follows: high consulting costs in the field of new technologies, low level
of return of investment lack of qualified employees in the field of new technologies and
lack of knowledge about technologies dedicated to Industry 4.0. Focusing on services for
the network and development of own know-how requires solving a number of problems
resulting from the lack of business models of cyber-physical networks of small and medium
enterprises and methods of establishing cooperation.

The concept of an e-platform supporting cyber-physical production network prototyp-
ing proposed in the paper is a way of integrating, on the one hand, the customer, who, in a
particular case, becomes a consumer of the product after its purchase, with the producer.
On the other hand, the e-platform can integrate small and medium enterprises or rather
resources (machines, equipment, means of transport, employees) and services within the
network. The servitization and organization of e-business platforms allow increasing the
degree of utilization of cooperating companies’ resources, thus increasing the level of
resource productivity.

By providing a platform equipped with e-commerce sales applications through a
web service and creating an intuitive interface for the customer, excellent integration
between the future customer and distributed enterprises is achieved. The offered ability to
specify the product by selecting available options or co-designing represents a significant
improvement in real-time interaction with the customer.

Also noteworthy in the proposed approach is the involvement of the customer in the
final selection of the network variant, thus influencing the price and time of production
order execution.

The authors’ future research focuses on developing detailed algorithms for prototyp-
ing network variants based on checking sufficient conditions based on information from
intelligent resources of enterprises involved in the cooperation within the networks. The
next step of research is developing a prototype e-business platform for small and medium
industrial enterprises.
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20. Saniuk, S.; Saniuk, A.; Cagáňová, D. Cyber Industry Networks as an environment of the Industry 4.0 implementation. Wirel. Netw.
2019, 27, 1649–1655. [CrossRef]

21. Stock, T.; Seliger, G. Opportunities of Sustainable Manufacturing in Industry 4.0. Procedia Cirp. 2016, 40, 536–541. [CrossRef]
22. Goti-Elordi, A.; De La Calle-Vicente, A.; Gil-Larrea, M.; Errasti, A.; Uradnicek, J. Application of a Business Intelligence tool within

the context of Big Data in a food industry company. Dyna 2017, 92, 347–353. [CrossRef]
23. Wang, L.; Törngren, M.; Onori, M. Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst.

2015, 37, 517–527. [CrossRef]
24. Zoubek, M.; Poor, P.; Broum, T.; Basl, J.; Simon, M. Industry 4.0 Maturity Model Assessing Environmental Attributes of

Manufacturing Company. Appl. Sci. 2021, 11, 5151. [CrossRef]
25. Vane, J.; Frantisek, K.; Basl, J. Engineering companies and their readiness for Industry 4.0. Int. J. Product. Perfomance Manag.

2021, 70, 1072–1091. [CrossRef]
26. Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 1–4.
27. Grabowska, S. Smart Factories in the age of Industry 4.0. Manag. Syst. Prod. Eng. 2020, 28, 2. [CrossRef]
28. Grabowska, S.; Saniuk, S. Modern marketing for customized products under conditions of fourth industrial revolution. In

Industry 4.0. A Glocal Perspective; Jerzy, D., Aleksandra, G., Eds.; Routledge: New York, NY, USA, 2021. [CrossRef]
29. Saniuk, S.; Grabowska, S. Challenges of business model concept of small- and medium-sized enterprise cooperation. In Industry

4.0. A Glocal Perspective; Jerzy, D., Aleksandra, G., Eds.; Routledge: New York, NY, USA, 2021. [CrossRef]
30. Lampel, J.; Mintzberg, H. Customizing Customization. Sloan Manag. Rev. 1996, 38, 21–30.
31. Zhou, F.; Ji, Y.; Jiao, R. Affective and cognitive design for mass personalization: Status and prospect. J. Intell. Manuf.

2013, 245, 1047–1096. [CrossRef]
32. Kumar, A. From mass customization to mass personalization: A strategic transformation. Int. J. Flex. Manuf. Syst.

2007, 19, 533–547. [CrossRef]
33. Arora, N.; Dreze, X.; Ghose, A.; Hess, J.; Iyengar, R.; Jing, B.; Joshi, Y.; Kumar, V.; Lurie, N.; Neslin, S.; et al. Putting one-to-one

marketing to work: Personalization, customization, and choice. Mark. Lett. 2008, 19, 305–321. [CrossRef]
34. Młody, M. Product personalization and Industry 4.0—Assessment of the rightness of the implementation of modern technologies

in the manufacturing industry from the consumers’ perspective. Ekon. Organ. Przedsiębiorstwa 2018, 3, 62–67.
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Abstract: Last year’s developments are characterized by a dramatic drop in customer demand leading
to stiff competition and more challenges that each enterprise needs to cope with in a globalized
market. Production in low-mix/high-volume batches is replaced with low-volume/high-variety
production, which demands excessive information flow throughout production facilities. To cope
with the excessive information flow, this production paradigm requires the integration of new
advanced technology within production that enables the transformation of production towards smart
production, i.e., towards Industry 4.0. The procedure that helps the decision-makers to select the most
appropriate I4.0 technology to integrate within the current assembly line considering the expected
outcomes of KPIs are not significantly been the subject of the research in the literature. Therefore,
this research proposes a conceptual procedure that focus on the current state of the individual
assembly line and proposes the technology to implement. The proposed solution is aligned with
the expected strategic goals of the company since procedure takes into consideration value from
the end-user perspective, current production plans, scheduling, throughput, and other relevant
manufacturing metrics. The validation of the method was conducted on a real assembly line. The
results of the validation study emphasize the importance of the individual approach for each assembly
line since the preferences of the user as well as his diversified needs and possibilities affect the optimal
technology selection.

Keywords: Industry 4.0; assembly line; information flow; decision making

1. Introduction

Globalization has created considerable challenges that production-oriented enterprises
need to tackle: fierce competition, short windows of market opportunity, frequent launches
of products and large-scale alternations in product demand [1]. The milestone for industry
surely is the last year’s events developments, followed by the dramatic change in customer
demands. Therefore, in order to survive the turbulences on today’s market, flexibility,
scalability and agility have to be primary objectives for any enterprise. In addition, high
degree of specialization while maintaining flexible and fast response on customer demands
is the characteristic that today’s enterprise needs to own. Many manufacturing enterprises
have oriented their production towards more agile production approaches instead of mass
production [2], in order to take opportunities enabled by market widening, where all
competitors have similar opportunities, and customer demands more customized or even
personalized products.

Manufacturing, as a cornerstone of the developed nations’ economy, presents a strong
base for any advanced country. Besides encouraging and stimulating all the other economic
sectors, manufacturing provides a wide range of different jobs, thus enabling higher stan-
dards of living. Croatia’s manufacturing industry has predominant lack of competitiveness
due to inherent problems and obstacles. The initial plan for last three decades—to restruc-
ture the economic subjects efficiently to become competitive enough with—global markets,
failed due to some transitional problems and previous economic system anomalies. Today,
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low industry subjects’ productivity is additionally burdened by an oversized government
administration, the disproportionate number of workers, obsolete technology, and lack
of digitalization. Unfortunately, insufficient education of personnel in the management
field, contributes to additional lagging back when compared with competitors around the
globe. The lag is emphasized in the field of manufacturing personnel’s lifelong learning,
apathy, and idealess of management for the implementation of advanced organizational
methodologies. Individual investments in cutting-edge technologies often do not result in
expected outcomes, as those are implemented without proper education and management.
The majority of public enterprises disappeared in the failed and corruptive privatization
process, and those that managed to survive, have undergone numerous restructuring
programs to avoid liquidation. In these conditions, small and medium-sized enterprises
(SME) did not have sufficient support from the government administration nor by large
industrial systems. Due to all these facts, economic development has been mostly turned
to the service sector, especially tourism, which is turned to be crucial mistake, considering
the world crisis in 2020.

Rapid response to customer demands represents a key factor of the company’s sur-
vival [3]. The switch to Reconfigurable Manufacturing System (RMS) could be a solution.
RMS has three major principles [1]: it ensure adaptable production resources in order
to respond to unpredictable market demands and system behavior uncertainty, it is de-
signed to produce all members of the product family, rather than single product and its
system core features should be incorporated in it components (mechanical, communications
and control), as well as the system as a whole. Therefore, RMS possesses flexibility of
flexible manufacturing systems and productivity of dedicated manufacturing Lines [4].
Switching from a traditional manufacturing system to RMS leads toward the so-called
living factory [4] or Smart Factory [5]. Such a factory can rapidly respond to the needs of
customers while maintaining low manufacturing costs and high levels of quality [1]. The
Smart Factory introduces Smart Product to production, that are uniquely identifiable and
traced to be located any time [6]. Knowing their own history, current status and alternative
routes to achieving their target state, makes the product unique (single-item) [7,8]. Smart
Factories could make single item production profitable and therefore allows individual
customer requirements.

To address and overcome the current challenges of shorter product lifecycles and
individual customer requirements concept Industry 4.0 (I4.0) [9–11] is introduced to man-
ufacturing systems. I4.0 [5] focuses on the establishment of products and production
processes thus emphasizing the needed transformation of today’s factories into Smart
Factories for the production of Smart Products that are networked in an Internet of Things
(IoT). A possibly worldwide network of interconnected and uniform addresses objects that
communicate via a standard protocol could be considered as IoT [12]. Therefore, IoT en-
ables the collection of production real-time data and it’s exchanging among systems within
factory, machine tools, workers and even customers. Information availability presents a
crucial factor that enables response, almost in a real-time manner, to the changeable market
demands by the rapid adjustment of an existing manufacturing system [13].

The aim of I4.0 is to achieve monitoring and synchronization of data between the phys-
ical factory floor and cyberspace. Digitalization of the manufacturing process results with
some level of cognition if the information from all connected systems are collected, mutually
summarized, analyzed and used for further actions [14]. That defines the manufacturing as
“smart”. Based on the [15], total 10 I4.0 transformation pillars can be defined: IoT, cloud
computing, cyber-physical system, big data, autonomous robots, simulation, horizontal and
vertical integration, additive manufacturing, augmented reality, and blockchain. Transition
to a Smart Factory affects the workers in many ways, and the workers are considered as
the main value of every company. In order to successfully transform to I4.0 and therefore
ensure their own survival, enterprises must continuously implement newly developed
methods, technologies and skills. In order to acquire practical experience and upgrade
the necessary knowledge and competences about I4.0, enterprises need to continuously
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invest in workers’ education. Using the concept of the Learning Factory (LF) presents an
emerging method of how this can be achieved.

To cope with the challenges set by the I4.0 related equipment implementation and
workers’ education to work with, the academic institutions worldwide and some large
industrial enterprises are developing a new nearly realistic factory environment for edu-
cation and research called LF. After the occurrence of I4.0, diverse academic institutions
have invested in their conventional LF in order to develop and build I4.0-based LF that
serves as a good polygon for the transformation of the new concepts of I4.0 toward their
students and industry workers. If managed properly, LFs enables students and workers
introduction to the latest advancements in I4.0 and achievable results of the manufactur-
ing and Information and Communication Technology (ICT) integration [16]. A realistic
environment to test the basic engineering principles of I4.0 equipment could be achieved
in LFs environment [17]. Within LFs, process improvement could be validated without
cost pressure that appears in the real industrial environment. Moreover, LFs give the
students and workers the ability to understand the behavior of real production systems,
and the opportunity to apply different improvement scenarios in order to explore possible
outcomes [18]. In order to gain workers’ knowledge faster, LFs have to offer insight into
innovations that can be applied in a real industry environment in order to get practical
experience and skills timely [16,19]. So, they become prepared and skilled for operation in
the I4.0 environment or to upgrade the conventional production systems to become smart
production systems. It is expected that the number of LFs will increase in the upcoming
years due to the increasing demand for better forms of learning [20].

Collaboration between academic institutions and industry is crucial and can be es-
tablished by LFs. Producing knowledge through research, diffusing knowledge through
education as well as using and applying knowledge through innovation is the appropri-
ate approach, known as “the knowledge triangle”. Academic institutions and industrial
training facilities have to continuously adapt and enhance their education concepts and
methods, in order to conform to future job profiles and related competency requirements.
As innovative learning environments, LFs mostly act in an interdisciplinary manner, which
has proven to be an effective concept addressing these challenges [21]. The LFs’ mission is
to integrate design, manufacturing and business realities into the engineering curriculum,
especially by introducing hands-on experience in design, manufacturing, and product real-
ization [22]. This is accomplished by providing the balance between engineering science
and engineering practice [23,24].

Experimental research for this article was performed in the LF at the Faculty of
Electrical Engineering, Mechanical Engineering and Naval Architecture, University of
Split, Croatia [25]. This LF is called the Lean Learning Factory (LLF), as its initial goal,
during its development, was to teach lean tools and methods by hands-on simulations.
Lean management tools and methods detect any activity which does not add value to
the product as waste and remove those from the production process [26]. Together with
optimizing activities that are necessary, but do not add value (non-value added activities),
the ultimate goal is to reduce costs, needed resources, and total production time. I4.0
enables the computerization of the so-called third industrial revolution, thus making the
manufacturing process smarter, more effective and productive. In the literature, it can be
found that the lean concept acts as a basis and prerequisite for I4.0 implementation [27].
In [28], another author emphasized the importance of the lean management implementation
to a certain level for adopting any new methodologies, including I4.0. Therefore, upgrading
LLF from pure lean method training to the I4.0 demonstration and training facility could
be considered an appropriate development path. Besides research and development of
some I4.0 related equipment, for laboratory usage, demonstration of I4.0 related equipment
integration in the production system will remain the main focus in further LLF development.
It is found the recently built smart LFs worldwide train the students and workers on how
the real I4.0-based smart factory operates rather than teaching the core concepts of I4.0
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related equipment and the transformation process to achieve I4.0-based smart factory in
the first place [29].

Through equipment used in real industry and specially developed equipment that
imitates real industry equipment, supplemented with specialized equipment for learning
purposes, LF is established for research, development, demonstration and knowledge
transfer to the economy [17]. The knowledge is transferred by training students in the
last stages of graduate and postgraduate studies, as well as industry workers, that are
trained in LLF on a different basis. Some annual conferences held at the University of Split,
FESB, have workshops and activities in LLF. Individual projects with industry partners
on enhancing workers’ skills are mostly held in LLF to convince participants of tools and
methods purposefulness. Internationally funded projects that are mainly focused on the
enhancement of fundamental science achievements on scientific and academic institutions,
enables the introduction of developed methods and tools to partners from industry. LLF
is therefore again an appropriate facility to demonstrate project outcomes, to industry
partners’ management and to industry workers. The aforementioned activities in LLF
require both specially developed didactic equipment and real industry equipment.

An assembly line (AL) presents a final step of the production system. It consists of con-
secutive workstations. On each workstation operators, i.e., workers, sequentially perform a
subset of assigned assembly tasks in order to create the required subassembly or finished
product within a given time range. The assembly line, called the traditional assembly
line, is first introduced by Henry Ford as a tool that was supposed to fulfill the growing
customer needs for the single product model while ensuring productivity growth together
with total production cost reduction [30]. However, in today’s industrial environment
where change and unpredictability of market demand have become a constant, traditional
ALs are no longer convenient. Therefore, new flexible assembly systems are requisite to
deal with the required high product variety. The era of I4.0 and its related technology
provides the opportunity for assembly systems to adapt to the challenges of today’s global
marketplace. If applied correctly, I4.0 technology can significantly contribute to higher
flexibility, robustness and productivity of the AL, as well as product variety and traceabil-
ity [31]. Furthermore, in order to maintain the high flexibility of the system, workforce
adaptability to changes are essential. Therefore, humans still play a prime role in ALs [32],
especially when it comes to assembling complex mechanical parts such as gearboxes [33].
Manual assembly is often paper-based and contains a huge amount of information about
the product components of which a certain amount of information may be unnecessary
and redundant [34]. Due to the variety of products and their dynamic production in today
manufacturing that is characterized by low-volume/high variety of product, information
that the workers must process to finished their tasks increase [35]. It means that the work-
ers’ are confronted with additional effort during their task execution that can affect their
ability to comprehend complex assembly relations and consequently, increase the workers’
tendency for errors. From this perspective, technologies adopted from I4.0 can provide aid
and support to humans, i.e., workers, to execute the assembly task in the most effective
way and consequently significantly affect the assembly system’s improvement [32,36]. This
is particularly true for technologies such as digital instructions, cobots, radio-frequency
identification (RFID) technology and other I4.0 advanced technologies that can be deployed
to improve humans’ abilities.

The AL developed within the LLF seek to mimic the real industrial world as close as
possible. It implies that ALs can be designed bearing in mind the utilization of equipment
that is used in real industrial plants in order to produce an actual product (e.g., the gearbox),
equipment such as real hand-operated tools and implements, conveyors, supermarkets,
etc. Therefore, case studies applied in them can be contemplated as valuable case studies
for industry [37]. Didactic games used for assembly simulation process within LLF at the
University of Split entails assembly process of toy trucks and toy formulas and reworked
simulation game “Lego flowcar®”. In the first case where the assembly process of toys is
considered, the AL consists of four workstations. Each participant has to map the assembly
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process according to VDI 2860 standard. When the mapping process is over, the participant
is encouraged to analyze and suggest improvement of the assembly process in order to
reduce the total assembly time, as well as to propose improvements in assembly line design
that enables easier adjustment of assembly to automation. The second didactic game implies
the usage of methods associated with warehousing and logistics systems. This simulation
game includes also learning methods for workload balancing on assembly stations. Since
the observed didactic games involve the assembly of toys, from the perspective of the
participants, these games are not taken seriously. In order to convince the participants
that the application of the methods used in didactic games executes similar results as in
the assembly of real products, additional efforts were made and a gearbox assembly line
was developed. Car gearboxes originate from two car models and they are produced at
the factory “Zastava Automobiles”. Two versions of gearbox cases, together with the high
variety of different components that can be fitted, results in more than 20 diverse final
goods. The product AL comprises five different workstations where the elements of ICT are
installed. Therefore, the gearbox assembly line will be used as a case study for this paper.

The paper is organized in the following way: motivation and research gap are pre-
sented in Section 2; framework of proposed procedure for the evaluation of the most
appropriate I4.0 technology to implement is presented in Section 3; assembly line that is
used as a validation study, problem definition and implementation of the proposed decision
support system is presented in Section 4; discussion and conclusion are presented in the
last Section.

2. Motivation for the Proposed Procedure

I4.0 technologies are new ways that can facilitate and assist human operators during
the execution of their tasks, enabling them cognitive and physical support as well as a safe
environment since man is still a vital factor in manufacturing [32,38]. The introduction
of new technologies within the AL must be accompanied by progress in terms of system
performances, operators’ well-being, and economic outcomes. Therefore, an analysis of the
circumstances under which it is worthwhile to introduce new technologies is necessary [39].

To the author’s knowledge, most of the reported research in the literature focused on
the investigation of limitations/possibilities of the implementation of new specific I4.0 tech-
nology within manual AL, during which they focus only on one technology as a possibility.
For example, one of the topics that authors often deal with is the exploration of the possibil-
ities of applying human-robot collaboration (HRC) within the AL through the distribution
of tasks between these two subjects. In these papers, the justification for the introduction of
the HRC or fully automated robotic assembly in regards to traditional manual assembly
is examined through the comparison of these three cases in terms of important assembly
measurable performances such as total task time, batch sizes, throughput, production
cost, total time etc. [37,40–43]. Uva et al. [44], Horejsi et al. [45] and Mourtzis et al. [38]
investigate applicability and the effectiveness of augmented reality applications compared
to traditional method (paper manual instructions). Effectiveness was investigated in terms
of comparison of overall execution task time, mental demand, physical demand, errors, etc.
In the paper of Wolfartsberger et al. [46], the authors point out that many technologies are
not yet at a level that they can be implemented in practice, therefore they gave a review
of the current technologies that support manuals assembly activities and a review on the
future perspective of these technologies. Observed technologies that support assembly
tasks with respect to their practical implementation in companies are HRC and instructive
assistance systems (mixed and virtual reality). Hou et al. [34,47] focus on the benefits that
digital instructions bring compared to paper based instruction in terms of assembly time
and number of error. Yoo et al. [48] investigate the important factors for cloud computing
adoption, while Marinho et al. [49] proposed decision support for I4.0 that guides decision
makers in adoption of cloud enterprise resource planning. Majdzik et al. [50] proposed
approach that focused on the concurrency and synchronization problem between assembly
line and AGV.
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Papers that are focused on the comparison of different technologies that can support
assembly activities of a certain assembly line are not significantly represented in the liter-
ature. The selected technology for implementation in the assembly line should consider
the economic, spatial, and cost-effective aspects and need to be aligned with the expected
strategic goals of the company. A step towards that was found in the research of Peron
et al. [36]. In this research, the authors investigate the possibility of applying two I4.0
technologies that assist in assembly activities. The authors proposed a conceptual decision
support model for implementing cobots and digital instructions within the AL observing
the cost-effectiveness of their use considering the time of task execution, throughput, cost
of equipment and labor cost of workers. The framework provides guidelines that, based
on the observed parameter levels, narrow the possibilities for further option configuration
consideration. However, the proposed approach was developed taking into account only
one product model, it means that the impact of product diversity, which is a characteristic
of today’s production, was neglected. Moreover, the conducted validation study showed
a mismatch between the experimental solution and the solution obtained by applying
this approach.

Therefore, to the best of the author’s knowledge, the procedure that helps the decision-
makers to select the most appropriate I4.0 technology to integrate within the current
assembly line considering the expected outcomes of KPIs are not significantly been the
subject in the literature. It can be noticed that the majority of the researches that deal
with some kind of optimization, used only objective measurable data neglecting managers’
perspectives, i.e., development strategy and uniqueness of each individual company. In
accordance with that, the alignment of expected benefits with the overall strategic goal is
omitted. Companies differently cope with the introduction of new technologies depending
on the technological and management abilities they own. In order to achieve maximum ben-
efits of new technologies, each company needs to better comprehend and focus on proper
technologies and their applicability in their unique environment. In fact, a comprehensive
and respective tool has not yet been developed that estimates the benefits of I4.0 technology
and proposes the most appropriate technology, having in mind the individual needs and
possibilities of the company. Therefore, the need for a decision support system that guides
companies in their path of choosing the most appropriate technology, i.e., technology from
which they will benefit the most, is noticed. This support system has to include both,
objective measurable data and a dose of subjectivity in the decision-making process along
with the criteria interdependence. The importance of inclusion of a dose of subjectivity
in the decision processes during the transformation of the manufacturing towards I4.0
is also emphasized in the research by Erdogan et al. [51] where authors conclude that
“leadership” is the most important criteria for finding the best strategy to transfer to I4.0.
Considering the role and importance of advanced technology as enablers of I4.0 as well
as the diversity of strategic aims and needs of different companies, a framework for I4.0
technology selection within the assembly line is proposed in this research. The proposed
framework leads to the selection of the most appropriate I4.0 technology considering the
individual criteria constraints and criteria interdependence along with the decision mak-
ers’ preferences. Procedure is goal oriented, therefore it lead decision-makers to be more
effective already in the first procedure step. In comparison to the approaches found in the
literature, this procedure leads decision-makers to the selection of the most appropriate
technology that is optimized according to the expected improvement of key performance
indicators (KPI). The aim is to propose simple, efficient and easily understandable decision
support system that can be readily applicable in the manufacturing context.

3. The Selection Process of the Most Appropriate I4.0 Technology

The procedure of selecting the most appropriate I4.0 technology that leads towards
the enhancement of manual assembly is presented in this paper. Among the measurable
criteria that were used to evaluate the selection process, the procedure will take into
account the preferences of decision-makers thus enabling that subjectivism enters into
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the analysis. The existence of a dose of subjectivity in today’s production is crucial. The
usage of weights (priorities) for each observed criteria, can enable decision-makers to
find the best compromise solution of the observed problem that is in accordance with the
development strategy as well as with the limitations/capabilities of the company. To select
the most appropriate I4.0 technology for the improvement of the AL, this study provides a
general framework with three main steps, as presented in a schematic view in Figure 1. The
proposed framework implies the usage of technologies that have the potency to improve
the performances of the AL process by enabling constant interaction between an operator
and his/her workstation.

 

Figure 1. The proposed procedure for the evaluation of the most appropriate technology
to implement.

In the first step of the procedure, according to the performance metrics and the com-
pany’s strategic development aims, the AL that needs improvement is identified. AL under
consideration for the improvement process by applying I4.0 technologies is confronted with
problems such as unbalanced workflow, a high percentage of tasks performed by operators,
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unbalanced operators’ utilization, high physical or mental workload of the human, high
process time variations, long lead times that disrupt flexibility of AL, etc. When the line
is selected, in order to evaluate the current situation and to detect issues and the possible
locations for enhancements material and information flow mapping has to be done. In
addition, constraints and potentiality of assembly layout should be perceived and taken
into consideration, as well as other constraints that the company is confronted with. The
main idea of this step is the evaluation of current performance of the AL which gives the
managers, i.e., decision-makers a clear idea about performances of the line and directs them
towards their strength and weaknesses in order to identify the improvement possibilities.

Prior to the I4.0 technology implementation, possible improvements of the mapped
AL process condition through the commonly used methods, such as work standardization,
achieving the workload balance of the assembly line, and ensuring the proper workplace
ergonomics, should be considered. These previous actions may result in certain improve-
ments in key performance indicators (KPIs) before the introduction of I4.0 technology and
serve as a good foundation for further improvements.

In the second step, considering the limitations and possibilities of the AL, as well as
available company’s resources and strategic goals, possible improvements, in terms of dif-
ferent technologies that can be used, are identified. The proposed list of feasible comparable
options along the whole AL serves as an input parameter for the last step of the procedure
where feasible solutions are ranked according to the defined KPIs and strategic goals. Tools
such as discrete event simulation can be used to predict the outcomes of the proposed
technology. Outcomes refer to the KPIs that the company puts in focus as important fac-
tors through which they evaluate potential progress. To evaluate potential improvements
most of the companies uses traditional KPIs such as costs, quality, line productivity, cycle
time, energy consumption, throughput time, etc., but the Miqueo et al. [32] emphasize the
need for new indicators that are unique for the product family, operational context and
business objectives of company whose assembly system is observed. The improvement
outcomes of possible technology applications should be estimated quantitatively because
only measurable objective data can serve as a proper measure for optimization of the
observed process.

