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Preface to ”Advanced Information Processing

Methods and Their Applications”

The rapid development of information technology opens up new opportunities for quality

improvement in many areas of human activity. Modernity is characterized by a significant increase

in the volume of extracted and processed information, which leads to the problem of developing new

approaches to organizing computations, including neurocomputing and quantum computing. Digital

circuits are also under active development, especially in improving performance and reducing power

consumption for use in mobile and embedded devices. New problem-oriented solutions based on

FPGA and ASIC are constantly being developed for a variety of applications. New digital signal,

image, and video processing devices must meet the growing practical needs for high speed and high

quality of work. The widespread use of machine learning methods and new methods for big data

processing will help humans in many areas. One of the most promising areas for the application of

modern IT technologies is biomedical data processing. An interesting issue in modern science is the

development of new brain–computer interfaces. Another important application of computer science

is medicine, especially in the context of the development of new tools for the diagnosis and support

of patients with COVID-19.

The latest technological developments in the areas listed above will be shared through this

Special Issue. We invite researchers and investigators to contribute their original research or review

articles to this Special Issue.

Pavel Lyakhov

Editor
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Special Issue on Advanced Information Processing Methods
and Their Applications

Pavel Lyakhov 1,2

1 Department of Mathematical Modeling, North-Caucasus Federal University, 355017 Stavropol, Russia;
ljahov@mail.ru

2 Department of Modular Computing and Artificial Intelligence, North-Caucasus Center for Mathematical
Research, 355017 Stavropol, Russia

The rapid development of information technology opens up new opportunities in
many areas of human activity. Modernity is characterized by a significant increase in the
volume of extracted and processed information, which leads to the problem of developing
new approaches to the organization of calculations, including neurocomputing and quan-
tum computing. Digital circuits are also under active development, especially in terms of
improving performance and reducing power consumption for use in mobile and embedded
devices. New problem-oriented hardware solutions are constantly being developed for a
wide variety of applications. Another important application of information technology is in
medicine, especially in the context of developing new tools for diagnosing and supporting
patients with COVID.

This Special Issue has collected and presented breakthrough research on information
processing methods and their applications. Particular attention is paid to the study of
the mathematical foundations of information processing methods, quantum computing,
artificial intelligence, digital image processing, and the use of information technologies
in medicine.

A total of five research papers in various fields of information processing methods and
their applications are presented in this Special Issue. Lyakhov et al. [1] introduced a new
approach for the determination of atrial fibrillation on electrocardiogram signals based on
neural networks with wavelet-based preprocessing. Cariow et al. [2] reported an algorithm
for the fast multiplication of Kaluza numbers which are used in various fields of data
processing, including digital signal and image processing, machine graphics, telecommuni-
cations, and cryptography. Vahabi et al. [3] developed a new design and implementation
of novel efficient full adder-subtractor circuits based on quantum-dot cellular automata
technology. Minahil et al. [4] proposed patch-wise infrared and visible image fusion us-
ing spatial adaptive weights. Isabona et al. [5] developed a multilayer perceptron neural
network for optimal predictive modeling in urban microcellular radio environments.

Although submissions for this Special Issue have been closed, more in-depth research
in the information processing methods and their applications continues to address the chal-
lenges we face today, such as the development of neural network and quantum approaches,
search for new effective software and hardware solutions, implementation of advanced
methods of information processing in practice.
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Abstract: Modern cellular communication networks are already being perturbed by large and steadily
increasing mobile subscribers in high demand for better service quality. To constantly and reliably
deploy and optimally manage such mobile cellular networks, the radio signal attenuation loss
between the path lengths of a base transmitter and the mobile station receiver must be appropriately
estimated. Although many log-distance-based linear models for path loss prediction in wireless
cellular networks exist, radio frequency planning requires advanced non-linear models for more
accurate predictive path loss estimation, particularly for complex microcellular environments. The
precision of the conventional models on path loss prediction has been reported in several works,
generally ranging from 8–12 dB in terms of Root Mean Square Error (RMSE), which is too high
compared to the acceptable error limit between 0 and 6 dB. Toward this end, the need for near-precise
machine learning-based path loss prediction models becomes imperative. This work develops a
distinctive multi-layer perception (MLP) neural network-based path loss model with well-structured
implementation network architecture, empowered with the grid search-based hyperparameter tuning
method. The proposed model is designed for optimal path loss approximation between mobile station
and base station. The hyperparameters examined include the neuron number, learning rate and
hidden layers number. In detail, the developed MLP model prediction accuracy level using different
learning and training algorithms with the tuned best values of the hyperparameters have been applied
for extensive path loss experimental datasets. The experimental path loss data is acquired via a field
drive test conducted over an operational 4G LTE network in an urban microcellular environment.
The results were assessed using several first-order statistical performance indicators. The results
show that prediction errors of the proposed MLP model compared favourably with measured data
and were better than those obtained using conventional log-distance-based path loss models.

Keywords: path loss models; log-distance models; neural networks models; MLP-based models;
optimal predictive modelling; multi-layer perception neural network; urban microcellular radio net-
works
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1. Introduction

Path loss models are unique prediction models employed by telecom network en-
gineers to estimate the signal coverage area being served by a given transmitter during
networking and management [1–3]. However, developing these signal path loss models
with the optimal accuracy it deserves is a complex and significant problem in the planning
of telecommunication networks. The conventional log-distance-based statistical models
available in the literature, such as the cluster factor model, COST 234 Hata Model, free space
model, Hata model and Lee models, lack accuracy for realistic path loss prediction applica-
tions in cellular mobile networks environments [4–11]. The aforementioned fundamental
limitation of the conventional models is usually very pronounced when the respective
models have been applied in cellular radio environments other than the developed and
designed environment [12,13]. This scenario is mainly due to dissimilarities and variations
in environmental formations (hilly, mountainous or quasi-plain), weather conditions, soil
electrical properties and terrain type (open, rural, suburban or urban) that exist in different
radio propagation locations, cities and countries [14–23]. For example, the Hata loss model
was developed based on extensive practical measurements carried out in Japan at transmis-
sion frequency ranges of 150 to 1920 MHz and macrocellular communication distances of
1 to 100 km, with the mobile station and base station antenna heights of 2 to 3 and 30 to
1000 m, respectively [24]. This model, including other aforementioned conventional ones,
is also generally limited in capturing the non-linear relationship between the independent
variable (e.g., path loss) and dependent variable (e.g., distance) [25]. The precision of these
conventional models on path loss prediction has been reported in many previous works
to generally range from 8–12 dB in terms of Root Mean Square Error (RMSE), which is
exceptionally higher than the acceptable values [9,14,15].

Recently, an Artificial Neural Network (ANN), a unique artificial intelligence soft
computing and modelling technique, has been acknowledged and proven to solve function
approximation and pattern classification problems [26]. Some ANN models exist in the
literature; the key ones are Radial Basis Function models, Multilayer Perception Models,
Generalized Neural Network models, etc. Among these models, the MLP ANN models
have stood out most recently because they are very robust and popular for learning, func-
tion approximation, and pattern classification [27–30]. The MLP ANN possess many robust
algorithms that can be explored to carry out more proficient adaptive nonlinear statistical
modelling over the classical logistic regression methods [14–23] that are frequently engaged
in developing predictive models. This robustness can be ascribed to their acknowledged
special ability to learn, predict, and classify non-linear data using experience and preced-
ing samples introduced to the network model. Huang [31] also noted that the MLP is
characteristically good for input-output data mapping. Generally, a clear-cut underlining
capability of ANN-based models over the conventional log-distance-based models is their
large degrees of freedom structure which provides means for fitting many datasets with
non-linear or linear correlation patterns. The concept of intelligent-based ANN models
for optimal and adaptive prognostic estimations of path losses was introduced to sur-
mount the limitations of existing empirically and deterministically developed log-distance
models [32,33]. In the paper, the availability of manifold resourceful training algorithms
and hypermeters of MLP ANN that can be tuned to further boost its extrapolative data
analysis is worth exploring in this paper for optimal predictive modelling. Hence, the
“Development of a Multilayer Perception Neural Network for Optimal Predictive Modeling
in Urban Microcellular Radio Environments is self-evident.” Other key robust advantages
of the general ANNs are highlighted in Section 2.3.

Though several ANN models exist in the literature, a critical, challenging task remains
in developing and using them appropriately through the correct selection of its network
structural design with the required input elements and hyperparameters to solve peculiar
predictive mapping and functional problems. The quest to address this issue is the leading
motivation for this research paper. However, one primary challenge in using the MLP
model is correctly selecting its network architecture with the required input elements
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(hyperparameters) to solve a particular mapping problem [34]. Another critical challenge
with neural network models is the problem of determining the input data variables that
must correlate with the target variables [35,36].

This paper develops a distinctive MLP-based path loss model with well-structured
implementation network architecture, empowered with the grid search-based hyperpa-
rameter tuning method for optimal path loss approximation between mobile-station and
base-station path lengths. The hyperparameters include the neuron number, learning
rate and hidden layers number. In detail, the developed MLP model prediction accuracy
level using different learning and training algorithms with the tuned best values of the
hyperparameters have been applied for extensive path loss experimental datasets. The
datasets were acquired via field drive tests conducted in Long Term Evolution (LTE) in
urban microcellular radio networks. For the development and implementation of the
MLP-ANNs model, we utilized version 2018a of the MATLAB neural networks toolbox.
The toolbox provides the required user interface, algorithm and platform to train, test,
validate, visualize and simulate networks with the desired number of layers, neurons and
activation functions.

In particular, the contributions of this paper are summarized as follows:

A distinctive MLP neural network-based path loss model with well-structured implemen-
tation network architecture, embedded with the precise transfer function, neuron number,
learning algorithm and hidden layers, is developed for optimal path loss approximation
between mobile-station and base-station path lengths.
The developed MLP neural network model was tested and validated for realistic path
loss prediction using extensive experimental signal attenuation loss datasets acquired via
field drive test conducted over LTE networks in urban microcellular radio environments
and tested using first-order statistical performance indicators.
Optimization of the projected model via hyperparameter tuning leveraging the grid
search algorithm analyses of the experimental path loss data.
Optimal prediction efficacy of the developed MLP neural network model compared with
well-structured implementation architecture over standard log-distance models using
several first-order statistical performance indicators.

The remainder of this work is structured in the following manner. Section 2 outlines the
background information, such as radio propagation mechanisms, log-distance-based path
loss prediction models, and the basis of artificial neural networks (ANN). Section 3 presents
the methodology detailing the neural network implementation for predictive modelling.
Section 4 provides the results, analysis, evaluation of the introduced neural network model
at different study locations, comparison of the developed neural network model with
log-distance models, and discussions. Finally, the conclusion is given in Section 5.

2. Theoretical Background

The theoretical background covers the radio propagation mechanism, log-distance-
based path loss prediction models and artificial neural network systems.

2.1. Radio Propagation Mechanism

When radio signals travel, which are a form of electromagnetic waves, they interact
with the media and objects they travel through. In the sequence of their interaction, the
radio signals become weaker owing to refraction, reflection, diffraction, absorption and
other propagation phenomena. The resultant effect of all the phenomena on propagated
signals is signal propagation loss. The characteristics of the pathway or medium through
which the radio signals travel determine the amount of propagation loss and the quality
of the received signal that is attainable at the receiving terminal. Radio propagation loss
is also governed by other sundry elements, particularly the transmitter power, receiver
sensitivity and general antenna parameters such as antenna gain, antenna height and
receiver location [1,2,37,38].
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The prominent factors that influence the number of signal path losses in a medium
include diffraction, reflection, refraction, scattering and absorption, to mention a few. For
example, diffraction arises when radio waves collide with huge obstacles compared to
the propagating signal wavelengths. Moreover, diffraction occurs when radio signals
bend around objects, especially those with sharp edges. This alteration often empowers the
received radio signal energy to spread around the boundaries of the obstructing object [39,40].
Diffraction is also influenced by the phase, amplitude, pathway and frequency of the
transmitted waves.

The environment in which the radio frequency signals travel (or are propagated)
will undoubtedly negatively impact the signal. For example, radio wave signals and
propagation loss vary extensively in correspondence to the terrain landscape, building
structures and population density. Marshy, damp and sandy terrain also attenuate radio
signals, primarily propagated low-frequency signals. In other words, signals travel faster
over conducive terrain than in sandy and marshy or damp terrains.

2.2. Log-Distance-Based Path Loss Prediction Models

Generally, path loss models are a set of mathematical models, expressions, resources
and algorithms used for signal attenuation loss prediction between the paths of a base
transmitter and the mobile station receiver. These models are helpful planning tools that
assist the radio network designers of cellular telecommunication systems in optimally
positioning base station transmitters to meet the desired signal coverage level and service
quality requirements of the networks.

The predictive performance of any path loss model is determined by the resultant
prediction accuracy with actual field measured loss data.

The log-distance-based path loss models are models whose average power loss loga-
rithmically depends on distance (transmission path length) intertwined with a propagation
exponent modelling parameter. The propagation exponent is usually employed to account
for a specific radio propagation environment. They can also be described as simplified
models that attempt to model variations, fluctuations and attenuations in the received sig-
nal power. Examples of log-distance-based models include the Walficsh–Ikegami, Walficsh
Bertoni, cluster factor, COST 234 Hata, Hata Okumura, SUI model, Lee model, Egli Model
and others [41]. Though these models have varying frequency validity thresholds, different
correction factors have been applied to ease their applicability at the tested frequency band.
Detailed descriptions of these models are contained in [14,17,42].

2.3. Artificial Neural Networks (ANNs)

ANNs, also popularly referred to as artificial neural systems, are efficient computing
systems or relatively simple computational models founded on the neural organization of
the brain with functional changing parameters to process information effectively. ANNs
are distinctive and robust non-linear statistical data modeling networks wherein reasonably
simple connections between inputs and outputs nodes alignments are established. Accord-
ing to Robert Hecht-Nielsen, the first inventor of the neurocomputer, a neural network can
be defined as “a computing system made up of several simple, highly interconnected processing
elements, which process information by their dynamic state response external inputs”. The pro-
cessing elements are called neurons. The neuron is the special mathematical function that
captures and organizes information according to the neural network architecture.

Some of the essential features or advantages of ANNs are [31,34–36].

a. High-speed computation adeptness
b. Global interconnection of network processing elements
c. Robust distributed and asynchronous parallel processing
d. High adaptability to non-linear input-data mapping
e. Robust noise tolerance
f. High fault tolerance utilizing Redundant Information Coding
g. Robust in providing real-time operations
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h. High potential for hardware application
i. Capable of deriving meaning from the imprecise or complicated dataset
j. High capacity to learn, recall and generalize input data training pattern

3. Methodology

As mentioned earlier, the ANN model possesses many robust training algorithms and
hyperparameters that can be explored to conduct proficient adaptive nonlinear statistical
modelling over the classical logistic regression methods. This section contains the materials
and method explored to develop the proposed MLPANN-based model with well-structured
implementation network architecture, empowered with the right hyperparameter tuning
algorithm for optimal predictive analysis of practical path loss data. The stepwise ex-
ploratory method explored to develop the proposed MLPANN-based model is highlighted
as follows:

a. Acquire the path loss datasets
b. Preprocessing the dataset and splitting
c. Obtain the MLP neural network model.
d. Identify the adaptive learning algorithms for MLP neural network model training

and testing
e. Identify the modelling hyperparameters
f. Select a hyperparameter tuning algorithm for the model (e.g., Bayesian optimization

search, grid search, etc.).
g. Obtain a set of the tuned best hyperparameter values.
h. Train the model to obtain the best hyperparameter values combination.
i. Appraise and validate the accuracy of the training process.
j. Repeat the process to optimal configuration and best-desired results for the model.
k. Engage the model with well-structured implementation network architecture, learn-

ing algorithm and set of the tuned best hyperparameter values to conductive predic-
tive path loss modelling.

3.1. Data Collection

The field measurement was conducted to acquire live signal data around three Long
Term Evolution (LTE) transceiver base station antennas for one year (i.e., 12 months).
The measurement took one year to cater to the study locations’ seasonal variations and
three LTE transceiver base station antennas operating at 2600 MHz with 10 MHz band-
width [43]. The transceiver base station antennas (called NodeBs) are sectorized with
17.5 dBi gain and 43 dBm transmit power. The LTE network belongs to one of the major
GSM/WCDMA/HSPA/LTE telecom service providers operating across major towns, vil-
lages and cities in Nigeria. The measurements were performed with field test tools with
TEMS application tools for radio spectrum analysis. The test tools, some of which are
displayed in Figure 1, include a Rover car, scanner, two Samsung mobile phones, and an
HP lap, were explored to assess the performance of eNode B over the LTE radio air interface
by connecting mobile phones directly to the Node B transmitters. To obtain the eNode B
locations and delineate measurement data locations/information, the Global Positioning
System (GPS) equipment was employed. The path loss data to be predicted are related to
the acquired radio signal data by the measured path loss data where PLmea(dB), values
have been obtained from the measured signal, RSRP (dBm) by Equation (1):

PLmea(dB) = EIRP + GA − RSRPmeas (1)
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Figure 1. Illustration of the TEMS Drive Test Measurement System.

With EIRP calculated as Equation (2):

EIRP = PTX + GTX − CLTX (2)

where GTX and GA are the base station (BS) transmit antenna gain and receiver (MS)
antenna gain, respectively, PTX is the transmitted power, and CLTX, denotes transmission
cable loss, all in dB. Table 1 reveals some of the key BS antenna site parameters acquired
during the field drive test for calculation.

Table 1. Measurement Path Loss Computation Parameters.

Parameters Site 1 Site 2 Site 3

BS Operation Transmitting
Frequency (MHz) 2600 2600 2600

BS Antenna Height (m) 28 30 45
MS Antenna Height (m) 1.5 1.5 1.5

BS antenna gain (dBi) 17.5 17.5 17.5
MS antenna gain (dBi) 0 0 0

MS Transmit power (dB) 30 30 30
BS Transmit power (dB) 43 43 43

Transmitter cable loss (dB) 0.5 0.5 0.5
Feeder Loss (dB) 3 3 3

3.2. The MLP Neural Network Model

The first step towards effectively engaging neural networks for predictive modelling
is to know the exact type you want to use and determine network architecture. This
paper considers the most robust and special type of neural network: the multi-layer
perceptrons (MLP). A single perceptron (LP) has limitations in terms of input-desired
output mapping capability. This limitation is because it only contains a single neuron per
adaptable synaptic weights and bias; thus, it is only proficient in catering to ridge-like
function, notwithstanding the type activation function explored [42]. The above limitation
can be catered to using an MLP neural network with more source nodes with data input
and output layers sandwiched with hidden layers nodes. Multiple layers of neurons in the
MLP network provide enhanced input-desired output mapping capability.

Figure 2 displays a structure of a classic feedforward MLP network model composed of
g1,g2, . . . gI , inputs, and predicted output, (y1, y2, . . . , yN) with kh hidden nodes, h number.
The respective weights connecting the input and hidden layer, as well as the weights
connecting the hidden layer and the output layer, are designated by w1

ij and w2
jn, while Cj

indicates the hidden nodes thresholds. The network learns the correlation between input
datasets and predicted output feedback by varying weight and bias values. Accordingly,
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the MLP network predicted output in correspondence to jth neurons with the kth node
could be articulated as (3):

ŷn(t) = ∑kh
j=1 w2

j F
(

∑ w1
ijgi(t) + cj

)
(3)

for 1 ≤ n ≺ m, 1 ≤ j ≺ kh,
(
wj, j = 0, 1, . . . , kh

)
,
(
wij, i = 0, 1, . . . , m; j = 0, 1, . . . , kh

)

y 

g1 

g2 

gI 

Figure 2. Scheme of a three-layered ANN multi-layer perceptron.

where:
m, h and kh indicate the input node number, hidden node and hidden node number,

respectively; i designate input to j hidden layer neuron.
The F (·) in Equation (1) denotes the sigmoid activation function, an import function

usually utilized in the MLP network. It can be defined by Equation (4):

F(a) =
1

1 + e−a (4)

where F(x) is at all times in the range [−1, 1], with F(a) being a set of real numbers.
The weights w1

ij and w2
jn, including the threshold Cj, are unknown and thus can be

chosen to update and reduce the error during prediction. The prediction error can be
expressed by employing the expression (5):

εn =
1
2∑n=1(yn − ŷn)

2 (5)

where,
yn and ŷn represent the target (i.e., actual) data and their predicted output; and n = 1

. . . , N, with N indicating the actual data sample number.
In MLP training, the error verve for assessing the network learning improvement

related to convergence speed is the generalized aggregate error values. It is often computed
using mean square error (MSE). The MSE can be obtained from the least square formation
of Equation (6).

MSE =
1
N

N

∑
n=1

(yn − ŷn)

2

(6)

In this work, the feedforward MLP network model explored for path loss predictive
modelling is displayed in Figure 3.
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Figure 3. ANN MLP Model Structure for Path Loss Prediction.

3.3. MLP Modelling Parameters and Search Space

Hyperparameters are a special set of regulating parameters that the NN model utilizes
for the adaptive learning process in data training and testing. The special parameters
may be categorical, continuous or integer variables whose values range are usually lower
and upper bounded. Thus, there exists several MLPs directly impacting the predictive
modelling. They include the hidden layers number, neurons number in the hidden layer,
transfer function, etc. A summarised description of the transfer function is given in the
following subsection.

3.3.1. The Hidden Layers

Deciding the number of the hidden layers is one of the most important issues while
investigating the neural network architecture for predictive modelling and data mining.
Using too many hidden layers can result in poor generalization and complex neural network
training. According to authors in [44–47], two hidden layers, combined with m output
neurons, are adequate for a neural network to learn N data samples and produce negligibly
minor errors.

