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The Rescaled Pólya Urn and the Wright—Fisher Process with Mutation
Reprinted from: Mathematics 2021, 9, 2909, doi:10.3390/math9222909 . . . . . . . . . . . . . . . . 53

Federico Bassetti and Lucia Ladelli

Mixture of Species Sampling Models
Reprinted from: Mathematics 2021, 9, 3127, doi:10.3390/math9233127 . . . . . . . . . . . . . . . . 65

Patrizia Berti, Luca Pratelli and Pietro Rigo

A Central Limit Theorem for Predictive Distributions
Reprinted from: Mathematics 2021, 9, 3211, doi:10.3390/math9243211 . . . . . . . . . . . . . . . . 93

Alexander Gnedin and Zakaria Derbazi

Trapping the Ultimate Success
Reprinted from: Mathematics 2022, 10, 158, doi:10.3390/math10010158 . . . . . . . . . . . . . . . . 105

Persi Diaconis

Partial Exchangeability for Contingency Tables
Reprinted from: Mathematics 2022, 10, 442, doi:10.3390/math10030442 . . . . . . . . . . . . . . . . 125

Lancelot F. James

Single-Block Recursive Poisson–Dirichlet Fragmentations of Normalized Generalized Gamma
Processes
Reprinted from: Mathematics 2022, 10, 561, doi:10.3390/math10040561 . . . . . . . . . . . . . . . . 137

Emanuele Dolera

Asymptotic Efficiency of Point Estimators in Bayesian Predictive Inference
Reprinted from: Mathematics 2022, 10, 1136, doi:10.3390/math10071136 . . . . . . . . . . . . . . . 147

Sandy Zabell

Fisher, Bayes,and Predictive Inference †

Reprinted from: Mathematics 2022, 10, 1634, doi:10.3390/math10101634 . . . . . . . . . . . . . . . 175

v





Citation: Dolera, E. Preface to the

Special Issue on “Bayesian Predictive

Inference and Related

Asymptotics—Festschrift for Eugenio

Regazzini’s 75th Birthday”.

Mathematics 2022, 10, 2567. https://

doi.org/10.3390/math10152567

Received: 21 July 2022

Accepted: 21 July 2022

Published: 23 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Editorial

Preface to the Special Issue on “Bayesian Predictive Inference
and Related Asymptotics—Festschrift for Eugenio Regazzini’s
75th Birthday”

Emanuele Dolera

Department of Mathematics, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy;
emanuele.dolera@unipv.it

It is my pleasure to write this Preface to the Special Issue of Mathematics entitled
“Bayesian Predictive Inference and Related Asymptotics—Festschrift for Eugenio Regaz-
zini’s 75th Birthday”. As the title suggests, this Special Issue is dedicated to Professor
Eugenio Regazzini to honor his more than quinquagenary career (which is still ongoing!).
For many years, Eugenio served as both a lecturer and scholar of various Italian Universi-
ties (Torino, Bologna, Milano Statale, Bocconi, Pavia), visited a number of foreign academic
institutions (including Stanford University in the US, where he lectured for a brief period)
and organized various summer schools to promote advanced studies in probability and
statistics around Italy. Indeed, more than one generation of Italian scholars has learned and
consolidated the study of probability and mathematical statistics under his supervision.
It is evident that, besides transmitting enthusiasm and expertise to his students, Eugenio
created a solid bridge between the actual academic generation, working in probability and
mathematical statistics, and the great Italian masters of the first half of the twentieth century,
such as de Finetti, Cantelli and Gini. As a scholar, Eugenio’s activity has received—and
still receives—appreciation from both colleagues and academic institutions worldwide.
Apropos of this, it would be remiss not to mention the prestigious IMS fellowship he
received in July 2007.

To briefly outline his scientific contributions, MathSciNet includes 84 of his publi-
cations: of these, 41 are concerned with Mathematical Statistics, 9 with Pure Probability,
16 with Mathematical Physics and Economics, and 18 with historical issues. His most
significant works can be thematically grouped as follows:

(a) Bayesian Nonparametrics: means of the Dirichlet process [1–4], means of normalized
completely random measures [5], approximations of posterior distributions by mix-
tures of Dirichlet probability laws [6];

(b) General Bayesian Inference: Bayesian sufficiency [7–9], asymptotics for Bayesian predic-
tive inference [10–12];

(c) Classical Inference: minimum distance estimation [13–16], classical point estimation,
and testing theory [17,18];

(d) Descriptive Statistics: theory of concentration [19,20], theory of monotone depen-
dence [21];

(e) Abstract Probability Theory: finitely additive probability [22–27], mixtures of distribu-
tions of Markov chains [28], CLT for exchangeable summands [29,30];

(f) Mathematical Physics and Economics: analysis of some kinetic Boltzmann-type equa-
tions [31–39].

Returning to the Special Issue, we present 11 papers, which are briefly summarized below.
In [40], the author reviews the historical position of Sir R.A. Fisher towards Bayesian

inference, particularly regarding the classical Bayes–Laplace paradigm. The main focus of
the paper is on Fisher’s fiducial argument.

In [41], the author considers point estimation problems concerned with random
quantities which depend on both observable and non-observable variables, starting from
decision-theoretical principles. A two-phase strategy is proposed, the former relying on
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estimation of the random parameter of the model, the latter concerning estimation of the
original quantity sampled from the distinguished element of the statistical model after
plug-in of the estimated parameter in the place of the random parameter. The asymptotic
efficiency of the entire procedure is finally discussed.

In [42] the authors obtains explicit descriptions of properties of some Markov chains,
called Mittag-Leffler Markov chains, conditioned with a mixed Poisson process when it
equates to an integer n, which has interpretations in a species sampling context. This is
equivalent to obtaining properties of the fragmentation operations when applied to mass
partitions formed by the normalized jumps of a generalized gamma subordinator and
its generalizations.

The author of [43] develops a parameter-free version of classical models for contin-
gency tables, along the lines of de Finetti’s notions of partial exchangeability.

In [44], the authors introduce a betting game where the gambler aims to guess the last
success epoch in a series of inhomogeneous Bernoulli trials paced at random. At a given
stage, the gambler may bet on either the event that no further successes occur, or the event
that exactly one success is yet to occur, or may choose any proper range of future times (a
trap). When a trap is chosen, the gambler wins if the final success epoch is the only one
that falls in the trap. Then, the authors use this tool to analyse the best-choice problem,
with random arrivals generated via a Pólya–Lundberg process.

In [45], the authors consider a sequence {Xn}n≥1 of conditionally identically dis-
tributed random variables. They show that, under suitable conditions, the finite dimen-
sional distributions of the empirical process stably converge to a Gaussian kernel with a
known covariance structure.

In [46], the authors introduce mixtures of species sampling sequences and discuss how
these sequences are related to various types of Bayesian models. They prove that mixtures
of species sampling sequences are obtained by assigning the values of an exchangeable
sequence to the classes of a latent exchangeable random partition. Using this representation,
they give an explicit expression of the Exchangeable Partition Probability Function of the
partition generated by a mixture of species sampling sequences. Finally, they discuss some
special cases.

The authors of [47] pursue a project in which the authors introduce, study, and apply
a variant of the Eggenberger–Pólya urn, called the “rescaled” Pólya urn. This variant
exhibits a reinforcement mechanism based on the most recent observations, a random
persistent fluctuation of the predictive mean, and the almost certain convergence of the
empirical mean to a deterministic limit. Then, the authors show that the multidimensional
Wright–Fisher diffusion with mutation can be obtained as a suitable limit of the predictive
means associated with a family of rescaled Pólya urns.

In [48], the authors review “sufficientness” postulates for species-sampling mod-
els, and investigate analogous predictive characterizations for the more general feature-
sampling models. In particular, they present a “sufficientness” postulate for a class of
feature-sampling models referred to as Scaled Processes, and then discuss analogous
characterizations in the general setup of feature-sampling models.

In [49], the authors study the asymptotic properties of the predictive distributions
and the empirical frequencies of certain sequences {Xn}n≥1 of random variables that are
connected to the so-called measure-valued Pólya urn processes, under different assump-
tions on the weights. They also investigate a generalization of the above models via a
randomization of the law of reinforcement.

Finally, in [50], the authors consider a generalization of the log-series compound
Poisson sampling model, and they show that it leads to an extension of the compound
Poisson perspective of the Ewens sampling model to the more general Ewens–Pitman
sampling model. The interplay between the negative Binomial compound Poisson sampling
model and the Ewens–Pitman sampling model is then applied to the study of the large
n asymptotic behavior of the number of blocks in the corresponding random partitions,
leading to new proof of Pitman’s α diversity.
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Abstract: The Ewens–Pitman sampling model (EP-SM) is a distribution for random partitions of the
set {1, . . . , n}, with n ∈ N, which is indexed by real parameters α and θ such that either α ∈ [0, 1)
and θ > −α, or α < 0 and θ = −mα for some m ∈ N. For α = 0, the EP-SM is reduced to the Ewens
sampling model (E-SM), which admits a well-known compound Poisson perspective in terms of the
log-series compound Poisson sampling model (LS-CPSM). In this paper, we consider a generalisation
of the LS-CPSM, referred to as the negative Binomial compound Poisson sampling model (NB-CPSM),
and we show that it leads to an extension of the compound Poisson perspective of the E-SM to the
more general EP-SM for either α ∈ (0, 1), or α < 0. The interplay between the NB-CPSM and the
EP-SM is then applied to the study of the large n asymptotic behaviour of the number of blocks in
the corresponding random partitions—leading to a new proof of Pitman’s α diversity. We discuss
the proposed results and conjecture that analogous compound Poisson representations may hold
for the class of α-stable Poisson–Kingman sampling models—of which the EP-SM is a noteworthy
special case.

Keywords: Berry–Esseen type theorem; Ewens–Pitman sampling model; exchangeable random par-
titions; log-series compound poisson sampling model; Mittag–Leffler distribution function; negative
binomial compound poisson sampling model; Pitman’s α-diversity; wright distribution function

1. Introduction

The Pitman–Yor process is a discrete random probability measure indexed by real
parameters α and θ such that either α ∈ [0, 1) and θ > −α, or α < 0 and θ = −mα for some
m ∈ N—as can be seen in, e.g., Perman et al. [1], Pitman [2] and Pitman and Yor [3]. Let
{Vi}i≥1 be independent random variables such that Vi is distributed as a Beta distribution
with parameter (1− α, θ + iα), for i ≥ 1, with the convention for α < 0 that Vm = 1 and Vi
is undefined for i > m. If P1 := V1 and Pi := Vi ∏1≤j≤i−1(1−Vj) for i ≥ 2, such that almost
definitely ∑i≥1 Pi = 1, then the Pitman–Yor process is the random probability measure
p̃α,θ on (N, 2N) such that p̃α,θ({i}) = Pi for i ≥ 1. The Dirichlet process (Ferguson [4])
arises for α = 0. Because of the discreteness of p̃α,θ , a random sample (X1, . . . , Xn) induces
a random partition Πn of {1, . . . , n} by means of the equivalence i ∼ j ⇐⇒ Xi = Xj
(Pitman [5]). Let Kn(α, θ) := Kn(X1, . . . , Xn) ≤ n be the number of blocks of Πn and let
Mr,n(α, θ) := Mr,n(X1, . . . , Xn), for r = 1, . . . , n, be the number of blocks with frequency r
of Πn with ∑1≤r≤n Mr,n = Kn and ∑1≤r≤n rMr,n = n. Pitman [2] showed that:

Pr[(M1,n(α, θ), . . . , Mn,n(α, θ)) = (x1, . . . , xn)] = n!

(
θ
α

)
(∑n

i=1 xi)

(θ)(n)

n

∏
i=1

(
α(1−α)(i−1)

i!

)xi

xi!
, (1)

Mathematics 2021, 9, 2820. https://doi.org/10.3390/math9212820 https://www.mdpi.com/journal/mathematics5



Mathematics 2021, 9, 2820

with (x)(n) being the ascending factorial of x of order n, i.e., (x)(n) := ∏0≤i≤n−1(x + i). The
distribution (1) is referred to as the Ewens–Pitman sampling model (EP-SM), and for α = 0,
it reduces to the Ewens sampling model (E-SM) in Ewens [6]. The Pitman–Yor process
plays a critical role in a variety of research areas, such as mathematical population genetics,
Bayesian nonparametrics, machine learning, excursion theory, combinatorics and statistical
physics. See Pitman [5] and Crane [7] for a comprehensive treatment of this subject.

The E-SM admits a well-known compound Poisson perspective in terms of the log-
series compound Poisson sampling model (LS-CPSM). See Charalambides [8] and the
references therein for an overview of compound Poisson models. We consider a population
of individuals with a random number K of distinct types, and let K be distributed as a
Poisson distribution with parameter λ = −z log(1− q) for q ∈ (0, 1) and z > 0. For i ∈ N,
let Ni denote the random number of individuals of type i in the population, and let the Ni’s
be independent of K and independent from each other, with the same distribution:

Pr[N1 = x] = − 1
x log(1− q)

qx (2)

for x ∈ N. Let S = ∑1≤i≤K Ni and let Mr = ∑1≤i≤K �{Ni=r} for r = 1, . . . , S, that is, Mr
is the random number of Ni equal to r such that ∑r≥1 Mr = K and ∑r≥1 rMr = S. If
(M1(z, n), . . . , Mn(z, n)) denotes a random variable whose distribution coincides with the
conditional distribution of (M1, . . . , MS) given S = n, then (Section 3, Charalambides [8])
it holds:

Pr[(M1(z, n), . . . , Mn(z, n)) = (x1, . . . , xn)] =
n!

(z)(n)

n

∏
i=1

( z
i
)xi

xi!
. (3)

The distribution (3) is referred to as the LS-CPSM, and it is equivalent to the E-SM.
That is, the distribution (3) coincides with the distribution (1) with α = 0. Therefore, the
distributions of K(z, n) = ∑1≤r≤n Mr(z, n) and Mr(z, n) coincide with the distributions of
Kn(0, z) and Mr,n(0, z), respectively. Let w−→ denote the weak convergence. From Korwar
and Hollander [9], K(z, n)/ log n w−→ z as n→ +∞, whereas from Ewens [6], it follows that
Mr(z, n) w−→ Pz/r as n→ +∞, where Pz is a Poisson random variable with parameter z.

In this paper, we consider a generalisation of the LS-CPSM referred to as the negative
binomial compound Poisson sampling model (NB-CPSM). The NB-CPSM is indexed by real
parameters α and z such that either α ∈ (0, 1) and z > 0 or α < 0 and z < 0. The LS-CPSM
is recovered by letting α→ 0 and z > 0. We show that the NB-CPSM leads to extend the
compound Poisson perspective of the E-SM to the more general EP-SM for either α ∈ (0, 1),
or α < 0. That is, we show that: (i) for α ∈ (0, 1), the EP-SM (1) admits a representation
as a randomised NB-CPSM with α ∈ (0, 1) and z > 0, where the randomisation acts on z
with respect a scale mixture between a Gamma and a scaled Mittag–Leffler distribution
(Pitman [5]); (ii) for α < 0 the NB-CPSM admits a representation in terms of a randomised
EP-SM with α < 0 and θ = −mα for some m ∈ N, where the randomisation acts on m with
respect to a tilted Poisson distribution arising from the Wright function (Wright [10]). The
interplay between the NB-CPSM and the EP-SM is then applied to the large n asymptotic
behaviour of the number of distinct blocks in the corresponding random partitions. In
particular, by combining the randomised representation in (i) with the large n asymptotic
behaviour or the number of distinct blocks under the NB-CPSM, we present a new proof
of Pitman’s α-diversity (Pitman [5]), namely the large n asymptotic behaviour of Kn(α, θ)
under the EP-SM for α ∈ (0, 1).

2. A Compound Poisson Perspective of EP-SM

To introduce the NB-CPSM, we considered a population of individuals with a random
number K of types and let K be distributed as a Poisson distribution with parameter
λ = z[1− (1− q)α] such that either q ∈ (0, 1), α ∈ (0, 1) and z > 0, or q ∈ (0, 1), α < 0 and

6
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z < 0. For i ∈ N, let Ni be the random number of individuals of type i in the population, and
let the Ni be independent of K and independent from each other with the same distribution:

Pr[N1 = x] = − 1
[1− (1− q)α]

(
α

x

)
(−q)x (4)

for x ∈ N. Let S = ∑1≤i≤K Ni and Mr = ∑1≤i≤K �{Ni=r} for r = 1, . . . , S, that is, Mr
is the random number of Ni equal to r such that ∑r≥1 Mr = K and ∑r≥1 rMr = S. If
(M1(α, z, n), . . . , Mn(α, z, n)) is a random variable whose distribution coincides with the
conditional distribution of (M1, . . . , MS), given S = n, then it holds (Section 3, Charalam-
bides [8]):

Pr[(M1(α, z, n), . . . , Mn(α, z, n)) = (x1, . . . , xn)] =
n!

∑n
j=0 C (n, j; α)zj

n

∏
i=1

[
z α(1−α)(i−1)

i!

]xi

xi!
, (5)

where C (n, j; α) = 1
j! ∑0≤i≤j (

j
i)(−1)i(−iα)(n) is the generalised factorial coefficient (Char-

alambides [11]), with the proviso C (n, 0, α) = 0 for all n ∈ N, C (n, j, α) = 0 for all j > n
and C (0, 0, α) = 1. The distribution (5) is referred to as the NB-CPSM. As α → 0, the
distribution (4) reduces to the distribution (2), and hence the NB-CPSM (5) is reduced to
the LS-CPSM (3). The next theorem states the large n asymptotic behaviour of the counting
statistics K(α, z, n) = ∑1≤r≤n Mr(α, z, n) and Mr(α, z, n) arising from the NB-CPSM.

Theorem 1. Let Pλ denote a Poisson random variable with the parameter λ > 0. As n→ +∞,

(i) for α ∈ (0, 1) and z > 0:
K(α, z, n) w−→ 1 + Pz (6)

and:
Mr(α, z, n) w−→ Pα(1−α)(r−1)

r! z
; (7)

(ii) for α < 0 and z < 0:

K(α, z, n)

n
−α

1−α

w−→ (αz)
1

1−α

−α
(8)

and:
Mr(α, z, n) w−→ Pα(1−α)(r−1)

r! z
. (9)

Proof. As regards the proof of (6), we start by recalling that the probability generating
function G(·; λ) of Pλ is G(s; λ) = exp{−λ(s− 1)} for any s > 0. Now, let G(·; α, z, n) be
the probability generating function of K(α, z, n). The distribution of K(α, z, n) follows by
combining the NB-CPSM (5) with Theorem 2.15 of Charalambides [11]. In particular, it
follows that:

G(s; α, z, n) =
∑n

j=1 C (n, j; α)(sz)j

∑n
j=1 C (n, j; α)zj .

Hereafter, we show that G(s; α, z, n) → s exp{z(s− 1)} as n → +∞, for any s > 0,
which implies (6). In particular, by the direct application of the definition of C (n, k; α), we
write the following:

n

∑
j=1

C (n, j; α)zj =
n

∑
i=1

(−1)i(−iα)(n)
n

∑
k=i

1
k!

(
k
i

)
zk =

n

∑
i=1

(−1)i(−iα)(n)e
zzi Γ(n− i + 1, z)

i!Γ(n− i + 1)
,

7
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where Γ(a, x) :=
∫ +∞

x ta−1e−tdt denotes the incomplete gamma function for a, x > 0 and
Γ(a) :=

∫ +∞
0 ta−1e−tdt denotes the Gamma function for a > 0. Accordingly, we write

the identity:

G(s; α, z, n) = ez(s−1)
−zs Γ(n,zs)

Γ(n) + ∑n
i=2(−1)i (−iα)(n)

(−α)(n)
(zs)i Γ(n−i+1,zs)

i!Γ(n−i+1)

−z Γ(n,z)
Γ(n) + ∑n

i=2(−1)i (−iα)(n)
(−α)(n)

zi Γ(n−i+1,z)
i!Γ(n−i+1)

.

Since limn→+∞
Γ(n,x)
Γ(n) = 1 for any x > 0, the proof (6) is completed by showing that,

for any t > 0:

lim
n→+∞

n

∑
i=2

(−1)i (−iα)(n)
(−α)(n)

Γ(n− i + 1, t)
Γ(n− i + 1)

ti

i!
= 0. (10)

By the definition of ascending factorials and the reflection formula of the Gamma
function, it holds:

(−iα)(n)
(−α)(n)

=
Γ(n− iα)
Γ(n− α)

sin iπα

π
Γ(iα + 1)Γ(−α).

In particular, by means of the monotonicity of the function [1,+∞) 	 z 
→ Γ(z), we
can write:

1
i!

∣∣∣ (−iα)(n)
(−α)(n)

∣∣∣ ≤ |Γ(−α)|
π

Γ(n− 2α)

Γ(n− α)

Γ(iα + 1)
i!

(11)

for any n ∈ N such that n > 1/(1− α), and i ∈ {2, . . . , n}. Note that Γ(n,x)
Γ(n) ≤ 1. Then, we

apply (11) to obtain:

∣∣∣ n

∑
i=2

(−1)i (−iα)(n)
(−α)(n)

Γ(n− i + 1, t)
Γ(n− i + 1)

ti

i!

∣∣∣ ≤ n

∑
i=2

ti

i!

∣∣∣ (−iα)(n)
(−α)(n)

∣∣∣
≤ |Γ(−α)|

π

Γ(n− 2α)

Γ(n− α) ∑
i≥0

ti Γ(iα + 1)
i!

.

Now, by means of Stirling approximation, it holds Γ(n−2α)
Γ(n−α)

∼ 1
nα as n→ +∞. Moreover,

we have:

∑
i≥0

ti Γ(iα + 1)
i!

=
∫ +∞

0
etzα−zdz < +∞

where the finiteness of the integral follows, for any fixed t > 0, from the fact that tzα < 1
2 z

if z > (2t)
1

1−α . This completes the proof of (10) and hence the proof of (6). As regards the
proof of (7), we make use of the falling factorial moments of Mr(α, z, n), which follows by
combining the NB-CPSM (5) with Theorem 2.15 of Charalambides [11]. Let (a)[n] be the
falling factorial of a of order n, i.e., (a)[n] = ∏0≤i≤n−1(a− i), for any a ∈ R+ and n ∈ N0
with the proviso (a)[0] = 1. Then, we write:

E[(Mr(α, z, n))[s]]

= (−1)rs(n)[rs]

(
α

r

)s
(−z)s ∑n−rs

j=0 C (n− rs, j; α)zj

∑n
j=0 C (n, j; α)zj

= (−1)rs(n)[rs]

(
α

r

)s
(−z)s

(−z) Γ(n−rs,z)
Γ(n−rs) + ∑n−rs

i=2 (−1)i (−iα)(n−rs)
(−α)(n−rs)

(z)i Γ(n−rs−i+1,z)
i!Γ(n−rs−i+1)

(−z) Γ(n,z)
Γ(n) + ∑n

i=2(−1)i (−iα)(n)
(−α)(n)

(z)i Γ(n−i+1,z)
Γ(n−i+1)

= (−1)rs(n)[rs]

(
α

r

)s
(−z)s

8
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×
(−α)(n−rs)

(−α)(n)

(−z) Γ(n−rs,z)
Γ(n−rs) + ∑n−rs

i=2 (−1)i (−iα)(n−rs)
(−α)(n−lr)

(z)i Γ(n−rs−i+1,z)
i!Γ(n−rs−i+1)

(−z) Γ(n,z)
Γ(n) + ∑n

i=2(−1)i (−iα)(n)
(−α)(n)

(z)i Γ(n−i+1,z)
Γ(n−i+1)

.

Now, by means of the same argument applied in the proof of statement (6), it holds
true that:

lim
n→+∞

(−z) Γ(n−rs,z)
Γ(n−rs) + ∑n−rs

i=2 (−1)i (−iα)(n−rs)
(−α)(n−lr)

(z)i Γ(n−rs−i+1,z)
i!Γ(n−rs−i+1)

(−z) Γ(n,z)
Γ(n) + ∑n

i=2(−1)i (−iα)(n)
(−α)(n)

(z)i Γ(n−i+1,z)
Γ(n−i+1)

= 1.

Then:

lim
n→+∞

E[(Mr(α, z, n))[s]] = (−1)rs
(

α

r

)s
(−z)s =

[
α(1− α)(r−1)

r!
z

]s

follows from the fact that (n)[rs] ∼
(−α)(n−rs)
(−α)(n)

as n → +∞. The proof of the large n

asymptotics (7) is completed by recalling that the falling factorial moment of order s of Pλ

is E[(Pλ)[s]] = λs.
As regards the proof of statement (8), let α = −σ for any σ > 0 and let z = −ζ for any

ζ > 0. Then, by direct application of Equation (2.27) of Charalambides [11], we write the
following identity:

n

∑
j=0

C (n, j;−σ)(−ζ)j = (−1)n
n

∑
v=0

s(n, v)(−σ)v
v

∑
j=0

ζ jS(v, j),

where S(v, j) is the Stirling number of that second type. Now, note that ∑v
0≤j≤v ζ jS(v, j) is

the moment of order v of a Poisson random variable with parameter ζ > 0. Then, we write:

n

∑
j=0

C (n, j;−σ)(−ζ)j =
n

∑
v=0
|s(n, v)|σv ∑

j≥0
jve−ζ ζ j

j!
= ∑

j≥0
e−ζ ζ j

j!

∫ +∞

0
xn fGσj,1(x)dx. (12)

That is:
Bn(w) = E[(GσPw ,1)

n], (13)

where Ga,1 and Pw are independent random variables such that Ga,1 is a Gamma random
variable with a shape parameter a > 0 and a scale parameter 1, and Pw is a Poisson
random variable with a parameter w. Accordingly, the distribution of GσPw ,1, say μσ,w, is
the following:

μσ,w(dt) = e−wδ0(dt) +

(
∑
j≥1

e−wwj

j!
1

Γ(jσ)
e−ttjσ−1

)
dt

for t > 0. The discrete component of μσ,w does not contribute to the expectation (13) so that
we focus on the absolutely continuous component, whose density can be written as follows:

∑
j≥1

e−wwj

j!
1

Γ(jσ)
e−ttjσ−1 =

e−(w+t)

t
Wσ,0(wtσ),

where Wσ,τ(y) := ∑j≥0
yj

j!Γ(jσ+τ)
is the Wright function (Wright [10]). In particular, for

τ = 0:

Bn(w) =
∫ +∞

0
tn e−(w+t)

t
Wσ,0(wtσ)dt . (14)

9
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If we split the integral as
∫ M

0 +
∫ +∞

M for any M > 0, the contribution of the latter integral
is overwhelming with respect to the contribution of the former. Then, Wσ,0 can be equivalently

replaced by the asymptotics Wσ,0(y) ∼ c(σ)y
1

2(1+σ) exp{σ−1(σ + 1)(σy)
1

1+σ }, as y → +∞,
for some constant c(σ) solely depending on σ. See Theorem 2 in Wright [10]. Hence:

Bn(w) ∼ c(σ)
∫ +∞

0
tn−1e−(w+t)(wtσ)

1
2(1+σ) exp

{
σ + 1

σ
(σwtσ)

1
1+σ

}
dt

= c(σ)e−ww
1

2(1+σ)

∫ +∞

0
tn+ σ

2(1+σ)
−1 exp{A(w, σ)t

σ
1+σ − t}dt,

where A(w, σ) := σ+1
σ (σw)

1
1+σ . Then, the problem is reduced to an integral whose asymp-

totic behaviour is described in Berg [12]. From Equation (31) of the Berg [12] and Stirling
approximation, we have:

Bn(w) ∼ c(σ)e−ww
1

2(1+σ) Γ(n) exp
{

A(w, σ)n
σ

1+σ

}
. (15)

This last asymptotic expansion leads directly to (8). Indeed, let G(·;−σ,−ζ, n) be
the probability generating function of the random variable K(−σ,−ζ, n), which reads as
G(s;−σ,−ζ, n) = Bn(sζ)/Bn(ζ) for s > 0. Then, by means of (15), for any fixed s > 0
we write:

G(s;−σ,−ζ, n) ∼ e−w(s−1)s
1

2(1+σ) exp
{

n
σ

1+σ
σ + 1

σ
(σζ)

1
1+σ [s

1
1+σ − 1]

}
. (16)

Since (15) holds uniformly in w in a compact set, we consider the function G(s;−σ,−ζ, n)
evaluated at some point sn and extend the validity of (16) with sn in the place of s, as long
as {sn}n≥1 varies in a compact subset of [0,+∞). Thus, we can choose sn = sβ(n) and
β(n) = 1

n
σ

1+σ
and notice that β(n) → 0 as n → +∞. Thus, sn � 1 + β(n) log s → 1 and

we have:

n
σ

1+σ
σ + 1

σ
(σw)

1
1+σ [s

1
1+σ
n − 1]→ (σζ)

1
1+σ

σ
log s,

which implies that K(−σ,−ζ, n) → (σζ)
1

1+σ

σ as n → +∞. This completes the proof of (8).
As regards the proof (9), let α = −σ for any σ > 0 and let z = −ζ for any ζ > 0. Similarly
to the proof of (7), here we make use of the falling factorial moments of Mr(−σ,−ζ, n),
that is:

E[(Mr(−σ, ζ, n))[s]] = (−1)rs(n)[rs]

(−σ

r

)s
ζs ∑n−rs

j=0 C (n− rs, j;−σ)(−ζ)j

∑n
j=0 C (n, j;−σ)(−ζ)j .

At this point, we make use of the same large n arguments applied in the proof of
statement (7). In particular, by means of the large n asymptotic (15), as n→ +∞, it holds
true that:

∑n−rs
j=0 C (n− rs, j;−σ)(−ζ)j

∑n
j=0 C (n, j;−σ)(−ζ)j ∼ n−rs.

Then:

lim
n→+∞

E[(Mr(−σ,−ζ, n))[s]] = (−1)rs
(−σ

r

)s
ζs =

[
−σ(1 + σ)(r−1)

r!
(−ζ)

]s

it follows from the fact that (n)[rs] ∼ nrs as n→ +∞. The proof of the large n asymptotics (9)
is completed by recalling that the falling factorial moment of order s of Pλ is E[(Pλ)[s]] =
λs.

10



Mathematics 2021, 9, 2820

In the rest of the section, we make use of the NB-CPSM (5) to introduce a compound
Poisson perspective of the EP-SM. In particular, our result extends the well-known com-
pound Poisson perspective of the E-SM to the EP-SM for either α ∈ (0, 1), or α < 0. For
α ∈ (0, 1) let fα denote the density function of a positive α-stable random variable Xα,
that is Xα is a random variable for which E[exp{−tXα}] = exp{−tα} for any t > 0. For
α ∈ (0, 1) and θ > −α, let Sα,θ be a positive random variable with the density function:

fSα,θ (s) =
Γ(θ + 1)

αΓ(θ/α + 1)
s

θ−1
α −1 fα(s−

1
α ).

That is, Sα,θ is a scaled Mittag–Leffler random variable (Chapter 1, Pitman [5]). Let
Ga,b be a Gamma random variable with the scale parameter b > 0 and shape parameter
a > 0, and let us assume that Ga,b is independent of Sα,θ . Then, for α ∈ (0, 1), θ > −α and
n ∈ N let:

X̄α,θ,n
d
= Gα

θ+n,1Sα,θ . (17)

Finally, for α < 0, z < 0 and n ∈ N, let X̃α,z,n be a random variable on N whose
distribution is a tilted Poisson distribution arising from the identity (12). Precisely, for any
x ∈ N:

Pr[X̃α,z,n = x] =
1

∑n
j=1 C (n, j; α)zj

ez(−z)xΓ(−xα + n)
x!Γ(−xα)

. (18)

The next theorem makes use of X̄α,θ,n and X̃α,z,n to set an interplay between NB-
CPSM (5) and EP-SM (1). This extends the compound Poisson perspective of the E-SM.

Theorem 2. Let (M1,n(α, θ), . . . , Mn,n(α, θ)) be distributed as the EP-SM (1) and let X̄α,θ,n be the
random variable defined in (17), which is independent of (M1,n(α, θ), . . . , Mn,n(α, θ)). Moreover,
let (M1(α, z, n), . . . , Mn(α, z, n)) be distributed as the NB-CPSM (5), and let X̃α,z,n be the random
variable defined in (18), which is independent of (M1(α, z, n), . . . , Mn(α, z, n)). Then:

(i) for α ∈ (0, 1) and θ > −α:

(M1,n(α, θ), . . . , Mn,n(α, θ))
d
= (M1(α, X̄α,θ,n, n), . . . , Mn(α, X̄α,θ,n, n));

(ii) for α < 0 and z < 0:

(M1(α, z, n), . . . , Mn(α, z, n)) d
= (M1,n(α,−X̃α,z,nα), . . . , Mn,n(α,−X̃α,z,nα)).

Proof. As regards the proof of statement (i), it relies on the classical integral representation
of the Gamma function. That is, by applying the integral representation of Γ(θ/α + k)
to the EP-SM (1), for x1, . . . , xn ∈ {0, . . . , n} with ∑n

i=1 xi = k and ∑n
i=1 ixi = n, we can

write that:

Pr[(M1,n(α, θ), . . . , Mn,n(α, θ)) = (x1, . . . , xn)]

= n!
αk

Γ(θ + n)

n

∏
i=1

(
(1−α)(i−1)

i!

)xi

xi!
Γ(θ + 1)

αΓ(θ/α + 1)

×
∫ +∞

0
zθ/α−1e−z zk

∑n
j=1 C (n, j; α)zj

(
n

∑
j=1

C (n, j; α)zj

)
dz

By Equation (13) of Favaro et al. [13]:

= n!
αk

Γ(θ + n)

n

∏
i=1

(
(1−α)(i−1)

i!

)xi

xi!
Γ(θ + 1)

αΓ(θ/α + 1)

11
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×
∫ +∞

0
zθ/α−1e−z zk

∑n
j=1 C (n, j; α)zj

(
ezzn/α

∫ +∞

0
yne−yz1/α

fα(y)dy
)

dz

=
∫ +∞

0

n!
∑n

j=0 C (n, j, α)zj

n

∏
i=1

(
z

α(1−α)(i−1)
i!

)xi

xi!

× Γ(θ + 1)
αΓ(θ + n)Γ(θ/α + 1)

zθ/α+n/α−1
∫ +∞

0
yne−yz1/α

fα(y)dydz

=
∫ +∞

0
Pr[(M1(α, x, n), . . . , Mn(α, x, n)) = (x1, . . . , xn)]

× Γ(θ + 1)
αΓ(θ + n)Γ(θ/α + 1)

zθ/α+n/α−1
∫ +∞

0
yne−yz1/α

fα(y)dydz

By the distribution of X̄α,θ,n:

=
∫ +∞

0
Pr[(M1(α, z, n), . . . , Mn(α, z, n)) = (x1, . . . , xn)] fX̄α,θ,n

(z)dz,

where fX̄α,θ,n
is the density function of the random variable X̄α,θ,n. This completes the proof

of (i).
As regards the proof of statement (ii), for any α < 0, m ∈ N, k ≤ m and n ∈ N, we

define the function m 
→ A(m; k, α, n) = m!
(m−k)!

Γ(−mα)
Γ(−mα+n) , and then consider the follow-

ing identity:
(−z)k

∑n
j=1 C (n, j; α)zj = ∑

m≥k
A(m; k, α, n)Pr[X̃α,z,n = m]. (19)

By applying (19) to the NB-CPSM (5), for x1, . . . , xn ∈ {0, . . . , n} with ∑n
i=1 xi = k and

∑n
i=1 ixi = n, we write:

Pr[(M1(α, z, n), . . . , Mn(α, z, n)) = (x1, . . . , xn)]

= ∑
m≥k

n!(−1)k A(m; k, α, n)Pr[X̃α,z,n = m]
n

∏
i=1

(
α(1−α)(i−1)

i!

)xi

xi!

= ∑
m≥k

n!(−1)k m!
(m− k)!

Γ(−mα)

Γ(−mα + n)
Pr[X̃α,z,n = m]

n

∏
i=1

(
α(1−α)(i−1)

i!

)xi

xi!

= ∑
m≥k

n!

(−mα
α

)
(k)

(−mα)(n)

n

∏
i=1

(
α(1−α)(i−1)

i!

)xi

xi!
Pr[X̃α,z,n = m]

= ∑
m≥k

Pr[(M1(α,−mα), . . . , Mn(α,−mα)) = (x1, . . . , xn)]Pr[X̃α,z,n = m].

This completes the proof of (ii).

Theorem 2 presents a compound Poisson perspective of the EP-SM in terms of the
NB-CPSM, thus extending the well-known compound Poisson perspective of the E-SM in
terms of the LS-CPSM. Statement (i) of Theorem 2 shows that for α ∈ (0, 1) and θ > −α, the
EP-SM admits a representation in terms of the NB-CPSM with α ∈ (0, 1) and z > 0, where
the randomisation acts on the parameter z with respect to the distribution (17). Precisely,
this is a compound mixed Poisson sampling model. That is, a compound sampling model
in which the distribution of the random number K of distinct types in the population
is a mixture of Poisson distributions with respect to the law of X̄α,θ,n. Statement (ii) of
Theorem 2 shows that for α < 0 and z < 0, the NB-CPSM admits a representation in
terms of a randomised EP-SM with α < 0 and θ = −mα for some m ∈ N, where the
randomisation acts on the parameter m with respect to the distribution (17).

12
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Remark 1. The randomisation procedure introduced in Theorem 2 is somehow reminiscent of a
class of Gibbs-type sampling models introduced in Gnedin and Pitman [14]. This class is defined
from the EP-SM with α < 0 and θ = −mα, for some m ∈ N, and then it assumes that the
parameter m is distributed according to an arbitrary distribution on N. This can be seen in Theorem
12 of Gnedin and Pitman [14] and Gnedin [15] for example. However, differently from the definition
of Gnedin and Pitman [14], in our context, the distribution of m depends on the sample size n.