Besides the list of feasible solutions, as input parameters in the last step of the decision
support system, metrics noticed as important KPIs from prediction tools in the case of
implementation of each proposed option (solution) are also used. A decision support
system based on the PROMETHEE method (preference ranking organization method for
enrichment evaluation) is proposed to support the multi-criteria decision-making process
during the evaluation and selection of the most appropriate technology that is in line with
the manufacturing and business goals and needs of the organization. PROMETHEE is an
effective and significant multi-criteria decision analysis tool, it means that this method is
well suited for problems where a finite set of alternatives subjected to multiple conflicting
criteria has to be scalarized according to solution desirability [52,53]. The decision-makers’
preferences can be set as any combination of quantitative data and the corresponding
preference function of each criterion. Quantitative data are called weight (priorities) and
they describe the importance of each criterion from decision makers’ point of view. The
sum of the weights of all the criteria is always equal to 100%. While, the preference function
describes how the deviations between the assessments of two alternatives on a certain
criterion should be contemplated [54]. PROMETHEE method can be briefly described
through the five steps [54]. When the criteria and alternatives of a decision problem are
defined, first step refers the assigning weights to each criterion and conducting the pairwise
comparison in order to determine deviations between assessments of alternatives in regards
to each criterion. The second step implies the selection of appropriate preference function,
between six possible, for each criterion in order to model the way the decision-maker
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perceives the measurement scale of the criterion. The third step implies computing the
global preference index:

∀a, b ∈ A, π(a, b) =
k

∑
j=1

Pj(a, b)x wj, (1)

where π(a, b) is the global preference index of alternative a over alternative b, wj is the
weight (priority) of jth criterion, Pj (a, b) is the value of preference function for jth criterion
when alternative a is compared with alternative b.

The last two steps imply the computation of positive and negative preference outrank-
ing flows in order to rank all the alternatives from the best to the worst one according to the
PROMETHEE I (partial ranking) and PROMETHEE II (complete ranking) ranking. Positive
preference flow, Φ+ (a), measures the preference of alternative a compared to others, while
negative preference flow, Φ− (a), measures how many other alternatives are preferred to
alternative a. Formula for PROMETHEE I is given in the following equations:

Φ+(a) =
1

n − 1 ∑
x∈A

π(a, x), (2)

Φ−(a) =
1

n − 1 ∑
x∈A

π(x, a), (3)

Formula for PROMETHEE II is given in the following formula:

Φ(a)= Φ+(a) − Φ−(a), (4)

where Φ(a) is the net outranking flow for each alternative.
The best-ranked solution, solution with the highest Φ(a) value, is the most appropriate

element of I4.0 technology of which the AL benefits the most, i.e., that technology presents
the best compromise solution based on the used criteria and their weights defined by
the user.

The proposed procedure is implemented and validated through the study of the
assembly process on the real complex product developed in the LLF environment.

4. Validation of the Developed Procedure on the Assembly Line within LLF

Assembly is the keystone manufacturing process where commodities (product parts)
of all upstream manufacturing processes, from design through engineering, manufacturing
and logistics are joined in order to produce and offer a functional product [55]. Assembly
of complex mechanical parts, such as gearboxes, is a characteristic of the automotive
industry [33]. Due to the required effort and precision of their assembly process arising from
the complexity of necessary tasks, their assembly is mostly done manually. However, it can
be automatized, but automation implies excessive financial investment. Some companies
such as Tesla Motors have attempted excessive automation in their AL. The conclusion that
emerged from their automation attempt was that humans were underestimated [56].

The validation study used in this research is the car gearbox AL situated at the LLF. Car
manual gearbox is a mechanical transmission device used for torque transfer from the car
engine to wheels thus enabling both, the speed change by utilizing different transmission
ratios as well as reverse car drive. It consists of a huge amount of different gears, gear
levers, screws, shafts, etc. The gearbox is a multi-stage product, which means that its
assembly process is carried in several steps, concretely five operations steps. Each step is
assigned with a certain amount of work, and each step takes place at one workstation. Each
workstation contains real hand tools and supermarkets with real parts. Workstations are
connected with the conveyor. In each workstation, the assembly step relates to the insertion
of an individual component (part) or sets of parts that presents one gearbox subassembly
element. The example of manual gearbox used in this research is given in the Figure 2.
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Figure 2. The assembled manual gearbox in LLF.

Gearbox AL was firstly introduced by Veza et al. [25] where the authors investi-
gated the balancing procedure of the manual AL for only one product type using the
paper instructions for workers. The further evolvement of the AL, presented by Gjeldum
et al. [57], included introduction of five additional products types in order to simulate high-
variety/low-volume production on the existing AL. The increase of product variety results
in the inevitable increase in the number of different parts (components, subassemblies) and
consequently the enormous growth of assembly information data, as well as the higher
need for supermarket storage capacity. To cope with the enormous information data and to
improve performances of AL, elements of I4.0 technology must be taken into account [58].

The first step towards the implementation of I4.0 technology is given by Gjeldum
et al. [57] where authors presented the balancing procedure of the current state of the AL
that refers to the assembly process with “the manual approach“. “The manual approach”
implies the usage of paper-based working instructions and manual data gathering by
analysts (timing by stopwatch). Results of the balancing procedure indicate the huge
discrepancy of cycle times among workstations. In order to improve work balance among
workstations, further improvement of the AL is needed. The solution to this problem could
be achieved with the introduction of I4.0 technology. Therefore, the presented gearbox AL
represents an excellent polygon for conducting a validation study. The observed gearbox
AL is shown in Figures 3 and 4.

 

Figure 3. The gearbox assembly line in LLF.
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Figure 4. Top view of the gearbox assembly line.

According to the possibilities and limitations (available layout, resources and funds),
as well as future strategic aims of gearbox AL development, in order to improve the yield of
the assembly process, seven technologies of I4.0 are taken into consideration by presented
decision support system approach. Enhancement that are taken into account are: RFID
technology, Liquid Crystal Display (LCD), pick-by-light technology, augmented reality
(AR), cobot, automated guided vehicle (AGV) and manipulator.

RFID technology is one of the most important technologies for automatic identification
and tracking of commodities in production system. It enables precise information about
the locations or states of observed goods in real-time and serves as a capstone for the
establishment of the IoT within production [59]. Usage of digital instructions through
LCDs instead of paper-based instructions are proved to reduce the assembly time of
subassemblies/products as well as the number of errors [34,47] but only if the product
is complex enough, as was stated by Syberfeldt et al. [60]. However, the meaning of
the expression “complex enough” is not offered in their study. Besides the usage of
digital instructions (LCD) utilization of technologies such as pick-by-light and AR also
show positive impacts on assembly line performances in comparison with paper-based
instructions. Pick-by-light implies the installation of a display with the light on certain
shelves/boxes that contain the required parts. By light signalization, this technology guides
the operators through the assembly steps, i.e., it displays screens lights up when a part
has to be picked from a certain location and displays the required quantity to pick. This
system is often connected with the warehouse management system. Therefore, some of
the potential improvements that this technology brings are the reduction of picking time
activities, as well as reduction of picking errors and operators’ mental load [61,62]. When
compared with paper-based instruction, AR also offers a significant improvement of the
operators’ performance time, error rate, cognitive (mental) load as well as minimization
of the divided attention issue [38,44,63]. Noted recent research about the usage of AR
technology for manufacturing purposes are papers of Zhu et al. [64], Schroeder et al. [65],
Sepasgozar et al. [66] and Lalik et el. [67]. Zhu et al. [64] and Schroeder et al. [65] discussed
the usage of AR technology as a tool that visualizes the Digital twin data, thus enabling the
display of real-time information to the users. Sepasgozar et al. [66] presents the research
about the application of the different AR technologies coupled with the Digital Twin for
the virtual learning purposes while Lalik et al. [67] focus on the usage of AR technology
together with the Digital Twin for the development of new system architecture for control
of the industrial devices. Therefore, all of the mentioned technologies have the potential to
improve the decision-making process and work procedure of the workers providing them
with real-time information. Real-time information is necessary to enhance the timeliness
and efficacy of the decision-making process [68].
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Application of cobots within manual AL is desirable when the human is confronted
with heavy loads and repetitive, tedious activities [69,70]. Human-robot collaboration
(HRC) enables operators to share the same workspace with the cobots while proving
the possibility to allocate tasks in a more flexible way [41]. If the tasks are assigned
in an efficient way, this form of collaboration allows the system to evolve and rapidly
accommodate the challenges of an increasing product variety and market volatility [71].
Tsarouchi et al. [72] and Kruger et al. [73] reported that the introduction of the cobots
within the AL results in the reduction of time needed for a human operator to complete the
task, higher efficiency, or the increase of human safety. On the other hand, some authors
emphasize that implementation of the HRC is not always justified and may result in an
increase in assembly time [69,74]. Justification and possibilities of cobot implementation
within the gearbox assembly line that is observed within this research can be found in
the previous paper of the authors [75]. Besides the cobot implementation, manipulator
and AGV are considered in this research as technologies that coexist with the human in
the workspace and reduce its physical load. AGV presents one of the most suitable and
efficient technologies that can replace human work in the terms of goods’ real-time supply
and transportation within the factory environment. Manipulator is an electronic device
developed to improve the ergonomics of the fifth assembly workstation, i.e., this device is
developed to reduce operator physical effort, which occurs as a result of handling heavy
components that need to be mounted (upper housing cover).

In the following subsection, the decision support system for I4.0 technology imple-
mentation is presented. The proposed approach is able to include user preferences that are
associated with company constraints from an economic and practical point of view, as well
as worker resource shortages.

4.1. Implementation of Decision Support System

For evaluating the use of different I4.0 technologies that can be utilized for AL de-
velopment, this work proposes a decision support approach presented in Figure 1 that
utilizes PROMETHEE method as a proven multi-criteria decision-making method. There
are also other proven and widely used multi-criteria decision-making methods, such as:
AHP, ELECTRE, and TOPSIS. However, PROMETHEE method was selected, because it was
much easier to define indifference and preference thresholds of criteria as PROMETHEE
method does, than to manually compare alternatives on each criterion as the AHP method
does, and its approach is more convenient than the ideal and anti-ideal alternative approach
of the TOPSIS method. Furthermore, PROMETHEE method is a modern version of the
outranking approach that is used by ELECTRE method. By the proposed approach, seven
options (alternatives) of I4.0 technologies are taken into account for the presented study,
as was previously stated. These alternatives are evaluated through the four quantitative
criteria: total investment cost, worker effort, workspace utilization and cycle time reduc-
tion. Each criterion is assigned a desired goal function, minimization or maximization.
Two of the chosen criteria are intended to be maximized, namely “Cycle time reduction”
and “Worker effort reduction”. While the other two criteria are planned to be minimized.
Criteria selected for this study, with their evaluation for every observed technology are
shown in Figure 5.

Cycle time reduction is one of the main aims of the implementation of I4.0 technology
since the total production time depends on the workstation with the highest cycle time.
Information about cycle time reduction is gathered for feasible technology in relation to
manual assembly. To collect this data, discrete event simulations are usually used, but in
this research, the data are collected with the implementation of selected technology on a real
AL that develops within LLF. The total investment cost is mainly affected by the price of the
available equipment taken into consideration. Worker effort values are estimated according
to the workers’ experience and knowledge and they are collected through interviews with
the different workers. Although, this factor can be more precisely calculated with the
usage of some technologies, such as sensors or cameras, that provide information about
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physical worker effort according to the body gesture recognition [76], human physiology
such as heart rate variability features [77], body movement and ability [78] etc. or by using
approaches such as the one proposed by Blafos et al. [79]. Consequences of implementation
of new technology always reflect in inevitable smaller or larger requirements of workspace
layout. Since this resource is limited, it is taken into account. A presented list of criteria can
be broadened and customizable to the company’s strategy.

  
(a) (b) 

  
(c) (d) 

Figure 5. Criteria evaluation for each alternative: (a) total investment cost; (b) cycle time reduction;
(c) worker effort reduction; (d) increase of workspace layout.

4.2. Results

The presented decision support system enables the decision-maker to express its
preferences through criteria weight and preference function. For the study carried out in
this research, five different criteria weights sets are observed. Each weight change refers to
one scenario. The first scenario, named Scenario 0, is an alternative where each criterion
has equivalent weights. The other four scenarios refer to the options in which the weight
value of one criterion differs from others. In doing so, one criterion was assigned twice
the weight value than the remaining criterion weights (Scenario 1–4). The weights of five
observed scenarios can be seen in Figure 6.
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Figure 6. Different criteria weight for each scenario.

The preference function that is used for the PROMETHEE method is the linear prefer-
ence function with defined indifference and preference thresholds for all criteria. Linear
preference function was chosen since it is recommended for the quantitative criteria when
an indifference threshold is wished to be defined, which is the situation in this study. Guide-
lines on how to select the appropriate preference function are given in the literature [54].
The meaning of the indifference and preference thresholds are as follows. Indifference
threshold is the largest deviation that the decision-maker consider negligible, while the
preference threshold is defined as the smallest deviation sufficient to generate a full prefer-
ence of one alternative (option) among the other ones [54]. For example, for the presented
study for the criterion “Total cost investment” the indifference threshold and preference
threshold are set to 135 and 667 EUR, respectively. It means that if the difference in prices
between the two observed alternatives is below EUR 135, both alternatives are equally
preferred and preference of one alternative over another alternative is 0. However, if the
price of alternative 1 is cheaper than alternative 2 by EUR 667 or more, alternative 1 is
absolutely preferred over alternative 2. All other differences among alternatives that are
between 135 and 667 EUR will result with preference between 0 and 1 of one alternative
over another, according to defined linear function. Threshold values are defined as absolute
number values because of simplicity and ease of understanding. The indifference and
preference threshold for the remaining three criteria are given in Table 1.

Table 1. Threshold values for observed criteria.

Criterion Indifference Threshold 1 Preference Threshold 1

Worker effort reduction 10 20
Cycle time reduction 5 10

Workspace layout increase 5 10
1 Values are given in absolute amounts.

Figures 5 and 6, and Table 1 are input data for the PROMETHEE method, which is run
for each scenario separately, i.e., five times. The best alternative, i.e., technologies ranking
for each different scenario are compared in Figure 7 and Table 2.
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Figure 7. The rank of alternatives for each observed scenario.

Table 2. The rank of alternatives for each observed scenario.

Scenarios (Different Weights)

Rank of Alternatives Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4

1. RFID RFID Manipulator Cobot RFID
2. Manipulator LCD AR AR Pick by Light
3. AR Manipulator Cobot Pick by Light AR
4. Pick by Light Pick by Light RFID Manipulator LCD
5. LCD AR Pick by Light RFID Manipulator
6. Cobot AGV LCD LCD Cobot
7. AGV Cobot AGV AGV AGV

From the alternative rank, it is clear that the RFID presents the best compromise in
scenario 0 that relates to equal criterion weight because it is the cheapest option that does
not increase the layout significantly. Furthermore, RFID is the best compromise solution
in scenario 1 which emphasizes cost reduction. This is expected since this option is the
cheapest one of all observed technology alternatives. RFID is also the best compromise
solution in scenario 4 where the criterion layout increase is minimized because this technol-
ogy is among the technologies that contribute the least to increasing the workspace. On
the other hand, reduction of cycle time and worker effort was important in Scenario 2 and
Scenario 3, respectively. Therefore, the alternative cobot resulted as the best one in Scenario
2 since this technology significantly reduces the cycle time. Because of the enormous
reduction of worker effort, the manipulator option resulted as the best one for Scenario
3. It is surprising that the AGV technology in most of the scenarios come last. It can be a
little bit confusing given that these types of technologies are highly used in practice due to
their numerous advantages such as faster fulfillment of customer requirements and orders,
reduction of production costs. One possible reason may be that these technologies could
not be effectively presented through the given criteria.

The presented analysis emphasizes the importance of decision-makers preferences,
i.e., user preferences, expressed through the weights (priorities) of the selected criteria for
solution evaluation. Also, this analysis emphasizes the need for individual definitions of
criteria depending on the needs of the enterprise. Therefore, in the process of determining
the weight of the criteria, as well as during the definition and selection of important criteria
that must be taken into account in the decision process, each enterprise needs to approach
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with great caution. It is suggested that values of weights, as well as criteria, are determined
in groups when they represent the conclusion of mutual work and agreement.

5. Discussion and Conclusions

Every modern production enterprise seeks to secure its long-term survival in relentless
market competition. To achieve this, keeping up with the new trends and demands set by
the market, as well as keeping up with the continuous development of technology, must
be the main goals of every company. Today’s rapid development of technology brings the
introduction of new technologies and organizational structures defined by I4.0. Therefore,
constant education of workers is required in order to help enterprises quickly adapt to
newly created circumstances, i.e., to help the workers to acquire knowledge and practice
for further progress of their processes and organizations. The proven concept of an efficient
way for worker education is the LF concept.

Since, principal features of I4.0 is the influence of technology as an accelerant that
enables individualized solution, flexibility, and cost-saving in manufacturing processes [80],
the proper selection of technology that brings the most benefit to the individual production
system (e.g., progress within the AL of the company) is imposed for further development
of enterprises. Technology should be selected having in mind the alignment of individual
criteria constraints and criteria interdependence with the expected outcomes of KPIs.
Therefore, in order to better adjust the selection process to individual needs of the assembly
line, the proposed framework for technology selection must include an analysis of the
current state of the assembly line, its limitations and possibilities as well as future strategic
goals. Considering all these parameters, the selection technology procedure will guide
the decision-maker to the best compromise solution. The procedure for the selection of
the most appropriate technology for the development of ALs from the perspective of
I4.0 is proposed in the current study. This approach takes into account the diversity of
each individual enterprise production, i.e., AL, in terms of their configuration, resources,
limitations, possibilities, as well as strategic aims and business policy. It means that the
proposed decision support system, besides spatial and economic assets, takes into account
cost-efficiency as well as alignment of expected gains to the enterprises’ strategic aims. To
express the real needs of the companies, the dose of subjectivity is involved in the decision-
making process through the definition of criterion weight through which user preferences
are expressed. This subjectivism is important, because if for example, we observe the
criterion “cost” (with minimization aim) and the enterprise that has a limited budget for
improvements and wants a low-cost solution, then this criterion will get a high weight
value. Opposite, if the enterprise is willing to invest a lot of finance into the improvement
of the production process, the criterion “cost” will have a low value. As an open approach,
this procedure easily adjusts to the individual possibilities and limitations of the end-user,
since it is not bound to certain methods and tools. The proposed procedure could be used to
gain benefits from the I4.0 by the production managers or the CEO who is well acquainted
with the assembly process.

For the purposes of this paper, a gearbox AL situated in the LF characterized by a high-
variety/low-volume production type is selected to describe the proposed decision support
system. Multi-criteria decision support system is based on PROMETHEE which is a proven
method for ranking defined alternatives in order to select the most appropriate according
to the user preferences. The highest-ranked alternative presents the best compromise from
the pool of possible alternatives, considering user preferences determined a priori. The
weights of criteria are varied in five scenarios in the gearbox AL study. For each scenario,
the best option was found. Conducted validation study emphasized the impact and the
importance of user preferences, as well as the need to carefully define the criteria for the
evaluation of observed alternatives in the decision-making process. The selected alternative
can be used immediately, but every improvement could bring certain changes. Therefore,
before continuing with the following procedure iteration, assembly line balancing and
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a new spatial arrangement of the workstations are required to take into account. These
changes could result in different values of criteria for the next iteration.

The current work contributes to the existing literature by expanding the research
related to the implementation of I4.0 technology. The proposed procedure presents a good
guideline for the end-user with little experience and limited resources during the technology
selection process that is adjusted according to its need. It provides the rank of observed
technology solutions with respect to the current state of the assembly line, its limitations,
its possibilities as well as alignment of expected gains to enterprise strategic goals. The
presented analysis in Section 4 emphasizes the importance of decision-makers’ preferences,
expressed through the criterion weights, as well as the need for criteria definition depending
on the enterprise’s possibilities and expected goals. Therefore, prior enterprise embarks
on the implementation of this procedure, it is suggested that the values of weights, as
well as the criteria definitions, are estimated in the groups. In that way, they represent
the conclusion of mutual work and agreement. The proposed approach is iterative. It
implies that when one selected solution is implemented on the assembly line, the whole
selection procedure must be repeated in order to find the next most appropriate solution
for the altered state since the values of the criteria for the next iteration could be changed.
Accordingly, future research will be directed in the development of a broader decision
support system. This support system will integrate the adaptive simulation models and
propose the algorithm to select the roadmap of developed alternatives to avoid the iterative
application of the procedure. The base of the future algorithm will be discrete event
simulation coupled with the complexity I4.0 indicators that describe the changes of selected
important parameters and according to them analyze the possible future alternatives. The
proposed algorithm will take into account balancing of the assembly line, as well as other
information related to the operational level (such as sequencing, scheduling, etc.).
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3. Hozdić, E. Smart factory for industry 4.0: A review. Int. J. Mod. Manuf. Technol. 2015, VII, 28–35.
4. Koren, Y.; Shpitalni, M. Design of reconfigurable manufacturing systems. J. Manuf. Syst. 2010, 29, 130–141. [CrossRef]
5. Kagermann, H.; Wahlster, W.; Helbig, J. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0; Heilmeyer und

Sernau: Berlin, Germany, 2013.
6. Saniuk, S.; Grabowska, S. The concept of cyber-physical networks of small and medium enterprises under personalized

manufacturing. Energies 2021, 14, 5273. [CrossRef]
7. Uhlemann, T.H.J.; Schock, C.; Lehmann, C.; Freiberger, S.; Steinhilper, R. The Digital Twin: Demonstrating the Potential of Real

Time Data Acquisition in Production Systems. Procedia Manuf. 2017, 9, 113–120. [CrossRef]
8. Saniuk, S.; Grabowska, S.; Gajdzik, B.Z. Personalization of products in the industry 4.0 concept and its impact on achieving a

higher level of sustainable consumption. Energies 2020, 13, 5895. [CrossRef]
9. Thoben, K.D.; Wiesner, S.A.; Wuest, T. “Industrie 4.0” and smart manufacturing-a review of research issues and application

examples. Int. J. Autom. Technol. 2017, 11, 4–16. [CrossRef]
10. Andulkar, M.; Le, D.T.; Berger, U. A multi-case study on Industry 4.0 for SME’s in Brandenburg, Germany. In Proceedings of the

Annual Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 3–6 January 2018; pp. 4544–4553.

55



Energies 2022, 15, 30

11. Weyer, S.; Schmitt, M.; Ohmer, M.; Gorecky, D. Towards industry 4.0—Standardization as the crucial challenge for highly modular,
multi-vendor production systems. In IFAC-PapersOnLine; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 28, pp.
579–584.

12. Welbourne, E.; Battle, L.; Cole, G.; Gould, K.; Rector, K.; Raymer, S.; Balazinska, M.; Borriello, G. Building the internet of things
using RFID: The RFID ecosystem experience. IEEE Internet Comput. 2009, 13, 48–55. [CrossRef]

13. Gajdzik, B.; Grabowska, S.; Saniuk, S.; Wieczorek, T. Sustainable Development and Industry 4.0: A Bibliometric Analysis
Identifying Key Scientific Problems of the Sustainable Industry 4.0. Energies 2020, 13, 4254. [CrossRef]

14. Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the
Energy Sector. Energies 2021, 14, 1885. [CrossRef]

15. Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Engel, P.; Harnisch, M.; Justus, J. Future of Productivity and Growth in
Manufacturing Industries; Boston Consulting Group (BCG): Boston, MA, USA, 2015.

16. Abele, E.; Metternich, J.; Tisch, M.; Chryssolouris, G.; Sihn, W.; ElMaraghy, H.; Hummel, V.; Ranz, F. Learning factories for
research, education, and training. Procedia CIRP 2015, 32, 1–6. [CrossRef]

17. Krückhans, B.; Morlock, F.; Prinz, C.; Freith, S.; Kreimeier, D.; Kuhlenkötter, B. Learning Factories qualify SMEs to operate a smart
factory. In Proceedings of the COMA’16 Proceedings: International Conference on Competetive Manufacturing, Stellenbosch,
South Africa, 27–29 January 2016; pp. 457–460.

18. Kreimeier, D.; Morlock, F.; Prinz, C.; Krückhans, B.; Bakir, D.C. Holistic learning factories—A concept to train lean management,
resource efficiency as well as management and organization improvement skills. Procedia CIRP 2014, 17, 184–188. [CrossRef]

19. Prinz, C.; Morlock, F.; Freith, S.; Kreggenfeld, N.; Kreimeier, D.; Kuhlenkötter, B. Learning Factory Modules for Smart Factories in
Industrie 4.0. Procedia CIRP 2016, 54, 113–118. [CrossRef]

20. Li, F.; Yang, J.; Wang, J.; Li, S.; Zheng, L. Integration of digitization trends in learning factories. Procedia Manuf. 2019, 31, 343–348.
[CrossRef]

21. Abele, E.; Chryssolouris, G.; Sihn, W.; Metternich, J.; ElMaraghy, H.; Seliger, G.; Sivard, G.; ElMaraghy, W.; Hummel, V.; Tisch,
M.; et al. Learning factories for future oriented research and education in manufacturing. CIRP Ann.-Manuf. Technol. 2017, 66,
803–826. [CrossRef]

22. Lamancusa, J.S.; Jorgensen, J.E.; Zayas-Castro, J.L. Learning Factory—A new approach to integrating design and manufacturing
into the engineering curriculum. J. Eng. Educ. 1997, 86, 103–112. [CrossRef]

23. Rentzos, L.; Doukas, M.; Mavrikios, D.; Mourtzis, D.; Chryssolouris, G. Integrating manufacturing education with industrial
practice using teaching factory paradigm: A construction equipment application. Procedia CIRP 2014, 17, 189–194. [CrossRef]

24. Wagner, U.; AlGeddawy, T.; ElMaraghy, H.; Müller, E. Product family design for changeable learning factories. Procedia CIRP
2014, 17, 195–200. [CrossRef]

25. Veza, I.; Gjeldum, N.; Mladineo, M. Lean learning factory at FESB—University of Split. Procedia CIRP 2015, 32, 132–137. [CrossRef]
26. Womack, J.P.; Jones, D.T.; Roos, D. The Machine that Changed the World: The Story of Lean Production—Toyota’s Secret Weapon in the

Global Car Wars that is Now Revolutionizing World Industry; Simon and Schuster: New York, NY, USA, 2007.
27. Dombrowski, U.; Richter, T.; Krenkel, P. Interdependencies of Industrie 4.0 & Lean Production Systems: A Use Cases Analysis.