Previous studies have examined the suitability of several machine models for path
loss predictions as contained in [48–50]. The need to overcome the problems of empirical
models when used for path loss predictions led to an artificial neural network [49]. ANN
path loss prediction models were also more efficient and easier to deploy than deterministic
models [51]. In [52,53], analyses of empirical models with different propagation features
were performed, and the model with the lowest RMSE value was then compared with
the prediction from ANN. The ANN-based path loss prediction model produced a much
lower value of MSE upon validation. In [54], a multi-layer perceptron neural network
was introduced for path loss prediction. The MLP network was then trained with a
backpropagation algorithm. The MLP-based prediction was compared with predictions
from analytical models, and the results indicated the former to be efficient for radio network
planning and optimization.
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ANN was also used for path loss prediction in urban areas [55]. The work explored
the effect of the various input parameters and the environmental terrains on the robustness
of the path loss prediction. One key finding from the study is that the accuracy of the
signal prediction model increases with more input parameters: the greater the number
of features, the greater the system’s accuracy. This trend is because machine learning
algorithms thrive well with the availability of large datasets. The model is trained with the
help of the data and, in this case, the input features. An ANN-based path loss model at
800 MHz and 1800 MHz introduced in [47,48] were input for longitude, latitude, distance,
elevation, clutter height and elevation. The ANN method in [56] outperforms the Support
Vector Machine (SVM)- and the Random Forest (RF)-based predictions.

In [57], an artificial neural network was used for path loss prediction in a smart
campus environment at 1800 MHz. There were two hidden layers for this network, and
the performance of the network outperforms the prediction made by using RF. Moreover,
in [58–60], several machine learning-based prediction models were introduced for signal
predictions for wireless sensor networks. The machine learning-based prediction model
in [61,62] also produced the lowest values of RMSE when compared to the other analytical
models in a wireless sensor network.

3.3.2. Neurons Number in the Hidden Layers

Determining the neurons number in the hidden layers remains an integral part of
the inclusive neural network architecture. An inadequate neurons number in the hidden
layers can lead to an underfitting problem. Underfitting arises once there are insufficient
neurons number in the hidden layers to learn or detect the signals satisfactorily, especially
in a multifaceted dataset.

On the other hand, using too many neurons can lead to overfitting problems. Overfit-
ting occurs once the neural network contains too much information processing capacity
problem. It can also result in excessive time increase during neural network training. The
amount of training time can increase to the point that it is impossible to train the neural
network adequately. It is evident that some give and take must be grasped between too
few and too many neurons number in the hidden layers.

3.3.3. Transfer Function

The transfer function is a singular, monotonically increasing and differentiable func-
tion used for translating the input data signals to produce the final output signals of a
neuron. The transfer function is fundamental to the concrete concept of neural networks
mainly for two key reasons. First, without activation functions, the entire organization
of the neural network will be similar to a typical linear function that cannot learn non-
linear relationships. Second, transfer function styles and graces the main computation
accomplished by neural networks.

3.3.4. Learning Rate

The learning rate is another vital hyperparameter that regulates or fine tunes the
weights of NN in relation to the loss gradient. Its value must be cautiously chosen to
support both optimization and generalization robustly. A too-large learning rate value
can cause the entire learning process to jump over minima. Similarly, a too-small learning
rate value can make the entire learning process too long to converge, resulting in it being
trapped in negative and spurious local minima.

3.4. Hyperparameter Tuning

Hyperparameter tuning or optimization expresses the robust procedure of identifying
and finding the best feasible values of hyperparameters for a machine learning model
to attain the desired resultant modeling outcome. Popular hyperparameter tuning algo-
rithms in the literature include random search, grid search and Bayesian optimization
search. In this paper, the last two methods are considered. Grid search is a standard
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hyperparameter optimization technique wherein a list of critical parameters is selected
with attached feasible values for each parameter, followed by training the model for every
single blend and then choosing the values that yield the most desired resultant outcome.
The Bayesian optimization method is a special sequential model-based optimization (also
known as Bayesian optimization), utilizing the ‘Bayes Theorem’ to conduct an automatic
hyperparameter search. Particularly, the Bayesian optimization search algorithm utilizes
the upshot from the preceding iteration to select the next hyperparameter values.

3.5. MLP Learning Algorithms

The training algorithm used for a neural network system to learn and solve a problem
is essential. The correct training algorithm from the available sundry types depends on
diverse factors, including data sample size, task type, training time constraints, preci-
sion/accuracy requirements, etc. It is demanding to find out which training algorithm will
produce the most satisfactory results. For example, suppose it is a predictive modelling
task with function approximation. In that case, the dominant or most common ones are
backpropagation training algorithms, which involve carrying out computations backwards
over the network to fine-tune the weights and minimize performance error.

3.6. MLP Network Model Implementation Process

MATLAB is a distinctive programming language with a multi-exemplar numerical
computing environment and a user interface. It provides easy matrix manipulation, graphi-
cal multi-domain simulation, figurative computing, creative functions plotting, excellent
data mining, easy algorithms implementation, etc. MATLAB allows access to optional
toolbox uses. The neural network toolbox has special tools for model-based design, im-
plementation, visualization and simulation of neural networks. MATLAB is employed to
encode the script files for the MLP network model predictive training, testing and quantita-
tive evaluation in this work. The program code for conventional path loss calculation and
assessment is also explored. The proposed MLP neural model consists of five input nodes
and one output node. Flowchart for executing proposed predictive modelling with ANN
while training and testing are shown in Figure 4.

As mentioned earlier, for practical and optimal application of MLP network for pre-
dictive modelling purposes, the right choice of the learning algorithm, and selection of the
network processing elements such as the number of neurons, number of network layers and
transfer functions, are crucial. For example, a network with insufficient neurons number in
a hidden layer may fail to capture complex links between target output and input variables.
Conversely, if the number of neurons allotted in the network hidden layer is too many, the
network would likely follow the latent noise in the dataset owing to over-parameterization,
and this, in turn, can lead to awkward generalization and poor predictive modelling of the
original data [63,64]. Therefore, the determination of the hidden layers number and their
number of neurons is performed by trial and random selection. However, for conciseness
and the need to attain optimal neural network training and testing, the search for the
required number of neurons and hidden layers in the network layers were narrowed down
to 2–50 and 1–3, respectively.

Generally, if a particular algorithm performs well during the dataset training but flops
in the aspect of generalization, we refer to it as overfitting. To improve generalization (or
prevent overfitting) during the path loss data training with each of the NN algorithms, we
employed input/target transformations and early stopping techniques. Thus, the inputs
and targets datasets were scaled to reside in the range [−1, 1] to enhance training and
testing speed. Moreover, the early stopping measures were engaged for training and testing
to avoid overtraining, eliminate contemptuous impact stimulated by the initial values, and
develop robust adaptive predictive ability. Although many learning algorithms are avail-
able for MLP neural network training and testing in MATLAB software, it is demanding to
identify which algorithm works best for a given predictive modelling problem concerning
convergence speed and accuracy [16]. Therefore, an exhaustive search is employed in this
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study to accelerate the convergence and evaluate the impact of all the available learning al-
gorithms during network training. The respective learning algorithms assessed to develop
an optimal MLP network predictive model and their weight adaptation techniques are
listed in Table 2. The target of the weight adaptation is to determine the optimum weight
update for the input-output data array pair during training.

Figure 4. Flowchart for the execution of Proposed Predictive Modelling with MLP Neural Network.
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Table 2. Respective MLP Network Learning Algorithm.

Learning Algorithm Weight Adaptation Training Acronym

Levenberg–Marquardt (lm)

The weight of the lm algorithm is updated via:

wq+1 = wq − (H
′
+ η I)

−1∇εq

where the Hessian matrix, H
′
= JT J.

trainlm

Bayesian Regularization (br)

The br approach involves the modification of the performance
function, εq plus regularisation term
F(w) = βεq + αεw
where β & α are special function parameters and a
regularisation term, εw = ‖w‖2

trainbr

Polak–Ribiere Conjugate Gradient (cgp)

The weight of cgp algorithm is updated by:
wq+1 = wq + aq pq

With pq = −gq + bq pq−1 and bq =
ΔgT

q−1
gq

gT
q−1gq−1

traincgp

Fletcher-Powell Conjugate Gradient (cgf)

The weight of scg algorithm is updated by:
wq+1 = wq + aq pq

With pq = −gq + bq pq−1 and bq =
gT

q−1
gq

gT
q−1gq−1

traincgf

Scaled Conjugate Gradient (scg) The weight of scg algorithm is updated by:
wq+1 = wq + aq pq

trainscg

Resilient Backpropagation (rp)

With RP algorithm, weight update is by

wq+1 = wq − sign
(

Δεq
Δwq

)
.Δ(q)

where Δ(q) = individual step size for weight adaptation

trainrp

BFGS Quasi-Newton (bfg)
bfg weight update is accomplished via
wq+1 = wq − H−1gq

where H−1
q indicates the Hessian matrix inversion on iteration q.

trainbfg

Conjugate gradient with Powell/Beale
Restarts (cgb)

The cgb employs update search direction by:
gq−1gq = 0.2

∥∥gq
∥∥2 traincgb

Gradient Descent with Adaptive
Learning Rate (gda)

gda weight update is accomplish via wq+1 = wq +
Δε

ηq+1Δw q
where α indicates the user-defined momentum factor and it
ranges from 0 to 1

taingda

Gradient Descent Variable Learning Rate
(gdx)

With gdx algorithm, weight update is by

wq+1 = wqηq+1 − sign
(

Δεq
Δwq

)
.Δ(q)

where Δ(q) = individual step size for weight adaptation and ηq
= variable learning rate

traingdx

One Step Secant (oss)
With oss algorithm, weight update is by
wq+1 = wq − H−1

q gq
where Hq = Hessian matrix (2nd derivatives)

trainoss

Gradient Descent with Momentum (gdm)

gdm weight update is accomplish via
wq+1 = wq − ηgq + α Δε

Δw q−1
where α indicates the user-defined momentum factor and it
ranges from 0 to 1

traingdm

Gradient Descent (gd)
With gm algorithm, weight update is by
wq+1 = wq − ηgq
where η = learning rate

traingd

4. Results and Discussions

As mentioned earlier, many factors directly impact the development of an excellent
back-propagation neural network predictive model, especially with a trial and error method,
as adopted in this work. They include training algorithm, hidden layers number, neurons
number in the hidden layer, transfer function, momentum term, learning rate, etc. Here, the
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concentration is on the training algorithm, hidden layers number and neurons number in
the hidden layer. To obtain the predictive path loss modelling results, first we divided the
path loss data into portions and employed the grid search-based hyperparameter tuning
method to generate configurations for the parted data chunks for training and testing. The
performance results of the proposed method were evaluated and reported for each machine
learning algorithm described in Table 1, using Mean Absolute Error (MAE), Mean Square
Error (MSE), Root Mean Square Error (RMSE), Coefficient of Efficiency (COE), Correlation
Coefficient (R) and Standard Deviation Error (STD) [65].

Secondly, the predictive path loss modelling was conducted for three study locations
using the standard Bayesian optimization for hyperparameter tuning. The results were
compared to our first results using the grid search-based hyperparameter tuning method.

4.1. Neurons Number Impact

Determining the neurons number in the hidden layers also remains integral in the
inclusive neural network architecture. An inadequate neurons number in the hidden layers
can lead to an underfitting problem. Underfitting arises once there is insufficient neuron
number in the hidden layers to satisfactorily learn or detect the signals, especially in a multi-
faceted dataset. On the other hand, making use of too many neurons can lead to overfitting
problems. Overfitting takes place once the neural network contains too much information
processing. It can also result in excessive time increase during neural network training.
The amount of training time can increase to the point that it is impossible to adequately
train the neural network. It is very clear at this point that some give and take must be
grasped between too few and too many neurons number in the hidden layers. Accordingly,
by starting with the fastest training algorithm, which is Levenberg–Marquardt (lm), the
network was trained and tested with 2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 neurons. This
is to ascertain their incremental impact on its performance. Table 3, Figures 5 and 6 display
the detailed overall predictive performance of each neurons number using different error
statistics. As seen in Table 3, it was expected that a continuing increase in neurons number
per layer would result in an upturn in the resolution of the neural network prediction
fitting pattern to the measured loss data. At 30 neurons per layer, the neural network model
had a good enough fit to the measured loss data with an MAE value of 2, RMSE value of
2.71, STD value of 1.82, R-value of 95 (%) and COE value of 90 (%). Increasing the neuron
number to 50 showed no performance improvement, as seen in Figure 6.

Table 3. Neurons Number impact on MLP Network Predictive Modelling with LM.

Training Testing Overall Performance

No of
Neurons

MSE R MSE R MAE STD RMSE R COE (%)

2 12.91 0.8874 23.22 0.7913 2.96 2.41 3.81 0.8637 75
5 12.22 0.8643 11.93 0.9205 2.92 2.40 3.78 0.8637 75

10 7.32 0.9320 8.01 0.8900 2.96 2.38 3.80 0.9251 86
15 7.95 0.9229 15.72 0.8339 2.41 1.92 3.08 0.9117 83
20 8.59 0.9247 13.79 0.9186 2.34 1.95 3.05 0.9148 84
25 7.83 0.9296 53.08 0.4865 2.47 2.96 3.85 0.8635 75
30 5.08 0.9591 17.06 0.8558 2.00 1.82 2.71 0.9499 90
35 4.88 0.9531 22.45 0.8482 1.95 2.06 2.84 0.9255 86
40 7.29 0.9360 14.31 0.7973 2.16 2.36 3.20 0.9132 84
45 7.95 0.9315 11.06 0.8257 2.23 2.07 3.04 0.9143 84
50 3.62 0.9673 21.07 0.7624 2.13 3.66 4.24 0.8498 72
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Figure 5. Overall Performance Error Statistics with MAE, STD and RMSE.

Figure 6. Overall Performance Error Statistics with R (%) and COE (%).

4.2. Transfer Function Impact

The transfer function is a singular monotonically increasing and differentiable function
used for translating the input data signals to produce the final output signals of a neuron.
The transfer function is fundamental to the concrete concept of neural networks mainly
for three key reasons. Firstly, without activation functions, the entire organization of the
neural network will be similar to an ordinary linear function that cannot learn non-linear
relationships. Secondly, transfer function styles grace the main computation accomplished
by neural networks. Thirdly, transfer functions possess the proclivity to boost the learning
rate and formation patterns in datasets. Thus, the choice of the right transfer (activation)
function also positively influences the performance of the NN training algorithm. Table 4
presents the list of sigmoid transfer functions employed in this study to ascertain the
stability of the proposed neural network model. The performance of sigmoid transfer
functions in terms of MAE, MSE, RMSE, R and STD are also displayed in Table 4. The
standard deviation (STD) statistics with one, two and three layers of training are given in
Figure 7, and the Root Mean Error performance statistics with one, two and three layers of
training are shown in Figure 8.
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Table 4. Transfer Functions used for network training/testing and their performance.

Training Testing Overall Performance

Transfer Function MSE R MSE R MAE STD RMSE R

purelin 19.74 0.8614 18.29 0.8692 3.36 2.65 4.28 0.8636
tansig 6.82 0.9366 26.07 0.7865 2.19 2.45 3.29 0.9073
logsig 4.62 0.9594 23.09 0.7812 2.15 2.30 3.15 0.9106

purelin-purelin 20.33 0.8715 13.09 0.8964 3.59 2.75 4.52 0.8637
purelin-tagsig 7.83 0.9325 12.20 0.8539 2.38 1.80 2.99 0.9173
purelin-logsig 9.18 0.9173 20.24 0.8755 2.52 2.02 3.24 0.9026
tansig-tansig 3.18 0.9697 20.17 0.8643 1.82 1.89 2.63 0.9365
tansig-logsig 3.23 0.9697 23.65 0.8094 1.82 2.18 2.84 0.9266

tansig-purelin 6.39 0.7622 10.28 0.6907 2.04 1.82 2.73 0.9315
logsig-logsig 4.82 0.9511 10.31 0.9382 1.76 1.63 2.40 0.9290
logsig-tansig 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499

logsig-pureline 6.01 0.9430 16.45 0.8471 2.18 1.91 2.90 0.9222
purelin-purelin-

purelin 13.07 0.8804 18.34 0.8413 2.93 2.39 3.78 0.8637

tansig-tangsig-tansig 5.87 0.9487 8.89 0.9181 1.88 1.78 2.59 0.9283
tansig-tansig-purelin 6.38 0.9337 17.89 0.8607 2.17 2.06 2.76 0.9200
tangsig-tansig-logsig 5.11 0.9568 8.98 0.8907 1.92 1.93 2.72 0.9318
logsig-logsig-logsig 7.18 0.9358 13.86 0.9187 2.15 1.85 2.83 0.9285

logsig-logsig-purelin 9.12 0.9238 98.48 0.6384 2.91 4.03 4.97 0.8049
logsig-tansig-tansig 5.34 0.9489 7.52 0.9429 2.18 1.92 2.90 0.9245
logsig-tansig-logsig 6.90 0.9428 3.97 0.9467 1.98 1.75 2.67 0.9340
tansig-logsig-tansig 6.53 0.9433 3.68 0.9468 1.97 1.56 2.47 0.9445
logsic-tansig-purelin 6.92 0.9392 11.34 0.9093 2.09 2.02 2.90 0.9222
purelin-logsig-tansig 25.57 0.8583 25.94 0.8707 3.28 3.58 4.86 0.8597

Figure 7. Standard deviation (STD) statistics with one, two and three layers of training.
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Figure 8. Root Mean Error performance statistics with one, two and three layers of training.

4.3. Training Algorithm and Hidden Layers Number Impact

The learning algorithm and hidden layers number also significantly impact the success
of the neural network in coming up with a healthy predictive model. Therefore, deciding
on the number of the hidden layer is one of the most important issues that come up
while investigating the neural network architecture for predictive modelling and data
mining. Using too many hidden layers can result in poor generalization and complex
neural network training. According to the work [31], two hidden layers, combined with m
output neurons, are adequate for a neural network to learn N data samples and produce
negligibly small errors.

Here, the impact of many learning algorithms has been studied with one, two and
three hidden layers numbers. Interestingly, results reveal that the two-layered network is
superior to one-layered and three-layered layer network for all the 12 learning algorithms in-
vestigated. Interestingly, results show that the neural network architecture trained using lm
(i.e., the Levenberg–Marquardt training algorithm) with two hidden-layer sizes and logsig-
transit transfer function gave the best performance. Table 5 displays detailed network train-
ing/testing error statistics results and hidden layer numbers for each learning algorithm.

4.4. Performance of Grid Search Algorithm and Bayesian Optimisation Search Algorithm for
Hyperparameter Tuning

The hyperparameter tuning process has a weighty influence on neural network learn-
ing performance. Given the computational resources requisite, the hyperparameters of
high relevance receive superior usage in the hyperparameter tuning process. Hyperparam-
eters with a more robust influence on weights are more effective during neural network
training. Thus, the appropriate choice of hyperparameters selected for neural network
model training influences the network training and performance.

As displayed in Table 6, the proposed MLP neural network model results with grid
search algorithm-based hyperparameter tuning (optimization) are compared with those
obtained using the traditional Bayesian optimization search-based hyperparameter tuning
approach for path loss data predictive analysis using location one as a case study. We
have reported the results attained for lm and br learning for brevity. While the grid search-
based hyperparameter tuning performs an in-depth and comprehensive search on the
hyperparameters in a stepwise manner as set specified by users with limited search space,
the Bayesian search-based hyperparameter tuning performs a sequential-based search on
the hyperparameters via several trials, without the user having preliminary information of
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the hyper-parameters distribution. From the results in Table 6, it is clear that the proposed
MLP neural network model with grid search algorithm-based hyperparameter tuning
outperforms the ones obtained using Bayesian Optimization search-based hyperparameter
tuning. Next, Section 4.5 is to apply the proposed MLP neural network model with grid
search algorithm-based hyperparameter tuning for detailed predictive path loss analysis
across the three study locations.

Table 5. Learning Algorithm and Hidden Layers Number impact on MLP Network.

Training Testing Overall Performance

Training
Algorithm

No of Hidden
Layers

MSE R MSE R MAE STD MSE R

lm
1 7.65 0.9359 11.55 0.9033 2.20 1.82 2.86 0.9248
2 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499
3 3.94 0.9632 9.31 0.9311 1.71 1.70 2.41 0.9473

Br
1 3.72 0.9660 26.59 0.7560 1.79 1.99 2.68 0.9340
2 0.57 0.9953 47.07 0.7562 1.05 2.55 2.76 0.9408
3 0.92 0.9919 25.68 0.3075 1.73 6.09 6.33 0.7557

Bfg
1 7.88 0.9252 14.88 0.9070 2.56 1.87 3.17 0.9076
2 9.12 0.9092 12.92 0.8869 2.42 1.81 3.03 0.9149
3 10.04 0.9159 10.93 0.8425 2.45 2.04 3.20 0.9045

Rp
1 7.68 0.9316 5.03 0.9601 2.09 1.75 2.73 0.9323
2 4.38 0.9339 17.02 0.9123 1.90 1.09 2.60 0.9456
3 5.03 0.9052 28.59 0.8816 2.69 2.43 3.63 0.8755

Scg
1 7.85 0.9282 11.08 0.8608 2.26 1.91 2.97 0.9185
2 6.69 0.9373 13.52 0.7531 2.26 1.86 2.92 0.9209
3 11.16 0.8951 9.65 0.8951 2.66 1.94 3.29 0.9005

Cgb
1 9.01 0.9168 14.75 0.8882 2.49 1.94 3.31 0.9089
2 8.30 0.9293 8.89 0.9233 2.36 1.74 1.95 0.9202
3 16.36 0.8460 29.72 0.8814 3.26 2.75 4.27 0.8510

Cgf
1 8.44 0.9186 12.65 0.9079 2.42 1.78 3.00 0.9165
2 9.15 0.9152 8.93 0.9204 2.33 1.88 2.99 0.9168
3 17.84 0.8274 21.14 0.8596 3.39 2.72 4.35 0.8449

Cgp
1 18.22 0.8496 23.49 0.7818 3.57 2.36 4.28 0.8426
2 17.19 0.8472 11.26 0.9039 3.05 2.61 4.01 0.8482
3 38.02 0.7463 36.79 0.7099 3.06 2.61 4.00 0.7486

Oss
1 9.53 0.9167 12.55 0.8703 2.70 1.88 3.28 0.9015
2 9.06 0.9161 9.77 0.9116 2.49 1.98 2.49 0.9055
3 10.16 0.9101 16.90 0.8084 2.59 20.05 3.30 0.8984

Gdx
1 11.82 0.8805 15.02 0.8584 2.91 2.11 3.59 0.8794
2 9.59 0.9060 18.15 0.8430 2.54 2.09 3.29 0.8982
3 18.60 0.8286 12.07 0.8252 3.50 3.09 4.66 0.8113

Gdm
1 1.42 × 103 0.8008 1.26 × 103 0.7041 30.26 21.02 36.84 0.7870
2 447.60 0.7801 571.30 0.5385 16.97 12.37 21.01 0.8034
3 1.22 × 103 0.4340 1.5 × 103 1.5 × 103 26.67 23.61 36.38 0.4504

Gd
1 2.94 × 103 0.7238 3.08 × 103 0.5882 53.81 16.04 56.15 0.6286
2 655.14 0.8583 724.47 0.8268 25.67 7.14 26.35 0.8124
3 468.86 0.7885 433.89 0.7589 53.72 43.11 68.88 0.7890
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Table 6. Comparison of Hyperparameter Tuning algorithm performance with Grid Search and
Bayesian Optimisation search.

