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Pablo Álvarez Ballesteros, Jes ús Chamorro, Marı́a San Román-Gil, Javier Pozas, 
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Editorial

Updating Clear Cell Renal Cell Carcinoma (a Tribute to Prof.
Ondrej Hes)

Claudia Manini 1,2 and José I. López 3,*

1 Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
2 Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
3 Unit of Biomarkers, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
* Correspondence: joseignacio.lopez@osakidetza.eus or jilpath@gmail.com

This Special Issue provides an insight into critical issues concerning clear cell renal
cell carcinomas (CCRCCs), reflecting the recent level of intricacy reached by renal oncology.
The collection includes nineteen papers (nine articles, eight reviews, one perspective, and
one commentary) which deal with contemporary diagnostic, prognostic, and therapeutic
aspects of this tumor. Moreover, this Special Issue aims to provide a humble and sincere
homage to the memory of Prof. Ondrej Hes, a worldwide referential Czech pathologist
in renal cancer, who passed away unexpectedly on 2 July 2022 at the age of 54. We are
honored to have two contributions co-authored by him (refs. [1,2]) in this collection.

Manini et al. [3] focus on tumor sampling as a cornerstone to scrutinize the complexity
of intratumor heterogeneity (ITH) in CCRCC. Based on the recent molecular findings of
tumor regionalization [4], the authors propose focalizing tumor sampling on peripheral
zones, where ITH is expected to be the highest. Conversely, the tumor interior, where
metastasizing subclones develop, is more homogeneous.

Sequeira et al. [5] show that a specific pattern of miRNA expression characterizes
CCRCC with a sensitivity of 74.78%. This pattern includes hsa-miR-126-3p and hsa-miR-
200b-3p levels. The authors conclude that this minimally invasive test may be useful to
detect CCRCC in the early stages of tumor development.

Gopal et al. [6] review the current advances and future directions of the use of ra-
diogenomics in the management of CCRCC. The authors update the issue and stress the
promising correlation found between imaging features and gene expression patterns in
several neoplasms, particularly in CCRCC.

Vano et al. [7] review the first-line treatment options in metastatic CCRCC. They state
that a strategy based on the International Metastatic Database Consortium is currently
recommended with either pembrolizumab and axitinib, cabozantinib and nivolumab, or
levantinib and pembrolizumab given as the first-line treatment for all patients. Addi-
tionally, patients with an intermediate or poor risk should be treated with nivolumab
and ipilimumab. They indicate that several issues, such as PD-L1 status, are unresolved
and deserve further analyses. Thus, making therapeutic decisions based on a reliable
immunohistochemical detection of the PD-L1 is still a matter of controversy [8].

Larrinaga et al. [9] compare the plasma and tissue expression of PD-1 and PD-L1
in a series of 89 CCRCCs. This unprecedented analysis yielded some significant results,
for example, the plasmatic levels of both proteins were lower in CCRCC patients than
in the controls. The study also confirms that the high expression of PD-1 and PD-L1 in
tumor tissue was associated with tumor grade, size, and tumor necrosis. While PD-1 was
associated with tumor stage (pT), PD-L1 was associated with metastases. The combination
of plasmatic and tissue positivity increased the level of significance to predict the prognosis
of these patients.

Several contributions deal with the ever-changing landscape of therapies and resis-
tances to therapies occurring in these tumors. Three clinical reviews [10–12] and one

Cancers 2022, 14, 3990. https://doi.org/10.3390/cancers14163990 https://www.mdpi.com/journal/cancers1



Cancers 2022, 14, 3990

article analyzing sunitinib resistance in CCRCC cell lines [13] revisit this particularly
important issue.

Ballesteros et al. [10] focus on the molecular mechanisms of resistance to immunother-
apy and antiangiogenic drugs. Resistance associated with tyrosine-kinase inhibitors
include molecular mechanisms related to hypoxia, the angiogenic switch, epithelial-to-
mesenchymal transition, the activation of bypass pathways, the lysosomal sequestration of
tyrosine kinase inhibitors, non-coding RNAs and single-nucleotide polymorphism, and
the tumor microenvironment. Among the pathways associated with resistance to immune
checkpoint inhibitors, the authors analyze interferon gamma signaling, Wnt/β-catenin,
MAPK, PI3K/AKT/mTOR, cell cycle checkpoint, the loss of major histocompatibility
complexes I and II, and the tumor microenvironment.

Angulo et al. [11] analyze the epigenetic landscape of CCRCCs. Thus, abnormal DNA
methylation, methyl-binding proteins, post-translational histone modifications, miRNAs,
long non-coding RNAs, and RNA methylation are thoroughly reviewed. Furthermore, the
authors revise the epigenetic-based therapeutic opportunities for CCRCCs and the caveats
and limitations of these treatments.

Kim et al. [12] update the immune landscape and the immunotherapy opportunities
of CCRCCs, i.e., cytokine-based immunotherapy, tyrosine kinase and mTOR inhibitors, and
immune checkpoint inhibitors. The authors also focus on single-cell genomics to analyze
the tumor microenvironment.

Sunitinib is a standard first-line treatment for metastatic CCRCCs [14]. Armesto et al. [13]
have identified miRNA:target interactions involved in sunitinib resistance using three
CCRCC cell lines (786-O, A498, and Caki-1). They have demonstrated that the use of
in vitro models of sunitinib resistance, combined with an integrated approach of miRNA
and gene expression, can identify divergent mechanisms of resistance with potential benefit
for patients.

Paderi et al. [15] retrospectively evaluate the immune-related adverse effect of nivolumab
and ipilimumab in 43 patients with metastatic renal cell carcinomas, 36 of them being
CCRCCs. They conclude that adverse effects, such as thyroid dysfunction and cutaneous
reactions, were associated with longer progression-free survivals and that patients that ex-
perienced more than one adverse effect presented a better response to treatment. Endocrine
disorders, notably thyroid toxicities, must be taken into account since they present clinically
with vague symptoms and unclear clinical pictures. The effect of nivolumab on the PD-1
expression in a culture model of CCRCC has been analyzed by Stenzel et al. [16]. They
conclude that data obtained from ex vivo tissue slice culture may predict patient response
to nivolumab. The influence of molecular subtypes based on genomic and transcriptomic
features in the responsiveness of metastatic CCRCCs to immune checkpoint inhibitors has
been reviewed by Jee et al. [17].

Mattila et al. [18] analyze the existing prognostic features and prediction models for
localized CCRCCs, a growing group of tumors with an unpredictable clinical course. They
conclude that prognostic factors and prediction models may help evaluate the risk of
recurrence after surgical resection in localized CCRCCs, which would reduce follow-up
imaging in low-risk cases. Additionally, better prediction models would help select patients
for adjuvant trial therapies.

Lipidomic analysis adds interesting information in normal and neoplastic kidneys.
Molecular histology has recently been profiled in non-tumor kidney tissue using the mass
spectrometry of lipids [19]. Data obtained in this study demonstrate that up to seven lipidic
patterns correlate with different parts of the nephron, allowing one to distinguish character-
istic lipidic fingerprints in different individuals. The lipidomic analysis performed in sam-
ples from 12 CCRCCs has demonstrated the overexpression of stearoyl-CoA desaturase-1
(SCD-1) induced by the hypoxic microenvironment [20] which is characteristic of this
neoplasm. The authors have detected a particular lipidomic composition involving SCD-1
in the center of CCRCC which in turns depends on the high hypoxic status found at this
level. They conclude that SCD-1 may be a potential target in future treatments of these
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tumors. Other authors have detected that metastasizing clones of CCRCCs are located in
the tumor’s center [4], where hypoxia is high and the struggle for survival is fierce.

The molecular heterogeneity in paired primary and metastatic samples of CCRCCs
has previously been analyzed [21,22]. Prochazkova et al. [1] have studied the mutational
variability between primary CCRCCs (four cases) and their multiple pulmonary metastases
(nine metastases in total). The authors conclude that all the cases studied displayed high
mutational variability not only when comparing the primary tumors, but also among the
metastases themselves. These findings confirm the previous analyses which stress the high
inter- and intratumor variability in most CCRCCs, a feature of critical importance when
making therapeutic decisions for patients.

Recent studies have shown that the angiogenic type of CCRCC is linked to PBRM1
gene loss [23]. In this Special Issue, Saiga et al. [24] correlate the immunohistochemical
expression of PBRM1 with specific architectural and vascular patterns in CCRCCs. The au-
thors found that endothelial expression tends to be lost in cases with low PBRM1 expression.
Previous studies of the same research group have demonstrated that a vascularity-based
architectural classification of CCRCC has prognostic implications [25].

Khaleel et al. [26] analyze the translation between the radiologic phenotype and
the underlying genotype available in the current radiogenomics literature of CCRCCs,
reviewing PubMed, Medline, Cochrane Library, Google Scholar, and the Web of Science
databases. Most studies use computed tomography images and the most common genomic
mutations of CCRCC (VHL, PBRM1, BAP1, SETD2, and KDM5C) for such translation.
They conclude that the field is promising but further studies are needed to implement this
approach in clinical practice.

Roldán et al. [27] define a gene-expression-based signature in CCRCCs with prognostic
implications based on a whole-transcriptome profiling of 26 cases. They found a total of
132 genes related to prognosis; however, following a Cox analysis, a nomogram including
CERCAM, MIA2, HS6ST2, ONE-CUT2, SOX12, and TMEM132A genes, together with
pT stage, tumor size, and ISUP grade, has been generated. The authors conclude that
this nomogram discriminates between two different groups of CCRCCs with different
probabilities of recurrence and predicts cancer-specific survival.

A commentary in this CCRCC Special Issue refers to the urologist’s perspective of the
so-called multilocular cystic renal neoplasm of low malignant potential [2]. The clinical,
radiological, and pathological findings as well as the therapeutic management are reviewed.
They conclude that this entity is a lesion with excellent prognosis in which a conservative
nephron-sparing treatment, if technically possible from the surgeon’s perspective, should
be performed.

Author Contributions: C.M. and J.I.L. designed and wrote the manuscript. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Simple Summary: Clear cell renal cell carcinoma (CCRCC) is well known for intra-tumoral hetero-
geneity. However, there are limited data focusing on the inter-tumoral and inter-metastatic hetero-
geneity of CCRCC. In one study, primary and metastatic tumors were classified as clear cell type A
or B subtypes, using nanostring expression technology. It was found that primary and metastatic
tumors of CCRCC differed in nearly one half of patients. Approximately one quarter of metastatic
tumors display inter-metastatic heterogeneity. Another study, using an immunohistochemical assay,
found inter-metastatic tumor heterogeneity of BAP1 in only 1 of 32 patients (3%). Comparing gene
expression across patient-matched primary-metastatic tumor pairs, 98% had concordant BAP1 status.
We aimed to review published data and to examine mutation profile variability in primary and
multiple pulmonary metastases (PMs) in our cohort of four patients with metastatic CCRCC.

Abstract: (1) Background: There are limited data concerning inter-tumoral and inter-metastatic
heterogeneity in clear cell renal cell carcinoma (CCRCC). The aim of our study was to review
published data and to examine mutation profile variability in primary and multiple pulmonary
metastases (PMs) in our cohort of four patients with metastatic CCRCC. (2) Methods: Four patients
were enrolled in this study. The clinical characteristics, types of surgeries, histopathologic results,
immunohistochemical and genetic evaluations of corresponding primary tumor and PMs, and follow-
up data were recorded. (3) Results: In our series, the most commonly mutated genes were those
in the canonically dysregulated VHL pathway, which were detected in both primary tumors and
corresponding metastasis. There were genetic profile differences between primary and metastatic
tumors, as well as among particular metastases in one patient. (4) Conclusions: CCRCC shows
heterogeneity between the primary tumor and its metastasis. Such mutational changes may be
responsible for suboptimal treatment outcomes in targeted therapy settings.

Keywords: clear cell renal cell carcinoma; intra-tumoral heterogeneity; inter-tumoral heterogeneity;
inter-metastatic heterogeneity
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1. Introduction

Clear cell renal cell carcinoma (CCRCC) is the most common renal carcinoma, account-
ing for more than 70% of adult renal cancer [1,2]. Nonsurgical therapy for metastatic RCC
(mRCC) has limited efficacy, with a median overall survival (OS) of 26.4–32.0 months [2].
The lung is one of the most affected metastatic sites in patients with CCRCC. If clinically
feasible, metastasectomy is preferable for metastatic disease [3]. The 5 year survival rates
after a complete pulmonary metastasectomy range from 36 to 83% [4].

CCRCC is well known for intra-tumoral heterogeneity [2,5–10] and morphologic,
immunohistochemical and genetic differences also exist between the primary tumor and its
metastases (inter-tumoral heterogeneity) [11–14]. Furthermore, heterogeneity among multi-
ple metastases in a single patient (inter-metastatic heterogeneity) has been reported [11,14].

VHL, BAP1, PBRM1, and SETD2 are the most frequently mutated genes, all located
on chromosome 3p. Chromosome arm 3p loss is a common event in primary CCRCC,
and in difficult diagnostic pathology cases, molecular evaluation can be used to support a
diagnosis of CCRCC, such as chromosome 3p loss (FISH, cytogenetics, or copy number
analysis) or VHL mutational analysis. However, 3p loss may not be entirely specific for
clear cell RCC in all contexts [15]. For example, chromosome 3p loss has been recognized
in subsets of papillary RCC, unclassified RCC, and RCC with the amplification of the
6p21/TFEB gene region, including in tumors with non-clear cell morphology and without
VHL alterations [16–18]. Although the majority of CCRCCs show mutation in the VHL
gene, LOH3p, or the hypermethylation status of VHL gene, 25–30% of CCRCCs show other
molecular genetic changes [2]. The molecular study of the Cancer Genome Atlas Research
Network identified 19 significantly mutated genes, with alterations of VHL, PBRM1, SETD2,
KDMC, PTEN, BAP1, MTOR and TP53, being the eight most frequent [2,19].

CCRCC is ideal for studying intra-tumoral heterogeneity, since adjuvant therapy is
not standard practice [3]. Therefore, the effect of therapy on the development of resistance
or tumor changes can be excluded. The aim of this review was to summarize the current
knowledge on intra-tumoral, inter-tumoral, and inter-metastatic heterogeneity in CCRCC
at the morphologic, immunohistochemical, and molecular-genetic levels.

1.1. Morphology and Immunohistochemistry
1.1.1. Intra-Tumoral Heterogeneity

López et al. [5] drew attention to the problem of tumor sampling, particularly in
CCRCC where some large tumors may display areas with different colors and/or textures
on gross sections. It is worth noting that even neoplastic cell populations in CCRCC,
which may seem homogenous microscopically, indeed may be very heterogeneous at the
molecular level with different mutation profiles in different parts of the tumor [6]. In
routine clinical practice, more than 95% of the tissue of a given 10 cm tumor is not analyzed,
when following typical sampling protocols (i.e., one block per 1–2 cm of the tumor). In
these cases, the histo-molecular data that might be derived from non-sampled areas of the
tumor are lost. Therefore, some authors suggest that a multisite tumor sampling approach
would be more informative than routine sampling [6,7].

CCRCC is typically immunoreactive for PAX8, PAX2, pankeratin (AE1–AE3), CAM5.2,
and epithelial membrane antigens. Carbonic anhydrase 9 (CA9) is positive in a diffuse
membranous pattern in 75–100% of CCRCC; however, high-grade tumors may exhibit
a reduced immunohistochemical expression [2]. According to the latest edition of the
WHO classification of genitourinary tumors, keratin 7 positivity in CCRCC is only seen
in isolated cells, in rare high-grade tumors, and is often used to distinguish CCRCC from
chromophobe RCC [2]. However, in a recent study by Gonzalez et al. examining keratin 7
reactivity in a spectrum of 75 CCRCC tumors, it was shown that low-grade CCRCCs were
more frequently positive than high-grade tumors [8].
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1.1.2. Inter-Tumoral Heterogeneity

Eckel-Passow and colleagues analyzed the immunohistochemical expression of BAP1
and PBRM1 in primary and metastatic tumors from 97 patients. In their cohort, 20% of
primary tumors showed the loss of BAP1 staining and 57% showed the loss of PBRM1.
They demonstrated subtle molecular heterogeneity in the metastatic tumors with similar
morphology. Comparing expression across patient-matched primary-metastatic tumor
pairs, the authors reported that 98% had concordant BAP1 status (90% PBRM1). Only two
patients demonstrated discordant BAP1 immunohistochemical expression, with the loss of
BAP1 during the progression to metastatic disease [11].

1.1.3. Inter-Metastatic Heterogeneity

Eckel-Passow et al. [11] also determined the inter-metastatic tumor heterogeneity
of BAP1 using immunohistochemical examination. However, they found heterogeneity
of BAP1 in only 1 patient in a cohort of 32 patients (3%). The primary tumor for this
patient was BAP1 positive, whereas the first bone metastasis was IHC negative, and
the second bone metastasis) was IHC positive. In this study, the authors also examined
intra-metastatic tumor heterogeneity, and found a 100% concordance in BAP1 between
12 patients. The limitation of this study was that the expression was determined using an
immunohistochemical assay only, with no further molecular genetic validation.

1.2. Molecular Genetic Analysis
1.2.1. Intra-Tumoral Heterogeneity

Gerlinger et al. analyzed material from four tumors (core biopsy) in four patients with
metastatic CCRCC. They demonstrated intra-tumoral heterogeneity for a mutation within
an auto-inhibitory domain of the mTOR kinase. Mutational intratumoral heterogeneity was
found for multiple tumor suppressor genes resulting in a loss of function. Multiple distinct
mutations of SETD2, PTEN, and KDM5C genes were found within a single tumor [9].

In their subsequent study, the authors showed that ultra-deep sequencing identified
intra-tumoral heterogeneity in all cases. Using multiregional exome sequencing, the authors
reported the following as the most prevalent mutations: PBRM1 60%, SETD2 30%, BAP1
40%, KDM5C 10%, TP53 40%, ATM 10%, ARID1A 10%, PTEN 20%, MTOR 10%, PIK3CA
20%, and TSC2 10%. The combined prevalence of the indicated PI3K-mTOR pathway genes
(PTEN, PIK3CA, TSC2, MTOR) was up to 60% [10].

1.2.2. Inter-Tumoral Heterogeneity

According to Serie et al. [14], heterogeneity between primary and distant simultaneous
metastases affects half of the patients with metastatic CCRCC. The authors analyzed
primary CCRCC and their metastases using nanostring technology. Nanostring assays were
successful in 91 primary tumors and 123 metastases from different organs, most frequently
from the lung. ClearCode 34 genes were also analyzed for all tumors. They divided
primary and secondary tumors into so-called ccA and ccB subtypes, based on the proposed
stratification by Brooks et al. [12]. They further compared ccA/ccB subtypes across patient-
matched primary and metastatic CCRCC tumors and documented discordance in 43%
of patients.

1.2.3. Inter-Metastatic Heterogeneity

Serie et al. [14] also evaluated inter-metastatic tumor heterogeneity. Thirty patients
in their cohort had more than one metastatic tumor. Seven of the 30 (23%) had metastatic
tumors with discordant ccA/ccB subtypes.

2. Materials and Methods

Pulmonary metastasectomy for metastatic CCRCC (single or multiple metastases) was
performed in 35 patients (without evidence of local residual disease, recurrence, or any
disease other than pulmonary metastases) in a single academic institution (Department of
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Surgery, University Hospital in Pilsen) from January 2001 to January 2019. From this cohort,
13 patients had undergone multifocal surgical treatments for their pulmonary metastases
of CCRCC. Four patients were excluded from our study since the primary tumor was not
available. Five patients were later excluded from the study because of low DNA quality.
Finally, four cases were selected and enrolled into the study.

The following clinical and pathologic characteristics were obtained: gender, age at
diagnosis, tumor size, pathologic stage [20], histologic grade (ISUP/WHO) [2], progression-
free interval (PFI is defined as the time period between curative primary kidney surgery
and the first detection of metastatic disease), pulmonary metastases details (site, size
of the largest metastasis, synchronous or metachronous, number, and laterality), the
type of pulmonary surgery, histopathology results, the type of adjuvant therapies, and
follow-up data.

The primary tumor was diagnosed based on morphology and the immunohistochemi-
cal (IHC) profile. The tissues were processed as published previously [21]. The following
primary antibodies were used: keratin 7 (OV-TL12/30, monoclonal, DakoCytomation,
1:200), vimentin (D9, monoclonal, NeoMarkers, Westinghouse, CA, USA, 1:1000), carbonic
anhydrase 9 (rhCA9, monoclonal, R&D Systems, Abingdon, GB, USA, 1:100), PD-L1 (22C3,
monoclonal, Cell Signaling, Danvers, MA, USA, 1:25), and Ki67 (MIB1, monoclonal, Dako,
Glostrup, Denmark, 1:1000). The primary antibodies were visualized using a supersensitive
streptavidin–biotin–peroxidase complex (BioGenex, Fremont, CA, USA). Internal biotin
was blocked by the standard protocol used by the Ventana BenchMark XT automated
stainer (hydrogen peroxide-based). Appropriate positive and negative controls were ap-
plied. The immunohistochemical evaluation was based on the staining percentage of cells:
focal positive < 50%, diffuse positive > 50%, and negative (−) 0%. For the PD-L1 antibody,
a total % of positive neoplastic cells and % of intervening stromal cells and lymphocytes
was recorded.

2.1. Mutation Analysis

A mutation analysis detection of tumor and non-tumor tissue was performed using
a TruSight Oncology 500 (TSO500) panel (Illumina, San Diego, CA, USA) [22]. In two
cases, data from the TruSight Tumor 170 panel (TS170) (Illumina) were used for samples
with low DNA quality. The gene list was previously published [23]. Total nucleic acid
was extracted using an FFPE DNA kit (automated on an RSC 48 Instrument, Promega,
Madison, WI, USA). Purified DNA was quantified using a Qubit Broad Range DNA
assay (Thermo Fisher Scientific, Waltham, MA, USA). The quality of DNA was assessed
using the FFPE QC kit (Illumina). DNA samples with Cq < 5 were used for further
analysis. After DNA enzymatic fragmentation with a KAPA Frag Kit (Kapa Biosystems,
Washington, MA, USA), DNA libraries were prepared with the TSO500/TS170 (Illumina)
according to the manufacturer’s protocol. Sequencing was performed on the NextSeq 500
sequencer (Illumina) following the manufacturer’s recommendations. A data analysis was
performed using the TSO500/TS170 application on the BaseSpace Sequence Hub (Illumina).
DNA variant filtering and annotation were performed using the cloud-based tool Variant
Interpreter (Illumina). A custom variant filter was set up including only variants with
coding consequences at an allelic frequency of 5% and higher. The cut-off was set at 1% only
in the case of mutations known in related tumor tissue. Comparing tumor and non-tumor
data, germline alterations were excluded. The remaining subset of variants was checked
visually, and suspected artefactual variants were excluded.

2.2. Analysis of VHL Promoter Methylation

The detection of promoter methylation was carried out via methylation-specific PCR
as previously described [24].
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2.3. LOH Analysis

For an LOH analysis of neoplastic tissue DNA, ten STR (short tandem repeats) markers
D3S666, D3S1270, D3S1300, D3S1581, D3S1597, D3S1600, D3S1603, D3S1768, D3S2338 and
D3S3630 located on the short arm of chromosome 3 (3p) were chosen from the database
(Gene Bank UniSTS) [25].

3. Results

Four patients were enrolled in the study. Clinicopathologic data are summarized
in Table 1. The patients were two men and two women, with ages ranging from 53.6 to
67.4 years (mean 61.5, median 62.5 years) at the time of renal surgery. Radical nephrectomy
was performed in three cases. In one case, nephron sparing surgery was performed, but
during the follow-up period, radical nephrectomy was completed due to recurrence (after a
period of 72.6 months). Tumor size ranged from 30 mm to 75 mm (mean 53.5, median 54.5).
The pathologic stage included 1× pT2a, 1× pT3a, and 2× pT1a. At the time of diagnosis,
one patient had synchronous pulmonary lesions. The median progression-free interval
(PFI) of the other cases was 40.5 months.

The mean age at the time of pulmonary metastasectomy was 65.5 years. Two patients
had bilateral lung metastases, which were resected in a multistage fashion in independent
surgeries. Overall, nine metastases were removed (in three patients, there were two
metastases; in one patient, there were three metastases).

Signs of aggressive behavior were found approximately 2 to 35 months after pul-
monary metastasectomy (metastatic progression to bones, lung, mediastinum, lymph
nodes, and brain; median PFI was 18.7). Follow-up data were available for all patients,
ranging approximately from 88 to 123 months (mean 104.4, median 103.4 months). For
brain metastasis, surgical treatment using a gamma knife was performed. However, this
patient died of peritonitis 3 months after the brain surgery. One patient died from the
progression of the disease to the lung and bone 6 years after pulmonary surgery. To date,
one patient with a progression of disease after 2 months (lymphatic tissue, bones, kidney)
and one patient with a progression of disease 35 months (lymph nodes) after pulmonary
surgery are alive.

Table 1. Primary tumors: clinicopathological features.

Patient 1 Patient 2 Patient 3 Patient 4

Sex F M M F
Age (years) 61.6 67.4 63.4 53.6
Size (mm) 39 75 30 70

pT (UICC 2017) pT1a pT2a pT1a pT3b
Grade (WHO/ISUP) 3 2 2 2

TTP meta 1 40.5 M1 59.6 38.1
TTP meta 2 40.5 M1 81.1 38.1
TTP meta 3 - - 81.1

F, female; M, male; M1, M1 stage (pulmonary metastases at the time of the renal cancer diagnosis); TTP, time to
pulmonary progression (months).

3.1. Morphology

All cases showed morphologic features typical of CCRCC. Primary tumors were
arranged in a solid alveolar pattern, and occasionally with smaller cystic areas. The rich
vasculature characteristic of CCRCC was noted in all primary tumors. Only small foci of
necrosis or regressive changes were recorded. Neoplastic cells were mostly voluminous
with clear to pale eosinophilic cytoplasm. The histologic grade was 2 in three tumors and 3
in one tumor. Metastases showed relatively uniform morphology, arranged mostly in solid
architecture and composed of predominantly clear cells. The histologic grade was 2 in 8/9
metastatic foci and 3 in 1/9 metastases (Table 2).
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Table 2. Grade of the primary tumors and metastases.

Patient 1 Patient 2 Patient 3 Patient 4

Primary tumor grade 3 2 2 2
Met 1 grade 2 2 3 2
Met 2 grade 2 2 2 2
Met 3 grade 2

Met, metastasis.

3.2. Immunohistochemical Analysis

All primary tumors and metastases were positive for CA9 (diffuse strong positivity)
and vimentin. The Ki-67 proliferation index ranged from 3–12 positive cells/high-power
field (under 10%). Primary tumors and metastases were negative for keratin 7.

The primary tumor and metastases were immunohistochemically examined using
BAP1 antibody. Except for one tumor (patient 4), all primary tumors were BAP1 negative.
In patient 3, negative BAP1 in the primary tumor and positive BAP1 in two of three PMs
were documented.

PD-L1 reactivity was evaluated in all available samples. Only one primary tumor
showed significant positivity (up to 30% of neoplastic cells); however, no positivity was
documented in the available tissue from pulmonary metastasis (Table 3).

Table 3. PD-L1 reactivity in the primary tumor and metastases.

PD-L1 Case 1 Case 2 Case 3 Case 4

Primary tumor * 0%
** 0%

* 0%
** 0%

* up to 5%
** 0%

* 30%
** 0%

Met 1 NA * 0%
** 0%

* 0%
** up to 5%

* 0%
** 0%

Met 2 * up to 5%
** 0%

* 0%
** 0% NA NA

Met 3 NA
Met, metastasis; * PD-L1 in neoplastic cells; ** PD-L1 in tumor infiltrating lymphocytes and stroma; NA, not available.

3.3. Molecular Genetic Analysis

Results of the molecular genetic analysis are summarized in Table 4. Typical VHL
gene alterations were found in three primary tumors and their PMs (75%). In the patient
without VHL mutation, we found alterations in CUL3, DOT1L, SETD2 and TSC1 in the
primary tumor, with the addition of BAP1 gene mutation in its analyzable PMs.

The comparison of mutation pattern among primary tumors and their PMs showed
heterogeneity in three (75%) cases. In one case (patient 1), inter-metastatic differences were
also found. In one metastasis, the mutation of GNAQ and loss of LOH3p were detected;
however, in the second metastasis those changes were not confirmed. The comparison is
displayed in Table 5.

Table 4. Mutational profile of primary tumors and their PMs using TSO500/TS170 panels.

Gene Protein ID:Protein Alteration Transcript ID: Mutation Allele Frequency

Patient 1—primary tumor
TMB—6.5 MSH6 NP_000170.1:p.(Ala780Ser) NM_000179.2:c.2338G>T 0.2586

MYOD1 NP_002469.2:p.(Glu158Lys) NM_002478.4:c.472G>A 0.2071
PBRM1 NP_060783.3:p.(Tyr893Ter) NM_018313.4:c.2679T>A 0.2885
SETD2 NP_054878.5:p.(Lys2471Ile) NM_014159.6:c.7412A>T 0.3654
TFE3 NP_006512.2:p.(Pro374Ala) NM_006521.5:c.1120C>G 0.2237
VHL NP_000542.1:p.(Ser65Ter) NM_000551.3:c.194C>A 0.3855
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Table 4. Cont.

Gene Protein ID:Protein Alteration Transcript ID: Mutation Allele Frequency

Patient 1—metastasis 1
TMB—5.5 BCORL1 NP_001171701.1:p.(Pro787Thr) NM_001184772.2:c.2359C>A 0.2074

MSH6 NP_000170.1:p.(Ala780Ser) NM_000179.2:c.2338G>T 0.256
MYOD1 NP_002469.2:p.(Glu158Lys) NM_002478.4:c.472G>A 0.256
PBRM1 NP_060783.3:p.(Tyr893Ter) NM_018313.4:c.2679T>A 0.2657
SETD2 NP_054878.5:p.(Lys2471Ile) NM_014159.6:c.7412A>T 0.2372
TSC1 NP_000359.1:p.(Glu839Ter) NM_000368.4:c.2515G>T 0.3039
VHL NP_000542.1:p.(Ser65Ter) NM_000551.3:c.194C>A 0.2896

Patient 1—metastasis 2 MSH6 NP_000170.1:p.(Ala780Ser) NM_000179.2:c.2338G>T 0.30
TSC1 NP_000359.1:p.(Glu839Ter) NM_000368.4:c.2515G>T 0.39
VHL NP_000542.1:p.(Ser65Ter) NM_000551.3:c.194C>A 0.40

GNAQ NP_002063.2:p.(Tyr101Ter) NM_002072.4:c.303C>A 0.08
Patient 2—primary tumor

TMB—4.7 CDK12 NP_057591.2:p.(Leu529PhefsTer81) NM_016507.2:c.1585del 0.1264

PTEN NM_000314.6:c.492+1del 0.2
REL NP_002899.1:p.(Ser274Cys) NM_002908.3:c.821C>G 0.0685

SETD2 NP_054878.5:p.(Gly1467ArgfsTer8) NM_014159.6:c.4398dup 0.105
TGFBR2 NP_001020018.1:p.(Glu510Asp) NM_001024847.2:c.1530A>C 0.0857

VHL NM_000551.3:c.463+2T>A 0.1091
Patient 2—metastasis 1

TMB—6.3 CDK12 NP_057591.2:p.(Leu529PhefsTer81) NM_016507.2:c.1585del 0.0993

PTEN NM_000314.6:c.492+1del 0.2207
REL NP_002899.1:p.(Ser274Cys) NM_002908.3:c.821C>G 0.1138

SETD2 NP_054878.5:p.(Gly1467ArgfsTer8) NM_014159.6:c.4398dup 0.1229
TGFBR2 NP_001020018.1:p.(Glu510Asp) NM_001024847.2:c.1530A>C 0.15

VHL NM_000551.3:c.463+2T>A 0.1044
Patient 2—metastasis 2

TMB—7.1 CDK12 NP_057591.2:p.(Leu529PhefsTer81) NM_016507.2:c.1585del 0.0989

PTEN NM_000314.6:c.492+1del 0.2308
REL NP_002899.1:p.(Ser274Cys) NM_002908.3:c.821C>G 0.1059

SETD2 NP_054878.5:p.(Gly1467ArgfsTer8) NM_014159.6:c.4398dup 0.1365
TGFBR2 NP_001020018.1:p.(Glu510Asp) NM_001024847.2:c.1530A>C 0.0856

VHL NM_000551.3:c.463+2T>A 0.0828
Patient 3—primary tumor

TMB—4.7 CUL3 NP_001244127.1:p.(Val452PhefsTer9) NM_001257198.1:c.1354del 0.1523

DOT1L NP_115871.1:p.(Met147Ile) NM_032482.2:c.441G>T 0.1664
SETD2 NP_054878.5:p.(Gln2070Ter) NM_014159.6:c.6208C>T 0.1696
TSC1 NP_000359.1:p.(Asn364LysfsTer5) NM_000368.4:c.1091dup 0.195

Patient 3—metastasis 1
TMB—4.7 BAP1 NP_004647.1:p.(Arg385Ter) NM_004656.3:c.1153C>T 0.1193

CUL3 NP_001244127.1:p.(Val452PhefsTer9) NM_001257198.1:c.1354del 0.1127
DOT1L NP_115871.1:p.(Met147Ile) NM_032482.2:c.441G>T 0.1032
SETD2 NP_054878.5:p.(Gln2070Ter) NM_014159.6:c.6208C>T 0.1191
TSC1 NP_000359.1:p.(Asn364LysfsTer5) NM_000368.4:c.1091dup 0.0714

Patient 3—metastasis 2
TMB—4 BAP1 NP_004647.1:p.(Arg385Ter) NM_004656.3:c.1153C>T 0.1026

CUL3 NP_001244127.1:p.(Val452PhefsTer9) NM_001257198.1:c.1354del 0.1076
DOT1L NP_115871.1:p.(Met147Ile) NM_032482.2:c.441G>T 0.0642
SETD2 NP_054878.5:p.(Gln2070Ter) NM_014159.6:c.6208C>T 0.1177
TSC1 NP_000359.1:p.(Asn364LysfsTer5) NM_000368.4:c.1091dup 0.0559

Patient 4—primary tumor
TMB—3.1 ARID5B NP_115575.1:p.(Ala954Asp) NM_032199.2:c.2861C>A 0.0835

BAP1 NP_004647.1:p.(Gly703SerfsTer30) NM_004656.3:c.2107_2116del 0.1046
VHL NP_000542.1:p.(Arg69AlafsTer82) NM_000551.3:c.201_225del 0.0917
XIAP NP_001158.2:p.(Ser169Tyr) NM_001167.3:c.506C>A 0.0583

Patient 4—metastasis 1
TMB—1.6 ARID5B NP_115575.1:p.(Ala954Asp) NM_032199.2:c.2861C>A 0.0835

BAP1 NM_004656.3:c.122+1G>T 0.0806
VHL NP_000542.1:p.(Arg69AlafsTer82) NM_000551.3:c.201_225del 0.0718

Patient 4—metastasis 2 BAP1 NM_004656.3:c.122+1G>T 0.03
VHL NP_000542.1:p.(Arg69AlafsTer82) NM_000551.3:c.201_225del 0.06

Tumor/metastasis differences highlighted by red color. TMB, Tumor Mutation Burden; TS170 data in gray.
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Table 5. The genetic profile of primary tumors and their PMs.

Patient 1
Primary
Tumor

Patient 1
Metas-
tasis 1

Patient 1
Metas-
tasis 2

Patient 2
Primary
Tumor

Patient 2
Metas-
tasis

1

Patient 2
Metas-
tasis 2

Patient 3
Primary
Tumor

Patient 3
Metas-
tasis 1

Patient 3
Metas-
tasis 2

Patient 3
Metas-
tasis 3

Patient 4
Primary
Tumor

Patient 4
Metas-
tasis 1

Patient 4
Metas-
tasis 2

ARID5B
BAP1

BCORL1
CDK12
CUL3

DOT1L
GNAQ
MSH6

MYOD1
PBRM1
PTEN
REL

SETD2
TFE3

TGFBR2
TSC1
VHL
XIAP
VHL
LOH

VHL M
non-sense mutation
missense mutation
splice-site mutation
not analyzable
LOH—loss of heterozygosity—positive
LOH—loss of heterozygosity—negative
LOH—loss of heterozygosity—borderline
M—promoter methylation—positive
M—promoter methylation—negative

4. Discussion

The loss of the short arm of chromosome 3 in CCRCC is a ubiquitous somatic event, ac-
companied by the inactivation of the remaining VHL gene through mutation or methylation
(in >90%) [26–29].

The VHL gene product (pVHL) is a component of E3 ubiquitin ligase complex, a key
regulator of the cellular response to hypoxia. The E3 ubiquitin ligase complex promotes the
degradation of its substrates including the alpha subunit of the hypoxia inducible factor
(HIFα). The loss of VHL results in the accumulation of HIF-α, leading to the constitutive
expression of HIF target genes. These genes are involved in angiogenesis (e.g., VEGF),
glycolysis and glucose transport (e.g., GLUT1), and erythropoiesis (e.g., EPO), which
molecularly characterize CCRCC [30,31]. Mutations in other members of the E3 ubiquitin
ligase complex such as elongin C (ELOC/TCEB1) and cullin 2 (CUL2) occur rarely and are
mutually exclusive to VHL. Although there are differences between tumors with mutations
in TCEB1 and VHL, the dysregulation of the VHL pathway may explain the overlapping
morphology and immunohistochemical profile [32].

Chromosome 3p loss may be identified using different molecular genetic methods.
This and the mutation or promoter hypermethylation of VHL are so common in CCRCC
that a subset of tumors without such alterations may be misclassified [33]; however, the
usage of extensive molecular testing is rare in current clinical practice. Varying driver gene
alterations underpin CCRCC evolution and biology [34,35]. CCRCCs with VHL loss as the
only driver event are indolent and rarely metastasize.

The loss of 3p results in the simultaneous loss of three other tumor suppressor genes
that are frequently mutated in CCRCC: Polybromo 1 (PBRM1) (~50%), SET domain containing
2 (SETD2) (~20%), and BRCA1-associated protein 1 (BAP1) (~15%) [26,32,36]. It should
be noted that tumorigenesis in CCRCC follows a trunk-branch evolution [37], in which
the trunk mutation (VHL) is responsible for tumorigenesis and sub-clonal mutations (i.e.,
PBRM1, SETD2, BAP1) are developed during disease progression.

Similar to VHL, PBRM1 is often mutated early during tumor development [38].
PBRM1-mutated tumors with subsequent SETD2 mutations, driver somatic copy number
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alterations, or P13K pathway alterations have a more attenuated disease course [36,37,39].
In contrast, CCRCCs with BAP1 mutations or multiple driver mutations are associated with
aggressive clinical behavior and early metastatic disease. Additional driver mutations and
somatic copy number alterations include (i) inactivating mutations in histone modifying
genes (KDM5C and KDM6A), (ii) mutations in the mTOR pathway genes (TSC1, TSC2,
MTOR, PIK3CA, PTEN), (iii) the loss of TP53, and (iv) losses of chromosomes 14 and
9 [26,34,40].

Recent large scale gene expression analyses of metastatic CCRCC identified unique
molecular subsets with distinct drug response characteristics [38,41]. CCRCC with high
angiogenic gene signatures had a favorable response to anti-angiogenic therapies and were
enriched with PBRM1 loss [35,41]. In contrast, CCRCCs with an inflamed microenviron-
ment were associated with the highest PD-L1 expression, preferential responsiveness to
regimes containing immune checkpoint inhibitors and the highest rates of sarcomatoid
change and BAP1 mutations [38,39,41].

Passow et al. [11] also showed inter-metastatic tumor heterogeneity in BAP1 immuno-
histochemical reactivity in their study. The primary tumor in their study was BAP1 IHC
positive, the first bone metastasis (synchronous) was IHC negative, and the second bone
metastasis (diagnosed approximately 9 months later) was BAP1 IHC positive. In our
study, we also observed variability in BAP1 immunohistochemical reactivity. In one of
our cases (no. 3), the primary tumor and one of its metastases (PM3) were both BAP1
negative, whereas its two other distant metastases (PM1, PM2) were BAP1 positive. Of
note, these IHC findings were consistent with the mutation analysis. BAP1 IHC expression
also perfectly matched with the mutation profile in our fourth case, although two different
BAP1 mutations were unexpectedly found in the primary tumor and its PM. We assume
that this phenomenon could be a result of genetic drift during tumor progression

There are two genetic “supergroups” in RCCs: the Krebs cycle group and the mTOR/
TSC group. CCRCC is by far the most common example of the Krebs cycle group, whereas
the mTOR/TSC group includes a number of newly recognized novel tumors such as
eosinophilic solid and cystic RCC (ESC-RCC), eosinophilic vacuolated tumor (EVT), low-
grade oncocytic tumor (LOT), and RCC with prominent fibromyomatous stroma (RCC
FMS), for which the mutation of TSC1, TSC2 and/or MTOR is typical [42].

The mTOR pathway is an intracellular signaling pathway important for regulating the
cell cycle. The most common genes involved in the tumorigenesis of the mTOR pathway
group are TSC1, TSC2, and MTOR.

The mutation of the TSC genes in CCRCC is unusual but has been documented. Pang
et al. [43] reported a rare case of CCRCC with novel biallelic somatic mutations in TSC2.
This was a case of a 14-year-old female with VHL syndrome, where histologic findings
were typical of CCRCC morphology. In addition, immunohistochemical findings also
showed immunohistochemical expression for keratin, vimentin, CD10, and RCC, with
negative results for CA9, keratin 7 and TFE3 staining. In our series, one of our patients
(patient 1) demonstrated an interesting combination of mutations of VHL and TSC1 in the
PM, whereas we did not observe this phenomenon in the primary tumor. In the second
patient, we verified a combination of VHL and PTEN mutations in the primary tumor
and both metastases. In our third patient, the primary tumor showed a combination of
TSC1, CUL3, DOT1L and SETD2 gene mutations (but not BAP1), whereas the PM had
the same genetic mutations plus BAP1 mutation. This patient had metastatic disease at
multiple sites post-surgery with disease progression. These molecular genetic findings
indicate that in metastatic lesions, subclonal driver mutations are potentially responsible
for spread and possible treatment failure. Such driver mutations were potentially missed
due to sampling error or a lower number in samples analyzed by bulk sequencing. Another
explanation might be the development of driver mutations over the course of the treatment.
Current evidence suggests that treatment resistance and/or failure is caused by the resistant
subclones, which were not targeted by the initial treatment [37]. We believe that optimizing
the sampling approach in the metastatic setting, including the biopsy of newly developed
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metastatic CCRCC lesions, is important and can aid in effective therapeutic regimens due
to the possible continued propagation of subclones.

One of the important novel renal entities in the differential diagnosis of CCRCC is
RCC FMS [42]. Recognizing RCC FMS not only has academic value, but it also carries
potential clinical implications and therapeutic management. Based on limited clinical data,
these tumors tend to behave in an indolent fashion in most cases. In the largest cohort study
of RCC FMS published to date [44], no evidence of recurrence or progression after surgical
removal was documented. RCC FMS was included in the 2016 WHO classification of renal
tumors as an emerging/provisional entity as “RCC with (angio) leiomyomatous stroma” [2].
However, distinct diagnostic criteria were not defined by the WHO classification. In the
Genitourinary Pathology Society (GUPS) update review paper, the diagnostic histologic
criteria for this distinct subtype of RCC have recently been established [42]. Tumors are
composed of invariably voluminous epithelial clear cell components, which are typically
diffusely positive for keratin 7 and of fibroleiomyomatous stroma. In this type of RCC,
recurrent mutations involving the genes of the TSC/MTOR pathway were found. A subset
of tumors with almost identical morphologic features showed mutations involving ELOC
(also referred to as TCEB1), typically associated with the monosomy of chromosome 8 [44].
Both tumor subtypes lack VHL or chromosome 3p abnormalities [42,44]. In fact, it is not
clear whether TSC/MTOR and ELOC mutated RCC with fibromyomatous stroma are two
different tumor types, or just part of the molecular genetic variability within one tumor
entity. Recently, one tumor with confirmed monosomy 8 and ELOC deletion as well as a
TSC1 mutation was documented [32,44].

RCC FMS are suggested to be more frequently sporadic; however, identical tumors
were documented in patients with TSC. However, although the duration of the follow-
up period is limited, most RCC FMS with TSC/MTOR mutations have demonstrated an
indolent biological behavior [44]. However, lymph node metastases have been reported
in rare cases associated with TSC recently. Although the initial report on ELOC (TCEB1)-
associated RCC FMS suggested indolent behavior, an aggressive clinical course was recently
described [45].

5. Conclusions

CCRCC are highly heterogeneous tumors, with complex molecular profiles both in
the primary and metastatic settings. Tumor mutational profiles can be different not only
between primary and metastatic tumors but also among multiple metastatic lesions them-
selves. It is evident that a one-size-fits-all approach is not optimal for treating advanced
CCRCC and treatments need to be personalized. In this regard, optimizing tumor sampling
and clinical management approaches in metastatic settings is crucial in order to identify
subclonal mutations, which can ultimately lead to effective targeted therapies. The future
of the successful personalized treatment and management of CCRCC is contingent upon a
good understanding and accurate accounting for tumor heterogeneity.

The results of previously published studies and our own results show that CCRCC
is a genetically heterogeneous tumor. The genetic background and mutation profile are
highly variable within the primary tumor. However, data about the molecular genetic
profile of the primary tumor and multiple metastases are very limited. It is apparent that
the mutation profile can be different not only between the primary tumor and metastasis,
but also among multiple metastases. Such important findings raise the question of the
direct testing of each metastasis before the potential targeted therapy. Current clinical
practice largely reflects genetic changes in primary tumors only. Because current oncologic
treatment is reserved mostly for unresectable primary tumors and metastatic disease, we
believe that such findings may become of critical importance.
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4. Procházková, K.; Vodička, J.; Fichtl, J.; Krákorová, G.; Šebek, J.; Roušarová, M.; Hošek, P.; Brookman May, S.D.; Hes, O.;

Hora, M.; et al. Outcomes for Patients after Resection of Pulmonary Metastases from Clear Cell Renal Cell Carcinoma: 18 Years of
Experience. Urol. Int. 2019, 103, 297–302. [CrossRef] [PubMed]

5. López, J.I.; Angulo, J.C. Pathological Bases and Clinical Impact of Intratumor Heterogeneity in Clear Cell Renal Cell Carcinoma.
Curr. Urol. Rep. 2018, 19, 3. [CrossRef]

6. López, J.I.; Cortés, J.M. Multisite Tumor Sampling: A New Tumor Selection Method to Enhance Intratumor Heterogeneity
Detection. Hum. Pathol. 2017, 64, 1–6. [CrossRef] [PubMed]

7. Cortés, J.M.; de Petris, G.; López, J.I. Detection of Intratumor Heterogeneity in Modern Pathology: A Multisite Tumor Sampling
Perspective. Front. Med. 2017, 4, 25. [CrossRef]

8. Gonzalez, M.L.; Alaghehbandan, R.; Pivovarcikova, K.; Michalova, K.; Rogala, J.; Martinek, P.; Foix, M.P.; Mundo, E.C.; Comperat,
E.; Ulamec, M.; et al. Reactivity of CK7 across the Spectrum of Renal Cell Carcinomas with Clear Cells. Histopathology 2019, 74,
608–617. [CrossRef]

9. Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart,
A.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366,
883–892. [CrossRef]

10. Marco Gerlinger, Stuart Horswell, James Larkin, Andrew J Rowan, Max P Salm, Ignacio Varela, Rosalie Fisher, Nicholas
McGranahan, Nicholas Matthews, Claudio R Santos, Pierre Martinez, Benjamin Phillimore, Sharmin Begum, Adam Rabinowitz,
Bradley Spencer-Dene, Sakshi Gulati, Paul A Bates, Gordon Stamp, Lisa Pickering, Martin Gore, David L Nicol, Steven Hazell, P
Andrew Futreal, Aengus Stewart, Charles Swanton Genomic Architecture and Evolution of Clear Cell Renal Cell Carcinomas
Defined by Multiregion Sequencing. Nat. Genet. 2014, 46, 225–233. [CrossRef]

11. Eckel-Passow, J.E.; Serie, D.J.; Cheville, J.C.; Ho, T.H.; Kapur, P.; Brugarolas, J.; Thompson, R.H.; Leibovich, B.C.; Kwon, E.D.;
Joseph, R.W.; et al. BAP1 and PBRM1 in Metastatic Clear Cell Renal Cell Carcinoma: Tumor Heterogeneity and Concordance
with Paired Primary Tumor. BMC Urol. 2017, 17, 19. [CrossRef]

17



Cancers 2021, 13, 5906

12. Brooks, S.A.; Brannon, A.R.; Parker, J.S.; Fisher, J.C.; Sen, O.; Kattan, M.W.; Hakimi, A.A.; Hsieh, J.J.; Choueiri, T.K.; Tamboli,
P.; et al. ClearCode34: A Prognostic Risk Predictor for Localized Clear Cell Renal Cell Carcinoma. Eur. Urol. 2014, 66, 77–84.
[CrossRef] [PubMed]

13. A Rose Brannon, Anupama Reddy, Michael Seiler, Alexandra Arreola, Dominic T Moore, Raj S Pruthi, Eric M Wallen, Matthew E
Nielsen, Huiqing Liu, Katherine L Nathanson, Börje Ljungberg, Hongjuan Zhao, James D Brooks, Shridar Ganesan, Gyan Bhanot,
W Kimryn Rathmell Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct
Subtypes and Survival Patterns. Genes Cancer 2010, 1, 152–163. [CrossRef]

14. Serie, D.J.; Joseph, R.W.; Cheville, J.C.; Ho, T.H.; Parasramka, M.; Hilton, T.; Thompson, R.H.; Leibovich, B.C.; Parker, A.S.; Eckel-
Passow, J.E. Clear Cell Type A and B Molecular Subtypes in Metastatic Clear Cell Renal Cell Carcinoma: Tumor Heterogeneity
and Aggressiveness. Eur. Urol. 2017, 71, 979–985. [CrossRef] [PubMed]

15. Williamson, S.R.; Halat, S.; Eble, J.N.; Grignon, D.J.; Lopez-Beltran, A.; Montironi, R.; Tan, P.-H.; Wang, M.; Zhang, S.; MacLennan,
G.T.; et al. Multilocular Cystic Renal Cell Carcinoma: Similarities and Differences in Immunoprofile Compared With Clear Cell
Renal Cell Carcinoma. Am. J. Surg. Pathol. 2012, 36, 1425–1433. [CrossRef]

16. Chen, Y.-B.; Xu, J.; Skanderup, A.J.; Dong, Y.; Brannon, A.R.; Wang, L.; Won, H.H.; Wang, P.I.; Nanjangud, G.J.; Jungbluth, A.A.;
et al. Molecular Analysis of Aggressive Renal Cell Carcinoma with Unclassified Histology Reveals Distinct Subsets. Nat. Commun.
2016, 7, 13131. [CrossRef]

17. Williamson, S.R.; Grignon, D.J.; Cheng, L.; Favazza, L.; Gondim, D.D.; Carskadon, S.; Gupta, N.S.; Chitale, D.A.; Kalyana-
Sundaram, S.; Palanisamy, N. Renal Cell Carcinoma With Chromosome 6p Amplification Including the TFEB Gene: A Novel
Mechanism of Tumor Pathogenesis? Am. J. Surg. Pathol. 2017, 41, 287–298. [CrossRef]

18. Klatte, T.; Said, J.W.; Seligson, D.B.; Rao, P.N.; de Martino, M.; Shuch, B.; Zomorodian, N.; Kabbinavar, F.F.; Belldegrun, A.S.;
Pantuck, A.J. Pathological, Immunohistochemical and Cytogenetic Features of Papillary Renal Cell Carcinoma with Clear Cell
Features. J. Urol. 2011, 185, 30–36. [CrossRef]

19. Cancer Genome Atlas Research Network Comprehensive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature
2013, 499, 43–49. [CrossRef]

20. Brierley, J.D.; Gospodarowicz, M.K. Wittekind Christian. In TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell:
Hoboken, NJ, USA, 2016; ISBN 978-1-119-26357-9.
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Simple Summary: Multilocular cystic renal neoplasm of low malignant potential (MCRNLMP)
is a cystic renal neoplasm with an excellent prognosis. This neoplasm was previously named as
“multilocular cystic renal cell carcinoma”, which is now considered obsolete. In 2016, the WHO
distinguished this neoplasm of low malignant potential from cystic renal cell carcinomas, which have
some overlapping morphologic features.

Abstract: Multilocular cystic renal neoplasm of low malignant potential (MCRNLMP) is a cystic
renal tumor with indolent clinical behavior. In most of cases, it is an incidental finding during the
examination of other health issues. The true incidence rate is estimated to be between 1.5% and 4% of
all RCCs. These lesions are classified according to the Bosniak classification as Bosniak category III.
There is a wide spectrum of diagnostic tools that can be utilized in the identification of this tumor, such
as computed tomography (CT), magnetic resonance (MRI) or contrast-enhanced ultrasonography
(CEUS). Management choices of these lesions range from conservative approaches, such as clinical
follow-up, to surgery. Minimally invasive techniques (i.e., robotic surgery and laparoscopy) are
preferred, with an emphasis on nephron sparing surgery, if clinically feasible.

Keywords: kidney; cystic tumor; imaging; magnetic resonance; surgery

1. Introduction

Multilocular cystic renal neoplasm of low malignant potential (MCRNLMP) is a be-
nign cystic lesion of the kidney, which was previously known as multilocular cystic renal
cell carcinoma (MCRCC). This entity was initially described in 1982 by Lewis et al. [1].
Over time, the diagnostic criteria have changed from initially being defined as a tumor
in which solid typical renal cell carcinoma exhibit less than 10% of the total mass [2]. A
subsequent proposal suggested a cutoff point of 25% [3]. Finally, the 2012 International
Society of Urological Pathology (ISUP) Vancouver Modification of the 2004 World Health
Organization (WHO) Histologic Classification of Kidney Tumors recommended the re-
designation of MCRCC as a multilocular cystic renal neoplasm of low malignant potential
(MCRNLMP) [4,5]. MCRNLMP has a similar genetic profile and histopathological charac-
teristics to that of clear cell renal cell carcinoma (CCRCC), but with a completely different
prognostic feature with no progression or metastatic potential, because there are no reports
of disease progression or metastases to date [6–11]. The 2016 WHO classification defined

Cancers 2022, 14, 831. https://doi.org/10.3390/cancers14030831 https://www.mdpi.com/journal/cancers21
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MCRNLMP as a tumor entirely composed of multiple cysts, of which the septa contain
small groups of clear cells without expansive growth, and is morphologically indistin-
guishable from low-grade CCRCC [12]. It should be noted that MCRNLMP follows strict
histologic criteria that would allow any expansive growth, the presence of which qualifies
the tumor as a cystic CCRCC [5,12].

2. Clinical Characteristics

MCRNLMP is a relatively rare entity, representing approximately less than 1% of all
renal tumors, affecting middle-aged adults with a slight male predominance [2,13–15]. Most
cases are asymptomatic and found incidentally. However, in the setting of large tumors,
patients may present with gross hematuria, flank pain, palpable mass and abdominal
discomfort, and sometimes digestive symptoms [3,16].

3. Imaging Studies

MCRNLMP is often initially identified on B-mode ultrasound as a well-defined multi-
locular cystic lesion with numerous septa, filled with serous or complicated fluid. Given
the cystic nature of the lesion, further investigation by computed tomography (CT) using
contrast agent is still the gold standard in classification and subsequent decision making in
the field of cystic tumors of the kidney. The Bosniak classification with five groups (I, II, IIF,
III and IV) is used as standard for defining cystic tumors of the kidney on CT. Results of CT
scans and strict definitions of the Bosniak category of the cystic lesion are crucial for the fur-
ther management of these lesions [17–21]. According to Bosniak, great parts of MCRNLMPs
are defined/described as Bosniak category II, IIF or III [22,23]. In indeterminate cases where
the CT imagining shows Bosniak category IIF–III, other imaging modalities (i.e., MRI),
with greater precision and better visualization of the inner architecture of the septa, can
be utilized [24,25] (Figure 1). In patients who cannot undergo CT or MRI, the preferred
modality choice would be contrast-enhanced ultrasound (CEUS) [26–30]. This modality
is now recognized as a diagnostic tool with at least the same effectiveness and imaging
precision of cystic lesion as contrast-enhanced magnetic resonance or contrast-enhanced
computed tomography [21,31–33].

3.1. Bosniak Classification

The first time the Bosniak classification was proposed and published was in 1986 [18].
In the following years and decades, this classification underwent several updates. Origi-
nally, four groups were expanded into five groups, adding a new unit—Bosniak IIF. The
latest update of the Bosniak classification came in 2019 [34–36].

Each Bosniak group is evaluated according to the structure of the cystic lesion, the
number of septa, the thickness and regularity/irregularity of the septa and wall, the
presence of contrast enhancement in the septa, and the presence of calcifications or soft-
tissue nodules.

Bosniak I group—simple cyst, uncomplicated. Defined by a thin wall, no septa, and
no contrast enhancement.

Bosniak II group—minimally complex cyst, minimally complicated. Defined by a
thin wall and septa, calcifications can be present, and no contrast enhancement.

Bosniak IIF group—slightly thickened wall, thin septa with visible, but not measur-
able enhancement, and the presence of calcifications.

Bosniak III group—indeterminate cystic tumor, thickened, irregular wall and septa,
and measurable contrast enhancement.

Bosniak IV group—cystic tumor, soft-tissue nodules with measurable enhancement.
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Figure 1. Imaging methods: comparison of CT imaging (A,C) and MRI (B,D) of the same lesion.
There is a clearly visible benefit of MRI in imaging of the inner architecture with more precise imaging
of the septa. (E,F) Intraoperative ultrasound image of MCRNLMP.

3.2. Differential Diagnostics

Due to its cystic nature, MCRNLMP could be misdiagnosed as another cystic tumor of
the kidney, according to imaging studies. In differential diagnostics, it could be diagnosed
as a hemorrhagic or inflamed cyst, or mixed epithelial and stromal tumor of the kidney
(MESTK) [22]. A recent study from Song et al. [33] described a series of six cases of Xp11
translocation renal cell carcinoma, which have some morphological features mimicking
MCRNLMP. Entities in the differential diagnosis are summarized in Table 1.
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4. Therapeutic Management

The therapeutic management of cystic lesions of the kidney (including MCRNLMP)
is still based on the results of imaging studies and precise categorization according to the
Bosniak classification system. Each Bosniak category is associated with the individual risk
of malignancy and the malignity rate. The malignity rate is based on typical signs of each
group-complexity of the lesion and the characteristics mentioned above (Section 3.1). The
malignity rates in Bosniak I and II, based on recent cohorts in the literature, are given as
3.2% and 6%, respectively [37]. The Bosniak IIF malignity rate is reported as 6.7% [37] or
18% [38]. The Bosniak III malignity rate is 55.1% [37]. In Bosniak IV, the malignity rate is
reported as 91% [37].

There is no need for intervention or regular follow-up in Bosniak I and II category,
except for large lesions with clinical symptoms. Bosniak IIF is a cystic lesion, where regular
follow-up is recommended. However, no strict consensus protocol has been provided, and
the follow-up protocols or eventual surgical intervention are still controversial. Follow-up
is the preferred choice of management. There are multiple proposed recommendations
in the literature on how to manage these lesions. Bosniak et al. proposed a follow-up
regimen based on CT scans 6 months after diagnosis. In cases of no progression, another
imaging study should be performed once per year [39]. Another study from Weibl et al.
suggested follow-up CT scans every 6 months in the first 2 years, and then continuing
with the imaging study once every year. The authors incorporated MRI in the follow-up
regimen, which should be performed minimally in the first 4 years of follow-up [40,41].
For Bosniak III category lesions, there are two options available: (1) surgical treatment,
possibly with minimally invasive nephron sparing surgery with regard to the oncological
radicality of the procedure; and (2) strict clinical follow-up, as per the recent guidelines
of the European Association of Urology [42]. Bosniak IV is treated as a solid tumor of the
kidney, with the surgical interventions described above.

5. Pathological Findings

5.1. Macroscopic Findings

MCRNLMP exclusively consists of variably large non-communicating cysts (0.4–
14 cm) [9,10], which are separated by thin septa and filled with serous, gelatinous, hemor-
rhagic, or mixed fluid (Figures 2 and 3). There are no solid components in these lesions,
and, in fact, the presence of such solid nodules would not be compatible with the diag-
nosis of this entity [9,10,12,43]. Most patients have unilateral lesions with no laterality
predominance [3,9,44].

Figure 2. Macroscopic appearance of the MCRNLMP specimen from nephron sparing surgery. There
is a multicystic lesion with a thin septa and variable sized cystic spaces without solid expansion.
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Figure 3. Macroscopic appearance of an MCRNLMP specimen from nephron sparing surgery. The
dominant cystic space contains smaller cystic expansion. The absence of solid mass is crucial for the
diagnosis of MCRNLMP, and must be proved by microscopic examination of the specimen.

5.2. Microscopic Findings

The neoplasm is composed of the cystic spaces lined by clear cells, exhibiting low-
grade nuclei without nucleoli (WHO/ISUP grade 1–2). No expansive/solid nodular growth
of clear tumor cells, necrosis, vascular invasion or sarcomatoid changes have been noted in
MCRNLMP. In rare cases, the linings of cysts may show multilayering, granular cytoplasm
of cells and the formation of small intracystic papillae. Furthermore, the septa may exhibit
calcification or ossification [12,45] (Figure 4).
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Figure 4. Histological appearance of MCRNLMP: (A,B) The lesion is characterized by the formation
of cystic spaces—various sized cysts are separated by thin, fibrous septa (magnification 10×, resp.
60×). (C) The epithelial lining is composed by neoplastic cells with clear cytoplasm arranged in a
single layer (magnification 160×). (D) The epithelial lining is positive in PAX8 (magnification 10×).
(E) Equally, carbonic anhydrase IX (CAIX) shows positivity in neoplastic cells (magnification 10×).
(F) Strong immunoreactivity was proved in CK7 (magnification 10×).

5.3. Immunohistochemical Findings

Neoplastic cells are typically PAX2-, PAX8-, and carbonic anhydrase IX (CAIX)-
positive [46–48]. In wider immunohistochemical panels, MCRNLMP is usually negative in
α-methylacyl-CoA-racemase, progesterone and estrogen receptor. Strong immunoreactivity
was proven in EMA, CAM5.2 and CK7 [44,49].

Some authors used less common immunohistochemical staining techniques in their
immunohistochemical studies—Kuroda et al. demonstrated the immunoreactivity of
the cytoplasm of tumor cells in adipophilin which corresponded to lipid droplets [44].
Adipophilin expression in CCRCC has previously been reported, which may reflect a
close relationship between MCRNLMP and CCRCC [50]. Kim et al. recently examined
a number of immunostains between MCRNLMP and CCRCC. According to their study,
the expressions of TGAse-2 and Ki-67 were significantly different between these two
groups [12,51].

5.4. Molecular Genetic Findings

VHL gene mutations were found in 25% of MCRNLMP [47], and deletions of chromo-
some 3p in 74% of cases in comparison with 89% of CCRCC. These findings can support the
concept of MCRNLMP being genetically related to CCRCC [52]. Kuroda et al. also reported
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a loss of heterozygosity (LOH) in chromosome 3p in one MCRNLMP case [44]. Tretiakova
et al. found a high rate of chromosome 3 abnormalities with chromosome 3 monosomy
in 3/3 MCRNLMP cases [10]. Raspollini et al. conducted a comparison study between
CCRCC and MCRNLMP using a genetic mutational analysis. There were no significant
genetic differences between these two groups, except for KRAS mutation. According to
their results, the KRAS mutation may be helpful for distinguishing between CCRCC and
MCRNLP, despite their histologic similarities [53]. Kim et al. identified six novel genetic
alterations, including SET domain-containing 2 (SETD2), lysine methyltransferase 2C (KMT2C),
tuberous sclerosis complex 2 (TSC2), GRB10 interacting GYF protein 2 (GIGYF2), fibroblast
growth factor receptor 3 (FGFR3) and breakpoint cluster region protein (BCR), also known as
renal carcinoma antigen NY-REN-26 (BCR), which could be potential candidate genes for
differentiating between MCRNLMP and MCRCC [54].

6. Prognosis

The prognosis of MCRNLMP is excellent, with no cases of progression or metastatic
spread [55]. This fact is based on multiple publications including more than 200 patients
with clinical follow-ups longer than 5 years [1,5,6,9].

7. Discussion

Since the first report of MCRNLMP (then MCRCC) in 1982 [1], this entity has evolved,
frequently being characterized, specified, named/re-named, and classified [2,3]. Firstly, it
was characterized as a cystic neoplasm with less than 10% [2] and then less than 25% solid
area [3]. Finally, MCRNLMP is described as a tumor entirely composed of cystic spaces
with no expansive/solid nodules [56,57]. The original classification as multilocular cystic
renal cell carcinoma (MCRCC) was re-designated as MCRNLMP, according to the ISUP
recommendation, and became a part of the current WHO classification of renal tumors
(2016) [5,12]. The nuclear grade (WHO/ISUP) of MCRNLMP is typically 1 (in two thirds of
cases), or grade 2 (in one-third of MCRNLMP). WHO/ISUP grade 3 is not compatible with
the diagnosis of MCRNLMP [10].

Chromosomal abnormalities were described in various studies, and chromosome 3p
deletion was proved in 74% of MCRNLMP [52]. The von Hippel-Lindau (VHL) gene muta-
tions were described in 25% of cases of MCRNLMP [47]. Furthermore, one case of loss of
heterozygosity (LOH) in chromosome 3p in MCRNLMP was presented by Kuroda et al. [44].

The accurate incidence of MCRNLMP is not known, because of its rarity and variable
diagnostic criteria used in various studies. However, it is estimated that MCRNLMP
accounts for fewer than 1% of all renal neoplasms [16,23,58–60].

As with other cystic lesions of the kidney, MCRNLMP should be precisely diagnosed
using proper imaging methods prior to treatment planning. The gold standard in imaging
of the cystic tumors of the kidney is contrast-enhanced CT. The Bosniak classification is
currently utilized to stratify the lesion accordingly [18–21,36]. In indeterminate cases where
the initial CT imaging is not conclusive enough, a second imaging choice, such as MRI,
needs to be utilized; some studies have demonstrated its benefit in diagnostics of cystic
lesions of the kidney [24,25]. Other potential imaging modalities which can be used include
contrast-enhanced ultrasound (CEUS) [26–29,61,62]. Typically, MCRNLMP is categorized
as a cystic lesion, category Bosniak IIF or III [22,23]. Imaging studies cannot precisely
distinguish MCRNLMP from other cystic lesions preoperatively [16,44,58,59,63].

The therapeutic management of MCRNLMP consists of strict clinical follow-ups or
surgical interventions. There is still no strict protocol as to how and when to follow up
Bosniak IIF category lesions. Weibl et al. suggested a CT scan in the follow-up every 6
months in the first 2 years, and then continuing with imaging studies once every year.
The authors incorporated MRI into the follow-up regimen, which should be performed
minimally in the first 4 years of follow-up [40]. In the past, Bosniak III lesions were strictly
associated with surgical intervention. However, according to the recent EAU guidelines [42],
it is possible to strictly follow-up such cases. The current preferred surgical approach is
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minimally invasive nephron-sparing surgery, which may allow the laparoscopic or robotic
resection of such lesion, if technically feasible and oncological radicality is achievable.

In summary, MCRNLMP is a cystic lesion of the kidney with excellent prognosis.
In 2016, the WHO separated this neoplasm of low malignant potential from cystic renal
cell carcinomas, which have some overlapping morphologic features. Minimally invasive
procedures (i.e., robotic surgery and laparoscopy) are preferred, with emphasis on nephron
sparing surgery, if clinically feasible.
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Simple Summary: Intratumor heterogeneity (ITH) is a constant event in malignant tumors and the
cause of most therapeutic failures in modern oncology. Since clear cell renal cell carcinoma (CCRCC)
is a paradigm of ITH, an appropriate tumor sampling is mandatory to unveil its histological and
genomic complexity. Several strategies have been developed for such a purpose, trading-off cost and
benefit. Here, we propose an evolution of the previous multisite tumor sampling (MSTS) strategy
based on the last findings in the spatial distribution of metastasizing clones. This new personalized
MSTS pays special attention to sample by sectors peripheral zones of the tumor, where ITH is high.

Abstract: Intratumor heterogeneity (ITH) is a constant evolutionary event in all malignant tumors,
and clear cell renal cell carcinoma (CCRCC) is a paradigmatic example. ITH is responsible for most
therapeutic failures in the era of precision oncology, so its precise detection remains a must in modern
medicine. Unfortunately, classic sampling protocols do not resolve the problem as expected and
several strategies have been being implemented in recent years to improve such detection. Basically,
multisite tumor sampling (MSTS) and the homogenization of the residual tumor tissue are on display.
A next step of the MSTS strategy considering the recently discovered patterns of ITH regionalization
is presented here, the so-called personalized MSTS (pMSTS). This modification consists of paying
more attention to sample the tumor periphery since it is this area with maximum levels of ITH.

Keywords: multisite tumor sampling; intratumor heterogeneity; clear cell renal cell carcinoma

1. Introduction

In these days of highly sophisticated medicine, simple things such as tumor sampling
still matter. Pathologists are the specialists responsible for handling and sampling tumor
specimens in such a way that crucial information of every tumor can be unveiled. A strategy
adaptable to different patterns of tumor evolution, trading-off cost and benefit, is needed to
maximize results and to respond to oncologists’ expectations [1]. Although tumor sampling
is a key point applicable to every tumor type, this narrative focuses specifically on clear
cell renal cell carcinoma (CCRCC) because of the previous experience of the authors in
this area. In addition, CCRCC is a quite common neoplasm in daily practice and a well-
known example of intratumor heterogeneity (ITH). The following paragraphs review the
principal arguments supporting the necessity to update tumor sampling strategies and
revisit possible alternatives for the progressive implementation of a so-called “precision
sampling” [2].

CCRCC ranks in the top 10 list of the most frequent tumors in Western countries and
remains a problem of major concern for many health systems. Roughly 79,000 new cases
and 14,000 deaths are expected in USA in 2022 [3]. Traditionally chemo- and radio-resistant,
only early detection and antiangiogenic and immune checkpoint blockade therapies, alone
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or in combination, have improved survival of CCRCC patients in the last decade. However,
a significant proportion of these patients still die of disease, usually in the context of a
metastatic disease.

CCRCC is a paradigmatic example of ITH, which is the cause of most therapeutic
failures to date. Genomic analyses have shown that CCRCC is a complex disease in which
clonal and sub-clonal diversification is high across the tumor with many genetic alterations
involving typically few regions. This fact was unveiled in the seminal paper published by
Gerlinger et al. in 2012 [4], in which the authors performed exome sequencing, chromosome
aberration analysis, and ploidy profiling in multi-regional samples of four patients with
metastatic disease. Since then, a great many studies have brought to light the spatial and
temporal dynamics governing the evolution of this tumor type and others.

Although initially considered a purely stochastic process, tumor evolution in CCRCC
seems to follow some deterministic pathways. In this sense, a recent analysis of 1206 regions
of 101 cases has discovered up to seven evolutionary patterns correlated with patient
prognosis [5]. BAP-1 driven, multiple clonal drivers, and VHL wild-type tumors were
shown to follow a punctuated evolutionary model with rapid progression and display high
levels of chromosomal complexity and low levels of ITH. By contrast, the family of PBRM1
mutated tumors showed a branched evolution with attenuated progression, with lesser
chromosomal complexity and high ITH. An analysis of 575 primary and 335 metastatic
regions in 100 CCRCC patients has shown that the metastatic ability of CCRCC is associated
with 9p and 14q losses [6]. The same study has also shown that those neoplasms which
show a punctuated evolution presented early, multiple metastases while those with a
branching pattern develop late, solitary ones.

Punctuated and branching are terms referring to two different patterns of temporal
evolution which come from the application of ecological principles to cancer. Under this
perspective, a tumor is a huge community of different individuals including neoplastic cells
and cells of the tumor microenvironment such as endothelia, tumor-associated fibroblasts,
macrophages, tumor-associated lymphocytes, and others. These elements are permanently
interacting one each other. At least four models of tumor evolution have been described
so far: linear, branching, neutral, and punctuated [7]. Linear, branching, and punctuated
are Darwinian-type models whereas neutral is considered non-Darwinian. Linear model
refers to a step-wise temporal process in which all cancer cells progressively increase their
malignancy. This pattern will generate tumors with very low ITH. In the branching type
of evolution, tumor cells coming from the same ancestor temporarily acquire different
mutations resulting in different clones which regionalize the tumor in different areas. This
pattern will give rise to tumors with high ITH. The punctuated pattern of evolution, also
called the “big bang” model, is the result of a genomic aberration generating a dominant
clone with high fitness at the very early stages of tumor evolution. As a result, punctuated
tumors are typically aggressive and show low levels of ITH. Finally, neutral evolution re-
flects an evolutionary pattern in which extreme clonal diversity (hyper-branching) develops
resulting in tumors with very high ITH.

ITH also impacts tumor microenvironment, including cancer associated fibroblasts,
macrophages, and tumor infiltrating lymphocytes. For example, it has been demonstrated
that the expression of PD-1, PD-L1, and other immune checkpoint markers may be highly
variable across different tumor regions, a feature that can compromise the correct selection
of patients for immune checkpoint blockade therapy if the tumor is not appropriately
sampled [8]. An incomplete tumor sampling may lead to false negative results, thus ruling
out patients for a beneficial therapy. In this sense, Khagi et al. observed non-expected
good responses to anti-PD-L1 therapy in up to 17% of cases that apparently did not express
PD-L1 in the immunohistochemical study [9] suggesting suboptimal analyses.

2. Classic Sampling Protocols

Classic sampling protocols were designed decades ago when ITH detection was not a
key issue for diagnosis and therapy. At that time, the recommendation was to obtain one
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tumor tissue sample per centimeter of tumor diameter plus samples from the tumor/non-
tumor interface and from “suspicious” areas (Figure 1A) [10]. Those sampling protocols
are not supported by any scientific observation and surprisingly survive nowadays in the
era of precision medicine.

 

Figure 1. Schematic of tumor sampling evolution in clear cell renal cell carcinoma. The classical
sampling protocol (A) calls for one block per centimeter of tumor diameter. Multisite tumor sampling
(B) randomly selects a large number of small tumor samples across the tumor using the same number
of blocks as the classic protocol. Advanced multisite tumor sampling (C) takes a few samples at the
tumor center, where intratumor heterogeneity is low but metastatic genotypes and necrosis (pink
areas) are common, and many small samples at the periphery, where intratumor heterogeneity and
local invasiveness are high. Here, the small fragments selected are grouped in blocks by sectors,
thus enabling the precise location of any key change in any sample to be monitored. Note that
tumor/non-tumor, tumor/renal sinus, and tumor/perinephric fat interfaces are similar in the three
methods (block shown in red).

Since ITH makes every tumor unique and unrepeatable, and next generation sequenc-
ing tools are demonstrating the real dimension of the genetic variability across a single
tumor, the main question here should be: how much sampling is needed in every case?
Total tumor sampling might be the perfect answer. This strategy may be affordable and
advisable in small tumors (<3 cm), but it is not a realistic option in many tumors due to
many of them are much larger. Some authors have suggested that sampling three distant re-
gions would suffice to detect with a reliability of 90% of certainty key mutations in CCRCC
such as those occurring in PBRM1, SETD2, BAP1, and KDM5C genes [11]. However, the
number of samples should not be aprioristically fixed since it should vary with the size of
the tumor.

3. Multisite Tumor Sampling (MSTS)

Classic sampling protocols seem insufficient in light of subsequent studies, which
have suggested the convenience of a more thorough sampling to detect exome-wide driver
events [5,6]. For this reason, a new, affordable strategy for trading-off cost and benefit was
developed in 2016 [12]. It is called multisite tumor sampling (MSTS) (Figure 1B) and is
based on the divide-and-conquer principle [13], a mathematical algorithm successfully
used in such widely differing scientific fields as particle physics and medicine. The strategy
consists in recursively breaking down a given problem into simpler parts (divide) until
they are simple enough to be solved (conquer). Once the simple parts are solved they

35



Cancers 2022, 14, 3381

are all merged to resolve the initial problem. In our example, its application to tumor
sampling consists of including six to eight small tissue fragments per block instead of a
single large fragment (Figure 2). In this way, MSTS can afford to sample up to 48 tumor
regions very distant from each other when sampling a 6 cm-in-diameter tumor, for example.
In silico modelling comparing the performances and costs of the classic sampling protocol
and MSTS confirms the superiority of the latter in detecting ITH at all temporal stages
of tumor evolution [13,14]. A comparison of the performance in detecting histological
features of bad prognosis such as high grade and granular eosinophilic cells [15] with both
methods in 38 CCRCC showed that MSTS was significantly more informative than routine
sampling [16].

 

Figure 2. Multisite tumor sampling (pink blocks) consists on including six to eight small tumor tissue
fragments in each paraffin block instead of one large tumor fragment proposed by the classic protocol
(green blocks). This way, the same number of paraffin blocks sample many more tumor regions.

Aside from CCRCC, the usefulness of MSTS in CCRCC has been confirmed by sub-
sequent histological, immunohistochemical, and molecular studies in ovarian carcinoma,
mesothelioma, and head and neck squamous cell carcinoma [17–20]. Lakis et al. [17] have
analyzed 294 tumor sections from 70 treatment naïve patients who had undergone cy-
toreductive surgery of ovarian cancer and have observed not only the high histological
variability of tumors across different regions, but also the irregular qualitative and quanti-
tative distribution of tumor-associated lymphocyte, information with obvious prognostic
and therapeutic implications. They conclude that ITH in ovarian cancer may limit the
usefulness of pre-operative biopsies to make some therapeutic decisions. Meiller et al. [18]
underline the usefulness of MSTS in detecting molecular ITH in malignant mesothelioma.
MSTS performed in 16 patients from two different hospitals were analyzed both histolog-
ically, and by RT-PCR and targeted NGS. Mutational ITH, copy number variations and
fusion transcripts, differential gene expression and signal pathway dysregulation, histo-
molecular heterogeneity, epigenetic ITH, and tumor microenvironment were evaluated.
The authors conclude that spatial ITH is high in malignant pleural mesothelioma and stress
the convenience of analyzing different topographical areas of the tumor. This policy must
be performed to better estimate the patient prognosis and the prediction of response to
subsequent treatment. Jie et al. [19] have compared the performance of routine sampling
and MSTS in 182 oral and oropharyngeal squamous-cell carcinomas. The authors included
in the comparison histological, immunohistochemical, and molecular parameters, and
concluded that MSTS was more informative than routine sampling in detecting perineurial
permeation, peritumoral vascular/lymphatic growth, necrosis, muscle invasion, PIK3CA
mutations (exons 9 and 20), and CDKN2A promoter methylation. Brunelli et al. [20]
have recently compared a multi-regional sampling strategy called 3D fusion with routine
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sampling in 100 CCRCC analyzing the respective performance of both methods in the
detection of angiogenic and immune markers. These authors confirm the superiority of
3D fusion sampling and agree that sampling one block/cm of tumor tissue diameter is
inadequate to fully characterize ITH in CCRCC. Finally, another in silico study has shown
the superiority of an adapted variant of the MSTS method in detecting tumor budding and
intramural vasculo-lymphatic invasion in hollow viscera (urinary bladder and digestive)
adenocarcinomas [21].

4. Homogenization of the Residual Tumor Tissue

Another attempt to improve genomic ITH detection in solid tumors has recently been
made [22]. This method proposes the homogenization of the leftover residual tumor tissue
before sequencing, thus guaranteeing the full genomic analysis of the whole tumor. How-
ever, this protocol has its limitations because not all surgical specimens generate enough
representative leftover tissue after histological sampling. In addition, the topographic
localization of the genomic data and its correlation with histology—a point that may be
important—is lost after tissue homogenization. As it will be mentioned in the following
paragraphs, leftover tissue homogenization will also negatively affect the precise topo-
graphic identification of the differences in the tumor microenvironment between tumor
center and periphery, which are derived from differences in the hypoxic status, another
crucial targetable point.

In a context of high diagnostic pressure, some pathologists may be reluctant to increase
the time and cost needed to implement both 3D fusion [20] and the homogenization of the
leftover residual tumor [22], a point that may limit their widespread implementation. By
contrast, MSTS saves time because it is an all-in-one procedure, enabling at the same time
the histological analysis with a genomic correlation to take place in the same paraffin block
and preserving the formalin-fixed paraffin-embedded material for the future. Also, MSTS
is an affordable method in public health systems since it does not increase the cost. If the
paraffin block is considered the unit of cost in Pathology Labs, the MSTS’s cost is similar
to the routine sampling because it employs the same number of blocks. For these reasons,
MSTS is superior in terms of trading-off performance obtained and cost.

5. Personalized Multisite Tumor Sampling (pMSTS)

Recent findings on the spatial distribution of CCRCC clones and sub-clones [23,24]
also suggest taking a step forward in searching for a more refined tumor sampling strategy.
This evolution should look for constraints on cost and time, efficacy in the detection of
histological and genomic data, and adaptability to adjust the procedure case by case. It
should be noted that tumors are usually sampled without knowing the precise tumor
landscape in every case. However, some broad findings in selected cases may supply useful
data since predicting the possibility of aggressive forms of CCRCC may help in making
sampling decisions. For example, spontaneous tumor necrosis is a common finding in
large tumors which can be detected by the naked eye and is always related to high grade.
Low ITH at histological and genomic levels are characteristic findings in many aggressive
CCRCC [6,25]. In consequence, it can be inferred even in the grossing room that tumors
showing areas of necrosis will have high-grade histological features and low levels of ITH.

A study of 756 mapped regions of 101 CCRCC has shown that the copy number
alteration burden, percentage of necrosis, and histological grade are higher in the tumor
interior, which is also where the metastasizing subclones preferentially develop, probably
as a survival response to local environmental hypoxic pressures [23]. Moreover, a model
enabling the development of clonal diversity in space and time of these tumors to be
understood has been developed based on patterns of tumor growth and necrosis [24].
As a result, high ITH is located at the tumor periphery while the tumor interior remains
relatively homogeneous. Since the conditions of hypoxia differ between the tumor center
and periphery, tumor microenvironments adapt to the specific local necessities, displaying
qualitative and quantitative variations in the innate and adaptive tumor immunities, tumor-
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associated fibroblasts, and other elements of this tumor compartment [26]. Interestingly,
this model or center versus periphery distinction, at least in CCRCC, also has clinical
implications since it connects radiological evidence of peripheral tumor budding in the
early stages of tumor development with predictable future clonal evolution [24].

A more precise tumor sampling requires investing some extra time in the grossing
room paying special attention to the macroscopic characteristics of the tumor, including
size and shape, tumor margins, and allowing the detection of other tumor features like
tissue consistency and color that usually give additional interesting information. Taking
these classic recommendations on mind, together with the latest findings on spatial tumor
evolution and regionalization as a whole, an advanced version of the MSTS protocol will
provide a more closely adapted approach at the time of sampling CCRCC (Figure 1C).
Given that metastasizing clones related to tumor necrosis, high grade, and low ITH are
mostly located in the tumor interior, several samples placed in one block would suffice
to provide a reliable representation of this tumor area including tumor and non-tumor
cells. Also, grey/whitish tumor areas with stiffer consistency indicating sarcomatoid
dedifferentiation will be seen by naked-eye and then included within the high-grade tumor
blocks. By contrast, the peripheral rim of the tumor is characterized by high levels of
ITH [23,24]; for this reason, many small tissue fragments such as those of the MSTS are
needed to provide a complete snapshot of the tumor periphery. What is more, these small
tissue samples can be included in the blocks distributed by sectors, so the topographic
location of any specific molecular alteration associated to prognosis or treatment can be
determined with precision in every case.

6. Conclusions

Tumor sampling strategies do impact significantly on the development and success of
truly precision oncological therapies. To hit the target and achieve widespread implemen-
tation, this strategy must be easily affordable on one hand and trade-off costs and benefits
on the other; otherwise, its implementation in many Pathology Labs will be at risk. Two
variants of the MSTS adaptable to the macroscopic findings observed in the grossing room
and the alternative option of a complete homogenization of the leftover residual tumor
tissue are currently available. To note, they appear to be complementary, non-exclusive
according to this Perspective.
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Simple Summary: Early detection of renal cell carcinoma (RCC) significantly increases the likelihood
of curative treatment, avoiding the need of adjuvant therapies, associated side effects and comorbidi-
ties. Thus, we aimed to discover circulating microRNAs that might aid in early, minimally invasive,
RCC detection/diagnosis.

Abstract: Background: Decreased renal cell cancer-related mortality is an important societal goal,
embodied by efforts to develop effective biomarkers enabling early detection and increasing the
likelihood of curative treatment. Herein, we sought to develop a new biomarker for early and
minimally invasive detection of renal cell carcinoma (RCC) based on a microRNA panel assessed by
ddPCR. Methods: Plasma samples from patients with RCC (n = 124) or oncocytomas (n = 15), and 64
healthy donors, were selected. Hsa-miR-21-5p, hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p
levels were evaluated using a ddPCR protocol. Results: RCC patients disclosed significantly higher
circulating levels of hsa-miR-155-5p compared to healthy donors, whereas the opposite was observed
for hsa-miR-21-5p levels. Furthermore, hsa-miR-21-5p and hsa-miR-155-5p panels detected RCC
with high sensitivity (82.66%) and accuracy (71.89%). The hsa-miR-126-3p/hsa-miR-200b-3p panel
identified the most common RCC subtype (clear cell, ccRCC) with 74.78% sensitivity. Conclusion:
Variable combinations of plasma miR levels assessed by ddPCR enable accurate detection of RCC in
general, and of ccRCC. These findings, if confirmed in larger studies, provide evidence for a novel
ancillary tool which might aid in early detection of RCC.
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1. Introduction

Renal cancer remains one of the leading urologic cancers worldwide, being listed as
one of the twenty most common and deadly cancers, especially among men (1.5:1) [1,2].

Renal cell tumors (RCTs) correspond to a set of benign and malignant neoplasms, with
extensive diversity at epigenetic, molecular, and clinical levels [3,4]. Among them, about
10% correspond to benign tumors, with oncocytomas constituting the most common benign
tumor [1,4]. Concerning malignant RCTs, clear-cell renal cell carcinoma (ccRCC) is the most
common subtype (65–75% of all RCCs) [5], followed by papillary renal cell carcinomas
(pRCC, ~16%) and chromophobe renal cell carcinomas (chRCC, ~7%)[5]. RCCs derive
from nephron epithelial cells [1,6,7] and are characterized by their heterogeneity, both
morphological and molecular. Whereas localized RCC is mostly cured by surgery, locally
advanced or systemic disease constitute major therapeutic challenges, entailing the need
for development not only of biomarkers for early detection, but also novel therapies [8].

In recent years, several studies have been published concerning the use of circulating
microRNAs (miRNAs) for early and minimally invasive detection of RCC [1,9]. MiRNAs
are small non-coding RNAs involved in cell differentiation, growth, apoptosis, and prolifer-
ation, and have been implicated in suppressing gene expression after translation [10,11].
MicroRNA dysregulation has been extensively described in various cancers, including
RCC [4,10–13]. Frequently, miRNA levels differ between cancerous and normal tissues,
representing an opportunity for biomarker development, both in tissue samples and in liq-
uid biopsies [10,11]. Nonetheless, the biomarker performance of most candidate miRNAs
remains suboptimal, and concerns remain as to the most adequate methods for assessment
and normalization [14,15]. Indeed, all published studies on the assessment of miRNAs in
the liquid biopsies of RCC patients have used qRT-PCR [1,9], a technique which provides
relative quantification, thus requiring normalization of the results. Although miR-16 should
be the preferential normalizer due to its stability in RCC [15–18], many of the published
studies used RNU44, U6, or other similar RNA species instead, which are unstable in
liquid biopsies, eventually leading to biased results [14,19–27]. This problem might be
solved using a different technology, droplet digital PCR (ddPCR), as it obviates the need
for normalization and preamplification. DdPCR is a recent technology that appears to
improve miRNA detection, as it is based on sample partitioning before the PCR reaction
and on the Poisson distribution, allowing for absolute quantification, in a time-cost effective
and reliable manner [28,29]. Furthermore, the time point of data acquisition increases the
precision and robustness of the method [28,29].

Thus, in this study, taking advantage of the performance of ddPCR in liquid biopsies,
we sought to evaluate, for the first time, the ability of a microRNA panel (hsa-miR-21-5p,
hsa-miR-126-3p, hsa-miR-155-5p, and hsa-miR-200b-3p), previously assessed in tissue
samples [13,30] to detect RCC using plasma samples.

2. Materials and Methods

2.1. Samples

A total of five plasma samples were included in the technical optimization phase of the
study, in which the ddPCR methodology was tested: one oncocytoma, one stage I pRCC,
one stage I ccRCC, one stage I chRCC, and one healthy adult blood donor.

After optimizing the ddPCR pipeline, a cohort of 203 plasma samples was assessed,
comprising 139 samples collected from RCT patients at the time of diagnosis and 64 healthy
blood donors. Regarding RCT patients, 87 corresponded to ccRCC, 22 to chRCC and 15 to
pRCC, whereas oncocytoma was diagnosed in the remaining 15. All patients were treated
at IPO Porto by the same multidisciplinary team between 2015 and 2021. After peripheral
blood collection into EDTA-containing tubes, plasma was separated by centrifugation at
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2500 g for 30 min at 4 ◦C, and subsequently stored at −80 ◦C in the institutional biobank
until further use. All blood samples were processed within 4 h from the time of collection.
Relevant clinical and pathological data were analyzed from clinical charts and grouped in
an anonymized database specifically constructed for the analysis.

2.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted from 100 μL plasma using a MagMAX mirVana Total RNA
Isolation kit (Thermo Fisher, Waltham, MA, USA, A27828), according to the manufacturer’s
protocol. As a technical control, a non-human synthetic spike-in, ath-miR-159a (0.2 μL per
sample of a stock solution at 0.2 nM), was added to the lysis buffer in all samples. The final
50 μL of RNA was collected to a 1.5 mL RNase-free tube. All steps were performed at room
temperature, and extracted RNA was stored at −80 ◦C until further use.

Using TaqMan microRNA reverse transcription kit (Thermo Fisher, 4366596) according
to the manufacturer’s protocol, five microliters of previously isolated RNA were reversely
transcribed in a Veriti thermal cycler (Applied BiosystemsTM, Waltham, MA, USA) for
the miRNAs of interest and the spike-in (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p,
hsa-miR-155-5p, hsa-miR-200b-3p).