Procedia Manuf. 2017, 11, 1061–1068. [CrossRef]
28. Rossini, M.; Costa, F.; Tortorella, G.L.; Portioli-Staudacher, A. The interrelation between Industry 4.0 and lean production: An

empirical study on European manufacturers. Int. J. Adv. Manuf. Technol. 2019, 102, 3963–3976. [CrossRef]
29. Salah, B.; Khan, S.; Ramadan, M.; Gjeldum, N. Integrating the concept of industry 4.0 by teaching methodology in industrial

engineering curriculum. Processes 2020, 8, 1007. [CrossRef]
30. Wilson, J.M. Henry Ford vs. assembly line balancing. Int. J. Prod. Res. 2014, 52, 757–765. [CrossRef]
31. Bortolini, M.; Ferrari, E.; Gamberi, M.; Pilati, F.; Faccio, M. Assembly system design in the Industry 4.0 era: A general framework.

In IFAC-PapersOnLine; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 50, pp. 5700–5705.
32. Miqueo, A.; Torralba, M.; Yagüe-Fabra, J.A. Lean manual assembly 4.0: A systematic review. Appl. Sci. 2020, 10, 8555. [CrossRef]
33. Gregor, M.; Medvecky, S. Digital Factory—Theory and Practice. In Engineering the Future; Dudas, L., Ed.; IntechOpen: London,

UK, 2010; pp. 355–376.
34. Hou, L.; Wang, X.; Bernold, L.; Love, P.E.D. Using Animated Augmented Reality to Cognitively Guide Assembly. J. Comput. Civ.

Eng. 2013, 27, 439–451. [CrossRef]
35. Cohen, Y.; Faccio, M.; Galizia, F.G.; Mora, C.; Pilati, F. Assembly system configuration through Industry 4.0 principles: The

expected change in the actual paradigms. In IFAC Paper Online; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 50, pp.
14958–14963.

36. Peron, M.; Sgarbossa, F.; Strandhagen, J.O. Decision support model for implementing assistive technologies in assembly activities:
A case study. Int. J. Prod. Res. 2020, 1–27. [CrossRef]

37. Ranz, F.; Hummel, V.; Sihn, W. Capability-based Task Allocation in Human-robot Collaboration. Procedia Manuf. 2017, 9, 182–189.
[CrossRef]

38. Mourtzis, D.; Zogopoulos, V.; Xanthi, F. Augmented reality application to support the assembly of highly customized products
and to adapt to production re-scheduling. Int. J. Adv. Manuf. Technol. 2019, 105, 3899–3910. [CrossRef]

39. Battini, D.; Faccio, M.; Persona, A.; Sgarbossa, F. New methodological framework to improve productivity and ergonomics in
assembly system design. Int. J. Ind. Ergon. 2011, 41, 30–42. [CrossRef]

56



Energies 2022, 15, 30

40. Antonelli, D.; Astanin, S.; Bruno, G. Applicability of Human-Robot Collaboration to Small Batch Production. In Proceedings
of the Collaboration in a Hyperconnected World. PRO-VE 2016, Porto, Portugal, 3–5 October 2016; Hamideh, A., Luis, C.-M.,
António, L.S., Eds.; Springer: Cham, Switzerland, 2016; Volume 1, pp. 24–32.

41. Faccio, M.; Bottin, M.; Rosati, G. Collaborative and traditional robotic assembly: A comparison model. Int. J. Adv. Manuf. Technol.
2019, 102, 1355–1372. [CrossRef]

42. Weckenborg, C.; Kieckhäfer, K.; Müller, C.; Grunewald, M.; Spengler, T.S. Balancing of assembly lines with collaborative robots.
Bus. Res. 2020, 13, 93–132. [CrossRef]

43. Fowler, D.; Gurau, V.; Cox, D. Bridging the gap between automated manufacturing of fuel cell components and robotic assembly
of fuel cell stacks. Energies 2019, 12, 3604. [CrossRef]

44. Uva, A.E.; Gattullo, M.; Manghisi, V.M.; Spagnulo, D.; Cascella, G.L.; Fiorentino, M. Evaluating the effectiveness of spatial
augmented reality in smart manufacturing: A solution for manual working stations. Int. J. Adv. Manuf. Technol. 2018, 94, 509–521.
[CrossRef]

45. Horejsi, P.; Novikov, K.; Simon, M. A smart factory in a smart city: Virtual and augmented reality in a smart assembly line. IEEE
Access 2020, 8, 94330–94340. [CrossRef]

46. Wolfartsberger, J.; Haslwanter, J.; Lindorfer, R. Perspectives on Assistive Systems for Manual Assembly Tasks in Industry.
Technologies 2019, 7, 12. [CrossRef]

47. Hou, L.; Wang, X.; Truijens, M. Using Augmented Reality to Facilitate Piping Assembly: An Experiment-Based Evaluation. J.
Comput. Civ. Eng. 2015, 29, 05014007. [CrossRef]

48. Yoo, S.K.; Kim, B.Y. A decision-making model for adopting a cloud computing system. Sustainability 2018, 10, 2952. [CrossRef]
49. Marinho, M.; Prakash, V.; Garg, L.; Savaglio, C.; Bawa, S. Effective cloud resource utilisation in cloud erp decision-making process

for industry 4.0 in the united states. Electronics 2021, 10, 959. [CrossRef]
50. Majdzik, P.; Witczak, M.; Lipiec, B.; Banaszak, Z. (IMS2019)Integrated fault-tolerant control of assembly and automated guided

vehicle-based transportation layers. Int. J. Comput. Integr. Manuf. 2021, 1–18. [CrossRef]
51. Erdogan, M.; Ozkan, B.; Karasan, A.; Kaya, I. Selecting the Best Strategy for Industry 4.0 Applications with a Case Study. In

Industrial Engineering in the Industry 4.0 Era; Springer: Cham, Switzerland, 2018; pp. 109–119.
52. Rabbani, M.; Heidari, R.; Farrokhi-Asl, H. A bi-objective mixed-model assembly line sequencing problem considering customer

satisfaction and customer buying behaviour. Eng. Optim. 2018, 50, 2123–2142. [CrossRef]
53. Abdullah, L.; Chan, W.; Afshari, A. Application of PROMETHEE method for green supplier selection: A comparative result based

on preference functions. J. Ind. Eng. Int. 2019, 15, 271–285. [CrossRef]
54. Brans, J.-P.; Smet, Y. De PROMETHEE METHODS. In Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; pp.

187–219.
55. Hu, S.J.; Ko, J.; Weyand, L.; Elmaraghy, H.A.; Lien, T.K.; Koren, Y.; Bley, H.; Chryssolouris, G.; Nasr, N.; Shpitalni, M. Assembly

system design and operations for product variety. CIRP Ann.-Manuf. Technol. 2011, 60, 715–733. [CrossRef]
56. Roof, K.T. Elon Musk Says ‘Humans are Underrated’, Calls Tesla’s ‘Excessive Automation’ a ‘Mistake’. Available online: https://

techcrunch.com/2018/04/13/elon-musk-says-humans-are-underrated-calls-teslas-excessive-automation-a-mistake/ (accessed
on 14 April 2021).

57. Gjeldum, N.; Salah, B.; Aljinovic, A.; Khan, S. Utilization of Industry 4.0 Related Equipment in Assembly Line Balancing
Procedure. Processes 2020, 8, 864. [CrossRef]

58. Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
59. Ma, H.; Wang, Y.; Wang, K. Automatic detection of false positive RFID readings using machine learning algorithms. Expert Syst.

Appl. 2018, 91, 442–451. [CrossRef]
60. Syberfeldt, A.; Danielsson, O.; Holm, M.; Wang, L. Visual Assembling Guidance Using Augmented Reality. Procedia Manuf. 2015,

1, 98–109. [CrossRef]
61. Stockinger, C.; Steinebach, T.; Petrat, D.; Bruns, R.; Zöller, I. The effect of pick-by-light-systems on situation awareness in order

picking activities. Procedia Manuf. 2020, 45, 96–101. [CrossRef]
62. De Vries, J.; De Koster, R.; Stam, D. Exploring the role of picker personality in predicting picking performance with pick by voice,

pick to light and RF-terminal picking. Int. J. Prod. Res. 2016, 54, 2260–2274. [CrossRef]
63. Fiorentino, M.; Uva, A.E.; Gattullo, M.; Debernardis, S.; Monno, G. Augmented reality on large screen for interactive maintenance

instructions. Comput. Ind. 2014, 65, 270–278. [CrossRef]
64. Zhu, Z.; Liu, C.; Xu, X. Visualisation of the digital twin data in manufacturing by using augmented reality. Procedia CIRP 2019, 81,

898–903. [CrossRef]
65. Schroeder, G.; Steinmetz, C.; Pereira, C.E.; Muller, I.; Garcia, N.; Espindola, D.; Rodrigues, R. Visualising the digital twin using

web services and augmented reality. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN),
Poitiers, France, 19–21 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 522–527.

66. Sepasgozar, S.M.E. Digital twin and web-based virtual gaming technologies for online education: A case of construction
management and engineering. Appl. Sci. 2020, 10, 4678. [CrossRef]

67. Lalik, K.; Flaga, S. A real-time distance measurement system for a digital twin using mixed reality goggles. Sensors 2021, 21, 7870.
[CrossRef] [PubMed]

57



Energies 2022, 15, 30

68. Gwon, S.H.; Oh, S.C.; Huang, N.; Hong, S.K. Advanced RFID application for a mixed-product assembly line. Int. J. Adv. Manuf.
Technol. 2011, 56, 377–386. [CrossRef]

69. Djuric, A.M.; Rickli, J.L.; Urbanic, R.J. A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing
Systems. SAE Int. J. Mater. Manuf. 2016, 9, 457–464. [CrossRef]

70. Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and
applications. Mechatronics 2018, 55, 248–266. [CrossRef]

71. ElMaraghy, H.; ElMaraghy, W. Smart Adaptable Assembly Systems. Procedia CIRP 2016, 44, 4–13. [CrossRef]
72. Tsarouchi, P.; Matthaiakis, A.S.; Makris, S.; Chryssolouris, G. On a human-robot collaboration in an assembly cell. Int. J. Comput.

Integr. Manuf. 2017, 30, 580–589. [CrossRef]
73. Krüger, J.; Lien, T.K.; Verl, A. Cooperation of human and machines in assembly lines. CIRP Ann.-Manuf. Technol. 2009, 58, 628–646.

[CrossRef]
74. Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human-robot

interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]
75. Gjeldum, N.; Aljinovic, A.; Crnjac Zizic, M.; Mladineo, M. Collaborative robot task allocation on an assembly line using the

decision support system. Int. J. Comput. Integr. Manuf. 2021, 1–17. [CrossRef]
76. Wang, Z.; Lou, X.; Yu, Z.; Guo, B.; Zhou, X. Enabling non-invasive and real-time human-machine interactions based on wireless

sensing and fog computing. Pers. Ubiquitous Comput. 2019, 23, 29–41. [CrossRef]
77. Murukesan, L.; Murugappan, M.; Iqbal, M.; Saravanan, K. Machine learning approach for sudden cardiac arrest prediction based

on optimal heart rate variability features. J. Med. Imaging Health Inform. 2014, 4, 521–532. [CrossRef]
78. Clark, C.C.T.; Barnes, C.M.; Stratton, G.; McNarry, M.A.; Mackintosh, K.A.; Summers, H.D. A Review of Emerging Analytical

Techniques for Objective Physical Activity Measurement in Humans. Sport. Med. 2017, 47, 439–447. [CrossRef]
79. Bláfoss, R.; Sundstrup, E.; Jakobsen, M.D.; Brandt, M.; Bay, H.; Andersen, L.L. Physical workload and bodily fatigue after work:

Cross-sectional study among 5000 workers. Eur. J. Public Health 2019, 29, 837–842. [CrossRef] [PubMed]
80. Wang, R. Deloitte’s Study on Industry 4.0: Industry 4.0 Challenges and Solutions for the Digital Transformation and Use of Exponential

Technologies; Zurich Deloitte AG: Zurich, Switzerland, 2015.

58



Citation: Celent, L.; Mladineo, M.;

Gjeldum, N.; Crnjac Zizic, M.

Multi-Criteria Decision Support

System for Smart and Sustainable

Machining Process. Energies 2022, 15,

772. https://doi.org/10.3390/

en15030772

Academic Editors: Andrew Kusiak

and Surender Reddy Salkuti

Received: 22 December 2021

Accepted: 19 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Multi-Criteria Decision Support System for Smart and
Sustainable Machining Process

Luka Celent 1, Marko Mladineo 2,*, Nikola Gjeldum 2 and Marina Crnjac Zizic 2

1 School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK;
luka.celent@port.ac.uk

2 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split,
Rudera Boskovica 32, 21000 Split, Croatia; ngjeldum@fesb.hr (N.G.); mcrnjac@fesb.hr (M.C.Z.)

* Correspondence: mmladine@fesb.hr; Tel.: +385-21-305-939

Abstract: Sustainatableble development assumes the meeting of humanity’s everyday needs and
development goals while sustaining the ability of nature to provide the resources and ecosystem on
which the economy and society depend. It means that an increase of economic benefit cannot be a
single optimization problem anymore, instead, the multi-criteria approach is used with the accent on
ecology and social welfare. However, it is not easy to harmonize these aims with machining, which is
a well known industrial pollutant. On the other hand, new industrial paradigms such as Industry
4.0/5.0, are driving toward the smart concept that collects data from the manufacturing process and
optimizes it in accordance with productivity and/or ecologic aims. In this research, the smart concept
is used through the development of the multi-criteria decision support system for the selection of
the optimal machining process in terms of sustainability. In the case of milling process selection, it
has been demonstrated that green machining, without a multi-criteria approach, will always remain
an interesting research option, but not a replacement for conventional machining. However, when
applying realistic ecological and social criteria, green machining becomes a first choice imperative.
The multi-criteria decision-making PROMETHEE method is used for the comparison and ranking,
and validation of results is made through criteria weights sensitivity analysis. The contribution of
this concept is that it could also be applied to other manufacturing processes.

Keywords: smart manufacturing; sustainable machining; decision support system; PROMETHEE
method; Industry 4.0

1. Introduction

Machining is still a leading manufacturing process with a share of 60–80% in manufac-
turing industries of developed countries, and it has a share of 15% of total product costs [1].
For decades, optimization aims in manufacturing were: manufacture more, manufacture
faster, and manufacture with fewer costs. However, the idea of sustainable development [2]
does not see an economic benefit as the only optimization criterion. Instead, two more
criteria are added—ecology and social welfare—making sustainability an intersection of
economy, ecology, and social welfare. World leaders [3] and moral authorities [4] agreed
that care for “our common home” is imperative, which requires immediate actions. Ac-
cording to this, the development of sustainable manufacturing processes, so called green
machining, is becoming unavoidable for the manufacturing industry [5].

In the context of sustainability, machining processes are problematic. By generating
different offensive pollutants and by-products, machining has a negative effect on ecology
and health of workers. In the 1980 s and 1990 s, there were trends toward the clean
production and green machining [6]. However, the economic side of green machining
was problematic, because it represented a higher cost of manufacturing, therefore, some
of the authors were not considering its sustainability, but just its preservation of the
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environment [6]. If looking from the environmental point of view, the usage of cutting
fluids in machining is its major ecologic problem, however, it also increases productivity.
The main purpose of cutting fluid application is to reduce heat generation at the cutting
zone in order to prevent overheating of the cutting tool that could cause tool breakage and
improve the surface roughness. Tool wear and surface roughness are always used as a
quality indicator of a product. Thus, within machining processes, cutting fluids are used in
order to increase productivity. The historical development of cutting fluids is brought forth
by Byers [7], who concludes that it was not until the early 1960 s that scientists began to
recognize and express concerns about the harmful effects of cutting fluids on the humans
and environment.

At the beginning of the 21st century, on the global level, manufacturers were using
close to 1.4 billion liters of cutting fluids, forming a significant demand for this non-
renewable type of raw material [8]. The consumption of cutting fluids in the machining
industry alone for the European Union (EU) stands at approximately 300 million liters
per year [9]. Approximately 85% of cutting fluids used around the world are mineral-
based cutting fluids, which cause significant environmental pollution throughout their
lifecycle [10]. Having a limited lifespan, cutting fluids must be properly disposed of after
use. Satisfactory disposal considers recycling or burning as a fuel. In the EU, only 32% of the
total amount of annually used cutting fluids is disposed of in an environmentally friendly
way [11]. Considering the losses of cutting fluids through evaporation, uncontrolled
leakage, residual quantities on the workpiece, cutting tool, or swarf, it can be established
that in these ways, almost 30% of the annual amount of cutting fluids used is taken out
of the production system [12]. Cutting fluids are hazardous both on storage and disposal,
requiring special treatment in order to remove the toxic components inside the cutting
fluids before disposal. Disposal of cutting fluids raises a number of environmental issues,
especially considering that it is one of the most complex types of industrial waste [13].
Cutting fluids are complex in their composition, and as such, they pose a significant health
hazard throughout their life cycle. The American National Institute for Occupational Safety
and Health estimates that annually, 1.2 million workers are exposed to the possible harmful
effects of cutting fluids [14]. Among the most common diseases caused by exposure to
cutting fluids, Ueno et al. [15] highlighted various skin diseases, while Mackerer [16]
pointed out malignant and non-malignant diseases of the respiratory system. Other health
hazards, including oil mist and oil vapor effects, bactericide effects, genotoxicity, the
presence of cancerogenic substances and heavy metal particles [17], represent the use
of cutting fluids as a burning issue with possible numerous short-term and long-term
consequences for humans [18]. Regarding the economic aspects of using cutting fluids,
Davim [19] wrote about its consumption in thousands of tons, allocation in billions of
dollars, testifying to the scale of use and costs of cutting fluids. The costs associated with
the use of cutting fluids can be up to 17% of the total production cost [20]. In the case of
machining of hard-to-cut materials, that percentage can grow up to 30% of total production
costs [21]. When taking into consideration the previously mentioned disposal of cutting
fluids, the cost of disposal can be up to two to four times the cutting fluid purchasing
costs [22].

Current usage of cutting-fluids in the machining process, which results in up to 30% of
uncontrolled loss of the cutting fluids [12], makes machining a barrier in the path toward a
circular economy. That fact represents an enormous issue, especially in the European Union,
since the EU set a CO2 reduction and circular economy as the main ecology aims for the
next decades. The concept of Industry 5.0, presented by the European Commission [23,24]
as an update of Industry 4.0 [25], also sees circular economy [26] as one of its key goals
(Figure 1). The main contribution of Industry 4.0/5.0 in achieving these goals is in economic
savings through better energy and resource management provided by big data analytics
and optimization based on digital twins [27]. Nevertheless, the concept of Industry 4.0/5.0
is pervasive, affecting the product, process, and the whole production system [27].
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Figure 1. The main goals associated with the concept of Industry 5.0 [24].

Therefore, there is an imperative to analyze the usage of cutting-fluids in machining
from the aspect of the circular economy, including social aspects. This represents a great
challenge for scientists in the search for better solutions for cooling and lubrication in the
machining process. These new solutions must be technically and economically viable,
but also they must not represent a threat to humans or the environment. At the moment,
there are several green machining techniques that add a dose of sustainability into the
machining process.

1.1. Green Machining Techniques

Enactment of new legislation that will protect and enhance both human health and
the environment, together with an increase in the cost of use and disposal of the cutting
fluids, have led to extensive scientific research towards so-called environmentally friendly
and potentially sustainable green machining [28]. In this light, the machining industry
is focused on trying to achieve dry machining, as well as new alternative methods and
systems such as minimum quantity lubrication (MQL) systems, compressed cold air cooling
(CCA) systems, and cryogenic machining systems.

The advantages of a complete switch from the conventional use of cutting fluids to
dry machining are multiple [29,30]: no negative impact on humans and the environment,
reduction of variable machining costs, easier swarf recycling, no need for degreasing of the
workpiece after the machining process, and in some cases longer tool life when high-speed
machining some specific materials. In addition to cost-effectiveness and other mentioned
practicalities of dry machining, Dinnie [31] also noted the increase in the company’s positive
image, which is one of the main ways to gain a lasting competitive advantage in the global
market of today.

The intermediate solution towards reaching dry machining is the MQL method. The
MQL method is the most used alternative to the conventional use of cutting fluids, and
it can be classified as a semi-dry machining method. Reduction in power consumption
and cutting fluid amounts can be made using this technique [32]. In the case of MQL, oil
provides lubrication, while the effect of cooling and blowing off the swarf from the cutting
zone is obtained by the constant presence of an airflow [33].

Both machining with the conventional use of cutting fluid and machining under MQL
pose the problem of disposal of cutting fluids. A by-product of MQL is mist, which in
the industrial environment can cause serious respiratory effects on the workers that are
exposed to such substances [34]. CCA cooling and cryogenic machining systems have no
such effect on workers and, as such, represent a strong alternative to any liquid coolant in
machining. Initial studies used room-temperature compressed air, which proved ineffective
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compared to liquid coolant used during the machining process. New studies that were
conducted in the conditions of the compressed cold air cooling yield the results comparable
and, in some cases, even better than the use of cutting fluids. One way to perform CCA
cooling is the use of specially designed systems for the preparation and distribution of
compressed cold air, which requires an additional source of power [35,36]. Another way
of performing CCA cooling is the use of a vortex tube which requires only the supply of
a certain amount of air under pressure, enabling cold air-cooling conditions without the
need for an additional source of power [37,38]. The phenomenon of the creation of cold air
inside the vortex tube has not been fully explained yet, and different interpretations of this
phenomenon can be found [39]. There are few studies focused on the effect of CCA cooling
while machining, especially for milling operations. However, existing studies indicate great
potential in the end milling of ASSAB 718HH mold steel with a hardness of 35 HRc [40],
hard milling of AISI D2 cold work tool steel with a hardness of 62 HRc [31], and milling of
AISI 1050 steel with a hardness of 10 HRc [41].

Cryogenic machining involves cooling with cryogenic fluids—most often liquid
nitrogen—at temperatures down to −196 ◦C [42]. Liquid helium and carbon dioxide
are also used as cryogenic fluids. Similar to CCA, cryogenic fluid is applied directly to the
cutting zone in order to cool down both cutting tools and workpiece. In the case of liquid
nitrogen, which accounts for 78% of the earth’s atmosphere and is inert, lighter than air gas,
evaporation does not pose any threat in terms of environmental pollution or any danger
to workers’ health [43]; the same cannot be said for carbon dioxide which pollutes the
atmosphere. Some researchers are proposing a system that will use already existing carbon
dioxide exhaust gases within the production plant as cryogenic fluids [44]. In that case,
cryogenic machining would not contribute to additional air pollution. Furthermore, the
high consumption of cryogenic fluids, as well as the cost of investment in the previously
mentioned systems for supplying and applying cryogenic fluids while machining, as well
as the cost of cryogenic fluids itself, ultimately increases the cost of the machining process
and raises the question of the economic viability of the whole cryogenic process. It can be
concluded that cryogenic processes are profitable only in specific cutting conditions using
high values for cutting parameters such as cutting speed and feed [45].

In the end, it is important to mention the application of cutting fluids with the usage
of biodegradable cutting fluids [32,46]. It represents an interesting and important research
topic. However, it will not be considered in this research because a cutting fluid can be
biodegradable, but after machining, it still needs to be processed before the process of
disposal. Namely, the cutting fluid is mixed with metal chips and particles during the
machining process, so it is not biodegradable in that form, but it needs to be processed lately.

In this research, three different sets of milling experiments have been used [47]: con-
ventional milling with the application of cutting fluids (CF), dry milling (DM), and milling
with the application of compressed cold air cooling (CCA). These experiments are used as
input data for the developed multi-criteria decision support system, i.e., these experiments
are used for the proof of concept of the developed system.

1.2. Decision Support System for Smart Manufacturing

The multi-criteria perspective of sustainable development represents a significant
paradigm change not just from the industrial perspective, but from the scientific perspective
as well. This means a move from single-objective optimization toward multi-objective
optimization and multi-criteria decision-making. Since multi-objective optimization is used
for quantitative objectives, multi-criteria decision-making, which also supports qualitative
criteria, can find a wider application [48,49]. Therefore, it was suitable to apply some
multi-criteria decision-making methods in this research.

The concept of a smart system implies a function of real-time sensing of the process
or environment and the possibility to actuate, i.e., to control the process. However, a
smart system is not necessarily autonomous—rather, it is controlled by humans most of
the time, which means that the process is subordinated to human decision-making. The
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same principle applies to the smart manufacturing concept: sensors that are part of the
industrial Internet-of-Things provide “live” data and the ability to create a digital twin of
the manufacturing system. The digital twin is used for optimization and simulation of the
manufacturing system in order to apply changes that will optimize the production process.
However, the smart manufacturing system is not a cognitive system, therefore, decisions
are made by human decision-makers.

For more than 40 years, there has been an idea of enhancing human decision-making
abilities by providing them artificial decision support in the form of a computer system: the
decision support system (DSS). One of the DSS pioneers—Ralph H. Sprague Jr.—developed
the conceptual foundation for decision support systems in 1979. He defined the main
elements of the DSS [50]: data, model, and user interface (dialogue) for interaction with
humans (Figure 2).

 

Figure 2. The main elements of the decision support system: data, model, and user interface (adapted
from [50]).