Training Testing Overall Performance

Hyperparmeter
Tuning Algorithm

MLP
Algorithm

MSE R MSE R MAE STD MSE R

Grid Search
lm 3.97 0.9669 12.96 0.8467 1.60 1.70 2.34 0.9499
br 0.57 0.9953 47.07 0.7562 1.05 2.55 2.76 0.9408

Bayessian
Optimisation search

lm 5.20 0.9565 16.73 0.8355 2.29 4.90
br 3.52 0.9669 18.84 0.8567 3.40 4.24

4.5. Evaluation of Proposed Neural Network Model at Different Locations

The evaluation results of the proposed neural network model at different study lo-
cations are presented as follows. Figures 9–11 show the proposed neural network model
prediction with measured path loss data configured with the Levenberg–Marquardt train-
ing algorithm, two hidden-layer sizes and logsig-transig transfer function—the prediction
performance of the developed neural network model in terms of R and MSE values. The
R-value measures the prediction correlation between outputs (predicted loss data) and
targets (actual loss data). The closeness of the R-value to 1 corresponds to a high positive
correction. Otherwise, it is poorly correlated. Figures 12–14 are plotted R values between
the predicted loss data and the actual loss values for sites 1 to 3 during training, validation
and testing with neural networks. The R-values obtained from the plots are 0.97, 0.93 and
0.94 for site 1, 0.92, 0.93 and 0.94 for site 2 and 0.91, 0.93, 0.96, 0.94 for site 3. The per-
formance plots in Figures 15–17 indicate that the MSE becomes smaller with the epoch
number (one complete training/testing/validation cycle). The word ‘epoch’ is used here to
mean a special hyperparameter term that defines the number of times (in terms of iteration)
that the NN algorithms undergo during the entire data training duration. The error of test
and validation display similar characteristics while predicting the measured loss across
sites 1 to 3. Specifically, the validation MSE error shows that the proposed neural network
model would not generalize well or fit the measured loss data well if trained further than 4,
8 and 8 epochs. The mean prediction error along measurement data points in sites 1, 2 and
3 are presented in Figures 18–20.

Figure 9. Comparison between measured loss and the prediction ANN model in site 1.
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Figure 10. Comparison between measured loss and the prediction ANN model in site 2.

Figure 11. Comparison between measured loss and the prediction ANN model in site 3.

Figure 12. Prediction performance with correlation coefficient in site 1.
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Figure 13. Prediction performance with correlation coefficient in site 2.

Figure 14. Prediction performance with correlation coefficient in site 3.
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Figure 15. Network training cycles in site 1.

Figure 16. Network training cycles in site 2.

Figure 17. Network training cycles in site 3.

Figure 18. Mean prediction error statistics along with Data points in site 1.
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Figure 19. Mean prediction error statistics along with Data points in site 2.

Figure 20. Mean prediction error statistics along with Data points in site 3.

4.6. Comparison of Prediction Accuracy of Proposed Neural Network Model with Log-Distance Models

Detailed prediction capabilities of all the log-distance models and the proposed model
on measured path loss data are provided in the plotted graphs of Figures 21–23 in terms
of MAE, RMSE and STD. The graphs show that the neural network model achieved the
best predictions with marginal errors. The COST 213 (W/I) made the closest prediction
to measured loss, but in terms of accuracy, the proposed neural network model achieved
the best performance by 20%, 15% and 25%, respectively, across study sites. For example,
while COST 213 (W/I) reached 3.34, 2.35 and 4.23 dB in terms of RMSE, the proposed
neural network model attained 1.73, 2.11 and 1.45 dB across study sites. Generally, models
which predict the path loss in the tested areas with RMSEs higher than the acceptable
range of up to 6 dB are not selected as most suitable. However, such models could be
further optimized for improved performance. The lower the RMSE value towards zero,
the better the model. Regarding standard deviation error, COST 213 (W/I) achieved 1.73,
2.11 and 1.45 dB, while the proposed neural network model achieved 1.73, 2.11 and 1.45 dB,
respectively. The poor predictions made by the log-distance-based models can be ascribed
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to due to dissimilarities and variations in environmental formations (hilly, mountainous or
quasi-plain), weather conditions, soil electrical properties and terrain types that exist in
different radio propagation environments.

Figure 21. A comparison of mean absolute error statistics between the proposed ANN model and
log-distance models on measured path loss in site locations 1, 2 and 3.

Figure 22. A comparison of root mean absolute error statistics between the proposed ANN model
and log-distance models on measured path loss in site locations 1, 2 and 3.

Figure 23. A comparison of standard deviation error statistics between the proposed ANN and
log-distance models on measured path loss in site locations 1, 2 and 3.
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5. Conclusions

The growing demand for mobile and fixed cellular telecommunication services have
given substantial weight to the limited available radio frequency spectrum. Proper mod-
elling and precise signal coverage predictions are crucial to utilizing this scarce resource
effectively. Reliable predictive modeling of signal path loss aids in controlling the load on
base station transmitters and assists in designing efficient radio network channels with less
interference and coverage hole problems. The conventional log-distance-based statistical
models for path loss prediction comprising the clustering factor, COST 234 Hata, free
space, Hata, Lee models, etc., are generally limited for predicting signal attenuation losses,
especially when employed in different environments other than the environment for which
they have been designed.

The main objective of this paper was to develop a distinctive MLP-based path loss
model with well-structured implementation network architecture, empowered with the
grid search-based hyperparameter tuning method for optimal path loss approximation
between mobile-station and base-station path lengths. The degree of prediction accuracy
with the developed MLP network model over eight conventional log-distance-based path
loss models is also clearly provided using first-order statistics. In summary, this research
paper has revealed that:

• MLPANN-based path loss model with well-structured implementation network archi-
tecture, empowered with the right hyperparameter tuning algorithm is better than the
standard long-distance path loss models

• the choice of both MLP-ANN modelling structure and selection of training algorithms
do have a clear impact on the quality of its prediction proficiency. Specifically, in
terms of MAE, RMSE and STD statistical values, the proposed model yielded up to
50% performance prediction accuracies improvement over the standard models on the
acquired LTE path loss datasets.

• The selection of adaptive learning tuning hyperparameters of MLP-ANN and the
tuning algorithm both have an impact on its overall predictive modelling capacity.

Future work would consider more hyperparameter selection techniques to optimize
MLP model prediction accuracy during NN training. We also intend to explore more super
layered training capacity of deep neural networks such as the long-short memory (LSTM)
network model for predictive modelling of path loss data in our work.
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Abstract: In infrared (IR) and visible image fusion, the significant information is extracted from
each source image and integrated into a single image with comprehensive data. We observe that
the salient regions in the infrared image contain targets of interests. Therefore, we enforce spatial
adaptive weights derived from the infrared images. In this paper, a Generative Adversarial Network
(GAN)-based fusion method is proposed for infrared and visible image fusion. Based on the end-to-
end network structure with dual discriminators, a patch-wise discrimination is applied to reduce
blurry artifact from the previous image-level approaches. A new loss function is also proposed to use
constructed weight maps which direct the adversarial training of GAN in a manner such that the
informative regions of the infrared images are preserved. Experiments are performed on the two
datasets and ablation studies are also conducted. The qualitative and quantitative analysis shows
that we achieve competitive results compared to the existing fusion methods.

Keywords: infrared and visible image fusion; Generative Adversarial Network; patchGAN; dual-
discriminator; spatial adaptive weights

1. Introduction

In practical applications, a fused image is essential to contain high-quality details for
attaining a comprehensive representation of the real scene [1]. Nowadays, various image
fusion methods have been proposed and are usually divided into several categories that
include sparse representation-based methods [2,3], gradient-based methods [4], wavelet
transformation-based methods [5,6], neural network-based methods [7] and deep learning
based methods [8,9]. Deep learning based infrared and visible image fusion methods
exploit the features of images of different modalities and integrate them into one single
image with the composite information. The infrared images reflect the thermal radiation of
objects [10] and visible images contain the textural information. Infrared and visible image
fusion methods [1,9,11–13] extract the characteristics of both the images and achieve images
that improve visual understanding and are beneficial in various fields like computer vision
in object detection, recognition and military surveillance [10].

The recent fusion algorithms achieve promising results. Guided filter [14] is widely
used for the purpose of image fusion which involves two-scale decomposition of the
image. Then, the base layer (containing large scale variations in intensity) and detail layer
(capturing small scale details) are fused together using a guided filtering based weighted
average method. In Deepfuse [15], there is a Siamese based encoder with two CNN layers
that extracts the features of the source images. These maps are fused by the addition
strategy. The decoding network with three CNN layers reconstructs the fused image.
Although it achieves better results, the network is too simple and cannot extract the salient
features properly. In Densefuse [9], Ma et al. proposed a method based on dense block and
an auto-encoder module. Denseblock has skip connections which help to preserve more
features. The drawback of this approach is that the fusion is not considered in the training
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process and only the auto-encoder is trained for the reconstruction of the images. The
CNN based methods usually rely on the ground truth and in case of fusion of infrared and
visible images there are no predefined standards [16]. Generative Adversarial Network
(GAN)-based fusion methods are also very popular recently. These methods use traditional
GAN or its variants for fusing the images, but the trained image is trained to be more
similar to only one of the source images which catalyze the loss of information existing in
the other image. In DDcGAN [12], GAN is applied with dual discriminators where each
discriminator is tasked to make the fused image more similar to the infrared and visible
image, respectively, without the ground truth.

In this paper, we apply a patch-wise discriminator inspired from the patchGAN [17] in
the base structure using dual discriminators [12]. Vanilla GAN validates the authenticity of
the entire generated image while the patchGAN verifies the authenticity in units of patches
of N × N size of an image. By doing so, an image is only considered as real if all the patches
attain a high probability of being real. This also reduces the computation speed, the number
of parameters and is unaffected by the size of the images. In our approach, we also assign
adaptive weights to IR image based on the observation that in the IR image only the high
activation regions contains the salient information while the remaining background region
contains very less or no information. We utilize these weight maps in the loss function.

To summarize, this paper makes the following contributions;

1. We propose a new framework for infrared and visible image fusion in which the
patchGAN is applied to the dual discriminator network structure.

2. We introduce a new loss function based on constructing adaptive weight maps based
on the IR image to preserve only the important information from both the infrared
and visible images.

3. Our method produces competitive results as compared with the existing fusion
methods quantitatively as well as qualitatively.

The rest of our paper is structured as follows: related works are briefly reviewed
in Section 2. In Section 3, we present our proposed method in detail. In Section 4, we
illustrate our experimental results and ablation studies. Finally, the conclusions are drawn
in Section 5.

2. Related Works

Generative adversarial networks (GANs) [18] are one of the generative models. GANs
have achieved impressive success in generating images from existing images or random
noise. In GANs, we have a generator which is purposed to generate real-like fake sampled
images with adversarial loss which steers the output image to be indistinguishable from
the real images and to be able to fool the discriminator. The discriminator behaves as a
classifier and provides the probability of the data being real or fake. The training process
of a generator and a discriminator forms an adversarial process and is continued until the
discriminator is unable to distinguish the generated samples. The training of GAN is a
critical task because of its unstable training. To alleviate this, GANs with a conditional
settings were proposed. In conditional GANs (cGAN) [19], the generator and discriminator
are conditioned on some auxiliary information. This additional information is generally
labeled data. This provides the guidelines to the generator in figuring out what kind of
data needs to be generated. Generally, GANs use a cross entropy loss function which may
lead to the vanishing gradient problem during training. To overcome this issue, Least
Squares Generative Adversarial Networks (LSGANs) [20], which use least square loss for
the discriminator, and WGANs [21], which use the Wasserstein loss were proposed.

The first endeavour of utilizing GAN for the task of infrared and visible image fusion
was proposed in FusionGAN [22] in which the fused image is compelled to contain more
texture details by introducing the discriminator to distinguish the fused image from the
visible image . In GAN-based image fusion methods, the discriminator makes the generated
image more similar to the visible image and this problem is alleviated in the DDcGAN [12]
by the introduction of two discriminators. The generator makes the fused image and
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one discriminator distinguishes the fused image from the visible image while the other
discriminator distinguishes the fused image from the infrared image. The generator
consists of two deconvolution layers and an auto-encoder network. The visible and a low
resolution infrared images are passed through the deconvolution layers to get the same
resolution. The output of the deconvolution layers are concatenated together and fed into
the encoder for the feature extraction and fusion process. The fused feature maps are
given to the decoder for the reconstruction of fused image which has the same resolution
as the visible image. The encoder has a DenseNet consisting of short connections which
improve the feature extraction. Both the discriminators have the same architecture and
play an adversarial role against the generator. In DDcGAN, the discriminators are not
only supposed to contemplate their adversarial role but also maintain the balance between
both the discriminators. The loss of generator is the summation of adversarial loss and the
weighted content loss. This adversarial loss comes from the discriminators.

In U2Fusion [23], an end-to-end semi-supervised fusion method is proposed which
can fuse multi-focus, multi-exposure and multi-modal images. This method automatically
approximates the significance of the source images and suggests and adaptive information
preservation degree. This adaptive information preservation degree is utilized to conserve
the similarity between the fusion result and source images. NestFuse [24] inspired by the
DenseFuse, preserves more multi-scale features from the visible image while enhancing
the salient features of infrared images. Their model is based on nest connections and
Spatial/Channel attention models. The spatial attention models signifies the importance of
each spatial position whereas the channel attention models uses deep features.

In PatchGAN [17], the conditional GANs are used for image-to-image translation.
The architecture of the generator and the discriminators differ from the previous works
utilizing GANs for the same task. The generator used has a U-Net based architecture
and the discriminator is a markovian discriminator [17,25]. PatchGAN does not signify
the whole image as fake or real instead of evaluating the local patches from the images.
The patch size can be adjusted by changing the size of the kernel in convolution layers
or the number of layers in the discriminator. In [17], an input image of 256 × 256 size is
concatenated with the generated 256 × 256 image and provided to the generator G. The
patch size used in this paper is 70× 70. The generator provides a feature map of 30× 30× 1
which means that each pixel of this map corresponds to the 70× 70 patch of the input image.
All the values of the 30 × 30 × 1 feature maps are averaged to estimate the probability of
the patch being real or fake. This makes patchGAN more attentive to the local features of
the images. PatchGAN is now being widely used in many applications. In PGGAN [26],
the patchGAN is combined with the globalGAN for the task of image inpainting. The
discriminator of PGGAN, first uses the shared layers between the patchGAN and the global
GAN to learn the basic low-level features which is later split to generate two separate
adversarial losses to preserve both the local and the global features in images. In [27],
the author proposes an image text deblurring method using two GAN networks which
are used to convert the blurred images to deblurred images and the deblurred images
to blurred images which helps in putting the constraints on the generated samples. The
discriminator used in this model is patchGAN discriminator. PatchGAN is also used in
multilevel feature fusion for underwater image color correction [28]. In this model, the
multi-scale features are extracted and then global features are fused together with low-level
features at each scale.

3. Proposed Method

In this section, we first elaborate our proposed end-to-end deep learning based fusion
network, then we discuss the formation of weight map. At last, we introduce the design of
our new loss function.

In our fusion network, we apply patchGAN [17] in the dual discriminator structure
framework [12], as shown in Figure 1. Our model has one generator G and two discrimina-
tors Di and Dv. Given the infrared image i and visible image v, the task of the generator

33



Appl. Sci. 2021, 11, 9255

is to generate a fused image which should be able to fool the discriminators. Dv aims to
distinguish the generated image from the visible image, while Di is trained to discriminate
between the original infrared image and the fused image. In general, the output of the
discriminators is a scalar value that approximates the probability of the input from the
source data rather than generated data G.

Inspired by the patchGAN [17], the generator as well as the discriminator is of the
form convolution-BatchNorm-ReLu [12,29,30]. The generator’s architecture is based on U-
Net [31] with the auto-encoder system with skip connections. The discriminators used for
our model are Markovian discriminators [17,25], “PatchGAN”, that only penalize structure
at the scale of patches. This discriminator tries to signify if each N × N patch in an image
is real or fake. In vanilla GAN, given an input image, the output is a single probability of
the image being real or fake, but here we get an N × N array of output X where each Xij
represents the probability of each patch of an image being real or fake.

Figure 1. The overall architecture of our proposed method.

We have observed that in infrared image, only the high activation region contains
significant information. The complexity in IR-visible image fusion research lies in correctly
extracting the information on thermal targets from the IR image, and trying to keep obvious
background information of the visible image in the fusion image [32]. We intend to give
more weight to the informative regions of IR. For this purpose, we generate an adaptive
weight map W based on the IR image and utilize this weight map in the adversarial loss
during training in a fashion which could preserve the informative region of the IR image.
For the construction of the weight map W, we take the IR image and apply average pooling.
We can choose average pooling as well as max-pooling strategy to create the weight maps
equal to the size of the output of the discriminator. The reason to choose average pooling
is that the output of the average pooling can be considered as a smooth version of the
input image. In this way, more weights can be given to high activation regions of the input
infrared image. In contrast, max pooling can cause an abrupt change in weights of adjacent
pixels. We have also compared these two strategies in ablation studies.The size of the
weight map should match the size of the output of the discriminator.

Loss Function

Loss function plays a principle role in the learning of any model. In usual GAN,
the discriminator is trained on the real and the generated images but the generator is
trained indirectly via discriminator. In infrared and visible image fusion methods, the dual
purposed generator is not only tasked to fool the discriminator but it should also keep the
correspondence between the generated image and the source images. This is supervised
by the loss function of G. Each discriminator is first trained with the input patches (i.e.,
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the visible image patches in Dv and the infrared image patches in Di) and then the fused
patches. The total loss of each discriminator is the sum of both the losses which aims to
discriminate between the fused image by G and the source images.

For the discriminators, the patches from the source images are real data while the
patches from the generated/fused images are fake data. The discriminator Di is first trained
on the loss between the patch from input infrared image and the real label vector with each
value 1. Then, this Di is trained on the loss between the patch from fused image and the
fake label vector with each value 0. Similarly, the discriminator Dv learns the loss between
the patch from input visible image and the real label vector. After this, this Dv is trained on
the loss between the patch from fused image and the fake label vector. We are using the
mean square error loss for the discriminators.

Our purpose is to train the network in such a way that it gives more weight to the high
activation region of infrared images which contains the significant information. For this, we
define a new loss function for each patch by infusing the weights in the loss. We propose
two methods of doing this; one is to use this new weighted loss only in the discriminator
Di as L∗

Di
, and the other method is to use it in the discriminator Di as L∗

Di
and generator as

Ladv∗
Di

simultaneously. Generally, the loss of the discriminator is defined as follows:

LD = min
D

V(D) =
1
2
E[(D(x)− a)2] +

1
2
E[(D(G(x))− b)2] (1)

where D(x) and D(G(x)) is the output of discriminator given the image x and the generated
image G(x), respectively . ’a’ is the target label vector which is 1 in the case of source
images and ’b’ is the target label vector which is 0 in the case of a fused image.

Using the new loss in Di, the losses of both the discriminators become

L∗
Di

= min
D

V(Di) =
1
2
E[W ∗ (Di(i)− a)2] +

1
2
E[W ∗ (Di( f )− b)2] (2)

LDv = min
D

V(Dv) =
1
2
E[(Dv(v)− a)2] +

1
2
E[(Dv( f )− b)2] (3)

The loss function of the generator consists of the content loss and the adversarial loss:

LG = Lcon + Ladv (4)

Lssim and Lmse are the structural similarity loss and the mean square error loss, respec-
tively, between the input images and the generated/fused image. They are used as the
content loss.

Lcon = Lssim + Lmse (5)

Ladv
Di

and Ladv
Dv

are the adversarial losses provided by the discriminators Di and Dv.
Here, mean square error loss is used as an adversarial loss. So the total loss of G becomes

LTotal = Lssim + Lmse + γLadv
Di

+ λLadv
Dv

(6)

In the case of using the new loss in the generator, we replace the mean square error
loss Ladv

Di
with the new loss Ladv∗

Di
. Here, the output of the discriminator is compared with

real label only.

Ladv∗
Di

= min
G

V(G) =
1
2
E[W ∗ (Di − a)2] (7)

Ladv
Dv

= min
G

V(G) =
1
2
E[(Dv − a)2] (8)

4. Experiments

In this section, we describe our experimental results. We have conducted extensive eval-
uation and comparison study against state-of-the-art algorithms including U2Fusion [23],
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NestFuse [24] and DDcGAN [12]. We first conduct our experiments on the images taken
from the RoadScene [23] and our private dataset. In the original patchGAN paper [17],
they used an input image of size 256 × 256 and a patch size of 70 × 70. However, for our
experiments, for the input image of 512 × 256, we have taken a patch size of 65 × 65 and a
learning rate of 0.0001. We also change the values of γ, but for the qualitative analysis both
λ and γ are fixed at 0.5. For the quantitative comparison, we select 20 images with different
conditions, including indoor and outdoor, and day and night. For the verification of our
results, we choose six quality metrics; Correlation coefficient (CC) that measures the degree
of linear correlation between the source images and the fused image, sum of correlation of
differences (SCD) [33], FMIdct [34] calculates the mutual information for discrete cosine
feature, modified Structural Similarity (SSIMa) and multi scale SSIM (MSSSIM) for no
reference image which models the loss and distortion between two images according
to their similarities in light, contrast and structure information and Peak signal-to-noise
ratio (PSNR).