2.3. Droplet Digital PCR (ddPCR): DigiMir Pipeline

DdPCR reactions were prepared according to the optimizations performed: the vol-
umes of cDNA input [2 μL (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p), 5 μL (hsa-miR-
155-5p and hsa-miR-200b-3p)], 11 μL ddPCR Supermix for the probes (Bio-Rad, Hercules,
CA, USA, #1863010), and 1 μL TaqMan hsa-miRNA Assay (20×). The volumes of bidistilled
water were 8 μL (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p) and 5 μL (hsa-miR-155-
5p and hsa-miR-200b-3p); assays: ath-miR-159a—000338, FAM; hsa-miR-21-5p—000397,
FAM; hsa-miR-126-3p—002228, VIC; hsa-miR-155-5p—002623, FAM; hsa-miR-200b-3p—
002251, FAM. Droplets were generated on the droplet generator QX200 (Bio-Rad, Hercules,
CA, USA). The PCR run was set as follows: 95 ◦C for 10 min, 50 cycles of 94 ◦C for 30 s, and
“Annealing Temperature optimized” for 1 min—ramp rate 2 ◦C/s—and 98 ◦C for 10 min.
The Annealing Temperature was set at 56 ◦C for ath-miR-159a and at 55 ◦C for the other
four miRNAs. After PCR reaction, plate was read on the QX200 Droplet Reader (Bio-Rad,
Hercules, CA, USA).

The limit of the blank (LOB) and the limit of detection (LOD) were calculated for each
target miRNA according to Armsbruster et al. [2]. Additionally, the limit of quantification
(LOQ) for the five miRNAs was assessed by performing a 2-fold dilution series of an
RCT sample.

2.4. Quality Control Steps

All plasma samples were inspected for hemolysis as previously reported by others [31,32].
Hence, from 238 initial samples, 35 samples that presented absorbance higher than 0.25
at 414 nm were excluded. Appropriate engineering and manual controls were used to
prevent contaminations—including a master mix made using a clean hood, clean gloves,
PCR reagents and consumables—and reactions were performed in separate dedicated labs.
RNA previously extracted from RCC cell lines (HKC8 was obtained from Expasy and
Caki-1, 769-P, Caki-2, ACHN, A-498, HEK-293, 786-O were from ATCC), and a pool of them
was used as positive control for the four candidate miRNAs. A no-template control (NTC)
and no-enzyme control (NEC) were included in all cDNA synthesis and ddPCR stages as
negative controls. For ddPCR pipeline optimization, further negative controls (“no-cDNA
control” and “no-Supermix control”) were included, as recommended [33]. All samples
were run in a single reaction for each target.
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2.5. Statistical Analysis

Non-parametric tests were performed to compare levels of each miRNA among histo-
logic subtypes and to evaluate associations with clinicopathological features. A Spearman
test was used for correlation analyses between two variables. A Mann-Whitney U test was
used for comparisons between two groups, whereas a Kruskal-Wallis test was used for mul-
tiple groups, followed by a Mann-Whitney U test with Bonferroni’s correction for pairwise
comparisons. A result was considered statistically significant when the p-value < 0.05.

For each miRNA, samples were categorized as positive or negative based on the cut-off
values established using Youden’s J index [34,35] (value combining the highest sensitivity
and specificity), through Receiver-Operating Characteristic (ROC) curve analysis. Validity
estimates (sensitivity, specificity, and accuracy) were determined to assess the detection
biomarker performance. To improve the detection performance of the selected miRNAs,
panels were constructed considering a positive result whenever at least one target miRNA
was plotted as positive in an individual analysis.

A two-tailed p-value calculation and ROC curve analyses (without resampling anal-
ysis) were performed using SPSS 27.0 software for Windows (IBM-SPSS Inc., Chicago,
IL, USA). All graphics were assembled using GraphPad Prism 8.0 software for Windows
(GraphPad Software Inc., LA Jolla, CA, USA). To increase the statistical power through
a resampling analysis, multiple ROC curves were constructed to calculate validity esti-
mates for the best miRNA panels, as previously described [36,37]. In brief, samples were
randomly divided into training (70%) and validation (30%) sets. Subsequently, the cut-off
value was estimated in the training set considering the highest sensitivity and specificity
and using this calculated cut-off, validity estimates were calculated in the validation set.
The procedure was repeated 1000 times and the mean of the parameters (sensitivity and
specificity) were calculated. These calculations were performed using R v3.4.4.

3. Results

3.1. Patients’ Cohort Characterization

The relevant clinical-pathological features of optimization and validation cohorts are
depicted in Table 1.

According to clinical-demographic factors, a significant, although weak, correla-
tion was found between age and circulating levels of each miRNA—hsa-miR-21-5p, hsa-
miR-126-3p and hsa-miR-200b-3p levels (R2 = 0.080 and p-value < 0.001, R2 = 0.030 and
p-value = 0.023, R2 = 0.020 and p-value = 0.032, respectively).

3.2. Distribution of Circulating miRNA Levels and Biomarkers Performance for Detection
of Malignancy

Initially, target miRNA levels were compared between oncocytoma (a benign tumor)
and healthy donor samples, and no significant differences between these groups were
found for any of the tested hsa-miRNAs, except for hsa-miR-155-5p (p-value = 0.037).

Due to the clinical relevance of discriminating malignant disease (RCC) from healthy
individuals, this comparison was subsequently performed. Interestingly, circulating levels
of hsa-miR-21-5p and hsa-miR-155-5p significantly differed between these two groups
(p-value < 0.001 and p-value = 0.013, respectively) (Figure 1). Circulating levels of hsa-
miR-21-5p disclosed the highest accuracy for identifying malignant tumors, although
hsa-miR-155-5p depicted the best specificity (90.63%). Remarkably, a panel comprising
hsa-miR-21-5p/hsa-miR-155-5p detected about 83% of the three major RCC subtypes, with
71.89% accuracy (Table 2). Importantly, the same two hsa-miRNAs could discriminate RCTs
from healthy individuals (Figures S1 and S2 and Table S1).
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Table 1. Clinicopathological data of the technical optimization cohort (5 samples) and LiKidMiRs
cohort (composed of 139 Renal Cell Tumors and 64 Healthy donors’ samples) used in this study.

Technical Optimization Cohort (n = 5 Samples)

Cases Description

Sample #1 66 years, Oncocytoma
Sample #2 53 years, pRCC, Stage I
Sample #3 57 years, ccRCC, Stage I
Sample #4 46 years, chRCC, stage I
Sample #5 45 years, healthy blood donor

LiKidMiRs Cohort (n = 203 samples)

Renal cell tumor samples 139
Healthy blood donors 64

Renal cell tumor patients—clinicopathological features

Age [years (median, interquartile range)] 64 (17.0)
Gender

Male 96/139 (69.1)
Female 43/139 (30.9)

Size of tumor mass [cm (median, interquartile range)] 4.50 (4.3)
Histology [n, (%)]

ccRCC 87/139 (62.6)
pRCC 15/139 (10.8)
chRCC 22/139 (15.8)
Oncocytoma 15/139 (10.8)

Stage [n, (%)]
I 59/124 (47.6)
II 8/124 (6.5)
III 45/124 (36.3)
IV 12/124 (9.7)

ISUP nuclear grade [n, (%)]
1 7/88 (8.0)
2 47/88 (53.4)
3 24/88 (27.3)
4 10/88 (11.4)

Vital status
Alive with disease 6/139 (4.3)
Alive without disease 120/139 (86.3)
Death from the disease 13/139 (9.4)

Healthy Blood Donors—clinicopathological features

Age [years (median, interquartile range)] 46 (4.75)
Gender

Male 36/64 (56.3)
Female 28/64 (43.8)
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Figure 1. Violin plots with miRNA levels in Healthy Donors (HD) and Renal Cell Carcinoma
(RCC) samples of hsa-miR-21-5p (A) and hsa-miR-155-5p (B), and respective Receiver-Operating
Characteristic Curve (without resampling analysis) (C,D). In violin plots, dashed lines indicate the
interquartile range and horizontal line the median of miR levels. In ROC curves, red line indicates
the reference line and blue line the identity line for each miRNA. Abbreviations: AUC—Area
Under the Curve; CI—Confidence Interval, HD—Healthy Donors, RCC—Renal Cell Carcinoma,
*—p-value < 0.05, ***—p-value < 0.0001.

Table 2. Performance of miRNAs as biomarkers for detection of Renal Cell Carcinoma.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 62.90 64.06 77.23 47.13 63.30
hsa-miR-155-5p 39.52 90.63 89.09 43.61 56.91

hsa-miR-21-5p/hsa-miR-155-5p 89.52 54.69 79.29 72.92 77.66
Multiple ROC Curve

(hsa-miR-21-5p/hsa-miR-155-5p) 82.66 51.13 77.22 61.76 71.89

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value;
ROC—Receiver-Operating Characteristic.
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When the analysis was restricted to early-stage disease (patients with an organ-
confined tumor) and healthy donor samples, hsa-miR-21-5p and hsa-miR-155-5p, but
not the other miRNAs, retained statistical difference (p-value < 0.01 for both miRNAs)
between these two groups (Figure 2A,B). Hence, these two miRNAs were able to detect
small RCC (tumors limited to the kidney, without regional lymph node metastasis) with
89.04% sensitivity and high negative predictive value (NPV) (77.68%) (Table 3). Remarkably,
the AUC for both miRNAs was higher than 65.00% (Figure 2C,D).

Figure 2. Violin plots of miRNAs levels in Healthy Donor (HD) and early stages of Renal Cell
Carcinoma (Stage I and II) samples of hsa-miR-21-5p (A) and hsa-miR-155-5p (B), and respective
Receiver-Operating Characteristic Curve (without resampling analysis) (C,D). In violin plots, dashed
lines indicate the interquartile range and horizontal line the median of miR levels. In ROC curves,
red line indicates the reference line and blue line the identity line for each miRNA. Abbreviations:
AUC—Area Under the Curve; CI—Confidence Interval; HD—Healthy Donors, **—p-value < 0.001.
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Table 3. Performance of miRNAs as biomarkers for identification of early stages Renal Cell Carcinomas.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 81.82 43.75 60.00 70.00 63.08
hsa-miR-155-5p 48.48 90.63 84.21 63.04 69.23

hsa-miR-21-5p/hsa-miR-155-5p 92.42 34.38 59.22 81.48 63.85
Multiple ROC Curve

(hsa-miR-21-5p/hsa-miR-155-5p) 89.04 36.23 59.28 77.68 62.88

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value;
ROC—Receiver-Operating Characteristic.

3.3. MiRNA Levels and Clinicopathological Features

Among RCC subtypes (ccRCC, pRCC and chRCC), significant differences were found
for all four miRNAs (hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p, p-value < 0.010;
hsa-miR-21-3p, p-value = 0.045, Figure 3).

Furthermore, all four hsa-miRs circulating levels significantly differed between the
two major RCC subtypes, ccRCC and pRCC (hsa-miR-126-3p, p-value < 0.001; hsa-miR-
155-5p and hsa-miR-200b-3p, p-value < 0.01; hsa-miR-21-5p, p-value = 0.039, Figure 3).
Nonetheless, no statistical differences were found between pRCC and chRCC or between
ccRCC and chRCC for the tested circulating miRNAs.

Figure 3. Violin plots of hsa-miR-21-5p (A), hsa-miR-126-3p (B), hsa-miR-155-5p (C) and hsa-miR-
200b-3p (D) levels in the malignant subtypes (ccRCC, pRCC and chRCC). Dashed lines indicate the
interquartile range and horizontal line the median of miR levels. Abbreviations: ccRCC—Clear-Cell
Renal Cell Carcinoma; chRCC—Chromophobe Renal Cell Carcinoma; pRCC—Papillary Renal Cell
Carcinoma; n.s.—not significant, *—p-value < 0.05, **—p-value < 0.001, ***—p-value < 0.0001.

Due to the poorer outcome and higher incidence of ccRCC, comparisons in circulat-
ing hsa-miRNAs were performed between this subtype and the other two RCC subtypes
(Figure 4). Interestingly, ccRCC patients displayed significantly lower circulating lev-
els of all hsa-miRs compared to patients diagnosed with the other malignant subtypes
(p-value = 0.048 for hsa-miR-21-5p and p-value < 0.01 for hsa-miR-126-3p, hsa-miR-155-5p
and hsa-miR-200b-3p—Figure 4).
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Figure 4. Violin plots of hsa-miR-21-5p (A), hsa-miR-126-3p (B), hsa-miR-155-5p (C) and hsa-miR-
200b-3p (D) levels in ccRCC and other RCCs (pRCC and chRCC). Dashed lines indicate the interquar-
tile range and horizontal line the median of miR levels. Abbreviations: ccRCC—Clear-Cell Renal Cell
Carcinoma; RCC—Renal Cell Carcinomas; n.s.—not significant, *—p-value < 0.05, **—p-value < 0.001.

Moreover, circulating hsa-miR-126-3p and hsa-miR-200b-3p levels discriminated
ccRCC from other RCC subtypes with 74.78% sensitivity and 52.95% specificity (Figure 5
and Table 4).

Figure 5. Receiver-Operating Characteristic Curves (without resampling analysis) of hsa-miR-21-5p (A),
hsa-miR-126-3p (B), hsa-miR-155-5p (C) and hsa-miR-200b-3p (D) in ccRCC and other RCCs (pRCC
and chRCC). Red line indicates the reference line and blue line the identity line for each miRNA.
Abbreviations: AUC—Area Under the Curve; CI—Confidence Interval.

Table 4. Performance of miRNAs as biomarkers for identification of Clear-Cell Renal Cell Carcinoma.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 60.92 67.57 81.54 42.37 62.90
hsa-miR-126-3p 78.16 56.76 80.95 52.50 71.77
hsa-miR-155-5p 66.67 64.86 81.69 45.28 66.13

hsa-miR-200b-3p 60.92 75.68 85.48 45.16 65.32
hsa-miR-126-3p/hsa-miR-200b-3p 80.46 56.76 81.40 55.26 73.39

Multiple ROC Curve
(hsa-miR-126-3p/hsa-miR-200b-3p) 74.78 52.95 79.49 47.46 68.28

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value.

4. Discussion

RCC remains a leading cause of cancer-related death worldwide. Alongside prostate
and bladder cancers, RCC is one of the most common urological malignancies [38]. Early
detection of RCC (ideally at stage I or II) significantly increases the likelihood of a cure
through surgical treatment, with a 5-year survival rate of 98%, averting the need for
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subsequent therapies, which are not curative and often carry significant adverse side
effects [15]. Nonetheless, 20–30% of patients display metastatic disease at diagnosis [38,39],
and even following curative-intent nephrectomy, the standard of care for localized RCC,
metastases develop in up to 20–40% of patients [39]. Notably, the response to medical
treatment (mainly targeted therapy or immunotherapy) is rather limited, with a 5-year
survival rate lower than 10%. Among RCCs, ccRCC, pRCC, and chRCC represent more than
90% of cases, emphasizing the importance of accurately detecting these tumor subtypes
and discriminating them from benign conditions [39,40].

Circulating miRNAs are emergent cancer biomarkers which might be assessed using
minimally invasive strategies, eventually constituting promising RCC biomarkers. Nev-
ertheless, only a few studies have addressed this issue, mostly using conventional qPCR
techniques [14,15,17–25,41,42]. Owing to the diversity of the results of those studies and
the need to overcome the limitations of normalization, we assessed the clinical potential of
a circulating miRNA-based panel for RCC detection using ddPCR.

Accurate identification of patients harboring RCC and discrimination from healthy
individuals, as well as from carriers of benign renal lesions (including tumors), is pivotal
to reliably establishing therapeutic vs. monitoring strategies. Thus, after a first analysis
between oncocytomas and healthy donors, we compared healthy donors with RCC pa-
tients. Remarkably, two (hsa-miR-21-5p and hsa-miR-155-5p) out of the four candidate
miRNAs disclosed statistically significant differences in plasma levels. Although hsa-
miR-21-5p has been described to act as oncomiR, we observed lower circulating levels in
RCC patients [20,43–45]. This might be due to the distinct miRNAs levels in the different
clinical samples. Indeed, higher miRNA levels may be found in tissues compared to body
fluid samples [46]. Importantly, increased hsa-miR-21-5p levels were also found in serum
samples of RCC patients, further supporting that circulating miRNA levels in serum and
plasma may be different [20]. Moreover, differences were also reported for hsa-miR-21-5p
levels in serum and plasma among patients with Non-ST-elevation myocardial infarction,
a non-cancer-related pathology [47]. Herein, higher hsa-miR-21-5p levels were found in
serum when compared with respective control samples, whereas lower levels were ob-
served in plasma samples from the same patients [47]. Of note, plasma has been reported
to be the sample of election for translational studies [47–49], as red blood cell lysis during
the coagulation process increases discharging of RNA and platelets to the serum, increas-
ing the non-tumor derived circulating miRNAs present in each sample [48]. Importantly,
hsa-miR-21-5p is expressed in platelets [47,50] and, thus, an increase of platelets in serum
might explain the higher levels found for this miRNA. Furthermore, in breast cancer, lower
hsa-miR-30b-5p levels were found in tissue compared with plasma, unveiling the dispar-
ities between these two sample sources [51]. Moreover, inadequate normalization and
biased results may occur if the normalizer used is not the most suitable. Indeed, U6 is more
prone to degradation by serum RNases [1]. Interestingly, in a previous study we found
that hsa-miR-21-5p miRNA was significantly downregulated in tissue samples from RCT
patients, discriminating RCT patients from healthy donors [13].

Concerning hsa-miR-155-5p, upregulation of this circulating hsa-miR was found in
RCC patients, and a panel comprising hsa-miR-155-5p and hsa-miR-21-5p could identify
82.66% of RCC patients with 71.89% accuracy. Interestingly, hsa-miR-155-5p was shown to
be upregulated in tissue [13,52] and ccRCC serum samples [18], and is also associated with
cancer development [52]. Moreover, an hsa-miR-21-5p/hsa-miR-155-5p panel depicted
high sensitivity (89.04%) for identifying organ-confined carcinomas, which might allow for
reducing false-negative results and increase the likelihood of curative-intent treatment. To
the best of our knowledge, this is the first study that evaluated the biomarker performance
of plasma circulating hsa-miRs to detect early-stage RCC. Previously, Wang and colleagues
described a 5-miRNA panel (miR-193a-3p, miR-362, miR-572, miR-378, and miR-28-5p)
that was able to identify early-stage RCC, albeit in serum samples [22]. Furthermore, our
panel achieved a higher NPV than that reported by Wang et al. [22].
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We further evaluated whether circulating hsa-miRNAs might also convey relevant
information to discriminate ccRCC from the remainder RCC subtypes. Indeed, all four
miRNAs were able to differentiate this major RCC subtype from the others. The panel
constituted by hsa-miR-126-3p and hsa-miR-200b-3p disclosed the best performance, with
74.78% sensitivity and 52.95% specificity. Since ccRCC is an aggressive RCC subtype, early
detection is of major importance, and its accurate identification might improve patient
outcomes [20,53]. Although stratification by stage was not performed due to a limited num-
ber of cases with advanced stages, for early stages, hsa-miR-126-3p and hsa-miR-200b-3p
levels also differed significantly between ccRCC and the remainder RCC subtypes.

Considering that various studies have reported other strategies for RCC identification
(including imaging and epigenetic biomarkers), our results seem to offer the best sensitivity
for RCC detection [9,54]. Indeed, the methodology we developed uses a lower initial sample
volume [15,17,20,22,25,41,42], which is more cost-effective, and the procedure to obtain the
sample is better tolerated by patients. Molecular imaging such as 18F-fluorodeoxt-glucose
(FDG) positron emission tomography/computed tomography (PET/CT) was reported
to detect localized RCC, but it discloses lower sensitivity (only 22%) [54,55]. Despite the
superior specificity (85.9%) of 124I-cG250 PET for RCC detection, when compared to our
hsa-miR-21-5p/hsa-miR-155-5p panel (51.13%), this monoclonal antibody has a half-life of
several days, constituting a significant disadvantage in relation to the protocol reported
by us [56]. Moreover, diffusion magnetic resonance imaging was reported to characterize
malignant lesions with similar sensitivity (86%) to our panel but with higher specificity
(78%) [57]. Nevertheless, it should be noted that despite the better performance, these
imaging biomarkers are more costly and less well-tolerated by the patient compared to
liquid biopsies [54].

The intense exploration of circulating epigenetic markers such as DNA methylation,
miRNAs, and lncRNAs is well illustrated by the more that 60 articles published in this
field since 2003 [9]. So far, 10 DNA methylation-based studies (e.g., using VHL, RASSF1A,
P16, P14, RARB, TIMP3, GSTP1, APC) for RCC detection have been published [58–67]
and only 33.33% of these had an RCC cohort with more than 50 patients [60,63,64]. Com-
pared with those studies, our results provide higher sensitivity (6–83%). However, DNA
methylation-based markers displayed high specificity (53–100%). This was also observed
in three lncRNAs studies (e.g., GIHCG, LINC00887) [68–70], in which the diagnostic per-
formance was generally lower than in our study (67.1–87.0%), but the specificity reached
values >80% for all biomarkers. Although our biomarker panels disclosed high sensitivity,
their specificity is limited. Thus, in an envisaged routine setting, they would ideally be
used in first-line screening, requiring complementary use of more specific biomarkers in
cases deemed positive. In liquid biopsies, DNA methylation-based markers such as VHL,
RASSF1A, TIMP3, SFRP1, SFRP2, SFRP4, SFRP5, PCDH17, and TCF21 are highly specific
(100%) [58,59,61,62,65–67] and, thus, constitute good candidates as second-line tests, in
this setting.

As previously reported, most circulating miRNA studies are based on blood-based liq-
uid biopsies [1]. When compared with our protocol, only a few studies included more than
100 RCC patients, which might, at the least partially, explain the differences in results [9].
Additionally, the discrepant results might also be explained, as described above, by the
biased normalization (e.g., spike-in as normalizer miRNA, U6, RNU48) [14,19,20,23,24].
Nevertheless, the sensitivity reported for the most widely studied serum miRNAs (miR-210,
miR-1233, and miR-378) was generally lower than our plasma panel [14,17,25]. Indeed,
using this less time-consuming and more cost-effective approach, we were able to detect
RCC using a minimally invasive technique, with a lower initial quantity of plasma than
serum-based studies (although detecting other miRNAs), and obtained similar or even
better results, obviating the need for normalization and the associated bias (due to ddPCR
absolute quantification) [15,17,20,22,25,41,42]. Hence, our results from multiple ROC curve
analysis demonstrate a potential clinical application of this technology to identify RCC, and
is the first study to quantify circulating miRNAs in these patients using ddPCR (Figure 6).

51



Cancers 2022, 14, 858

These results require validation in more extensive prospective studies. Overall, and
notwithstanding our promising results for RCC detection, it should be acknowledged that
the lack of long-term follow-up constitutes a significant limitation. Further studies using
liquid biopsies should also be considered to further subtype RCC, namely, to distinguish
oncocytomas from chRCCs, which will lead to a prioritization of treatments for patients
with malignant tumors.

Figure 6. Graphical representation of the potential clinical impact of LiKidMiRs. Created with BioRender.com.

5. Conclusions

Our findings support the research question that a minimally invasive test can be
developed to detect RCC, improving patient survival through increased diagnosis at earlier
stages. This might help to reduce the morbidity and mortality associated with advanced
disease, as well as the lack of curative treatment at those stages. Furthermore, and to the
best of our knowledge, this work is the first to report a novel tool to quantify circulating
miRNAs in plasma using ddPCR in RCC patients.
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Simple Summary: Radiogenomics is the science of studying imaging–pathology associations on
a genomic level. With the potential for improved non-invasive characterization of tumors to pre-
dict survival; metastasis; and/or treatment response, it is important for clinicians to have a basic
appreciation of this nascent field. The genetic basis for clear cell kidney cancer is more well-defined
than many other malignancies, making it an ideal target for radiogenomic analysis. We first define
the field of radiogenomics in diagnostic radiology, demonstrating that image biomarkers can be
derived either qualitatively or quantitatively, the latter of which often employs machine learning. We
then summarize existing literature establishing relationships between image features and single or
multiple gene expression patterns in clear cell renal cell carcinoma. Finally, we outline limitations of
the scope and methodology of current radiogenomic studies in ccRCC and propose future directions
for this field to progress from an experimental setting into the mainstream clinical workflow.

Abstract: With improved molecular characterization of clear cell renal cancer and advances in texture
analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine
with radiogenomics: the identification of relationships between tumor image features and underlying
genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability
to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival;
metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians
to have a basic understanding of this nascent field, which can be difficult due to the technical
complexity of many of the studies. We conducted a review of the existing literature for radiogenomics
in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic
description of radiogenomics in diagnostic radiology; summarize existing literature on relationships
between image features and gene expression patterns, either computationally or by radiologists; and
propose future directions to facilitate integration of this field into the clinical setting.

Keywords: clear cell kidney cancer; radiogenomics; radiomics; machine learning; gene expression

1. Introduction

Beginning in the late 1980s, our understanding of the pathology of kidney cancer
has gradually evolved beyond characterization of histological patterns to identification
of specific genetic changes [1,2]. Discovery of pathologically relevant genetic pathways
has allowed for discrimination both between and among renal cancer subtypes. The
ultimate goal of these endeavors is to create a more personalized approach to predicting
disease prognosis and response to treatment. With improved ability to characterize image
features, particularly through advances in machine learning, diagnostic radiology is also
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primed to enter personalized medicine through the field of radiogenomics. Here, we define
this nascent field and review available studies in clear cell kidney cancer involving the
association of single-gene mutations as well as more complex gene expression patterns
with imaging phenotypes.

2. What Is Radiogenomics?

Radiogenomics is the science of identifying the associations between imaging features
of a lesion and the underlying genomic signatures. For instance, by developing radio-
genomics signatures, one can predict the tumor response to treatment by combining the
imaging findings and genomic data. This process can also be used to decode the genetic
makeup of a mass seen on imaging that fits the radiogenomic profile developed for that
specific mass subtype [3–5]. One of the advantages of this approach is a complete eval-
uation of the makeup of the mass as opposed to tissue sampling that only evaluates a
small portion of the tumor, which may underestimate the dominant molecular pattern
given intra-tumoral heterogeneity [6]. Thus, by identifying surrogate imaging biomarkers
that represent distinct genotypes with prognostic significance, radiogenomics can improve
traditional tumor genetic testing through more comprehensive tumor characterization via
wider anatomic coverage. As with current biomarkers, these imaging phenotypes should
have prognostic significance; that is, to better define, beyond size and growth rate criteria
alone, appropriate candidates for active surveillance and/or systemic treatment regimens
in the case of advanced disease.

Imaging characteristics can be obtained either qualitatively (i.e., discrete variables
scored by one or more radiologists) or quantitatively. Some of the quantitative variables
such as size and degree of contrast uptake/washout can be calculated by the clinicians,
while more complex relationships between individual image pixels cannot be ascertained
by the naked eye. Conversion of these relationships into mineable quantitative features
is the practice of radiomics [5,7,8]. The region of interest (either a single slice or the
full volume of the tumor) is marked within an image (segmentation) to be recognized
by computer software for image feature extraction. Differential pixel intensities of an
image can be captured into either first order features (i.e., frequency distribution of pixel
intensities without any spatial information such as skewness or kurtosis) or higher order
features (i.e., spatial relationship between different pixel intensities such as gray level
discrimination matrix). Given the number of extracted features (at times exceeding 1000)
and the assumed nonlinear relationship between features and the dependent variable (i.e.,
presence or absence of a genetic mutation), machine learning is often employed to establish
such relationships. More specifically, the data are split into training and testing sets, with
an assigned algorithm developing relationships among relevant features using training
data. The ability of the model to accurately classify patients into discrete categories (i.e.,
mutation or no mutation) is employed on the test data, using the known mutation status
as the comparator of efficacy. Typically, prior to model training, the number of extracted
features is reduced, either by eliminating redundant features (i.e., those with high intra-
class correlation) and inconsistent features (i.e., those not seen if tumor is segmented by a
different radiologist), with or without the aid of machine learning. In summary, the steps of
a radiomics algorithm are segmentation; feature extraction; feature selection; and, in most
cases, machine learning. This workflow is summarized in Figure 1.

Compared to other malignancies, the genetic basis of clear cell kidney cancer is well-
established, with a relative paucity of genes implicated in pathogenesis. Thus, kidney
cancer is a prime target for initial application of radiogenomics. Below, we review available
studies in clear cell renal cell cancer (ccRCC) radiogenomics, focusing on exploratory
investigations into relationships between imaging features and mutations in single genes;
gene expression patterns; methylation changes in specific genes; and microRNA expression.
The goal of each of these investigations is to better predict relevant clinical endpoints, such
as overall survival; development of metastasis; and treatment response.
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We conducted the review using PubMed, EMBASE, Google Scholar, and Web of Sci-
ence. We searched by title/abstract in the following databases using the search parameters:
“artificial intelligence or radiomics or machine learning or deep learning or radiogenomics”
AND “clear cell” AND “kidney or renal”. Articles published up to September 2021 were
included. Eliminating redundant articles, 354 articles were identified from our search
parameters. Titles from articles were screened out if they did not involve a correlation of
imaging features to gene expression patterns. Through this manner, we identified 20 full
text, original study articles that were incorporated into this review. See Figure 2 for a
summary of the workflow for inclusion of studies for this review. Table 1 summarizes these
studies with their relevant findings.

Figure 1. Outline of workflow for radiomic studies. Annotation is particularly important for mul-
tifocal masses to ensure matching of radiologically identified lesion with appropriate pathological
specimen. Classification of machine learning algorithms is typically binary and thus analyzed using
receiver operated curve (ROC), with area under the curve (AUC) used as benchmark for machine
performance. Image created using BioRender.com (accessed on 26 November 2021).
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Figure 2. Flowchart demonstrating the search strategy and selection criteria for the articles included
in this review.
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3. Associations between Image Features and Mutations in Single Genes Commonly
Implicated in ccRCC

While mutations in Von-Hippel Lindau (VHL) gene have long been implicated in the
pathogenesis of ccRCC [1,2], the Cancer Genome Atlas (TCGA) helped identify additional
causative genes, including those in the chromosome 3p region adjacent to VHL, such as
polybromo-1 (PBRM1); BRCA associated protein 1 (BAP1); and SET domain containing 2
(SETD2) [28]. Indeed, while 90% of sporadic clear cell kidney cancers are associated with
3p chromosomal deletions, a minority of these tumors have wild type VHL expression,
indicating the independent role of other genes within this region in tumorigenesis. Addi-
tional relevant genes for ccRCC identified by TCGA include lysine specific demethylase
5C (KDM5C) and mucin 4 (MUC-4) [29,30]. Although the presence of a VHL mutation
itself has not been shown to have any predictive or prognostic value, important clinical
differences emerge with respect to the mutational status of other genes. For instance,
PBRM1 mutational status may determine response to immune checkpoint therapy [31,32];
BAP1 mutations are associated with more aggressive tumors [28,33]; tumors with SETD2
and KDM5C mutations are linked to unfavorable prognosis in the localized setting [34–36];
and tumors with MUC4 mutation have a favorable prognosis [37].

Karlo and others [9] sought to assess whether mutations in VHL; KDM5C; SETD2;
and/or BAP1 were associated with any image features from computed tomography (CT).
A total of 233 patients from two cohorts (i.e., MSKCC and the Cancer Imaging Archive
(TCIA)) with available CT and genomic analysis had their corresponding tumors scored on
eight qualitative (e.g., presence of necrosis) and two quantitative (e.g., tumor size) features
via consensus from three radiologists. Significant image-genotype correlations were seen
with VHL, KDM5C, and BAP1 mutations. Tumors with VHL mutations were associated
with a well-defined tumor margin; nodular enhancement; and presence of intratumoral
vascularity. KDM5C and BAP1 mutations were more predominant in tumors with renal
vein invasion. Finally, KDM5C mutant tumors tended to be hypo-enhancing relative to the
renal cortex in the CT nephrographic phase.

Shinagare et al. [10] performed a similar type of hypothesis-generating study; here,
103 patients exclusively from the Cancer Imaging Archive (TCIA) had six imaging features
on either contrast-enhanced CT (79% of cohort) or MRI assessed by three radiologists. For
each feature, the median or most common score (depending on whether the variable was
qualitative or quantitative) was used to determine an association with tumor genotype.
Despite the overlap in image features and patients with Karlo et al. [9], different results
were obtained. With respect to VHL; KDM5C; and BAP1 mutational status, there was a
significant association only with BAP1. Namely, tumors with BAP1 mutations were more
likely to have ill-defined margins and calcifications. Additionally, MUC-4 mutation was
associated with an exophytic tumor growth pattern.

Despite the inconsistency in results between these two studies, plausible biological
explanations can be ascertained for these surrogate imaging biomarkers. For instance,
BAP1 mutations confer aggressive traits to renal tumors, which may increase the likelihood
of renal vein invasion as well as promote de-differentiation and increased proliferation,
both of which can account for a poorly visualized tumor margin. The unregulated HIF
expression with VHL mutation, resulting in upregulation of angiogenesis factors, can
explain the prominence of intratumoral vascularity seen in these tumors.

Greco et al. [11] sought to characterize differences, if any, between patients with
VHL and KDM5C mutant tumors in terms of abdominal fat content. With 52 VHL and
10 KDM5C mutant tumors derived from the TCIA cohort, patients with KDM5C mutations
had higher total and visceral abdominal fat content than those with VHL tumor mutations.
The authors also included a cohort of patients with no renal tumors (n = 35) and noted that
ccRCC overall is associated with higher total and visceral fat content. There is evidence that
fat deposits in obese individuals may promote oncogenesis and tumor progression through
a chronic inflammatory state created through adipokines [38,39], which may explain the
study results, given the negative prognostic biomarker of localized KDM5C mutant tumors.
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Apart from qualitative and quantitative scoring derived from radiologists, associations
between image features and single gene alterations have also been studied using radiomics
and machine learning. For instance, Feng et al. [12] used a random forest classifier to assign
tumors from 54 TCIA patients (45 BAP1 wildtype and 9 BAP1 mutants) to either presence
or absence of BAP1 mutation based on 58 quantitatively derived radiomics features, with
an AUC of 0.77. Image features from this study were derived from the nephrogenic CT
phase, with the most predictive being a higher order feature (gray level run length matrix—
number of consecutive voxels of a similar gray level intensity within a given direction [8].
Kock et al. [13] also used a random forest classifier to predict BAP1 tumor mutational status
but used an unenhanced CT for easier availability and improved homogeneity between
image studies, the latter of which is relevant in the multi-institutional collaboration of
TCIA. Utilizing CTs of 65 patients (13 BAP1 mutant tumors and 52 BAP1 wildtype tumors),
the random forest classifier was trained on 6 selected features, achieving an AUC of 0.897.
Although Ghosh et al. had previously shown features extracted from nephrographic phase
as opposed to unenhanced phase to be most predictive of BAP1 mutation [14], it should
be noted that different extracted features from Feng et al. [12] were used to train this
model; indeed, the dominant feature class was first-order. Nevertheless, half of the selected
features [13] were higher order, indicating that region of interest (ROI) analysis without
taking into account the spatial relationship of encapsulated voxels (i.e., utilizing only first
order features) was insufficient for optimal prediction of BAP1 mutation status.

In addition, to study results potentially being affected by the image phase used and
features selected, the type of machine learning algorithm can have an impact on the
predictive performance of the model classifier. For instance, Kocak et al. [15] assessed
the differential performance of two algorithms (random forest classifier and artificial
neural network) in predicting the presence or absence of a PBRM1 mutation. In studying
45 patients (29 PBRM1 tumor wild-type and 16 PBRM1 mutants) from the TCIA using
the corticomedullary phase of CT, the random forest classifier outperformed the artificial
neural network in predicting tumor genotype, with AUC of 0.987 and 0.925, respectively. In
this study, a machine learning algorithm was used to select the extracted radiomic features
as well as train the model using the selected features. In other words, while 828 initial
features were extracted from the CT, the final features used to train the model classifier
differed depending on the algorithm (i.e., 10 features selected by artificial neural network
and 4 features by random forest classifier). Indeed, only three selected features were shared
by both algorithms, accounting for discrepancy in results beyond the intrinsic properties of
the algorithms themselves. Regardless, two out of the top three features most predictive
of PBRM1 mutation status were a higher order for both types of model classifiers. Across
both types of algorithms, tumors with the PBRM1 mutation had greater pixel heterogeneity
of gray level intensity.

Rather than comparing different machine learning algorithms, Chen et al. [16] used
six different types of classifiers to generate the composite probability of different tumor
genetic mutations. Here, 43 selected features from corticomedullary phase CT scan (a total
of 57 patients from TCIA) were used to train and test each model classifier (support vector
machine; logistic regression; discriminant analysis; decision tree; K-nearest neighbor; and
naïve Bayesian). The predictive capability of the multi-classifier algorithm was superior to
any single classifier, with AUC for predicting VHL; PBRM1; and BAP1 mutations being
0.88; 0.86; and 0.93, respectively. The selected features common to all six classifiers that
discriminated VHL mutational status were both first order (mean and kurtosis). Tumors
with VHL mutation had lower mean voxel intensity and had less variation in pixel intensity
values (i.e., less tailedness or kurtosis). On the other hand, a relatively equivalent proportion
of first and higher order features were selected across all six classifiers for distinguishing
PBRM1 mutation class. Finally, more higher order features were common to all six classifiers
for BAP1 classification, with BAP1 mutant tumors having greater heterogeneity in terms of
voxel intensity.
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4. Beyond Mutations in Common Pathogenic Single Genes in Clear Cell Kidney
Cancer: Establishing Image Biomarkers for Epigenetic, Regulatory, and Multiple Gene
Expression Signatures

Despite single gene mutations being implicated in renal cancer pathogenesis, kidney
cancer development is reliant not just on any one aberrant gene product, but also on changes
in regulatory molecules for both the gene product and its downstream effectors. While
our understanding of these modulators of gene expression is in its infancy, preliminary
investigations into relationships between imaging features and these molecules have been
conducted.

For instance, Marigliano et al. [17] sought to determine whether there was any as-
sociation between intensity-based pixel features (e.g., mean pixel attenuation) of ccRCCs
seen on contrast CT and the amount of mi-21-5p, a micro-RNA whose expression was
previously shown to be correlated with poor cancer specific survival following RCC resec-
tion [40]. Unlike previous studies, image features were extracted from both the tumor and
the surrounding normal renal parenchyma. In 20 patients, the authors found a significant
positive correlation between change in miR-21-5p expression from tumor to adjacent nor-
mal parenchyma and degree of image entropy (i.e., variation in pixel intensity within the
tumor) [17].

Another regulatory factor implicated in several carcinomas is RUNX3 (runt related
transcription factor 3), which belongs to a family of transcription factors that modulate
major developmental pathways [41,42]. Methylation of this tumor suppressor RUNX3 has
been negatively associated with overall survival in other carcinomas [43,44]. Cen et al. [18]
scored 106 ccRCCs from the TCIA cohort on 9 qualitative CT imaging features and found,
on multivariate regression, that ill-defined tumor margin, left sided tumors, and presence of
intratumoral vascularity significantly predicted elevated RUNX3 methylation levels (AUC
of 0.725). Furthermore, patients with higher methylation levels had lower median overall
survival. The laterality bias is difficult to explain, with additional validation needed, but
intratumoral vascularity and ill-defined margin are both imaging markers associated with
aggressive tumors, which is in line with the negative prognosis associated with RUNX3
methylation.

Other tumor suppressor genes that can be susceptible to methylation-induced silencing
in RCC have been identified, such as Dickkopf1 (DKK1); WNT pathway regulatory genes;
and secreted frizzed related protein (SFRP1) [45,46]. Through the TCGA, three DNA
methylation subgroups in ccRCC (M1-M3) with prognostic implications were identified,
with the M1 subtype found to have the worst overall survival [28]. In assessing tumors
from 212 patients (180 ccRCC cases) from the TCIA cohort on 12 different qualitative CT
imaging features, Yu et al. [19] noted that, on multivariate analysis, a long axis >7 cm and
presence of necrosis was associated with the unfavorable M1 subtype, with an AUC of
0.68. While M2 subtype was mostly characterized by absence of necrosis, the presence of
necrosis was a significant independent predictor of the M3 subtype on multivariate logistic
regression, limiting the utility of that imaging parameter.

As illustrated above, characterizing tumors by a panel of molecular markers, as
opposed to a single entity, may more accurately capture the full extent of their biological
behavior. In this manner, Zhao et al. [47] described 259 genes that predicted survival after
ccRCC surgery independent of grade; stage; and performance status, creating the so-called
SPC (supervised principal components) gene signature. Jamshidi et al. [20] used available
CT and genetic data from 70 patients from a single institution to develop a radiogenomic
risk score (RRS) using the top 4 qualitative CT imaging features that were best associated
with expression of genes within the SPC signature. This score was independently validated
in 77 patients from the same institution at a later time point. In a separate phase II trial
assessing the role of neoadjuvant bevacizumab prior to cytoreductive nephrectomy, RRS
using pre-treatment CT features was able to predict radiological progression free survival
after anti-angiogenic administration [4].
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The Cancer Genome Atlas also helped identify four unique mRNA-based subgroups
in clear cell renal cell cancer: m1–m4 [48]. For instance, M1 contains gene sets involved
with chromatin remodeling and a higher proportion of PBRM1 mutations. On the other
hand, higher deletions of PTEN are seen in the m3 subtype. Bowen et al. scored tumors
from 177 patients from TCIA on 8 CT imaging features and noted that a well-defined tumor
margin was a significant positive predictor of m1 subtype vs. others, whereas the opposite
was true of the m3 subtype [21]. As seen in other qualitative studies, the margin status of
the m1 subtype is in line with its prognostically favorable outcome with respect to overall
survival.

Further genetic expression analysis of ccRCC tumors have revealed two distinct molec-
ular subtypes that are captured by a 34-signature gene model (ClearCode34): ccA and ccB.
CCA is characterized by upregulation of genes involved in angiogenesis, while ccB tumors
have higher cellular differentiation activity (i.e., epithelial to mesenchymal signaling). CCB
tumors are more aggressive, based on higher Furhman grade; increased nodal metastasis;
and worsened cancer specific as well as overall survival [49,50]. Unfortunately, the utility
of this biomarker is hindered due to high intra-tumoral heterogeneity [51], limiting radio-
genomic studies derived from biopsy samples. Yin et al. [22] circumvented this problem
by performing radiomic and genetic expression analysis on different areas of the tumor
from the same patient. A total of 168 features were extracted from 23 tumor ROIs on a
PET/MRI from 8 patients; using sparse partial least analysis (SPLA), 4 radiomic features
(2 first order and 2 higher order) were selected and found to correctly classify the ccRCC
molecular subtype 86.96% of the time.

Thus far, radiomic signatures have been linked to molecular factors with established
prognostic associations; for instance, BAP1 mutation with aggressive tumor phenotype or
ccB with worsened cancer specific survival. However, radiomic analysis can be used for
gene discovery, with associated prognostic and therapeutic implications. That is, machine
learning algorithms can group image features into those that are found to differ based
on clinical outcomes such as metastasis free or overall survival. The genotype of tumors
within each imaging group can then be interrogated to determine the underlying biology
of different image classes, with identification of distinct genetic pathways helping to usher,
for instance, development of new drugs.

Lee et al. [23] used three different machine learning algorithms (i.e., random forest clas-
sifier; logistic regression; and support vector machine) and a training set of 58 patients with
a contrast CT prior to partial or radical nephrectomy to determine differential contributions
of 4 selected image features (only 1 of which was higher order) towards prediction of post-
surgical metastasis. This model was independently validated on 28 patients from the TCIA
with an AUC of 0.89–0.95. Genetic expression analysis was performed on tumors, with
specific image features correlating with genes involved with translation regulation; ECM
interaction; focal adhesion; PI3K-AKT pathway; signaling by notch receptor 1 (NOTCH1);
Wnt signaling pathway; and regulation of actin cytoskeleton. Differences in fibroblast
growth factor expression and amount of T cells were found to correlate with image features,
which have therapeutic implications (i.e., preferential FGFR inhibitor or immunotherapy
for metastatic disease).

In a similar study, Zhao et al. [24] used nine radiomic features selected by machine
learning (eight of which were higher order) to predict development of postoperative
metastasis with AUC of 0.86. With genetic expression analysis and correlation with 9 image
features, 19 gene signatures (ECM interaction; focal adhesion; and PI3K-AKT pathway
were similar sets of genes from the previous study) were constructed that independently
accurately predicted metastasis (AUC of 0.84). Additionally, Lin et al. [25] developed three
distinct radiomic feature classes that, independent of tumor grade and patient age, differed
based on overall survival from unenhanced CT scans of 160 patients. Genetic analysis
revealed that classes differed based on underlying genetic mutations. For instance, class 1
with the lowest overall survival had reduced VHL mutation expression relative to the other
two classes. Class 3 had higher FBN2 expression, which has been previously associated with
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improved overall survival [52,53]. Finally, Huang et al. [26] unearthed a gene expression
module (comprised of 256 genes) that was associated with four selected radiomic features
(75% higher-order) derived from 205 ccRCC patients from the TCIA. These genes mediate
tumor angiogenesis, cell adhesion, and extracellular structure organization. The top four
correlated genes within this module (RPS6KA2, CYYR1, KDR, and GIMAP6) were selected
for incorporation into a machine learning algorithm. A decision classifier integrating
both radiomic and genomic factors was a better predictor of 1-, 3-, and 5-year overall
survival than a classifier using only radiomic features (5-year survival AUC 0.75 and 0.69,
respectively).

5. Limitations and Future Directions

While radiogenomics has the potential to revolutionize a clinician’s diagnostic capa-
bilities, several existing limitations in this field will need to be addressed to allow these
advances to proceed beyond the experimental setting. First, many of the institutional-based
studies fail to have an external validation set from an outside institution, limiting the
generalizability of their findings. In a recent review, only 7% of studies utilizing radiomic
analysis of renal masses had this type of validation [54].

Despite not having an independent validation set, studies attempt to nonetheless
seek generalizability by relying on cohorts from TCIA, which are comprised of images
from multiple institutions. However, as institutions differ in image processing protocols, a
different problem emerges, particularly for radiomic analysis, with the type and quantity
of features extracted dependent on the specific way an image is acquired and processed
(e.g., number of slices used for segmentation) [5,54].

A significant time burden in the radiomics workflow is manual segmentation, es-
pecially if more than one slice is considered. Manual segmentation is also subject to
inter-observer variability [55,56]; although, some studies have tried to address this issue
through multi-reader segmentation. As software to achieve reliable automated segmen-
tation improves and becomes more available, large imaging sets can not only managed
efficiently, but segmentation of tumor for radiomic analysis can be performed prospectively
as part of the diagnostic radiologist’s clinical workflow [5].

Apart from image acquisition differences, other aspects of heterogeneity within ra-
diomic studies can be seen, accounting for discrepancies in results. For instance, studies
investigating the same question (i.e., whether radiomic features can predict the presence
of BAP1 mutations) use different phases of CT (i.e., nephrographic vs. excretory vs. un-
enhanced). Radiomic studies have been inconsistent in the CT phase most predictive of
outcomes. As was illustrated above, features derived from CT nephrographic phase was
most predictive of BAP-1 mutation status [14]; however, Nguyen et al. found that features
from the corticomedullary phase was most predictive of renal mass characterization (e.g.,
RCC vs. benign) [57]. Just as is performed by the practicing radiologist, the optimal strategy
may be to incorporate features from all CT phases into radiomic analysis.

Studies also differ in the extent of feature extraction, with some not obtaining higher
order features from image filtration. Additionally, there is variability in the manner through
which feature selection is performed, with some but not others employing machine learning
to eliminate redundant and/or inconsistent features. Another important, yet underutilized,
consideration for feature selection is that predictive model performance may be improved
if features related to slice thickness and tumor size are also eliminated [58]. The former
is an important consideration with studies relying on multi-institutional databases such
as TCIA. With regard to the latter, as radiomics is meant to augment current diagnostic
capability, development of radiomic signatures should only involve features that are not
easily calculable in the clinical setting.

Thus, for radiomic studies to be reliably compared against each other, standardization
of image processing (including acquisition and segmentation); feature extraction; and
feature selection needs to be established. Perhaps an international consensus conference can
be conducted for this purpose, with stakeholders from different fields outlining guidelines
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(i.e., radiologists; computer scientists; technicians; physicists; and treating clinicians).
Standardization will also ensure that multi-disciplinary collaboration can be robustly
performed from high quality and well curated images. Large sample sizes are necessary
to improve generalizability of machine learning classifiers. With low sample size (i.e.,
<1:10 ratio of features: number of patients/tumors in a particular group [5]), overfitting of
data can occur, preventing the model from performing well on other types of data, both
within and outside a given institution. Additionally, in order to further promote replication
of results in other institutions, source code of decision classifiers should be made public,
which is not routine practice at present [59].

Currently, the vast majority of current radiomic and radiogenomic studies focus on CT.
This approach is sensible at present, given that this imaging modality is the predominant
means of evaluating renal masses worldwide. However, with its lack of radiation, MRI
has grown in popularity, particularly as more serial imaging is incorporated into kidney
tumor evaluation (i.e., active surveillance or treatment response in metastatic disease). The
main advantage of MRI is the additional information that can be obtained from a variety
of imaging sequences, such as T2 or DWI, which may improve image prediction models
by providing additional radiomic features. Only one study reviewed here utilized MRI
for computational image feature extraction; it is hoped that additional studies utilizing
MRI for radiogenomic analysis will be conducted as experience and/or availability of this
imaging modality grows.

In terms of scope of study, radiogenomic analysis thus far has largely focused on molec-
ular features of the tumor itself. However, the tumor exists within a microenvironment
that modulates its growth and development. For instance, Zhong et al. [60] identified two
subtypes of ccRCC from analysis of the TCGA that differed based on checkpoint inhibitor
and lymphocyte expression. These differences in immune-related tumor microenvironment
have prognostic relevance; for instance, the subtype with elevated checkpoint inhibitor
expression was predicted to have reduced response to immunotherapy. Some preliminary
radiogenomic work characterizing the tumor ecosystem has been employed, such as Greco
et al. [11] characterizing visceral fat content with ccRCC mutation as well as Marigliano
et al. [17] and Lee et al. [23] also incorporating the surrounding normal parenchyma in
feature extraction. It is hoped that as the field of radiogenomics evolves along with our
understanding of the biology of the tumor microenvironment, additional radiomic analysis
of the parenchyma and perinephric fat surrounding a tumor can be performed to establish
more comprehensive surrogate imaging biomarkers.

While a clear advantage of establishing imaging biomarkers of underlying genetic
activity is that images provide wider anatomical coverage than can be procured by a biopsy
sample, many radiogenomic studies still correlate image features of an entire tumor with
genetic information from a biopsy specimen. Furthermore, most of the time, the exact
location of the biopsy is not known, preventing radiomic analysis of the corresponding
area of a tumor to achieve a more optimal association study given genetic intra-tumor
heterogeneity [61]. For this reason, the study by Yin et al. [22] was unique in that radiomic
analysis was performed at different areas of a single tumor, with each area having distinct
genetic testing and thus a known gene expression pattern. Future studies should also
perform radiogenomic analysis within tumors as opposed to simply between different
tumors. In the era of digital pathology utilizing quantitative image analysis and machine
learning, models characterizing spatial heterogeneity of genetic mutations and surrounding
microenvironment (i.e., T lymphocyte expression) within a tumor have been developed [62].
Provided that these models can be validated across institutions, they can be integrated into
radiomic studies to provide more robust imaging–pathology associations.

Although the majority of presented studies here utilize tumors of different stages
in image analysis, the genetic information is generally derived from the primary kidney
tumor. That being said, the assumption of genetic homogeneity between the primary tumor
and metastatic deposits may not necessarily hold. In a recent study using ClearCode34 to
classify primary and metastatic tumor sites into different molecular subtypes (i.e., clear
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cell type A and B), there was a 43% discordance in subtype between the primary tumor
and metastatic deposits within the same patient [63]. On the other hand, for a given
patient, the molecular subtypes were similar among different metastatic sites. Thus, future
radiogenomic studies incorporating patients with metastatic disease should have tumor
sampling from metastatic sites to obtain a more reliable genotype within which to develop
image biomarkers for prognostically relevant outcomes such as treatment response. It is
clear that feature extraction from radiomic analysis provides more information about a
tumor than can be ascertained by any radiologist (i.e., higher order features). However,
with greater complexity comes greater abstraction of data from traditional biological or
clinical understanding. Seeking to understand higher order features in clinical terms
is challenging. However, “de-mystifying” these features can be accomplished through
studying associations between qualitative and quantitative image variables. For instance,
ill-defined tumor margin is associated with unfavorable genotypes, such as BAP1 mutation;
methylation of RUNX3; and SPC gene signature. Determining which radiomic higher order
features relate to these qualitative variables will allow for better integration of the literature
and to improve clinical relevance of these features.

Given that tumor genetic testing does not often encompass the entire tumor (i.e., biopsy),
radiomic analysis may provide additional prognostic information beyond the procured molec-
ular signature [64]. Thus, rather than determining radiomic–genomic correlations alone,
studies should incorporate both radiomic and genomic factors into prognostic models. Addi-
tional integration of existing clinical predictors and other -omic analysis into these models
will also help improve prediction of clinically relevant outcomes. For instance, Zeng et al. [27]
demonstrated that a combined radiomic, genomic, transcriptomic, and proteomic model
had higher AUC than any single model alone in predicting overall survival of patients with
ccRCC. Additionally, Yin et al. [22] showed that a model combining radiomic and clinical
features (tumor size; stage; and grade) outperformed a radiomics only model in predicting
ccRCC molecular subtype (91.3% vs. 86.96% accuracy). Finally, Huang et al. [26] developed
an integrative nomogram of ccRCC survival incorporating tumor stage, gender, and a risk
score incorporating both prognostic radiomic and genetic factors.

6. Conclusions

Radiogenomics represents the next paradigm shift in diagnostic medicine, and just
as with the Human Genome Project, kidney cancer is one of the lead malignancies with
which to apply advances from this field. Initial work in radiogenomics of clear cell kidney
cancer has been promising, with relationships seen between imaging features and single
and multiple gene expression patterns. Not only can image phenotypes be linked to prog-
nostically relevant molecular signatures, but they can also be used to facilitate identification
of associated gene expression pathways (i.e., biological basis of image differences) and
can augment existing clinico-pathologic nomograms. Establishing non-invasive surrogate
imaging biomarkers will no doubt increase the non-invasive diagnostic armamentarium
of the clinician, with both prognostic and therapeutic implications, and has been greatly
facilitated with radiomics and machine learning, which can elucidate the complex pat-
terns within an image in an objective, quantifiable manner, unlike qualitative scoring by
radiologists.

Future directions include feature extraction of the surrounding tumor environment;
utilization of modalities other than CT; incorporating spatial tumor genetic heterogeneity
in radiomic analysis; and integration of multi-omic (i.e., transcriptomic) and clinical infor-
mation to create more powerful decision tools. Most importantly, consensus guidelines
on radiomic and machine learning analysis need to be employed to facilitate comparison
among studies and collaboration among institutions to allow advances in radiogenomics to
be implemented in the clinical setting.
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Simple Summary: First-line treatment options for metastatic clear cell renal cell carcinoma have
significantly increased. The current recommended therapeutic strategy is based on a combination,
but monotherapy remains an alternative. However, the choice of the type of combination, i.e., dual
immunotherapy or immunotherapy combined with an antiangiogenic drug, has not been clearly
standardized. A strategy based on the International Metastatic Database Consortium (IMDC) clas-
sification is currently recommended with pembrolizumab + axitinib, cabozantinib + nivolumab,
and lenvatinib + pembrolizumab (for all patients) or nivolumab + ipilimumab (for patients with in-
termediate or poor risk), which are the first-line treatment standards of care. This review summarizes
all recent data from the main combinations evaluated in first-line treatment and discusses the choice
of drugs according to the patient’s profile and the benefit/risk balances of each combination.

Abstract: The development of antiangiogenic treatments, followed by immune checkpoint inhibitors
(ICI), has significantly changed the management of metastatic clear cell renal cell cancer. Several
phase III trials show the superiority of combination therapy, dual immunotherapy (ICI-ICI) or ICI
plus tyrosine kinase inhibitors (TKI) of the vascular endothelium growth factor (VEGF) over sunitinib
monotherapy. The question is therefore what is the best combination for a given patient? A strategy
based on the International Metastatic Database Consortium (IMDC) classification is currently recom-
mended with pembrolizumab + axitinib, cabozantinib + nivolumab, and lenvatinib + pembrolizumab
(for all patients) or nivolumab + ipilimumab (for patients with intermediate or poor risk), which are
the first-line treatment standards of care. However, several issues remain unresolved and require
further investigation, such as the PD-L1 status, the relevance of possible options based on the patient’s
profile, and consideration of second-line and subsequent treatments.

Keywords: metastatic clear cell renal cell carcinoma; first-line treatment; immunotherapy; tyrosine
kinase inhibitors; combinations
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1. Introduction

Clear cell renal cell carcinoma (ccRCC) used to be associated with a very poor prog-
nosis when diagnosed at an advanced stage. The last 15 years have provided dramatic
improvements in this field, thanks to the development of vascular endothelial growth
factor (VEGF) tyrosine kinase inhibitors (TKI) followed by immune checkpoint inhibitors
(ICIs) [1,2]. ICIs are monoclonal antibodies directed against immune checkpoints and
enable the reversal of tumor-induced immunosuppression. Currently, the anti-checkpoint
agents used in oncology target inhibitory receptors present on the surface of lympho-
cytes such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte–associated
protein 4 (CTLA-4) or their ligands (PD-L1, programmed cell death ligand 1) [3,4]. Com-
bining therapies to further improve survival and response rates has been tested in large
phase III randomized trials, in particular CheckMate-214 (nivolumab (PD-1) + ipilimumab
(CTLA-4) vs. sunitinib (TKI)), JAVELIN Renal 101 (axitinib (TKI) + avelumab (PD-L1),
vs. sunitinib), KEYNOTE-426 (axitinib + pembrolizumab (PD-1) vs. sunitinib), Check-
Mate 9ER (nivolumab + ipilimumab vs. sunitinib) and CLEAR (lenvatinib (TKI) + pem-
brolizumab) [5–12]. These trials were positive, showing the superiority of the combination,
i.e., dual immunotherapy (ICI-ICI) or ICI plus TKI (ICI-TKI) over sunitinib monother-
apy. A recent meta-analysis including these trials confirms that immune-based com-
binations are more effective than sunitinib monotherapy with a three-fold increase in
the complete response rate [4]. According to the recently updated European guidelines,
lenvatinib + pembrolizumab joins other VEGFR+PD-1 inhibitor-targeted combinations
(axitinib + pembrolizumab or cabozantinib + nivolumab) to be recommended for first-line
treatment of advanced ccRCC irrespective of International Metastatic RCC Database Con-
sortium (IMDC) risk groups. Ipilimumab + nivolumab also continues to be recommended
for first-line treatment of IMDC intermediate- and poor-risk (I/P) patients [13,14]. One of
the most critical emerging questions now is how to select the best option for a given patient?
A recent article suggested treatment algorithms for first-line treatment in metastatic ccRCC
(mccRCC) with a wide spectrum of treatment recommendations based on multiple deci-
sion criteria demonstrated. Significant inter-expert variations were observed [15]. Herein,
we review recent data and discuss how, for a given patient, the best strategy should be
chosen. Our approach integrates data available in routine clinical practice, such as effec-
tiveness data, IMDC groups, PD-L1 status, tolerability of treatments and perspectives of
treatment sequence.

2. Overview of Studies in First-Line Metastasis

Today, the European Society for Medical Oncology (ESMO) recommends dual im-
munotherapy (ICI-ICI) or a combination of immunotherapy and antiangiogenics (ICI-TKI)
for patients with mccRCC. Dual immunotherapy is recommended only for patients with
an intermediate or poor risk tumor, which constitutes approximately 80% of patients with
advanced ccRCC (Figure 1) [13,14].

This combination improves survival outcome in these patients with mccRCC. The
CheckMate-214 study comparing nivolumab + ipilimumab (NIVO + IPI) to sunitinib (SUN)
showed results in favor of the combination, which was confirmed by updated results over
four years [5,6]. Overall survival (OS) (hazard ratio (HR); 95% confidence interval (CI))
remained superior with NIVO + IPI compared with SUN in the intention-to-treat (ITT)
population (0.69; 0.59 to 0.81) and particularly in patients with I/P disease (0.65; 0.54 to
0.78). Four-year progression-free survival (PFS) rates were 31.0% vs. 17.3% (ITT) and
32.7% vs. 12.3% (I/P) in the NIVO + IPI group vs. SUN. The objective response rate (ORR)
remained higher with NIVO + IPI vs. SUN in the ITT population (39.1% vs. 32.4%) and
in the I/P risk group (41.9% vs. 26.8%). Similarly, the complete response rate (CR) was
10.7% vs. 2.6% in the ITT population and 10.4% vs. 1.4% in the I/P risk population for the
NIVO + IPI groups vs. SUN, respectively.
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Figure 1. ESMO Clinical Practice Guideline update: Systemic first-line treatment of clear
cell renal cell carcinoma (ccRCC) [14]. ccRCC, clear cell renal cell cancer; EMA, Euro-
pean Medicines Agency; ESMO-MCBS, European Society for Medical Oncology-Magnitude of
Clinical Benefit Scale; FDA, Food and Drug Administration; IMDC, International Metastatic
RCC Database Consortium; MCBS, ESMO-Magnitude of Clinical Scale; VEGFR, vascular en-
dothelial growth factor receptor. a ESMO-MCBS v1.1 score for new therapy/indication
approved by the EMA or FDA. The score has been calculated by the ESMO-MCBS
Working Group and validated by the ESMO Guidelines Committee; b FDA approved;
not currently EMA approved.

The first major trial for the ICI plus VEGFR TKI with axitinib combination was
KEYNOTE-426. The first results at 14 months and then at 30 months were clearly in favor of
the pembrolizumab + axitinib (PEMBRO + AXI) combination [9,10]. The 42.8-month update
confirmed the superiority over all endpoints in the ITT population: median OS of 45.7 vs.
40.1 months (HR 0.73 [95% CI: 0.60, 0.88], p < 0.001), median PFS of 15.7 vs. 11.1 months
(HR 0.68 [0.58–0.80], p < 0.0001) and ORR 60% (10% CR) vs. 40% (3.5% CR) (p < 0.0001),
respectively [16]. These results confirmed the status of PEMBRO + AXI as a first-line treat-
ment standard for all patients according to the latest European recommendations [13,14].
Another immunotherapy combination trial—the JAVELIN Renal 101 trial—reported, with
13 months of follow-up, superior PFS of avelumab + axitinib (AVE + AXI) vs. SUN,
whether in patients with PD-L1 positive (PD-L1+) tumors (HR 0.61; p < 0.0001; 13.8 vs.
7.2 months) or in the overall population (HR 0.69; p < 0.0001; 13.8 vs. 8.4 months). This
combination did not appear in the recommendations due to a lack of OS benefit [7,8].
A third interim analysis over more than two years confirmed these data, with a non-
statistically significant OS benefit and a PFS of 13.9 vs. 8.5 months (HR 0.67; p < 0.0001) [17].
More recently, the CheckMate 9ER study evaluated the cabozantinib and nivolumab
(CABO + NIVO) combination and showed an OS benefit compared with SUN monotherapy
(HR 0.6; 95% CI: 0.4–0.49; p = 0.001) and PFS (16.6 vs. 8.3 months; HR 0.51; 95% CI: 0.41–0.64;
p < 0.0001) with an ORR of 55.7%, including 8% of CR [11]. With an 18-month follow-
up, this trial was largely positive for survival and response rates. Only 6% of patients
were progressive from the outset, and this combination was therefore also promising.
The last combination of interest was lenvatinib + pembrolizumab (LENVA + PEMBRO)
compared with SUN monotherapy in the phase III CLEAR study in 1069 treatment-naïve
patients with mccRCC [12]. With a median follow-up of 27 months, this study was clearly
positive for its primary endpoint with a median PFS of 23.9 months (20.8–27.7) in the
LENVA + PEMBRO arm versus 9.2 months (6.0–11.0) in the SUN arm (HR 0.39; 0.32–0.49;
p < 0.001). PFS was improved regardless of the IMDC subgroup or sarcomatoid contingent.
Lenvatinib + everolimus also met the primary endpoint, with median PFS of 14.7 months
versus 9.2 months for SUN, representing a 35% improvement in favor of this combina-
tion. The LENVA + PEMBRO combination significantly improved OS compared to SUN
(HR 0.66; 0.49–0.69; p = 0.005) with a particularly marked benefit in IMDC poor risk group
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(HR 0.30). The ORR in the LENVA + PEMBRO arm was 71%, including 16% of CR.
Only 5.4% of patients experienced immediate progression following the introduction
of LENVA + PEMBRO. It should be noted that in this study a high proportion of pa-
tients had a good prognosis, with a spontaneously more favorable history. Nevertheless,
this combination provided the longest PFS or OS durations ever reported in a pivotal phase
III trial (Table 1).

3. Pending Questions and Impact on Clinical Practice

3.1. Comparisons of Combinations

Given the number of effective first-line treatment options and the absence of direct
comparison studies, the major question is which combination to prescribe to which pa-
tients? A recent meta-analysis indirectly compared the three combinations NIVO + IPI,
PEMBRO + AXI, and AVE + AXI in terms of PFS, OS, and ORR, with a trend in favor
of the PEMBRO + AXI combination [18]. However, this meta-analysis did not include
the last two combinations and was based solely on published, non-individual data. The
IMDC consortium compared the NIVO + IPI or ICI (anti-PD-(L)1)-TKI combinations in
723 patients including 546 with I/P risk [19]. This retrospective analysis of a large number
of patients required very careful interpretation as the quality of the data collected varied.
The ORR was 37% vs. 59% in the NIVO + IPI and ICI-TKI arms, respectively, which was
quite similar to the phase III data. In contrast, CR rates were similar in both arms, but lower
than those in trials at only 4%. OS was not significantly different between the two types
of treatment received: 40.2 vs. 39.7 months for NIVO + IPI vs. ICI-TKI (HR adjusted 0.92,
p = 0.71), respectively. Based on the OS parameter alone, this analysis showed that
there was no combination more effective than another in this poorly selected popula-
tion. But it seemed that the benefit in OS was maintained over time for NIVO + IPI
(constant HR), while the HR increased for the PEMBRO + AXI association. Finally, the
meta-analysis of Quhal et al.—incorporating six studies (CheckMate-214, Keynote-426,
IMmotion-151, JAVELIN Renal 101, Checkmate-9ER, and CLEAR), i.e., 5121 patients—
suggested that ICI-TKI combinations provided superior PFS, ORR, and OS vs. ICI-ICI com-
binations, independent of the IMDC group [20]. Based on treatment classification analysis,
NIVO + CABO was most likely to provide maximum OS (p-score 0.7573). These compar-
isons remain indirect and limited by the variability of patient characteristics in the trials
evaluated (prognostic risk categories and PD-L1 expression) and differences in subsequent
treatments received that may influence OS outcomes.
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3.2. IMDC Groups

The patient’s prognostic profile based on the IMDC risk score is a criterion that must
be considered. The magnitude of the PFS benefit of the CABO + NIVO combination seemed
particularly marked in patients with poor risk: HR 0.37 vs. 0.62 and 0.54 for patients with a
good and intermediate risk, respectively. Similarly, OS benefits were greater in patients
with poor risk, with a 63% reduction in the risk of death (HR 0.37 vs. 0.84 and 0.70 for
a good and intermediate risk, respectively) [11]. The LENVA + PEMBRO combination
presented similar results with a particularly significant OS benefit in the IMDC poor risk
group (HR 0.30) and important response rates: 71% ORR and 16% CR. Given the significant
percentage of CR, it may be an objective in its own right, but it remains to be seen whether
it is influenced by the rather favorable population included in the trial or whether it is
confirmed in real life or in other trials [12]. Moreover, the percentages of progression
from the outset of both combinations were very low, at around 4–5% compared to 18%
with NIVO + IPI [6,11,12]. Thus, in a patient at risk of rapid progression or presenting a
threatening disease (e.g. threatening epiduritis with a high risk for spinal cord compression
or bronchial compression) with a limited life expectancy, obtaining a rapid and impor-
tant response could tip the decision towards an ICI-TKI combination (CABO + NIVO or
LENVA + PEMBRO). Based on available data, it is still difficult to speculate whether the
addition of CABO offers the combination a gain in efficacy on predominant or major
bone lesions. Finally, an FDA analysis pooled individual data from 3447 patients from
four randomized phase III trials of ICI-ICI (n = 1) or ICI-TKI (n = 3) combinations. Im-
provement in OS with combinations vs. SUN was found in I/P risk patients (HR 0.696;
95% CI: 0.62, 0.78) but not in patients with a good prognosis (HR 0.953; 95% CI: 0.72,
1.27) [21]. However, it should be noted that the monitoring, still too short in the trials, has
not, for the time being, shown a benefit in OS or even PFS for the ICI-TKI combinations
in these patients with a good prognosis, with only a benefit in ORR being found so far.
In addition, IMDC favorable patients will be prone to receive first-line treatment for a
long period of time, leading to an increased risk of experiencing cumulative TKI toxicities.
Thus, in these patients, TKI is frequently interrupted which would be harmful, since it
has been shown that their tumors are pro-angiogenic and highly sensitive to angiogenesis
inhibitors [22]. As for ICI-ICI, PFS, and TR were lower than for TKI monotherapy, but the
CR rates were higher and OS was comparable. According to the post-hoc analysis of the
CheckMate 214 study performed according to the number of IMDC risk factors, a benefit
of treatment with NIVO + IPI on SUN was found for all patients at intermediate risk,
including those with one or two risk factors (ORR (40–44% vs. 16–38%), OS (HR 0.50–0.72),
and PFS (HR 0.44–0.86)) [23]. All of these data favored combinations, including in patients
with a good prognosis. Overall, it seemed relevant to have the second-line strategy in
perspective when choosing the first-line treatment. Thus, in a patient without significant
tumor volume and risk of rapid worsening, the criteria for the choice of treatment should
include tolerance, continuation of treatment, and possible second-line treatment, leading
the strategy towards ICI-ICI vs. ICI-TKI. Nevertheless, as part of a prolonged follow-
up, the impact on the response rate—and possibly on OS—also leads us to consider an
ICI-TKI combination.

3.3. Potential Impact of PD-L1 Status

PD-L1 status is a recognized prognostic factor, but its predictive response value to
ICI remains to be demonstrated [24,25]. The meta-analysis of Mori et al. [26] investigated
the predictive value of PD-L1 expression in patients with mccRCC treated with first-
line ICI combinations. Based on key clinical outcomes, including response rate and PFS,
the authors found that PD-L1+ patients benefited more from ICI combinations than from
SUN, with a PFS of 22 months vs. 6 months (HR 0.65, 95% CI: 0.57, 0.74, p < 0.001). In
PD-L1+ patients, NIVO + IPI resulted in a more significant improvement in efficacy criteria
compared with ICI-TKI for all IMDC risk groups. Examined study by study, in the I/P
subgroup of the CheckMate-214 study [5], OS was significantly better in the NIVO + IPI
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arm compared to SUN regardless of PD-L1 status, although the magnitude of OS benefit
was greater in the PD-L1− subgroup (HR 0.73 vs. 0.45 for PD-L1+). For ICI-TKI, the data
were heterogeneous [7–11]. In KEYNOTE-426, the superiority of PEMBRO + AXI over
SUN was maintained regardless of PD-L1 status (HR 0.54 for PD-L1+ vs. HR 0.59 for
PD-L1−). Conversely, the CHECKMATE-9ER trial showed an impact of PD-L1 status, with
a lower HR for OS in the PD-L1− population (0.51 vs. 0.80 for PD-L1+). Similarly, in the
CLEAR study, the OS benefit was particularly pronounced for PD-L1− status (HR 0.50 vs.
HR 0.76 for PD-L1+) [12]. However, these comparisons are questionable since the methods
used to assess PD-L1 status differed according to the CheckMate-214/CheckMate-9ER,
JAVELIN Renal 101 and KEYNOTE-426 studies: 28-8 clone (Dako), PD-L1 ≥ 1% in tumor
cells, SP263 clone (Ventana), PD-L1 ≥ 1% in immune cells and 22C3 clone (Dako), Combined
Positive Score (CPS) > 1% tumor cells plus immune cells, respectively [5–11]. This can
probably partly explain why the proportion of the PD-L1+ population varied so widely
from study to study. In addition, a biomarker analysis was performed using data from
the CheckMate-214 study [27], in which the PD-L1 status was defined on tumor cells,
but also according to the CPS combining tumor cells and immune cells. The recovered
PD-L1+ level was 25% for tumor cells and 60% by CPS. The results of this analysis showed
that when the proportion of positive patients increased, the OS benefit vs. SUN remained,
but was of lower magnitude. Overall, the results diverged and harmonization of techniques
in the future would allow a better comparison between the populations studied. To date,
PD-L1 status does not seem to be a formal decision criterion in the choice of treatment,
but it can be considered during the ICI-ICI vs. ICI-TKI decision. If PD-L1 status is assessed,
it seems preferable to do so on tumor cells only since the most discriminant outcomes
according to PD-L1 status has been shown in the CheckMate-214 study with ICI-ICI [27].

3.4. Tolerance Profile/Quality of Life

Tolerance and quality of life (QoL) are also important criteria for choosing the thera-
peutic strategy, especially as the potential lifespan increases. The type of adverse events
(AEs) differs depending on the treatment or combination considered: there are more AEs
with the ICI-TKI combination compared to ICI-ICI over the long term; however, when they
occur in ICI-ICI, they may be more acute and unpredictable. Based on a meta-analysis
that included four trials (CheckMate-214, Keynote-426, IMmotion-151 and JAVELIN Re-
nal 101), ICI-based combinations were associated with a higher risk of all-grade pruritus
(HR 3.11) and all-grade rash (HR 1.44) compared to patients treated with SUN. How-
ever, the combinations presented less grade 3/4 fatigue (HR 0.49) and nausea (HR 0.60)
vs. SUN [28]. Another more recent meta-analysis incorporated the Checkmate-9ER and
CLEAR studies [20]. Compared to the SUN, LENVA + PEMBRO was associated with the
highest probability of treatment-related AEs of grade ≥3 (OR 1.84, 95% CI: 1.28, 2.64) and
discontinuations (OR 3.55, 95% CI: 2.46, 5.12) [12]. NIVO + IPI was associated with the
lowest rates of grade ≥3 AEs, but with a higher probability of endocrine-related AEs [20].
A higher probability of high-grade diarrhea was associated with PEMBRO + AXI and
AVE + AXI. The duration of AEs was also different: in the CheckMate-214 study, ICI-ICI-
related toxicity occurred mainly during the first four months of the study and subsequently
stabilized while in the SUN arm, the rate of AEs remained more stable throughout the
study, particularly for vascular, digestive, and hematological toxicities [5,6]. It should be
noted that the benefit/risk balance of immunotherapy should be discussed in the first-line
treatment for certain patient profiles, particularly those with inflammatory colitis, espe-
cially if they are active [29,30]. In patients over 75 years of age, OS was comparable but
AEs were more frequent than in younger patients; however, this did not contraindicate the
use of immunotherapy in these patients [6,31]. Given the small number of elderly patients
enrolled in the trials, data from other or real-life trials remain necessary.

In terms of QoL, patient-reported outcomes (PROs) were assessed as an exploratory
criterion in the CheckMate-214 trial and showed that combined treatment resulted in
fewer symptoms and a better QoL than with SUN [32]. In the Checkmate-9ER study,
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QoL was sustained over time with NIVO + CABO, while constant deterioration was
observed with SUN. Combination therapy improved symptoms up to week 91 unlike
SUN [11]. In an analysis of a secondary endpoint of HRQoL (Health-Related QoL) scores
in the CLEAR trial, LENVA + PEMBRO demonstrated a similar time to first deterioration
(TTD) in 14 out of 18 HRQoL and disease-related symptom scores, and a delay in TTD
for physical functioning, dyspnea, appetite loss, and EQ-5D visual analog scale compared
to SUN [33]. Overall, QoL improved when treated with ICI-ICI, but not with ICI-TKI
due to continuous administration of antiangiogenics. It should be noted that in practice,
induction of treatment with ICI-ICI requires close monitoring due to the specific nature of
the AEs and access to a network of specialists and dedicated multidisciplinary consultative
meetings (such as ImmunoTox).

3.5. Treatment Sequence: Second-Line and Subsequent Therapies

The therapeutic strategy is crucial for patients with a good prognosis: they have a
life expectancy of several years and therefore a higher probability of receiving many lines
unlike I/P patients. For the time being, there is no gain in OS, so it is too early to know
whether a sequential approach with an antiangiogenic in the first-line treatment, based
on the often-predominant angiogenic profile, and then immunotherapy in the second-line
treatment, would really be inferior to a combination strategy from the outset. In patients
with a good prognosis and a small-volume tumor for which a CR is achievable, the notion
of the second-line treatment and the strategy of subsequent lines are important to consider.
Based on data from the favorable prognostic patient group in the CheckMate-214 study [6],
more than 50% of patients survived at 48 months (with an HR for OS of 0.69 in the
NIVO + IPI arm vs. 0.65 in the SUN arm). However, there are numerous treatment options
after a first-line treatment of SUN or post-NIVO + IPI, but fewer after
CABO + NIVO or PEMBRO + LENVA. Indeed, after treatment with CABO, which has
a strong anti-VEGFR2 effect, no solid data suggest the efficacy of SUN or AXI. It should
be noted that HIF (Hypoxia Inducible Factor) inhibitors are being evaluated after these
first-line strategies [34].

In patients with I/P risk who have received a first-line therapy with ICI-ICI combina-
tion, the question that arises is which TKI to choose for second-line therapy? A retrospective
trial in 33 patients in the CheckMate 214 trial who received second-line TKI after ICI-ICI
reported a median PFS of 8 months for first-generation TKI (sunitinib/pazopanib) and
7 months for second-generation TKI (axitinib/cabozantinib) (p = 0.66) [35]. This retrospec-
tive trial did not validate the feasibility of a second-line treatment by TKI after ICI-ICI
or the choice of the first- or second-generation TKI molecule. Dudani et al. [36], using
IMDC data, compared the efficacy of second-line treatment after ICI-ICI NIVO + IPI
or after ICI-TKI. A total of 113 patients received ICI-TKI and 75 ICI-ICI in the first-line
treatment, and 34 patients (30%) in the ICI-TKI group and 30 patients (40%) in the ICI-
ICI group received a second-line treatment, mainly VEGF TKI (axitinib, cabozantinib,
lenvatinib + everolimus, pazopanib and sunitinib). The second line response rate was 15%
in the ICI-TKI group vs. 45% post-ICI-ICI (p = 0.04); however, the time to treatment failure
(TTF) was not statistically different (3.7 vs. 5.4 months; p = 0.4). Updating of data in 142 pa-
tients, 103 of whom had received the second-line treatment, confirmed these results with a
response rate that remained higher after ICI-ICI (37% vs. 12%, p < 0.01), but with no differ-
ence in OS or TTF [37]. Finally, a phase II study evaluating PEMBRO + LENVA after ICI, pre-
sented by Lee et al at ASCO 2020, reported an ORR of 47% in the 38 patients who received
NIVO + IPI in first line [38]. The choice of TKI must therefore consider the patient’s profile
and the fact that a proportion of patients will not reach a third-line treatment. However,
the optimal sequence remains to be validated in the trials.

Another question is: Is the introduction of an anti-CTLA-4 in salvage therapy after a
lack of response to an anti-PD-1 monotherapy (NIVO or PEMBRO) in the first-line treatment
of interest? To date, the only data on the use of NIVO + IPI after prior anti-PD-(L)1 failure
are based on four non-randomized phase II trials that were presented at the ESMO 2019
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(TITAN-RCC) and ASCO 2020 (FRACTION-RCC, OMNIVORE, and HCRN GU16-260)
congresses [39–42]. The pooled analysis of the four studies (n = 237 patients) confirmed a
low response rate of 10.0% associated with 27.0% of grade ≥3 AEs [43]. Finally, a small
retrospective study of 45 patients reported results of the combination of NIVO + IPI in
second-line treatment post-anti-PD-1 alone or in combination and/or post-TKI: after a
median follow-up of 12 months, the ORR was 20% and the median PFS was 4 months
(0.8–19 months) [44]. Overall, the combination of NIVO (anti-PD-1) + IPI (anti-CTLA-4) in
patients who have already received anti-PD-(L)1 treatment, but no anti-CTLA-4, did not
seem an option to retain and supported administering anti-CTLA-4 only in the setting of
first-line treatment.

4. Outlook

Beyond sequential therapeutic strategy trials, researching biomarkers predictive of
response to ICI is also essential. Among the biomarkers studied is the PD-L1 status,
but also the molecular profiling of the tumor. Thus, the BIONIKK study assessed personal-
ized treatments with ICI alone or ICI-ICI or TKI according to tumor molecular character-
istics in mccRCC [45]. Using an expression signature of 35 genes, patients were divided
into four molecular groups (1 to 4). Patients in groups 1 and 4 were randomized to receive
NIVO alone or NIVO + IPI (four administrations) followed by NIVO alone. Patients in
groups 2 and 3 were randomized to receive either NIVO + IPI followed by NIVO alone
or a TKI (sunitinib or pazopanib) according to the investigator. The study questioned
the interest of establishing a routine tumor molecular profile to optimize the choice of
treatment between immunotherapy monotherapy, or an ICI-ICI or ICI-TKI combination.
First results presented at the 2019 ESMO meeting were encouraging [46].

Finally, other developments in the therapeutic arsenal are expected in the coming years
with, on one hand, potential intensification with first-line triplet CABO + NIVO + IPI and,
on the other, the introduction of anti-PD-1 in the adjuvant setting [47] which may increase
survival but will also impact subsequent lines. Furthermore, the time to progression
(within 6–12 months or more than 12 months after the end of anti-PD-1) will likely influence
the choice.

5. Conclusions

To conclude, currently the PEMBRO + AXI, CABO + NIVO (for all patients), and
NIVO + IPI (for patients with I/P risk) combinations constitute the first-line management
standard for mccRCC. However, multiplication of first-line treatment options continues
and now no less than five combinations have robust data, with unfortunately no direct
comparison study of the different combinations available. The choice of strategy must
therefore be based on efficacy criteria, but also on the patient’s risk profile and tolerance to
each treatment (Table 2), while keeping the options of the subsequent lines in perspective.
Given the complexity of choice, therapeutic sequence data with second-line combinations
will become essential to guide the therapeutic strategy. Even if these combinations were
approved regardless of the tumor PD-L1 status, the use of predictive biomarkers of response
to ICI could, in the future, help determine the best personalized treatment strategy for
each patient.
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Table 2. Parameters guiding the choice of strategy between ICI/ICI and ICI/TKI combinations.

Parameter ICI-ICI ICI-TKI

Prolonged follow-up � �

Efficacy: overall CR, OS
ORR, PFS

�

�

�

�

Efficacy: subgroups

IMDC favorable
IMDC

intermediate/poor
PD-L1+
PD-L1-

�

�

�

�

�

�

�

�

Tolerability
Overall

Cardiovascular
Immune-mediated

�

�

�

�

�

�

Quality of life � �

Subsequent line options � �

Green check mark: in favor; Orange check mark: lacks information or does not allow to conclude; Red cross:
rather in disfavor; CR, complete response rate; ICI, immune checkpoint inhibitors; IMDC, International Metastatic
RCC Database Consortium; ORR, objective response rate; OS, overall survival; PD-L1, Programmed cell death
ligand 1; PFS, progression free-survival; TKI, tyrosine kinase inhibitors.
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Simple Summary: Renal cell carcinoma (RCC) is a heterogeneous and complex disease with almost
no response to chemotherapy. Immune checkpoint inhibitors have achieved great clinical success
but no interesting circulating markers of clinical use have developed so far in clear cell renal cell
carcinoma (CCRCC). We investigate the diagnostic and prognostic role of plasma PD-1 (sPD-1)
and PD-L1 (sPD-L1) proteins for the first time together with the immunohistochemical expression
counterpart of these proteins within the tumor front and tumor center in the same sample of patients
with renal cancer undergoing surgery. We also investigate these plasma and tissue markers in the
population of metastatic patients according to International mRCC Database Consortium (IMDC)
prognostic groups and the response to systemic therapy. The independent role of sPD-L1 as a
predictor of prognosis and treatment response is demonstrated.

Abstract: (1). Background: Immunohistochemical (IHC) evaluation of programmed death-1 (PD-1)
and its ligand (PD-L1) is being used to evaluate advanced malignancies with potential response
to immune checkpoint inhibitors. We evaluated both plasma and tissue expression of PD-1 and
PD-L1 in the same cohort of patients, including non-metastatic and metastatic clear cell renal cell
carcinoma (CCRCC). Concomitant plasma and tissue expression of PD-1 and PD-L1 was evaluated
with emphasis on diagnostic and prognostic implications. (2) Methods: we analyzed PD-1 and
PD-L1 IHC expression in tumor tissues and soluble forms (sPD-1 and sPD-L1) in plasma from
89 patients with CCRCC, of which 23 were metastatic and 16 received systemic therapy. The primary
endpoint was evaluation of overall survival using Kaplan-Meier analysis and the Cox regression
model. Plasma samples from healthy volunteers were also evaluated. (3) Results: Interestingly, sPD-1
and sPD-L1 levels were lower in cancer patients than in controls. sPD-1 and sPD-L1 levels and their
counterpart tissue expression both at the tumor center and infiltrating front were not associated.
Higher expression of both PD-1 and PD-L1 were associated with tumor grade, necrosis and tumor
size. PD-1 was associated to tumor stage (pT) and PD-L1 to metastases. sPD-1 and sPD-L1 were
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not associated with clinico-pathological parameters, although both were higher in patients with
synchronous metastases compared to metachronous ones and sPD-L1 was also higher for metastatic
patients compared to non-metastatic patients. sPD-1 was also associated with the International
Metastatic Renal Cell Cancer Database Consortium (IMDC) prognostic groups in metastatic CCRCC
and also to the Morphology, Attenuation, Size and Structure (MASS) response criteria in metastatic
patients treated with systemic therapy, mainly tyrosine-kinase inhibitors. Regarding prognosis,
PD-L1 immunostaining at the tumor center with and without the tumor front was associated with
worse survival, and so was sPD-L1 at a cut-off >793 ng/mL. Combination of positivity at both the
tissue and plasma level increased the level of significance to predict prognosis. (4) Conclusions: Our
findings corroborate the role of PD-L1 IHC to evaluate prognosis in CCRCC and present novel data
on the usefulness of plasma sPD-L1 as a promising biomarker of survival in this neoplasia.

Keywords: clear cell renal cell carcinoma; prognosis; plasma; PD-1; PD-L1

1. Introduction

Clear cell renal cell carcinoma (CCRCC) is a very prevalent disease and a clinical
problem of major concern in Western countries due to its biological aggressiveness and
its well-known resistance to chemotherapy and radiotherapy regimes [1–3]. Traditionally,
radical surgery coupled with early diagnosis has been the only strategy with a direct
impact on patient survival [4]. CCRCC is a model of hypoxia-related disease. VHL gene
malfunction is detected in the overwhelming majority of the cases, resulting in a pseudo-
hypoxic status that promotes angiogenesis [5]. The implementation of antiangiogenic
therapies with tyrosine kinase inhibitors has improved the prognosis of many of these
patients [6,7]. However, its efficacy is limited due to the development of resistant-to-therapy
cell clones [8].

Immune checkpoint blockade of PD-1 and its ligand PD-L1 have been implemented
in advanced lung, renal (CCRCC) and bladder carcinomas, as well as in melanoma, with
promising results in several trials [9,10]. In CCRCC the immunohistochemical evaluation
is selectively performed in the intratumor lymphoid inflammatory infiltrates. However,
the patient selection for such a form of therapy is difficult, since this evaluation is subjected
to interobserver variability [11]. In fact, up to 17% of patients with negative immuno-
histochemistry results do respond to this therapy [12]. Other important limitations for
the development of immune checkpoints inhibitors targeting the PD-1 pathway are that
responses rates are low and biomarkers are needed for the prediction of treatment re-
sponses [13,14].

To overcome the aforementioned difficulties, composite biomarkers have been inves-
tigated including tumor mutational burden, profiling of tumor infiltrating lymphocytes,
molecular subtypes and the characterization of ligand PD-L2. Distinct tumor microenvi-
ronment immune types have been described, mainly based on the level of CD8A and PD-1
expression, with the intention to standardize a more comprehensive score to be used as a
prognostic marker [15]. Combination with other composite biomarkers is currently under
investigation [16]. Another interesting strategy to maximize the clinical benefit and predict
treatment toxicity is the characterization of gastrointestinal microbiome [17]. Surprisingly,
not much attention has been given to the evaluation of soluble PD-1 (sPD-1) and PD-L1
(sPD-L1) in plasma as potential biomarkers in patients with CCRCC, a heterogeneous
neoplasm in serious need of identification of molecular markers that clinicians could use to
facilitate an earlier diagnosis, to monitor the disease and to predict prognosis and clinical
response to different therapies.

We evaluate plasma and tissue expression of PD-1 and PD-L1 in the same cohort
of patients and analyze the relationship between them, also taking into account the non-
metastatic and metastatic samples. Within metastatic CCRCC, plasma and tissue expression
of PD-1 and PD-L1 were analyzed according to the IMDC risk classification and also
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according to the Morphology, Attenuation, Size and Structure (MASS) response criteria
in patients receiving systemic therapy for metastatic disease. Also, we provide a very
interesting simultaneous evaluation of sPD-1 and sPD-L1 and its concomitant expression
in the tumor center and infiltrating front, with emphasis on the prognostic implication of
these categories. The potential use of sPD-L1 as a tumor marker itself is also discussed, and
its relation to other clinical and pathological variables that predict prognosis in CCRCC
and treatment response in metastatic CCRCC, according to MASS criteria, is investigated.

2. Results

2.1. PD-L1 and PD-1 Tissue Expression and Plasma Levels Are Not Correlated with the Gender
and Age of CCRCC Patients

To assess whether the expression in tumors and plasma levels of these biomarkers
varies according to the gender or age of the patients, the non-parametric Rho Spearman test
was performed. There was not any statistically significant correlation in any case (Table S1).
Therefore, it can concluded that the sample has no gender or age bias.

2.2. The Expression of PD-L1 and PD-1 at the Tumour Centre and at the Infiltrating Front
Is Correlated

We analyzed the expression of PD-L1 and PD-1 in lymphocytes at both the tumor
center and front (Figure 1). The expression correlated positively in all cases (Table S2).
Thus, the higher the percentage of PD-L1 or PD-1 positives at the tumor center, the higher
the percentage was at the tumor front. Moreover, PD-L1 correlated positively with the
expression of PD-1.