For α ∈ (0, 1) and θ > −α, Pitman [5] first studied the large n asymptotic behaviour
of Kn(α, θ). This can also be seen in Gnedin and Pitman [14] and the references therein. Let
a.s.−→ denote the almost sure convergence, and let Sα,θ be the scaled Mittag–Leffler random

variable defined above. Theorem 3.8 of Pitman [5] exploited a martingale convergence
argument to show that:

Kn(α, θ)

nα

a.s.−→ Sα,θ (20)

as n→ +∞. The random variable Sα,θ is referred to as Pitman’s α-diversity. For α < 0 and
θ = −mα for some m ∈ N, the large n asymptotic behaviour of Kn(α, θ) is trivial, that is:

Kn(α, θ)
w−→ m (21)

as n → +∞. We refer to Dolera and Favaro [16,17] for Berry–Esseen type refinements
of (20) and to Favaro et al. [18,19] and Favaro and James [13] for generalisations of (20) with
applications to Bayesian nonparametrics. This can also be seen in Pitman [5] (Chapter 4)
for a general treatment of (20). According to Theorem 2, it is natural to ask whether
there exists an interplay between Theorem 1 and the large n asymptotic behaviours (20)
and (21). Hereafter, we show that: (i) (20), with the almost sure convergence replaced by
the convergence in distribution, arises by combining (6) with (i) of Theorem 2; (ii) (8) arises
by combining (21) with (ii) of Theorem 2. This provides an alternative proof of Pitman’s
α-diversity.

Theorem 3. Let Kn(α, θ) and K(α, z, n) under the EP-SM and the NB-CPSM, respectively. As
n→ +∞:

(i) For α ∈ (0, 1) and θ > −α:
Kn(α, θ)

nα

w−→ Sα,θ . (22)

(ii) For α < 0 and z < 0:

K(α, z, n)

n
−α

1−α

w−→ (αz)
1

1−α

−α
. (23)

Proof. We show that (22) arises by combining (6) with statement (i) of Theorem 2. For any
pair of N-valued random variables U and V, let dTV(U; V) be the total variation distance
between the distribution of U and the distribution of V. Furthermore, let Pc denote a
Poisson random variable with parameter c > 0. For any α ∈ (0, 1) and t > 0, we show that
as n→ +∞:

dTV(K(α, tnα, n); 1 + Ptnα)→ 0. (24)

This implies (22). The proof of (24) requires a careful analysis of the probabil-
ity generating function of K(α, tnα, n). In particular, let us define ω(t; n, α) := tnα +
tM′α(t)
Mα(t)

, where Mα(t) := 1
π ∑∞

m=1
(−t)m−1

(m−1)! Γ(αm) sin(παm) is the Wright–Mainardi function
(Mainardi et al. [20]). Then, we apply Corollary 2 of Dolera and Favaro [16] to conclude
that dTV(K(α, tnα, n); 1 + Pω(t;n,α))→ 0 as n→ +∞. Finally, we applied inequality (2.2) in
Adell and Jodrá [21] to obtain:

dTV(1 + Ptnα ; 1 + Pω(t;n,α)) = dTV(Ptnα ; Pω(t;n,α)) ≤
tM′α(t)
Mα(t)

min

{
1,

√
(2/e)√

ω(t; n, α) +
√

tnα

}

13
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So that dTV(1 + Ptnα ; 1 + Pω(t;n,α))→ 0 as n→ +∞, and (24) follows. Now, keeping α and
t fixed as above, we show that (24) entails (22). To this aim, we introduced the Kolmogorov
distance dK which, for any pair of R+-valued random variables U and V, is defined by
dK(U; V) := supx≥0 |Pr[U ≤ x]− Pr[V ≤ x]|. The claim to be proven is equivalent to:

dK(Kn(α, θ)/nα; Sα,θ)→ 0

as n→ +∞. We exploit statement (i) of Theorem 2. This leads to the distributional identity

Kn(α, θ)
d
= K(α, X̄α,θ,n, n). Thus, in view of the basic properties of the Kolmogorov distance:

dK(Kn(α, θ)/nα; Sα,θ) ≤ dK(Kn(α, θ); K(α, nαSα,θ , n)) (25)

+ dK(K(α, nαSα,θ , n); 1 + PnαSα,θ )

+ dK([1 + PnαSα,θ ]/nα; Sα,θ),

where the {Pλ}λ≥0 is thought of here as a homogeneous Poisson process with a rate of
1, independent of Sα,θ . The desired conclusion will be reached as soon as we will prove
that all the three summands on the right-hand side of (25) go to zero as n→ +∞. Before
proceeding, we recall that dK(U; V) ≤ dTV(U; V). Therefore, for the first of these terms,
we write:

dK(Kn(α, θ); K(α, nαSα,θ , n))

≤ 1
2

n

∑
k=1

∣∣∣C (n, k; α)
Γ(k + θ/α)

αΓ(θ/α + 1)
Γ(θ + 1)
Γ(n + θ)

−
∫ +∞

0

C (n, k; α)(tnα)k

dn(t)
fSα,θ (t)dt

∣∣∣
with dn(t) := ∑n

j=1 C (n, j; α)(tnα)j. Now, let us define d∗n(t) := etnα
(n− 1)! 1

t1/α fα(
1

t1/α ). Ac-
cordingly, we can make the above right-hand side major by means of the following quantity:

1
2

n

∑
k=1

∣∣∣C (n, k; α)
Γ(k + θ/α)

αΓ(θ/α + 1)
Γ(θ + 1)
Γ(n + θ)

−
∫ +∞

0

C (n, k; α)(tnα)k

d∗n(t)
fSα,θ (t)dt

∣∣∣
+

1
2

∫ +∞

0

|d∗n(t)− dn(t)|
d∗n(t)

fSα,θ (t)dt .

Then, by exploiting the identity
∫ +∞

0
(tnα)k

d∗n(t)
fSα,θ (t)dt = 1

(n−1)!
Γ(k+θ/α)

nθ
Γ(θ+1)

αΓ(θ/α+1) , we
can write:

n

∑
k=1

∣∣∣C (n, k; α)
Γ(k + θ/α)

αΓ(θ/α + 1)
Γ(θ + 1)
Γ(n + θ)

−
∫ +∞

0

C (n, k; α)(tnα)k

d∗n(t)
fSα,θ (t)dt

∣∣∣ = ∣∣∣1− Γ(n + θ)

Γ(n)nθ

∣∣∣
which goes to zero as n → +∞ for any θ > −α, by Stirling’s approximation. To show
that the integral

∫ +∞
0

|d∗n(t)−dn(t)|
d∗n(t)

fSα,θ (t)dt also goes to zero as n→ +∞, we may resort to
identities (13)–(14) of Dolera and Favaro [16], as well as Lemma 3 therein. In particular, let
Δ : (0,+∞)→ (0,+∞) denote a suitable continuous function independent of n, and such
that Δ(z) = O(1) as z→ 0 and Δ(z) fα(1/z) = O(z−∞) as z→ +∞. Then, we write that:∫ +∞

0

|d∗n(t)− dn(t)|
d∗n(t)

fSα,θ (t)dt

≤
∣∣∣ (n/e)n

√
2πn

n!
− 1
∣∣∣+( (n/e)n

√
2πn

n!

)
1
n

∫ +∞

0
Δ(t1/α) fSα,θ (t)dt .

Since
∫ +∞

0 Δ(t1/α) fSα,θ (t)dt < +∞ by Lemma 3 of Dolera and Favaro [16], both
the summands on the above right-hand side go to zero as n → +∞, again by Stirling’s
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approximation. Thus, the first summand on the right-hand side of (25) goes to zero as
n→ +∞. As for the second summand on the right-hand side of (25), it can be bounded by∫ +∞

0
dTV(K(α, tnα, n); 1 + Ptnα) fSα,θ (t)dt .

By a dominated convergence argument, this quantity goes to zero as n → +∞ as a
consequence of (24). Finally, for the third summand on the right-hand side of (25), we can
resort to a conditioning argument in order to reduce the problem to a direct application of
the law of large numbers for renewal processes (Section 10.2, Grimmett and Stirzaker [22]).
In particular, this leads to n−αPtnα

a.s.−→ t for any t > 0, which entails that n−αPnαSα,θ

a.s.−→ Sα,θ
as n→ +∞. Thus, this third term also goes to zero as n→ +∞ and (22) follows.

Now, we consider (23), showing that it arises by combining (21) with statement (ii)
of Theorem 2. In particular, by an obvious conditioning argument, we can write that as
n→ +∞:

Kn(α, X̃α,z,n|α|)
X̃α,z,n

a.s.−→ 1.

At this stage, we consider the probability generating function of X̃α,z,n and we imme-
diately obtain E[sX̃α,z,n ] := Bn(−sz)/Bn(−z) for n ∈ N and s ∈ [0, 1] with the same Bn as
in (13) and (14). Therefore, the asymptotic expansion we already provided in (15) entails:

X̃α,z,n

n
−α

1−α

w−→ (αz)
1

1−α

−α
(26)

as n → +∞. In particular, (26) follows by applying exactly the same arguments used to
prove (8). Now, since:

Kn(α, X̃α,z,n|α|)
n
−α

1−α

d
=

Kn(α, X̃α,z,n|α|)
X̃α,z,n

X̃α,z,n

n
−α

1−α

,

the claim follows from a direct application of Slutsky’s theorem. This completes the proof.

3. Discussion

The NB-CPSM is a compound Poisson sampling model generalising the popular
LS-CMSM. In this paper, we introduced a compound Poisson perspective of the EP-SM in
terms of the NB-CPSM, thus extending the well-known compound Poisson perspective of
the E-SM in terms of the LS-CPSM. We conjecture that an analogous perspective holds true
for the class of α-stable Poisson–Kingman sampling models (Pitman [23] and Pitman [5]),
of which the EP-SM is a noteworthy special case. That is, for α ∈ (0, 1), we conjecture that
an α-stable Poisson–Kingman sampling model admits a representation as a randomised
NB-CPSM with α ∈ (0, 1) and z > 0, where the randomisation acts on z with respect to
a scale mixture between a Gamma and a suitable transformation of the Mittag–Leffler
distribution. We believe that such a compound Poisson representation would be critical
in order to introduce Berry–Esseen type refinements of the large n asymptotic behaviour
of Kn under α-stable Poisson–Kingman sampling models. This can be seen in Section 6.1
of Pitman [23] and the references therein. Such a line of research aims to extend the
preliminary works of Dolera and Favaro [16,17] on Berry–Esseen type theorems under the
EP-SM. Work on this, and on the more general settings induced by normalised random
measures (Regazzini et al. [24]) and Poisson–Kingman models (Pitman [23]), is ongoing.
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Abstract: Measure-valued Pólya urn processes (MVPP) are Markov chains with an additive structure
that serve as an extension of the generalized k-color Pólya urn model towards a continuum of pos-
sible colors. We prove that, for any MVPP (μn)n≥0 on a Polish space X, the normalized sequence
(μn/μn(X))n≥0 agrees with the marginal predictive distributions of some random process (Xn)n≥1.
Moreover, μn = μn−1 + RXn , n ≥ 1, where x 
→ Rx is a random transition kernel on X; thus, if
μn−1 represents the contents of an urn, then Xn denotes the color of the ball drawn with distribu-
tion μn−1/μn−1(X) and RXn —the subsequent reinforcement. In the case RXn = WnδXn , for some
non-negative random weights W1, W2, . . ., the process (Xn)n≥1 is better understood as a randomly re-
inforced extension of Blackwell and MacQueen’s Pólya sequence. We study the asymptotic properties
of the predictive distributions and the empirical frequencies of (Xn)n≥1 under different assumptions
on the weights. We also investigate a generalization of the above models via a randomization of the
law of the reinforcement.

Keywords: predictive distributions; random probability measures; reinforced processes; Pólya
sequences; urn schemes; Bayesian inference; conditional identity in distribution; total variation
distance

MSC: 60G57; 60B10; 60G25; 60F05; 60G09

1. Introduction

Let (Xn)n≥1 be a sequence of homogeneous random observations, taking values in a
Polish space X. The central assumption in the Bayesian approach to inductive reasoning
is that (Xn)n≥1 is exchangeable, that is, its law is invariant under finite permutations.
Then, by de Finetti’s theorem, there exists a random probability measure P̃ on X such that,
given P̃, the random variables X1, X2, . . . are conditionally independent and identically
distributed with marginal distribution P̃ (see [1], Section 3), denoted

Xn | P̃ i.i.d.∼ P̃. (1)

Furthermore, P̃ is the almost sure (a.s.) weak limit of the predictive distributions and
the empirical frequencies,

P(Xn+1 ∈ · | X1, . . . , Xn)
w−→ P̃(·) a.s. and

1
n

n

∑
i=1

δXi (·)
w−→ P̃(·) a.s. (2)

The model (1) is completed by choosing a prior distribution for P̃. Inference consists
in computing the conditional (posterior) distribution of P̃ given an observed sample
(X1, . . . , Xn), with most inferential conclusions depending on some average with respect
to the posterior distribution; for example, under squared loss, for any measurable set
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B ⊆ X, the best estimate of P̃(B) is the posterior mean, E[P̃(B)|X1, . . . , Xn]. In addition,
the posterior mean can be utilized for predictive inference since

P(Xn+1 ∈ B|X1, . . . , Xn) = E[P̃(B)|X1, . . . , Xn]. (3)

A different modeling strategy uses the Ionescu–Tulcea theorem to define the law of
the process from the sequence of predictive distributions, (P(Xn+1 ∈ ·|X1, . . . , Xn))n≥1.
In that case, one can refer to Theorem 3.1 in [2] for necessary and sufficient conditions
on (P(Xn+1 ∈ ·|X1, . . . , Xn))n≥1 to be consistent with exchangeability. The predictive
approach to model building is deeply rooted in Bayesian statistics, where the parameter P̃
is assigned an auxiliary role and the focus is on observable “facts”, see [2–6]. Moreover,
using the predictive distributions as primary objects allows one to make predictions
instantly or helps ease computations. See [7] for a review on some well-known predictive
constructions of priors for Bayesian inference.

In this work, we consider a class of predictive constructions based on measure-valued
Pólya urn processes (MVPP). MVPPs have been introduced in the probabilistic litera-
ture [8,9] as an extension of k-color urn models, but their implications for (Bayesian)
statistics have yet to be explored. A first aim of the paper is thus to show the potential
use of MVPPs as predictive constructions in Bayesian inference. In fact, some popular
models in Bayesian nonparametric inference can be framed in such a way, see Equation (8).
A second aim of the paper is to suggest novel extensions of MVPPs that we believe can
offer more flexibility in statistical applications.

MVPPs are essentially measure-valued Markov processes that have an additive struc-
ture, with the formal definition being postponed to Section 2.1 (Definition 1). Given an
MVPP (μn)n≥0, we consider a sequence of random observations that are characterized by
P(X1 ∈ ·) = μ0(·)/μ0(X) and, for n ≥ 1,

P(Xn+1 ∈ · | X1, μ1, . . . , Xn, μn) =
μn(·)
μn(X)

. (4)

The random measure μn is not necessarily measurable with respect to (X1, . . . , Xn), so
the predictive construction (4) is more flexible than models based solely on the predictive
distributions of (Xn)n≥1; for example, (μn)n≥0 allows for the presence of latent variables or
other sources of observable data (see also [10] for a covariate-based predictive construction).
However, (4) can lead to an imbalanced design, which may break the symmetry imposed
by exchangeability. Nevertheless, it is still possible that the sequence (Xn)n≥1 satisfies
(2) for some P̃, in which case Lemma 8.2 in [1] implies that (Xn)n≥1 is asymptotically
exchangeable with directing random measure P̃.

In Theorem 1, we show that, taking (μn)n≥0 as primary, the sequence (Xn)n≥1 in (4)
can be chosen such that

μn = μn−1 + RXn , (5)

where x 
→ Rx is a measurable map from X to the space of finite measures on X. Models
of the kind (4)–(5) are computationally efficient. Indeed, as new observations become
available, predictions can be updated at a constant computational cost and with limited
storage of information. If, in addition, (Xn)n≥1 is asymptotically exchangeable, then (4)–
(5) can provide a computationally simple approximation of an exchangeable scheme for
Bayesian inference, along the lines in [11].

The recursive formula (5) allows us to interpret the dynamics of MVPPs in terms of
an urn sampling scheme, as the name suggests. Let μ0 be a non-random finite measure
on X. Suppose we have an urn whose contents are described by μ0 in the sense that μ0(B)
denotes the total mass of balls with colors in B ⊆ X. At time n = 1, a ball is extracted at
random from the urn, and we denote its color by X1. The urn is then reinforced according
to a replacement rule (Rx)x∈X, so that the updated composition becomes μ1 ≡ μ0 + RX1 .
At any time n > 1, a ball of color Xn is picked with probability distribution μn−1/μn−1(X),
and the contents of the urn are subsequently reinforced by RXn . In the case the space of
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colors is finite, |X| = k, the above procedure is better known as a generalized k-color Pólya
urn [12].

We focus our analysis on MVPPs for which Rx is concentrated on x; thus, after each
draw, we reinforce only the color of the observed ball. More formally, we consider MVPPs
that have a reinforcement measure of the kind RXn = WnδXn , n ≥ 1, where Wn is some
non-negative random variable. In that case, Equations (4) and (5) become

P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn) =
n

∑
i=1

Wi
μ0(X) + ∑n

j=1 Wj
δXi (·) +

μ0(X)
μ0(X) + ∑n

j=1 Wi
μ′0(·), (6)

and
μn = μn−1 + WnδXn . (7)

A notable example is Blackwell and MacQueen’s em Pólya sequence [13], which is a
random process (Xn)n≥1 characterized by P(X1 ∈ ·) = ν(·) and, for n ≥ 1,

P(Xn+1 ∈ · | X1, . . . , Xn) =
n

∑
i=1

1
θ + n

δXi (·) +
θ

θ + n
ν(·), (8)

for some probability measure ν on X and a constant θ > 0. By [13], (Xn)n≥1 is exchangeable
and corresponds to the model (1) with Dirichlet process prior with parameters (θ, ν). It is
easily seen that (8) is related to the MVPP (μn)n≥0 given by μ0 = θν and, for n ≥ 1,

μn = μn−1 + δXn .

Therefore, we will call any MVPP a randomly reinforced Pólya process (RRPP) if it
admits representation (6)–(7).

Existing studies on MVPPs look at models that have mostly a balanced design,
i.e., Rx(X) = r, x ∈ X, and assume irreducibility-like conditions for (Rx)x∈X, see [8,9,14,15]
and Remark 4 in [16]. In contrast, RRPPs require that Rx({x}c) = 0, and so are excluded
from the analysis in those papers. In fact, this difference in reinforcement mechanisms mir-
rors the dichotomy within k-color urn models, where the replacement R is best described
in terms of a matrix with random elements. There, the class of randomly reinforced urns
[17] assumes an R with zero off-diagonal elements (i.e., we reinforce only the color of the
observed ball), whereas the generalized Pólya urn models require the mean replacement
matrix to be irreducible. Similarly to the k-color case, RRPPs need the use of different
techniques, which yield completely different results than those in [8,9,14–16]. As an exam-
ple, Theorem 1 in [16] and our Theorem 2 prove convergence of the kind (2), yet the limit
probability measure in [16] is non-random.

The RRPP has been implicitly studied by [17–23], among others, with the focus being
on the process (Xn)n≥1. Those papers deal primarily with the k-color case (with the ex-
ception of [18,19,23]) and can be categorized on the basis of their assumptions on (Wn)n≥1.
For example, [18,19,21,22] assume that Wn and (X1, W1, . . . , Xn−1, Wn−1, Xn) are indepen-
dent, in which case the process (Xn)n≥1 is conditionally identically distributed (c.i.d.) [21],
that is, conditionally on current information, all future observations are identically dis-
tributed. It follows from [21] that c.i.d. processes preserve many of the properties of
exchangeable sequences and, in particular, satisfy (2)–(3). In contrast, [17,20,23] assume
that the reinforcement Wn depends on the particular color Xn, and prove a version of (2)
where P̃ is concentrated on the set of dominant colors for which the expected reinforcement
is maximum. In this work, we reconsider the above models in the framework of RRPPs.
For the c.i.d. case, we prove results whose analogues have already been established by [23]
for the model with dominant colors. In particular, we extend the convergence in (2) to be
in total variation and give a unified central limit theorem. We also examine the number of
distinct values that are generated by the sequence (Xn)n≥1.

In some applications, the definition of an MVPP can be too restrictive as it assumes that
the probability law of the reinforcement R is known. However, we can envisage situations
where the law is itself random, so we extend the definition of an MVPP by introducing
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a random parameter V. The resulting generalized measure-valued Pólya urn process
(GMVPP) turns out to be a mixture of Markov processes and admits representation (4)–(5),
conditional on the parameter V. When the reinforcement measure Rx is concentrated on
x, we call (μn)n≥0 a generalized randomly reinforced Pólya process (GRRPP). We give a
characterization of GRRPPs with exchangeable weights (Wn)n≥1 and show that the process
((Xn, Wn))n≥1 is partially conditionally identically distributed (partially c.i.d) [24], that
is, conditionally on the past observations and the concurrent observation from the other
sequence, the future observations are marginally identically distributed. We also extend
some of the results for RRPPs to the generalized setting.

The paper is structured as follows. In Section 2.1, we recall the definition of a measure-
valued Pólya urn process and prove representation (4)–(5) for a suitably selected sequence
(Xn)n≥1. Section 2.2 defines a particular subclass of MVPPs, called randomly reinforced
Pólya processes (RRPP), which share with exchangeable Pólya sequences the property
of reinforcing only the observed color. Section 3 is devoted to the study of the asymp-
totic properties of RRPPs. In Section 4, we give the definition of GMVPPs and GRRPPs,
and obtain basic results.

2. Definitions and a Representation Result

Let (X, d) be a complete separable metric space, endowed with its Borel σ-field X .
Denote by

MF(X), M∗F(X), MP(X),

the collections of measures μ on X that are finite, finite and non-null, and probability mea-
sures, respectively. We regard MF(X), M∗F(X) and MP(X) as measurable spaces equipped
with the σ-fields generated by μ 
→ μ(B), B ∈ X . We further let

KF(X,Y), KP(X,Y),

be the collections of transition kernels K from X to Y that are finite and probability kernels,
respectively. Any non-null measure μ ∈ M∗F(X) has a normalized version μ′ = μ/μ(X).
If f : X→ Y is measurable, then f � : MF(X) → MF(Y) denotes the induced mapping of
measures, f �(μ)(·) = μ( f−1(·)), μ ∈MF(X).

All random quantities are defined on a common probability space (Ω,H,P), which is
assumed to be rich enough to support any required randomization. The symbol ‘⊥” will

be used to denote independence between random objects, and “ d
=” equality in distribution.

2.1. Measure-Valued Pólya urn Processes

Let μ ∈M∗F(X) describe the contents of an urn, as in Section 1. Once a ball is picked
at random from μ, the urn is reinforced according to a replacement rule, which is formally
a kernel R ∈ KF(X,X) that maps colors x 
→ Rx(·) to finite measures; thus,

μ + Rx, (9)

represents the updated urn composition if a ball of color x has been observed. In general,
R is random and there exists a probability kernelR ∈ KP(X,MF(X)) such that Rx ∼ Rx,
x ∈ X. Then, the distribution of (9) prior to the sampling of the urn is given by

R̂μ(·) =
∫
X

ψ�
μ(Rx)(·)μ′(dx), (10)

where ψμ is the measurable map ν 
→ ν + μ from MF(X) to M∗F(X). By Lemma 3.3 in [9],
μ 
→ R̂μ is a measurable map from M∗F(X) to MP(M∗F(X)).

Definition 1 (Measure-Valued Pólya Urn Process [9]). A sequence (μn)n≥0 of random finite
measures on X is called a measure-valued Pólya urn process (MVPP) with parameters μ0 ∈M∗F(X)
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and R ∈ KP(X,MF(X)) if it is a Markov process with transition kernel R̂ given by (10). If,
in particular,Rx = δRx for some R ∈ KF(X,X), then (μn)n≥0 is said to be a deterministic MVPP.

The representation theorem below formalizes the idea of MVPP as an urn scheme.

Theorem 1. A sequence (μn)n≥0 of random finite measures is an MVPP with parameters (μ0,R)
if and only if, for every n ≥ 1,

μn = μn−1 + RXn a.s., (11)

where (Xn)n≥1 is a sequence of X-valued random variables such that X1 ∼ μ′0 and, for n ≥ 2,

P(Xn ∈ · | X1, μ1, . . . , Xn−1, μn−1) = μ′n−1(·), (12)

and R is a random finite transition kernel on X such that

P(RXn ∈ · | X1, μ1, . . . , Xn−1, μn−1, Xn) = RXn(·). (13)

Proof. If (μn)n≥0 satisfies (11)–(13) for every n ≥ 1, then it holds a.s. that

P(μn ∈ · | μ1, . . . , μn−1) = E[ψ�
μn−1(RXn)(·) | μ1, . . . , μn−1] = R̂μn−1(·).

Conversely, suppose (μn)n≥0 is a MVPP with parameters (μ0,R). AsR is a probability
kernel from X to MF(X) and MF(X) is Polish, then there exists by Lemma 4.22 in [25] a
measurable function f (x, u) such that, for every x ∈ X,

f (x, U) ∼ Rx,

whenever U is a uniform random variable on [0, 1], denoted U ∼ Unif[0, 1].
Let us prove by induction that there exists a sequence ((Xn, Un))n≥1 such that X1 ∼ μ′0,

U1 ⊥ X1, U1 ∼ Unif[0, 1], μ1 = μ0 + f (X1, U1) a.s., (μ2, μ3, . . . ) ⊥ (X1, U1) | μ1, and,
for every n ≥ 2,

(i) P(Xn ∈ · | X1, U1, μ1, . . . , Xn−1, Un−1, μn−1) = μ′n−1(·);
(ii) Un ∼ Unif[0, 1] and Un ⊥ (X1, U1, μ1, . . . , Xn−1, Un−1, μn−1, Xn);
(iii) μn = μn−1 + f (Xn, Un) a.s.;
(iv) (μn+1, μn+2, . . .) ⊥ (Xn, Un) | (X1, U1, μ1, . . . , Xn−1, Un−1, μn−1, μn);
(v) μn+1 ⊥ (X1, U1, . . . , Xn, Un) | (μ1, . . . , μn).

Then, Equations (11)–(13) follow from (i)–(iii) with RXn = f (Xn, Un).
Regarding the base case, let X̃1 and Ũ1 be independent random variables such that

Ũ1 ∼ Unif[0, 1] and X̃1 ∼ μ′0. It follows that, for any measurable set B ⊆MF(X),

P(μ1 ∈ B) = R̂μ0(B) = E[ψ�
μ0(RX̃1

)(B)] = P
(
(μ0 + f (X̃1, Ũ1)) ∈ B

)
;

thus, μ1
d
= μ0 + f (X̃1, Ũ1). By Theorem 8.17 in [25], there exist random variables X1 and

U1 such that
(μ1, X1, U1)

d
=
(
μ0 + f (X̃1, Ũ1), X̃1, Ũ1

)
,

and (μ2, μ3, . . .) ⊥ (X1, U1) | μ1. Then, in particular, (X1, U1)
d
= (X̃1, Ũ1) and (μ1, μ0 +

f (X1, U1))
d
= (μ0 + f (X̃1, Ũ1), μ0 + f (X̃1, Ũ1)), so

μ1 = μ0 + f (X1, U1) a.s.

Regarding the induction step, assume that (i)–(v) hold true until some n > 1. Let
X̃n+1 and Ũn+1 be such that Ũn+1 ∼ Unif[0, 1], Ũn+1 ⊥ (X1, U1, μ1, . . . , Xn, Un, μn, X̃n+1),
and

P(X̃n+1 ∈ · | X1, U1, μ1, . . . , Xn, Un, μn) = μ′n(·).
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It follows from (v) that, for any measurable set B ⊆MF(X),

P(μn+1 ∈ B|X1, U1, μ1, . . . ,Xn, Un, μn) = E[ψ�
μn(RX̃n+1

)(B)|X1, U1, μ1, . . . , Xn, Un, μn]

= P
(
(μn + f (X̃n+1, Ũn+1)) ∈ B|X1, U1, μ1, . . . , Xn, Un, μn

)
;

thus, μn+1
d
= μn + f (X̃n+1, Ũn+1) | X1, U1, μ1, . . . , Xn, Un, μn. By Theorem 8.17 in [25],

there exist random variables Xn+1 and Un+1 such that

(μn+1, X1, U1, μ1, . . . , Xn, Un, μn, Xn+1, Un+1)

d
=
(
μn + f (X̃n+1, Ũn+1), X1, U1, μ1, . . . , Xn, Un, μn, X̃n+1, Ũn+1

)
,

and (μn+2, μn+3, . . .) ⊥ (Xn+1, Un+1) | (X1, U1, μ1 . . . , . . . , Xn, Un, μn, μn+1). Then, in par-
ticular, Un+1 ∼ Unif[0, 1], Un+1 ⊥ (X1, U1, μ1, . . . , Xn, Un, μn, Xn+1), and

P(Xn+1 ∈ · | X1, U1, μ1, . . . , Xn, Un, μn) = μ′n(·).

Moreover,(
μn+1, μn + f (Xn+1, Un+1)

) d
=
(
μn + f (X̃n+1, Ũn+1), μn + f (X̃n+1, Ũn+1)

)
;

therefore,

P
(
μn+1 = μn + f (Xn+1, Un+1)

)
= P
(
μn + f (X̃n+1, Ũn+1) = μn + f (X̃n+1, Ũn+1)

)
= 1.

By Theorem 8.12 in [25], statement (v) with n + 1 is equivalent to μn+2 ⊥ (X1, U1) |
(μ1, . . . , μn+1) and μn+2 ⊥ (Xk+1, Uk+1) | (X1, U1, . . . , Xk, Uk, μ1, . . . , μn+1), k = 1, . . . , n.
The latter follows from the induction hypothesis since, by (iv), we have (μk+2, . . . , μn+2) ⊥
(Xk+1, Uk+1) | (X1, U1, . . . , Xk, Uk, μ1, . . . , μk+1) for every k = 1, . . . , n.

The process (Xn)n≥1 in Theorem 1 corresponds to the sequence of observed colors
from the implied urn sampling scheme. Furthermore, the replacement rule takes the
form RXn = f (Xn, Un), where f is some measurable function, Un ∼ Unif[0, 1], and Un ⊥
(X1, U1, . . . , Xn−1, Un−1, Xn), from which it follows that

μn = μn−1 + f (Xn, Un), (14)

and

P(Xn+1 ∈ · | X1, . . . , Xn, (Um)m≥1) =
μ0(·) + ∑n

i=1 f (Xi, Ui)(·)
μ0(X) + ∑n

i=1 f (Xi, Ui)(X)
. (15)

Thus, the sequence (Un)n≥1 models the additional randomness in the reinforcement
measure R. Janson [9] obtains a rather similar result; Theorem 1.3 in [9] states that any
MVPP (μn)n≥0 can be coupled with a deterministic MVPP (μ̄n)n≥0 on X× [0, 1] in the
sense that

μ̄n = μn × λ, (16)

where λ is the Lebesgue measure on [0, 1], and μn × λ is the product measure on X× [0, 1].
In our case, the MVPP defined by μ̄0 = μ0 × λ and, for n ≥ 1,

μ̄n = μ̄n−1 + f (Xn, Un)× λ,

has a non-random replacement rule Rx,u = f (x, u)× λ and satisfies (16) on a set of proba-
bility one.
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2.2. Randomly Reinforced Pólya Processes

It follows from (8) that any Pólya sequence generates a deterministic MVPP through

μn = μn−1 + δXn .

Here, we consider a randomly reinforced extension of Pólya sequences in the form
of an MVPP with replacement rule Rx = W(x) · δx, x ∈ X, where W(x) is a non-negative
random variable.

Definition 2 (Randomly Reinforced Pólya Process). We call an MVPP with parameters
(μ0,R) a randomly reinforced Pólya process (RRPP) if there exists η ∈ KP(X,R+) such that
Rx = ξ�x(ηx), x ∈ X, where ξx : R+ →MF(X) is the map w 
→ wδx.

Observe that, for RRPPs, the reinforcement measure f (x, u) in (14)–(15) concen-
trates its mass on x; thus, we obtain the following variant of the representation result
in Theorem 1.

Proposition 1. Let (μn)n≥0 be an RRPP with parameters (μ0, η). Then, there exist a measurable
function h : X× [0, 1]→ R+ and a sequence ((Xn, Un))n≥1 such that, using Wn = h(Xn, Un),
we have for every n ≥ 1 that

μn = μn−1 + WnδXn a.s., (17)

where X1 ∼ μ′0 and, for n ≥ 1, Un ∼ Unif[0, 1], Un ⊥ (X1, U1, . . . , Xn−1, Un−1, Xn), and

P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn) =
n

∑
i=1

Wi
μ0(X) + ∑n

j=1 Wj
δXi (·) +

μ0(X)
μ0(X) + ∑n

j=1 Wj
μ′0(·). (18)

Moreover,
P(Wn ∈ · | X1, W1, . . . , Xn−1, Wn−1, Xn) = ηXn(·). (19)

It follows from (19) that W(x) ≡ h(x, U) ∼ ηx, x ∈ X, whenever U ∼ Unif[0, 1]. Then,
the random measure

Rx = W(x) · δx (20)

is such that Rx ∼ Rx, whereRx appears in Definition 2.

3. Asymptotic Properties of RRPP

In this section, we study the asymptotic properties of RRPPs through the sequence
(Xn)n≥1 in the representation (17). We show that the limit behavior of (μn)n≥0 depends
on the relationship between weights and observations. In particular, when W(x) ≡ W
in (20) is constant with respect to the color x, the process (Xn)n≥1 is conditionally identically
distributed (c.i.d.) and, for every A ∈ X , the normalized sequence (μ′n(A))n≥0 is a bounded
martingale. We consider the c.i.d. case in Section 3.3. In contrast, if some colors x have a
higher expected reinforcement, then they tend to dominate the observation process and,
as n grows to infinity, the probability measure μ′n concentrates its mass on the subset of
dominant colors, see Theorem 2.

3.1. Preliminaries

Our focus is on the convergence of the normalized sequence (μ′n)n≥0, which by
Theorem 1 is a.s. equal to the predictive distributions (18). We also consider the sequence
of empirical frequencies of (Xn)n≥1, defined for n ≥ 1 by

μ̂′n =
1
n

n

∑
i=1

δXi .
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We obtain conditions under which the convergence in (2) extends to convergence in
total variation, where the total variation distance between any two probability measures
α, β ∈MP(X) is given by

dTV(α, β) = sup
B∈X
|α(B)− β(B)|.

To state some of the results, we recall the definition of support of a probability measure
γ ∈MP(R+),

supp(γ) = {u ≥ 0 : γ((u− ε, u + ε)) > 0, ∀ε > 0}.
Of particular interest is the conditional probability of observing a new color, given by

θn ≡ P(Xn+1 /∈ {X1, . . . , Xn} | X1, W1, . . . , Xn, Wn) =
θ

θ + ∑n
j=1 Wj

μ′0({X1, . . . , Xn}c),

for n ≥ 1, where θ = μ0(X). This would inform us on the number of distinct values in a
sample (X1, . . . , Xn) of size n,

Ln = max{k ∈ {1, . . . , n} : Xk /∈ {X1, . . . , Xk−1}},

since θn = P(Ln+1 = Ln + 1|X1, W1, . . . , Xn, Wn).

The following modes of convergence are used when we investigate the rate of conver-
gence of the distance between μ′n and μ̂n.

Almost sure (a.s.) conditional convergence. Let G = (Gn)n≥0 be a filtration and Q̃ ∈
KP(Ω,X). A sequence (Yn)n≥1 is said to converge to Q̃ in the sense of a.s. conditional
convergence w.r.t. G if the conditional distribution of Yn, given Gn, converges weakly on a
set of probability one to Q̃, that is, as n→ ∞,

P(Yn ∈ · | Gn)
w−→ Q̃(·) a.s.

We refer to [22] for more details.
Stable convergence. Stable convergence is a strong form of convergence in distribution,

albeit weaker than a.s. conditional convergence. A sequence (Yn)n≥1 is said to converge
stably to Q̃ if

E
[
V f (Yn)

]
−→ E

[
V
∫
X

f (x)Q̃(dx)
]
,

for all continuous bounded functions f and any integrable random variable V. The main
application of stable convergence is in central limit theorems that allow for mixing variables
in the limit. See [26] for a complete reference on stable convergence.

In the sequel, the stable and a.s. conditional limits will be some Gaussian law, which
we denote by N (μ, σ2) for parameters (μ, σ2), where N (μ, 0) = δμ.

3.2. RRPP with Dominant Colors

Using (20), let us define, for x ∈ X,

w(x) = E[W(x)] and w̄ = sup
x∈X

w(x).

We further let
D = {x ∈ X : w(x) = w̄},

be the set of dominant colors. The model (18) with D ⊂ X has been studied by [23] under
the assumption that w̄ is strictly greater than the next largest value of w(·) in the support of
w�(μ′0). Then, the probability of observing a non-dominant color, x ∈ Dc, vanishes, and the
predictive and the empirical distributions converge in total variation to a common random
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probability measure, which is concentrated on D. For completeness reasons, we report
here the main results from [23].

Theorem 2 ([23], Theorem 3.3). For any RRPP (μn)n≥0 that satisfies

W(x) ≤ β < ∞;

w̄ ∈ supp(w�(μ′0));

w̄ > w̄c ≡ sup{u ≥ 0 : u ∈ supp(w�(μ′0(·|Dc))},
(21)

there exists a random probability measure P̃ on X with P̃(D) = 1 a.s. such that

dTV(μ
′
n, P̃) a.s.−→ 0 and dTV(μ̂

′
n, P̃) a.s.−→ 0.