4.1. Qualitative Analysis

The fused images attained by the three state-of-the-art algorithms and our proposed
method are shown in Figures 2 and 3. We analyze the relative performance on three images
from RoadScene and three from our private dataset using the new loss in discriminator
L∗

Di
as well as generator Ladv∗

Di
.

We can see that images created by our method preserve the thermal targets from the
infrared images as in the third example of Figure 2. It can also preserve more textural
information from visible images such as sky (red box) in the first example of Figure 3.
If we look at the overall images created by these methods, we would observe that the
DDcGAN creates blurry images. NestFuse gives better results in first example of Figure 3,
but some salient features are not clear such as in the red box in second image of Figure 3.
Generally our proposed method tries to preserve as much information from both the
infrared as well as the visible images and tries to maintain the overall good quality of
images, simultaneously visible in the third and the fourth images.

4.2. Quantitative Analysis

For the quantitative comparison, we take the average value of 20 fused images for
each metric. In this comparison, we analyze the new weighted loss in discriminator Dir
and generator G, and also in discriminator Dir only. In Tables 1 and 2, we have taken
fixed values of λ = 0.5 and γ = 0.1. Table 1 displays the values of different metrics for
RoadScene dataset while Table 2 displays the values for our private dataset. The best values
are indicated in red, the second best values are indicated in blue, and the third highest
values in cyan.

From Table 1, we can see that as compared to the state-of the-art methods, our method
achieves the top-2 results in CC and SSIMa. The second and third best results in MS-SSIM,
SCD and PSNR. The second best result has a narrow margin of only 0.018 from the best
result in PSNR, a difference of only 0.0252 from the best result in MS-SSIM and a difference
of 0.0386 from the best result in SCD.

In Table 2, as compared to the other state-of the-art methods, our method acquires the
top-2 ranks in MS-SSIM, FMIdct which calculates the mutual information for discrete cosine
features and SSIMa. The second best and the third best results in CC, SCD and PSNR. CC
achieves the second best result with a difference of 0.0017 from the best result. SCD has a
difference of only 0.0002 and PSNR has a margin of 0.16 from the best results. The highest
values in FMIdct and SSIMa indicate that our method attains more features and structural
information. Highest value in PSNR indicates that the fused image is more similar to the
source images and is of higher quality with less distortion. In general, our method gives
better performance than DDcGAN by simply replacing the GAN with PatchGAN and
adding weights. These results prove the effectiveness of our method.
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Figure 2. Qualitative comparison of the proposed method with other state-of-the-art methods on
image pairs taken from the private dataset. The first row contains visible images. Second row
contains infrared images. The last row contains the fused results of our proposed method.

We also compare the different values of γ in Tables 3 and 4. Here, the best values are
indicated in red and the second best values are indicated in blue. From Tables 3 and 4, we
can witness that most of the highest results are achieved with λ = 0.5 and γ = 0.1.
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Figure 3. Qualitative comparison of the proposed method with other state-of-the-art methods on
image pairs taken from the RoadScene dataset. The first row contains visible images. Second row
contains infrared images. The last row contains the fused results of our proposed method.

Table 1. The average values of quality metrics for 20 fused images of our RoadScene dataset with
λ = 0.5 and γ = 0.1 used in the loss function. The best values are indicated in red, the second best
values are indicated in blue and the third highest values in cyan.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

U2Fusion [23] 1.2199 0.8907 1.3236 0.3057 0.7204 16.0903
NestFuse [24] 1.1889 0.8376 1.6574 0.2969 0.6598 13.8161
DDcGAN [12] 1.1752 0.7067 1.5041 0.3589 0.5965 13.8019

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.2587 0.8625 1.5609 0.2736 0.7396 16.0723

38



Appl. Sci. 2021, 11, 9255

Table 2. The average values of quality metrics for 20 fused images of our private dataset with λ = 0.5
and γ = 0.1 used in the loss function. The best values are indicated in red, the second best values are
indicated in blue and the third highest values in cyan.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

U2Fusion [23] 1.3785 0.8954 0.9211 0.1953 0.7426 19.2835
NestFuse [24] 1.4732 0.899 1.4616 0.2369 0.7322 18.7873
DDcGAN [12] 1.2685 0.7785 1.1741 0.1879 0.5409 11.5284

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.4701 0.905 1.3959 0.2714 0.7541 19.1149

Table 3. The average values of quality metrics for 20 fused images of our RoadScene dataset. Different
values of λ and γ are used in the loss function. The best values are indicated in red and the second
best values are indicated in blue.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
ours (L∗

Di
, Ladv∗

Di
) λ = 0.5, γ = 0.5 1.2549 0.8785 1.6598 0.2501 0.7319 15.8065

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 5 1.2379 0.8601 1.6986 0.2346 0.7139 15.2591
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.2587 0.8625 1.5609 0.2736 0.7396 16.0723

ours (Ladv∗
Di

) λ = 0.5, γ = 0.5 1.2567 0.8764 1.6566 0.2569 0.7326 15.8283
ours (Ladv∗

Di
) λ = 0.5, γ = 5 1.2165 0.8547 1.6916 0.24 0.6998 14.7879

Table 4. The average values of quality metrics for 20 fused images of our private dataset. Different
values of λ and γ are used in the loss function. The best values are indicated in red and the second
best values are indicated in blue.

Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 0.1 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
ours (L∗

Di
, Ladv∗

Di
) λ = 0.5, γ = 0.5 1.4787 0.8933 1.3735 0.2702 0.7615 19.17

ours (L∗
Di

, Ladv∗
Di

) λ = 0.5, γ = 5 1.3997 0.8427 0.8844 0.2508 0.7515 19.2911
ours (Ladv∗

Di
) λ = 0.5, γ = 0.1 1.4701 0.905 1.3959 0.2714 0.7541 19.1149

ours (Ladv∗
Di

) λ = 0.5, γ = 0.5 1.4702 0.8841 1.3156 0.2527 0.7542 19.1338
ours (Ladv∗

Di
) λ = 0.5, γ = 5 1.4239 0.856 0.956 0.2198 0.7543 19.2189

4.3. Ablation Studies

In order to illustrate the effect of the gamma on each metric for both type of losses, we
perform extensive experiments and the results are summarized in the Figure 4. Gamma
indicates different weight for adversarial loss of Di, see Equation (6). We alter gamma as
we intend to see the effect of infrared images. For our experiments, we choose γ = 0.1,
0.2, 0.3, 0.5, 0.8, 2, 3 and 5. We can observe that out of the six metrics, four gives highest
results for gamma equal to 0.1 and 0.2. However, for each metric except SCD the values are
highest between 0 and 1. After 1, the values start to decrease.

We show the performance results with two techniques of using the new loss function.
We also perform experiments with different values of gamma. We witness that the γ
between 0 and 1 yields the best results for each quality metrics expect SCD in Figure 4. We
also observe the values for both techniques of using the new loss in Di only, and in both Di
and G and see that the loss used in both Di and G delivers good performance overall.
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Figure 4. Values of each metric for images from RoadScene Dataset with different γ. Lambda is fixed
to 0.5 for this analysis. Type of the loss used is shown in the legends.

There are two ways to construct the weight maps equal to the size of the output
of discriminator, average pooling and maximum pooling. In Table 5, we analyze the
effect of using both pooling strategies for the construction of the weights.The settings
for this analysis include the weighted loss used in both Di and G with λ = 0.5 and
γ = 0.1. Based on these results, it is quite evident that average pooling performs better
than maximum pooling.

Table 5. The average values of quality metrics for 20 fused images on two datasets with different
pooling methods. The best values are indicated in blue.

Dataset Methods CC MSSSIM SCD [33] FMIdct [34] SSIMa PSNR

RoadScene Avg-Pooling 1.2675 0.8655 1.6188 0.2691 0.7381 16.0222
RoadScene Max-Pooling 1.2637 0.8617 1.5528 0.2671 0.7375 16.0355

Private Avg-Pooling 1.4715 0.9068 1.4614 0.2684 0.7594 19.0826
Private Max-Pooling 1.4467 0.8988 1.3488 0.2594 0.7508 19.224

5. Conclusions

This paper presents a new end-to-end trainable framework where patchGAN is used
with dual discriminators. The advantage of using the patchGAN is that it tries to signify
if each N × N patch in an image is real or fake rather than determining the entire image,
allowing us to observe features that are otherwise hard to perceive. The fundamental
characteristic of the proposed method is the weights derived from the infrared images.
These weights are utilized in defining the new loss function which can be used in two
ways; (1) Use the new weighted loss in infrared discriminator and as an adversarial loss
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in generator, (2) Use the new loss as adversarial loss in generator only. These weight
maps can help achieve our objective of accurately extracting the information from the
highly informative regions of infrared as well as visible images. The experiments are
conducted on RoadScene and our private dataset to evaluate the performance of our
proposed method qualitatively as well as quantitatively. The experimental results indicate
that the images fused by the proposed method contain more details and are more vivid.
The proposed technique is simple yet effective and achieves better results than the state-of-
the-art methods.
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Abstract: One of the emerging technologies at the nanoscale level is the Quantum-Dot Cellular
Automata (QCA) technology, which is a potential alternative to conventional CMOS technology
due to its high speed, low power consumption, low latency, and possible implementation at the
atomic and molecular levels. Adders are one of the most basic digital computing circuits and one of
the main building blocks of VLSI systems, such as various microprocessors and processors. Many
research studies have been focusing on computable digital computing circuits. The design of a
Full Adder/Subtractor (FA/S), a composite and computing circuit, performing both the addition
and the subtraction processes, is of particular importance. This paper implements three new Full
Adder/Subtractor circuits with the lowest number of cells, lowest area, lowest latency, and a coplanar
(single-layer) circuit design, as was shown by comparing the results obtained with those of the best
previous works on this topic.

Keywords: Quantum-Dot Cellular Automata (QCA); Full Adder/Subtractor (FA/S); coplanar

1. Introduction

The QCA technology, with its unique features such as minimal dimensions, high speed,
very low latency, low power consumption, and high operating frequency [1], has attracted
the attention of many researchers and scientists as a new method of communication and
computation. It has introduced significant novelties in the field of computer science and
logic circuits. Adders are one of the most fundamental computational circuits of digital
logic and have attracted researchers’ attention. Adders are one of the main building blocks
of many VLSI systems, such as various microprocessors and processors. Are the new
designs aiming at optimizing the relevant blocks compatible with the development of this
technology? A complete Adder/Subtractor design with a simple structure and low power
consumption can significantly simplify digital circuits. A Full Adder/Subtractor design
should include a composite computations circuit and allow performing both addition and
subtraction processes. One of the problems in creating hybrid courses is the appropriate
composition of wires crossover to reduce costs.

Due to the high price and increasing circuit complexity, a multilayer crossovers design
in the implementation of QCA circuits is not desirable (favorable) [2,3]. To achieve coplanar
crossovers, it was suggested to rotate the QCA cells, but due to the coexistence of two types
of QCA cells, this caused some problems, such as low stability and high implementation
cost. Therefore, a design including this type of cells is not desirable [2,4]. The best method
for designing QCA circuits is based on the use of 90-degree cells with non-adjacent clock
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phases (four clock phases) to develop the crossover wires in a single layer [2,5]. Therefore,
we used these two types of crossover for this research.

For this reason, The proposed designs, due to their coplanar structure and to the fact
that they do not require other layers, have a reduced number of cells, occupied area, and
delay. The remainder of this article is organized as follows. Section 2 (Background) provides
an overview of QCA and previous literature. Section 3 (Proposed Circuits) presents
the proposed architecture of Full Adder/Subtractor circuits. In Section 4 (Guidelines
Performance Evaluation), we compare the proposed designs with previous architectures.
In Section 5 (Conclusion), we discuss our conclusions.

2. Background

2.1. The Basis of Quantum-Dot Cellular Automata (QCA) Technology

This technology is based on QCA cells, and the basis of the QCA cell can represent a
logical bit with occupied space in the nanoscale. A QCA cell includes two electrons, and,
based on the Coulombic repulsion created between two electrons, two logical values of
“0” and “1” are possible. The QCA cells are square, as shown in Figure 1. Each enclosure
consists of four holes. The two electrons are trapped inside and can move freely between
the holes; by placing two electrons in four spots, six different states are created, which is
impossible due to Coulombic repulsion forces between the electrons. As a result, to satisfy
these forces, electrons are placed inside the holes with as far apart as possible, until the
Coulombic repulsion law is satisfied. Depending on the location of the electrons and their
diameter, two structures are created; by the establishment of two electrons in each of these
two poles, two different states are created. With these two types of systems, two logical
values can be obtained; we will consider one of the logical values. We attribute these two
polar structures 1 and –1 to the logical values of “1” and “0”, respectively; the poles at 1
and –1 same are those of the square cells, as shown in Figure 1 [6–8].

 
(a) (b) 

 
(c) (d) 

Figure 1. (a) Normal QCA cells’ structure, (b) Normal QCA wire’s structure, (c) Rotated QCA cells’ structure and (d)
Rotated QCA wire’s structure.

When the electrons move inside the cell, they tunnel between the holes. Then, the
moving of the electrons inside the cell is similar to a nonlinear move, and the Coulombic
repulsion force is not exerted just between the electrons inside a cell. However, as shown
in Figure 2, each cell adjacent to this one, which has a logical value, is affected and affects
the next adjacent cell that has no value, converting it to its value [6–8].
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Figure 2. Behavior of adjacent cells.

2.2. QCA Four-Phase Clock

A four-clocking phase scheme for the QCA is shown in Figure 3. As shown in the figure,
the barriers (potential barriers) rise during the first clock phase (switch). At the beginning of
this phase, the borders are low, and the QCA cell is unpolarized; in this state, under the effect
Columbic repulsion, the cell receives data from its adjacent cells. Then, with the barriers
rising, the QCA cells are polarized according to their input drive modes, and at the end of
this clock phase, the borders are high enough to prevent electron tunneling. As a result, the
cell is locked. It is in this phase that the actual switching happens. During the second phase
of the clock (hold), the barriers remain high. In this phase, the cell is relatively stable and
transmits its data to the adjacent cells. The walls gradually decrease during the third clock
phase (release), and the cell becomes unstable. In this phase, the cell is allowed to lose its
polarization (unpolarized). During the fourth clock phase (relax phase), the cell barriers are
in the lowest state, and the cells remain unpolarized. The cell is not used in this phase. After
the end of this phase, the cell enters the switch phase again [3,9].

 
(a) 

 
(b) 

Figure 3. (a) Clock phases and (b) QCA four-phase clock mechanism.
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2.3. QCA Four-Phase Clock

One of the gates used in logic circuits is the inverter gate (Not gate). A type of inverter
gate used in QCA technology is shown in Figure 4. It is used for inverting the desired
signal as required [10,11].

' '

'

Figure 4. Two different Not-gate in QCA based on 90◦ cells.

One of the most usable logic gates in QCA technology is the majority gate. This gate
has an odd number of inputs and one output. In other words, the output cell value (output
cell polarization) is determined according to the logical value of the majority inputs. As a
result, the output cell value is determined based on the majority of inputs [8,10]. Figure 5a
shows an example of this gate.

(a) 

(b) (c) 

Figure 5. (a) QCA with implementation of the majority gate, (b) QCA with implementation of the
AND Gate with two inputs and (c) QCA with implementation of the OR Gate with two inputs.

By stabilizing (fixed) one of the inputs of the majority gate and considering a logical
value “0” (polarization −1), the AND gate is generated [10,12]. Figure 5b shows a two-input
AND gate.

The OR gate is generated by fixing one of the majority gate inputs and considering a
logical value “1” (polarization +1) [10,12]. Figure 5c shows a two-input OR gate.
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2.4. Related Work

In a previous paper [13], the architecture of a Full Adder/Full Subtractor with a
multilayer crossover design was described (Figure 6). This type of multilayer design
requires a larger consumption area than we planned. It has also more cells and delays with
respect to our designs, so its cost is very high. As a result, our proposed technique was
implemented using the coplanar method. It has significant advantages over this type of
architecture regarding cell number, delay, and area consumption.

Figure 6. Full Adder/Full Subtractor circuit [13].

In another paper [14], the architecture of a Full Adder/Full Subtractor was also
presented (Figure 7). This type of design, due to the high delay and unsuitable carry output,
requires another crossover. That leads to an increase in the delay and number of cells. As a
result, this architecture is also not suitable. Our proposed design has significant advantages
relative to this design [14], such as the number of cells, delay, area of consumption, and
therefore cost function.
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Figure 7. Full Adder/Full Subtractor circuit [14].

Another paper [15] described a Full Adder/Full Subtractor architecture using the
coplanar method design (Figure 8). This type of design is not very favorable, because the
rotated cells (45◦ cells) make it more vulnerable and increase the implementation costs.
Our method has significant advantages also relative to this design [15], such as the number
of cells, delay, and area. Besides, normal cells were used. Our design (C) is 50% better than
that design.

Figure 8. Full Adder/Full Subtractor circuit [15].

In a paper [16], a Full Adder/Full Subtractor circuit architecture, implemented in a
coplanar method design was presented. Our proposed designs (A and B) are an addition to
the coplanar designs in terms of number cells, area and, therefore, cost of implementation
and have significant advantages relative to this design (Figure 9). Despite not using rotated
cells in our designs (A and B), their latency is equal to that reported in this previous article.
In comparison, our third design delay (C) is 33.34% superior to this design and is ideal in
terms of cell number and area.
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Figure 9. Full Adder/Full Subtractor circuit [16].

Another paper [17] also presented two Full Adder/Full Subtractor circuit designs,
as shown in Figures 10 and 11; these designs are also coplanar, but our designs have
significant advantages in terms of number of cells, delay, and area.

Figure 10. Full Adder/Full Subtractor circuit [17]-a.
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Figure 11. Full Adder/Full Subtractor circuit [17]-b.

3. The Proposed Circuits

In this paper, we designed three new Full Adder/Subtractor (FA/S) circuits based on
the XOR gate [18] with the lowest number of cells, smallest consumption circuit area, and
lowest latency (delay) relative to the previous best circuits. In cases, a single-layer (coplanar)
design was used. Therefore, these circuits are the best examples of design ever made. The two
designs (A and B) are coplanar and use only standard cells (90◦ cells). In the third design (C)
which is coplanar, the cells are rotated (45◦ cells) and also coplanar. The third design shows
that the use of this type of cell may reduce the delay of circuit outputs, but, it also reduces the
stability and resistance of the circuit compared to the circuits with standard cells.

3.1. FA/S Circuits Design

A Full Adder/Subtractor circuit is a combination circuit where two addition and sub-
traction operations are performed. This circuit has three inputs (A, B, Cin) and three outputs
(S\D, Cout, Bout) [19,20]. Equation (1) is the equation of the output S\D, Equation (2) is the
equation of the Cout output, and Equation (3) is the equation of the Bout output. Figure 12,
block diagram, and Table 1 show the correct Table of this circuit.

S\D = A⊕B⊕Cin (1)

Cout = M(A,B,Cin) = A.B + A.C + B.C (2)

Bout = M(A′,B,Cin) = A′.B + A′.C + B.C (3)

This paper designed FA/S circuits with the lowest number of cells, lowest consumable
area, and lowest latency (delay), compared to the previous best examples. We used a single-
layer (coplanar) design to obtain the best designs ever made. The design is better than
previous ones not only in terms of cell number, area, and delay but also because it is based
on a single layer. Figure 13 presents a block diagram of these circuits and Figures 14–16,
show the implementation of the Proposed Full Adder/Subtractor (FA/S) circuits designs.
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Figure 12. Block diagram of the Full Adder/Subtractor circuit.

Table 1. Truth table of the Full Adder/Subtractor.

Bout Cout S\D Cin B A

0 0 0 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 1 0 1 1 0
0 0 1 0 0 1
0 1 0 1 0 1
0 1 0 0 1 1
1 1 1 1 1 1

Figure 13. Simulation results of the proposed XOR-gate.
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Figure 14. The proposed (A) Full Adder/Full Subtractor circuit.

Figure 15. The proposed (B) Full Adder/Full Subtractor circuit.

Figure 16. The proposed (C) Full Adder/Full Subtractor circuit.
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3.2. Simulation Results

In this section, the simulator outputs of the proposed circuits are shown in Figures 17–19.
The output latency of both offered courses (A and B) is the same, and they provide the same
simulation outputs. As can be seen, in both circuits, the delay is one clock (four phases). The
delay of the third circuit (C) is 0.5 clock (two stages). The proposed Full Adder/Subtractor
hybrid circuits combine two addition and subtraction circuits and allow the concurrent
performance of both operations.

Figure 17. Simulation results for the proposed (A) Full Adder/Full Subtractor circuit.

Figure 18. Simulation results for the proposed (B) Full Adder/Full Subtractor circuit.
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Figure 19. Simulation results for the proposed (C) Full Adder/Full Subtractor circuit.

4. Guidelines of Performance Evaluation

The QCA Designer provided the simulation results. The simulation parameters
are presented in Table 2. The proposed design was compared with designs described
in previous works. For all circuits designed, parameters including area, delay, and cell
numbers are provided. The type of crossover is also presented for a better and more
accurate comparison.

Table 2. Simulation parameters for the QCA Designer.

Parameter Value

Cell width 18 nm
Cell height 18 nm

Dot diameter 5 nm
Number of samples 12,800

Convergence tolerance 0.001
Radius of effect 65 nm

Relative permittivity 12.9
Clock high 9.8 × 10−22 J
Clock low 3.8 × 10−23 J

Clock amplitude factor 2
Layer separation 11.5 nm

Maximum iteration per sample 100

The simulation results are given in Table 3. As can be seen, the proposed circuits were
compared with the best circuits previously described. In Table 3, consumption area, delay,
and cell number of the proposed Full Adder/Subtractor circuits are compared to those of
previous designs.
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Table 3. Comparing the Full Adder/Subtractor (FA/S) of this study with those of previous works.