 

Figure 1. Immunohistochemical expression of PD-1 (sPD-1) and PD-L1 (sPD-L1) staining in inflam-
matory cells in clear cell renal cell carcinoma (CCRCC) samples, both in the tumor center (a,c) and
infiltrating front (b,d).

Although there was a significant positive correlation between the expression of both
biomarkers at the tumor center and edge, this does not mean that there was a concomitant
expression in all cases. Therefore, we also evaluated the simultaneous positive staining
of PD-L1 and PD-1 at both areas of tumors and stratified the rest of data, taking this
characteristic into account. Thus, simultaneous positivity of PD-L1 at tumor center and
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front was found to be correlated with simultaneous expression of PD-1 at both areas
(Table S2).

2.3. Plasma PD-L1 Levels Are Lower in CCRCC Patients than in Control Subjects

Plasma levels of sPD-L1 and sPD-1 from CCRCC patients were compared to plasma
from 46 controls (Table 1). sPD-L1 levels were significantly lower in patients than in
healthy subjects. Plasma sPD-1 levels showed high variability both in patients and in
controls. These levels were higher in patients than in controls; however, the result was not
statistically significant.

Table 1. sPD-L1 and sPD-1 levels in plasma samples from clear cell renal cell carcinoma (CCRCC)
patients and healthy controls. Values are means ± standard errors. Significant p value in bold.

sPD-L1 (ng/mL) sPD-1 (ng/mL)

CCRCC Controls Mann-U (p=) CCRCC Controls Mann-U (p=)

902.8 ± 139.7 989.1 ± 155.9 0.048
1304.7 ±

306.3 941.3 ± 300.3 0.33

We also aimed to analyze the association between plasma levels of these two biomark-
ers according to their expression at the tumor center, at the infiltration front and, simulta-
neously, at both areas (Table 2). We observed higher plasma PD-L1 levels in patients whose
tumors were PD-L1 positive at the tumor center, border and at both areas. However, this
trend was not statistically significant. We did not find any significant association between
sPD-1 levels and PD-1 expression in CCRCC tissues.

Table 2. Plasma sPD-L1 and sPD-1 levels in CCRCC patients in terms of PD-L1 and PD-1 expression in CCRCC tissues.

PD-L1 Expression at Tumour Centre PD-L1 Expression at Infiltrating Front

Negative Positive Mann-U, p= Negative Positive Mann-U, p=

Plasma sPD-L1
(ng/mL) 849.1 ± 148.3 1182.1 ± 412.7 0.13 905.9 ± 184.5 1035.7 ± 353.1 0.99

PD-1 at Tumour Centre PD-1 at Infiltrating Front

Negative Positive Mann-U, p= Negative Positive Mann-U, p=

Plasma sPD-1
(ng/mL) 1151.6 ± 344.4 1545.5 ± 576.5 0.61 1480.8 ± 446.6 983 ± 424.5 0.88

PD-L1 Expression in Both Areas PD-1 Expression in Both Areas

Negative Positive Mann-U, p= Negative Positive Mann-U, p=

Plasma sPD-L1
(ng/mL) 845.1 ± 137.3 1439.5 ± 684.5 0.44 - - -

Plasma sPD-1
(ng/mL) - - - 1383.2 ± 367.4 1103 ± 562.6 0.94

2.4. Tissue Expression of PD-L1 and PD-1 as Well as Plasma sPD-L1 and sPD-1 Are Associated
with CCRCC Aggressiveness

We stratified results by clinical parameters tightly related to tumor aggressiveness
such as the Fuhrman histological grade, tumor necrosis, size, local invasion (pT), pres-
ence/absence of affected lymph nodes (N) and time of presentation of distant metastasis
(M). Data are shown in Figures 2 and 3. Data in metastatic patients was also evaluated
according to IMDC categories predictive of prognosis and also in metastatic patients receiv-
ing systemic therapies, mainly tyrosine kinase inhibitors (TKIs) in sequential use (Table S3),
results were evaluated according to the tumor response to treatment following the MASS
criteria.
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Figure 2. Immunohistochemical PD-L1 staining in terms of the CCRCC aggressiveness. PD-L1 immunostaining at the
tumor center, infiltrating front and simultaneously at both areas depending on histological grade (A), tumor necrosis (B),
diameter (C), local invasion or pT (D), lymph node metastasis or N (E), and distant metastasis or M (F). PD-L1 staining
intensity was scored as negative or positive. Chi-Square test * p < 0.05; ** p < 0.01, *** p < 0.001.

Figure 3. Immunohistochemical PD-1 staining according to CCRCC aggressiveness. PD-1 immunostaining at the tumor
center, infiltrating simultaneously at both areas depending on the histological grade (A), tumor necrosis (B), diameter (C),
local invasion or pT (D), lymph node metastasis or N (E) and distant metastasis or M (F). PD-1 staining intensity was scored
as negative or positive. Chi-Square test * p < 0.05; ** p < 0.01, *** p < 0.001.

2.4.1. PD-L1 and PD-1 Expression Is Higher in High-Grade Tumors

Tumors were stratified as having a low Fuhrman grade (G1–G2) and a high-grade
(3–4). High-grade CCRCCs showed higher PD-L1 and PD-1 expression than low-grade
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tumors, both at the center and at the infiltrating front. Simultaneous positive expression at
both areas was also higher in high grade CCRCCs (Figure 2A or Figure 3A).

Plasma sPD-L1 and sPD-1 showed opposite pattern, with higher levels in patients
with low grade tumors; however, these results were not statistically significant (Table 3).

Table 3. Plasma sPD-L1 and sPD-1 levels in terms of pathological parameters of CCRCC aggressiveness. The Mann-Whitney
test was used for comparisons between two groups and Kruskal-Wallis for more than two groups. Values are represented
as means ± standard errors. a sPD-L1 synchronous vs. No, Mann-U p = 0.038; b sPD-L1 synchronous vs. Metachronous,
Mann-U p = 0.008; c sPD-1 synchronous vs. Metachronous, Mann-U p = 0.037. Statistically significant values are highlighted
in bold.

CCRCC Patients n= sPD-L1 (ng/mL) p= sPD-1 (ng/mL) p=

Fuhrman Grade
Low-Grade (G1-G2) 49 982 ± 215

0.53
1795 ± 474

0.23High-Grade (G3-G4) 40 806 ± 168 678 ± 348

Necrosis
No 63 754 ± 248

0.55
1472 ± 371

0.15Yes 26 964 ± 169 876 ± 537

Size
≤4 cm 28 1143 ± 353

0.37
1880 ± 644

0.95>4 to 7 cm 39 685 ± 104 1021 ± 394
>7 cm 22 982 ± 289 1024 ± 587

Local Invasion (pT)
pT1 59 896 ± 179

0.41
1467 ± 402

0.95pT2 12 1049 ± 512 1414 ± 1089
pT3–pT4 18 826 ± 157 760 ± 364

Lymph node invasion (N)
No 83 885 ± 148

0.08
1322 ± 328

0.14Yes 6 1148 ± 305 1089 ± 524

Distant metastasis (M)
No 66 977 ± 184 1583 ± 395

0.14 cSynchronous 10 1014 ± 191 0.034 a,b 824 ± 369
Metachronous 13 438 ± 76 130 ± 68

2.4.2. PD-L1 and PD-1 Are Highly Expressed in CCRCC Tumors with Necrosis

These series had 26 necrotic tumors. PD-L1 expression at the center and border was
higher in these tumors. Simultaneous expression of PD-L1 at both areas was more frequent
in necrotic CCRCCs (Figure 2B). PD-1 expression showed a similar staining pattern, but
data only reached statistical significance at the tumor center (Figure 3B). Plasma sPD-L1
and sPD-1 levels did not show any significant difference depending on the necrosis status
of CCRCCs (Table 3).

2.4.3. PD-L1 and PD-1 Positive Staining Is More Frequent in Larger CCRCCs

We classified tumors in three groups: tumors with 4 cm or smaller, 4 to 7 cm and larger
than 7 cm. We observed that the larger the tumor was, the higher the positive staining of
both biomarkers (Figure 2C or Figure 3C). However, these results in tumor tissues were
not reflected in plasma, since sPD-L1 and sPD-1 did not vary significantly (Table 3).

2.4.4. PD-1 Expression Is Associated to Local Invasion (pT)

The limited number of pT4 cases led us to stratify the local invasion in three groups:
pT1 (organ-confined tumors smaller than 7 cm), pT2 (organ-confined tumors larger than
7 cm) and pT3-pT4 (non-organ-confined tumors). Percentages of PD-1 positive staining
were significantly higher in pT2 tumors than in pT1 (Figure 3D). PD-L1 staining was also
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higher in pT2 tumors; however, data did not reach statistical significance (Figure 2D).
Plasma analyses did not provide any significant results (Table 3).

2.4.5. PD-L1 and PD-1 Tissue Expression and Plasma sPD-L1 and sPD-1 Are Higher in
Patients with Synchronous Distant Metastasis

Data were also stratified by lymph node (N) and distant metastasis (M). Plasma sPD-
L1 levels were higher in patients with lymph node invasion; however, the number of
patients with this characteristic was limited (n = 6) and the result did not reach statistical
significance (Table 3). PD-L1 and PD-1 expression in tissue and sPD-1 in plasma did not
show any relevant difference (Figure 2E or Figure 3E).

With respect to distant metastases, we first compared primary tumors with (M1) or
without (M0) metastases at the moment of the first diagnosis of CCRCC. PD-L1 expression
at the tumor center (Chi-square test, p = 0.004), front (p = 0.029) and simultaneously at both
areas (p = 0.03) was higher in primary tumors with onset as metastatic lesions than in not
metastasized ones. PD-1 in the center of tumors also predicted metastasis (p = 0.005) (data
not shown in figures or tables).

We also classified distant metastases as early synchronous (metastases that debuted
within 6 months of the first primary cancer) and late metachronous (relapse of the disease
with distant metastases more than 6 months later), and compared them with tumors
that did not metastasize during follow-up. Thus, primary CCRCCs with synchronous
metastases showed higher percentages of positive staining of PD-L1 (tumor center, front
and simultaneous) and PD-1 (center) than in tumors that did not metastasize (Figure 2F
or Figure 3F). PD-L1 in tumor front was also higher in metachronous ones than in tumors
without metastases.

Plasma analyses showed that sPD-L1 levels were higher in patients that manifested
with metastasis at the onset of the disease (M0: 857 ± 157 ng/mL vs. M1: 1014 ± 191,
Mann-U test, p = 0.017). Furthermore, levels were also higher in patients with synchronous
metastases than in patients without (Table 3). Both sPD-L1 and sPD-1 levels were also
higher in patients with early metastases than with metachronous ones (Table 3).

2.5. PD-L1 and PD-1 Expression and Plasma Levels in Terms of the Overall Survival (OS) of
CCRCC Patients

PD-L1 positive immunostaining at the tumor center and simultaneously at both the
center and front was associated with a worse 5-year OS of CCRCC patients (Figure 4A,B).
The expression of PD-L1 at the infiltrating front showed a similar result but it did not reach
statistical significance (Log-rank test, p = 0.068). PD-1 expression at the center (Log-rank
test, p = 0.29), front (p = 0.24) and concomitantly at both areas (p = 0.23) was not associated
to OS.

A Classification and Regression Tree (CRT) was employed to obtain cut-off values
of plasma sPD-L1 and sPD-1 for OS analyses (Figure S1). A plasma sPD-L1 value of
793 ng/mL determined two nodes with significant differences in the percentage of dead
patients: 14.1% of deaths in the group of patients had plasma levels below this cut-off and
48.8% of deaths in the group had sPD-L1 levels above this cut-off (p = 0.047) (Figure S1A).
Thus, Kaplan-Meier curves demonstrated that CCRCC patients with sPD-L1 levels above
793 ng/mL had worse 5-year OS than patients with lower levels (Figure 4C).

With regard to sPD-1, the CRT selected a cut-off value of 27ng/mL (p = 0.017)
(Figure S1B). Kaplan-Meier curves showed a trend towards worse survival in CCRCC
patients with plasma sPD-1 levels below this cut-off; however, the difference did not reach
statistical significance (Log-rank test, p = 0.073).

Tumors and plasmas were obtained from the same patients. Therefore, taking into
account the significant results with PD-L1 and its soluble isoform predicting patients’
5-year OS, we also performed Kaplan-Meier curves by combining data of tissue expression
and plasma levels. Thus, two groups were created: (1) PD-L1 positive cases at the center
of tumors, at the infiltrating front or simultaneously at both areas, together with sPD-L1
levels above 793 ng/mL; and (2) the rest of the possible combinations (PD-L1-/sPD-
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L1 ≤793 ng/mL; PD-L1-/sPD-L1 >793 ng/mL; PD-L1+/sPD-L1 ≤793 ng/mL). CCRCC
patients with tumor PD-L1 positivity and plasma levels above 793 ng/mL had significantly
worse 5-year OS than patients with the rest of combinations (Figure 4D–F).

Figure 4. Immunohistochemical PD-L1 expression and plasma sFAP levels according to CCRCC patients’ 5-year overall
survival (OS). Kaplan-Meier curves and univariate Log-rank test showed that PD-L1 expression at tumor center (A)
and concomitant expression at center and border (B) is associated to worse OS. (C) CCRCC patients with sPD-L1 above
793 ng/mL had worse OS. The expression of PD-L1 at tumor center (D), front (E) or at both areas (F) together with plasma
sPD-L1 levels above 793 ng/mL are associated with worse OS.

Multivariate Cox regression analyses were performed to determine whether PD-L1
expression in tumor center, concomitantly at both center and front, sPD-L1 plasma levels
(cut-off 793 ng/mL) or the combination of both isoforms are independent prognostic factors
for 5-year OS. The logistic model resulting from a backward Wald stepwise elimination of
variables revealed that the expression of PD-L1 at the tumor center, concomitant expression
at both areas and plasma sPD-L1 were independent prognostic factors for 5-year OS
(Table 4). Moreover, combinations of PD-L1 positivity in tumor tissues and plasma sPD-L1
were also explanatory independent variables for patients’ OS. Complete multiple Cox
regression is shown as supplementary material (Table S4).

2.6. PD-L1 and PD-1 Tissue Expression and Plasma Levels in Patients with Metastatic CCRCC
According to IMDC Model and Response to Therapy

Twenty-three patients with metastatic CCRCC were stratified according to the IMDC
model for classification of patients at different risks of death. PD-L1 and PD-1 tissue
expression and plasma levels of sPD-L1 and sPD-1 were also stratified according to IMDC
categories. With the limited number of patients in this subseries, the percentage of patients
with positive PD-L1 and PD-1 tissular expression did not associate with IMDC groups;
however, if the favorable and intermediate groups are pooled together, then PD-L1 expres-
sion in tumor center was higher in patients with poor prognosis and approached statistical
significance (p = 0.056) (Table 5). Also, median sPD-L1 levels almost correlated with IMDC
groups (p = 0.062) and did so again when favorable and intermediate median sPD-L1 levels
discriminated against prognostic groups (p = 0.021) (Table 5).
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Table 4. Cox Regression model for 5-year overall survival (OS) prediction in CCRCC patients, final step of the Wald Method.
Selected pathologic variables for analyses were: Fuhrman grade or G (low vs. high grade), tumor necrosis (no/yes), local
invasion pT (pT1 vs. pT2 vs. pT3-pT4), lymph node metastasis N (no/yes) and distant metastases M (no vs. synchronous
vs. metachronous). Exponentiation of the B coefficient (ExpB) with confidence interval (CI) is also included. Statistically
significant values are highlighted in bold. PD-L1c: combination of tissue and soluble isoforms of PD-L1.

Tumour Centre Centre-Front Plasma

5-Year
OS

Variables p ExpB CI p ExpB CI p ExpB CI

pT 0.04 1.9 1 3.5 0.09 1.65 0.92 9 0.004 2.24 1.3 3.86
N 0.02 4.09 1.2 13.9 0.001 6.68 2.1 21.4 -
M 0.01 2 1.19 3.38 0.005 2.07 1.24 3.46 8 × 10−6 2.83 1.68 4.75

PD-L1 0.06 2.74 0.96 7.78 0.026 3.34 1.15 9.66 1 × 10−5 8.67 3.26 23.1

Tumour Centre and Plasma Front and Plasma Centre-Front and Plasma

5-Year
OS

Variables p ExpB CI p ExpB CI p ExpB CI

pT 0.002 4.66 1.77 12.22 0.01 1.83 1.34 9.12 0.017 3.3 1.24 8.66
N 0.02 4.29 1.21 15.17 0.002 3.28 1.96 21.7 0.005 5.85 1.69 20.2
M 0.001 2.33 1.4 3.89 0.0001 5.13 1.6 4.5 0.0001 2.63 1.57 4.4

PD-L1c 0.03 3.5 1.09 11.28 0.009 2.56 1.53 19.7 0.003 7.98 2.05 31

Table 5. PD-L1 and PD-1 expression and sPD-L1 and sPD-1 levels in the subgroup of metastatic CCRCC classified according
to the International Metastatic Renal Cell Cancer Database Consortium (IMDC) score (* Favorable and Intermediate pooled
together). Chi-x2, Mann-Whitney and Kruskal Wallis tests were used. Statistically significant values are highlighted in bold.

Tumor Centre Tumor Front Plasma

PD-L1 n (%) PD-L1 n (%)
sPD-L1 (ng/mL)

Variables Negative Positive Total Negative Positive Total

IMDC
score

Favorable 7 (77.8) 2 (22.2) 9 3 (42.9) 4 (52.1) 7 488 ± 112.9
Intermediate 6 (75) 2 (25) 8 5 (71.4) 2 (28.6) 7 705.4 ± 259.4

Poor 2 (33.3) 4 (66.7) 6 1 (20) 4 (80) 5 967 ± 135.4
Total 15 8 23 9 10 19 688.6 ± 109.5

p = 0.161/p = 0.056 * p = 0.203 p = 0.062/p =
0.021 *

Tumor Center Tumor Front Plasma

PD-1 n (%) PD-1 n (%)
sPD-1 (ng/mL)

Variables Negative Positive Total Negative Positive Total

IMDC
score

Favorable 5 (55.6) 4 (44.4) 9 3 (33.3) 6 (66.7) 9 154.3 ± 93
Intermediate 3 (37.5) 5 (62.5) 8 2 (28.6) 5 (71.4) 7 618.1 ± 294.8

Poor 2 (33.3) 4 (66.7) 6 3 (50) 3 (50) 6 650 ± 532.3
Total 15 8 23 8 14 22 442.1 ± 182.8

p = 0.637 p = 0.704 p = 0.341

Sixteen patients received systemic therapy for metastatic CCRCC and response to
therapy was evaluated according to the MASS criteria. PD-L1 and PD-1 expression and
sPD-L1 and sPD-1 levels were investigated according to the three categories of favorable,
indeterminate and unfavorable responses (Table 6).

The percentage of patients with positive PD-L1 and PD-1 tissular expression did not as-
sociate with MASS response groups to systemic therapy; however, if the indeterminate and
unfavorable response groups are pooled together, then PD-L1 expression in the tumor front
was more often negative and the association approached statistical significance (p = 0.079)
(Table 6). However, median sPD-L1 levels correlated with the different IMDC groups
(p = 0.014) and did so again when favorable and intermediate are gathered (p = 0.021). The
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discrimination level was even enhanced if indeterminate and unfavorable responses were
pooled together and compared to patients with a favorable response (p = 0.005). These data
suggest that sPD-L1 could be a marker of treatment response in patients with metastatic
CCRCC receiving systemic therapy (Table 6).

Table 6. PD-L1 and PD-1 expression and sPD-L1 and sPD-1 levels in patients with treated metastatic CCRCC according to
Morphology, Attenuation, Size and Structure (MASS) classification of response to therapy (* Favorable and Indeterminate
responses pooled together; ** Indeterminate and Unfavorable responses pooled together). Chi-x2, Mann-Whitney and
Kruskal Wallis tests were used. Statistically significant values are highlighted in bold.

Tumour Centre Tumour Front Plasma

PD-L1 n (%) PD-L1 n (%)
sPD-L1 (ng/mL)

Variables Negative Positive Total Negative Positive Total

MASS
Response

Favorable 6 (60) 4 (40) 10 2 (28.6) 5 (71.4) 7 387.5 ± 89.1
Indeterminate 2 (66.7) 1 (33.3) 3 2 (66.7) 1 (33.3) 3 811.4 ± 78.1
Unfavorable 2 (66.7) 1 (33.3) 3 2 (100) 0 (0) 2 1621 ± 442.9

Total 10 6 16 6 6 12 698.3 ± 151.2

p = 0.965 p = 0.164/p = 0.079 **
p = 0.014/

p = 0.021 */
p = 0.005 **

Tumour Centre Tumour Front Plasma

PD-1 n (%) PD-1 n (%)
sPD-1 (ng/mL)

Variables Negative Positive Total Negative Positive Total

MASS
Response

Favorable 5 (50) 5 (50) 10 3 (33.3) 6 (66.7) 9 268.9 ± 129.9
Indeterminate 2 (66.7) 1 (33.3) 3 1 (33.3) 2 (66.7) 3 433.1 ± 265.7
Unfavorable 1 (33.3) 3 (66.7) 3 3 (100) 0 (0) 3 1743.6 ± 935.1

Total 8 8 16 7 8 15 647.1 ± 267
p = 0.717 p = 0.117 p = 0.33

3. Discussion

The T-cell coinhibitory receptor programmed death (PD-1) protein and one of its
ligands, PD-L1, play an important role in the evasion of the immune system by tumor cells.
Both PD-1 and PD-L1 suppress T cell function and immune tolerance [18]. Recent clinical
commercialization of PD-1 pathway inhibitors (nivolumab, pembrolizumab, atezolizumab,
durvalumab, avelumab) has raised interest in PD-1 and PD-L1 expression as potential
markers of response to immune checkpoint therapy in several malignancies, including
CCRCC [19]. Identification and validation of biomarkers will be crucial to optimize first-
line selection of treatment and also treatment sequences.

In this sense, it has been demonstrated that PD-1 and PD-L1 expression is associated
with adverse clinico-pathological features in CCRCC, such as a large tumor size, high nu-
clear grade, tumor necrosis and presence of sarcomatoid differentiation [20]. What is more,
PD-1 expression has been suggested as one of the most interesting biomarkers denoting
poor outcomes in patients with metastatic CCRCC receiving molecular targeted therapies,
while conflicting results have been shown for PD-L1 in the same population [20,21]. Both
PD-1 and PD-L1 are expressed in intra-tumor inflammatory lymphocytes [22]. PD-1 and
PD-L1 expression associates with CD4+, CD8+ and FOXP3+ tumor infiltrating lymphocytes
related to poor survival in CCRCC [20,23,24]. However, the identification of patients that
are likely to obtain a benefit from PD-1/PD-L1 inhibition therapy remains a challenge [25].

Metastatic CCRCC with a long-term response to sunitinib has been characterized as a
distinct phenotype independently associated with low PD-L1 expression [26]. However, the
inherent heterogeneity of CCRCC includes a very variable expression of positive and nega-
tive regions of PD-L1 expression within each tumor [27]. Also, differential expression of
PD-1 and PD-L1 has been confirmed between primary and metastatic sites within the same
case [28–30]. This conflicting scenario can be worsened as the different expression across
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primary and metastatic tumor for PD-L1 could be associated with metastatic tumor timing.
In fact, larger differences between their primary and metastatic tumor pairs have been
detected in synchronous metastatic patients in comparison to the metachronous metastatic
ones, and this could be explained by the fact that distant metachronous metastasis may
have evolved independently of the primary tumor [31].

PD-L1 expression has been used as surrogate marker of response to immune check-
point inhibitors and, indirectly, as marker of prognosis as well. In fact, despite all the
limitations mentioned to evaluate responses to therapy based on PD-1/PD-L1 expression,
a tendency towards a higher PD-L1 expression has been confirmed in responders but
without a good correlation [32]. For this reason, PD-L1 assessment is not required so far
to initiate immune checkpoint inhibition therapy in patients with CCRCC. On the other
hand, strong evidence is accumulating to consider PD-L1 expression as a likely strong
prognosticator in patients with CCRCC not only in metastatic cases receiving anti-PD-1
antibodies, but also receiving sunitinib or pazopanib [33]. In the series that we present
here, PDL-1 expression in CCRCC and sPD-L1 levels were predictors of overall survival,
and the combination of both tissue expression and plasma levels was an independent
predictor of prognosis. It should be stressed that most of the patients in this series were
only treated surgically and therefore, we cannot directly infer that PD-L1 (either tissular or
plasmatic) is an independent prognostic marker in patients with metastatic CCRCC treated
with systemic therapies. Also, as the tissue and plasma samples analyzed in this series
belong to the TKI era (checkpoint immune inhibitors were only used in a small number of
patients after progression on TKI). Even though the number of patients with metastatic
CCRCC in this series is small, we can confirm that PD-L1 expression in tumor center is
higher in metastatic patients within the IMDC poor prognosis group (p = 0.056) and also
that sPD-L1 levels better discriminate poor prognosis for this population of (p = 0.021).

Circulating sPD-L1 can be determined by ELISA in normal human serum and in
supernatants of different cells including CD4+, CD8+, CD19+, CD14+ and CD56+ T cells,
and may play an important role in immunoregulation [34]. sPD-L1 have been described
in several malignancies including renal cell cancer, pancreatic cancer, rectal cancer, B-cell
lymphoma, multiple myeloma and melanoma [35–39]. It has been hypothesized that sPD-
L1 may act as a paracrine negative immune regulator within the tumor [40]. However,
the sources of sPD-L1 in patients with cancer is unclear, as it may derive from protumor
inflammatory responses, antitumor immune-responses and also intrinsic splicing activities
in tumor cells. It is also unclear whether sPD-L1 is associated with clinical characteristics
such as patient age, sex or treatment response. In our series sPD-L1 is higher in controls
than in patients with CCRCC and the level of sPD-L1 in cancer patients is associated with
metastatic disease, but not with conventional prognosticators of CCRCC. Interestingly,
higher levels of sPD-L1 in CCRCC are an independent predictor of prognosis. Other authors
have investigated the role of several immune checkpoint-related proteins as predictors
of tumor recurrence and survival in CCRCC and sustain sTIM3 and sBTLA, but did not
predict worse survival for sPD-L1 [41].

According to our experience, both PD-1 and PD-L1 immunohistochemical expression
are associated with well-recognized histopathologic parameters of tumor aggressiveness
and PD-L1 is also an independent marker of prognosis in our series, both on the tumor
center and invasive fronts. Notably, this is a population of patients with CCRCC including
all stages and not necessarily treated with antiangiogenic therapy or immune checkpoint
inhibition therapy. What is more, we have simultaneously evaluated PD-1 and PD-L1 both
in the tumor and serum of the same cohort of patients and have confirmed that sPD-L1
is definitely an independent prognostic factor that is non-associated with the tumor size,
Fuhrman grade or histopathological staging. Multivariate analysis revealed that sPD-L1 >
793 ng/mL is associated with worse survival (HR 8.67), together with pT category (HR 2.24)
or presence of metastasis (HR 2.83). We also confirmed a major variation in sPD-L1 levels
according to the time of the metastatic event, with a much higher expression in synchronous
metastases than in metachronous ones. No less interesting is the fact that a positive PD-L1
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expression in the tumor center and the invading tumor front— as well as as PD-L1 level >
793 ng/mL—leads to a worse overall survival rate in CCRCC patients. However, what is
even more interesting in our experience is that sPDL-1 levels appear to represent a good
surrogate of a response criteria to systemic therapy administered in metastatic CCRCC. In
this context, there are many limitations to consider when deciding to treat CCRCC patients
with immune checkpoint inhibitors based on the immunohistochemical detection of PD-
1/PD-L1 positivity alone [11,27], while the search of markers to anticipate the response
to immunotherapy continues [42–44]. A new trial (UMIN000027873) has been recently
launched to evaluate the therapeutic effect of nivolumamb as a second-line therapy for
advanced CCRCC based on the concentrations of serum sPD-L1. The hypothesis of this
study is that patients with high blood levels of sPD-L1 will experience a greater therapeutic
effect during nivolumab treatment [45].

The limitations of our study include its retrospective nature, despite the fact that
the cases were prospectively followed after tumor and serum samples were obtained.
Patients were treated using state-of-the art procedures, and size of the sample was also
relatively small, especially when different subsets of patients were specifically analyzed.
Also, our finding that sPD-1 levels in controls are higher than in CCRCC patients could be
explained by a confounding effect of disparity levels in CCRCC patients due to the fact
that the sample includes patients with all stages of disease. It also could have been due to
inappropriateness of the control sample as a result of unknown factors. Regardless, we did
not test the hypothesis that sPD-L1 can be a tumor marker for the diagnosis of CCRCC,
but we did show evidence supporting the idea that it can be a good marker to evaluate
prognosis for CCRCC patients when they are taken as a whole, and also in the subset of
metastatic patients being treated with the IMDC model. Also, we support its use as a
marker of prognosis in metastatic patients treated with systemic therapies, mainly TKIs.

Future studies should try to evaluate the role of sPD-L1 and other soluble immune
checkpoint-related proteins to elucidate their role as intrinsic tumor markers with utility in
prognostic evaluation involving CCRCC as a malignancy without markers of clinical value,
despite the great therapeutic success that has been achieved in the last decade.

4. Materials and Methods

The present study including all of its experiments comply with current Spanish and Eu-
ropean Union legal regulations. The Basque Biobank for Research-OEHUN
(www.biobancovasco.org) was employed the source of samples and data from patients
that could be used for research purposes. Each patient signed a specific document which
had been approved by the Ethical and Scientific Committees of the Basque Country Public
Health System (Osakidetza) (PI + CES-BIOEF 2018-04).

4.1. Patients

Plasma samples and tumor tissues were obtained from 89 CCRCC patients that were
surgically treated at Basurto University Hospital from 2012 to 2016. The plasma samples
were preoperatively collected for the study. Patients with non-metastatic CCRCC were
treated surgically and patients with metastatic disease received nephrectomy and systemic
therapy according to their ICDM classification, age and clinical condition.

Sixty patients were males (mean age: 60.83 years; range: 36–82) and 29 were females
(mean age: 62.69; range: 32–80). Pathological characteristics are summarized in Table 3.
Plasma from 46 healthy volunteers with no clinical history of neoplastic diseases was used
as control samples (male/female 28/18, age 55.8/61.8 years).

Samples from the center (n = 88) and the infiltration front (n = 75) of tumors from
these patients were distinguished in the histopathological department and included in
tissue microarrays (TMAs) for further immunohistochemical analyses. American Joint
Committee on Cancer (AJCC) [19] and Furhman’s [20] methods were applied to assign the
relevant stage and grade, respectively.
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During the follow-up (mean: 59.9 months, range: 1–91 months), 21 patients were
found to no longer be alive and 68 were still alive. All patients were prospectively followed
until death or the last-follow-up. The cause and date of death was taken as specified in
clinical records and overall survival (OS) was investigated.

4.2. IMDC Model and MASS Response Criteria for Patients with Metastatic CCRCC

The International mRCC Database Consortium (IMDC) represents the largest collec-
tion of real-world data on patients with advanced kidney cancer treated with targeted
therapies. The IMDC prognostic model has been used to stratify patients in contemporary
clinical trials and to provide risk-directed treatment selection in everyday clinical practice.
This model classifies metastatic patients into three categories at different risk of death:
favorable, intermediate and poor risk [46]. We used the IMDC to evaluate the group of
patients with metastatic CCRCC in this series (n = 23).

In order to evaluate the response assessment to systemic therapy in metastatic CCRCC
receiving treatments other than nephrectomy (n = 16), the Morphology, Attenuation, Size
and Structure (MASS) criteria was used to distinguish between the three categories of
patients. Patients with a favorable response to therapy are those with no new lesions
displayed on imaging modalities and any of the following outcomes: i. A decrease in
the tumor size of ≥20%; ii. One or more predominantly solid enhancing lesions showed
marked central necrosis or marked decreased attenuation (≥40 Hounsfield units). Patients
with an unfavorable response are those with either: i. An increase in the tumor size of
≥20% in the absence of marked central necrosis or marked decreased attenuation; ii. New
metastases, marked central fill-in or new enhancement of a previously homogeneously
hypoattenuating non-enhancing mass. Patients with an indeterminate response are those
who do not fit the criteria for favorable or unfavorable responses [47].

4.3. Immunohistochemistry

PD-L1 and PD-1 was analyzed in formalin-fixed and paraffin-embedded material
using specific antibodies (PD-1 (Ventana, clone NAT105, ready-to-use) and PD-L1 (Ven-
tana, clone SP-142, ready-to-use)). Immunostaining was performed using an automated
immunostainer (Benchmark Ultra, Ventana, Roche, AZ, USA) following the protocols
recommended by the manufacturer.

We documented the presence (+) or absence (−) of PD-L1 and PD-1 immunolabels in
inflammatory cells [27] using a Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). All
specimens were independently evaluated by two observers; in the event of discrepancies,
samples were re-evaluated to arrive at a final conclusion.

4.4. ELISA Assays

Levels of soluble PD-L1 and PD-1 were evaluated using the human B7-H1 and PD-1
DuoSet ELISA kits (R&D Systems, DY156 and DY1086, respectively) according to the
manufacturer’s protocols [37]. Briefly, 96 well plates were coated with capture antibodies
diluted in PBS and incubated overnight at 4 ◦C. After washing, plates were blocked in
order to avoid unspecific binding. Standards (100 μL) together with optimized plasma
sample dilutions (1/8 for sPD-L1 and 1/4 for sPD-1) and controls were added to the wells
and incubated for 2 h at room temperature (RT). After washing the plate, 100 μL/well
of biotinylated detection antibody was added and incubated for 1 h at RT. Subsequently,
Streptavidin-HRP A solution was added and the mixture was incubated for 20 min. Finally,
following multiple washes, the wells were incubated with 100 μL/well of Substrate Solution
and were stopped after 20 min with 2N H2SO4. The readout was made by reading the
absorbance at 450 nm with a FluoStar Optima plate reader (BMG Labtech). The amount of
protein of interest in the sample was estimated using a standard curve after applying the
dilution factor.
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4.5. Statistical Analysis

The statistical analysis was performed by using SPSS® 24.0 software. In order to assess
whether data obtained from the tissue and plasma samples followed a normal distribution,
we applied a Kolmogorov-Smirnov test. Based on this information, data were further
analyzed using parametric or non-parametric tests.

The Spearman Rho test was used to test the correlation between tumor tissue PD-L1
and PD-1 expression, sPD-L1 and sPD-1 levels and patient age and gender. Comparison of
plasma levels of sPD-L1 and sPD-1 between two groups or more (respectively) was carried
out using the Mann-Whitney (Mann-U) and Kruskal-Wallis tests. To analyze categorical
tissue expression of PD-L1 and PD-1 (negative/positive) and to test the association of
differences with pathological variables, we used the Chi-square (χ2) test.

Overall survival (OS) analyses were performed following the establishing of groups
by cut-off points, following different methods: (I) for tissue analyses, cut-off points were
based on the categorical expression of PD-L1 and PD-1 (negative (<1% staining) vs. positive
(≥1% staining)); (II) a classification and regression tree (CRT) method was employed for the
analysis of plasma sPD-L1 and sPD-1; (III) in order to evaluate the OS of CCRCC patients,
Kaplan-Meier curves and log-rank tests were utilized; (IV) to evaluate the independent
effects of PD-L1 and PD-1 expression and plasma levels of soluble isoforms and pathological
variables on OS, we employed multivariate analyses (the Cox regression model with the
backward Wald stepwise method).

5. Conclusions

There is a major need to identify new molecular markers in CCRCC which are useful
from the clinical perspective. We corroborated the value of PD-L1 immunostaining in
lymphocytic infiltrate both in the tumor center and in the border of neoplastic tissue to
predict worse overall survival in patients with CCRCC undergoing surgery which were not
necessarily treated with immune-checkpoint inhibitors. We also advocate for the clinical
utility of sPD-L1 level > 793ng/mL as an independent and novel predictor of prognosis
in clinical practice for the same patients. In addition, we determined that the sPD-L1
level increased for IMDC prognostic groups in the population of patients with metastatic
CCRCC, and was also associated with the clinical response of patients with metastatic
CCRCC receiving systemic therapy.

These findings could be of primary importance because they indicate that the deter-
mination of sPD-L1 can be widely performed in clinical practice. Our results should be
validated in prospective studies and possibly incorporated into predictive nomograms that
have clinical transcendence in patients with CCRCC.
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Regression model for 5-year overall survival (OS) prediction in CCRCC patients (complete table with
the first step and the final step of Wald method).

Author Contributions: Conceptualization, G.L., J.C.A. and J.I.L.; Data curation, E.E., A.A., A.L.-I.
and J.D.S.-I.; Formal analysis, J.D.S.-I., P.E., C.M. and J.I.L.; Funding acquisition, G.L., A.A., J.C.A.
and J.I.L.; Investigation, J.D.S.-I., P.E., M.U., A.L.-I., A.P.-F., C.M. and J.I.L.; Methodology, J.D.S.-I.,
P.E. and C.M.; Project administration, G.L., A.A., J.C.A. and J.I.L.; Supervision, G.L., J.C.A. and J.I.L.;
Writing—original draft, G.L., J.C.A. and J.I.L.; Writing—review & editing, G.L., J.D.S.-I., P.E., A.A.,
E.E., M.U., A.L.-I., A.P.-F., C.M., J.C.A. and J.I.L. All authors have read and agreed to the published
version of the manuscript.

104



Cancers 2021, 13, 667

Funding: The work was funded by the Basque Government (ELKARTEK KK2018-00090 and KK-
2020/00069).

Institutional Review Board Statement: The present study including all its experiments comply with
current Spanish and European Union legal regulations. The Basque Biobank for Research-OEHUN
(www.biobancovasco.org) was the source of samples and the data from patients employed could
possibly be used for research purposes. The study was approved by the Ethical and Scientific
Committees of the Basque Country Public Health System (Osakidetza) (PI+CES-BIOEF 2018-04).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Full data will be available from the Corresponding Author upon
reasonable request.

Acknowledgments: The authors want to thank Arantza Pérez Dobaran (UPV/EHU) for her techni-
cal support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020, 70, 7–30. [CrossRef] [PubMed]
3. MacLennan, G.T.; Cheng, L. Neoplasms of the kidney. In Urologic Surgical Pathology, 3rd ed.; Bostwick, D.G., Cheng, L., Eds.;

Saunders: Saunders Park, PA, USA, 2014; pp. 76–156.
4. Tomita, Y. Early renal cell cancer. Int. J. Clin. Oncol. 2006, 11, 22–27. [CrossRef] [PubMed]
5. Mitchell, T.J.; Turajlic, S.; Rowan, A.; Nicol, D.; Farmery, J.H.; O’Brien, T.; Martincorena, I.; Tarpey, P.; Angelopoulos, N.; Yates,

L.R.; et al. Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal. Cell 2018, 173,
611–623.e17. [CrossRef] [PubMed]

6. Angulo, J.C.; Lawrie, C.H.; López, J.I. Sequential treatment of metastatic renal cancer in a complex evolving landscape. Ann.
Transl. Med. 2019, 7, S272. [CrossRef]

7. Santoni, M.; Heng, D.Y.C.; Bracarda, S.; Procopio, G.; Milella, M.; Porta, C.; Matrana, M.; Cartenì, G.; Crabb, S.J.; de Giorgi, U.;
et al. Real-World Data on Cabozantinib in Previously Treated Patients with Metastatic Renal Cell Carcinoma: Focus on Sequences
and Prognostic Factors. Cancers 2019, 12, 84. [CrossRef]

8. Mollica, V.; di Nunno, V.; Gatto, L.; Santoni, M.; Scarpelli, M.; Cimadamore, A.; Montironi, R.; Cheng, L.; Battelli, N.; Montironi,
R.; et al. Resistance to Systemic Agents in Renal Cell Carcinoma Predict and Overcome Genomic Strategies Adopted by Tumor.
Cancers 2019, 11, 830. [CrossRef] [PubMed]

9. Atkins, M.B.; Tannir, N.M. Current and emerging therapies for first-line treatment of metastatic clear cell renal cell carcinoma.
Cancer Treat. Rev. 2018, 70, 127–137. [CrossRef]

10. Angulo, J.C.; Shapiro, O. The Changing Therapeutic Landscape of Metastatic Renal Cancer. Cancers 2019, 11, 1227. [CrossRef]
[PubMed]

11. Nunes-Xavier, C.E.; Angulo, J.C.; Pulido, R.; Lopez, J.I. A Critical Insight into the Clinical Translation of PD-1/PD-L1 Blockade
Therapy in Clear Cell Renal Cell Carcinoma. Curr. Urol. Rep. 2019, 20, 1. [CrossRef] [PubMed]

12. Khagi, Y.; Kurzrock, R.; Patel, S.P. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev.
2017, 36, 179–190.

13. Zhu, J.; Armstrong, A.J.; Friedlander, T.W.; Kim, W.; Pal, S.K.; George, D.J.; Zhang, T. Biomarkers of immunotherapy in urothelial
and renal cell carcinoma: PD-L1, tumor mutational burden, and beyond. J. Immunother. Cancer 2018, 6, 4. [CrossRef] [PubMed]

14. Lecis, D.; Sangaletti, S.; Colombo, M.P.; Chiodoni, C. Immune Checkpoint Ligand Reverse Signaling: Looking Back to Go Forward
in Cancer Therapy. Cancers 2019, 11, 624. [CrossRef]

15. Ock, C.Y.; Keam, B.; Kim, S.; Lee, J.S.; Kim, M.; Kim, T.M. Pan-cancer immunogenomic perspective on the Tumour microenviron-
ment based on PD-L1 and CD8 T-Cell infiltration. Clin. Cancer Res. 2016, 22, 2261–2270. [CrossRef]

16. Miao, D.; Margolis, C.A.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.; Bossé, D.; Wankowicz, S.M.; Cullen, D.; et al.
Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 2018, 359, 801–806.
[CrossRef]

17. Dubin, K.; Callahan, M.K.; Ren, B.; Khanin, R.; Viale, A.; Ling, L.; No, D.; Gobourne, A.; Littmann, E.; Huttenhower, B.R.C.; et al.
Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 2016, 7,
10391. [CrossRef] [PubMed]

105



Cancers 2021, 13, 667

18. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F. Five-year survival and correlates among
patients with advanced melanoma, renal cell carcinoma, or non-small cell lung cancer treated with nivolumab. JAMA Oncol.
2019, 5, 1411–1420. [CrossRef] [PubMed]

19. Wu, X.; Gu, Z.; Chen, Y.; Chen, B.; Chen, W.; Weng, L.; Liu, X. Application of PD-1 Blockade in Cancer Immunotherapy. Comput.
Struct. Biotechnol. J. 2019, 17, 661–674. [CrossRef] [PubMed]

20. Ueda, K.; Suekane, S.; Kurose, H.; Chikui, K.; Nakiri, M.; Nishihara, K.; Matsuo, M.; Kawahara, A.; Yano, H.; Igawa, T. Prognostic
value of PD-1 and PD-L1 expression in patients with metastatic clear cell renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig.
2018, 36, 499.e9–499.e16. [CrossRef] [PubMed]

21. Hara, T.; Miyake, H.; Fujisawa, M. Expression pattern of immune checkpoint-associated molecules in radical nephrectomy
specimens as a prognosticator in patients with metastatic renal cell carcinoma treated with tyrosine kinase inhibitors. Urol. Oncol.
2017, 35, 363–369. [CrossRef]

22. Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H. Association of PD-1, PD-1 ligands, and other features of the tumour
immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [CrossRef] [PubMed]

23. Nakano, O.; Sato, M.; Naito, Y.; Suzuki, K.; Orikasa, S.; Aizawa, M. Proliferative activity of intratumoural CD8(+) T-lymphocytes
as a prognostic factor in human renal cell carcinoma: Clinicopathologic demonstration of antitumour immunity. Cancer Res. 2001,
61, 5132–5136.

24. Liotta, F.; Gacci, M.; Frosali, F.; Querci, V.; Vittori, G.; Lapini, A.; Santarlasci, V.; Serni, S.; Cosmi, L.; Maggi, L.; et al. Frequency
of regulatory T cells in peripheral blood and in tumour-infiltrating lymphocytes correlates with poor prognosis in renal cell
carcinoma. BJU Int. 2010, 107, 1500–1506. [CrossRef] [PubMed]

25. Hayashi, H.; Nakagawa, K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int. J. Clin. Oncol. 2020, 25, 818–830.
[CrossRef]

26. Kammerer-Jacquet, S.-F.; Deleuze, A.; Saout, J.; Mathieu, R.; Laguerre, B.; Verhoest, G.; Dugay, F.; Belaud-Rotureau, M.-A.;
Bensalah, K.; Rioux-Leclercq, N. Targeting the PD-1/PD-L1 Pathway in Renal Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 1692.
[CrossRef]

27. Lopez, J.I.; Pulido, R.; Cortes, J.M.; Angulo, J.; Lawrie, C.H. Potential impact of PD-L1 (SP-142) immunohistochemical heterogene-
ity in clear cell renal cell carcinoma immunotherapy. Pathol. Res. Pract. 2018, 214, 1110–1114. [CrossRef]

28. Jilaveanu, L.B.; Shuch, B.; Zito, C.R.; Parisi, F.; Barr, M.; Kluger, Y.; Chen, L.; Kluger, H.M. PD-L1 Expression in Clear Cell Renal
Cell Carcinoma: An Analysis of Nephrectomy and Sites of Metastases. J. Cancer 2014, 5, 166–172. [CrossRef]

29. Basu, A.; Yearley, J.H.; Annamalai, L.; Pryzbycin, C.; Rini, B. Association of PD-L1, PD-L2, and Immune Response Markers in
Matched Renal Clear Cell Carcinoma Primary and Metastatic Tissue Specimens. Am. J. Clin. Pathol. 2018, 151, 217–225. [CrossRef]

30. Zhang, X.; Yin, X.; Zhang, H.; Sun, G.; Yang, Y.; Chen, J.; Zhu, X.; Zhao, P.; Zhao, J.; Liu, J.; et al. Differential expressions of PD-1,
PD-L1 and PD-L2 between primary and metastatic sites in renal cell carcinoma. BMC Cancer 2019, 19, 1–10. [CrossRef] [PubMed]

31. Eckel-Passow, J.E.; Ho, T.H.; Serie, D.J.; Cheville, J.C.; Houston-Thompson, R.; Costello, B.A. Concordance of PD-1 and PD-L1
(B7-H1) in paired primary and metastatic clear cell renal cell carcinoma. Cancer Med. 2020, 9, 1152–1160. [CrossRef]

32. Stenzel, P.J.; Schindeldecker, M.; Tagscherer, K.E.; Foersch, S.; Herpel, E.; Hohenfellner, M. Prognostic and predictive value of
tumour-infiltrating leukocytes and of immune checkpoint molecules PD1 and PDL1 in clear cell renal cell carcinoma. Transl.
Oncol. 2020, 13, 336–345. [CrossRef] [PubMed]

33. Choueiri, T.K.; Figueroa, D.J.; Fay, A.P.; Signoretti, S.; Liu, Y.; Gagnon, R. Correlation of PD-L1 tumour expression and treatment
outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: Results from COMPARZ, a randomized
controlled trial. Clin. Cancer Res. 2015, 21, 1071–1077. [CrossRef]

34. Chen, Y.; Wang, Q.; Shi, B.; Xu, P.; Hu, Z.; Bai, L.; Zhang, X. Development of a sandwich ELISA for evaluating soluble PD-L1
(CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine 2011, 56, 231–238. [CrossRef]

35. Rossille, D.; Gressier, M.; Damotte, D.; Maucort-Boulch, D.; Pangault, C.; Semana, G. High level of soluble programmed cell death
ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: Results from a French multicentre clinical
trial. Leukemia 2014, 28, 2367–2375. [CrossRef]

36. Zhou, J.; Mahoney, K.M.; Giobbie-Hurder, A.; Zhao, F.; Lee, S.; Liao, X.; Rodig, S.; Li, J.; Wu, X.; Butterfield, L.H.; et al. Soluble
PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol. Res. 2017, 5, 480–492.
[CrossRef] [PubMed]

37. Kruger, S.; Legenstein, M.-L.; Rösgen, V.; Haas, M.; Modest, D.P.; Westphalen, C.B.; Ormanns, S.; Kirchner, T.; Heinemann, V.;
Holdenrieder, S.; et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1
(sPD-L1) in advanced pancreatic cancer. eCollection 2017, 6, e1310358. [CrossRef] [PubMed]

38. Tominaga, T.; Akiyoshi, T.; Yamamoto, N.; Taguchi, S.; Mori, S.; Nagasaki, T.; Fukunaga, Y.; Ueno, M. Clinical significance of
soluble programmed cell death-1 and soluble programmed cell death-ligand 1 in patients with locally advanced rectal cancer
treated with neoadjuvant chemoradiotherapy. PLoS ONE 2019, 14, e0212978. [CrossRef] [PubMed]

39. Bian, B.; Fanale, D.; Dusetti, N.; Roque, J.; Pastor, S.; Chretien, A.-S.; Incorvaia, L.; Russo, A.; Olive, D.; Iovanna, J.L. Prog-
nostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma.
OncoImmunology 2019, 8, e1561120. [CrossRef] [PubMed]

106



Cancers 2021, 13, 667

40. Mahoney, K.M.; Shukla, S.A.; Patsoukis, N.; Chaudhri, A.; Browne, E.P.; Arazi, A.; Eisenhaure, T.M.; Pendergraft, W.F.; Hua, P.;
Pham, H.C.; et al. A secreted PD-L1 splice variant that covalently dimerizes and mediates immunosuppression. Cancer Immunol.
Immunother. 2019, 68, 421–432. [CrossRef] [PubMed]

41. Wang, Q.; Zhang, J.; Tu, H.; Liang, D.; Chang, D.W.; Ye, Y.; Wu, X. Soluble immune checkpoint-related proteins as predictors of
tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. J. Immunother. Cancer 2019, 7, 334.
[CrossRef] [PubMed]

42. Raimondi, A.; Sepe, P.; Zattarin, E.; Mennitto, A.; Stellato, M.; Claps, M.; Guadalupi, V.; Verzoni, E.; de Braud, F.; Procopio, G.
Predictive Biomarkers of Response to Immunotherapy in Metastatic Renal Cell Cancer. Front. Oncol. 2020, 10, 1644. [CrossRef]
[PubMed]

43. Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.-S.; O’Toole, S.; Anderson, L.;
Scolyer, R.A.; et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to
immunohistochemistry implementation and interpretation. Pathology 2021, 53, 141–156. [CrossRef] [PubMed]

44. Simonaggio, A.; Epaillard, N.; Pobel, C.; Moreira, M.; Oudard, S.; Vano, Y.-A. Tumor Microenvironment Features as Predictive
Biomarkers of Response to Immune Checkpoint Inhibitors (ICI) in Metastatic Clear Cell Renal Cell Carcinoma (mccRCC). Cancers
2021, 13, 231. [CrossRef]

45. Bando, Y.; Hinata, N.; Omori, T.; Fujisawa, M. A prospective, open-label, interventional study protocol to evaluate treatment
efficacy of nivolumab based on serum-soluble PD-L1 concentration for patients with metastatic and unresectable renal cell
carcinoma. BMJ Open 2019, 9, e030522. [CrossRef] [PubMed]

46. Heng, D.Y.C.; Xie, W.; Regan, M.M.; Harshman, L.C.; A Bjarnason, G.; Vaishampayan, U.N.; MacKenzie, M.; Wood, L.; Donskov, F.;
Tan, M.-H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma
Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [CrossRef]

47. Smith, A.D.; Shah, S.N.; Rini, B.I.; Lieber, M.L.; Remer, E.M. Morphology, Attenuation, Size, and Structure (MASS) Criteria:
Assessing Response and Predicting Clinical Outcome in Metastatic Renal Cell Carcinoma on Antiangiogenic Targeted Therapy.
Am. J. Roentgenol. 2010, 194, 1470–1478. [CrossRef]

107





cancers

Review

Molecular Mechanisms of Resistance to Immunotherapy and
Antiangiogenic Treatments in Clear Cell Renal Cell Carcinoma

Pablo Álvarez Ballesteros 1, Jesús Chamorro 1, María San Román-Gil 1, Javier Pozas 1,

Victoria Gómez Dos Santos 2, Álvaro Ruiz Granados 1, Enrique Grande 3, Teresa Alonso-Gordoa 4,*

and Javier Molina-Cerrillo 4,*

Citation: Ballesteros, P.Á.; Chamorro,

J.; Román-Gil, M.S.; Pozas, J.; Gómez

Dos Santos, V.; Granados, Á.R.;

Grande, E.; Alonso-Gordoa, T.;

Molina-Cerrillo, J. Molecular

Mechanisms of Resistance to

Immunotherapy and Antiangiogenic

Treatments in Clear Cell Renal Cell

Carcinoma. Cancers 2021, 13, 5981.

https://doi.org/10.3390/

cancers13235981

Academic Editors: José I. López and

Claudia Manini

Received: 19 October 2021

Accepted: 24 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
palvarezb@salud.madrid.org (P.Á.B.); jchamorro@salud.madrid.org (J.C.);
mariavictoria.san@salud.madrid.org (M.S.R.-G.); Javier.pozas@salud.madrid.org (J.P.);
agranados@salud.madrid.org (Á.R.G.)

2 Urology Department, Ramón y Cajal University Hospital, Alcala University, 28034 Madrid, Spain;
vgomezd@salud.madrid.org

3 MD Anderson Cancer Center, 28033 Madrid, Spain; egrande@oncomadrid.com
4 Medical Oncology Department, Ramón y Cajal University Hospital, Medical School, Alcala University,

28034 Madrid, Spain
* Correspondence: talonso@oncologiahrc.com (T.A.-G.); jmolinac@salud.madrid.org (J.M.-C.)

Simple Summary: Renal cell carcinoma is particularly characterized by its high vascularization and
dense immune cells infiltration. The angiogenesis blockade in combination with immune checkpoint
inhibitors have supposed milestones in the treatment landscape of this tumor. This article gathers the
available data on the mechanisms of resistance to current treatments, as well as new strategies under
development to overcome these resistances.

Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype arising
from renal cell carcinomas. This tumor is characterized by a predominant angiogenic and immuno-
genic microenvironment that interplay with stromal, immune cells, and tumoral cells. Despite the
obscure prognosis traditionally related to this entity, strategies including angiogenesis inhibition
with tyrosine kinase inhibitors (TKIs), as well as the enhancement of the immune system with the
inhibition of immune checkpoint proteins, such as PD-1/PDL-1 and CTLA-4, have revolutionized
the treatment landscape. This approach has achieved a substantial improvement in life expectancy
and quality of life from patients with advanced ccRCC. Unfortunately, not all patients benefit from
this success as most patients will finally progress to these therapies and, even worse, approximately
5 to 30% of patients will primarily progress. In the last few years, preclinical and clinical research
have been conducted to decode the biological basis underlying the resistance mechanisms regarding
angiogenic and immune-based therapy. In this review, we summarize the insights of these molecular
alterations to understand the resistance pathways related to the treatment with TKI and immune
checkpoint inhibitors (ICIs). Moreover, we include additional information on novel approaches that
are currently under research to overcome these resistance alterations in preclinical studies and early
phase clinical trials.

Keywords: renal cell cancer; treatment resistance; immunotherapy; angiogenesis; tumor microenvi-
ronment

1. Introduction

Renal cell carcinoma (RCC) represents around 3% of all cancers in adults show-
ing an incidence of more than 400,000 cases and being responsible for approximately
175,000 deaths worldwide in 2020 [1–3]. Approximately 25% of patients present with
metastatic disease at initial diagnosis and between 20–40% relapse after nephrectomy for
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localized disease [4]. Overall, mortality rates for RCC increased until the early 1990s, with
rates generally stabilizing or declining thereafter (actually 2.2 renal cancer related deaths
per 100.000 population) [5].

Clear cell renal cell carcinoma (ccRCC) is the most common histologic subtype that
arises in approximately 75% of RCC [6].

From a molecular point of view, genetic alterations are common in RCC and various
genes are involved in its development and progression. Inactivation of the VHL gene
function by deletion of chromosome 3p, mutation, and/or promoter methylation is a
predominant feature of ccRCC [7,8] and leads to abnormal accumulation of hypoxia-
inducible factors (HIF-1α and HIF-2α) and activation of the angiogenesis program with
increased levels of VEGF [9,10]. However, VHL loss itself is insufficient for tumorigenesis,
and additional genomic aberrations, such as mutations in 3p-associated genes PBRM1,
SETD2, and BAP1; loss of CDKN2A and CDKN2B genes via focal or arm-level deletion of
the 9p21 locus; and alterations in KDM5C, TP53, MTOR, or PTEN have been implicated in
disease progression and degree of aggressiveness [7].

Over the last 15 years, treatment for metastatic RCC (mRCC) has focused on target-
ing the VEGF signaling pathway with tyrosine kinase receptor inhibitors (TKI), such as
sunitinib, pazopanib, cabozantinib, axitinib or lenvatinib, or monoclonal antibodies that
block VEGF, such as bevacizumab. Although VEGF pathway blockade is effective in many
patients, it is associated with the development of acquired resistance mechanisms [11,12].

Furthermore, ccRCC is also distinguished as a highly inflamed tumor, with high levels
of tumor infiltrating lymphocytes, and a predominant expression of immune checkpoints,
such as PD-L1 and CTLA-4 [13,14]. Under this rationale of hypervascularity linked with an
immunologically hot tumor microenvironment, inhibitors of the VEGF pathway and the PD-
(L)1 axis as monotherapy or in combination, have contribute a noteworthy improvement
in terms of survival and quality of life in patients with advanced RCC [6]. Unfortunately,
there is an important group of patients who do not respond or lose achieved responses.

In this review we aim to summarize key molecular alterations in RCC to under-
stand the resistance to TKI and immunotherapy treatments, as well as the basis for the
development of new drugs that potentially overcome these resistances.

2. Molecular Pathways Associated with Resistance to Treatment with Tyrosine-
Kinase Inhibitors

2.1. Hypoxia as a Resistance Inductor

Heterogeneity is a pivotal characteristic of RCC, as different genomic and transcrip-
tomic profiles can be observed between primary renal and metastatic lesions [15]. Fur-
thermore, this intratumoral heterogeneity comprises a fundamental feature that hinder
efficacy of TKIs. Hypoxia also participates in that inner heterogeneity since RCC tissues
show different blood flow conditions.

Anti-VEGF therapies interfere in tumor angiogenesis inducing hypoxic cell death.
In consequence, hypoxia enhances epithelial–mesenchymal transition (EMT), causes mi-
croenvironmental cells like tumor associated endothelial cells (TECs) and tumor associated
macrophages and fibroblasts (TAMs/TAFs) to thrive, increases the expression of proteins
involved in lysosomal sequestration of TKIs, interferes with drug penetration, activates
many VEGF- and PDGF-independent proangiogenic cascades and alternative pathways
that lead to HIF pathway stimulation, and induces alternative modes of vascularization.
Moreover, cell glycolysis promoted by hypoxia increases lactic acid levels which is an
obstacle for immune cells functions [16]. In this sense, belzutifan, a HIF-2α inhibitor, is
currently under development with promising results in disease control rate and duration
of response as monotherapy or in combination with other TKI in patients with previously
treated mccRCC (NCT03634540, NCT04195750, and NCT 03634540). Indeed, this drug has
been approved by the FDA this year, for adult patients with von Hippel–Lindau (VHL)
disease who require systemic therapy. Its role in combination with other ICI and in the first
line setting is also under research (NCT04736706). However, other novel drugs targeting
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metabolism, such as telaglenastat, have not shown an additional benefit when analyzed in
clinical trails, such as the CANTATA and ENTRATA trials (Figure 1).

 

Figure 1. In this figure we illustrate the most preponderant mechanisms of resistance to TKIs: hypoxia-induced activation
of alternative proangiogenic pathways, TME factors, EMT, and TKI-induced autophagy.

2.2. Angiogenic Switch

There is robust evidence that describes several non-angiogenic mechanisms which
enable tumors to keep growing when angiogenesis is blocked. The first one is known as
vessel co-option and lies in the ability of tumor cells to harness normal tissues vessels to
maintain oxygen availability [17,18]. It is hypothesized that the initiation of the neoplasm
is driven by this angiogenesis-independent strategy, forming the center of the neoplasm.
Therefore, co-opted vessels trigger self-apoptosis in order to induce tumor necrosis. Mean-
while, the neoplasm is able to counteract this host defense mechanism by developing
neoangiogenesis in the periphery. This process also allows the tumor to initiate metastatic
invasion [17].

Vasculogenic mimicry is another less common alternative mode of vascularization
that consists in forming channels to provide oxygen to tumor cells. These channels are
formed by the tumor cells itself, which can simulate endothelial cells by increasing matrix
metalloproteinases in order to modulate tumor microenvironment. This process was mainly
described in aggressive melanomas [19].

Another noteworthy way of vascularization is intussusceptive angiogenesis, where
no endothelial proliferation is needed and therefore is difficult to counteract with anti-
angiogenic drugs. This mechanism is complex and poorly understood since it happens
within preexisting vessels. It starts with the interaction of the vessels of opposite walls,
forming an interendothelial junction at their edge in the “kissing contact” process. Mes-
enchymal stem cells, pericytes, and myofibroblasts come into play, taking up the gap
formed by the new vessels, creating a new extracellular matrix, and forming the interstitial
pillar. Hence, two new transvascular pillars are formed without endothelial prolifera-
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tion. This mode of vascularization is a rapid and efficient procedure to expand existing
vasculature [20,21].

2.3. Epithelial–Mesenchymal Transition (EMT)

Epithelial–mesenchymal transition is a well-studied process where the tumor is skilled
to change the phenotype of polarized epithelial cells to a mesenchymal one through
different molecular and biochemical changes. These empowered cells unhitch from the
primary site and invade peritumoral tissues as well as systemic circulation in order to
spread across distant places. In addition to these migratory functions, EMT also awards
higher resistance to apoptosis and increases extracellular matrix [22].

Sunitinib has different ways to enhance EMT. One of the main pathways that unleash
and orchestrate EMT is HIF1-α, accompanied by other molecular pathways such as HGF,
EGF or PDGF. HIF-α increases the expression of ZEB1 and ZEB2 which facilitates loss of
adhesion of epithelial cells by repressing E-cadherin. [23,24]. Snail and Slug are proteins
that participate as well in E-cadherin repression. Sunitinib can favor invasiveness and pro-
gression of renal cell carcinoma by stimulating Snail expression and subsequent E-cadherin
inhibition. The Akt/GSK3/β–catenin pathway also promotes EMT when activated by
cytokines like IL-6, IL-8, and TNF-α [25].

EMT also participates in sarcomatoid differentiation in RCC patients by N-cadherin,
Snail and Sparc stimulation and dissociation of β- catetin from cell membrane [26].

2.4. Activating Bypass Pathways
2.4.1. VEGF

Sustained treatment with antiangiogenic therapeutics would conduct enhancement of
alternative cell signaling pathways that avoids TKIs’ effect. Between the VEGF receptors,
VEGFR2 has been the main target for primary TKIs designed, leaving free activity to other
VEGFR proteins like VEGFR 1 and VEGFR 3. Furthermore, there are some non-VEGF
alternative pathways that allow the tumor to uphold its growth [27].

2.4.2. PTEN

Phosphate and tensin homolog (PTEN) are tumor suppressors that have a down
regulating function over PI3K/Akt/mTOR pathway. Even though PTEN mutations are
rarely described in RCC [28], studies have demonstrated that patients with resistance to
sunitinib show low expression of PTEN, thus constitutively Akt/mTOR expression.

2.4.3. FGF

FGFR pro-angiogenic function is led by upregulation of MAPK/ERK, PI3K/Akt and
STAT pathways as well as IP3 and DAG and PKC signaling. Upregulation of FGF2 has
been directly related to resistance to sunitinib and constitutes one of the major growth
factors able to drive sunitinib resistance. Sunitinib is able to suppress phosphorylation of
MEK1/2 and ERK 1/2 conducted by VEGF. However, when FGF2 is overexpressed, strong
phosphorylation of MEK 1

2 and ERK1/2 occurs despite sunitinib administration [29].

2.4.4. Axl and c-MET

Both Axl and c-MET are implicated in antiangiogenic resistance of VEGF targeted
therapies and are also related to poor prognosis and decreased overall survival [30–32].
Zhou et al. studied the relation between sunitinib resistance and Axl and MET pathways.
They demonstrated that in the first phases of treatment, it is able to suppress MET function,
but when sunitinib is administered chronically, MET activity is enhanced. Moreover, this
activity is maintained once sunitinib is withdrawn. They also proved that treatment with
sunitinib increased Axl protein levels. Both Axl and MET are able to promote angiogenesis
through activation of ERK and PI3K/AKT signaling and increment of VEGF secretion.
Furthermore, sunitinib stimulates Axl and MET dependent EMT and favors cell migration
and invasion [30].
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2.4.5. TNF-α

Tumor necrosis factor (TNF- α) pathway is involved in multiple physiologic functions
like immune response or hematopoiesis, but also plays a key role in tumor pathogenesis.
For instance, it is implicated in EMT, activating the nuclear factor κB (NF-κB) pathway
through the binding of TNF receptor 1 (TNFR1) and GSK3β activation [33,34].

The involvement of TNF- α in acquired resistances of certain treatments had already
been hinted at in breast and lung cancer [35,36], but its implication in RCC remained
scarcely explored. In 2020, Hwang et al. discovered that tumor tissues that have acquired
TKI resistance express high expression of TNFR1SF1A gene. They also related high-TNFR1
expression in intrinsic-resistance tumors as well as sarcomatoid dedifferentiation [37].
Nevertheless, to which extension TNF-α is involved in TKI resistance in RCC remains to
be elucidated and further studies are needed.

2.4.6. Angiopoietin/Tie Pathway

Ang/Tie is a key signaling cascade which constitutes a significant alternative antiangio-
genic pathway able to regulate endothelial maturation and vascularization. Angiopoietin 2
(Ang2) has a dual function depending on VEGF presence. When VEGF is inhibited, it
binds to Tie2 and inhibits Ang1/Tie2 pathway, consequently promoting vascular degra-
dation and cell death. Wang et al. demonstrated that at the beginning of treatment with
sunitinib, the levels of Ang 2 decreased progressively, as long as the tumor was sensitive
to sunitinib. Inversely, they showed that patients with sunitinib resistance expressed el-
evated Ang 2 levels. This fact was correlated with tumor progression, acting Ang2 as an
angiogenic escape mechanism [38,39].

2.4.7. Enhancer of Zeste Homologue 2 (EZH2)

The enhancer of zeste homologue 2 (EZH2) is a histone methyltransferase that partici-
pates in the methylation of lysine 27 on histone 3 producing gene repression [40].

EZH2 is one of the major epigenetic mechanisms of resistance to TKI in RCC. It
enhances EMT, impeding the expression of E-cadherin and therefore favoring invasiveness
and migration [40]. Adelaiye et al. exposed in their studies that EZH2 overexpression leads
to methylation of promoter regions of anti-angiogenic factors and subsequently favors
tumor vascularization and therefore sunitinib resistance. Furthermore, EZH2 can induce
adaptive kinase reprogramming through epigenetic changes, allowing tumor cells to find
alternative pathways such as FAK, SCR, MET, FGFR2, EGFR, IGF-1R, and ERBB2 [41].
Nevertheless, this resistance mechanism can be counteracted by dose escalation [42].

2.5. Lysosomal Sequestration of TKIs

Lysosomal sequestration is the process by which sunitinib is accumulated within the
lysosome structure. Most TKIs can traverse lysosomal membrane easily because they are
weak bases. Once the molecule is internalized, it finds an acid environment achieved
by proton pumping vacuolar ATPases. This environment protonates the molecule and
sequestrates it inside the lysosome. Therefore, it is unable to exert its function [43].

Certain TKIs, such as erlotinib and pazopanib, can also be exposed to lysosomal
sequestration [44]. Sorafenib comprises a different kind of molecule with differential
characteristics that does not permit free travel across lysosomal membranes. Because of
this fact, other lysosomal sequestration mechanisms have been proposed for Sorafenib.
It was demonstrated that drug pumps like ABC transporter P-glycoprotein can mediate
not only sunitinib sequestration but sorafenib too. In the frame of this thinking, P-gp
inhibitors like verapamil or elacridar have been studied in preclinical models of CCR
showing enhancement of antitumor activity of sunitinib [45–47].

Moreover, lysosome sequestration is a multidrug resistance (MDR) mechanism that
can lead to a feedback process where the exposure to tyrosine kinase inhibitors reinforces
lysosome biogenesis. The increased lysosomal gene expression and lysosomal enzyme
activity lead to augmented drug sequestration and MDR. Lysosomal biogenesis seems to
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be driven by the nuclear transcription of transcription factor EF (TFEB) [48]. This process is
ultimately commanded by mTORC1 [49]

2.6. Noncoding RNAs (ncRNA) and Single Nucleotide Polymorphisms

Circulating noncoding RNAs have raised interest in many oncologic fields. They have
been studied as potential biomarkers in early stages of RCC as well as prognostic and
predictive treatment response biomarkers [50–52].

Micro RNA (miRNA), a particular class of ncRNA, have been studied as molecules
able to carry out TKIs resistance, concretely miRNA-15b, which overexpression has been
described as a mechanism of resistance to sunitinib [53]. Other miRNA like miRNA-575,
miRNA-642b-3p and miRNA-4430 were detected in cultures of RCC cells resistant to
sunitinib [54]. Regulation of miR-141 and miR-429 also contributes to EMT and its develop-
ment [55].

Le Qu et al. described a sunitinib resistance mechanism based on intercellular transfer
by exosomes of long noncoding RNA (lncRNA) called IncARSR. Long-noncoding RNA are
a class of ncRNA with a minimum length of 200 bases involved in gene transcription by
multiple regulation functions such as recruitment of chromatin-modifying complexes and
post-transcriptional modulation [56,57].

Le Qu’s analysis confirmed high levels of lncARSR in sunitinib-resistant RCC tumor
cells as well as endothelial cells. LncASRS seemed to be upregulated by the activation
of the AKT pathway and ultimately the inhibition of FOXO1 and FOXO3a. LncASRS is
packed into exosomes via heterogeneous nuclear ribo-nuclear protein A2B1 (hnRNP A2B1)
and afterwards transferred to surrounding cells disseminating sunitinib resistance. The
authors hypothesized and confirmed that lncASRS functioned like competing endogenous
RNA (ceRNA) for miR-34 and miR-449, whose targets are Axl and c-MET. This competitive
binding increased the expression of Axl and c-MET, hence the stimulation of STAT3, AKT,
and ERC pathways and subsequent sunitinib resistance.

Single nucleotide polymorphisms (SNPs) are the most common genetic variation
and are defined as a single base pair variation that reaches at least 1% of the population.
SNPs related to sunitinib pharmacokinetics (ABCB1, NR1/2, and NR 1/3) and pharma-
codynamics (VEGFR3 and FGFR3) had already been described by Beuselinck et al. as
determinants of sunitinib outcome in RCC patients [58]. Their effect in CYP3A4 is essential
in the metabolism of sunitinib. SNPs in NR1I2 and NR1I3 suppressed CYP3A4 function
and were associated with shorter PFS. Inversely, SNPs in CYP3A4 were associated with
increased PFS as a result of increased metabolism of sunitinib [58,59].

2.7. Tumor Microenvironment Factors Related to Resistance to TKIs

Tumor microenvironment (TME) is constituted by several components such as the
tumor cells itself, extracellular matrix (ECM), fibroblasts, vascular endothelial cells, immune
cells, and several other stromal cells. Tumor microenvironment is an essential participant
of tumor progression and maintenance of its pathogenesis [60].

Robust evidence has been constructed in recent years supporting the importance of
tumor microenvironment in development of resistance to TKIs.

2.7.1. Tumor Endothelial Cells (TECs)

Tumor endothelial cells are an important element of TME and participate actively in
tumor development. They blossom in hypoxic conditions and can also drive resistance
to targeted therapeutics. A study reflected that sunitinib was able to increase VEGF and
vascular cell adhesion molecule-1 (sVCAM) as well as levels of circulating endothelial
cell-related proteins like Ang-2. The increase of these proteins and TECs were described
in patients with acquired resistance to sunitinib [61]. Notch ligand Delta-like 4 (Dll4) has
been also related to TECs and the expression of this pathway exerts downstream inhibition
of VEGF [62,63].
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2.7.2. Bone Marrow-Derived Proangiogenic Inflammatory Cell Recruitment

Hypoxic conditions lead to recruitment of different bone marrow-derived cells
(BMDCs) and it is known that this environment is enhanced by antiangiogenic agents.
BMDC can participate in the formation of a premetastatic niche environment by crafting
new vessels that supply oxygen tumor requirements.

Myeloid-derived suppressor cells (MDSC) is a class of BMDCs worth highlighting.
This major component of TME is able to induce resistance to TKIs by enhancing VEGF-
independent angiogenesis. This is carried out by GM-CSF availability in tumor tissue
and is a STAT5 dependent mechanism, since it was objectified that START 5ab (null/null)
MDSC were not able to induce sunitinib resistance [64,65].

2.7.3. Pericyte Coverage

By their attachment around blood vessels and expression of proangiogenic factors
like VEGF, pericytes promote proliferation and maintenance of tumorigenesis. When
they are pathologically activated, abnormal micro-vessel networks embedding the tumor
cells are formed. It is known that increase of pericyte coverage favors antiangiogenic
resistance enhancing survival of endothelial cells and making them less sensitive to VEGF
inhibition [66].

2.7.4. Tumor-Associated Fibroblasts (TAFs)

There is strong evidence that tumor-associated fibroblasts (TAFs) are able to interact
with multiple signaling pathways in RCC cells and promote angiogenesis, tumor invasion,
and TKI resistance through paracrine mechanisms. For instance, it can enhance HIF-1α
accumulation in RCC through CXCR4 upregulation favoring resistance to treatments.
CXCR4 is a molecular proangiogenic pathway expressed by many components of TME
such as TAFs. This process is induced by VHL malfunction, which is inherent to RCC
pathogenesis [67,68]. TAFs can promote resistance to anti-angiogenic molecules promoting
activation alternative pathways such as MAPK/ERK and Akt [69].

They also interact with interstitial fluid pressure inside the tumor and are capable
of nullifying the travel of drugs through tumor cells. They also mediate induction of
aggressive phenotypes of RCC as a result of increased recruitment of macrophages and
remodeling of TME [70,71].

Crawford et al. showed that TAFs stimulate expression of PDGF-C and consequently
generate angiogenesis and treatment resistance [72].

2.7.5. Tumor-Associated Macrophages

Tumor-associated macrophages (TAMs) have been lately attributed an important role
in tumor induction and progression. Nevertheless, they can have a twofold function being
able to enhance tumor growth as well as produce anti-tumor signals [73]. It is known
that hypoxia prompts tumor-associated macrophages to favor tumor progression through
secretion of different molecules like MMP-9, CSC chemokines, IL-6, TNF-α, and VEGF
which not only promotes angiogenesis but also participate in TME regulation. All this
angiogenic storm can aid the tumor to find alternative pathways and lessen the effect of
anti-angiogenic therapies [74].

3. Molecular Pathways Associated with Resistance to Treatment with Immune
Checkpoint Inhibitors

Many factors have been described as relevant in the resistance to immunotherapy
in different tumors, leading to two main forms of resistance (primary resistance and
secondary). Primary resistance makes reference to intrinsic resistance (probably related to
the tumor) and secondary to acquired resistance (probably related to microenvironment
changes) in patients with initial response to treatments. For simplicity, these factors
have been classified into “intrinsic tumor mechanisms” and “microenvironment related”
(Figure 2).
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Figure 2. Among the key mechanisms described we can mainly distinguish tumor-intrinsic factors and factors asso-
ciated to tumor microenvironment (TME). In the first subgroup it is important to outline the alterations of antitumor
immune response pathways (e.g., aberrant expression of tumor antigens), variations in the antigen presentation pathways
(e.g., β2-microglobulin mutations leading to loss of MHC) or defective signaling pathways (e.g., IFNγ-STAT-IRF1 signaling
pathway); What is more, these intrinsic factors promote the formation of an immunosuppressive microenvironment through
the mutations of functional genes such as Wnt/β-catenin, MAPK, or PI3K-AKT-mTOR pathways and the modifications of
the metabolism of TME (e.g., hypoxic conditions); The second subgroup (factors associated to TME) includes the presence
of immunosuppressive cells (e.g., MDSCs or TAM) as well as the activation of coinhibitory receptors (e.g., TIM-3, LAG-3).

3.1. Tumor Cells-Intrinsic Factors
3.1.1. Interferon Gamma Signaling Pathway

The intrinsic interferon gamma (INFγ) pathway plays a key role in the T-cell re-
sponse against a tumor antigen. The activation of the INFγ membrane receptor results
in the downstream interaction with the Janus Kinase (JAK) signal transducer, the acti-
vator of transcription (STAT) and the interferon regulatory factor 1 (IRF1), leading to
PD-L1 expression. Genetic disorders in the INFγ signaling pathway have been revealed
as resistance-associated to treatment with ICI [75]. Moreover, INFγ enhances MHC-I
antigen presentation. In MHC-deficient tumor cells, treatment with INFγ is necessary
to express the antigen processing machinery and has been able to induce tumor-specific
T-cell responses [76]. INFγ pathway also promote the recruitment of immune cells and
has direct effects over the tumoral cells, leading to anti-proliferative and proapoptotic
signals [77]. Recently, loss-of-function truncating mutations in genes JAK1 and JAK2 have
been associated with lack of response to INFγ, as well as PD-1 inhibitors’ inefficacy [78].

3.1.2. Wnt/β-catenin Pathway

The Wnt/β-catenin pathway is associated with different biological processes, such
as stem cell development, embryogenesis, cell differentiation, and immune regulation. In
most cancers, Wnt/β-catenin is overexpressed. In several tumoral models not including
renal cell carcinoma, this overactivation is correlated to absence of T cell gene expression
signatures and T-cell exclusion, leading to “immune-desert” tumors, conditioning resis-
tance to immune checkpoint inhibitors. [79–82]. Wnt/β-catenin is also involved in the
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regulation of IDO1 and the PPARgamma receptor, both inducing immunosuppressive
effects [83]. A role in tumor stemness and dedifferentiation is also well-described [84].

3.1.3. Mitogen-Activated Protein Kinases (MAPK) Pathway

The MAPK pathway is associated with VEGF, IL-6, IL-8, and IL-10 production and
has been related with the inhibition of T cell functions and immune cells recruitment.
Furthermore, MAPK pathway mediates in the negative regulation of MHC expression and
antigen presentation, as well as a reduced responsiveness to the anti-proliferative effects of
IFNγ and TNFα [75,85].

3.1.4. PI3K/AKT/m-TOR Pathway

PI3K/AKT pathway has been identified as one of the most altered pathways in ccRCC,
following the molecular characterization performed by The Cancer Genome Atlas Program.
The loss of expression of PTEN has been pointed out as another relevant alteration [86].
These alterations have been associated with expression of immunosuppressive cytokines
and inhibition of the autophagosome, resulting in a decreased T-cell infiltration at tumor
sites, poor T-cell recruitment, and failure of T-cell-mediated cell death. PTEN loss has also
been correlated with worst outcomes with anti PD-1 inhibitor therapy [87].

3.1.5. Cell Cycle Checkpoint Pathway

Cyclin dependent kinase 4 and 6 (CDK4/6) and their co-factors D-type cyclins are
principal drivers of the cell cycle from G1 to S phase and have been associated with tumoral
progression. Several studies have emphasized the impact of CDK 4/6 inhibition enhancing
the immune response. Thus, the CDK4/6 inhibitor abemaciclib in combination with
immune checkpoint blockade had a substantially greater capacity to induce pronounced
responses in mouse breast cancer models than either agent alone [88,89]. A substantial IL-2
expression and increased T-cell tumor infiltration was observed in these models and have
been connected to the beneficial effect of CDK4 inhibition on antitumoral immunity [90].

3.1.6. Loss of MHC

The loss of MHC I and II molecules favors the tumoral immune escape by incapacitat-
ing the T-cells to recognize the tumoral antigens. Many genetic and epigenetic alterations
that involves the antigen processing and presenting machinery have been potentially as-
sociated with this event. Truncating mutations in the gene encoding B2-microglobulin
has shown a loss of expression of MHC I in the cell surface, resulting in an absence of
response to ICI in melanoma patients [88,91]. In addition, loss of heterozygosity at the
B2-microglobulin locus was associated with lower overall survival in melanoma patients
receiving immune checkpoint inhibitors [92].

3.2. Tumor Microenvironment Related Factors and their Role in Resistance to Immune Response
3.2.1. T Cells

RCC is one of the most T cell-enriched tumors. The high densities of CD8+ tumor-
infiltrating lymphocytes (TILs) is associated with a poorer prognosis, compared to other
tumor types [93,94]. Amongst the many hypotheses that underlie this contra-intuitive
prognosis on the impact of CD8 in ccRCC, it has been demonstrated that co-expression of
PD-1 and LAG-3 induced by a lack of antigen presentation by dysfunctional dendritic cells
results in CD8 TILs exhaustion in ccRCC [95].

However, recently the controversial role of tumor infiltrating T cells has started to
be clarified. In the phase III trial JAVELIN RENAL 101 (comparing the combination of
anti PD-L1 antibody avelumab + TKI axitinib vs sunitinib in monotherapy), an association
between large CD8 infiltration and poor PFS in patients treated with sunitinib was observed.
However, these outcomes were not reflected in patients treated with the combination,
suggesting that CD8 infiltration has prognostic value in TKI-treated ccRCC but loses it
when the patient is treated with ICI [96].
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In 2017, Giraldo et al. [97] proposed a classification of primary ccRCCs depending on
their dominant immune profile. They studied 40 tumors, dividing them in three different
profiles: 1. The immune regulated, represented by polyclonal cytotoxic CD8+ PD-1+
Tim-3+ Lag 3+ TILs and CD4+ ICOS+ cells with a Treg phenotype, characterized by highly
infiltrated tumors with notable proportion of dysfunctional dendritic cells expressing
PD-L1. 2. The immune activated, distinguished by oligoclonal/ CD8+ PD-1+ Tim-3+ TILs,
that represented 22% of the patients. 3. The immune silent, enriched in TILs revealing a
RIL-like (renal infiltrating lymphocytes) phenotype, constituting the majority of tumors of
the cohort (56% of the patients analyze).

The immune regulated and immune activated tumors have been connected with
distinctive phenotypic signatures, which confer aggressive histologic properties and high
risk of relapse or progression. These findings support the hypothesis that these selected
patients could benefit from adjuvant treatment with ICIs [97].

Subsequently, molecular biomarkers evaluated in the IMmotion 150 phase II trial
(comparing first line treatment in mccRCC with the combination of atezolizumab + beva-
cizumab versus standard therapy with sunitinib) showed distinct biological subgroups
based on levels of angiogenesis, immune infiltration, and myeloid inflammation. In ad-
dition, the subgroup with high expression of the Angio gene signature (AngioHigh) was
characterized by higher vascular density and was associated with improved response
within the sunitinib arm. The AngioLow subgroup showed better response to atezolizumab
+ bevacizumab versus sunitinib. Moreover, high expression of the T-effector (Teff) gene
signature was positively associated with expression of PD-L1 and CD8 T-cell infiltration.
The Teff

High subgroup had an improved ORR and PFS with atezolizumab + bevacizumab
compared with Teff

Low subgroup. High Teff gene signature was also related to improve
PFS with atezolizumab + bevacizumab versus sunitinib, and showed no difference with
atezolizumab in monotherapy, which can highlight the role of Teff gene signature in re-
sponse and resistance to immunotherapy. Complementary, differential expression of genes
associated with myeloid inflammation within the Teff

High and Teff
Low subgroups was ob-

served. Atezolizumab monotherapy had worse activity in the Teff
HighMyeloidHigh tumors

compared with the Teff
HighMyeloidLow group [98].

Motzer et al. characterized seven molecular subtypes of ccRCC using a large RNA-seq
dataset from the IMmotion 151 phase III trial [99]. They identified and refined transcrip-
tionally defined subgroups using non-negative matrix factorization, an unsupervised
clustering algorithm. Patient tumors in clusters 1 (Angiogenic/Stromal) and 2 (Angio-
genic) were characterized as highly angiogenic, with enrichment of VEGF pathway-related
genes. These tumors showed the longest PFS in both treatment arms, suggesting better
outcomes regardless of treatment. However, no differences between the combination treat-
ment with atezolizumab + bevacizumab versus sunitinib were observed, which suggests
that these groups essentially benefit from treatment with antiangiogenics. Clusters 4 (T-
effector/Proliferative), 5 (Proliferative), and 6 (Stromal/Proliferative) were characterized
by enrichment of cell cycle transcriptional programs, and lower expression of angiogenesis-
related genes. Atezolizumab + bevacizumab treatment showed improved ORR and PFS
over sunitinib in tumors from clusters 4 and 5, confirming the contribution of pre-existing
intratumoral adaptive immune presence described in these patients. However, cluster 6
was associated with a poor outcome.

At last, cluster 3 (Complement/Ω-oxidation cluster) presents lower expression of both
angiogenesis and immune genes and has been associated with poor prognosis. Cluster 7
(snoRNA) is characterized by expression of snoRNA (small nucleolar RNA, a group of RNA
molecules of variable length, that guide modifications processes of other RNAs, mainly
ribosomal RNA maturation), especially C/D box snoRNAs which have been implicated in
alterations of epigenetic and translation programs. This last cluster improved PFS with
atezolizumab + bevacizumab, but the biological basis of this effect remains to be elucidated.

Additionally, IDO-1 upregulation was described as a key driver of T cell nutrient
deprivation. IDO-1 overexpression in tumor endothelial cells is associated with better
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response and PFS in patients treated with nivolumab and has been proposed as a new
biomarker [100].

3.2.2. Innate Immune System

Macrophages can undergo M1 (classical) or M2 (alternative) activation in result of
the inflammatory triggering signal. The M1 type are characterized by producing high
levels of inflammatory cytokines, such as IL-12, IL-23, and IL-6. M2 macrophages can be
subdivided into different subsets called M2a, M2b, M2c, and M2d [101,102]. Th2 cytokines
IL-4 and IL-13 stimulate the macrophages to develop M2a phenotype; M2b are induced
by activation of Toll-like receptors; and IL-10 polarizes the M2c subtype. M2d subtype is
also known as tumor-associated, due to the ability of tumor cells to switch the potential
phenotype of macrophages into this subtype. Tumor associated macrophages express
multiple receptors or ligands of immune inhibitory pathways, such as PD-L1, PD-L2, and
B7-1 [101]. In RCC, poor survival outcomes have been identified in tumors with high
expression of anti-inflammatory macrophage phenotype (M2) [103]. Moreover, extensive
tumor-associated macrophage (M2d) infiltration into the RCC microenvironment leads the
recruitment of Tregs to the tumor site by secreting CCL20 or CCL22 and has been linked
with enhancement of angiogenesis, tumor proliferation, and metastatic cellular migration
and invasion.

3.2.3. B Cells and Tertiary Lymphoid Structures

B cells and tertiary lymphoid structures (TLS) have recently arisen as an important
feature in cancer biology. B cells have been analyzed within the tumor and the microen-
vironment, showing a strong memory response against tumor associated antigens [104].
Bregs are a specific population of B cells with a regulatory role that have been marked as
inmunosupressive cells, due to their capacity to secrete inhibitory molecules, like IL-10
and TGFβ, which regulate T-reg differentiation [105]. In ccRCC, higher expression of B
cell related genes, measured by microarrays profiling of baseline tumor samples, have
been associated with better response to ICIs [106]. In sarcoma, a cluster of patients (known
as “immune and TLS high”) which predominantly express the B lineage signature, has
demonstrated a significant improvement in life expectancy with anti PD-1 treatment [107].

Tertiary lymphoid structures are ectopic lymph-like structures whose structure varies
from an aggregation on B and T cells to more complex structures. Generally, these TLS
are constituted by a T cell zone with mature dendritic cells covering a follicular zone rich
in proliferating and differentiating B cells. These structures play an important (and still
largely unknown) role against tumor immunity and are associated with better prognosis in
patients with several cancers, including ccRCC. Typically, these structures can develop a
niche which supports the appearance of transformed cells and activated T regs, favoring
the immune response [93,108].

3.2.4. Proinflammatory Cytokines

The RCC microenvironment is associated with pro-inflammatory conditions. Among
the factors associated with this fact, the release of pro-inflammatory molecules and cytokines
induced by tissue damage emerges as the most important one. Upper concentrations of
molecules, such as adenosine triphosphate, IL-6, IL-8, macrophage inflammatory protein
1-alpha, tumor necrosis factor alpha (TNFα), or IFNγ promote the angiogenesis, genomic
instability, cellular proliferation, and the epithelial–mesenchymal transition, as well as increase
the recruitment of immune cells, leading to a pro-tumorigenic microenvironment.

Furthermore, it is important to notice that this recruitment promotes immunosup-
pression leading by the increased expression of PD-1 on T cells which is induced by
IFNγ also [109]. This sustained expression of PD-1 is responsible for T cell exhaustion
via the SHP2 recruitment. Transcriptional factors such as STAT-3 and IRF1, induced by
pro-inflammatory conditions, also modulate the expression of PDL1 and PDL2, favoring
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this exhaustion process. Additionally, IL-1, IL-6, IL-11, IL-17, and TNF alpha promote Treg
expansion and increase T cell exhaustion [110,111].

3.2.5. Hypoxia

RCC is characterized as being one of the most vascularized tumors. However, this
vascularization is composed of fragile, disorganized vessels, causing an erratic nutrient and
oxygen intake, which leads to hypoxia and a lower pH, facilitating tumor progression [112].
Furthermore, hypoxia induces the activation of different genes, which are involved in
differentiation of tumor associated macrophages, Treg recruitment and infiltration of
myeloid-derived suppressor cells. These immune structural changes favor the inhibition of
T cells [113,114]. Furthermore, HIF-1a and HIF-2a induce increased expression of PD-L1
in tumor cells [115,116]. An immune escape pathway is developed by increased levels
of HIF-1 and HIF-2, which enables the generation of VEGF, which in turn increase the
expression of the immune checkpoints CTLA-4, TIM-3, and LAG-3 on T cells, and PD-L1 on
dendritic cells [114,117]. Finally, hypoxic tissues are enriched in adenosine, which suppress
the effect of T cells, contributing to immune escape [118].