In this research, the same concept of DSS (Figure 2) was used to create a multi-criteria-
based decision support system for sustainable decisions in machining. The developed DSS
is based on a multi-criteria decision-making PROMETHEE (Preference Ranking Organiza-
tion METHod for Enrichment of Evaluations) method. As mentioned, three different sets
of milling experiments—conventional milling with the application of cutting fluids (CF),
dry milling (DM), and milling with the application of compressed cold air cooling (CCA)
—were used to create three case studies for presentation and validation of the concept. The
main research objective was to design a DSS that will ensure a proper comparison of green
and conventional machining techniques, which proves that green techniques are optimal in
terms of sustainability. It is a known fact that conventional machining techniques are more
productive and economical than green techniques, and perhaps it will always remain that
way. But, if profit is not the only optimization criterion, then green machining techniques
become important. Highlighting this fact was also one of the research objectives.

Regarding existing DSS concepts for machining, most of the time, they are used to
support the selection of the machining process or machine tool, but there are some authors
who have focused on the selection of parameters of the machining process. Temuçin
et al. [51] are using fuzzy based DSS to select machining processes aimed at non-traditional
technologies. Taha and Rostam [52] are using a combination of AHP and PROMETHEE
methods for the selection of machine tools, and Alberti et al. [53] are using the same
problem, but they are more focused on machine characteristics and performance tests.
Balazinski et al. [54] demonstrated a DSS for the selection of cutting parameters back in
1994, and it was one of the first applications of DSS in machining. Niamat et al. [55], similar
to Ming et al. [56], are using multi-objective optimization to optimize electro-discharge
machining process parameters. Wittbrodt and Paszek [57] developed a DSS for monitoring
and forecasting tool wear based on fuzzy logic. Vidal et al. [58] are using DSS to plan
milling operations by optimizing the selection of parameters.
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However, there are some research regarding DSS in machining that is closer to research
presented in this paper. Plaza et al. [59] aimed to stabilize cutting forces in order to achieve
higher quality, but this led to a reduction of machining efficiency. Similarly, but with
differences, a kind of balanced approach is presented in this paper: balancing economic
benefits and machining efficiency on one side, and preserving the natural environment and
human health on the other side. Shin et al. [60] and Khan et al. [5,61] have, similarly, taken
sustainability criteria into account in their research. In order to do so, they are examining
and optimizing the usage of energy resources during the machining process.

To conclude, the research presented in this paper contributes to the area of application
of DSS in machining with the novel approach of implementing sustainability criteria
into the milling process selection, which results in sustainable and green machining. It
demonstrates, on real milling experiments, how to properly balance between machining
efficiency and preservation of the planet for future generations. Practical contribution of
the research is that developed concept could be applied to other manufacturing processes
and to other human economic activities, as well.

The rest of the paper is organized as follows: in the section “Methods”, the description
of proposed DSS is given together with an explanation of the PROMETHEE method. The
experimental data sets for three different milling techniques that will be used as a case
study are also presented. The section “Results” is divided into four subsections. The first is
Case 1, in which the comparison of milling techniques is based on four quantitative criteria
for economic and productivity. The next subsection is Case 2, in which the comparison
of milling techniques has been extended with three additional qualitative criteria for
productivity. The subsection Case 3 describes the further extension of comparison of milling
techniques with 2 additional qualitative criteria for ecology and society, thus rounding up
the sustainability criteria. The final subsection tests the validity of the proposed approach
through criteria weights stability analysis. Finally, the conclusions and suggestions for
further research are given in the “Conclusions” section.

2. Methods

The starting point of this research is the definition of the machining process by defining
the most important inputs and outputs. A common model for the machining process is
presented in Figure 3. The inputs are the type of machining (milling, turning, etc.) and
its parameters (cutting speed, feed, etc.), with the definition of the machining technique
(application of cutting fluids, dry machining, etc.). The outputs can be divided into value
added or productivity (surface roughness, material removal rate, etc.) and non-value added
or cost (tool wear, machining cost, etc.). The optimization aim of this common machining
process would be to increase productivity and decrease costs.

 
Figure 3. A common model of machining process with inputs and outputs.
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It is the common approach that, however, has a limited view on negative outputs
of machining, since it is only focused on economic cost. But, what about ecological costs
through the negative impact on environment and social cost through negative impact on
worker’s health?

In this research, a model of the machining process was extended from direct outputs of
machining—technical productivity and economic cost—to indirect outputs of machining—
ecologic impact and threat to human health (Figure 4). Technical productivity is actually a
productivity but without an economic aspect (tool wear, machining cost, etc.). Ecological
impact assumes a negative impact on ecology (environment).

Figure 4. Proposed model of machining process with extended outputs definition.

When taking into account all proposed outputs (criteria), a machining process can
be optimized in order to achieve sustainable machining. The aim of this research was to
develop a decision support system for sustainable machining. The classic DSS concept was
used consisting of the data, model, and user interface. An optimization model is based on
multi-criteria decision-making method and uses criteria (outputs) defined in Figure 4. The
data were collected through experiments and research, and the data collection process could
be automated by using smart technology in the future. The user interface was a software,
in this case, Visual PROMETHEE software (Ver. 1.4, Mareschal, Bruxelles, Belgium), since it
has been decided to use PROMETHEE as a multi-criteria decision-making method. The
described concept of the DSS is presented in Figure 5.

Today, there are many multi-criteria decision-making methods in everyday engineer-
ing practice [62]. However, some of them are better accepted and spread because of their
capability to adjust to a variety of problems: AHP [63,64], ELECTRE [64], TOPSIS [64,65],
and PROMETHEE [66]. A crucial issue is to decide which method is the most adequate
for a particular problem, but most of the time, the outranking method, like PROMETHEE,
is the most suitable choice [67]. In this research, the PROMETHEE method was selected
because, for this kind of criteria, it is much easier to define indifference and preference
thresholds than to manually compare alternatives on each criterion as the AHP method
does. Furthermore, the PROMETHEE method better deals with the combination of qual-
itative and quantitative criteria than the ELECTRE method; and criteria evaluations, in
this case, do not have enough large set of data to properly construct ideal and anti-ideal
alternative to the TOPSIS method.
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Figure 5. Proposed decision support system for smart and sustainable machining.

The PROMETHEE (Preference Ranking Organization METHod for Enrichment of
Evaluations) method was developed by J.P. Brans and B. Mareschal in 1983 [68]. Input for
the PROMETHEE method is a matrix consisting of a set of potential alternatives (actions)
A, where each a element of A has its f(a), which represents the evaluation of one criterion.

Method PROMETHEE I ranks actions by a partial ranking, with the following domi-
nance flows, for the positive outranking flow [68]:

Φ+(a) =
1

n − 1 ∑
b∈A

Π(a, b) (1)

and for the negative outranking flow [68]:

Φ−(a) =
1

n − 1 ∑
b∈A

Π(b, a) (2)

where a and b represent the actions from a set of action A (during the pairwise comparison
of action a with all other n−1 actions), n is the number of actions and Π is the aggregated
preference index defined for each couple of actions.

The PROMETHEE I method gives the partial relation, and then a net outranking flow
is obtained from the PROMETHEE II method, which ranks the actions by complete ranking
calculating net flow [68]:

Φ(a)= Φ+(a) − Φ−(a) (3)

In the sense of priority assessment, net outranking flow represents the synthetic
parameter based on defined criteria and priorities among criteria. Usually, criteria are
weighted using criteria weights wj and the usual pondering technique [68]:

Π(a, b) =
∑n

j=1 wjPj(a, b)

∑n
j=1 wj

(4)

where Pj(a,b) represents preference of a over b for a given preference function of criterion j.
There are six different types of preference functions, but in this research, only the linear
preference function with indifference and preference thresholds were used.
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As mentioned, the PROMETHEE method requires a decision matrix as an input that
consists of alternatives and their criteria evaluations. In this case, alternatives are different
machining techniques with different machining parameters (cutting speed, feed per tooth,
depth of cut, machining time). So, five variable factors and three levels of factors were
used to define the experiment set (Table 1). The experimental design proposed by Taguchi
method uses the orthogonal arrays to organize the factors affecting the process, meaning
the design is balanced, so that factor levels are weighted equally. Following this, every
factor appears on the same number of levels, and every factor on any level will be in all
combinations with other factors. Such a method allows the determination of factors that
most affect the process with a minimum amount of experiments, thus saving time and
resources. The levels of factors, adopted values of machining parameters correspond to
the operational limits recommended by the cutting tool manufacturer together with the
machine tool capabilities.

Table 1. Factors and levels used for Taguchi design of experiments [47].

Levels of Factor

Cutting Speed
vc [m/min]

Feed Per Tooth
fz [mm/zub]

Depth of Cut
ae [mm]

Machining Time
t [min]

Machining Technique
Uo

A B C D E

1 100 0.05 1 10 Dry milling (DM)

2 125 0.08 1.5 16
Conventional milling with
the application of cutting

fluids (CF)

3 150 0.11 2 22
Milling with the

application of compressed
cold air cooling (CCA)

Three levels were used, since three different machining techniques—dry milling,
milling with the application of cutting fluids, milling with the application of compressed
cold air cooling—were used in experiments, so three levels of parameters were defined for
other factors as well.

According to Taguchi’s orthogonal array, a set of 18 experiments is a minimal set
for this design of experiments (Table 2). These experiments were made and four outputs
(results) were measured: surface roughness, tool wear, cost, and material removal.

The profilometer Mitutoyo Surftest 301 (Mitutoyo Corporation, Kawasaki, Japan) was
used for surface roughness measuring. Every measurement was repeated five times and
the average value was considered. Tool wear measurements were performed in accordance
with the International Standard ISO 8688-1 and periodically according to the experimental
plan. Tool wear of all the cutting inserts was measured and the average value was used.
This was done by using the toolmaker’s microscope with 100 times magnification. Material
removal was calculated by using a specific equation that considers all the important cutting
and experiment parameters such as axial depth of cut, radial depth of cut, feed rate, feed per
tooth, mill diameter, spindle speed and number of inserts. The costs associated with each
experiment included direct labor costs (cutting tool costs, cost of cutting fluid, machining
time) and electricity. The cost of electricity varied between different machining techniques.

Additionally, a label was created for each experiment based on the combination of
factors (Table 2). These data were used as the input matrix for the PROMETHEE method.
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Table 2. Experiments’ factors (input) and experiments’ results for 18 experiments defined by Taguchi
orthogonal array [47].

No.

Factors

Label
(E ABCD)

Output (Result)

A B C D E
Tool Wear
VB [μm]

Cost
Cso [€]

Surface
Roughnes
Ra [μm]

Material
Removal
Vuk [cm3]

1. 1 1 1 1 1 (DM) DM 1111 0.040 7.06 0.18 11.90
2. 1 2 2 2 2 (CF) CF 1222 0.070 7.33 0.31 45.80
3. 1 3 3 3 3 (CCA) CCA 1333 0.071 8.81 0.62 116.00
4. 2 1 1 2 2 (CF) CF 2112 0.070 6.95 0.37 23.90
5. 2 2 2 3 3 (CCA) CCA 2223 0.105 9.23 0.44 78.80
6. 2 3 3 1 1 (DM) DM 2331 0.070 3.25 0.64 65.70
7. 3 1 2 1 3 (CCA) CCA 3121 0.050 4.43 0.19 26.90
8. 3 2 3 2 1 (DM) DM 3232 0.110 5.44 0.36 91.70
9. 3 3 1 3 2 (CF) CF 3313 0.123 13.89 0.62 86.70
10. 1 1 3 3 2 (CF) CF 1133 0.093 8.13 0.45 52.50
11. 1 2 1 1 3 (CCA) CCA 1211 0.040 6.30 0.27 19.10
12. 1 3 2 2 1 (DM) DM 1322 0.120 5.78 0.93 63.00
13. 2 1 2 3 1 (DM) DM 2123 0.120 7.86 0.60 49.20
14. 2 2 3 1 2 (CF) CF 2231 0.050 4.57 0.33 47.70
15. 2 3 1 2 3 (CCA) CCA 2312 0.060 10.93 0.47 52.50
16. 3 1 3 2 3 (CCA) CCA 3132 0.092 6.07 0.21 57.30
17. 3 2 1 3 1 (DM) DM 3213 0.160 11.13 1.10 63.00
18. 3 3 2 1 2 (CF) CF 3321 0.060 5.92 0.32 59.10

3. Results

It is now time to apply the PROMETHEE method on the problem of comparison
of milling techniques with different machining parameters in order to select the optimal
technique and parameter set. For a start, the problem consists of 18 alternatives and
4 quantitative criteria (Figure 6). Later, the problem was extended with more criteria.

Figure 6. Input matrix with extended criteria set: 4 quantitative and 5 qualitative criteria.
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The 18 alternatives, presented in Figure 6, used the results of experiments (Table 2)
as their criteria evaluations. All four criteria were quantitative criteria. 18 alternatives
were divided into 3 groups: 6 alternatives represented dry machining (DM) experiments,
6 alternatives represented conventional milling experiments with the application of cutting
fluids (CF), and 6 alternatives represented milling experiments with the application of
compressed cold air cooling (CCA).

Three case studies are used to discuss this issue of the selection of the optimal ma-
chining technique and parameter set (Figure 6). Case 1 used 4 quantitative criteria. Case
2 extended with 3 more qualitative criteria, which represented important technical side-
effects: lubrication, cooling, and chip evacuation. Finally, Case 3 used the criteria of Case 2
plus additional ecologic and social criteria to fulfill sustainable machining criteria. Finally,
an additional validation of Case 3 was made with criteria weights sensitivity analysis.

3.1. Case 1: Comparison of Milling Techniques Based on Quantitative Economic and
Productivity Criteria

Case 1 represents a comparison of 18 different milling experiments based on 4 criteria.
All criteria were quantitative, but two of them represented economic criteria (tool wear and
cost) and two of them represented productivity criteria (roughness and material removal
rate). Criteria evaluations of alternatives are given in Figure 6.

Figure 7 shows criteria parameters (weight, preference function type, and its pa-
rameters, etc.). Criteria weights can have a significant impact on the result, therefore
equal criteria weights were given to both groups of criteria: economic criteria 50% and
productivity criteria 50%, which results in 25% for each criterion (Figures 7 and 8).

 

Figure 7. Criteria parameters and weights for Case 1.

The partial ranking by PROMETHEE I is presented in Figure 8a and shows that the first
three ranked alternatives (CF 2231, CCA 3121, and CF 3321) are not completely comparable.
They did not completely outrank each other, because if an alternative wants to outrank
other alternatives it needs to have a higher positive flow (Phi+) and equal or lower negative
flow (Phi-). However, when applying the net flow, i.e., when calculating PROMETHEE II
ranking, alternative CF 2231 becomes the 1st ranked alternative (Figure 8b,c).

When analyzing the ranking, it became clear that this problem has some issues to solve.
Namely, when looking at the first five ranked alternatives (Figure 8c): two of them were CF
alternatives, one is a CCA alternative, and two are DM alternatives. The rest of the ranking
shows the chaotic distribution of alternatives, as well. Therefore, it is clear that something
is missing to produce a more stable comparison and ranking, and what is missing are some
additional criteria that will enable proper comparison of machining techniques.
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(a) (b) 

 
(c) 

Figure 8. Case 1: (a) PROMETHEE I partial ranking of alternatives; (b) PROMETHEE II complete
ranking of alternatives; (c) Distribution of criteria weights and ranking of alternatives (left to right:
the best to the worst).

3.2. Case 2: Comparison of Milling Techniques Based on Quantitative and Qualitative Economic,
and Productivity Criteria

Case 2 represents a comparison of 18 different milling experiments based on 7 criteria.
The first four criteria were quantitative criteria, the same as in Case 1, but three additional
qualitative criteria were added to the group of productivity criteria: lubrication, cooling
and chip evacuation. These qualitative criteria better-described alternatives depending on
the machining technique. Namely, lubrication had a good effect on the reduction of the tool
wear during the machining process and was the only technique that provides lubrication in
the application of cutting fluids (CF). Both application of cutting fluids (CF) and application
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of compressed cold air (CCA) provided cooling, but, CCA provided better cooling since
the cold air was used, and cutting fluids were not cooled. Finally, chip evacuation was
better with the application of cutting fluids (CF) than the application of compressed cold
air (CCA), and dry machining (DM) had poor chip evacuation and cooling. It is clear that
it is not easy to define proper quantitative descriptions of these criteria, so a qualitative
description is used. The group of experts (mechanical engineers) were decision-makers
that defined the qualitative evaluations of alternatives for these criteria. A 5-point Likert
scale was used, so it was not hard to define these evaluations, but it is not so precise, as
well. A more precise qualitative scale or quantitative description of these criteria will be
the subject of future research.

Criteria evaluations of alternatives can be found in part of a matrix presented in
Figure 6. Figure 9 shows criteria parameters (weight, preference function type, and its
parameters, etc.), and, again, equal criteria weights were given to both groups of criteria:
economic criteria 50% and productivity criteria 50%, which results with 25% for each of
economic criteria and 10% for each of productivity criteria (Figures 9 and 10).

 

Figure 9. Criteria parameters and weights for Case 2.

The partial ranking by PROMETHEE I is presented in Figure 10a, and shows that the
1st ranked alternative CF 2231 dominated above all other alternatives. The ranking by
PROMETHEE II was more stable, since the DM alternatives were pushed to the bottom of
the rank (Figure 10b,c). Now, the distribution of the first five ranked alternatives consisted
of three CF alternatives and two CCA alternatives, and the best ranked DM alternative had
9th rank.

However, it is not clear from Figure 10 why this approach to the problem is more stable
than the approach of Case 1. But, an additional look at GAIA (Geometrical Analysis for
Interactive Aid) planes, which represent the projection of all criteria axes and alternatives
on a single plane, can help to resolve this. Figure 11a represents the GAIA plot of the
problem from Case 1, and it is completely chaotic with CF, CCA, and DM alternatives
mutually mixed on the plane.
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(a) (b) 

 
(c) 

Figure 10. Case 2: (a) PROMETHEE I partial ranking of alternatives; (b) PROMETHEE II complete
ranking of alternatives; (c) distribution of criteria weights and ranking of alternatives (left to right:
the best to the worst).

The situation is different in Figure 11b, which represents the GAIA plot of the problem
from Case 2. The GAIA plot of Case 2 shows three different clusters: CF alternatives cluster,
CCA alternatives cluster, and DM alternatives cluster. So it can be concluded that Case 2 is a
better approach to this problem than Case 1, however, Case 2 did not meet the sustainability
criteria presented in Figure 4, therefore an additional case was needed.
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(a) (b) 

Figure 11. Comparison of Case 1 and 2: (a) the GAIA plot of the problem from Case 1; (b) the GAIA
plot of the problem from Case 2.

3.3. Case 3: Comparison of Milling Techniques Based on Sustainability: Economic, Productivity,
Ecologic, and Social Criteria

Finally, Case 3 is a comparison of 18 different milling experiments based on sustain-
ability criteria: economic (2 criteria), productivity (5 criteria), ecologic (1 criterion) and
social (1 criterion). The first seven criteria were economic and productivity criteria, the
same as in Case 2, but additionally ecologic (ecologic impact) and social (health threat)
criteria were added. Ecologic impact represents a negative impact on the environment that
CF alternatives have because of the cutting fluids that need to be processed and disposed
of. Health threat represents the threat of the technique to human health and, again, CCA
and DM do not represent a threat, but CF represents a serious threat because a worker’s
skin can be in contact with cutting fluids and there is a problem of cutting fluids’ aerosol.

Criteria evaluations of alternatives are presented in Figure 6. Figure 12 shows the
criteria parameters (weight, preference function type, and its parameters, etc.), and, again,
equal criteria weights were given to all criteria groups: economic criteria 25%, productivity
criteria 25%, ecologic criteria 25%, and social criteria 25%, which results in 12.5% for each
of economic criteria, 5% for each of productivity criteria, 25% for ecologic criterion, and
25% for social criterion (Figures 12 and 13).

 

Figure 12. Criteria parameters and weights for Case 3.
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(a) (b) 

 
(c) 

Figure 13. Case 3: (a) PROMETHEE I partial ranking of alternatives; (b) PROMETHEE II complete
ranking of alternatives; (c) distribution of criteria weights and ranking of alternatives (left to right:
the best to the worst).

The partial ranking by PROMETHEE I is presented in Figure 13a and shows that the
1st ranked alternative CCA 3121 dominates over the 2nd ranked alternative CCA 1211,
and both of them dominate above all other alternatives. The ranking by PROMETHEE
II shows complete domination of green technologies CCA and DM over CF technology
(Figure 13b,c). Finally, the distribution of the first five ranked alternatives consists of the
green technologies only: four CCA alternatives and one DM alternatives, and the best
ranked CF alternative has 12th rank.

Furthermore, the GAIA plot indicates a stable problem and three different machining
techniques are forming three different clusters of alternatives (Figure 14).
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Figure 14. The GAIA plot of the problem from Case 3.

This case demonstrated the importance of using sustainability criteria that include
ecologic and social criteria. Only in this case, the non-green cutting fluids machining
technique did not get a high rank and would not be selected as a milling option.

3.4. Sustainability Criteria Weights Sensitivity Analysis

Before the final conclusion, some kind of validation of the sustainability-criteria-
based approach (Case 3) must be made. A validation was made through criteria weights
sensitivity analysis. An analysis was based on the determination of the criterion weight
interval in which the rankings of the selected number of alternatives remained the same.
An example of this analysis is given in Figure 15.

  
(a) (b) 

Figure 15. Comparison of stability intervals: (a) Stability interval (level 5) for criterion Cost; (b) Sta-
bility interval (level 5) for criterion Chip evacuation.
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The level 5 stability was selected and it implied the weight interval in which the
ranking of the first five alternatives was not changing. Other alternatives were perhaps
swapping their ranks, but the ranking of the first five alternatives remains the same.

Figure 15a represents a stable interval for criterion Cost, and its weight is not so stable.
Namely, criterion Cost had a weight of 12.5%, and it could have any weight between 12.22
and 13.37%, in order to keep the same order of the first five ranked alternatives. But, it was
a very narrow interval compared to the interval of criterion Chip evacuation (Figure 15b),
which was between 3.82 and 11%. Therefore, the weight interval of criterion Cost was
actually unstable and the interval of criterion Chip evacuation was stable.

To validate this case, by checking the changes in ranking with the change of the criteria
weights, a different set of criteria weights should be given. A common approach is to
use equal weights, but not equal weights of criteria groups, but an equal weight of each
criterion. In order to do so, all criteria weights were set to 11.1%. The results are given in
Figure 16.

 

Figure 16. Distribution of criteria weights and ranking of alternatives for equal weights.

Figure 16 shows that, even in the case of equal weights, the green CCA technique
with four best-ranked alternatives (CCA 3121, CCA 1333, CCA 1211, and CCA 3132) kept
the lead over the non-green CF technique. Furthermore, CCA 3121 was the 1st ranked
alternative in Case 3, as well. DM techniques, which were in the middle of the rank in
Case 3, were at the bottom now. The reason is that DM alternatives have poor performance
in terms of lubrication and cooling, which now had higher weights. To conclude, the
validation of the sustainability-criteria-based approach has confirmed the approach, and
also confirmed the advantages of the green CCA machining technique.

The criteria weights are the important issue and the analysis of different criteria sets,
i.e., scenarios, definitely represent one of the most important aspects for future research. In
this research, the same weight was used for each of four criteria groups: economic, produc-
tivity, ecologic, and social criteria. Of course, it would be interesting to see how different
weights of these criteria groups affect the result. But criteria weights for the machining
process cannot be defined randomly or approximately, so it represents a significant research
issue, as presented by Kumar et al. [69]. The most common approaches are based on the
usage of AHP method to mutually compare the importance of criteria and calculate their
weights using the AHP procedure [70], or based on EWM (entropy weights method) that
uses probability theory to compute uncertain information [71,72]. Both of the approaches
will be considered for future research on this topic.
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4. Conclusions

In this research, the decision support system was developed to support the selection
of machining techniques and their parameters by taking the sustainability criteria into
account. Three cases have been analyzed (Case 1, 2, and 3) to demonstrate the need and the
importance of using sustainability criteria that include ecologic and social criteria. Case 1
and 2 used economic and productivity criteria only, and in both cases, the non-green cutting-
fluids-based techniques got very high ranks. However, when ecologic and social criteria
were added in Case 3, the green dry-machining-based and compressed-cold-air-based
techniques achieved the highest ranks and suppressed cutting-fluids-based techniques
towards the bottom. This kind of approach should be imperative: productivity cannot
be maximized at the expense of the environment and human health. At the moment,
and perhaps it will always remain that way, the problem is that the conventional cutting-
fluids-based machining is more productive and more economical than green machining.
So, the question is why should we invest in green machining techniques? Because it is
investing in the future generations, so they could live in the same natural environment as
present generations. However, a radical change in a mindset is needed to accept that fact,
especially in managerial thinking. Nevertheless, the negative impact on the environment
and human health can also be seen as an economical cost, although it is not easy to make
such a calculation. If seen from that perspective, investing in green technologies reduces the
economic cost of manufacturing. So, it is the change of the perspective that management
and everybody else must accept. This research at least somehow contributes to that change.
The main goal of further research will be the application of the developed approach and
DSS to other machining and manufacturing processes, as well.
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Abstract: This article outlines an integrated functional safety and cybersecurity evaluation approach
within a framework for business continuity management (BCM) in energy companies, including those
using Industry 4.0 business and technical solutions. In such companies, information and communica-
tion technology (ICT), and industrial automation and control system (IACS) play important roles.
Using advanced technologies in modern manufacturing systems and process plants can, however,
create management impediments due to the openness of these technologies to external systems and
networks via various communication channels. This makes company assets and resources potentially
vulnerable to risks, e.g., due to cyber-attacks. In the BCM-oriented approach proposed here, both
preventive and recovery activities are considered in light of engineering best practices and selected
international standards, reports, and domain publications.

Keywords: functional safety; cybersecurity; BCM; Industry 4.0; information technology; industrial
control system

1. Introduction

Industrial companies nowadays, including those implementing Industry 4.0 smart
technologies, face potential safety and security problems due to their use of open systems
and networks for communication and control [1–3]. The same concerns exist with respect
to the energy systems within critical infrastructure such as power plants for producing
electricity and/or heat from various energy sources, including coal, oil, natural gas, biogas,
and renewable energy sources.