Under conditions (21), Theorem 3.3 in [23] implies ∑n
i=1 Wi/n a.s.−→ w̄. If μ0 is further

diffuse, then ∑∞
n=1 θn = ∞ a.s., and so Ln

a.s.−→ ∞ by Theorem 1 in [27]; thus, by Theorem 1
in [27], Proposition 3.4 in [23] shows that the actual growth rate is that of a Pólya sequence,

Ln

log n
a.s.−→ θ

w̄
. (22)

In addition to the uniform convergence in Theorem 2, the authors in [23] obtain
set-wise rates of convergence. To state their result, we introduce, for any A ∈ X ,

qA = lim
n→∞

E[W2
n+1δXn+1(A)|X1, W1, . . . , Xn, Wn],

which exists a.s. under the assumptions of Theorem 2.

Theorem 3 ([23], Theorem 4.2). Let (μn)n≥0 be an RRPP satisfying (21). Suppose w̄ >
2w̄c. Define

V(A) =
1

w̄2

{
(P̃(Ac))2qA + (P̃(A))2qAc

}
and U(A) = V(A)− P̃(A)P̃(Ac).

Then,
√

n
(
μ′n(A)− μ̂′n(A)

) stably−→ N (0, U(A)),

and √
n
(
μ′n(A)− P̃(A)

) a.s.cond.−→ N (0, V(A)) w.r.t. (FX,W
n )n≥1,

where FX,W
n = σ(X1, W1, . . . , Xn, Wn), n ≥ 1 is the filtration generated by ((Xn, Wn))n≥1.

3.3. RRPP with Independent Weights

Let (μn)n≥0 be an RRPP with reinforcement distribution ηx ≡ η that does not depend
on x. Using the notation of Section 3.2, we have

w(x) ≡ w̄, (23)

and, thus, D = X. An equivalent formulation can be given in terms of the sequence of
weights (Wn)n≥1 in Proposition 1, whereby

Wn = h(Un), (24)

for some measurable function h, with Un ⊥ (X1, U1, . . . , Xn−1, Un−1, Xn) and Un ∼ Unif[0, 1].

Then, Wn
i.i.d.∼ η and Wn ⊥ (X1, . . . , Xn), which implies that E[W1] = w̄.

The model (18) with weights (24) has been studied by [18,19,22], among others, where
the authors obtain central limit theorems and study the growth rate of Ln when w̄ < ∞.
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Their results rely on the fact that (Xn)n≥1 is conditionally identically distributed (c.i.d.)
with respect to the filtration generated by ((Xn, Wn))n≥1. By [21], an X-valued random
sequence (Yn)n≥1 that is adapted to a filtration (Fn)n≥1 is said to be c.i.d. with respect to
(Fn)n≥1 if and only if (Yn)n≥1 is identically distributed and, for every n, k ≥ 1,

P(Yn+k ∈ · | Fn) = P(Yn+1 ∈ · | Fn). (25)

Proposition 2 ([19], Lemma 6). For any RRPP (μn)n≥0 with ηx ≡ η, the observation process
(Xn)n≥1 is c.i.d. with respect to the filtration generated by ((Xn, Wn))n≥1.

C.i.d. processes preserve many of the properties of exchangeable sequences, see [21].
For example, if (Yn)n≥1 is c.i.d., then there exists a random probability measure such that
(2)–(3) hold true with respect to the filtration used in the definition (25). It follows for the
model in Proposition 2 that there exists P̃ ∈ KP(Ω,X) such that, for every A ∈ X ,

μ′n(A)
a.s.−→ P̃(A).

In fact, by (25), the sequence (μ′n(A))n≥0 is a bounded martingale. On the other hand,
(23) implies that D = X; therefore, any RRPP with ηx ≡ η whose weights are bounded,
W1 ≤ β < ∞, satisfies the assumptions of Theorem 2. In that case,

dTV(μ
′
n, P̃) a.s.−→ P̃.

It follows from Theorem 4.2 in [23] that the boundedness condition in (21) is needed to
show that (i) ∑n

i=1 Wi/n a.s.−→ w̄; and (ii) μ′n converge set-wise to P̃, which is non-trivial in
that setting. Here, (i) is granted as (Wn)n≥1 is i.i.d., and (ii) has already been established;
thus, we obtain the following result for RRPPs with independent weights.

Theorem 4. For any RRPP (μn)n≥0 with ηx ≡ η, there exists a random probability measure P̃ on
X such that

dTV(μ
′
n, P̃) a.s.−→ 0 and dTV(μ̂

′
n, P̃) a.s.−→ 0.

Proof. Let ((Xn, Wn))n≥1 be the joint observation process associated to (μn)n≥0 by Propo-

sition 1. As ηx ≡ η, Equation (19) implies that Wn
i.i.d.∼ η; thus, by the strong law of large

numbers,
1
n

n

∑
i=1

Wi
a.s.−→ w̄ ≤ ∞. (26)

Let us define, for n ≥ 1,

Pn(·) = P(Xn+1 ∈ · | FX,W
n ), where FX,W

n = σ(X1, W1, . . . , Xn, Wn).

By Proposition 2, (Xn)n≥1 is c.i.d. with respect to (FX,W
n )n≥1, so there exists by

Lemmas 2.1 and 2.4 in [21] a random probability measure P̃ on X such that, for every
A ∈ X ,

Pn(A)
a.s.−→ P̃(A). (27)

Moreover,
∫
X f (x)Pn(dx) = E[

∫
X f (x)P̃(dx)|FX,W

n ] a.s. for every bounded measur-
able f : X → R. Fix m ≥ 1. By a monotone class argument, we can show that, for every
bounded measurable f : X2 → R,∫

X
f (Xm, x)Pn(dx) = E[

∫
X

f (Xm, x)P̃(dx) | FX,W
n ] a.s., for all n > m;
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thus, Pn({Xm}) = E[P̃({Xm})|FX,W
n ] a.s., and so (Pn({Xm}))n>m is a uniformly integrable

martingale. It follows from martingale convergence that, as n→ ∞,

Pn({Xm}) a.s.−→ P̃({Xm}). (28)

Using (26)–(28), we can repeat the argument in the proof of Proposition 3.1 in [23]
to show that (i) dTV(Pn, P̃) a.s.−→ 0, and so dTV(μ

′
n, P̃) a.s.−→ 0 by Proposition 1; and (ii)

dTV(μ̂
′
n, P̃) a.s.−→ 0.

Equation (26) implies that θn
a.s.−→ 0. If, in addition, w̄ < ∞, then ∑∞

n=1 θn = ∞ a.s. and
Ln

a.s.−→ ∞. In fact, as long as w̄ < ∞, the sequence (Ln)n≥1 grows at the same rate as (22).

Proposition 3 ([18], Lemma 6). Let η ∈MP(X) and μ0 be diffuse. If w̄ < ∞, then

Ln

log n
a.s.−→ θ

w̄
.

If w̄ = ∞, then θn may approach zero fast enough that we stop seeing new observations
as n→ ∞. For example, let us consider random reinforcement with a totally skewed stable
distribution Sα(1, σ, 0) for α ∈ (0, 2] and σ > 0. If α < 1, then w̄ = ∞, and we show that
n1/αθn is stochastically bounded, which implies that Ln converges to a finite limit.

Proposition 4. Let η be a Sα(1, σ, 0) distribution with stability parameter α < 1, and μ0 be
diffuse. Then, θn = Op(n−1/α) and

lim
n→∞

Ln < ∞ a.s.

Proof. From the properties of stable distributions, we obtain n−1/α ∑n
i=1 Wi

d
= W1 for every

n ≥ 1 and, as a consequence,

θn = n−1/α θ

n−1/αθ + n−1/α ∑n
i=1 Wi

d
= n−1/α θ

n−1/αθ + W1
≤ n−1/α θ

W1
.

By Theorem 5.4.1 in [28], E[1/W1] < ∞, and so 1/W1 < ∞ a.s. It follows for every M > 0
that P(n1/αθn > M) ≤ P(θ/W1 > M), which can be made arbitrarily small by taking M
large enough. Regarding the second assertion, as 1/α > 1, we have

E[ lim
n→∞

Ln] = lim
n→∞

n

∑
i=1

E[11{Li=Li−1+1}] =
∞

∑
n=1

E[θn] ≤
∞

∑
n=1

θ

n1/α
E[1/W1] < ∞.

Proposition 4 can be extended for any fat tailed reinforcement distribution η by means
of a generalized central limit theorem (see, e.g., [28] (p. 62)).

The rate of convergence of (18) and μ̂′n has already been studied for the model with
independent weights under different assumptions, see, e.g., [19] (p. 1363), Examples 4.2
and 4.5 in the technical report to [18], Corollary 4.1 in [22] for X = {0, 1}. In the next
theorem, we combine ideas from [18,20] to give a fairly general result.

Theorem 5. Let η ∈MP(R+). If E[W2
1 ] < ∞, then

√
n(μ′n(A)− μ̂n(A))

stably−→ N (0, U(A)), where U(A) =
Var(W1)

E[W2
1 ]

P̃(A)P̃(Ac). (29)
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If, in addition, E[W4
1 ] < ∞, then, with respect to the filtration generated by ((Xn, Wn))n≥1,

√
n(μ′n(A)− P̃(A))

a.s.cond.−→ N (0, V(A)), where V(A) =
E[W2

1 ]

w̄2 P̃(A)P̃(Ac). (30)

Proof. Let us define, for n ≥ 1,

Pn(·) = P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn).

The assertions in Theorem 5 have already been established by [18] when W1 ≥ γ >
0. In that case, Examples 4.2 and 4.5 in the technical report to [18] show that (29) is a
consequence of the fact that

E
[

max
1≤k≤n

|Yn,k|
]
−→ 0 and

n

∑
k=1

Y2
n,k

p−→ U(A), (31)

where Yn,k =
1√
n

{
δXk (A)− kPk(A) + (k− 1)Pk−1(A)

}
, and (30) follows from

E
[
sup
n≥1

√
n|Pn−1(A)− Pn(A)|

]
< ∞ and n ∑

k≥n

(
Pk−1(A)− Pk(A)

)2 a.s.−→ V(A).

Replicating the approach of Proposition 9 in [20], we avoid using the assumption
W1 ≥ γ > 0 by conditioning on the sets Hn = {2 ∑n

i=1 Wi ≥ nw̄}, n ≥ 1. By (26), 11Hn
a.s.−→ 1,

so (29) follows from (31) with

Yn,k =
1√
n

11Hk−1

{
δXk (A)− kPk(A) + (k− 1)Pk−1(A)

}
,

whereas (30) is, ultimately, a result of

E
[
sup
n≥1

√
n · 11Hn |Pn−1(A)− Pn(A)|

]
< ∞ and n ∑

k≥n

(
Pk−1(A)− Pk(A)

)2 a.s.−→ V(A).

4. Generalized Measure-Valued Pólya Urn Processes

The definition of an MVPP assumes that the law of the reinforcementR is fixed, yet,
in some situations, R can itself be random (e.g., RRPP with exchangeable weights, see
Section 4.1). To avoid measurability issues, we assume a parametric model forR, with the
parameter taking values in a Polish space V.

Definition 3 (Generalized Measure-Valued Pólya Urn Process). Let V be a V-valued random
variable. A sequence (μn)n≥0 of random finite measure on X is called a generalized measure-
valued Pólya urn process (GMVPP) with uncertainty parameter V, initial state μ0 ∈M∗F(X) and
replacement ruleR ∈ KP(V×X,MF(X)) if μ1 | V ∼ R̂V

μ0
, and, for every n ≥ 2,

P(μn ∈ · | V, μ1, . . . , μn−1) = R̂V
μn−1

(·),

where R̂ is the transition probability kernel from V×M∗F(X) to M∗F(X) given by

(v, μ) 
→ R̂v
μ(·) =

∫
X

ψ�
μ(R(v, x))(·)μ′(dx),

and ψμ is the map ν 
→ ν + μ.
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It follows from Definition 3 that any GMVPP is a mixture of Markov chains with
initial state μ0 and transition kernel R̂V . A separate modeling approach, which we do not
examine here, defines a measure-valued Markov chain with transition kernel

μ 
→
∫
X

ψ�
μ(R(μ, x))(·)μ′(dx).

In fact, some of the predictive constructions in [11,29] can be framed in such a way.
Theorem 1 extends to GMVPPs, provided that we condition all quantities on the

parameter V. As a consequence, there exists a measurable function f from V×X× [0, 1] to
MF(X) and a random sequence ((Xn, Un))n≥1 such that

μn = μn−1 + f (V, Xn, Un) a.s., (32)

where Un ∼ Unif[0, 1], Un ⊥ (V, X1, U1, . . . , Xn−1, Un−1, Xn), X1 | (V, (Um)m≥1) ∼ μ′0,
and, for n ≥ 1,

P(Xn+1 ∈ · | V, X1, . . . , Xn, (Um)m≥1) =
μ0(·) + ∑n

i=1 f (V, Xi, Ui)(·)
μ0(X) + ∑n

i=1 f (V, Xi, Ui)(X)
, (33)

and
P( f (V, Xn, Un) ∈ · | V, X1, U1, . . . , Xn−1, Un−1, Xn) = R(V, Xn)(·). (34)

The definition of a randomly reinforced Pólya process is similarly generalized to cover
the case of a random reinforcement distribution η.

Definition 4 (Generalized Randomly Reinforced Pólya Process). We call a GMVPP with
parameters (V, μ0,R) a generalized randomly reinforced Pólya process (GRRPP) if there exists
η ∈ KP(V× X,R+) such that R(v, x) = ξ�x(η(v, x)), where ξx : R+ → MF(X) is the map
w 
→ wδx.

For GRRPPs, the function f in the representation (32)–(34) can be written as

f (v, x, u) = h(v, x, u) · δx,

where h is a measurable function from V×X× [0, 1] to R+ such that h(v, x, U) ∼ η(v, x)
for all v ∈ V and x ∈ X, whenever U ∼ Unif[0, 1]. Letting Wn = h(V, Xn, Un), we obtain

μn = μn−1 + WnδXn a.s., (35)

where

P(Xn+1 ∈ · | V, X1, . . . , Xn, (Um)m≥1) =
μ0(·) + ∑n

i=1 WiδXi (·)
μ0(X) + ∑n

i=1 Wi
, (36)

and
P(Wn ∈ · | V, X1, U1, . . . , Xn−1, Un−1, Xn) = η(V, Xn)(·). (37)

The weights Wn in (36) allow us to incorporate additional information about the ob-
servations (Xn)n≥1. As an example, consider the problem of computer-based classification,
where the output usually includes confidence scores, which reflect the software’s confi-
dence that the classifications are correct. In analyzing the number and dimension of the
types already discovered, or the probability of detecting a new type, a typical procedure
would take into account only those classifications whose confidence scores are above a
certain threshold. Alternatively, we could adopt a Bayesian perspective and weigh each
classification according to its confidence score. Denoting by ((Xn, Wn))n≥1 the sequence
of classifications and confidence scores, we would model the distribution of the next
classification by (36).
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4.1. GRRPP with Exchangeable Weights

Let (μn)n≥0 be a GRRPP with reinforcement distribution η(v) that does not depend
on x. Then,

Wn = h(V, Un),

for some measurable function h(v, u). The next result shows that the sequence (Wn)n≥1 is
exchangeable with directing random measure η̃ ≡ η(V). Moreover, (μn)n≥0 is completely
parameterized by (μ0, η̃).

Theorem 6. A sequence (μn)n≥0 of random finite measures is a GRRPP with parameters (μ0, η̃)
for η̃ ∈ KP(Ω,R+) if and only if μ0 = θν and, for every n ≥ 1,

μn = μn−1 + WnδXn a.s.,

where θ ∈ (0, ∞), ν ∈ MP(X), (Wn)n≥1 is an exchangeable process with directing random
measure η̃, and (Xn)n≥1 is a sequence of X-valued random variables such that X1 | (Wk)k≥1 ∼ ν
and, for n ≥ 1,

P(Xn+1 ∈ · | X1, . . . , Xn, (Wk)k≥1) =
n

∑
i=1

Wi
θ + ∑n

j=1 Wj
δXi (·) +

θ

θ + ∑n
j=1 Wj

ν(·). (38)

Proof. Let (μn)n≥0 be a GRRPP with parameters (μ0, η̃), and consider the representation
(35)–(37). Put θ = μ0(X) and ν = μ′0. It follows from (37) that

Wn | η̃
i.i.d.∼ η̃;

thus, (Wn)n≥1 is exchangeable. Moreover, Wn = h(V, Un), n ≥ 1, so (38) follows from (36).
Conversely, suppose μn = μn−1 + WnδXn , where the process ((Xn, Wn))n≥1 is as

described. It follows from (38) and Theorem 8.12 in [25] that

(Wk)k≥1 ⊥ X1 and (Wn+k)k≥1 ⊥ (X1, . . . , Xn+1) | (W1, . . . , Wn), n ≥ 1. (39)

Since (Wn)n≥1 is exchangeable with directing random measure η̃, we have

Wn | η̃
i.i.d.∼ η̃. (40)

Furthermore, η̃ is measurable with respect to the tail σ-field of (Wn)n≥1, so, by (39),

η̃ ⊥ X1 and η̃ ⊥ (X1, . . . , Xn+1) | (W1, . . . , Wn), n ≥ 1. (41)

Using (39)–(41), we can show that

W1 ⊥ X1 | η̃ and Wn+1 ⊥ (X1, W1, . . . , Xn, Wn, Xn+1) | η̃, n ≥ 1.

Then, P(μ1 ∈ · | η̃) = P(μ0 +W1δX1 ∈ · | η̃) =
∫
X ψ�

μ0(ξ
�
x(η̃))(·)μ′0(dx) and, for n ≥ 2,

P(μn ∈ · | η̃, μ1, . . . ,μn−1)

= E
[
P(μn−1 + WnδXn ∈ · | η̃, X1, . . . , Wn−1, Xn)

∣∣η̃, μ1, . . . , μn−1
]

= E
[
E[ψ�

μn−1(ξ
�
Xn
(η̃))(·) | X1, . . . , Xn−1, (Wm)m≥1]

∣∣η̃, μ1, . . . , μn−1
]

=
∫
X

ψ�
μn−1(ξ

�
x(η̃))(·)μ′n−1(dx).
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It follows from the proof of Theorem 6 that (X1, W1) ∼ μ′0 ×E[η̃] and, for n ≥ 1,

P
(
(Xn+1, Wn+1) ∈ · | X1, W1, . . . , Xn, Wn

)
=
(
μ′n ×E[η̃|W1, . . . , Wn]

)
(·). (42)

As μ′n andE[η̃|W1, . . . , Wn] are both symmetric with respect to ((X1, W1), . . . , (Xn, Wn)),
then (42) is a symmetric function of ((X1, W1), . . . , (Xn, Wn)). This is a necessary but not
sufficient condition for ((Xn, Wn))n≥1 to be exchangeable, see Proposition 3.2 and Example
3.1 in [2]. In Proposition 5, we show that ((Xn, Wn))n≥1 is exchangeable if and only if either
μ′0 is degenerate or the weights are a.s. identical. On the other hand, for every n, k ≥ 1,
the sequence ((Xn, Wn))n≥1 satisfies

P(Wk ∈ · | X1) = P(W1 ∈ · | X1), P(Xk ∈ · |W1) = P(X1 ∈ · |W1), (43)

and

P(Wn+k ∈ ·|X1, W1, . . . , Xn, Wn, Xn+1) = P(Wn+1 ∈ ·|X1, W1, . . . , Xn, Wn, Xn+1),

P(Xn+k ∈ ·|X1, W1, . . . , Xn, Wn, Wn+1) = P(Xn+1 ∈ ·|X1, W1, . . . , Xn, Wn, Wn+1).
(44)

By [24], Equations (43) and (44) are defining a process that is partially conditionally
identity distributed (partially c.i.d.). Analogously to the c.i.d. case, partially c.i.d. processes
preserve many of the properties of partially exchangeable sequences, see [24].

Proposition 5. Under the conditions of Theorem 6, ((Xn, Wn))n≥1 is partially c.i.d. Moreover,
((Xn, Wn))n≥1 is exchangeable if and only if either μ′0 is degenerate or Wn = W1 a.s., n ≥ 1.
In that case, ((Xn, Wn))n≥1 is partially exchangeable.

Proof. It follows that ((Xn, Wn))n≥1 is partially c.i.d. if and only if X2
d
= X1 | W1, W2

d
=

W1 | X1, and (44) is true for every n ≥ 1 with k = 2. By hypothesis, (Wn)n≥1 is exchangeable

and (Wn)n≥1 ⊥ X1, so W2
d
= W1 | X1. Moreover, applying (39) repeatedly, we obtain

P(Wn+2 ∈ · | X1, W1, . . . , Xn, Wn, Xn+1)

= E
[
P(Wn+2 ∈ · | X1, . . . , Wn+1, Xn+2)|X1, W1, . . . , Xn, Wn, Xn+1

]
= E

[
P(Wn+2 ∈ · |W1, . . . , Wn+1)|W1, . . . , Wn

]
= P(Wn+1 ∈ · |W1, . . . , Wn) = P(Wn+1 ∈ · | X1, W1, . . . , Xn, Wn, Xn+1).

On the other hand, by (38),

P(Xn+2 ∈ · | X1, W1, . . . , Xn, Wn, Wn+1) = E
[
μ′n+1(·) | X1, W1, . . . , Xn, Wn, Wn+1

]
=

μn(·) + Wn+1 · μ′n(·)
μn+1(X)

= μ′n(·)

= P(Xn+1 ∈ · | X1, W1, . . . , Xn, Wn, Wn+1).

Analogously, P(X2 ∈ · | W1) = μ1(·) = P(X1 ∈ · | W1), which completes the proof of
the first part.

If μ′0 is degenerate, then ((Xn, Wn))n≥1 is trivially exchangeable. If Wn = W1 a.s.
instead, then one can show that ((Xn, Wn))n≥1 satisfies condition (b) of Proposition 3.2
in [2], which, together with the symmetry of (42), implies by Theorem 3.1 in [2] that
((Xn, Wn))n≥1 is exchangeable.

Conversely, suppose that ((Xn, Wn))n≥1 is exchangeable. As ((Xn, Wn))n≥1 is par-
tially c.i.d., the predictive distributions (42) converge to a product random measure [24]. It
follows from de Finetti’s theorem that ((Xn, Wn))n≥1 is partially exchangeable, so, in par-
ticular,

(X1, W1, X2, W2)
d
= (X1, W2, X2, W1).
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However, W2 ⊥ X2 | (X1, W1) from (36), so W1 ⊥ X2 | (X1, W2). Thus, for every
bounded measurable function f̃ , there exists a measurable function g f̃ such that

E[ f̃ (X2)|X1, W1, W2] = g f̃ (X1, W2) a.s.

Integrating f̃ (X2) with respect to (38) and rearranging the terms, we obtain

W1
(

f̃ (X1)− g f̃ (X1, W2)
)
= θ
(

g f̃ (X1, W2)−E[ f̃ (X1)]
)

a.s.

Assume that μ′0 is non-degenerate. Then, there is an f̃ such thatP
(

f̃ (X1) = E[ f̃ (X1)]
)
=

0; e.g., take f̃ = 11B for some B ∈ X such that 0 < P(X1 ∈ B) < 1. It follows that

P
(

f̃ (X1) = g f̃ (X1, W2) = 0
)
= P
(

f̃ (X1) = E[ f̃ (X2)|X1, W1, W2]
)

= P
(

f̃ (X1) = E[ f̃ (X1)]
)
= 0;

therefore,

W1 =
θ
(

g f̃ (X1, W2)−E[ f̃ (X1)]
)

f̃ (X1)− g f̃ (X1, W2)
a.s.

In other words, there exists a measurable function h̃ such that W1 = h̃(X1, W2) a.s.,
and so W2 = h̃(X1, W1) a.s. by partial exchangeability. It follows from X1 ⊥ (W1, W2) that,
for every A ∈ B(R+),

P(W2 ∈ A|W1) = P(W2 ∈ A|X1, W1) = 11A(W2) a.s.;

thus, W2 = W1 a.s. and, from exchangeability, Wn = W1 a.s., n ≥ 1.

4.2. Asymptotic Properties of GRRPP with Exchangeable Weights

It follows from (38) that the GRRPP with exchangeable weights is a mixture of
RRPPs with independent weights, with the mixing distribution affecting only the se-
quence (Wn)n≥1. Thus, we expect that the results in Section 3.3 carry over to this more
general setting. In this section, we concentrate on the behavior of θn and the sequence
(Ln)n≥1.

Assume that P(W1 > 0|η̃) > 0. If E[W1] < ∞, then 0 < E[W1|η̃] < ∞ a.s., and, by the
law of large numbers for exchangeable random variables (see [1], Section 2),

1
n

n

∑
i=1

Wi
a.s.−→ E[W1|η̃] ∈ (0,+∞).

Then, if μ0 is diffuse, n · θn
a.s.−→ θ/E[W1|η̃] and ∑n

i=1 θn = ∞ a.s., so Theorem 1 in [27]
implies

Ln

log n
=

Ln

∑n
k=1 θk

( 1
log n

n

∑
k=1

1
k
(k · θk)

)
a.s.−→ θ

E[W1|η̃]
.

If E[W1] = ∞, then Ln may converge to a finite limit, as n → ∞. For example, let us
consider a strictly stable reinforcement distribution as in Proposition 4.

Proposition 6. Let (μn)n≥0 be a GRRPP with parameters (V, μ0, η) such that V is a strictly
positive random variable with E[V−1] < ∞, μ0 is diffuse, and η(v), v > 0 is a Sα(1, v, 0)
distribution with stability parameter α < 1. Then, θn = OP(n−1/α) and

lim
n→∞

Ln < ∞ a.s.
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Proof. It follows from how the weights in the representation (35) are chosen that we
can take

Wn = VF−1(Un),

where Un ∼ Unif[0, 1], Un ⊥ (V, X1, U1, . . . , Xn−1, Un−1, Xn), and F−1 is the inverse of the
Sα(1, 1, 0) distribution function. Then,

θn =
θ

θ + ∑n
i=1 Wi

≤ n−1/α θ

Vn−1/α ∑n
i=1 F−1(Ui)

d
= n−1/α θ

VY
,

for some Y ∼ Sα(1, 1, 0) such that Y ⊥ V. It follows for every M > 0 that P(n1/αθn > M) ≤
P(θ/VY > M), which can be made arbitrarily small by taking M large enough. Regarding
the second assertion, as 1/α > 1 and E[θ/(VY)] < ∞ by Theorem 5.4.1 in [28], we have

E[ lim
n→∞

Ln] = lim
n→∞

n

∑
i=1

E[11{Li=Li−1+1}] =
∞

∑
n=1

E[θn] ≤
∞

∑
n=1

θ

n1/α
E[1/VY] < ∞.

Extensions of Proposition 6 can be obtained by exploiting the central limit theorems
for exchangeable random variables, which are found in [30,31].

5. Discussion

In this paper, we study the extension of randomly reinforced urns [17] to an un-
bounded set of possible colors. The resulting measure-valued urn process provides a
predictive characterization of the law of an asymptotically exchangeable sequence of ran-
dom variables, which corresponds to the observation process of an implied urn sampling
scheme. In fact, the model (6)–(7) fits into a line of recent research, which explores efficient
predictive constructions for fast online prediction or approximately-Bayesian solutions,
see [11,29,32] and references therein. To that end, one direction for future work is to
generalize the functional relationship in (7) and/or, as one referee suggested, to consider
finitely-additive measures, along the lines discussed in [33].

We investigate the asymptotic properties of the sequences of predictive distributions
and empirical frequencies of the observation process, and prove their convergence in
total variation distance to a common random limit. The rate of convergence of their
difference is given set-wise; so, another possible direction for future research is to consider
a stronger distance. As far as we know, the topic of merging of the predictive and empirical
distributions is largely unexplored. Within the relevant literature, we mention the works
of [4,34], where the authors study the rate of convergence of the Wasserstein or Prokhorov
distances under exchangeability, and the papers by Berti et al. [21,35], who consider the
c.i.d. case and regard the difference between the predictive and empirical measures as a
map in the space of real bounded functions.
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Abstract: In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the
symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred
to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in
Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations
of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness”
postulates for species-sampling models, and then investigate analogous predictive characterizations
for the more general feature-sampling models. In particular, we present a “sufficientness” postu-
late for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss
analogous characterizations in the general setup of feature-sampling models.

Keywords: Bayesian nonparametrics; exchangeability; feature-sampling model; de Finetti
theorem; Johnson’s “sufficientness” postulate; predictive distribution; scaled process prior; species-
sampling model

1. Introduction

Exchangeability (de Finetti [1]) provides a natural modeling assumption in a large
variety of statistical problems, and it amounts to the assumption that the order in which
observations are recorded is not relevant. Consider a sequence of random variables (Zj)j≥1
defined on a common probability space (Ω, A ,P) and taking values in an arbitrary space,
which is assumed to be Polish. The sequence (Zj)j≥1 is exchangeable if and only if

(Z1, . . . , Zn)
d
= (Zσ(1), . . . , Zσ(n))

for any permutation σ of the set {1, . . . , n} and any n ≥ 1. By virtue of the celebrated de
Finetti representation theorem, exchangeability of (Zj)j≥1 is tantamount to asserting the
existence of a random element μ̃, defined on a (parameter) space Θ, such that, conditionally
on μ̃, the Zjs are independent and identically distributed with common distribution pμ̃, i.e.,

Zj | μ̃ iid∼ pμ̃ j ≥ 1

μ̃ ∼M ,
(1)

where M is the distribution of μ̃. In a Bayesian setting, M takes on the interpretation of a
prior distribution for the parameter object of interest. In this sense, the de Finetti representa-
tion theorem is a natural framework for Bayesian statistics. For mathematical convenience,
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Θ is assumed to be a Polish space, equipped with the Borel σ-algebra B(Θ). Hereafter,
with the term parameter, we refer to both a finite- and an infinite-dimensional object.

Within the framework of exchangeability (1), a critical role is played by the predictive
distributions, namely, the conditional distributions of the (n + 1)th observation Zn+1 given
Zn := (Z1, . . . , Zn). The problem of characterizing prior distributions M in terms of their
predictive distributions has a long history in Bayesian statistics, starting from the seminal
work of the English philosopher Johnson [2] who provided a predictive characterization
of the symmetric Dirichlet prior distribution. Such a characterization is typically referred
to as Johnson’s “sufficientness” postulate. Species-sampling models (Pitman [3]) provide
arguably the most popular infinite-dimensional generalization of the Dirichlet distribution.
They form a broad class of nonparametric prior models that correspond to the assumption
that pμ̃ in (1) is an almost surely discrete random probability measure

p̃ = ∑
i≥1

p̃iδz̃i , (2)

where: (i) ( p̃i)i≥1 are non-negative random weights almost surely summing up to 1;
(ii) (z̃i)i≥1 are random species’ labels, independent of ( p̃i)i≥1, and i.i.d. with common
(non-atomic) distribution P. The term species refers to the fact that the law of p̃ is a prior
distribution for the unknown species composition ( p̃i)i≥1 of a population of individuals
Zjs, with Zj belonging to a species z̃i with probability p̃i for j, i ≥ 1. In the context of species-
sampling models, Regazzini [4] and Lo [5] provided a “sufficientness” postulate for the
Dirichlet process (Ferguson [6]). Such a characterization was then extended by Zabell [7] to
the Pitman–Yor process (Perman et al. [8], Pitman and Yor [9]) and by Bacallado et al. [10]
to the more general Gibbs-type prior models (Gnedin and Pitman [11]).

In this paper, we introduce and discuss Johnson’s “sufficientness” postulates in the
feature-sampling setting, which generalizes the species-sampling setting by allowing each
individual of the population to belong to multiple species, now called features. We point
out that feature-sampling models are extremely important in different areas of application;
see, e.g., Griffiths and Ghahramani [12], Ayed et al. [13] and the references therein. Under
the framework of exchangeability (1), the feature-sampling setting assumes that

Zj|μ̃ = ∑
i≥1

Aj,iδw̃i ∼ pμ̃, (3)

and
μ̃ = ∑

i≥1
p̃iδw̃i

where: (i) conditionally on μ̃, (Aj,i)i≥1 are independent Bernoulli random variables with
parameters ( p̃i)i≥1; (ii) ( p̃i)i≥1 are (0, 1)-valued random weights; (iii) (w̃i)i≥1 are random
features’ labels, independent of ( p̃i)i≥1, and i.i.d. with common (non-atomic) distribution
P. That is, individual Zj displays feature w̃i if and only if Aj,i = 1, which happens
with probability p̃i. For example, if, conditionally on μ̃, Zj displays only two features,
say w̃1 and w̃5, it equals the random measure δw̃1 + δw̃5 . The distribution pμ̃ is the law
of a Bernoulli process with parameter μ̃, which is denoted by BeP(μ̃), whereas the law
of μ̃ is a nonparametric prior distribution for the unknown feature probabilities ( p̃i)i≥1,
i.e., a feature-sampling model. Here, we investigate the problem of characterizing prior
distributions for μ̃ in terms of their predictive distributions, with the goal of providing
“sufficientness” postulates for feature-sampling models. We discuss such a problem and
present partial results for a class of feature-sampling models referred to as Scaled Process
(SP) priors for μ̃ (James et al. [14], Camerlenghi et al. [15]). With these results, we aim at
stimulating future research in this field to obtain “sufficientness” postulates for general
feature-sampling models.

The paper is structured as follows. In Section 2, we present a brief review on Johnson’s
“sufficientness” postulates for species-sampling models. Section 3 focuses on nonparametric
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prior models for the Bernoulli process, i.e., feature-sampling models; we review their
definitions, properties, and sampling structures. In Section 4, we present a “sufficientness”
postulate for SPs. Section 5 concludes the paper by discussing our results and conjecturing
analogous results for more general classes of feature-sampling models.

2. Species-Sampling Models

To introduce species-sampling models, we assume that the observations are Z-valued
random elements, and Z is supposed to be a Polish space whose Borel σ-algebra is denoted
by Z . Thus, Z contains all the possible species’ labels of the populations. When we deal
with species-sampling models, the hierarchical formulation (1) specializes as

Zj| p̃ iid∼ p̃ j ≥ 1

p̃ ∼M
(4)

where p̃ = ∑i≥1 p̃iδz̃i is an almost surely discrete random probability measure on Z, and
M denotes its law. We also remind the reader that: (i) ( p̃i)i≥1 are non-negative random
weights almost surely summing up to 1; (ii) (z̃i)i≥1 are random species’ labels, independent
of ( p̃i)i≥1, and i.i.d. as a common (non-atomic) distribution P. Using the terminology
of Pitman [3], the discrete random probability measure p̃ is a species-sampling model. In
Bayesian nonparametrics, popular examples of species-sampling models are: the Dirichlet
process (Ferguson [6]), the Pitman–Yor process (Perman et al. [8], Pitman and Yor [9]), and
the normalized generalized Gamma process (Brix [16], Lijoi et al. [17]). These are examples
belonging to a peculiar subclass of species-sampling models, which are referred to as Gibbs-
type prior models (Gnedin and Pitman [11], De Blasi et al. [18]). More general subclasses
of species-sampling models are, e.g., the homogeneous normalized random measures
(Regazzini et al. [19]) and the Poisson–Kingman models (Pitman [20,21]). We refer to Lijoi
and Prünster [22] and Ghosal and van der Vaart [23] for a detailed and stimulating account
on species-sampling models and their use in Bayesian nonparametrics.

Because of the almost sure discreteness of p̃ in (4), a random sample Zn := (Z1, . . . , Zn)
from p̃ features ties, that is, P(Zj1 = Zj2) > 0 if j1 �= j2. Thus, Zn induces a random partition
of the set {1, . . . , n} into Kn = k ≤ n blocks, labeled by Z∗1 , . . . , Z∗Kn

, with corresponding
frequencies (Nn,1, . . . , Nn,Kn) = (n1, . . . , nk), such that Ni,n ≥ 1 and ∑1≤i≤Kn Ni,n = n.
From Pitman [3], the predictive distribution of p̃ is of the form

P(Zn+1 ∈ A|Zn) = g(n, k, n)P(A) +
k

∑
i=1

fi(n, k, n)δZ∗i
(A), A ∈ Z , (5)

for any n ≥ 1, having set n = (n1, . . . , nk), with g and fi being arbitrary non-negative
functions that satisfy the constraint g(n, k, n) + ∑k

i=1 fi(n, k, n) = 1. The predictive distribu-
tion (5) admits the following interpretation: (i) g(n, k, n) corresponds to the probability that
Zn+1 is a new species, that is, a species not observed in Zn; (ii) fi(n, k, n) corresponds to the
probability that Zn+1 is a species Z∗i in Zn. The functions g and fi completely determine
the distribution of the exchangeable sequence (Zj)j≥1 and, in turn, the distribution of the
random partition of N induced by (Zj)j≥1. Predictive distributions of popular species-
sampling models, e.g., the Dirichlet process, the Pitman–Yor process, and the normalized
generalized Gamma process, are of the form (5) for suitable specification of the functions
g and fi. We refer to Pitman [21] for a detailed account of random partitions induced by
species-sampling models and generalizations thereof.

Here, we recall the predictive distribution of Gibbs-type prior models (Gnedin and
Pitman [11], De Blasi et al. [18]). Let us first introduce the definition of these processes.
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Definition 1. Let σ ∈ (−∞, 1) and let P be a (non-atomic) distribution on (Z, Z ). A Gibbs-type
prior model is a species-sampling model with a predictive distribution of the form

P(Zn+1 ∈ A|Zn) =
Vn+1,k+1

Vn,k
P(A) +

Vn+1,k

Vn,k

k

∑
i=1

(ni − σ)δZ∗i
(A), A ∈ Z , (6)

for any n ≥ 1, where {Vn,k : n ≥ 1, 1 ≤ k ≤ n} is a collection of non-negative weights that
satisfy the recurrence relation Vn,k = (n− σk)Vn+1,k + Vn+1,k+1 for all k = 1, . . . , n, n ≥ 1, with
the proviso V1,1 = 1.