3.2.6. Protein Polybromo-1(PBRM-1) Expression

PBRM-1 is a specific subunit of the PBAF form of the SWI/SNF chromatin remodeling
complex. Loss-of-function mutations in this complex are recurrent in many cancers, includ-
ing ccRCC, which appears in around 40% of patients [119,120]. In ccRCC, low expression of
PBRM1 and high tumor grade imply a worse prognosis. In vitro studies performing the in-
activation of PBRM1 using CRISPR-Cas9, have shown a larger production of chemokines in
response to IFNγ, which recruits effector T cells and promotes sensibilization of treatment-
resistant mouse melanoma cells to immunotherapy [119]. Other studies involving whole
exome sequencing have remarked that the loss-of-function mutation in the PBRM1 gene has
been linked with improved PFS and OS in patients receiving antiPD-1 treatment [121–123].
However, recent studies have demonstrated that ccRCC with low expression of PBRM-1
are related with lower CD4-CD8 tumor infiltration, lower expression levels of CXCL10,
CCL12, ICAM-1, and other cell migration-related molecules, and in the end, with poorer
outcomes with anti-PD1 treatment compared with PBRM-1 high tumors [124]. These new
findings reveal the potential of PBRM-1 as a therapeutic target.

3.2.7. Immune Escape Related to Other Immune Checkpoints

T-cell immunoglobulin and mucin domain 3 (TIM-3) is a type I trans-membrane
protein that was originally discovered in an effort to identify novel cell surface molecules
that would mark IFN-γ-producing Th1 and Tc1 cells. Tim-3 plays a key role in inhibiting
Th1 responses and the expression of cytokines such as TNF and INF-γ, leading to the
suppression of tumoral immune response [125]. On T-cell activation, TIM-3 is recruited to
the immunological synapse with B-associated transcript 3 (Bat3) bound to the cytoplasmic
tail of TIM-3. When TIM-3 is engaged by a ligand, in most cases galectin-9, the conserved
tyrosine residues in the cytoplasmic tail become phosphorylated, leading to the release
of Bat3 and activates the downregulation of TCR signaling and suppression of T-cell
proliferation and survival [126]. In ccRCC, TIM-3 and PD-1 co-expression on CD8 T cells is
associated with worse outcomes including higher TNM stage, larger tumor size and lower
PFS [127].

Lymphocyte activation gene-3 (LAG-3, also known as CD223) is a cell surface molecule
that belongs to the immunoglobulin superfamily and is located near CD4. Like CD4,
LAG-3 binds to major histocompatibility complex-II (MHC-II) on antigen presenting cells
(APCs), but with a much stronger affinity [128], which prohibits the binding of the same
MHC molecule to TCR and CD4, thus directly hampering TCR signaling in immune
response [129]. LAG-3 is expressed in the membrane of multiple immune cells, including
CD4 T cells, CD8 T cells, and T-reg cells. Several studies have delineated that LAG-3 is
over-expressed on tumor-infiltrating CD8 T cells in various tumor types, including renal
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cell carcinomas [130]. LAG-3 overexpression leads to CD8 T cells exhaustion and resistance
to anti PD-1 inhibitors [131]. This interaction occurs without binding to MHC-II, which
have given rise to the discovery of additional tumor-related ligands, such as galectin-3 and
liver sinusoidal endothelial cell lectin (LSECtin). These ligands seem to play an important
role in the TME, although it remains unclear [132]. LAG-3 expression tends to be associated
with a lower OS in RCC [120,133].

T cell immunoglobulin and ITIM domain (TIGIT) is a membrane protein with an
extracellular IgV ligand-binding domain and an intracellular immune-receptor domain.
TIGIT is primarily expressed on T cells and NK cells and binds to the poliovirus receptor
PVR (CD155) and Nectin-2 (CD112) as a competitor to DNAM-1. DNAM-1 enhances
cytotoxicity of T lymphocytes and NK cells, and TIGIT blocks its function acting like
an immune suppressor. TIGIT has been found to be expressed on subsets of exhausted
intratumoral CD8+ T cells [134,135].

4. Discussion

Resistance to systemic therapies in RCC, either intrinsic due to presence of resistance
genes or acquired after initial tumor regression can directly impact the clinical course and
additional treatment approach of these patients. This review highlights the new insights
into key biological pathways underlying treatment resistance.

At the beginning of this century, treatment with TKIs that block the VEGFR has
revolutionized the RCC treatment landscape, resulting in a significant increase in terms of
life expectancy and quality of life for these patients. However, the benefit shown by these
initial treatments was limited.

Looking at initial resistance to VEGFR2 inhibition by enhanced activity from other
VEGFR receptors, multiple VEGFR inhibitors have been designed trying to overcome this
obstacle. Moreover, the inhibition of the PI3K/Akt/mTOR pathway has become an option
to overcome PTEN downregulation. Thus, preclinical studies combining sunitinib with
PI3K/mTOR inhibitors, mTOR inhibitors or pan-AKT inhibitors, can restore sunitinib
effect and induce apoptosis in those PTEN-negative cells [136,137]. However, in the clinical
setting these combinations were related with increased toxicity requiring dose attenuation,
and efficacy was less than expected in comparison with single-agent sunitinib at full
doses [138].

In the FGF overexpression setting, lenvatinib, an oral inhibitor of FGFR, VEGF 1-3,
PDGFR α, RET, and KIT, is able to overcome the FGF resistance mechanism and has
demonstrated activity in the first line setting in combination with pembrolizumab and
in subsequent treatment lines in combination with everolimus of patients with advanced
RCC [139]. Inhibiting the FGF pathway with brivanib (a first-class dual inhibitor of
VEGR2-3/FGFR1-2-3) in mice with pancreatic neuroendocrine tumors has resulted in
promising activity after failure to anti-VEGF treatment [140].

Other TKIs have been developed in the last few years. Cabozantinib has been designed
as a multi-tyrosine kinase inhibitor against VEGFR, KIT, RET, Tie2, cMET, and Axl inhibitor
among others. Molecular testing from tumor samples by Zhou et al. demonstrated that
cabozantinib could suppress Axl and MET activation including AKT and ERK downstream
cascades induced by chronic sunitinib treatment [30]. Therefore, cabozantinib has been
included in the therapeutic algorithm of patients with advanced RCC [141]. Crizotinib, a
MET inhibitor, has been also studied in combination with axitinib, showing decrement in
vascularity density along with suppressed tumor growth [142]. The role of crizotinib has
been focused on the subtype papillary RCC due to its MET inhibition, but clinical results
have not shown greater antitumor activity over other TKI VEGFR driven [143].

New pathways are being explored in order to reverse the resistance to TKIs. Ang/Tie
pathway has indeed become an interesting target for new drug development, as MEDI
3671 (a monoclonal antibody against Ang2), trebananib (fusion protein which hampers
the binding of Ang1/2 to Tie 1/2) or CovX bodies have demonstrated the ability to inhibit
tumor growth and decrease vascular density [144–147].
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Alternatively, the regulation of epigenetic alterations has also been spotted as a tar-
get. Tazemetostat is an EZH2 inhibitor studied in multiple solid tumors with promising
results [148,149].

Lysosomal sequestration is a reversible resistance mechanism. A study conducted
in sunitinib resistant RCC cells revealed that lysosomal function was suppressed when
sunitinib was withdrawn from the cell cultures and drug sensitivity was retrieved [150].
Furthermore, alkalinizing lysosomes with an H+-ATPase inhibitor like bafilomycin has
been also studied for reversing sunitinib resistance since pH gradient plays a key role
in its sequestration. Notwithstanding, the excessive toxicity of this molecule constitutes
a hindrance for its use in vivo. Following this rationale, chloroquine is being studied in
preclinical assays showing interesting results in pancreatic neuroendocrine tumors (P-NET)
combined with sunitinib [151].

Looking at the future, ncRNA expression and SNPs seem to be new paths to explore
in further years. Long noncoding RNA lncASRS targeting with locked nucleic acids has
provided evidence that could overcome the resistance and restore sunitinib response. How-
ever, further studies are needed to elucidate the role of lncASRS as potential therapeutic
target as well as a clinical biomarker [57].

TME modulation has gained strength as a strategy to overcome resistance to TKIs. Per-
icytes have been conceived as interesting new targets to design novel drugs [66]. Pericyte
coverage is regulated by PDGFs family molecules and inhibiting PDGFRβ in combina-
tion with antiangiogenic drugs can reduce pericyte coverage and inhibit tumor growth
in mouse model P-NETs [152]. However, decrement of pericyte can likewise increase
risk of metastatic dissemination and these strategies should always live in an intricate
equilibrium where tumoral progression can be favored. Moreover, TME regulation focus-
ing on the tumor endothelial cells with new molecules targeting the Ang-2 pathway and
DII4 inhibitors have demonstrated anti-tumor activity in sunitinib and sorafenib resistant
RCCs [62,63,153].

In recent years, strategies enhancing the immune system with the inhibition of immune
checkpoint proteins PD-1/PDL-1 and CTLA-4 have revolutionized the RRC therapeutic
landscape [128,140,154–157]. Nevertheless, there is still an important number of patients
who never benefit from these treatments or lose this benefit in a short period of time.
Taking this in consideration, big efforts have been taken in order to shed some light on the
resistance mechanisms which lead to tumor insensitivity to ICIs and disease progression.

Novel immune checkpoints (such as TIM-3 and LAG-3) have been analyzed as po-
tential targets, due to their responsibility in lymphocyte exhaustion and tumor immune
evasion. Thus, TIM-3 has been targeted alone or in combination with anti-PD-1/PD-L1,
with four ongoing phase I trials assessing antiTIM-3 antibodies in metastatic solid tumors
(NCT02608268, NCT02817633, NCT03099109, and NCT03066648) [158].

Furthermore, several clinical trials targeting LAG-3 (alone or in combination with
anti PD-1) in metastatic solid tumors including mccRCC patients are ongoing [159]. Re-
latlimab, an anti-LAG3 antibody with promising results in metastatic melanoma, is under
investigation in combination with nivolumab (NCT02996110). Eftilagimod-α (IMP321),
a soluble LAG-3 immunoglobulin fusion protein agonist has been evaluated in a phase I
clinical trial, showing a promising activity inducing memory CD8+ T cells, as well as an
acceptable toxicity [160]. XmAb22841, a bispecific antibody targeting CTLA-4 and LAG-3
is being evaluated in monotherapy or combination with pembrolizumab in select patients
with advanced solid tumors, including mccRCC (NCT03849469).

Other immune checkpoints are under research. In phase Ia/Ib and randomized phase
II clinical trials, tiragolumab (an anti-TIGIT antibody) had a tolerable safety profile with
promising efficacy (most notably in patients with non-small-cell lung cancer), and clinical
trials designed to assess the safety and efficacy of TIGIT inhibitors in patients with RCC are
currently ongoing. An early-phase trial exploring a V-domain immunoglobulin suppressor
of T cell activation (VISTA) inhibitor in patients with advanced-stage solid tumors is also
ongoing [161].
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Additionally, IDO-1 targeting has been one of the most promising approaches in
the last years. The phase I/II ECHO-202/KEYNOTE 037 where the combination of the
oral IDO-1 inhibitor epacadostat and PD-1 inhibitor pembrolizumab was tested, result
in an objective response in 25 of 62 patients (40%), including eight complete responses
and 13 patients with stable disease. In the mccRCC set, two patients presented responses
out of 11 [162]. However, the ECHO-301/KEYNOTE-252 phase III study (epacadostat +
pembrolizumab vs placebo in patients with unresectable or metastatic melanoma) failed to
improve PFS or OS [163]. These results have led to the withdrawal in the development of
IDO-1 inhibitors for the moment.

IFNγ pathway activation has been pointed out for its important role in sustaining the
immune response. STING and RIG-1 are basic mediators in the detection of cytosolic DNA.
The STING pathway activates nuclear factor-kappa B (NF-κB) and interferon regulatory
factor 3 (IRF-3) through the activity of IκB, enhancing the IFNγ pathway and increasing
the production of proinflammatory cytokines [164]. RIG-1 contributes to the stimulation of
the immune system, favoring the production and activation of NK and CD8+ T cells [165].
Two phase I trials evaluating a STING agonist and a RIG-1 agonist as monotherapy or
in combination with ICI respectively, in patients with metastatic solid tumors including
mccRCC are ongoing (NCT03010176 and NCT03739138).

IL-2 is another promising target in the horizon of renal cancer treatment. Decades
ago, high-dose IL2 was commonly used to treat mccRCC, achieving complete and durable
responses in a subset of patients. However, the life-threatening toxicity associated with
high-dose IL2 restricted this therapy to a limited number of young patients without under-
lying comorbidities. Bempegaldesleukin is a pegylated IL2 which preferentially binds to
the beta-gamma subunit of the IL2 receptor. This interaction has shown a promotion of IL2
effects on T-effector cells, enhancing the expansion of effector elements, as well as depletes
intratumoral T-reg cells. In phase I studies, bempegaldesleukin has been well tolerated
with low grade 1-2 manageable adverse events, such as hypotension and edema. Despite
clinical efficacy in randomized trials has still not been proven, data from tumor and blood
analysis support the combinatorial use of bempegaldesleukin with ICI [166,167]. Other
studies evaluating the utility of modified versions of IL2 and combinations with ICIs are
also ongoing (NCT03861793, NCT03875079, NCT02989714, and NCT02964078).

Macrophage reprogramming is another promising approach nowadays, as diverse
therapeutic strategies have been suggested to suppress tumor-associated macrophage
recruitment, switching them back to the antitumor M1 phenotype [121]. Nevertheless,
several studies have reported that high M2 macrophage tumor infiltration is associated with
a more durable response to anti-PD-1 therapy [116,168]. This association was not found
in patients treated with TKIs. Colony stimulating factor 1 receptor (CSF1R) expression
has a key role allowing the switching of M1 macrophages into M2 tumor-associated
macrophages [169]. Combinations of CSF1R inhibitors and ICI are under investigation in
phase I trials (NCT02718911, NCT02526017).

Personalized neoantigen-based vaccines are a new compelling immunotherapy ap-
proach. Neoantigens are products of diverse tumoral mutations that can trigger tumor-
specific T cell responses since they are exclusively expressed by cancer cells, thus avoiding
vaccine “off target” effects. They can also propel immunological memory that boosts long
term responses and delay disease recurrence. Despite being associated with a moderate
tumor mutational burden, RCCs have an important proportion of frameshift indels and
T cell infiltration, and are likely to have several candidate neoantigens for vaccine de-
velopment. Phase I clinical trials with neoantigen-based vaccines in combination with
ICIs or IL2 enhancers are currently being explored in RCC (NCT02950766, NCT03289962,
NCT03548467, and NCT03633110) [170].

Finally, precision immunotherapy targeting surface antigens with chimeric antigen
receptor (CAR) T cells and MHC antigens with tumor infiltrating lymphocytes (TILs) are
under early development in RCC (NCT02830724, NCT03393936, and NCT03638206) [161].
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Probably, combination strategies between novel immunotherapies and approaches in
combination with “older” treatments such as TKIs could reverse the resistance mechanism
in RCC. However, it is necessary to point out, that these investigational combinations with
positive results in vitro/in vivo have to demonstrate efficacy and safety in further clinical
trials. Moreover, we need to develop predictive biomarkers to current therapies in order to
guide clinical decisions.

Predictive biomarkers of response to this target and immune-based therapies have
been largely studied and have become one of the major challenges in ccRCC treatment.
Currently, only the IMDC risk model (based on clinical features and initially designed
as a prognostic model) has been validated as a robust tool for treatment selection not
only for immunotherapy but also for TKI treatment [171–179]. Despite the PD-L1 ex-
pression and tumor mutational burden (TMB) have been broadly studied in many other
tumors as a ICIs predictive biomarker, their applicability in ccRCC have not been demon-
strated, mainly due to their unclear cutoff for positivity, intratumoral heterogeneity and
inconsistency between primary tumor and metastasis [172]. Other promising predictive
biomarkers have not bridged the investigational and clinical stages yet. Among these, neu-
trophil/lymphocyte ratio (NLR) [173,174], PBMR and molecular gene signatures [175,177]
are worth highlighting.

5. Conclusions

New therapeutic options for RCC have expanded rapidly over the past decade, with
the combination of TKIs and ICIs being the new cornerstone. Understanding the underlying
resistance mechanisms to these treatments is a driving force for survival improvement in
metastatic RCC.

Counteracting alternative modes of vascularization, EMT, lysosomal sequestration,
and alternative molecular pathways can overcome TKIs resistance and restore sensitivity
to these molecules. Tumor microenvironment modulation constitutes another fundamental
approach, since it participates in both resistance to TKI and ICI. Finally, novel immune
checkpoints like LAG-3 and TIM-3, as well as a renewed approach in cytokine therapy
with IL-2 are promising targets in development.

Further investigation is warranted to improve our knowledge of RCC biological
behavior and to develop successful treatment approaches.
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Simple Summary: The accumulated evidence on the role of epigenetic markers of prognosis in clear
cell renal cell carcinoma (ccRCC) is reviewed, as well as state of the art on epigenetic treatments for
this malignancy. Several epigenetic markers are likely candidates for clinical use, but still have not
passed the test of prospective validation. Development of epigenetic therapies, either alone or in
combination with tyrosine-kinase inhibitors of immune-checkpoint inhibitors, are still in their infancy.

Abstract: Clear cell renal cell carcinoma (ccRCC) is curable when diagnosed at an early stage, but
when disease is non-confined it is the urologic cancer with worst prognosis. Antiangiogenic treat-
ment and immune checkpoint inhibition therapy constitute a very promising combined therapy for
advanced and metastatic disease. Many exploratory studies have identified epigenetic markers based
on DNA methylation, histone modification, and ncRNA expression that epigenetically regulate gene
expression in ccRCC. Additionally, epigenetic modifiers genes have been proposed as promising
biomarkers for ccRCC. We review and discuss the current understanding of how epigenetic changes
determine the main molecular pathways of ccRCC initiation and progression, and also its clinical
implications. Despite the extensive research performed, candidate epigenetic biomarkers are not used
in clinical practice for several reasons. However, the accumulated body of evidence of developing
epigenetically-based biomarkers will likely allow the identification of ccRCC at a higher risk of pro-
gression. That will facilitate the establishment of firmer therapeutic decisions in a changing landscape
and also monitor active surveillance in the aging population. What is more, a better knowledge of
the activities of chromatin modifiers may serve to develop new therapeutic opportunities. Interesting
clinical trials on epigenetic treatments for ccRCC associated with well established antiangiogenic
treatments and immune checkpoint inhibitors are revisited.

Keywords: renal cell carcinoma; biomarker; DNA methylation; epigenetics

1. Current Management of Renal Cell Carcinoma

Renal cell carcinoma (RCC) is the seventh most common form of human neoplasm,
with an incidence of 10 new cases per 100,000 inhabitants in Western Europe and United
States. Its incidence is steadily rising due to increased incidental detection. Among the
genitourinary tumors RCC is the one with highest mortality, with approximately 76% global
5-year survival rate, and accounts for 2% of global cancer deaths in the world [1]. Probably
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the main clinico-pathological parameters, that predict prognosis in this malignancy, are
nuclear grade, tumor stage, cell type, tumor architecture, and tumor diameter [2]. However,
Fuhrman grade, node involvement, number of different metastatic sites, and whether
cancer-directed surgery is recommended and performed are the major factors involved in
the prediction of prognosis in metastatic RCC [3].

Histological variants characterize different subtypes within RCC [4]. The most com-
mon is clear cell RCC (ccRCC) that accounts for a total 75% of cases. Papillary RCC (pRCC)
is the second in terms of frequency, approximately 20%. Chromophobe RCC and its benign
counterpart oncocytoma account each for approximately 5%. Other rarer tumors enter in
the differential diagnosis of solid renal masses [5]. Both ccRCC and pRCC arise from the
proximal tubule while chromophobe RCC (chRCC) has an origin in the distal part of the
nephron. Each type has different morphology but also different genetics and behavior. Tu-
mor grade has prognostic value for ccRCC. An individual tumor can have mixed histology
and different subtypes can occasionally appear within the same kidney. Heterogeneity
of RCC stands at the molecular, genomic, histopathological, and clinical levels [6,7]. It
explains how appropriate tumor sampling is needed for a correct identification, and implies
great difficulty for the development of accurate diagnostic and prognostic markers. In fact,
among the many candidates investigated, no marker of ccRCC has reached the clinic today.

Sensitive and specific molecular markers for the diagnosis and monitoring of RCC
are lacking [8,9]. Tumor heterogeneity of the disease, worsened by specific histological
subtypes, also affect the search for accurate biomarkers [10]. Likely earlier detection and
better clinical monitoring of this malignancy might help to improve its prognosis [11].
Compared to other subtypes, ccRCC has a more unfavorable prognosis. Although, it is
curable when diagnosed early, no screening strategy is being used. Small renal masses
are often detected by imaging studies performed for other reasons and tend to be treated
by nephron-sparing surgery, although ablation or active surveillance when diagnosed in
an elder population is increasingly used. In this clinical situation, imaging monitoring
to evaluate clinical progression is mandatory in the absence of reliable molecular tumor
marker of disease progression. Many candidates, including a number of epigenetic markers
such as DNA methylation profiling, have been proposed both for screening and prognos-
tic evaluation [12–19]. In fact, DNA methylation presents itself as a potentially strong
biomarker to predict aggressive behavior and risk of tumor recurrence in patients with
apparently less aggressive renal tumors [20].

Radical nephrectomy or partial nephrectomy, that imply total or partial removal
of the kidney, are the main therapeutic basis of local and locally advanced disease [21].
Approximately 30% of the patients develop metastases, either synchronically or during
follow-up, and for the last decades have been treated with adjuvant or palliative classical
immunotherapy with interferon-α2b (IFN-α2b), high-dose interleukin-2 (IL-2), systemic
targeted therapies including tyrosine kinase inhibitors (TKI) targeting the VEGF signaling
axis (sorafenib, sunitinib, pazopanib, axitinib, lenvatinib, and cabozantinib) or mTOR
inhibitors (everolimus and temsirolimus) or the anti-VEGF monoclonal antibody beva-
cizumab. First-line options for metastatic ccRCC included sunitinib, pazopanib or the
combination bevacizumab plus interferon-α and second-line options were axitinib and
cabozantinib. Despite all treatment efforts, advanced disease implies very low survival
rates. Median duration of response was 9 months for the first-line setting and 6 months for
the second-line. In the absence of toxicity most of these agents have been given sequen-
tially until further disease progression. Cytoreductive nephrectomy was also advocated
whenever possible in cases with metastatic onset to reduce the tumor burden and avoid
further metastatic seed.

Many studies are currently evaluating the combination of anti-VEGF therapy with
the new generation of immunotherapy agents T-cell immune checkpoint inhibitors (ICI),
that include antibodies against programmed cell death protein ligand-1 (PDL1) avelumab
and atezolizumab, antibodies against programmed cell death protein 1 (PD1) nivolumab
and pembrolizumab, and the inhibitor of cytotoxic T-lymphocyte-associated protein 4

134



Cancers 2021, 13, 2071

(CTLA-4) ipilimumab. Blockade of the PD1–PDL1 axis promotes T cell activation and
immune killing of cancer cells. ICIs have very recently become first-line standards of care
as improved survival for ipilimumab and nivolumab combined has been demonstrated in
the intermediate and poor-risk group, while pembrolizumab plus axitinib combination is
recommended, for both unfavorable and favorable disease. Cabozantinib remains a valid
alternative for the intermediate and high-risk group. To summarize, in patients previously
treated with TKIs that progress, nivolumab, cabozantinib, axitinib, or the combination of
ipilimumab and nivolumab appear indicated; while in patients already treated with ICI,
any VEGF-targeted therapy previously unused together with ICI therapy appears a valid
option [22–25].

PDL1 immunohistochemical expression in tumor cells or in tumor-infiltrating mononu-
clear cells (TIMC) has been thoroughly evaluated as biomarkers for the prediction of ICI
response in metastatic disease. However, PDL1 expression is not a good predictive marker
and does not serve to assign the most convenient therapy. Response rates are better in
PDL1 positive tumors, but PDL1 negative ones also respond [26]. It is important to note
that the role of CTLA-4 expression in TIMC has been forgotten to evaluate response to
ICI. Many issues are responsible for the failure to develop predictive biomarkers, to name
dynamic expression, and the aforementioned heterogeneity within primary tumor, and
between primary and metastases [27]. Seric levels of PDL1 could be a novel prognostic
factor in ccRCC and also a predictor of response to TKI-based therapy [28]. It is a paradox
that despite the fact that treatments for metastatic ccRCC are targeted, the approach for
immunotherapy is far from being targeted.

Abnormal epigenetic patterns will give new opportunities to develop novel therapies
in RCC. Some drugs targeting the epigenetic system are currently under investigation; how-
ever, strategies that combine therapies targeting epigenetic machinery with conventional
therapies for this malignancy, either targeting tyrosine kinases, mTOR or immune check-
points at different combinations are still at infancy. Maybe closer is the practical utility of
epigenetic therapies to solve or delay therapy resistance in ccRCC, and also to identify the
populations in which prolonged response to a certain therapy could be expected. Hopefully
the introduction of biomarkers into clinical practice will allow personalized patient care for
renal cancer [29,30].

2. Epigenetics of Clear Cell Renal Cell Carcinoma

Epigenetics studies the inheritable phenotype resulting from changes in gene expres-
sion without alteration of the DNA sequence. As such, cancer epigenetics deals with
the inheritable but reversible changes associated with gene expression dysregulation that
manifest in a pre-malignant phenotype with the genomic sequence unaltered. Interest in
epigenetic alterations associated with ccRCC provides an optimal scenario in the search
for new tumor markers in this malignancy, and also to develop new treatment strategies
facilitated by the reversibility of epigenetic modifications. The main epigenetic mechanisms
are DNA methylation, chromatin remodeling, post-translational histone modifications,
short-noncoding RNAs, also known as microRNAs (miRNA), and long-noncoding RNAs
(lncRNA) [31–33].

Interestingly, all the epigenetic modifications work together to regulate chromatin
structure and gene expression. Disruption of the epigenetic homeostasis may derive from
deregulation of epigenetic modifiers. That means altered epigenetic modifications can
be explained by changes in expression and function of epigenetics writers, erasers, and
readers. These changes can be due to genetic alterations, linking genetics, and epigenetics
in carcinogenesis.

Translational epigenetic research is a growing field to identify and validate new
markers leading to personalized medicine. Among the many epigenetic changes and
signatures identified in RCC, aberrant promoter methylation of more than 200 genes have
been reported and more than 120 miRNAs are deregulated [34]. According to several
recent systematic reviews of diagnostic DNA methylation biomarkers in this disease, none
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of the biomarkers proposed exceeds level of evidence III, which means their clinical utility
is limited [34,35]. Promising biomarkers should be validated not only in sample banks,
but also in prospective clinical trials before their use can be generalized [29]. In every case
after the publication of a potential biomarker, prospective cohort studies that increase the
evidence are lacking. Additionally, more standardized methodology is needed to facilitate
reproducibility, and that hinders clinical translation [35]. Bias in sample selection and
handling, DNA methylation detection methods and genomic location of the assay can also
bring confounding results. In addition, the selection of normal tissue for comparison with
neoplasia can be problematic because aberrant promoter methylation is an early event in
carcinogenesis allowing its detection in normal appearing tissue surrounding the tumor.
Finally, inter-individual study comparison is most often lacking for further biomarker
validation.

However, there is no doubt that DNA methylation and histone modification patterns
have a crucial role in the regulation of global and local gene expression and may play an
outstanding role both in carcinogenesis and tumor progression. Firstly, epigenetic deregula-
tion can lead precursor cells to proliferate and block their differentiation as seems to occur
in germ cell malignancies [36]. This is of primary importance in childhood renal kidney
tumors like nephroblastoma [37]. Probably the most interesting epigenetic mechanism
in ccRCC stands in common mutations in chromatin regulator genes that complement
the inactivation of Von Hippel Lindau (VHL) tumor suppressor gene (TSG), and Hypoxia-
inducible factors (HIF) pathway that allow tumor cell survival in a characteristic status
of pseudo-hypoxia. VHL gene is frequently inactivated in sporadic ccRCC by mutation,
loss of heterozygosity, or promoter hypermethylation [38]. In addition, several miRNAs
have been associated with VHL-HIF pathway. In particular, downregulation of MIR-30c
has been associated with loss of VHL in RCC [39]. However, little is known about the
relationship between lncRNAs and VHL–HIF pathway. A study comparing lncRNA ex-
pression profile in VHL-wild type and VHL-mutant RCC cell lines and demonstrated that
LncRNA-SARCC is differentially regulated in a VHL dependent manner in RCC cell lines
and tumor samples [40].

Recent genome-wide sequencing studies have revealed a number of mutations of
genes coding for epigenome modifiers and chromatin remodelers, like PBRM1 (40%),
SETD2 (10%), KDM5C (10%), KDM6A (1%), and BAP1 (10–15%). Most of the mutations
of histone modifier genes described in ccRCC are truncating and inactivating mutations
producing loss of functions [41,42]. Apart from VHL mutations these are among the
most common somatic genetic abnormalities encountered in renal tumors [43,44]. Very
interestingly, 90% of sporadic ccRCC are affected by a 50Mb deletion on chromosome
3p where not only VHL but also PBRM1, BAP1, and SETD2 are located and act as a
functional gene group [43]. The function of these epigenetic modifiers stands in DNA
repair and maintenance of genomic integrity by regulating splicing and other processes
like cytoskeletal regulation that also contribute to genomic stability. KDM5D and KDM6C
located on the Y chromosome, are homologs of the X-lined genes KDM5C and KDM6A,
and are often deleted in male patients with ccRCC [43]. Understanding how chromatin
modifiers contribute to RCC tumorigenicity will serve to develop the basis for therapeutic
interventions as well. Finally, it is important to recognize that epigenetic modifications
work together and can also regulate one another, thus diversifying their function. This
regulatory network has been defined as epigenetic crosstalk.

Epigenetic changes can be evaluated in samples obtained with minimal invasion (e.g.,
urine or plasma), and this represents an added attraction to introduce epigenetic studies in
the clinic. Obtaining DNA non-invasively from renal cells in urine is an ideal scenario for
epigenetically based detection of ccRCC. Additionally, DNA can be obtained from fresh
tumor or paraffin-embedded tissue. Liquid biopsy from direct washing of fresh biopsies
can be an optimal method as well, to evaluate epigenetic changes that would facilitate
accurate detection, tumor subtype determination, and evaluation of prognosis as well [45].
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More recently detection of RCC using plasma and urine cell-free DNA methylomes has
also been confirmed [46,47].

The potential of renal cancer epigenomics has been investigated later than in other
urologic malignancies, but the understanding of how genomics and epigenomics disturb
biologic functions and determine intratumor heterogeneity will help to explain the complex
reality of RCC and the differences in molecular cancer phenotypes [48]. The growing field
of knowledge to determine the real impact of altered epigenetic patterns and their role in
the diagnosis, monitoring, classification, prognosis, and treatment of kidney cancer is the
main objective of this review.

2.1. Abnormal DNA Methylation

DNA methylation is the most widely studied epigenetic modification so far, and
consists of the addition of a methyl group to the Cytosine within the CpG dinucleotide.
This epigenetic modification is a reversible process regulated by writers, DNA methyl
transferases (DNMT), erasers, and Ten-eleven translocation (TET). The maintenance of
DNA methylation through replication is ensured by DNA (cytosine-5)-methyltransferase
1 (DNMT1) but de novo DNA methylation is mediated by DNMT3A and DNMT3B [49].
DNMTs transfer the methyl group from S-adenosyl methionine (SAM) to carbon-5 of
the cytosine. The proportion of CpG dinucleotides in the human genome is lower than
expected from the abundance of cytosine and guanine. The distribution of the CpGs is
not uniform and concentrates in short areas, called CpG islands, located mainly in the
promoter regions of approximately 60% of known genes [50]. Promoter DNA methylation
is a mark of transcriptional repression, while gene body DNA methylation is generally
associated with a permissive transcriptional state. This epigenetic modification is crucial in
several physiologic functions, including X-chromosome inactivation, silencing of tissue
specific genes, imprinting and genomic stability, and changes due to senescence. In normal
cells, around 80% of CpGs are methylated, including repetitive genomic sequences and
transposons but most of the CpG islands are unmethylated allowing gene expression when
necessary, but this methylation pattern is altered in malignant transformation. Two major
changes occur in cancer affecting DNA methylation: global DNA hypomethylation of
the genome and aberrant hypermethylation of the promoter region of TSGs. Age and
environmental changes also have a strong effect on DNA methylation. The methylation of
a gene promoter causes gene silencing through a transcription failure.

DNA hypomethylation primarily affects repetitive sequences and pericentromeric
regions that are methylated in normal cells. Loss of methylation at these elements in cancer
may result in chromosomal instability and mutations [50,51]. In addition, the hypomethy-
lation of CpG sites has been associated with the over-expression of oncogenes within
cancer cells and with deregulation of proteins involved in the complex balance between
methylation and the maintenance of the chromatin structure [50]. Hypermethylation of
CpG islands located in the promoter regions of some TSGs prevents gene expression and,
therefore, its protective role in the development of tumors. Gene silencing by promoter hy-
permethylation in cancer has been studied in depth and affects important functions for cell
cycle, DNA repair, cell adhesion and invasion, apoptosis, miRNA expression, metabolism
of carcinogens, and response to hormones. In particular, silencing of negative regulators
of cell cycle (RASSF1 and KILLIN), activation of Wnt pathway by suppression of Wnt
antagonists (SFRP1, SFRP2, SFRP5, and WIF-1), TGF-β activation by promoter methylation
of negative regulators (GATA-3, GREM-1, and SMAD-6) and silencing pro-apoptotic genes
(APAF-1) are the most important mechanisms that explain why gene hypermethylation
plays an important role in development and progression of RCC [33,52].

Characterizing methylation patterns and signatures in cancer is one of the bases
for the desired personalized medicine in the search for biomarkers. First of all, unlike
mutations and other genetic alterations, methylation always occurs in defined regions of
DNA and can be precisely detected with resolution [53]. Secondly, every tumor type has
a specific methylation profile, referred to as hypermethylome, somehow different from
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that of other neoplasia. Thirdly, methylation-specific PCR (MSP) derived methods enable
a fast, simple method to detect methylated alleles of a certain gene in samples with low
tumor content and even in biological fluids [54,55]. However, among the limitations to
generalize application of epigenetic markers in RCC is also cell type specificity and the
aforementioned heterogeneity of this malignancy [56].

2.1.1. DNA Methylation as Marker of RCC Diagnoses

Aberrant DNA methylation is an early event in carcinogenesis, thus DNA methylation
biomarkers has been implemented for the diagnosis of a wide range of malignancies includ-
ing prostate, colorectal, and pulmonary neoplasia [57]. Regarding RCC, LINE1 methylation
levels in leukocyte DNA measured prior to cancer diagnosis has been identified as a
biomarker of RCC risk among male smokers [58]. Diagnostic DNA methylation biomark-
ers, despite being very promising for RCC, have not reached clinical practice yet [35].
However, it is well known that some genes including APC, BNC1, CDH1, ECAD, GSTP1,
KTN19, IGFBP1, IGFBP3, MGMT, PTGS2, p14ARF, p16/CDKN2a, p16INK4a, RASSF1A,
RARB2, SRFP, TIMP3, UCHL1, and VHL are silenced in RCC by DNA methylation and this
could be useful for the diagnosis of RCC in tumor tissue, serum, or urine samples, both in
the familiar and sporadic forms [12,59–66]. Concordance between serum and tissue DNA
hypermethylation profile has been proved, especially with grade and tumor stage [67].

2.1.2. DNA Methylation as Marker of RCC Subtyping

Classification of sporadic RCC into different histologic subtypes is allowed by multi-
gene quantitative methylation profiling because DNA methylation signatures reveal cell
ontogeny and establish differences between precursor cells in the nephron [18,68]. VHL
methylation is restricted to ccRCC. RASSF1A and SPINT2 are more frequently methy-
lated in pRCC [63,69,70] while COL1A1 and IGFBP1 hypermethylation is more common
in ccRCC [62,63]. CDH1 methylation is significantly higher in ccRCC than in chRCC or
oncocytoma [63], important discrimination due to the benign nature of oncocytoma. In
fact, data from The Cancer Genome Atlas (TCGA) revealed that of all RCC subtypes, onco-
cytoma and chRCC are the most similar but, what is even more interesting, a signature of
30 hypermethylated genes distinguishes oncocytoma from chRCC [48,71] involved, among
others, in Wnt, MAPK, and TGFβ signaling [48]. From a practical perspective the distinc-
tion between oncocytoma and ccRCC can be performed with very high sensitivity and
specificity using a three-gene promoter methylation panel (OXR1, MST1R, and HOXA9)
and this distinction could be very useful to allow unnecessary overtreatment if performed
in preoperative biopsies before nephrectomy [14].

2.1.3. DNA Methylation as Marker of RCC Prognosis

Although classical histologic parameters are the most valuable tools to evaluate
prognosis, nuclear grade and staging have some limitations to precisely predict the clinical
outcome in RCC. DNA methylation-based classification is highly relevant for clinical
management of RCC as it serves to identify the prognosis of different epigenetic subtypes.
In fact, DNA methylation data can classify inherent tumor heterogeneity into specific-
prognosis subgroups according to DNA methylation at promoter sites identified in The
Cancer Genome Atlas (TCGA) network [72]. Integrated genomic and epigenomic analysis
revealed significant correlations between the total number of genetic aberrations and
total number of hypermethylated CpGs [73]. In recent years, several groups have used
multi-omic data analysis to reveal groups of differentially methylated and expressed genes
in surgically resected specimens of RCC or in the open data of ccRCC in TCGA (TCGA
Research Network). The evidence generated confirms cluster analysis based on genome-
wide promoter methylation serves to identify panels of methylated genes associated to
ccRCC disease progression [17,34,72–83]. Some of these panels have been validated in
an independent retrospective cohort and some have been incorporated into prognostic
risk score models to enhance their prognostic biomarker effect [77,78]. However, none has
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been prospectively validated in multicenter studies [35]. Additionally, a methylated site
signature useful for prediction of prognosis has been identified for pRCC, validated in the
TCGA and GEO cohorts and incorporated in a nomogram that predicts an individual’s risk
of survival in pRCC [80]. Again, this panel has not yet been revalidated prospectively.

Some of the panels focus mainly on two or more genes for prognostic classification of
ccRCC patients [17,74,81–83]. Other investigations evaluate tumor prognosis and progres-
sion based on analyzing the functional role of a particular gene and the likely mechanisms
involved. In this sense, promoter CpG methylation of γ-catenin is considered an indepen-
dent predictor for survival and disease progression [84]. Other hypermethylated genes
associated with worse RCC disease-specific survival are: GATA Binding Protein 5 (GATA5),
that codify for a DNA-binding transcription factor [85,86]; Gremlin 1 (GREM1), related to
cytokine activity and bone morphogenic protein [87]; HIC ZBTB Transcriptional Repressor
1 (HIC1), related both to DNA-binding transcription factor activity and histone deacetylase
binding [88]; Junction Plakoglobin (JUP), related to protein homodimerization activity and
protein kinase binding [84]; neural EGFL like 1 (NELL1), linked to calcium ion binding [76];
Protocadherin 8 (PCDH8), also related to calcium ion binding [89]; Phosphatase and Tensin
Homolog (PTEN), related to protein kinase binding [90]; Ras Association Domain Family
Member 1 (RASSF1A) that encodes a protein similar to the RAS effector proteins [91,92];
sarcosine dehydrogenase (SARDH), associated to oxidoreductase activity [93]; and Secreted
Frizzled Related Protein 1 (SFRP1), related to G protein-coupled receptor activity [94,95].
Very recently some methylated genes with prognostic value in pRCC have also been
described [96].

2.2. Methyl-Binding Proteins

Methyl-binding proteins (MBP) are readers of DNA methylation. They bind to methy-
lated CpG nucleotides and induce gene silencing by recruiting repressor complex contain-
ing histones deacetylates (HDAC) linking the DNA methylation with histone modifica-
tions [97]. The MBP family is composed of human proteins MBD1, MBD2, MBD3, MBD4,
and MECP2. Each of them, with the exception of MBD3, is capable of binding specifically
to methylated DNA. Among them MBD2 is the MBP with highest affinity for methylated
DNA. MBD2 alters the structure of chromatin and mimics chromatin remodeling or modi-
fication factors, and may serve as transcriptional repressor or activator, depending on the
cell context [98]. MBD2 upregulation has been reported in many different malignancies
such as RCC and is associated to neoplastic progression, with potential as a biomarker and
a therapeutic target [99].

2.3. Post-Translational Histone Modifications

Chromatin is a complex nucleoprotein structure formed by DNA, histones, and other
proteins. The DNA is wrapped around an octamer of histones (2H2A, 2H2B, 2H3, and 2H4)
that is the repeating unit of chromatin. The chemical modifications of amino acids in the
external tail of histone molecules determines changes in the chromatin structure. Lysine
residues can undergo methylation, acetylation, or ubiquitylation, while arginine residues
can be methylated and the serine residues phosphorylated [100]. The best studied histone
modifications are acetylation and methylation of lysine present at the N-terminal tails of
histones H3 and H4. These histone modifications are reversible and result from the balance
of two enzymatic activities: histone acetyltransferases (HAT) and histone deacetylases
(HDAC) regulate histone acetylation, while histone methyltransferases (HMT) and histone
demethylases (HDMT) regulate histone methylation. The combination of all histone
modifications builds the histone code that regulates all chromatin functions [39,101,102]
(Figure 1).
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Figure 1. Summary of the altered histone modifiers genes in RCC. Histone modifiers changes induce
gene expression deregulation and thus RCC initiation and progression. These alterations can be used
as biomarkers for RCC diagnosis and prognosis. H3Ac, global acetylation of histone H3; meK9H3,
methylated lys9 of Histone H3; meK27H3, methylated lys27 of Histone H3; meK4H3, methylated
lys4 of Histone H3.

Post-translational histone modifications play a very important role in regulating,
not only chromatin structure but also gene expression. Changes in the acetylation and
methylation state of histone tails convert loosely packed regions with high transcriptional
activity into densely packed ones with scarce activity. Acetylation is associated with a
more open conformation and is related with active transcription. The effect of methylation
depends on the residue affected and also on the degree of methylation; the methylation of
H3K4, H3K36, and H3K79 activates transcription while methylation of H3K9, H3K27, and
H4K20 produces repression [33,103].

Global histone modifications are likely markers of cancer prognosis in RCC [104].
Diminished H3K4me2 and H3K18Ac levels worsen prognosis [105] while acetylated his-
tone H3 (H3Ac) immunostaining inversely correlates with staging, Fuhrman grade, and
tumor progression [106]. Similarly, it has been suggested that H3K9Ac and H3K18Ac levels
could monitor patients with RCC after surgery, but as far as we know these likely markers
have not been confirmed in prospective validations [107,108]. H3K27 methylation levels
also correlate with established clinical-pathological variables and survival in RCC [104].
Additionally, H3K27me1/-me2/-me3 staining is significantly more intense in pRCC than
in ccRCC, and H3K27me3 levels are higher in oncocytoma than in RCC [104]. The mono-
methylation of histone H3 on lysine 27 (H3K27me1) plays key roles in the cellular processes,
interacts with the DNA sequence of the miRNAs and regulates the transcription of miR-
NAs [109]. The enrichment analysis of molecular function shows H3K27me1-associated
miRNAs are linked to RNA binding and protein binding involved in the transcription and
translation regulation. As a result, the biological roles of the H3K27me1 appear closely
related to miRNAs downstream [109].

140



Cancers 2021, 13, 2071

Histone modifications alterations in cancer can be explained by changes in the activity
or expression of histone modifiers and readers, and these changes could be valuable in
cancer management. Different studies indicate that changes in histone modifications in
RCC are related to hypoxia and the prognostic relevance of associated alterations. There is a
strong relation between hypoxia and epigenetic regulation, especially histone modifications.
One of the mechanisms involved in the epigenetic-altered landscape in RCC related to
hypoxic effect is the regulation of Jumonji domain containing histone demethylases by
the mediator of hypoxic response HIFα [110]. A number of genes that encode histone-
modifying enzymes are mutated in ccRCC [41,111]. Inactivating mutations described
for SETD2 (H3K36 methyltransferase), KDM5C (H3K4 demethylase), KMD6A (H3K27
demethylase), MLL2 (H3K4 methyltransferase), Polybromo 1 (PBRM1), BRCA1 Associated
Protein-1 (BAP1) remain among the most interesting epigenetic mechanisms for ccRCC
progression. This merits a brief description of the function of some of them.

SETD2, located at chromosome 3p near VHL, BAP1, and PBRM1 genes, is inactivated
in approximately 10% of RCCs which results in global reduction in the histone mark
trimethylation of lysine 3 of histone H3 (H3K36me3) and a global loss of DNA methylation
across the genome. This gene is involved in genome stability as trimethylation of H3K36
by SETD2 is required for DNA repairing system through both homologous recombination
repair and mismatch repair [112,113]. DNMT3B-mediated de novo DNA methylation
occurs at the intron of genes marked with H3K36me3 but not those lacking H3K36me3.

Mutations in the switching defective/sucrose nonfermenting (SWI/SNF) chromatin
remodeling complex gene PBRM1 are identified in approximately 40% of ccRCC [114].
The SWI/SNF complex mobilizes nucleosome and modulates chromatin structure, thus
affecting transcription, DNA repair, cell proliferation, and cell death. It is essentially a key
regulator of gene expression and is associated with numerous transcription factors [115].
Inactivation of PBRM1 causes enhanced cell proliferation and cell migration. It also
regulates the expression of genes the products of which are involved in cell adhesion, like
E-cadherin [116]. Thus, inactivation of the PBRM1 TSG amplifies the HIF-response of
VHL negative ccRCC [117,118]. PBMR1 has been proposed as a tumor suppressor gene
in ccRCC since its re-expression in ccRCC cell lines lacking PBMR1 function decreased
cell proliferation by upregulating genes involved in cell adhesion and apoptosis [116].
PBRM1 is implicated in the regulation of gene expression through its bromodomains. In
particular, PBRM1 contains six bromodomains that bind acetylated histones, thus serving
as a reader for H3K14Ac, and target SWI/SNF chromatin remodeler complex to DNA
regulatory regions [119]. In addition, PBRM1 also binds to acetylated p53 and facilitates its
binding to regulatory elements at the promoter genes regulated by p53 in ccRCC [120].

BAP1 is also located very close to SETD2 and PBRM1 genes and is mutated in more
than 10% of ccRCCs. BAP1 forms a multiprotein complex with breast cancer type 1 (BRCA1)
susceptibility protein to regulate DNA damage response and cell cycle control, but its exact
function in ccRCC remains largely unknown [43].

Lysine Demethylase 6A (KDM6A) and Lysin Demethylase 5C (KDM5C) are X-linked
histone demethylase-coding genes located near each other in Xp11. KDM6A codifies a pro-
tein that demethylases lysine 27 in histone 3 (H3K27) and is mutated in only 1% of ccRCCs,
while KDM5C encodes H3K4 demethylase and its mutation is present in approximately 10%
of ccRCCs [41,121]. In urothelial bladder cancer KDM6A-deficient cells depend on EZH2, a
HMT that methylates lysine 27 on histone H3 (H3K27). Inhibition of EZH2 has been sug-
gested as an effective therapeutic approach to KDM6A-mutated tumors [122]. KDM5C acts
as TSG and its deficiency results in genomic instability and aggressive forms of ccRCC [123].
Interestingly both KMD6A and KDM5C are considered escape from X-inactivation tumor
suppressor or EXIT genes. Their homologues on chromosome Y, KDM6C, and KDM5D are
downregulated due to loss of chromosome Y in 40% of male patients with ccRCC [124].
This fact is most likely involved in male predominance of ccRCC.

Lysine-specific histone Demethylase 1A (LSD1 or KDM1A) can demethylate both
lysine 4 and lysine 9 of histone H3 (H3K4me and H3K9me), thereby acting as a co-activator
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or a co-repressor, depending on the context. It has been found as a part of several histone
deacetylase complexes, and silences genes by functioning as a histone demethylase. Con-
versely, it can also act as coactivator of androgen receptor (AR) dependent transcription
and is regulated by AR activity in renal cells [125]. The mammalian homolog of LSD1,
LSD2 has been associated with tumor stage and metastasis in ccRCC and, thus proposed as
a biomarker for ccRCC progression. Moreover, LSD1 and LSD2 expression was correlated
in metastatic ccRCC [126].

Enhancer of zeste homolog 2 (EZH2), as has been previously mentioned, codify for a
HMT acting as a transcriptional repressor through regulating the methylation of histone
H3 at lysine 27. Not much evidence exists regarding EZH2 in ccRCC but high tumor and
initial reports suggested EZH2 level was associated with less aggressive tumor phenotypes
and favorable prognosis [127]. However, more recent evidence has confirmed high EZH2
expression correlates with poor overall survival in RCC, especially in advanced disease
by promoting VEGF expression and cell proliferation while inhibiting apoptosis [128,129].
In agreement with these data, EZH2 represses the expression of E-cadherin through in-
creased levels of H3K27me3, promoting epithelial mesenchymal transition (EMT) and
metastases [130].

These studies point out it is interesting to pay attention to the clinical significance
of mutations in histone or chromatin modifiers. Mutations in SETD2 and KDM5C are
mutually exclusive, as are mutations of PBRM1 and BAP1 [43]. BAP1 or KDM5C muta-
tions in ccRCC associate with aggressive disease, high Fuhrman grade, and metastatic
at presentation (Figure 1), that imply worse prognosis and instantaneous activation of
mTOR signaling [117,131]. However, mTOR activation in PBRM1 mutated tumors occurs
after long latency periods. Additionally, the clinical significance of SETD2 and PBRM1
mutations is not well known [43,132,133].

2.4. miRNAs

miRNAs are small non-coding RNAs of approximately 22 nucleotides in length im-
plicated in posttranscriptional regulation of gene expression. miRNAs regulate a wide
spectrum of cellular processes acting as oncogene or as tumor suppressors of the genes
they regulate [134]. A number of functional studies have revealed deregulated miRNA
(either upregulation or downregulation) involved in cell cycle regulation, apoptosis, cell
adhesion, and extracellular matrix or metabolism with a key role in RCC [111,135–137].
In this sense, miR-21 is silenced by promoter methylation in RCC, and its expression
inhibits RCC growth through regulating LIVIN, a member of the inhibitor of apoptosis
proteins [138].

Numerous reports suggest circulating miRNAs have the potential to be used as
biomarkers in patients with RCC. However, findings are diverse, probably due to method-
ological differences and histological variations in the study cohorts. Initial studies eval-
uating the implications of serum miRNAs gave conflicting results [139,140]. Currently,
the use of two or more miRNAs for diagnosis and molecular classification of RCC is well
accepted, supporting miRNA signatures as clinical tools [141]. Most miRNAs are tandemly
clustered and co-expression patterns for miR-8, miR-199, miR-506, and other families are
downregulated in ccCRC [135].

Different miRNAs are deregulated in RCC. Upregulation of miR-1233 was observed
but no prognostic implication could be proved [139]. miR-378 and miR-451 combined serve
to identify cancer with 81% sensitivity and 83% specificity [142]. Similarly, miR-210 has 81%
sensitivity and 79% specificity for RCC diagnosis [143]. Combining miR-155 upregulation
and miR-141 downregulation improves discrimination of ccRCC [144]. However, the best
combination reported in terms of diagnostic accuracy could be miR-141 and miR-200b,
with 99% sensitivity and 100% specificity [145]. This panel also distinguished chRCC from
oncocytoma with 90% sensitivity and 100% specificity [145].

Regarding the prognostic role of miRNAs, overexpression of miR-221 and miR-32 are
predictors of RCC mortality [146,147]. Similarly, miR-30a-5p downregulation, probably due
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to aberrant promoter methylation, is common in ccRCC and can be evaluated both in tumor
tissue and urine samples to predict metastatic dissemination and worse survival [148].
Members of the miR-200 family and miR-205 promote EMT and reduced transcription and
expression of E-cadherin [149]. They are also induced by bone morphogenetic proteins, part
of the TGFβ superfamily of proteins, that antagonizes EMT [150]. miR-454 accelerates RCC
progression via suppressing methyl-CpG binding protein 2 (MECP2) expression, which
may provide a novel potential target of RCC treatment in the future. MiR-454 inhibition
and MECP2 overexpression could both decrease the proliferative, migrative, and invasive
abilities of RCC cells and also serve as an independent prognostic factor in RCC [151].

In summary, profiling miRNA in RCC preludes development of new tumor mark-
ers [141,151–153] but probably even more interesting is the fact that many miRNAs, such as
miR-21, miR-155, miR-214, miR-31, and miR-146a, have been implicated in the regulation
of immune and stromal cells, and in the modulation of the host immune response [154].
miRNA signatures may be implicated in radio and chemosensitivity and also to predict
the response to TKI therapy [141]. Unfortunately, miRNAs occur in a wide spectrum of
diseased and benign conditions and are far from being specific for ccRCC, and this limits
the possibilities for their use in clinical practice.

2.5. lncRNAs

Long non-coding RNAs are a class of transcripts longer than 200 nucleotides that
do not codify for proteins and are emerging as regulators of important cellular functions.
Although their ultimate function is not very well known, several studies suggest they are
involved in apoptosis, cell migration, and cell cycle, and play very critical roles in gene
expression regulation, including gene transcription, post-transcriptional regulation, and
epigenetic regulation. Differential expression of lncRNAs has been identified in RCC and
normal renal tissue [155–157] but only a few of these lncRNAs have been studied in depth.

HOX transcript antisense intergenic RNA (HOTAIR) has been proposed as oncogene
silencing several TSGs working together with EZH2 and H3K27 histone mark [158]. HO-
TAIR favors the metastatic process of RCC by upregulation of the histone demethylase
KDM6B and its target gene SNAI1 involved in EMT [159]. More interesting is the lncRNA
H19 that is expressed only during embryogenesis, but re-expressed triggered by HIFα in
neoplastic renal cells but not in normal kidneys. H19 is implicated, among others functions,
in epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition
(MET) strongly suggesting an oncogenic role in RCC. In addition, H19 is overexpressed in
tumor tissues and has been proposed as an independent predictor for the clinical outcome
of RCC patients [160].

DNA methylation-deregulated and RNA m6A reader-cooperating (DMDRMR) is
another lncRNA recently recognized to facilitate tumor growth and metastasis in ccRCC.
DMDRMR binds insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) to sta-
bilize target genes, including the cell cycle kinase CDK4 and several extracellular matrix
components (LAMA5, COL6A1, and FN1) [161]. The cooperation between DMDRMR
and IGF2BP3 regulates target genes in an m6A-dependent manner and may represent a
potential diagnostic, prognostic, and likely therapeutic target in ccRCC.

Another lncRNA important in RCC is KCNQ1 downstream neighbor (KCNQ1DN),
downregulated both in neoplastic tissue and cell lines. In vivo experiments with nude
mice showed that KCNQ1DN overexpression repressed both the growth of xenograft
tumors and the expression of the oncogen c-Myc, thus representing a novel target for future
therapeutic options in RCC [96]. Reduced expression of KCNQ1DN is also observed in
Wilms’ tumor [162].

2.6. RNA Methylation

Recent studies also show that RNA methylation serves to epigenetically regulate
biological functions. The N6-methyladenosine (m6A) RNA methylation is the most fre-
quent, abundant, and conserved form of RNA methylation reported both in messenger
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RNAs and lncRNAs. Other well-characterized RNA modifications are 5-methylcytosine
(m5C), N7-methylguanosine (m7G), and pseudo-uridine [163,164]. Genome wide changes
in gene expression have been reported due to reversible changes in m6A methylation [165].
Same as DNA methylation or histone modifications, m6A methylation is regulated by
several methyltransferases, demethylases, and other RNA binding proteins. Methyltrans-
ferases involved in the generation of the m6A modification of RNA are m6A writers, while
demethylases causing m6A removal are termed m6A eraser. Many RNA binding proteins,
including IGF2BP1, IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,
HNRNPC, HNRNPA2B1, and RBMX, act as m6A readers, and this regulatory process plays
a critical role in stem cell differentiation, development and tumor progression [166,167].
The body of evidence regarding RNA methylation in RCC is still scarce but the expression
of some m6A RNA methylation regulatory genes (IGF2BP3, KIAA1429, and HNRNPC)
have been recently described as independent predictors of prognosis in pRCC [168]. Other
studies point out the expression of RNA methylation modifiers as biomarkers of RCC
subtyping. VIRMA and YTHDC2 mRNA expression levels were lower in chRCC and
pRCC compared to ccRCC [169].

3. Epigenetic-Based Therapeutic Opportunities in ccRCC

Development of epigenetic therapies has been under extensive clinical investigation
for the last two decades and may become a promising strategy to restore silenced gene
expression both in malignant and non-malignant disease [149,170,171]. The rationale of
an epigenetic treatment should consist in reprogramming the pattern of gene expression
in cancer cells to result in the induction of apoptosis or in the loss of cell capacity for
uncontrolled proliferation and tumor growth, also making cancer more susceptible to
conventional therapies [172]. Epigenetic therapy targets three different protein categories:
writers, enzymes that establish epigenetic marks; erasers, enzymes that remove epigenetic
marks; readers, proteins that recognize epigenetics modifications, and, when recruited to
these marks, bring in other protein complexes to exert the desired function.

In the last decades, most of the studies have focused on the use of writers (DNMTs,
HATs, and HMTs) and erasers (TET, HDACs, and HDMs) as therapeutics targets, but
in recent years a number of studies show the potential use of epigenetic readers as new
therapeutic targets. This group of proteins include the bromodomain-containing family of
proteins that recognize acetylated lysine residues, the chromodomain-containing proteins
that bind to methylated histones, and MBDs, mentioned previously, that bind to methylated
DNA [171,173].

Until now DNMT and HDACs inhibitors have been approved by the US FDA for
the treatment of hematologic malignancies and myelodysplastic syndromes. These and
other drugs with the capacity to inhibit DNMT (decitabine, zacitidine, and guadecitabine)
or HDAC (vorinostat, panobinostat, romidepsin, entinostat, belinostat, and AR-42) are
being investigated in solid malignancies for their potential to reactivate the expression of
silenced TSGs [170,171,174]. There are great expectations for the therapeutic potential and
pharmacologic development of these and other agents in early clinical studies in urologic
cancer, and more specifically in RCC [149,175]. The role of nutritional interventions affect-
ing epigenetic changes has also been taken into account in breast and prostate cancers [176],
but not so far in RCC. The development of new drug alternative for ccRCC has been very
promising in the last decades but we can say epigenetic therapy for kidney cancer remains
in its infancy.

Future development combination therapies may follow the lead of hematologic ma-
lignancies and investigate epigenetic treatments in cases in which current antiangiogenic
treatments or immunotherapies (mainly TKIs or ICIs) have failed. However, currently, only
phase I/II clinical trials on single-agent or combined therapies for RCC have been com-
pleted and the response rate observed is poor and disappointing, with only few patients
simply reaching stable disease (Table 1).
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Table 1. Epigenetic treatments alone or in combination with other treatments used in clinical trials
conducted on patients with metastatic or unresectable renal cell carcinoma, or in advanced solid
tumors including renal cell carcinoma (clinicaltrials.gov, accessed on 1 March 2021). HDAC: Histone
deacetylase; DNMT: DNA methyltransferase. Ref.: reference number as cited in the text.

Epigenetic Drug Combined Therapy Phase Trial Registry Ref.

HDAC Inhibition

Vorinostat - II NCT00278395 -
Vorinostat Isotretinoin I/II NCT00324740 -
Vorinostat Bevacizumab I/II NCT00324870 [177]
Vorinostat Sirolimus I NCT01087554 [178]
Vorinostat Ridaforolimus I - [179]
Vorinostat Pembrolizumab I NCT02619253 -

Panobinostat Sorafenib I NCT01005797 -
Panobinostat - II NCT00550277 [180]
Panobinostat Everolimus I/II NCT01582009 [181]

Entinostat Isotretinoin I - [182]
Entinostat IL-2 I/II NCT01038778 [183]
Entinostat IL-2 I/II NCT03501381 -

Entinostat Atezolizumab plus
Bevacizumab I/II NCT03024437 -

Entinostat Nivolumab plus Ipilimumab II NCT03552380 -
Depsipeptide - II - [184]
Romidepsin - I NCT01638533 -
Romidepsin - II NCT00106613 [185]

Belinostat - I NCT00413075 [186]

DNMT Inhibition

Azacytidine IFN-α I NCT00217542 -
Azacytidine Valproic Acid I - [187]
Azacytidine Bevacizumab I/II NCT00934440 -
Decitabine - I - [188]
Decitabine IL-2 I - [189]
Decitabine IFN-α II NCT00561912 -
Decitabine Anti-PD-1 I/II NCT02961101 -
Decitabine MBG453 I NCT02608268 -
Decitabine Oxaliplatin II NCT04049344 -

Oligonucleotide MG98 - I/II NCT00003890 [190]
Oligonucleotide MG98 IFN-α I/II - [191]

Other Therapeutic Strategies

miRNA MRX34 - I NCT01829971 -
Oligonucleotide GTI-2040 Capecitabine I/II NCT00056173 [192]

Oligonucleotide
Oblimersen IFN-α II NCT00059813 [193]

3.1. DNMT Inhibition Alone or in Combination with Other Therapies

DNMT inhibitors (DNMTi) are cytidine analogues that block the DNMT activity
when incorporated into DNA and also induce their degradation. So, DNMTi produce
passive DNA demethylation and induce the expression of genes that have been silenced by
promoter DNA methylation, thus reactivating silenced TSGs in cancer. The exposure of
different tumor cells to low doses of DNMTi cause apoptosis, reduced cell cycle activity,
and decreased stem cell function [194].

Azacytidine (Dacogen®) and decitabine (Vidaza®) are approved by the FDA for the
treatment of hematologic malignancies and myelodysplastic syndromes. Guadecitabine
(SGI-110), a next-generation hypomethylating agent, is also used in patients with relapsed
or refractory acute myeloid leukemia with acceptable efficacy and tolerability profile [195].
Additionally, a phase III trial to evaluate guadecitabine as second-line in patients with
myelodysplastic syndromes or chronic myelomonocytic leukemia previously treated with
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hypomethylating agents is being conducted (EudraCT 2015-005257-12). A rational design
of new combination strategies to further exploit the epigenetic mode of action of these
two drugs in different areas of clinical oncology was proposed, especially in combination
approaches with other anticancer strategies [196].

3.1.1. Azacytidine (5-Azacytidine)

Epigenetic therapy is a promising potential therapy for solid tumors. Integrative
expression and methylation data analysis of 63 cancer cell lines (breast, colorectal, and
ovarian) after treatment with the DNMTi azacytidine demonstrated significant enrichment
for immunomodulatory pathways. These results suggest the possibility of a broad immune
stimulatory role for DNA demethylating drugs in solid malignancies [197]. On the other
hand, suppressed cell proliferation (>50% reduction in colony formation assay) with
azacytidine therapy was detected, both in cell lines with VHL promoter methylation and
also in some RCC cell lines without VHL TSG methylation, thus suggesting that multiple
methylated TSGs might determine the response to demethylating therapies [198].

A phase I trial enrolled 55 patients with advanced neoplastic disease, that included
two patients with RCC, to evaluate the combination of azacytidine subcutaneously ad-
ministered with oral valproic acid. One patient with RCC presented a stable disease for
6 months with a significant increase in histone acetylation. Grade 1 and 2 toxicities were
reported [187]. Another phase I trial was performed to evaluate the side effects and best
dose of recombinant interferon alfa-2b together with azacytidine for patients with stage
III or stage IV melanoma or stage IV kidney cancer that cannot be removed by surgery
(NCT00217542). Results have not been published. A phase II trial was specifically intended
to evaluate low dose decitabine plus interferon alfa-2b in advanced renal cell carcinoma
(NCT00561912) but was terminated early due to slow accrual and unavailable treatment
agent. Another study evaluated the effectiveness of azacytidine and bevacizumab in ad-
vanced RCC (NCT00934440) with the intention to identify the maximum tolerable dose
and assess toxicity. Overall, three different doses were evaluated for each drug. Dose for
azacytidine ranged between 35 and 75 mg/m2/day for 7 days. All patients presented
adverse effects of different degree. Time to progression registered was 5.6 months. Results
have not been published.

3.1.2. Decitabine (5-Aza-2′-Deoxycytidine)

Preclinical evidence with the DNMTi decitabine is abundant in renal cancer cell lines.
Decitabine inhibits the proliferation of RCC cells via G2/M cell cycle arrest by suppressing
p38-NF-κB activity [199]. It also induces apoptosis by regulating the Wnt/β-catenin signal
pathway through re-expression of sFRP2 gene [200]. Additionally, combined treatment with
decitabine and valproic acid, a HDAC inhibitor, synergistically inhibits cell growth and
migration in ccRCC cell lines [201]. These evidences support targeting DNA methylation
with decitabine to treat advanced RCC.

Monotherapy with decitabine was investigated in a phase I study at different doses
from 2.5 to 20 mg/m2 on days 1–5 in 31 patients with refractory malignancies, including
three patients with RCC. Decreased DNA methylation after treatment was evidenced both
in tumor and in peripheral blood mononuclear cells. Decitabine also decreased DNMT1
and induced tumor apoptosis [188].

Another phase I trial which evaluated sequential low-dose decitabine plus high-
dose IL-2 presented some interesting results in modulating the toxicity and anti-tumor
activity of immunotherapy in melanoma, but not in RCC. In this study decitabine caused
grade 4 neutropenia lasting more than a week in most patients, and a trend toward a
higher incidence of toxicity with increasing decitabine doses was evidenced [189]. The
combination of low-dose decitabine with IFNα2b was also evaluated in advanced RCC
(NCT00561912), but results have not been reported.

Resistance of RCC to the apoptosis-inducing effects of IFNs was postulated to result
from epigenetic silencing of genes by DNA methylation [202]. Decitabine and selective
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depletion of DNMT1 by phosphorothioate oligonucleotide antisense were used to reverse
silencing, in cells resistant to apoptosis induction by IFNα2 and IFNβ. The proapop-
totic tumor suppressor RASSF1A was reactivated by DNMT1 inhibitors in the cell lines
investigated and this was associated with demethylation of its promoter region [203].

The combination of anticancer agents and epigenetic drugs sustains a novel thera-
peutic strategy. The effectivity rate of chemotherapy for RCC is very low and the high
expression of certain drug transporters in the kidney, like the human organic cation trans-
porter OCT2, is partly responsible for this multidrug resistance. Combined treatment using
the DNMT inhibitor decitabine and the HDAC inhibitor vorinostat significantly increased
the expression of OCT2 in RCC cell lines, which sensitized these cells to oxaliplatin [204].
In this sense, a phase II trial with decitabine combined with oxaliplatin in patients with
advanced RCC (NCT04049344) is currently recruiting patients in Zhejiang Cancer Hospital,
with the intention of evaluating whether decitabine sensitizes RCC cells to oxaliplatin.

3.1.3. MG98

Another inhibitor of DNMT, the antisense oligodeoxynucleotide MG98 was intra-
venously administered at a dose of 360 mg/m2 twice weekly for three consecutive weeks
out of four in 17 patients with advanced RCC receiving a median of two cycles with no
objective responses. Mild hematologic toxicity, elevation of transaminases, fatigue, fever,
and nausea were observed [190]. Despite the disappointing results, MG98 was investigated
in combination with IFNα2b in patients with advanced RCC [191]. Another phase-II trial
explored two schedules of MG98 with IFNα2b and described frequent disease stabilization
and partial response in one case [205].

3.2. HDAC Inhibition Alone or in Combination with Other Therapies

HDAC inhibitors (HDACi) are approved for cutaneous T-cell lymphoma and periph-
eral T-cell lymphoma. They have dose and compound dependent pleiotropic effects. They
induce epigenetic effects either through histone acetylation or by influencing the acetylation
status of nonhistone or non-nuclear proteins. A synergy between DNA demethylation and
histone deacethylase inhibition has been confirmed to re-express genes silenced in cancer
cells [206]. However, from the clinical perspective, some compounds have followed a more
productive clinical investigation than others, but today none is approved to treat ccRCC.

3.2.1. Vorinostat

Clinical trials with HDACi in RCC have given mixed results. A phase I trial evaluated
the anti-tumor activity of vorinostat (SAHA) as oral agent in 14 patients with advanced
RCC (NCT00278395) and showed toxicity in 50% of the cases and 14% serious adverse
events. Another study (NCT00324870) evaluated oral vorinostat with becacizumab and
observed 18% response rate, mainly partial responses, with an acceptable toxicity and a
median overall survival of 13.9 months, thus suggesting clinical activity [177].

A phase I study of sorafenib and vorinostat in patients with advanced solid tumors
with expanded cohorts in RCC and non-small cell lung cancer (NSCLC) used oral vorino-
stat 200–400 mg to establish the recommended phase II dose (NCT00635791). Although
tolerable in other tumor types, sorafenib associated to vorinostat was not found tolerable
without dose reductions or delays in RCC and NSCLC patients. No complete response was
seen but minor responses were observed in RCC [207]. Another dose-limiting toxicity trial
with vorinostat plus isotretinoin (NCT00324740) was also performed in 12 patients with
recurrent or advanced RCC, of which 33% suffered well tolerated adverse effects, mainly
anorexia and weight loss.

Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding
vorinostat (or another HDACi) was proposed as a route to circumvent AKT-mediated
resistance to mTOR inhibitors in experimental studies performed on synovial sarcoma
cells [208]. The combination of sirolimus and vorinostat has yielded preliminary anticancer
activity in patients with refractory Hodgkin lymphoma, perivascular epithelioid tumor,
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and hepatocellular carcinoma [178]. Based on these findings another study explored the
combination of HDAC and mTOR inhibition in RCC and other solid malignancies. In
total, 13 patients with RCC (10 ccRCC and 3 pRCC) were treated with vorinostat and
ridaforolimus. Using a dose escalation design, various dose combinations were tested
concurrently in separate cohorts. Dosing was limited by thrombocytopenia. Two patients,
both with papillary RCC, maintained stable response 54 and 80 weeks, respectively [179].
Additionally, a phase I study with dose finding and extension cohorts using pembrolizumab
and vorinostat in patients with advanced or metastatic RCC, urothelial cancer or prostate
cancer (NCT02619253) has concluded recruitment, but results are under evaluation.

3.2.2. Panobinostat

Preclinical studies with the pan-deacetylase inhibitor panobinostat (LBH589) have
shown induced cell cycle arrest and apoptosis in renal cancer cells and a reduction in tumor
size using xenografts mice models [209]. A phase II study was performed to evaluate the
activity of panobinostat in refractory renal carcinoma (NCT00550277). In total, 20 patients
with advanced ccRCC who had received previous therapy with at least one angiogenesis
inhibitor and one mTORi were treated with panobinostat 45 mg orally, twice a week, and
evaluated every 2 months. Panobinostat was generally well-tolerated but 30% experienced
serious adverse effects. There were no objective responses and all patients progressed or
stopped treatment within the first 4 months [180].

A synergistic activity of dual HDAC and mTOR inhibition was confirmed in Hodgkin
lymphoma and multiple myeloma cell lines [210,211]. A phase I, dose-finding trial for
everolimus combined with panobinostat in advanced ccRCC was performed (NCT01582009).
Overall, 21 patients completed this trial which was recently published. Oral everolimus
5 mg daily and panobinostat 10 mg 3 times weekly (weeks 1 and 2) given in 21-day cycles
was the maximum tolerated dose. Improved clinical outcomes were not demonstrated as
the median time to disease progression was 4.1 months [181].

Synergistic effects have been observed in the combination of TKi, such as imatinib,
dasatinib, or sorafenib, with an array of HDACi including vorinostat, romidepsin, or
panobinostat [212]. As an example, combination therapy with panobinostat and so-
rafenib proved to significantly decrease vessel density and tumor volume, and also to
increase survival in hepatocellular carcinoma xenografts [213]. Regarding RCC, a phase I
study of panobinostat in combination with sorafenib in soft tissue, renal and lung cancers
(NCT01005797) was started in 2009 and, with a long history of changes and latest version
submitted on 2017, its findings have not yet been reported.

3.2.3. Entinostat (MS-275)

Entinostat reverts retinoid resistance by reverting Retinoic acid receptor β2 (RARβ2)
epigenetic silencing in a human RCC model and has a synergistic anti-tumor activity
in combination with 13-cis-retinoic acid compared with single agents, suggesting that
the combination of HDACi and retinoids represents a novel therapeutic approach for
RCC [214]. This observation led to a phase I study with entinostat in combination with
13-cis-retinoic acid in patients with metastatic or advanced solid tumors or lymphomas
(NCT00098891). The combination was reasonably well tolerated and the recommended
doses were 4 mg/m2 once weekly for entinostat and 1 mg/kg/day for 13-cis-retinoic acid.
However, no tumor response was evidenced [182].

There are two very interesting trials that are evaluating the combination of entinostat
with IL-2. Both are active trials that hopefully will be completed by 2024. One is a phase
I/II trial that studies the side effects and best dose of entinostat when given together with
IL-2 and the clinical evolution of metastatic RCC with this regime (NCT01038778) [183].
The other is also a phase I/II multicenter, randomized, open label study between high
dose IL-2 (3 courses of high dose interleukin 600,000 units/kg administered IV every 8 h
on Days 1–5 and Days 15–19, maximum 28 doses) vs. high dose IL-2 (same dose) plus
entinostat (5 mg orally given every 2 weeks starting on day 14) in ccRCC (NCT03501381).

148



Cancers 2021, 13, 2071

These trials have been prolonged because the clinical management with high-dose IL-2
has been abandoned with the advent of antiangiogenic and immune-checkpoint inhibiting
drugs.

Consequently, two new trials that evaluate entinostat in combination with more actual
therapies for ccRCC are currently open. One of these trials, still recruiting patients, evalu-
ates the combination of atezolizumab with entinostat and bevacizumab in patients with
advanced RCC (NCT03024437). This study will assess the immunomodulatory activity
of entinostat in patients receiving the PD-L1 inhibitor atezolizumab. Additionally, the
combination with bevacizumab provides an effective VEGF inhibition to potentiate the
immune response and anti-tumor effect induced by atezolizumab [25]. The overall hypoth-
esis is that entinostat will increase the immune response and anti-tumor effect induced
by the PD-L1 inhibition by suppressing Treg function, based on the hypothesis that low
dose HDACi will have a suppressive function on Tregs but not on effector T-cells. The
dose of entinostat starts with 1 mg and is escalated up to 5 mg. The proposed dose and
schedule for atezolizumab and bevacizumab follows the standard of the phase III study
IMmotion151 (NCT0242082) [215].

The other active clinical trial on the association between HDACi and ICI investigates
entinostat with nivolumab plus ipilimumab in previously treated RCC (NCT03552380).
This is a phase II, open-label, safety, pharmacodynamic and efficacy study radiologically
assessed for patients with metastatic RCC who have progressed on ipilimumab plus
nivolumab regimen. The trial starts with a dose finding study for oral entinostat. Following
the first 4 cycles of multiple combination treatment ipilimumab will be discontinued, and
treatment with entinostat and nivolumab continued until disease progression or prohibitive
toxicity. Anti-tumor activity is being assessed every 6 weeks.

3.2.4. Other HDACi

Other compounds with HDACi activity have been investigated and, although selected
for preclinical investigation, their pharmacological development has not been completed.
Depsipeptide, a cyclic peptide, was isolated from Chrombacterium violaceum during a
screening program for anti-oncogene agents. It exerts potent anti-tumor activity against hu-
man tumor cell lines and xenografts [216]. A phase II study was performed in patients with
metastatic RCC but showed insufficient activity and investigation was abandoned [184].

Romidepsin (FK228) also showed anti-proliferative activity in vitro against multiple
mouse and human tumor cell lines and in vivo in human tumor xenograft models [185],
but an exploratory phase II trial evaluating its activity and tolerability in patients with
metastatic RCC progressive following or during immunotherapy (NCT00106613) was
undertaken but results have not been communicated.

Belinostat (PXD101) is another HDACi that has been investigated in patients with
advanced refractory solid tumors including mainly colorectal cancer. Stable disease was
observed in 39% of the patients included and, among them in 1 of 6 patients with RCC [186].
However, no further investigation has been performed with this compound in RCC.

AR-42 is another HDACi currently investigated in patients with multiple myeloma
and T- and B-cell lymphomas [217]. Inhibition of pancreatic cancer cells by regulating p53
expression, inducing cell cycle arrest, particularly at the G2/M stage, and activating multi-
ple apoptosis pathways has been demonstrated [218]. Combined AR-42 and pazopanib
have been investigated in advanced sarcoma and RCC (NCT02795819). Of 6 patients
recruited, 4 were evaluated for response, and stabilization of disease was confirmed in 2;
however, the trial was interrupted because of unacceptable toxicity.

3.3. Other Epigenetic Therapies

A more targeted epigenetic therapy based on strategies other than demethylation
and histone deacethylase inhibition has been sought after for decades. The strategies
investigated include silence miRNAs that are overexpressed, such as, for example anti-
mRNA oligonucleotides, miRNA-mask antisense oligonucleotides, and miRNA sponges
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to restore the expression of miRNAs that are downregulated. Some studies point out
the use of miRNAs as therapeutics and several clinical trials are currently trying miRNA
molecules [219]. However, specific delivery of these miRNA-based therapies is challenging,
if not impossible. The only therapy of this kind investigated today for RCC was MRX34.
MRX34 miRNA mimics the tumor suppressor miRNA34 and was tested in a phase I
clinical trial for advanced or metastatic RCC and other cancers. Unfortunately, the trial was
abandoned early because of serious immunologic adverse events (NCT01829971).

Oblimersen (G3139) is a phosphorothioate antisense oligonucleotide used for chronic
lymphocytic leukemia and for advanced melanoma. It targets the sequence around transla-
tion initiation of the bcl-2 mRNA inhibiting its translation, resulting in decreased levels of
the bcl-2 protein, an apoptotic inhibitor expressed in some types of cancer and linked to
tumor drug resistance. Therefore, this target has the potential to enhance the efficacy of stan-
dard cytotoxic chemotherapy. In RCC cells, oblimersen induced a specific downregulation
of Bcl-2, mainly through a Fas-dependent pathway, and was considered a potential therapy
for metastatic RCC in combination with IFN-α [220]. However, a phase II study with
oblimersen and IFN-α in metastatic RCC revealed oblimersen did not appear sufficiently
active to warrant further development in advanced RCC [193].

GTI-2040 is another antisense agent that targets the small subunit component of
human ribonucleotide reductase and displays potent anti-tumor activity against different
neoplasia [221]. A synergistic effect with IFN-α for apoptosis and decreased proliferation
was suggested [192]. However, a phase I/II study of GTI-2040 and capecitabine in patients
with RCC gave very disappointing results [222].

Tazemetostat (EPZ-6438), a EZH2 selective inhibitor, was approved for the treatment
of advanced epithelioid sarcoma and its effect in enhancing the therapeutic response
to 5-fluorouracil in colorectal cancers has been recently confirmed [223]. Other EZH2
inhibitors are now under clinical evaluation and offer alternative approaches to target
this HMT [224]. lncRNAs are also a promising source to develop new target therapies in
the future. Many deregulated lncRNA interact with EZH2 to silence TSGs and to induce
EMT. As a result, inhibitors of EZH2 and consequently H3K27 methylation remain a very
interesting opportunity to develop future RCC therapies [149].

Another opportunity of epigenetic therapy stands in the phenomenon of synthetic
lethality that describes a relationship between two genes, the loss of which is incompatible
with cell survival. So, contrary to gain-of-function mutations in oncogenes, loss-of-function
mutations in TSGs are even more challenging to approach from the therapeutical perspec-
tive. Loss-of function mutations in chromatin modifiers has several theoretical applications.
For example, loss of SETD2 becomes synthetically lethal with loss of mitotic inhibitor
protein kinase Wee1 [113], loss of BAP1 is synthetically lethal with simultaneous inhibition
of EZH2 or PRC2 [225], and a third mechanism is loss of PBRM1, ARID1A, and some com-
ponents of the SWI/SNF complex, together with inhibition of EZH2 [44,226]. Additionally,
PBRM1 loss promotes immunogenicity in RCC by activation of IFN-responsive genes and
probably also confers sensitivity to immune checkpoint inhibitors [44]. Hopefully future
developments can take advantage of the improved knowledge in epigenetic modifiers
activity in ccRCC to support new therapeutic approaches.

3.4. Caveats and Limitations of Epigenetic Therapy

Targeting the epigenome appears an attractive treatment option for RCC because the
epigenetic dysregulation of this neoplasia is very extensive and affects many different signaling
pathways and tumor hallmarks. The classical concept of an epigenetic therapy centers on the
restoration of a neoplastic epigenetic pattern to a normal one. However, the initial therapeutic
experience with the drugs available today has been certainly disappointing.

Epigenetic therapy has a robust preclinical base, but many problems remain and
need be solved before its generalization. The most important limitation is the lack of
selectivity because epigenetic events are ubiquitously distributed across normal and cancer
cells. Cancer cells can be sensitive to this regulation, but normal cells have the ability to
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compensate for these epigenetic changes [227]. Besides, demethylating agents not only
restore the expression of genes that have been aberrantly silenced during tumor progression,
but also activate genes that are normally repressed by promoter DNA methylation. Another
limitation is the need to determine the most important epigenetic alterations for a particular
neoplasia. In fact, results of epigenetic therapy in hematologic malignancies are impressive,
but not in solid tumors. In addition, all the clinical trials performed are early clinical phase
studies, and the number of patients treated with epigenetic therapies and the length of
these treatments has been very limited, making difficult the evaluation of long-term safety
and real-practice clinical efficacy.

The issue that ccRCC is subject to extensive intra-tumoral heterogeneity is an evident
drawback for the development of diagnostic and therapeutic strategies and remains a challenge
in modern oncology [10,228]. Multi-regional sequencing has confirmed that renal tumors
often harbor different sub-clones that can differ in their spectra of mutations in different
epigenetic regulatory tumor suppressor genes. These findings suggest that new therapeutic
strategies targeting gene dosage and epigenetic modification should be considered for improved
personalized cancer medicine [229]. Single-cell technology and multisite tumor sampling could
represent an opportunity to overcome this obstacle [230,231].

The modern paradigm of treatment for metastatic RCC is based on antiangiogenic
therapy and combined immune modulation. A realistic potential application of epigenetic
therapy today would be to reverse the resistance to treatment with antiangiogenic drugs
once they became unresponsive [232,233]. Another promising possibility in treating ad-
vanced ccRCC would be the combination of epigenetic drugs and modern immunotherapy
using antibodies that block programmed cell death protein 1 (PD1) and its ligands [234].
It would be desirable that epigenetics-based treatments could re-sensitize the host im-
mune response to immunotherapies and restore immunogenicity enforcing the expression
of tumor associated antigens, checkpoint ligands in tumor cells, and antigen-processing
machinery components [235]. Recent data show that PBRM1 loss is associated with a
less immunogenic tumor microenvironment and upregulated angiogenesis [236]. PBRM1
deficient RenCa subcutaneous tumors in mice are more resistant to ICI, and a retrospective
analysis of the IMmotion150 trial also suggests that PBRM1 mutation reduces benefit from
immune checkpoint blockade [151,215].

Nevertheless, the role of PBRM1 mutations in ccRCC in relation to the immune
microenvironment is not totally clear. PBRM1 loss of function may alter global tumor-cell
expression profiles and influence responsiveness to ICI. Recent studies show truncating
mutations in PBRM1 increase the clinical benefit of ICI therapy in patients with metastatic
ccRCC [237,238]. PBRM1 alterations have also been clinically validated as marker of ICI
responsiveness in RCC but the effect on response and survival is modest and has been
mainly observed in the subset of patients who received prior antiangiogenic therapy [239].
The value of PBRM1 mutations in the first-line ICI setting needs further investigation.

The position and results achieved by standard therapies in metastatic ccRCC based
on TKIs, m-TORIs, and ICIs, alone or in combination, cannot be easily achieved by other
novel therapies. So, epigenetic treatments, via several signaling mechanisms involving
both tumor cells and host immune cells, might enhance the efficacy of immune checkpoint
therapy in RCC [240]. The combination of epigenetic therapy and immunotherapy is
being intensively investigated, and novel trials will be needed to elucidate this role as
adjunctive therapy. Epigenetic inhibitors are able to reverse or overcome immune resistance
to immunotherapy treatment through upregulation of chemokine expression, antigen
processing and presentation machinery, and immune checkpoint molecules [241]. As such,
the rationale is that the epigenetic modifiers can be used to prime and sensitize T cells to
immunotherapy. Administering “epitherapy” in conjunction with ICI could decrease T-cell
exhaustion and avoid immunotherapy resistance.

Additionally, genetic alterations in histone modifier genes in RCC could not only be
responsible for the pathogenesis of the disease but also represent potential biomarkers of
response to immunotherapies [242]. In this sense, despite the initial failure of epigenetic
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treatments to reach the clinic, epigenetic therapy is currently a promising strategy for anti-
cancer treatment and for development of new ccRCC tumor markers. However, optimized
modern epigenetic treatment options, possibly in combination with other treatments, still
remain to be discovered.

4. Conclusions

Epigenetic studies have provided a large body of evidence regarding hypermethylated
genes, histone-modifying enzymes or miRNAs and new challenges at bench side of patients
with RCC. Less invasive diagnosis, histologic subtyping, clinical monitoring of the disease
and prognostic evaluation will surely benefit from this increased epigenetic knowledge.
However, despite the evidence accumulated, no pure epigenetic biomarker has completed
evaluation in phase III studies or is commercially available for clinical use in ccRCC.
Prospective multicenter validation is needed before a novel generation of biomarkers
become accessible and have the potential to make great strides in personalized medicine.
Additionally, early clinical trials have been conducted to evaluate epigenetic therapies
for RCC, either alone or in combination with other therapies including IFN-α2b, IL-2,
anti-VEGF, TKIs, and mTOR inhibitors. Newer clinical trials are ongoing to investigate
the combination of epigenetic treatments with the ICIs pembrolizumab and atezolizumab.
There is no doubt that the study of renal cancer epigenetics is still in a formative stage and
its application to develop new therapeutic strategies is no more than promising.
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Simple Summary: Clear cell renal cell carcinomas (ccRCC) have several distinct immunological
features, including a high degree of immune infiltration and relatively low mutational burdens,
the resistance to cytotoxic chemotherapy, and relative sensitivity to anti-angiogenic therapy and
immunotherapies. Immune checkpoint inhibitor (ICI) therapy has become standard care in the
treatment of ccRCC, but a better understanding of the molecular and cellular characteristics of ccRCC
is needed to truly optimize the use of ICI therapy. With a focus on cancer immunology, we summarize
the clinical trials of ICIs in ccRCC, the molecular and cellular correlates of these clinical trials, and the
single-cell RNA sequencing studies to provide a comprehensive overview of the immune landscape
within the ccRCC tumor microenvironment, in particular in the context of ICI therapy. We will
discuss potential molecular and cellular biomarkers that can be used to predict therapeutic responses
in ccRCC patients.

Abstract: Several clinicopathological features of clear cell renal cell carcinomas (ccRCC) contribute to
make an “atypical” cancer, including resistance to chemotherapy, sensitivity to anti-angiogenesis
therapy and ICIs despite a low mutational burden, and CD8+ T cell infiltration being the predictor
for poor prognosis–normally CD8+ T cell infiltration is a good prognostic factor in cancer patients.
These “atypical” features have brought researchers to investigate the molecular and immunological
mechanisms that lead to the increased T cell infiltrates despite relatively low molecular burdens,
as well as to decipher the immune landscape that leads to better response to ICIs. In the present
study, we summarize the past and ongoing pivotal clinical trials of immunotherapies for ccRCC,
emphasizing the potential molecular and cellular mechanisms that lead to the success or failure of
ICI therapy. Single-cell analysis of ccRCC has provided a more thorough and detailed understanding
of the tumor immune microenvironment and has facilitated the discovery of molecular biomarkers
from the tumor-infiltrating immune cells. We herein will focus on the discussion of some major
immune cells, including T cells and tumor-associated macrophages (TAM) in ccRCC. We will further
provide some perspectives of using molecular and cellular biomarkers derived from these immune
cell types to potentially improve the response rate to ICIs in ccRCC patients.

Keywords: single-cell RNA sequencing; immune landscape; cancer immunotherapy; clear cell renal
cell carcinoma

1. Introduction

Renal cell carcinomas (RCC) arise from the renal epithelium and account for more
than 90% of cancers occurring in the kidney [1]. There are about 76,000 new cases an-
nually in the U.S. and 403,000 worldwide, accounting for about 3% of all cancers [2,3].
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About 70% of patients with RCC have localized tumors at the time of diagnosis, and
12% of the cancer patients have metastatic tumors [4]. Approximately 50% of patients
with localized RCC ultimately develop metastatic disease, and the 5-year survival rate
of patients with metastatic RCC is approximately 14% [1,5,6]. In general, about 25% to
50% of patients with primary RCC experience recurrence following nephrectomy after five
years [7]. RCC is histologically classified into subtypes, of which clear cell RCC (ccRCC)
is the most common–accounting for more than 80% of RCCs, followed by papillary RCC
and chromophobe RCC [1,4]. ccRCC is characterized by the abundance of glycogen and
lipids in the cytosol [1,4]. Most patients with ccRCC show chromosomal 3p loss and
genomic mutations in the Von Hippel-Lindau Tumor Suppressor (VHL) allele [8], followed
by secondary loss of multiple tumor suppressor genes, including PBRM1, SETD2, BAP1,
and/or KDM5C [9]. The VHL inactivation stabilizes hypoxia-inducible factors (HIFs) in
ccRCC, including HIF1α and HIF2α [10]. The activation of HIFs leads to transcriptional
activation of numerous HIF target genes, including vascular endothelial growth factor
(VEGF), which is one of the major known mechanisms responsible for high angiogenesis
and inflammatory response in the ccRCC tumor microenvironment [10,11].

Tyrosine kinase inhibitors (TKIs) are representative first-line anti-angiogenic targeted
therapies to inhibit VEGF and its receptor (VEGFR) signaling in patients with metastatic
ccRCC. These TKIs are effective, with a limited number of patients showing complete
remission of ccRCC [12]. Generally, however, these targeted therapies are only palliative,
and the utility of this therapy is frequently limited by drug resistance [13].

The Food and Drug Administration (FDA) approved the use of nivolumab (anti-PD-1)
for patients with RCC in 2015. Since then, numerous clinical trials have demonstrated
the safety and efficacy of a variety of immune checkpoint inhibitors (ICI) for RCC pa-
tients [14,15]. Spontaneous immune activation is thought to contribute to the regression
of 1 to 7% of ccRCC patients [16–19]. Early clinical trials enhancing T cell proliferation
through high-dose interleukin 2 (IL-2) achieved up to 20% of therapeutic response [20].
ICI monotherapy showed 25 to 42% response rates in ccRCC patients [15,21]. In studies
evaluating ICI in combination with anti-VEGF or TKIs as a first-line therapy, it significantly
improved the clinical outcome in patients with ccRCC, showing an objective response
rate (ORR) of 50 to 59%, including 4 to 12% complete response (CR) rates, depending on
experimental settings [21–25]. Meanwhile, phase III clinical trials investigating ICI in com-
bination with TKIs reported 48% to 82% of treatment-related adverse events with grade 3
or higher [22,23,25–27]. Safety evaluation reveals that the combinatorial therapy does not
appear to present significantly higher toxicities compared with sunitinib monotherapy [28].
Patients with metastatic ccRCC reported better health-related quality of life given the
combination treatment compared to sunitinib [29,30].