In order for power plants and distributed industrial systems to be economically effec-
tive, they should be reliable in continuous operation mode, or with the highest achievable
availability when their operation is required on demand (e.g., during peak load of the
electrical grid or during an abnormal state due to dependent or cascade failure leading
to emergency conditions). These issues can be considered from a business continuity
management (BCM) [4,5] point of view.

A traditional RAMS&S (reliability, availability, maintainability, safety, and security)
methodology [6,7] can support elements of BCM in the life cycle, however, it insufficient
due to its need to consider various impact factors, including the human and organizational
factors. Certain aspects of BCM can be analyzed regarding performability engineering, as
analysed and emphasised by Misra [8]. An interdisciplinary review of business continuity
issues from the perspective of information systems, directed towards proposing an inte-
grated framework, was published by Niemimaa [9]. These issues are lately of increasing
attention to insurance companies [10,11].

Relatively new aspects in BCM analysis are connected to information and communica-
tion technology (ICT) and industrial control systems (ICS) that operate within computer
systems and networks using wired or wireless communication channels. These systems
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and networks have been considered in several publications and research reports from the
perspective of systems engineering [12–15] and cyber-physical systems [16,17]. Several
research projects have been undertaken concerning the integrated analysis of ICS safety
and security [18,19]. Interesting research works have been published concerning business
continuity management, for instance an article [20] and monograph [21]. The functional
safety and cybersecurity issues of industrial automation and control systems (IACS) have
lately been emphasized as especially important in the design and operation of hazardous
industrial plants and critical infrastructure systems [22–25].

Several security-related issues of the industrial automation and control system (IACS)
have been considered in the context of protection solutions proposed for improving IACS
security as proposed in the IEC 62443 standard [26]. The dependability and safety integrity
of the safety-related part of the ICS are discussed with regard to the generic functional
safety standard IEC 61508 in [27].

The remainder of this article is structured as follows. Section 2 provides a basic
overview of functional safety and cybersecurity aspects related to business continuity
management and the basic requirements in the context of risk evaluation within the life
cycle; in addition, a BCM framework is proposed for business continuity planning in
industrial companies. Section 3 outlines an integrated dependability, safety, and security
management framework for industrial companies, including BCM aspects. In Section 4, a
case study is presented to demonstrate the application of the proposed integrated approach.
In the conclusions, the significance of adequately treating ICT and IACS within BCM
activities in Industry 4.0 is emphasized.

2. Brief Presentation of the Framework and Components

2.1. Overview of IT and OT Systems and Their Convergence

The convergence of information technology (IT) and operational technology (OT)
creates both new opportunities and new challenges. The data flows outside and into plant
networks inevitably lead to additional threats and increased security-related risks. One
of the biggest challenges facing the industrial sector is understanding the risks involved
in potential cyberattacks, which are already being observed; these risks can emerge when
companies adopt Industry 4.0 technologies, including Industrial Internet of Things (IIoT)
technologies and tools. The management staff of industrial companies are becoming more
aware about the magnitude of the gap between the priorities recognized by teams responsi-
ble for operational technology (OT) and those recognized by information technology (IT)
professionals. This gap often impacts new cybersecurity initiatives.

In order to explain the issues involved, it is necessary to begin with a model industrial
system. The traditional reference model is based on the ISA99 series of standards derived
from the generic model of ANSI/ISA-95.00.01 (Enterprise-Control System Integration), and
represents the manufacturing system using five functional and logical levels (Figure 1).
These levels are often assigned to two classes, namely, Operational Technology (OT) and
Information Technology (IT), with their own relevant security zones. The zero level de-
fines the actual physical processes. The first level of activities involved in sensing and
manipulating physical processes include intelligent devices. The second level includes
control systems (e.g., Programmable Logic Controllers). The third level, site manufacturing
and control, includes an ICS/SCADA system with a relevant Human–System Interface
(HSI) and the Manufacturing Execution System (MES). The fourth level, enterprise busi-
ness planning and logistics, comprises an Enterprise Resource Planning (ERP) system for
effectively management and coordination of the business and enterprise resources required
for manufacturing processes. Finally, the fifth level is the enterprise network for business
and logistics activities, which can now be supported using applications based on Cloud
Technology (CT) [28,29].
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Level 3:  Site Manufacturing and Control 

Level 2:  Area Control  

Level 1:  Sensing and Basic Control  

Level 0:  Manufacturing Processes, I /O Devices 

Level 4:  Site Business Planning & Logistics 

months 
 
weeks 

days 
 
shifts 
 
hours 

minutes 
 
seconds 
 
milliseconds 

Level 5:  Enterprise Network 

Figure 1. Traditional reference model of an industrial system based on the ANSI/ISA95 standard.

In an open manufacturing system, assigning safety and security-related requirements
requires the special attention of designers and operators [3,30,31].

From an information security point of view, an important requirement and solution
is to prioritize segmentation of the complex industrial computer system and network,
distinguishing cell security zones and designing a Demilitarized Zone (DMZ), as illustrated
in Figure 1.

The DMZ is sometimes referred to as a perimeter network or screened subnet, and is a
physical or logical subnetwork for controlling and securing internal data and services from
an organization’s external services using an untrusted (usually larger) network such as a
corporate-wide area network (WAN), the Internet, or a cloud technology (CT).

Thus, the purpose of a DMZ is to add a layer of security to an organization’s local area
network (LAN); an external network node can access only what is exposed in the DMZ,
while the rest of the organization’s network is firewalled [1,30].

An actual list of internal and external influences, hazards, and threats should be
considered during the design and operation of the OT and IT systems and networks. Basic
features of these systems are presented in Figure 2.

Figure 2. Basic features characterizing OT and IT systems and networks [23].
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While the expected lifetime of OT systems is typically evaluated in the range of
10–20 years, this drops to only 3–5 years in the case of IT systems [23]. In characterizing the
OT system, the AIC triad (Availability, Integrity, and Confidentiality) is often used to priori-
tize basic requirements, while the CIA triad (Confidentiality, Integrity, and Availability) is
used to characterize the IT network.

The safety and security of both OT and IT systems and networks are dependent on
various external and internal influences, including organizational and human factors [32].
Traditionally, a general MTE (Man-Technology-Environment) approach has been proposed
for systemic analyses and management in the life cycle of industrial installations. An
interesting framework for dealing with complex technical systems is offered by systems
engineering (SE) [13]. The industrial automation and control system (IACS) [26,33] can be
considered as a cyber-physical system [17,34,35].

2.2. Functional Safety of OT Systems

For high dependability and safety of the OT system, an operational strategy within
BCM should be elaborated that includes inspections and periodical testing of safety-related
control systems, for instance, electrical/electronic/programmable electronic (E/E/PE)
systems [27] and safety instrumented systems (SIS) [36], including their sensors and the
equipment under control (EUC).

The operational equipment of manufacturing lines (machinery, drives, operational
control systems, etc.) requires an advanced preventive maintenance strategy to be imple-
mented in order to achieve the required high OT availability and reduce the risk of outages
and related production losses. Incident management procedures must be developed to
reduce the risk of potentially hazardous events leading to major losses.

A set of safety functions are implemented in the safety-related ICS of required safety
integrity levels (SILr), determined in the risk assessment process in relation to the criteria
defined [12], to be assigned, for instance, to the E/E/PE or SIS systems (see the OT block in
Figure 3).

Two different requirements must be specified to ensure an appropriate level of func-
tional safety [37]:

• The requirements imposed on the performance of safety functions designed for
hazard identification;

• The safety integrity requirements, i.e., the probability that a safety function will be
performed in a satisfactory way when a potentially hazardous situation occurs.

Safety integrity is defined as the probability that a safety-related system, such as the
E/E/PE system or SIS, will satisfactorily perform a defined safety function under all stated
conditions within a given time. For safety-related ICS in which a defined safety function is
implemented two probabilistic criteria must be defined, as presented in Table 1 for four
categories of the SIL [27], namely:

• The probability of failure on demand average (PFDavg) of the safety-related ICS in
which the considered safety function is implemented, operating in a low-demand
mode (LDM); or

• The probability of dangerous failure per hour (PFH) of the safety-related ICS operating
in a high- or continuous-demand mode (HCM).
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Figure 3. Typical ICT and ICS architecture including OT, IT, and CT.

Table 1. Categories of SIL and probabilistic criteria to be assigned to safety-related ICS operating in
LDM or HCM.

SIL PFDavg PFH [h−1]

4 [10−5, 10−4) [10−9, 10−8)
3 [10−4, 10−3) [10−8, 10−7)
2 [10−3, 10−2) [10−7, 10−6)
1 [10−2, 10−1) [10−6, 10−5)

The SIL requirements assigned for the safety-related ICS to be designed for imple-
menting a specified safety function stem from the results of the risk analysis and evaluation
meant to reduce the risk of losses by sufficiently considering specified risk criteria, namely,
for individual risk and/or group or societal risk [27].

85



Energies 2022, 15, 3610

If societal risk is of interest, analyses can generally be oriented on three distinguished
categories of loss, namely [27,36,38], health (H), environment (E), and material (M) damage;
then, the SIL required (SILr) for a particular safety function is determined as follows:

SILr = max (SILH
r , SILE

r , SILM
r ) (1)

As mentioned above, SIL verification can generally be carried out for either of two
operation modes, namely, LDM or HCM. The former is characteristic of the process indus-
try [36], while the latter is typical for machinery [39], railway transportation systems, and
the monitoring and real-time control of any installation using an ICS/SCADA system.

Management of the OT system and IACS, including safety-related lifecycle ICS, can be
challenging; in industrial practice, it is difficult to achieve the above-specified requirements
concerning the AIC triad (see Figure 3) for various reasons. Nevertheless, these systems con-
tribute significantly to the realization of required quality and quantity of products in time,
and influence overall equipment effectiveness (OEE). No less important are the functional
safety and cybersecurity issues regarding the requirements and criteria discussed above.

The following items should be specified for implementation in industrial practice:

• A plan for operating and maintaining E/E/PE safety-related systems or SIS;
• Operation, maintenance, and repair procedures for these systems over their whole

life cycle;

Implementation of these items must include initiation of the following actions:

• Implementing procedures;
• Following maintenance schedules;
• Maintaining relevant documentation;
• Periodically carrying out functional safety audits;
• Documenting any modifications to the hardware and software in E/E/PE systems.

Thus, all modifications that have an impact on the functional safety of any E/E/PE
safety-related system must initiate a return to an appropriate phase of the overall E/E/PE
system or software safety lifecycles. All subsequent phases must then be carried out in
accordance with the procedures specified for the specific phases regarding the requirements
in the above-mentioned standards.

For each phase of the overall functional safety lifecycles, a plan for verification and
validation should be established concurrently with the development of consecutive phases.
The verification plan must document or refer to the criteria, techniques, and tools to be
used in verification activities.

Chronological documentation of operation, repair, and maintenance of safety-related
systems should be maintained and must include the following information:

• The results of functional safety audits and tests;
• Documentation on the time and cause of demands on E/E/PE safety-related systems

in actual operation the performance of the E/E/PE safety-related systems when subject
to those demands, and any faults found during routine testing and maintenance;

• Documentation of any modifications made to safety-related ICS, including equipment
under control (EUC).

The requirements concerning chronological documentation should be sufficiently
detailed for the specific context of safety-related ICS operations [27,36,39].

2.3. Cybersecurity of IT Systems

From a cybersecurity perspective, the systems and networks used within the business
environment (level 4 of the ISA95 model in Figure 1) should be considered as potentially
insecure, as they contain complex interdependent hardware and software (see simplified
architecture in Figure 3), remote access paths, and external communications. Therefore,
IT and OT systems with the access to the Internet and/or a wide area network (WAN),
or when the cloud technology (CT) is used, should be secured at the required security
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assurance level (SAL) for assignment to respective zones [26]. It has been postulated that
the SAL assigned to the relevant domain should be included when verifying the safety
integrity level (SIL) of safety-related ICS in which a specified safety function is to be
implemented [12,40].

Security-related risks can be mitigated through the combined efforts of component
suppliers, the machinery manufacturer, the system integrator, and the machinery final end
user (with the company owner responsible) [26,33]. Generally, the response to a security
risks should be as follows [41]:

(a) Eliminate the security risk by design (avoiding vulnerabilities);
(b) Mitigate the security risk by risk reduction measures (limiting vulnerabilities);
(c) Provide information about residual security risks and measures to be adopted by

the user.

The IEC 62443 standard [26] proposes an approach to dealing systematically with
security-related issues in IACS. Four security levels (SLs) have been defined, under-
stood as a confidence measure for ensuring that the IACS is free from vulnerabilities
and will function in the intended manner. These SLs are suggested in the standard
IEC 63074 [41] for dealing with the security of safety-related ICS designed for the operation
of manufacturing plants.

These levels (numbered from 1 to 4, see Table 2) represent a piece of qualitative
information addressing the relevant protection scope of the domain or zone considered in
the evaluation against potential violations during safety-related ICS operation in a zone.

Table 2. Security levels and protection description of the IACS domain [26,41].

Security Levels Description

SL 1 Protection against casual or coincidental violation

SL 2 Protection against intentional violation using simple means with low
resources, generic skills, and low motivation

SL 3 Protection against intentional violation using sophisticated means with
moderate resources, IACS-specific skills, and moderate motivation

SL 4 Protection against intentional violation using sophisticated means with
extended resources, IACS-specific skills, and high motivation

The relevant SL number from 1 to 4 should be assigned to seven consecutive founda-
tional requirements (FRs) relevant within the domain considered [26]:

FR 1—Identification and authentication control (IAC);
FR 2—Use control (UC);
FR 3—System integrity (SI);
FR 4—Data confidentiality (DC);
FR 5—Restricted data flow (RDF);
FR 6—Timely response to events (TRE);
FR 7—Resource availability (RA).

Thus, it is suggested that dependability and security-related evaluations apply a
defined vector of relevant FRs from those specified above. Such a vector might be defined
for the security-related requirements for a zone, conduit, component, or system. It contains
the general integer numbers characterizing the SL from 1 to 4 (or 0 if not relevant) to be
assigned to consecutive FR.

A general format of the security assurance level (SAL) to be evaluated for a given
domain is defined as a function of [FRs] [26]:

SAL × ([FRs] domain) = f [IAC UC SI DC RDF TRE RA] (2)
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2.4. Integrated Functional Safety and Cybersecurity Evaluation

Assigning the SAL to the domain or zone as an integer number from 1 to 4 [37,42] can
present problems. To overcome this difficulty, the security indicator SIDo for a domain (Do)
can be defined [40] to determine security levels SLi for a set (Re) of relevant fundamental
requirements (FRi) with relevant weights wi evaluated based on the opinions of ICT and
ICS experts. This indicator is a real number from the interval (1.0, 4.0) calculated using the
following formula:

SIDo = ∑
i∈Re

wiSLi, ∑
i

wi = 1 (3)

Four intervals of the domain security index SIDo (from SIDo1 to SIDo4) are proposed in
the first column of Table 3 for assigning an SAL category integer number from 1 to 4. This
approach corresponds with that used in earlier publications for attributing an SAL to the
domain based on the dominant SLi for the relevant fundamental requirements, FRi.

Table 3. Proposed correlation between SIDo/SAL for the evaluated domain and final SIL to be
attributed to the safety-related ICS of a critical installation.

Security Indicator SIDo/SAL
SIL Verified According to IEC 61508 *

1 2 3 4

SIDo1∈[1.0, 1.5)/SAL 1 SIL 1 SIL 1 SIL 1 SIL 1
SIDo2∈[1.5, 2.5)/SAL 2 SIL 1 SIL 2 SIL 2 SIL 2
SIDo3∈[2.5, 3.5)/SAL 3 SIL 1 SIL 2 SIL 3 SIL 3
SIDo4∈[3.5, 4.0]/SAL 4 SIL 1 SIL 2 SIL 3 SIL 4

* verification includes the architectural constraints regarding SFF and HFT of subsystems.

Three types of vectors describing SLi for consecutive FRi of a domain can be distin-
guished [24]:

• SL-T (target SAL)—Desired level of security;
• SL-C (capability SAL)—Security level that the device can provide when properly

configured;
• SL-A (achieved SAL)—Actual level of security of a particular device.

Proposed correlations between the security index to be assigned to the domain
SIDo/SAL and the final SIL attributed to the safety-related ICS in a hazardous installa-
tion are presented in Table 3. It was assumed that SILs were verified according to IEC
61508 requirements based on the results of probabilistic modelling [12,43], regarding po-
tential common cause failures (CCFs) and the influence of the human and organizational
factors regarding architectural constraints for the evaluated SFF and HFT of the E/E/PE
subsystems (see explanations above). Thus, SIL verification requires probabilistic mod-
elling of the safety-related ICS of the proposed architecture regarding the SFF and HFT of
the subsystems.

2.5. Scope of BCM

Business continuity management (BCM) is usually understood as the capability and
specified activity of an organization to continue delivery of products and/or services of
required quality within acceptable time frames at a predefined capacity relating to the scale
of potential disruptions [4].

A disruption is defined as an incident, whether anticipated or unanticipated, that
causes an unplanned negative deviation from the expected delivery of products and services
according to an organization’s objectives. An objective is the result to be achieved. The
objective can be strategic, tactical, or operational.

The objective can be expressed in other ways, e.g., as an intended outcome, a purpose,
an operational criterion, or using other words with similar meaning (e.g., aim, goal, or
target). Objectives can relate to different disciplines (such as financial, health and safety, and
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environmental objectives) and can apply at different levels (such as strategic, organization-
wide, project, product, and process).

The BCM can be considered an integral part of a holistic risk management that safe-
guards the interests of the organization’s key stakeholders, reputation, brand, and value by
creating activities through [10]:

• Identifying potential threats that might cause adverse impacts on an organization’s
business operations, and associated risks;

• Providing a framework for building resilience for business operations;
• Providing capabilities, facilities, processes, and elaborated action task lists, etc., for

effective responses to disasters and failures.

An event can be an occurrence or change in a particular set of circumstances that
could have several causes and several consequences. An abnormal event due to a hazard
or threat is considered a risk source. An emergency is a result of a sudden, urgent, usually
unexpected occurrence or event requiring immediate action. It is a disruption or condition
that can be anticipated or prepared for, although seldom exactly foreseen [44–46].

The organization must implement and maintain a systematic risk assessment process.
Such a process could be carried out, for instance, in accordance with the ISO 31000 standard.
As shown in Figure 4, an organization should:

(a) Identify risks of disruption to the organization’s prioritized activities and their sup-
porting resources;

(b) Systematically analyze and assess risks of disruption;
(c) Evaluate risks of disruptions that require adequate treatment.

Risk evaluation 

 
Figure 4. Risk management process (based on [47]).

Risk evaluation is considered an overall process of hazard/threat identification, risk
analysis, and risk assessment [28,47]. Risk management is a process of coordinating
activities in order to direct and control an organization regarding risk.

The general purpose is to reduce an industrial system’s vulnerability as required
in order to increase its resilience as justified considering current legal and/or regulatory
requirements regarding the results of cost–benefit analyses. Relevant protection measures
should be proposed that adequately safeguard and enable an organization to prevent or
reduce the impact and consequences of potential disruptions.
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After a major disruption, the recovery process is to be undertaken in order to restore
system operation in a timely manner and improve activities, operations, facilities, and other
key determinants of the affected organization where appropriate in order to increase its
business resilience for the future.

2.6. BCM in Energy Companies

There have been various approaches proposed to apply the BCM concept in industrial
practice. The standard BS 25999-1 [29] provided a proposal based on the concept of good
practice. It was intended for use by anyone with responsibility for business operations or
the provision of services, from top management through all levels of the organization. It
was in principle foreseen for a single-site BCM or, with a more global presence, ranging from
a sole trader through a small-to-medium enterprise (SME) to a large company employing
thousands of people. However, this standard was withdrawn and replaced in industrial
practice in favor of the ISO/DIS 22301 [4], which describes the basic requirements to be
assigned in developing modern BCM systems.

As previously mentioned, BCM includes the recovery, management, and continuation
of business activities in situations of business disruption as well as integrated management
of the overall program through training, exercises, audits, and reviews to ensure that the
business continuity plan stays current and up to date [48–50].

When analyzing energy and industrial companies, including their control systems [15,51,52],
it is suggested that the following categories of potential disruptions be considered:

• Failures in logistics chains, delays in delivery of raw materials or semi-finished prod-
ucts by business partners, and/or delays in providing services, spare parts etc.

• Failures in electric energy distributed systems
• Power transformer station failures fires, cyberattacks, etc.
• Physical or cyberattack
• Failures and outages of ICT and CT (cloud technology) systems and networks designed

using wired and/or wireless technology
• Failures and outages of OT systems and networks, including production lines and

storage, and/or malfunctions of industrial automation and control systems (IACS)
• Extreme environmental phenomena, lightning storms, heavy rain, local flooding, flood,

hurricane, or tornado, extremely high or low temperature, and heavy snowfall or icing
• Disturbances in critical infrastructure objects and systems needed to deliver water,

electricity, gas etc.
• Fire or explosion
• Extreme emission of pollutants and/or dangerous substances
• Destruction due to potentially critical events in physical surroundings or infrastructure

installations
• Earthquake and/or tsunami (at sites close to the shore)
• Sabotage, terrorism, or cyberterrorism against critical infrastructure objects/systems

inspired by an external principal or agent
• Legislative changes

Only selected categories of potential disruptions will be discussed in the presented approach.
The consequences of an incident may vary significantly and can be far-reaching,

including major accidents with both internal and external losses. These consequences
might involve loss of life, environmental losses, and loss of assets or income due to the
inability to deliver products and services on which the organization’s strategy, reputation,
or even economic survival might depend.

The importance of shaping the organizational culture and related safety and security
culture is essential. It is a fundamental prerequisite both of successful activities and of
avoiding failures in any organization, including a modern industrial company present
within a competitive market.

Expected outcomes of an effective BCM program implemented in an energy or indus-
trial company are as follows [4,49]:
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• Key products and services are identified and protected, ensuring their continuity;
• Incident management capability is enabled to provide an effective response;
• The company understands its relationships with cooperating companies/organizations,

relevant regulators and authorities, and emergency services;
• Staff are trained to respond effectively to an incident or disruption through

appropriate exercises;
• Stakeholders’ requirements are understood and able to be delivered;
• Staff receive adequate support and communications in the event of a disruption;
• The company’s supply chain is better secured;
• The organization’s reputation is protected and remains compliant with its legal and

regulatory obligations.

In the energy sector, it is crucial to have maintain the operation of infrastructure
equipment. This is supported by the correct application of BCM. As previously mentioned,
there are many factors affecting the operation of any plant, including a power sector plant.
These various factors are multidisciplinary and can be applied to different industry sectors.

Several indicators are used for decision-making in BCM, for instance [48], RTO (recov-
ery time objective), the recovery time of a process or the required resources, and MTPD
(maximum tolerable period of disruption), the maximal tolerable downtime which, when
exceeded, seriously threatens the medium-term or long-term survival of the process or the
organization. The maximum time for recovery (RTO) must be smaller than the maximum
tolerable period of disruption (MTPD).

A formal set of procedures should be established to deal with information security
incidents and identified weaknesses, which may have a physical component. This should
encompass [44,49,50]:

• Detection of all information security incidents (and weaknesses) and related escalation
procedures and channels;

• Reporting and logging of all information security incidents and weaknesses;
• Logging all responses and preventive and corrective actions taken;
• Periodic evaluation of all information security incidents and weaknesses;
• Learning from reviews of information security incidents(and weaknesses and making

improvements to security and to the information security incident and weakness
management scheme.

Service providers should ensure that all ICT systems essential for disaster recovery
are tested regularly to ensure their continuing capability to support DR plans. Tests should
be conducted whenever there are any significant changes in organizational requirements
and/or changes in service provider capacity and capability that affect services to organi-
zations. Examples of such changes include relocation of DR sites, major upgrades of ICT
systems, and commissioning of new ICT systems.

There is an IT infrastructure in the energy sector, and problems with its proper opera-
tion contribute to power outages; information transmission deficiencies can cause blackouts
in certain cases.

Several sets of various characteristics influencing performance and key performance
indicators (KPIs) are listed [11] for use in evaluations and audits within the BCM of
the industrial plant to support relevant decisions. Recovery Point Objective (RPO) and
Recovery Time Objective (RTO) are two of the most important parameters of a disaster
recovery or data protection plan. The RPO and RTO, along with a business impact analysis,
provide the basis for identifying and analyzing viable strategies for inclusion in the business
continuity plan of the BCM in relation to the previously discussed standards [4,48,50].

An objective of the recovery target time can be set, for instance, in the following cases:

• Resumption of product or service delivery after an incident, or resumption of a
performance activity after an incident;

• Recovery of the ICT (information and communication technology) system or computer
application after an incident, such as a hacker attack, or IT-OT system failure or

91



Energies 2022, 15, 3610

functional abnormality, such as abnormal performance of the industrial automation
and control system (IACS).

The BCM approach outlined above is based on esteemed reports and international
standards, including current legal and regulatory requirements.

The energy sector is critical to the operation of everything from households to crit-
ical infrastructure. In the current consideration of BCM, there are no specific explicit
requirements for a particular sector, including the energy sector.

3. Proposed Integrated Functional Safety and Cybersecurity Evaluation in the
Framework of BCM

In the approach presented below, current research issues are considered from the
general perspective of BCM regarding the dependability, safety, and security of the ICT
and ICS, including the SCADA (supervisory control and data acquisition) system. Their
required functionality and architectures are discussed, distinguishing between information
technology (IT) and operational technology (OT) in relevant systems and networks [40].
These systems require effective convergence for advanced manufacturing functionality and
improved effectiveness in the realization of advanced manufacturing and business-related
processes. In this article, an approach is proposed for integrated functional safety and
cybersecurity analysis and management over the whole life cycle based on determining
and verifying the safety integrity level (SIL) of the safety-related ICS system regarding the
security assurance level (SAL) assigned to the relevant security domain.