Note that the Dirichlet process is a Gibbs-type prior model that corresponds to

Vn,k =
θk

(θ)n

for θ > 0, where we have denoted by (a)b = Γ(a + b)/Γ(a) the Pochhammer symbol
for the rising factorials. Moreover, the Pitman–Yor process is a Gibbs-type prior model
corresponding to

Vn,k =
∏k−1

i=0 (θ + iσ)
(θ)n

for σ ∈ (0, 1) and θ > −α. We refer to Pitman [20] for other examples of Gibbs-type prior
models and for a detailed account of the Vn,ks; see also Pitman [21] and the references
therein.

Because of de Finetti’s representation theorem, there exists a one-to-one correspon-
dence between the functions g and fi in the predictive distribution (5) and the law M of p̃,
i.e., the de Finetti measure. This is at the basis of Johnson’s “sufficientness” postulates, char-
acterizing species-sampling models through their predictive distributions. Regazzini [4]
and, later, Lo [5] provided the first “sufficientness” postulate for species-sampling models,
showing that the Dirichlet process is the unique species-sampling model for which the
function g depends on Zn only through n, and the function fi depends on Zn only through
n and ni for i ≥ 1. Such a result was extended in Zabell [24], providing the following
“sufficientness” postulate for the Pitman–Yor process: The Pitman–Yor process is the unique
species-sampling model for which the function g depends on Zn only through n and k,
and the function fi depends on Zn only through n and ni for i ≥ 1. Bacallado et al. [10]
discussed the “sufficientness” postulate in the more general setting of Gibbs-type prior
models, showing that Gibbs-type prior models are the sole species-sampling models for
which the function g depends on Zn only through n and k, and the function fi depends
on Zn only through n, k, and ni. This result shows a critical difference—at the sampling
level—between the Pitman–Yor process and Gibbs-type prior models, which lies in the
inclusion of the sampling information on the observed number of distinct species in the
probability of observing, at the (n + 1)-th draw, a species already observed in the sample.

3. Feature-Sampling Models

Feature-sampling models generalize species-sampling models by allowing each in-
dividual to belong to more than one species, which are now called features. To introduce
feature-sampling models, we consider a space of features W, which is assumed to be a
Polish space, and we denote by W its Borel σ-field. Thus, W contains all the possible
features’ labels of the population. Observations are represented through the counting
measure (3), whose parameter μ̃ is an almost surely discrete measure with masses in (0, 1).
When we deal with feature-sampling models, the hierarchical formulation (1) specializes as

Zj|μ̃ iid∼ BeP(μ̃)

μ̃ ∼M
(7)
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where μ̃ = ∑i≥1 p̃iδw̃i is an almost surely discrete random measure on W, and M denotes
its law. We also remind the reader that: (i) conditionally on μ̃, (Aj,i)i≥1 are indepen-
dent Bernoulli random variables with parameters ( p̃i)i≥1; (ii) ( p̃i)i≥1 are (0, 1)-valued
random weights; (iii) (w̃i)i≥1 are random features’ labels, independent of ( p̃i)i≥1, and
i.i.d. with common (non-atomic) distribution P. Completely random measures (CRMs)
(Daley and Vere-Jones [25], Kingman [26]) provide a popular class of nonparametric priors
M , the most common examples of which are the Beta process prior and the stable Beta pro-
cess prior (Teh and Gorur [27], James [28]); see also Broderick et al. [29] and the references
therein for other examples of CRM priors and generalizations thereof. Recently, Camer-
lenghi et al. [15] investigated an alternative class of nonparametric priors M , generalizing
CRM priors and referring to these as Scaled Processes (SPs). SP priors first appeared in the
work of James [28].

We assume a random sample Zn := (Z1, . . . , Zn) to be modeled as in (7), and we
introduce the predictive distribution of μ̃, that is, the conditional probability of Zn+1 given
Zn. Note that, because of the pure discreteness of μ̃, the observations Zn may share a
random number of distinct features, say Kn = k, denoted here as W∗1 , . . . , W∗Kn

, and each
feature W∗i is displayed exactly by Mn,i = mi of the n individuals as i = 1, . . . , k. Since
the features’ labels are immaterial and i.i.d. form the base measure P, the conditional
distribution of Zn+1, given Zn, may be equivalently characterized through the vector
(Yn+1, A∗n+1,1, . . . , A∗n+1,Kn

), where: (i) Yn+1 is the number of new features displayed by
the (n + 1)th individual, namely, hitherto unobserved out of the sample Zn; (ii) A∗n+1,i
is a {0, 1}-valued random variable for any i = 1, . . . , Kn, and A∗n+1,i = 1 if the (n + 1)th
individual displays feature W∗i ; it equals 0 otherwise. Hence, the predictive distribution of
μ̃ is

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn) = f (y, a1, . . . , ak; n, k, m) (8)

where we denote by f a probability distribution evaluated at (y, a1, . . . , ak), and where
n, k and m := (m1, . . . , mk) is the sampling information. In the rest of this section, we
specify the function f under the assumption of a CRM prior and an SP prior, showing its
dependence on n, Kn, and (Mn,1, . . . , Mn,Kn). In particular, we show how SP priors allow
one to enrich the predictive distribution of CRM priors by including additional sampling
information in terms of the number of distinct features and their corresponding frequencies.

3.1. Priors Based on CRMs

Let MW denote the space of all bounded and finite measures on (W, W ), that is to say,
μ ∈ MW iff μ(A) < +∞ for any bounded set A ∈ W . Here, we recall the definition of a
Completely Random Measure (CRM) (see, e.g., Daley and Vere-Jones [25]).

Definition 2. A Completely Random Measure (CRM) μ̃ on (W, W ) is a random element taking
values in the space MW such that the random variables μ̃(A1), . . . , μ̃(An) are independent for any
choice of bounded and disjoint sets A1, . . . , An ∈ W and for any n ≥ 1.

We remind the reader that Kingman [26] proved that a CRM may be decomposed as the
sum of a deterministic drift and a purely atomic component. In Bayesian nonparametrics, it
is common to consider purely atomic CRMs without fixed points of discontinuity, that is to
say, μ̃ may be represented as μ̃ := ∑i≥1 η̃iδw̃i , where (η̃i)i≥1 is a sequence of random atoms
and (w̃i)i≥1 are the random locations. An appealing property of purely atomic CRMs is the
availability of their Laplace functional; indeed, for any measurable function f : W→ R+,
one has

E
[
e−
∫
W

f (w)μ̃(dw)
]
= exp

{
−
∫
W×R+

(1− e−s f (w))ν(dw, ds)
}

(9)
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where ν is a measure on W×R+ called the Lévy intensity of the CRM μ̃, and it is such that

ν({w} ×R+) = 0 ∀w ∈W, and
∫

A×R+
min{s, 1}ν(dw, ds) < ∞ (10)

for any bounded Borel set A. Here, we focus on homogeneous CRMs by assuming that
the atoms η̃is and the locations w̃is are independent; in this case, the Lévy measure may be
written as

ν(dw, ds) = λ(s)dsP(dw)

for some measurable function λ : R+ → R+ and a probability measure P on (W, W ),
called the base measure, which is assumed to be diffuse. In this case, the distribution of μ̃
will be denoted as CRM(λ; P), and the second integrability condition in (10) reduces to
the following: ∫

R+
min{s, 1}λ(s)ds < +∞. (11)

In the feature-sampling framework, μ̃ may be used as a prior distribution if the sequence
of atoms (η̃i)i≥1 is in between [0, 1], which happens if the Lévy intensity has support on
W× [0, 1]. A noteworthy example, widely used in this setting, is the stable Beta process
prior (Teh and Gorur [27]). It is defined as a CRM with Lévy intensity

λ(s) = α · Γ(1 + c)
Γ(1− σ)Γ(c + σ)

s−1−σ(1− s)c+σ−11(0,1)(s) (12)

where c > 0, σ ∈ (0, 1), and α > 0 (James [28], Masoero et al. [30]). Now, we describe
the predictive distribution for an arbitrary CRM μ̃. For the sake of clarity, we fix the
following notation:

Poiss(y; C) :=
Cye−C

y!
, y ∈ N and Bern(a; p) := pa(1− p)1−a, a ∈ {0, 1}

to denote the probability mass functions of a Poisson with parameter C > 0 and a Bernoulli
random variable with parameter p ∈ [0, 1], respectively. We refer to James [28] for a
detailed posterior analysis of CRM priors; see also Broderick et al. [29] and the references
therein.

Theorem 1 (James [28]). Let Z1, Z2, . . . be exchangeable random variables modeled as in (7),
where M equals CRM(λ; P). If Zn is a random sample that displays Kn = k distinct fea-
tures {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times in the samples, such
as i = 1, . . . , Kn, then

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= Poiss
(

y;
∫ 1

0
s(1− s)nλ(s)ds

) k

∏
i=1

Bern(ai; p∗i )
(13)

being

p∗i :=

∫ 1
0 smi+1(1− s)n−mi λ(s)ds∫ 1

0 smi (1− s)n−mi λ(s)ds
.

Proof. We consider James [28] (Proposition 3.2) for Bernoulli product models (see also
Camerlenghi et al. [15] (Proposition 1)); thus, the distribution of Zn+1, given Zn, equals the
distribution of

Z′n+1 +
Kn

∑
i=1

A∗n+1,iδW∗i
, (14)
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where Z′n+1|μ̃′ = ∑i≥1 A′n+1,iδw̃′i
∼ BeP(μ̃′) such that μ̃′ ∼ CRM((1 − s)nλ; P), and

A∗n+1,1, . . . , A∗n+1,Kn
are Bernoulli random variables with parameters J1, . . . , JKn , respec-

tively, such that each Ji is a random variable whose distribution is with a density function
of the form

f Ji (s) ∝ (1− s)n−mi smi λ(s).

By exploiting the previous predictive characterization, we can derive the posterior
distribution of Yn+1 given Zn by means of a direct application of the Laplace functional.
Indeed, the distribution of Yn+1|Zn equals ∑i≥1 A′n+1,i. Thus, for any t ∈ R, we have
the following:

E[e−tYn+1 |Zn] = E[e−t ∑i≥1 A′n+1,i ] = E
[
∏
i≥1

e−tA′n+1,i
]
= E

[
E
[
∏
i≥1

e−tA′n+1,i | μ̃′
]]

= E
[
∏
i≥1

(
e−tη̃′i + (1− η̃′i )

)]
,

where we used the representation μ̃′ = ∑i≥1 η̃′i δw̃′i
and the fact that the An+1,is are indepen-

dent Bernoulli random variables conditionally on μ̃′. We now use the Laplace functional
for μ̃′ to get

E[e−tYn+1 |Zn] = E

[
exp

{
∑
i≥1

log(1 + η̃′i (e
−t − 1))

}]

= exp
{
−(1− e−t)

∫ 1

0
(1− s)nsλ(s)ds

}
.

As a direct consequence, the posterior distribution of Yn+1 given Zn is a Poisson distri-
bution with mean

∫ 1
0 (1− s)nsλ(s)ds. Again, by exploiting the predictive representation (14),

the posterior distribution of A∗n+1,i, as i = 1, . . . , Kn, is a Bernoulli with the following mean:

E[Ji] =
∫ 1

0
s f Ji (s)ds =

∫ 1
0 (1− s)n−mi smi+1λ(s)ds∫ 1

0 (1− s)n−mi smi λ(s)ds
.

Corollary 1. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M is
the law of the stable Beta process. If Zn is a random sample that displays Kn = k distinct
features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times in the samples, such as
i = 1, . . . , Kn, then

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= Poiss
(

y; α
(c + σ)n

(c + 1)n

) k

∏
i=1

Bern
(

ai;
mi − σ

n + c

)
,

(15)

where (x)y = Γ(x + y)/Γ(x) denotes the Pochhammer symbol for x, y > 0.

Proof. It is sufficient to specialize Theorem 1 for the stable Beta process. In particular, from
Theorem 1, the posterior distribution of Yn+1 given Zn is a Poisson distribution with mean

∫ 1

0
s(1− s)nλ(s)ds

(12)
=

αΓ(1 + c)
Γ(1− σ)Γ(c + σ)

∫ 1

0
s−σ(1− s)n+c+σds = α

(c + σ)n

(c + 1)n
.
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Moreover, the parameters of the Bernoulli random variables A∗n+1,1, . . . , A∗n+1,Kn
are

equal to

p∗i =

∫ 1
0 smi+1(1− s)n−mi λ(s)ds∫ 1

0 smi (1− s)n−mi λ(s)ds

(12)
=

B(mi + 1− σ, c + σ + n−mi)

B(mi − σ, c + σ + n−mi)
=

mi − σ

n + c

as i = 1, . . . , Kn.

3.2. SP Priors

From Theorem 1, under CRM priors, the distribution of the number of new features
Yn+1 is a Poisson distribution that depends on the sampling information only through
the sample size n. Moreover, the probability of observing a feature already observed in
the sample, say W∗i , depends only on the sample size n and the frequency mi of feature
W∗i out of the initial sample. Camerlenghi et al. [15] showed that SP priors allow one to
enrich the predictive structure of CRM priors, including additional sampling information
in the probability of discovering new features. To introduce SP priors, consider a CRM
μ̃ = ∑i≥1 τ̃iδw̃i on W, where (τ̃i)i≥1 are positive random atoms and (w̃i)i≥1 are i.i.d. random
atoms, with Lévy intensity ν(dw, ds) = λ(s)dsP(dw) satisfying∫ ∞

0
min{s, 1}λ(s)ds < +∞. (16)

Consider the ordered jumps Δ1 > Δ2 > · · · of the CRM μ̃ and define the random measure

μ̃Δ1 = ∑
i≥1

Δi+1

Δ1
δw̃i

normalizing μ̃ by the largest jump. The definition of SPs follows with a suitable change in
the measure of Δ1 (James et al. [14], Camerlenghi et al. [15]). Let us denote by L ( · , a) a
regular version of the conditional probability distribution of (Δi+1/Δ1)i≥1 given Δ1 = a.
Now denote by Ψ1 a positive random variable with density function fΨ1 on R+ and define

L ( · ) :=
∫
R+

L ( · , a) fΨ1(a)da

The distribution of (Δi+1/Δ1)i≥1 is obtained by mixing L ( · , a) with respect to the
density function fΨ1 . Thus, we are ready to define an SP.

Definition 3. A Scaled Process (SP) prior on (W, W ) is defined as the almost surely discrete
random measure

μ̃Ψ1 := ∑
i≥1

η̃iδw̃i , (17)

where (η̃i)i≥1 has distribution L and (w̃i)i≥1 is a sequence of independent random variables with
common distribution P, also independent of (η̃i)i≥1. We will write μ̃Ψ1 ∼ SP(ν, fΨ1).

A thoughtful account with a complete posterior analysis for SPs is given in Camer-
lenghi et al. [15]. Here, we characterize the predictive distribution (8) of SPs.

Theorem 2 (Camerlenghi et al. [15], James [28]). Let Z1, Z2, . . . be exchangeable random
variables modeled as in (7), where M equals SP(ν, fΨ1). If Zn is a random sample that displays
Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times
in the samples, such as i = 1, . . . , Kn, then the conditional distribution of Ψ1, given Zn, has
posterior density:

fΨ1|Zn(a) ∝ e−∑n
i=1
∫ 1

0 s(1−s)n−1aλ(as)ds
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a). (18)
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Moreover, conditionally on Zn and Ψ1,

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn, Ψ1)

= Poiss
(

y;
∫ 1

0
sΨ1(1− s)nλ(sΨ1)ds

) k

∏
i=1

Bern(ai; p∗i (Ψ1))
(19)

being

p∗i (Ψ1) :=

∫ 1
0 smi+1(1− s)n−mi λ(sΨ1)ds∫ 1

0 smi (1− s)n−mi λ(sΨ1)ds
.

Proof. The representation of the predictive distribution (19) follows from Camerlenghi
et al. [15] (Proposition 2). Indeed, the posterior distribution of the largest jump directly
follows from [15] (Equation (4)). In addition, the authors of [15] (Proposition 2) showed
that the conditional distribution of Zn+1, given Zn and Ψ1, equals the distribution of the
following counting measure:

Z′n+1 +
Kn

∑
i=1

A∗n+1,iδW∗i
, (20)

where Z′n+1|μ̃′ = ∑i≥1 A′n+1,iδw̃′i
∼ BeP(μ̃′Ψ1

) and μ̃′Ψ1
is a CRM with Lévy intensity of

the form
ν′Ψ1

(dw, ds) = (1− s)nΨ1λ(Ψ1s)1(0,1)(s)dsP(dw).

Moreover, A∗n+1,1, . . . , A∗n+1,Kn
are Bernoulli random variables with parameters J1, . . . , JKn ,

respectively, such that conditionally on Ψ1, each Ji has a distribution with a density function of
the form

f Ji |Ψ1
(s) ∝ (1− s)n−mi smi Ψ1λ(Ψ1s) on (0, 1).

As in the proof of Theorem 1, we show that the distribution of Yn+1|(Ψ1, Zn) equals
∑i≥1 A′n+1,i. Thus, by the evaluation of the Laplace functional, one may easily realize

that the last random sum has a Poisson distribution with mean
∫ 1

0 (1− s)nsΨ1λ(Ψ1s)ds.
Moreover, by exploiting the posterior representation (20), the variables A∗n+1,i, such as
i = 1, . . . , Kn, conditionally on Zn and Ψ, are independent and Bernoulli distributed
with mean

E[Ji|Ψ1] =
∫ 1

0
s f Ji |Ψ1

(s)ds =

∫ 1
0 (1− s)n−mi smi+1Ψ1λ(sΨ1)ds∫ 1

0 (1− s)n−mi smi Ψ1λ(sΨ1)ds
.

Remark 1. According to (18), the conditional distribution of Ψ1 given Zn may include the whole
sampling information, depending on the specification of ν and fΨ1 , and hence, the conditional
distribution of Yn+1 given Zn may also include such sampling information. As a corollary of
Theorem 2, the conditional distribution of Yn+1 given Zn is a mixture of Poisson distributions that
may include the whole sampling information; in particular, the amount of sampling information
in the posterior distribution is uniquely determined by the mixing distribution, namely by the
conditional distribution of Ψ1, given Zn.

Hereafter, we specialize Theorem 2 for the stable SP, that is, a peculiar SP defined
through a CRM with a Lévy intensity ν such that λ(s) = σs−1−σ for a parameter σ ∈ (0, 1).
We refer to Camerlenghi et al. [15] for a detailed posterior analysis of the stable SP prior.

Corollary 2. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M equals
SP(ν, fΨ1), with λ(s) = σs−1−σ for some σ ∈ (0, 1). If Zn is a random sample that displays
Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi times
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in the samples, such as i = 1, . . . , Kn, then the conditional distribution of Ψ1, given Zn, has
posterior density:

fΨ1|Zn(a) ∝ a−kσe−σa−σ ∑n
i=1 B(1−σ,i) fΨ1(a) (21)

having denoted by B( · , · ) the classical Euler Beta function. Moreover, conditionally on Zn and Ψ1,

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn, Ψ1)

= Poiss
(
y; σΨ−σ

1 B(1− σ, n + 1)
) k

∏
i=1

Bern
(

ai;
mi − σ

n− σ + 1

)
.

(22)

Proof. The proof is a plain application of Theorem 2 under the choice λ(s) = σs−1−σ.

4. Predictive Characterizations for SPs

In this section, we introduce and discuss Johnson’s “sufficientness” postulates in the
context of feature-sampling models under the class of SP priors. According to Theorem 1, if
the feature-sampling model is a CRM prior, then the conditional distribution of Yn+1, given
Zn, is a Poisson distribution that depends on the sampling information Zn only through
the sample size n. Moreover, the conditional probability of generating an old feature W∗i
given Zn depends on the sampling information Zn only through n and mi. As shown in
Theorem 2, SP priors enrich the predictive structure of CRM priors through the conditional
distribution of the latent variable Ψ1 given the observable sample Zn. In the next theorem,
we characterize the class of SP priors for which the conditional distribution of Yn+1 given
Zn depends on the sampling information only through n.

Theorem 3. Let Z1, Z2, . . . be exchangeable random variables modeled as in (7), where M equals
SP(ν, fΨ1) and ν(dw, ds) = λ(ds)dsP(dw). Moreover, suppose that Zn is a random sample that
displays Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears exactly Mn,i = mi
times in the samples, such as i = 1, . . . , Kn. If fΨ1 : (0, r) → R+ is a continuous function
on the compact support (0, r) with r > 0, and the function λ : R+ → R+ is continuous on
its domain, then the conditional distribution of the latent variable Ψ1 given Zn depends on the
sampling information Zn only through n if and only if λ(s) = Cs−1 on (0, r) for some constant
C > 0.

Proof. First of all, if fΨ1 is defined on the compact support (0, r) and if λ(s) = Cs−1 on
(0, r) for some constant C > 0, then it is easy to see that the posterior distribution of
Ψ1 in (18) depends only on n and not on the other sample statistics. We now show the
reverse implication. The posterior density of Ψ1, conditionally on Zn, satisfies (18), and it
is proportional to

fΨ1|Zn(a) ∝
n

∏
i=1

e−φi(a)
Kn

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a),

where φi(a) =
∫ 1

0 s(1 − s)i−1aλ(as)ds. Then, there exists c(m1, . . . , mk, k, n) such that
it holds that

fΨ1|Zn(a) =
∏n

i=1 e−φi(a) ∏Kn
i=1

∫ 1
0 smi (1− s)n−mi aλ(as)ds fΨ1(a)

c(m1, . . . , mk, k, n)
. (23)

Because of the assumptions imposed, the distribution of Ψ1|Zn does not depend on Kn,
nor on the corresponding sample frequencies Mn,1, . . . , Mn,Kn . Accordingly, the function

f1(a, n) := f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a), a ∈ (0, r), (24)
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depends only on a and n, but not on k and (m1, . . . , mk). Then, putting together (23)
and (24), it holds that

f1(a, n) ·
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds = c(m1, . . . , mk, n, k) ∀a ∈ (0, r), (25)

where c is the normalizing factor, and it does not depend on the variable a. By choosing
m1 = . . . = mk = n ∈ N, thanks to Equation (25), we can state that the following function:

f1(a, n)
(∫ 1

0
snaλ(as)ds

)k

, (26)

which is defined for any a ∈ (0, r) and does not depend on a, but only on k and n. Since
the previous assertion is true for any k ≥ 1, one may select k = 1, thus obtaining the
following identity:

f1(a, n) = c∗
(∫ 1

0
snaλ(as)ds

)−1

(27)

for some constant c∗, independent of a, but that may depend on n. Substituting (27)
into (26), we obtain that

c∗
(∫ 1

0
snaλ(as)ds

)k−1

(28)

is a function that does not depend on a, but only on n and k. As a consequence, we have that

∫ 1

0
snaλ(as)ds =

∫ a

0

sn

an λ(s)ds = C∗∗

for a suitable constant C∗∗, which does not depend on a ∈ (0, r). To conclude, we take a
derivative of the previous expression with respect to a, and this allows us to show that

anλ(a) = nan−1C∗∗,

namely, λ(a) = C/a for a ∈ (0, r), where C is a positive constant. This is a Lévy inten-
sity; indeed, it satisfies the condition (11). Outside the interval (0, r), λ may be defined
arbitrarily; indeed, the values of λ on [r + ∞) do not affect the posterior distribution of
Ψ1 (18).

Remark 2. Note that in Theorem 3, we have supposed that fΨ1 has a compact support on (0, r);
thus, we are interested in defining λ on (0, r); outside the interval, λ can be defined arbitrarily
because it does not affect the posterior distribution (18) of Ψ1. From the proof of Theorem 3,
it becomes apparent that if the support of fΨ1 is the entire positive real line R+, the posterior
distribution of the largest jump depends only on n if and only if λ(s) = Cs−1 on R+ for some
constant C > 0. However, in this case, λ does not meet the integrability condition (11); hence, this
can only considered a limiting case. It is interesting to observe that such a limiting situation, with
the additional assumption fΨ1 = fΔ1 , corresponds to the Beta process case with σ = 0 and c = 1
(Griffiths and Ghahramani [12]).

Now, we characterize SPs for which the posterior distribution of Ψ1 depends only on
n and Kn, but not on the sample frequencies of the different features m. Here, we assume
that fΨ1 has full support a priori. The following characterization has been provided in
Camerlenghi et al. [15] (Theorem 3), but for completeness, we report the proof.

Theorem 4 (Camerlenghi et al. [15]). Let Z1, Z2, . . . be exchangeable random variables modeled
as in (7), where M equals SP(ν, fΨ1) and ν(dw, ds) = λ(ds)dsP(dw). Suppose that Zn is a
random sample that displays Kn = k distinct features {W∗1 , . . . , W∗Kn

}, and feature W∗i appears
exactly Mn,i = mi times in the sample, such as i = 1, . . . , Kn. If fΨ1 : R+ → R+ is a strictly

47



Mathematics 2021, 9, 2891

positive function on R+ and continuously differentiable, and λ is continuously differentiable, then
the conditional distribution of the latent variable Ψ1, given Zn, depends on Zn only through n and
Kn if and only if λ(s) = Cs−1−σ on R+ for some constant C > 0 and σ ∈ (0, 1).

Proof. By arguing as in the proof of Theorem 3, the posterior density of Ψ1 given Zn is
proportional to

n

∏
i=1

e−φi(a)
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a),

where φi(a) =
∫ 1

0 s(1 − s)i−1aλ(as)ds. Then, there exists c(m1, . . . , mk, n, k) such that
it holds that

fΨ1|Zn(a) =
∏n

i=1 e−φi(a) ∏k
i=1
∫ 1

0 smi (1− s)n−mi aλ(as)ds fΨ1(a)
c(m1, . . . , mk, n, k)

.

As a consequence,

f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a)
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds fΨ1(a) = c(m1, . . . , mk, n, k). (29)

If the density function fΨ1|Zn(a) does not depend on m1, . . . , mk, then the following
function

f−1
Ψ1|Zn

(a)
n

∏
i=1

e−φi(a) fΨ1(a) = f1(a, k, n)

depends only on k, n and a, but not on the frequency counts. Therefore, (29) boils down to

f1(a, k, n) ·
k

∏
i=1

∫ 1

0
smi (1− s)n−mi aλ(as)ds = c(m1, . . . , mk, n, k). (30)

where the function on the right-hand side of (30) is independent of a for any choice of the
vector of sampling information (m1, . . . , mk, n, k). Now, since the vector (m1, . . . , mk, n, k)
can be chosen arbitrarily, we can make the choice m1 = · · · = mk = m > 0, such that
the function [

w(a, k, n)
∫ 1

0
sm(1− s)n−maλ(as)ds

]k

(31)

does not depend on a ∈ R+, where w(a, k, n) = k
√

f1(a, k, n). Moreover, suppose that
m = n; thus,

w(a, k, n)
∫ 1

0
snaλ(as)ds (32)

does not depend on a ∈ R+, which implies that

w(a, k, n) = c∗
(∫ 1

0
snaλ(as)ds

)−1

(33)

for a constant c∗ > 0 with respect to a, which can only depend on k and n. By substitut-
ing (33) into (31), we obtain[

c∗∫ 1
0 snλ(as)ds

·
∫ 1

0
sm(1− s)n−mλ(as)ds

]k

,
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which is independent of a ∈ R+. Now, it is possible to choose m = n− 1 in the previous
function. Therefore, there exists a constant c∗∗ independent of a such that the following
identity holds:

∫ 1

0
sn−1λ(as)ds−

∫ 1

0
snλ(as)ds = c∗∗

∫ 1

0
snλ(as)ds.

By taking the derivative of the previous equation two times with respect to a,
one obtains

λ(a)(1− nc∗∗) = aλ′(a)c∗∗,

which is an ordinary differential equation in λ that can be solved by separation of variables.
In particular, we obtain

λ(a) = Ca(1−nc∗∗)/c∗∗ , for C > 0. (34)

To conclude, observe that the exponent of a in (34) should satisfy the integrability
condition (11) for homogeneous CRMs. Accordingly, it is easy to see that we must consider

λ(a) = C
1

a1+σ

where C > 0 and σ ∈ (0, 1). The reverse implication of the theorem is trivially satisfied;
hence, the proof is completed.

We recall from Theorem 2 that the conditional distribution of Ψ1 given Zn uniquely
determines the amount of sampling information included in the conditional distribution of
the number of new features Yn+1 given Zn. Such sampling information may range from
the whole information, in terms of n, Kn, and (M1,n, . . . , MKn ,n), to the sole information on
the sample size n. According to Theorem 4, the stable SP prior of Corollary 2 is the sole
SP prior for which the conditional distribution of the number of new features Yn+1 given
Zn depends on the sampling information Zn only on n and Kn. Moreover, according to
Theorem 3, the Beta process prior is the sole SP prior for which the conditional distribution
of the number of new features Yn+1 given Zn depends on the sampling information Zn only
on n. In particular, Theorems 3 and 4 show that the Beta process prior and the stable SP
prior may be considered, to some extent, the feature sampling counterparts of the Dirichlet
process prior the Pitman–Yor process prior.

5. Discussion and Conclusions

In this paper, we have introduced and discussed Johnson’s “sufficientness” postu-
lates in the context of feature-sampling models. “Sufficientness” postulates have been
investigated extensively in the context of species-sampling models, providing an effective
classification of species-sampling models on the basis of the form of their corresponding
predictive distributions. Here, we made a first step towards the problem of providing an
analogous classification for feature-sampling models. In particular, we obtained Johnson’s
“sufficientness” postulates when the class of feature-sampling models is restricted to the
class of scaled process priors. However, the results presented in the paper remain prelimi-
nary, and do not at all provide a complete answer to the characterization problem within
the general class of feature-sampling models. This problem remains open.

Within the feature-sampling setting, the predictive distribution is of the form (8),
though for the purpose of providing “sufficientness” postulates, one may focus on feature-
sampling models exhibiting a general predictive distribution of the following type:

P((Yn+1, A∗n+1,1, . . . , A∗n+1,Kn
) = (y, a1, . . . , aKn)|Zn)

= g(y; n, k, m)
k

∏
i=1

fi(ai; n, k, m).
(35)
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Note that (35) is a probability distribution, and it must satisfy a consistency condition,
as usual. Among all the feature-sampling models whose predictive distribution can be
written in the form (35), we are interested in characterizing nonparametric priors such that:
(i) The function g depends on the sampling information only through n, and the function
fi depends only on (n, mi); (ii) g depends only on (n, k) and fi depends only on (n, mi);
(iii) g depends only on (n, k) and fi depends only on (n, k, mi). In our view, these charac-
terizations may provide a complete picture of sufficientness postulates within the feature
setting, and they are also fundamental to guiding the selection of the prior distribution.
We conjecture that CRMs are the nonparametric priors satisfying the characterization (i),
the SP with a stable Lévy measure is an example of prior satisfying (ii), and no examples
satisfying (iii) have been considered in the current literature. Results in this direction are
in Battiston et al. [31], where the authors characterize an exchangeable feature allocation
probability function (Broderick et al. [32]) in product forms; this could be a stimulating
point of departure to study the characterization problem depicted above.
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Abstract: In recent papers the authors introduce, study and apply a variant of the Eggenberger—
Pólya urn, called the “rescaled” Pólya urn, which, for a suitable choice of the model parameters,
exhibits a reinforcement mechanism mainly based on the last observations, a random persistent
fluctuation of the predictive mean and the almost sure convergence of the empirical mean to a
deterministic limit. In this work, motivated by some empirical evidence, we show that the mul-
tidimensional Wright—Fisher diffusion with mutation can be obtained as a suitable limit of the
predictive means associated to a family of rescaled Pólya urns.

Keywords: Pólya urn; predictive mean; urn model; Wright—Fisher diffusion

1. Introduction

The well-known standard Eggenberger—Pólya urn [1,2] works as follows. An urn
initially contains N0, i balls of color i, for i = 1, . . . , k, and at each time-step, a ball is drawn
from the urn and then it is returned into the urn together with α > 0 additional balls
of the same color (here and in the following, the expression “number of balls” is not to
be understood literally, but all the quantities are real numbers, not necessarily integers).
Hence, denoting by Nn, i the number of balls of color i inside the urn at time-step n, we have

Nn, i = Nn−1, i + αξn, i for n ≥ 1,

where ξn, i = 1 if the drawn ball at time-step n is of color i, and ξn, i = 0 otherwise.
The parameter α tunes the reinforcement mechanism: the greater the α, the greater the
dependence of Nn, i on ∑n

h=1 ξh, i.
In [3–5], the rescaled Pólya (RP) urn has been introduced, studied, generalized and

applied. This model differs from the original one by the introduction of a parameter β
such that

Nn, i = bi + Bn, i with

Bn+1, i = βBn, i + αξn+1, i n ≥ 0.

Therefore, at time-step 0, the urn contains bi + B0, i > 0 balls of color i and the
parameters α > 0 and β ≥ 0 regulate the reinforcement mechanism. More precisely, the
term βBn, i connects Nn+1, i to the “configuration” at time-step n by means of the “scaling”
parameter β, and the term αξn+1, i connects Nn+1, i to the outcome of the drawing at time-
step n + 1 by means of the parameter α. The case β = 1 corresponds to the standard
Eggenberger—Pólya urn with an initial number N0, i = bi + B0, i of balls of color i. When
β < 1, the RP urn model shows the following three characteristics:

(i) A reinforcement mechanism mainly based on the last observations;
(ii) A random persistent fluctuation of the predictive mean ψn, i = E[ξn+1, i = 1|, ξh, j, 0 ≤

h ≤ n, 1 ≤ j ≤ k];
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(iii) The almost sure convergence of the empirical mean ∑N
n=1 ξn, i/N to the deterministic

limit pi = bi/ ∑n
i=1 bi, and a chi-squared goodness of fit result for the long-term

probability distribution {p1, . . . , pk}.
Regarding point (iii), we specifically have that the chi-squared statistics

χ2 = N
k

∑
i=1

(Oi/N − pi)
2

pi
,

where N is the sample size and Oi = ∑N
n=1 ξn, i the number of sampled observations equal

to i, is asymptotically distributed as χ2(k− 1)λ, with λ > 1. Therefore, the presence of
correlation among observations attenuates the effect of N, which multiplies the chi-squared
distance between the observed frequencies and the expected probabilities. This is a key
feature for statistical applications in the framework of a “big sample”, where a small value
of the chi-squared distance might be significant, and hence a correction related to the
correlation between observations is required. In [3,5], a possible application in the context
of clustered data was described, with independence between clusters and correlation due
to a reinforcement mechanism inside each cluster.

In [4], the RP urn was applied as a good model for the evolution of the sentiment
associated with Twitter posts. Precisely, we analyzed three data sets: (i) the “COVID-19
epidemic” data set covers the period from 21 February to 20 April to 2020 and includes
tweets in Italian about the COVID-19 epidemic; (ii) the “Migration debate” data set refers
to the period from 23 January to 22 February 2019 and the collected posts are related to the
Italian debate on migration; (iii) the “10 days of traffic” data set collects the entire traffic of
posts in Italian in the period from 1 September to 10 September 2019. For every post, the
relative sentiment, that is, the positive or negative connotation of the text, was computed
using the polyglot python module developed in [6], which provides a numerical value
v ∈ [−1, 1] for the sentiment of a post (for a survey on sentiment analysis, also known as
opinion mining, we refer to [7] and references therein). We fixed a threshold T so that a
tweet with v > T was classified as a tweet with a positive sentiment and one with v < −T
was classified as a tweet with a negative sentiment. Tweets with a value v ∈ [−T, T] were
discarded. We took the following different values for T: T = 0, T = 0.35 and T = 0.5. We
applied the RP urn model, ordering the tweets according to their creation time and taking
each tweet with a positive/negative classification as an extraction in the urn model. More
specifically, we applied the RP model with k = 2: the time series of the tweets represents
the time series of the extractions from the urn, that is, the random variables ξn, 1. The event
{ξn, 1 = 1}means that tweet n exhibits a positive sentiment, while {ξn, 1 = 0}means that
tweet n exhibits a negative sentiment. For all the considered data sets, the estimated values
of β were strictly smaller than 1, but very near to 1 (details about the parameters estimation
can be found in [4]). Note that the RP urn dynamics with such a value for β cannot be
approximated by the standard Pólya urn (β = 1), because one would lose the fluctuations
of the predictive means and the possibility of touching the barriers {0, 1}. In this work, we
show that the law of such an RP urn process can be approximated by a Wright—Fisher
diffusion with mutation. More precisely, we prove that the multidimensional Wright—
Fisher diffusion with mutation can be obtained as a suitable limit of the predictive means
associated with a family of RP urns with β ∈[0,1), β→ 1. As an example, in Figure 1, for
the data set “COVID-19 epidemic”, we show the plot of the process (ψn, 1)n, reconstructed
from the data (details about the reconstruction process can be found in [4]) and rescaled in
time as t = n(1− β)2, the plot of a simulated (by the Euler–Maruyama method) trajectory
of the Wright—Fisher process, the plot of the approximation of this trajectory by means of
the RP urn and the approximation of the data process by means of the standard Pólya urn.
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Figure 1. “COVID-19 epidemic” Twitter data set: the black line is the process (ψn, 1)n, reconstructed
from the data and rescaled in time as t = n(1− β)2; the red line is a simulated trajectory of the
Wright—Fisher process; the orange line is the approximation of this trajectory by means of the RP urn
and the blue line is the approximation of the data process by means of the standard Pólya urn. The
numbers 0, 0.35 and 0.5 refer to the values chosen for the threshold T. The corresponding estimated
values for 1− β are: 0.000776 (8× 10−4), 0.00115 (11× 10−4) and 0.00130 (13× 10−4).