Genetic [31–38], molecular [21,22,25,38–40], and clinicopathological characteristics
[38,41–44] of ccRCC have not been able to fully predict clinical outcomes and prognosis
of patients. RCC has distinct immunological characteristics in regard to pathogenesis and
treatment, distinguishing it from other types of cancer that respond to ICI therapy. RCC
harbors a relatively low mutational burden, which is expected to produce low neoantigens
for antigen presentation, a situation that is often associated with a poor response to ICI
therapy. Counterintuitively, RCC is known to be highly immunogenic, resulting in the infil-
tration of immune cells, including CD8+ T cells [45,46] with high cytotoxic activity [45,47].
Unlike most solid tumors, where the infiltration of CD8+ T cells is normally associated with
a good prognosis [44], increased CD8+ T cell infiltration is not associated with prognosis in
some studies [35,43,48,49] and actually predicted a poor prognosis in other studies [41–43].
Moreover, certain types of mutations that are associated with increased tumor antigen
presentation and CD8+ T cell infiltration in most solid tumors, such as missense mutations,
are not correlated with T cell infiltration in RCC [45,47,50]. The expression of immune
checkpoints, such as programmed cell death protein 1 (PD-1) and programmed death-
ligand 1 (PD-L1), have not been convincingly shown to predict clinical response to ICI in
RCC [21,22,25,38–40]. Meanwhile, new characteristics have been uncovered as potential
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factors that enable the prediction of clinical response to ICI. For example, human endoge-
nous lentivirus virus expression or defective antigen presentation may be a key factor for
poor response to ICI in ccRCC patients [38,45]. Taken together, current basic, translational,
and clinical research underscores the need to further investigate the tumor immune mi-
croenvironment in ccRCC to predict patient outcomes, to identify patients who are likely
to respond to immunotherapy, and/or to determine new immunotherapy modalities to
treat patients who are not responsive to current ICI therapy.

Single-cell RNA sequencing (scRNAseq) technology dissects the dynamic and het-
erogeneous tumor microenvironment by characterizing the transcriptome and genome
at the single-cell level, providing a prominent method for painting a detailed picture of
the immune landscape when studying cancer immunology [51,52]. Integrating various
components of scRNAseq transcriptome into multi-omics measurements provides a better
understanding of cell identity, fate, and function in the context of both normal biology and
pathology [52,53]. The application of scRNAseq to renal parenchyma or kidney cancer is
just at its inception and is helping provide a clearer understanding of cell of origin, tu-
mor and immune cell heterogeneity, immune-suppressive microenvironment, therapeutic
response, and ultimately prediction of prognosis [54–62].

Here, we summarize the landmark clinical trials for immunotherapy applied to ccRCC
and translational scRNAseq research focusing on ccRCC, which is the most immunogenic
subtype among RCC subtypes [56]. This review provides translational evidence and
potential targets that can be utilized to improve cancer immunotherapy.

2. Immunotherapeutic Updates of ccRCC

2.1. Cytokine-Based Immunotherapy

IL-2 is a cytokine that modulates immunity and tolerance by acting on lymphoid cells,
including CD8+ T cells, as a growth factor and activator [63]. The activation of CD8+ T
cells facilitates the tumor-killing effect through the recognition of neoantigens presented
by the tumor cells [63]. The FDA approved the usage of high-dose IL-2 (600,000 IU/kg) in
metastatic RCC in 1992 based on the pooled results of several phase II studies [64,65], rep-
resenting the first FDA-approved immunotherapy for RCC. These pooled results showed
a 14% overall ORR, with 5% of patients having a CR and 9% having a partial response
(PR). An even higher dose of IL-2 (720,000 IU/kg) was administered to metastatic RCC
patients, yielding a 20% ORR and 9% CR [66]. Similar results supporting the efficacy
of a higher dose of IL-2 have been reported [64,67]; and intriguingly, the favorable re-
sponse of high dose IL-2 was associated with PD-L1 expression, regardless of the patients’
clinical classification [68]. High-dose IL-2 is clinically administrated with intensive care
requiring an inpatient hospital stay but with a subset of responders who have extremely
durable responses. Several studies have determined the efficacy of interferon-α 2a (IFNα2a)
and found anti-tumor effects on patients with advanced ccRCC with an ORR of 6% to
10% [69–71]. The ORRs of the two cytokines are in general low in ccRCC patients, and the
major hurdle for their clinical use also lies in the significant toxicities affecting multiple
major organs [72,73].

2.2. Tyrosine Kinase and mTOR Inhibitors

Following IL-2 therapy, clinical treatment of ccRCC moved more towards the use of
tyrosine kinase inhibitors (TKIs) targeting VEGFA/VEGFR pathway and neoangiogenesis,
including sunitinib, sorafenib, and cabozantinib for treating ccRCC patients [74–76]. In
2006, sunitinib was introduced to treat metastatic RCC patients as the first-line therapy after
the phase III trial showed that patients with sunitinib treatment had a significantly longer
PFS, compared to those who were treated with IFNα [76]. Sorafenib was another classical
TKI approved as second-line therapy for patients who had disease progression following
conventional therapy for ccRCC. Treatment with sorafenib significantly prolonged the PFS
in advanced ccRCC patients when compared to placebo [75]. In subsequent years, more
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TKI inhibitors with higher potency and more specificity, including pazopanib, cabozantinib,
axitinib, and lenvatinib, were added to the treatment options for RCC patients [74,77–80].

Temsirolimus and everolimus are two inhibitors for the mammalian target of ra-
pamycin (mTOR) that have been approved for treating RCC patients. mTOR is a highly
conserved protein kinase that regulates HIFs-related metabolism and proliferation of ccRCC
cells via the PI3K and Akt pathways [81–83]. In 2007, FDA approved treatment with tem-
sirolimus following a phase III clinical trial in patients with metastatic RCC [84]. Patients
receiving temsirolimus alone experienced longer overall survival (OS) and PFS than those
who received IFNα alone. Everolimus was approved by FDA in 2009 for patients who
failed sunitinib and sorafenib treatment [85], after showing clinical efficacy in patients who
failed to respond to these therapies. Although numerous clinical trials and studies as de-
scribed above have demonstrated the superior efficacy of TKIs to previous cytokine-based
therapy, most ccRCC patients will develop acquired resistance within one year [86].

2.3. Immune Checkpoint Inhibitors

Currently, immune checkpoint blocking agents, including antibodies that inhibit PD-1,
PD-L1, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), are being successfully
investigated and applied to the patients with ccRCC.

The first clinical trial of ICIs in ccRCC was conducted in 2007, attesting to the effect
of CTLA-4 blockade in patients with metastatic RCC [87]. The phase II study included
patients receiving either 3 mg/kg followed by 1 mg/kg or only 3 mg/kg of ipilimumab
(anti-CTLA-4) for 3 weeks. One of the 21 patients with a lower dose and five of 40 patients
with a higher dose had partial responses. There is a significant correlation between patients
with autoimmune events and tumor regression, suggesting that the reinvigoration of CD8+

T cells promotes the tumor-killing effect. However, due to limited efficacy, the use of
ipilimumab as monotherapy for RCC was halted.

A second clinical trial of ICIs in patients with ccRCC attested to the effect of PD-1
blockade on patients with ccRCC, with an ORR of 27% (9 out 33 patients) [14]. In this later
phase II study, patients with metastatic ccRCC previously treated with anti-VEGF therapy
were administrated 0.3, 2, or 10 mg/kg nivolumab (anti-PD-1). The median PFS was
2.7 months, 4.0 months, and 4.2 months respectively. The OS was 18.2 months, 25.5 months,
and 24.7 months respectively [88]. In CheckMate 025, a phase III study, patients previously
treated with anti-angiogenic therapy received either 3 mg of nivolumab or 10 mg of
everolimus [15,89]. Although progression-free survival showed no difference between
the two treatments, the OS for nivolumab was 25.0 months compared to 19.6 months for
everolimus (p = 0.002) [89]. Also, the nivolumab-treated group showed a greater response
rate (25% compared to 5% in the everolimus-treated group). Extended follow-up confirmed
the superior efficacy of nivolumab over everolimus.

The first combination therapy was initiated in 2012, attesting to the efficacy of nivolumab
with sunitinib, pazopanib, or ipilimumab [90,91]. Patients treated with nivolumab plus
sunitinib showed a 55% ORR and median PFS of 12.7 months. For the group treated with
nivolumab plus pazopanib, the ORR was 45% and PFS was 7.2 months. The nivolumab
plus ipilimumab treatment was divided into two dose regimens: patients received either
3 mg/kg of nivolumab and 1 mg/kg of ipilimumab or 1 mg/kg of nivolumab and 3 mg/kg
of ipilimumab. Both treatment regimens had an ORR of about 40% and a 2-year OS of
68%. The nivolumab group showed a lower rate of adverse events (38.3%) compared to
the ipilimumab group (61.7%). In the phase III CheckMate 214 trial, the combination of
nivolumab with ipilimumab was tested against sunitinib alone [21,27,92]. According to
the criterion from the International Metastatic RCC Database Consortium (IMDC), inter-
mediate and poor-risk patients receiving nivolumab + ipilimumab had a survival rate of
75% at 18-months compared to a 60% survival rate at 18 months for sunitinib. The ORR
was 42% for the group treated with nivolumab plus ipilimumab, compared to 27% for the
group treated with sunitinib. The CR was 9% and 1% in the combination and monotherapy,
respectively. In the follow-up study, the nivolumab plus ipilimumab combination had a
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superior OS to the sunitinib therapy within the intermediate and poor-risk and intent to
treat patients.

Because anti-VEGF treatment was found to have immunomodulatory effects on differ-
ent types of immune cells, including myeloid cells and regulatory T cells (Treg) [93–96],
clinical trials with the combination of ICIs and anti-VEGF agents were investigated in
RCC. In an open-label phase III trial (Keynote 426), 861 patients with previously untreated
advanced ccRCC were assigned to either axitinib plus pembrolizumab (anti-PD-1) or suni-
tinib alone group [25,97,98]. The 1-year survival rate was 89.9% for the combination group
compared to 78.3% for the sunitinib alone. The median PFS for the combination treatment
was also significantly higher than the sunitinib alone group (15.1 months vs. 11.1 months).
The ORR was 59.3% and 35.7%, respectively. The study revealed that patients treated with
axitinib plus pembrolizumab demonstrated a better response in all three IMDC risk groups,
regardless of PD-L1 expression. Another clinical trial (Clear/Keynote 581) confirmed the
superior efficacy of the combination of pembrolizumab (anti-PD-1) plus lenvatinib—a TKI
targeting RET, KIT, PDGFR, and VEGFRs—over everolimus [26]. In this phase III trial, 1069
untreated patients with ccRCC were assigned to pembrolizumab plus lenvatinib, lenvatinib
plus everolimus, or sunitinib at a 1:1:1 ratio. The ORR was 71%, 53.5%, and 36.1%, and the
median PFS was 23.9 months, 14.7 months, and 9.2 months for the experimental arms of
pembrolizumab plus lenvatinib, lenvatinib plus everolimus, and sunitinib, respectively.
Encouraging results were also obtained in the CheckMate 9ER trial where 651 untreated
patients with advanced ccRCC were assigned to treatment with either Nivolumab (240 mg
every 2 weeks) plus cabozantinib (40 mg once daily)—a TKI targeting AXL, RET, MET, TIE-
2, and VEGFRs—or sunitinib (50 mg once daily for 4 weeks of each 6-week cycle) [22,99].
This phase III study showed that the combination significantly improved PFS and OS as
compared to sunitinib alone. At 18.1 months of median follow-up, patients who received
the combination had a median of 16.6 months of PFS with a 55.7% ORR, whereas those who
received sunitinib alone had a median PFS of 8.3 months and a 27.1% ORR. At 12 months,
the probability of OS was higher in the combination arm (85.7%) compared to those in the
control arm (75.6%). The clinical benefit of the nivolumab and cabozantinib over sunitinib
was observed regardless of PD-L1 expression.

The JAVELIN Renal 101 trial compared the combination of avelumab (anti-PD-L1) plus
axitinib with sunitinib alone [23,100,101]. Patients with PD-L1 positive tumors (as defined
by ≥1% of immune cells immunohistochemistry (IHC)-staining positive within the tested
tumor area) showed a median PFS of 13.8 months for the combination therapy compared to
7.2 months for the sunitinib alone. The ORR was 55.2% and 25.5%, respectively. This study
showed that avelumab plus axitinib could be an effective therapy for patients with PD-L1
positive ccRCC. However, the follow-up study on biomarker analysis revealed that the
expression of PD-L1 was not correlated with a better response and PFS in patients receiving
avelumab plus axitinib [33]. Another approved combination therapy for metastatic RCC is
atezolizumab (anti-PD-L1) with bevacizumab—a monoclonal antibody targeting VEGFA.
In the phase III study (IMmotion 151), patients were randomly assigned to atezolizumab
with bevacizumab or sunitinib alone [24,30]. The median PFS survival was 11.2 and
7.7 months for the PD-L1 positive population (as defined by ≥1% of immune cells IHC-
staining positive within the tested tumor area), tested with atezolizumab plus bevacizumab
or sunitinib alone, respectively. There was a difference in OS, but the patients experienced
fewer treatment-related adverse events.

Altogether, based on clinical trials and publications, the clinical benefit of immune
checkpoint inhibitors and their combination with anti-angiogenic agents is evident in both
untreated and treated patients with advanced ccRCC. Clinically relevant results from the
phase III clinical trials are summarized in Table 1.
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Table 1. Updated phase III clinical trials investigating immunotherapies for advanced ccRCC.

Study Name Identifier Agent Target Total ORR TRAE 3+ Citations

CheckMate 025 * NCT01668784 Nivolumab PD-1 821 23% 19% [15,89]

CheckMate 214 NCT02231749
Nivolumab PD-1

1096 39.1% 47.9% [21,27,102]Ipilimumab CTLA-4

IMmotion 151 NCT02420821
Atezolizumab PD-L1

915 37% 40% [24,30]Bevacizumab VEGF

JAVELIN Renal 101 NCT02684006
Avelumab PD-L1

886 52.5% 71.2% [23,101,103]Axitinib RTK

CLEAR NCT02811861
Pembrolizumab PD-1

1069 71% 82.4% [26]Lenvatinib RTK

Keynote 426 NCT02853331
Pembrolizumab PD-1

861 60.4% 66.4% [25,97,98]Axitinib RTK

CheckMate 9ER NCT03141177
Nivolumab PD-1

651 56.6% 75.3% [22]Cabozantinib RTK

* This study used Everolimus as a control arm. Other studies used Sunitinib as a control arm. Abbreviation: ORR; objective response rate,
TRAE; treatment-related adverse event, RTK; receptor tyrosine kinase.

2.4. Ongoing Clinical Trials

Table 2 summarizes the ongoing phase III clinical trials that cover a wide range
of critical issues, including the efficacy of newly developed ICIs, the role of immune
checkpoint in the previously established experimental arms, the efficacy of ICI as adjuvant
therapy on the rate of recurrence following nephrectomy [104–106], and the effect of salvage
ICI following progression on ICI treatment [107]. In addition, other studies are also testing
the role of small molecules inhibitors in combination immunotherapy [108], the effect of
IL-2 in combination with ICI [109], the efficacy of ICI on brain metastasis [110], and the
optimal sequence of ICIs [111].

Briefly, the COSMIC-313 study is now being conducted to evaluate the efficacy of
cabozantinib in combination with nivolumab and ipilimumab as the first therapy using a
triplet. The study is designed to determine whether the addition of cabozantinib leads to
clinical benefit over the combination of the ICIs as far as patient’s PFS and OS. PDIGREE is
another clinical trial investigating the therapeutic role of cabozantinib in patients who have
completed receiving nivolumab and ipilimumab therapy. PIVOT-09 is being conducted to
examine the effect of bempegaldesleukin (IL-2 agonist) in combination with nivolumab
versus either sunitinib or cabozantinib, and this clinical trial will compare the ORR and OS
in an intermediate or poor-risk group of untreated ccRCC patients.

Another study (NCT04736706) will determine the efficacy, safety, and the specific
role of belzutifan (HIF-2 inhibitor) [115] and quavonlimab (anti-CTLA-4) in combination
with pembrolizumab and lenvatinib. Clinical trials of RAMPART, CheckMate 914, IM-
motion010, and NCT03055013, will determine the post-surgical clinical benefit of ICIs
(anti-PD1/PD-L1 and/or anti-CTLA-4) versus active monitoring in patients with partial
or total nephrectomy. NCT04510597 will study the role of cytoreductive nephrectomy in
combination with systemic ICI in ccRCC patients. CheckMate-67T is being conducted to
study the efficacy, safety, and tolerability of nivolumab when patients are given the ICI
subcutaneously. NCT04157985 will determine the optimal treatment duration of anti-PD-1
and PD-L1 therapies.

In summary, clinical evidence is sufficient to demonstrate that ccRCC is highly im-
munogenic and has great potential for durable response to immunotherapy. The next
step is to solve the riddle of why only some patients have clinical benefits during ICI
treatment, while others show intrinsic or acquired resistance to ICIs and ensuing disease
progression and poor prognosis. Various molecular features of ccRCC obtained from bulk
multi-omics approaches cannot precisely predict patients’ prognosis and clinical response
to ICI, at least in part due to the substantial heterogeneity in immune cell contents in ccRCC.
scRNAseq is the most comprehensive tool to study immune cells at the genome-wide and
single-cell levels in order to uncover immune cell heterogeneity. Using scRNAseq to define
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the complex ccRCC immune microenvironment offers unique opportunity to elucidate
potential mechanisms and/or markers for response to ICI therapy, as well as possible
targets for improving response rates to ICIs.

Table 2. Ongoing phase III clinical trials investigating immunotherapies for advanced ccRCC.

Study Name Identifier Agent Target Control

COSMIC-313 NCT03937219 [108]
Nivolumab PD-1

Nivolumab and IpilimumabIpilimumab CTLA-4
Cabozantinib RTK

na NCT03729245 [109] Bempegaldesleukin IL-2 agonist Sunitinib
Nivolumab PD-1 Cabozantinib

Keynote 564 NCT03142334 [105] Pembrolizumab PD-1 Placebo

Contact 03 NCT04338269 [107] Atezolizumab PD-L1 CabozantinibCabozantinib RTK

IMmotion 010 NCT03024996 [106] Atezolizumab PD-L1 Placebo following nephrectomy

PDIGREE NCT03793166 [111] Nivolumab PD-1 Nivolumab following Nivolumab and IpilimumabCabozantinib RTK

CheckMate 914 NCT03138512 [104] Nivolumab PD-1 Placebo following nephrectomyIpilimumab CTLA-4

PROSPER NCT03055013 [112] Nivolumab PD-1 Monitoring after nephrectomy

CheckMate 920 NCT02982954 [113] Nivolumab PD-1 This clinical trial examines the safety of ICI in RCC patients with
either brain metastasis or Karnofsky Performance Status 50–60%Ipilimumab CTLA-4

na NCT04736706

Pembrolizumab PD-1

Pembrolizumab and lenvatinibQuavonlimab CTLA-4
Lenvatinib RTK
Belzutifan HIF2

na NCT04523272 TQB2450 PD-L1 SunitinibAnlotinib RTK

na NCT04394975 Toripalimab PD-1 SunitinibAxitinib RTK

na NCT03873402 Nivolumab PD-1 NivolumabIpilimumab CTLA-4

RAMPART NCT03288532 [114] Durvalumab PD-1 Monitoring after nephrectomyTremelimumab CTLA-4

CheckMate 67T NCT04810078 Nivolumab PD-1 This clinical trial examines the safety and efficacy of
subcutaneous Nivolumab injection

PROBE NCT04510597

Nivolumab PD-1
This clinical trial examines the efficacy of cytoreductive

nephrectomy in combination with ICI
Pembrolizumab PD-1

Axitinib RTK
Avelumab PD-L1

na NCT04157985

Nivolumab PD-1
This clinical trial examines the length of treatment with ICI.Pembrolizumab PD-1

Ipilimumab CTLA-4
Atezolizumab PD-L1

Abbreviation: ICI; immune checkpoint inhibitor, RTK; receptor tyrosine kinase, na; not applicable.

3. Single-Cell Genomics to Study the Tumor Microenvironment

Single-cell genomics determines the genetic, epigenetic, or chromatin structure infor-
mation at the single cell level with optimized next-generation sequencing (NGS) technolo-
gies. scRNAseq has become a potent tool to provide a higher resolution of the transcriptome
for individual cells. scRNAseq can be used to study the cellular heterogeneity for given
tissues to identify a rare and novel cell population that would not be detected by conven-
tional methods, to determine cell state transitions affected by intrinsic and extrinsic stimuli,
to understand differential genes/pathway alterations between cell populations, and to
explore the clonal status of T or B cells when combined with T or B cell receptor sequencing,
etc. [116,117]

Here we summarize published studies adopting scRNAseq technology with a fo-
cus on cancer immunology of ccRCC (Table 3). We will introduce some basic concepts
and common processes of scRNAseq technology, including scRNAseq library prepara-
tion and common computational analyses. In detail, single-cell analysis technologies,
including scRNAseq, and their applications in cancer immunology have been previously
reviewed in detail [51,117]. Different scRNAseq library preparation methods have been
reviewed [118,119]. Current studies applying scRNAseq technology to RCC have largely
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adopted a droplet-based platform provided by 10× Genomics. As such, we mainly focus
on a droplet-based microfluidic system for scRNAseq library preparation.

Table 3. scRNAseq studies identifying and characterizing immune environment associated with ccRCC progression and
response to ICI.

Patient Number Control Group Experimental Group Cell Number Platform Citation

3 PB ccRCC 25,688 10× Genomics
droplet-based [58]

11 ANT ccRCC 163,905 10× Genomics
droplet-based [61]

9 ANT ccRCC 29,131 10× Genomics
droplet-based [56]

13 ANT Advance stages of ccRCC 164,722 10× Genomics
droplet-based [60]

8 Primary and metastatic
ccRCC (LN), ICI-untreated

Primary and metastatic
ccRCC (LN, lung, abdomen),

ICI-treated
34,326 10× Genomics

droplet-based [59]

6 ANT and primary ccRCC,
ICI-untreated

PB, ANT, and multi-regions
of primary and metastatic
ccRCC (LN), ICI-treated

167,283 10× Genomics
droplet-based [55]

2
PB and multi-regions of

primary ccRCC,
ICI-untreated

PB and multi-regions of
primary and metastatic

ccRCC (adrenal gland, bone,
nephrectomy bed),

ICI-treated

26,456 10× Genomics
droplet-based [38]

Abbreviation: scRNAseq; single-cell RNA sequencing, ICI; immune checkpoint inhibitor, LN; lymph node, ccRCC; clear cell renal cell
carcinoma, PB; peripheral blood, ANT; adjacent non-tumor tissue.

3.1. Basic Concept and Experiment-Related Workflow of Microfluidic-Based scRNAseq

Microfluidic droplet-based scRNAseq has been used as one of the useful platforms
to study single-cells in cancer immunology [118–120]. The droplet-based microfluidic
system does not necessarily need cell sorting but needs high viability cells for preserving
molecular states and reads either 3′ or 5′ end of the transcripts with barcoding and unique
molecular identifier (UMI) tagging [118–120]. Droplet-based scRNAseq is characterized
by high cellular resolution, low amplification noise, and high cost-effectiveness for the
transcriptome quantification of large numbers of cells [118–120]. Also, it is more suitable
for the identification of diverse cell types and measurement of gene expression changes
between conditions [118–120].

The microfluidic system automates parallel sample partitioning and captures the
single cells into individual oil droplets containing uniquely barcoded beads called Gel
Beads-In Emulsions (GEM) [118,120]. Poly(A) tail at the 3′ end of RNA extracted from a
single-cell in an individual GEM is bound to millions of the barcoded oligonucleotides with
high capture efficiency and reverse transcribed to the first strand of DNA. Subsequently,
a second strand synthesizing process and a PCR amplifying process are conducted to
generate analysis-ready transcriptomes on a cell-by-cell basis from the complementary
DNA (cDNA) libraries [120]. Illumina sequencer is widely used for library sequencing,
including published ccRCC scRNAseq studies. The directed 5′ or 3′ chemistry allows for
98 base pair sequencing, limiting the mutational analysis of sequences. Cell Ranger from
10× Genomics, one of the frequently used computational pipelines for handling raw data
files, provides wrapper functions that support the packages required for the raw data
pre-processing pipeline [118].

After data pre-processing, including quality control, sequence alignment, and quantifi-
cation of the raw sequence, a gene expression matrix is generated from the reads mapped
to exon regions with high mapping quality. R toolkit Seurat has been used for the data
processing, generating the Seurat object as an input file for subsequent processes [121].
Bioconductor-based workflow and Scanpy are also popular toolkits for R and python users,
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respectively [122,123]. Data analysis and visualization follow a standard preprocessing
workflow that includes selection and filtration of cells based on quality control, data nor-
malization and scaling, and the detection of highly variable features. The highly variable
features are used for principal component analysis (PCA). After the data pre-processing
steps, a high-dimensional molecular profile for individual cells is computationally classified
into distinct cell populations [117,121]. Individual cells are clustered based on distances of
components and visualized by non-linear dimensionality reduction techniques, such as
t-distributed stochastic neighbor embedding (t-SNE) [124] or uniform manifold approxima-
tion and projection (UMAP) [125]. Although analysis varies depending on the study design,
one can conduct main analyses with complementary computational techniques, such as cell
composition, cell state transitions, differential gene expression, pathway analysis, cell-fate
trajectories, molecular interactions, and cellular interactions [118].

3.2. ScRNAseq in ccRCC

The tumor microenvironment of ccRCC is extremely heterogeneous in its molecu-
lar and immune phenotypes [11,58,126–128]. As discussed above, means of predicting
response to ICI therapy in other solid tumors have not proven clinically useful in RCC.
Single-cell proteomics, as implemented by flow cytometry, mass cytometry, or multiplexed
immunohistochemistry, has identified cell composition and potential cell types that gener-
ate and maintain the immune suppressive microenvironment of RCC [43,46,61]. Although
these single-cell analysis technologies are useful and informative, they are inherently lim-
ited by the available number of pre-selected antibodies, resulting in the identification of
only anticipated cell types [117]. The deconvolution method using bulk RNA-seq can
be used to estimate immune cell composition, but this method is nowhere close to fully
reflecting the heterogeneous immune composition of any tissues [127,128]. Evaluation of
proliferation of CD8+ T cells by Ki-67 positivity has been indicated as a favorable prog-
nostic factor [42], however, this has been contradicted by recent studies with scRNAseq
results [58–60].

Currently, scRNAseq, which is not limited by the determining markers, has dissected
tumor heterogeneity in multiple types of human solid cancers [51]. In ccRCC, a few
studies with scRNAseq have just begun to investigate immune cell heterogeneity, immune
pathogenesis, and response to immunotherapy [54–62]. Analyzing tumor-infiltrating
immune cells by scRNAseq, especially focusing on T cell exhaustion, suppressive TAMs,
and inhibitory cell to cell interactions has shown to have clinical prognostic and predictive
value regarding clinical outcomes and the response to immunotherapy. Thus, it needs to
provide evidence of the substantial potential of scRNAseq to give insights into some of
the current issues regarding RCC immunotherapy. In this review, we highlight scRNAseq
studies that report key events associated with the immune environment, ccRCC progression,
and response to immunotherapy. Scheme and detailed information concerning scRNAseq
studies applied to ccRCC is summarized in Figure 1 and Table 3.

To define the tumor-specific change in the infiltration of immune cells, our group [58]
generated droplet-based scRNAseq and single-cell T cell receptor sequencing (scTCRseq)
libraries and studied 25,688 cells from matched blood and primary. Tumor samples originat-
ing from 3 untreated patients diagnosed with different grades of ccRCC. We also integrated
the scRNAseq data with a previous scRNAseq dataset containing 11,367 cells derived
from normal renal parenchyma and blood. The study examined immune events and cell
state transitions associated with a tumor-specific environment. There was a significant
increase in the population of CD8+ T cells and macrophages in ccRCC but a decrease
in the population of CD4+ T cells and B cells, compared to blood and non-tumor tis-
sues. While infiltrating tumor tissue, CD8+ T cells showed a transcriptional continuum
from naïve to activation, but eventual exhaustion with highly expanded clonotypes. A
small subset of tumor-infiltrating CD8+ T cells were characterized by preferential cytokine
signaling and associated with a favorable response to anti-PD1 therapy. In general, tumor-
infiltrating CD4+ T cells showed a transcriptional continuum toward more activated states,
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such as high cytolytic and interferon activities, as previously described [60]. Meanwhile,
distinct subsets of TAMs characterized by the gene expression associated with either
chemo/cytokines, apolipoproteins, or DC-like, showed high plasticity between pro- and
anti-inflammatory phenotypes. Using machine-learning training with the Cancer Genome
Atlas (TCGA) RCC cohort, we developed unique gene signatures defining either a subset
of proliferative CD8+ T cells or a subset of DC-like TAMs. Both scRNAseq signatures had a
prognostic value of predicting a poorer prognosis in the OS of patients with ccRCC. Using
external mass cytometry data [46], we also confirmed the existence of the proliferative CD8+

T subset as a PD1+Ki-67hi phenotype in ccRCC. Supporting the scRNAseq-based prognostic
model, the PD1+Ki-67hi CD8+ T cells are highly enriched with co-stimulatory proteins and
immune checkpoints, such as ICOS, 4-1BB, TIM-3, CTLA-4, HLA-DR, and CD38.

Figure 1. Scheme of droplet-based scRNAseq and standard bioinformatics pipeline. (a) Single cells are loaded to a
microfluidic system and encapsulated to an oil droplet to generate single-cell GEM. (b) RNA released from the lysed
single-cell is captured by barcoded oligonucleotides and reverse transcribed to the first and second strands of DNA. (c) PCR
amplifying process is conducted to generate cDNA library, which is sequenced by Illumina sequencer. (d) Cell Ranger
from 10× Genomics provides raw data pre-processing pipeline, resulting in the generation of a gene expression matrix.
(e) Standard pre-processing steps for scRNAseq data. Low-quality cells are removed. Highly variable features are selected
and used for principal component analysis. A high-dimensional molecular profile for individual cells is computationally
classified into distinct cell populations. (f) Individual cells are visualized by non-linear dimensionality reduction techniques,
such as t-SNE. Abbreviation: GEM; Gel Beads-In Emulsions, t-SNE; t-distributed stochastic neighbor embedding, cDNA;
complementary DNA.

Zhang et al. [56] identified the peculiar immune environment and pathogenesis of
ccRCC. The study analyzed 29,131 cells derived from adjacent non-tumor tissues and
primary ccRCCs from 9 patients. In addition to identifying the putative cell of origin for
ccRCC, the study evaluated the potential source of immune infiltration to ccRCC and the
prognostic value of distinct cell populations. Supporting the previous scRNAseq study
applied to ccRCC [57], a subset of proximal tubular cells and neoplastic epithelial cells
were predicted to recruit immune cells to tumor site via IFN response, including especially
secretion of serine protease C1s. This is further supported by a positive correlation between
the degree of TAM fraction and the C1S gene expression in bulk RNA-seq, scRNAseq, and
TCGA RCC datasets. Two different subsets of TAMs, defined by chemokine/cytokine-
versus lysosome-related genes, had dichotomous prognostic values of predicting OS within
the same TCGA RCC cohort. Using bulk RNA-seq obtained from metastatic ccRCC
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patients who were treated with TKI followed by anti-PD1 therapy, the study defined genes
associated with clinical benefit. Notably, endothelial cells and pericytes predominantly
expressed the genes negatively associated with the response, and genes associated with
clinical benefit were primarily expressed among T cells. In TCGA ccRCC dataset, however,
treatment-naïve patients with a high fraction of endothelial cells in localized ccRCC were
predicted to have better OS. Patients with a high estimated fraction (>90th percentile) of
either tumor-infiltrating CD8+ T cells or plasmalemma vesicle associated protein (PLVAP)+

endothelial cells were separately present in the scatter plot, suggesting mutual exclusivity
of the two cell types concerning clinical outcome in the ccRCC environment.

Obradovic et al. [61] also identified and characterized the tumor-specific immune
environment of ccRCC using scRNAseq data. The study studied 163,905 cells isolated from
adjacent non-tumor tissues and primary, non-metastatic ccRCC from six untreated patients.
Moving beyond mRNA expression, the study applied a specific algorithm, called VIPER, to
scRNAseq data and inferred single-cell protein activity. Of note, the VIPER-based protein
activity inference turned out to significantly overcome challenges of scRNAseq, including
recovery of transcriptome dynamics masked by dropouts up to 70% to 80%, and thus
was able to precisely predict single-cell protein activity. This was also validated by using
flow cytometry and an external CITE-seq dataset. The integrated analysis enabled the
identification of potentially targetable novel master regulatory proteins in a rare population
that would have been undetectable by gene expression-based analysis. VIPER analysis led
to the identification of ccRCC-infiltrating exhausted CD8+ T cells, Treg, TAMs, and CD45-

cell types with a high resolution. The protein activity of the C1Q family of proteins, APOE,
and TREM-2 was significantly upregulated in macrophages in tumors compared to non-
tumor tissues. VIPER was also successful in obtaining the inferred protein activity from
bulk RNA-seq data derived from untreated ccRCC surgical resections. In two independent
cohorts, the VIPER-applied protein signature of tumor-specific macrophages was not only
preferentially enriched in patients who underwent post-surgical ccRCC recurrence but
also significantly associated with the shorter time-to-recurrence in the Kaplan–Meier curve.
The representative leading-edge proteins among TAM-defining markers were APOE and
TREM-2. Using multiplexed immunohistochemistry, C1Q+TREM-2+ TAMs were found to
be tumor-specific and C1Q+TREM-2+APOE+ TAMs located significantly nearer the tumor
cells than triple-negative TAMs. The proximity was also strengthened by the analysis of
ligand-receptor interaction between tumor cells and APO+ TAMs. The frequency of either
C1Q+ or TREM-2+ TAMs was higher in tumor slide sections from patients with recurrence
than those with non-recurrence. Clinically, the density of C1Q+ TAMs above a certain
threshold of 0.01 was significantly associated with ccRCC recurrence.

To define the change in the infiltration of immune cells with advancing ccRCC, Braun
et al. [60] generated droplet-based scRNAseq and scTCRseq libraries and analyzed 164,722
cells isolated from blood, adjacent non-tumor tissues, and different stages of primary and
metastatic ccRCC from 13 untreated patients. As RCC progressed from early to locally
advanced and metastatic diseases, there was a consistent increase in the frequency of
terminally exhausted CD8+ T cells, Treg, CD14+ monocytes, and immune suppressive
M2-like TAMs, and a general decrease in the frequency of cytotoxic CD8+ T cells, central
memory CD4+ T cells, and inflammatory M1-like TAMs. Pseudotime analysis coupled
with gene signature also confirmed the progressive dysfunction and exhaustion of tumor-
infiltrating CD8+ T cells with advancing ccRCC. Likewise, the trajectory analysis showed
preferential enrichment of pro-inflammatory and anti-inflammatory scRNAseq signatures
in earlier-stage and metastatic-stage ccRCC, respectively. Ligand-receptor interactions were
inferred to tumor-infiltrating immune cells. Intriguingly, while a majority of non-exhausted
T cells in earlier-stage ccRCC were predicted to have few interactions, terminally exhausted
CD8+ T cells in advanced ccRCC were inferred to have numerous ligand-receptor pairs
within the myeloid populations, including TAMs. With metastatic ccRCC samples, the
inhibitory interaction between two populations was further supported by the multiplexed
immunofluorescence-based spatial proximity and upregulated expression of ligands and
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their cognate receptors. Using multiple external ccRCC datasets [46,129,130], the authors
also showed a significant increase in the proportion of terminally exhausted CD8+ T cells
and M2-like TAMs and the gene signature score defining the inhibitory interaction with
the advancing ccRCC stage. The high expression of the gene signature was specifically
associated with poor prognosis in the OS of patients with late-stage ccRCC. Meanwhile,
the gene signature did not have prognostic value for predicting PFS and immune response
to anti-PD1 therapy or mTOR inhibitor. On the other hand, scTCRseq results showed a
significant decrease in the TCR diversity with advancing ccRCC stage, and there was a
high proportion of terminally exhausted CD8+ T cells with low TCR diversity in metastatic
ccRCC. Contrary to the previous finding [62], the shared clonotypes were preferentially
detected in tumors rather than non-tumor tissues.

To identify potential immune populations that drive the response to ICI, Krishna
et al. [55] collected 167,283 cells from blood, adjacent non-tumor tissue, metastatic lymph
node, and multiple regions of primary ccRCC from 2 untreated and 4 treated patients
with ICI. Then, the authors generated droplet-based scRNAseq and scTCRseq libraries.
First of all, multiregional sampling confirmed extensive heterogeneity within and between
patients, highlighting the vulnerability of applying bulk RNA-seq-derived signatures to
tumor region sampling bias. Mapping the immune environment of ccRCC identified
diverse immune cell types, such as five well-defined CD8+ T clusters and 4 clusters of
TAMs characterized by HLA or ISG expression. Next, the authors co-analyzed scRNAseq
and pathologic review, and identified that tissue-resident CD8+ T cells, as well as CD4+

T cells and NK cells, were heavily infiltrated in tumor regions associated with tumor
regression or CR to ICI. Conversely, in tumor regions associated with resistance to ICI,
a high proportion of HLA+ TAMs were identified with a scarcity of T cells. Following
ICI treatment, the tissue-resident CD8+ T cells from the complete responders were found
to solely undergo clonal expansion with unique TCR clonotypes, but the resistant non-
responders also had the clonal expansion of the CD8+ T subset. To estimate potential
immune populations underlying ccRCC patient prognosis and response to ICI and TKIs,
various clinical signatures, such as T effector, angiogenesis, and myeloid inflammation,
were applied to multiple external ccRCC cohorts [37,78,128]. Results indicated that effector
T cells and angiogenic myeloid cells had the potential to elicit a favorable response to
anti-PD-L1 and TKI arms. Also, the scRNAseq signature of ISGhigh TAMs was highly
associated with angiogenesis in the TKI arm. In the end, the study validated the scRNAseq
signatures that are highly specific for tissue-resident CD8+ T cells or ISGhigh TAMs, and
applied them to IMmotion 150/151 (anti-PD-L1 plus anti-VEGF or TKI), JAVELIN Renal
101 (anti-PD-L1 plus TKI) ccRCC cohorts. Importantly, high levels of the tissue-resident
CD8+ T signature were significantly associated with improved PFS and better response
in anti-PD-L1 and TKI arms. Autologously, the ISGhigh TAMs signature was significantly
associated with improved PFS in the TKI arm. However, both signatures did not predict
clinical outcomes from the TCGA ccRCC dataset.

In a similar study of four anti-PD-1-treated patients and three untreated patients
with primary and metastatic ccRCC, Bi et al. [59] generated a droplet-based scRNAseq
library and analyzed 34,326 cells. The study started off applying progenitor or terminally
exhausted signature to the scRNAseq immune subsets and identified 4-1BBlowCD8+ T
cells that resembled the progenitor exhausted population, which is known to persist
long term, respond to anti-PD1 therapy, and ultimately differentiate into the terminally
exhausted population in melanoma [131]. Following ICI treatment, the 4-1BBlowCD8+ T
cells were found to upregulate the expression of effector and co-stimulatory molecules,
including GRANZYME A (GZMA) and FAS LIGAND (FASLG), and highly enriched with
terminally exhausted signature. This result was also supported by the high enrichment
score of 4-1BB-low signature in PD1-exposed CD8+ T cells from the CheckMate 009 cohort.
Similarly, ICI treatment rendered all distinct subsets of TAMs more M1-like and pro-
inflammatory in responder patients, at least in part, as induced by IFN secreted from
CD8+ T cells. At the same time, however, the ICI-exposed 4-1BBlowCD8+ T cells and TAMs

174



Cancers 2021, 13, 5856

also showed systemic and dramatic upregulation of immune checkpoint and evasion genes,
suggesting progressive and eventual acquisition of ICI resistance. Two subsets of cancer
cells identified were found to transcriptionally shift toward a pro-inflammatory state during
ICI. Patients who had a high score of the gene signature that defined renal morphogenic
and angiogenic cancer population showed the ICI-specific clinical benefit regarding OS
in the CheckMate 025 cohort (anti-PD1 arm). Supporting different cell populations in
a complex cross-talk in ccRCC environment, numerous ligand-receptor pairs, including
IFNγ-producing CD8+ T cells and type 2 IFN receptor on TAMs, were inferred and further
supported by expression signatures and estimated immune cell fractions adapted from
CheckMate 009 cohort.

Very recently, Au et al. [38] scrutinized key determinants that are responsible for
clinical response in metastatic ccRCC patients before and after nivolumab treatment. Again,
various tumor molecular features of ccRCC, including single mutations, copy number
alterations, insertion-and-deletions, mutational burden, and neoantigen load, were not
associated with favorable anti-PD-1 response. Of note, however, ccRCC-specific expression
of human endogenous retrovirus was found to be associated with lack of response to
nivolumab. In addition, it has been suggested that defects in antigen presentation, despite
a high number of mutations resulting from defective DNA mismatch repair, might be a po-
tential factor underlying poor response to ICI. Authors generated droplet-based scRNAseq
and scTCRseq libraries and analyzed a total of 25,456 IgG4+ (anti-PD-1 antibody-bound)
and IgG4- CD3 T cells isolated from a responder and a non-responder during nivolumab
monotherapy. scRNA-seq showed that anti-PD-1 treatment renders nivolumab-bound
ccRCC-infiltrating CD8+ T cells immunologically activated in both responder and non-
responder. Paired analysis of scRNAseq and scTCRseq found that nivolumab treatment
induces clonal expansion of pre-existing CD8+ T cells, and only the responder had clonal
hyper-expansion of the nivolumab-bound CD8+ T cells (as defined by more than 200 clones
with the same complementary determining region 3 sequence). The expanded nivolumab-
bound CD8+ T cells had higher expression of GZMK gene in the responder than the
non-responder. scRNAseq, flow cytometry, and multiplexed IHC confirmed the higher
expression of GZMB and TCF7 in the nivolumab-bound CD8+ T cells from responders.
Using previously published ccRCC-specific scRNA/scTCRseq datasets, they further vali-
dated their findings. As a result, expanded TCRs in responders but not the non-responders
had higher expression of genes involved in T cell activation and co-stimulatory mark-
ers, including GZMK and 4-1BB. It should also be noted that nivolumab treatment not
only reinvigorated CD8+ T cells in the responder, but also caused T cell exhaustion and
dysfunction, suggesting simultaneous development of resistance as consistent with the
previous finding [59]. Finally, bulk and scTCRseq analysis before and after treatment
demonstrated that responders have clonal expansion of pre-existing and novel TCRs from
the nivolumab-bound CD8+ T cells. However, non-responders had an overall paucity
of expanded pre-existing TCRs, rather showing clonal replacement of expanded TCRs.
The novel expanded T cell clones after nivolumab treatment were not associated with
clinical response.

Meanwhile, several studies have also been reported using droplet-based scRNAseq
technology to provide insight into normal and ccRCC immunobiology. Yu et al. [54]
studied the inter-tumoral heterogeneity using bilateral ccRCC samples within a patient
and identified the high similarity of the gene expression between the immune cells in
the bilateral ccRCC. Liao et al. [132] mapped the atlas of single-cells that normally reside
in healthy renal tissues, providing the reference data for normal renal cell biology and
kidney disease. Besides the major analysis that identifies cancer cell identity, Young
et al. [57] highlighted the VEGF signaling circuit in the ccRCC environment. The study
identified that TAMs, as well as ccRCC cells, were a further source of VEGF, and VEGFR
was highly expressed in ascending vasa recta endothelial cells. Using multiple types
of human cancers, including ccRCC, Wu et al. [62] showed that expanded clonotypes
from effector-like CD8+ T cells were simultaneously detected in the tumor, non-tumor
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tissues, and peripheral blood. In particular, further evidence indicated that peripherally
expanded T cells with ICI treatments were directly linked to tumor infiltration and eliciting
an immune response, rather than reinvigorating the already exhausted T cells in the
tumor environment. This study also identified distinct subsets of immune cells with a
focus on T cells in ccRCC, but did not fully characterize tumor microenvironment. Kim
et al. [133] compared and analyzed scRNAseq data generated from tumor cells isolated
from the patient’s metastatic ccRCC and the paired primary and metastatic ccRCC derived
from the patient-derived xenograft (PDX) model. The study verified the current patient’s
drug refractoriness, identified candidate signaling pathways and drugs, and validated
the predicted drug sensitivity using in vitro and in vivo assays, suggesting the clinical
applicability of scRNAseq and combined mouse model to screen optimal choice of TKIs.

3.3. Major Immune Cell Types Associated with Poor Prognosis and Resistance to ICIs

The paradox where high infiltration of CD8+ T cells is not linked to favorable prognosis
and response to ICI in patients with ccRCC stems from the existence of exhausted and/or
dysfunctional T cells. Indeed, the exhaustive status is shown to limit the actual effector
function of the ccRCC-infiltrating CD8+ T cells [58–60]. The exhaustive phenotype of the
T cells is being overlapped by several groups, as characterized by upregulation of PD-1,
LAG-3, TIM-3, CTLA-4, TOX, and CD39 [36,46,55,58,59,61]. scRNAseq studies identified
the association between the exhausted and/or dysfunctional CD8+ T cells and disease
progression and/or resistance to ICI in patients with ccRCC. Supporting this, the exhausted
T cells are unlikely to be fully reversed and reinvigorated by ICI during ccRCC treatments
as suggested in other cancers [134–138].

The skewed polarization of TAMs toward M2-like or anti-inflammatory properties is
a common feature of advanced ccRCC. Some TAM phenotypes have been reported to de-
crease the overall immune temperature of the ccRCC. For example, TAMs characterized by
high expression of HLA are shown to promote resistance to ICI [55]. A subset of TAMs char-
acterized by a high level of immune regulatory genes, such as APOE, C1Q, and TREM-2,
has been commonly identified in the human ccRCC and RENCA model [55,58,60,61,139].
This subset is shown to be associated with a poor prognosis of ccRCC patients due to dis-
ease recurrence [61]. Complement activation and/or metabolic reprogramming can be key
events associated with TAMs that shape the immunosuppressive tumor microenvironment
of ccRCC [55,58,60,61,139].

Computational analysis using a repository of curated receptors, ligands, and their in-
teractions enabled the identification of interactions between malignant and non-malignant
cells in ccRCC [140,141]. There are multiple interactions reported between terminally
exhausted CD8+ T cells, M2-like/anti-inflammatory TAMs, and ccRCC cells via numerous
pairs of ligands and their cognate receptors (Figure 2) [55,56,59–61]. The inhibitory circuit
becomes significant as the disease progresses, which promotes an immune-suppressive
tumor microenvironment. The signature related to these interactions is found to predict
a worse overall prognosis but not a response to ICI of ccRCC patients [59]. Following
ICI treatment, immune checkpoint and evasion genes, such as LGALS9 and NECTIN2
expressed on tumor cells as well as TAMs, may play a role in the acquired ICI resistance [59].

Treg cells are one of the important immune-suppressive cell types. Tumor-infiltrating
Treg cells are highly immunosuppressive to effector cells. Most scRNAseq datasets have
a relatively low abundance of Treg cells for ccRCC, one of the reasons that Treg cells are
much less focused from the aforementioned scRNAseq datasets. scRNAseq analysis has
identified the increase in the frequency of the tumor-infiltrating Treg cells with advancing
ccRCC [60]. Patients showing CR to ICI have low Treg infiltration by scRNAseq [55]. We
have particularly focused on tumor-infiltrating Treg cells from our own ccRCC dataset [58].
Comparing tumor-infiltrating versus blood Treg cells, we identified some common shared
signature genes of tumor-infiltrating Treg cells, including some genes whose protein prod-
ucts are targetable such as CD177 and BCL2L1 (encoding BCL-XL). Tumor-infiltrating Treg
cells exhibit certain heterogeneity including two distinct populations, with one population
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showing strong suppressive capacity. We developed a unique tumor-infiltrating Treg
cell signature with the prognostic value superior to some known Treg signatures [142].
The clinical importance of tumor-infiltrating Treg cells has been correlated with poor
prognosis and response to immune perturbation in other studies as well [45,95,143]. A
study observed that anti-PD-1 therapy induces hyper-progression with clonal expansion
of tumor-infiltrating Treg cells with upregulation of some genes, including CD177 and
BCL2L1 in a leukemic patient [144], the two genes we found to be elevated specifically
in tumor-infiltrating Treg cells. CD177 is a surface protein and may modulate the im-
mune suppressive function and maintain homeostasis of tumor-infiltrating Treg cells in
ccRCC [142]. We have demonstrated that CD177+ tumor-infiltrating Treg cells are hyper-
suppressive to effector T cells and anti-CD177 antibody is able to block the suppressive
function of CD177+ tumor-infiltrating Treg cells. Our group has been actively developing
other ways of targeting human tumor-infiltrating Treg cells to induce the degradation of
BCL-XL using proteolysis-targeting chimera (PROTAC), which seems very effective for
inducing anticancer immunity [145]. Taken together, Treg cells are a potential cell type that
can be targeted for cancer immunotherapy.

Figure 2. Ligand and receptor pairs potentially associated with ccRCC progression and resistance to
ICI. A potential list of ligand and receptor pairs that are predicted by in silico analysis and commonly
identified by published ccRCC scRNAseq studies are present. The cell to cell interaction via ligand
and receptor pair has not been validated at the functional level. Abbreviation: ccRCC; clear cell renal
cell carcinoma, TAMs; tumor-associated macrophages.

3.4. Limitations and Challenges in scRNAseq Technology

Accumulating scRNAseq studies have provided a tremendous amount of critical
information that can help to solve the current issues, such as low efficacy and resistance
to ICI in patients with ccRCC. Nevertheless, there are limitations and challenges in this
scRNAseq technology. In general, the sample sizes are small due to the cost associated
with scRNAseq. It is of the utmost importance to prepare freshly isolated single cells for
the successful generation of the cDNA library [51]. Single-cell suspension with less than
70% of cell viability is not recommended for library preparation. A highly collaborative
work setting is needed for prompt sample preparation and processing to secure cell via-
bility. There is a high economic burden and upfront cost because drop-based scRNAseq
platforms require expensive hardware and preparatory kits. Cell hashing and multiplexing
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technology where oligo-tagged antibodies against ubiquitously expressed surface proteins
uniquely label cells from biologically different samples are expected to decrease costs [146].
Processing of the raw data to generate analyzable data form, scRNAseq data requires
computing systems with high memory capacity. For example, the 10× Genomics Cell
Ranger requires 64 gigabytes of RAM, up to 1.5 terabytes of disk space, and a Linux-based
system. Newer alignment tools, such as Alven [147] or kallisto-bustools [148], cut these
system requirements by an order of magnitude. The bioinformatic analysis of scRNAseq
data is still challenging; in-depth analysis of the data requires experience in coding, which
can be a barrier of entry for laboratories. There is still no standard guideline for processing
workflow from quality control to determining resolution and dimensionality [149].

In addition to limitations concerning the bottlenecks in implementation, there are also
challenges associated with scRNAseq technology. scRNAseq is invariably limited by the
dropout phenomenon where up to 93% of the count matrix can be zeros [149,150]. From
the immune perspective, this dropout effect, coupled with the use of a highly-variable
gene approach, makes annotating cell types and discovering small immune populations
difficult [151]. A certain type of immune cells can be more susceptible to dropout. Indeed,
there is a preferential dropout of transcription factors and cytokines, making CD4+ T cell
annotation difficult [61,152]. Application of a specific algorithm to scRNAseq data to
infer protein activity [61] or impute RNA values [153], at least in part, may overcome the
dropout. In addition, changes in the generation of cDNA, e.g., through the adoption of
the second-strand synthesis option, may also be advantageous in the recovery of cytokine
and transcription factor expression [152]. Single-cell sequencing requires the generation
of single-cell suspensions, leading to induction of specific genetic programs and loss of
spatial information [154]. Platforms for spatial scRNAseq are emerging and will offer
insights into cell-to-cell communications [155]. Unlike flow cytometry with established
markers for antigen experience or cellular ontogeny, the scRNAseq toolkits are not as well-
stocked. In terms of the latter, scRNAseq-based lineage tracing, using cellular tagging or
mitochondrial variations, may offer a chance to look at the compartment-specific immune
response [156,157]. The chemistry used to generate the cDNA libraries in scRNAseq
utilize short 5′ or 3′ reads, limiting the assessment of mutational status, single-nucleotide
polymorphisms, or alternative splicing, such as CD45RA versus CD45RO isoforms, which
all play a role in the immune response. Recent improvements in scRNAseq chemistry may
reduce this issue by generating longer cDNA sequences [158].

4. Perspectives and Clinical Implications

4.1. Consensus in Nomenclature

There is no doubt that utilizing scRNAseq technology to clinical samples enables
the better dissection of tumor microenvironment of ccRCC or other cancers, providing
insight into various types of immune cells that are critical for either shaping immune-
suppressive environment or driving a favorable immune response following ICI. The
big picture of immune cell composition can be painted at a much higher resolution than
what traditional bulk RNAseq or flow cytometry have been provided, along with the
gene expression data of individual immune cells. As we discussed about different studies
related to the nomenclature of distinct cell subsets, it becomes evident that the field is far
away from achieving consensus based on signature gene expression. As ccRCC enters
the immunotherapy era, elevation in tumor-infiltrating CD8+ T cells, though they have
been known as a bad prognosis before immunotherapy became the standard frontline
treatment, provides an immune-hot microenvironment for ICI to work. Although most
studies borrowed signatures based on melanoma studies to determine the nature of CD8
clusters, different studies used different nomenclatures. A similar situation applies to other
major immune cell types including CD4+ T cells and macrophages. Based on publications
and after carefully comparing different populations, CD8+ T cells from ccRCC have the
three major populations as in melanomas, including the naïve like, cytotoxic, and dys-
functional [159], as well as a relative consensus on the proliferative and tissue-resident
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memory (TRM) populations. Apparently, the dysfunctional group consists of a series of
populations at different and likely continuous functional stages that could be the potential
targets of ICIs, with a 4-1BBlow cluster showing feature of progenitor exhausted phenotype
and can be expanded by ICIs for cancer cell killing [55,59]. This 4-1BBlow CD8+ T could be
a similar population identified in another study as TRM as both populations exhibit the
expression of intermediate immune checkpoints, effector/activation molecules and likely
CD44 and CD103 [55,59] that are used to define TRM cells. A clear understanding of these
populations should be based on the integration of these datasets and will be able to direct
the prediction of patients who may benefit from ICIs.

TAMs are another major focus on ccRCC studies with 2–5 sub-clusters from different
studies. The nomenclature for TAMs can be misleading since quite a few studies still used
M1-like and M2-like names to define the subtle difference of their M1 or M2 signatures.
Nearly all studies did not show a distinct separation of M1- versus M2-like TAMs that
rather secrete M1 and/or M2 cytokines at various levels. Several studies used the marker
genes such as HLA, interferon signaling genes (ISG), other lead genes or cluster numbers
to define and imply functional differences. It is clear that TAMs are very important in the
pathogenesis of ccRCC and can be the major predictor for the sensitivity to ICIs. The clearer
designation of different TAM clusters is important for using these TAM-related signatures
for clinical predictions.

4.2. ScRNAseq Reveals Mechanisms of Immune Activation

The major action of ICIs in melanoma is to rejuvenate pre-existing exhausted CD8+ T
cells, a well-accepted mechanism of action for ICI-based cancer immunotherapy. Recent
development in the field identified a potential novel mechanism by ICI-induced clonal
replacement, i.e. the replacement of old CD8+ T cell clones with new clones from blood
or adjacent normal tissues. Clonal expansion of ccRCC-infiltrating non-exhausted CD8+

T cells and/or de novo introduction of peripherally expanded CD8+ T cells to tumor site
can be a more convincing and potential mechanism underlying the immune response
to ICI than the widely presumed reinvigoration of the pre-existing exhausted CD8+ T
cells [44,55,62,135,137,138,160,161]. In agreement with this notion, a recent study [38]
clearly demonstrated that the diversity of pre-existing CD8+ T cell clones, likely those
similar to 4-1BBlow or TRM populations identified from other studies [55,59], are critical
for eliciting the favorable response within nivolumab-treated ccRCC patients. Nivolumab
maintains and expands these pre-existing CD8 T cell clones to elicit an effective anti-tumor
immune response. In non-responders, clonal expansion of exhausted CD8+ T cells [55]
and expanded CD8+ T cells with novel TCRs are not associated with clinical response to
nivolumab in ccRCC patients [38]. This novel mechanism of action makes it critical to
identify the diversity of pre-existing CD8+ T cell clones within tumor microenvironment
and to set up a threshold using deep learning to predict patient responses to ICIs. Figure 3
illustrates the current concept of immunotherapy driving clinical response to ICI in patients
with ccRCC.

The presence of distinct subsets of immune suppressive and/or pro-angiogenic TAMs
is believed to lead to ccRCC progression and inhibit the immune response to ICI. Potential
mechanisms of action include inhibitory cell-to-cell communications, modulation of com-
plement activation and/or metabolic reprogramming [55,56,58–61,139]. Machine-learning
based algorithm has the capacity to identify the potential cell-cell interactions and TAMs
process many interactions with cancer cells and other immune cells (Figure 2) to facilitate
cancer progression in late stage of ccRCC patients by either directly promoting angiogenesis
and/or cancer cell aggressiveness, or by indirectly inducing a more immune-suppressive
network. Currently there is no effective treatment to eliminate or inhibit these TAMs, but
scRNAseq-based research has defined certain populations that can be shaped by ICIs in
responders where ICIs induce a more M1-like responses at the same time upregulating
several immune checkpoints such as VSIR, VSIG4, PD-L2, and SIGLEC10 [59]. The function
of these immune checkpoints is yet-to-be validated whether they can induce ICI resistance,
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but if confirmed, following treatment regimens should involve in antibodies targeting
those novel checkpoints.

Figure 3. Current concept of immunotherapy driving clinical response to ICI in patients with ccRCC. Pre-existing CD8+ T
cell clones phenotyped by CD69+ZNF683+ TRM, progenitor exhausted, or 4-1BBlow are considered to have a critical role in
favorable response to ICI in ccRCC patients. In responders, ICI-bound expanded CD8+ T cells exhibit cytotoxic, NK-like, or
progenitor-like phenotypes. In contrast, non-responders had no clonal expansion of the tumor-reactive CD8+ T cell clones.
In both responders and non-responders, pre-existing exhausted T cells are clonally expanded following ICI treatment.
In ccRCC, clonal expansion of CD8+ T cells with novel TCRs are not associated with clinical response to ICI. Following
ICI treatment, TAMs shift toward M1-like or pro-inflammatory phenotype in responders, whereas non-responders have
skewed polarization of TAMs toward M2-like or anti-inflammatory phenotype in ccRCC tumor microenvironment. CD69,
ZNF683, and CD103 are commonly expressed in CD8+ TRM cells. 4-1BBlow CD8+ T cells are highly enriched with progenitor
exhausted signature. The tumor-reactive effector-like CD8+ T cells commonly express GZMA, GZMB, GZMK, PRF1, IFNG,
NKG7, CCL3, CCL5, and CXCL13 genes, as well as co-inhibitory receptors, such as PD-1, TIM-3, LAG3, and TIGIT genes.
Terminally exhausted phenotype is characterized by high expression of PD-1, LAG-3, TIM-3, CTLA-4, TOX, and CD39.
M1-like TAMs are highly enriched with signatures of interferon signaling, antigen presentation, and proteasome function.
M2-like TAMs are commonly characterized by high expression of HLA, APOE, C1QA, and TREM-2. Abbreviation: ccRCC;
clear cell renal cell carcinoma, ICI; immune checkpoint inhibitor, TAMs; tumor-associated macrophages, NK; natural killer,
TCR; T cell receptor.

Another complexity comes from the interactions between essential components within
ccRCC involving cancer cells, immune cells and others. An oversimplified version is
shown in Figure 2 where many ligand/receptor pairs exist and can potentially induce
complex cellular interactions. How can we use the identified and known information to
extract the dominant signaling pair that can be interrupted? For example, as many as 14
pairs of interaction are identified between CD8+ T cells and TAMs including PD-1/PD-L1
pair that may dominate the immune-suppressive responses within responders treated
with anti-PD-1/PD-L1 antibodies. The question is whether we can develop testing and
bioinformatics pipeline for clinical treatment selections rather than treating all patients
with the same drugs that are known to have relatively low responses rate.
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4.3. Conclusions Remarks

Current scRNAseq studies have been limited by the small patient cohorts and the
lack of experimental validations at functional levels. Can therapeutic intervention cause
the hypothesized immune modulation in TME within patients’ tumors? Future work will
be required to longitudinally address the characteristics of highly effective T cells against
ccRCC in different perspectives, such as stem cell-like, metabolic, transcriptional, and
epigenetic states [44]. The standardization of experimental methods, such as scRNAseq
studies pooling clinical trials and in vitro or in vivo preclinical perturbation models will be
required to address the effect of blocking immune checkpoints or key inhibitory molecules
on the reinvigoration of exhausted T cell function, replacement of exhausted T cells by
non-exhausted effector T cells, or shifting anti-inflammatory TAMs to pro-inflammatory
ones [133,138,139]. Multi-omics approaches to the ccRCC environment, including spatial
transcriptomics and proteomics, may reveal new gene signatures and molecular targets
that reflect a functional immune niche or escape [44]. Further studies are warranted to
evaluate other, less-characterized cell types, such as antigen-presenting cells or regula-
tory T cells, to identify novel therapeutic targets that address immune dysfunction in
ccRCC [33,40,43,55,59,60,139,162–164].
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Simple Summary: Clear cell renal cell carcinoma (ccRCC) is a frequent cancer that causes more than
100,000 deaths every year. Treatment with drugs that target enzymes that help tumours grow such
as sunitinib have greatly improved the prospects for ccRCC patients, however a large proportion
of patients become resistant. We created sunitinib resistant cell lines and identified consequent
changes in gene (and miRNA) expression by microarray analyses. Using this approach, we identified
different pathways of resistance suggesting that tumour cells have many ways to overcome sunitinib
treatment. We were able to overcome resistance in cells by inhibiting a protein, PD-L1, that is targeted
by many immunotherapeutics currently in use for ccRCC patients suggesting a combination of
immunotherapy and sunitinib may benefit patients. In addition, we identified miRNAs that are
common to multiple resistance mechanisms suggesting they may be useful targets for future studies.

Abstract: The anti-angiogenic therapy sunitinib remains the standard first-line treatment for meta
static clear cell renal cell carcinoma (ccRCC). However, acquired resistance develops in nearly all
responsive patients and represents a major source of treatment failure. We used an integrated miRNA
and mRNA transcriptomic approach to identify miRNA:target gene interactions involved in sunitinib
resistance. Through the generation of stably resistant clones in three ccRCC cell lines (786-O, A498
and Caki-1), we identified non-overlapping miRNA:target gene networks, suggesting divergent
mechanisms of sunitinib resistance. Surprisingly, even though the genes involved in these networks
were different, they shared targeting by multiple members of the miR-17~92 cluster. In 786-O cells,
targeted genes were related to hypoxia/angiogenic pathways, whereas, in Caki-1 cells, they were
related to inflammatory/proliferation pathways. The immunotherapy target PD-L1 was consistently
up-regulated in resistant cells, and we demonstrated that the silencing of this gene resulted in an
increase in sensitivity to sunitinib treatment only in 786-O-resistant cells, suggesting that some ccRCC
patients might benefit from combination therapy with PD-L1 checkpoint inhibitors. In summary,
we demonstrate that, although there are clearly divergent mechanisms of sunitinib resistance in
ccRCC subtypes, the commonality of miRNAs in multiple pathways could be targeted to overcome
sunitinib resistance.

Keywords: renal cancer; sunitinib; resistance; miRNA; transcriptome; pathway analysis; clear cell
renal cell carcinoma
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1. Introduction

Renal carcinomas are one of the most common types of cancer in the Western world,
accounting for ~3% of adult tumours or more than 200,000 new cases each year [1]. Clear
cell renal cell carcinoma (ccRCC) represents 80–90% of renal carcinomas and accounts for
more than 100,000 deaths worldwide each year [2–5]. Nearly a third of patients present
with locally advanced and/or metastatic disease that typically shows limited responsive-
ness to traditional therapies such as chemotherapy, radiotherapy, or cytokine therapy [6].
Moreover, ccRCC is a highly vascularized cancer that is frequently associated with muta-
tions in the von Hippel–Lindau (VHL) gene that promotes the angiogenic pathway and can
be further subclassified into those with proangiogenic and proinflammatory tumours [7].

The antiangiogenic therapy sunitinib (Sutent™) is currently the standard first-line
treatment for metastatic ccRCC (mccRCC) [8,9]. Sunitinib is a small molecule inhibitor of
multiple receptor tyrosine kinases (RTKs), including vascular endothelial growth factor
receptor (VEFGR), platelet-derived growth factor receptors (PDGFR), fms-related tyrosine
kinase 3 (FLT3), stem cell growth factor receptor KIT, and RET [10,11]. However, despite
the clear improvements for ccRCC patients receiving this treatment, the clinical benefit
of sunitinib on progression-free-survival (PFS) is limited, as more than half of patients
do not respond to initial therapy, and of those that do, nearly all develop resistance after
~24 months [12,13]. Therefore, there is an urgent need for a better understanding of the
molecular basis of sunitinib resistance in order to identify biomarkers of resistance that will
allow for the detection of nonresponsive ccRCC patients that could benefit from up-front
alternative treatment regimens, as well as developing new tools that could improve the
treatment response in responsive patients.

Although many publications have investigated the molecular basis of sunitinib re-
sistance [14–19], and several have considered the role of microRNAs (miRNAs) [20–27],
only a few have taken an integrated genomic approach to identify miRNA-target gene
interactions that can give functional insights into resistance mechanisms [28,29]. Therefore,
we used generated multiple sunitinib-resistant clones in primary tumour ccRCC cell lines
that are VHL-defective (786-O and A498) and the metastatic, VHL-functional, Caki-1 cell
line. Changes in the expression of both miRNAs and genes were elucidated in the resistant
clones by microarray analysis and differentially expressed genes that were targeted by
differentially expressed miRNAs were identified by network analysis (Figure 1). These
results were confirmed by both mRNA and protein levels and the immunotherapy target
PD-L1 was identified as being up-regulated in resistant cell lines. Silencing of PD-L1 was
demonstrated to restore the sensitivity of resistant 786-O cells.
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Figure 1. Schematic diagram of experimental workflow for the identification of miRNA:gene interac-
tions involved in sunitinib resistance.

2. Results

2.1. Generating In Vitro Models of Sunitinib Resistance

Sunitinib-resistant 786-O, A498, and Caki-1 clones were generated by serial passage in
increasing concentrations of sunitinib until 10 μM was reached. Two independent resistant
clones were developed for each cell line and the IC50 of each clone was calculated by MTT
assay (Figures S1–S3 and Table 1).

Table 1. IC50 values of parental and sunitinib-resistant clones c1 and c2 generated from 786-O, A498,
and Caki-1 cell lines as measured by MTT assay.

IC50 Value

Cell Line Biological Replicate Parental Clone c1 (p-Value) Clone c2 (p-Value)

786-O A 5.7 17.32 13.54
B 11.39 23.3 20.07
C 6.7 20.4 12.8

Average 7.93 20.34 ** 15.47 *
A498 A 10.48 11.92 14.36

B 7.682 12.42 16.04
C 7.18 12.01 10.54

Average 8.44 12.12 * 13.64 *
Caki-1 A 9.5 16.8 18

B 9 14.6 17.3
C 12.2 16.2 14.7

Average 10.2 15.87 ** 16.67 *
Values of biological triplicates are indicated by letters A–C. The dose response curves used to generate the IC50
values can be found in Figures S1–S3. p-values were calculated by an independent t-test and significance denoted
by * p < 0.05, ** p < 0.01.

As can be seen from Table 1, the average IC50 value of the sunitinib-resistant clones c1
and c2 were significantly higher than their respective parental control cell lines.
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2.2. Non-Coding RNA and Gene Expression in Sunitinib-Resistant Cells

In order to look at which miRNAs and genes were involved in the resistant phenotype
of the cell lines, we carried out microarray analyses. Unsupervised cluster analysis demon-
strated that the miRNA expression profile of the resistant cell lines differed from that of
the parental control cell lines in all three cell lines (Figure 2A–D). Moreover, there was a
clear difference in miRNA expression between c1 and c2 in cell lines, suggesting different
mechanisms of resistance, although this difference was most pronounced in Caki-1 cells.

Using ANOVA analysis, we identified 253 differentially expressed miRNAs between
resistant 786-O clone c1 and the parental control, of which 184 were up-regulated and 69
were down-regulated. There were 234 miRNAs differentially expressed miRNAs between
clone c2 and parental control; 182 were up-regulated and 52 were down-regulated. Over
60% (184/303) of each of these differentially expressed miRNAs were common to both
clone c1 and clone c2 (Figure 2A,B; Table S1). In A498 cells, we identified 102 differentially
expressed miRNAs between clone c1 and the parental control, of which 68 were up-
regulated and 34 were down-regulated. For clone c2, 107 miRNAs were differentially
expressed when compared with the parental; 61 were up-regulated and 46 were down-
regulated. Nearly 32% (51/158) of these miRNAs were commonly dysregulated in the two
clones (Figure 2C; Table S2). In the Caki-1 cell line, we identified 678 differentially expressed
miRNAs between clone c1 and the parental control, of which 324 were up-regulated and
354 were down-regulated. For the clone c2, 514 miRNAs were differentially expressed
when compared with the parental; 245 were upregulated and 269 were downregulated.
Nearly 30% (273/919) of these miRNAs were commonly dysregulated in the two clones
(Figure 2D; Table S3).

In addition to miRNA analyses, we carried out gene expression analysis on the same
samples using Affymetrix Clariom D microarrays. Unsupervised cluster analysis of gene
probes (intensity > 50) showed a similar relationship between samples as with the miRNAs
(Figure 2E–H). In other words, there was a distinct gene profile between the parental control
cell lines and the resistant cell lines, and the two resistant clones, c1 and c2, had distinct gene
expression profiles. Similar to miRNA expression, these differences were most pronounced
in Caki-1 cells. There were 4869 gene probes identified as being differentially expressed
(p < 0.05; >2 or <−2-fold) between 786-O c1 and parental cells, 2608 of which encoded
for annotated genes (1913 up-regulated and 695 down-regulated). In clone c2, there were
3994 differentially expressed genes, of which 2029 encoded for annotated genes (1397
up-regulated and 632 down-regulated). There were 1383 genes in common (43% of 3254)
(Figure 2E,F; Table S4). For A498 cells, 3019 probes were identified as being differentially
expressed between c1 and parental cells, of which 1523 encoded for annotated genes;
972 of these were up-regulated and 551 were down-regulated. There were 2953 probes
differentially expressed between c2 and parental cells, of which 1411 encoded genes were
comprised of 806 up-regulated and 605 down-regulated genes. There were 621 of 2313
(27%) genes that were commonly dysregulated in both clones (Figure 2G; Table S5). In the
Caki-1 cell line, there were 7059 genes differentially expressed between c1 and parental
cells, of which 2905 were annotated (883 up-regulated, 2022 down-regulated). For clone c2,
6201 genes were differentially expressed, 2370 of which were annotated (1153 up-regulated,
1217 down-regulated). A total of 990 genes (23%) were common between c1 and c2
(Figure 2H; Table S6).
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2.3. Interaction Network Analysis between Differentially Expressed Genes and miRNAs

In order to identify which of the differentially expressed genes were regulated by
miRNAs, we mapped the differentially expressed miRNA and gene expression data sets
for each resistant clone to a network containing experimentally validated miRNA-gene
target interactions (n = 3502) that were obtained from the miRTarBase database [30]. For
the 786-O c1 cells, 545 (19%) of differentially expressed genes and miRNAs mapped to
this network from 253 and 2608 differentially expressed miRNAs and genes, respectively
(n = 2861), and 453 (20%) from the 234 and 2029 differentially expressed miRNA and genes
from c2 (n = 2263). In the A498 cell line, out of the 1625 differentially expressed genes
and miRNAs for c1 (102 miRNAs and 1523 genes), 338 (21%) mapped to the miRNA:gene
interaction network, whereas, for c2, 313 (21%) of the 1518 genes and miRNAs (n = 107 and
1411, respectively) were present in the network. For Caki-1, out of the 3583 differentially
expressed genes and miRNAs in c1 (n = 678 and 2905, respectively), 696 (19%) were mapped
to the interaction network, and in c2 there were 577 (20%) of 2884 (514 and 2370 miRNAs
and genes, respectively).

The mapped differentially expressed miRNAs and genes were separated into miRNAs
that were up-regulated and genes that were down-regulated and vice versa. These lists
were used to create networks from miRNA:genes that were common to both c1 and
c2 clones (Figures 1 and 3). For 786-O cells, for example, there were 76 gene:miRNA
interactions, 71 interactions involving 18 down-regulated miRNAs with 53 different genes,
and 5 interactions with 5 up-regulated miRNAs with four different genes (Figure 3A;
Table 2). For A498, there was only one commonly up-regulated miRNA (miR-34c-5p)
that targeted two genes, and one down-regulated miRNA (miR-145-5p) that targeted four
genes—a total of six miRNA:gene interactions (Figure 3B; Table 2). For the Caki-1 cell line,
there were 26 miRNA:gene interactions, three up-regulated miRNA targeting six genes,
and 12 down-regulated miRNAs targeting twelve different genes (Figure 3C; Table 2).
Only two genes (ITGB3 and TNFAIP3) were in common between the cell lines (i.e., 786-O
and Caki-1).

Table 2. List of differentially expressed genes (in both clones) targeted by differentially expressed
miRNAs (in both clones) in sunitinib-resistant ccRCC cell lines.

Cell miRNA/Gene miRNA Target Gene(s)

786-0 ↑/↓ hsa-miR-663a CDKN1A
↑/↓ hsa-miR-572 CDKN1A
↑/↓ hsa-miR-638 PTEN
↑/↓ hsa-miR-612 SP1
↑/↓ hsa-miR-212-3p RFXAP
↓/↑ hsa-miR-106a-5p SIRPA, MMP2, HIF1A
↓/↑ hsa-miR-30d-5p KPNB1, BNIP3L, BECN1
↓/↑ hsa-miR-140-3p ATP6AP2, FN1
↓/↑ hsa-miR-26b-5p PTGS2, ST8SIA4
↓/↑ hsa-miR-17-5p MMP2, SIRPA, GPR137B, EPAS1, VLDLR, HIF1A
↓/↑ hsa-miR-200a-3p WASF3,CD274

↓/↑ hsa-miR-200b-3p LOX, FN1, CD274, WASF3, MSN, FERMT2,
FSCN1, RAB23

↓/↑ hsa-miR-210-3p HIF1A, BDNF, NCAM1, EHD2, TFRC
↓/↑ hsa-miR-328-3p PTPRJ, MMP16

↓/↑ hsa-miR-34a-5p
BECN1, VAMP2, FUT8, INHBB, NOTCH2,

MAGEA2, MAGEA3, L1CAM, AXL, PAM, SYT1,
CD274

↓/↑ hsa-miR-21-5p BASP1, RECK, NFIB, SATB1, RHOB, PIAS3,
DUSP10, LRP6

↓/↑ hsa-miR-146a-5p L1CAM, NOTCH2, PTGS2, HOXD10, RAC1
↓/↑ hsa-miR-20a-5p SIRPA, EPAS1, KIF26B, CRIM1, HIF1A, TSG101
↓/↑ hsa-miR-17-3p ITGA5, ITGB3
↓/↑ hsa-miR-99a-5p SMARCA5
↓/↑ hsa-miR-18a-5p PIAS3, TNFAIP3, HIF1A, TBPL1
↓/↑ hsa-miR-25-5p PRKCZ
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Table 2. Cont.

Cell miRNA/Gene miRNA Target Gene(s)

A498 ↑/↓ hsa-miR-34c-5p ITPR1, HNF4A
↓/↑ hsa-miR-145-5p ITGB8, CTGFL, VPS51, EGFR

Caki-1 ↑/↓ hsa-miR-148b-3p SLC2A1
↑/↓ hsa-miR-192-5p ITGB3, ITGAV, CAV1, WNK1
↑/↓ hsa-miR-29b-3p DNMT3B
↓/↑ hsa-miR-138-5p CCND1
↓/↑ hsa-miR-193b-3p CCND1, AKR1C2
↓/↑ hsa-miR-92a-5p KLF2
↓/↑ hsa-miR-296-3p ICAM1
↓/↑ hsa-miR-106b-5p BMP2, RND3, CCND1
↓/↑ hsa-miR-106b-3p BMP2
↓/↑ hsa-miR-130b-3p IRF1
↓/↑ hsa-miR-708-5p CCND1
↓/↑ hsa-miR-18a-5p TNFAIP3, CTGF
↓/↑ hsa-miR-17-5p CCND1, BMP2, TCEAL1, RND3
↓/↑ hsa-miR-1180-3p TCEAL1
↓/↑ hsa-miR-550a-5p CPEB4

 

Figure 3. miRNA-gene network analysis in (A) 786-O, (B) A498, and (C) Caki-1 cells. Ellipsoidal nodes represent target
genes and hexagonal nodes miRNAs, red colour denotes colour denotes upregulation and green downregulation.

On the basis of their role in the sunitinib-resistance miRNA-gene interaction networks,
we selected eleven miRNAs and seven genes for further analysis by qRT-PCR. miRNAs
miR-18a-5p, miR-17-5p, miR-106a-5p, miR-34a-5p, miR-146-5p, miR-200a-3p, miR-210-3p, miR-
21-5p, miR-15a-5p, miR-638, and miR-29b-3p were measured in the cell lines by qRT-PCR
(Figure ??A–K respectively). As can be seen from these results, levels of multiple members
of the miR-17~92 cluster (i.e., miR-18-5p, miR- miR-17-5p, and miR-106-5p (Figure ??A–C
respectively)) were significantly down-regulated in all of the resistant clones relative to
the parental cell lines in 786-O, A498, and Caki-1 cells. Similarly, we observed significant
down-regulation of miR-34a-5p in resistant clones of all the three cell lines (Figure ??D).
miR-146-5p was down-regulated in both clones of 786-O and Caki-1, and clone c2 of A498
was up-regulated more than 15-fold in c1 of A498 cells (Figure ??E). miR-200a-3p was
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significantly down-regulated in both 786-O and Caki-1 cells but not A498 cells where this
miRNA was up-regulated in resistant cells (Figure ??F). Caki-1 and A498 cells showed
significant down-regulation of miR-210-3p in resistant clones, whereas this miRNA was up-
regulated in 786-O cells (Figure ??G). miR-21-5p was up-regulated in A498 and Caki-1 cells
but down-regulated in 786-O cells (Figure ??H). In contrast to the aforementioned miRNAs,
miR-15a-5p, miR-638, and miR-29b-3p differed in expression between different resistant
clones. For example, miR-15a-5p was up-regulated in c1 but not c2 in both 786-O and Caki-1
cells but up-regulated in both A498 clones (Figure ??I). For miR-638, both resistant clones
of 786-O cells, as well as c1 of Caki-1 and c2 of A498 cells, were up-regulated compared to
parental cells, whereas c2 of Caki-1 and c1 of A498 cells were down-regulated (Figure ??J).
miR-29b-3p was down-regulated in both clones of 786-O and A498, but only c2 of Caki-1
cells while c1 was up-regulated compared to the parental Caki-1 cells (Figure ??K).

Of the nine genes that were measured by qRT-PCR, only CD274 (encoding for PD-L1
protein) displayed a consistent expression pattern (i.e., up-regulated) in all three cell lines
with both resistant clones (Figure 5A). HIF1A was up-regulated in both c1 and c2 of 786-O
and Caki-1 cells, as well as c2 of A498, but down-regulated in c1 of A498 (Figure 5B). The
closely related gene EPAS1 (encoding for HIF2α protein) was also up-regulated in both
clones of Caki-1 (and c1 of A498), but down-regulated in 786-O-resistant clones and c2 of
A498 cells (Figure 5C). A similar pattern was observed for CCND1, NOTCH2, and TNFAIP3,
which were also down-regulated in resistant clones of 786-O cells but up-regulated in both
Caki-1 and A498-resistant clones (Figure 5D, 5E and 5F, respectively). In contrast, levels
of LICAM were up-regulated in both resistant clones of 786-O and Caki-1 cells but only
up-regulated in c1 of A498 cells (Figure 5G). Levels of PTEN were down-regulated in 786-O
cells and c1 of A498 cells but up-regulated in Caki-1 cells and c2 of A498 cells (Figure 5H).
Levels of EGFR were similarly down-regulated in 786-O and A498-resistant clones but
down-regulated in 786-O-resistant clones (Figure 5I).

Figure 4. Cont.
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Figure 4. miRNA expression in resistant clones and parental samples of 786-O, Caki-1, and A498 cell lines: The levels of (A)
miR-18a-5p, (B) miR-17-5p, (C) miR-106-5p, (D) miR-34a-5p, (E) miR-146-5p, (F) miR-200a-3p, (G) miR-210-3p, (H) miR-21-5p,
(I) miR-15a-5p (J) miR-638, and (K) miR-29b-3p in both clones and parental cells were measured by qRT-PCR using snoRNU48
as a reference gene. Expression is shown relative to parental expression. Experiments were performed in biological and
technical triplicate. The significance of comparisons are denoted by *** p < 0.001.

Figure 5. Gene expression in resistant clones and parental cells of 786-O, Caki-1, and A498 cell lines. Levels of (A) CD274,
(B) HIF1A, (C) EPAS1, (D) CCND1, (E) NOTCH2, (F) TNFAIP3, (G) L1CAM, (H) PTEN, and (I) EGFR genes measured by
qRT-PCR using GAPDH as the reference gene. Expression levels in resistant clones are depicted relative to their respective
parental cells. All experiments were performed in biological and technical replicates. The significance of comparisons is
denoted by *** p < 0.001.

We tested the protein levels of PD-L1 (CD274), HIF1α (HIF1A), HIF2α (EPAS1), and
cyclin D1 (CCND1) by Western blot analysis (Figure 6; Table 3). These results were largely
consistent with the qRT-PCR results. For example, there was a clear increase in PD-L1
expression in the resistant clones of both 786-O and A498 cells compared to the parental
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cells, and a decrease in levels of HIF2α. For both proteins, however, we observed no
expression in Caki-1 cells. Moreover, we observed no expression of HIF1α in Caki-1 cells
or 786-O cells, despite repeated replicates. In contrast, in A498 cells, HIF1α was expressed
and downregulated in resistant clones. CCND1 was down-regulated in 786-O-resistant
clones but up-regulated in resistant clones of A498 cells. Although expressed in Caki-1
cells, cyclin D1 protein appears to be down-regulated in contrast to the up-regulation of
mRNA levels observed by qRT-PCR.

Figure 6. Protein expression in resistant clones and parental control cells of 786-O, Caki-1, and A498
cell lines.
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Table 3. Densitometry readings of protein expression showing adjusted densities (%) relative to
parental-control cell line.

Cell
Line

786-O P 786-O c1 786-O c2 Caki-1 P
Caki-1

c1
Caki-1

c2
A498 P A498 c1 A498 c2

PD-L1 100 161.3 131.3 100 16.9 35.8 100 1599.3 966.4
HIF1α ND ND ND ND ND ND 100 18.3 14.8
Cyclin

D1 100 119.9 77.5 100 56.5 34.9 100 122.0 338.8

HIF2α 100 45.8 24.2 ND ND ND 100 128.5 60.8

Quantified using ImageJ software (v.1.8.0) (NIH, Bethesda, MD, USA) and expression adjusted according to
respective loading controls using modified ImageJ protocol (http://www.lukemiller.org/ImageJ_gel_analysis.pdf,
accessed on 10 August 2021). ND; not detected (i.e., raw value less than 50).

2.4. Gene Ontology and Pathway Analyses

In order to further investigate the potential role of miRNA-regulated genes in suni-
tinib resistance, we carried out ontology analysis by KEGG pathway enrichment analysis
(Tables S7–S9). The number of significantly enriched pathways was highest (n = 12) in
786-O cells and lowest in A498 cells (n = 6), reflecting the different numbers of genes
associated with miRNAs in these cell lines (Figure 3). Reassuringly, the most significant
pathway in this analysis for 786-O cells was miRNAs in cancer (p-value 4 × 10−9), which
was also significantly enriched in Caki-1 cells despite having non-overlapping genes. The
second most highly enriched pathway in this analysis was proteoglycans in cancer (p-value
1.6 × 10−5), which was also significantly enriched in A498 (p-value 8.7 × 10−3) and Caki-
1 cells (p-value 2.2 × 10−5); again, these pathways had non-overlapping genes in the
three cell lines. Other significant pathways commonly shared between different cell lines
were the Human papillomavirus infection in 786-O and Caki-1 cells (p-values 5.5 × 10−4

and 1.4 × 10−3 respectively) and fluid shear stress pathways (p-values 7.7 × 10−3 and
1.4 × 10−3, respectively). The PI3K-Akt signalling pathway was also common between A498
and Caki-1 cells, but not 786-O (p-values 7.7 × 10−3 and 1.4 × 10−3, respectively).

2.5. Silencing of PD-L1 in 786-O Sunitinib-Resistant Cells Results in an Increased Sensitivity
to Sunitinib

As we observed a consistent up-regulation of CD274 (PD-L1) in all of the resistant
clones of all three cell lines and increased protein expression, in 786-O and A498 cells, at
least, we hypothesised that this molecule would play an important role in the resistant
phenotypes. We therefore silenced this gene in resistant and parental cells to investi-
gate the effect on the resistant phenotype. After confirming the silencing by qRT-PCR
(Figure S4) and protein level (Figure 7; Table 4), we carried out sunitinib dose experiments
by MTT assay (Table 5). We observed that the silencing of CD274 led to a significant
increase in the sensitivity of 786-O-resistant clones but not in parental cells treated with
the same siRNA. This effect was more pronounced in c1 cells, which is consistent with the
increased silencing in this clone compared to c2 (84% and 72% reduction in c1 at and 38%
and 72% in c2 at 48 h and 72 h, respectively: Figure S5). In contrast, the silencing of CD274
in A498 or Caki-1 cells did not increase the sensitivity of resistant clones (or parental cells)
to sunitinib treatment.
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Figure 7. PD-L1 protein expression in 786-O (A) and A498 (B) parental and resistant cells after
treatment with siRNA against CD274 (or scramble control).

Table 4. Densitometry readings of protein expression showing adjusted densities (%) relative to
Scramble-control.

Cell Line P-scr P-si c1-scr c1-P c2-scr c2-P

A498 100 0 100 15.8 100 4.5
786-O 100 35.7 100 28.5 100 20.2

Quantified using ImageJ software (v.1.8.0) (NIH, Bethesda, MD, USA) and expression adjusted according to
respective loading controls using modified ImageJ protocol (http://www.lukemiller.org/ImageJ_gel_analysis.pdf,
accessed on 10 August 2021).

Table 5. IC50 values of parental and sunitinib-resistant clones, c1 and c2, of cell lines 786-O, A498,
and Caki-1 cell lines after treatment with either anti-CD274 siRNA or a scramble RNA control (SCR).

Cell Line Replicate P-SCR P-siRNA c1-SCR c1-siRNA c2-SCR c2- siRNA

786-O A 5.9 4.2 11.0 6.5 10.6 6.6
B 3.8 4.9 11.7 9.6 8.2 6.5
C 4.7 6.8 12.3 9.5 9.4 8.0

Average 4.8 5.3 11.7 8.5 * 9.4 7.0 *

A498 A 5.5 6.31 6.7 7.7 9.6 13.3
B 9.8 11.8 10.6 12.8 10.2 11.4
C 14.1 14.8 13 15.4 15.3 20.6

Average 9.8 11 10.1 12 11.7 15.1

Caki-1 A 9.3 10.8 9 11.4 10 11.5
B 6.4 6.7 9.5 16.1 11 11.9
C 9.7 9.2 11 11.4 12 12.4

Average 8.4 8.9 9.8 13 11 11.9
Values of biological triplicates are indicated by letters A–C. The dose curves used to generate the IC50 values can
be found in Figures S6–S8. p-values were calculated by comparing siRNA-treated cells with SCR-treated cells by
independent t-test and significance denoted by * p < 0.05.

3. Discussion

Inactivation of the VHL gene and activation of the HIF-VEGF pathway are the major
molecular hallmarks of renal carcinoma and form the basis of antiangiogenic therapy such

200



Cancers 2021, 13, 4401

as sunitinib. Sunitinib remains the first-line treatment for mccRCC, and acquired resistance
and tumour metastases are the main causes of treatment failure [31]. Consequently, several
mechanisms have been proposed, including the up-regulation of FGF1 [32], the induction
of epithelial to mesenchymal transition (EMT) and alternative growth factor signaling [33],
and the down-regulation of PTEN [18], amongst others. In addition to genes, several
studies have established the role of miRNAs and other non-coding RNAs (ncRNAs) in
sunitinib resistance [21,23,26,34]. However, very few have used an integrated genomic
approach to identify target genes regulated by miRNAs—an approach that lends itself
to the possibility of using miRNA-based therapeutics to overcome sunitinib resistance in
ccRCC patients.

We, therefore, developed an in vitro model of sunitinib resistance in three different cell
lines (786-O, A498, and Caki-1) through prolonged exposure to the drug. All these cell lines
were originally sensitive to sunitinib, with an IC50 value less than 10 μM (average 8.8 μM),
the concentration reached in patient tumour tissue [33]. The generated resistant clones
had a significantly higher amount of IC50 values greater than 10 μM (average 15.6 μM).
Although several studies have investigated miRNA expression in response to sunitinib-
treatment, the vast majority have looked at expression after a single dose [22,24,25], rather
than prolonged exposure, which could be argued to more accurately reflect acquired
resistance [21,23,35].

Unsupervised cluster analysis of miRNA and gene expression data showed that
resistant cells not only differed from sunitinib-sensitive cells, but also differed between
resistant clones, suggesting differing mechanisms of resistance. This was confirmed by
the low levels of overlap (<50%) of differentially expressed genes and miRNAs between
the clones. There were 3254, 2313, and 4285 differentially expressed genes identified in
786-O, A498, and Caki-1 cells, respectively. However, gene enrichment analysis using the
KEGG pathway database failed to detect any significantly enriched pathways amongst
these gene datasets, suggesting that many of these genes were only indirectly linked to
the resistant phenotype. In order to resolve this issue, and bearing in mind the association
of miRNAs with sunitinib resistance [23,25–27,36–38], we used an integrated genomic
approach to identify miRNA-regulated target genes by molecular interaction network
analyses. Using this methodology, we identified 76, 6, and 26 miRNA:gene interactions
consistently involved in sunitinib resistance for 786-O, A498, and Caki-1 cells, respectively.
The much larger number of interactions in 786-O cells most likely reflects the much higher
degree of overlap in genes and miRNAs found in this cell line between the clones c1 and c2
(60% cf 32% (A498) and 30% (Caki-1) for miRNAs and 43% vs. 27% vs. 20% of genes).