Crossover Type
Latency
(clock)

Cell Count
Area

(μm2)
Circuit

Multi-Layer 1.5 90 0.6 [13]
Coplanar (clocking based) 1.5 83 0.09 [14]

Coplanar (rotated cells) 1 82 0.11 [15]
Coplanar (rotated cells) 0.75 75 0.09 [16]

Coplanar (clocking based) 1 92 0.09 [17]-a
Coplanar (clocking based) 1 84 0.09 [17]-b
Coplanar (clocking based) 0.75 68 0.072 Proposed A
Coplanar (clocking based) 0.75 67 0.072 Proposed B

Coplanar (rotated cells) 0.5 65 0.067 Proposed C

As shown in Table 3, our designs (A) and (B) allow reducing the area and power
consumption up to 39.1% with respect to previous circuits described in [14,17]. As can be
seen, the delay in the proposed designs improved significantly with respect to previous
works. Our designs (A) and (B) reduce the delay by 50% in comparison to the designs
in [13,14] and by 30% with respect to those in [15,17]. The reduction in the proposed design
C, relative to the designs in [13,14], corresponds to 66.66%, whereas it corresponds to 50%
in comparison to those in [15], [17]-a and [17]-b, and to 33.33% in comparison to that in [16].
As can be seen, the proposed designs have also the lowest cell number with respect to
the other designs. Improvement in the cell number of the proposed design A relative
to the designs in [13–17]-a and [17]-b is about 24.45%, 18.07%, 17.07%, 9.34%, 26.09%,
and 19.05% respectively; the cell number improvement in the proposed design B relative
to [13–17]-a and [17]-b, respectively, is about 25.56%, 19.28%, 18.29%, 10.67%, 27.17%, and
20.24%; finally, the cell number improvement in the proposed design C relative to [13–17]-a
and [17]-b, respectively, is about 27.78%, 21.69%, 20.73%, 13.34%, 29.35%, and 22.62%.

5. Conclusions

The FA/S designs using the QCA technology use at least three layers for the crossover,
while several techniques use 45◦ cells. Indeed, only non-adjacent clock phases (four clock
phases) are required to design the crossover in a single layer, which is robust and better.
However, the coplanar crossover’s design using rotated cells can reduce delay in the circuit.
In some cases, depending on the type of usage, these two types of design can be used. The
circuits’ designs proposed in this study are better and preferable than previous designs in
terms of number of cells consumed, circuit area, delay, and cost. As a result, these three
proposed designs can be used in more extensive and more complex circuits.
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Abstract: This paper presents a new algorithm for multiplying two Kaluza numbers. Performing
this operation directly requires 1024 real multiplications and 992 real additions. We presented in a
previous paper an effective algorithm that can compute the same result with only 512 real multipli-
cations and 576 real additions. More effective solutions have not yet been proposed. Nevertheless,
it turned out that an even more interesting solution could be found that would further reduce the
computational complexity of this operation. In this article, we propose a new algorithm that allows
one to calculate the product of two Kaluza numbers using only 192 multiplications and 384 additions
of real numbers.

Keywords: convolutional neural networks; fast algorithms; hypercomplex number multiplication;
Kaluza numbers

1. Introduction

The permanent development of the theory and practice of data processing, as well
as the need to solve increasingly complex problems of computational intelligence, in-
spire the use of complex and advanced mathematical methods and formalisms to repre-
sent and process big multidimensional data arrays. A convenient formalism for repre-
senting big data arrays is the high-dimensional number system. For a long time, high-
dimensional number systems have been used in physics and mathematics for modeling
complex systems and physical phenomena. Today, hypercomplex numbers [1] are also
used in various fields of data processing, including digital signal and image process-
ing, machine graphics, telecommunications, and cryptography [2–10]. However, their
use in brain-inspired computation and neural networks has been largely limited due to
the lack of comprehensive and all-inclusive information processing and deep learning
techniques. Although there has been a number of research articles addressing the use
of quaternions and octonions, higher-dimensional numbers remain a largely open prob-
lem [11–22]. Recently, new articles appeared in open access that presented a sedenion-based
neural network [23,24]. The expediency of using numerical systems of higher dimensions
was also noted. Thus, the object of our research was hypercomplex-valued convolutional
neural networks using 32-dimensional Kaluza numbers.

In advanced hypercomplex-valued convolutional neural networks, multiplying hyper-
complex numbers is the most time-consuming arithmetic operation. The reason for this is
that the addition of N-dimensional hypercomplex numbers requires N real additions, while
the multiplication of these numbers already requires N(N − 1) real additions and N2 real
multiplication. It is easy to see that the increasing of dimensions of hypercomplex numbers
increases the computational complexity of the multiplication. Therefore, reducing the
computational complexity of the multiplication of hypercomplex numbers is an important
scientific and engineering problem. The original algorithm for computing the product of
Kaluza numbers was described in [25], but we found a more efficient solution. The purpose
of this article is to present our new solution.

Appl. Sci. 2021, 11, 8203. https://doi.org/10.3390/app11178203 https://www.mdpi.com/journal/applsci57
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2. Preliminary Remarks

In all likelihood, the rules for constructing Kaluza numbers were first described in [26].
In article [25], based on these rules, a multiplication table for the imaginary units of the
Kaluza number was constructed. A Kaluza number is defined as follows:

d = d0 +
31

∑
n=1

dnen,

where N = 2m−1 and {dn} for n = 1, 2, . . . , 31 are real numbers, and {en} for n = 1, 2, . . . , 31
are the imaginary units.

Imaginary units e1, e2, . . . , em are called principal, and the remaining imaginary units
are expressed through them using the formula:

es = ep, eq, . . . er,

where 1 ≤ p < q < · · · < r ≤ m.
All kinds of works of imaginary units are entirely based on established rules:

e2
p = εp; εqεp = αpqεpεq; p < q; pq = 1, 2, . . . , m

For Kaluza numbers [26]:

m = 5, ε1 = ε2 = 1, ε2 = ε3 = −1, αpq = −1

Using the above rules, the results of all possible products of imaginary units of Kaluza
numbers can be summarized in the following tables [25]: Tables 1–4. For conveniens of
notation we represents each element ei in the tables by its subscript i, and we set i = ei.

Table 1. Multiplication rules of Kaluza numbers for e0, e1, . . . , e15 and e0, e1, . . . , e15 (elements
ei denoted by their subscripts, i.e., i = ei).

ine× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ine0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 6 7 8 9 2 3 4 5 16 17 18 19 20 21
2 2 −6 0 10 11 12 −1 −16 −17 −18 3 4 5 22 23 24
3 3 −7 −10 −0 13 14 16 1 −19 −20 2 −22 −23 −4 −5 25
4 4 −8 −11 −13 −0 15 17 19 1 −21 22 2 −24 3 −25 −5
5 5 −9 −12 −14 −15 −0 18 20 21 1 23 24 2 25 3 4
6 6 −2 1 16 17 18 −0 −10 −11 −12 7 8 9 26 27 28
7 7 −3 −16 −1 19 20 10 0 −13 −14 6 −26 −27 −8 −9 29
8 8 −4 −17 −19 −1 21 11 13 0 −15 26 6 −28 7 −29 −9
9 9 −5 −18 −20 −21 −1 12 14 15 0 27 28 6 29 7 8
10 10 16 −3 −2 22 23 −7 −6 26 27 0 −13 −14 −11 −12 30
11 11 17 −4 −22 −2 24 −8 −26 −6 28 13 0 −15 10 −30 −12
12 12 18 −5 −23 −24 −2 −9 −27 −28 −6 14 15 0 30 10 11
13 13 19 22 4 −3 25 26 8 −7 29 11 −10 30 −0 15 −14
14 14 20 23 5 −25 −3 27 9 −29 −7 12 −30 −10 −15 −0 13
15 15 21 24 25 5 −4 28 29 9 −8 30 12 −11 14 −13 −1
ine
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Table 2. Multiplication rules of Kaluza numbers for e0, e1, . . . , e15 and e16, e17, . . . , e31 (elements
ei denoted by their subscripts, i.e., i = ei).

ine× 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ine0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 10 11 12 13 14 15 26 27 28 29 22 23 24 25 31 30
2 −7 −8 −9 −26 −27 −28 −13 14 15 30 −19 −20 −21 −31 25 −29
3 −6 26 27 8 9 −29 11 12 −30 −15 −17 −18 31 21 24 −28
4 −26 −6 28 −7 29 9 −10 30 12 14 16 −31 −18 −20 −23 27
5 −27 −28 −6 −29 −7 −8 −30 −10 −11 −13 31 16 17 19 22 −26
6 −3 −4 −5 −22 −23 −24 19 20 21 31 −13 −14 −15 −30 29 −25
7 −2 22 23 4 5 −25 17 18 −31 −21 −11 −12 30 15 28 −24
8 −22 −2 24 −3 25 5 −16 31 18 20 10 −30 −12 −14 −27 23
9 −23 −24 −2 −25 −3 −4 −31 −16 −17 −19 30 10 11 13 26 −22

10 1 −19 −20 −17 −18 31 4 5 −25 −24 8 9 −29 −28 15 21
11 19 1 −21 16 −31 −18 −3 25 5 23 −7 29 9 27 −14 −20
12 20 21 1 31 16 17 −25 −3 −4 −22 −29 −7 −8 −26 13 19
13 17 −16 31 −1 21 −20 −2 24 −23 −5 −6 28 −27 −9 −12 −18
14 18 −31 −16 −21 −1 19 −24 −2 22 4 −28 −6 26 8 11 17
15 31 18 −17 20 −19 −1 23 −22 −2 −3 27 −26 −6 −7 −10 −16
ine

Table 3. Multiplication rules of Kaluza numbers for e16, e17, . . . , e31 and e0, e1, . . . , e15 (elements
ei denoted by their subscripts, i.e., i = ei).

ine× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ine16 16 10 −7 −6 26 27 −3 −2 22 23 1 −19 −20 −17 −18 31

17 17 11 −8 −26 −6 28 −4 −22 −2 24 19 1 −21 16 −31 −18
18 18 12 −9 −27 −28 −6 −5 −23 −24 −2 20 21 1 31 16 17
19 19 13 26 8 −7 29 22 4 −3 25 17 −16 31 −1 21 −20
20 20 14 27 9 −29 −7 23 5 −25 −3 18 −31 −16 −21 −1 19
21 21 15 28 29 9 −8 24 25 5 −4 31 18 −17 20 −19 −1
22 22 −26 13 11 −10 30 −19 −17 16 −31 4 −3 25 −2 24 −23
23 23 −27 14 12 −30 −10 −20 −18 31 16 5 −25 −3 −24 −2 22
24 24 −28 15 30 12 −11 −21 −31 −18 17 25 5 −4 23 −22 −2
25 25 −29 −30 −15 14 −13 31 21 −20 19 24 −23 22 −5 4 −3
26 26 −22 19 17 −16 31 −13 −11 10 −30 8 −7 29 −6 28 −27
27 27 −23 20 18 −31 −16 −14 −12 30 10 9 −29 −7 −28 −6 26
28 28 −24 21 31 18 −17 −15 −30 −12 11 29 9 −8 27 −26 −6
29 29 −25 −31 −21 20 −19 30 15 −14 13 28 −27 26 −9 8 −7
30 30 31 −25 −24 23 −22 −29 −28 27 −26 15 −14 13 −12 11 −10
31 31 30 −29 −28 27 −26 −25 −24 23 −22 21 −20 19 −18 17 −16
ine

Table 4. Multiplication rules of Kaluza numbers for e16, e17, . . . , e31 and e16, e17, . . . , e31 (elements ei

denoted by their subscripts, i.e., i = ei).

ine× 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ine16 0 −13 −14 −11 −12 30 8 9 −29 −28 4 5 −25 −24 21 15

17 13 0 −15 10 −30 −12 −7 29 9 27 −3 25 5 23 −20 −14
18 14 15 0 30 10 11 −29 −7 −8 −26 −25 −3 −4 −22 19 13
19 11 −10 30 −0 15 −14 −6 28 −27 −9 −2 24 −23 −5 −18 −12
20 12 −30 −10 −15 −0 13 −28 −6 26 8 −24 −2 22 4 17 11
21 30 12 −11 14 −13 −0 27 −26 −6 −7 23 −22 −2 −3 −16 −10
22 −8 7 −29 6 −28 27 −0 15 −14 −12 1 −21 20 18 −5 9
23 −9 29 7 28 6 −26 −15 −0 13 11 21 1 −19 −17 4 −8
24 −29 −9 8 −27 26 6 14 −13 −0 −10 −20 19 1 16 −3 7
25 −28 27 −26 9 −8 7 12 −11 10 0 −18 17 −16 −1 −2 6
26 −4 3 −25 2 −24 23 −1 21 −20 −18 0 −15 14 12 −9 5
27 −5 25 3 24 2 −22 −21 −1 19 17 15 0 −13 −11 8 −4
28 −25 −5 4 −23 22 2 20 −19 −1 −16 −14 13 0 10 −7 3
29 −24 23 −22 5 −4 3 18 −17 16 1 −12 11 −10 −0 −6 2
30 21 −20 19 −18 17 −16 5 −4 3 2 9 −8 7 6 −0 −1
31 15 −14 13 −12 11 −10 9 −8 7 6 5 −4 3 2 −1 −1
ine
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Suppose we want to compute the product of two Kaluza numbers:

d = d(1)d(2) = d0 +
31

∑
n=1

dnen,

where

d(1) = a0 +
31

∑
n=1

anen and d(2) = b0 +
31

∑
n=1

bnen.

The operation of the multiplication of Kaluza numbers can be represented more
compactly in the form of a matrix-vector product:

Y32×1 = B32X32×1, (1)

where Y32×1 = [d0, d1, . . . , d31]
T, X32×1 = [a0, a1, . . . , a31]

T,

B32 =

[
B
(0,0)
16 B

(1,0)
16

B
(0,1)
16 B

(1,1)
16

]
,

B
(0,0)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b1 b2 −b3 −b4 −b5 −b6 b7
b1 b0 −b6 b7 b8 b9 b2 −b3
b2 b6 b0 b10 b11 b12 −b1 −b16
b3 b7 b10 b0 b13 b14 −b16 −b1
b4 b8 b11 −b13 b0 b15 −b17 b19
b5 b9 b12 −b14 −b15 b0 −b18 b20
b6 b2 −b1 −b16 −b17 −b18 b0 b10
b7 b3 −b16 −b1 −b19 −b20 b10 b0
b8 b4 −b17 b19 −b1 −b21 b11 −b13
b9 b5 −b18 b20 b21 −b1 b12 −b14
b10 b16 b3 −b2 −b22 −b23 −b7 b6
b11 b17 b4 b22 −b2 −b24 −b8 −b26
b12 b18 b5 b23 b24 −b2 −b9 −b27
b13 b19 b22 b4 −b3 −b25 −b26 −b8
b14 b20 b23 b5 b25 −b3 −b27 −b9
b15 b21 b24 −b25 b5 −b4 −b28 b29

b8 b9 b10 b11 b12 −b13 −b14 −b15
−b4 −b5 b16 b17 b18 −b19 −b20 −b21
−b17 −b18 −b3 −b4 −b5 −b22 −b23 −b24
−b19 −b20 −b2 −b22 −b23 −b4 −b5 −b25
−b1 −b21 b22 −b2 −b24 b3 b25 −b5
b21 −b1 b23 b24 −b2 −b25 b3 b4
b11 b12 −b7 −b8 −b9 −b26 −b27 −b28
b13 b14 −b6 −b26 −b27 −b8 −b9 −b29
b0 b15 b26 −b6 −b28 b7 b29 −b9

−b15 b0 b27 b28 −b6 −b29 b7 b8
b26 b27 b0 b13 b14 −b11 −b12 −b30
b6 b28 −b13 b0 b15 b10 b30 −b12

−b28 b6 −b14 −b15 b0 −b30 b10 b11
b7 b29 −b11 b10 b30 b0 b15 −b14

−b29 b7 −b12 −b30 b10 −b15 b0 b13
−b9 b8 b30 −b12 b11 b14 −b13 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
(1,0)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b16 b10 −b7 b6 b26 b27 b3 −b2
b17 b11 −b8 −b26 b6 b28 b4 b22
b18 b12 −b9 −b27 −b28 b6 b5 b23
b19 b13 −b26 −b8 b7 b29 b22 b4
b20 b14 −b27 −b9 −b29 b7 b23 b5
b21 b15 −b28 b29 −b9 b8 b24 −b25
b22 b26 b13 −b11 b10 b30 −b19 b17
b23 b27 b14 −b12 −b30 b10 −b20 b18
b24 b28 b15 b30 −b12 b11 −b21 −b31
b25 b29 b30 b15 −b14 b13 −b31 −b21
b26 b22 −b19 b17 −b16 −b31 b13 −b11
b27 b23 −b20 b18 b31 −b16 b14 −b12
b28 b24 −b21 −b31 b18 −b17 b15 b30
b29 b25 −b31 −b21 b20 −b19 b30 b15
b30 b31 b25 −b24 b23 −b22 −b29 b28
b31 b30 −b29 b28 −b27 b26 b25 −b24

−b22 −b23 b1 b19 b20 −b17 −b18 −b31
−b2 −b24 −b19 b1 b21 b16 b31 −b18
b24 −b2 −b20 −b21 b1 −b31 b16 b17
−b3 −b25 −b17 b16 b31 b1 b21 −b20
b25 −b3 −b18 −b31 b16 −b21 b1 b19
b5 −b4 b31 −b18 b17 b20 −b19 b1

−b16 −b31 b4 −b3 −b25 b2 b24 −b23
b31 −b16 b5 b25 −b3 −b24 b2 b22
b18 −b17 −b25 b5 −b4 b23 −b22 b2
b20 −b19 −b24 b23 −b22 b5 −b4 b3
b10 b30 b8 −b7 −b29 b6 b28 −b27
−b30 b10 b9 b29 −b7 −b28 b6 b26
−b12 b11 −b29 b9 −b8 b27 −b26 b6
−b14 b13 −b28 b27 −b26 b9 −b8 b7
−b27 b26 b15 −b14 b13 b12 −b11 b10
b23 −b22 b21 −b20 b19 b18 −b17 b16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B
(0,1)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b16 b17 b18 −b19 −b20 −b21 −b22 −b23
b10 b11 b12 −b13 −b14 −b15 b26 b27
−b7 −b8 −b9 −b26 −b27 −b28 −b13 −b14
−b6 −b26 −b27 −b8 −b9 −b29 −b11 −b12
b26 −b6 −b28 b7 b29 −b9 b10 b30
b27 b28 −b6 −b29 b7 b8 −b30 b10
−b3 −b4 −b5 −b22 −b23 −b24 b19 b20
−b2 −b22 −b23 −b4 −b5 −b25 b17 b18
b22 −b2 −b24 b3 b25 −b5 −b16 −b31
b23 b24 −b2 −b25 b3 b4 b31 −b16
b1 b19 b20 −b17 −b18 −b31 −b4 −b5

−b19 b1 b21 b16 b31 −b18 b3 b25
−b20 −b21 b1 −b31 b16 b17 −b25 b3
−b17 b16 b31 b1 b21 −b20 b2 b24
−b18 −b31 b16 −b21 b1 b19 −b24 b2
b31 −b18 b17 b20 −b19 b1 b23 −b22

−b24 b25 b26 b27 b28 −b29 −b30 −b31
b28 −b29 −b22 −b23 −b24 b25 −b31 −b30
−b15 −b30 b19 b20 b21 b31 b25 b29
−b30 −b15 b17 b18 b31 b21 b24 b28
−b12 b14 −b16 −b31 b18 −b20 −b23 −b27
b11 −b13 b31 −b16 −b17 b19 b22 b26
b21 b31 −b13 −b14 −b15 −b30 b29 b25
b31 b21 −b11 −b12 −b30 −b15 b28 b24
b18 −b20 b10 b30 −b12 b14 −b27 −b23
−b17 b19 −b30 b10 b11 −b13 b26 b22
−b25 b24 b8 b9 b29 −b28 −b15 −b21
−b5 −b23 −b7 −b29 b9 b27 b14 b20
b4 b22 b29 −b7 −b8 −b26 −b13 −b19

−b23 −b5 −b6 −b28 b27 b9 b12 b18
b22 b4 b28 −b6 −b26 −b8 −b11 −b17
b2 −b3 −b27 b26 −b6 b7 b10 b16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
(1,1)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0 b13 b14 −b11 −b12 −b30 b8 b9
−b13 b0 b15 b10 b30 −b12 −b7 −b29
−b14 −b15 b0 −b30 b10 b11 b29 −b7
−b11 b10 b30 b0 b15 −b14 −b6 −b28
−b12 −b30 b10 −b15 b0 b13 b28 −b6
b30 −b12 b11 b14 −b13 b0 −b27 b26
b8 −b7 −b29 b6 b28 −b27 b0 b15
b9 b29 −b7 −b28 b6 b26 −b15 b0

−b29 b9 −b8 b27 −b26 b6 b14 −b13
−b28 b27 −b26 b9 −b8 b7 b12 −b11

b4 −b3 −b25 b2 b24 −b23 −b1 −b21
b5 b25 −b3 −b24 b2 b22 b21 −b1

−b25 b5 −b4 b23 −b22 b2 −b20 b19
−b24 b23 −b22 b5 −b4 b3 −b18 b17
b21 −b20 b19 b18 −b17 b16 b5 −b4
b15 −b14 b13 b12 −b11 b10 −b9 b8

b29 −b28 −b4 −b5 −b25 b24 −b21 −b15
b9 b27 b3 b25 −b5 −b23 b20 b14
−b8 −b26 −b25 b3 b4 b22 −b19 −b13
b27 b9 b2 b24 −b23 −b5 b18 b12
−b26 −b8 −b24 b2 b22 b4 −b17 −b11
−b6 b7 b23 −b22 b2 −b3 b16 b10
−b14 b12 −b1 −b21 b20 −b18 −b5 −b9
b13 −b11 b21 −b1 −b19 b17 b4 b8
b0 b10 −b20 b19 −b1 −b16 −b3 −b7
b10 b0 −b18 b17 −b16 −b1 −b2 −b6
b20 −b18 b0 b15 −b14 b12 −b9 −b5
−b19 b17 −b15 b0 b13 −b11 b8 b4
−b1 −b16 b14 −b13 b0 b10 −b7 −b3
−b16 −b1 b12 −b11 b10 b0 −b6 −b2

b3 −b2 −b9 b8 −b7 b6 b0 b1
−b7 b6 b5 −b4 b3 −b2 b1 b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The direct multiplication of the matrix-vector product in Equation (1) requires 1024 real
multiplications and 992 additions. We shall present an algorithm that reduces computation
complexity to 192 multiplications and 384 additions of real numbers.