The main objective is to outline a conceptual framework for including the above-
mentioned technologies and systems within business continuity management activity.
The proposed holistic management process identifies potential hazards and threats to an
organization and their impact on manufacturing and business processes that, if realized,
might cause disruptions and related losses. The purpose of the system is to provide a
framework for building organizational resilience and preparing effective response, as such
safeguards are important for company owners, key stakeholders, regulators, and local
authorities [29,48–50] as well as crucial for brand, reputation, and value-creating activities.

The proposed BCM framework emphasizes the significance of a business continuity
plan (BCP) for industrial companies (Figure 5).

 
Figure 5. Proposed BCM framework for business continuity planning in industrial companies.

92



Energies 2022, 15, 3610

The left side of Figure 5 consists of seven specified discrete stages adapted from the
standards in [44,50]; these are aimed at developing a comprehensive business continuity
plan that will meet a company’s business requirements, including the service providers.
This is useful in developing recovery procedures (RP) for abnormal situations, failure events,
or disaster recovery plans (DRP) [44] for cases of major disruptions and potential disasters.

In the middle part of this figure, basic elements of the approach to integrated BCM
are specified, including the dependability, safety, and security aspects. The management
activities are based on domain knowledge, current information, evidence, and results of
modelling in the following areas:

• Formulating policies, goals, and domain, including legal and regulatory requirements
and relevant standards and publications of good practice;

• Criteria for risk evaluation and reduction concerning dependability, safety, and security
aspects, including domain key performance indicators (KPIs);

• Updated evidence, results of audits in design and plant operation, and results of
modelling to support relevant decisions.

Audits can be (1) a first-party audit using internal resources, (2) a second-party audit
initiated by a supplier, customer, contractor, and/or insurer, or (3) a third-party audit
performed by an independent body against a recognized standard, i.e., ISO 9001.

On the right side of Figure 5, seven areas are specified and proposed by the authors for
inclusion in the process of business continuity planning for a modern plant that requires
relevant technical and organizational solutions in the following areas:

A. Physical resilience and security of company resources and assets;
B. Information and communication technology (ICT) resilience and security manage-

ment over the whole life cycle;
C. Adequate resilience and security of the industrial automation and control system

(IACS) and supervisory control and data acquisition (SCADA) system in a specific
industrial network/domain and required security assurance level (SAL) [26];

D. Safety-related control systems designed and operated according to the functional
safety concept with the required safety integrity level (SIL) [27];

E. Industrial installations and processes with the required physical and functional
protection measures;

F. Infrastructure integrity for delivery of raw materials and energy (electricity, gas, oil)
needed for production processes;

G. Equipment reliability/availability adequately maintained according to the strat-
egy developed to achieve, for instance, a satisfactory level of overall equipment
effectiveness (OEE).

These systems and networks require special attention during the design and operation
of Industry 4.0 manufacturing systems due to their complexity, advanced functionality,
and external communications. Their architectural complexity and openness make them
susceptible to malfunctions and failures as well as vulnerable to external cyberattacks.
According to published data, the probability of such attacks on various industrial systems
and networks in most European countries is relatively high.

Due to the scope of the problems outlined above, only selected issues will be discussed.
In the following sections fundamental aspects related to the Industry 4.0 concept are
presented, namely, ICT systems and networks (B in Figure 5), ICS/SCADA resilience
and security (C), and safety-related ICS (D) designed for implementing the defined safety
functions [27,42,53,54] of the required safety integrity level (SIL) of a safety function in
order to reduce relevant risks. The determined SIL is then verified using a probabilistic
model of the safety-related ICS of the architecture, including communication conduits.

To better illustrate the authors’ new approach, Figure 6 shows five framework elements
that directly extend the BCM process.
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Figure 6. Impact of the proposed framework on the BCM process.

The first element of the new approach is to first incorporate the safety and security
aspects discussed above into the risk analysis and then throughout the Business Impact
Analysis process. The aim of information security management (ISM) is to fulfill specified
requirements concerning the CIA triad (Figure 4) of the ICT systems regarding information
storage, transfer, and related services. When an organization implements an ISMS (infor-
mation security management system), the risks of interruptions to business activities for
any reason should be identified and evaluated [20,55].

In the third step of the BCM process (Establishing), the conclusions of Step 2 should
be considered, including new safety and cybersecurity aspects.

During development of the Business Continuity Plan, the dependencies of IT on OT
and their impact on functional safety must first be considered; second, the impact of these
events on the recovery plan must be assessed. Planning for business continuity, fallback
arrangements for information processing, and communication facilities become beneficial
during periods of minor outages and are essential for ensuring information and service
availability during a major failure or disaster that requires complete and effective recovery
of activities over a period of time.

The fourth important link in the proposed framework is the inclusion of aspects
of the risk analysis and the prepared recovery plan in the process of periodic testing
and verification.

The last new element appears in the final two steps of the BCM cycle. As previously
mentioned, audits are of key importance in any management system, especially in a haz-
ardous industrial plant. Previous authors have examined audit documentation prepared
and used by an industrial company as part of a third-party audit in a refinery concerning
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the design and operation of safety-related ICS in relation to defined generic and plant crite-
ria [56]. The audit results and conclusions were then discussed with the staff responsible
for functional safety to further mitigate risks by implementing the indicated technical and
organizational solutions. An important objective in implementing a BCM in a hazardous
plant is to satisfy the expectations of stakeholders and insurance companies [10,11] in
order to assure a satisfactory level of business continuity, safety, and security. This can be
achieved thanks to the implementation in industrial practice of advanced, consistent and
effective BCM systems.

Thus, the BCM is useful in taking a systemic and proactive approach to dealing
with dependability, safety, and security issues. It specifies various interrelated process-
based activities and procedures for the identification of hazards and threats in order to
evaluate relevant risks, supporting safety and security-related decision-making in changing
conditions and over the whole plant life cycle.

4. Case Study

4.1. Safety Aspects

The risk analysis phase of a plant’s BCM takes into account the continuity of the media
supply, which is directly linked to the plant’s gas boiler room. As part of the functional
safety and cybersecurity risk analysis, analyses were performed as a basis for this risk
analysis. In this example, only one of the safety functions is presented. A safety function of
high-pressure monitoring operating in the low demand mode in a process installation is
presented. The high pressure of the steam in the process loop provokes the safety function
to drop power to a pair of solenoid valves, which leads to venting to a pneumatic actuator,
placing a pair of valves into their failsafe position. From the risk evaluation, the safety
integrity level of this function was determined to be SIL 3. The safety function to be
implemented in the safety-related ICS architecture is shown in Figures 7 and 8. The related
at BCM framework, including the safety and security aspects, is shown in Figure 9.

Figure 7. The architecture of the ICS system with implemented safety function.

In the analysed example, the 4–20 mA two-wire pressure transmitters are directly
wired into analog input modules. The safety controller and the input and output cards are
connected on an EtherNet/IP network. The final control elements of this safety function
are the combination of solenoids, actuators, and globe valves. The controller and safety I/O
modules have a built-in HFT = 1 (two field signals are used). The sensors and final elements
require redundant hardware in the 1oo2 configuration to meet the required HFT = 1. The
data for evaluating the probability of failure on demand average PFDavg of subsystems was
calculated by the authors based on data provided by manufacturers of the components
(Table 4).
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Figure 8. Analysed object architecture.

Figure 9. Diagram of relations of BCM framework, including safety and security aspects.
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Table 4. Reliability data for safety-related ICS components for implementing the safety function.

Subsystem SIL PFDavg

A. Input subsystem
SIL 4 3.1 × 10−5Pressure transmitter

Analog Input Card

B. Logic subsystem
SIL 4 3.5 × 10−5

Safety PLC

C. Output subsystem

SIL 4 4.6 × 10−5
Digital Output Card

Solenoid valve
Globe valve &

Pneumatic Actuator

The value of PFDavg for the considered safety-related ICS is calculated from the
formula [39]:

PFDavg
∼= PFDA

avg + PFDB
avg + PFDC

avg (4)

Thus, in this case study, PFDavg ∼= 11.2 × 10−5; the safety integrity level of SIL 3 was
obtained via the results of probabilistic modelling, with the interval criteria presented in
the second column of Table 1 and the architecture constraints presented in the IEC 61508
series standard.

4.2. Safety-Related ICS Aspects

Considering the domain of the safety-related ICS in which the safety function was
implemented, including the communication conduits, the SL-A vector was evaluated as
follows: (3 4 3 3 3 3 4). Assuming that weights of all SLi are equal (wi = 1/7), using
Equation (3) the obtained result is SIDo = 3.28 and the assigned security assurance level is
SAL 3. From column 4 of Table 3, the final safety integrity level validated regarding the
security aspects in the domain of interest is SIL 3, the same as required. Therefore, in this
case there is no need to propose improvements to the safety-related system [40]. If the SAL
obtained for another less secure domain was lower, e.g., SAL 2, then the assigned safety
integrity level should be lower, i.e., SIL 2 (see Table 3).

4.3. Risk Treatment

From a risk management point of view, it would be justified to consider changing
the configuration of the sensor subsystem shown in Figure 7 from 1oo2 to 2oo3 in order
to reduce the probability of spurious operation of this safety-related ICS. It is known that
while the 2oo3 configuration has a slightly higher PFDavg, it has a much lower probability of
spurious operation than configuration 1oo2. Probabilistic modeling of the safety-related ICS
consisting of the 2oo3 configuration, including the influence of CCFs and the architectural
constrains on subsystems regarding their HFT and SFF, is described in detail in [25,43].

4.4. Business Continuity Management Impact

Based on the information previously mentioned in the example above, the team can
assess the impact of system architecture and functional and cybersafety safeguards on
the criticality of the gas boiler, which translates into the BCM of the entire plant. This in
turn allows the enterprise to engage in Business Continuity Planning-wide planning, e.g.,
creating the capacity to produce a range of products in several factories.

The next stage of BCM is to create a business recovery plan that includes both IT and
OT infrastructure. As IT practices are well known, we omit the related description. As
far as OT is concerned, especially in terms of functional safety, it is necessary to highlight
the creation of backup programs of drivers and safety drivers, knowledge of firmware
versions of devices of control systems, protection of spare parts of control elements which
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can be destroyed or infected, description of procedures verifying damage, and procedures
allowing for the restarting of production after replacement of damaged or infected elements.

The final stage of the BCM process, enriched with new analysis elements, is the
test plan. At this stage, it is necessary to equip maintenance personnel with appropriate
procedures and instructions to test the disaster event and production recovery in a safe
way for the continuity of production in the scope resulting from the risk analysis enriched
with functional safety elements for OT and IT.

The frequency of performing a backup depends directly on the Recovery Point Objec-
tive (RPO) indicator assumed during the analysis. However, the size of the stock of key
spare parts depends on the adopted Recovery Time Objective (RTO)

4.5. Summary

This example demonstrates that in a modern industrial plant equipped with both safety
functions and IT networks, these two functionalities intermingle and create interactions that
have a direct impact on BCM analyses. Their consideration is essential for a comprehensive
analysis of all risks and the creation of an appropriate action plan.

5. Conclusions

In this article, an integrated functional safety and cybersecurity evaluation approach is
proposed in a framework for business continuity management (BCM) to deal systematically
with vulnerabilities that could influence an industrial plant’s dependability, safety, and
security. Industrial energy companies, including those using Industry 4.0 business and
technical solutions, have to pay attention to shaping their resilience regarding existing
and emerging hazards and threats, including cyberattacks. This issue concerns the energy
sector, power plants, and distributed renewable energy stations.

In such energy plants, information and communication technologies (ICT) and in-
dustrial automation and control systems (IACS) play important roles. Using advanced
technologies in modern energy manufacturing systems and processing plants can result
in management impediments due to their openness to external systems and networks
through various communication channels. This makes company assets and resources
potentially vulnerable to risk, e.g., due to cyberattacks. In the BCM-oriented approach
proposed here, both preventive and recovery activities are considered in light of engineer-
ing best practices and following suggested selected international standards, reports, and
domain publications.

Potential impediments in energy industrial practice have been identified related
to OT security when this technology consists of devices (hardware and software) from
several different producers/suppliers. This can cause substantial difficulties in pathing
software within relevant computer systems and networks. Thus, this issue requires special
attention during the design, implementation, and maintenance of business continuity
management systems.

The dependability and security of safety-related ICS in which defined safety functions
are implemented can be influenced by both technical and organizational factors. These are
related to the quality and reliability of hardware and software. These aspects require further
research, especially in the context of the design and operation of highly complex hazardous
industrial installations and their ICS, as these must be designed with regard to the defense
in depth concept when justified in the context of the risk evaluation results obtained.

Traditionally, manufacturing installations include both information technology (IT)
and operational technology (OT). More recently, cloud technology (CT) is often considered
to improve data transfer and storage in the context of business management in distributed
Industry 4.0 companies.

Advanced automation and control systems are currently in development, based, for
instance, on the open platform communication unified architecture (OPC UA) protocol for
improved network scalability and implementing new AutomationML concepts [49]. These
technologies enable advanced production flexibility and effectiveness. The IT, OT, and
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IACS, including safety-related ICS, can be considered more generally as a cyber-physical
system (CPS). Additional research should be undertaken in order to deal systematically
with distributed co-operating manufacturing systems, including their dependability, safety,
and security aspects, regarding an advanced BCM system for improving effectiveness
and resilience over the whole plant life cycle. Our future research work will further
develop BCM topics in the energy sector related to hydrogen storage and renewable energy
technologies. With respect to these topics it is extremely important to include an integrated
approach to functional safety and cybersecurity analysis.
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Abstract: Industry 4.0 represents high-level methodologies to make intelligent, autonomous, and
self-adaptable manufacturing systems. Additionally, the surface modeling technology has become a
great tool in industry 4.0 for representing the surface point cloud. Thus, the micro-scale machining
technology requires efficient models to represent micro-scale flat and free-form surfaces. Therefore,
it is fundamental to perform surface modeling through artificial intelligence for representing small
surfaces. This study addressed multi-objective optimization via genetic algorithms and micro laser
line projection to accomplish surface models for representing micro-scale flat and free-form surfaces,
where an optical microscope system retrieves micro-scale topography via micro laser line coordinates
and the multi-objective optimization constructs the flat and free-form surface models through genetic
algorithms and micro-scale topography. The multi-objective optimization determines the surface
model parameters through exploration and exploitation, and the solution space is deduced via surface
data. The surface model generated through the multi-objective optimization fit accurately to the
micro-scale target surface. Thus, the proposed technique enhanced the fitting of micro-scale flat and
free-form surface models, which were deduced via gray-level images of an optical microscope. This
enhancement was validated by a discussion between the multi-objective optimization via genetic
algorithms and the micro-scale surface modeling via optical microscope imaging systems.

Keywords: micro-scale surface modeling; micro laser line contouring; multi-objective optimization;
optical microscope imaging

1. Introduction

Nowadays, the manufacturing industry is developing intelligent tools to accomplish
the requirements of industry 4.0. The intelligent tools include cyber-physical systems,
Internet of Things, information technology, digital manufacturing activities, and so on [1].
The cyber-physical systems are involved in the manufacturing systems based on artificial
intelligence and the self-adaptable process [2]. However, the Internet of Things provides
tools to store and share the surface point cloud in the manufacturing systems during the
production process [3]. In this way, the cyber-physical systems, Internet of Things, digital
manufacturing, and information technology determine the surface point cloud and perform
surface modeling to represent a small object surface in digital form. Additionally, the
surface modeling provides fundamental tools in industry 4.0 to represent computationally
flat and free-form surfaces [4,5]. In the same way, the flat and free-form surface modeling
at the micro-scale provides computational tools in industry 4.0 to represent micro-scale
objects [6,7], where the computational tools are constructed via mathematical models to
generate flat and free-form surfaces at the micro-scale. Actually, micro-scale flat and free-
form surface modeling is performed via optical microscope systems based on gray-level
image processing in industry 4.0 [8,9]. The microscope systems perform surface recovering
and mathematical modeling to accomplish micro-scale surface modeling. Typically, the
micro-scale surface modeling is accomplished through the least-squares method, and the
surface data are determined via optical microscope images [10,11]. However, the surface fit-
ting of the least-squares method produced inaccuracy with respect to the target surface [12].

Energies 2022, 15, 6571. https://doi.org/10.3390/en15186571 https://www.mdpi.com/journal/energies103



Energies 2022, 15, 6571

Therefore, artificial intelligence methods have been implemented to perform micro-scale
surface modeling in industry 4.0. For instance, the particle swarm has been implemented to
perform free-form surface modeling through equations based on particle movement [13,14],
where the parameter optimization has been carried out through a population generated by
means of particle velocity. Additionally, particle swarm optimization has been employed in
several optimization applications to achieve a good fit and convergence [15,16]. However,
the particle swarm is a metaheuristic algorithm more employed to optimize surface model-
ing. Additionally, ant colony has been implemented to perform free-form surface modeling
in industry 4.0 [17,18], where the parameter optimization has been carried out by selecting
pathways generated by the ant pheromone to accomplish the computational model. In
the same way, simulated annealing has been implemented to construct free-form surface
models in industry 4.0 [19,20], where the model parameters have been computed through
a perturbation in an equation system. Additionally, fuzzy logic has been implemented
to generate free-form surface models in industry 4.0 [21,22], where the model parameters
have been optimized by using contactless scanning of the transtibial prosthetic socket.
Furthermore, virtual reality was implemented to perform free-form surface models through
a spline function [23], where a convex approximation was carried out through the spline
basis function to determine concave surface models. Moreover, machine learning was
implemented to perform flat surface models via neural networks [24], where the flat surface
equation was constructed from the topography contour data. On the other hand, the micro-
scale surface models are constructed through surface data, which are determined by means
of optical microscope images. For example, a microscope imaging system determined
free-form surfaces at the micro-scale by computing data through the optical microscope
images [25]. Additionally, a microscope imaging system performed flat contouring at the
micro-scale by computing surface data through the optical microscope images [26], where
a frequency transform was computed from the gray-level image to determine the surface
data. Moreover, a microscope imaging system retrieved flat topography at the micro-scale
through a regression model and optical microscope images [27], where a fitting function
was generated by means of the gray-level image to determine the surface data. The above
microscope arrangements perform the surface modeling at the micro-scale through the
surface data, which are determined by means of optical microscope images. However, the
gray-level profile does not depict the topography contour with the best accuracy. The profile
inaccuracy is caused by the object reflectance, light transmitter source, and viewer direction.
Therefore, the computational model produces flat and free-form surfaces away from the
target surface. In addition, the above-mentioned methods optimize the surface model pa-
rameters through a search space, which is not deduced from the surface data. For instance,
the free-form surface models generated through the simulated annealing, particle swarm,
and ant colony are not accomplished by means of surface data. Such algorithms determine
the model parameters through a solution space, which is not deduced from the surface
topography. As a consequence of missing references, complicated procedures should be
implemented to optimize the model parameters. Moreover, the minimization function
is deduced through a mathematical expression, which includes additional variables to
the surface model. Therefore, the additional variables should be computed to optimize
the surface model parameters. Although the flat and free-form surface modeling at the
micro-scale represents one of the central paradigms of industry 4.0, it still requires further
research and development. Therefore, it is established that the flat and free-form surface
modeling performed at the micro-scale via optical microscope systems still represents a
difficult challenge. To enhance the flat and free-form surface modeling at the micro-scale,
a multi-objective optimization based on several objective functions and surface contour
data is required. It is because the free-form surface is generated through several surface
functions. The multi-objective optimization via genetic algorithms was implemented in
several applications [28] and provided good fitting and convergence results.

The proposed flat and free-form surface modeling at the micro-scale is performed
through multi-objective optimization and micro laser line scanning, which retrieves surface
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contour with great accuracy. The multi-objective optimization is implemented through a
genetic algorithm, which employs several objective functions to construct micro-scale flat
and free-form surface models. In this way, the free-form surface modeling is implemented
through objective functions, which are generated through the Bezier basis functions and
surface control points. Additionally, the flat surface modeling is implemented through
objective functions, which are generated through the plane equation and surface data.
Thus, the genetic algorithm performs micro-scale flat and free-form surface modeling
by employing surface coordinates, which are computed from the laser line coordinates.
To carry it out, the multi-objective optimization determines the solution space from the
surface coordinates. Then, exploration and exploitation are performed to determine the
optimal model parameters from the solution space. The main approach to perform flat and
free-form surface modeling through genetic algorithms is determined by the quality gap,
number of iterations, and suitable structure. For instance, the particle swarm, ant colony,
and simulated annealing do not determine the solution space through the surface data.
Instead, the genetic algorithm determines the solution space from the surface data. This
leads to obtaining an initial population near of the optimal solution and reduces the number
of iterations. Furthermore, the other intelligent algorithms employ additional parameters to
the surface model and increase the number of iterations. Additionally, the genetic algorithm
provides a better surface model fitting than the other intelligent algorithms. Moreover, the
genetic algorithm performs exploration and exploitation to find the optimal solution inside
or outside of the best candidates. Based on these statements, the genetic algorithm was
chosen to perform the flat and free-form surface models. In this way, the micro-scale flat
and free-form surface modeling was performed by an optical microscope vision system
on which a CCD camera and a 38 μm laser line were attached. Thus, the micro laser
line was projected on the surface and the reflection depicted the surface contour, which
was captured by the CCD camera. The micro-scale surface coordinates were computed
through the microscope geometry and the laser line position. Thus, the micro-scale flat
and free-form surface models were accomplished through the surface coordinates, which
are not used by the optical microscope systems. Therefore, the micro-scale flat and free-
form surface modeling via multi-objective optimization and the micro laser line scanning
enhanced the surface model fitting of the optical microscope systems, where the fitting
accuracy was deduced through the difference between the data computed through the
surface model and the real surface data. The multi-objective optimization was employed to
construct micro-scale models of rectangular surfaces. The viability of the multi-objective
optimization via genetic algorithms was deduced through the model fitting, run time,
algorithm structure, and results’ accuracy. To corroborate this statement, a discussion
is provided about the fitting accuracy of the surface models at the micro-scale. In this
way, the viability of the proposed technique is corroborated by the fitting accuracy of the
micro-scale flat and free-form surface modeling. The paper is organized as follows: the
multi-objective optimization to construct the free-form surface model at the micro-scale is
explained in Section 2.1, the multi-objective optimization to construct the flat surface model
at the micro-scale is explained in Section 2.2, the surface contouring at the micro-scale
through the microscope vision system is described in Section 2.3, the results of the flat and
free-form surface modeling at the micro-scale are shown in Section 3, and the model fitting
discussion is included in Section 4.

2. Materials and Methods

2.1. Multi-Objective Optimization for Micro-Scale Free-Form Surface Modeling

The free-form surface modeling at the micro-scale is performed through the multi-
objective optimization and surface coordinates, which are computed via laser line scanning.
Typically, the multi-objective optimization employs several objective functions to be min-
imized and guarantees to find the ideal solution [29]. In this way, the multi-objective
optimization operates on a set of solution spaces and employs a moderated time to achieve
the optimization. Additionally, exploration and exploitation are implemented by the multi-
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objective optimization to determine the optimal solution from the solution space. Thus, the
free-form surface modeling at the micro-scale is carried out through the multi-objective
optimization based on a genetic algorithm and the contour data. To do so, the free-form
surface is retrieved via micro laser line scanning. The contour coordinates are shown in
Figure 1, and they are represented by (xi,j, yi,j, zi,j), where the sub-indices (i, j) are established
in the x-axis and y-axis, respectively. In this way, the surface provides the coordinates
(z0,0, z1,0, . . . , zn,0, zn,1, . . . , zn,m) in the z-axis, where the sub-indices (n, m) depict the
coordinate number in the x-axis and y-axis, respectively.

 

Figure 1. Free-form surface data to perform surface modeling.

From the surface coordinates, the free-form surface model is constructed through a
bi-cubic Bezier surface [30], which is described by the expression

Sp,q(u, v) =
s=3
∑

s=0

r=3
∑

r=0
Br(u)Bs(v)Pi,j, u, v ∈ [0, 1],

Br(u) = 3!
r!(3−r)! (1 − u)3−rur, Bs(v) = 3!

s!(3−s)! (1 − v)3−svs.
(1)

In this equation, u is in the x-direction, v is in the y-direction, and Pi,j are control points
that move the Bezier surface toward the surface zi,j. The sub-indices (i, j) are related to the
sub-indices (r, s) through the terms i = r + p*3 and j = s + q*3, respectively. In this way, the
free-form surface model is represented by the surfaces S0,0(u,v), S1,0(u,v), . . . , Sn/3,0(u,v),
. . . , Sn/3,m/3(u,v). Thus, the free-form surface model is defined by the equation

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S0,0(u, v)

S1,0(u, v)

S0,1(u, v)

...
Sn/3,m/3(u, v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0,0P0,0 + B1,0P1,0 + B2,0P2,0 + B3,0P3,0 + B0,1P0,1 + B1,1P1,1 + B2,1P2,1 + B3,1P3,1+
B0,2P0,2 + B1,2P1,2 + B2,2P2,2 + B3,2P3,2 + B0,3P0,3 + B1,3P1,3 + B2,3P2,3 + B3,3P3,3

B0,0P3,0 + B1,0P4,0 + B2,0P5,0 + B3,0P6,0 + B0,1P3,1 + B1,1P4,1 + B2,1P5,1 + B3,1P6,1+
B0,2P3,2 + B1,2P4,2 + B2,2P5,2 + B3,2P6,2 + B0,3P3,3 + B1,3P4,3 + B2,3P5,3 + B3,3P6,3

B0,0P0,3 + B1,0P1,3 + B2,0P2,3 + B3,0P3,3 + B0,1P0,4 + B1,1P1,4 + B2,1P2,4 + B3,1P3,4+
B0,2P0,5 + B1,2P1,5 + B2,2P2,5 + B3,2P3,5 + B0,3P0,6 + B1,3P1,6 + B2,3P2,6 + B3,3P3,6

...
...