When we repeated the gene enrichment analysis on the miRNA-regulated genes, we a
observed significant enrichment for the ‘proteoglycans in cancer´ KEGG pathway in all three
cell lines, even though the corresponding gene lists were non-overlapping. Other shared
pathways were ‘human papillomavirus infection’, ‘fluid shear stress’, and ‘PI3K-Akt signalling’
pathways. Consistent with these findings, Chen et al. also reported that ‘proteoglycans in
cancer’ and ‘PI3K-Akt signalling’ pathways were amongst the most significant pathways
identified by meta-analysis of 88 gene expression and next generation sequencing data sets
from sunitinib resistance studies containing both in vitro and inpatient-derived xenograft
models [29]. Yamagouchi et al. likewise identified the PI3K-AKT pathway as significant
by KEGG analysis of sunitinib-resistant cells [23]. Moreover, the genes identified in these
studies were non-overlapping, with those identified in our study implying a functional
relevance of these pathways in sunitinib resistance. Proteoglycans are major components of
the extracellular matrix and play important roles in many facets of cancer, including prolif-
eration, adhesion, angiogenesis, and metastasis [39]. Recently, Rausch et al. described the
morphometric changes that occur in sunitinib-resistant clones, in which the authors linked
the changes of more than 70 genes to cell adhesion, including many proteoglycans [35].

We observed that multiple members of the miR-17~92 clusters (i.e., miR-17-5p, miR-17-
3p, miR-18a-5p, miR-18a-3p, miR-20a-5p) and paralogue clusters, including all the members
of the miR-106b~miR-25 (miR-106b, miR-93-5p, and miR-25-5p) cluster and the miR-106a-5p,
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which is encoded by the miR-106a~363 cluster, were down-regulated in resistant ccRCC
clones. The down-regulation of miR-18a-5p, at least, has previously been reported in
other sunitinib-resistant ccRCC cell lines (ACHN and RCC23) [23]. Intriguingly, network
analyses revealed that the target genes of these miRNAs were non-overlapping in the
different cell lines (Table 2). This suggests the involvement of differing gene pathways
in resistance mechanisms but implies a convergent regulatory role of these miRNAs in
ccRCC, making them potential common targets for modulation that surely warrants further
investigation and could potentially be targeted to overcome sunitinib resistance. For
example, in 786-O cells, target genes were generally hypoxia and angiogenic-related (i.e.,
EPAS1, HIF1A, MMP2, and VLDLR), whereas, in Caki-1 cells, target genes (i.e., CCND1,
BMP2, TCEAL1, and RND3) were involved in inflammatory, proliferation, and migration,
possibly a reflection of the metastatic phenotype of these cells. Indeed it is tempting to
infer that these mechanisms reflect the subclassification of ccRCC into angiogenic and
inflammatory tumours that has recently been proposed by Brugarolas et al. [7].

The most regulated gene in 786-O cells was HIF1A, which was regulated by down-
regulation of multiple members of the miR-17~92 cluster and miR-210, highly suggestive of
playing a major role in sunitinib resistance in this cell line. The role of HIF1α in sunitinib
treatment and resistance has long been recognised [40]. Yamagouchi et al. similarly found
that HIF1A was up-regulated in sunitinib-resistant cell lines and that it was targeted by
miR-18a-5p [23]. Even though there was a clear increase in HIF1A expression in the resistant
clones of 786-O and Caki-1 cells (Figure 5; Table 3), the HIF1α protein was not detected
in these cell lines (Figure 6; Table 4). This is consistent with previous studies, that have
shown a lack of protein expression in 786-O cells due to mutations [41,42], and even though
Caki-1 cells do encode the intact HIF1A gene, the protein is only expressed under hypoxic
conditions [43]. The fact that the HIF1A transcript, but not the protein, is induced in these
cell lines could have functional significance in the resistance mechanism, as several long
non-coding RNAs (lncRNAs) are encoded within this gene [44,45], and this is an area we
are currently investigating. Although A498 cells also contain a mutated HIF1A gene, the
HIF1α protein is expressed constitutively under normoxic conditions due to defective
VHL [43]. We observed that HIF1α expression was down-regulated in A498-resistant
clones, a characteristic that was previously described to be the result of sunitinib-associated
proteosome degradation [41].

In the Caki-1 miRNA:target gene network, CCND1 was the most regulated gene
which was potentially targeted by five out of thirteen (38%) of down-regulated miRNAs,
none of which were found in the 786-O network. Indeed, in contrast to Caki-1 (and A498)
resistant clones, 786-O-resistant clones were characterised by CCND1 mRNA and cyclin
D1 protein down-regulation. CCND1 is not only a marker of proliferation and tumour
growth [46], but is also associated with metastatic potential [46,47]. Although the down-
regulation of members of the miR-17~92 cluster is consistent with the up-regulation of
CCND1 observed in Caki-1 and A498-resistant clones [48], the same miRNAs are also
down-regulated in 786-O-resistant clones, suggesting a different regulatory mechanism for
this cell line, perhaps through the direct targeting by HIF2α [49], which is down-regulated
at mRNA and protein levels. Intriguingly, although CCND1 was strongly up-regulated
(8–10-fold) in resistant clones of Caki-1 cells, cyclin D1 protein was down-regulated, as has
recently been described [35], suggesting post-transcriptional regulation.

The PD-L1 gene (CD274) was also identified in our network analysis as being targeted
by miR-200a, which we had previously demonstrated was characteristically down-regulated
in ccRCC [50], and that was down-regulated in both 786-O and Caki-1-resistant clones (but
not A498 cells). miR-200 has been shown to directly target CD274/PD-L1 expression, and, in
concert with ZEB1, to play an important role in the initiation of metastasis via the induction
of epithelial-to-mesenchymal transition (EMT) and CD8+ TIL immunosuppression [51].
In addition to miR-200, miR-34a has also been identified as an important regulator of
PD-L1 expression [52]. Indeed, a phase 1 clinical trial, using a liposomal mimic of this
miRNA (MRX34), included renal carcinoma patients, although the trial was halted due
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to serious adverse effects [53]. We observed that the levels of miR-34a were significantly
down-regulated in the resistant clones of all three cell lines. An increase in PD-L1 protein
expression in response to transient sunitinib treatment has previously been reported in
786-O and A498 cell lines [17,54]. We extended these observations to the resistant clones
of these cell lines, as well as to CD274 mRNA expression. Indeed, this was the only gene
that we found to be consistently up-regulated in all three of the cell lines in this study. It
should be noted, however, that we were unable to detect PD-L1 protein expression in the
Caki-1 cell line, an observation consistent with previous studies [55,56], presumably due to
the lack of HIF1α expression under normoxic conditions in this cell line that also regulates
PD-L1 expression [54].

To explore the role of PD-L1 further in the resistant phenotype, we silenced this
gene in the three cell lines and observed an increase in the sensitivity to sunitinib of the
786-O-resistant clones but not the parental counterpart cells, nor the Caki-1 or A498 cells.
The difference between the response between the cell lines suggests again that there are
different resistance mechanisms operating between the cell lines, and that the PD-L1-
associated mechanism is most important in 786-O cells. In contrast, in Caki-1 cells, where
PD-L1 is not expressed, resistance appears to be regulated through cyclin D1, although
this remains to be experimentally confirmed. The lack of effect of PD-L1 silencing on
A498 cells, however, is somewhat more surprising, suggesting that the down-regulation
of HIF1α that we observed in resistant clones is probably a more dominant mechanism
for resistance than PD-L1, as it has been demonstrated that ectopic expression of HIF1α
in 786-O cells make them more susceptible to sunitinib [41]. These results suggest that
ccRCC patients with VHL gene mutations (>50% of patients) [57] that do not express HIF1α
(~70% of ccRCC patients [58]) could have an improved response to sunitinib treatment
through targeting of PD-L1 by checkpoint inhibitor antibodies such as avelumab that
already has FDA-approval for combination treatment in ccRCC [59]. Consistent with
this hypothesis, Guo et al. demonstrated that a combination of anti-PD-L1 and sunitinib
significantly reduced tumour progression in vivo [17]. Indeed, although immunotherapy
targeting the PD-1/PD-L1 axis shows great promise for ccRCC, only 15–25% of patients
respond when given it as a monotherapy [60], and there is increasing movement towards
combination therapy of antiangiogenic agents and immunotherapy [59,61–64]. We are
not aware, however, of any trials to date that have combined sunitinib with anti-PD-L1
immunotherapy. We recognise however, that cell lines may not give a complete reflection
of what occurs in ccRCC patients.

In summary, the present study has demonstrated that the use of in vitro models of
sunitinib resistance, combined with an integrated genomic approach, can identify divergent
mechanisms of sunitinib resistance that could be exploited for the benefit of ccRCC patients.

4. Materials and Methods

4.1. Generation of Sunitinib-Resistant ccRCC Cell Lines

The ccRCC cell lines 786-O (ATCC® CRL1932™), A498 (ATCC® HTB 44™), and Caki-
1 (Caki-1ATCC® HTB46™) were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). 786-O and A498 cells were grown in RPMI and MEM media
respectively, in the presence of 10% fetal calf serum (FCS), 1% L-glutamine and 1% penicillin-
streptavidin (Fisher Scientific, Waltham, MA, USA). Caki-1 cells were grown in McCoy’s 5A
(modified) medium with 10% FCS + 1% L-glutamine and 1% penicillin-streptavidin (Fisher
Scientific, Waltham, MA, USA). Two resistant clones for each cell line were generated by
gradually exposing the cells to increasing concentrations of sunitinib (0.5 μM increase per
passage) until a final concentration of 10 μM. For each increase in sunitinib concentration,
cells were passaged at least twice to remove dead cells. Parental control cells were passaged
in parallel without the addition of sunitinib.
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4.2. Cell Proliferation Assay

Cells were seeded onto 96-well plates at a density of 2 × 103 cells per well and allowed
to attach for 24 h. Afterwards, the cells were treated with differing doses of sunitinib (i.e.,
1.25, 2.5, 5, 7.5, 10, 15, 20, 30, and 40 μM) or DMSO as a negative control. Seventy-two hours
later, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) was added to
the cells before a further incubation at 37 ◦C for three hours. The reaction was stopped
by the addition of DMSO and the resulting absorbance at 570 nm was measured using a
Halo LED 96 plate reader (Dynamica Ltd., Livingston, UK). Each sample was measured in
triplicate wells and each experiment carried out a minimum of three times.

4.3. RNA Extraction and Microarray Analysis

Total RNA was extracted from cell line material using Trizol in accordance with the
manufacturer’s instructions (Life Technologies, Paisley, UK). One μg of total RNA was used
for Affymetrix Genechip miRNA v.4.0 microarrays, and 200 ng of DNAse treated total RNA
were used for Clariom D human microarrays to measure miRNA and gene expression,
respectively. The RNA was labelled and hybridised to microarrays in accordance with the
manufacturer’s instructions (Affymetrix, CA, USA).

Resulting raw intensity data (i.e., cel files) were imported and analysed within Tran-
scriptome Analysis Console (TAC) software version 4.0.2 (Affymetrix, CA, USA). Using this
software, we identified differentially expressed miRNAs or genes on the basis of >2-fold
up- or down-regulation along with Benjamini–Hochberg multiple corrected p values <
0.05. All microarray data was MIAME compliant, and raw data was deposited in the
GEO database (GSE183140). For miRNA microarray analysis, probes were filtered for only
human mature miRNAs (i.e., hsa-miR*) (* means wild-card i.e., any miR) and, for gene
expression analysis coding, genes were classified as probes and filtered using the group
variable ‘coding’ or ‘multiple complex’, before removing non-annotated genes that only
had a numerical Aceview description.

4.4. Interaction Network Analysis

In order to identify differentially expressed genes that are likely to be regulated by
miRNAs, we used the Cytoscape program (v3.8.2) (NIH, Bethesda, MD, USA) [65] to create
an (experimentally validated) miRNA-target gene network. In brief, we imported and
created a reference network of experimentally validated interactions (n = 10,755) from the
miRTarBase dataset consisting of 3502 genes and miRNAs [30]. Differentially expressed
miRNAs and genes from microarray analyses were imported into the program and mapped
to the reference network. Mapped miRNA:target gene interactions were filtered according
to inverse correlations (i.e., up-regulated miRNAs and down-regulated genes and vice
versa) for each individual clone, and the intersection between the clonal networks was
used to produce common networks, as depicted in Figure 3. These common networks were
used for ontology analysis using the STRING app (version 1.6.0) (University of California,
San Francisco, CA, USA) to interrogate the KEGG pathway database (release 95.2) imple-
mented in Cytoscape. An overview of the workflow used is depicted in Figure 1.

4.5. Quantitative RT-PCR (qRT-PCR)

To measure levels of individual miRNAs by qRT-PCR, we used 200 ng of total RNA. The
RNA was reverse transcribed using the Taqman Megaplex miRNA pool A according
to the manufacturer’s instructions (Applied Biosystems, Warrington, UK), except in the
case where specific miRNAs were not present in this pool, in which individual primers
were used. qPCR was carried out with individual Taqman probes in triplicate using a
LightCycler® 96 System machine (Roche, Basel, Switzerland). The snoRNA RNU48 was
used as the reference gene for miRNA quantification as previously described [66], and
GAPDH was used as a control for gene expression. In brief, the mean Ct value of each
triplicate was quantified by the ΔCt method (i.e ΔCt = mean Ct of RNU48/GAPDH minus
the mean Ct of miRNA/gene of interest). All qRT-PCR assays were carried out in technical
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and biological triplicate and expression levels were compared using the Mann–Whitney
independent t-test (Graphpad Prism v.5.0, La Jolla, CA, USA).

4.6. PDL-1 Silencing

Cells (4 × 104) were transfected with either 5 nM of ON-TARGET plus human CD274
SMART pool siRNA or a non-targeting scramble control (Dharmacon, Lafayette, CO).
Transfection was carried out in 12-well plates using DharmaFECTTM reagent (Dharmacon)
according to the manufacturer’s protocol. Cells were harvested at 48-, 72-, and 96-h
post-transfection, and RNA was extracted using Trizol (Fisher Scientific).

4.7. Western Blotting

Cells were washed with ice-cold PBS twice before lysis in RIPA buffer containing
HaltTM protease and phosphatase inhibitor cocktail (Thermo Scientific, Waltham, MA,
USA). Protein concentrations were measured by BCA protein assay (Thermo Scientific,
Waltham, MA, USA), and equal amounts of protein were run on 10% Mini-PROTEAN TGX
Precast Protein Gels (Bio-Rad, Hercules, CA, USA). Proteins were transferred to Amersham
Protran 0.45-μm nitrocellulose membranes (Amersham, UK) before blocking for 1 h at room
temperature in TBS-Tween 20 (0.05%) (TBS-T) and 5% non-fat milk. Primary antibodies
were incubated overnight at 4 ◦C in TBS-T with 5% non-fat milk, and HRP-conjugated
secondary antibodies were incubated for 1 h at room temperature. A list of the antibodies
and dilutions can be seen in Table S10.

5. Conclusions

The present study has demonstrated that the use of in vitro models of sunitinib
resistance, combined with an integrated genomic approach of miRNA and gene expression,
can identify divergent mechanisms of sunitinib resistance that could be exploited for the
benefit of ccRCC patients.
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.3390/cancers13174401/s1, Figure S1: Cell proliferation MTT assays of 786-O resistant clones (c1 and
c2) and the parental cell line used to calculate the IC50 value in Table 1. Figure S2: Cell proliferation
MTT assays of A498 resistant clones (c1 and c2) and the parental cell line used to calculate the IC50
value in Table 1. Figure S3: Cell proliferation MTT assays of Caki-1 resistant clones (c1 and c2) and
the parental cell line used to calculate the IC50 value in Table 1. Figure S4: Unsupervised cluster
analysis heatmaps of miRNA expression (A–C) in 786-O (A), A498 (B) and Caki-1 (C) resistant clones
and parental control cell lines. Figure S5: Relative CD274 mRNA expression measured by qRT-PCR
in sunitinib resistant clones, c1 and c2, and parental cells in 786-O (A), A498 (B) and Caki-1 (C)
cell lines at 48 and 72 h post-transfection with either siRNA or a scramble control. Figure S6: Cell
proliferation MTT assays of 786-O resistant clones (c1 and c2) and the parental cell line transfected
with CD274-siRNA or scramble control siRNA. These data were used to calculate the IC50 value in
Table 3. Figure S7: Cell proliferation MTT assays of A498 resistant clones (c1 and c2) and the parental
cell line transfected with CD274-siRNA or scramble control siRNA. Figure S8: Cell proliferation MTT
assays of Caki-1 resistant clones (c1 and c2) and the parental cell line transfected with CD274-siRNA
or scramble control siRNA. Table S1: List of miRNAs commonly differentially expressed between
786-O parental (P) and resistant clones c1 and c2. Table S2: List of miRNAs commonly differentially
expressed between A498 parental (P) and resistant clones c1 and c2. Table S3: List of miRNAs
commonly differentially expressed between Caki-1 parental (P) and resistant clones c1 and c2.
Table S4: List of top 100 differentially expressed genes between 786-O parental (P) and resistant
clones c1 and c2. Arranged according to FDR F-value. Table S5: List of top 100 differentially expressed
genes between A498 parental (P) and resistant clones c1 and c2. Arranged according to FDR F-value.
Table S6: List of top 100 differentially expressed genes between Caki-1 parental (P) and resistant
clones c1 and c2. Arranged according to FDR F-value. Table S7: List of significantly enriched KEGG
pathways for 786-O cell line. Table S8: List of significantly enriched KEGG pathways for A498 cell
line. Table S9: List of significantly enriched KEGG pathways for Caki-1 cell line. Table S10: List of
primary and secondary antibodies used in the Western Blots.
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Simple Summary: Patients treated with immune-checkpoint inhibitors often experience a wide range
of peculiar adverse events, called immune-related adverse events (irAEs). Lately, it has been described
that the presence of irAEs may be associated with better clinical response to immunotherapy. The
aim of our retrospective study was to observe the onset of the most common side effects and to
evaluate their potential prognostic impact in a cohort of metastatic renal cell cancer patients treated
with immunotherapy. We confirmed a correlation between irAEs and progression free survival in
patients with cutaneous and thyroid adverse reactions as well as in patients that experienced two or
more irAEs. Thus, the development of irAEs could act as a clinical marker of efficacy in metastatic
renal cell patients treated with immunotherapy.

Abstract: Background: It has been reported that the occurrence of immune-related adverse events
(irAEs) in oncological patients treated with immune-checkpoint inhibitors (ICIs) may be associ-
ated with favorable clinical outcome. We reported the clinical correlation between irAEs and the
efficacy of ICIs in a real-world cohort of metastatic renal cell cancer (mRCC) patients. Methods:
We retrospectively evaluated 43 patients with mRCC who were treated with nivolumab or with
nivolumab plus ipilimumab. We considered seven specific classes of irAEs including pulmonary,
hepatic, gastrointestinal, cutaneous, endocrine, rheumatological, and renal manifestations. We as-
sessed progression-free survival (PFS) of specific irAEs classes compared to the no-irAEs group.
Results: Twenty-nine out of 43 patients (67.4%) experienced a total of 49 irAEs registered. The most
frequent irAE was thyroid dysfunction (n = 14). The median PFS after the beginning of therapy was
significantly longer in patients with thyroid dysfunction and cutaneous reactions. In multivariate
analysis, thyroid dysfunction was an independent factor for favorable outcome [HR: 0.29 (95% CI
0.11–0.77) p = 0.013]. Moreover, experiencing ≥2 irAEs in the same patient correlated in multivariate
analysis with better outcome compared with none/one irAE [HR: 0.33 (95% CI 0.13–0.84) p = 0.020].
Conclusions: This retrospective study suggests an association between specific irAES (thyroid dys-
function and skin reaction) and efficacy of ICIs in metastatic RCC. Notably, multiple irAEs in a single
patient were associated with better tumor response.

Keywords: renal cell carcinoma; immune checkpoint inhibitors; immune related adverse events
(irAEs); thyroid; cutaneous; biomarker
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1. Introduction

The treatment scenario of metastatic renal cell cancer (mRCC) has undergone a com-
plete change in the last few years. Therapeutic options have progressed from non-specific
immunotherapy with cytokines to targeted therapy with the development of tyrosine
kinase inhibitors (TKI), and more recently to the novel immune checkpoint inhibitors
(ICIs) such as anti-programmed death receptor 1 (PD-1), anti-programmed death receptor
ligand 1 (PD-L1), and anti-cytotoxic T lymphocytes antigen 4 (CTLA-4) [1]. The CheckMate
025 was the first trial showing the efficacy of nivolumab, a human IgG4 anti-PD-1 antibody,
in mRCC patients [2]. Later, the CheckMate 214 trial investigated the combination of
nivolumab with another ICI, ipilimumab (anti-CTLA-4), and confirmed the benefit of the
association, especially in patients with intermediate and poor-risk disease according to the
IMDC (International Metastatic RCC Database Consortium) risk score [3]. More recently,
the combined use of an ICI on top of a multitargeted receptor TKI evidenced a survival
benefit and is therefore now another therapeutic option for patients with mRCC [4–6]. The
opportunities to use ICIs in the future will, most likely, tremendously increase.

With the number of mRCC patients treated with immunotherapy rising year by year,
clinicians have found themselves managing a new spectrum of adverse events (AEs) that are
specific to this new class of therapeutic agents [7]. As expected, by stimulating the immune
system to target malignancies, ICIs have also induced a wide range of immunologic AE
(irAEs). The most common reported irAEs involve skin, gastrointestinal tract, endocrine
glands, lung, and liver [8]. Little is known about the cellular and molecular mechanisms
underlying most irAEs. However, emerging evidence from clinical trials and real-world
studies indicate that irAE type and severity depend on the therapeutic target (i.e., CTLA-4
vs. PD-1/PD-L1), tumor type, and patient-intrinsic factors [9,10]. Most irAEs are mild and
reversible if detected early and properly managed, but there is a noticeable proportion of
patients who have experienced (grade ≥ 3) irAEs (31% of patients treated with CTLA-4
vs. 10% treated with PD-1) [11]. It has been reported that the incidence of irAEs is higher
in ICI combination therapy than in monotherapy [12]. It must be noted that most clinical
trials excluded cancer patients with underlying autoimmune disease or chronic infection.
Therefore, irAEs in real-world clinical practice are expected to increase further.

However, despite the improved outcome of cancer treatment by ICIs, efficacy still
remains limited. Many studies have searched for biomarkers predictive of response to im-
munotherapy. Some of these are already used in clinical practice including the PD-L1 tumor
prediction score (TPS) and clinical prediction score (CPS) [13,14]. Other markers currently
under evaluation include tumor mutational burden (TMB) [15], gene expression scores
(GEP) [16], and tumor infiltrating lymphocytes (TILs) [17]. Other studies have suggested
that peripheral blood markers could help predict the treatment response, but evidence is
still scant [18–20]. In the context of this research irAEs have been proposed as potential
clinical markers to predict response to ICI. This relationship, although documented in
studies regarding non-small cell lung cancer (NSCLC) and melanoma [21–26] has been less
studied in RCC [27–29]. Moreover, current data on the impact of specific types of irAEs on
outcomes are not entirely consistent.

Our study represents a real-life observation concerning the onset and management
of the most common side effects and the prognostic impact of irAEs in a cohort of mRCC
real-world patients treated with nivolumab or nivolumab combined with ipilimumab at
our Medical Oncology Unit, AOU Careggi (Firenze, Italy).

2. Materials and Methods

We retrospectively reviewed data from 43 patients treated at the Medical Oncology
Unit, Careggi Hospital (Firenze, Italy) from March 2016 to March 2020.

Patient eligibility included age >18, histologically confirmed RCC with metastatic dis-
ease, and treatment with an immunotherapy agent. Patients were treated with nivolumab
in monotherapy (3 mg/kg every two weeks or flat dose of 240 mg/every two weeks or
480 mg/every four weeks) or with the association of nivolumab 3 mg/kg and ipilimumab
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1 mg/kg every three weeks for four cycles, then in monotherapy with nivolumab. PD-L1
status was not requested. Patients received therapy until either disease progression or
unacceptable toxicity presented. All patients had measurable disease and the disease
progression was evaluated according to the Response Evaluation Criteria in Solid Tumors
(RECIST v 1.1).

All patients evaluated had accurate clinical records of the irAEs with a description of
their severity and their treatment. Toxicity was assessed according to Common Terminology
Criteria for Adverse Events (CTCAE) version 4.0. IrAEs were defined as an adverse
event with an immunological basis that required intensive monitoring or treatment with
immunosuppressive agents or endocrine therapy. We divided irAEs into seven categories:
pulmonary, hepatic, gastrointestinal, cutaneous, endocrine, rheumatological, and renal.

All data were analyzed anonymously; all patients signed an informed consent form
for immunotherapy with particular specifications about the occurrence of possible adverse
events. This study was conducted in accordance with the World Medical Association
Declaration of Helsinki and independently reviewed and approved by the Regional Ethics
Committee for Clinical Trials of the Tuscany Region (approval no.: 17332_oss). All patient
data were processed anonymously and de-identified prior to analysis.

Statistical analyses. Estimates of PFS in the irAE and non-irAE groups or different
irAEs subgroups were calculated using the Kaplan–Meier method, and statistical signifi-
cance was analyzed using the log-rank test. A significance level of p < 0.05 was employed
for statistical analyses. First, at the univariate analysis, and then the Cox proportional
hazard model was used to calculate the hazard ratios (HRs) and appropriate 95% CIs.
Subsequently, the independent effect of each parameter on PFS was investigated by a
multivariate Cox regression model. Data were analyzed using the statistical software
Jamovi.

3. Results

3.1. Patient Characteristics

Between March 2016 and March 2020, 43 patients with mRCC were treated with ICIs
(either nivolumab or nivolumab combined with ipilimumab) at our Medical Oncology
Unit, AOU-Careggi (Florence). Table 1 summarizes the patients’ clinical features.

Average age of enrolled patients at time of diagnosis was 64 years, ranging from 45 to
79 years; 81.4% (n = 35) male, and 18.6% (n = 8) female. A total of 53.4% of the patients were
current or former smokers. The most frequent histology diagnosis was clear cell (83.7%),
followed by papillary and chromophobe renal cancer. Most patients (n = 39/43, 91%) had a
resected primary tumor. The most frequent site of metastases was lung (65% of patients),
followed by lymph nodes (44%), bone (35%), liver (21%), and brain (7%).

Overall, 33 patients (76.7%) received nivolumab in monotherapy while 10 received
(23.7%) nivolumab plus ipilimumab. Ten patients (23.2%) received ICI as the first line of
therapy and 25 patients (58.1%) as second line. Overall, one patient achieved complete
response (2.3%), six partial response (PR) (13.9%), 11 stable disease (SD) (25.6%), and the
remaining 25 patients experienced progressive disease (PD) (58.1%).

Among patients treated with nivolumab (n = 33), 18 (54.5%) were non responders
(defined as patients who experienced a progressive disease as best response), while among
patients treated with nivolumab plus ipilimumab (n = 10), seven (70%) were non responders.

3.2. Profile of Immune-Related Adverse Event (irAEs)

Twenty-nine out of 43 patients (67.4%) experienced a total of seven different irAE
categories (data are reported in Table 2). Baseline clinical features between patients with
or without irAEs were not significantly different. In patients who developed irAEs, the
median number of days before the onset was 59 days; 14 patients never developed irAEs
until the end of the observation phase.

In total, we registered 49 irAEs: 20 (46.5%) developed endocrine-related events,
nine (20.9%) developed skin reactions, seven (16.3%) developed hepatitis, five (11.6%)
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developed colitis (as diarrhea), four (9.3%) developed arthralgias/myalgias, three patients
(9%) developed pneumonia, and one patient (2.3%) developed nephritis.

Table 1. Clinical features of the study population.

Characteristics
No. of Patients (N = 43)

Sex %

Male 35 81.4%
Female 8 18.6%

Age (years)

Average 64
Median 65

Min–Max 45–79

Smoker

Yes 23 53.5%
No 20 46.5%

Performance Status at the time of diagnosis

2 2 4.6%
1 2 4.6%

0 39 90.7%

Histology

Clear cells 36 83.7%
Chromophobic cells 2 4.6%

Papillary 5 11.6%

Therapy line

1 10 23.3%
2 25 58.1%
3 7 16.3%
4 1 2.3%

Outcome

RC 1 2.3%
PR 6 13.9%
SD 11 25.6%
PD 25 58.1%

Table 2. Comparison between irAEs in mRCC patients treated with nivolumab or with nivolumab
and ipilimumab.

irAEs
Nivolumab Nivolumab + Ipilimumab Total

n % n % n %

Pneumonitis 3 9.1% 0 0.0% 5 6.9%
Colitis (diarrhea) 5 15.1% 0 0.0% 5 11.6%

Hepatitis 4 12.1% 3 30,0% 7 16.3%
Skin reactions 8 24.2% 1 10.0% 9 20.9%

Nephritis 0 0.0% 1 10.0% 1 2.3%
Arthralgia/myalgia 4 12.1% 0 0,0% 4 9.3%

Endocrine-related events 14 42.4% 6 60.0% 20 46.5%

According to the CTCAE grades, irAEs registered were mainly grades 1 and 2, and
were included in a subgroup defined “non-serious AE”. Within patients who developed
any irAE, 19 experienced a non-serious irAE (65.5%), while 10 patients (34.5%) developed
a serious irAE (grade 3 or grade 4). If we consider the total number of irAEs observed
(n = 49), 12 irAEs were serious (24.5%), while 37 were classified as non-serious (75.5%).
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Among the patients only treated in monotherapy with nivolumab (n = 33), three (9%)
developed pneumonitis, five (15.1%) developed diarrhea, four (12.1%) developed hepatitis,
eight (24.4%) developed skin reactions, four (12.1%) developed arthralgia/myalgia, and 14
(42.4%) developed endocrine-related events.

Regarding the cohort of patients treated with nivolumab in combination with ipili-
mumab (n = 10), three (30%) patients developed hepatitis, only one (10%) patient developed
a skin reaction, six (60%) patients developed endocrine-related events, and one (10%) pa-
tient developed nephritis. No difference in the occurrence of AEs between mono and
combination therapy could be found (p = 0.84).

Overall, the most frequent AEs were related to endocrine issues (46% of the patients
with 19 events), with a percentage up to 40% of the total number of adverse events.
The median time to first development of endocrine dysfunction was 80 days. Thyroid
dysfunction was by far the most frequently encountered endocrine toxicity (n = 15/19),
followed by hypophysitis and hyperglycemia. Some patients (n = 8) experienced early-stage
thyrotoxicosis followed by a permanent stage of hypothyroidism.

3.3. Relationship between irAEs and Patient Outcome

PFS was significantly longer in the group of patients that developed a thyroid dys-
function (p = 0.028); the median PFS of the euthyroid group was 121 days (IQR 92–305.)
while the median PFS of the thyroid dysfunction group was not reached (Figure 1).

Figure 1. Association between thyroid dysfunction during treatment and oncologic outcomes.
Kaplan–Meier plots of progression-free survival. IrAEs = immune-related adverse events;
PFS = progression-free survival; pts = patients.

In multivariate analysis, the development of thyroid toxicity was an independent
prognostic factor for PFS (HR: 0.34 [95% CI 0.13–0.87] p = 0.025) (Table 3). On the other
hand, although very rare, hypophysitis was related to significant shorter PFS (p = 0.048).
Interestingly, endocrine toxicities were significantly higher in patients who had already
performed two lines of therapy before immunotherapy (p = 0.022).

A significantly longer PFS was also found in patients who experienced skin irAEs
(p = 0.41). The median PFS of the patients who did not experience skin toxicities was
120 days (IQR 61–336), while the median PFS of the skin irAE group was not reached
(Figure 2).

Moreover, in the irAEs group, the PFS was significantly longer in patients who ex-
perienced two or more irAEs compared to only one or no irAEs (p = 0.016) (Figure 3).
In multivariate analysis, the development of two or more irAEs was an independent prog-
nostic factor for PFS (HR: 0.32 [95% CI 0.13–0.79] p = 0.014) (Table 3). Age, sex, current or
former smoking status, and pathological subtypes were not associated with PFS.
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Table 3. Univariate and multivariate analysis of progression-free survival.

Characteristics Univariate Analysis Multivariate Analysis

HR (95%CI) p-Value HR (95%CI) p-Value

Age, years (≥65) 1.41 (0.66–2.99) 0.373 -
Gender (female) 0.91 (0.34–2.39) 0.842 -
Smoking history

(current or former) 1.20 (0.57–2.54) 0.625 -

Histopathology
(clear cells) 2.22 (0.88–5.58) 0.089 2.09 (0.72–6.02) 0.173

Skin toxicity
(present) 0.33 (0.11–0.95) 0.041 0.36 (0.12–1.06) 0.065

Thyroid disfunction
(present) 0.36 (0.15–0.89) 0.028 0.34 (0.13–0.87) 0.025

Number of irAEs (≥2) 0.33 (0.13–0.81) 0.016 0.32 (0.13–0.79) 0.014
HR = hazard ratio; CI = confidence interval; irAEs = immune-related adverse events.

Figure 2. Association between skin toxicity during treatment and oncologic outcomes. Kaplan–Meier
plots of progression-free survival. irAEs = immune-related adverse events; PFS = progression-free
survival; pts = patients.

Figure 3. Association between multiple irAEs during treatment and oncologic outcomes. Kaplan–
Meier plot of progression-free survival. irAEs = immune-related adverse events; PFS = progression-
free survival; Pts = patients.

Additionally, we performed a complementary 16-week landmark analysis since pa-
tients with longer PFS could have a higher probability of developing AEs, which could lead

216



Cancers 2021, 13, 860

to analysis bias. The 16-week analysis confirmed that the occurrence of irAEs was signifi-
cantly associated with prolonged median PFS for patients with skin toxicity and with two
or more adverse events (PFS: NR vs. 120 days, p = 0.005 and PFS: NR vs. 120 days, p = 0.029,
respectively) The same analysis for patients with thyroid dysfunction demonstrated similar
tendencies, but was not statistically significant (p = 0.160).

4. Discussion

Immunotherapy potentiates a patient’s immune system to fight cancer, and has be-
come one of the standard treatments for RCC. Immune checkpoint blockade increases
antitumor immunity by blocking intrinsic downregulators of immunity such as cytotoxic
T-lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) or its ligand, pro-
grammed cell death ligand 1 (PD-L1). By enhancing the activity of the immune system,
immune checkpoint blockade can induce inflammatory side effects.

Within this study, we aimed to describe toxicities in a real-world cohort of mRCC
patients and their potential association with treatment response.

The precise pathophysiology underlying irAEs is yet unknown, but various hypothe-
ses have been made. Some potential mechanisms include increasing T cell activity against
antigens that are present both in tumors and healthy tissue and increasing levels of preex-
isting autoantibodies [30]. Among other theories, the observation that gut microbiota is
involved in the functions of intestinal CD4+ and CD8+ T, with anti-tumor immunological
activity, is gaining strength and this could impact the efficacy of ICIs [31].

It must be noted that CTLA-4 and PD-1 inhibit the immune response in distinct ways,
the first attenuating T-cell activation at a proximal step in the immune response [32] and
the latter blocking T cells at later stages of the immune cascade in peripheral tissues [33].
These different functions are reflected in different toxicities. For instance, pneumonitis
and thyroiditis appear to be more common with anti-PD-1 therapy, while colitis and
hypophysitis seem to be more common with anti-CTLA-4 therapy [11].

Overall, our results confirmed a favorable toxicity profile in patients with mRCC as
described in other real-life studies [28,34]. However, colitis was unexpectedly higher in the
nivolumab group, however, the total number of cases was very low. We also found a higher
frequency of AEs on the endocrine profile compared to previous studies, reaching 46% in
our patients compared to 4% as reported by Verzoni [28] or 17.9% reported by Ishihara [29].

The spectrum of endocrinopathies reported in the literature in patients receiving ICIs
is quite broad including hypophysitis, thyroiditis, and less frequently, primary adrenal
insufficiency, hypogonadism, pancreatitis, hypercalcemia, and diabetes [35,36].The most
frequent endocrine toxicities registered in our center in mRCC patients were thyroiditis
(either as hypothyroidism or as thyrotoxicosis or both in the same patient), followed by
hypophysitis and hyperglycemia. The reasons for such a high rate of endocrine toxicity
are unclear. A potential explanation may be a specific search in our practice for signs
and symptoms of endocrinopathies that often subtly present themselves with generic
symptoms such as fatigue, nausea, and weight changes. Additionally, our patients have
often undergone immunotherapy after having already experienced one or more lines of
therapy with TKI, drugs that are known to often interfere with the endocrine system,
especially the thyroid axis. In fact, endocrine toxicities were significantly higher in patients
who had undergone multiple rounds of molecular-targeted therapies before developing
endocrine toxicities while on immunotherapy. However, there are currently no studies
on this topic. Further explanation could be a longer follow up period, which led to the
discovery of a higher number of toxicities.

The correlation between irAEs and patient outcome has been recently described for
different cancers [10,37,38]. The occurrence of irAEs has been found to be associated with
favorable outcomes in melanoma [21–23], NSCLC [24–26] and, with only a few studies
available, also in mRCC [27–29]. These studies corroborate the hypothesis of a direct
link between antitumor response and auto-immune reactivity. There are two different
hypothesized mechanisms that could lead to irAEs. The first one concerns preexisting self-
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reactive T-cells being deregulated while the second speculates a cross-reactivity between
normal tissues and tumor associated antigens, which share similar targets [39,40].

However, to identify a relationship between AE and treatment response, it is important
to consider AE classes individually. Although all patients experiencing irAEs of any class
exhibited more favorable outcomes, only patients with thyroid dysfunction and cutaneous
toxicity demonstrated significantly higher PFS.

The positive relationship between AEs of the endocrine spectrum and treatment
response has been described in a few studies, both analyzed all together or individually as
thyroid dysfunction. As above-mentioned, most studies have described a cohort of patients
with melanoma [41] or NSCLC [42]. Less is known about endocrine irAEs as a prognostic
factor in RCC [28]. Our study confirms this positive relationship with a percentage of
responder patients who experienced an endocrine irAE of 64.7%. Interestingly, we noted
a specific distribution of the subclasses of endocrine toxicity with respect to the response
to treatment: thyroid dysfunction was confirmed to be a positive prognostic indicator
while hypopituitarism, although rare, was a negative prognostic factor. However, this
result should be carefully interpreted also by taking into account that endocrine toxicities
showed two very different profiles between patients treated with combination therapy
and monotherapy with nivolumab: thyroiditis were more represented in the group that
performed only nivolumab, while all cases of hypophysitis were found in the combination
therapy group. The connection that binds endocrine irAEs and efficacy is yet unknown.
There are various possible hypotheses described in the literature. One of these assumes
that the activation of pre-existing low-grade autoimmunity to thyroid glands could lead
to thyroid irAEs and thus select patients with strong baseline immunity [43]. Another
hypothesis suggests that thyroid antigens may have a common amino acid sequence with
tumor epitopes. Thereby, the cross presentation of those epitopes could be associated with
thyroid irAEs and this could facilitate the selection of patients who could benefit from
immunotherapy [44].

The relationship between skin irAEs and treatment efficacy has also been previously
described, mostly in melanoma and NSCLC [41,45]. A meta-analysis of ICI therapy in
melanoma found that vitiligo was significantly associated with both longer PFS and OS [46].
In RCC, the only study that described the relation between skin irAEs and treatment
response is the one by Verzoni [28]. Our data confirmed the positive association between
skin irAEs and PFS with a significantly longer PFS in patients who experienced skin
toxicity. Importantly, this association was confirmed in multivariable analysis, and to
our knowledge, this is the first study indicating that this specific irAE represents an
independent predictor of ICI efficacy in mRCC patients.

As an additional result, we described a positive correlation between the number of
irAEs and patient outcome. Having ≥2 irAEs was associated with longer PFS compared
with one or no irAE. This result has already been described in other retrospective real-world
studies by Bouhlel [47] and Ricciuti [24], both in NSCLC. To the best of our knowledge,
this study is the first to reveal this association in a mRCC cohort of patients. This finding
further suggests a mechanistic association between irAEs and immunotherapy efficacy
and indicates that the development of multiple immune-mediated toxicities might reflect
sustained anti-tumor responses.

It could be argued that patients with longer response to treatment could develop a
higher number of irAEs. In an attempt to address this potential confounding factor, we
conducted a 16-week landmark analysis. The results confirmed (although the thyroid
dysfunction did not reach statistical significance) that the occurrence of irAEs was sig-
nificantly associated with prolonged median PFS. These findings further underline the
association of early onset of irAEs and a durable clinical benefit in mRCC patients treated
with immunotherapy.

The limitations in the interpretation of the study results are mainly impacted by the
retrospective nature and the small sample size. Further limitations are the selection of
patients, which is stricter in clinical trials than in real-life clinical practice. In addition,
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regarding the determination of outcome and follow up, patients enrolled in clinical trials
followed regular and more frequent clinic visits as per pre-determined strict criteria, which
are sometimes difficult to follow in a real-life scenario. Moreover, a precise definition and
categorization of irAEs is still lacking, and the classification that we performed has not
been validated or standardized.

However, despite these limitations, we were able to observe significant results that
require further confirmation in prospective studies with larger cohorts.

5. Conclusions

Despite the small sample size, we observed that specific irAEs such as thyroid dys-
function and cutaneous reactions were associated with longer PFS and that patients that
experienced more than one AE presented a better response to treatment. These results
suggest that irAEs can be a surrogate marker of clinical benefit. Not every toxicity class
was significantly associated with better clinical response. However, the two that showed
a positive relationship (skin and thyroid), which were also the most frequent, could be
very useful in a clinical context. Nevertheless, no definitive conclusions could be derived
from these data considering the limited number of patients experiencing any specific class
of irAEs.

Given the high percentage of endocrine, and in particular, thyroid AEs, it is essential
to implement research and treatment of these particular toxicities during treatment. Since
endocrine toxicities often present themselves with vague and unclear clinical pictures, close
monitoring by an endocrinologist should be warranted, also given the positive correlation
with the patient’s outcome and therefore the importance of continuing immunotherapy
for these patients. Further prospective studies are necessary to confirm our findings and
to investigate the mechanistic association between AEs and clinical response in order to
improve therapy with ICIs and the management of their toxicities.

Author Contributions: Conceptualization, S.P. and L.A.; Methodology, V.R. and L.D.; Interpretation
of data: E.G., R.G., A.P., and A.M.; Data curation, A.P. and R.G.; Writing—original draft preparation,
A.P. and S.P.; Writing—review & editing, L.A. and M.C.; Supervision, M.M.M. and L.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the World
Medical Association Declaration of Helsinki and independently reviewed and approved by the
Regional Ethics Committee for Clinical Trials of the Tuscany Region (approval no.: 17332_oss).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data available on request to the corresponding author.

Acknowledgments: We thank Susanna Bormioli Weber for the English language editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Longo, D.L.; Choueiri, T.K.; Motzer, R.J. Systemic Therapy for Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2017, 376,
354–366. [CrossRef]

2. Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.;
Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813.
[CrossRef]

3. Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.;
George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378,
1277–1290. [CrossRef]

4. Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.;
Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380,
1103–1115. [CrossRef]

219



Cancers 2021, 13, 860

5. Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulières, D.; Melichar, B.; et al.
Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127.
[CrossRef]

6. Choueiri, T.K.; Powles, T.; Burotto, M.; Bourlon, M.T.; Zurawski, B.; Juárez, V.O.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; Suarez, C.; et al.
696O_PR Nivolumab + cabozantinib vs sunitinib in first-line treatment for advanced renal cell carcinoma: First results from the
randomized phase 3 CheckMate 9ER trial. Ann. Oncol. 2020, 31 (Suppl. 4), S1159. [CrossRef]

7. De Giorgi, U.; Cartenì, G.; Giannarelli, D.; Basso, U.; Galli, L.; Cortesi, E.; Caserta, C.; Pignata, S.; Sabbatini, R.; Bearz, A.; et al.
Safety and efficacy of nivolumab for metastatic renal cell carcinoma: Real-world results from an expanded access programme.
BJU Int. 2019, 123, 98–105. [CrossRef] [PubMed]

8. Ornstein, M.C.; Garcia, J.A. Toxicity of Checkpoint Inhibition in Advanced RCC: A Systematic Review. Kidney Cancer 2017, 1,
133–141. [CrossRef] [PubMed]

9. Khan, S.; Gerber, D.E. Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review.
Semin. Cancer Biol. 2020, 64, 93–101. [CrossRef] [PubMed]

10. Zhou, X.; Yao, Z.; Yang, H.; Liang, N.; Zhang, X.; Zhang, F. Are immune-related adverse events associated with the efficacy of
immune checkpoint inhibitors in patients with cancer? A systematic review and meta-analysis. BMC Med. 2020, 18, 87. [CrossRef]

11. Khoja, L.; Day, D.; Chen, T.W.W.; Siu, L.L.; Hansen, A.R. Tumour- and class-specific patterns of immune-related adverse events of
immune checkpoint inhibitors: A systematic review. Ann. Oncol. 2017, 28, 2377–2385. [CrossRef] [PubMed]

12. Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.;
Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017,
377, 1345–1356, Erratum in N. Engl. J. Med. 2018, 379, 2185. [CrossRef] [PubMed]

13. Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy:
A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, 8. [CrossRef]

14. Lu, S.; Stein, J.E.; Rimm, D.L.; Wang, D.W.; Bell, J.M.; Johnson, D.B.; Sosman, J.A.; Schalper, K.A.; Anders, R.A.; Wang, H.; et al.
Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and
Meta-analysis. JAMA Oncol. 2019, 5, 1195–1204. [CrossRef]

15. Liu, L.; Bai, X.; Wang, J.; Tang, X.R.; Wu, D.H.; Du, S.S.; Du, X.J.; Zhang, Y.W.; Zhu, H.B.; Fang, Y.; et al. Combination of TMB and
CNA Stratifies Prognostic and Predictive Responses to Immunotherapy Across Metastatic Cancer. Clin. Cancer Res. 2019, 25,
7413–7423. [CrossRef]

16. Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor
genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593, Erratum in Science 2019,
363, eaax1384. [CrossRef]

17. Gettinger, S.N.; Choi, J.; Mani, N.; Sanmamed, M.F.; Datar, I.; Sowell, R.; Du, V.Y.; Kaftan, E.; Goldberg, S.; Dong, W.; et al.
A dormant TIL phenotype defines non-small cell lung carcinomas sensitive to immune checkpoint blockers. Nat. Commun. 2018,
9, 3196. [CrossRef] [PubMed]

18. Tray, N.; Weber, J.S.; Adams, S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical
Application. Cancer Immunol. Res. 2018, 6, 1122–1128. [CrossRef]

19. Hopkins, A.M.; Rowland, A.; Kichenadasse, G.; Wiese, M.D.; Gurney, H.; McKinnon, R.A.; Karapetis, C.S.; Sorich, M.J. Predicting
response and toxicity to immune checkpoint inhibitors using routinely available blood and clinical markers. Br. J. Cancer 2017,
117, 913–920. [CrossRef]

20. Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers.
Exp. Mol. Med. 2018, 50, 1–11. [CrossRef]

21. Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.; Weber, J.S. Nivolumab in Resected and Unresectable Metastatic
Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin. Cancer Res. 2016, 22,
886–894. [CrossRef] [PubMed]

22. Dupont, R.; Bérard, E.; Puisset, F.; Comont, T.; Delord, J.P.; Guimbaud, R.; Meyer, N.; Mazieres, J.; Alric, L. The prognostic
impact of immune-related adverse events during anti-PD1 treatment in melanoma and non-small-cell lung cancer: A real-life
retrospective study. Oncoimmunology 2019, 9, 1682383. [CrossRef] [PubMed]

23. Suo, A.; Chan, Y.; Beaulieu, C.; Kong, S.; Cheung, W.Y.; Monzon, J.G.; Smylie, M.; Walker, J.; Morris, D.; Cheng, T. Anti-
PD1-Induced Immune-Related Adverse Events and Survival Outcomes in Advanced Melanoma. Oncologist 2020, 25, 438–446.
[CrossRef] [PubMed]

24. Ricciuti, B.; Genova, C.; De Giglio, A.; Bassanelli, M.; Dal Bello, M.G.; Metro, G.; Brambilla, M.; Baglivo, S.; Grossi, F.; Chiari, R.
Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with
nivolumab: Long-term outcomes from a multi-institutional analysis. J. Cancer Res. Clin. Oncol. 2019, 145, 479–485. [CrossRef]

25. Sato, K.; Akamatsu, H.; Murakami, E.; Sasaki, S.; Kanai, K.; Hayata, A.; Tokudome, N.; Akamatsu, K.; Koh, Y.; Ueda, H.; et al.
Correlation between immune-related adverse events and efficacy in non-small cell lung cancer treated with nivolumab. Lung
Cancer 2018, 115, 71–74, Erratum in Lung Cancer 2018, 126, 230–231. [CrossRef] [PubMed]

26. Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al.
Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non-Small-Cell Lung Cancer. JAMA Oncol. 2018, 4,
374–378. [CrossRef]

220



Cancers 2021, 13, 860

27. Kobayashi, K.; Iikura, Y.; Hiraide, M.; Yokokawa, T.; Aoyama, T.; Shikibu, S.; Hashimoto, K.; Suzuki, K.; Sato, H.; Sugiyama, E.;
et al. Association between Immune-related Adverse Events and Clinical Outcome Following Nivolumab Treatment in Patients
With Metastatic Renal Cell Carcinoma. In Vivo 2020, 34, 2647–2652. [CrossRef] [PubMed]

28. Verzoni, E.; Cartenì, G.; Cortesi, E.; Giannarelli, D.; De Giglio, A.; Sabbatini, R.; Buti, S.; Rossetti, S.; Cognetti, F.; Rastelli, F.;
et al. Real-world efficacy and safety of nivolumab in previously-treated metastatic renal cell carcinoma, and association between
immune-related adverse events and survival: The Italian expanded access program. J. Immunother. Cancer 2019, 7, 99. [CrossRef]
[PubMed]

29. Ishihara, H.; Takagi, T.; Kondo, T.; Homma, C.; Tachibana, H.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Kobayashi, H.; Okumi, M.; et al.
Association between immune-related adverse events and prognosis in patients with metastatic renal cell carcinoma treated with
nivolumab. Urol. Oncol. 2019, 37, 355.e21–355.e29. [CrossRef]

30. Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl.
J. Med. 2018, 378, 158–168. [CrossRef]

31. Elkrief, A.; Derosa, L.; Zitvogel, L.; Kroemer, G.; Routy, B. The intimate relationship between gut microbiota and cancer
immunotherapy. Gut Microbes 2019, 10, 424–428. [CrossRef]

32. Krummel, M.F.; Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting
T cells. J. Exp. Med. 1996, 183, 2533–2540. [CrossRef] [PubMed]

33. Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al.
Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800.
[CrossRef]

34. Vitale, M.G.; Scagliarini, S.; Galli, L.; Pignata, S.; Lo Re, G.; Berruti, A.; Defferrari, C.; Spada, M.; Masini, C.; Santini, D.; et al.
Efficacy and safety data in elderly patients with metastatic renal cell carcinoma included in the nivolumab Expanded Access
Program (EAP) in Italy. PLoS ONE 2018, 13, e0199642. [CrossRef]

35. Scott, E.S.; Long, G.V.; Guminski, A.; Clifton-Bligh, R.J.; Menzies, A.M.; Tsang, V.H. The spectrum, incidence, kinetics and
management of endocrinopathies with immune checkpoint inhibitors for metastatic melanoma. Eur. J. Endocrinol. 2018, 178,
173–180. [CrossRef] [PubMed]

36. Chang, L.S.; Barroso-Sousa, R.; Tolaney, S.M.; Hodi, F.S.; Kaiser, U.B.; Min, L. Endocrine Toxicity of Cancer Immunotherapy
Targeting Immune Checkpoints. Endocr. Rev. 2019, 40, 17–65. [CrossRef]

37. Das, S.; Johnson, D.B. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J. Immunother. Cancer
2019, 7, 306. [CrossRef] [PubMed]

38. Hussaini, S.; Chehade, R.; Boldt, R.G.; Raphael, J.; Blanchette, P.; Maleki Vareki, S.; Fernandes, R. Association between
immune-related side effects and efficacy and benefit of immune checkpoint inhibitors—A systematic review and meta-analysis.
Cancer Treat. Rev. 2020, 92, 102134. [CrossRef]

39. Yoest, J.M. Clinical features, predictive correlates, and pathophysiology of immune-related adverse events in immune checkpoint
inhibitor treatments in cancer: A short review. ImmunoTargets Ther. 2017, 6, 73–82. [CrossRef] [PubMed]

40. Weinmann, S.C.; Pisetsky, D.S. Mechanisms of immune-related adverse events during the treatment of cancer with immune
checkpoint inhibitors. Rheumatology 2019, 58 (Suppl. 7), vii59–vii67. [CrossRef]

41. Wu, C.E.; Yang, C.K.; Peng, M.T.; Huang, P.W.; Chang, C.F.; Yeh, K.Y.; Chen, C.B.; Wang, C.L.; Hsu, C.W.; Chen, I.W.; et al. The
association between immune-related adverse events and survival outcomes in Asian patients with advanced melanoma receiving
anti-PD-1 antibodies. BMC Cancer 2020, 20, 1018. [CrossRef] [PubMed]

42. Kim, H.I.; Kim, M.; Lee, S.H.; Park, S.Y.; Kim, Y.N.; Kim, H.; Jeon, M.J.; Kim, T.Y.; Kim, S.W.; Kim, W.B.; et al. Development of
thyroid dysfunction is associated with clinical response to PD-1 blockade treatment in patients with advanced non-small cell
lung cancer. Oncoimmunology 2017, 7, e1375642. [CrossRef] [PubMed]

43. Ahn, S.; Kim, T.H.; Kim, S.W.; Ki, C.S.; Jang, H.W.; Kim, J.S.; Kim, J.H.; Choe, J.H.; Shin, J.H.; Hahn, S.Y.; et al. Comprehensive
screening for PD-L1 expression in thyroid cancer. Endocr. Relat. Cancer 2017, 24, 97–106. [CrossRef] [PubMed]

44. Vita, R.; Guarneri, F.; Agah, R.; Benvenga, S. Autoimmune thyroid disease elicited by NY-ESO-1 vaccination. Thyroid 2014, 24,
390–394. [CrossRef]

45. Grangeon, M.; Tomasini, P.; Chaleat, S.; Jeanson, A.; Souquet-Bressand, M.; Khobta, N.; Bermudez, J.; Trigui, Y.; Greillier, L.;
Blanchon, M.; et al. Association between Immune-related Adverse Events and Efficacy of Immune Checkpoint Inhibitors in
Non-small-cell Lung Cancer. Clin. Lung Cancer 2019, 20, 201–207. [CrossRef] [PubMed]

46. Teulings, H.E.; Limpens, J.; Jansen, S.N.; Zwinderman, A.H.; Reitsma, J.B.; Spuls, P.I.; Luiten, R.M. Vitiligo-like depigmentation
in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: A systematic review and
meta-analysis. J. Clin. Oncol. 2015, 33, 773–781. [CrossRef]

47. Bouhlel, L.; Doyen, J.; Chamorey, E.; Poudenx, M.; Ilie, M.; Gal, J.; Guigay, J.; Benzaquen, J.; Marquette, C.H.; Berthet, J.P.; et al.
Occurrence and number of immune-related adverse events are independently associated with survival in advanced non-small-cell
lung cancer treated by nivolumab. Bull. Cancer 2020, 107, 946–958. [CrossRef]

221





cancers

Article

Nivolumab Reduces PD1 Expression and Alters Density and
Proliferation of Tumor Infiltrating Immune Cells in a Tissue
Slice Culture Model of Renal Cell Carcinoma

Philipp J. Stenzel 1,*, Nina Hörner 1, Sebastian Foersch 1, Daniel-Christoph Wagner 1, Igor Tsaur 2, Anita Thomas 2,

Axel Haferkamp 2, Stephan Macher-Goeppinger 1, Wilfried Roth 1, Stefan Porubsky 1,† and Katrin E. Tagscherer 1,†

Citation: Stenzel, P.J.; Hörner, N.;

Foersch, S.; Wagner, D.-C.; Tsaur, I.;

Thomas, A.; Haferkamp, A.;

Macher-Goeppinger, S.; Roth, W.;

Porubsky, S.; et al. Nivolumab

Reduces PD1 Expression and Alters

Density and Proliferation of Tumor

Infiltrating Immune Cells in a Tissue

Slice Culture Model of Renal Cell

Carcinoma. Cancers 2021, 13, 4511.

https://doi.org/10.3390/

10.3390/cancers13184511

Academic Editors: Claudia Manini

and José I. López

Received: 23 August 2021

Accepted: 1 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany;
nina.hoerner@unimedizin-mainz.de (N.H.); sebastian.foersch@unimedizin-mainz.de (S.F.);
Daniel-Christoph.Wagner@unimedizin-mainz.de (D.-C.W.); sgoeppinger@gmail.com (S.M.-G.);
Wilfried.Roth@unimedizin-mainz.de (W.R.); stefan.porubsky@unimedizin-mainz.de (S.P.);
katrin.tagscherer@unimedizin-mainz.de (K.E.T.)

2 Department of Urology, University Medical Center Mainz, 55131 Mainz, Germany;
igor.tsaur@unimedizin-mainz.de (I.T.); anita.thomas@unimedizin-mainz.de (A.T.);
axel.haferkamp@unimedizin-mainz.de (A.H.)

* Correspondence: philipp.stenzel@unimedizin-mainz.de; Tel.: +49-6131-17-2813; Fax: +49-6131-17-6604
† These authors contributed equally to this project.

Simple Summary: Immune checkpoint inhibitors (ICIs) have become a first-choice therapy option in
the treatment of clear cell renal cell carcinoma (ccRCC). A predictive biomarker is urgently needed
since not all patients respond and adverse events occur. Therefore, an ex vivo tissue slice culture
(TSC) model was tested to investigate the effects of nivolumab on tumor infiltrating immune cells
(TIIC). A decrease in programmed death receptor 1 expression, as well as effects on density and
proliferation of TIIC, were observed. Thus, the TSC model could serve as a test platform for response
prediction to ICIs.

Abstract: Background: In the treatment of clear cell renal cell carcinoma (ccRCC), nivolumab is
an established component of the first-line therapy with a favorable impact on progression free
survival and overall survival. However, treatment-related adverse effects occur and, to date, there
is no approved predictive biomarker for patient stratification. Thus, the aim of this study was to
establish an ex vivo tissue slice culture model of ccRCC and to elucidate the impact of nivolumab
on tumor infiltrating immune cells. Methods: Fresh tumor tissue of ccRCC was treated with the
immune checkpoint inhibitor nivolumab using ex vivo tissue slice culture (TSC). After cultivation,
tissue slices were formalin-fixed, immunohistochemically stained and analyzed via digital image
analysis. Results: The TSC model was shown to be suitable for ex vivo pharmacological experiments
on intratumoral immune cells in ccRCC. PD1 expression on tumor infiltrating immune cells was
dose-dependently reduced after nivolumab treatment (p < 0.01), whereas density and proliferation
of tumor infiltrating T-cells and cytotoxic T-cells were inter-individually altered with a remarkable
variability. Tumor cell proliferation was not affected by nivolumab. Conclusions: This study could
demonstrate nivolumab-dependent effects on PD1 expression and tumor infiltrating T-cells in TSC
of ccRCC. This is in line with results from other scientific studies about changes in immune cell
proliferation in peripheral blood in response to nivolumab. Thus, TSC of ccRCC could be a further
step to personalized medicine in terms of testing the response of individual patients to nivolumab.

Keywords: nivolumab; clear cell renal cell carcinoma; tissue slice culture; PD1; T-cells

1. Introduction

Renal cell carcinoma (RCC) is among the ten most frequent malignancies worldwide
with increasing incidence and decreasing mortality [1]. The decrease in mortality is the
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consequence of early diagnosis and a broad range of therapy options in advanced and
metastasized stages, which applies to 20% of patients at the time of diagnosis and another
20% of patients during the clinical course after initial surgery [2]. For clear cell renal cell
carcinoma (ccRCC), the most common histologic subtype of RCC, the combination of either
tyrosine kinase inhibitor (TKI) and immune checkpoint inhibitor (ICI) or two ICIs are
guideline-recommended first-line treatment options. Four comprehensive clinical trials
(Checkmate 214 (ClinicalTrials.gov Identifier: NCT02231749), Keynote 426 (ClinicalTri-
als.gov Identifier: NCT02853331), Javelin 101 (ClinicalTrials.gov Identifier: NCT02684006),
Checkmate9ER (ClinicalTrials.gov Identifier: NCT03141177)) have shown the superiority of
either combined ICI therapy (nivolumab + ipilimumab) or combined TKI and ICI therapy
(axitinib + pembrolizumab, axitinib + avelumab, cabozantinib + nivolumab) regarding
overall survival (OS) or progression free survival (PFS) compared to standard-of-care suni-
tinib in patients with previously untreated advanced RCC [3–6]. The objective response
rate (ORR) for the combination therapies including ICIs ranged from 42% [3] to 59.3% [4]
compared to 25.7% to 35.7% for sunitinib alone [3–6]. Complete responses were rare in
all studies. Treatment-related adverse events of grade 3 or higher occurred either in the
sunitinib group [3] or in the combination therapy group [4,6] or showed no significant
difference [5]. With the exception of the Javelin 101 trial, treatment was discontinued due to
treatment-related adverse effects, more often in the group with combination therapy. In the
Checkmate 214 trial, there were even eight treatment-related deaths in the group treated
with the combination of ipilimumab and nivolumab compared to four treatment-related
deaths in the sunitinib group [3].

Hence, stratifying patients eligible for therapy including ICIs remains a difficult task
and predictive biomarkers are urgently needed. Programmed death receptor ligand 1
(PD-L1) expression of RCC has been examined in the above mentioned clinical trials, but
has not been established as a reliable predictive biomarker for ICI [7]. A more dynamic
approach is to measure blood parameters before or during ICI treatment. Serum levels of
soluble programmed death receptor 1 (sPD1) and sPD-L1 correlated with OS and PFS of
patients with RCC [8,9]. In patients with non-small cell lung cancer (NSCLC) an increased
proliferation of CD8+ cytotoxic T-cells (CTL) in peripheral blood correlated with response
to nivolumab therapy, whereas patients with progressive disease had no change in CTL
proliferation or even a decrease [10,11]. In metastasized RCC, a high density of tumor
infiltrating PD1+ CTLs correlated with higher ORR and prolonged PFS in a patient cohort
treated with nivolumab and is, therefore, a promising candidate predictive biomarker for
response to nivolumab [12,13].

In this study, we report our results regarding an ex vivo tissue slice culture (TSC)
model with incubation of fresh vital ccRCC tumor tissue with nivolumab for 24 h or 72 h
and consecutive quantification of immune cell density, proliferation, and distribution.

2. Materials and Methods

2.1. Patients and Tissue Collection

Twelve patients with ccRCC, surgically treated at the Department of Urology and
Pediatric Urology of the University Medical Center Mainz from 2017 to 2020, were included
in the study. Tissue collection was approved by ethics approval for the Tissue Biobank,
University Medical Center Mainz (ethics approval: 837.031.15 (9799); date of approval:
2 October 2015). After arrival of the surgical specimen in the Institute of Pathology, tumors
were macroscopically examined to confirm subtype (golden to yellow cut surface with
hemorrhage) and tissue vitality. In cases of doubt, additional microscopic examination
by frozen section of the intended area of sampling was performed. Exclusion criteria
for tissue collection included a tumor size <1.0 cm to ensure reliable pathologic routine
diagnostics, poor tissue quality with a high portion of necrotic tumor tissue, and non-clear
cell morphology. Fresh vital tumor tissue (length: 10 mm; diameter: 6 mm) was collected
from the tumor periphery by using a defined punching tool (KAI Medical Biopsy Punch,
Solingen, Germany), stored in a 4 ◦C chilled Krebs-Henseleit-Buffer (Sigma-Aldrich/Merck,
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Darmstadt, Germany) and referred to the lab for TSC. To match tumor heterogeneity, at
least two different tumor localizations were sampled.

2.2. Ex Vivo Tissue Slice Culture

The tissue culture protocol has been described in detail previously [14,15]. Briefly,
tumor tissue was cut into slices of 300 μm thickness using a Vibratome VT1200 (Leica
Microsystems, Mannheim, Germany). The first and the last slice of each tumor sample
was immediately fixated in buffered 4% formalin. The other tissue slices were randomly
assigned to control and intervention groups. Tissue slices were incubated at the air-medium-
interface in a 12-well plate with appropriate inserts. The used tissue culture medium was
DMEM cell culture medium (ATCC, Manassas, CO, USA) with supplements (1% Peni-
cillin/Streptomycin, 10% fetal calf serum (Sigma-Aldrich/Merck, Darmstadt, Germany))
and with or without nivolumab (Opdivo, Bristol-Myers Squibb, Munich, Germany). The
medium including nivolumab in the therapy group was changed after 1 h and every
additional 24 h. For the time of the experiment, tissue slices were kept in an incubator
with a humidified atmosphere, a temperature of 37 ◦C, and 5% CO2. After 24 h or 72 h,
respectively, tissue slices were harvested, fixated in buffered 4% formalin, and paraffin
embedded. Figure 1 provides a detailed overview of the experimental setup.

2.3. Treatment Regimen

Tissue slices were incubated with increasing concentrations of nivolumab (0.1 μg/mL,
1 μg/mL, 10 μg/mL, and 100 μg/mL) or without nivolumab as control. Cultivation was
usually performed in triplicates and in cases of limited amount of tumor tissue in duplicates.

Figure 1. Tissue culture workflow.

2.4. Conventional and Immunohistochemical Staining

Tissue slices were stained with hematoxilyn and eosin (HE) and tumor tissue vitality
was confirmed. Slices with necrosis >50% were excluded from further immunohistochem-
ical stainings. Slices were stained with antibodies against Ki67 (MIB-1, Dako, Glostrup,
Denmark), PD-L1 (ab213524, Abcam, Cambridge, UK) or double stained using the Envision
G/2 Doublestain System or Envision Flex Doublestain System (Dako). The antibody com-
binations were CD3 (IR503, Dako) + Ki67 (MIB-1, Dako), CD3 (IR503, Dako) + CK AE1/3
(IR053, Dako), CD8 (IR623, Dako) + Ki67 (MIB-1, Dako), PD1 (ab52587, Abcam) + Ki67
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(MIB-1, Dako), and PD1 (ab52587, Abcam) + CK AE1/3 (IR053, Dako). All slides were
stained with automatized immunostainers (Autostainer Plus, Dako).

2.5. Digital Image Analysis

Digitalization and digital image analysis were performed as previously described
using a digital whole slide scanner (Nanozoomer, Hamamatsu Photonics, Hamamatsu,
Japan) and the HALO® platform (Indica Labs, Corrales, NM, USA) [16]. Briefly, for the
detection and quantification of stain-positive cells, the CytoNuclear module (v1.4–1.6) was
used. To differentiate between tumor parenchyma and tumor-associated stroma, a tissue
classifier was included. Localization of each detected cell in the tissue and its biomarker
profile cells were saved and used for spatial analysis with the proximity tool included
in HALO®. Vital and necrotic tumor areas were manually annotated and quantified via
digital image analysis. PD-L1 status (tumor proportion score, TPS) was assessed by light
microscopy (Olympus BX45, Olympus, Tokio, Japan).

2.6. Spatial Distribution

Tissue slices were immunohistochemically double stained for T-cells (brown) and for
tumor cells (red). Digital image analysis was used for detection of T-cells (markup: red),
tumor cells (markup: green), and other cells (markup: blue). Tissue was further classified
into tumor area (classifier markup: red) and stroma (classifier markup: green) (Figure S1A).
T-cells were dichotomized into “T-cells Tumor” and “T-cells Stroma” depending on the
T-cells’ localization (Figure S1B). The percental distribution of T-cells Tumor and T-cells
Stroma within a diameter of 30 μm around tumor cells was quantified using the proximity
tool implemented in HALO®.

2.7. Statistical Analysis

Data are given as mean ± standard deviation. In cases of high inter-individual
variability of the examined parameters, data were normalized relative to baseline value or
to control. For the comparison of two groups, the paired t-test was performed and, for the
comparison of three or more groups, the one-way analysis of variance (one-way ANOVA)
was performed. The necessary assumptions for the one-way ANOVA were tested with the
Shapiro–Wilk test (normal distribution within the individual groups) and the Levene test
(homogeneity of variances). In cases, where the assumption of normal distribution within
the individual groups was violated, the Kruskal–Wallis test was alternatively performed.
Post hoc tests for the one-way ANOVA were the Tukey test and, for the Kruskal–Wallis
test, the Dunn test. All calculations were performed using Microsoft Excel (version 2012),
R statistical software (version 4.0.3) and Rstudio (version 1.4.1103). Differences with
p-values < 0.05 were considered significant.

3. Results

3.1. Characteristics of Patient Collective

Tumor tissues from 12 patients were treated with nivolumab for 24 h (tumors 1–7) or
72 h (tumors 8–12), respectively. Eleven specimens were from primary renal tumors and
one from an adrenal gland metastasis. 63.6% (n = 7) of primary tumors were organ confined.
The median age of patients at the moment of surgery was 65 years (mean 68.3 ± 10.0).
Clinical follow-up data was available for nine patients. The median time of follow-up
was 10.9 months (min. 1 month, max. 22.9 months, and the mean was 11.4 ± 8.3 months).
By the end of follow-up, one patient had died of a disease unrelated to RCC, one was
suffering from progressive disease, two showed a stable disease, and five showed no
progress. Clinicopathological data including follow up are summarized in Table 1.
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Table 1. Clinicopathological information of the patient collective.

Tumor
Number

Sex
Age at

Surgery
Origin

Tumor
Size (cm)

TNM
Classification

Grading
Clinical Course

after Surgery

1 m 61 Primary
tumor 12

pT2b, pNX,
cM0, L0, V0,

Pn0, R0
G2 Deceased

(unrelated to RCC)

2 m 61 Primary
tumor 5.5

pT1b, pNX,
cM0, L0, V0,

Pn0, R0
G1 No information

3 m 82 Primary
tumor 3.4

pT3a, pNX,
cM0, L0, V0,

Pn0, R0
G2 No progress

4 m 64 Primary
tumor 3.7

pT1a, pNx,
cM0, L0, V0,

Pn0, R0
G2 No information

5 m 60 Metastasis 1.2

pT3a, pN0
(0/1), pM1

(ADR), L0, V1,
Pn0, R0

G2 Stable disease

6 m 66 Primary
tumor 5

pT1b, pNx,
cM0, L0, V0,

Pn0, R0
G2 No progress

7 m 72 Primary
tumor 8

pT3b,
pN0(0/1),

cM0, L0, V2,
Pn0, R1

G2 No progress

8 m 88 Primary
tumor 5.8

pT1b, pN0
(0/11), cM0,
L0, V0, Pn0,

R0

G2 No information

9 m 69 Primary
tumor 7.5

pT3a, pN1
(3/11), cM1

(PUL), L0, V0,
Pn0, R0

G2 Stable disease

10 m 79 Primary
tumor 5.3

pT3a, pNx,
cM0, L0, V0,

Pn0, R0
G2 No progress

11 w 55 Primary
tumor 8

pT2a, pNx,
pM1 (OSS), L0,

V1, Pn0, R0
G3 Progressive

disease

12 m 63 Primary
tumor 2.6

pT1a, pNX,
cM0, L0, V0,

Pn0, R0
G2 No progress

3.2. Tissue Slice Culture Is Possible for up to Three Days but Reduces Tumor Infiltrating
Immune Cells

Fresh vital tumor tissue of ccRCC was sampled close to the invasive margin (IM). Post
hoc immunostaining of corresponding primary tumors showed that there were tumors
with low (Figure S2A) and high (Figure S2B) amounts of tumor infiltrating PD1+ IC which
were rather concentrated at the IM. The tumor tissue was cut into 300 μm thick slices and
cultivated with increasing concentrations of nivolumab for 24 h or 72 h, respectively. With
only one tumor sample which had to be excluded from further analysis due to extensive
cultivation related necrosis, the success rate for the establishment of TSC corresponds to
92.3%. All tumors showed clear cell morphology and stayed negative for PD-L1 during
TSC (tumor proportion score: 0%). Tumor infiltrating immune cells with PD1 expression
(PD1+ IC) could be detected in every tumor (Figure 2). Baseline densities and proliferation
rates of tumor infiltrating immune cells showed a high inter-individual variability (Table 2).
After 24 h of TSC, the necrotic tumor area was non-significantly compared to baseline,
whereas there was a significant increase in necrosis after 72 h (Figure 3A). Overall prolifera-
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tion, including tumor cells, showed no significant change after 24 h and a non-significant
increase after 72 h (Figure 3B). Tumor infiltrating PD1+ IC, proliferating PD1+ IC and pro-
liferating T-cells were not altered significantly after 24 h of cultivation. Tumor infiltrating
T-cells, CTL, and proliferating CTL were significantly decreased (Figure 3C). After 72 h of
TSC, PD1+ IC, proliferating PD1+ IC, CTL, and proliferating CTL were all significantly
decreased compared to baseline. Tumor infiltrating T-cells were not changed after 72 h of
TSC and proliferating T-cells non-significantly increased (Figure 3D).

Figure 2. Histological morphology and PD-1/PD-L1 status of tumors. Clear cell morphology of tumors
(HE-staining, left), PD1+ immune cells (brown) in the tumor tissue (red) (middle), and PD-L1 expression
(brown) at baseline and after tissue slice culture for 24 h or 72 h. Interspersed PD1+ immune cells were
present, however the tumor cells showed no PD-L1 expression. Bar indicates 50 μm.
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Table 2. PD-L1 status and immune cell densities and proliferation rates at baseline.

Tumor
Number

PD-L1
TPS

T-
Cells/mm2

Ki67 + T-
Cells/mm2 CTL/mm2 Ki67 +

CTL/mm2
PD1+

IC/mm2
Ki67 + PD1+

IC/mm2

1 0 1399.0 41.6 187.2 10.3 109.8 2.2

2 0 453.0 22.5 249.4 27.5 252.0 33.1

3 0 741.2 67.8 235.4 59.1 364.2 91.4

4 0 129.8 4.8 96.1 9.7 39.2 2.6

5 0 4696.5 218.3 592.3 122.6 483.0 158.8

6 0 172.9 9.3 113.7 10.3 129.5 10.9

7 0 273.0 9.3 71.5 3.5 85.2 5.2

8 0 66.0 3.4 46.0 1.8 21.3 1.2

9 0 962.1 103.3 472.2 37.5 812.8 64.4

10 0 1994.3 714.1 1785.0 388.9 1580.6 452.6

11 0 543.4 5.7 352.1 20.3 256.4 21.2

12 0 466.7 5.8 300.9 19.4 564.9 65.3

Statistics
T-

cells/mm2
Ki67 + T-

cells/mm2 CTL/mm2 Ki67 +
CTL/mm2

PD1+
IC/mm2

Ki67 + PD1+
IC/mm2

Mean 991.5 100.5 375.2 59.2 391.6 75.7

STD 1297.3 203.2 473.6 109.1 444.3 127.8

Min 66.0 3.4 46.0 1.8 21.3 1.2

Max 4696.5 714.1 1785.0 388.9 1580.6 452.6

Median 505.0 15.9 242.4 19.8 254.2 27.1
Abbreviations: PD-L1: programmed death receptor ligand 1; TPS: tumor proportion score; CTL: CD8+ cytotoxic
lymphocytes; PD1+ IC: programmed death receptor 1 expressing immune cells; STD: standard deviation; min:
minimum; max: maximum.

3.3. Distinct Reaction Patterns of Tumor Infiltrating Immune Cells in Response to Nivolumab

A decreased density of PD1+ IC after nivolumab treatment was observed across all
examined tumors, whereas T-cells and CTL and the corresponding proliferation fractions
showed either a nivolumab dependent increase, decrease, or no alteration. Table 3 provides
an overview of the reaction patterns of the individual tumors. Tumor 3 showed a significant
decrease in PD1+ IC (p = 0.01) and a decrease by trend of proliferating PD1+ IC (p = 0.4),
a consistent non-significant increase in tumor infiltrating T-cells (p = 0.3), proliferating
T-cells (p = 0.4), CTL (p = 0.5), and proliferating CTL (p = 0.6) after nivolumab treatment
(Figure 4A). In contrast, tumor 5 reacted with a significant decrease in PD1+ IC (p < 0.01),
proliferating PD1+ IC (p < 0.01), T-cells (p = 0.01) and proliferating T-cells (p < 0.01),
as well as a non-significant reduction of CTL (p = 0.4) and proliferating CTL (p = 0.3)
(Figure 4B). Tumor 7 showed the third pattern, characterized by minor, non-significant
changes in immune cell densities (T-cells: p = 0.8; CTL: p = 0.8) and proliferation fractions
(Ki67+ PD1+ IC: p = 0.2; Ki67 + T-cells: p = 0.5; Ki67 + CTL: p = 0.9); however, the density
of PD1+ IC was significantly decreased (p = 0.001) (Figure 4C). Overall proliferation (tumor
3: p = 0.99; tumor 5: p = 0.1; tumor 7: p = 0.3) and nivolumab-dependent necrosis (tumor 3:
p = 0.1; tumor 5: p = 0.7; tumor 7: p = 0.5) were not significantly changed (Figure 3). The
nivolumab-dependent decrease in PD1+ IC was significant after averaging the respective
experiments with a duration of 24 h or 72 h (24 h: p < 0.01; 72 h: p < 0.01); the other
parameters showed no significant changes (Figure 4).
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Table 3. Nivolumab-dependent reaction patterns of tumor infiltrating immune cell densities and
corresponding proliferation rates.

Tumor Number CD3 CD3-Ki67 CD8 CD8-Ki67 PD1 PD1-Ki67

1 ~ ~ ~ ~ - ~

2 - - ~ ~ - -

3 + + + + - -

4 + + ~ ~ - -

5 - - - - - -

6 ~ ~ ~ ~ - -

7 ~ ~ ~ ~ - -

8 ~ ~ - + - NA

9 ~ ~ - - - ~

10 - - ~ ~ - ~

11 + - + + - -

12 - - ~ - - -
Abbreviations: CD3: T-cells; CD3-Ki67: proliferating T-cells; CD8: cytotoxic T-cells; CD8-Ki67: proliferating
cytotoxic T-cells; PD1: programmed death receptor expressing immune cells; PD1-Ki67: proliferating programmed
death receptor expressing immune cells; + nivolumab-dependent increase; - nivolumab-dependent decrease; ~ no
nivolumab-dependent change; NA: data not available.

Figure 3. Influence of tissue slice culture (TSC) on tumor vitality, proliferation, and tumor infiltrating immune cells.
Tumor tissue of clear cell renal cell carcinoma (ccRCC) was cultivated for 24 h to 72 h. Necrotic tumor area and the
immunohistochemical stainings Ki67, Ki67-PD1, Ki67-CD3, and Ki67-CD8 were quantified by digital image analysis.
(A) The percentage of necrotic tumor after 24 h (n = 7) or 72 h (n = 5) of TSC compared to baseline. Fold change of (B) overall
proliferation, (C) tumor infiltrating PD1+ immune cells, T-cells, cytotoxic T-cells and their proliferating subsets after 24 h
(n = 7) or (D) 72 h (n = 5) of TSC compared to baseline. Data were normalized relative to baseline values, if not stated
otherwise, and given as mean ± standard deviation. The paired t-test was used for statistical analysis. *: p < 0.05.
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Figure 4. Nivolumab-dependent changes of tumor infiltrating immune cell densities and proliferation rates. Tissue slices
of clear cell renal cell carcinoma (ccRCC) were immunohistochemically stained for Ki67-PD1, Ki67-CD3, and Ki67-CD8
after 24 h of cultivation with increasing concentrations of nivolumab. Three representative reaction patterns to nivolumab
treatment are shown: (A) pattern A (tumor 3) with nivolumab-dependent increased tumor infiltrating T-cells, (B) pattern B
(tumor 5) with nivolumab-dependent decreased tumor infiltrating T-cells, and (C) pattern C (tumor 7) without nivolumab-
dependent changes of tumor infiltrating T-cells. Data are given as mean ± standard deviation. For statistical analysis the
one-way analysis of variance or the Kruskal–Wallis test with appropriate post hoc tests were used. p-values were corrected
with the Bonferroni method. *: p < 0.05.
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3.4. Spatial Distribution of Tumor Infiltrating Immune Cells under the Influence of Nivolumab

In individual experiments, e.g., tumor 11, a minor shifting of tumor infiltrating T-
cells toward tumor cells after treatment with 100 μg/mL nivolumab could be observed
(Figure 5A), whereas there was a change in the distribution of stromal T-cells (Figure 5B).
After averaging the experiments with a duration of 24 h, the distribution of tumor infil-
trating PD1+ IC after nivolumab treatment was unaltered compared to control and the
T-cells showed a non-significant shift toward tumor cells (Figure S5A). This effect was
even more pronounced, yet still not significant, when looking at the corresponding stromal
T-cell fraction (Figure S5A), whereas the stromal PD1+ IC were farther away compared
to control. After 72 h, there was no major difference in tumor infiltrating T-cells after
nivolumab treatment compared to control (Figure S5B).

Figure 5. Nivolumab-dependent spatial distribution of tumor infiltrating T-cells. Tumor tissue of clear cell renal cell carci-
noma (ccRCC) cultivated 72 h with nivolumab. Tissue slices were immunohistochemically double stained for cytokeratin
and CD3. The distance between (A) tumor infiltrating T-cells and (B) stromal T-cells to tumor cells was calculated by digital
image analysis. Data are given as mean ± standard deviation.

4. Discussion

So far, there are no established predictive biomarkers to guide treatment in metastatic
RCC. Therefore, a precise test system for response prediction is one option to better stratify
patients who will benefit from nivolumab treatment. In this study, an ex vivo TSC model
was tested to examine nivolumab-dependent effects on tumor infiltrating immune cells in
human ccRCC tumor tissue.

The major finding of this study was the nivolumab-dependent significant reduction
of PD1+ IC (Figure 4 and Figure S3). Immunohistochemical PD1 positivity of tumor
infiltrating immune cells is widely considered as a biomarker for “exhausted immune
cells”, but with regard to T-cells and especially CTL, it is rather a biomarker for activated
CTL [17,18]. In our previously published study about the prognostic value of tumor infi-
trating immune cells in ccRCC, PD1+ IC were associated with a favorable cancer-specific
survival [16], indicative that PD1+ CTL comprise tumor-reactive CTL, as was shown in
malignant melanoma [19]. Reduced PD1 expression after incubation with PD1-targeting
agents, as described in the present study, has been demonstrated before: PD1 expression of
peripheral CD8+ T-Cells of patients suffering from PDAC was reduced after incubation
with nivolumab and also with pembrolizumab, another therapeutic anti-PD1-antibody [20].
In a xenograft mouse model of colon carcinoma and mammary carcinoma, a reduced fre-
quency of PD1 + CD8+ T-cells and a decrease in PD1 levels below a certain threshold were
associated with release from adaptive immune resistance [21]. In principle, this mechanism
could also apply to ccRCC TSC. However, methods other than immunohistochemistry
(IHC) are required for a more precise PD1 quantification, e.g., flow cytometry. So far, the
decreased density in PD1+ IC after nivolumab treatment, assessed by IHC, could serve as a
positive control for a successful nivolumab treatment in TSC. For further interpretation
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of nivolumab-dependent effects, the focus of this study was on the differentially altered
densities and proliferation rates of T-Cells and CTL after nivolumab treatment (Figure 4).
This is in line with results examining proliferation of peripheral PD1+ CTL in response to
nivolumab in NSCLC. Reduced CTL proliferation after nivolumab infusion correlated with
progressive disease [10] and an early proliferative response of PD1+ CTL with (partial)
response [11,22]. All in all, the number of tumors (n = 12) examined in this study was too
small for further correlation of the observed reaction patterns and the clinical course of the
included patients. Thus, for further validation of the reported results, these experiments
need to be conducted in a larger patient cohort.

All of the examined tumors were immunohistochemically negative for PD-L1. How-
ever, PD-L1 expression in renal cell carcinoma has been shown to be a strong prognostic
factor for poor outcome [23], but it only provides limited value on response prediction to
nivolumab. The Checkmate025 [NCT01668784] trial showed the superiority of nivolumab
over everolimus as a second-line therapy for patients with advanced RCC independent of
PD-L1 expression [24]. Similarly, the consecutive Checkmate214 and Checkmate9ER trials
showed the greater benefit of patients with RCC treated with combination therapies includ-
ing nivolumab compared to the standard of care sunitinib, independent of the PD-L1 status
of the primary tumors [3,6]. Thus, a lack of PD-L1 in the tumor tissue seems to have no
major impact on response to nivolumab. Therefore, it is reasonable to investigate the effect
of nivolumab on tumor infiltrating immune cells in PD-L1 negative ccRCC tumors, too.

The used ex vivo TSC bears several advantages to address this question compared to
other established lab-based experimental designs. Firstly, primary and metastatic tumor tis-
sue can be examined with TSC. Cultivation of several samples from different localizations
within the tumor tissue allows for modelling tumor heterogeneity, especially with regard
to PD-L1 expression [25]. Thus, at least two samples from different tumor localizations
were taken. On the other hand, high tumor heterogeneity can result in the high variance
of measured data; despite the lack of significant tendencies due to the high variances,
these results should also be interpreted as representative for the whole tumor, because
they comprise several tumor localizations. Secondly, the tumor microenvironment (TME)
which is crucial for interactions between tumor cells and tumor-associated immune cells is
transferred into TSC so that associations between therapy effects, e.g., necrosis or prolifer-
ation of tumor cells, and the TME can be discovered. One study using the TSC method
for pharmacological experiments on RCC highlights the importance of PD-L1 expression
and tumor infiltrating CTL [26]. Investigation in the TME can indeed be achieved with
air-liquid interface patient-derived organoids or humanized mouse models, too, but estab-
lishing these is resource and time intensive [27,28]. Third, differently to common in vitro
monolayer cell culture models, the three-dimensional architecture of the tumor is preserved
in TSC. This leads to the conception that the tumor tissue reacts similarly in an ex vivo
setting compared to the in vivo situation [29–31]. The TSC protocol used in this study has
been established for ccRCC tumor tissue and was successfully used in a previous study
in our lab (14). Nonetheless, there was increased necrosis of tumor tissue, unrelated to
nivolumab treatment (Figure 3A). Tumor necrosis is not uncommon in ccRCC and is a poor
prognostic marker for survival [32]. Therefore, a certain amount of tissue necrosis in TSC
must be considered inevitable when screened for drug response and can, in principle, be
kept low with experiment durations of 24 h (Figure 3A). In terms of the optimization of TSC,
protocols studies have so far focused on improving TSC media compositions with regard
to tumor cell vitality [33]. Overall proliferation was not significantly changed (Figure 3B)
which implies that the used TSC medium composition is suitable to maintain tumor cell
proliferation. In contrast, there was a marked drop of immune cell density and prolif-
eration due to TSC alone (Figure 3C,D). CTL were extraordinarily affected which could
explain the lack of nivolumab-dependent tumor necrosis in this study (Figure S3). While
most TSC studies focus on effects on tumor cells, two have examined tumor infiltrating
immune cells in ductal pancreatic adenocarcinoma and gastric carcinoma and found no
significant reduction up to day 6 of TSC [34,35]. Thus, in further projects, TSC medium
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composition should be reevaluated to support both tumor cell and immune cell vitality
and proliferation.

In malignant melanoma, responders to ICI had significantly higher CTL densities
within 20 μm around tumor cells compared to non-responders [36]. In this study, the
spatial distribution of immune cells regarding the distance to tumor cells was investigated,
too. The data show only minor nivolumab-dependent effects on the distribution of tumor
infiltrating T-cells and PD1+ IC within 30 μm around tumor cells (Figure 5 and Figure S5).
This is most likely due to the fact that the ccRCC tumor tissue punches that are used for
TSC lack abundant tumor-associated stroma, which means that tumor infiltrating immune
cells are close to tumor cells at any time during the experiment. Additionally, intact tissue
slices are necessary for the measurement of spatial distribution since tearing of tissue
slices is a major confounder. To circumvent these issues, live cell imaging of CTL, as was
already established for lung tumor TSC [37], could provide a more detailed insight into the
influence of nivolumab on CTL migration through the tumor and number of contacts to
tumor cells.

The limitations of the study are: 1. The relatively low number of cases which are
sufficient to document the potential and pitfalls of this method but is too low to prove
that response to nivolumab can be predicted through TSC and the measurement of tumor
infiltrating immune cells; 2. The implementation of clinical studies to correlate the results
of this model with clinical therapies and outcomes is needed; 3. The tumor-inherent
heterogeneity that—as discussed above—makes sampling at different locations necessary
to achieve reliable results. This can turn out to be problematic especially in cases with poor
tissue quality or large necrosis.

5. Conclusions

Taken together, the present study provides encouraging data that support the ex vivo
TSC approach as a model to predict response to nivolumab in ccRCC. Yet, TSC conditions
must be optimized in order to minimize effects on tumor infiltrating immune cells through
TSC alone. This together with further research on the correlation of nivolumab-dependent
changes in immune cell proliferation as a readout parameter for response of ccRCC patients
to nivolumab treatment might be the way to establish TSC as a predictive test system.
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Simple Summary: Immune checkpoint inhibitors (ICIs), such as programmed cell death protein
1 (PD-1) blockade, have proven to be the most effective agents for the management of many cancer
types. Although ICIs are the current standard of care for treating metastatic clear cell renal cell
carcinoma (ccRCC), 40–60% of patients still have intrinsic resistance to ICIs across multiple clinical
trials. Therefore, identifying optimal biomarkers that can predict either responders or non-responders
to ICIs has been of tremendous importance. Here, we generated targeted sequencing and whole
transcriptomic sequencing of 60 patients with metastatic ccRCC treated with ICIs. Moreover, tran-
scriptomic analysis was integrated to identify molecular subtypes using a total of 177 tumor samples
by merging our data and published data derived from the CheckMate 025 trial. Our results show
that these molecular subtypes are associated with specific genomic alterations, distinct molecular
pathways, and differential clinical outcomes in patients with metastatic ccRCC treated with ICIs.