The Wright–Fisher (WF) class of diffusion processes models the evolution of the
relative frequency of a genetic variant, or allele, in a large randomly mating population
with a finite number k of genetic variants. When k = 2, the WF diffusion obeys the
one-dimensional stochastic differential equation

dXt = F(Xt)dt +
√

Xt(1− Xt)dWt, X0 = x0, t ∈ [0, T]. (1)

The drift coefficient, F : [0, 1]→ R, can include a variety of evolutionary forces such as
mutation and selection. For example, F(x) = p1 − (p1 + p2)x = p1(1− x)− p2x describes
a process with recurrent mutation between the two alleles, governed by the mutation rates
p1 > 0 and p2 > 0. The drift vanishes when x = p1/(p1 + p2) which is an attracting point
for the dynamics. Equation (1) can be generalized to the case k > 2. The WF diffusion pro-
cesses are widely employed in Bayesian statistics, as models for time-evolving priors [8–11]
and as a discrete-time finite-population construction method of the two-parameter Poisson–
Dirichlet diffusion [12]. They have been applied in genetics [13–18], in biophysics [19,20],
in filtering theory [21,22] and in finance [23,24].

The benefit coming from the proven limit result is twofold. First, the known prop-
erties of the WF process can give a description of the RP urn when the parameter β is
strictly smaller than one, but very near to one. Second, the given result might furnish the
theoretical base for a new simulation method of the WF process. Indeed, the simulation
from Equation (1) is highly nontrivial because there is no known closed form expression
for the transition function of the diffusion, even in the simple case with null drift [25].

The rest of the paper is organized as follows. In Section 2, we set up our notation and
we formally define the RP urn model. Section 3 provides the main result of this work, that
is, the convergence result of a suitable family of predictive means associated with RP urns
with β→ 1. In Section 4, employing the boundary classification of the WF diffusion with
mutation and connecting it to the parameters of the RP urn model, we introduce an RP urn
with a value of β very near to 1 the notion of recessive subsets of colors and the notion of
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dominant color. These two concepts are related to the possibility of reaching the barriers 0
and 1 by the predictive means of the urn process. Finally, Section 5 summarizes the work
and concludes it.

2. The Rescaled Pólya Urn

For a vector x = (x1, . . . , xk)
� ∈ Rk, we set |x| = ∑k

i=1 |xi| and ‖x‖2 = x�x =

∑k
i=1 |xi|2. Moreover we denote by 1 and 0 the vectors with all the components equal to 1

and equal to 0, respectively.
Let α > 0 and β ≥ 0. At time-step 0, the urn contains bi + B0, i > 0 distinct balls of

color i, with i = 1, . . . , k. We set b = (b1, . . . , bk)
� and B0 = (B0, 1, . . . , B0, k)

�. We suppose
b = |b| > 0 and we set p = b

b . At each time-step (n + 1) ≥ 1, a ball is drawn at random
from the urn and we define the random vector ξn+1 = (ξn+1, 1, . . . , ξn+1, k)

� as

ξn+1, i =

{
1 when the drawn ball at time-step n + 1 is of color i
0 otherwise.

The number of balls inside the urn is updated as follows:

Nn+1 = b + Bn+1 with Bn+1 = βBn + αξn+1 , (2)

which gives

Bn = βnB0 + αβn
n

∑
h=1

β−hξh . (3)

Similarly, from the equality

|Bn+1| = β|Bn|+ α ,

we get, using ∑n−1
h=0 xh = (1− xn)/(1− x),

|Bn| = βn|B0|+ α
n

∑
h=1

βn−h = βn
(
|B0| −

α

1− β

)
+

α

1− β
. (4)

Setting r∗n = |Nn| = b + |Bn|, that is the total number of balls inside the urn at
time-step n, we get the relations

r∗n+1 = r∗n + (β− 1)|Bn|+ α (5)

and

r∗n = b +
α

1− β
+ βn

(
|B0| −

α

1− β

)
. (6)

Denoting by F0 the trivial σ-field and setting Fn = σ(ξ1, . . . , ξn) for n ≥ 1, the
conditional probabilities ψn = (ψn, 1, . . . , ψn, k)

� of the extraction process, also called
predictive means, are

ψn = E[ξn+1|Fn] =
Nn

|Nn|
=

b + Bn

r∗n
n ≥ 0 (7)

and, from (3) and (4), we have

ψn =
b + βnB0 + α ∑n

h=1 βn−hξh

b + α
1−β + βn

(
|B0| − α

1−β

) . (8)

The dependence of ψn on ξh is regulated by the factor f (h, n) = αβn−h, with 1 ≤ h ≤
n, n ≥ 0. In the case of the standard Eggenberger—Pólya urn (i.e., the case β = 1), each
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observation ξh has the same “weight” f (h, n) = α. Instead, when β < 1 the factor f (h, n)
increases with h, and the main contribution is given by the most recent drawings. The case
β = 0 is an extreme case, for which ψn depends only on the last drawing ξn.

By means of (7), together with (2) and (5), we get

ψn+1 −ψn = − (1− β)

r∗n+1
b
(
ψn − p

)
+

α

r∗n+1

(
ξn+1 −ψn

)
. (9)

Setting ΔMn+1 = ξn+1−ψn and letting εn = b(1− β)/r∗n+1 and δn = α/r∗n+1, from (9)
we obtain

ψn+1 −ψn = −εn(ψn − p) + δnΔMn+1 . (10)

3. Main Result

Consider the RP urn with parameters α > 0, β ∈ [0, 1), b > 0 and B0 such that
|B0| = r(β) = α/(1− β). Consequently, the total number of balls in the urn along the

time-steps is constantly equal to r∗(β) = b + r(β) and if we denote by ψ(β) = (ψ
(β)
n )n the

predictive means corresponding to the fixed value β, we have the dynamics

ψ
(β)
n −ψ

(β)
n−1 = −ε(β)

(
ψ
(β)
n−1 − p

)
+ δ(β)ΔM(β)

n , (11)

where

ε(β) =
b(1− β)2

α + b(1− β)
, δ(β) =

α(1− β)

α + b(1− β)
(12)

and ΔM(β)
n = ξ

(β)
n −ψ

(β)
n−1. Note that we have ε(β) ∼ cδ(β)2 for β→ 1, with c = b/α > 0.

Finally, we define X(β) = (X(β)
t )t≥0, where

X(β)
t = ψ

(β)
�t/(1−β)2� ⇐⇒ X(β)

t = ψ
(β)
n−1, t ∈ [ (n− 1)(1− β)2, n(1− β)2 ). (13)

The following result holds true:

Theorem 1. Suppose that X(β)
0 weakly converges towards some process X0 when β→ 1. Then,

for β → 1, the family of stochastic processes {X(β), β ∈ [0, 1)} weakly converges towards the
k-alleles Wright—Fisher diffusion X = (Xt)t≥0, with type-independent mutation kernel given by
p and with dynamics

dXt = −b
Xt − p

α
dt + Σ(Xt)dWt, (14)

with Σ(Xt)Σ(Xt)� =
(

diag(Xt)− XtXt
�
)

and 1�Σ(Xt) = 0�, that is,

Σ(Xt)ij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if Xt,iXt,j = 0 or i < j√

Xt,i
∑k

l=i+1 Xt,l

∑k
l=i Xt,l

if i = j and Xt,iXt,j �= 0

−Xt,i

√
Xt,j

∑k
l=j Xt,l ∑k

l=j+1 Xt,l
if i > j and Xt,iXt,j �= 0.

(15)

Proof. Fix a sequence (βn), with βn ∈ [0, 1) and βn → 1. The sequence of processes
{X(βn), n ∈ N} is bounded, hence we have to prove the tightness of the sequence in the
space Dk[0, ∞) of right-continuous functions with the usual Skorohod topology, and the
characterization of the law of the unique limit process.

For any f ∈ C2
b , define
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γ
(β, f )
n (x) = Â(β) f ((n− 1)(1− β)2)(x)

= E
[ f (X(β)

n(1−β)2 )− f (X(β)
(n−1)(1−β)2 )

(1− β)2

∣∣∣X(β)
(n−1)(1−β)2 = x

]
= E
[ f (ψ(β)

n )− f (ψ(β)
n−1)

(1− β)2

∣∣∣ψ(β)
n−1 = x

]
by ψ

(β)
n −ψ

(β)
n−1=−ε(β)

(
ψ

(β)
n−1−p

)
+δ(β)ΔM(β)

n
=

1
(1− β)2

(
E
[

f (x) + ∑
i

∂ f
∂xi

(x)(−ε(β)(xi − pi) + δ(β)ΔMn,i
(β))

+ 1
2 δ(β)2 ∑

ij

∂2 f
∂xi∂xj

(x)ΔM(β)
n,i ΔM(β)

n,j + O((1− β)3)
∣∣∣Fn−1

]
− f (x)

)

= − b
α+b(1−β) ∑

i

∂ f
∂xi

(x)(xi − pi) +
1
2

α2

(α+b(1−β))2 ∑
ij

∂2 f
∂xi∂xj

(x)(xi�i=j − xixj)

+ O(1− β) .

(16)

We note that, for any f ∈ C2
b , the partial derivatives in (16) are uniformly bounded, as x

belongs to the compact simplex S = {xi ≥ 0, ∑i xi = 1}. The family {γ(β, f )
n (x), n ∈ N, β <

1, x ∈ S} is then uniformly integrable. Thus, as a consequence of [26] (Theorem 4) (or [27]
(ch. 7.4.3, Theorem 4.3, p. 236)), we have that the sequence of processes {X(βn), n ∈ N} is
tight in the space of right-continuous functions with the usual Skorohod topology. Since,

for any n and t, X(βn)
t ∈ S, then 1�Σ(Xt) = 0�. Moreover, the generator of the limit

process is determined by the limit

A f (t)(x) = lim
n→∞

γ
(βn , f )
�t/(1−β)2�(x)

= − b
α ∑

i

∂ f
∂xi

(x)(xi − pi) +
1
2 ∑

ij

∂2 f
∂xi∂xj

(x)(xi�i=j − xixj).

Hence, the weak limit of the sequence of the bounded processes X(βn) is the
diffusion process

dXt = −b
Xt − p

α
dt + Σ(Xt)dWt, Σ(Xt)Σ(Xt)

� =
(

diag(Xt)− XtXt
�
)

.

The expression (15) follows from [28] (Corollary 3).

Remark 1 (Limiting ergodic distribution). Since the simplex has dimension k− 1 with respect
to the Lebesgue measure, it is convenient to change the notations. Let Tk−1 be the k− 1-dimensional
simplex defined by

Tk−1 := {y ∈ Rk−1 : y1 ≥ 0, . . . , yk−1 ≥ 0, 1− y1 − y2 − · · · − yk−1 ≥ 0},

where, with the old definition, we have xi = yi, i < k and xk := 1 − y1 − y2 − · · · − yk−1.
Obviously, there is a one-to-one natural correspondence between Tk−1 and the simplex {x ∈ Rk :
x1 ≥ 0, . . . , xk ≥ 0, ∑i xi = 1} defined by

y = (y1, . . . , yk−1) ←→ (y1, . . . , yk−1, 1− y1 − y2 − · · · − yk−1) = (x1, . . . , xk−1, xk) = x.

The Markov diffusion process Xt in (14) may be redefined as Yt = (Xt,1, . . . , Xt,k−1) on
y ∈ Tk−1 with the corresponding generator

L f (y) = − b
α

k−1

∑
i=1

∂ f
∂yi

(y)(yi − pi) +
1
2

k−1

∑
i,j=1

∂2 f
∂yi∂yj

(y)(yi�i=j − yiyj). (17)
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The Kolmogorov forward equation for the density p(y, t) of the limiting process Y t is

∂

∂t
p(y, t) =

1
2

(
b
α

k−1

∑
i=1

∂

∂yi

(
p(y, t)(yi − pi)

)
+

k−1

∑
i=1

∂2

∂y2
i

(
yi(1− yi)p(y, t)

)
− 2 ∑

1≤i<j≤k−1

∂2

∂yi∂yj

(
yiyj p(y, t)

))
. (18)

Therefore, it is not hard to show that the limit invariant ergodic distribution is

p(y) =
1

B(2 b
α p)

(1− y1 − · · · − yk−1)
2b(1−p1−···−pk−1)

α −1
k−1

∏
i=1

y
2bpi

α −1
i , (19)

because it satisfies (18) (see also [29]). The above distribution is the Dirichlet distribution Dir
(
2 b

α p
)

as a function of x = (y, 1− y1 − · · · − yk−1).

Remark 2 (Transition density of the limit process). The transition density p(y0, y; t) is
defined by

P(Yt ∈ S|Y0 = y0) =
∫

S∩Tk−1
p(y0, y; t)dy

and it can be represented in terms of series of orthogonal polynomials [30] as shown in [31].
Moreover, we refer to [9,32,33] for the explicit form of the reproducing kernel orthogonal polynomials.

4. Recessive and Dominant Colors in an RP Urn with β Near to 1

Let J = {J1, . . . , JkJ} be a partition of {1, . . . , k}, in that Jl �= ∅, Ji1 ∩ Ji2 = ∅, and

∪kJ
l=1 = {1, . . . , k}. Here kj denotes the cardinality of J . Define the kJ-dimensional objects

(ψ
(β,J)
n )n, (ξ(β,J)

n )n and p(J) as

ψ
(β,J)
n,i = ∑

l∈Ji

ψ
(β)
n,l

ξ
(β,J)
n,i = ∑

l∈Jl

ξ
(ε)
n,l

p(J)
i = ∑

l∈Ji

pl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
for i = 1, . . . , kJ ,

and X(β,J)
t = ψ

(β,J)
�t/(1−β)2�. With these definitions, from (11), we immediately get that

(ψ
(β,J)
n )n is a kJ-dimensional RP urn following the dynamics

ψ
(β,J)
n −ψ

(β,J)
n−1 = −ε(β)

(
ψ
(β,J)
n−1 − p(J))+ δ(β)

(
ξ
(β,J)
n −ψ

(β,J)
n−1

)
(20)

and that Theorem 1 holds for X(β,J)
t . Consequently, the convergence to the Wright—Fisher

diffusion still holds if we group together some components of the process. For instance,
when we consider two groups of components, we have the following result:

Corollary 1. Let J = {J, Jc} with J �= ∅, Jc �= ∅. Under the hypothesis of Theorem 1, each
component of the sequence of processes X(β,J)

t converges, for β → 1, to the one-dimensional
diffusion process with values in [0, 1] that satisfies the SDE

dX(J)
t,i = −b

X(J)
t,i − pi

α
dt + (−1)i+1

√
X(J)

t,i (1− X(J)
t,i )dWt.

In addition, X(J)
t,1 = ∑l∈J Xt,l and X(J)

t,2 = ∑l∈Jc Xt,l .
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Now, if we further specialize the grouping choice to J = ({i}, {1, . . . , i− 1, i+ 1, . . . , k}),
we get:

Corollary 2. Under the conditions of Theorem 1 the i-th component of the sequence of processes
X(β) converges, for β → 1, to the one-dimensional diffusion (Xt,i)t≥0 with values in [0, 1]
satisfying the SDE

dXt,i = −b
Xt,i − pi

α
dt +

√
Xt,i(1− Xt,i)dWt.

For instance, the above two results are useful in order to translate the well-known
classification of the boundaries of the WF process with mutation [34] (p. 239, Example 8)
(see also [35]) to the RP urn model when the parameter β is strictly smaller than 1, but very
near to 1. Indeed, Corollary 1 implies that Zt = ∑l∈J Xt,l satisfies the SDE

dZt = −b
Zt −∑l∈J pl

α
dt +

√
Zt(1− Zt)dWt

=

(
− b

α

(
1−∑

l∈J
pl

)
Zt +

b
α ∑

l∈J
pl(1− Zt)

)
dt +

√
Zt(1− Zt)dWt.

Setting a0 = b
α ∑l∈J pl and a1 = b

α − a0 and noting that ∩i∈J{Xt,i = 0} = {Zt = 0},
we obtain:

(1) a0 < 1/2, i.e., ∑l∈J pl <
α
2b , if and only if P(∃t : ∩i∈J {Xt,i = 0}) = 1;

(2) a0 ≥ 1/2, i.e., ∑l∈J pl ≥ α
2b , if and only if P(∃t : ∩i∈J {Xt,i = 0}) = 0.

With the same spirit, Corollary 2 states that Zt = 1− Xt,i satisfies the SDE

dZt = −b
Zt −∑l �=i pl

α
dt +

√
(1− Zt)ZtdWt

=
(
− b

α
piZt +

b
α
(1− pi)(1− Zt)

)
dt +

√
Zt(1− Zt)dWt.

Setting a0 = b
α (1− pi) and a1 = b

α − a0, we get:

(3) a0 < 1/2, i.e., pi > 1− α
2b , if and only if P(∃t : {Xt,i = 1}) = 1;

(4) a0 ≥ 1/2, i.e., pi ≤ 1− α
2b , if and only if P(∃t : {Xt,i = 1}) = 0.

Therefore, for an RP urn with β < 1, but very near to 1, we can give the
following definition:

Definition 1. We call recessive a non-empty subset J � {1, . . . , k} of colors such that ∑l∈J pl <
α
2b .

We call dominant a color i ∈ {1, . . . , k} such that {1, . . . , k} \ {i} is recessive.

Obviously, every subset of a recessive set is recessive. Moreover, when α
b > 2(1−mini pi),

every set J � {1, . . . , k} is recessive. The terms “recessive” and “dominant” are justified by the
fact that, recalling properties (1)–(4) of the WF process, if a set of colors is recessive, then we
can observe that at some times the corresponding predictive means of the urn process are very
near to zero. On the contrary, when a color is dominant, we can observe that at some times the
corresponding predictive mean of the urn process is very near to one. In Figure 2, we plot the
process (ψn,1) related to the simulation of an RP urn with k = 2, α/b = 1 and p = 0.75, where
it is possible to observe the excursions near the barrier 1.
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Figure 2. Simulation: plot of the process (ψn,1) related to the simulation of an RP urn with k = 2,
α/b = 1 and p = 0.75.

5. Conclusions

We have proven that the multidimensional WF diffusion with mutation can be ob-
tained as the limit of the predictive means associated with a family of RP urns with β < 1,
β→ 1. As a consequence, the known properties of the WF process can give a description of
the RP urn when the parameter β is strictly smaller than 1, but very near to 1. For instance,
starting from the known classification of the boundaries for the WF process and connecting
it to the model parameters of the RP urn, we have obtained for an RP urn with a value of
β very near to one, the notion of recessive subsets of colors and the notion of a dominant
color. These two concepts are related to the possibility of reaching the barriers 0 and 1
by the predictive means of the urn process. Other classical problems, together with the
corresponding known results for the WF process, can be found in [31]. These results can be
used in order to give an approximated answer to the considered problems in the case of an
RP urn with a value of β near 1.
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Abstract: We introduce mixtures of species sampling sequences (mSSS) and discuss how these
sequences are related to various types of Bayesian models. As a particular case, we recover species
sampling sequences with general (not necessarily diffuse) base measures. These models include
some “spike-and-slab” non-parametric priors recently introduced to provide sparsity. Furthermore,
we show how mSSS arise while considering hierarchical species sampling random probabilities (e.g.,
the hierarchical Dirichlet process). Extending previous results, we prove that mSSS are obtained by
assigning the values of an exchangeable sequence to the classes of a latent exchangeable random
partition. Using this representation, we give an explicit expression of the Exchangeable Partition
Probability Function of the partition generated by an mSSS. Some special cases are discussed in
detail—in particular, species sampling sequences with general base measures and a mixture of species
sampling sequences with Gibbs-type latent partition. Finally, we give explicit expressions of the
predictive distributions of an mSSS.

Keywords: species sampling models; exchangeable random partitions; exchangeable sequences;
predictive distributions

1. Introduction

Discrete random measures have been widely used in Bayesian nonparametrics. Note-
worthy examples of such random measures are the Dirichlet process [1], the Pitman–Yor
process [2,3], (homogeneous) normalized random measures with independent increments
(see, e.g., [4–7]), Poisson–Kingman random measures [8] and stick-breaking priors [9]. All
the previous random measures are of the form

P = ∑
j≥1

p↓j δZj , (1)

where (Zj)j≥1 are i.i.d. random variables taking values in a Polish space (X,X ) with

common distribution H, and (p↓j )j≥1 are random positive weights in [0, 1], independent of

(Zj)j≥1, such that p↓1 ≥ p↓2 ≥ p↓3 ≥ . . . .
With a few exceptions—see, e.g., [1,4,10–14]—the base measure H of a random measure

P in (1) is usually assumed to be diffuse, since this simplifies the derivation of various
analytical results.

The diffuseness of H is assumed also to define the so-called species sampling sequences [15],
exchangeable sequences whose directing measure is a discrete random probability of type (1).
In this case, the diffuseness of H is motivated by the interpretation of species sampling
sequences as sequences describing a sampling mechanism in discovering species from an
unknown population. In this context, the Zjs are the possible infinite different species, and
the diffuseness of H ensures that there is no redundancy in this description.

On the other hand, from a Bayesian point of view, the diffuseness of H is not always
reasonable and there are situations in which a discrete (or mixed) H is indeed natural. For
example, recent interest in species sampling models with a spike-and-slab base measure
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emerged in [16–21] in order to induce sparsity and facilitate variable selection. Other
models, which are implicitly related to species sampling sequences with non-diffused base
measures, are mixtures of Dirichlet processes [10] and hierarchical random measures; see,
e.g., [22–25].

The combinatorial structure of species sampling sequences derived from random
measure (1) with general H have been recently studied in [14].

In this paper, we discuss some relevant properties of species sampling sequences with
general base measures, as well as some further generalizations, namely mixtures of species
sampling sequences with general base measures (mSSS).

An mSSS is an exchangeable sequence whose directing random measure is of type (1),
where (Zn)n≥1 is a sequence of exchangeable random variables and (p↓n)n≥1 are random
positive weights in [0, 1] with p↓1 ≥ p↓2 ≥ p↓3 ≥ . . . , independent of (Zn)n≥1.

The core of the results that we prove in this paper is that all the mSSS can be obtained
by assigning the values of an exchangeable sequence to the classes of a latent exchangeable
random partition. We summarize the results of Section 3 in the next statement.

The following are equivalent:

1. ξ = (ξn)n≥1 is an mSSS;
2. with probability one (ξn)n≥1 = (ZIn)n≥1, where (In)n≥1 is a sequence of integer-valued

random variables independent of the Zs such that, conditionally on p↓ := (p↓1, p↓2, . . . ), the
In are independent and P{In = i|p↓} = p↓i .

3. with probability one (ξn)n≥1 := (Z′Cn(Π))n≥1, where (Z′n)n≥1 is an exchangeable sequence
with the same law of (Zn)n≥1, Π is an exchangeable partition, independent of (Z′n)n≥1,
obtained by sampling from (p↓n)n≥1, and Cn(Π) is the index of the block in Π containing n.

The partition Π obtained from p↓ = (p↓1, p↓2, . . . ) is the so-called paint-box process
associated with p↓. In general, this partition, called the latent partition, does not coincide
with the partition induced by the (ξn)n≥1. Note that also the sequence (Z′n)n≥1 is latent, in
the sense that it cannot be obtained if only (ξn)n≥1 is known. On the other hand, combining
the information contained in (Z′n)n≥1 and in Π, one obtains complete knowledge of (ξn)n≥1,
and, in particular, of its clustering behavior. This last observation is essential for the
development of all the other results presented in our paper.

The rest of the paper is organized as follows. Section 2 reviews some important results
on species sampling models and exchangeable random partitions. Section 3 introduces
mixtures of species sampling sequences and discusses how these sequences are related
to various types of Bayesian models. In the same section, the stochastic representations
for mixtures of species sampling sequences sketched above are proven. In Section 4, we
provide an explicit expression of the Exchangeable Partition Probability Function (EPPF) of
the partition generated by such sequences. This result is achieved considering two EPPFs
arising from a suitable latent partition structure. Some special cases are further detailed.
Finally, Section 5 deals with the predictive distributions of mixtures of species sampling
sequences.

2. Background Materials

In this section, we briefly review some basic notions of exchangeable random partitions
and species sampling models.

2.1. Exchangeable Random Partitions

A partition πn of [n] := {1, . . . , n} is an unordered collection {π1,n, . . . , πk,n} of disjoint
non-empty subsets (blocks) of {1, . . . , n} such that ∪k

j=1πj,n = [n]. A partition πn =

{π1,n, π2,n, . . . , πk,n} has |πn| := k blocks (with 1 ≤ |πn| ≤ n) and |πc,n|, with c = 1, . . . , k,
is the number of elements of the block c. We denote by Pn the collection of all partitions of
[n] and, given a partition, we list its blocks in ascending order of their smallest element, i.e.,
in order of their appearance. For instance, we write [(1, 3), (2, 4), (5)] and not [(2, 4), (3, 1), (5)].
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A sequence of random partitions, Π = (Πn)n≥1, defined on a common probability
space, is called a random partition of N if, for each n, the random variable Πn takes values in
Pn and, for m < n, the restriction of Πn to Pm is Πm (consistency property).

In order to define an exchangeable random partition, given a permutation ρ of [n] and
a partition πn in Pn, we denote by ρ(πn) the partition with blocks {ρ(j) : j ∈ πi,n} for
i = 1, . . . , |πn|. A random partition of N is said to be exchangeable if Πn has the same
distribution of ρ(Πn) for every n and every permutation ρ of [n]. In other words, its law is
invariant under the action of all permutations (acting on Πn in the natural way).

The law of any exchangeable random partition on N is completely characterized by
its Exchangeable Partition Probability Function (EPPF); in other words, there exists a unique
symmetric function q on the integers such that, for any partition πn in Pn,

P{Πn = πn} = q(|π1,n|, . . . , |πk,n|) (2)

where k is the number of blocks in πn. In the following, we shall write Π ∼ q to denote
an exchangeable partition of N with EPPF q. Note that an EPPF is indeed a family of
symmetric functions qn

k (·) defined on Cn,k = {(n1, . . . , nk) ∈ Nk : ∑k
i=1 ni = n}. To simplify

the notation, we write q instead of qn
k . Alternatively, one can assume that q is a function on

∪n∈N ∪n
k=1 Cn,k. See [26].

Given a sequence of random variables X = (Xj)j≥1 taking values in some measurable
space, the random partition Π∗(X) induced by X is defined as the random partition
obtained by the equivalence classes under the random equivalence relation i(ω) ∼ j(ω) if
and only if Xi(ω) = Xj(ω). One can check that a partition induced by an exchangeable
random sequence is an exchangeable random partition.

Recall that, by de Finetti’s theorem, a sequence X = (Xn)n≥1 taking values in a Polish
space (X,X ) is exchangeable if and only if the Xns, given some random probability measure
Q on X , are conditionally independent with common distribution Q. Moreover, the random
probability Q, known as the directing random measure of X, is the almost sure limit (with
respect to weak convergence) of the empirical process 1

n ∑n
i=1 δXi .

Based on de Finetti’s theorem, Kingman’s correspondence theorem sets up a one-to-
one map between the law of an exchangeable random partition on N (i.e., its EPPF) and
the law of random ranked weights p↓ = (p↓j )j≥1 satisfying 1 ≥ p↓1 ≥ p↓2 ≥ · · · ≥ 0 and

∑j p↓j ≤ 1 (with probability one). To state the theorem, recall that a partition Π is said to

be generated by a (possibly random) p↓, if it is generated by a sequence (In)n≥1 of integer-
valued random variables that are conditionally independent given p↓ with conditional
distribution

P{In = i|p↓} :=

{
1−∑j≥1 p↓j if i = −n

p↓i if i ≥ 1,
(3)

Note that 1−∑j≥1 p↓j is the magnitude of the so-called “dust” component; indeed, each
In sampled from this part, i.e., In = −n, contributes to a singleton n in the partition Π.
A consequence is that if ∑j≥1 p↓j = 1 a.s., the partition Π has no singleton. The partition

Π∗(I) is sometimes referred to as the p↓-paintbox process; see [27].
Let ∇ := {p↓j ∈ [0, 1] : p↓1 ≥ p↓2 ≥ . . . , ∑j≥1 p↓j ≤ 1}. We are now ready to state

Kingman’s theorem.

Theorem 1 ([28]). Given any exchangeable random partition Π with EPPF q, denote by Π↓j,n the
blocks of the partition rearranged in decreasing order with respect to the number of elements in the
blocks of Πn. Then,

lim
n

( |Π↓j,n|
n

)
j≥1

= (p↓j )j≥1 a.s. (4)
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for some random p↓ = (p↓j )j≥1 taking values in ∇. Moreover, on a possibly enlarged probability
space, there is a sequence of integer-valued random variables I = (In)n≥1, conditionally independent
given p↓, such that (3) holds and the partition induced by I is equal to Π a.s.

Kingman’s theorem is usually stated in a slightly weaker form (see, e.g., Theorem 2.2
in [26]) and the equality between Π∗(I) and Π is given in law. The previous “almost sure”
version can be easily derived by inspecting the proof of Kingman’s theorem given in [29].

A consequence of the previous theorem is that q 
→ Law(p↓) for p↓ in (4) defines a
bijection from the set of the EPPF and the laws on ∇.

If p↓ is proper, i.e., ∑j≥1 p↓j = 1 a.s., then Kingman’s correspondence between p↓ and
the EPPF q can be made explicit by

q(n1, . . . , nk) = ∑
(j1,...,jk)∈Nk

E
[ k

∏
i=1

(p↓ji )
ni
]
. (5)

where Nk is the set of all ordered k-tuples of distinct positive integers. See Chapter 2 [26].
Given an EPPF q, one deduces the corresponding sequence of predictive distributions,

which is the sequence of conditional distributions

P{Πn+1 = πn+1|Πn = πn}

when Π ∼ q. Starting with Π1 = {1}, given Πn = πn (with |πn| = k), the conditional
probability of adding a new block (containing n + 1) to Πn is

νn(πn) = νn(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |πk,n|, 1)
q(|π1,n|, . . . , |πk,n|)

; (6)

while the conditional probability of adding n + 1 to the �-th block of Πn (for � = 1, . . . , k) is

ωn,�(πn) = ωn,�(|π1,n|, . . . , |πk,n|) :=
q(|π1,n|, . . . , |π�,n|+ 1, . . . , |πk,n|)

q(|π1,n|, . . . , |πk,n|)
. (7)

2.2. Species Sampling Models

A species sampling random probability (SSrp) is a random probability of the form

P = ∑
j≥1

pjδZj + (1−∑
j≥1

pj)H (8)

where (Zj)j≥1 are i.i.d. random variables taking values in a Polish space (X,X ) with
common distribution H, and (pj)j≥1 are random positive weights in [0, 1], independent of
(Zj)j≥1, such that ∑j≥1 pj ≤ 1 with probability one. These random probability measures
are also known as Type III random probability measures; see [30].

Given the SSrp in (8), let (p↓j )j≥1 be the ranked sequence obtained from (pj)j≥1 rear-
ranging the pjs in decreasing order. One can always write

P = ∑
j≥1

p↓j δZ̃j
+ (1−∑

j≥1
p↓j )H (9)

where (Z̃j)j≥1 is a suitable random reordering of the original sequence (Zj)j≥1. It is easy to

check that (Z̃j)j≥1 are i.i.d. random variables with law H independent of (p↓j )j≥1. Hence, H

and the EPPF q associated via Kingman’s correspondence with (p↓j )j≥1 completely charac-
terize the law of P, from now on denoted by SSrp(q, H).
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SSrp with H diffuse are also characterized as directing random measures of a partic-
ular type of exchangeable sequences, known as species sampling sequences. Let q be an
EPPF and H a diffuse probability measure on a Polish space X. An exchangeable sequence
ξ := (ξn)n taking values in X is a species sampling sequence, SSS(q, H), if the law of (ξn)n is
characterized by the predictive system:

• (PS1) P{ξ1 ∈ dx} = H(dx);
• (PS2) the conditional distribution of ξn+1 given (ξ1, . . . , ξn) is

P{ξn+1 ∈ dx|ξ1, . . . , ξn} =
K

∑
c=1

ωn,cδξ∗c (dx) + νn H(dx),

where (ξ∗1 , . . . , ξ∗K) is the sequence of distinct observations in order of appearance, ωn,c =
ωn,c(|Π1,n|, . . . , |ΠK,n|), νn = νn(|Π1,n|, . . . , |ΠK,n|), K = |Πn|, Πn is the random parti-
tion induced by (ξ1, . . . , ξn) and ωn,c and νn are related to the q by (6) and (7).

We summarize here some results proven in [15].

Proposition 1 ([15]). Let H be a diffuse probability measure; then, an exchangeable sequence
(ξn)n is characterized by (PS1)–(PS2) if and only if its directing random measure is an SSrp(q, H).

As noted in [29], the partition induced by any exchangeable sequence taking values
in X with directing measure μ̃ depends only on the sequence μ̃(x̃j), where x̃j are the
random atoms forming the discrete component of μ̃ and ordered in such a way that
μ̃(x̃1) ≥ μ̃(x̃2) ≥ . . . . Combining this observation with the previous proposition, one can
see that, when H is diffuse and ξ is an SSS(q, H), the partition Π∗(ξ) is equal (a.s.) to
Π∗(I) (where I is defined as in Kingman’s theorem) and Π∗(ξ) has EPPF q. Note that [29]
defines the p↓-paintbox process as any random partition Π∗(ξ) where ξ is an exchangeable
sequence with directing random measure (9) and H is a diffuse measure.

One can show (see the proof of Proposition 13 in [15]) that an SSS(q, H) can be obtained
by assigning the values of an i.i.d. sequence (Zn)n with distribution H to the classes of an
independent exchangeable random partition with EPPF q. More formally, for a random
partition Π, let Cn(Π) be the random index denoting the block containing n, i.e.,

Cn(Π) = c if n ∈ Πc,n

or equivalently if n ∈ Πc,j for some (and hence all) j ≥ n. If Z′ = (Z′n)n is an i.i.d.
sequence with law H (diffuse), Π is an exchangeable partition with Π ∼ q, and Z′ and Π
are stochastically independent, then

(ξn)n≥1 := (Z′Cn(Π))n≥1 (10)

is an SSS(q, H). Note that the Z′ns appearing in (10) are not the same Zns of (8), although
they have the same law.

It is worth mentioning that the original characterization given in [15] of species sampling
sequences is stronger than the one summarized here. Indeed, the original definition of SSS is
given using a slightly weaker predictive assumption. For details, see Proposition 13 and the
discussion following Proposition 11 in [15].

In summary, when H is diffuse, one can build a species sampling sequence (ξn)n by
one of the following equivalent constructions:

• using the system of predictive distributions (PS1)–(PS2);
• sampling (conditionally) i.i.d. variables from (8);
• combining an i.i.d. sequence from H with an exchangeable random partition by (10).
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3. Mixture of Species Sampling Models

We now discuss some possible generalizations of the notion of species sampling
sequences and we show that the three constructions presented above are no more equivalent
in this setting.

3.1. Definitions and Relation to Other Models

Exchangeable sequences sampled from an SSrm with a general base measure, also
known as generalized species sampling sequences (gSSS), have been introduced and studied
in [14,25].

Definition 1 (gSSS(q, H)). (ξn)n≥1 is a gSSS(q, H) if it is an exchangeable sequence with
directing random measure P, where P ∼ SSrp(q, H), H being any measure on (X,X ) (not
necessarily diffuse).

Clearly, a gSSS(q, H) with H diffuse is an SSS(q, H). On the contrary, if ξ is a gSSS(q, H)
with H non-diffuse, (PS1)–(PS2) are no longer true. Moreover, the EPPF of the random partition
induced by ξ with H non-diffuse is not q. The relation between the partition induced by ξ and
q has been studied in [14].

In [25], the definition of gSSS(q, H) with H not necessarily diffuse was motivated by an
interest in defining the class of the so-called hierarchical species sampling models. If ξ1, ξ2, . . .
are exchangeable random variables with a directing random measure of hierarchical type,
one has that

ξn|P1, P0
i.i.d.∼ P1 n ≥ 1

P1|P0∼SSrp(q, P0)

P0 ∼ SSrp(q0, H0).

In order to understand why the general definition of gSSS(q, H) is useful in this context,
note that, even if H0 is diffuse and q0 is proper (i.e., the p↓ associated with q0 by Kingman’s
correspondence are proper), the conditional distribution of [ξn]n≥1 given P0 is not an SSS,
since P0 is a.s. a purely atomic probability measure on X . Moreover, assuming that q is
proper, we can write

P1 = ∑
j

pj1δZj

where Zj are conditionally i.i.d. with common distribution P0, given P0, and (pj1)j are asso-
ciated by Kingman’s correspondence with the EPPF q. In other words, in this case, (ξn)n≥1
are exchangeable with directing random measure P1 = ∑j pj1δZj , where (pj1)j and (Zj)j

are independent and (Zj)j are exchangeable with directing measure P0 ∼ SSrp(q0, H0).
The previous observation suggests a further generalization of species sampling se-

quences.

Definition 2 (mSSS). We say that (ξn)n≥1 is a mixture of species sampling sequences (mSSS) if
it is an exchangeable sequence with directing random measure

P = ∑
j≥1

p↓j δZj + (1−∑
j≥1

p↓j )H̃ (11)

where Z := (Zn)n≥1 is an exchangeable sequence with directing random measure H̃, p↓ a se-
quence of random weight in ∇ with EPPF q such that P{∑j≥1 p↓j > 0} > 0, (Z, H̃) and p↓ are
stochastically independent.
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First of all, note that gSSS(q, H) is a particular case of Definition 2, obtained from a
deterministic H̃ = H. Moreover, Definition 2 can be seen as a mixture of gSSS. Indeed, if
ξ = (ξn)n≥1 is as in Definition 2 and H̃ is the directing random measure of (Zn)n, then the
conditional distribution of ξ given H̃ is a gSSS(q, H̃). This motivates the name “mixture of
species sampling sequences”.