B0,0Pn−3,m−3 + B1,0Pn−2,m−3 + B2,0Pn−1,m−3 + B3,0Pn,m−3 + B0,1Pn−3,m−2 + B1,1Pn−2,m−2+
B2,1Pn−1,m−2 + B3,1Pn,m−2 + B0,2Pn−3,m−1 + B1,2Pn−2,m−1 + B2,2Pn−1,m−1 + B3,2Pn,m−1+
B0,3Pn−3,m + B1,3Pn−2,m + B2,3Pn−1,m + B3,3Pn,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

In this equation, Br,s = Br(u)Bs(v) and the control points Pi,j should be computed
to determine the free-form surface model. Thus, the control points are determined by
the expression Pi,j = zi,j wi,j, where the weights wi,j are in the interval [0.7, 1.3]. Addi-
tionally, the initial Bezier surface Equation (1) is determined by means of wi,j = 1, which
provides the control points Pi,j = zi,j. Additionally, the surface points are represented by
the coordinates (xi,j, yi,j, zi,j). Thus, the values (u, v) are computed by the expressions
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u = (x3+p*3,q − x0+p*3,q)/3 and v = (yp,3+q*3 − yp,0+q*3)/3, respectively. Based on these state-
ments, the control points Pi,j are determined by means of the weights wi,j. In this way, a
multi-objective optimization through a genetic algorithm is implemented to determine the
weights wi,j. To do so, the genetic algorithm is implemented as follows.

The first step is to compute the solution space and the initial population. Typically, the
multi-objective optimization based on a genetic algorithm determines the solution space
through the Pareto solution method [31], where the solution space is determined from the
edge between the minimum of the objective functions, which is called Pareto front [32].
However, it is necessary to establish additional criteria to determine the best solution from
the line or curve of the Pareto front. This leads to implementing additional procedures
in the genetic algorithm. Additionally, the multi-objective optimization based on intelli-
gent algorithms determined the solution space through the maximum and minimum [33].
Therefore, the proposed technique determines the solution space through the initial Bezier
surface, which provides the maximum or minimum of each control Pi,j. In this way, the
initial Bezier surface is computed via Equation (1) by employing wi,j = 1j. Thus, if Sp,q(u,v)
is over the surface point zi,j, the maximum is defined as zi,j*1.0 and the minimum is defined
by zi,j*0.7, which moves the Bezier surface under the zi,j. On the other hand, if Sp,q(u,v)
is under the surface point zi,j, the minimum is established as zi,j*1.0 and the maximum is
defined by zi,j*1.3, which moves the Bezier surface over the zi,j. Thus, the solution space
is generated. In this way, the initial Bezier surface provides the solution space from the
surface data to perform the multi-objective optimization. Then, the initial population is
generated from the solution space. To carry it out, four values are randomly computed
from the solution space for each weight. These values represent the parents (P1,k, P2,k),
(P3,k, P4,k), where the k-index indicates the generation number. With these parents, the
initial population is completed.

The second step is to perform the crossover to create the current children. The crossover
performs exploration and exploitation to create two children inside the parents and two
children outside the parents [34]. In this way, the children (C1+4*t,k, C2+4*t,k, C3+4*t,k, C4+4*t,k)
are created through the parents (P1+2*t,k, P2+2*t,k) for t = 0 and t = 1. Thus, the children are
computed by the expressions

C1+4∗t,k =

⎧⎨
⎩

P1+2∗t,k − 0.5β
∣∣P1+2∗t,k − minimum

∣∣, if P1+2∗t,k < P2+2∗t,k

P2+2∗t,k − 0.5β
∣∣P2+2∗t,k − minimum

∣∣, if P2+2∗t,k < P1+2∗t,k

, (3)

C2+4∗t,k = 0.5
[
(P1+2∗t,k + P2+2∗t,k)− β

∣∣P1+2∗t,k − P2+2∗t,k
∣∣], (4)

C3+4∗t,k = 0.5
[
(P1+2∗t,k + P2+2∗t,k) + β

∣∣P1+2∗t,k − P2+2∗t,k
∣∣], (5)

C4+4∗t,k =

⎧⎨
⎩

P2+2∗t,k + 0.5β
∣∣maximum − P2+2∗t,k

∣∣, if P1+2∗t,k < P2+2∗t,k

P1+2∗t,k + 0.5β
∣∣maximum − P1+2∗t,k

∣∣, if P2+2∗t,k < P1+2∗t,k

. (6)

In these equations, the probability distribution β is determined through the spread
factor α, which is randomly computed in the interval [0, 1]. Thus, the probability distribu-
tion is β = (2α)1/2 if α > 0.5; otherwise, β = [2(1 − α)]1/2. In this way, the children inside the
parents are computed by Equations (4) and (5), and the children outside the parents are
computed by Equation (3) through Equation (6). Thus, the children (C1,k, C2,k, C3,k, C4,k)
are computed by Equation (3) through Equation (6) through the parents (P1,k, P2,k) and
t = 0. Then, the children (C5,k, C6,k, C7,k, C8,k) are computed by Equation (3) through Equa-
tion (6) through the parents (P3,k, P4,k) and t = 1. Thus, the current children are obtained. To
assemble the Bezier surfaces Sp,q(u,v) with G1 continuity, the boundary control points must
be collinear [35]. Therefore, the boundary control points are computed by the expressions
P3+3*p,j = (P3+3*p−1,j + P3+3*p+1,j)/2 and Pi,3+3*q = (Pi,3+3*q−1 + Pi,3+3*q+1)/2.
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The third step is to evaluate the fitness through a multi-objective function, which
is deduced by the Bezier surfaces S0,0(u,v), S1,0(u,v), . . . , Sn/3,m/3(u,v). Thus, the multi-
objective function is defined by the expression

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0,0

F1,0

F0,1

...
Fn/3,m/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min

{
1
16

√
s=3
∑

s=0

r=3
∑

r=0

[
S0,0(u, v)− zi,j

]2
}

min

{
1
16

√
s=3
∑

s=0

r=3
∑

r=0

[
S1,0(u, v)− zi,j

]2
}

min

{
1
16

√
s=3
∑

s=0

r=3
∑

r=0

[
S0,1(u, v)− zi,j

]2
}

...

min

{
1
16

√
i=3
∑

i=0

j=3
∑

j=0

[
Sn/3,m/3(u, v)− zi,j

]2
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

From this multi-objective function, the fitness is computed by the expression
fitness = (F0,0 + F1,0 + F0,1 + . . . . + Fn/3,m/3)/[(n/3)(m/3)].

The fourth step is to select the parents of the next generation through the best parents
and children. Thus, the parents P1,k+1 and P3,k+1 are selected from the parents (P1,k, P2,k)
and (P3,k, P4,k), respectively. Then, the parents P2,k+1 and P4,k+1 are selected from the
children (C1,k, C2,k, C3,k, C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively.

The fifth step is to perform the mutation. This procedure leads to avoiding trapping
in a local minimum. To carry it out, a new parent is randomly generated from the search
space. Then, the new parent replaces the worst parent, which is selected through the fitness
Equation (7). Thus, if the new parent improves the fitness, the worst parent is replaced
by the new parent. Otherwise, the worst parent is not replaced. Additionally, one weight
is mutated from a parent, which is selected in random form. To do so, a new weight is
randomly generated from the search space, and it is replaced by the selected parent to
compute the fitness Equation (7). If the new weight improves the fitness, the mutation
is carried out; if not, the weight is not mutated. Thus, the mutation is accomplished to
determine the parents of the (k + 1) generation. Then, the children of the (k + 1) generation
are generated through the crossover by computing Equation (3) through Equation (6). From
this step, the population of the (k + 1) is completed. The steps to determine the (k + 1)
generation are repeated until the multi-objective function in Equation (7) is minimized.

To elucidate the multi-objective optimization, a free-form surface model was used by
employing the contour data shown in Figure 2a. This procedure was performed through
the flowchart shown in Figure 2b, which describes the steps to perform the free-form
surface modeling via multi-objective optimization. In this way, the first step was carried
out to determine the initial population. To do so, the initial Bezier surface Equation (1)
was computed to define the solution space through the maximum and minimum of each
control point Pi,j. In this case, control point P0,0 was provided by the initial Bezier surface,
and the data (P3,0, P3,1, P3,2, P3,3, P0,3, P1,3, P2,3) were computed through the expressions
P3+3*p,j = (P3+3*p−1,j + P3+3*p+1,j)/2 and Pi,3+3*q = (Pi,3+3*q−1 + Pi,3+3*q+1)/2 to provide con-
tinuity G1. Thus, the first parents were computed from the search space. The data of
the initial population of the surface S0,0(u,v) are shown in Table 1. In this table, the first
column indicates the control points, the second column indicates the generation number,
and the parents (P1,1, P2,1, P3,1, P4,1) are indicated in the third to sixth column. Then,
the second step was performed to compute the current children through the crossover. To
carry it out, Equation (3) through Equation (6) were computed by employing the parents
(P1+2*t,k, P2+2*t,k) and t = 0 to generate the children (C1,k, C2,k, C3,k, C4,k). In the same
way, Equation (3) through Equation (6) were computed by employing the parents (P1+2*t,k,
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P2+2*t,k) and t = 1 to determine (C5,k, C6,k, C7,k, C8,k). The children data are in the seventh
to fourteenth column of Table 1. Next, the third step was performed to evaluate the fit-
ness by means of the multi-objective function, which was deduced through the Bezier
surfaces S0,0(u,v), S1,0(u,v), . . . , S1,1(u,v). This procedure indicated that the initial popula-
tion produced a low error. Then, the fourth step was carried out to select the parents of
the next generation from the best current parents and children. In this way, the parents
P1,k+1 and P3,k+1 were selected from the pairs (P1,k, P2,k) and (P3,k, P4,k), respectively.
Additionally, the parents P2,k+1 and P4,k+1 were selected from the children (C1,k, C2,k, C3,k,
C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively. In this case, P1,2 = P2,1, P3,2 = P4,1, P2,2 = C1,1,
and P4,2 = C5,1. Then, the fifth step was performed to mutate the parent P1,2, which was
selected as the worst parent. Additionally, a new parent was randomly generated from
the solution space to compute the fitness (7). In this case, the fitness was not improved
and the parent was not mutated. Then, the parent P1,2 was chosen in random form to
mutate the weight w1,2, which was randomly selected. Next, a new weight was replaced
in the parent P1,2, and the fitness was computed via Equation (7). In this case, the fitness
was improved; therefore, the weight w1,2 was mutated. Then, the second step was carried
out by computing Equation (3) through Equation (6) to create the children of the (k + 1)
generation. Further, the fitness of these children was computed via Equation (7). Addi-
tionally, the control points (P3,0, P3,1, P3,2, P3,3, P0,3, P1,3, P2,3) were determined by the
expressions P3+3*p,j = (P3+3*p−1,j + P3+3*p+1,j)/2 and Pi,3+3*q = (Pi,3+3*q−1 + Pi,3+3*q+1)/2 to
provide continuity G1.

The second-generation population is indicated in the tenth to twenty-fourth row of
Table 1. In this way, the steps to compute the (k+1) generation were repeated until the multi-
objective function in Equation (7) was minimized. The optimal control points are shown in
the fifteenth column of Table 1. These control points define the free-form surface model,
which generates the surface shown in Figure 2c. Thus, the free-form surface modeling
was performed through multi-objective optimization. Additionally, this method can be
performed to construct a free-form surface model for a non-rectangular surface. In this case,
the contour in the x-axis and y-axis should be represented through the Bezier functions
Xp,q(u,v) and Yp,q(u,v), respectively. These functions are deduced via Equation (1) by the
expressions Xp,q(u,v) = B0(u)B0(v)x0,0 + B1(u)B0(v)x1,0 + . . . + B3(u)B3(v)x3,3 and Yp,q(u,v) =
B0(u)B0(v)y0,0 + B1(u)B0(v)y1,0 + . . . + B3(u)B3(v)y3,3. Thus, the free-form surface model for
a non-rectangular surface is defined by {Xp,q(u,v), Xp,q(u,v), Sp,q(u,v)}.

The efficiency of the multi-objective optimization is elucidated through the parameters
in the genetic algorithm. The parameters include the population size, number of genera-
tions, crossover probability and mutation probability, and optimal gap. The population size
indicates the number of chromosomes in one generation. In this case, each control point
included an initial population of twelve chromosomes. However, each surface function
Sp,q(u,v) included eight control points. Therefore, one generation included a population 384
chromosomes. The crossover probability indicates how often the crossover is performed.
The crossover is made to find better chromosomes. However, it is good to leave some of
the old population for the next generation. The probability of crossover is determined
via fitness [36]. When the fitness average is improved, the crossover is carried out. This
procedure avoids the loss of candidates to achieve the convergence. In this way, the multi-
objective optimization is performed several times for the same free-form surface model.
The result of the probability of crossover was in the interval from 0.18 to 0.56. The mutation
probability indicates how often the chromosome can be mutated. The mutation probability
is determined via fitness. In the genetic algorithm, if the fitness is improved, the mutation
is carried out; if not, the parameter is not mutated. In this way, the multi-objective opti-
mization is performed several times on the same free-form surface model. The result of
the probability of mutation was in the interval from 0.26 to 0.61. The number of genera-
tions indicates the number of iterations to obtain the optimal control points. In this case,
92 generations were performed to optimize the parameters. The flat surface modeling via

109



Energies 2022, 15, 6571

multi-objective optimization is described in Section 2.2. The optimal gap was computed
through the relative error, and the result was 0.38%.

 

(a) (b) 

 
(c) 

Figure 2. (a) Contour data to construct free-form surface model. (b) Flowchart to perform multi-
objective optimization through a genetic algorithm. (c) Surface generated by the free-form surface
model Equation (1).

Table 1. Control points generated in the first and second generation.

Pi,j k P1 P2 P3 P4 C1 C2 C3 C4 C5 C6 C7 C8

P1,0 1 4.781 4.766 4.375 4.740 4.668 4.768 4.775 4.733 4.364 4.451 4.672 4.199
P2,0 1 4.329 4.645 4.238 4.064 4.254 4.456 4.527 4.605 4.063 4.071 4.153 4.216
P0,1 1 4.753 4.144 4.550 4.698 4.131 4.175 4.514 4.737 4.458 4.623 4.695 4.501
P1,1 1 4.396 4.643 4.771 4.394 4.266 4.479 4.636 4.601 4.265 4.428 4.755 4.716
P2,1 1 4.163 4.487 4.549 4.533 4.162 4.184 4.486 4.419 4.382 4.537 4.546 4.468
P0,2 1 4.724 4.117 4.736 4.094 4.085 4.375 4.439 4.660 4.092 4.097 4.570 4.663
P1,2 1 4.318 4.543 4.657 4.484 4.215 4.382 4.450 4.514 4.457 4.512 4.643 4.633
P2,2 1 4.346 4.118 4.525 4.508 4.084 4.210 4.311 4.259 4.433 4.509 4.519 4.449

fitness 0.258 0.179 0.193 0.166 0.106 0.188 0.256 0.269 0.085 0.130 0.222 0.159
P1,0 2 4.766 4.668 4.740 4.364 4.380 4.670 4.748 4.754 4.221 4.447 4.625 4.685 4.135
P2,0 2 4.645 4.254 4.064 4.063 4.234 4.320 4.535 4.569 4.058 4.063 4.064 3.880 4.074
P0,1 2 4.144 4.131 4.698 4.458 4.104 4.133 4.143 3.803 4.303 4.459 4.587 4.683 4.154
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Table 1. Cont.

P1,1 2 4.643 4.266 4.394 4.265 4.186 4.440 4.464 4.605 4.184 4.327 4.371 4.283 4.195
P2,1 2 4.487 4.162 4.533 4.382 4.130 4.314 4.454 4.348 4.359 4.420 4.481 4.473 3.992
P0,2 2 4.117 4.085 4.094 4.092 4.067 4.096 4.114 4.001 4.073 4.092 4.093 3.786 4.112
P1,2 2 4.059 4.215 4.484 4.457 4.028 4.071 4.178 3.935 4.395 4.457 4.481 4.421 4.163
P2,2 2 4.118 4.084 4.507 4.433 3.998 4.088 4.115 3.900 4.232 4.452 4.487 4.432 3.981

fitness 0.179 0.106 0.166 0.085 0.062 0.120 0.155 0.155 0.054 0.097 0.140 0.112 0.0126

2.2. Micro-Scale Flat Surface Modeling via Multi-Objective Optimization

The micro-scale flat surface modeling is performed through the multi-objective opti-
mization and surface points, which are contoured via micro laser line projection. Thus, a
flat surface model is constructed through the surface coordinates. The flat surface points
are shown in Figure 3. The surface points are represented by the coordinates (xi,j, yi,j, zi,j),
where the sub-indices (i, j) are defined in the x-axis and y-axis, respectively.

 
Figure 3. Surface coordinates to perform flat surface modeling.

Thus, the flat surface provides the coordinates (z0,0, z1,0, . . . , zn,m) in the z-axis, where
the sub-indices (n, m) represent the number of coordinates in the x-axis and y-axis, respec-
tively. Thus, the flat surface model is deduced by the next plane expression

zi,j = axi,j + byi,j + c. (8)

Additionally, the derivatives in the x-axis and y-axis are defined through the surface
coordinates by means of the next expressions

Gx =
zi+δ,j − zi,j

xi+δ,j − xi,j
=

(axi+δ,j + byi+δ,j)− (axi,j + byi,j)

xi+δ,j − xi,j
, (9)

Gy =
zi,j+Δ − zi,j

yi,j+Δ − yi,j
=

(axi,j+Δ + byi,j+Δ)− (axi,j + byi,j)

yi,j+Δ − yi,j
. (10)

In these derivatives, δ and Δ represent an increment in the x-axis and y-axis, respec-
tively. Thus, the flat surface model is established by computing the constants (a, b, c). In
this way, the constants (a, b, c) are optimized to establish the flat surface model. To carry
it out, a multi-objective optimization is performed via Equations (8)–(10) and the surface
coordinates (xi,j, yi,j, zi,j). Thus, the genetic algorithm determines the constants (a, b, c)
as follows.
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The first step is to determine the initial population by means of the surface contour
coordinates. To carry it out, the initial constants (a, b, c) are computed by means of the
next expressions

a =
(zi+δ,j − zi,j)(yi,j+Δ + yi,j)− (zi,j+Δ − zi,j)(yi+δ,j − yi,j)

(xi+δ,j − xi,j)(yi,j+Δ + yi,j)− (xi,j+Δ − xi,j)(yi+δ,j − yi,j)
, (11)

b =
(zi+δ,j − zi,j)(xi,j+Δ − xi,j)− (zi,j+Δ − zi,j)(xi+δ,j − xi,j)

(yi+δ,j − yi,j)(xi,j+Δ − xi,j)− (yi,j+Δ + yi,j)(xi+δ,j − xi,j)
, (12)

c = zi,j − axi,j − byi,j. (13)

In this way, four parents (P1,k, P2,k, P3,k, P4,k) are obtained by computing
Equation (11) through Equation (13) for each constant. The sub-index k indicates the
number of generations. Thus, the parent P1,1 is determined by computing Equation (11)
through Equation (13) by employing (i = 0, j = 0, δ = n/2, Δ = m/2). In the same way, the
parent P2,1 is computed by employing (i = n/2, j = 0, δ = n, Δ = m/2), P3,1 is computed by
employing (i = 0, j = m/2, δ = n/2, Δ = m), and P4,1 is computed by employing (i = n/2,
j = m/2, δ = n, Δ = m). Thus, four constants (a, b, c) are obtained, and they represent the
initial population. Additionally, the mean and the standard deviation are computed from
the four constants, and they are defined as (am, bm, cm) and (as, bs, cs), respectively. Then,
the solution space is determined through the maximum and minimum of each constant.
Thus, the terms (am − 2*as) and (am + 2*as) are computed to determine the maximum
and minimum of a. Additionally, the terms (bm − 2*as) and (bm + 2*bs) are computed to
determine the maximum and minimum of b. Further, the terms (cm − 2*cs) and (cm + 2*cs)
are computed to determine the maximum and minimum of c. Thus, the solution space is
defined, and the initial population is completed.

The second step is to generate the current children through the crossover. Thus, the
parents (P1,k, P2,k) and t = 0 are replaced in Equation (3) through Equation (6) to compute
the children (C1,k, C2,k, C3,k, C4,k). Additionally, the parents (P3,k, P4,k) and t = 1 are replaced
in Equation (3) through Equation (6) to compute the children (C5,k, C6,k, C7,k, C8,k).

The third step is to determine the fitness through a multi-objective function, which is
deduced by means of Equation (8) through Equation (10) and the surface coordinates (xi,j,
yi,j, zi,j). The multi-objective function is defined by the expression

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min

{√
i=n
∑

i=1

r=m
∑

j=1

[
zi,j − (axi,j + byi,j − c)

]2
}

min

{√
i=n−1

∑
i=1

j=m
∑

j=1

[
(zi+δ,j − zi,j)− a(xi+δ,j − xi,j)− b(yi+δ,j − yi,j)

]2
}

min

{√
i=n
∑

i=1

j=m−1
∑

j=1

[
(zi,j+Δ − zi,j)− a(xi,j+Δ − xi,j)− b(yi,j+Δ − yi,j)

]2
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

The fourth step is to select the parents of the next generation from the best current
parents and children. Thus, the parents P1,k+1 and P3,k+1 are selected from the pairs (P1,k,
P2,k) and (P3,k, P4,k), respectively. Then, the parents P2,k+1 and P4,k+1 are selected from
the children (C1,k, C2,k, C3,k, C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively.

The fifth step is to perform the mutation, which leads to avoiding trapping in a local
minimum. To carry it out, a new parent is randomly generated from the search space.
Then, the new parent replaces the worst parent, which is selected by means of the fitness
Equation (14). Thus, if the new parent improves the fitness, the worst parent is replaced by
the new parent. Otherwise, the worst parent is not mutated. Additionally, one constant
is mutated from a parent, which is selected in random form. To do so, a new constant is
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randomly generated from the solution space, and it is replaced in the selected parent to
compute the fitness via Equation (14). If the new constant improves the fitness, the mutation
is carried out; if not, the constant is not mutated. Thus, the mutation is accomplished to
determine the parents of the (k + 1) generation. Then, the children of the (k + 1) generation
are generated through the crossover by computing Equation (3) through Equation (6).
Additionally, the fitness of these children is computed via Equation (14). From this step,
the population of the (k + 1) generation is completed. Then, the steps to determine the
(k + 1) generation are repeated until the multi-objective function in Equation (14) is mini-
mized. After that, the optimal constants (a, b, c) are replaced in Equation (8) to obtain the flat
surface model. Thus, the micro-scale flat surface model is generated by the multi-objective
optimization through a genetic algorithm.

2.3. Surface Contouring at Micro-Scale via Micro Laser Line Scanning

The microscope vision system to perform micro-scale surface contouring is shown in
Figure 4a. This arrangement consists of an optical microscope, which includes a laser CCD
camera, a diode, and a computer. This microscope system is mounted on a slider device
to perform the micro laser scanning. In this arrangement, the surface plane is located on
the x-axis and y-axis, and the surface contour is parallel to the z-axis. The lateral view
of the microscope arrangement in the x-axis is described by the optical geometry shown
in Figure 4b, where a 38 μm laser line is projected perpendicularly on the target surface
and the microscope is aligned at an angle. The symbol θ depicts the angle between the
optical axis and the laser line. The distance between the surface and the objective lens
is defined by d. The objective focal length and the objective focus are represented by L1
and F1, respectively. The distance between the ocular lens and the intermediate image
plane is represented by L. The ocular focal length and the ocular focus are represented
L2 and F2, respectively. The lateral view of the microscope arrangement in the y-axis is
described by the optical geometry shown in Figure 4c. The laser line coordinates in the
image plane are represented by (xi,j, yi,j) in the x-axis and y-axis, respectively. The image
center is represented by the coordinates (xc, yc), and the pixel size is represented by η. The
topography coordinates yi,j and zi,j are deduced from the geometry shown in Figure 4b,c by
means of the expressions

zi,j =
η(xc − xi,j)F1F2

(L1 − F1)(L2 − F2) sin θ
+ O, (15)

yi,j = ηyc −
η(yc − yi,j)F1F2

(L1 − F1)(L2 − F2)
. (16)

The surface coordinate xi,j is collected from the position where the laser line is projected
in the x-axis. The slider device provides the coordinate in the x-axis. Thus, the topography
coordinates are computed through the parameters (xc, yc, η, θ, L1, F1, L2, F2). These vision
parameters are determined by a genetic algorithm via Equations (15) and (16) and the
topography coordinates. The genetic algorithm computes the vision as follows.

The first step is to compute the initial population from the maximum and minimum
of each parameter. In this way, the maximum and minimum of the constants (xc, yc, η)
are deduced from the image size. However, the maximum and minimum of the variables
(θ, L1, F1, L2, F2) are defined through the microscope geometry. The minimum F2 is deduced
through the ocular lens diameter, and the maximum F2 is two times the minimum F2. The
minimum L2 is equal to the minimum F2, and the maximum L2 is two times the minimum
L2. Additionally, the minimum F1 is deduced through the objective lens diameter, and the
maximum F1 is two times the minimum F1. The minimum L1 is equal to the minimum
F1, and the maximum L1 is two times the minimum L1. The minimum and minimum θ
were established as 14◦ and 40◦, respectively. Thus, the solution space is completed. Then,
four parents (P1,k, P2,k, P3,k, P4,k) are computed from the solution space in random form.
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In this way, the four vision parameters (xc, yc, η, θ, L1, f 1, L2, f 2) are established as the
initial population.

 
(a) 

 
                  (b)                                         (c) 

Figure 4. (a) Microscope vision system to compute micro-scale flat and free-form topography [37].
(b) Lateral geometry of the microscope system in x-axis. (c) Geometry of the microscope system in
y-axis.

The second step is to perform the crossover to generate the current children. To carry
it out, the children (C1+4*t,k, C2+4*t,k, C3+4*t,k, C4+4*t,k) are computed through the parents
(P1+2*t,k, P2+2*t,k) for t = 0 and t = 1. Thus, the parents (P1,k, P2,k) and t = 0 are replaced in
Equation (3) through Equation (6) to compute the children (C1,k, C2,k, C3,k, C4,k). In the same
way, the parents (P3,k, P4,k) and q = 1 are substituted in Equation (3) through Equation (6)
to compute the children (C5,k, C6,k, C7,k, C8,k).