Abstract: Clear cell renal cell carcinoma (ccRCC) has been reported to be highly immune to and
infiltrated by T cells and has angiogenesis features, but the effect of given features on clinical
outcomes followed by immune checkpoint inhibitors (ICIs) in ccRCC has not been fully characterized.
Currently, loss of function mutation in PBRM1, a PBAF-complex gene frequently mutated in ccRCC, is
associated with clinical benefit from ICIs, and is considered as a predictive biomarker for response to
anti-PD-1 therapy. However, functional mechanisms of PBRM1 mutation regarding immunotherapy
responsiveness are still poorly understood. Here, we performed targeted sequencing (n = 60) and
whole transcriptomic sequencing (WTS) (n = 61) of patients with metastatic ccRCC treated by ICIs. By
integrating WTS data from the CheckMate 025 trial, we obtained WTS data of 177 tumors and finally
identified three molecular subtypes that are characterized by distinct molecular phenotypes and
frequency of PBRM1 mutations. Patient clustered subtypes 1 and 3 demonstrated worse responses
and survival after ICIs treatment, with a low proportion of PBRM1 mutation and angiogenesis-
poor, but were immune-rich and cell-cycle enriched. Notably, patients clustered in the subtype
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2 showed a better response and survival after ICIs treatment, with enrichment of PBRM1 mutation
and metabolic programs and a low exhausted immune phenotype. Further analysis of the subtype
2 population demonstrated that GATM (glycine amidinotransferase), as a novel gene associated
with PBRM1 mutation, plays a pivotal role in ccRCC by using a cell culture model, revealing tumor,
suppressive-like features in reducing proliferation and migration. In summary, we identified that
metastatic ccRCC treated by ICIs have distinct genomic and transcriptomic features that may account
for their responsiveness to ICIs. We also revealed that the novel gene GATM can be a potential tumor
suppressor and/or can be associated with therapeutic efficacy in metastatic ccRCC treated by ICIs.

Keywords: renal cell carcinoma; immune checkpoint inhibitor; responsiveness; molecular features

1. Introduction

Immune checkpoint inhibitors (ICIs), such as programmed cell death protein 1 (PD-1)
blockade, have proven to be the most effective agents for the management of many cancer
types [1]. Despite the low tumor mutational burden of renal cell carcinoma (RCC), it has
unique immunologic features, including high immune infiltration score and increased
infiltration by cytotoxic CD8+ T cells, which are known to be associated with the response
to PD-1 blockade [2,3]. In this context, recent phase III clinical trials, such as CheckMate
025, CheckMate 214, and KEYNOTE 426, showed that ICIs-based regimens significantly
improved the objective response and survival outcomes compared to that of tyrosine kinase
inhibitors, particularly in advanced clear cell RCC (ccRCC) [4–7]. Although ICIs are the
current standard of care for treating metastatic ccRCC, 40–60% of patients still have intrinsic
resistance to ICIs across multiple clinical trials. Therefore, identifying optimal biomarkers
that can predict either responders or non-responders to ICIs have been of tremendous
importance [8].

While PD-ligand 1 expression is a conventional biomarker for predicting responsive-
ness to ICIs across various types of malignancies, data on RCC have been heterogeneous,
and the predictive value of PD-ligand 1 expression is not clinically practical yet [8]. In
contrast to other solid tumors, tumor mutational burden and neoantigen load, which have
been the commonly explored predictors for ICIs therapy, were not associated with clinical
responses to PD-1 blockade in advanced ccRCC [4]. Additionally, no difference in survival
outcomes according to the patterns of CD8+ T cell infiltration in ccRCC patients treated
with anti-PD-1 was found [4]. Recently, several studies reported that a loss of function
(LOF) mutation in a PBAF-complex gene PBRM1, that is commonly mutated in ccRCC,
was associated with better clinical benefit (CB) from ICIs [4,9,10]. In this context, a compre-
hensive understanding of the molecular mechanisms of PBRM1 mutation in patients with
ccRCC treated with ICIs could be critical for the development of a novel biomarker and to
help predict which patients are most likely to benefit from ICIs treatment.

Here, targeted sequencing and whole transcriptomic sequencing of 60 patients with
metastatic ccRCC treated with ICIs were performed. Moreover, transcriptomic analysis
was integrated to identify molecular subtypes using a total of 177 tumor samples and
by merging our data and published data derived from the CheckMate 025 trial [4]. Our
results show that these molecular subtypes are associated with specific genomic alterations,
distinct molecular pathways, and differential clinical outcomes in patients with metastatic
ccRCC treated with ICIs.

2. Materials and Methods

2.1. Patients

The data of 60 patients with metastatic ccRCC treated with ICIs, particularly as either
first-line (n = 8) (combination of anti-CTLA4 (ipilimumab) or anti-PD-1 (nivolumab)) or
second-line (monotherapy of nivolumab) (n = 52) therapy from 2017 to 2020 at Samsung
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Medical Center, were retrospectively collected. The Institutional Review Board of our center
approved the use of human archival tissues for this study (IRB no. SMC 2020-03-063).

Therapeutic responses of ICIs were determined every 3 to 4 months of treatment using
abdomen-pelvis and chest-computed tomography scans. The responses were classified as
complete response (CR), partial response (PR), stable disease (SD), or progressive disease
(PD), according to the RECIST 1.1 criteria [11]. The clinical benefit (CB), non-clinical benefit
(NCB), or intermediate benefit (IB) classification was defined in a previous report [9]. Briefly,
CB included patients with CR, PR, or SD with any reduction in tumors lasting at least
6 months. NCB was defined as patients who experienced PD and were discontinued from
ICIs therapy within 3 months. All other patients were assigned to the IB group.

2.2. Targeted Sequencing Preprocess

Tumor tissues from 60 patients were used for targeted sequencing of 380 cancer-related
genes (CancerSCAN Version 3.1, a targeted-sequencing platform designed at Samsung
Medical Center) and extracted from formalin-fixed paraffin-embedded tissues. Most sam-
ples had a mean coverage of ~900× with coverage at hotspots well above the mean. The
paired-end reads were aligned to the human reference genome (hg19) using BWA (Version
0.7.5). Then, SAMtools (Version 0.1.18), GATK (Version 3.1-1), and Picard (Version 1.93)
were used for file handling, local realignment, and removal of duplicate reads, respectively.
The base quality scores were recalibrated using the GATK BaseRecalibrator based on known
single-nucleotide polymorphisms (SNPs) and indels from dbSNP138.

2.3. RNA-Sequencing Preprocess

To perform RNA sequencing using 60 metastatic ccRCC and 5 adjacent nontumor tis-
sues, total RNA was extracted utilizing the RNA extraction kit (RNeasy Mini Kit, QIAGEN,
Maryland, MD, USA), and RNA integrity was verified using a 2100 Bioanalyzer (Agilent,
Palo Alto, CA, USA). The libraries for sequencing were generated using the QuantSeq 3′
Library Prep Kit (Lexogen Inc., Vienna, Austria) according to the manufacturer’s instruc-
tions and sequenced on a HiSeq 2000 system (Illumina, San Diego, CA, USA). The reads
were mapped to the hg19 human reference genome using STAR with default parameters.
The number of reads mapped to each gene was calculated using RNA-Seq by Expectation-
Maximization. Data processing and analysis were performed using the R/Bioconductor
libraries. To preprocess the transcriptome data, genes with zero values across samples were
filtered out. The data were normalized by subtracting the average expression values of the
adjacent nontumor tissues per gene and centering the expression values of each sample
and gene. In addition, three ccRCC samples that were outliers with respect to the overall
mean and standard deviation and two ccRCC samples without information on the PBRM1
mutation were filtered.

2.4. Immunohistochemical Analysis

To perform immunohistochemistry using 51 of the 60 available tissues of metastatic
ccRCC patients, the Tissue microarray (TMA) method was applied. Briefly, representative
tumor tissues (2 mm diameter) were taken from individual paraffin-embedded tumors
(donor blocks) and arranged in new recipient paraffin blocks (tissue microarray blocks)
using a trephine apparatus. One core tissue was taken from each case. Sections with a
thickness of 5 mm were cut from each TMA block, deparaffinized, and dehydrated for
immunohistochemical (IHC) staining. Ventana XT Benchmark (Ventana Medical Systems,
Oro Valley, AZ, USA) for GATM (1:100 dilution, Catalog #ab32936, Abcam PLC, Cambridge,
England, UK) was used IHC staining. Membranous and cytoplasmic staining of GATM
was evaluated, and immunoreactivity for GATM was scored as follows: diffuse (more and
equal 50% of tumor cells showed immunoreactivity) and moderate to strong expression of
GATM was regarded as high expression (2+), diffuse or focal (less than 50% tumor cells
showed immunoreactivity) and weak expression of GATM was regarded as low expression
(1+), and no expression of GATM was regarded as no (0). Specimens with either weak
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or high expression of GATM were classified as GATM-positive and specimens with no
expression of GATM were considered as GATM-negative. IHC data were reviewed by a
well-experienced pathologist (S.-j.B.) who was unaware of other clinical data.

2.5. GSEA (Gene Set Enrichment Analysis) and ssGSEA (Single-Sample GSEA)

To perform the GSEA, the Hallmark gene sets from the Molecular Signatures Database
(MSigDB Version 7.0) were used [12]. ssGSEA was computed using the “GSVA” pack-
age [13].

2.6. Immune Cell Type and Immune Type

The proportion of immune cell types was calculated using CIBERSORTx [14]. The
proportion of 10 immune cell types was calculated by aggregation (for example, the propor-
tion of macrophages was aggregated by macrophages M0, M1, and M2). Immune subtypes,
including active and exhausted, were conducted using the nearest template prediction
algorithm based on the expression of active and normal stroma signatures [15].

2.7. The Signatures of Differentially Expressed Genes (DEGs)

To identify upregulated or downregulated genes using GSE102806, DEG sets from
three conditions were calculated. DEG1 was calculated as shPBRM1 vs. shControl in
replicate 1 of the 786-O cell line. DEG2 was calculated as shPBRM1 vs. shControl in
replicate 2 of the 786-O cell line. DEG3 was calculated as a PBRM1 mutation vs. PBRM1
wild type in the A-704 cell line. DEG4 and DEG5 were calculated from merged data
(n = 177). DEG4 was differentially expressed in subtype 2 (Figure S1 and Table S3). DEG5
was calculated as PBRM1 mutation vs. PBRM1 wild type. DEGs were subjected to t-test
(GSE102806) and permuted t-test (merged data), and the cutoff options were p < 0.05,
FDR < 0.05, and log2 fold differences > 0.5.

2.8. Statistical Analysis

DEGs were calculated using t-test and permutation t-test. The Kaplan–Meier method
was used to estimate PFS and OS. Categorical variables between the two groups were
compared using Fisher’s exact test. One-way ANOVA was performed for the three groups.
Student’s t-test was performed for both groups. All statistical analyses were performed
using the R software.

2.9. Validation Sets

To merge transcriptomic data for the classification of subtypes, CheckMate 025 data
were obtained from Table S4 published in Nature Medicine by Braun et al. [4]. To validate
our findings, datasets were obtained from the TCGA-KIRC and GEO websites (accessed
date, 17 December 2020; accession numbers: GSE102806 and GSE105288).

2.10. Cell Culture and Treatments

786-O cells transfected with siScramble (siScr) or siPBRM1 (AM16708, Thermo Fisher,
Waltham, MA, USA) were seeded before treatment at 60–80% confluent at the time of the
experiment. Additionally, 0.5 μM actinomycin D (11805017, Thermo Fisher, Waltham, MA,
USA) was used for the indicated time.

2.11. Real-Time qPCR

786-O or Caki cells were transfected with siScr or siPBRM1, and after 48 h, real-time
RT-PCR assays were conducted following the manufacturer’s instructions. Furthermore,
0.5 μg of total RNA was used as templates for reverse transcription through the ReverTra
Ace qPCR RT Master Mix (Toyobo Co., Ltd., Kodakara island, Japan) according to the
manufacturer’s instructions. Real-time PCR analysis was performed using the QuantStudio
system with SYBR Premix Ex Taq (Takara Co., Ltd., Otsu, Japan). GATM F-5′-CAC TAC
ATC GGA TCT CGG CTT, GATM R-5′-CTA AGG GGT CCC ATT CGT TGT and USH1C
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F-5′-TTC CGG CAT AAG GTG GAT TTT C, USH1C R-5′-GTA CAT TCG CAG CAC ATC
ATA GA.

2.12. Cell Migration Assays

A total of 786-O cells were transfected with siRNAs against the control, PBRM1,
or GATM. After 24 h, the 786-O cells seeded on glass-bottomed dishes pre-coated with
fibronectin (100 g/mL) were scratched. After the cells reached 90% confluence, the mono-
layer was scratched with a pipette tip and incubated with a medium containing 300 μM
H2O2 for 12 h in a humidified CO2 incubator at 37 ◦C.

2.13. Colony Formation Assay

Cells were transfected with the indicated siRNAs and seeded at 1000–2000 cells/well
in 6-well plates. After 24 h, the medium was replaced with 300 μM H2O2 or low-glucose
medium (11966025 Thermo Fisher) and incubated. After 7 days, the cells were fixed and
stained with crystal violet. Triplicate wells were used for each experiment.

3. Results

3.1. The Characteristics of Genomic Alterations in Patients with ccRCC Treated with ICIs

The baseline demographics of patients with metastatic ccRCC in our cohort are de-
scribed in Table S1. Additionally, treatment outcomes according to first- and second-line
therapies are summarized in Table S2. Next, to evaluate the genomic landscape of patients
with metastatic ccRCC (n = 60) treated with ICIs, we focused on targeted sequencing data
to identify recurrently mutated genes in our cohort and found 17 recurrently altered genes.
The most commonly altered genes in this cohort were VHL (n = 34, 56.7%), PBRM1 (n = 18,
30.0%), SETD2 (n = 16, 26.7%), and BAP1 (n = 12, 20.0%), which were generally similar to
those previously reported for ccRCC (Figure 1A) [4,9]. Next, when gene-specific alterations
were compared between the clinical benefit (CB) group and the non-clinical benefit (NCB)
group, only the PBRM1 mutation among the 17 recurrently altered genes was significantly
enriched in the CB group (Fisher’s exact test, p = 0.03, odds ratio for CB = 3.67, 95%
confidence interval (CI) = 0.98–14.69) (Figure 1B). As expected, patients with the PBRM1
mutation had significantly prolonged overall survival (OS), not progression-free survival
(PFS), compared to those with PBRM1 wild type (log-rank test, p = 0.018) (Figure 1C). These
results indicated that CB following ICIs therapy was more prominent in patients with
metastatic ccRCC harboring the PBRM1 mutation.
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Figure 1. Overall mutational landscape in 60 patients with metastatic clear cell carcinoma treated
with immune checkpoint inhibitors. (A) Heatmap shows 17 recurrently mutated genes in our cohort
ordered by the number of mutation frequencies. (B) The plot shows the p-value and odds ratio for
the 17 genes by performing Fisher’s exact test between the clinical benefit versus non-clinical benefit
groups. (Red dashed lines denote p < 0.05 and odds ratio > 1. Each black dot denotes the 17 recurrently
mutated genes). (C) Kaplan–Meier plots show the overall survival (top) and progression-free survival
(bottom) of patients who did or did not harbor mutations in PBRM1. PBRM1 MUT, PBRM1 mutation
(blue); PBRM1 WT, PBRM1 wild type (yellow).

3.2. The Characteristics of Molecular Subtypes in Patients with ccRCC Treated with ICIs

To expand our understanding of the molecular phenotypes of metastatic ccRCC treated
with ICIs, WTS data were generated using 177 tumor samples by merging our data and
CheckMate 025 data. We aimed to identify molecular subtypes by utilizing four signatures
associated with PBRM1-mutation and PBRM1 LOF (Loss of Function). Two signatures of
PBRM1-mutation were previously reported to be differentially expressed genes (DEGs)
between patients with and without PBRM1 mutations [16]. The signatures of PBRM1 LOF
also previously reported that high angiogenesis and less immunomodulation were related
to phenotypes of PBRM1 loss [17]. Unsupervised clustering analysis was performed based
on the four signatures associated with PBRM1 mutation and PBRM1 LOF and identified
three molecular subtypes in 177 patients (Figure 2, top). Patients with subtype 1 (n = 64,
36%) were characterized by the moderate expression of upregulated and downregulated
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genes related to the PBRM1 mutation with relatively lower expression of angiogenesis and
a mixed pattern of immunomodulatory signature. Additionally, 12 patients with subtype
1 showed PBRM1 mutations (20%). Interestingly, patients with subtype 2 (n = 75, 42%)
were characterized by consistent expression patterns of upregulated and downregulated
genes related to the PBRM1 mutation, relatively higher expression of angiogenesis, and
relatively lower expression of immunomodulatory signature with higher mutation rate of
PBRM1 (n = 44, 72%), compared to those with subtypes 1 and 3. The low expressions of
immunomodulatory were seen in subtype 2, consistent with previous finding that PBRM1
loss are associated with a nonimmunogenic tumor phenotype [17]. Patients with subtype
3 (n = 38, 22%) were characterized by the inverse expression of both upregulated and
downregulated genes related to the PBRM1 mutation, moderate expression of angiogenesis,
and enrichment of higher immunomodulatory signature. Only five patients had the PBRM1
mutations (8%) in subtype 3 (Figure 2, top).

Figure 2. Characteristics of subtypes based on the gene sets associated with PBRM1 mutation
and PBRM1 loss of function. Heatmap of the single-sample gene set enrichment analysis shows
the enrichment scores of the four gene sets in the merged data set (top). Mutation plot shows
six commonly mutated genes by overlapping recurrently mutated genes from both our data and
the CheckMate 025 data (middle). (Green color denotes harboring mutation). Radar plots show
significantly enriched gene ontology terms using upregulated genes in each subtype (bottom).
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We further characterized the prevalence of the six commonly mutated genes by over-
lapping recurrently mutated genes from our data and CheckMate 025 data and found a
higher prevalence of alterations such as VHL (n = 36, 48%), PBRM1 (n = 44, 72%) and
SETD2 (n = 28, 57%) in patients in subtype 2 (Figure 2, middle) than that of the other
two subtypes. Next, to evaluate the key biological features related to these molecular sub-
types, pairwise comparisons of each subtype were performed. Unique upregulated DEGs
were identified in each molecular subtype (permuted t-test; p < 0.05, false discovery rate
(FDR) < 0.05, and log2 fold difference > 0.5; Figure S1 and Table S3). First, 397 upregulated
genes unique to subtype 1 were enriched in biological process terms for cell–cell signaling
(ES = 2.46, p = 4.39 × 10−4) and cell development (ES = 2.34, p = 2.15 × 10−5). Second,
1569 upregulated genes unique to subtype 2 with a high proportion of PBRM1 mutations
were associated with the metabolic process (ES = 25.93, p = 5.80 × 10−42) and xenobiotic
metabolism (ES = 12.56, p = 7.04 × 10−14). Finally, 459 upregulated genes unique to subtype
3 showed the activation of genes related to the cell cycle (ES = 12.55, p = 3.62 × 10−23)
and immune response (ES = 6.97, p = 1.19 × 10−10) (Figure 2, bottom). Taken together, the
molecular stratification of 177 ccRCC tumors, treated with ICIs, was conducted into three
subtypes with biologically distinct transcriptomes.

3.3. Subtype 2 Is Associated with Higher Metabolic Processes and Lower Exhausted Immune Types
than the Other Two Subtypes

Next, when the treatment responses were examined according to each subtype, sig-
nificant differences in the clinical responses and benefits were not found (Table S4). To
evaluate the prognostic relevance of each subtype, the PFS and OS were compared ac-
cording to each subtype. Notably, subtype 2, compared to that of subtypes 1 and 3, was
significantly associated with OS (p = 0.0042) (Figure 3A) but not with PFS (p = 0.381)
(Figure S2A). To further understand the molecular mechanisms of survival outcomes, tran-
scriptomic pathway programs were explored by performing gene set enrichment analysis
(GSEA) and single-sample GSEA (ssGSEA) using Hallmark gene sets (n = 50) in each sub-
type. Overall, 18 gene sets, including inflammatory response, oxidative phosphorylation,
and E2F target pathways, were activated in each subtype (one-way analysis of variance
(ANOVA) test, p < 0.0005, Figure 3B and Figure S2B). Both subtypes 1 and 3 were acti-
vated by immune-related pathways (INFLAMMATORY_RESPONSE, COMPLEMENT, and
IL6_JAK_STAT3). Subtype 3 differentiated from subtypes 1 and 2 through the enhanced
activation of cell cycle progression pathways (G2M_CHECKPOINT, E2F_TARGETS, and
MITOTIC_SPINDLE). Particularly, in patients with subtype 2, metabolic-related pathways
(OXIDATIVE_PHOSPHORYLATION, FATTY_ACID_METABOLISM, and ADIPOGENE-
SIS), the HYPOXIA and REACTIVE_OXYGEN_SPECIES pathways were activated. Previ-
ous reports demonstrated that ccRCC tumors with PBRM1 mutations were activated with
a hypoxic transcriptional signature, which is in agreement with our findings [9,17,18].
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Figure 3. Patients in subtype 2 with enrichment of the PBRM1 mutation are associated with metabolic
pathways and transition of immune types. (A) Kaplan–Meier plot analysis of the overall survival for
each subtype. (B) Heatmap of Hallmark gene sets. The mean Z score of the single-sample gene set
enrichment analysis for each gene set was calculated (S1, Sub1; S2, Sub2; S3, Sub3). (C) CIBERSORTx
findings show the proportion of distinct immune cell subpopulations (left) and the proportion of
T cell subpopulations (right). (D) Barplots show the percentage of immune types, including active
immune, exhausted immune and nonimmune types, in each subtype (left) and in the group with
PBRM1 mutation vs. the group without PBRM1 mutation (right). (E) Kaplan–Meier plot analysis
of progression-free survival for each immune type. AIT, active immune type (navy); EIT, exhausted
immune type (green); NIT, non-immune type (gray).

3.4. GATM Expression Associated with PBRM1 Mutation as a Novel Biomarker of Therapeutic
Response in Patients with ccRCC Treated by ICIs

Next, we aimed to identify key modulating genes associated with subtype 2 harboring
a higher proportion of PBRM1 mutations as well as showing the best survival outcomes.
We analyzed cell line data (GSE102806), including 786-O and A-704 cell lines, which were
associated with PBRM1 LOF. First, we generated six gene sets, either upregulated or
downregulated DEGs, by comparing treatment samples and control samples (see details in
Section 2). To further evaluate the DEGs, including DEG1, DEG2, and DEG3, we applied
the merged data of human samples (n = 177) using the DEGs and by performing ssGSEA
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and identified distinct expression patterns in each subtype (Figure 4A). Notably, subtype 2
showed a significantly higher expression of the upregulated DEGs and a lower expression
of the downregulated DEGs compared with subtypes 1 and 3. Likewise, tumors harboring
the PBRM1 mutation exhibited a higher expression of the upregulated DEGs, whereas the
downregulated DEGs were not related compared with that of the PBRM1 wild type (Figures
4B and S3A). These results suggested that upregulated DEGs rather than downregulated
DEGs derived from cell line data were clearly validated in data derived from human
samples showing the distinct characteristics of PBRM1 LOF.

Figure 4. GATM expression is related to PBRM1 mutation and PBRM1 loss of function. (A) Heatmap
of enrichment scores for the single-sample gene set enrichment analysis using upregulated and down-
regulated differentially expressed genes (DEGs) derived from cell line data GSE102806. (B) Boxplots
summarizing the heatmap in (A) for each subtype (left) and in the group with PBRM1 mutation vs.
the group without PBRM1 mutation (right) (S1, Sub1; S2, Sub2; S3, Sub3). (C) Venn diagram shows
the overlapping of the five upregulated DEGs (left). Boxplots show the expression levels of AMACR,
SLC6A13, GATM, and USH1C according to patients with and without PBRM1 mutation in the merged
data (right). (D) Kaplan–Meier plots show the overall survival of the patients stratified according the
above or below the average GATM or USH1C in TCGA-KIRC (n = 530) and the merged data (n = 177).
High expression (pink), low expression (sky blue).
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Then, five DEGs were used (see details in Section 2), and 4 genes and 0 genes were
identified as commonly upregulated or downregulated genes, respectively, by overlapping
all five DEGs (Figure 4C, left and Figure S3B). The four identified genes, AMACR, SLC6A3,
GATM, and USH1C, were upregulated and potentially associated with PBRM1 mutation
(Figure 4C, right). Among them, we focused on GATM (p = 1.01 × 10−5) and USH1C
(p = 1.94 × 10−4), which were significantly differentially expressed in tumors harboring the
PBRM1 mutation. In particular, the GATM gene showed a non-tumor-specific expression
compared with that of the levels in tumor tissues in The Cancer Genome Atlas Kidney
Renal Clear Cell Carcinoma (TCGA-KIRC) data (n = 607, p = 3.07 × 10−7; Figure S3C,
left) and GSE105288 (n = 43, p = 0.045; Figure S3D, right). However, the USH1C gene
showed tumor-specific expression compared with that of the levels of nontumor tissues in
TCGA-KIRC data (p = 6.0 × 10−9; Figure S3C, left) and GSE105288 (p = 0.503; Figure S3D,
right). We then evaluated the clinical relevance of these two genes. When compared
according to the expression levels of each gene, there were no differences in DFS (disease-
free survival) (Figure S3E) or PFS (Figure S3F). However, a higher expression of GATM was
consistently correlated with clinical outcomes of OS in TCGA-KIRC data (p = 3.64 × 10−7;
Figure 4D, left) and the merged data (p = 0.030; Figure 4D, right). A higher expression
of USH1C was correlated with clinical outcomes of OS in TCGA-KIRC data (p = 0.00015;
Figure 4D, left), whereas it did not reach statistical significance for OS in the merged data
(p = 0.203; Figure 4D, right). Accordingly, GATM was prioritized as a potential driver in
the following analysis.

3.5. GATM Protein Levels Using Immunohistochemistry Are Related to Favorable Survival

Next, to validate the prognostic role of GATM, we evaluated the GATM protein ex-
pression via IHC staining in 51 metastatic ccRCC patients and stratified it into two groups
according to the status of GATM expression (GATM-positive and GATM-negative, respec-
tively) (Figure 5A). Then, the association of GATM protein levels with survival outcomes
was investigated. Notably, the GATM-positive group had the significantly better PFS
(p = 0.0156; Figure 5B, top) and OS outcomes (p = 0.0013, Figure 5B, bottom) after ICIs
therapy compared to GATM-negative group. We further analyzed GATM protein levels
based on PBRM1 mutation status and the molecular subtypes, and found that patients with
PBRM1 mutation exhibited a higher percentage of GATM-positive specimens than patients
without the PBRM1 mutation (Figure 5C, top). Additionally, we observed that subtypes
2 had a highest percentage of GATM-positive cases, whereas subtype 3, with aggressive
phenotypes and poor survival, had the lowest percentage of GATM-positive specimens
compared to that of subtype 1 and 2 (Figure 5C, bottom). These findings suggested that
GATM protein levels are associated with PBRM1 mutation status and less aggressive phe-
notypes and exhibit potential clinical utility as a prognostic marker for metastatic ccRCC
with ICIs treatment.
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Figure 5. Status of GATM protein expression in immunohistochemistry are related to favorable
survival. (A) Immunohistochemistry of GATM expression using tissue microarray of 51 patients
with metastatic clear cell renal cell carcinoma treated by immune checkpoint blockades. The GATM-
positive group includes “high expression” of GATM (a ×4, and b; ×20) and “low expression” of
GATM (c; ×4, and d; ×20). The GATM-negative group includes “no expression” of GATM (e; ×4, and
f; ×20). (B) Kaplan–Meier plot analysis of progression-free survival and overall survival based on the
status of GATM protein expression. GATM (+) = GATM-positive group; GATM (−) = GATM-negative
group. (C) Barplots show the percentage of both GATM-positive (+, crimson), and GATM-negative
groups (−, gray), respectively, in the patients with PBRM1 mutation vs. the patients without PBRM1
mutation (top), and each subtype (bottom).

3.6. PBRM1 Deficiency and GATM Upregulation in Stress Conditions Reduce Cell Proliferation

We examined whether GATM expression is regulated by the loss of PBRM1 in ccRCC
lines. PBRM1 knockdown in Caki-1 and 786-O cells showed an increase in GATM or
USH1C expression (Figures S4A and 6A). We also tested whether GATM expression was
regulated by PBRM1 at the transcriptional level using 0.5 μM actinomycin D (transcriptional
inhibitor). As expected, increased levels of GATM transcripts were sustained upon PBRM1
knockdown in 786-O cells treated with actinomycin D compared to that of control cells
(Figure 6B). The results indicated that GATM expression was increased at the transcriptional
level following PBRM1 knockdown. PBRM1 has been reported to protect cancer cells under
high-stress conditions, and patients with ccRCC harboring PBRM1 mutations show better
responsiveness to PD-1 inhibitors [9,21]. Given the protective roles of PBRM1 in stress
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response, we examined whether GATM induced by PBRM1 deletion participated in the
anticancer state under stress conditions. An in vitro wound healing assay was performed
using 786-O cells. As shown in Figure 6C, 786-O cells transfected with siScr, siPBRM1, or
siGATM were scratched and incubated with high concentrations of hydrogen peroxide
(H2O2) for 12 h. PBRM1 knockdown in the 786-O cells exposed to H2O2 led to little
movement compared to that in control cells. Depletion of GATM in PBRM1-knockdown
786-O cells augmented the migration, and motility by GATM knockdown was similar to
that in the control cells (Figure 6C). These data indicate that migration ability was lost by
PBRM1 loss-induced GATM upregulation.

Figure 6. Expression of GATM by PBRM1 knockdown reduces proliferation of clear cell renal cell
carcinoma cell lines under stress conditions. (A) GATM or USH1C expression levels in PBRM1
knockdown 786-O or Caki-1 cells. The 786-O or Caki-1 cells were transfected with siScr or siPBRM1
and qRT-PCR analysis was performed. (B) GATM expression levels in siScr or siPBRM1 were
transfected into 786-O cells and treated with 0.5 μM ActD for the indicated time. (C) Wound
healing assay was performed. The 786-O cells transfected with indicated siRNAs were incubated
with medium containing 300 μM H2O2 for 12 h. (D) Colony formation was performed in PBRM1
knockdown 786-O cells. The 786-O cells were transfected with the indicated siRNAs and incubated
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with a medium containing 300 μM H2O2 or with a low-glucose medium (E) Kaplan–Meier plot analy-
sis of overall survival based on PBRM1 mutation and GATM expression using the merge data (n = 177,
left). PBRM1_MUT+HIGH_GATM (n = 42, purple), PBRM1_MUT+LOW_GATM (n = 19, yellow),
PBRM1_WT+HIGH_GATM (n = 55, blue), and PBRM1_WT+LOW_GATM (n = 61, gray). Kaplan–
Meier plot analysis of overall survival based on PBRM1 mutation and GATM expression using TCGA-
KIRC (n = 430, right). PBRM1_MUT+HIGH_GATM (n = 92, purple), PBRM1_MUT+LOW_GATM
(n = 46, yellow), PBRM1_WT+HIGH_GATM (n = 161, blue), and PBRM1_WT+LOW_GATM (n = 131,
gray). The p-value was calculated using Student’s t-test: * p < 0.05 and ** p < 0.01. Data represent
means ± SD from a representative experiment of at least two independent repeats (A,B,D).

Next, we examined the effect of GATM induced by PBRM1 knockdown on the prolif-
eration of 786-O cells under stress conditions such as that in H2O2 or low-glucose medium.
PBRM1-depleted cells incubated with medium containing high concentrations of hydrogen
peroxide or low glucose lost the ability to form colonies, which was recovered by silencing
GATM (Figure 6D). The results suggested that the antiproliferative ability of the PBRM1
mutation under stress conditions was accompanied by an increase in GATM expression.

More importantly, the association of GATM expression and PBRM1 mutations with
clinical prognosis was investigated; merged data (n = 177) derived from human sam-
ples were stratified into four groups according to the status of PBRM1 mutation and
GATM expression: (PBRM1_MUT+HIGH_GATM (n = 42), PBRM1_MUT+LOW_GATM
(n = 19), PBRM1_WT+HIGH_GATM (n = 55) and PBRM1_WT+LOW_GATM (n = 61)).
As expected, patients with the PBRM1 mutation and high expression of GATM had the
best PFS (p = 0.069; Figure S4B, left) and OS outcomes (p = 0.0012, Figure 6E, left). The
molecular subtypes of the four groups were further analyzed, and it was found that pa-
tients in the PBRM1_MUT+HIGH GATM group were enriched in subtype 2 (88%), and
patients in the PBRM1_WT+LOW_GATM group were enriched in subtypes 1 (46%) and
3 (48%) (Figure S4C). More importantly, multivariate analysis of the merged data also
revealed the prognostic significance of GATM expression and PBRM1 mutation (hazard
ratio [HR] = 2.067, 95% confidence interval [CI], 1.147–3.726; p = 0.016; Table 1). On fur-
ther analysis, PBRM1 mutation and GATM expression were associated with significant
OS (p = 9.40 × 10−7, Figure 6E, right) rather than PFS (p = 0.332, Figure S4B, right) in
the TCGA-KIRC cohort. Although the TCGA-KIRC cohort was predominately composed
of non-ICIs-treated patients, the survival result suggested that patients with the PBRM1
mutation and high GATM expression are consistently associated with superior OS. These
retrospective analysis results collectively suggest that the status of the PBRM1 mutation
and GATM expression were considered as prognostic key factors of RCC patients.

Table 1. Univariate and multivariate analyses for predicting the overall survival of patients with
metastatic clear cell renal cell carcinoma treated with immune checkpoint inhibitors.

Variables
Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age <Median Reference - Reference -
≥Median 0.855 (0.58–1.26) 0.428 0.895 (0.599–1.339) 0.589

Sex Female Reference - Reference -
Male 2.047 (1.235–3.394) 0.005 ** 1.576 (0.939–2.645) 0.085

IMDC Favor Reference - Reference -
Intermediate & Poor 2.134 (1.336–3.409) 0.0015 ** 2.012 (1.252–3.233) 0.004 **

PBRM1 & GATM MUT & HIGH Reference - Reference -
MUT & LOW, WT & HIGH, and WT & LOW 2.532 (1.414–4.532) 0.0017 ** 2.067 (1.147–3.726) 0.016 *

HR, Hazard Ratio; CI, Confidence Interval; IMDC, International Metastatic RCC Database Consortium; MUT,
PBRM1 mutation; WT, PBRM1 wildtype; HIGH, GATM high expression; LOW, GATM low expression (* p < 0.05,
** p < 0.005).

The GATM gene encodes glycine amidinotransferase, catalyzing the rate-limiting
step in the synthesis of creatine, which plays a pivotal role in cancer progression and
immunotherapy. Previous studies have demonstrated that creatine inhibits the growth of
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tumor cells both in vitro and in vivo and is associated with the regulation of T cell antitumor
immunity [22,23]. In this context, the creatine metabolism level was examined for each
subtype (p = 2.63 × 10−7; Figure S4D, left) as well as in patients with the PBRM1 mutation vs.
in patients without the PBRM1 mutation (p = 0.048; Figure S4D, right). Interestingly, patients
with subtype 2 and PBRM1 mutation showed significantly elevated creatine metabolism.
Next, the correlation between creatine metabolism and GATM expression levels was tested,
revealing that the GATM expression had a significantly positive correlation with creatine
metabolism (correlation coefficient, r = 0.49, p = 4.61 × 10−12, Figure S4E). Collectively,
activation of GATM may represent an efficient therapeutic approach for ccRCC harboring
the PBRM1 mutation under ICIs by regulating creatine metabolism to enhance antitumor
T cell immunity in the tumor microenvironment.

4. Discussion

This study reports a comprehensive molecular analysis of patients with metastatic
ccRCC receiving ICIs to investigate the role of tumor genomic and transcriptomic features
in determining the response and survival outcomes following ICIs treatment. Our findings
are summarized in Figure 7.

Figure 7. Graphical summary of the dynamics of genomic and transcriptomic aberrations in patients
with metastatic clear cell renal cell carcinoma.

The dynamics of genomic and transcriptomic features, including the PBRM1 mutation,
metabolic process, active or exhausted immune types, and GATM expression, contributed
to the responsiveness and prognosis to immunotherapy in metastatic ccRCC. More im-
portantly, for the first time, we found that GATM plays a suppressive role by linking the
the PBRM1 mutation to patients with ccRCC treated with ICIs. Our unsupervised tran-
scriptomic analysis based on signatures related to the the PBRM1 mutation and PBRM1
LOF identified three molecular subtypes. This subtyping approach in this study showed
concordance with previous reports on gene expression-based subgrouping in large RCC
datasets [10,24–26]. Indeed, we found an association between molecular subtypes and
differential biological profiles and different prognoses to ICIs in patients with metastatic
ccRCC. Patients in subtype 2 demonstrated favorable OS with a higher proportion of
them with the PBRM1 mutation and who are enriched with angiogenesis and metabolic
pathways. In contrast, patients in subtypes 1 and 3 showed worse clinical outcomes with
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a low proportion of them with the PBRM1 mutation and who are downregulated with
angiogenesis signature but upregulated with immune-related and cell-cycle pathways.
Overall, the unique features of these subtypes provide their utility in understanding the
differential prognosis and responsiveness to ICIs treatment.

One of our key findings is that subtype 2, with a higher proportion of the PBRM1
mutation, showed enrichment of multiple metabolic pathways, including oxidation and
phosphorylation, fatty acid metabolism, adipogenesis, and hypoxia pathways. In fact,
hypoxia signaling as a master regulator is associated with the dysregulation of metabolic
genes in RCC [27]. Indeed, previous studies have demonstrated that VHL loss and hypoxia-
inducible factor stabilization are associated with the reprogramming of metabolic path-
ways in RCC [28–30]. In summary, our results not only validated previous findings on
RCC metabolism but also further explored the metabolic differences among the three
subtypes. Interestingly, in-depth transcriptome analysis revealed an unexpected inconsis-
tency between the response to ICIs and immune cell types. Additionally, previous studies
demonstrated that PBRM1 loss shows a nonimmunogenic tumor phenotype associated
with ICIs [17], and CD8 T cell infiltration of immunofluorescence in CheckMate025 was
not associated with response to PD-1 blockade [4]. Therefore, we investigated whether the
association between immune cell types and response to ICIs would be better characterized
by considering immune types, including active and exhausted immune subtypes. We found
that tumors harboring the the PBRM1 mutation or molecular subtype 2, which had the best
survival outcome, showed a lower percentage of exhausted immune subtype compared
to that of tumors with PBRM1 wild type or subtypes 1 and 3. Previous studies have also
shown that high proportion of exhausted immune types in tumor samples results in poor
prognosis and an aggressive phenotype [15,31,32]. Taken together, these data suggest that
ccRCC tumors can undergo a transition in immune subtypes from active to exhausted
types, which may affect the tumor microenvironment to be different response to ICIs.

Moreover, our data indicated that GATM is a potential gene-linking PBRM1 mutation
and PBRM1 LOF. GATM encodes glycine amidinotransferase, a mitochondrial enzyme that
catalyzes the transfer of guanidinoacetic acid, which is a substrate for creatine synthesis.
Interestingly, several studies have demonstrated that creatine inhibits the growth of tumor
cells both in vitro and in vivo [22,33,34]. Furthermore, in mouse cancer models, treatment
with creatine, either through intraperitoneal injection or through oral administration,
effectively suppressed tumor growth, which was associated with a significant reduction in
the number of exhausted T cell phenotypes among the tumor-infiltrating CD8+ T cells [22].
The exact mechanism by which creatine or GATM-attenuated cancer growth and related to
immunotherapy is still unclear; however, a possible tumor-suppressive role of GATM was
supported by the fact that low expression of GATM was associated with poor survival of
patients with ccRCC treated with ICIs (as shown in Figure 4D). In addition, the status of
GATM protein expression was significantly associated with PFS and OS after ICIs treatment
(as shown in Figure 5B). Therefore, the activation of GATM has the potential to become an
effective approach for enhancing the efficacy of ICIs therapies.

We acknowledged the limitations of the present study. First, the sample size was
relatively small, which is the most critical pitfall of our study. To overcome this drawback,
data derived from the CheckMate 025 study were merged. Second, a retrospective study
was performed and samples were collected; therefore, there was an unavoidable risk of bias,
such as selection and misclassification biases. Third, most patients were treated with anti-
PD1 monotherapy as a second-line treatment after failure of the first-line targeted therapy.
Thus, there was a discrepancy in the time between tumor sampling and anti-PD1 therapy,
which means that there was time gap between genomic and/or transcriptomic status and
ICIs treatment response status Actually, the population of this study included either first-
line therapy (n = 8) or more than second-line treatments that failed withTyrosine Kinase
inhibitors (TKIs, n = 52). The selective pressure of multiple lines of TKIs treatment could
increase the genomic complexity of tumors and tumor microenvironments, thus influencing
responsiveness to ICIs therapy. Fourth, our data were based on WTS analysis, not single-
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cell sequencing, resulting in a loss of immune cell compartment, which is particularly
important for understanding the immune microenvironment and limiting the ability to
perform such an immune cell type proportion analysis. Finally, further experiments should
be performed to establish causality between the PBRM1 mutation and GATM expression
and to determine how PBRM1-GATM is involved in the responsiveness to ICIs treatment.

5. Conclusions

This study provides critical insight into genomic and transcriptomic mechanisms such
as PBRM1 mutations, metabolic processes, immune subtypes (active or exhausted), and
GATM expression that contribute to the response to ICIs therapy in patients with metastatic
ccRCC. Moreover, our data underscore the prognostic importance of the PBRM1 mutation
and GATM expression in patients with metastatic ccRCC treated with ICIs. Moving forward,
it will be important to validate these findings in future clinical trials and to investigate the
mechanisms on the interaction between the PBRM1 mutation and GATM expression in the
context of ICIs responsiveness.
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Simple Summary: Approximately one fifth of patients with newly diagnosed renal cell carcinoma
(RCC) present with metastatic disease and over one third of the remaining patients with localized
RCC will eventually have metastases spread to distant sites after complete resection of the primary
tumor in the kidney. Usually, disease recurrence is observed within the first five years of follow-up,
but late recurrences after five years are seen in up to 10% of patients. Despite novel biomarkers, simple
histopathological factors, such as tumor size, tumor grade, and tumor extension into the blood vessels
or beyond the kidney, are still valid features in predicting the risk of disease recurrence after surgery.
The optimal set of prognostic factors remains unclear. The results from ongoing placebo-controlled
adjuvant therapy trials may elucidate prognostic features that help to define high-risk patients for
disease recurrence.

Abstract: Approximately 20% of patients with renal cell carcinoma (RCC) present with primarily
metastatic disease and over 30% of patients with localized RCC will develop distant metastases
later, after complete resection of the primary tumor. Accurate postoperative prognostic models
are essential for designing personalized surveillance programs, as well as for designing adjuvant
therapy and trials. Several clinical and histopathological prognostic factors have been identified
and adopted into prognostic algorithms to assess the individual risk for disease recurrence after
radical or partial nephrectomy. However, the prediction accuracy of current prognostic models has
been studied in retrospective patient cohorts and the optimal set of prognostic features remains
unclear. In addition to traditional histopathological prognostic factors, novel biomarkers, such as
gene expression profiles and circulating tumor DNA, are extensively studied to supplement existing
prognostic algorithms to improve their prediction accuracy. Here, we aim to give an overview of
existing prognostic features and prediction models for localized postoperative clear cell RCC and
discuss their role in the adjuvant therapy trials. The results of ongoing placebo-controlled adjuvant
therapy trials may elucidate prognostic factors and biomarkers that help to define patients at high
risk for disease recurrence.

Keywords: adjuvant therapy; clear cell renal cell carcinoma; biomarker; prediction model; prognos-
tic factor

1. Introduction

Renal cell carcinoma (RCC) is the third most common newly diagnosed urogenital
cancer after prostate and bladder cancer. In 2020, the number of new kidney cancer
diagnoses was over 400,000 and it caused nearly 180,000 deaths worldwide [1]. The most
prevalent histological subtype, clear cell renal cell carcinoma (ccRCC), accounts for 75–80%
of all RCCs and has been associated with inferior survival compared to papillary (10–15%)
and chromophobe (5%) RCCs [2]. Localized RCC can be treated with curative intent by
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radical (RN) or partial nephrectomy (PN). PN is preferred for smaller tumors (T1–2N0M0)
if technically feasible without compromising the oncological outcome of surgery (negative
surgical margins). Small renal tumors might be eligible for radiofrequency ablation. Lymph
node dissection (LND) is not routinely performed unless there is a suspicion of metastatic
lymph nodes preoperatively or during surgery. If macrovascular invasion is present, tumor
thrombus is removed from the renal and caval vein during surgery [3,4].

Unfortunately, approximately 20% of RCC patients present with primarily metastatic
disease and over one third of patients will eventually develop distant metastases [5]. De-
spite recent advances in the medical treatment of advanced RCC (antiangiogenic receptor
tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI) and TKI–ICI combi-
nations), metastatic disease will, in most cases, lead to death. Individualized, risk-based,
regular imaging follow-up after surgery for localized RCC for at least five years with
thoracic and abdominal CT is recommended to detect disease progression (local recurrence
or distant metastases) early. If detected early with few or solitary metastases, the patient
may still be curable surgically or with high-dose radiation therapy and may be eligible for
oncologic therapies [3,4]. The aim of this review is to provide an overview of the clinical
prognostic models for localized ccRCC. Understanding the risk of disease progression after
surgery of localized disease is essential for designing postoperative follow-up as well as for
designing adjuvant drug trials in localized ccRCC.

2. Histopathological and Clinical Prognostic Factors for Localized ccRCC

The TNM classification of malignant tumors (American Joint Committee on Can-
cer (AJCC)) has been used since 1977 as a prognostic staging system for multiple solid
tumors [6]. The staging of renal cell carcinoma based on pathologic examination and radio-
logical imaging provides crucial prognostic information. Stage I (T1N0M0: tumor ≤ 7 cm)
and stage II (T2N0M0: tumor > 7 cm) tumors are limited to the kidney, whereas stage III
(T3N0, T1−3N1: tumor invades renal vein, perinephric tissues, or presents with regional
lymph node metastases) and stage IV (T4NanyM0, TanyNanyM1: tumor extends beyond
Gerota fascia or presents with distant metastases) tumors extend beyond the kidney [7].
In 1993–2004, 54.7%, 10.6%, 16.1%, and 18.6% of ccRCC tumors in the National Cancer
Database were classified as stage I, II, III, and IV, respectively [8]. Stage I and II RCCs
had significantly better 5-year survival rates (90.4% and 83.4%) compared to stage III and
stage IV RCCs (66.0% and 9.1%) [8]. In a 2004–2015 Surveillance, Epidemiology, and End
Results (SEER) database cohort (77% had ccRCC), the pathologic TNM stage was I (64.3%),
II (10.9%), III (16.8%), and IV (8%) and the 5-year survival rates after nephrectomy were
97.4%, 89.9%, 77.9%, and 26.7% for stage I, II, III, and IV RCCs, respectively [9]. The
proportion of stage I tumors has increased, probably due to the incidental detection of
small renal tumors in abdominal imaging studies [8]. The increase in the survival rate of
stage III and IV tumors is probably driven by VEGF-targeted TKI therapies introduced in
the treatment of advanced RCC in the 2000s.

2.1. Microscopical Histopathological Prognostic Factors

In addition to the TNM stage, several histopathological factors affect the prognosis
of localized ccRCC patients. Numerous tumor grading systems have been introduced to
assess the histological differentiation of RCC cells. The Fuhrman and the WHO/ISUP
grading systems are the most widely used. In 1982, Fuhrman developed a four-tiered
grading system that is based on the assessment of nuclear size, nuclear shape, and nucle-
olar prominence. The estimated 5-year survival rate of RCC patients was 64% (grade I),
34% (grade II), 31% (grade III), and 10% (grade IV) [10]. In 2012, the International Society of
Urological Pathology reformed the four-tiered grading system based on the prominence of
nucleoli (grades 1–3) and grade 4 tumors showing extreme tumor nuclear pleomorphism,
giant cells, or sarcomatoid/rhabdoid dedifferentiation [11].

Approximately 5% of RCCs undergo epithelial to mesenchymal transition and present
with sarcomatoid differentiation, and sarcomatoid features have been observed in clear cell,
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papillary, and chromophobe RCCs [12]. Sarcomatoid morphology is associated with more
aggressive cancer behavior: sarcomatoid RCCs (sRCCs) often present with a bulky primary
tumor (higher size and stage) and higher tumor grade [12–14]. Metastases are seen in as
much as 60–80% of newly diagnosed cases [12] and close to 80% of patients with localized
sarcomatoid RCC have been observed to develop disease recurrence within two years
after nephrecotomy [15,16]. Sarcomatoid RCCs have unfavorable prognosis compared to
ccRCCs regardless of tumor stage: 5-year cancer-specific mortality estimates were 32%,
63%, and 82% for stage I–II, III, and IV sRCCs, compared to 6%, 20%, and 64% for stage
I–II, III, and IV ccRCC patients [14].

Tumor necrosis is another established adverse histological feature in RCC. It is as-
sociated with a larger tumor size, higher grade, and higher proliferative activity, and it
is considered to indicate biologically aggressive tumor behavior [17,18]. The presence
of tumor necrosis has been reported in 21–32% of ccRCCs [19,20] and it has also been
associated with inferior survival outcomes in multiple studies [20–25]. The combination of
WHO/ISUP grading and tumor necrosis outperformed WHO/ISUP grading after adjusting
for TNM stage. Researchers observed that the presence of tumor necrosis affected the prog-
nosis, especially in WHO/ISUP grade 3 tumors. The 10-year cancer-specific survival was
62% in grade 3 tumors without necrosis but only 30% in grade 3 tumors with necrosis [26].

RCCs are highly vascularized, and microscopic vascular invasion is observed in
5.6–45% of tumors [19]. Tumor cells can spread via blood and lymph vessels to distant
sites (lungs, bones, liver, etc.) and lymph nodes. Microvascular invasion is defined as
tumor cells within small vessels in the tumor pseudocapsule, tumor, or renal parenchyma
adjacent to the tumor [27]. Microvascular invasion (MVI) was more commonly present
in ccRCC (29%) than in non-ccRCC (12%) and it was associated with metastatic spread
and inferior survival in ccRCC patients [28]. MVI was found to be associated with a larger
tumor size, higher Fuhrman grade, more advanced T stage, the presence of lymph node and
distant metastases, as well as a shorter survival time in univariate but not in multivariate
analysis [29]. In another cohort of RCC patients (93% had ccRCC), MVI was observed
to correlate with metastases and shorter disease-free survival as well as cancer-specific
survival [30].

Partial nephrectomy (PN) is the standard of treatment for small renal tumors if techni-
cally feasible. Positive surgical margins (PSM) have been observed in up to 18% of patients
after surgery for localized RCC [31–34]. However, the effect of PSM on oncologic outcomes
(recurrence-free and cancer-specific survival) is controversial. Local tumor recurrence in the
surgical bed is uncommon. In a retrospective study, local tumor bed recurrence was found
in only 1.9% of patients who underwent PN, and PSM were found in 15.9% of patients
with local tumor bed recurrence, compared to 3% in the control group [35]. However,
PSM is more common in patients with other adverse features (higher tumor stage, grade,
multiple tumors, solitary kidney) and local recurrences are also observed in patients with
negative surgical margins [32,33,35]. Therefore, imaging surveillance is preferred over
radical nephrectomy in patients with PSM after PN.

2.2. Macroscopical Histopathological Prognostic Factors

Tumor extension into perirenal tissues, renal vein, and regional lymph nodes might be
discovered in preoperative radiological imaging or during surgery but sometimes only after
microscopical evaluation of resected tumor and regional lymph nodes. Tumor invasion
into perirenal tissues (perirenal fat, renal sinus fat) or macrovascular invasion into the renal
vein and inferior vena cava (IVC) or local lymph nodes (T3N0, T1–3N1, stage III) lead
to inferior oncologic outcomes compared to stage I and II tumors [8,9]. Perinephric fat,
renal sinus fat, and renal vein invasion were present in 26%, 9%, and 29% of T3a tumors
and patients with multiple extrarenal extensions had inferior progression-free and overall
survival [36]. The association of concomitant fat invasion and renal vein invasion with
poorer cancer-specific survival has also been observed in other studies [37–39]. Upper pole
RCCs may invade directly into the adrenal gland. These tumors are classified as T4 as
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well as tumors extending beyond Gerota’s fascia, leading to worse oncologic outcomes
compared to T1–3N0/Nx tumors [8,9].

Tumor extension into the renal vein and inferior vena cava has been observed in 23%
and 7–13% of patients, respectively [40,41]. Patients with venous invasion had signifi-
cantly shorter survival compared to tumors limited to the kidney [41]. The Mayo Clinic’s
thrombus classification is commonly used to classify the level of tumor extension into
the IVC [42]. The prognostic significance of the tumor thrombus level is controversial.
In a retrospective multicenter evaluation of tumor thrombus level, 78%, 16%, and 5% of
the patients had tumor extension into the renal vein, IVC below diaphragm, and above
diaphragm, respectively [43]. The level of tumor thrombus in the IVC (below or above
diaphragm) was not statistically significantly associated with the survival time, but patients
with tumor thrombus in the IVC had shorter survival (18–26 months) compared to patients
with tumor thrombus in the renal vein (52 months) [41,43]. In another multicenter study
(89.9% had ccRCC), a higher tumor thrombus level was independently associated with
shorter cancer-specific survival [44]. Notably, the patients in these studies were treated
before modern TKI and ICI therapies. In a contemporary analysis of 6340 patients who
underwent surgery for localized RCC (93.4% had ccRCC), only 3.6% of the patients had
venous tumor thrombus and the level of thrombus was not associated with the risk of
recurrence or death [45].

Lymph node dissection (LND) is not routinely performed during nephrectomy unless
there is a suspicion of metastatic lymph nodes preoperatively or during surgery, and lo-
cal lymph node status usually remains unknown (Nx). LND has not proven therapeutic
but is a prognostic procedure to assess metastatic spread to regional (hilar, abdominal,
para-aortic, and para caval) lymph nodes. In the SEER database analysis, 24.8% of patients
(59.4% had ccRCC) underwent lymph node dissection (LND) and metastatic lymph nodes
were observed in 17.1% (9.3% of T2 and 21.6% of T3) of the patients who underwent
LND [46]. In another study, local lymph node metastases were present in 11% of non-
metastatic RCC patients (90.7% had ccRCC) who underwent nephrectomy [47]. The pa-
tients with regional lymph node metastases (T1–3N1) have as poor survival as stage IV
patients [47,48]. The 5-year survival rates were 61.9%, 22.7%, and 15.6% for stage III
lymph node negative, stage III lymph node positive, and stage IV patients, respectively
(78.1% had ccRCC) [48].

3. Prognostic Models for Localized RCC

There are several postoperative prognostic models to assess the risk of RCC recurrence
or death after surgery of localized RCC based on histopathological features, such as TNM
stage, tumor size, tumor grade, coagulative necrosis, and microvascular invasion, and
clinical manifestations, such as symptoms of the disease. Kattan et al. introduced the first
nomogram in 2001 to assess the risk of disease recurrence for localized RCC [49], followed
by the UISS, the SSIGN, the Cindolo, the Leibovich, the Sorbellini, and the Karakiewicz
algorithms [50–55]. There are differences in the required prediction features and the predic-
tion outcomes between these models. The majority (88–100%) of the patients included in
these models have had clear cell RCC, although the Kattan, the UISS, the Cindolo, and the
Karakiewicz models also included patients with papillary and chromophobe RCC. Because
of marked differences in the histopathology and prognosis of clear cell, papillary, and
chromophobe RCC subtypes, similar prediction models may not be optimal for different
histological subtypes. Grading of chromophobe carcinoma is not recommended [19,27],
which limits eligible prediction models for this subtype. Leibovich et al. introduced differ-
ent algorithms for each histological subtype, aiming to improve the prediction accuracy.
The study cohort included 75% clear cell, 17% papillary, and 6% chromophobe RCC pa-
tients [56]. Recently, Mattila et al. developed a prediction model for localized ccRCC that
comprised only three features and included an easy-to-use nomogram for clinicians [57].
The properties of different prognostic models for localized RCC are described in Table 1.
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Table 1. Postoperative prognostic models for localized RCC.

Reference RCC Subtype
Prediction
Outcome

Number of
Risk Groups

Prediction Features
Number of

Patients

Kattan (2001) [49]

Clear Cell,
Papillary, and
Chromophobe

RCC

Recurrence-Free
Survival Not Defined

Symptoms (Incidental,
Local, Systemic), Histology,

Tumor Size, 1997 T Stage
612

UISS (2001) [50]

Clear Cell,
Papillary, and
Chromophobe

RCC

Overall Survival 5
1997 TNM Stage, Fuhrman

Grade, ECOG
Performance Status

661

SSIGN (2002) [51] Clear Cell RCC Cancer-Specific
Survival 10

1997 TNM Stage, Tumor
Size (<5 cm, ≥5 cm), Tumor

Grade, Necrosis
1801

Cindolo (2003) [52]

Clear Cell,
Papillary, and
Chromophobe

RCC

Recurrence-Free
Survival Not Defined Symptoms (Asymptomatic,

Symptomatic), Tumor Size 660

Leibovich
(2003) [53] Clear Cell RCC Metastasis-Free

Survival

8 (0–2 low, 3–5
Intermediate,
≥6 High)

2002 TNM Stage, Regional
Lymph Node Involvement 479

Sorbellini MSKCC
(2005) [54] Clear Cell RCC Recurrence-Free

Survival Not Defined

Tumor Size, 2002 TNM
Stage, Fuhrman Grade,

Necrosis, Microvascular
Invasion, Presentation

(Incidental,
Local Symptoms,

Systemic Symptoms)

701 + Validation
Cohort 200

Karakiewicz
(2007) [55]

Clear Cell,
Papillary, and
Chromophobe

RCC

Cancer-Specific
Survival Not Defined

2002 TNM Stage, Tumor
Size, Fuhrman Grade,

Symptoms (Non, Local,
Systemic)

2530 + Validation
Cohort 1377

Leibovich
(2018) [56]

Clear Cell,
Papillary, and
Chromophobe

RCC

Progression-Free
and

Cancer-Specific
Survival

19

Constitutional Symptoms
(Yes, No), Tumor Grade,

Coagulative Necrosis,
Sarcomatoid Differentiation,
Tumor Size, Perinephric or
Renal Sinus Fat Invasion,
Tumor Thrombus Level,

Extension Beyond Kidney,
and Nodal Involvement

3633

Mattila (2021) [57] Clear Cell RCC Metastasis-Free
Survival

3 (Low,
Intermediate,

High)

Tumor Size, Fuhrman
Grade, Microvascular

Invasion

196 + Validation
Cohort 714

The prediction accuracy (concordance index, C-index) of these prognostic models
had exceeded 0.8: SSIGN 0.82–0.84 [51], Leibovich 2003 0.82, Sorbellini 0.82, Leibovich
2018 0.83–0.86, Mattila 0.76–0.84. However, these prediction models are based on the
analysis of retrospective patient cohorts. A prospective validation of prediction models
in a cohort of 1647 nonmetastatic (≥T1b grade 3–4 or TanyN1M0) ccRCC patients enrolled
in a sorafenib adjuvant therapy trial (ASSURE) resulted in considerably lower C-indices
(0.57–0.69) for the UISS, SSIGN, Leibovich 2003, Kattan, MSKCC, Yayciogly, Karakiewicz,
Cindolo, and 2002 TNM staging systems. All models demonstrated the best prediction
accuracy during the first two years of follow-up after surgery [58]. Higher prediction
accuracy for the first two years of follow-up was also found when comparing the Mattila
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and the Leibovich 2003 models: C-indices were 0.81–0.88 (Mattila) and 0.76–0.88 (Leibovich
2003) during 0–24 months and 0.78–0.84 (Mattila) and 0.71–0.82 (Leibovich 2003) during
24–90 months [57]. Late disease recurrence after 5 years of follow-up has been observed in
5–11% of patients with localized RCC [59], and the prediction of these late events remains
imprecise with present prognostic models [58].

4. Current Applications of Biomarkers in Localized RCC

While current clinical prognostic models do not use any genetic or other biomarkers,
several genetic alterations have been described for RCC. In ccRCC, the inactivation of the
von Hippel–Lindau (VHL) gene is the best-described and most widely occurring genetic
change seen in most sporadic ccRCCs. The inactivation of the VHL tumor suppressor
can occur by numerous point mutations (over 150 described) or by suppressing transcrip-
tion by methylation of the promoter areas. The inactivation of VHL function results in
the activation of hypoxia-inducible transcription factors (HIF-1a and -2a) of the cellular
oxygen sensing pathway, leading to the up- or downregulation of over 300 genes. These
include the upregulation of proangiogenic genes, such as vascular endothelial growth factor
(VEGF) [60]. In particular, HIF-2a has been shown to drive a more aggressive phenotype in
ccRCC [61,62]. Since VHL inactivation has been detected from 80% to nearly all ccRCCs
and is the first and universal genetic alteration in ccRCC [63,64], it does not function as a
prognostic factor.

Further analyses of tumor mutations and gene expression profiles have revealed
genetic features associated with prognosis in localized ccRCC. In addition to loss of VHL
function, mutations in tumor suppressor genes PBRM1, BAP1, and SETD2, which function
as chromatin and histone modifiers, and the PI3K/AKT pathway have been identified in
nephrectomy specimens included in the Cancer Genome Atlas [65,66]. PBRM1 and BAP1
mutations have been associated with unfavorable prognosis in ccRCC [67,68]. Patients
with PBMR1 or BAP1 loss had increased risk of death from RCC but it was not statistically
significant after adjusting for the SSIGN score [67]. The association of gene expression
profiles and RCC survival has been studied widely. A scoring system based on 16 genes
discovered in gene expression analysis was observed to predict disease recurrence in
localized clear cell RCCs that were stratified by stage and adjusted for tumor size, tumor
grade, and the Leibovich score [69], and its prognostic ability has been validated among
stage III ccRCC patients in the sunitinib adjuvant therapy trial [70]. Another gene expression
signature biomarker (ClearCode34) was developed to classify good- and poor-risk clear
cell RCCs and was significantly associated with RFS, OS, and CSS [71]. The cell cycle
proliferation (CCP) score assay, which measures the activation of 31 genes involved in
cellular proliferation, was observed to be an independent predictor of disease recurrence
after nephrectomy in 565 localized RCC patients (81% ccRCC) and it outperformed the
prediction accuracy of the Karakiewicz nomogram (C-index 0.87 vs. 0.84) [72].

Cell-free circulating tumor DNA (ctDNA) is a potential prognostic biomarker in multi-
ple cancer types. Fragments of tumor DNA are released into circulation after tumor cell
death and by active secretion. ctDNA can be detected from body fluids (plasma, pleural ef-
fusion, ascites, cerebrospinal fluid, and urine) with multiple methods, including polymerase
chain reaction-based assays, such as droplet digital PCR (ddPCR), or next-generation DNA
sequencing (NGS) [73]. Plasma or urine samples containing ctDNA fragments are easy
to collect and liquid biopsy is particularly valuable when invasive tumor biopsy is not
feasible or there is only a limited amount of tumor tissue available. Moreover, ctDNA may
reflect heterogeneous tumor mutations better than single-site tumor biopsy and reveal
therapeutically actionable mutations. Elevated ctDNA levels may reveal disease recur-
rence/progression before radiologically detected disease progression and thus molecular
residual disease is a compelling biomarker to monitor disease recurrence after radical
surgery for the primary tumor. Detectable ctDNA (molecular residual disease) has been
shown to predict disease recurrence after radical surgery for localized cancer in multiple
tumor types, including melanoma [74,75], colorectal cancer [76,77], and NSCLC [78,79].
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Interestingly, detectable plasma ctDNA was found to be a predictive biomarker for adjuvant
atezolizumab therapy after surgery of urothelial carcinoma [80]. However, a sufficient
amount of ctDNA has to be present to cross the detection limit.

CtDNA has also been analyzed from plasma and urine samples of RCC patients,
although studies are still scarce compared to NSCLC, colorectal cancer, melanoma, and
urothelial cancer, and have mostly been done in metastatic RCC patients. Patients with
metastatic ccRCC had higher plasma levels of cell-free DNA compared to localized ccRCC
and healthy control patients, and higher plasma cell-free DNA levels predicted disease
recurrence after nephrectomy [81]. Untargeted sequencing methods revealed detectable
ctDNA in plasma or urine samples of 30–40% of RCC patients with localized and metastatic
disease, and detectable ctDNA in plasma, but not in urine, was more common in patients
with larger tumors and with venous tumor thrombus [82]. The rate of detectable ctDNA
in RCC patients has varied markedly based on the method used (NGS panel) and pa-
tient cohort (localized or metastatic). Targeted analysis of ctDNA using an RCC-targeted
NGS panel (including BAP1, KDM5C, MET, MTOR, PBRM1, PIK3CA, PTEN, SETD2,
TP53, and VHL genes) revealed detectable plasma ctDNA in only 18.6% of the patients
(mostly metastatic ccRCC) [82]. CtDNA analysis of plasma samples from 220 patients with
metastatic RCC with a 74-gene panel revealed genomic alterations in 79% of the patients.
The most frequently observed mutations included TP53 (35%), VHL (23%), EGFR (17%),
NF1 (16%), and ARID1A (12%) [83]. In a smaller series of metastatic RCC patients (76%
ccRCC), 18/34 (53%) of the patients had detectable plasma ctDNA and it was associated
with tumor burden (the sum of longest diameter of all measurable lesions) but not with
IMDC risk groups or tumor histology [84].

Upregulated programmed death ligand-1 (PD-L1 or B7-H1) expression on the surface
of tumor cells is an important mechanism of tumor immune evasion. The interaction
of PD-L1 and PD-1 receptors in tumor-infiltrating lymphocytes (especially cytotoxic T
cells) hampers the immune response against cancer cells [85]. Although different studies
have used variable methods to define PD-L1 positivity in RCC (different antibodies in
immunohistochemistry, tumor cell or immune cell positivity, positivity cut-off %), PD-L1
expression has unequivocally been an adverse prognostic feature. PD-L1 expression can be
found in tumor cells and in tumor-infiltrating lymphocytes (TILs) and both features have
been associated with inferior survival in RCC [86]. PD-L1-positive tumor cells have been
observed in 20–24% of ccRCCs and the 5-year cancer-specific survival rate of these patients
was 42–47%, compared to 66–83% in PD-L1-negative patients [87,88].

In addition to a higher stage and higher tumor grade, sRCCs are found to have
increased PD-L1 expression compared to ccRCCs. Genomic amplifications at 9p24.1 are
more frequently found in sRCC tumors (6%) compared to ccRCC tumors (0.6%). These
amplifications included JAK2, PD-L1, and PD-L2 genes, leading to upregulated PD-L1
expression [89]. In the IMmotion151 trial evaluating bevacizumab and atezolizumab
vs. sunitinb in first-line metastatic RCC patients, sarcomatoid features were found in
16% (142/915) of patients. In addition, 61% of sarcomatoid RCCs (86/142) were PD-
L1-positive (≥1% tumor-infiltrating immune cells positive), compared to 40% of PD-L1-
positive cases among all study patients (362/915) [90,91]. In the CheckMate 214 trial
evaluating ipilimumab and nivolumab vs. sunitinib in treatment-naive metastatic ccRCC
patients, 13% of all patients (145/1096) had sarcomatoid features and only 4% (6/145) had
an IMDC favorable risk score. Of 139 sRCC patients with IMDC intermediate or poor risk
scores, 50% were PD-L1-positive (≥1% tumor cells positive), compared to 26% of all IMDC
intermediate- or poor-risk patients [92]. This feature renders sRCCs more susceptible to ICI
than to antiangiogenic TKI therapies, and the introduction of ICI has significantly improved
treatment outcomes in patients with advanced sRCC [90,92].

In addition to gene expression profiles, ctDNA, and PD-L1 expression levels, the
prognostic ability of epigenetic biomarkers, such as DNA methylation, expression of
microRNAs, and long noncoding RNA, is being studied. Cell-free DNA methylation
analysis from plasma and urine samples has been introduced as a potential method detect
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early-stage RCC patients from among healthy control patients [93]. However, none of these
biomarkers are yet recommended in the international RCC guidelines [4,94], nor have they
been adopted into widespread clinical use. The aim of future studies is to supplement
current prognostic algorithms with novel biomarkers to improve their prediction accuracy
and validate these findings in independent patient cohorts.

5. Prognostic Markers and Adjuvant Therapies for Localized ccRCC

The efficacy of antiangiogenic TKI therapies and immune checkpoint inhibitors (ICI) in
the treatment of advanced ccRCC has led to adjuvant therapy trials aiming to reduce the risk
of disease recurrence and improve the overall survival (OS) of patients with localized RCC
after radical or partial nephrectomy. Before TKI and ICI therapies, cytokines (interferon-
alpha and high-dose interleukin-2) showed modest clinical activity (response rates of
15–31%) in stage IV RCC [95] and were also studied in the adjuvant setting. However,
cytokine and tumor vaccine adjuvant therapy trials failed to improve recurrence-free and
overall survival [94–98].

The next attempt to improve RFS and OS was made with VEGF-targeted TKI adjuvant
therapies. Five large, prospective, multicenter trials with sunitinib (S-TRAC), sunitinib
and sorafenib (ASSURE), pazopanib (PROTECT), axitinib (ATLAS), and sorafenib (SORCE)
were conducted [99–103]. The design of adjuvant therapy trials and results are described in
Table 2. There were various inclusion criteria for intermediate- and high-risk patients and
the proportion of higher-risk (≥T3 or N1) patients was different across these adjuvant trials.
The inclusion criteria for the S-TRAC trial were modified from the UISS criteria (T3N0M0
Fuhrman grade ≥ 2 and ECOG performance status ≥ 1, T4N0M0 any Fuhrman grade,
any ECOG PS, or TanyN1-2M0). The ASSURE and the PROTECT trials required Fuhrman
grade ≥ 3 for lower-risk (T1b-T2) tumors, whereas the ATLAS trial included >T2 tumors
regardless of Fuhrman grade. The SORCE trial was the only trial that directly adopted
the existing prognostic algorithm (the Leibovich score (2003)) for classifying patients into
intermediate- (3–5 points) or high-risk (6–11 points) groups for disease recurrence. The
proportion of lower-risk patients (T1-2, stage I and II) ranged from 11% to 35% in the
ATLAS, PROTECT, ASSURE, and SORCE trials [100–103].

Table 2. The results from phase III randomized adjuvant TKI and ICI trials in RCC.

Trial Treatment Inclusion Criteria
Median DFS/HR of

Disease Recurrence or
Death

Discontinuation Rate
Due to AE/(AE + Patient

Withdrawal) #

S-TRAC
[99]

Sunitinib vs. Placebo
12 Months

≥T3N0 (gr ≥ 2,
ECOG ≥ 1) or TanyN1

6.8 Years, HR 0.76
(0.59–0.98) vs. 5.6 Years 28% vs. 6%

ASSURE
[100]

Sunitinib vs.
Sorafenib vs.

Placebo
12 Months

≥T1b (gr 3–4)
N0 or TanyN1

5.8 Years, HR 1.17
(0.90–1.52) vs. 6.1 Years,

HR 0.97 (0.75–1.28) vs. 6.6.
Years

44% # vs. 45% # vs. 11% #

PROTECT
[101]

Pazopanib vs. Placebo
12 Months

T2 (gr 3–4) N0,
T3–4N0, or TanyN1 HR 0.86 (0.70–1.06) 35% vs. 5%

ATLAS
[102]

Axitinib vs.
Placebo

12–36 Months
≥T2N0 or TanyN1 HR 0.87 (0.660–1.147) 23% vs. 11%

SORCE
[103]

Sorafenib 12 Months vs.
Sorafenib 36 Months vs.

Placebo

Intermediate Risk (Score
3–5) or High Risk (Score

≥ 6) According to
Leibovich (2003)

HR 0.94 (0.77–1.14)
Sorafenib 12 Months vs.

Placebo
HR 1.01 (0.82–1.23)

Sorafenib 36 Months vs.
Placebo

44% # vs. 49% # vs. 12%

KEYNOTE-564
[104]

Pembrolizumab vs.
Placebo

12 Months

T2 (gr 3–4 or
Sarcomatoid) N0,

T3–4N0, TanyN1, or
Resected M1

HR 0.68 (0.53–0.87) 21% vs. 2%

# indicates AE + patient withdrawal.
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All adjuvant TKI trials were placebo-controlled and aimed to show the DFS benefit,
but only S-TRAC yielded a positive result, with a 1.2-year improvement in the DFS of the
sunitinib arm. Tumor cell PD-L1 expression was not statistically significantly associated
with DFS, whereas high tumor CD8+ T-cell density was predictive for longer DFS in
the sunitinib arm of the S-TRAC trial [105]. The S-TRAC, PROTECT, and ATLAS trials
included only ccRCC patients, and the majority (79% and 84%) of patients enrolled in
the ASSURE and SORCE trials had ccRCC. Usually, the protocol-specified duration of
adjuvant TKI therapy was 12 months. The ATLAS and the SORCE trials included cohorts
with adjuvant TKI therapy up to 36 months, but the longer duration of TKI therapy did
not lead to improved DFS. Adjuvant TKI therapy caused substantial toxicity (grade 3–4
adverse events 49–72%) and a significant proportion of the patients (23–49%) discontinued
adjuvant TKI therapy because of intolerable toxicity or refused to continue study therapy
(96–100). Currently, adjuvant TKI therapy is not recommended after complete resection of
the primary tumor in the international RCC guidelines due to the substantial toxicity and
the lack of OS benefit [4,94].

Immune checkpoint inhibitors (ICI) have replaced cytokines in the immune therapy
of advanced RCC and are also being studied in randomized placebo-controlled prospec-
tive clinical trials in the adjuvant and neoadjuvant setting. IMmotion010 is evaluating
12-month adjuvant therapy with PD-L1 inhibitor atezolizumab, PROSPER neoadjuvant
therapy (nivolumab two doses), followed by 9-month adjuvant therapy with PD-1 inhibitor
nivolumab and CheckMate 914 6-month adjuvant therapy with the combination of CTLA-4
inhibitor ipilimumab and PD-1 inhibitor nivolumab in resected localized ccRCC patients,
and RAMPART 12-month durvalumab adjuvant therapy and 12-month adjuvant CTLA-4
and PD-L1 inhibitor (tremelimumab and durvalumab) combination therapy. The first
results of these trials are expected to be published in 2022–2024. The results from the
KEYNOTE-564 trial evaluating 12-month adjuvant therapy with pembrolizumab in re-
sected intermediate- or high-risk ccRCC patients showed a statistically significantly longer
recurrence-free survival rate in the pembrolizumab arm compared to the placebo arm at
24 months (77.3% vs. 68.1%, HR for recurrence or death 0.68 (0.53–0.87)) (Table 2) [105].
As this was the first analysis, a longer follow-up will be needed to confirm the survival
outcomes of the pembrolizumab adjuvant therapy. However, ICI may finally become a
practice-changing adjuvant treatment option for RCC patients after complete resection of
the primary tumor and lymph node or distant metastases.

6. Discussion

Numerous traditional histopathological factors and an increasing number of biomark-
ers have been identified to affect the postoperative prognosis of patients with localized
ccRCC. The individual assessment of the risk for disease recurrence after radical or par-
tial nephrectomy is important to tailor the intensity of postoperative follow-up imaging.
Moreover, accurate risk assessment for disease recurrence is essential to select optimal
patients for adjuvant therapy trials. However, there is no consensus regarding which is
the best model or biomarker to choose to guide the clinical decision making. Limitations
in the availability of biomarker analyses, time required to obtain the results, costs from
the analyses, and, in particular, the lack of sufficient clinical validation still limit the use
of prognostic biomarkers in clinical practice. Useful risk assessment tools for clinicians
should be easy-to-use and include only a moderate amount of readily available risk factors
(e.g., 3–5 traditional histopathological factors). Different clinicopathological features may
be available in different centers. In the future, biomarkers, including those from plasma
and urine (liquid biopsies), may supplement these prognostic algorithms.

Prognostic models with traditional histopathological and clinical factors should be
easy-to-use and readily available. However, only the SORCE trial had incorporated a
prognostic algorithm into the inclusion criteria of the trial. Adjuvant TKI trials underscored
the fact that careful patient selection is required to avoid substantial toxicity and enrich
higher-risk patients for adjuvant therapy. A meta-analysis of adjuvant TKI trials showed
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a DFS benefit in the high-risk (T3, Fuhrman grade 3–4; T4, or N1) population but not in
the low-risk population (pooled HR for DFS 0.85 (0.75–0.97) and 0.98 (0.82–1.17), respec-
tively) [106]. The optimal selection criteria for the high-risk localized ccRCC population
remain to be defined. The results from the biomarker analyses of current neoadjuvant and
adjuvant trials with ICI may shed more light on the issue.

7. Conclusions

Prognostic factors and validated prediction models help to evaluate the risk for disease
recurrence after complete surgical resection of localized ccRCC. Better models to reduce
follow-up imaging in low-risk patients and optimize the selection of patients for adjuvant
trials are required. The combination of clinical and histopathological features with novel
biomarkers may improve the prediction accuracy of prognostic models. The optimal set of
prognostic factors and biomarkers to define high-risk patients for disease recurrence may
be discovered in ongoing placebo-controlled randomized prospective clinical trials.
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Simple Summary: Clear cell renal cell carcinoma (ccRCC) is characterized by a high rate of cell
proliferation and an extensive accumulation of lipids. Uncontrolled cell growth usually generates
areas of intratumoral hypoxia that define the tumor phenotype. In this work, we show that, under
these microenvironmental conditions, stearoyl-CoA desaturase-1 is overexpressed. This enzyme
induces changes in the cellular lipidomic profile, increasing the oleic acid levels, a metabolite that is
essential for cell proliferation. This work supports the idea of considering stearoyl-CoA desaturase-1
as an exploitable therapeutic target in ccRCC.

Abstract: Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal
cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids.
Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism,
including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty
acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors,
as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell
proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1n-9) is one of
the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core.
Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is
highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1n-9, which,
in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks
18:1n-9 synthesis and compromises the proliferation. The addition of exogenous 18:1n-9 to the cells
reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as
a possible therapeutic target.

Keywords: kidney; hypoxia; tumor microenvironment; SCD-1; oleic acid

1. Introduction

Renal cell carcinoma (RCC) is the most common malignancy of the urinary system.
Although the incidence of RCC has remained stable, the mortality rates have decreased by
only 0.9% each year from 2007 to 2016 [1,2].
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Clear cell renal cell carcinoma (ccRCC) represents the most common subtype (>80%)
of RCC. The most striking phenotypic feature of ccRCC is its clear cell morphology, which
has been linked to a high lipid and glycogen accumulation [3]. Neutral lipids such as
triacylglycerol (TAG) and cholesterol esters (CE) are stored in prominent cytoplasmic lipid
droplets (LD), which are critical for cell growth and maintenance of the cell membrane [4].
Although the presence of these droplets in ccRCC is critical for sustained tumorigenesis,
their contribution to lipid homeostasis and tumor cell viability is not completely under-
stood [5].

A ubiquitous metabolic event in cancer is the constitutive activation of the pathway
for fatty acid biosynthesis. Saturated fatty acids (SFAs), monounsaturated fatty acids
(MUFAs) and polyunsaturated fatty acids (PUFAs) are synthetized to sustain the growing
demand for phospholipids (PLs) that are used for the assembly of new membranes, energy
storage and cell signaling [6–8]. The activation of enzymes such as ATP-citrate lyase
(ACL), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) leading to an increased
synthesis of SFAs has been extensively studied [9–12]. SFAs later become MUFAs by the
action of stearoyl-CoA desaturase-1 (SCD-1) [13]. SCD-1 is a Δ9-fatty acyl-CoA desaturase
that catalyzes the insertion of a double bond in the cis-Δ9 position of several saturated
fatty acyl-CoAs—mainly, palmitoyl-CoA and stearoyl-CoA—to produce palmitoleoyl-
and oleoyl-CoA, respectively [14]. It has been reported that these unsaturated fatty acids
affect several crucial biological functions of tumor cells, such as proliferation, signaling,
invasiveness and apoptosis. It was shown that oleic acid (18:1n-9), one of the most prevalent
free fatty acids (FFAs) in human plasma, increases the proliferation of human prostate,
breast and renal cancer cells [15,16]. As noted above, it was suggested that SCD-1 could
be a therapeutic target in oncology, since its pharmacological inhibition induces tumor
cell apoptosis [14,17–21]. Controversially, it is known that certain fatty acids such as
18:1n-9 exert anticancer effects on many tumors, inhibiting cell proliferation and favoring
apoptosis [22,23].

Solid tumors such as ccRCC often show hypoxic areas as a result of uncontrolled tumor
growth, without a proper development of its associated vascular network [13]. Hypoxia
inducible factors (HIF-1α and HIF-2α) are commonly stabilized key players connected
to cell growth and metabolic reprogramming in ccRCC. Both factors modulate tumoral
hypoxic responses through altering the cell energy metabolism, including the modifica-
tion of glucose consumption [24] and the expression of a lipid metabolism-associated
gene [13,25,26].

We have previously shown that SCD-1 expression correlates with other cellular mark-
ers of the tumor hypoxic microenvironment, such as EPO, EPO-R, VEGF and VEGF-R in
ccRCC [27]. However, up to now, tumor hypoxia in ccRCC has not been associated with
the induction of SCD-1 and its consequent modification of the tumor lipidomic profile.

In this work, we demonstrate that cellular hypoxia favors the induction of SCD-1,
and this influences the cellular lipid phenotype. Furthermore, we observed that SCD-1
inhibition deprives cells of essential lipid metabolites for cell proliferation. These data
provide evidence to consider SCD-1 as an exploitable therapeutic target in ccRCC.

2. Materials and Methods

2.1. Patients and Sampling Procedures

Samples of ccRCC (n = 12) were obtained from patients treated for radical nephrec-
tomy in the Urology Unit of the Hospital Dr. José Ramón Vidal (Corrientes, Argentina)
between 2015 and 2018. The normal distal tissues and ccRCC of the same affected kidney
were surgically removed. Samples were aseptically transported to the laboratory and
quickly processed. They were then fixed for histopathology and immunohistochemistry
procedures.

The design and methods of this research were approved by the Bioethics Committee
of the Medical Research Department at Dr. José Ramón Vidal Hospital in Corrientes,
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Argentina. Written informed consent was obtained from each donor. The researchers
received the samples in an anonymous manner.

2.2. Cell lines, Proliferation and Viability Assays

Caki-1 and Caki-2 cell lines (derived from ccRCC), originally from the American
Type Cell Culture Collection, were generously provided by Dr. Alfredo Martínez Ramírez
(Centro de Investigaciones Biomédicas de La Rioja, Logroño, Spain) and Dr. Ricardo
Sánchez Prieto (Universidad de Castilla-La Mancha, Albacete, Spain), respectively. The
cells were cultured in McCoy’s 5a medium modified (Thermo Fisher, Madrid, Spain)
with 10% fetal bovine serum and 50 μg/mL of gentamicin (Invitrogen, Carlsbad, CA,
USA) at 37 ◦C under humidified conditions with 5% CO2. Cell proliferation and viability
were measured with a Neubauer chamber and also using the CellTiter 96® AQueous One
Solution Cell Proliferation Assay Kit (Promega, Madison, WI, USA).

For in vitro experiments, cells were subcultured every 3 to 4 days after reaching
80–90% confluence. The cells were trypsinized, centrifuged and resuspended in the
medium at a suitable density. Experiments utilizing exogenous 18:1n-9 were performed
under serum-restrictive conditions (1%) [28].

2.3. Hypoxic Microenvironment

To achieve a hypoxic microenvironment similar to the tumor and the effects of HIF
stabilization, Caki-2 cells were exposed to different nontoxic concentrations of CoCl2 in
McCoy’s 5a medium modified with 1% fetal bovine serum [29–35]. It has been previ-
ously shown that CoCl2 inhibits the hydroxylation of HIF-1α, thus stabilizing HIF-1α and
achieving the desired hypoxic effect [36–39].

2.4. Real-Time Quantitative PCR (RT-qPCR)

SCD-1, HIF-1A and HIF-2A mRNA were determined by RT-qPCR. Total RNA was
extracted using the TRIzol reagent method (Invitrogen) according to the manufacturer’s
protocols. The obtained total RNA was purified using Ambion® TURBO DNA-free™.
First-strand cDNA was obtained by using the Moloney murine leukemia virus reverse
transcriptase (Promega) from 1 μg of RNA. qPCRs were then performed using specific
primers for SCD-1 as follows: 5′-TTCCTACCTGCAAGTTCTACACC-3′ (forward) and
5′-CCGAGCTTTGTAAGAGCGGT-3′ (reverse) with a product of 116 bp. HIF-1A: 5′-
TGCTGGGGCAATCAATGGAT-3′ (forward) and 5′-CTACCACGTACTGCTGGCAA-3′
(reverse) with a product of 590 bp. HIF-2A: 5′-TATAGTGACCCCGTCCACGT-3′ (forward)
and 5´-AGGGCAACACACACAGGAAA-3′ (reverse) with a product of 572 bp. B-ACTIN:
5′-CATGTACGTTGCTATCCAGGC-3′ (forward) and 5′-CTCCTTAATGTCACGCACGAT-
3′ (reverse) with a product of 250 bp was used as the housekeeping gene.

All primers were tested for specificity using the primer BLAST program available
at the National Center for Biotechnology Information website (www.ncbi.nlm.nih.gov;
accessed on 1 February 2020). Cycling conditions were: 1 cycle at 95 ◦C for 12 min,
40 cycles at 95 ◦C for 15 s, 60 ◦C for 20 s, 72 ◦C for 20 s and a final extension at 72 ◦C for
10 min.

2.5. SCD-1 Inhibition Assays

CAY 10566, a potent selective SCD-1 inhibitor, was purchased from Cayman Chemical
(Ann Arbor, MI, USA), dissolved in DMSO and used (3 μM) according to the manufacturer’s
recommendations (noncytotoxic concentrations). Caki-2 cells were cultured in McCoy’s 5a
medium modified with 1% fetal bovine serum.

2.6. Analyses of Fatty Acids by Gas Chromatography Coupled to Mass Spectrometry (GC/MS)

Cellular lipids were extracted using the method of Bligh and Dyer [40]. After the
addition of the appropriate standards, lipids were separated by thin-layer chromatogra-
phy (TLC) using as the stationary phase silica gel 60 and a mobile phase consisting of
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n-hexane/ethyl ether/acetic acid (70:30:1 v/v/v) [41]. Glycerolipids and glycerophospho-
lipids were transmethylated with 500 μL of 0.5-M KOH in methanol for 30 min at 37 ◦C,
and 500 μL of 0.5-M HCl was added to neutralize. For the transmethylation of cholesterol
esters, the samples were resuspended in 400-μL methyl propionate and 600 μL of 0.84-M
KOH in methanol for 1 h at 37 ◦C. Afterward, 50 mL and 1 mL of acetic acid and water,
respectively, were added to neutralize. Analysis of the fatty acid methyl esters was carried
out using an Agilent 7890A gas chromatograph coupled to an Agilent 5975C mass-selective
detector operated in the electron impact mode (EI, 70 eV) equipped with an Agilent 7693
autosampler and an Agilent DB23 column (60-m length × 250-μm internal diameter ×
0.15-μm film thickness) under the conditions described previously [42–45]. Data analysis
was carried out with Agilent G1701EA MSD Productivity Chemstation software, revision
E.02.00.

2.7. Confocal Microscopy

Caki-2 cells attached to coverslips were incubated for 24 h in McCoy 5a medium
modified with different concentrations of CoCl2 and a positive control with 30-μM oleic
acid. Cells were then washed with phosphate-buffered saline and incubated with BODIPY
493/503 staining solution (2 μg/mL) for 15 min at 37 ◦C. Cells were subsequently washed,
fixed with 4% paraformaldehyde and washed again. The coverslips were mounted on
slides with a DAPI reagent (1 μg/mL). Untreated cells were used as negative controls.
Fluorescence was monitored by microscopy using a Bio-Rad confocal system Radiance
2100 laser scanner (Bio-Rad, Richmond, VA, USA). The images were analyzed with ImageJ
software.

2.8. Apoptosis Detection by Flow Cytometry

The effect of SCD-1 inhibition on apoptosis was evaluated by flow cytometry. Based
on the preliminary time–course data, the exposure time was set to 18 h, and apoptosis
was analyzed by labeling with the annexin V-fluorescein isothiocyanate (FITC) apoptosis
detection kit (BD Bioscience, San Jose, CA, USA), which recognizes phosphatidylserine
exposure on the outer leaflet of the plasma membrane. After washing the cells, cell
fluorescence was quantified by flow cytometry in FL1 (Gallios; Beckman Coulter, Barcelona,
Spain). Data were analyzed with FlowJo software version 8.7. The propidium iodide (PI;
Sigma-Aldrich, Madrid, Spain) uptake was analyzed by incubating cells with 50-μg/mL PI
in PBS in the dark for 5 min. Fluorescence was quantified by flow cytometry in FL3. Data
were analyzed with FlowJo version 8.7.

2.9. Statistics

Statistics were performed using GraphPad Prism 8.0 via an unpaired t-test or one-
way analysis of variance (ANOVA), followed by Bonferroni’s or Tukey’s comparison tests.
Differences were considered to be significant at p < 0.05.

3. Results

3.1. The Lipidomic Profile of ccRCC Is Dependent on the Tumor Area Analyzed

ccRCC tumors frequently show visible macroscopic differences with defined bound-
aries between the center and external areas. Therefore, we first performed a lipidomic
analysis of fatty acids by GC/MS of two arbitrarily separated tumor sections: the core and
periphery. Figure 1 shows that the fatty acid profile of cellular PLs did not show marked
differences when the control was compared with the different tumor sections: core or
periphery. Both had similar amounts and types of fatty acids, with the exception of oleic
acid (18:1n-9) and arachidonic acid (20:4n-6), which were increased in the core. In contrast,
the distribution of fatty acids in the TAG and CE fractions showed a higher amount of
lipids in the core (Figure 1B,C). Palmitic acid (16:0), stearic acid (18:0) and, particularly,
18:1n-9 were greatly increased in the core compared to normal tissue or periphery.
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Figure 1. Lipidomic profile of ccRCC. (A) The profile of major phospholipid fatty acids in healthy
distal normal tissue (blue bars) or tumors (core and periphery: red and green, respectively) were
determined by GC/MS after converting the fatty acid glyceryl esters into fatty acid methyl esters.
(B,C) Profile of fatty acids present in neutral lipids (TAG and CE). Data are expressed as the means ±
SEM (n = 12). * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001, significantly different from the
control.