It is worth noticing that one can also consider more general mixtures of SSS. The most
general mixture one can take into consideration leads to a random probability measure
of the form (11), where Z := (Zn)n≥1 are exchangeable random variables with directing
random measure H̃, p↓ is a sequence of random weight in∇ such that P{∑j≥1 p↓j > 0} > 0,

where [Z, H̃], and p↓ are not necessarily stochastically independent.
As an example of this more general situation, we describe the so-called mixtures of

Dirichlet processes as defined in [10]. Recall that a Dirichlet process P ∼ Dir(α) is defined
as a random probability measure characterized by the system of finite n-dimensional
distributions

P{(P(A1), . . . , P(An)) ∈ ·} = Dir
(
· ; α(A1), . . . , α(An)

)
∀n ≥ 1, ∀Ai ∈ X

where Dir(· ; a1, . . . , an) is the Dirichlet measure (on the n − 1 simplex) of parameters
a1, . . . , an and α is a finite σ-additive measure on X . It is well known that a Dirichlet
process is an SSrp(q, H) for H(·) = α(·)/α(X) and

q(n1, . . . , nk) =
α(X)k

(α(X))n

k

∏
c=1

(nc − 1)!, (12)

where (x)n = x(x + 1) . . . (x + n− 1) is the rising factorial (or Pochhammer polynomial);
see [2,31]. A mixture of Dirichlet processes is defined in [10] as a random probability
measure P characterized by the n-dimensional distributions

P{(P(A1), . . . , P(An)) ∈ ·} =
∫

U
Dir
(
· ; αu(A1), . . . , αu(An)

)
Q(du) (13)

where, now, (u, A) 
→ αu(A) is a kernel measure on U ×X (in particular, A 
→ αu(A) is a
finte σ-additive measure on X for every u ∈ U), (U,U ) is a (Borel) regular space (e.g., a
Polish space) and Q is a probability measure on U .

Using the fact that a Dirichlet process is the SSrp described above, one can prove that
any mixture of Dirichlet processes has a representation of the form (11), where ((Zn)n≥1H̃)
and p↓ are stochastically dependent. More precisely, the joint law of (H̃, (Zn)n≥1, p↓) is
characterized by the law of the (augmented) random element

(H̃, (Zn)n≥1, p↓, ũ)

given by the following:

• ũ is a random variable taking values in U with law Q;
• H̃(·) := αũ(·)/αũ(X);
• (Zn)n≥1 are exchangeable random variables with directing random measure H̃;
• p↓ is sequence of random weight in ∇ such that P{∑j≥1 p↓j = 1} = 1 and the condi-

tional distribution of p↓ given ũ depends only on αũ(X). In particular, the (conditional)
EPPF associated with the law of p↓ given ũ has the form

q(n1, . . . , nk|ũ) :=
αũ(X)k

(αũ(X))n

k

∏
c=1

(nc − 1)! (14)

71



Mathematics 2021, 9, 3127

Note that the marginal EPPF of the p↓, obtained by integrating (14) with respect to the law
of ũ, is

q(n1, . . . , nk) =
k

∏
c=1

(nc − 1)!
∫

U

αu(X)k

(αu(X))n
Q(du). (15)

Without further assumptions, a mixture of Dirichlet processes is a mixture of SSrp
with p↓ and H̃(·) possibly dependent. Nevertheless, with this representation at hand, one
can easily deduce that if (ξn)n≥1 is sampled from a mixture of Dirichlet processes under
the additional hypothesis that Q is such that αũ(X) and αũ(·)/αũ(X) are independent, then
(ξn)n≥1 satisfies Definition 2, with H̃ = αũ(·)/αũ(X) and q given by (15).

In the rest of the paper, we focus our attention on mSSS for which [Z, H̃] and p↓ are
independent.

3.2. Representation Theorems for mSSS

In this section, we give two alternative representations for exchangeable sequences as
in Definition 2, which generalize Proposition 1 in [14].

Proposition 2. An exchangeable sequence ξ = (ξn)n≥1 is an mSSS as in Definition 2 if and
only if

ξn = ZIn a.s.

where Z+ = (Zn)n≥1, H̃ and p↓ are as in Definition 2, Z− = (Zn)n≤−1 are further conditionally
(given H̃) i.i.d. random variables with conditional distribution H̃, and (In)n≥1 is a sequence of
integer-valued random variables independent of the Zs and H̃, such that, conditionally on p↓,
the In are independent and (3) holds. All the random elements are defined on a possibly enlarged
probability space.

Proof. Let σ2 = [Z+, H̃, p↓], where Z+, H̃, p↓ are defined as in Definition 2 (mSSS). Set
α = 1− ∑j≥1 p↓j . On a possibly enlarged probability space, let (Z′)− = (Z′n)n≤−1 be a
sequence of random variables conditionally i.i.d. given H̃ with conditional distribution
H̃ and let I′ = (I′n)n≥1 be a sequence of integer-valued random variables conditionally
independent given p↓ with conditional distribution (3) with I′n in place of In. One can also
assume that I′ and Z = [Z+, (Z′)−] are independent given [p↓, H̃]; see Lemma A1 in the
Appendix A. Set τ1 = [I′, (Z′)−] and define

(ξ ′n)n≥1 = φ(τ1, σ2) := (ZI′n 1{I′n ≥ 1}+ Z′−n1{I′n = −n})n≥1.

Let us show that the law of ξ ′ := (ξ ′n)n≥1 given σ2 is the same as the law of ξ given σ2. Take
n Borel sets A1, . . . , An and non-zero integer numbers i1, . . . , in. One has

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in
∣∣∣H̃, p↓, Z

}
=

n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
]
.

Conditionally on H̃, the (Z′n)n≤−1 are i.i.d. with law H̃ so that
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P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in
∣∣∣H̃, p↓, Z+

}
= E

[
P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An, I′1 = i1, . . . , I′n = in

∣∣∣H̃, p↓, Z
}∣∣∣H̃, p↓, Z+

]
= E

[ n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
]∣∣∣H̃, p↓, Z+

]
=

n

∏
j=1

E
[
δZij

(Aj)p↓ij
1{ij > 0}+ αδZ′−j

(Aj)1{ij = −j}
∣∣∣H̃, p↓, Z+

]
=

n

∏
j=1

[
δZij

(Aj)p↓ij
1{ij > 0}+ αH̃(Aj)1{ij = −j}

]
.

Marginalizing with respect to i1, . . . , in,

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An

∣∣∣H̃, p↓, Z+
}
=

n

∏
j=1

P(Aj).

Recalling that P = ∑j≥1 p↓j δZj + αH̃,

P
{

ξ ′1 ∈ A1, . . . , ξ ′n ∈ An|P
}
=

n

∏
j=1

P(Aj)

almost surely. Since X is Polish, we have proven that, given P, (ξ ′n)n≥1 are i.i.d. with
common distribution P. In particular, we have proven that ξ ′ := (ξ ′n)n≥1 given σ2 is
the same as the law of ξ given σ2. This concludes the proof of the “if part”, since, by
the previous argument, any sequence of the form (ξ ′) is of type (mSSS). To complete
the proof, it remains to conclude the “only if part”. Setting σ1 = ξ, we have proven
that the conditional distribution of σ1 given σ2 is the same as the conditional distribution
of φ(τ1, σ2) given σ2. At this stage, Lemma A3 in the Appendix A yields that there is
τ = [(In)n≥1, (Zn)n≤−1] such that (ξn)n = φ(τ, σ2) a.s., i.e., (ξn)n = (ZIn)n a.s. In addition,
L(τ, σ2) = L(τ1, σ2); hence, the (Zn)n≤−1 are conditionally i.i.d. given H̃ and the Ins are
conditionally independent given [Z+, Z−, H̃, p↓] with the conditional distribution defined
by (3).

Proposition 3. An exchangeable sequence ξ = (ξn)n≥1 is an mSSS as defined in Definition 2 if
and only if

(ξn)n≥1 := (Z′Cn(Π))n≥1 a.s. (16)

where Z′ := (Z′n)n≥1 is an exchangeable sequence with the same law of Z, Π is an exchangeable
partition with EPPF q and Π and Z′ are independent.

Remark 1. Note that the Z′ns appearing in (16) are not the same Zns appearing in Definition 2,
although they have the same law.

Proof of Proposition 3. If ξ is mSSS, then, by Proposition 2, we know that ξ = (ZIn)n≥1.
Let Π = Π∗(I) be the partition induced by (In)n≥1; then, Π has EPPF q by Kingman’s
theorem 1. Denote by I∗1 = I1, I∗2 , . . . , I∗K (with K ≤ +∞) the distinct values of (In)n≥1 in
order of appearance, and set

Z′n = ZI∗n n = 1, . . . , K.

When K < +∞, set I∗K+j = D + j, where D = max{i : i = I∗n for n ≤ K}, and define the
remaining Z′m for m > K accordingly as Z′m = ZI∗m . Let {i1, . . . , iM} be integers in Z \ {0},
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and denote the distinct values in (i1, . . . , iM) in order of appearance by (i∗1, . . . , i∗m). Let
A1, . . . , An be measurable sets in X , if n > m, then

P{Z′1 ∈ A1, . . . , Z′n ∈ An, I1 = i1, . . . , IM = iM}
= ∑

�1,...,�n−m

P
{

Zi∗1
∈ A1, . . . , Zi∗m ∈ Am, Z�1 ∈ Am+1 . . . ,

Z�n−m ∈ An, I1 = i1, . . . , IM = iM, I∗m+1 = �1, . . . , I∗n = �n−m

}
where the sum runs over all the non-zero distinct integers �1, . . . , �n−m different from
i∗1, . . . , i∗m. Since I∗ is a function of I and I and Z are independent, it follows that

P
{

Zi∗1
∈ A1, . . . , Zi∗m ∈ Am, Z�1 ∈ Am+1 . . . ,

Z�n−m ∈ An, I1 = i1, . . . , IM = iM, I∗m+1 = �1, . . . , I∗n = �n−m

}
= P{Zi∗1

∈ A1, . . . , Zi∗m ∈ Am, Z�1 ∈ Am+1, . . . , Z�n−m ∈ An}
P{I1 = i1, . . . , IM = iM, I∗m+1 = �1, . . . , I∗n = �n−m}

= P{Z1 ∈ A1, . . . , Zn ∈ An}P{I1 = i1, . . . , IM = iM, I∗m+1 = �1, . . . , I∗n = �n−m}

where the second equality follows by exchangeability. Summing in �, one obtains

P{Z′1 ∈ A1, . . . , Z′n ∈ An, I1 = i1, . . . , IM = iM}
= P{Z1 ∈ A1, . . . , Zn ∈ A}P{I1 = i1, . . . , IM = iM}.

For m ≥ n, the sum is not needed and the same result follows. This shows that (Z′n)n is an
exchangeable sequence with the same law of Z, and (Z′n)n and (In)n≥1 are independent.
To conclude, note that, with probability one, I∗Cn(Π) = In, and hence

ξn = ZIn = ZI∗
Cn(Π)

= Z′Cn(Π).

Conversely, let us assume that ξn = Z′Cn(Π) and let (p↓j )j≥1 be the weights obtained
from Π by (4). Let I1, I2, . . . be the integer-valued random variables appearing in Theorem 1
such that Π = Π∗(I) a.s. It follows that Cn(Π) = Cn(Π∗(I)) and I∗Cn(Π) = In, where the I∗n
are defined as above for n ≤ K. Setting

Zm :=
{

Z′k if I∗k = m
Z′′m if I∗k �= m ∀ k,

with Z′′m, m ∈ Z conditionally i.i.d. given H̃ with law H̃, independent of everything else.
Arguing as above, one can check that the (Zm)m∈Z,m �=0 are exchangeable random variables
with the same law of Z′ independent of (I, p↓). To conclude, note that, in particular,

ZIn = ZI∗
Cn(Π)

= Z′Cn(Π) a.s..

The conclusion follows by Proposition 2.

A simple consequence of the previous proposition is the following.

Corollary 1. Let (ξn)n≥1 be an mSSS as defined in Definition 2. For every A1, . . . , An Borel set
in X,

P{ξ1 ∈ A1, . . . , ξn ∈ An} = ∑
πn∈Pn

q(|π1,n|, . . . , |πk,n|)E
[ |πn |

∏
c=1

H̃(∩j∈πc,n Aj)
]
.
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4. Random Partitions Induced by mSSS

Let Π̃ = Π∗(ξ) be the random partition induced by an exchangeable sequence ξ
defined as in Definition 2, and let Π(0) := Π∗(Z′) be the partition induced by the corre-
sponding exchangeable sequence (Z′n)n (see Proposition 3). Finally, let Π be the partition
with EPPF q appearing in Proposition 3. As already observed, if Z′ is an i.i.d. sequence
from a diffuse H, then Π(0) = [(1), (2), (3), . . . ] a.s. and hence Π∗(ξ) = Π. The same
result follows if Z′ is exchangeable without ties (see Corollary 2). When Π(0) is not the
trivial partition, it is clear by construction that different blocks in Π can merge in the final
clustering configuration (i.e., Π∗(ξ)). In other words, two observations can share the same
value because either they belong to the same block in the latent partition Π or they are in
different blocks but they share the same value (from Z′). This simple observation leads us
to write the EPPF of the random partition Π∗(ξ) using the EPPF of Π(0) and of Π.

4.1. Explicit Expression of the EPPF

If π̃n = {π̃1,n . . . , π̃k,n} is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n =
(n1, . . . , nk), we can easily describe all the partitions πn more finely than π̃n, which are
compatible with π̃n in the merging process described above. To do this, first of all, note
that any block π̃i,n can arise from the union of 1 ≤ mi ≤ ni blocks in the latent partition.
Hence, given n = (n1, . . . , nk), where n = ∑k

i=1 ni, we define the set

M(n) =
{

m = (m1, . . . , mk) ∈ Nk : 1 ≤ mi ≤ ni

}
.

See Figure 1 for an example. Once a specific configuration m inM(n) is considered, the mi
blocks of the latent partition contributing to the block π̃i,n, are characterized by the sufficient
statistics λi = (λi1, . . . , λini) ∈ Nni , where λij is the number of blocks of j elements among
the mi blocks above. This leads, for m inM(n), to the definition of

Λ(n, m) :=

{
λ = [λ1, . . . , λk] where λi = (λi1, . . . , λini ) ∈ Nni :

∑ni
j=1 jλij = ni, ∑ni

j=1 λij = mi for i = 1, . . . , k

}
.

In summary, the set of partitions π̃n, which are compatible with π̃n in the merging process
described above, can be written as

Pπ̃n := ∪m∈M(n) ∪λ∈Λ(n,m) Pπ̃n(λ) (17)

where Pπ̃n(λ) is the set of all the partitions in Pn with m1 + · · ·+ mk =: |m| blocks such
that

• it is possible to determine k subset containing m1, . . . , mk of these blocks;
• the union of the blocks in the i-th subset coincides with the i-th block of π̃n for

i = 1, . . . , k;
• in the i-th block, there are λij blocks with j elements, for j = 1, . . . , ni.

Given the EPPF q, let

q̄(λ) := q(n11, . . . , n1m1 , n21, . . . , nkmk
),

where (n11, . . . , n1m1 , . . . , nkmk
) is any sequence of integer numbers such that ∑mi

c=1 nic =

∑j jλij for every i and #{c : nic = j} = λij for every i and j. Note that since the value of
q(n11, . . . , n1m1 , n21, . . . , nkmk

) depends only on the statistics λ, q̄(λ) is well-defined. See,
e.g., [26].
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Figure 1. Pictorial representation of the latent partition structure of an mSSS. In the example, the
partition induced by (ξ1, . . . , ξn) for n = 8 is Π̃n = {[1, 3, 4, 7], [2], [5, 6, 8]}, and it is represented
using rounded squares (left bottom). Circles at the top left represent a compatible latent partition,
namely Πn = {[1, 3], [2], [4, 7], [5, 8], [6]}. The partition on {1, . . . , 5} induced by the latent Z′n, i.e.,

Π(0)
|Πn | = {[1, 3], [2], [4, 5]}, is represented with squares in the middle of the figure. Combining Πn and

Π(0)
|Πn |, one obtains Π̃n. The statistics n, m and λ corresponding to this particular configuration are

shown in the box at the bottom right.

Finally, recall that the cardinality of Pπ̃n(λ) is

c(λ) :=
k

∏
i=1

(∑j jλij)!

∏ni
j=1 λij!(j!)λij

=
k

∏
i=1

ni!

∏ni
j=1 λij!(j!)λij

,

See Equation (39) in [15].

Proposition 4. Let ξ = (ξn)n≥1 be an (mSSS). Denote by Π̃ = Π∗(ξ) the random partition
induced by ξ and by q(0) the EPPF of the partition induced by (Z′n)n≥1. If π̃n = {π̃1,n . . . , π̃k,n}
is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk), then

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m) ∑
λ∈Λ(n,m)

c(λ)q̄(λ). (18)

Proof. Start by writing

P{Π̃n = π̃n} = P(∪m∈M(n) ∪λ∈Λ(n,m) ∪πn∈Pπ̃n (λ)
{Πn = πn, Π̃n = π̃n}), (19)

which gives

P{Π̃n = π̃n} = ∑
m∈M(n)

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n|Πn = πn}P{Πn = πn} (20)

Whenever πn ∈ Pπ̃n(λ),
P{Πn = πn} = q̄(λ).

Therefore, we can write (20) as

P{Π̃n = π̃n} = ∑
m∈M(n)

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n|Πn = πn}q̄(λ). (21)
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Define now the function Mπ̃n ,πn : {1, . . . , |m|} → {1, . . . , |π̃n|} as M(j) = i if πj,n is in the
i-th subset of blocks, i.e., if πj,n ⊂ π̃i,n. Recalling that k is the number of blocks in π̃n, define
now a partition π(Mπ̃n ,πn) on {1, . . . , |m|} with k block where the i-th block is

{j : Mπ̃n ,πn(j) = i}.

Recalling that Π(0) is the partition induced by the Z′s, one has

{Π̃n = π̃n, Πn = πn} = {Π(0)
|m| = π(Mπ̃n ,πn), Πn = πn}

which gives

P{Π̃n = π̃n|Πn = πn} = P{Π(0)
|m| = π(MΠ̃n ,πn

)|Πn = πn}

= P{Π(0)
|m| = π(MΠ̃n ,πn

)}

since Π(0) and Π are independent. To conclude, note that the vector of the cardinalities of the
blocks in π(Mπ̃n ,πn) is m; hence, if q(0) is the EPPF of Π(0), one has P{Π(0)

|m| = π(Mπ̃n,πn)} =
q(0)(m). Since the cardinality of Pπ̃n(λ) is c(λ), one obtains the thesis.

Corollary 2. Let ξ = (ξn)n be defined according to (mSSS). If P{Z′1 = Z′2} = 0, then Π∗(ξ) =
Π with probability one.

Proof. If P{Z′1 = Z′2} = 0, by exchangeability, P{Z′i1 = Z′i2 = · · · = Z′ik} ≤ P{Z′1 =

Z′2} = 0. Hence, the Z′is are distinct with probability one. Since (ξ1, . . . , ξn) = (Z′C1(Π),

. . . , Z′Cn(Π)) by Proposition 3, it follows that Π̃n = Πn.

Remark 2. Note that, as a special case, we recover the fact that if ξ is a gSSS(q, H) with H diffuse
(i.e., it is a SSS(q, H)), then the random partition induced by ξ is a.s. Π.

Remark 3. The fact that the EPPF of Π̃n is q when P{Z′1 = Z′2} = 0 can be deduced from (18).
Indeed, if P{Z′1 = Z′2} = 0, then the partition induced by Z′ is a.s. the trivial partition
[(1), (2), (3), . . . ], so that q(0)(m) = 0 for every m �= (1, 1, . . . , 1). For m = (1, 1, . . . , 1),
π̃n = {π̃1,n . . . , π̃k,n} with |π̃i,n| = ni (i = 1, . . . , k), and n = (n1, . . . , nk), the set Λ(n, m)

reduces to the singleton λ(1) := [λ1, . . . , λk], where λi = (0, 0, . . . , 1) with λi of length ni. Hence,
q̄(λ(1)) = q(n) and (18) gives P{Π̃n = π̃n} = q̄(λ(1)) = q(n).

4.2. EPPF When Π Is of Gibbs Type

An important class of exchangeable random partitions is that of Gibbs-type partitions,
introduced in [32] and characterized by the EPPF

q(n1, . . . , nk) := Vn,k

k

∏
j=1

(1− σ)nj−1, (22)

where (x)n = x(x + 1) . . . (x + n− 1), σ < 1 and Vn,k are positive real numbers such that
V1,1 = 1 and

(n− σk)Vn+1,k + Vn+1,k+1 = Vn,k, n ≥ 1, 1 ≤ k ≤ n.

A noteworthy example of Gibbs-type EPPF is the so-called Pitman–Yor two-parameter
family. It is defined by

q(n1, . . . , nk) :=
∏k−1

i=1 (θ + iσ)
(θ + 1)n−1

k

∏
c=1

(1− σ)nc−1, (23)

where 0 ≤ σ < 1 and θ > −σ; or σ < 0 and θ = |σ|m for some integer m; see [2,31].
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In order to state the next result, we recall that

∑
(λ1,...,λn)

∑n
j=1 jλj=n,∑n

j=1 λj=k

n

∏
j=1

[(1− σ)j−1]
λj

n!

∏n
j=1 λi!(j!)λj

= Sσ(n, k) (24)

where Sσ(n, k) is the generalized Stirling number of the first kind; see (3.12) in [26]. In the
same book, various equivalent definitions of generalized Stirling numbers are presented.

Corollary 3. Let Π̃ = Π∗(ξ) be defined as in Proposition 4 with q of Gibbs type defined in (22).
If π̃n = {π̃1,n . . . , π̃k,n} is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk),
then

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m)Vn,|m|
k

∏
i=1

Sσ(ni, mi).

Proof. Combining Proposition 4 with (22), one obtains

P{Π̃n = π̃n} = ∑
m∈M(n)

q(0)(m)Vn,|m| ∑
λ∈Λ(n,m)

k

∏
i=1

ni

∏
j=1

[(1− σ)j−1]
λi,j

ni!

∏ni
j=1 λij!(j!)λij

= ∑
m∈M(n)

q(0)(m)Vn,|m|

×
k

∏
i=1

∑
(λi1,...,λini

)

∑
ni
j=1 jλij=ni ,∑

ni
j=1 λij=mi

ni

∏
j=1

[(1− σ)j−1]
λi,j

ni!

∏ni
j=1 λij!(j!)λij

= ∑
m∈M(n)

q(0)(m)Vn,|m|
k

∏
i=1

Sσ(ni, mi).

4.3. The EPPF of a gSSS(q, H)

As a special case, we now consider the partition induced by a gSSS(q, H) with general
base measure H. For the rest of the section, it is useful to decompose H as

H(dx) = ∑
i≥1

aiδx̄i (dx) + (1− a)Hc(dx) (25)

where X0 := {x̄1, x̄2, . . . } is the collection of points with positive H probability, ai = H(x̄i),
a = H(X0) ∈ [0, 1] and Hc(·) = H(· ∩Xc

0)/H(Xc
0) is a diffuse probability measure on X.

The sum is assumed taken over i ∈ {1, . . . , |X0|}.
We now describe q(0), i.e., the EPPF of the partition induced by (Z′n)n≥1. Let m in

M(n), where n = (n1, . . . , nk), and assume that the realization of Π(0)
|m| has k blocks of

cardinality m1, . . . , mk. Set zi = 0 if the Z′n corresponding to the i-th block of Π(0)
|m| comes

from the diffuse component Hc, while zk = � if it is equal to x̄�. Since the blocks in Π(0)

need to be associated with different values of the Z′n, one has that necessarily zi = zj = 0 if
zi = zj for i �= j. In this case, the block is a singleton, which is mi = mj = 1. On the other
hand, if mi ≥ 2, i.e., a merging occurred, necessarily, zi > 0. Note that it is also possible
that mi = 1 but zi > 0. This motivates the definition of the set

Z(m) : =
{
(z1, . . . , zk) ∈ {0, 1, . . . , |X0|}k : if zi = zj for i �= j then zi = zj = 0

and mi = mj = 1; if mi ≥ 2 then zi > 0
}

78



Mathematics 2021, 9, 3127

for m inM(n) where n = (n1, . . . , nk). The probability of obtaining, in an i.i.d. sample
of length |m| from H, exactly k ordered blocks with cardinality m1, . . . , mk, such that
observations in each block are equal and observations in distinct blocks are different, is

H#(m) := ∑
(z1,...,zk)∈Z(m)

(1− a)#{j:zj=0} ∏
j:zj>0

a
mj
zj .

By exchangeability, H#(m) turns out to be q(0)(m). Note also that if a = 1, H#(m) reduces to

∑
(z1,...,zk)

k

∏
j=1

a
mj
zj

where z1, . . . , zk runs over all distinct positive integers (less than or equal to |X0| if X0 is
finite), which is nothing else (5) for deterministic weights.

To rewrite H#(m) in a different way, given m = (m1, . . . , mk) inM(n), let m∗ be the
vector containing all the elements mi > 1 and let r be its length, with possibly r = 0 if
m = (1, 1, . . . , 1), and define for � ≥ 0

Am,� = ∑
j1 �=···�=jr+�

am∗1
j1

. . . am∗r
jr ajr+1 . . . ajr+�

with the convention that Am,0 = 1 when r = 0. A simple combinatorial argument shows
that

H#(m) =
k−r

∑
�=0

(1− a)k−�−r
(

k− r
�

)
Am,�.

Proposition 4 gives immediately the next proposition.

Proposition 5. Let ξ be a gSSS(q, H) and let Π̃ = Π∗(ξ) be the random partition induced by ξ.
If π̃n = [π̃1,n . . . , π̃k,n] is a partition of [n] with |π̃i,n| = ni (i = 1, . . . , k) and n = (n1, . . . , nk),
then

P{Π̃n = π̃n} = ∑
m∈M(n)

H#(m) ∑
λ∈Λ(n,m)

c(λ)q̄(λ).

Remark 4. Once again, if H is diffuse, then H#(m) = 0 for every m �= (1, 1, . . . , 1). Hence, the
above formula reduces to the familiar

P{Π̃n = π̃n} = q(|π̃n,1|, . . . , |π̃n,k|) = P{Πn = π̃n}.

4.4. EPPF for gSSS with Spike-and-Slab Base Measure

We now consider the special case of gSSS with a spike-and-slab base measure. A
spike-and-slab measure is defined as

H(dx) = aδx0(dx) + (1− a)Hc(dx) (26)

where a ∈ (0, 1), x0 is a point of X and Hc is a diffuse measure on X. This type of measure
has been used as a base measure in the Dirichlet process by [16–20] and in the Pitman–Yor
process by [21].

Here, we deduce by Proposition 5 the explicit form of the EPPF of the random partition
induced by a sequence sampled from a species sampling random probability with such a
base measure.
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Proposition 6. Let H be as in (26), Π̃ be the random partition induced by a gSSS(q, H) and Π
be an exchangeable random partition with EPPF q. If πn = {π1,n . . . , πk,n} is a partition of [n]
with |πi,n| = ni (i = 1, . . . , k), then

P{Π̃n = πn} = (1− a)kq(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

q(n1, . . . , ni−1, ni+1, . . . , nk)
ni

∑
r=1

arqn(r|n1, . . . , ni−1, ni+1, . . . , nk)
(27)

where, conditionally on the fact that Πn−ni has k− 1 blocks with sizes n1, . . . , ni−1, ni+1, . . . , nk,
the probability that Πn has k− 1 + r blocks is denoted by qn(r|n1, . . . , ni−1, ni+1, . . . , nk). If, in
addition, q is of Gibbs type (22), then

P{Π̃n = πn} = (1− a)kVn,k

k

∏
j=1

(1− σ)nj−1

+ (1− a)k−1
k

∑
i=1

k

∏
j=1,j �=i

(1− σ)nj−1

ni

∑
r=1

arVn,k−1+rSσ(ni, r).

Proof. In this case, H#(m) = 0 if mi ≥ 2 and mj ≥ 2 for some i �= j because H has only one
atom. Moreover, H#(m) is clearly symmetric and

H#(1, 1, 1, . . . , 1) = (1− a)k + k(1− a)k−1a

H#(m, 1, . . . , 1) = am(1− a)k−1 for m > 1.

By Proposition 5,

P{Π̃n = πn} = [(1− a)k + k(1− a)k−1a]q(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

ni

∑
mi=2

ami ∑
λ∈Λ(m)

c(λ)q̄(λ)

= [(1− a)k + k(1− a)k−1]q(n1, . . . , nk)+

+ (1− a)k−1
k

∑
i=1

ni

∑
r=2

ar ∑
λ∈Λ(m) for m:
mi=r, mj=1,j �=i

c(λ)q(n1, . . . , ni−1, n
(i)
r , ni+1, . . . , nk)

= (1− a)kq(n1, . . . , nk)

+ (1− a)k−1
k

∑
i=1

ni

∑
r=1

ar ∑
λ∈Λ(m) for m:
mi=r, mj=1,j �=i

c(λ)q(n1, . . . , ni−1, n
(i)
r , ni+1, . . . , nk)

where n
(i)
r is any vector of r positive integers with sum ni such that λij of them are equal to

j. In view of the definition of c(λ), formula (27) is immediately obtained.
If q is of Gibbs type, taking into account (24), then

qn(r|n1, . . . , ni−1, ni+1, . . . , nk) =
Vn,k−1+r

Vn−ni ,k−1
Sσ(ni, r)

and the second part of the thesis follows by simple algebra.

Applying Proposition 6 to the Pitman–Yor EPPF defined in (23), one immediately
recovers the results stated in Theorem 1 and Corollary 1 of [21].
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5. Predictive Distributions

In this section, we provide some expressions for the predictive distributions of mix-
tures of species sampling sequences.

5.1. Some General Results

Let ξ be as in Definition 2 and let (Z′n)n and Πn be the sequence of exchangeable
random variables and the exchangeable random partition appearing in Proposition 3. Let

Gn = σ(Z′1, . . . , Z′|Πn |, Πn)

be the σ-field generated by (Z′1, . . . , Z′|Πn |, Πn). By Proposition 3, one has ξn = Z′Cn(Π) a.s.;
hence, ξn is Gn measurable. Note that, in general, σ(ξ1, . . . , ξn) can be strictly contained
in Gn. Set Ξn := |Πn| and, for any k ≥ 1, let Kk+1(·|·) be a kernel corresponding to the
conditional distribution of Z′k+1 given Z′1, . . . , Z′k (i.e., the k + 1-predictive distribution of
the exchangeable sequence Z′). Finally, recall that Π̃ = Π∗(ξ) is the partition induced
by ξ and define ξ∗1:K̃n

= (ξ∗1 , . . . , ξ∗K̃n
) as the distinct values in order of appearance of

ξ1:n := (ξ1, . . . , ξn) with K̃n = |Π̃n|.

Proposition 7. Let ξ as in Definition 2. Then,

P{ξn+1 ∈ ·|Gn} =
Ξn

∑
�=1

ωn,�(Πn)δZ′�
(·) + νn(Πn)KΞn+1(·|Z′1, . . . , Z′Ξn

) (28)

where νn and ωn,� are defined by (6) and (7). If P{Z′1 = Z′2} = 0, then

P{ξn+1 ∈ ·|ξ1, . . . , ξn} = P{ξn+1 ∈ ·|ξ∗1 , . . . , ξ∗K̃n
, Π̃n}

=
K̃n

∑
�=1

ωn,�(Π̃n)δξ∗�
(·) + νn(Π̃n)KK̃n+1(·|ξ∗1 , . . . , ξ∗K̃n

).
(29)

Proof. Set
E∗new = {Ξn+1 = Ξn + 1}.

Since ξn = Z′Cn(Π), one can write

P{ξn+1 ∈ A|Gn} =
Ξn

∑
�=1

P{ξn+1 ∈ A, n + 1 ∈ Π�,n|Gn}+ P{ξn+1 ∈ A, E∗new|Gn}

=
Ξn

∑
�=1

P{Z′� ∈ A, n + 1 ∈ Π�,n|Gn}+ P{Z′Ξn+1
∈ A, E∗new|Gn}

=
Ξn

∑
�=1

δZ′�
(A)P{n + 1 ∈ Π�,n|Gn}+ P{Z′Ξn+1 ∈ A, E∗new|Gn}

Now, since Π and (Z′n)n are independent, it follows that P{n + 1 ∈ Π�,n|Gn} = P{n + 1 ∈
Π�,n|Πn} = ωn,�(Πn) and also

P{Z′Ξn+1 ∈ A, E∗new|Gn}
= P{Z′Ξn+1 ∈ A|Z′1, . . . , Z′Ξn

}P{E∗new|Πn}
= KΞn+1(A|Z′1, . . . , Z′Ξn

)νn(Πn).

Combining all the claims, one obtains (28). The second part of the proof follows since,
if P{Z′1 = Z′2} = 0, the Z′is are distinct with probability one. Since (ξ1, . . . , ξn) =
(Z′C1(Π), . . . , Z′Cn(Π)), it follows that Π̃n = Πn, Ξn = K̃n and (ξ∗1 , . . . , ξ∗K̃n

) = (Z′1, . . . , Z′Ξn
)

with probability one and Gn = σ(ξ1, . . . , ξn). Hence, (29) follows from (28).
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Remark 5. Note that (29) can be also derived as follows. P{Z′1 = Z′2} = 0 is equivalent to the
fact that H̃ is almost sure diffuse. Hence, conditionally on H̃, we have a SSS(q, H̃); then, by (PS2)
in Section 2.2, one has

P{ξn+1 ∈ ·|ξ1, . . . , ξn, H̃} =
K̃n

∑
�=1

ωn,�(Π̃n)δξ∗�
(·) + νn(Π̃n)H̃(dx). (30)

Taking the conditional expectation of the previous equation, given ξ1, . . . , ξn, we obtain

P{ξn+1 ∈ A|ξ1, . . . , ξn} =
K̃n

∑
�=1

ωn,�(Π̃n)δξ∗�
(A) + νn(Π̃n)E[H̃(A)|ξ1, . . . , ξn] (31)

and the thesis follows since one can check (arguing as in the proof of the proposition) that

E[H̃(A)|ξ1, . . . , ξn] = E[H̃(A)|Z′1, . . . , Z′K̃n
] = KK̃n+1(A|Z′1, . . . , Z′K̃n

).

Assume now that the random variables Z′j are defined on X by a Bayesian model
with likelihood f (zj|u) and prior Q(u), where f is a density with respect to a dominating
measure λ and Q is a probability measure defined on a Polish space U (the space of
parameters). In other words,

P{Z′1 ∈ A1, . . . , Z′k ∈ Ak} =
∫

U

( ∫
A1×A2···×Ak

k

∏
j=1

f (zj|u)λ(dz1) . . . λ(dzk)
)

Q(du).

Note that this means that H̃(A) =
∫

A f (z|ũ)λ(dz), where ũ ∼ Q. Bayes’ theorem (see, e.g.,
Theorem 1.31 in [33]) gives

P{Z′k+1 ∈ dzk+1|Z′1, . . . , Z′k} =
( ∫

U
f (zk+1|u)Q(du|Z′1, . . . , Z′k)

)
λ(dzk+1)

where Q(du|Z1, . . . , Zk) is the usual posterior distribution, which is

Q(du|Z′1, . . . , Z′k) :=
∏k

j=1 f (Z′j |u)Q(du)∫
U ∏k

j=1 f (Z′j |v)Q(dv)
.

If λ is a diffuse measure, one obtains P{Z′1 = Z′2} = 0. Hence, (29) in Proposition 7 applies
and one has

P{ξn+1 ∈ dx|ξ1, . . . , ξn} =
K̃n

∑
�=1

ωn,�(Π̃n)δξ∗�
(dx)

+ νn(Π̃n)
( ∫

U
f (x|u)Q(du|ξ∗1 , . . . , ξ∗K̃n

)
)

dx.

(32)

For example, one can apply this result to a mixture of Dirichlet processes in the sense of [10],
as briefly described at the end of Section 3.1. Assume that αũ(X) and H̃(·) = αũ(·)/αũ(X)
are independent and that αu(A)/αu(X) =

∫
Z f (z|u)λ(dz) for a suitable dominating diffuse

measure λ.
Under these hypotheses, a sample (ξn)n≥1 from a mixture of Dirichlet processes is an

mSSS with q described in (15) and, in addition, P{Z′1 = Z′2} = 0. Combining (15) with (6)
and (7), one obtains

ωn,�(Π̃n) = |Π̃n,�|
∫

U
αu(X)K̃n

(αu(X))n+1
Q(du)∫

U
αu(X)K̃n

(αu(X))n
Q(du)
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and

νn(Π̃n) =

∫
U

αu(X)K̃n+1

(αu(X))n+1
Q(du)∫

U
αu(X)K̃n

(αu(X))n
Q(du)

Hence, the predictive distribution of ξn+1 given (ξ1, . . . , ξn) is (33) for ωn,�(Π̃n) and νn(Π̃n)
given above.

Note that the same result can be deduced by combining Lemma 1 and Corollary 3.2’
in [10].