3. Synthesis of a Rationalized Algorithm for Computing Kaluza Numbers Product

We first rearrange the rows and columns of the matrix respectively using the per-
mutations: πr = (11, 17, 2, 6, 13, 19, 3, 7, 0, 1, 4, 8, 10, 16, 22, 26, 30, 31, 23, 27, 15, 21, 5,
9, 14, 20, 25, 29, 12, 18, 24, 28) and πc = (10, 16, 3, 7, 0, 1, 2, 6, 13, 19, 22, 26, 11, 17, 4, 8,
12, 18, 5, 9, 14, 20, 23, 27, 15, 21, 24, 28, 30, 31, 25, 29). Next, we change the sign of the
selected rows {8, 9, 12, 13, 14, 15, 26, 27} and columns {2, 3, 6, 7, 8, 9, 12, 13} by multiplying
them by −1. We can easily see that this transformation leads in the future to minimizing
the computational complexity of the final algorithm. Then we can write:

Y32×1 = M
(r)
32 B̆32M

(c)
32 X32×1, (2)

where the monomial matrices M
(r)
32 , M

(c)
32 are products of an appriopriate alternating sign

changing matrices S
(r)
32 , S

(c)
32 and a permutation matrix P

(r)
32 , P

(c)
32 :

M
(r)
32 = S

(r)
32 P

(r)
32 ,

M
(c)
32 = P

(c)
32 S

(c)
32 ,
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where:

P
(c)
32 =

[
P
(c,(0,0))
16 P

(c,(0,1))
16

P
(c,(1,0))
16 P

(c,(1,1))
16

]
,

P
(c(0,0))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(c(0,1))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(c(1,0))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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P
(c(1,1))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S
(c)
32 = diag

([−1 −1 −1 −1 1 1 −1 −1 1 1 −1 1 1 1 1 1
−1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

])
,

P
(r)
32 =

[
P
(r,(0,0))
16 P

(r,(0,1))
16

P
(r,(1,0))
16 P

(r,(1,1))
16

]
,

P
(r,(0,0))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(r,(0,1))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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P
(r,(1,0))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P
(r,(1,1))
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S
(r)
32 = diag

(
1, 1, 1, 1, −1, 1, 1, 1, −1, 1, 1, −1, 1, −1, 1, 1, 1,

−1, 1, −1, 1, 1, 1, 1, −1, 1, 1, 1, −1, 1, 1, 1
)
.

The matrix B̆32 is calculated from:

B̆32 =
(

M
(r)
32

)−1
B32

(
M

(c)
32

)−1
,

If we interpret the B̆32 matrix as a block matrix, it is easy to see that it has a
bisymmetric structure:

B̆32 =

[
B̆
(0)
16 B̆

(1)
16

B̆
(1)
16 −B̆

(0)
16

]
,

where
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B̆
(0)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b13 b19 −b3 b7 −b11 −b17 b2 −b6 −b10 −b16 −b22 b26 −b0 −b1 −b4 b8
b19 b13 b7 −b3 −b17 −b11 −b6 b2 −b16 −b10 b26 −b22 −b1 −b0 b8 −b4
−b22 −b26 −b10 b16 −b4 −b8 −b0 b1 −b3 −b7 b13 −b19 b2 b6 −b11 b17
−b26 −b22 b16 −b10 −b8 −b4 b1 −b0 −b7 −b3 −b19 b13 b6 b2 b17 −b11
b11 b17 −b2 b6 −b13 −b19 b3 −b7 −b0 −b1 −b4 b8 −b10 −b16 −b22 b26
b17 b11 b6 −b2 −b19 −b13 −b7 b3 −b1 −b0 b8 −b4 −b16 −b10 b26 −b22
−b4 −b8 −b0 b1 −b22 −b26 −b10 b16 −b2 −b6 b11 −b17 b3 b7 −b13 b19
−b8 −b4 b1 −b0 −b26 −b22 b16 −b10 −b6 −b2 −b17 b11 b7 b3 b19 −b13
−b10 −b16 b22 −b26 −b0 −b1 b4 −b8 b13 b19 b3 −b7 −b11 −b17 −b2 b6
−b16 −b10 −b26 b22 −b1 −b0 −b8 b4 b19 b13 −b7 b3 −b17 −b11 b6 −b2
−b3 −b7 −b13 b19 b2 b6 b11 −b17 −b22 −b26 b10 −b16 −b4 −b8 b0 −b1
−b7 −b3 b19 −b13 b6 b2 −b17 b11 −b26 −b22 −b16 b10 −b8 −b4 −b1 b0
−b0 −b1 b4 −b8 −b10 −b16 b22 −b26 b11 b17 b2 −b6 −b13 −b19 −b3 b7
−b1 −b0 −b8 b4 −b16 −b10 −b26 b22 b17 b11 −b6 b2 −b19 −b13 b7 −b3
b2 b6 b11 −b17 −b3 −b7 −b13 b19 b4 b8 −b0 b1 b22 b26 −b10 b16
b6 b2 −b17 b11 −b7 −b3 b19 −b13 b8 b4 b1 −b0 b26 b22 b16 −b10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̆
(1)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b15 −b21 −b5 b9 −b30 −b31 −b23 b27 −b12 −b18 b24 −b28 b14 b20 −b25 b29
−b21 −b15 b9 −b5 −b31 −b30 b27 −b23 −b18 −b12 −b28 b24 b20 b14 b29 −b25
b24 b28 −b12 b18 −b25 −b29 b14 −b20 −b5 −b9 −b15 b21 −b23 −b27 −b30 b31
b28 b24 b18 −b12 −b29 −b25 −b20 b14 −b9 −b5 b21 −b15 −b27 −b23 b31 −b30
−b30 −b31 −b23 b27 −b15 −b21 −b5 b9 −b14 −b20 b25 −b29 b12 b18 −b24 b28
−b31 −b30 b27 −b23 −b21 −b15 b9 −b5 −b20 −b14 −b29 b25 b18 b12 b28 −b24
b25 b29 −b14 b20 −b24 −b28 b12 −b18 −b23 −b27 −b30 b31 −b5 −b9 −b15 b21
b29 b25 b20 −b14 −b28 −b24 −b18 b12 −b27 −b23 b31 −b30 −b9 −b5 b21 −b15
−b12 −b18 −b24 b28 b14 b20 b25 −b29 −b15 −b21 b5 −b9 −b30 −b31 b23 −b27
−b18 −b12 b28 −b24 b20 b14 −b29 b25 −b21 −b15 −b9 b5 −b31 −b30 −b27 b23
−b5 −b9 b15 −b21 −b23 −b27 b30 −b31 b24 b28 b12 −b18 −b25 −b29 −b14 b20
−b9 −b5 −b21 b15 −b27 −b23 −b31 b30 b28 b24 −b18 b12 −b29 −b25 b20 −b14
−b14 −b20 −b25 b29 b12 b18 b24 −b28 −b30 −b31 b23 −b27 −b15 −b21 b5 −b9
−b20 −b14 b29 −b25 b18 b12 −b28 b24 −b31 −b30 −b27 b23 −b21 −b15 −b9 b5
b23 b27 −b30 b31 b5 b9 −b15 b21 −b25 −b29 −b14 b20 b24 b28 b12 −b18
b27 b23 b31 −b30 b9 b5 b21 −b15 −b29 −b25 b20 −b14 b28 b24 −b18 b12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There is an effective method of factorization of this type matrices, which during the
calculation of the matrix-vector products allows to reduce the number of multiplications
from 322 to 3/4 · 322 at the expense of increasing additions from 32 · 31 to 5/4 · 32 · 31 [27].
The matrix B̆32 used in the procedure of multiplication (2) can be described as:

B̆32 =

[
I16 016 I16
016 I16 I16

]⎡⎢⎣(B̆
(0)
16 − B̆

(1)
16 ) 016 016

016 −(B̆
(0)
16 + B̆

(1)
16 ) 016

016 016 B̆
(1)
16

⎤⎥⎦
⎡⎣I16 016

016 I16
I16 I16

⎤⎦,

where I16 is an identity matrix and 016 is a null matrix. Thus, we can write a new procedure
for calculating the product of Kaluza numbers in the following form:

Y32×1 = M
(r)
32 T32×48B48T48×32M

(c)
32 X32×1, (3)

where

T32×48 =

[
1 0 1
0 1 1

]
⊗ I16,

B48 = quasidiag

⎛⎜⎝B
(−)
16

B
(+)
16

B
(1)
16

⎞⎟⎠,

65



Appl. Sci. 2021, 11, 8203

B
(−)
16 = B

(0)
16 − B

(1)
16 , (4)

B
(+)
16 = −

(
B
(0)
16 + B

(1)
16

)
, (5)

T48×32 =

⎡⎣1 0
0 1
1 1

⎤⎦⊗ I16,

where the symbol “⊗” denotes the tensor product of two matrices and quasidiag() means
a block-diagonal matrix.

We introduce the following notation to (4) and (5):

c0 = b13 + b15, c1 = b19 + b21, c2 = b5 − b3, c3 = b7 − b9,
c4 = b30 − b11, c5 = b31 − b17, c6 = b2 + b23, c7 = b6 + b27,
c8 = b12 − b10, c9 = b18 − b16, c10 = b22 + b24, c11 = b26 + b28,
c12 = b0 + b14, c13 = b1 + b20, c14 = b25 − b4, c15 = b8 − b29,
c16 = b11 + b30, c17 = b17 + b31, c18 = b23 − b2, c19 = b6 − b27,
c20 = b15 − b13, c21 = b21 − b19, c22 = b3 + b5, c23 = b7 + b9,
c24 = b14 − b0, c25 = b20 − b1, c26 = b4 + b25, c27 = b8 + b29,
c28 = b10 + b12, c29 = b16 + b18, c30 = b24 − b22, c31 = b26 − b28,

we obtain:

B
(−)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
c1 c0 c3 c2 c5 c4 c7 c6 c9 c8 c11 c10 c13 c12 c15 c14

−c10 c11 c8 c9 c14 c15 c12 c13 c2 c3 c0 c1 c6 c7 c4 c5
−c11 c10 c9 c8 c15 c14 c13 c12 c3 c2 c1 c0 c7 c6 c5 c4
c16 c17 c18 c19 c20 c21 c22 c23 c24 c25 c26 c27 c28 c29 c30 c31
c17 c16 c19 c18 c21 c20 c23 c22 c25 c24 c27 c26 c29 c28 c31 c30
c26 c27 c24 c25 c30 c31 c28 c29 c18 c19 c16 c17 c22 c23 c20 c21
c27 c26 c25 c24 c31 c30 c29 c28 c19 c18 c17 c16 c23 c22 c21 c20
c8 c9 c10 c11 c12 c13 c14 c15 c0 c1 c2 c3 c4 c5 c6 c7
c9 c8 c11 c10 c13 c12 c15 c14 c1 c0 c3 c2 c5 c4 c7 c6
c2 c3 c0 c1 c6 c7 c4 c5 c10 c11 c8 c9 c14 c15 c12 c13
−c3 c2 c1 c0 c7 c6 c5 c4 c11 c10 c9 c8 c15 c14 c13 c12
c24 c25 c26 c27 c28 c29 c30 c31 c16 c17 c18 c19 c20 c21 c22 c23
c25 c24 c27 c26 c29 c28 c31 c30 c17 c16 c19 c18 c21 c20 c23 c22
−c18 c19 c16 c17 c22 c23 c20 c21 c26 c27 c24 c25 c30 c31 c28 c29
c19 c18 c17 c16 c23 c22 c21 c20 c27 c26 c25 c24 c31 c30 c29 c28

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B
(+)
16 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c20 c21 c22 c23 c16 c17 c18 c19 c28 c29 c30 c31 c24 c25 c26 c27
c21 c20 c23 c22 c17 c16 c19 c18 c29 c28 c31 c30 c25 c24 c27 c26
−c30 c31 c28 c29 c26 c27 c24 c25 c22 c23 c20 c21 c18 c19 c16 c17
c31 c30 c29 c28 c27 c26 c25 c24 c23 c22 c21 c20 c19 c18 c17 c16
c4 c5 c6 c7 c0 c1 c2 c3 c12 c13 c14 c15 c8 c9 c10 c11
c5 c4 c7 c6 c1 c0 c3 c2 c13 c12 c15 c14 c9 c8 c11 c10
c14 c15 c12 c13 c10 c11 c8 c9 c6 c7 c4 c5 c2 c3 c0 c1
−c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0
c28 c29 c30 c31 c24 c25 c26 c27 c20 c21 c22 c23 c16 c17 c18 c19
c29 c28 c31 c30 c25 c24 c27 c26 c21 c20 c23 c22 c17 c16 c19 c18
c22 c23 c20 c21 c18 c19 c16 c17 c30 c31 c28 c29 c26 c27 c24 c25
c23 c22 c21 c20 c19 c18 c17 c16 c31 c30 c29 c28 c27 c26 c25 c24
c12 c13 c14 c15 c8 c9 c10 c11 c4 c5 c6 c7 c0 c1 c2 c3
c13 c12 c15 c14 c9 c8 c11 c10 c5 c4 c7 c6 c1 c0 c3 c2
−c6 c7 c4 c5 c2 c3 c0 c1 c14 c15 c12 c13 c10 c11 c8 c9
−c7 c6 c5 c4 c3 c2 c1 c0 c15 c14 c13 c12 c11 c10 c9 c8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The matrices B
(−)
16 , B

(+)
16 and B

(1)
16 have similar structures. If we now change the signs

of all of the elements of the sixth and seventh rows, as well as all of the elements of the
second, third, sixth and seventh columns, to the opposite, then the matrices B

(−)
16 , B

(+)
16

and B
(1)
16 will have structures of type

[
AN/2 BN/2
BN/2 AN/2

]
, which leads to reducing the number

of real multiplications during matrix-vector product calculation. We can write the sign
transformation matrices for rows S

(r)
16 and columns S

(c)
16 as:

S
(r)
16 = diag

(
1, 1, 1, 1, 1, 1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1

)
,

S
(c)
16 = diag

(
1, 1, −1, −1, 1, 1, −1, −1, 1, 1, 1, 1, 1, 1, 1, 1

)
.

Then, we obtain new standardized matrices:

B̆
(−)
16 = S

(r)
16 B

(−)
16 S

(c)
16 =

[
B
(0)
8 B

(1)
8

B
(1)
8 B

(0)
8

]
, (6)

B̆
(+)
16 = S

(r)
16 B

(+)
16 S

(c)
16 =

[
B
(2)
8 B

(3)
8

B
(3)
8 B

(2)
8

]
, (7)

B̆
(1)
16 = S

(r)
16 B

(1)
16 S

(c)
16 =

[
B
(4)
8 B

(5)
8

B
(5)
8 B

(4)
8

]
, (8)

where:

B
(0)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 c2 c3 c4 c5 c6 c7
c1 c0 c3 c2 c5 c4 c7 c6

−c10 c11 c8 c9 c14 c15 c12 c13
−c11 c10 c9 c8 c15 c14 c13 c12
c16 c17 c18 c19 c20 c21 c22 c23
c17 c16 c19 c18 c21 c20 c23 c22
c26 c27 c24 c25 c30 c31 c28 c29
c27 c26 c25 c24 c31 c30 c29 c28

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(1)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c8 c9 c10 c11 c12 c13 c14 c15
c9 c8 c11 c10 c13 c12 c15 c14
c2 c3 c0 c1 c6 c7 c4 c5
−c3 c2 c1 c0 c7 c6 c5 c4
c24 c25 c26 c27 c28 c29 c30 c31
c25 c24 c27 c26 c29 c28 c31 c30
−c18 c19 c16 c17 c22 c23 c20 c21
c19 c18 c17 c16 c23 c22 c21 c20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(2)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c20 c21 c22 c23 c16 c17 c18 c19
c21 c20 c23 c22 c17 c16 c19 c18
−c30 c31 c28 c29 c26 c27 c24 c25
c31 c30 c29 c28 c27 c26 c25 c24
c4 c5 c6 c7 c0 c1 c2 c3
c5 c4 c7 c6 c1 c0 c3 c2
c14 c15 c12 c13 c10 c11 c8 c9
−c15 c14 c13 c12 c11 c10 c9 c8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

67



Appl. Sci. 2021, 11, 8203

B
(3)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c28 c29 c30 c31 c24 c25 c26 c27
c29 c28 c31 c30 c25 c24 c27 c26
c22 c23 c20 c21 c18 c19 c16 c17
c23 c22 c21 c20 c19 c18 c17 c16
c12 c13 c14 c15 c8 c9 c10 c11
c13 c12 c15 c14 c9 c8 c11 c10
−c6 c7 c4 c5 c2 c3 c0 c1
−c7 c6 c5 c4 c3 c2 c1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(4)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b15 −b21 b5 −b9 −b30 −b31 b23 −b27
−b21 −b15 −b9 b5 −b31 −b30 −b27 b23
b24 b28 b12 −b18 −b25 −b29 −b14 b20
b28 b24 −b18 b12 −b29 −b25 b20 −b14
−b30 −b31 b23 −b27 −b15 −b21 b5 −b9
−b31 −b30 −b27 b23 −b21 −b15 −b9 b5
−b25 −b29 −b14 b20 b24 b28 b12 −b18
−b29 −b25 b20 −b14 b28 b24 −b18 b12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(5)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b12 −b18 b24 −b28 b14 b20 −b25 b29
−b18 −b12 −b28 b24 b20 b14 b29 −b25
−b5 −b9 −b15 b21 −b23 −b27 −b30 b31
−b9 −b5 b21 −b15 −b27 −b23 b31 −b30
−b14 −b20 b25 −b29 b12 b18 −b24 b28
−b20 −b14 −b29 b25 b18 b12 b28 −b24
b23 b27 b30 −b31 b5 b9 b15 −b21
b27 b23 −b31 b30 b9 b5 −b21 b15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

There is a possiblity to use a method of factorization for the standardized matrices
(6)–(8). This allows us to reduce the number of multiplications to 82/2 using 8(8 + 1)
additions for each of above matrices. Therefore, similar to the previous we can write [27,28]:[

AN/2 BN/2
BN/2 AN/2

]
=

[
IN/2 IN/2
IN/2 −IN/2

][ 1
2 (AN/2 + BN/2) 0N/2

0N/2
1
2 (AN/2 − BN/2))

][
IN/2 IN/2
IN/2 −IN/2

]
, (9)

where AN/2 , BN/2 are some matrices. Therefore, we can rewrite (6)–(8) as:

B̆
(−)
16 =

[
I8 I8
I8 −I8

][ 1
2 B

(0+)
8 08

08
1
2 B

(0−)
8

][
I8 I8
I8 −I8

]
,

B̆
(+)
16 =

[
I8 I8
I8 −I8

][ 1
2 B

(1+)
8 08

08
1
2 B

(1−)
8

][
I8 I8
I8 −I8

]
,

B̆
(1)
16 =

[
I8 I8
I8 −I8

][ 1
2 B

(2+)
8 08

08
1
2 B

(2−)
8

][
I8 I8
I8 −I8

]
,

where:
B
(0+)
8 = B

(0)
8 + B

(1)
8 , (10)

B
(0−)
8 = B

(0)
8 − B

(1)
8 , (11)

B
(1+)
8 = B

(2)
8 + B

(3)
8 , (12)

B
(1−)
8 = B

(2)
8 − B

(3)
8 , (13)

B
(2+)
8 = B

(4)
8 + B

(5)
8 , (14)

B
(2−)
8 = B

(4)
8 − B

(5)
8 . (15)
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Combining partial decompositions in a single procedure we can rewrite procedure, (3)
as following:

Y32×1 = M
(r)
32 T32×48S

(r)
48 W

(1)
48 B̃48W

(1)
48 S

(c)
48 T48×32M

(c)
32 X32×1,

where

B̃48 = quasidiag
(

1
2

B
(0+)
8 ,

1
2

B
(0−)
8 ,

1
2

B
(1+)
8 ,

1
2

B
(1−)
8 ,

1
2

B
(2+)
8 ,

1
2

B
(2−)
8

)
,

S
(r)
48 = I3 ⊗ S

(r)
16 ,

S
(c)
48 = I3 ⊗ S

(c)
16 ,

W
(1)
48 = I3 ⊗ H2 ⊗ I8,

H2 is the order 2 Hadamard matrix, i.e.:

H2 =

[
1 1
1 −1

]
.