The third step is to evaluate the fitness through an objective function, which is deduced
from the vision parameters by means of the expressions

FO1 = min

{
1

mxn

n

∑
i=

m

∑
j=0

[
(zi,j − zi,m)−

η(xc − xi,j)F1F2

(L1 − F1)(L2 − F2) sin θ
+

η(xc − xi,m)F1F2

(L1 − F1)(L2 − F2) sin θ

]2}
, (17)

FO2 = min

{
1

mxn

n

∑
i=

m

∑
j=0

[
(yi,j − yi,m) +

η(yc − yi,j)F1F2

(L1 − F1)(L2 − F2)
− η(yc − yi,m)F1F2

(L1 − F1)(L2 − F2)

]2}
. (18)
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From these objective functions, the fitness is evaluated through the expression
FO = (FO1 + FO2)/2, where the surface topography (zi,j − zi,m) and the surface width
(yi,j − yi,m) are known.

The fourth step is to select the parents of the next generation from the best current
parents and children. In this way, the parents P1,k+1 and P3,k+1 are chosen from the parents
(P1,k, P2,k) and (P3,k, P4,k), respectively. Then, the parents P2,k+1 and P4,t+1 are chosen
from the children (C1,k, C2,k, C3,k, C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively.

The fifth step is to perform the mutation to avoid trapping in a local minimum. To carry
it out, a new parent is randomly generated from the solution space. Then, the new parent
replaces the worst parent, which is selected through the fitness Equations (17) and (18). Thus,
if the new parent improves the fitness, the worst parent is replaced by the new parent.
Otherwise, the worst parent is not replaced. Additionally, one vision parameter is mutated
from a parent, which is selected in random form. To do so, a new vision parameter is
randomly generated from the solution space, and it is replaced in the selected parent to
compute the fitness by means of Equations (17) and (18). If the new vision parameter
improves the fitness, the mutation is carried out; if not, the parameter is not mutated. Thus,
the mutation is accomplished to determine the parents of the (k + 1) generation. Then,
the children of the (k + 1) generation are generated through the crossover by computing
Equation (3) through Equation (6). Additionally, the fitness of these children is computed
by means of Equations (17) and (18). From this step, the population of the (k + 1) generation
is completed. The steps to determine the (k + 1) generation are repeated until the objective
function in Equations (17) and (18) is minimized. Then, the distance from zero to the point
O is computed by the expression z0,j = η(x0,j − xc) F1 F2/(L1 − F1)(L2 − F2)sin θ.

The laser line coordinates (xi,j, yi,j) are determined through the pixel gray-level. The
position xi,j was determined through the gray-level maximum in the x-axis of the image [38].
In this way, the pixel gray-level is approximated to a Bezier curve in the x-direction by
means of the expressions

x(u) =
N

∑
i=0

Ci(1 − u)N−iuixi,j, Ci = Ci−1(N + 1 − i)/i, C0 = 1, 0 ≤ u ≤ 1. (19)

I(u) =
N

∑
i=0

Ci(1 − u)N−iui Ii,j, Ci = Ci−1(N + 1 − i)/i, C0 = 1, 0 ≤ u ≤ 1. (20)

In Equation (19), xi,j represents the laser line coordinates in the x-axis, and N represents
the laser line width in pixels. The pixel gray-level is represented by Ii,j in Equation (20), where
the sub-index i indicates the pixel number in the x-axis and the sub-index j indicates the pixel
number in the y-axis. In this way, xi,j is substituted in Equation (19) and Ii,j is substituted
Equation (20) to compute a concave curve {x(u), I(u)} in the interval 0 ≤ u ≤ 1. Thus, the
second derivative I”(u) is positive, and the gray-level maximum is computed through the
derivative I′(u) = 0. The value u that provides I′(u) = 0 is computed through the bisection
method. By substituting u in Equation (19), x(u) is computed to determine the laser line
position xi,j = x(u) in the x-axis. The laser line position yi,j is deduced from the row num-
ber in the y-axis. Additionally, the line edges yi,0 and yi,m are determined by computing
the first derivative in the y-axis. In this way, the coordinates (xi,j, yi,j) are replaced in
Equation (15) and Equation (16) to compute the surface topography (yi,j, zi,j) at the micro-scale.
To carry it out, the surface is scanned, and a laser line image is captured by the CCD. From this
laser line image, the coordinates (xi,j, yi,j) are computed by means of
Equations (19) and (20). Then, the coordinates (xi,j, yi,j) are substituted in Equations (15) and (16)
to compute the surface topography (yi,j, zi,j). The slider device provides the coordinates xi,j
in the x-axis. Thus, the micro-scale surface coordinates are determined.

3. Results of Micro-Scale Flat and Free-Form Surface Modeling

The micro-scale flat and free-form surface modeling was performed through the optical
microscope system shown in Figure 4a. The free-form surface modeling at the micro-scale
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was implemented for the metallic object shown in Figure 5a. In this figure, the scale is
indicated in millimeters in the x-axis. Additionally, Figure 5b shows the micro laser line
projected on the object surface. In this way, the micro laser line scanned the object surface
in the x-axis, and the laser line image was captured by the CCD camera. From the image,
the line position coordinates (xi,j, yi,j) were computed by means of Equations (19) and (20),
respectively. Then, the coordinate xi,j was substituted in Equation (15) and the coordinate
yi,j was replaced in Equation (16) to compute the surface data (zi,j, yi,j). The slider device
provided the surface data xi,j.

  
(a) (b) 

Figure 5. (a) Metallic object surface with scale in mm in x-axis. (b) Micro laser line projected on the
object surface.

From the scanning, one hundred and sixty-eight images were captured to compute the
object topography shown in Figure 6a. In this figure, the x-axis and y-axis are represented
in millimeters, but the z-axis is represented in microns. The surface accuracy is computed
through the relative error [39], which was calculated via reference data provided by a
contact method. In this way, the surface accuracy was determined in terms of percentage
by means of the expression

Error% =
100

n · m

n

∑
i=0

m

∑
j=0

∣∣zi,j − Hi,j
∣∣

Hi,j
, (21)

  
(a) (b) 

Figure 6. (a) Micro-scale topography recovered via micro laser line scanning. (b) Object surface
computed by the free-form surface model generated via Equation (1).

In this equation, zi,j represents the micro-scale surface calculated by means of
Equation (15), Hi,j represents the surface reference, and n·m indicates the data number.
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Thus, Equation (21) was computed by employing the surface data shown in Figure 6a, and
the relative error was 0.785%. From the surface shown in Figure 6a, a free-form surface
model was constructed through the multi-objective optimization as described in Section 2.1.
The steps of this procedure are described as follows.

The first step was to determine the initial population from the solution space of each
weight, where the minimum and maximum of the weights were in the interval [0.7, 1.3]. In
this way, the genetic algorithm computed four parents in random form from the solution
space for each weight of the surface Sp,q(u,v). Then, the second step was to compute the
current children through the crossover by replacing t = 0 and t = 1 in Equation (3) through
Equation (6). The probability of crossover is deduced by means of the average fitness. Thus,
the crossover is performed when the average fitness is enhanced. In this way, the loss of
candidates is avoided to achieve the convergence. Then, the third step was to evaluate the
fitness by substituting the weights of the parents and children in Equation (1) to compute
Equation (7). Then, the fourth step was to select the parents of the next generation from the
best current parents and children. Thus, the parents P1,k+1 and P3,k+1 were chosen from
the pairs (P1,k, P2,k) and (P3,k, P4,k), respectively. In addition, the parents P2,t+1 and P4,t+1
were chosen from the children (C1,k, C2,k, C3,k, C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively.
Then, the fifth step was to mutate the worst parent, which was selected through the fitness.
Thus, if the new parent enhanced the fitness, the worst parent was mutated. Otherwise, the
worst parent was not mutated. In addition, one weight was mutated from a parent, which
was selected in random form. To do so, a new weight was randomly generated from the
solution space, and it was replaced in the selected parent to compute the fitness by means
of Equation (7). If the new weight improved the fitness, the mutation was carried out; if
not, the weight was not mutated. Then, the second step was carried out by computing
Equation (3) through Equation (6) to create the children of the (k + 1) generation. In addition,
the fitness of these children was computed by means of Equation (7). From this step, the
population of the (k + 1) generation was completed. The steps to determine the (k + 1)
generation were repeated until the multi-objective function in Equation (7) was minimized.

The iterations to obtain the optimal weights determine the number of generations.
In this case, 174 generations were computed to accomplish the free-form surface model.
Thus, the optimal weights were substituted in Equation (1) to obtain the free-form surface
model, which generated the object surface shown in Figure 6b. The fitting accuracy of the
free-form surface model was determined through the relative error by the expression

Error% =
100

n · m

n

∑
i=0

m

∑
j=0

∣∣Mi,j − zi,j
∣∣

zi,j
, (22)

In this equation, Mi,j represents the micro-scale surface calculated through the free-
form surface model Equation (1), zi,j represents the surface calculated by means of
Equation (15), and n·m indicates the number of data. Additionally, the optimal gap
of the genetic algorithm was determined by computing the relative error by means of
Equation (22). From this step, the free-form surface model produced a relative error of
1.9731% with respect to the metallic surface shown in Figure 6a. The fitness variation
indicated that the fitness decreased when the generation number increased.

The efficiency of the multi-objective optimization is described through the parameters
in the genetic algorithm as follows. The population size is determined by the number
of chromosomes in one generation. In this case, the free-surface model was established
through the surface functions S0,0(u,v), S1,0(u,v), S2,0(u,v), . . . , S8,7(u,v). Each surface
function contained a population of 96 chromosomes. Therefore, one generation included
a population of 6912 chromosomes. The crossover probability determines how often the
crossover is performed. The probability of crossover is determined via fitness. Thus,
the crossover is carried out when the average fitness of the parents is improved. In this
way, the multi-objective optimization is performed several times at the same free-form
surface model. The result of the probability of crossover was in the interval from 0.27 to

117



Energies 2022, 15, 6571

0.53. The mutation probability determines how often the chromosome can be mutated.
The mutation probability is determined via fitness. Thus, if the new parent improves the
fitness, the worst parent is mutated. In the same way, for the parameter mutation, if the
new parameter improves the fitness, the parameter is mutated. Thus, the multi-objective
optimization is performed several times on the same free-form surface model. The result of
the probability of mutation was in the interval from 0.26 to 0.59. The number of generations
indicates the iterations to obtain the optimal control points. In this case, 174 generations
were performed to accomplish the free-form surface model. The optimal gap was computed
via Equation (22), and the result was a relative error of 1.9731%. Based on these results,
the genetic algorithm was examined. For instance, the optimal crossover probability and
mutation probability were defined in the interval between 0.3 and 0.6 for surface modeling
in recent optimization research [40]. Therefore, the proposed genetic algorithm provided
good crossover probability and mutation probability. The population size is related to
the convergence and the number of parameters [41]. In this case, the genetic algorithm
provided 12 chromosomes for each parameter. These chromosomes produced results near
the optimal solution and reduced iterations. Therefore, the algorithm provided a good
population size and number of iterations. The optimal gap established good fitting of the
surface model to the target surface.

The micro-scale flat surface modeling was carried out for the paper surface shown
in Figure 7a. In this way, the paper surface was scanned in the x-axis to retrieve the
coordinates (xi,j, yi,j) by computing Equations (19) and (20) from the laser line image. Then,
the coordinate xi,j was replaced in Equation (15) and the coordinate yi,j was replaced in
Equation (16) to calculate the surface data (zi,j, yi,j). The slider device provided the surface
coordinates xi,j. In this way, one hundred and sixty-four images were captured from the
scanning to compute the object topography shown in Figure 7b. In this figure, the x-axis
and y-axis are represented in millimeters, but the z-axis is represented in microns. The
surface accuracy was computed by means of the relative error Equation (21), where zi,j
represents the surface computed via Equation (15), Hi,j represents the reference data, and
n·m indicates the number of data. In this way, Equation (21) was computed by employing
the surface data shown in Figure 7a, and the relative error was 0.691%. From this surface,
a flat surface model was generated via multi-objective optimization based on a genetic
algorithm by means of Equation (8) and the coordinates (xi,j, yi,j, zi,j). The steps of this
multi-objective optimization are described as follows.

The first step was to determine the initial population through the coordinates (xi,j,
yi,j, zi,j). To carry it out, the initial constants (a, b, c) were computed by means of Equation
(11) through Equation (13) as described in Section 2.2. Then, four parents (P1,1, P2,1, P3,1,
P4,1) were computed by employing the sub-indices (i = 0, j = 0, δ = 82, Δ = 80), (i = 82,
j = 0, δ = 82, Δ = 80), (i = 0, j = 80, δ = 82, Δ = 80), and (i = 82, j = 80, δ = 82, Δ = 80). In
this case, n = 164 and m = 160. Thus, four constants (a, b, c) were obtained, and they were
defined as the first parents (P1,2, P2,1, P3,1, P4,1), where the parent P1,1 is represented
by the constants (a = −0.1061, b = −4.2290, c = 31.1214), the parent P2,1 is represented
by (a = 0.5671, b = −3.672, c = 30.8239), the parent P3,1 is represented by (a = 0.8934,
b = −1.1235, c = 29.1065), and the parent P4,1 is represented by (a = 0.1432, b = −0.4218,
c = 27.8532). Then, the terms (am − 2*as) and (am + 2*as) were computed to determine the
maximum and minimum of a. Additionally, the terms (bm − 2*as) and (bm + 2*bs) were
computed to determine the maximum and minimum of b, and the terms (cm − 2*cs) and
(cm + 2*cs) were computed to determine the maximum and minimum of c. Thus, the initial
population was completed. Then, the second step was to determine the current children
through the crossover by computing Equation (3) through Equation (6) by employing t = 0
and t = 1. The probability of crossover is deduced via average fitness. Thus, the crossover
is performed when the average fitness is enhanced. Next, the third step was to evaluate
the fitness by computing Equation (14) using the constants (a, b, c) and the coordinates (xi,j,
yi,j, zi,j). Then, the fourth step was to select the parents of the next generation from the
best current parents and children, where the parents P1,k+1 and P3,k+1 were chosen from
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the pairs (P1,k, P2,k) and (P3,k, P4,k), respectively. In addition, the parents P2,t+1 and P4,t+1
were chosen from the children (C1,k, C2,k, C3,k, C4,k) and (C5,k, C6,k, C7,k, C8,k), respectively.
Then, the fifth step was to mutate the worst parent, which was selected through the fitness
Equation (14). Thus, if the new parent enhanced the fitness, the worst parent was mutated.
Otherwise, the worst parent was not mutated. In addition, one constant was mutated from
a parent, which was selected in random form. To do so, a new constant was randomly
generated from the solution space, and it was replaced in the selected parent to compute
the fitness via Equation (14). If the new constant improved the fitness, the mutation was
carried out; if not, the constant was not mutated. Then, the second step was carried out by
computing Equation (3) through Equation (6) to create the children of the (k + 1) generation.
Additionally, the fitness of these children was computed via Equation (14). From this step,
the population of the (k + 1) generation was completed. The steps to compute the (k + 1)
generation were repeated until the multi-objective function in Equation (14) was minimized.
In this case, the number of generations to obtain the optimal constants (a, b, c) was 157. The
optimal constants were a = 0.307, b = −1.983, and c = 28.723, and they were replaced in
Equation (8) to determine the flat surface model zi,j = 0.307xi,j − 1.983yi,j + 28.723. This flat
surface model produced the flat surface shown in Figure 7c. The fitting accuracy provided
by the flat surface model was determined by means of Equation (22) by employing the
surface data shown in Figure 7b, where Mi,j represents the surface data provided by the
flat surface model Equation (8), zi,j represents the surface data recovered via Equation (15),
and n·m indicates the data number. Additionally, the optimal gap of the genetic algorithm
was determined by computing the relative error Equation (22). From this step, the flat
surface model produced a relative error of 1.231% with respect to the paper surface shown
in Figure 7b.

The running time is defined by the number of generations. In this case, 157 generations
were computed to optimize the micro-scale flat surface model. In this way, the micro-scale
flat surface modeling was performed through multi-objective optimization. The efficiency
of the multi-objective optimization is described through the parameters in the genetic
algorithm as follows. The population size is determined through the constants (a, b, c). For
each constant, an initial population of twelve chromosomes was generated. Therefore, one
generation included a population of 36 chromosomes. The crossover probability determines
how often the crossover is performed. When the average fitness of the parents is improved,
the crossover is carried out. In this way, the multi-objective optimization is performed
several times on the same flat surface model. The result of the probability of crossover
was in the interval from 0.21 to 0.55. The mutation probability determines how often the
chromosome can be mutated. Thus, if the new parent improves the fitness, the worst
parent is mutated. In the same way, for the parameter mutation, if the new parameter
improves the fitness, the parameter is mutated. Thus, the multi-objective optimization
is performed several times on the same flat surface model. The result of the probability
of mutation was in the interval from 0.26 to 0.53. The number of generations indicates
the number of the iterations to obtain the optimal constants. In this case, 157 generations
were performed to accomplish the flat surface model. The optimal gap was computed
via Equation (22), and the result was a relative error of 1.231%. Based on these results,
the genetic algorithm was examined. In this case, the genetic provided good crossover
probability and mutation probability. It is because the probability was in the interval
established in the surface modeling optimization. The population size is related to the
convergence and the number of parameters. In this case, the genetic algorithm provided
12 chromosomes for each parameter. These chromosomes produced results near the optimal
solution and reduced iterations. Therefore, the algorithm provided a good population size
and number of iterations. The optimal gap established good fitting of the surface model to
the target surface.
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Figure 7. (a) Micro laser line projected on flat surface to perform micro-scale flat surface modeling.
(b) Micro-scale surface retrieved via micro laser line scanning. (c) Surface computed by the flat
surface model generated via Equation (8).

4. Discussion

The viability of surface modeling in industry 4.0 is determined through the fitting
accuracy [42]. In this way, the viability of the micro-scale flat and free-form surface mod-
eling is determined through the fitting accuracy [43,44]. Therefore, the contribution of
the proposed flat and free-form surface modeling is deduced from the fitting accuracy
with respect to the experimental surface data. Additionally, the algorithm efficiency is
included in the contribution. In the proposed multi-objective optimization, the fitting
accuracy and efficiency provided good results. The fitting accuracy of the flat and free-form
surface modeling was deduced through the quality gap, which was calculated by means of
Equation (22). Thus, the micro-scale flat and free-form surface modeling performed via
multi-objective optimization fit the surface data with an error smaller than 1.99%. On the
other hand, the solution quality and algorithm structure determine algorithm efficiency.
The algorithm structure optimized the surface model parameters in good manner. It is
because the solution space is determined from the surface data, which provide the solution
to accomplish the micro-scale flat and free-form surface models. In this way, the algorithm
provided an initial population near the optimal parameters. Therefore, a low error was
produced by the algorithm from the first generation. Thus, the algorithm reduced iterations
to determine the surface model parameters. This led to providing a running time in a mod-
erated number of iterations. In addition, the multi-objective objective function involves
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several objective functions to perform the optimization via a genetic algorithm. Thus,
several solution candidates were obtained to achieve the convergence through the initial
population. Based on these statements, the micro-scale flat and free-form surface modeling
via multi-objective optimization enhanced the fitting accuracy of the optical microscope
systems. Typically, the microscope systems perform the micro-scale flat and free-form sur-
face modeling with a relative error over 4.6% [45,46], where the flat and free-form surface
modeling is optimized through the least-squares method [47,48]. Additionally, the contour
data accuracy is related to the fitting accuracy of the surface model. Typically, the optical
microscope systems determine the topography data through the gray-level to perform the
flat and free-form surface modeling [49,50]. However, the surface profile is not depicted by
the gray-level profile. Therefore, the surface modeling via contouring based on gray-level
does not provide the best fitting accuracy. Instead, micro laser line reflection depicts the
micro-scale surface contour with high accuracy. It is because the laser line reflects the
surface contour on the microscope image plane. Moreover, the algorithms of artificial
intelligence were implemented in industry 4.0 to perform surface modeling [51]. In the
same way, flat and free-form surface modeling has been developed through the algorithms
of artificial intelligence [52,53]. These algorithms perform the parameter optimization by
employing the traditional search structure [54,55], where the solution space is not defined
through the data related to the surface model. Instead, the multi-objective optimization
determines the solution space by employing contour data related to the surface model.
This procedure provides values that produce a low error from the first generation. Thus,
the search procedure begins on a path near the optimal parameters. In this way, the it-
erations to optimize the model parameters are reduced, and the efficiency is enhanced.
This statement is corroborated by the low error produced in the initial population. Thus,
the multi-objective optimization performs the optimization by employing contour data.
Instead, traditional algorithms generate the initial population in random form [56]. It is
because the traditional algorithms do not deduce the search space from the surface data.
Furthermore, the multi-objective optimization performs a search inside and outside the
parents to avoid the elimination of potential solution candidates. This leads to searching
in the entire solution space to find the best solution in efficient form. The viability of
the multi-objective optimization via a genetic algorithm is elucidated through the fitting
accuracy based on the algorithms of artificial intelligence. To elucidate this, intelligent
algorithms were employed to perform flat and free-form surface modeling. Thus, the
results provided by these algorithms of artificial intelligence are mentioned as follows. The
quality gap provided by ant colony and particle swarm optimization was over 4.23%. These
methods performed more than 235 generations to accomplish the flat and free-form surface
models. The suitable structure is discussed based on the structure of the particle swarm,
which has been implemented to perform surface modeling in industry 4.0. For instance, the
particle swarm determines the population through the learning factors, which are described
as follows. In this way, the particle swarm performs the population evolution based on
two learning factors (α, β), two random numbers (R1, R2), and an inertia weight w [57].
Therefore, the particle swarm should compute five variables to determine the population
of each generation. Instead, the proposed algorithm computes the variable β through the
spread factor α to create the population of each generation. Thus, the suitable structure of
the multi-objective optimization via genetic algorithms provides a better efficiency than
the particle swarm. In addition, the proposed genetic algorithm computes minus variables
than simulated annealing and ant colony to optimize flat and free-form surface models.
Based on these statements, the multi-objective optimization based on the genetic algorithm
elucidates a suitable structure to construct flat and free-form surface models. This criterion
was elucidated through the surface models optimized by particle swarm optimization and
genetic algorithms [58]. Thus, the capability of the micro-scale flat and free-form surface
modeling via multi-objective optimization is corroborated. Finally, the efficiency of the
multi-objective optimization is elucidated through the parameters in the genetic algorithm.
The population size is determined by the number of chromosomes of one generation. For
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instance, the free-form surface model included a population of 6912 chromosomes, and the
flat surface model included 36 chromosomes in one generation. However, in both cases, the
initial population provided data near the optimal solution. Therefore, a good convergence
was achieved. This means that the algorithm provided a good population size in each
generation. The crossover probability determines how often the crossover is performed.
The mutation probability determines how often the chromosome can be mutated. Based on
the results, the genetic algorithm provided a probability of crossover and mutation in and
around the interval between 0.25 and 0.6, which was established by recent optimization
research. Therefore, the proposed genetic algorithm provided a good crossover probability
and mutation probability. The structure of the genetic algorithm reduced iterations. Based
on the results described, the genetic algorithm provided a good number of iterations to op-
timize the model parameters. The optimal gap established good fitting of the surface model
to the target surface. It is corroborated with respect to the particle swarm, which performs
surface modeling. In addition, the multi-objective optimization via genetic algorithms
provides a contribution with respect to our spherical and cylindrical surface modeling,
which is referenced in Figure 4. It is because our spherical and cylindrical surface models
are represented by just one equation. In this way, the free-form surface model does not
fit accurately to the surface when the model is constructed by employing one equation.
Therefore, it is necessary to construct the free-form surface model through multi-functions,
which fits accurately to surface data. Additionally, the simple optical arrangement provides
a low cost to increase the capability of the proposed micro-scale flat and free-form surface
modeling. Thus, the multi-objective optimization based on a genetic algorithm and micro
laser line projection makes a contribution in the field of flat and free-form surface modeling,
which is performed by the optical microscope systems.

The micro-scale flat and free-form surface modeling was implemented in a computer
at a velocity of 2.2 GHz. Additionally, the computer performed the control of the CCD
camera, which captured 58 images per second. In addition, the slider device was moved by
the computer through control software. In this way, the surface contour was recovered in
0.0052 s from each micro laser line image. Additionally, the time to perform the surface
modeling was defined by including the surface recovering via laser line scanning. Thus,
the free-form surface model of the metallic surface was performed in 67.57 s, and the flat
surface model of the paper surface was carried out in 48.36 s.

5. Conclusions

A technique to perform flat and free-form surface modeling through the multi-
objective optimization and micro laser line scanning was presented. The multi-objective
optimization enhanced the fitting accuracy of the flat and free-form surface models, which
was performed by the optical microscope system. This capability was elucidated through
the algorithm efficiency and fitting accuracy to optimize flat and free-form surface models.
The enhancement of the fitting accuracy was achieved through the algorithm structure,
which accurately approximated the model to the micro-scale flat and free-form surfaces. Ad-
ditionally, the improvement in fitting accuracy was given by the micro laser line scanning. It
is because the laser line accurately reflects the surface topography on the microscope image
plane. In this way, the micro-scale flat and free-form surface models were constructed
through the real surface contour. The multi-objective efficiency was achieved through
the solution space, which provided initial solutions with low error to achieve the optimal
surface model. Thus, the iterations were reduced to accurately fit the flat and free-form
surface models. Thus, the multi-objective optimization via a genetic algorithm proves
valuable in industry 4.0 to perform flat and free-form surface modeling in the field of
optical microscope systems. In addition, the optical microscope arrangement included
simple components such as: an optical microscope, a diode laser, and a CCD camera. This
led to reduced cost of the optical arrangement, and it corroborates the capability of the
micro-scale flat and free-form surface modeling. Thus, the multi-objective optimization via
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genetic algorithms and micro laser line scanning was implemented to perform micro-scale
flat and free-form surface modeling, with good results in the micro-scale interval.
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