Example 1 (Species Sampling NIG). Let Z′n be defined as a mixture of normal random variables
with Normal-Inverse-Gamma prior. In other words, given μ0 ∈ R, k0 > 0, α0 > 0, β0 > 0,

Zn|μ̃, σ̃2 i.i.d.∼ N (μ̃, σ̃2)

μ̃|σ̃2 ∼ N (μ0, σ̃2/k0)

σ̃2 ∼ InΓ(α0, β0)

where N (μ, σ2) denotes a normal distribution of mean μ and variance σ2 and InΓ(α, β) is the
inverse gamma distribution with shape α and scale β. Let Tν(·|μ, σ2) be the density of a Student-T
distribution with ν degrees of freedom and (μ, σ) position/scale parameters, i.e.,

Tν(x|μ, σ2) :=
1√
σ2

Γ
(

ν+1
2
)

√
νπΓ( ν

2 )

(
1 +

1
νσ2 (x− μ)2

)−ν+1
2

.

It is well known that, under these assumptions, Kk+1(A|z1, . . . , zk) has density T2αk (z|μk, σ2
k ),

where the parameters are updated

μk =
k0μ0 + kz̄n

k0 + n
z̄k =

1
k

k

∑
j=1

zj αk = α0 + k/2,

σ2
k =

(
β0 +

1
2 ∑k

j=1(zj − z̄k)
2 + kk0(zk−μ0)

2

2(n+k0)

)
(k0 + k + 1)

(α0 + k/2)(k0 + k)

Thus, in this case, if z1, . . . , zk are distinct real numbers and πn = [π1,n, . . . , πk,n], one has

P{ξn+1 ∈ dx|ξ∗1 = z1, . . . , ξ∗k = zk, Π∗(ξ) = πn} =
k

∑
�=1

ωn,�(πn)δξ∗�
(dx)

+ νn(πn)T2αk (x|μn, σ2
k )dx.

(33)

We show an application of (33) to a true dataset by choosing ωn,� and νn according to a
Pitman–Yor two-parameter family; see (23). The data are the relative changes in reported larcenies
between 1991 and 1995 (relative to 1991) for the 90 most populous US counties, taken from
Section 2.1 of [34]. We apply our models to both the raw data and the rounded data (approximated
to the second digit) in order to obtain ties in the ξs. In the evaluation of the predictive CDFs, we fix
μ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1. In Figure 2, we report the empirical CDF of the rounded
data (solid line), the predictive CDF obtained from (33) (dotted line) and the predictive CDF of a
Pitman–Yor species sampling sequence (see PS2) with H = T2α0(·|μ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0

(dashed line). Similar plots are reported in Figure 3, with raw data in place of the rounded data.
Note that in all the various settings, the influence of the hyper-parameters (θ, σ) is stronger in the
CDF of the simple Pitman–Yor species sampling model with respect to the corresponding predictive
CDF derived from (33).
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Figure 2. Predictive CDFs for the relative changes in larcenies between 1991 and 1995 (relative to 1991)
for the 90 most populous US counties; data taken from Section 2.1 of [34]. Data have been rounded to
the second decimal. Here, n = 90 and k = 36. Solid line: empirical CDF. Dotted line: predictive CDF
from (33). Dashed line: predictive CDF from PS2 with H = T2α0 (·|μ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0.

Different plots correspond to different values of θ and σ. In all the plots, the predictive CDFs are
evaluated with μ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1.

Figure 3. Predictive CDFs for the relative changes in larcenies between 1991 and 1995 (relative to
1991) for the 90 most populous US counties; data taken from Section 2.1 of [34]. Raw data, without
rounding. Here, n = 90 and k = 36. Solid line: empirical CDF. Dotted line: predictive CDF from (33).
Dashed line: predictive CDF from PS2 with H = T2α0 (·|μ0, σ2

0 ), σ2
0 = β0(k0 + 1)/α0k0. Different plots

correspond to different values of θ and σ. In all the plots, the predictive CDFs are evaluated with
μ0 = 0, α0 = 0.1, β0 = 0.1 and k0 = 0.1.

5.2. Predictive Distributions for gSSS

We now deduce an explicit form for the predictive distribution of a gSSS with general
base measure H given in (25).
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Recall that we denote by Π̃n the partition induced by ξ1:n, with K̃n = |Π̃n|, and by Πn
the latent partition appearing in Proposition 3. We also set

ζi =

{
� if ξ∗i = x̄�
0 if ξ∗i ∈ Xc

0.

The variable ζi is a discrete random variable that takes value 0 if ξ∗i comes from the diffuse
component of H.

Let Pπ̃n ,z1:k ⊂ Pπ̃n be the set of all the possible configurations of Πn that are compatible
with the observed partition Π̃n = π̃n and the additional information given by ζ1:K̃n

= z1:k,
K̃n = k. In order to describe this set, observe that if zi > 0, then the block π̃i,n may arise
from the union of more blocks in πn, while, if zi = 0, then π̃i,n = πφ(i),n for some φ. Note
that it may happen that φ(i) �= i.

Recalling that the elements in m = (m1, . . . , mk) in (17) are used to describe the
numbers of sub-blocks into which the blocks of π̃n have been divided to form the latent
partition πn, it turns out that the set Pπ̃n ,z1:k has the additional constraint mi = 1 whenever
zi = 0. These considerations yield that, starting from π̃n and z1:k, the set of admissible m
can also be described by resorting to the definition of Z(m) as follows:

M(n, z1:k) :=
{

m ∈ M(n) : z1:k ∈ Z(m)
}

=
{

m ∈ Nk : mi = 1 if zi = 0, 1 ≤ mi ≤ ni if zi > 0
}

.

With this position, one has

Pπ̃n ,z1:k = ∪m∈M(n):z1:k∈Z(m) ∪λ∈Λ(n,m) Pπ̃n(λ)

= ∪m∈M(n,z1:k)
∪λ∈Λ(n,m) Pπ̃n(λ),

(34)

where Λ(n, m) and Pπ̃n(λ) have been defined in Section 4.1.
For any m inM(n, z1:k) and any λ in Λ(n, m), we define

λnew := [λ1, . . . , λk, 1].

In other words, λnew corresponds to the configuration obtained from λ by adding one
new element as a new block. In the following, let Ñ = (|Π̃1,n|, . . . , |Π̃K̃n ,n|), and let Ñi+ be
obtained from Ñ by adding 1 to its i-th component.

Proposition 8. Let (ξn)n≥1 be a gSSS(q, H). Then, for any A in X ,

P{ξn+1 ∈ A|ξ1:n} =
1
Zn

( K̃n

∑
i=1

wiδξ∗i
(A) + w0H̄n(A)

)
a.s.

where

H̄n(A) :=
[

∑
�:x̄� �∈ξ∗

1:K̃n

a�δx̄�(A) + (1− a)Hc(A)
]

H(X \ ξ∗1:K̃n
)−1,

wi := ∑
m∈M(Ñi+ ,ζ1:K̃n )

∏
j:ζ j>0

a
mj
ζ j ∑

λ∈Λ(Ñi+ ,m)

c(λ)q̄(λ),

w0 := H(X \ ξ∗1:K̃n
) ∑

m∈M(Ñ,ζ1:K̃n )
∏

j:ζ j>0
a

mj
ζ j ∑

λ∈Λ(Ñ,m)

c(λ)q̄(λnew),

Zn := ∑
m∈M(Ñ,ζ1:K̃n )

∏
j:ζ j>0

a
mj
ζ j ∑

λ∈Λ(Ñ,m)

c(λ)q̄(λ).
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Proof. We start by defining the following events for i = 1, . . . , K̃n:

Ei = {ξn+1 = ξ∗i }, Enew = {ξn+1 �∈ ξ∗1:K̃n
}.

Since conditioning on ξ1:n is equivalent to the condition on [ξ∗1:K̃n
, Π̃n], one can write

P{ξn+1 ∈ A|ξ1:n} =
K̃n

∑
i=1

P{ξn+1 ∈ A, Ei|ξ∗1:K̃n
, Π̃n}+ P{ξn+1 ∈ A, Enew|ξ∗1:K̃n

, Π̃n}

Now, set
E∗new := {Cn+1(Π) = |Πn|+ 1}

and
E∗i = {|Cn+1(Π)| ≤ |Πn| and ΠCn+1(Π),n ⊂ Π̃i,n }.

On ζi = 0, one has (up to zero probability sets)

{ξn+1 ∈ A} ∩ Ei = {ξ∗i ∈ A} ∩ E∗i

while, on ζi > 0 (up to zero probability sets),

{ξn+1 ∈ A} ∩ Ei =
(
{ξ∗i ∈ A} ∩ E∗i

)
∪
(
{ξ∗i ∈ A} ∩ {Z′|Πn |+1 = x̄ζi} ∩ E∗new

)
.

Note that (up to zero probability sets)

{Z′|Πn |+1 = x̄ζi} ∩ E∗new ∩ {ζi = 0} = ∅.

Hence,

P{ξn+1 ∈ A, Ei|ξ∗1:K̃n
, Π̃n}

= δξ∗i
(A)P{E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)|Π̃n, ξ∗1:K̃n

}.
(35)

Similarly, using that Enew ⊂ E∗new, one obtains

P{ξn+1 ∈ A, Enew|ξ1:n} = P{ξn+1 ∈ A, Enew, E∗new|Π̃n, ξ∗1:K̃n
}

= P{ξn+1 ∈ A, Enew|ξ∗1:K̃n
,E∗new}P{E∗new|Π̃n, ξ∗1:K̃n

}
= Hn(A)P{E∗new|Π̃n, ξ∗1:K̃n

}
(36)

where
Hn(A) = ∑

�:x̄� �∈ξ∗
1:K̃n

ā�δx̄�(A) + (1− a)Hc(A).

At this stage, note that, by construction,

L(ξ∗1:K̃n
|Πn, Z′|Πn |+1, ζ1:K̃n

, Π̃n, Πn+1) = L(ξ∗1:K̃n
|ζ1:K̃n

)

where L(ξ∗1:K̃n
|ζ1:K̃n

) is characterized by

P(ξ∗1 ∈ A1, . . . , ξ∗K̃n
∈ AK̃n

|ζ1:K̃n
) =

K̃n

∏
i=1

(
Hc(Ai)1{ζi = 0}+ δx̄ζi

(Ai)1{ζi > 0}
)

,

and then

L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1, ξ∗1:K̃n

|Πn) = L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1|Πn)L(ξ∗1:K̃n

|ζ1:K̃n
).

86



Mathematics 2021, 9, 3127

Hence,

L(Πn, Πn+1, Z′|Πn |+1,ξ∗1:K̃n
, ζ1:K̃n

, Π̃n)

= L(Πn)L(Z′|Πn |+1, ζ1:K̃n
, Π̃n, Πn+1|Πn)L(ξ∗1:K̃n

|ζ1:K̃n
)

(37)

which shows, in particular, that [Πn, Πn+1, Z′|Πn |+1, Π̃n] and ξ∗1:K̃n
are conditionally inde-

pendent given ζ1:K̃n
. Since E∗i , E∗new and {Z′|Πn |+1 = x̄ζi} ∩ E∗new depend logically only on

Πn+1, Z′|Πn |+1, Π̃n, ζ1:K̃n
, one obtains

P{E∗i |Π̃n, ξ∗1:K̃n
} = P{E∗i |Π̃n, ζ1:K̃n

},
P{(Z′|Πn |+1= x̄ζi )∩ E∗new|Π̃n, ξ∗1:K̃n

} = P{(Z′|Πn |+1 = x̄ζi )∩ E∗new|Π̃n, ζ1:K̃n
}

(38)

and, finally,
P{E∗new|Π̃n, ξ∗1:K̃n

} = P{E∗new|Π̃n, ζ1:K̃n
}. (39)

Since [Π̃n, ζ1:K̃n
, K̃n] are discrete random variables, we use the elementary definition of

the conditional probability of events to evaluate the conditional distributions (38) and (39).
Specifically, assume that K̃n = k, [Π̃n, ζ1:K̃n

] = [π̃n, z1:k], Ñ = n, and, for a given event
E, write

P{E|Π̃n = π̃n, ζ1:K̃n
= z1:k} =

P{E, Π̃n = π̃n, ζ1:K̃n
= z1:k}

P{Π̃n = π̃n, ζ1:K̃n
= z1:k}

. (40)

As for the denominator in (40), lettingM∗
n =M(n, z1:k) and J = #{i : zi > 0}, using (34),

one obtains

P{Π̃n =π̃n, ζ1:K̃n
= z1:k}

= ∑
πn∈Pπ̃n ,z1:k

P{Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= ∑
m∈M∗n

∑
λ∈Λ(n,m)

∑
πn∈Pπ̃n (λ)

P{Π̃n = π̃n, ζ1:n = z1:k, Πn = πn}

= (1− a)k−J ∑
m∈M∗n

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)
∑

πn∈Pπ̃n (λ)

q̄(λ)

= (1− a)k−J ∑
m∈M∗n

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λ).

As for the numerators in (40), when E = E∗new, we start from

P{E∗new, Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= P{E∗new|Πn = πn}P{Π̃n = π̃n, ζ1:K̃n
= z1:k, Πn = πn}

= P{E∗new|Πn = πn}(1− a)k−J ∏
j:zj>0

a
mj
zj q̄(λ)

= (1− a)k−J ∏
j:zj>0

a
mj
zj q̄(λ

new).

where, in the last equality, we used that for πn ∈ Pπ̃n(λ), one has

P{E∗new|Πn = πn} =
q̄(λnew)

q̄(λ)
.

Taking the sum over Pπ̃n ,z1:k gives

P{E∗new, Π̃n = π̃n, ζ1:K̃n
= z1:k} = (1− a)k−J ∑

m∈M∗n
∏

j:zj>0
a

mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λnew).
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Combining these with (39) and (40) and recalling thatM∗
n =M(n, z1:k), one obtains

P{E∗new|Π̃n, ξ∗1:K̃n
} =

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λnew)

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

.

Finally, it remains to consider (40) when E = E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new). Now,
observe that(

E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)
)
∩ {Π̃n = π̃n, ζ1:K̃n

= z1:k}

= {Π̃n+1 = π̃i+
n , ζ1:K̃n

= z1:k} = {Π̃n+1 = π̃i+
n , ζ1:K̃n+1

= z1:k}

where π̃i+
n denote the partition in Pn+1 obtained from π̃n by adding n + 1 to the i-th

block of π̃n. Note that, for the second equality, we used that, on Π̃n+1 = π̃i+
n , one has

K̃n+1 = K̃n = k.
Hence, using (34) with π̃i+

n in place of π̃n, one concludes that

P{Π̃n+1 = π̃i+
n , ζ1:K̃n+1

= z1:k}
= ∑

m∈M(ni+ ,z1:k)
λ∈Λ(n,m)

∑
πn+1∈Pπ̃n+1 (λ)

P{Π̃n+1 = π̃i+
n , Πn+1 = πn+1, ζ1:K̃n+1

= z1:k}

= (1− a)k−J ∑
m∈M(ni+ ,z1:k)

∏
j:zj>0

a
mj
zj ∑

λ∈Λ(n,m)

c(λ)q̄(λ)

where ni+ = (n1, . . . , ni + 1, . . . , nk). Hence, by (38)–(40), one can write

P{E∗i ∪ ({Z′|Πn |+1 = x̄ζi} ∩ E∗new)|Π̃n, ξ∗1:K̃n
}

=
∑m∈M(ni+ ,z1:k)

∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

∑m∈M(n,z1:k) ∏j:zj>0 a
mj
zj ∑λ∈Λ(n,m) c(λ)q̄(λ)

.

Combining these results, one obtains the thesis.

6. Conclusions and Discussion

We have defined a new class of exchangeable sequences, called mixtures of species
sampling sequences (mSSS). We have shown that these sequences include various well-
known Bayesian nonparametric models. In particular, the observations of many nonpara-
metric hierarchical models (e.g., hierarchical Dirichlet process, hierarchical Pitman–Yor
process and, more generally, hierarchical species sampling models [22–25]) are mSSS. We
have shown that also observations sampled from a mixture of Dirichlet processes [10]
are mSSS, under some additional assumptions. Our general class also includes species
sampling sequences with a general (not necessarily diffuse) base measure, which have
been used in various applications, e.g., in the case of “spike-and-slab”-type nonparametric
priors [16–21].

We believe that our general framework sheds light on the common structure of all the
above-mentioned models, leading to a possible unified treatment of some of their important
features. Our techniques provides unified proofs for various results that, up to now, have
been proven with ad hoc methods.

We have proven that all the mSSS are obtained by assigning the values of an exchange-
able sequence to the classes of a latent exchangeable random partition. This representation
is proven in the strong sense of an almost sure equality (see Section 3) and leads to the sim-
ple and clear derivation of an explicit expression for the EPPF of an mSSS. We believe that
our general proof simplifies the derivation of the EPPF of many of the above-mentioned
particular cases. Moreover, our results show that the clustering and the predictive structure
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of various well-known models do not depend on the relation between these models and
completely random measures, but are essentially a consequence of the simple combinatorial
structure of these sequences. Many important differences between well-known models
(such as mixtures of Dirichlet and hierarchical Dirichlet) can be explained easily by simple
differences in the latent partition and the corresponding latent exchangeable sequence.

We stress that a clear understanding of the clustering structure of mSSS is fundamental
for practical purposes, since these models are typically used to cluster observations. More-
over, we hope that the explicit expression for EPPFs in our general framework can lead to
the development of new MCMC algorithms for sampling from the posterior distribution.

Finally, we believe that some of the results we have proven here for mSSS can be
extended to the more general case of partially exchangeable arrays. In this direction, for
future works, a possible generalization of mSSS is to consider partially exchangeable arrays
with a mixture of species sampling random probability measures as directing measures.
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Appendix A

In what follows, L(X) denotes the law of a random element X. For ease of reference,
we state here Lemma 5.9 and Corollary 5.11 of [35].

Lemma A1 (Extension 1). Fix a probability kernel K between two measurable spaces S and T,
and let σ be a random element defined on (Ω,F ,P) taking values in S. Then, there exists a
random element η in T, defined on some extension of the original probability space Ω, such that
P[η ∈ ·|σ] = K(·|σ) a.s. and, moreover, η is conditionally independent given σ from any other
random element on Ω.

Lemma A2 (Extension 2). Fix two Borel spaces S and T, a measurable mapping f : T → S and
some random elements σ in S and η̃ in T with L(σ) = L( f (η̃)). Then, there is a random element η
defined on some extension of the original probability space, such that L(η) = L(η̃) and σ = f (η) a.s.

We need the following variant of the previous result.

Lemma A3 (Extension 3). Fix three Borel spaces S1, S2 and T1, a measurable mapping φ :
T1 × S2 → S1 and some random elements σ = (σ1, σ2) in S1 × S2 and τ1 in T1, all defined on
a probability space (Ω,F , P). Assume that the conditional law of σ1 given σ2 is the same as the
conditional law of φ(τ1, σ2) given σ2 (P-almost surely). Then, there is a random element τ defined
on some extension of the original probability space (Ω,F , P) taking values in T1 such that

• σ1 = φ(τ, σ2) a.s.
• L(τ1, σ2) = L(τ, σ2).

Proof. Define f : T1× S2 =: T → S1× S2 =: S by f (a, b) = (φ(a, b), b), set η̃ = (τ1, σ2) and
σ = (σ1, σ2). By hypothesizing, it is clear that L( f (η̃)) = L((φ(τ1, σ2), σ2)) = L(σ1, σ2) =
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L(σ). Thus, by Lemma A2, one has that, on an enlargement of (Ω,F , P), there exists
η := (τ, σ∗2 ) such that L(η) = L(η̃) and (φ(τ, σ∗2 ), σ∗2 ) = f (η) = σ = (σ1, σ2) a.s. Hence,
σ∗2 = σ2 a.s. but also φ(τ, σ2) = φ(τ, σ∗2 ) = σ1 a.s. It remains to show the second part of the
thesis. Since (τ, σ2) = (τ, σ∗2 ) = η a.s. and L(η) = L(η̃), where η̃ = (τ1, σ2), it follows that
L(τ, σ2) = L(τ1, σ2).

References

1. Ferguson, T.S. A Bayesian analysis of some nonparametric problems. Ann. Stat. 1973, 1, 209–230. [CrossRef]
2. Pitman, J.; Yor, M. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. Ann. Probab. 1997, 25,

855–900. [CrossRef]
3. Perman, M.; Pitman, J.; Yor, M. Size-biased sampling of Poisson point processes and excursions. Probab. Theory Relat. Fields 1992,

92, 21–39. [CrossRef]
4. Regazzini, E.; Lijoi, A.; Prünster, I. Distributional results for means of normalized random measures with independent increments.

Ann. Stat. 2003, 31, 560–585. [CrossRef]
5. James, L.F.; Lijoi, A.; Prünster, I. Posterior analysis for normalized random measures with independent increments. Scand. J. Stat.

2009, 36, 76–97. [CrossRef]
6. Lijoi, A.; Prünster, I. Models beyond the Dirichlet process. In Bayesian Nonparametrics; Hjort, N.L., Holmes, C., Müller, P., Walker,

S., Eds.; Cambridge University Press: New York, NY, USA, 2010.
7. De Blasi, P.; Favaro, S.; Lijoi, A.; Mena, R.H.; Prunster, I.; Ruggiero, M. Are Gibbs-Type Priors the Most Natural Generalization of

the Dirichlet Process? IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 212–229. [CrossRef]
8. Pitman, J. Poisson-Kingman partitions. In Statistics and Science: A Festschrift for Terry Speed; IMS Lecture Notes Monograph Series;

Institute of Mathematical Statistics: Beachwood, OH, USA, 2003; Volume 40, pp. 1–34.
9. Ishwaran, H.; James, L.F. Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. 2001, 96, 161–173. [CrossRef]
10. Antoniak, C.E. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Stat. 1974, 2, 1152–1174.

[CrossRef]
11. Cifarelli, D.M.; Regazzini, E. Distribution functions of means of a Dirichlet process. Ann. Stat. 1990, 18, 429–442. [CrossRef]
12. Sangalli, L.M. Some developments of the normalized random measures with independent increments. Sankhyā 2006, 68, 461–487.
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Abstract: Let S be a Borel subset of a Polish space and F the set of bounded Borel functions f : S→ R.
Let an(·) = P

(
Xn+1 ∈ · | X1, . . . , Xn) be the n-th predictive distribution corresponding to a sequence

(Xn) of S-valued random variables. If (Xn) is conditionally identically distributed, there is a random
probability measure μ on S such that

∫
f dan

a.s.−→
∫

f dμ for all f ∈ F. Define Dn( f ) = dn
{∫

f dan −∫
f dμ
}

for all f ∈ F, where dn > 0 is a constant. In this note, it is shown that, under some
conditions on (Xn) and with a suitable choice of dn, the finite dimensional distributions of the process
Dn =

{
Dn( f ) : f ∈ F

}
stably converge to a Gaussian kernel with a known covariance structure. In

addition, E
{

ϕ(Dn( f )) | X1, . . . , Xn
}

converges in probability for all f ∈ F and ϕ ∈ Cb(R).

Keywords: bayesian predictive inference; central limit theorem; conditional identity in distribution;
exchangeability; predictive distribution; stable convergence

MSC: 60B10; 60G25; 60G09; 60F05; 62F15; 62M20

1. Introduction

All random elements appearing in the sequel are defined on a common probability
space, say (Ω,A, P). We denote by S a Borel subset of a Polish space and by B the Borel
σ-field on S. We let

P =
{

probability measures on B
}

and

F =
{

real bounded Borel functions on S
}

.

Moreover, if λ ∈ P and f ∈ F, we write λ( f ) to denote

λ( f ) =
∫

f dλ.

In other terms, depending on the context, λ is regarded as a function on B or a function
on F. This slight abuse of notation is quite usual (see, e.g., [1,2]) and very useful for the
purposes of this note.

Let
X = (X1, X2, . . .)

be a sequence of S-valued random variables and

F0 = {∅, Ω} and Fn = σ(X1, . . . , Xn).

The predictive distributions of X are the random probability measures on (S,B) given by

an(·) = P
(
Xn+1 ∈ · | Fn) for all n ≥ 0.

Mathematics 2021, 9, 3211. https://doi.org/10.3390/math9243211 https://www.mdpi.com/journal/mathematics93
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Under some conditions, there is a further random probability measure μ on (S,B)
such that

μ( f ) a.s.
= lim

n
an( f ) for each f ∈ F. (1)

For instance, condition (1) holds if X is exchangeable. More generally, it holds if X is
conditionally identically distributed (c.i.d.), as defined in Section 2. Note also that, since
S is separable, condition (1) implies an → μ weakly. Regarding an and μ as measurable
functions from Ω into P , one obtains

P
(
{ω ∈ Ω : an,ω → μω weakly}

)
= 1.

Assume condition (1), fix a sequence dn of positive constants, and define

Dn( f ) = dn
{

an( f )− μ( f )
}

for each f ∈ F.

This note deals with the process

Dn =
{

Dn( f ) : f ∈ F
}

.

Our goal is to show that, under some conditions on X and with a suitable choice of the
constants dn, the finite-dimensional distributions of Dn stably converge, as n → ∞, to a
certain Gaussian limit.

To be more precise, we recall that a kernel on (S,B) is a measurable map α : S → P .
This means that α(x) ∈ P , for each x ∈ S, and the function x 
→ α(x)(A) is B-measurable
for each A ∈ B. In what follows, we write

α(x)( f ) =
∫

f (y) α(x)(dy) for all x ∈ S and f ∈ F.

Next, as in [3], suppose the predictive distributions of X satisfy the recursive equation

an+1 = qn an + (1− qn) α(Xn+1) a.s. for all n ≥ 0, (2)

where q0, q1, . . . ∈ (0, 1) are constants and α is a kernel on (S,B). Moreover, let

ν(·) = P
(
X1 ∈ ·)

be the marginal distribution of X1. Under condition (2), X is c.i.d. whenever α is a regular
conditional distribution for ν given a sub-σ-field G ⊂ B; see ([3] Section 5). Hence, we
assume

α(·)(A) = Eν(1A | G), ν-a.s., (3)

for all A ∈ B and some sub-σ-field G ⊂ B. For instance, condition (3) holds if

α(x) = δx for all x ∈ S

where δx denotes the unit mass at the point x (just let G = B). In addition, we assume

∑
n
(1− qn)

2 < ∞ and lim
n

dn sup
k≥n

(1− qk−1) = 0

where

dn =

(
∑
k≥n

(1− qk)
2

)−1/2

.

In this framework, it is shown that(
Dn( f1), . . . , Dn( fp)

)
−→ Np(0, Σ) stably (4)
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for all p ≥ 1 and all f1, . . . , fp ∈ F, where Σ is the random covariance matrix with entries

σjk =
∫

α(x)( f j) α(x)( fk) μ(dx)− μ( f j) μ( fk).

We actually prove something more than (4). Let Cb(R) denote the set of real bounded
continuous functions on R. Then, it is shown that

E
{

ϕ
(

Dn( f )
)
| Fn

} P−→ N (0, σ2)(ϕ) (5)

for all f ∈ F and ϕ ∈ Cb(R), where

σ2 =
∫

α(x)( f )2 μ(dx)− μ( f )2.

Based on (5), it is not hard to deduce condition (4).

Before concluding the Introduction, several remarks are in order.

(i) A remarkable special case is α(x) = δx for all x ∈ S. Indeed, Equation (2) holds with
α = δ in some meaningful situations, including Dirichlet sequences; see ([3] Section
4) for other examples. Thus, suppose α = δ. Then, the above formulae reduce to
σjk = μ( f j fk)− μ( f j) μ( fk) and σ2 = μ( f 2)− μ( f )2. Moreover, if ν is non-atomic and

n

∏
j=0

qj → 0 and ∑
n

n

∏
j=0

qj = ∞,

then μ takes the form
μ

a.s.
= ∑

n
Vn δYn

where (Vn) and (Yn) are independent sequences and (Yn) is i.i.d. with Y1 ∼ ν; see ([3]
Theorem 20) and [4] for details.

(ii) Let l∞(G) be the set of real bounded functions on G, where G is any subset of F. For
instance, if S = R, one could take G =

{
1(−∞,x] : x ∈ R

}
. In view of (4), a natural

question is whether Dn has a limit in distribution when l∞(G) is equipped with a suitable
distance. As an example, l∞(G) could be equipped with the uniform distance (as in [1,2])
or with some weaker distance (as in [5]). Even if natural, this question is neglected in
this note. We hope and plan to investigate it in a forthcoming paper.

(iii) For fixed f ∈ F, condition (4) provides some information on the convergence rate
of an( f ) to μ( f ). Define Ln = un |an( f ) − μ( f )| where un > 0 is any sequence of

constants. Then, condition (4) yields Ln
P−→ 0 whenever un/dn → 0. Furthermore,

Ln
P−→ ∞ provided un/dn → ∞ and σ2 > 0 a.s.

(iv) The condition limn dn supk≥n(1− qk−1) = 0 is just a technical assumption which guar-
antees that, asymptotically, there are no dominating terms. In a sense, this condition
is analogous to the weak Lindeberg’s condition in the classical CLT for independent
summands.

(v) From a Bayesian point of view, μ can be seen as a random parameter of the data
sequence X. This is quite clear if X is exchangeable, for, in this case, X is conditionally
i.i.d. given μ. If X is only c.i.d., the role of μ is not as crucial, but μ still contributes
to specify the probability distribution of X; see ([3] Section 2.1). Thus, in a Bayesian
framework, conditions (4)–(5) may be useful to make (asymptotic) inference about μ.
To this end, an alternative could be proving a limit theorem for Wn = wn (μn − μ),
where wn is a suitable constant and μn = (1/n) ∑n

j=1 δXj the empirical measure.
However, Dn has two advantages with respect to Wn. It usually converges at a better
rate and the variance of the limit distribution is smaller; see, e.g., Example 3.
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(vi) Conditions (4)–(5) are our main results. They can be motivated in at least two ways.
Firstly, from the theoretical perspective, conditions (4)–(5) fit into the results concern-
ing the asymptotic behavior of conditional expectations (see, e.g., [6–8] and references
therein). Secondly, from the practical perspective, conditions (4)–(5) play a role in
all those fields where predictive distributions are basic objects. The main example
is Bayesian predictive inference. Indeed, the predictive distributions investigated
in this note have been introduced in connection with Bayesian prediction problems;
see [3]. Another example is the asymptotic behavior of certain urn schemes. Related
subjects, where (4)–(5) are potentially useful, are empirical processes for dependent
data, Glivenko-Cantelli-type theorems and merging of opinions. Without any claim of
being exhaustive, a list of references is: [3,5,9–21].

2. Preliminaries

In this note, Np(0, C) denotes the Gaussian law on the Borel sets of Rp with mean 0
and covariance matrix C, where C is symmetric and semidefinite positive. If p = 1 and
c ≥ 0 is a scalar, we write N (0, c) instead of N1(0, c) and

N (0, c)(ϕ) =
∫

ϕ(x)N (0, c)(dx)

for all bounded measurable ϕ : R → R. Note that, if Σ is a random covariance matrix,
Np(0, Σ) is a random probability measure on the Borel sets of Rp.

Let us briefly recall stable convergence. Let A+ = {H ∈ A : P(H) > 0}. Fix a random
probability measure K on (S,B) and define

λH(A) = E{K(A) | H} for all A ∈ B and H ∈ A+.

Each λH is a probability measure on B. Then, Xn converges stably to K, written Xn → K
stably, if

P(Xn ∈ · | H) −→ λH weakly for all H ∈ A+.

In particular, Xn converges in distribution to λΩ. However, stable convergence is stronger
than convergence in distribution. To see this, take a further random variable X : Ω → S.

Then, Xn
P−→ X if, and only if, Xn → δX stably. Thus, stable convergence is strictly

connected to convergence in probability. Moreover, (Xn, X) → K × δX stably whenever
Xn → K stably. Therefore, if Xn converges stably, (Xn, X) still converges stably for any
S-valued random variable X.

We next turn to conditional identity in distribution. Say that X is conditionally identically
distributed (c.i.d.) if

P
(
Xk ∈ · | Fn

)
= P
(
Xn+1 ∈ · | Fn

)
a.s. for all k > n ≥ 0.

Thus, at each time n, the future observations (Xk : k > n) are identically distributed given
the past. This is actually weaker than exchangeability. Indeed, X is exchangeable if, and
only if, it is stationary and c.i.d.

C.i.d. sequences were introduced in [9,22] and then investigated in various papers;
see, e.g., [3–5,11,23–29].

The asymptotics of c.i.d. sequences is similar to that of exchangeable ones. To see this,
suppose X is c.i.d. and define the empirical measures

μn =
1
n

n

∑
j=1

δXj .
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Then, there is a random probability measure μ on (S,B) such that

μ(A)
a.s.
= lim

m
μm(A) for each fixed A ∈ B.

It follows that

E
{

μ(A) | Fn
}
= lim

m
E
{

μm(A) | Fn
}

= lim
m

1
m

m

∑
j=n+1

P
(
Xj ∈ A | Fn

)
= P
(
Xn+1 ∈ A | Fn

)
a.s.

for all n ≥ 0 and A ∈ B. Therefore, as in the exchangeable case, the predictive distributions
can be written as

an(·) = P
(
Xn+1 ∈ · | Fn

)
= E
{

μ(·) | Fn
}

a.s.

Using the martingale convergence theorem, this implies

μ( f ) a.s.
= lim

n
E
{

μ( f ) | Fn
}
= lim

n
an( f ) for all f ∈ F.

Furthermore, X is asymptotically exchangeable, in the sense that the probability
distribution of the shifted sequence (Xn, Xn+1, . . .) converges weakly to an exchangeable
probability measure on (S∞,B∞).

Finally, we state a technical result to be used later on.

Lemma 1. Let (Yn) be a sequence of real integrable random variables, adapted to the filtration
(Fn), and

Zn = E(Yn+1 | Fn).

Let V be a real non-negative random variable and 0 < b1 < b2 < . . . an increasing sequence
of constants, such that bn ↑ ∞ and bn/bn+1 → 1. Suppose (Y2

n) is uniformly integrable, Zn
a.s.−→ Z

for some random variable Z, and define

Tn = bn (Zn − Z).

Then,
E
{

ϕ(Tn) | Fn
} P−→ N (0, V)(ϕ) for all ϕ ∈ Cb(R)

provided

b2
n ∑

k≥n
(Zk − Zk−1)

2 P−→ V; (6)

lim
n

bn E

{
sup
k≥n
|Zk − Zk−1|

}
= 0; (7)

∑
k≥n

E
∣∣∣E(Zk+1 | Fk)− Zk

∣∣∣ = o(1/bn). (8)

Proof. Just repeat the proof of ([10] Theorem 1) with bn in the place of
√

n.

3. Main Result

Let us go back to the notation of Section 1. Recall that qn ∈ (0, 1) is a constant for each
n ≥ 0 and dn =

(
∑k≥n(1− qk)

2)−1/2. We aim to prove the following CLT.
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Theorem 1. Assume conditions (2)–(3) and

∑
n
(1− qn)

2 < ∞ and lim
n

dn sup
k≥n

(1− qk−1) = 0.

Then, there is a random probability measure μ on (S,B) such that

μ( f ) a.s.
= lim

n
an( f ) and E

{
ϕ
(

Dn( f )
)
| Fn

} P−→ N (0, σ2)(ϕ)

for all f ∈ F and ϕ ∈ Cb(R), where

σ2 =
∫

α(x)( f )2 μ(dx)− μ( f )2.

As a consequence, (
Dn( f1), . . . , Dn( fp)

)
−→ Np(0, Σ) stably

for all p ≥ 1 and all f1, . . . , fp ∈ F where the covariance matrix Σ has entries

σjk =
∫

α(x)( f j) α(x)( fk) μ(dx)− μ( f j) μ( fk).

Proof. Due to conditions (2)–(3), X is c.i.d.; see ([3] Section 5). Hence, as noted in Section 2,
there is a random probability measure μ on (S,B) such that

an( f ) a.s.
= E

{
μ( f ) | Fn

}
for all f ∈ F.

By martingale convergence, it follows that an( f ) a.s.−→ μ( f ) for all f ∈ F.

We next prove condition (5). Fix f ∈ F and define

bn = dn, Yn = an( f ), Z = μ( f ) and V = σ2.

Then, (Y2
n) is uniformly integrable (for f is bounded) and bn satisfies the conditions of

Lemma 1. Moreover,

Zn = E(Yn+1 | Fn) = E
{

E
(
μ( f ) | Fn+1

)
| Fn

}
= E
{

μ( f ) | Fn
}
= an( f ) a.s.

so that Zn
a.s.−→ Z. Therefore, Lemma 1 applies. Hence, to prove (5), it suffices to check

conditions (6)–(8).
Let c = sup| f |. Since E(Zk+1 | Fk) = Zk a.s., condition (8) is trivially true. Moreover,

condition (2) implies

Zk − Zk−1 = ak( f )− ak−1( f )
= qk−1 ak−1( f ) + (1− qk−1) α(Xk)( f )− ak−1( f )
= (1− qk−1)

{
α(Xk)( f )− ak−1( f )

}
a.s. for all k ≥ 1.

Hence, condition (7) holds, since

dn E

{
sup
k≥n
|Zk − Zk−1|

}
≤ 2 c dn sup

k≥n
(1− qk−1) −→ 0.

It remains to prove condition (6), namely

d2
n ∑

k≥n
(1− qk−1)

2 {α(Xk)( f )− ak−1( f )
}2 P−→ σ2.
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First note that, since ak−1( f )2 a.s.−→ μ( f )2 as k→ ∞, one obtains

d2
n ∑

k≥n
(1− qk−1)

2 ak−1( f )2 =
∑k≥n(1− qk−1)

2 ak−1( f )2

∑k≥n(1− qk)2
a.s.−→ μ( f )2.

Next, define

Rk = α(Xk)( f )2 and Mn = d2
n ∑

k≥n
(1− qk−1)

2{Rk − E(Rk | Fk−1)
}

.