Introducing the following notation:

d0 = c0 + c8, d1 = c1 + c9, d2 = c2 + c10, d3 = c11 − c3,
d4 = c4 − c12, d5 = c5 − c13, d6 = c14 − c6, d7 = c7 + c15,
d8 = c2 − c10, d9 = c3 + c11, d10 = c0 − c8, d11 = c9 − c1,
d12 = c6 + c14, d13 = c7 − c15, d14 = c4 + c12, d15 = c5 + c13,
d16 = c16 + c24, d17 = c17 + c25, d18 = c18 + c26, d19 = c27 − c19,
d20 = c20 − c28, d21 = c21 − c29, d22 = c30 − c22, d23 = c23 + c31,
d24 = c26 − c18, d25 = c19 + c27, d26 = c24 − c16, d27 = c17 − c25,
d28 = c22 + c30, d29 = c31 − c23, d30 = c20 + c28, d31 = c21 + c29.

to (10)–(13), we obtain:

B
(0+)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d0 d1 d2 d3 d4 d5 d6 d7
d1 d0 d3 d2 d5 d4 d7 d6
d8 d9 d10 d11 d12 d13 d14 d15
−d9 d8 d11 d10 d13 d12 d15 d14
d16 d17 d18 d19 d20 d21 d22 d23
d17 d16 d19 d18 d21 d20 d23 d22
d24 d25 d26 d27 d28 d29 d30 d31
d25 d24 d27 d26 d29 d28 d31 d30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(0−)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d10 d11 d8 d9 d14 d15 d12 d13
−d11 d10 d9 d8 d15 d14 d13 d12
−d2 d3 d0 d1 d6 d7 d4 d5
−d3 d2 d1 d0 d7 d6 d5 d4
−d26 d27 d24 d25 d30 d31 d28 d29
d27 d26 d25 d24 d31 d30 d29 d28
d18 d19 d16 d17 d22 d23 d20 d21
d19 d18 d17 d16 d23 d22 d21 d20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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B
(1+)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d30 d31 d28 d29 d26 d27 d24 d25
d31 d30 d29 d28 d27 d26 d25 d24
−d22 d23 d20 d21 d18 d19 d16 d17
d23 d22 d21 d20 d19 d18 d17 d16
d14 d15 d12 d13 d10 d11 d8 d9
d15 d14 d13 d12 d11 d10 d9 d8
d6 d7 d4 d5 d2 d3 d0 d1
−d7 d6 d5 d4 d3 d2 d1 d0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
(1−)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d20 d21 d22 d23 d16 d17 d18 d19
d21 d20 d23 d22 d17 d16 d19 d18
−d28 d29 d30 d31 d24 d25 d26 d27
d29 d28 d31 d30 d25 d24 d27 d26
d4 d5 d6 d7 d0 d1 d2 d3
d5 d4 d7 d6 d1 d0 d3 d2
d12 d13 d14 d15 d8 d9 d10 d11
d13 d12 d15 d14 d9 d8 d11 d10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to simplify, we introduce the following notation for the elements of matrix
B
(2+)
8 (14):

c32 = b12 + b15, c33 = b18 + b21, c34 = b5 + b24, c35 = b9 + b28,
c36 = b14 − b30, c37 = b20 − b31, c38 = b23 − b25, c39 = b29 − b27,
c40 = b24 − b5, c41 = b28 − b9, c42 = b12 − b15, c43 = b21 − b18,
c44 = b23 + b25, c45 = b27 + b29, c46 = b14 + b30, c47 = b20 + b31,

we obtain:

B
(2+)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c32 c33 c34 c35 c36 c37 c38 c39
−c33 c32 c35 c34 c37 c36 c39 c38
c40 c41 c42 c43 c44 c45 c46 c47
c41 c40 c43 c42 c45 c44 c47 c46
−c46 c47 c44 c45 c42 c43 c40 c41
−c47 c46 c45 c44 c43 c42 c41 c40
c38 c39 c36 c37 c34 c35 c32 c33
−c39 c38 c37 c36 c35 c34 c33 c32

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, we introduce the following notation for the elements of matrix B
(2−)
8 (15):

c48 = b12 − b15, c49 = b18 − b21, c50 = b5 − b24, c51 = b28 − b9,
c52 = b14 + b30, c53 = b20 + b31, c54 = b23 + b25, c55 = b27 + b29,
c56 = b5 + b24, c57 = b9 + b28, c58 = b12 + b15, c59 = b18 + b21,
c60 = b23 − b25, c61 = b27 − b29, c62 = b30 − b14, c63 = b20 − b31,

we obtain:

B
(2−)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c48 c49 c50 c51 c52 c53 c54 c55
c49 c48 c51 c50 c53 c52 c55 c54
c56 c57 c58 c59 c60 c61 c62 c63
c57 c56 c59 c58 c61 c60 c63 c62
−c62 c63 c60 c61 c58 c59 c56 c57
c63 c62 c61 c60 c59 c58 c57 c56
−c54 c55 c52 c53 c50 c51 c48 c49
−c55 c54 c53 c52 c51 c50 c49 c48

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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All of the above matrices have the same internal structure. We can permute rows
and columns using the πr = (5 1 2 7 4 0 3 6) and πc = (5 1 2 6 4 0 3 7) permutation rules,
respectively. We obtain the following form:

B
(γ)
8 = P

(r)
8 B̂

(x)
8 P

(c)
8 , (16)

where B
(γ)
8 , B̂

(γ)
8 are the corresponding items in the sets:

B
(γ)
8 ∈

{
B
(0+)
8 , B

(0−)
8 , B

(1+)
8 , B

(1−)
8 , B

(2+)
8 , B

(2−)
8

}
,

B̂
(γ)
8 ∈

{
B̂
(0+)
8 , B̂

(0−)
8 , B̂

(1+)
8 , B̂

(1−)
8 , B̂

(2+)
8 , B̂

(2−)
8

}
and

P
(r)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P

(c)
8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrices B̂
(γ)
8 (16) are calculated via the following equation:

B̂
(γ)
8 =

(
P
(r)
8

)−1
B
(x)
8

(
P
(c)
8

)−1

and have a standardized form (9) that reduces the number of multiplications. Thus, we
can write:

B̂
(0+)
8 =

(
P
(r)
8

)−1
B
(0+)
8

(
P
(c)
8

)−1
=

[
B
(0)
4 B

(1)
4

B
(1)
4 B

(0)
4

]
,

B̂
(0−)
8 =

(
P
(r)
8

)−1
B
(0−)
8

(
P
(c)
8

)−1
=

[
B
(2)
4 B

(3)
4

B
(3)
4 B

(2)
4

]
,

B̂
(1+)
8 =

(
P
(r)
8

)−1
B
(1+)
8

(
P
(c)
8

)−1
=

[
B
(4)
4 B

(5)
4

B
(5)
4 B

(4)
4

]
,

B̂
(1−)
8 =

(
P
(r)
8

)−1
B
(1−)
8

(
P
(c)
8

)−1
=

[
B
(6)
4 B

(7)
4

B
(7)
4 B

(6)
4

]
,

B̂
(2+)
8 =

(
P
(r)
8

)−1
B
(2+)
8

(
P
(c)
8

)−1
=

[
B
(8)
4 B

(9)
4

B
(9)
4 B

(8)
4

]
,

B̂
(2−)
8 =

(
P
(r)
8

)−1
B
(2−)
8

(
P
(c)
8

)−1
=

[
B
(10)
4 B

(11)
4

B
(11)
4 B

(10)
4

]
,

where:

B
(0)
4 =

⎡⎢⎢⎣
d20 d16 d19 d23
d4 d0 d3 d7
d13 d9 d10 d14
−d28 d24 d27 d31

⎤⎥⎥⎦, B
(1)
4 =

⎡⎢⎢⎣
d21 d17 d18 d22
d5 d1 d2 d6
d12 d8 d11 d15
d29 d25 d26 d30

⎤⎥⎥⎦,
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B
(2)
4 =

⎡⎢⎢⎣
d30 d26 d25 d29
d14 d10 d9 d13
−d7 d3 d0 d4
−d22 d18 d17 d21

⎤⎥⎥⎦, B
(3)
4 =

⎡⎢⎢⎣
d31 d27 d24 d28
d15 d11 d8 d12
d6 d2 d1 d5
d23 d19 d16 d20

⎤⎥⎥⎦,

B
(4)
4 =

⎡⎢⎢⎣
d10 d14 d13 d9
−d26 d30 d29 d25
d19 d23 d20 d16
−d2 d6 d5 d1

⎤⎥⎥⎦, B
(5)
4 =

⎡⎢⎢⎣
−d11 d15 d12 d8
d27 d31 d28 d24
d18 d22 d21 d17
−d3 d7 d4 d0

⎤⎥⎥⎦,

B
(6)
4 =

⎡⎢⎢⎣
d0 d4 d7 d3
d16 d20 d23 d19
d25 d29 d30 d26
d8 d12 d15 d11

⎤⎥⎥⎦, B
(7)
4 =

⎡⎢⎢⎣
d1 d5 d6 d2
d17 d21 d22 d18
d24 d28 d31 d27
−d9 d13 d14 d10

⎤⎥⎥⎦,

B
(8)
4 =

⎡⎢⎢⎣
c42 c46 c45 c41
c36 c32 c35 c39
−c45 c41 c42 c46
c34 c38 c37 c33

⎤⎥⎥⎦, B
(9)
4 =

⎡⎢⎢⎣
−c43 c47 c44 c40
c37 c33 c34 c38
−c44 c40 c43 c47
c35 c39 c36 c32

⎤⎥⎥⎦,

B
(10)
4 =

⎡⎢⎢⎣
−c58 c62 c61 c57
−c52 c48 c51 c55
c61 c57 c58 c62
−c50 c54 c53 c49

⎤⎥⎥⎦, B
(11)
4 =

⎡⎢⎢⎣
−c59 c63 c60 c56
−c53 c49 c50 c54
c60 c56 c59 c63
c51 c55 c52 c48

⎤⎥⎥⎦.

We can use the multiplication procedure (9) and represent the above matrices in
a form:

B̂
(0+)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(0)
4 + B

(1)
4

)
0

0 1
2

(
B
(0)
4 − B

(1)
4

)⎤⎦[I4 I4

I4 −I4

]
,

B̂
(0−)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(2)
4 + B

(3)
4

)
0

0 1
2

(
B
(2)
4 − B

(3)
4

)⎤⎦[I4 I4

I4 −I4

]
,

B̂
(1+)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(4)
4 + B

(5)
4

)
0

0 1
2

(
B
(4)
4 − B

(5)
4

)⎤⎦[I4 I4

I4 −I4

]
,

B̂
(1−)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(6)
4 + B

(7)
4

)
0

0 1
2

(
B
(6)
4 − B

(7)
4

)⎤⎦[I4 I4

I4 −I4

]
,

B̂
(2+)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(8)
4 + B

(9)
4

)
0

0 1
2

(
B
(8)
4 − B

(9)
4

)⎤⎦[I4 I4

I4 −I4

]
,

B̂
(2−)
8 =

[
I4 I4

I4 −I4

]⎡⎣ 1
2

(
B
(10)
4 + B

(11)
4

)
0

0 1
2

(
B
(10)
4 − B

(11)
4

)⎤⎦[I4 I4

I4 −I4

]
,

where

B
(0)
4 + B

(1)
4 =

⎡⎢⎢⎣
d20 + d21 d16 + d17 d19 − d18 d22 + d23
d4 + d5 d0 + d1 d3 − d2 d6 + d7

d12 + d13 d8 − d9 d10 + d11 d14 − d15
d29 − d28 d24 + d25 d26 + d27 d31 − d30

⎤⎥⎥⎦,

B
(0)
4 − B

(1)
4 =

⎡⎢⎢⎣
d20 − d21 d16 − d17 d18 + d19 d23 − d22
d4 − d5 d0 − d1 d2 + d3 d7 − d6

d13 − d12 d8 − d9 d10 − d11 d14 + d15
−d28 − d29 d24 − d25 d27 − d26 d30 + d31

⎤⎥⎥⎦,
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B
(2)
4 + B

(3)
4 =

⎡⎢⎢⎣
d30 + d31 d27 − d26 d24 − d25 d28 − d29
d14 + d15 d10 − d11 d8 − d9 d13 − d12
d6 − d7 d2 − d3 d1 − d0 d5 − d4

d23 − d22 d18 + d19 d16 − d17 d20 − d21

⎤⎥⎥⎦,

B
(2)
4 − B

(3)
4 =

⎡⎢⎢⎣
d30 − d31 d26 − d27 d24 − d25 d28 − d29
d14 − d15 d10 + d11 d8 − d9 d12 + d13
−d6 − d7 d2 − d3 −d0 − d1 −d4 − d5
−d22 − d23 d18 − d19 d16 − d17 d20 − d21

⎤⎥⎥⎦,

B
(4)
4 + B

(5)
4 =

⎡⎢⎢⎣
d10 − d11 d14 + d15 d13 − d12 d8 − d9
d27 − d26 d30 + d31 d28 − d29 d24 − d25
d18 + d19 d23 − d22 d20 − d21 d16 − d17
−d2 − d3 d6 − d7 d5 − d4 d1 − d0

⎤⎥⎥⎦,

B
(4)
4 − B

(5)
4 =

⎡⎢⎢⎣
d10 + d11 d14 − d15 d12 + d13 d8 − d9
−d26 − d27 d30 − d31 d28 − d29 d24 − d25
d19 − d18 d22 + d23 d20 + d21 d16 + d17
d3 − d2 d6 + d7 d4 + d5 d0 + d1

⎤⎥⎥⎦,

B
(6)
4 + B

(7)
4 =

⎡⎢⎢⎣
d0 + d1 d4 + d5 d6 + d7 d3 − d2

d16 + d17 d20 + d21 d22 + d23 d19 − d18
d24 + d25 d29 − d28 d31 − d30 d26 + d27
d8 − d9 d12 + d13 d14 − d15 d10 + d11

⎤⎥⎥⎦,

B
(6)
4 − B

(7)
4 =

⎡⎢⎢⎣
d0 − d1 d4 − d5 d7 − d6 d2 + d3

d16 − d17 d20 − d21 d23 − d22 d18 + d19
d25 − d24 d28 + d29 d30 − d31 d26 − d27
d8 + d9 d12 − d13 d14 − d15 d11 − d10

⎤⎥⎥⎦,

B
(8)
4 + B

(9)
4 =

⎡⎢⎢⎣
c42 − c43 c46 − c47 c44 − c45 c41 − c40
c36 + c37 c32 − c33 c34 − c35 c38 + c39
−c44 − c45 c40 + c41 c42 + c43 c47 − c46
c34 + c35 c38 − c39 c37 − c36 c32 − c33

⎤⎥⎥⎦,

B
(8)
4 − B

(9)
4 =

⎡⎢⎢⎣
c42 + c43 c47 − c46 c44 − c45 c40 + c41
c36 − c37 c33 − c32 c34 − c35 c39 − c38
c44 − c45 c41 − c40 c42 − c43 c46 − c47
c34 − c35 c38 + c39 c36 + c37 c32 − c33

⎤⎥⎥⎦,

B
(10)
4 + B

(11)
4 =

⎡⎢⎢⎣
−c58 − c59 c63 − c62 c60 − c61 c56 − c57
−c52 − c53 c48 + c49 c50 + c51 c54 − c55
c60 + c61 c56 + c57 c58 − c59 c62 + c63
c51 − c50 c54 − c55 c53 − c52 c48 − c49

⎤⎥⎥⎦,

B
(10)
4 − B

(11)
4 =

⎡⎢⎢⎣
c59 − c58 c62 − c63 c60 − c61 c56 − c57
c53 − c52 c48 − c49 c51 − c50 c54 − c55
c61 − c60 c57 − c56 c58 + c59 c62 − c63
−c50 − c51 c55 − c54 c52 + c53 c48 − c49

⎤⎥⎥⎦.

Combining the calculations for of the all above matrices in a single procedure we
finally obtain:

Y32×1 = M
(r)
32 T32×48S

(r)
48 W

(1)
48 P

(r)
48 W

(2)
48 B̂48W

(2)
48 P

(c)
48 W

(1)
48 S

(c)
48 T48×32M

(c)
32 X32×1, (17)
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where:

B̂48 = quasidiag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

(
B
(0)
4 + B

(1)
4

)
1
4

(
B
(0)
4 − B

(1)
4

)
1
4

(
B
(2)
4 + B

(3)
4

)
1
4

(
B
(2)
4 − B

(3)
4

)
1
4

(
B
(4)
4 + B

(5)
4

)
1
4

(
B
(4)
4 − B

(5)
4

)
1
4

(
B
(6)
4 + B

(7)
4

)
1
4

(
B
(6)
4 − B

(7)
4

)
1
4

(
B
(8)
4 + B

(9)
4

)
1
4

(
B
(8)
4 − B

(9)
4

)
1
4

(
B
(10)
4 + B

(11)
4

)
1
4

(
B
(10)
4 − B

(11)
4

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P
(r)
48 = I6 ⊗ P

(r)
8 ,

P
(c)
48 = I6 ⊗ P

(c)
8 ,

W
(2)
48 = I6 ⊗ H2 ⊗ I4.

Figure 1 shows a data flow diagram describing the new algorithm for the computation
of the product of Kaluza numbers (17). In this paper, the data flow diagram is oriented from
left to right. Straight lines in the figure denote the operations of data transfer. Points, where
lines converge, denote summation. The dotted lines indicate the subtraction operation.
We use the regular lines without arrows on purpose, so as not to clutter the picture.
The rectangles indicate the matrix-vector multiplications with matrices inscribed inside
a rectangle.
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Figure 1. A data flow diagram for the proposed algorithm.

4. Evaluation of Computational Complexity

We will now calculate how many multiplications and additions of real numbers are
required for the implementation of the new algorithm and will compare this with the
number of operations required both for direct computation of matrix-vector products in
Equation (1) and for implementing our previous algorithm [25]. The number of real multi-
plications required using the new algorithm is 192. Thus, using the proposed algorithm,
the number of real multiplications needed to calculate the Kaluza number product is sig-
nificantly reduced. The number of real additions required using our algorithm is 384. We
observe that the direct computation of the Kaluza number product requires 608 additions
more than the proposed algorithm. Thus, our proposed algorithm saves 832 multiplications
and 960 additions of real numbers compared with the direct method. Thus, the total num-
ber of arithmetic operations for the proposed algorithm is approximately 71.4% less than
that of the direct computation. The previously proposed algorithm [25] calculates the same
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result using 512 multiplications and 576 additions of real numbers. Thus, our proposed
algorithm saves 62.5% of multiplications and 33.3% of additions of real numbers compared
with our previous algorithm. Hence, the total number of arithmetic operations for the new
proposed algorithm is approximately 47% less than that of our previous algorithm.

5. Conclusions

We presented a new effective algorithm for calculating the product of two Kaluza
numbers. The use of this algorithm reduces the computational complexity of multipli-
cations of Kaluza numbers, thus reducing implementation complexity and leading to a
high-speed resource-effective architecture suitable for parallel implementation on VLSI
platforms. Additionally, we note that the total number of arithmetic operations in the
new algorithm is less than the total number of operations in the compared algorithms.
Therefore, the proposed algorithm is better than the compared algorithms, even in terms of
its software implementation on a general-purpose computer.

The proposed algorithm can be used in metacognitive neural networks using Kaluza
numbers for data representation and processing. The effect in this case is achieved by using
non-commutative finite groups based on the properties of the hypercomplex algebra [24].
When using the Kaluza number, in this case, the rule for generating the elements of the
group will be set, as well as the rule for performing the group operation of multiplication.
Such a system can contain two components: a neural network based on Kaluza numbers,
which represents a cognitive component, and a metacognitive component, which serves
to self-regulate the learning algorithm. At each stage, the metacognitive component will
decide how and when the learning takes place. The algorithm removes unnecessary
samples and keeps only those that are used. This decision will be determined by the
magnitude and 31 phases of the Kaluza number. However, these matters are beyond the
scope of this article and require more detailed research.
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Featured Application: The use by medical of a neural network classification system for ECG

signals with preprocessing steps to recognize atrial fibrillation.

Abstract: Today, cardiovascular disease is the leading cause of death in developed countries. The
most common arrhythmia is atrial fibrillation, which increases the risk of ischemic stroke. An
electrocardiogram is one of the best methods for diagnosing cardiac arrhythmias. Often, the signals
of the electrocardiogram are distorted by noises of varying nature. In this paper, we propose a
neural network classification system for electrocardiogram signals based on the Long Short-Term
Memory neural network architecture with a preprocessing stage. Signal preprocessing was carried
out using a symlet wavelet filter with further application of the instantaneous frequency and spectral
entropy functions. For the experimental part of the article, electrocardiogram signals were selected
from the open database PhysioNet Computing in Cardiology Challenge 2017 (CinC Challenge).
The simulation was carried out using the MatLab 2020b software package for solving technical
calculations. The best simulation result was obtained using a symlet with five coefficients and made
it possible to achieve an accuracy of 87.5% in recognizing electrocardiogram signals.

Keywords: digital filter; electrocardiogram; instantaneous frequency; symlet wavelet; spectral
entropy; signal denoising; LSTM

1. Introduction

The number of people who suffer from cardiac diseases is increasing every day. This
disease is the leading cause of death in developed countries [1–3]. Electrocardiography is a
method of recording and studying the electric fields that are generated during the work of
the heart. An ECG is the result of electrocardiography [4,5] and is a graphical record of the
electrical activity of the heart produced by depolarization and repolarization of the atria
and ventricles. The electrocardiogram (ECG) is a non-invasive technique used to detect
cardiovascular disease. The ECG is described by the waveforms of the P, QRS, and T waves,
which are associated with each heart-rate function. The P wave displays the process of
depolarization of the atrial myocardium; the QRS complex displays depolarization of the
ventricles; the ST segment, and the T wave displays the processes of repolarization of the
ventricular myocardium [6]. Figure 1 shows an example of an electrocardiogram waveform
with P, Q, R, S, and T characteristics, as well as standard electrocardiogram intervals are
PQ intervals, ST intervals, and QRS complex.

Atrial fibrillation is a major risk factor for ischemic stroke [7]. The main criteria for the
presence of atrial fibrillation are the absence of P waves, the presence of atrial fibrillation
waves, different R-R intervals, the heart-rate (HR) is constant or accelerated, and the QRS
complex is less than 0.12 s [8]. Since the P wave is not detected during atrial fibrillation,
the interval between QRS complexes increases and there is no possibility to calculate the
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PQ and QT intervals. Calculating HR or QRS time from digital ECG signals is problematic.
Therefore, it is necessary to pay attention to the absence of the P-peak and the presence of
different intervals between R-R peaks when determining atrial fibrillation.

Figure 1. Example of an electrocardiogram signal.

In some modern electrocardiographs, various signal filters are used, which allow
obtainment of a higher quality of the electrocardiogram, while introducing some distortions
in the form of the received signal. Low-pass filters in the range of 0.5–1 Hz can reduce
the effect of the floating contour while introducing distortions in the shape of the ST
segment [4]. A low-frequency anti-tremor filter in the 35 Hz range suppresses artifacts
associated with muscle activity. A notch filter in the range of 50–60 Hz neutralizes line
pickups [5].