Since interindividual genotypic variations create great variability in primary cell
culture models derived from tumors [46], in the following series of experiments, we used
the Caki-1 and Caki-2 cell lines as an in vitro model of ccRCC. To compare the lipidomic
profile of the Caki-1/-2 cell lines, we first analyzed the total cellular fatty acid content.
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Similar to that observed in tumors, Figure 2 shows that the most abundant fatty acids in
these cell lines were also 16:0, 18:0, 18:1n-9 and 20:4n-6. Although the two cell lines showed
a similar fatty acid distribution, Caki-2 had a slightly higher amount of 18:1n-9. While both
cell lines are ccRCC models, Caki-2 was established from a primary clear cell carcinoma of
the kidney, and Caki-1 was derived from a skin metastasis. Consequently, we decided to
use the Caki-2 cell line for the in vitro experiments.

Figure 2. Lipidomic fatty acids profile of the Caki-1 and Caki-2 cell lines. (A) Total cellular fatty acid
content. (B) Distribution of SFAs, MUFAs and PUFAs. Data are expressed as the means ± SEM and
are representative of three independent experiments.

3.2. The Hypoxic Microenvironment Promotes SCD-1 Overexpression, Lipid Droplet Formation
and Changes in the Cellular Fatty Acids Profile

Differences in the lipid composition, depending on the area of the tumor analyzed,
should be in line with the expression pattern of the enzymes involved in their cellular
metabolic pathways. Likewise, enzyme induction is strictly linked to the tumor microen-
vironment. Analyzing renal tumors, we previously showed that there is a statistical
association of some hypoxia markers (e.g., HIF-1A) with the expression of SCD-1 [27]. Thus,
to investigate whether this physiological condition is actually responsible, at least in part,
for SCD-1 induction, the Caki-2 cells were treated with different CoCl2 concentrations for
24 h to generate chemical hypoxia in vitro [30,39].

We first determined the cytotoxicity after the treatment with CoCl2 for 24 h and
cell proliferation rates (growth constants (k) and cell doubling times; Supplementary
Materials Figure S1). We observed that concentrations below 300 μM did not affect the
cellular viability [47], but higher concentrations, up to 400 μM, induced cell death (5–10%).
To verify that this salt did indeed generate cellular hypoxia, we evaluated by RT-qPCR
the expression of hypoxia markers such as HIF-1A and HIF-2A (Figure 3A). Under the
same conditions, the expression of SCD-1 mRNA significantly increased (up to 200-fold)
with 300-μM CoCl2 (Figure 3B). We hypothesized that this increase in SCD-1 would be
expected to lead to elevated amounts of intracellular 18:1n-9, which, in turn, would induce
modifications in the lipid profile and/or cytoplasmic morphological changes. Hence
we next evaluated the Caki-2 cells treated with 30-μM 18:1n-9 as a positive control for
LD formation [48] with the cells treated with CoCl2 (0–300 μM) by confocal microscopy.
Using BODIPY® staining, we detected increased LD biogenesis that was dependent on the
hypoxic conditions (Figure 3C).
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Figure 3. Chemical hypoxia promotes SCD-1 expression in vitro. (A) Caki-2 cells were exposed
to different concentrations of CoCl2 (0–400 μM) for 24 h, and the development of the hypoxic
microenvironment was tested with the expression of HIF-1A and HIF-2A by RT-qPCR. (B) Then,
SCD-1 overexpression was detected under the same experimental conditions by RT-qPCR. (C) The
evaluation of LD formation was determined by confocal microscopy. Caki-2 cells were exposed
to 18:1n-9 (30 μM) for 24 h as a positive control for LD formation. Magnification 400×. Data are
expressed as the means ± SEM and are representative of three independent experiments. ** p < 0.01,
*** p < 0.001 and **** p < 0.0001, significantly different from the control.

In line with these phenotypic modifications, we evaluated the hypoxia-induced
lipidomic changes in Caki-2 cells using GC/MS. Notably, the saturated fatty acids (16:0
and 18:0) experienced a significant reduction (p < 0.001) in all treatments in the PL fraction
(Figure 4A). Consistent with the induction of SCD-1 and the appearance of cytoplasmic LD,
we observed a significant increase in 18:1n-9 but only in the TAG and CE fractions under
hypoxic conditions (p < 0.01) (Figure 4B,C).
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Figure 4. Lipidomic profile of the Caki-2 cells under hypoxic conditions. The cells were treated
with the indicated concentrations of CoCl2, and (A) the fatty acid contents in the phospholipids
(PL), (B) triacylglycerol (TAG) and (C) cholesterol esters (CE) were determined by GC/MS. Data are
expressed as the means ± SEM and are representative of three independent experiments. ** p < 0.01
and **** p < 0.0001, significantly different from the control.

3.3. Oleic Acid Is Essential for ccRCC Cell Proliferation

As additional evidence for the role of SCD-1 in the biosynthesis of MUFAs, the
pharmacological inhibition of the enzyme was performed in Caki-2 cells using the selective
inhibitor CAY 10566 at a nontoxic concentration (3 μM) for 24 h [49]. As shown in Figure 5A,
marked lipid changes in the 18:0 and 18:1n-9 levels were detected. The total cellular fatty
acid profile, considering all the lipid fractions simultaneously, showed a significant increase
of 18:0, with a consequent decrease of 18:1n-9 (p <0.01).

In line with that demonstrated by other authors with different methodologies [50],
we noted that prolonged exposure times (longer than 24 h) to the enzyme inhibitor (3 μM)
induced drastic decreases in the cell viability (34.65% ± 2.97; p< 0.001).
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Figure 5. SCD-1 pharmacological inhibition. (A) Caki-2 cells were treated with the enzyme inhibitor
CAY 10566 (3 μM) for 24 h. (B) Experimental design used in SCD-1 inhibition (slanted arrows indicate
the addition of 18:1n-9 at different times). (C) Cell viability was measured with the CellTiter 96® kit.
In all cases, the cells were cultured with 1% fetal bovine serum. Data are expressed as the means ±
SEM and are representative of three independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001,
significantly different from the control.

If the reduced cellular levels of 18:1n-9 play a role in arresting the cell growth or
triggering apoptosis, its addition to the cell culture would restore, at least in part, the cell
proliferation. In order to check this hypothesis, 18:1n-9 (50 μM) was added at different
times (Figure 5B,C) to Caki-2 cells with and without a treatment with CAY 10566 (3 μM). We
observed that the addition of 18:1n-9, along with CAY 10566 or two hours after, preserved
the cell viability; this effect was not observed if the fatty acid was added at later time points
(Figure 5C).

In addition to evaluating the cell viability with CellTiter, we determined whether
the inhibition of SCD-1 with CAY 10566 induced apoptosis in ccRCC. The Caki-2 cells
were stained with annexin V-FITC and propidium iodide (50 μg/mL), as detailed in the
Materials and Methods. Figure 6 shows that the cells treated with CAY 10566 manifested a
small increase in apoptotic cell death, which was fully preventable if 18:1n-9 was present
in the incubation media. Collectively, these data suggest that the decrease in cell viability
that the cells experienced when SCD-1 was inhibited by CAY 10566 (Figure 5) was due to a
reduced proliferation rate rather than drug-induced apoptotic cell death.
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Figure 6. Analysis of the apoptotic markers in Caki-2 cells treated with a SCD-1 inhibitor and 18:1n-9.
Apoptotic changes in the plasma membrane were detected by simultaneous staining with annexin
V-fluorescein isothiocyanate (FITC) (FL1) and propidium iodide (PI; FL3) (A) Gating strategy in
the control and treated cells. (B,C) Cells were untreated (control) or treated with 3-μM CAY 10566,
respectively. (D–F) Afterward, 18:1n-9 (50 μM) was added to the cells at 2, 6 and 18 h, respectively.

4. Discussion

ccRCC tumors characteristically show a bright yellow color in the center as a result of
its abundant lipid content and a variegated appearance in the boundary with hemorrhage,
necrosis and/or fibrosis with a frequently well-circumscribed capsule or pseudo-capsule
that separates the tumor from the adjacent tissues [51]. In order to address these dif-
ferences in tumor heterogeneity, we developed a separate core and periphery analysis
compared to the normal distal tissues, similarly to other ccRCC-focused studies [52,53].
In all the samples individually analyzed, the highest lipid content in the core was a con-
stant pattern, despite the interindividual differences usually determined in the oncological
analysis [54–56]. Consistent with these results, Saito et al., developing a broader study of
untargeted lipidomics, determined that these tumors have large accumulations of CE and
TAG among the other lipids [53].

These imbalances are obviously associated with the particular conditions that tumor
cells show to adapt their metabolism to an uncontrolled and continuous growth [57]. Sev-
eral enzymes within the fatty acid biosynthesis pathway have been found to be essential for
cancer cell growth or survival and are currently tracked as possible targets for therapeutic
development [13,58]. Among them, SCD-1 was demonstrated to be a key regulator of the
MUFA/SFA balance in several cancer cells, and its blockade triggers apoptosis [8,59,60]. In
particular, SCD-1 was shown to be overexpressed in ccRCC [1] and, therefore, proposed
as a possible therapeutic target for future pharmacological actions [61]. However, in none
of these previous studies was enzyme inhibition associated with the lipidomic cell profile
and its hypoxic context.

We previously associated the expression of cellular hypoxia markers with SCD-1
overexpression in a large number of tumor samples (n = 24) [27]. In this study using
Caki-2 cells exposed to in vitro chemical hypoxia [47], we effectively determined that the
enzyme was highly overexpressed, mimicking the microenvironmental conditions of the
tumor core. In this sense, although there is evidence that SCD-1 can be modulated by post-
transcriptional mechanisms involving ubiquitin proteasome-dependent and -independent
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pathways [62], the levels of mammalian SCD-1 appear to be principally determined by its
rate of transcription [6].

Adapting to hypoxic stress is pivotal in tumor progression and determining tumor
malignancy [25,63,64]. Since cellular hypoxia increases 18:1n-9 production, the Caki-2
cells showed increased LD biogenesis, and this was in line with the dose of CoCl2 used.
Additionally, we used an 18:1n-9 overload of the same cells to simultaneously demonstrate
that the 18:1n-9 increase is responsible for the increased LD production. The accumulation
of these droplets is a sign of adaptation to stress and/or increased cell confluence [65]. The
lipotoxicity that the increased synthesis of lipids brings about is neutralized, at least in part,
with the production of these organelles [66,67]. LD biogenesis and degradation need to be
discussed in the context of the synthesis and turnover of their major components: neutral
lipids. Their synthesis is driven by the availability of precursors like TAG and CE [68,69].
Thus, we next performed a lipidomic analysis, under hypoxic conditions, using GC/MS
to measure the levels of fatty acids in PLs and neutral lipids. In the PL fraction, large
decreases were observed only in the SFAs (16:0 and 18:0), consequent with the increased
expression of SCD-1. However, we did not observe changes at the 18:1n-9 level in this
fraction. Conversely, the increases in 18:1n-9 were observed in neutral lipids, mainly in CE.
Since these decreases in the SFAs are not quantitatively related to the newly formed 18:1n-9
by SCD-1 catalysis, most of 18:1n-9 must be redirected to mitochondrial β-oxidation [70] or,
more likely (given the hypoxic context), released to the extracellular space. Thus, all types
of cancer overexpressing this enzyme show high rates of cell proliferation, and this can
only be done in cell contexts with high metabolic energy production [6,8,18,19,60,71]. On
the other hand, Kamphorst et al. [72] found in other tumor lines (breast, lung and cervix)
that hypoxia inhibits the catalytic activity of SCD-1 (since it uses oxygen as an electron
acceptor) and shows that 18:1n-9 could be imported from the extracellular space.

The essential role of SCD-1 in cancer cell mitogenesis was unambiguously demon-
strated by several works in which the suppression of SCD-1 by genetic and pharmacological
means led to a slower rate of cell proliferation and decreased survival [61]. In this study, we
observed that the viability of CAY 10566-treated Caki-2 cells was strongly correlated with
the degree of inactivation of SCD-1, firmly establishing a positive relationship between the
rate of MUFA synthesis and cell replication. Thus, at different times, we restored 18:1n-9 in
the cell culture and observed that the cell viability improved, compared with CAY 10566
-treated Caki-2 cells. Taken together, the lipidomic profile and cell viability experiments
allowed us to assume that changes in the 18:1n-9 levels are critical for these tumor cells.
Simultaneously, it has been observed that the excess content of long-chain fatty acids,
especially SFAs, triggers programmed cell death in a process known as lipid-mediated
toxicity or lipoapoptosis [73]. Thus, these two effects (SFA increase and 18:1n-9 decrease,
caused by SCD-1 inhibition) evidently synergize and explain the cytotoxicity observed by
long-term pharmacological inhibition.

Finally, the findings described here support the concept that SCD-1 may be a poten-
tially useful target for ccRCC treatments [61,74]. The specific design of small-molecule
inhibitors of SCD-1 activity could be of great potential for possible therapeutic agents [75].
Likewise, the association of SCD-1 inhibitors with therapeutic agents that target signaling
pathways and their receptors (i.e., tyrosine kinase-mediated cascades, such as pazopanib,
sunitinib, axitinib and cabozantinib, or temsirolimus, which targets mTOR, among others)
already in use in medical oncology could also be an attractive option for future imple-
mentation [2]. Despite these hypothetical considerations, establishing the value of SCD-1
inhibitors as a protective agent for the treatment of ccRCC will require more extensive
experimental testing and careful preclinical validation.

5. Conclusions

In this work, we provided evidence supporting the hypothesis that the lipid composi-
tion of ccRCC depends on the hypoxic microenvironment prevailing in certain areas, such
as the center of the tumor. Our results added to this concept by demonstrating that there is
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a tumor microheterogeneity in terms of the fatty acid distribution in different lipid species
such as PLs, TAG and CE. In line with the above, we showed that SCD-1 is particularly
influenced by hypoxia, since it is overexpressed under these conditions and catalyzes the
conversion of 18:0 into 18:1n-9, favoring tumor cell proliferation. In addition, we provided
evidence to reinforce the idea that SCD-1 is a meaningful pharmacological target pondering
the global hypoxic context of the tumor microenvironment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13122962/s1: Figure S1: Cell proliferation rates (growth constants (k) and cell-doubling
times) in all the conditions tested. Data are expressed as the means ± SEM and are representative of
three independent experiments.
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Simple Summary: The PBRM1 protein, whose gene is the most frequently mutated one in clear
cell renal cell carcinoma (ccRCC) following von Hippel-Lindau, has been proposed as a potential
biomarker for ccRCC. However, the association of the PBRM1 immunohistochemical expression
with histomorphological features of ccRCC and the endothelial expression of tumor vasculature,
which is an important role of the tumor microenvironment related to treatment response, is little
known. Recently, our research team has established a vascularity-based architectural classification of
ccRCC correlated with angiogenesis and immune gene expression signatures, which could provide
prognostic information and function as a surrogate for treatment selection. In the present study,
we found the PBRM1 expression was correlated with the architectural patterns. Furthermore, we
demonstrated that endothelial expression tended to be lost in cases with low PBRM1 expression. This
correlation implied the orchestrated expression of PBRM1, raising the possibility that the cancer cells
and their microenvironment interact in ccRCC.

Abstract: Loss of the polybromo-1 (PBRM1) protein has been expected as a possible biomarker for clear
cell renal cell carcinoma (ccRCC). There is little knowledge about how PBRM1 immunohistochemical
expression correlates with the histomorphological features of ccRCC and the endothelial expression
of tumor vasculature. The present study evaluates the association of architectural patterns with the
PBRM1 expression of cancer cells using a cohort of 425 patients with nonmetastatic ccRCC. Furthermore,
we separately assessed the PBRM1 expression of the endothelial cells and evaluated the correlation
between the expression of cancer cells and endothelial cells. PBRM1 loss in cancer cells was observed in
148 (34.8%) patients. In the correlation analysis between architectural patterns and PBRM1 expression,
macrocyst/microcystic, tubular/acinar, and compact/small nested were positively correlated with
PBRM1 expression, whereas alveolar/large nested, thick trabecular/insular, papillary/pseudopapillary,
solid sheets, and sarcomatoid/rhabdoid were negatively correlated with PBRM1 expression. PBRM1
expression in vascular endothelial cells correlated with the expression of cancer cells (correlation coeffi-
cient = 0.834, p < 0.001). PBRM1 loss in both cancer and endothelial cells was associated with a lower
recurrence-free survival rate (p < 0.001). Our PBRM1 expression profile indicated that PBRM1 expression
in both cancer and endothelial cells may be regulated in an orchestrated manner.

Keywords: clear cell renal cell carcinoma; histomorphological features; PBRM1; immunohistochemistry;
architectural patterns; endothelial cells
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1. Introduction

Clear cell renal cell carcinoma (ccRCC), the most frequently diagnosed histologic sub-
type of adult RCC [1], is associated with a hyperangiogenic state due to the overproduction
of vascular endothelial growth factor (VEGF) by loss of von Hippel-Lindau (VHL) gene
function [2]. In addition to targeted therapy for these angiogenesis pathways such as VEGF
receptor—tyrosine kinase inhibitors (TKIs) [3], novel systemic immunotherapy agents
have improved patient survival in metastatic RCC [4,5]. However, predictive biomarkers
for both the prognostic and therapeutic implications of RCC remain lacking in a clinical
setting [6].

Recent genomic advances using exome sequencing revealed that the PBRM 1 gene
encoding the protein polybromo-1, which is a subunit of the SWI/SNF chromatin remodel-
ing complex, is a second major ccRCC cancer gene, following the VHL gene [7,8]. Several
studies have shown that the loss of PBRM1 protein has been confirmed as a possible
biomarker for ccRCC, which is associated with adverse pathological factors and poor
patient outcomes [9,10]. Subsequently, our research team presented a novel scoring system
to predict recurrence after radical surgery using standard pathologic factors incorporating
immunohistochemical (IHC) expression of PBRM1 [11]. Furthermore, because PBRM1 is
considered not only a key driver gene of ccRCC but also a key regulator of tumor cell-
autonomous immune response in ccRCC, the influence of PBRM1 loss on the response to
immune checkpoint inhibitors (ICIs) has been investigated [7,12,13].

Recently, we first demonstrated that histological phenotypes, such as clear or eosinophilic
types, were significantly correlated with survival outcomes and response to TKIs and ICIs
in patients with ccRCC, which could be applied as a predictive marker for treatment
selection [14]. Additionally, we established the vascularity-based architectural classification
of ccRCC in accordance with nine architectural patterns, which corresponded to both
angiogenesis and immune gene expression signatures [15]. Although the prognostic and
therapeutic significance for architectural patterns of ccRCC has been shown [16,17], there
is little knowledge on how genomics and subsequent protein expressions are reflected in
histomorphological features [18].

To evaluate the association of the PBRM1 expression with histomorphological features,
we semiquantitatively re-evaluated the expression by using the PBRM1-stained slides
used in our previous study [11]. In addition, we noticed that the expression in vascular
endothelial cells, which has been used as one of the internal positive controls in some
studies [10,11], tended to decrease or disappear in the PBRM1 loss cases. However, there
is little evidence regarding PBRM1 expression of the tumor vasculature, which plays an
important role in the tumor microenvironment [19]. In the present study, we aimed to
evaluate whether the histomorphological features of ccRCC correlate with the PBRM1
expression of cancer cells. Furthermore, we separately evaluated the PBRM1 expression of
the vascular endothelial cells and examined the PBRM1 expression profiles of cancer cells
and endothelial cells.

2. Materials and Methods

2.1. Case Selection

This study was performed under the institutional review board’s approval at Kansai
Medical University Hospital (No. 2018109 and No. 2020222). As in our previous report [15],
data for 436 patients who underwent extirpative surgery for nonmetastatic ccRCC were
identified from the institutional database between 2006 and 2017. Of these, 11 patients
were excluded from this study due to an insufficient supply of pathological materials for
immunohistochemistry. Thus, 425 cases with nonmetastatic ccRCC (cT1-4N0-1M0) were
retrospectively analyzed. Our institutional database of RCC contains pathological findings,
which were re-evaluated by a genitourinary pathologist (C.O.) based on the 2016 World
Health Organization (WHO) classification [20] and the 2017 TNM staging system [21] as
previously described [11,14,15]. All ccRCCs were histologically diagnosed when the carci-
noma contained typical ccRCC histology and/or showed diffuse membranous positivity
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of carbonic anhydrase IX by immunohistochemistry [20]. Pathological prognostic factors,
including pathological TNM stage, WHO/International Society of Urological Pathology
(WHO/ISUP) grade, and necrosis, were collected [22].

2.2. Evaluation of Histomorphological Features

All histomorphological features were evaluated by C.O., blinded to clinical outcomes,
using whole-tissue sections of H&E-stained slides. Histological phenotype, based on
cytoplasmic features, such as clear, mixed, or eosinophilic, and vascularity-based architec-
tural classification, based on nine architectural patterns, such as compact/small nested,
macrocyst/microcystic, tubular/acinar, alveolar/large nested, thick trabecular/insular,
papillary/pseudopapillary, solid sheets, and sarcomatoid and rhabdoid, were determined
at the highest-grade area as previously described [15].

2.3. Tissue Microarray (TMA) Construction and Immunohistochemistry of PBRM1

As previously described [11,23,24], TMA was constructed from duplicate 2 mm cores
of representative tumor locations (including the highest-grade area) in each case. The
morphological patterns of each core were also assessed based on the nine architectural
patterns included in the vascularity-based architectural classification [15]. A primary
antibody against PBRM1 (rabbit polyclonal, dilution 1:200; Atlas Antibodies AB, Bromma,
Sweden) was used according to the manufacturer’s protocols of the Ventana Discovery
Ultra Autostainer (Roche Diagnostics, Indianapolis, IN, USA). PBRM1 was visualized with
OptiView and an amplification kit (Ventana Medical System, Tucson, AZ, USA). The same
PBRM1-stained slides from our previous study [11] were used in the present study. The
nuclear expression of cancer cells was semiquantitatively assessed, referring to the internal
positive controls (inflammatory cells or stromal fibroblasts), using the H-score. The score
was determined by multiplying the staining intensity (0, none; 1, weak; 2, moderate; and
3, strong) and the percentage of positive cells (range: 0–300). The final scores (average
H-score for the two cores) were determined as previously described [23]: H-score ≤ 20
was considered for PBRM1 loss, and H-score > 20 was considered for PBRM1 retention in
cancer cells. An IHC evaluation was performed by two pathologists (K.S. and C.O.), and
discordant cases were resolved by consensus. Next, we separately evaluated the nuclear
expression of endothelial cells within the tumor area and scored them as follows: 0, none; 1,
focal weak; 2, diffuse weak; or 3, diffuse strong. The scores of endothelial cells were finally
stratified as PBRM1 loss (score: 0–1) and PBRM1 retention (score: 2–3). The representative
PBRM1 expressions of cancer cells and endothelial cells are presented in Figure 1.

 

Figure 1. Representative PBRM1 expressions of cancer cells and endothelial cells. The staining
intensity of cancer cells is assessed as follows: 0, none (internal control shows positive staining);
1, weak; 2, moderate; 3, strong. The score of endothelial cells is separately assessed as follows: 0,
none; 1, focal weak; 2, diffuse weak; or 3, diffuse strong. The negative and positive expressions of
endothelial cells are indicated by yellow and red arrows, respectively. Scale bar: 20 μm.
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2.4. Statistical Analysis

Statistical analyses were performed using EZR version 1.54 (Saitama Medical Cen-
ter, Jichi, Japan) [25]. A two-sided p < 0.05 was considered statistically significant. A
Chi-squared test for categorical variables was used to evaluate the statistical significance
among two or more groups. The t-statistic in linear regression analysis and one-way
ANOVA analysis were used to evaluate the statistical significance among the architectural
patterns. Interobserver agreement was statistically assessed using kappa statistics. Cor-
relations between the two variables were evaluated using Spearman’s rank correlation
test. Recurrence-free survival (RFS; recurrence was calculated on imaging from the date of
surgery to the date of recurrence) was assessed using the Kaplan–Meier method with the
log-rank test.

3. Results

3.1. Patients’ Characteristics and PBRM1 Expression in Cancer Cells

The median age of the patients was 65 years (IQR, 56–73 years). The male to female
ratio was 2.8:1 (312 males and 113 females). The rate of TNM stage III or IV, WHO/ISUP
grade 3 or 4, and the presence of necrosis was 24.0% (102/425), 32.3% (137/425), and 15.3%
(65/425), respectively. Of the 425 patients, 57 (13.4%) experienced a recurrence of ccRCC
during a median follow-up of 62.6 months (IQR, 33.8–94.0 months).

Cases with PBRM1 loss and PBRM1 retention were observed in 148 (34.8%) and
277 (65.2%) patients, respectively. The interobserver variability showed good agreement
between the two pathologists (kappa = 0.84). The PBRM1 expression of clinicopathological
factors is shown in Table 1.

Table 1. PBRM1 expression in cancer cells with clinicopathological factors in 425 cases with non-
metastatic ccRCC.

Variables PBRM1 Retention PBRM1 Loss

Gender, n (%)
Female 81 (71.7) 32 (28.3)
Male 196 (62.8) 116 (37.2)

TNM stage, n (%)
I 242 (78.1) 68 (21.9)
II 3 (23.1) 10 (76.9)
III 32 (32.0) 68 (68.0)
IV 0 (0.0) 2 (100.0)

WHO/ISUP grade, n (%)
1 58 (96.7) 2 (3.3)
2 155 (68.0) 73 (32.0)
3 58 (52.7) 52 (47.3)
4 6 (22.2) 21 (77.8)

Necrosis, n (%)
Absent 256 (71.1) 104 (28.9)
Present 21 (32.3) 44 (67.7)

Histological phenotype, n (%)
Clear 201 (77.3) 59 (22.7)
Mixed 71 (49.0) 74 (51.0)

Eosinophilic 5 (25.0) 15 (75.0)
Vascularity-based architectural

classification, n (%)
Category 1 218 (79.0) 58 (21.0)
Category 2 55 (45.1) 67 (54.9)
Category 3 4 (14.8) 23 (85.2)

Recurrence, n (%) 11 (19.3) 46 (80.7)
Cancer-specific mortality, n (%) 2 (13.3) 13 (86.7)
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3.2. Association of PBRM1 Expression in Cancer Cells with Clinicopathological Factors

Loss of PBRM1 expression was significantly associated with worsened pathological
prognostic factors, such as TNM stage, WHO/ISUP grade, and the presence of necrosis
(all p < 0.001; Figure 2A). Regarding the association of PBRM1 expression with histomor-
phological features, cases with PBRM1 loss were significantly observed in the eosinophilic
type, which is related to high gene expression signature scores of effector T-cells, immune
checkpoint molecules, and epithelial and mesenchymal transitions [14], among other histo-
logic phenotypes. Similarly, cases with PBRM1 loss were significantly observed in category
3, which is associated with a low gene signature of angiogenesis and high gene signa-
tures of effector T-cell and immune checkpoint [15], among vascularity-based architectural
categories (both p < 0.001; Figure 2B).

Figure 2. Association of PBRM1 expression in cancer cells with pathological factors. (A) Percentage of
cases of PBRM1 expression and conventional pathological prognostic factors; (B) Percentage of cases
of PBRM1 expression and histological phenotype and vascularity-based architectural classification.

3.3. Association of PBRM1 Expression in Cancer Cells with Architectural Patterns

Regarding the association of PBRM1 expression with architectural patterns in the
highest-grade area, tumors with PBRM1 loss were observed in 50/177 (28.2%) of com-
pact/small nested, 1/36 (2.8%) in macrocyst/microcystic, 7/63 (11.1%) in tubular/acinar,
20/47 (42.6%) in alveolar/large nested, 37/55 (67.3%) in thick trabecular/insular, 10/20
(50%) in papillary/pseudopapillary, 8/9 (88.9%) in solid sheet, and 15/18 (83.3%) in sarco-
matoid/rhabdoid patterns (Table 2). Representative images of PBRM1 expression in each
architectural pattern are shown in Figure 3.
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Table 2. PBRM1 expression in cancer cells with histomorphological features in 425 cases with
nonmetastatic ccRCC.

Architectural Patterns, n (%) PBRM1 Retention PBRM1 Loss

Compact/Small nested 127 (71.8) 50 (28.2)
Macrocyst/Microcystic 35 (97.2) 1 (2.8)

Tubular/Acinar 56 (88.9) 7 (11.1)
Alveolar/Large nested 27 (57.4) 20 (42.6)

Thick trabecular/Insular 18 (32.7) 37 (67.3)
Papillary/Pseudopapillary 10 (50.0) 10 (50.0)

Solid sheets 1 (11.1) 8 (88.9)
Sarcomatoid/Rhabdoid 3 (16.7) 15 (83.3)

 

Figure 3. Representative images of each architectural pattern and PBRM1 immunohistochemical
expression. Compact/small nested, macrocyst/microcystic, and tubular/acinar patterns are highly
associated with PBRM1 retention, whereas the other patterns are highly associated with PBRM1 loss.
Scale bar: 20 μm.

To evaluate the correlation between architectural patterns and PBRM1 expression (H-
score), multiple linear regression analysis was performed (Figure 4). Macrocyst/microcystic
(t statistic = 7.734, p < 0.001), tubular/acinar (t statistic = 4.228, p < 0.001), and com-
pact/small nested (t statistic = 1.95, p = 0.0519) were positively correlated with the PBRM1
expression although compact/small nested was not statistically significant. On the other
hand, thick trabecular/insular (t statistic = −5.98, p < 0.001), sarcomatoid/rhabdoid (t statis-
tic = −3.829, p < 0.001), solid sheets (t statistic = −2.965, p = 0.0032), alveolar/large
nested (t statistic = −2.935, p = 0.0035), and papillary/pseudopapillary (t statistic = −2.016,
p = 0.0444) were negatively correlated with the PBRM1 expression.
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Figure 4. Association of architectural patterns with PBRM1 expression in cancer cells; correlation
analysis between architectural patterns in the highest-grade area and PBRM1 expression (n = 425).
* p < 0.05, ** p < 0.01, *** p < 0.001 using multiple linear regression analysis.

Of 403 cases where two cores were assessed for PBRM1 expression (22 out of 425 cases
were missing one core), 77 (19.1%) showed heterogeneity of PBRM1 expression (H-score ≤ 20
vs. >20) between cores. Therefore, we examined whether PBRM1 expression was correlated
with the architectural patterns of the corresponding area by assessing a total of 828 cores. It
was revealed that PBRM1 expression was correlated with the architectural patterns among
all of the evaluated cores. Notably, this association between PBRM1 expression and the
architectural patterns assessed in the highest-grade area, namely, macrocyst/microcystic,
tubular/acinar, and compact/small nest, had significantly higher PBRM1 expressions
(H-score) compared to the other patterns (p < 0.001, p < 0.001, and p < 0.05, respectively)
(Figure 5).

Figure 5. Association of architectural patterns with PBRM1 expression in cancer cells based on
H-score in each TMA core (n = 828). The histogram shows the mean ± standard error of the mean
H-score of PBRM1 expression in cancer cells. One-way analysis of variance with the Tukey test was
used for statistical analysis (N.S. means not statistically significant: * p < 0.05, *** p < 0.001).
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3.4. Association between Cancer Cells and Endothelial Cells
3.4.1. Correlation between PBRM1 Expression in Cancer Cells and Endothelial Cells

A positive correlation between PBRM1 expression in cancer cells and endothelial cells
was confirmed (correlation coefficient = 0.834, p < 0.001; Figure 6A).

Figure 6. Association between cancer cells and endothelial cells. (A) Correlation between PBRM1
expression in cancer cells and endothelial cells. Correlations between the two variables were evaluated
using Spearman’s rank correlation test. (B,C) Kaplan–Meier curve of recurrence-free survival (RFS)
stratified by PBRM1 expression. (B) PBRM1 expression of cancer cells. (C) PBRM1 expression of
endothelial cells.

3.4.2. Prognostic Significance of PBRM1 Expression in Cancer Cells and Endothelial Cells

Survival curve analysis showed that the 5-year RFS rate was significantly lower in
patients with PBRM1 loss than in those with PBRM1 retained in cancer cells (71.1% versus
96.1%, p < 0.001; Figure 6B). Similarly, the 5-year RFS rate was significantly lower in patients
with PBRM1 loss than in those with PBRM1 retained in endothelial cells (72.5 versus 95.6%,
p < 0.001; Figure 6C).

4. Discussion

Typical histological features of ccRCC consist of neoplastic cells with clear cytoplasm
and a vascular network of small and thin-walled blood vessels, activated by hypoxia-
inducible factors following VHL inactivation [20]. Although the most common architectural
pattern of ccRCC is compact/small nested with an extensive vascular network, the morpho-
logic intratumoral heterogeneity of ccRCC has been recognized [15–17]. Recent findings
have shown that VHL mono-driver tumors are characterized by low-grade and indolent
behavior with minimum intratumoral heterogeneity [26]. In contrast, tumors characterized
by high-grade and aggressive behavior include multiple clonal drivers that exhibit truncal
aberrations of ccRCC epigenetic-related genes: the SWI/SNF chromatin remodeling com-
plex gene PBRM1, histone deubiquitinate gene BAP1, and histone methyltransferase gene
SETD2 [8,26]. Högner et al. also showed that the combined loss of PBRM1 and VHL may
contribute to tumor aggressiveness [27]. However, little is known about the ways these
genetic abnormalities impact the histomorphological features of ccRCC.

In the current study, we provided several insights into the PBRM1 IHC expression
profile of ccRCC. First, we revealed the association of PBRM1 expression with histological
phenotype based on cytoplasmic features [14] and vascularity-based architectural classifi-
cation [15] (Figure 2B), both of which stratify patient prognosis. For histological phenotype,
the eosinophilic type was significantly correlated with PBRM1 loss, followed by mixed
type, whereas for vascularity-based architectural classification, category 3 was significantly
enriched in the PBRM1 loss group, followed by category 2. These results indicated that
PBRM1 loss was correlated with novel poor prognostic factors based on histomorpho-
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logical features. Consistent with the previous reports [28–31], we showed the adverse
prognostic factors of ccRCC, such as high TNM stage and WHO/ISUP grade or presence
of necrosis, were significantly associated with PBRM1 loss (Figure 2A). While a study of
localized RCC using TMA failed to show the prognostic role of PBRM1 loss after adjusting
for the significant prognostic clinicopathological parameters [32], multivariable models of
our prior study showed that PBRM1-negativity is an independent prognostic factor for
RFS [11]. Thus, our findings suggest that the additional epigenetic change increases the
aggressiveness of ccRCC and results in a poor prognosis.

Second, we showed architectural patterns based on a vascularity-based architectural
classification [15], assessed in the highest-grade area in 425 nonmetastatic ccRCC, corre-
lated with the PBRM1 expression profile. Macrocyst/microcystic, tubular/acinar, and
compact/small nested patterns characterized by enrichment of the vascular network (cor-
responded to category 1) were positively correlated with PBRM1 expression, whereas
alveolar/large nested, thick trabecular/insular, and papillary/pseudopapillary patterns
characterized by the widely spaced-out vascular network (corresponded to category 2),
or solid sheets and sarcomatoid/rhabdoid patterns characterized by scattered vascular-
ity without a vascular network (corresponded to category 3) were negatively correlated
with the PBRM1 expression (Figure 4). These results indicate that PBRM1 expression
patterns differ among the architectural patterns of ccRCC with or without an extensive
vascular network.

Third, in the evaluation of 828 cores considering intratumor heterogeneity, we also
demonstrated architectural patterns in macrocyst/microcystic, tubular/acinar, and com-
pact/small nested associated with significantly higher PBRM1 expression (H-score) com-
pared to the other patterns (Figure 5), which suggested that PBRM1 expression profile
correlated well with the ccRCC architectural patterns, even with intratumoral heterogeneity.
Although intratumoral heterogeneity of ccRCC has been reported based on DNA sequenc-
ing and chromosome aberration analysis [33], we showed that loss of PBRM1 protein
reflects morphologic heterogeneity and aggressive architectural patterns of ccRCC.

The role of PBRM1 protein expression for clinical decisions is not only being a
biomarker of prognostic prediction but also providing information on molecular mecha-
nisms and potential therapeutic targets. In the present study, we showed the prognostic
predictive ability of PBRM1 loss in nonmetastatic ccRCC, while Cai et al. also showed that
PBRM1 could improve the predictive accuracy for survival outcomes of metastatic RCC
patients treated with tyrosine kinase inhibitors (TKIs) [34]. Recently, the effectiveness of
systemic therapies (TKIs vs. ICIs) in patients with the PBRM1 mutation status of ccRCC has
also been investigated [12,13,35–37]. Although some studies have shown that patients with
PBRM1 loss in ccRCC experience increased clinical benefit from ICIs [12,35], data on the
effect of PBRM1 loss regarding immune responsiveness are inconsistent [13,36,37]. Accord-
ing to our previous study, category 3 of the vascularity-based architectural classification,
which is related to loss of PBRM1 expression, was significantly associated with an inflamed
and excluded immunophenotype in the localized ccRCC cohort and significantly enriched
in effector-T cell and immune checkpoint gene signatures in the TCGA-KIRC cohort [15].
We have also shown that in ccRCC, including eosinophilic features related to loss of PBRM1
expression, significant clinical benefit was observed in the ICI therapy group compared to
the TKI therapy group (p = 0.035) [14].

Contrary to our findings, however, some studies showed that PBRM1 mutations
were associated with increased angiogenesis, decreased immune infiltrates, and poor
response to ICIs [13,37]. While these controversial findings have yet to be resolved, the
PBRM1 mutation does not directly determine the loss of the corresponding protein or
function [38]. Because some discrepancies between PBRM1 mutation and PBRM1 IHC
expression have been reported, a comprehensive investigation, including PBRM1 mutation,
PBRM1 expression, and histomorphological features, should be conducted. Recently,
Lin et al. evaluated the influence of PBRM1 loss for treatment response, focusing on the
“immunogenic” tumor microenvironment [13]. However, the “non-immunogenic” tumor
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microenvironment, including endothelial cells, is also an important factor for appropriate
treatment strategies because combined therapies of TKIs and ICIs have been applied for
metastatic ccRCC [19,39]. Nevertheless, there are a few studies focusing on the expression
of PBRM1 in endothelial cells of ccRCC.

To the best of our knowledge, we are the first to have demonstrated that the PBRM1
IHC expression of endothelial cells is correlated with the expression of cancer cells, which
suggests that the vascular endothelial cells may also be genetically or immunohistochem-
ically abnormal (Figure 6). Although we should consider the possibility of a marked
reduction in the protein expression due to insufficient or unequal fixation [40], positive
expression of internal control such as inflammatory cells or stromal fibroblasts was con-
firmed in the present study (Figure 1). Angiogenesis also plays a central role in ccRCC
tumorigenesis and progression, regulating the immune landscape through abnormal tumor
vessel formation [39]. Our observation showed that the tumor vasculature among the
vascularity-based architectural pattern of category 1 vs. categories 2 and 3 was different.
The specific mechanism underlying the association of decreased PBRM1 expression with
the architectural patterns without a vascular network is still unclear, but the interaction
of cancer cells and endothelial cells may be suggested. In the current treatment strategies,
including angiogenic therapy, the understanding of the epigenetic abnormality between
cancer cells and endothelial cells should be considered. Further investigation by single-cell
analysis is required to determine the mechanism of the interaction between cancer cells
and endothelial cells in the tumor microenvironment.

Our current work has some limitations. The PBRM1 expression was evaluated using
only TMA, including the highest-grade area. Even considering intratumoral heterogeneity,
however, we showed that the PBRM1 expression was correlated with the architectural
patterns. Next, we semiquantitatively assessed PBRM1 IHC expression in cancer cells using
an H-score. Furthermore, we could not validate the association of architectural patterns
with PBRM1 mutation status. Despite these limitations, we comprehensively showed the
association of the PBRM1 expression profile with clinicopathological factors, including
detailed histomorphological features.

5. Conclusions

We demonstrated that PBRM1 expression of cancer cells correlated with histomor-
phological features of ccRCC and correlated with the expression of vascular endothelial
cells. Our PBRM1 expression profile indicated that PBRM1 expression in both cancer and
endothelial cells may be regulated in an orchestrated manner.
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Simple Summary: Clear renal cell carcinoma (ccRCC) is the most common type of renal cancer. As
with other malignancies, knowledge of the genetic makeup of ccRCC tumors may provide insights
for tumor management and outcomes. However, this normally requires obtaining tissue specimens
from the tumor by invasive interventions—surgery or biopsy. Radiogenomics is a field that aims
to non-invasively predict the genetic makeup of the tumor based on the tumor’s appearance on
conventional imaging, such as CT scans. To achieve this, radiogenomics uses complex machine
learning (artificial intelligence) algorithms to process imaging data and build predictive models
that can infer a tumor’s genetic makeup and clinical outcomes from its features on conventional
imaging. In this article, we searched scientific literature databases for radiogenomic studies in ccRCC,
offering a review and critical analysis of these studies. More research and validation are needed
before applying radiogenomics in clinical practice.

Abstract: Radiogenomics is a field of translational radiology that aims to associate a disease’s radio-
logic phenotype with its underlying genotype, thus offering a novel class of non-invasive biomarkers
with diagnostic, prognostic, and therapeutic potential. We herein review current radiogenomics litera-
ture in clear cell renal cell carcinoma (ccRCC), the most common renal malignancy. A literature review
was performed by querying PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science
databases, identifying all relevant articles using the following search terms: “radiogenomics”, “renal
cell carcinoma”, and “clear cell renal cell carcinoma”. Articles included were limited to the English
language and published between 2009–2021. Of 141 retrieved articles, 16 fit our inclusion criteria.
Most studies used computed tomography (CT) images from open-source and institutional databases
to extract radiomic features that were then modeled against common genomic mutations in ccRCC
using a variety of machine learning algorithms. In more recent studies, we noted a shift towards
the prediction of transcriptomic and/or epigenetic disease profiles, as well as downstream clinical
outcomes. Radiogenomics offers a platform for the development of non-invasive biomarkers for
ccRCC, with promising results in small-scale retrospective studies. However, more research is needed
to identify and validate robust radiogenomic biomarkers before integration into clinical practice.

Keywords: radiogenomics; translational; clear cell renal cell carcinoma

1. Introduction

Renal cell carcinoma (RCC) is the most common malignant kidney tumor, accounting
for approximately 85% of cases [1]. Clear cell carcinoma (ccRCC) is the most common
histologic RCC subtype, particularly in advanced RCC (approximately 60–70%, and 90%, re-
spectively) [2]. With increased use of computed tomography (CT) and magnetic resonance-
guided imaging (MRI), the incidence of RCC is rising in developed countries, usually at
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the clinically localized stage [3]. Despite the advancements in cross-sectional imaging
technology, their ability to differentiate RCC subtypes and their underlying molecular
profiles remain limited [4,5].

One approach to improve the diagnostic ability of conventional imaging has been
the adoption of advanced computational and statistical methods to process high through-
put radiologic features extracted from conventional imaging, giving rise to the field of
radiomics [6]. In parallel, our understanding of the genomic profiles of cancers and their
potential as diagnostic, prognostic, and therapeutic biomarkers has been advanced by the
application of complex computational and statistical methods to analyze high-throughput
next-generation sequencing data, allowing for complex genomic, transcriptomic, and epige-
nomic analyses of tumor specimens. Such analyses in the field of RCC have revealed
that in addition to histologic variance, RCC is a genetically diverse disease, with distinct
molecular genomic and transcriptomic profiles that correlate with clinical outcomes such
as recurrence, progression, and response to systemic therapies [7–10].

Despite the above advances in molecular and radiologic profiling of RCC in general
and ccRCC in particular, the current prognostic models remain based on clinical, pathologic,
and laboratory characteristics, with the pathologic stage heavily influencing cancer-specific
survival [11–14]. The reliance of these models on pathologic staging makes them inherently
invasive, requiring tissue diagnosis based on surgical extirpation or tissue biopsy, with no
standardized non-invasive or pre-treatment biomarkers that can be used to classify RCC or
predict tumor behavior. This limitation applies to genomic profiling tools, as well, as they
also require tissue extraction for their analyses, along with complex and cost-prohibitive
translational infrastructures that currently limit their applicability in clinical practice.

Radiogenomics is a novel field that circumvents the above challenges by utilizing
computational machine learning algorithms to correlate radiomic features of disease (ra-
diologic phenotype) with its underlying molecular profile (genotype), thereby offering a
platform for the development of non-invasive biomarkers to aid in treatment decisions and
disease [15,16]. Of note, while the term “radiogenomics” has been used interchangeably
with “radiomics” in literature to describe the study of radiologic features of predictive
treatment outcomes, “radiogenomics” is more commonly used to describe the study of the
molecular changes underlying the radiologic phenotype of a disease process, including
genetic mutations, gene expression, and methylation (epigenetic) changes [15–19].

Here, we present an in-depth review of the current state of radiogenomics in ccRCC,
and examine the variety of innovative computational models that have been developed in
this field to infer the molecular profile of ccRCC from its radiologic phenotype, concluding
with a discussion of the field’s current limitations and future directions.

2. Methods

A literature review was performed by querying the PubMed, Medline, Cochrane
Library, Google Scholar, and Web of Science databases. We attempted to identify all
articles pertaining to radiogenomics and ccRCC. The search terms included “radiogenomics
and . . . ” one of the following MeSH search terms: “renal cell carcinoma”, “clear cell
renal cell carcinoma”, “kidney cancer”, or “renal cancer”. Titles and abstracts of the
articles retrieved from the above search were then screened for relevance. Inclusion criteria
were (1) publication in the English language, (2) publication between 1/2009 and 9/2021,
(3) and article topic pertaining to radiogenomics of ccRCC. Exclusion criteria included
(1) publication before 1/2009, (2) not published in the English language, (3) study topics not
pertaining to ccRCC or radiogenomics, (4) duplicate articles, and (5) non-primary literature,
e.g., abstracts, review articles, and letters to the editor, which were excluded after being
reviewed to identify any missed primary studies.

3. Results

Overall, 141 articles were identified in our initial search, of which 16 fit our inclusion
criteria described above. Radiogenomic features related to mutational status were the
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most commonly described and targeted features for modeling (eight articles), followed
by gene expression (five articles) and epigenetic features (one article). Only two articles
developed clinical prognostic models utilizing radiogenomic data. Most articles focused
on multiphasic, contrast-enhanced CT scan as the modality of choice, with two paper(s)
discussing MRI features. A PRISMA flow chart of our search with inclusion and exclusion
criteria can be seen in Figure 1. A list of the included articles along with a summary of their
methodology and targeted predictive outcomes can be found in Table 1.

 

Figure 1. PRISMA flow diagram of article selection criteria.
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3.1. Key Genetic Mutations in ccRCC

Key gene mutations identified in ccRCC include VHL, PBRM1, BAP1, SETD2, and
KDM5C; most of which are located on the short arm of chromosome 3 [35]. Key genetic
mutations and their radiogenomic characteristics as well as prognostic value are discussed
below, and are summarized in Table 2.

Table 2. Summary of the top 5 most common gene mutations in ccRCC.

Gene Mutation
Frequency in

ccRCC (%)
Protein Function

Clinical and Prognostic
Implications

Associated Features on
CT Imaging

VHL >90% Tumor Suppressor None

Defined tumor margins,
nodular tumor

enhancement, intratumor
vascularity

PRBM1 40–50% Tumor Suppressor

Inconsistent clinical
significance in localized

ccRCC; may be predictive
of better prognosis and

response to immune
checkpoint inhibitors in

metastatic ccRCC

Solid ccRCC

BAP1 10–15% Tumor Suppressor Poor prognosis

Renal vein invasion,
ill-defined tumor margins,

and intratumor
calcificationsAbsent in

multicystic ccRCC

SET2D 10–15% Tumor Suppressor Poor prognosis Inconsistent
Absent in multicystic ccRCC

KDM5C 6–7% Tumor Suppressor Good prognosis Renal vein invasion
Absent in multicystic ccRCC

3.1.1. VHL

VHL gene alteration is the most common mutation in solid ccRCC, with very high
frequency (>90%) of biallelic inactivation due to deletion, mutation, or loss of heterozy-
gosity [36,37]. As normal VHL protein complexes with other proteins to degrade hypoxia-
inducible factor (HIF), VHL loss or mutation results in constitutive activation of HIF,
promoting cell growth and neo-angiogenesis through the VEGF pathway [38]. Despite
its prevalence in ccRCC, the presence of a VHL mutation in patients with ccRCC has no
prognostic value [10,36,39,40].

3.1.2. PBRM1

PBRM1 is the second most commonly mutated tumor suppressor gene in ccRCC
(40–50%), and is often co-deleted with VHL. This gene encodes for a nucleosome re-
modeling complex which limits DNA accessibility to RNA polymerase and transcrip-
tion factors [35,41]. The prognostic value of PBRM1 mutation is unclear, with a recent
meta-analysis suggesting that mutation and/or loss of in PBRM1 is a poor prognostic
factor in localized disease and a good prognostic factor in advanced disease [42,43]. Other
analyses suggest that PBRM1 mutation status may be predictive of response to immune
checkpoint inhibitors [44,45]. PBRM1 mutations are most associated with solid ccRCC on
imaging [20,21].

3.1.3. BAP1

BAP1 gene, present on the short arm of chromosome 3, is mutated in 10–15% of ccRCC,
and is typically mutually exclusive of PBRM1 mutation [35,46]. This tumor suppressor
gene encodes a ubiquitin carboxyl-terminal hydrolase that regulates with downstream
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targets involved in cell breakdown and replication, with BAP1 inactivation resulting in
uncontrolled cell proliferation [41,47]. BAP1 mutation has been associated with more
aggressive disease and lower overall survival in ccRCC, with coagulative necrosis and high
Furman grade on tumor pathology [48,49].

Typical radiologic features associated with BAP1 mutation include renal vein invasion,
ill-defined tumor margins, and intratumor calcifications. Of note, BAP1 mutations were
absent in multicystic ccRCC [20,21].

3.1.4. SETD2

As with BAP1, SETD2 is a tumor suppressor gene located on the short arm of chro-
mosome 3, and is mutated in approximately 10–15% of ccRCC [35]. SETD2 loss has been
associated with poor prognosis in nonmetastatic ccRCC [48]. Radiomic analyses note
SETD2 mutation to be absent in multicystic ccRCC, with no consistent CT imaging findings
predictive of SETD2 mutation in solid ccRCC [20,21].

3.1.5. KDM5C

KDM5C is mutated in approximately 6–7% of ccRCC [35]. The prognostic value of
KDM5C remains debated, with one series noting an association with prolonged survival in
metastatic ccRCC [50]. Tumors with KDM5C mutation were consistently associated with
renal vein invasion on CT and absent in multicystic ccRCC [20,21].

3.2. Overview of Radiogenomics Workflow

As mentioned earlier, radiomics refers to the extraction and analysis of quantitative
imaging features from cross-sectional imaging modalities, while radiogenomics refers to
the study of the translational phenotype underlying these imaging features [51]. A typical
radiogenomic workflow is shown in Figure 2. First, the region of interest (ROI), being the
tumor and/or specific tumor sub-region(s), is “segmented”, i.e., outlined in all slices of the
imaging study using manual or semi-automated segmentation software, generating a 3D
rendering of the ROI. Next, specialized software is used to extract hundreds to thousands
of radiomic features from the ROI “agnostically”, with no knowledge of its clinical context
or molecular profile, such as malignant/benign status, RCC subtype, or mutational profile.
Extracted features may include first-order statistics of voxel intensity and distribution, as
well as higher level metrics of tumor shape, texture, and 2D/3D features, extracted from
one or more phases of the imaging study. Next, machine learning (ML) algorithms are
used to process these raw features to identify the subset of features that are predictive of
an outcome of interest, which in radiogenomics would include specific gene mutation,
gene expression profile, or clinical outcome [52]. The radiogenomic model constructed
from this subset of features is usually “trained” using one dataset, followed by external
cross-validation in an independent dataset.
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Figure 2. Flowchart showing typical radiogenomic workflow. Using cross-sectional images, a region
of interest (ROI) that contains either the whole tumor or subregions within the tumor can be identified
and outlined using manual in process called segmentation, using semi-automated, or automated
segmentation software. Some segmentation software, such as 3D Slicer (shown above) allow for
further ROI rendering in 3D dimensions. Quantitative radiomic features are extracted from ROI
using separate or built-in radiomic feature extraction modules. Finally, this data is integrated with
corresponding tumor molecular profile, as well as patient clinical data. These data are then processed
using machine learning algorithms to develop diagnostic, predictive, or prognostic models for
outcomes of interest.

3.3. Mutational Radiogenomic Biomarkers

In this section, we review articles that develop radiogenomic models to predict tumor
gene mutational profile in ccRCC, which mostly focused on the previously discussed
PBRM1 and BAP1 mutations.

Chen et al. (2018) presented a radiogenomic predictive model to predict multiple
ccRCC gene mutations (VHL, PBRM1, and BAP1) using quantitative CT features. To achieve
this, they developed a new multi-classifier multi-objective (MCMO) model to train their
model against multiple objectives (ccRCC mutations of interest) rather than a single objec-
tive. After training their model using an institutional cohort of 57 patients, it was validated
using The Cancer Genome Atlas’s Kidney-Renal Cell Carcinoma (TCGA-KIRC) cohort.
Their model achieved prediction accuracy of 0.81, 0.78, and 0.90 for VHL, PBRM1, and
BAP1 genes, respectively, with AUC ≥ 0.86, sensitivity ≥ 0.75, and specificity ≥ 0.80 [22].

Focusing on PBRM1 mutation, which is a likely good prognostic factor in advanced
ccRCC [42,53], Kocack et al. (2019) developed two predictive radiogenomic models using
artificial neural network algorithm (ANN) and RF algorithms to differentiate ccRCC tumors
by PBRM1 mutations status in the TCGA-KIRC cohort (45 patients; 29 without and 16 with
PBRM1 mutation). Their ANN model demonstrated an accuracy of 88.2% (AUC = 0.925)
compared to 95.0% (AUC = 0.987) with the RF algorithm. However, they did not directly
evaluate their model’s correlation with clinical outcomes [24].

The same group (Kocak et al., 2020) then developed an RF-based radiogenomic model
for the prediction of BAP1 mutation status, which carries poor prognostic implications
in ccRCC [20,21,25], in a subset of 65 patients from TCGA-KIRC (13 with and 52 without
BAP1 mutation). This model correctly classified BAP1 mutation status in 84.6% of cases
(AUC = 0.897) [20,21,25]. The same algorithm (RF) and dataset (TCGA-KIRC) were used by
Feng et al. (2020) to also predict BAP1 mutation status, but using different segmentation
and radiomic feature extraction platforms; the model accurately classified 83% (AUC = 0.77)
of BAP1 mutation status with a sensitivity of 0.72, specificity of 0.87, and precision of
0.65 [26]. Finally, targeting BAP1 status as well, Ghosh et al. (2015) developed four imaging
phase-specific BAP1 classifiers for the non-contrast, cortico-medullary, nephrographic, and
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excretory phases of CT studies from the TCGA-KIRC cohort (78 patients). Interestingly,
their model utilized 3D feature extraction to evaluate intra-tumoral heterogeneity (ITH),
which they hypothesized reflected BAP1 mutational status [27]. In contrast, none of the
previously discussed studies considered ITH in their model design, despite its known
prevalence and influence on clinicopathological and molecular assessment of ccRCC, as
one tumor area’s molecular profile may be different from another’s, with downstream
implications for the extracted radiomic features in these models [54,55].

3.4. Beyond Gene Mutations: Transcriptomic and Epigenetic Radiogenomic Biomarkers

As discussed earlier, the clinical relevance of some of the most common mutations
in ccRCC remains unclear, particularly given the low prevalence of some of these mu-
tations, limiting their potential as clinical biomarkers [20,21,35–39,41–50,56]. In contrast,
transcriptional (gene-expression based) signatures have been shown to be better tools for
classifying ccRCC into clinically-relevant molecular subtypes [57,58]. Such subgrouping
classifications include clear cell type A (ccA) and clear cell type B (ccB) described by Bran-
non et al. using microarray data. Using these tumor classifications, they noted a prognostic
difference between the two groups; ccA was significantly associated with better survival
compared to ccB [8]. As transcriptomic research shifted from microarray to next-generation
RNA-sequencing (RNA-Seq) technology, Brooks et al. developed a 34-gene expression
signature, ClearCode34, for the classification of localized ccRCC tumors to ccA and ccB
categories using RNA-Seq data [57]. Another attempt at transcriptomic profiling of ccRCC
performed by the TCGA group using unsupervised clustering of RNA-Seq data identified
four subgroups, m1–m4. Supervised clustering of these subgroups against ccA/ccB sub-
grouping noted cluster m1 to correspond to ccA, m2–m3 to correspond to cluster ccB, and
m4 to correspond to the 15% of tumors that did not align with either ccA or ccB. As with
ccA, the m1 subgroup had a survival advantage over m2–m4, sharing some of its genes
with the PBRM1 mutation group and functions within the chromatin remodeling process.
In contrast, the m3 subgroup harbored mutations of PTEN and CDKN2A, while patients
within the m4 subgroup exhibited a higher frequency of BAP1 mutations [35]. Furthermore,
these subtypes were associated with distinct radiomic features; the m1 subgroup had
well-defined tumor margins (vs. ill-defined, OR = 2.104; CI 1.024–4.322), while the m3
subtype was less frequently associated with well-defined tumor margins (OR = 0.421; CI
0.212–0.834) and had more collecting system invasion (OR = 2.164; CI 1.090–4.294) and
renal vein invasion (OR 2.120; CI 1.078–4.168). There were no significant CT findings with
the m2 or m4 subgroups [7].

In this section, we explore radiogenomic models that correlate radiologic tumor “phe-
notype” to its underlying transcriptomic and epigenetic molecular profile, rather than
genetic mutational profile. In addition to their ability to reflect variations in individual
tumor gene expression and hypermethylation patterns, these models are potentially more
applicable to clinical practice than radiogenomic models that predict only genomic mu-
tational profile, given the ability of their targeted molecular expression profiles to better
reflect survival and therapeutic outcomes [29,30].

3.4.1. Transcriptomic Radiogenomic Biomarkers

Using the aforementioned transcriptomic ccA/ccB ccRCC subtype, Yin et al. developed
a model utilizing radiomic features extracted from MRI/PET data to classify ccRCC into
ccA or ccB subtypes, using sparse partial least squares discriminant analysis (SPLS-DA) to
build two predictive models—one with the radiomic features alone, and one incorporating
clinical characteristics, mRNA, microvascular density, and molecular subtype information.
The correct classification rate was 87% vs. 95.6% using the radiomic signature alone vs.
the combined signature, respectively [29]. However, the study utilized a small cohort
(23 specimens from eight primary ccRCC patients), and PET imaging is not usually used
for evaluation nor surveillance of localized ccRCC.
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3.4.2. Epigenetic Radiogenomic Biomarkers

At the epigenetic level, DNA methylation, particularly the runt-related transcription
factor 3 (RUNX3) gene, has been correlated with overall survival [30]. Cen et al. (2019)
evaluated the correlation between RUNX3 methylation levels and certain imaging features
on CT in ccRCC. Among somatic CT findings, margin status (ill vs. well-defined; OR 2.685;
CI 1.057–6.820) and intratumoral vascularity (present or absent; OR 3.286; CI 1.367–7.898)
were significant independent predictors of high RUNX3 methylation levels on multivariate
logistic regression [30].

3.5. Beyond Predicting Molecular Profile: Radiogenomic Models as Clinical Biomarkers

While the above reviewed studies present impressive analyses and methods for infer-
ring tumor biology using radiomic features, the clinical relevance of their proposed features
and models remains unproven without direct assessment of their ability to predict clinical
outcomes. In this section, we review a few notable radiogenomic studies that go beyond
correlating only radiomic and molecular features to also demonstrating a direct correlation
between their radiogenomic biomarkers with clinical outcomes for ccRCC.

Focusing on radiologic features predictive of survival outcomes, Huang et al. per-
formed radiogenomic analysis of CT imaging for ccRCC cases with corresponding RNA
expression data in the TCGA-KIRC cohort. LASSO-COX regression was used to identify
prognostic radiomic features and prognostic gene signatures. An RF algorithm was then
used to combine prognostic and radiomic features into a radiogenomic prognostic model.
The radiogenomic model outperformed the radiomic features-only model at predicting
overall survival at 1, 3, and 5 years (average AUCs for 1-, 3-, and 5-year survival of 0.814 vs.
0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751, respectively) [31].

In another study, Jamshidi et al. constructed a radiogenomic risk score (RSS) using a
cohort of patients who underwent nephrectomy with corresponding micro-array-derived
gene expression data. Following CT imaging feature extraction, multivariate regression was
used to identify features most predictive of variation in supervised principal component
(SPC) gene expression analysis. These features were used to constitute their RSS, which
was validated in a separate patient cohort (70 for validation of the signature’s correlation
with micro-array results, 77 for correlation of signature with disease-free survival). The
RRS exhibited a statistically significant correlation with micro-array SPC variation (R = 0.57,
p < 0.001, classification accuracy 70.1%, p < 0.001) and disease-specific survival (log-rank
p < 0.001), accounting for stage, grade, and performance status (multivariate Cox model
p < 0.05, log-rank p < 0.001) [32]. In a separate study, the RRS was validated in a cohort
of 41 mRCC patients undergoing cytoreductive nephrectomy (CRN) and pre-surgical
bevacizumab, noting that it was able to stratify radiological progression-free survival (rPFS)
in this cohort; patients with a low RSS vs. high RSS had longer rPFS (25 months vs. 6 months;
p = 0.005) and OS (37 months vs. 25 months; p = 0.03) [33].

Focusing on micro-RNA (miRNA) expression in RCC, Marigliano et al. (2019) eval-
uated the correlation between a variety of radiomic features extracted from a cohort of
20 ccRCC patients, and their expression levels of selected microRNAs. Specifically, they
examined the correlation of these features with miR-21-5p, miR-210-3p, miR-185-5p, miR-
221-3p, and miR-145-5p, which had been shown to correlate with clinical outcomes in
ccRCC [59]. They found no significant correlation between their extracted features and
expression of any of their evaluated miRNAs [28].

While the molecular profiling of tumors using transcriptomic and epigenetic signa-
tures offers more clinically meaningful biomarkers than genomic mutational signatures, it
overlooks the critical role of the tumor’s stromal and immune background, collectively re-
ferred to as the tumor microenvironment (TME), in the prognosis and therapeutic response
of ccRCC. This role has been increasingly recognized with the rise of immunotherapy
(IO) regimens, which target the immune component of the TME as monotherapy or in
combination with TKI agents, which target the angiogenic component of the TME, as
well [60–63].
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In this regard, Udayakumar et al. (2021) utilized dynamic contrast-enhanced MRI
(DCE-MRI) imaging to identify areas of high and low colocalized enhancement within tu-
mor regions of 49 ccRCC patients undergoing DCE-MRI prior to nephrectomy, followed by
targeted sampling and RNA-sequencing of nephrectomy specimen regions corresponding
to these areas. They found enhancement-high tumors to exhibit upregulated angiogenesis-
related TME gene expression signatures, while enhancement-low areas exhibited higher
levels of immune (T-cell infiltration) TME signatures, confirmed by immunohistochem-
ical analysis. They then validated their model’s ability to predict response to TKI or
immunotherapy (IO) treatments in a cohort of 19 patients with metastatic ccRCC, not-
ing better PFS with TKI in the enhancement-high compared to enhancement-low tumor
groups (adjusted p < 0.0001), but no significant difference in PFS with IO between the two
groups [34].

4. Discussion

In this review, we provided an overview of radiogenomic studies in ccRCC, the most
common subtype of RCC, and renal malignancies in general. While the majority of studies
focused on developing models for the prediction of tumor gene mutational profiles, we
noted a shift towards the prediction of gene expression patterns and epigenetic changes
within the tumor as well as the tumor microenvironment, which provide better insights
into tumor biology and potential therapeutic response than isolated gene mutation pro-
files. A minority of the reviewed models were also shown to be predictive of relevant
clinical outcomes, such as cancer-specific survival and response to systemic therapy in
advanced ccRCC. Such models may complement the management of localized renal tu-
mors to confirm whether the tumor exhibits high- or low-risk features that may warrant
more aggressive management vs. surveillance, and in advanced ccRCC to determine the
optimal systemic treatment regimens based on radiogenomic assessment of the tumor and
its microenvironment.

However, the clinical applicability of these models remains limited by several factors.
First, all the predictive models presented by the reviewed studies were developed using
relatively small cohorts, mostly utilizing the same publicly available cohort (TCGA-KIRC),
potentially overfitting their models to this cohort, with only a few performing external vali-
dation in independent cohorts. Second, the quality of CT studies is dependent on a variety
of technical factors, such as the CT scanner, acquisition mode, and voxel reconstruction
algorithms, thereby affecting the quality of extracted radiomic data. Third, the extracted
radiomic features come from segmented tumor images, which are usually manually or
semi-automatically delineated by a human user—a process that is inherently subjective and
liable to inter-observer variability. Fourth, there are no standardized protocols or software
tools for radiomic feature extraction, with the concern that the hundreds to thousands of
radiomic features extracted by one software package are often redundant and difficult to
replicate by other software packages [64], thus limiting the external validity of the models
developed from these features. The Image Biomarker Standardization Initiative is a recent
attempt at addressing this issue, establishing a standardized set of unique radiomics fea-
tures [65], although compliance with this initiative has yet to be seen in radiogenomics
publications. This lack of a unified radiomic feature extraction protocol or terminology
limits our ability to compare the subsets of predictive radiomic features across different
models, which consequently limits the ability to identify any consistent radiomic features
across different models. Furthermore, it hinders attempts to identify the biologic processes
that may underlie changes in these radiomic features. Fifth, most of the models did not
consider intra-tumoral heterogeneity, despite its known influence on clinicopathological
and molecular assessment of ccRCC, with different tumor regions expressing different
pathologic phenotypes and molecular profiles, with implications for therapeutic response.
Therefore, a radiogenomic model that was trained to treat the entire tumor region as a single
homogenous entity may not accurately predict a tumor’s molecular profile or its correlated
clinical outcomes. Finally, while the ultimate measure of any biomarker is to show reli-
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able and independent correlation with clinical outcomes, complementing standard-of-care
biomarkers and predictive tools, most of these studies focused on developing models to
predict molecular profiles without directly demonstrating clinical relevance as an inde-
pendent biomarker of key prognostic and therapeutic outcomes, or in combination with
established predictive models and nomograms. These are critical limitations that must be
addressed for radiogenomics to be reliably used as a tool in clinical practice.

Despite these limitations, the above studies demonstrate the potential of radiogenomics
as a non-invasive biomarker of tumor biology, utilizing complex computational tools to
identify radiologic tumor features that correlate with genomic, transcriptomic, and/or
epigenetic features of the tumor, and their downstream clinical implications.

5. Conclusions

The field of radiogenomics is a potentially promising tool in constructing personalized
cancer care, offering a novel non-invasive translational biomarker that can be used for
molecular profiling of clear cell renal carcinoma. However, this field remains relatively
immature, and all the reviewed studies in the field rely on retrospective analyses, with
no large-scale prospective trials, a critical requirement for the implementation of this
technology in clinical practice.
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Simple Summary: In this study, we identified molecular markers for disease progression from ccRCC
tissue samples. Using the selected biomarkers and clinical data from the TCGA cohort, we developed
a gene expression-based signature which enhances the prognostic prediction of clinicopathological
variables and could help to provide personalized disease management.

Abstract: The inaccuracy of the current prognostic algorithms and the potential changes in the
therapeutic management of localized ccRCC demands the development of an improved prognostic
model for these patients. To this end, we analyzed whole-transcriptome profiling of 26 tissue samples
from progressive and non-progressive ccRCCs using Illumina Hi-seq 4000. Differentially expressed
genes (DEG) were intersected with the RNA-sequencing data from the TCGA. The overlapping
genes were used for further analysis. A total of 132 genes were found to be prognosis-related genes.
LASSO regression enabled the development of the best prognostic six-gene panel. Cox regression
analyses were performed to identify independent clinical prognostic parameters to construct a
combined nomogram which includes the expression of CERCAM, MIA2, HS6ST2, ONECUT2, SOX12,
TMEM132A, pT stage, tumor size and ISUP grade. A risk score generated using this model effectively
stratified patients at higher risk of disease progression (HR 10.79; p < 0.001) and cancer-specific death
(HR 19.27; p < 0.001). It correlated with the clinicopathological variables, enabling us to discriminate
a subset of patients at higher risk of progression within the Stage, Size, Grade and Necrosis score
(SSIGN) risk groups, pT and ISUP grade. In summary, a gene expression-based prognostic signature
was successfully developed providing a more precise assessment of the individual risk of progression.

Keywords: gene expression; clear-cell renal cell carcinoma; disease progression; prognostic factors;
biomarkers; RNA sequencing

1. Introduction

Renal cell carcinoma (RCC) ranks third among the urological cancers with the highest
incidence. Over 431,000 new cases and more than 170,000 RCC-related deaths were reported
worldwide last year [1]. Clear-cell RCC (ccRCC) is the most common histological subtype
and has the worst prognosis among all RCCs [2]. Currently, most of the newly diagnosed
ccRCC cases are organ-confined tumors; however, after curative treatment, up to 30–40%
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will develop tumor metastases. Unfortunately, metastatic patients have a very poor five-
year survival rate, varying between 0–20% [3,4].

According to the European Urological Guidelines, the standard management for all
localized ccRCCs receiving surgery is limited to radiographic surveillance. No adjuvant
treatment is approved for patients with a higher risk of progression [2]. Moreover, all
surveillance recommendations are only based on clinical parameters, even though these
have been proven insufficient to accurately predict disease progression, either to select
ccRCC patients for adjuvant treatments or guide disease management [5,6].

Gene expression profiling has been used extensively in cancer research and has led
to the discovery of new molecular prognostic markers and potential therapeutic targets.
Several genetic models have been proposed in ccRCC [7–10]; however, none of those classi-
fiers have been widely accepted nor implemented in routine clinical practice. Biomarker
research for ccRCC still faces multiple challenges, mainly due to tumor heterogeneity and
lack of validation studies. In addition, the use of high-throughput assays and the identifica-
tion of a significant number of markers in a relatively small number of patients increase the
complexity of data analysis [3]. The currently validated gene signatures comprise a large
number of biomarkers, hindering their applicability and reproducibility [8,9]. Therefore,
in this study we sought to develop a novel and high-performing gene expression-based
signature using data generated from our cohort and The Cancer Genome Atlas (TCGA)
cohort, to provide a more accurate assessment of the individual risk of progression for
patients with localized ccRCC.

2. Materials and Methods

2.1. Patients, Datasets Sources and Study Design

This study was split into a three-stage approach: an initial molecular profiling, a
selection and verification of prognosis-related genes and a signature development phase
(Figure 1). The initial molecular profiling phase included a total of 26 localized ccRCCs who
underwent partial or radical nephrectomy between 2001 and 2010 in our center (Hospital
Clinic of Barcelona, Barcelona, Spain). These 26 cases consisted of 13 progressive and 13 non-
progressive patients and met the following criteria: no neoadjuvant or adjuvant treatment,
no prior or concomitant malignancies or a history of inherited von Hippel-Lindau disease,
all patients had thoracoabdominal CT scan staging within two month before surgery to
ensure organ-confined disease. Tumors were considered progressive when local relapse or
distant metastasis developed during follow-up. All patients were followed up postopera-
tively according to the European Urology guidelines. Any progressive patient within two
months of surgery was excluded from the study. Non-progressive patients had a minimum
follow-up of 10 years to ensure their status as appropriate controls. Tissue samples were
obtained under institutional review board-approved protocols (HBC/2016/0333).

The selection of prognosis-related genes and signature development phases was carried
out using The Cancer Genome Atlas (TCGA) dataset. Level 3 RNAseq expression data and the
corresponding clinical data from TCGA ccRCC samples were obtained from the portal (https:
//firebrowse.org (accessed on 8 October 2021) [11] (Supplementary Material Table S1). Survival
data were obtained from portal (https://www.sciencedirect.com/science/article/pii/S0
092867418302290?via%3Dihub#app2 (accessed on 8 October 2021) [12]. After selecting
samples matching our selection criteria and excluding patients without survival status or
missing clinical data, a total of 356 ccRCC samples from TCGA, 68 progressive and 288 non-
progressive, were selected and the gene expression of 20,532 genes was downloaded.
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Figure 1. Flowchart of the whole study. Abbreviations: ccRCC, clear-cell renal cell carcinoma; DEGs,
differentially expressed genes.

2.2. Tissue Specimens and RNA Isolation

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were reviewed. The tumor
area was macro-dissected from slides (total thickness 80 μm) and RNA was isolated from
FFPE specimens using the kit RecoverAll™ Total Nucleic Acid Isolation for FFPE (Ambion,
Inc. Austin, TX, USA), following manufacturers’ instructions. RNA was quantified by
spectrophotometric analysis at 260 nm (NanoDrop Technologies, Wilmington, DE, USA)
and RNA integrity was assessed using Agilent 2100 Bioanalyzer System.

2.3. Molecular Profiling by RNA Sequencing

Library preparation and sequencing method: Following rRNA removal (Ribo-Zero®

rRNA Removal Kit, Illumina), RNA from 26 selected ccRCC samples was processed for
library preparation using the TruSeq® RNA Access Library Preparation Kit (Illumina, San
Diego, CA, USA) that allows generating libraries starting from degraded RNA. Briefly,
cDNA strands were synthetized from input RNA in order to be adaptor-tagged, labeled and
amplified. cDNA was then pooled and enriched by a double step of probes hybridization.
The enriched targets were captured by streptavidin labeled beads, cleaned up and amplified
to obtain the final multiplexed libraries. The libraries were then sequenced on an Illumina
HiSeq® 4000 platform (Illumina®).

Read alignment and differential gene expression analysis: Paired-end RNA-Seq FASTQ
files were trimmed from a 3′ end to a fixed length based on the Phred quality score (trimmed
if score fell below 20, with a minimum read length of 25) [13]. Trimmed RNA-seq reads were
aligned to the GRCh38 reference genome with STAR [14] and gene counts were determined
using quantMode GeneCounts. Trimmed reads were then aligned using STAR. We used
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limma-voom transformation and cyclic-loess to normalize the non-biological variability.
An assessment of differential expression between groups was evaluated using moderated
t-statistics [15].

Significant DEGs between progressive and non-progressive patients were identified
based on an adjusted p-value of <0.05 and a fold change (FC) ≥ ±2. The heatmap and
statistical analyses were performed using the R statistical package (v3.3.2). Gene set en-
richment analysis (GSEA) was performed using GSEA2-2.2.0 software for testing specific
gene sets based on Gene Ontology (GO) Biological Processes [16]. The “EnrichmentMap”
plug-in of Cytoscape was used to create an enrichment map of the GSEA results, depicting
the overlap among pathways, with similar biological processes grouped together as subnet-
works [17–19]. A conservative overlap coefficient (0.5) was used to build the enrichment
map. The “AutoAnnotate” plug-in identified clusters in an automated manner, visually
annotating them with a summary label [20]. RNAseq files and clinical information were
deposited in the Gene Expression Omnibus (GEO) with accession number GSE175648.

2.4. Selection and Verification of Prognosis-Related Genes

The DEGs identified in the previous phase were intersected with the TCGA gene
expression dataset and overlapping genes were used for further analysis. The raw counts of
RNA-sequencing data from the TCGA cohort were normalized using log2-based transfor-
mation. This normalized expression was used to build a multigene signature panel. Firstly,
we performed univariate Cox regression analysis (considering 637 genes and 3 clinical
variables) to identify the potential prognosis-related variables. Then, LASSO (Least Abso-
lute Shrinkage and Selection Operator) regression was applied to construct the gene-based
signature for predicting tumor progression in ccRCC using the cvr.glmnet function from
ipflasso R package using ten-fold cross-validation and repeated it ten successive runs
to increase reliability and robustness [21]. In the machine learning procedure, we fixed
the three clinical variables. For all statistical analysis, a p-value < 0.05 was considered
significant. All statistical analyses were performed using SPSS 19.0 (Statistical Product and
Service Solutions; IBM Corporation, Armonk, NY, USA) and R version 3.4.2 (R Foundation
for Statistical Computing, Vienna, Austria).

2.5. Development of a Gene Expression-Based Signature

Based on the expression of each gene discovered and the three clinical variables,
each patient’s risk score (RS) was calculated according to the risk score model. The risk
score model was then used to evaluate the ccRCC prognosis according to the general
form RS = exp Σβixis, where i = 1, k index variables, βi represents the coefficient for each
variable estimated from the Cox regression model, and xis the corresponding value for each
variable in a given patient. RS was subjected to a Receiver Operating Characteristics (ROC)
curve analysis to choose the most appropriate threshold for predicting tumor progression.
Thereafter, Kaplan–Meier curves were generated using the selected cut-off point and
compared according to the log-rank test.

The endpoints were disease progression, defined as any local relapse or distant metas-
tasis demonstrated by radiological imaging, and cancer-specific survival. We investigated
the role of the gene panel alone, clinicopathological variables alone, and a combined model
including gene expression and clinicopathological variables as potential predictors of
disease progression and cancer-specific survival.

2.6. Pathway Enrichment Analysis

Ingenuity Pathway Analysis (IPA) software was used to identify interactions and
networks between the prognostic markers included in our gene signature, possible al-
tered canonical pathways, regulators, diseases and functions based on direct/indirect and
experimental targets.
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3. Results

3.1. Clinical Features of the Cohort

The clinicopathological characteristics of patients divided by study phase are summa-
rized in Table 1. The median (range) follow-up of the cohort was 45.6 (2.1–135.8) months.
During the follow-up period, a total of 68 patients (19.1%) developed tumor progression
and a total of 36 patients died of ccRCC. The median time to tumor progression and
cancer-related death was 19.9 (2.1–125.5) and 48.5 (2.5–151.2) months, respectively.

Table 1. Demographic and pathological characteristics of enrolled patients.

KERRYPNX
Discovery Phase Hospital
Clinic Barcelona (n = 26)

Validation Phase TCGA
Cohort (n = 356)

Gender
Male 18 (69.2) 231 (64.9)
Female 8 (30.8) 125 (35.1)

Age at diagnosis (year) 59 (34–81) 60 (29–90)
Pathological tumor size (cm) 5.5 (1.9–17.5) 5.1 (1.0–25)
ISUP

ISUP 1 3 (11.5) 4 (1.1)
ISUP 2 12 (46.2) 173 (48.6)
ISUP 3 6 (23.1) 145 (40.7)
ISUP 4 5 (19.2) 34 (9.6)

Tumor stage
pT1 15 (57.7) 211 (59.3)
pT2 5 (19.2) 41 (11.5)
pT3 5 (19.2) 102 (28.7)
pT4 1 (3.8) 2 (0.6)

N stage
N0/x 24 (92.3) 346 (97.2)
N1 2 (7.7) 10 (2.8)

Necrosis 10 (38.5) 144 (40.4)
SSIGN score *

Low risk 12 (46.2) 143 (40.2)
Intermediate risk 8 (30.7) 141 (39.6)
High risk 6 (23.1) 72 (20.2)

* Stage, Size, Grade and Necrosis (SSIGN) score [22].

3.2. Molecular Profiling of ccRCC Samples

Overall, we identified 1380 transcripts that were differentially expressed (p < 0.05)
between progressive and non-progressive ccRCC samples. Of these, 639 were protein-
coding genes; 217 were downregulated and 422 upregulated in progressive compared with
non-progressive cases. A heat map based on the most DEGs between the two groups of
ccRCC patients is shown in Figure 2A. Gene set enrichment analysis (GSEA) identified
several enriched biological processes, such as the dependent toll-like receptor signaling
pathway, metabolic process and immune response regulating cell surface receptor signaling
pathway (Figure 2B). The full list of GO biological processes is available in Supplementary
Materials (Table S2). To aid interpretation of these enriched pathways, we used enrichment
maps to create a network-based representation of our results. The most prominent cluster of
significantly enriched pathways recapitulated changes in the Catabolism Biological Process
and Toll Signaling Pathway (Figure 2C).
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Figure 2. DEGs in the discovery phase and gene-set enrichment analysis. (A) Heat map dis-
playing the 50 most DEGs between progressive and non-progressive localized ccRCC patients.
Red pixels correspond to upregulated genes, whereas green pixels indicate downregulated genes.
(B) GSEA shows positive correlation of DEGs in biological processes involved in tumor progression.
(C) Enrichment map where nodes represent gene sets (pathways) and edges (blue lines) denote
overlapping genes between 2 pathways. Node size denotes gene set size. Predicted pathways are
grouped as circles, where shades in red correspond to up-regulated gene-sets and shades in light
blue correspond to down-regulated gene-sets. Highly redundant gene sets are grouped together as
clusters. Abbreviations: DEGs, differentially expressed genes. GSEA, gene set enrichment analysis.
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3.3. Identification of Prognosis-Related Genes in an External Data Set

To validate the 639 genes identified as DEGs in the previous study phase, these genes
were intersected with the 20,532 genes from the TCGA cohort (Figure 1). As a result, we
obtained 637 overlapping genes. Of those, univariate Cox regression analysis identified
132 prognosis-related DEGs and three clinicopathological variables (pT stage, tumor size
and ISUP grade).

LASSO regression analysis was used to select the best combination of genes sig-
nificantly associated with disease progression and to build a six-gene signature. The
expressions of five of these genes: CERCAM, HS6ST2, ONECUT2, SOX12 and TMEM132A
were upregulated, while MIA2 expression was downregulated in progressive compared
with non-progressive cases. According to Ingenuity Pathway Analysis (IPA), these six vali-
dated genes were enriched in cancer, organismal injury, abnormalities, cell-to-cell signaling
and interactions, cell-mediated immune response, cellular development, cellular growth
and proliferation, carbohydrate metabolism, and angiogenesis, among others. Significant
IPA canonical pathways are depicted in Supplementary Material Table S3. The network
generated shows that there were no direct interactions between the six prognostic genes
(Figure S1).

Gene expression values for each selected gene were used for Cox regression analysis.
High expression of CERCAM, HS6ST2, ONECUT2, SOX12 and TMEM132A and low ex-
pression of MIA2 related to poor outcomes for progression-free survival (Figure S2) and
cancer-specific survival (Table 2). Moreover, the clinicopathological variables pT stage,
tumor size and ISUP were also found as to be prognostic factors for both survival endpoints.

Table 2. Univariate Cox regression analysis of statistically significant genetic and clinical variables in
the validation set (TCGA cohort).

Progression-Free Survival Cancer-Specific Survival

p 95% CI HR p 95% CI HR

CERCAM <0.001 1.387–3.807 2.298 <0.001 1.036–1.075 1.055
HS6ST2 <0.001 1.164–3.106 1.902 0.034 1.043–2.866 1.729
MIA2 <0.001 0.222–0.632 0.375 <0.001 0.825–0.935 0.878
ONECUT2 0.015 1.111–2.952 1.811 <0.001 2.443–5.942 3.810
SOX12 0.001 1.354–3.748 2.252 <0.001 1.177–1.488 1.323
TMEM132A <0.001 1.526–4.288 2.558 <0.001 1.070–1.156 1.112
pT Stage <0.001 1.775–3.024 2.317 <0.001 2.547–9.940 5.032
Tumor size <0.001 1.154–1.273 1.212 <0.001 1.125–1.271 1.195
ISUP <0.001 1.568–3.158 2.225 0.001 1.628–7.845 3.574

3.4. Development of a Prognostic Signature

The risk score (RS) for disease progression was calculated for each patient according
to a mathematical algorithm containing the six-gene expression values; pT stage, tumor
size and ISUP grade (Supplementary Material Table S4). An ROC analysis of this combined
gene expression–clinicopathological model was performed and allowed the selection of
a threshold of 0.789 (sensitivity 90% and specificity 60%) and 0.799 (sensitivity 94% and
specificity 55%) to categorize patients into high- and low-risk groups for tumor progression
and cancer-related death, respectively. The Kaplan–Meier curve of the combined generated
gene expression-based model was able to discriminate two groups with significantly
different probabilities of tumor progression (hazard ratio (HR) 10.79; 95%, p < 0.001) and
cancer-specific survival (HR 19.27; 95%, p < 0.001) (Figure 3). Notably, the performance
of the combined gene expression-based model (Area under the Curve [AUC] 0.824) was
higher than that of clinicopathological variables alone (AUC 0.766) or gene expression data
alone (AUC 0.753) (Figure S3).
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Figure 3. Kaplan–Meier curves of the combined gene expression-based model for (A) disease
progression-free survival and (B) cancer-specific survival for TCGA cohort.

3.5. Correlation Analysis of the RS with Clinical Characteristics for Disease Progression

Given the clinical significance of the RS in ccRCC, we sought to investigate the potential
correlation between RS and clinical features. The Mann–Whitney test revealed that higher
RSs correlated with a higher risk group within the SSIGN model, higher pT stage and
higher ISUP grade (Figure 4). Furthermore, the Kaplan–Meier curve indicated that our
established RS was capable of identifying ccRCC patients at the highest risk of progression
within the groups stratified by SSIGN, pT stage and ISUP grade (all p < 0.05; Figure S4).

Figure 4. Box plots for the correlation analysis of RS with clinical characteristics for disease progres-
sion. (A) SSIGN risk groups, (B) pT stage and (C) ISUP grade.

4. Discussion

Currently, clinicopathological variables are the most valuable tool for predicting
disease outcomes in ccRCC. However, due to the highly variable behavior of ccRCC, the
prediction of tumor progression is still an important clinical challenge. For decades, surgery
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has remained the only treatment approved for localized ccRCC [2]. At present, disease
management of these patients at high risk of progression is changing and new adjuvant
treatments are being considered, opening a door to more personalized medicine in localized
renal carcinoma [23,24].

Molecular profiling helps our understanding of the molecular mechanism underlying
ccRCC and affords great potential to identify new biomarkers of clinical utility [25,26].
However, intratumor heterogeneity and the methodology for sample processing, readout
and expression normalization have been a strong challenge in the development of a robust
gene signature. Next-generation sequencing is the most advanced technique for gene
expression profiling [27]; here, we used this technology to analyze the entire transcriptome
profiling of tissue samples from progressive and non-progressive ccRCC patients. We
then established a gene signature for predicting disease progression based on the gene
expression and clinical data obtained from the TCGA cohort. We improved the gene
selection and accuracy of the model by using LASSO regression analysis; this allowed us to
include all DEGs found in the training set and avoid the preselection and validation of only
a subset of these DEGs [28].

This study demonstrated that our gene expression-based signature was able to identify
localized ccRCC patients with high and low risk of disease progression in the whole cohort
and within the SSIGN risk groups. It properly correlated with clinical parameters and
was proven to enhance the predictive value of the current clinicopathological variables.
Furthermore, it was also predictive of cancer-specific survival. Therefore, our signature
may constitute an important step forward in treatment decisions for ccRCC patients.

Remarkably, the developed gene-based panel demonstrated a greater value for prog-
nostic prediction (HR 10.79, p < 0.001; AUC = 0.824) compared with similar, previously
described models. Dai et al. proposed a four-gene signature with an HR of 3.1, p < 0.001,
whereas Zhao et al. described a 15-gene model with an AUC of 0.737 [29]. Unfortunately,
the different designs and methodologies of several other studies thwart any performance
comparisons with their proposed genetic models. Thus, Brook et al. [9] assessed the
performance of ClearCode34, which classifies ccRCC into ccA and ccB subtypes, ccB pre-
sented tumor relapse more frequently (HR 2.1; p = 0.001), whereas Rini et al. [8] generated a
16-gene signature associated with tumor recurrence with an HR per 25-unit increase in score
of 3.37 (p < 0.001). Likewise, other authors have built molecular signatures aiming to predict
overall survival (OS), thus making the classifiers’ performance non-comparable [30–32].

Biologically, the genes from our panel are unrelated to each other and many of them
have been shown to have either prognostic or biologic relevance in tumor metastasis de-
velopment. According to previous reports, some of our selected genes were consistent
with previously discovered biomarkers; therefore, we have further validated their value for
ccRCC progression. Briefly, CERCAM (cerebral endothelial cell adhesion molecule) is an
adhesion molecule found to be an unfavorable prognostic marker in several tumors [33–35].
Its overexpression promotes cell viability, proliferation and invasion, it is involved in the
PI3K/AKT pathway [36] and is part of an immune prognostic signature for colon and
rectal cancer [35]. HS6ST2 (heparan sulfate D-glucosaminyl 6-O-sulfotransferase-2) is a
glycolysis-related gene and has also been associated with poor disease outcomes in nu-
merous malignancies [10,37]. Interestingly, our group previously validated this gene as an
independent prognosis biomarker in intermediate/high-risk ccRCC and found it to be asso-
ciated with angiogenesis, epithelia–mesenchymal transition (EMT), and indirectly related
to the PD-1, PDL-1 cancer immunotherapy pathway [37–39]. MIA2 (melanoma inhibitory
activity 2) has been found in several malignancies and can act as a tumor suppressor [40]
or as a proto-oncogene depending on the receptor-related signaling differences [41]. We
found MIA2 to be downregulated in progressive ccRCC. This is congruent with the human
protein atlas findings, where high expression was a favorable prognostic factor in renal
cancer [33,42]. ONECUT2 (One cut domain family member 2) is a transcription factor able
to activate oncogenic pathways and lineage-specific genes; hence, it is involved in EMT,
angiogenesis, neural differentiation, proliferation, extracellular matrix organization, cell
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locomotion and migration, among others. Overexpression of ONECUT2 has been described
in several tumors and is related to poor prognosis [43–46]. SOX12 (Sex-determining region
Y-box12) is a transcription factor, its upregulation promotes tumor progression and it is
involved in EMT, apoptosis and cell proliferation [47–49]. It functions as an oncogene-
regulating Wnt/B-catenin signaling to promote the growth of multiple myeloma cells [50].
As for TMEM132A, few studies were found in the literature, so further investigations are
required to establish its role in tumor development.

Our study has multiple strengths. The first advantage of our gene expression-based
signature is that it contains a low number of genes, making its clinical application easier.
Our model did match genes from previous models and some of them exceeded the mere
field of ccRCC, highlighting the prognostic power of the selected genes. The fact that they
are involved in different carcinogenic mechanisms confers an advantage to our signature
compared with others that only target one single pathway [10,51]. The high-throughput
technology used to analyze the samples and the statistical methodology makes our gene
model a reliable tool for predicting disease progression in ccRCC and adds important
prognostic information to the clinicopathological parameters. However, we acknowledge
that this study has several limitations. First, the retrospective design and the relatively
small sample might have influenced our findings. Second, the definition of CSS in the
TCGA cohort should be taken with caution since it was estimated [12]. Finally, despite the
good performance of our six-gene model, further validations in larger cohorts are required.

5. Conclusions

A gene expression-based prognostic signature to predict disease progression in ccRCC
was successfully developed; it could discriminate two groups with different probabilities
of tumor recurrence. In addition, our model was also useful in predicting cancer-specific
survival. The combination of genetic and clinical information enhanced the current risk
stratification of the localized ccRCC patients. Refining prognostic algorithms could help to
improve the disease management and follow-up of ccRCC patients.
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