Today, learning algorithms are becoming more accurate, but recognition systems
created based on artificial intelligence in medicine, and in particular, in cardiology, are
not able to achieve a 100% accurate result [9]. For this reason, it is relevant to search for
ways to increase this indicator. One of the possible ways to increase this indicator is the
preliminary processing of ECG signals. Finding peaks in signals is an important step in
many automatic ECG processing systems. In this work, a neural network classification
system for ECG signals is proposed for determining atrial fibrillation with a preprocessing
stage. At the stage of preprocessing, signals are selected by the number of heartbeat counts,
as well as wavelet analysis to clean up noise and isolate the R-peak and spectral analysis to
isolate the P-peak. Automatic detection of atrial fibrillation from ECG signals will allow
doctors to determine if a patient needs cardiac care.

2. Related Research

Today, medicine is considered one of the promising areas for the introduction of
artificial intelligence, because the analysis of medical signals is the most common research
method in this area. An example is an algorithm for identifying patients with atrial
fibrillation in sinus rhythm based on convolutional neural networks (CNN) in [10]. The
work [11] presents a hybrid approach with the use of Empirical Mode Decomposition and
CNN to classify ECG signals. In [12], the author has implemented the extraction of ECG
signal features based on wavelet transform with further classification using Long Short-
Term Memory (LSTM). The work [13] presents a method for detecting atrial fibrillation
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using LSTM. The method achieved an accuracy of 98.51%. The essence of the approach
proposed in the work is the separation of ECG signals with a sliding window and the
loading of the obtained blocks into the decision-making system. ECG signals were taken
from the MIT-BIH database Atrial Fibrillation Database. Dataset was 10 h long and each
signal contained 100 heartbeats (R-R peak). The authors point out the slow learning speed
and high requirements for computing resources. For the simulation, the authors used the
Quadro M5000 GPU (Nvidia, Santa Clara, CA, USA).

This work is of scientific interest, however, due to the different methodology and
resources used, it cannot be compared with the proposed system for neural network
determination of atrial fibrillation on ECG signals with wavelet-based preprocessing.

Finding peaks in signals is an important step in many signal processing applications.
Automatic peak detection using neural network classification systems is difficult due to the
physiological variability of P waves and QRS complexes, as well as the presence of various
types of noise, including muscle noise, artifacts due to electrode movement, power-line
noise, and baseline deviations.

Software QRS complex recognition is an integral part of modern computerized ECG
monitoring systems. An algorithm for their recognition is presented in [14] and is based on
optimized filtering and simple threshold setting since optimized filtering is considered a
factor in achieving good timing accuracy. The most widely known method for detecting
a single R-peak is the Pan-Tomkins method, which uses three types of processing steps:
linear digital filtering, nonlinear transformation, and decision rule algorithms [15]. The
work [16] presents an algorithm for detecting QRS using multi-stage morphological filtering
to suppress impulse noise. In work [17], to determine the QRS complex, it is proposed to
create an estimated QRS signal using the parameters extracted from the original ECG signal.

For automatic disease diagnosis systems based on ECG signals, accurate determination
of the P wave is critical. In work [18], one of the first methods of processing ECG signals
to isolate the P-peak in its flow using wavelet transform and subsequent training of the
neural network is described. In [3], a system for determining the P and T waves based on
the wavelet transform is presented.

The main methods of processing ECG signals for noise reduction are digital filtering,
adaptive filtering, wavelet filtering. The paper [19] describes a method for processing
ECG signals using an adaptive wavelet transform based on the Poincare section and the
Shannon method. There are also methods for processing signals online in real-time for use
in pacemakers. The paper [20] describes a processing method using biorthogonal wavelet
transform based on a linear phase structure for noise removal, feature extraction, and
compression of the ECG signal. There are also methods for computerized detection of fib-
rillation. Work [21] describes a method for detecting fibrillation using an eight-layer neural
convolutional network, which requires only basic data normalization without preliminary
processing and extraction of features from raw ECG samples. Work [7] describes a method
for constructing classifiers based on several sets of functions (a set of Andreotti, Zabikhi
functions, an aggregated set of functions, and a set of Dutt functions) and using a random
forest classification method.

3. Materials and Methods

3.1. Neural Network System for Atrial Fibrillation Recognition by ECG Signal

Any digital signal is distorted by noises of varying nature. Noise on the ECG signals
makes it difficult to analyze the data, both for the specialist and for systems based on
artificial intelligence. Signal preprocessing allows the ECG to be prepared for further
classification. This paper proposes a system for determining atrial fibrillation by ECG
signals, which includes four stages presented in Figure 2. The first stage consists of the
preprocessing of signals to isolate signals with the same count of heartbeats. At the second
stage, noise is removed from the ECG signals using a discrete wavelet transform. At the
third stage, the P-peak is isolated using spectral analysis. The fourth step is to classify
signals using the LSTM network.
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Figure 2. Neural network classification system with the pre-processing stage for ECG signals.
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3.2. Method for Pre-Processing of ECG Signals

As part of the preprocessing of the ECG signal, its length is checked. Each ECG signal
has a specific number of heartbeats and several samples. The length of ECG signals is
measured in the number of samples that make up the signal. The ECG signal database can
contain signals with a different number of samples. For the correct operation of the neural
network classification system, the number of samples must be the same for all signals. To
select ECG signals with one length, the following steps are necessary. At the first stage, the
ECG signals must be divided into groups with the same number of samples. The second
step is to select a group consisting of the largest number of signals of the same length. The
third step removes signals consisting of fewer and more samples than in the selected group.

3.3. Removing Noise from ECG Signals Using a Discrete Wavelet Transform

Any digital signal is distorted by noises of varying nature. To isolate signal features,
it is necessary to clean noise from them. An ECG signal that is distorted by noise can be
written as:

W(t) = S(t) + N(t), (1)

where W(t) is the ECG signal, S(t) is the ECG signal without noise distortion, N(t) is the
noise on the ECG signal.

Wavelet transform is a common way to remove noise from a signal [22]. To clean the
noise from the ECG signals, a discrete wavelet transform (DWT) of the symlet family was
used, which is a Daubechies wavelet with the least asymmetry and a compact carrier. The
detail factor for each case is set empirically.

There are three stages of using wavelet transform to clean the noise from the ECG
signal. The first step is to obtain noisy wavelet coefficients using the DWT of a noisy
signal. The second stage is the choice of thresholding. The third stage is an inverse wavelet
transform to obtain a purified signal [23]. The DWT of the ECG signal is:

DWT(a, b) =
1√
2

N

∑
j=0

Wj

j+1∫
j

ψ

(
t − b

a

)
dt, (2)

where N is the number of samples on the ECG signal, W is the ECG signal distorted by
noise, ψ is a symlet, a and b variables can take on the values a = 1 . . . N, b = 1 . . . N − 1.

To obtain DWT, a low-pass analysis filter with an g impulse response and a high-pass
analysis filter with an h impulse response are used. As a result of filtering, approximating
and detailing coefficients are obtained [24].

ylow(t) =
∞

∑
k=−∞

W(k)g(2t − k), (3)

yhigh(t) =
∞

∑
k=−∞

W(k)h(2t − k). (4)

With each DWT application, the number of samples on the ECG signal is halved by
Table 1 [24,25]. Each subsequent decomposition is carried out in terms of the low-frequency
component by Figure 3.

Table 1. Length of ECG signals in DWT, where N is the initial number of samples on the ECG signal.

Number of DWT Levels Number of Samples on the ECG Signal

1 N
21

2 N
22

. . . . . .
n N

2n
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g(t2)

h(t2)

g(t1)

h(t1)

W(t)

g(tn)

h(tn)

 
Figure 3. DWT ECG signal, where W(t) is an ECG signal distorted by noise, 2 ↓ is a decimation, g is a low-pass analysis
filter, h is a high-pass analysis filter.

The next step in clearing noise from the ECG signal is to select a threshold function
and thresholding. The thresholding is a value that determines whether there is noise in the
signal. If the value of the wavelet coefficient at a certain moment is greater than the value
of the threshold, then it is considered the value of the signal, if less, then the noise [24]. To
determine the threshold limit of the ECG signal, the minimax threshold was used [26]:

T ≤
√

2 ln N, T2 = 2 ln(N + 1)− 4 ln(ln(N + 1))− ln 2π (5)

The wavelet coefficients are transformed by thresholding, using the threshold func-
tions. The functions of hard- and soft-threshold determination are most often used [24]. To
determine the noise on the ECG signal, the soft-threshold function was used [26]:

0 ≤ max
(

1 − T
|x| , 0

)
≤ 1, (6)

where x is the value of the wavelet coefficient.
The reverse DWT for obtaining a cleaned ECG signal is as follows [24]:

S(t) =
∞

∑
k=−∞

g̃kylowk
(t) +

∞

∑
m=−∞

∞

∑
k=−∞

h̃mk yhighk
(t), (7)

where S(t) is the ECG signal without noise distortion, g̃k and h̃mk are approximating and
detailing coefficients after processing by the threshold function. The reverse DWT of the
ECG signal is performed according to Figure 4.

3.4. Isolation of the P-Peak Feature Using Spectral Analysis

The instantaneous frequency and spectral entropy functions were selected to isolate
the P-peak. To calculate it, it is necessary to calculate the amplitude spectrum of the process
using the Fourier transform, then normalize the amplitude spectrum so that the sum of its
readings becomes equal to 1 and calculate the entropy using Shannon’s formula. Changes
in spectral entropy over time are associated with changes in the waveform, which allows
its use to distinguish features on the ECG signal. Since the ECG signal consists of a finite
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number of samples, Shannon’s formula for calculating the spectral entropy of the ECG
signal is:

W(t) = −
N

∑
i=1

ni log ni, (8)

where S is the amount of information, N is the number of possible events, ni is the value of
the i-th samples on the ECG signal. However, it is more correct to use the Fourier transform
when working with stationary signals. Therefore, for more accurate identification of the
P-peak on the ECG signal, several signal-processing methods are required. With a deviation
in the work of the heart, changes in the frequency of the ECG signals occur. To determine
such changes, an instantaneous frequency is used, since this method allows the researcher
to take into account the nature of the process, which changes over time [27].

g(tn)

h(tn) g(t2)

h(t2)

g(t1)

h(t1)

S(t)

 
Figure 4. Reverse DWT ECG signal, where S(t) is a noise-free ECG signal, 2 ↑ is interpolation, g̃ is a low-pass synthesis
filter, h̃ is a high-pass synthesis filter.

As the ECG signal is non-stationary, in order to calculate the instantaneous frequency,
the researcher can refer to the works of Carson and Fry [28] and Van de Pol [29]:

fi(t) =
1

2π

dW(t)
dt

, (9)

where W(t) is an ECG signal. Formula (9) describes the rate of change in the phase
of the ECG signal, i.e., the instantaneous frequency shows how often the peaks appear
and disappear.

3.5. LSTM Processing of ECG Data

LSTM networks have been specifically designed to find patterns over time [30]. Since
ECG signals are sequences of peaks, the ability to memorize characteristic fragments of
time series is critical when using LSTM in this area. Long-term and short-term memory
is the main reason that the LSTM network is used as the basic structure of ECG signal
recognition systems. In the present study, the deep LSTM network was used to classify
ECG signals.

Passing a signal through a standard LSTM network structure involves four stages.
The first stage is the passage of the signal through the sigmoidal layer, which is designed
to determine the desired information. The second stage consists of passing through
the sigmoidal layer, which determines whether this or that information is relevant and
transmits a signal to the hyperbolic layer, which defines a new vector of candidates. The
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third stage is to save a new vector of candidates. The fourth stage consists of passing
through the sigmoidal layer, which is designed to determine the required information, and
the hyperbolic tangent to display information in the range [−1; 1]. Figure 5 shows a typical
LSTM structure.

σ

y
y

−th

−tC ×

tf

σ

×

+

σ
× thti

to

tC

 
Figure 5. Standard LSTM structure.

To classify ECG signals, it is proposed to use an LSTM network with two input
layers y1 and y2, which are combined into a two-dimensional vector x. All calculations
are performed according to the standard LSTM structure, which is shown in Figure 3,
where x is the input two-dimensional vector, ht−1 is the output vector from the previous
LSTM (h0 = 0) block, ht is the output vector of the LSTM block, Ct−1 is the state vector
from the previous LSTM (C0 = 0) block, Ct is the state vector of the LSTM block, σ is the
sigmoid activation function, tanh is the hyperbolic tangent activation function, × is the
multiplication operator, + is the addition operator.

The forget gate vector ft is the result of a computational step through the sigmoidal
layer, which is intended to determine the desired information. The resulting vector deter-
mines what information needs to be “memorized” and is calculated by the formula:

ft = σ
(

Mf [ht−1, x] + b f

)
, (10)

where Mf is a matrix of parameters, b f is a vector of parameters. Update gate vector it
checks the relevance of the information using the sigmoidal activation function:

it = σ(Mi[ht−1, x] + bi), (11)

where Mi is a matrix of parameters, bi is a vector of parameters.
The next step is to define a new state vector.

Ct = ft × Ct−1 + it × tanh(MC[ht−1, x] + bC), (12)

where MC is a matrix of parameters, bc is a vector of parameters,× is the multiplication
operator.

The output gate vector Ot that is a candidate for leaving the LSTM network is calcu-
lated by the formula:

Ot = σ(MO[ht−1, x] + bO), (13)

where MO is a matrix of parameters, bO is a vector of parameters. The definition of the
output vector ht is made according to the formula:

ht = Ot × σ(Ct). (14)

86



Appl. Sci. 2021, 11, 7213

The rest of the LSTM network layers are standard and are used in neural networks to
classify signals.

4. Results

For modeling, ECG signals were selected from the international open database Phy-
sioNet Computing in Cardiology Challenge 2017 (CinC Challenge) [31]. This database
contains over 10,000 ECG records; it is freely available from AliveCor and is a random
sample of patient records of no more than one minute in duration. The Physionet Comput-
ing in Cardiology Challenge 2017 database consists of 8528 ECG signals for training and
3658 ECG signals for validation. The base consists of four types of single-channel signals:
5152 normal signals (N), 771 signals with cardiac fibrillation (A), 46 noisy signals (~) and
2557 other signals (O). The simulations were performed using two categories of signals,
namely signals without heart defects (N) and signals with atrial fibrillation (A). These
signal categories were selected to study the signs of atrial fibrillation on ECG signals for
more correct LSTM learning. A total of 1000 signals were selected from the database CinC
Challenge for the first modeling. For the second experimental simulation, 5925 ECG signals
were selected, namely 5152 normal signals (N) and 771 signals with cardiac fibrillation (A).
Examples of selected ECG signals from the database CinC Challenge are shown in Figure 6.

Figure 6. An example of ECG signals without heart defects (Normal Signal) and signals with atrial fibrillation (AFib signal)
from the CinC Challenge database [31].

The simulation was carried out using the MatLab 2020b software package for solving
technical calculations. The calculations were performed on a PC with a processor Intel(R)
Core (TM) i5-10210U CPU @ 1.60 GHz (8 CPUs), 2.1 GHz.

Database PhysioNet Computing in Cardiology Challenge 2017 (CinC Challenge)
consists of ECG signals with different numbers of samples. Figure 7 shows that there are
significantly more signals from 9000 samples. For correct training of the neural network,
the input ECG signals must contain the same number of samples. Therefore, at the stage of
preliminary data processing for the first training, 976 ECG signals with several samples to
9000 were selected. For the second simulation, 5754 ECG signals with 9000 samples were
taken at the preprocessing stage.
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Figure 7. Histogram of the ratio of the number of samples to the number of signals.

DWT allows splitting the signal into high and low frequencies. Analysis of high
frequencies of the ECG signal can determine the presence of peaks. Analysis of low fre-
quencies of the ECG signal allows determining the presence of noise of varying nature [22].
The symlet is an orthogonal wavelet and can be used to reconstruct the signal [23] or to find
R-peaks on ECG signals [24,32]. To remove noise from ECG signals and isolate R-peaks
on them, the symlet wavelet filter was chosen. The symlet is similar in shape to the QRS
complex on the ECG signal. This means that the decomposition coefficients of the ECG
signal using the symlet-based DWT have a high correlation with the location of the P-peaks.
Their number can be determined based on the analysis of the coefficients of the wavelet
decomposition of the ECG signal. Figure 8 shows a graphical display of the symlet and
QRS complex. Figure 9 shows examples of the five-level decomposition of an ECG signal
based on a symlet. The spikes in coefficients D 2, D 3 and D 4 correspond to heartbeats,
from which it is possible to determine the location of the R-peaks of the cardiogram.

Figure 8. Symlet repeating the shape of the R-peak on the ECG signal.
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Figure 9. An example of a five-level decomposition of an ECG signal based on a symlet.

The results from Table 2 were obtained by simulating the proposed system using
various symlet. Each value of the table is the result of training the proposed system for
neural network determination of atrial fibrillation based on LSTM with signal preprocessing
using different coefficients of symlet. The best learning result was obtained using a five-
coefficient symlet.

Table 2. Simulation of the proposed method using a wavelet symlet with different coefficients.

Wavelet Learning Outcome, %

symlet 2 66.1
symlet 3 71.0
symlet 4 78.0
symlet 5 87.5
symlet 6 82.1

For the correct selection of various signs on the ECG signals, one-dimensional func-
tions must be used. The functions of instantaneous frequency and spectral entropy were
selected to isolate the P-peak. Fourier series and integral Fourier transform are the basis of
harmonic signal analysis. However, when analyzing ECG signals, these transformations
do not provide the possibility of analyzing peaks, understanding the local properties of
the signal and its frequency characteristics. Therefore, for these purposes, we used the
characteristics of the Fourier spectrum. Instantaneous frequency calculates a spectrogram
using short-term Fourier transforms versus window time. Spectral entropy estimates
entropy based on a power spectrogram. The time output of the function corresponds to the
center of the time windows.

The selected ECG signals from the CinC Challenge database were divided into signals
for training and signals for testing in a percentage ratio of 90:10. For training, the archi-
tecture of the LSTM neural network was assembled. The network consisted of two input
layers, to which preprocessed signals were applied, and one hundred hidden recurrent
layers. Preprocessing of signals using a symlet and subsequent application of spectral
analysis functions made it possible to reduce the length of ECG signals to 255 HC. Table 3
presents the results of modeling various methods for detecting atrial fibrillation. The matrix
of inaccuracies as a result of training the proposed system of neural network determination
of atrial fibrillation from ECG signals is presented in Figures 10 and 11.

The best indicator of the accuracy of ECG signal recognition was obtained using
the method proposed in the work and amounted to 87.5%. This accuracy was obtained
in the first simulation using 976 ECG signals. The indicator of the accuracy of ECG
signal recognition during the second simulation was 87.4%. This result is identical to
that obtained in the first simulation. The smallest indicator of recognition accuracy was
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obtained using a one-dimensional LSTM without preliminary signal processing. The results
obtained indicate that the use of pre-processing of ECG signals can significantly increase
the recognition accuracy of neural network classification systems.

Table 3. Simulation results of various methods for detecting atrial fibrillation.

ECG Processing Method
Accuracy of Atrial

Fibrillation Recognition
on the ECG Signal, %

Known
methods

One-dimensional LSTM without signal preprocessing 53.8
A standard example offered in MatLab2020b

environment 70.2

[33] 79.0
[34] 83.0
[35] 82.0

Proposed
methods

First simulation 87.5
Second simulation 87.4

Figure 10. A confusion matrix is a result of training a system for neural network determination of
atrial fibrillation on ECG signals with wavelet-based preprocessing.

Figure 11. A confusion matrix is a result of the validation of a system for neural network determina-
tion of atrial fibrillation on ECG signals with wavelet-based preprocessing.
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5. Discussion

The article presents a system for neural network determination of atrial fibrillation on
ECG signals with wavelet-based preprocessing. Simulation of the proposed system made
it possible to achieve a recognition accuracy of 87.5%, which is significantly higher than the
79.0–82.0% level that can be achieved using known systems [33–35].

Work [33] is devoted to the development of a smartphone application for the detection
of atrial fibrillation. The method proposed in [33] uses preliminary preprocessing of the
ECG signal, which includes the analysis of the R-R and P-peak intervals. Despite the
identity of the methods used, the authors of the work indicate the accuracy of the system
at 79.0%, which is significantly lower than the result obtained by modeling the system
proposed in this work.

The authors of [34] used the training of a recurrent neural network without preliminary
signal processing and achieved an accuracy of 82.0%. The recurrent network is the basis of
the LSTM network used in our method, which makes it possible to make comparisons.

In [35], the authors used a part of the MIT-BH 2017 database consisting of normal
ECG signals, signals with fibrillation, and “others.” A group of noisy signals was not
used. For the experiment, the authors used signals with a length of 4 heart counts (4 R-R
intervals). The method proposed in [35] did not give a positive result for signals of the
“other” category. The results shown for determining the presence of fibrillation from groups
with normal signals and signals with fibrillations were 82.0% accuracy, which is also lower
than the result of the accuracy of the proposed system for neural network determination of
atrial fibrillation on ECG signals.

There are other ways to measure atrial fibrillation. In [36], a more complex method-
ology is used that requires more computing power. Using multiple convolutional neural
networks and LSTM networks is a resource-intensive method. At the same time, the use of
pre-processing of the signal before training the neural network can reduce resource costs.

The proposed stages of preliminary processing of ECG signals made it possible to
prepare data for further analysis to conduct an automated determination of atrial fibrillation.
The average accuracy of a cardiologist’s diagnosis by visual analysis of ECG signals is
65.0–70.0% [37]. The use of the proposed neural network system for determining atrial
fibrillation from ECG signals by specialists will make it possible to increase the efficiency
of diagnostics in comparison with methods of visual diagnosis. The proposed system for
neural network determination of atrial fibrillation on ECG signals can only be used as an
additional diagnostic tool by specialists. This system is not a medical device and cannot
independently diagnose patients.

A promising direction for further research is the construction of more complex systems
for the neural network classification of ECG signals, using, together with the analysis of
signals, various metadata about patients, such as age, gender, race, genetic predisposition,
and other descriptors. One of the next steps for further research is the creation of a
mobile application for real-time fibrillation detection. Additionally, further research plans
include the complication of the proposed system by using convolutional neural networks
to improve the accuracy of determining atrial fibrillation.
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