Then,
E(M2

n) = d4
n ∑k≥n(1− qk−1)

4E
{(

Rk − E(Rk | Fk−1)
)2}

≤ 4 c4d4
n ∑k≥n(1− qk−1)

4

≤ 4 c4 d2
n supk≥n(1− qk−1)

2 · d2
n ∑k≥n(1− qk−1)

2

−→ 0.

Moreover,

E(Rk | Fk−1) = E
{∫

α(x)( f )2 μ(dx) | Fk−1

}
a.s.−→

∫
α(x)( f )2 μ(dx).

Therefore,

d2
n ∑

k≥n
(1− qk−1)

2 Rk = Mn + d2
n ∑

k≥n
(1− qk−1)

2 E(Rk | Fk−1)
P−→
∫

α(x)( f )2 μ(dx).

By the same argument, it follows that

d2
n ∑

k≥n
(1− qk−1)

2 α(Xk)( f ) ak−1( f ) P−→ μ( f )
∫

α(x)( f ) μ(dx).

In addition, as proved in the Claim below,∫
α(x)( f ) μ(dx) a.s.

= μ( f ).

Collecting all pieces together, one finally obtains

d2
n ∑

k≥n
(1− qk−1)

2 {α(Xk)( f )− ak−1( f )
}2 P−→ μ( f )2 +

∫
α(x)( f )2 μ(dx)− 2 μ( f )2 = σ2.

Hence, condition (6) holds.

This concludes the proof of (5). We next prove that (5)⇒ (4). Let p ≥ 1 and f1, . . . , fp ∈
F. Fix u1, . . . , up ∈ R and define

Un =
p

∑
j=1

ujDn( f j) and σ2
u = ∑

j,k
ujukσjk.

Moreover, for each H ∈ A+, define the probability measure

λH(A) = E
{
N (0, σ2

u)(A) | H
}

for each Borel set A ⊂ R.

We have to show that

P(Un ∈ · | H) −→ λH weakly for each H ∈ A+. (9)
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To this end, call φH the characteristic function of λH , namely

φH(t) = E
(∫

eitxN (0, σ2
u)(dx) | H

)
= E
(

e−t2 σ2
u/2 | H

)
for all t ∈ R.

Letting f = ∑
p
j=1 uj fj, one obtains

Un = Dn( f ) and σ2
u =

∫
α(x)( f )2 μ(dx)− μ( f )2.

Therefore, condition (5) yields

E
(

ei t Un
)
= E
(

E
{

ei t Dn( f ) | Fn

})
−→ E

(
e−t2 σ2

u/2
)
= φΩ(t)

for each t ∈ R. Hence, condition (9) holds for H = Ω. Next, suppose H ∈ ⋃n Fn and
P(H) > 0. Then, for large n, one obtains

E
(

1H ei t Un
)
= E
(

1H E
{

ei t Dn( f ) | Fn

})
.

Hence, for each t ∈ R, condition (5) still implies

P(H) φH(t) = E
(

1H e−t2 σ2
u/2
)
= lim

n
E
(

1H E
{

ei t Dn( f ) | Fn

})
= lim

n
E
(

1H ei t Un
)

.

Therefore, condition (9) holds whenever H ∈ ⋃n Fn and P(H) > 0. Based on this fact, by
standard arguments, condition (9) easily follows for each H ∈ A+.

To conclude the proof of the Theorem, it remains only to show that:

Claim:
∫

α(x)( f ) μ(dx) a.s.
= μ( f ) for all f ∈ F.

Proof of the Claim: By (3), α is a regular conditional distribution for ν given a sub-σ-
field of B, where ν is the marginal distribution of X1. Therefore, as proved in ([3] Lemma 6),
there is a set A ∈ B such that ν(A) = 1 and∫

α(z)( f ) α(x)(dz) = α(x)( f ) for all x ∈ A and f ∈ F.

Since X is c.i.d. (and, thus, identically distributed) one also obtains P(Xn ∈ A) = ν(A) = 1
for all n ≥ 1.

Having noted these facts, fix f ∈ F. Since a0 = ν and α is a regular conditional
distribution for ν, ∫

α(x)( f ) a0(dx) = a0( f ).

Moreover, if
∫

α(x)( f ) an(dx) = an( f ) a.s. for some n ≥ 0, then∫
α(x)( f ) an+1(dx) = qn

∫
α(x)( f ) an(dx) + (1− qn)

∫
α(x)( f ) α(Xn+1)(dx)

= qn an( f ) + (1− qn) α(Xn+1)( f )
= an+1( f ) a.s.

By induction, one obtains
∫

α(x)( f ) an(dx) = an( f ) a.s. for each n ≥ 0. Hence,∫
α(x)( f ) μ(dx) = lim

n

∫
α(x)( f ) an(dx) = lim

n
an( f ) = μ( f ) a.s.

We do not know whether E
{

ϕ
(

Dn( f )
)
| Fn

}
converges a.s. (and not only in probabil-

ity) under the conditions of Theorem 1. However, it can be shown that E
{

ϕ
(

Dn( f )
)
| Fn

}
converges a.s. under slightly stronger conditions on qn.

100



Mathematics 2021, 9, 3211

Under conditions (2)–(3), for Theorem 1 to work, it suffices that

lim
n

nb (1− qn) = c for some b > 1/2 and c > 0. (10)

In addition, if (10) holds, then

nb−1/2

dn
→ c√

2b− 1
.

Hence, letting D∗n = nb−1/2(an − μ), one obtains

(
D∗n( f1), . . . , D∗n( fp)

)
−→ Np

(
0,

c2

2b− 1
Σ
)

stably,

for all p ≥ 1 and all f1, . . . , fp ∈ F, provided conditions (2), (3) and (10) hold.

We close this note with some examples.

Example 1. Let

qn =
n + θn

n + 1 + θn+1

where (θn) is a bounded increasing sequence with θ0 > 0. Then, X is c.i.d. (because of (2)–(3)) but is
exchangeable if and only if θn = θ0 for all n. In any case, since condition (10) holds with b = c = 1,
Theorem 1 applies and dn can be replaced by

√
n. Letting D∗n =

√
n (an − μ), it follows that(

D∗n( f1), . . . , D∗n( fp)
)
−→ Np(0, Σ) stably.

It is worth noting that, in the special case θn = θ0 for all n, the predictive distributions of X
reduce to

an =
θ0 ν + ∑n

i=1 α(Xi)

n + θ0
.

Therefore, X is a Dirichlet sequence if α = δ. The general case, where α is any kernel satisfying
condition (3), is investigated in [30]. It turns out that X satisfies most properties of Dirichlet
sequences. In particular, μ has the same distribution as

μ∗ = ∑
n

Vn α(Yn),

where (Vn) and (Yn) are independent sequences, (Yn) is i.i.d. with Y1 ∼ ν, and (Vn) has the stick
breaking distribution. Nevertheless, as shown in the next example, X can behave quite differently
from a Dirichlet sequence.

Example 2 (Example 1 continued). Let H be a countable partition of S such that H ∈ B and
ν(H) > 0 for all H ∈ H. Define

α(x) = ∑
H∈H

1H(x) ν(· | H) = ν(· | Hx) for all x ∈ S

where Hx is the only element of the partitionH, such that x ∈ H. Then, α is a regular conditional
distribution for ν given σ(H) (i.e., condition (3) holds). If the qn are as in Example 1 with θn = θ0
for all n, one obtains

an =
θ0 ν + ∑n

i=1 ν(· | HXi )

n + θ0
.

Therefore,
an  ν for all n ≥ 0. (11)
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This is a striking difference with respect to Dirichlet sequences. For instance, if ν is non-atomic,
condition (11) yields

P(Xi = Xj for some i �= j) = 0

while P(Xi = Xj for some i �= j) = 1 if X is a Dirichlet sequence. Note also that, for each f ∈ F,

σ2 =
∫

α(x)( f )2 μ(dx)− μ( f )2 = ∑
H∈H

ν( f | H)2 μ(H)− μ( f )2

while σ2 = μ( f 2)− μ( f )2 if X is a Dirichlet sequence. Other choices of α, which make X quite
different from a Dirichlet sequence, are in [30].

Example 3. A meaningful special case is ∑n(1− qn) < ∞. In this case,

∞

∏
j=0

qj := lim
n

n

∏
j=0

qj

exists and is strictly positive. Hence, μ admits the representation

μ = ν
∞

∏
j=0

qj +
∞

∑
i=1

α(Xi) (1− qi−1)
∞

∏
j=i

qj.

As an example, under conditions (2)–(3), Theorem 1 applies whenever

qn = exp{−(c + n)−2} for some constant c > 0.

With this choice of qn, one obtains (1− qn) (c + n)2 → 1, so that ∑n(1− qn) < ∞ and μ can be
written as above. Note also that

lim
n

dn

(c + n)3/2 =
√

3.

Therefore, for fixed f ∈ F, the rate of convergence of an( f ) to μ( f ) is n−3/2 and not the usual n−1/2.
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Abstract: We introduce a betting game where the gambler aims to guess the last success epoch in
a series of inhomogeneous Bernoulli trials paced randomly in time. At a given stage, the gambler
may bet on either the event that no further successes occur, or the event that exactly one success is
yet to occur, or may choose any proper range of future times (a trap). When a trap is chosen, the
gambler wins if the last success epoch is the only one that falls in the trap. The game is closely related
to the sequential decision problem of maximising the probability of stopping on the last success.
We use this connection to analyse the best-choice problem with random arrivals generated by a
Pólya-Lundberg process.

Keywords: best choice problem; optimal stopping time; last record; trapping strategy

MSC: 60G40

1. Introduction

Suppose a series of inhomogeneous Bernoulli trials, with a given profile of success
probabilities p = (pk, k ≥ 1), is paced randomly in time by some independent point
process. As the outcomes and epochs of the first k ≥ 0 trials become known at some time
t, the gambler is asked to bet on the time of the last success. The gambler is allowed to
choose either a bygone action, a next action, or a proper subset of future times called trap.
The gambler wins with bygone if no further successes occur, and with next if exactly one
success occurs after time t. In the case a trapping action is chosen, the gambler wins if the
last success epoch is isolated by the trap from the other success epochs.

Motivation to study this game stems from connections to the best-choice problems
with random arrivals [1–9] and the random records model [10,11]. A prototype problem of
this kind involves a sequence of rankable items arriving by a Poisson process with a finite
horizon, where the kth arrival is relatively the best (a record) with probability pk = 1/k.
The optimisation task is to maximise the probability of selecting the overall best item (the
last record) using a non-anticipating stopping strategy. Cowan and Zabczyk [5] showed
that the optimal strategy is myopic, which means that the decision to stop on a particular
record arrival only depends on whether the winning chance with bygone exceeds that with
next. They also determined the critical cut-offs of the optimal strategy and studied some
asymptotics. Similar results have been obtained for the best-choice problem with some
other pacing processes [1,4,7,9]. In this context, trapping can be employed to test optimality
of the myopic strategy, which fails if in some situations the action bygone outperforms
next but a trapping action is better still. Simple trapping strategies are easy to evaluate
and provide insight into the occurrence of records.

Regarding the pacing point process, we shall assume that it is mixed binomial [12].
This setting covers, in particular, the wide class of mixed Poisson processes. In essence,
this pacing process is characterised by the prior distribution π of the total number of trials,
and some background continuous distribution to spread the epochs of the trials in an i.i.d.
manner. Without loss of generality, the distribution will be assumed uniform; hence, given
the number of trials, they are scattered in time like the uniform order statistics on [0, 1]. We
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enrich the model with a natural size parameter by letting π vary within a family of power
series distributions.

The most obvious instance of a trapping action amounts to leaving some fraction of
time to isolate the last success. We call this trapping action the z-strategy, with a parameter
designating the proportion of time getting skipped (as compared to the real-time cut-off in
the name of the familiar ‘1/e-strategy’ of the best choice [13,14]). The overall optimality
of the class of z-strategies among all trapping actions will be explored for a fixed and a
random number of trials. For the problem of stopping on the last success, the optimality of
the myopic strategy will be shown to hold if the sequence of its cut-offs is decreasing and
interlacing with another set of critical points of z-strategies.

Then we specialise to the best-choice problem driven by a Pólya-Lundberg pacing
process, when the number of trials follows a logarithmic series distribution. In different
terms, the model was introduced by Bruss and Yor [15]. Bruss and Rogers [4] recently
observed that the strategy stopping at the first record after time threshold 1/e is not optimal.
We present a more detailed analysis; in particular, we use a curious property of certain
hypergeometric functions to show that the cut-offs of the myopic strategy are increasing,
hence the monotone case of optimal stopping [16] does not hold. Simulation suggests,
however, that the myopic strategy is very close to optimality, both in terms of the cut-
offs and the winning probability. A better approximation to optimality is achieved by
the strategy that stops as soon as bygone becomes more beneficial than trapping with a
z-strategy.

Viewed inside a bigger picture, the log-series prior appears as the edge ν = 0 instance
of the random records model with negative binomial distribution NB(ν, q) of the number
of trials. It is known that for ν = 1, corresponding to the geometric prior, all cut-offs
coincide [17,18], while for integer ν > 1 they are decreasing [7]. In [19], we show that for
0 < ν < 1 the myopic strategy is not optimal, with the pattern of cut-offs as in the log-series
case treated here.

2. Setting the Scene

2.1. The Probability Model

Let π be a power series distribution

πn = c(q)wnqn , n ≥ 0, (1)

with weights w0 ≥ 0, wn > 0 for n ≥ 1

and scale parameter q > 0 varying within the interval of convergence of ∑n wnqn.
The associated mixed binomial process (Nt, t ∈ [0, 1]) is an orderly counting process

with the uniform order statistics property. The process can also be seen as a time inhomoge-
neous pure-birth process, with a transition rate expressible through the generating function
of (wn), see [20].

Conditionally on Nt = k:

(i) The epochs of the trials within [0, t] and (t, 1] are independent;
(ii) The posterior distribution of the number of trials yet to occur is a power series distri-

bution

π(j |t, k) := P(N1 − Nt = j|Nt = k) = fk(x)
(

k + j
j

)
wk+jxj, j ≥ 0, (2)

with scale variable
x := (1− t)q (3)

and a normalisation function fk(x).
(iii)

(
Nt+s/(1−t) − Nt, s ∈ [0, 1]

)
is a mixed binomial process on [0, 1], with the number of

trials distributed according to (2).
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The conditioning relation (2) appears in many statistical problems related to censored
or partially observable data.

In principle, instead of considering a family of distributions for (Nt) with parameter
q, we could deal with one counting process on the x-scale. We prefer not to adhere to this
viewpoint, as the ‘real time’ variable is more intuitive. Nevertheless, we will use (3) to
switch back and forth between t and x, as x is better suitable for power series work.

Let = (pk, k ≥ 1) be a profile of success probabilities. We assume that

0 ≤ p1 ≤ 1, 0 ≤ pk < 1 for k > 1 and
∞

∑
k=1

pk = ∞.

The kth trial, which is occurring at index/epoch k, is a success with probability pk,
independently of other trials and the pacing process. Thus, the point process of success
epochs is obtained from (Nt) by thinning out the kth point with probability 1− pk. Taken
by itself, the process counting the success epochs is typically intractable [10]. A notable
exception is the random records model (pk = 1/k) with the geometric prior π, when the
process is Poisson [1].

We shall identify state (t, k) with the event Nt = k. The notation (t, k)◦ will be used to
denote the event that the kth trial epoch is t and the outcome is a success. If there is at least
one success, the sequence of successes (ti, ki)

◦ increases in both components.

2.2. The Trapping Game and Stopping Problem

A single episode of the trapping game refers to the generic state (t, k). The gambler
plays either next or bygone, or chooses a proper subset of the interval (t, 1]. The trap
[t + z(1− t) , 1], for 0 < z < 1, will be called z-strategy ; this action leaves a (1− z) portion
of the remaining time to isolate the last success epoch from other successes.

Let Ft be the sigma-algebra generated by the epochs and outcomes of trials on [0, t].
Under stopping strategy τ, we mean a random variable taking values in [0, 1] and adapted
to the filtration (Ft, t ∈ [0, 1]). The performance of τ is assessed by the probability of the
event that (τ, Nτ)◦ is the last success state.

We call a stopping strategy Markovian if in the event τ ≥ t a decision to stop or to
continue in state (t, k)◦ does not depend on the trials before time t. The general theory [21]
implies existence of the optimal stopping strategy and that it can be found within the class
of Markovian strategies.

Conditional on Ft, the probability that (t, k)◦ is the last success equals the winning
probability with bygone, while the probability that (t, k)◦ is the penultimate success equals
the winning probability with next. If for every (t, k), where bygone is at least as good as
next, also every state (t′, k′) ∈ [t, 1]× {k, k + 1, · · · } has this property, then the optimal
stopping problem is monotone [21].

Define the myopic stopping strategy τ∗ to be the first record (t, k)◦, if any, such that
bygone is at least as beneficial as next. In the monotone case the myopic strategy is optimal
among all stopping strategies.

Suppose for each k ≥ 1 there exists a cut-off time ak such that the action bygone is
at least as good as next precisely for t ∈ [ak, 1]. Then τ∗ coincides with the time of the
first success (t, k)◦ satisfying t ≥ ak (or τ∗ = 1 if there is no such trial). The problem is
monotone, hence τ∗ is optimal if the cut-offs are non-increasing, that is a1 ≥ a2 ≥ · · · .

3. The Game with Fixed Number of Trials

In this section, we assess the outcomes of actions in state (t, k) conditioned on the total
number of trials n > k. This can be interpreted as the game of an informed gambler who
knows n but not the outcomes of unseen trials k + 1, · · · , n. The time t is not important and
a comparison of bygone with next is tantamount to the discrete-time optimal stopping at
the last success [22,23]. The best action will be shown to coincide with a z-strategy provided
next beats bygone.
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3.1. bygone vs. next

The number of successes in trials k + 1, · · · , n has probability generating function

λ 
→
n

∏
m=k+1

(1− pm + pmλ) =

(
1 + λ

n

∑
i=k+1

pi
1− pi

)
n

∏
m=k+1

(1− pm) + O(λ2).

From this expansion, the probability of no success is

s0(k + 1, n) :=
n

∏
m=k+1

(1− pm),

and the probability of exactly one success is

s1(k + 1, n) :=
n

∑
i=k+1

pi
1− pi

n

∏
m=k+1

(1− pm) = s0(k + 1, n)
n

∑
i=k+1

pi
1− pi

.

There is an obvious recursion

s1(k, n) = (1− pk)s1(k + 1, n) + pks0(k + 1, n),

which we can write as

s1(k, n)− s1(k + 1, n) = pk{s0(k + 1, n)− s1(k + 1, n)}

= pks0(k + 1, n)

(
1−

n

∑
i=k+1

pi
1− pi

)
. (4)

Note that the sequence,

1−
n

∑
i=k+1

pi
1− pi

, 0 ≤ k ≤ n− 1, (5)

has the sign pattern
−, · · · ,−,≥ 0,+, · · · ,+,

and let k∗ be the index value where the sign changes from negative. It follows that:

(i) s1(·, n) is unimodal with maximum at k∗;
(ii) at k∗ bygone becomes at least as good as next;
(iii) k∗ is non-decreasing in n.

Each A ⊂ {1, · · · , n} corresponds to a stopping strategy in the discrete time prob-
lem [22,23]. We say that A wins if the index of the last success falls in A while no other
index of success does.

Lemma 1. Among all A ⊂ {1, · · · , n}, the set A∗ := {k∗ + 1, · · · , n} wins with the maximal
probability.

Proof. Clearly, n ∈ A is necessary for A to be optimal. By induction, suppose we have
shown that {k + 1, · · · , n} ⊂ A. Including k adds to said probability

c pk{s0(k + 1, n)− s1(k + 1)},

where c ≥ 0 depends on A ∩ {1, · · · , k− 1} only. However, this is non-negative precisely
for k ≥ k∗.

The next lemma improves upon Theorem 3.1 of [24] by offering a weaker condition
for monotonicity.
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Lemma 2. For k∗ = k∗(n), if pk∗+1 ≥ pn+1 then maxk s1(k, n) ≥ maxk s1(k, n + 1).

Proof. It is readily checked that the maximum value of s1(· , n + 1) is achieved at either k∗

or k∗ + 1.
Firstly, compare the winning probability of A∗ for n trials with that of B := {k∗ +

1, · · · , n + 1} for n + 1 trials. A difference results from the event that the (n + 1)st trial is a
success, and the number of successes among trials k∗ + 1, · · · , n does not exceed 1. Hence
the difference of winning probabilities is

(
s1(k∗ + 1, n)− s0(k∗ + 1, n)

)
pn+1 =

(
1−

n

∑
i=k∗+1

pi
1− pi

)
s0(k∗ + 1, n) ≥ 0.

Secondly, compare A∗ with the other possible maximiser, C := {k∗ + 2, · · · , n, n + 1}.
The difference of winning probabilities of A∗ in the setting with n trials and C with (n + 1)
trials has four components:

(a) pk∗+1s0(k∗ + 2, n)(1− pn+1), equal the probability that (k∗ + 1)st trial is a success, A∗

wins while C loses,
(b) (1− pk∗+1s1(k∗ + 2, n)pn+1, equal the probability that (k∗ + 1)st trial is a failure, A∗

wins while C loses,
(c) pk∗+1s1(k∗ + 2, n)(1− pn+1), equal the probability that (k∗ + 1)st trial is a success, A∗

loses while C wins,
(d) (1− pk∗+1)s0(k∗ + 2, n)pn+1, equal the probability that (k∗ + 1)st trial is a failure, A∗

loses while C wins.

After simplification, (a) + (b) − (c) − (d) becomes(
1−

n

∑
i=k∗+2

pi
1− pi

)
(pk∗+1 − pn+1),

which has the same sign as pk∗+1 − pn+1 because the first factor is non-negative by the
optimality of A∗.

3.2. z-Strategies

For n fixed, the winning probability of a z-strategy in state (t, k) does not depend on t
and is given by a Bernstein polynomial in z ∈ [0, 1],

S1(k, n; z) :=
n−k−1

∑
j=0

(
n− k

j

)
zj(1− z)n−k−js1(k + j + 1, n). (6)

In particular, S1(k, n; 0) = s1(k + 1, n) is the probability to win with next. Similarly,

S0(k, n; z) :=
n−k

∑
j=0

(
n− k

j

)
zj(1− z)n−k−js0(k + j + 1, n)

is the probability that none of the successes occurs in the time interval (t + z(1− t), 1], so
S0(k, n; 0) = s0(k + 1, n) equals the probability to win with bygone.

Note that s0(k+ 1, n) = S0(k, n; 0) and s1(k+ 1, n) = S1(k, n; 0). From (i) and (ii) above

k ≥ k∗ ⇐⇒ S0(k, n; 0) ≥ S1(k, n; 0) =⇒ S1(k, n; 0) = max
z

S1(k, n; z). (7)

This is also valid for the maximum taken over all trapping actions.
From the unimodality of s1(·, n) and the shape-preserving properties of the Bernstein

polynomials (see [25], Theorem 3.3), it follows that (6) is unimodal. Thus, either the
maximum is at 0 and next beats all z-strategies, or there exists a unique optimal z-strategy.
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Next result stating that the optimum can be understood in a strong sense is a continuous-
time counterpart of Lemma 1.

Theorem 1. If S0(k, n; 0) < S1(k, n; 0) then the optimal trapping action is a z-strategy with
threshold determined as the unique maximiser of S1(k, n; ·).

Proof. By a change of variables we reduce the claim to the case (t, k) = (0, 0). There is
certainly a final interval that belongs to the optimal trap, because close to the end of the
time, the probability of two or more successes is of order o(1− t). Now, suppose [z, 1]
belongs to the trap and we are assessing if the length element [z− dz, z] is worth including.
The change of the winning probability due to the inclusion is a multiple of

n

∑
j=1

(
n− 1
j− 1

)
zj−1(1− z)n−j pj{s0(j + 1, n)− s1(j + 1, n)} n h + o(h) = (8)

(1− z)n
n

∑
j=1

(
n− 1
j− 1

)(
z

1− z

)j
pk{s0(j + 1, n)− s1(j + 1, n)} n h + o(h),

with some positive factor depending on the structure of the trap within [0, z− h]. By (4),
in the variable z/(1− z) the polynomial ∑(· · · ) has at most one variation of sign in the
coefficients. Applying Descartes’ rule of signs, we see that the polynomial has at most one
positive root. This implies that the optimal trap is a final interval with the cut-off coinciding
with the root, or [0, 1] (action next) if there are no roots.

It remains to check that the root, if any, coincides with the maximiser of

S1(0, n; z) =
n

∑
j=0

(
n
j

)
zj(1− z)n−js1(j + 1, n).

Indeed, we have for the derivative using (4)

DzS1(0, n; z) =
n

∑
j=1

(
n− 1
j− 1

)
nzj−1(1− z)n−js1(j + 1, n)−

n−1

∑
j=0

(
n− 1

j

)
nzj(1− z)n−j−1s1(j + 1, n)

=
n

∑
k=1

(· · · )−
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−ks1(k, n)

=
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−k{s1(k + 1, n)− s1(k, n)}

=
n

∑
k=1

(
n− 1
k− 1

)
nzk−1(1− z)n−k pk{s1(k + 1, n)− s0(k + 1, n)},

which is the negative of the polynomial in (8). This provides the desired conclusion.

3.3. Examples

The best-choice problem is related to the profile pk = 1/k. The associated Bernstein
polynomials satisfy

S1(k, n; z)→ −z log z, n→ ∞,

where the convergence is uniform. Both maximiser and the maximum value converge to
1/e as n→ ∞
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The case k = 0 was studied in much detail [13,14,17,26]. The winning probability of
z-strategy can be alternatively written as a Taylor polynomial

S1(0, n; z) = 1− z−
n

∑
j=2

(1− z)j

j(j− 1)
,

which decreases pointwise to z 
→ −z log z as n increases (see Figure 1). The maximisers
increase monotonically to 1/e and also maxz S1(0, n; z) ↓ 1/e. These facts underlie the
minimax property that the 1/e-strategy ensures winning probability of at least 1/e for
every n ≥ 1.

The nice monotonicity properties do not extend to k > 0, the minimax value is below
1/e and the 1/e-strategy is not minimax. This is already seen in the case k = 1, where the
Bernstein polynomials become

S1(1, n; z) =
n− 1

n
−

n−1

∑
j=2

(n− j)(1− z)j

nj(j− 1)

= S1(0, n; z) +
n−1

∑
j=1

(1− z)j+1

n j
− (1− z)

n
.

The first formula is derived by conditioning on the highest rank j of trials that occur
before the threshold of z-strategy.

Figure 1. The winning probability S1(k, n; z) of z-strategy in the best-choice problem for k = 0 and 1 .

The more general profile

pk =
θ

θ + k− 1
, k ≥ 1, (9)

with parameter θ > 0, plays a central role in the combinatorial structures related to the
Ewens sampling formula for random partitions [27]. The term Karamata–Stirling law was
coined in [28] for the distribution of the number of successes with these probabilities. The
number of successes in trials k + 1, · · · , n has probability generating function

λ 
→ (k + θλ)n−k
(k + θ)n−k

.

As n → ∞, S1(k, n; z) → −θzθ log z. The maximum values still converge to 1/e but
the maximisers approach e−1/θ . The shapes vary considerably with θ, see Figure 2. For θ
large, the minimax winning probability is close to zero.
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Figure 2. Bernstein polynomials for pk = θ/(θ + k− 1).

4. Random Number of Trials: z-Strategies

We proceed with the continuous time setting, assuming p and π are given. In state
(t, k), the probability of isolating the last success by means of a z-strategy is a convex
mixture of the Bernstein polynomials:

S1(t, k; z) :=
∞

∑
j=1

π(j|t, k)
j−1

∑
i=0

(
j
i

)
zi(1− z)j−1s1(k + i + 1, k + j). (10)

The z = 0 instance,

S1(t, k; 0) =
∞

∑
j=1

π(j|t, k)s1(k + 1, k + j),

is the probability to win with next, and S1(t, k; 1) = 0. Similarly, the probability that none
of the successes are trapped by the z-strategy is:

S0(t, k; z) :=
∞

∑
j=0

π(j|t, k)
j−1

∑
i=0

(
j
i

)
zi(1− z)j−1s0(k + i + 1, k + j),

and S0(t, k; 0) is the probability to win with bygone.
Being a convex mixture of unimodal functions, S1(t, k; ·) itself need not be unimodal.

Accordingly, the optimal trap need not be a final interval. It may rather include a few
disjoint intervals akin to ‘islands’ in the discrete time best-choice problems [29].

Concavity is a simple condition to ensure unimodality. We say that s1(·, n) is concave
if for every n ≥ 1 the second difference in the first variable is non-positive.

Theorem 2. Suppose s1(·, n) is concave. Then S1(t, k; ·) is unimodal with maximum at some z∗.
If z∗ ∈ (0, 1) then for z = z∗ the z-strategy is optimal among all trapping actions, and if z∗ = 0
then next outperforms every trapping action.

Proof. By the shape-preserving properties of Bernstein polynomials [25], the internal sum
in (10) is a concave function in z, therefore the mixture S1(t, k; ·) is also concave hence
unimodal. The maximum is attained at 0 if DzS1(t, k; 0) ≤ 0, and z∗ > 0 otherwise. The
overall optimality follows from the unimodality as in Theorem 1.

The concavity is easy to express in terms of p explicitly. The second difference in the
variable k of the probability generating function

λ 
→
n

∏
j=k

(1− pj + λpj)
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becomes

{(1− pk + λpk)(1− pk+1 + λpk+1)− 2(1− pk+1 + λpk+1) + 1}
n

∏
j=k+2

(1− pj + λpj).

Computing Dλ at λ = 0 yields the second difference of s1(· , n)

(pk − 2pk pk+1 − pk+1) + (pk pk+1 − pk + pk+1)
n

∑
j=k+2

pj

1− pj
. (11)

From this, a sufficient condition for the concavity of s1(·, n) is

pk − 2pk pk+1 − pk+1 ≤ 0, pk pk+1 − pk + pk+1 ≤ 0, k ≥ 1. (12)

Notably, (12) ensures unimodality for arbitrary π and only involves two consecutive
success probabilities. The price to pay for the simplicity is that the condition is restrictive,
as seen in Figure 3.

Figure 3. The concavity condition (12) holds for profiles p with (pk, pk+1) squeezed between the
parabolas.

For the profile (9), straight calculation shows that (11) is non-positive, hence s1(·, n) is
concave, iff

1
2
≤ θ ≤ 1.

This is only a half range, but it includes two most important for application cases θ = 1
and θ = 1/2.

5. Tests for the Monotone Case of Optimal Stopping

Using (2) and (3), we can cast the winning probabilities with actions bygone, next and
a z-strategy as:

S0(t, k; 0) = fk(x)Pk(x),

S1(t, k; 0) = fk(x)Qk(x), (13)

S1(t, k; z) = fk(x)Rk(x, z),
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where x = q(1− t) and

Pk(x) :=
∞

∑
j=0

(
k + j

j

)
wk+jxjs0(k + 1, k + j),

Qk(x) :=
∞

∑
j=1

(
k + j

j

)
wk+jxjs1(k + 1, k + j),

Rk(x, z) :=
∞

∑
j=1

(
k + j

j

)
wk+jxj

j−1

∑
i=0

(
j
i

)
zi(1− z)j−is1(k + i + 1, k + j).

Thus, Qk(x) = Rk(x, 0). We are looking next at some critical points for the trapping
game and the optimal stopping problem.

Lemma 3. Equation Pk(x) = Qk(x) has at most one root αk > 0, for every k ≥ 1.

Proof. Coefficients of the series Pk(x)− Qk(x) have at most one change of sign from +
to −, hence Descartes’ rule of signs for power series [30] entails that there is at most one
positive root.

We set αk = ∞ if the root does not exist. Define the cut-off

ak =

(
1− αk

q

)
+

.

This is the earliest time when bygone becomes at least as good as next. Keep in mind
that if the sequence (αk) is monotone, then (ak) is also monotone but with the monotonicity
direction reversed. The monotone case of optimal stopping holds for every q, hence τ∗ is
optimal, if αk ↑.

Example 1. In the paradigmatic case pk = 1/k and the geometric prior with wn = 1, we have

s0(k + 1, n) =
k
n

, s1(k + 1, n) =
k
n

n

∑
j=k+1

1
j− 1

,

and explicitly computable power series

Pk(x) =
1

(1− x)k , Qk(x) =
− log(1− x)
(1− x)k .

The equation Pk(x) = Qk(x) yields identical roots αk = 1− 1/e and coinciding cut-offs ak =
(1− (1− e−1)/q)+. Thus, τ∗ stops at the first success trial after a time threshold. See [1,7,17–19]
for details on this remarkable case.

Lemma 4. Equation DzRk(x, 0) = 0 has at most one root βk > 0, for every k ≥ 0. If the root
exists, then βk ≤ αk+1.

Proof. We follow the argument in Lemma 3. The derivative at z = 0 is

DzRk(x, 0) = pk+1

∞

∑
j=1

(
k + j

j

)
wk+j j xj {s0(k + 2, k + j)− s1(k + 2, k + j)},
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which has at most one change of sign for x ≥ 0, and then from + to −. Furthermore,

DzRk(x, 0) ≥ pk+1

∞

∑
j=1

(
k + j

j

)
wk+jxj{s0(k + 2, k + j)− s1(k + 2, k + j)}

= pk+1{Pk+1(x)−Qk+1(x)}.

This follows by comparing the series and noting that the weights at positive terms in
Dz are higher.

If there is no finite root, we set βk = ∞. Let

bk :=
(

1− βk
q

)
+

.

We have DzRk(q(1− t), 0) < 0 for t ∈ (bk, 1], and bk ≥ ak+1 by Lemma 4. Thus, bk is
the earliest time when the action next at index k cannot be improved by a z-strategy with
small enough z.

To summarise the above: for t < ak action next is better than bygone, and tor t < bk a
trapping strategy is better than next.

Theorem 3. The optimal stopping problem belongs to the monotone case (for every admissible q) if
and only if α1 ≤ α2 ≤ · · · . In that case we have the interlacing pattern of roots

· · · ≤ αk ≤ βk ≤ αk+1 ≤ βk+1 ≤ · · · . (14)

Proof. We argue in probabilistic terms. The bivariate sequence of success epochs (t, k)◦

is an increasing Markov chain. The monotone case of optimal stopping occurs iff the set
of states where bygone outperforms next is closed, which holds iff this is an upper subset
with respect to the partial order in [0, 1]× {1, 2, · · · }. The latter property amounts to the
monotonicity condition αk ↑.

By Lemma 3, the inequality αk ≤ βk+1 always holds. In the monotone case, if in some
state (t, k)◦ the actions bygone and next are equally good, then trapping cannot improve
upon these by optimality of the myopic strategy. In the analytic terms, the above translates
as the inequality βk ≤ αk.

6. The Best-Choice Problem under the Log-Series Prior

In this section we consider the random records model with the classic profile pk = 1/k,
and a pacing process with the logarithmic series prior

πn = c(q)
qn

n
, n ≥ 1, (15)

(so π0 = 0), where 0 < q < 1 and c(q) = | log(1− q)|−1. See [31] for Poisson mixture
representations of π. The function S1(t, k; ·) is concave, hence by Theorem 2 it is sufficient
to consider z-strategies.

Let T1 be the time of the first trial.

Lemma 5. Under the logarithmic series prior (15) the pacing process has the following features:

(i) The time of the first trial T1 has probability density function

t 
→ c(q) q
1− (1− t)q

, t ∈ [0, 1].
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(ii) (Nt, t ∈ [0, 1]) is a Pólya-Lundberg birth process with transition rates

P(Nt+dt − Nt = 1 |Nt = k) =

⎧⎪⎪⎨⎪⎪⎩
c((1− t)q) q
1− (1− t)q

, k = 0,

k
t + q−1 − 1

, k ≥ 1.

(iii) Given Nt = k, the posterior distribution π(· | t, k) of N1 − Nt is NB(k, (1− t)q). In par-
ticular, conditionally on T1 = t1, the posterior distribution is geometric with the ‘failure’
probability (1− t1)q.

Proof. Assertion (i) follows from

P(T1 > t) = P(Nt = 0) =
∞

∑
n=1

c(q)qn(1− t)n

n
,

and (iii) from the identity (
k + j

j

)
xj

k + j
=

(
k + j− 1

j

)
xj

k

underlying the formula for π(j|t, k) in terms of x = (1− t)q.

In view of part (ii), we will use NB(0, q) to denote the log-series prior (15).

6.1. Hypergeometrics

The power series of interest can be expressed via the Gaussian hypergeometric function

F(a, b; c; x) :=
∞

∑
j=0

(a)j(b)j

(c)j

xj

j!
.

Recall the differentiation formula

DxF(a, b; c, x) =
ab
c

F(a + 1, b + 1; c + 1, x),

the parameter transformation formula

F(a, b; c; x) = (1− x)c−a−bF(c− a, c− b; c; x),

and Euler’s integral representation for c > b > 0

F(a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

yb−1(1− y)c−b−1dy
(1− xy)a .

The probability generating function for the number of successes following state (t, k),
for k ≥ 1, is given by a hypergeometric function:

λ 
→ (1− x)k
∞

∑
j=0

(
k + j− 1

j

)
xj (k + λ)j

(k + 1)j
=

(1− x)k
∞

∑
j=0

(k)j(k + λ)j

(k + 1)j

xj

j!
=

(1− x)k F(k + λ, k; k + 1; x).
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Expanding at λ = 0 we identify two basic power series as:

Pk(x) = k−1 F(k, k; k + 1; x),

Qk(x) = k−1 DaF(k, k; k + 1; x),

where as before x = (1− t)q ∈ [0, 1] and Da is the derivative in the first parameter. The
differentiation formula implies backward recursions:

DxPk(x) = kPk+1(x),

DxQk(x) = Pk+1(x) + k Qk+1(x). (16)

The normalisation function for probabilities (14) is fk(x) = k(1 − x)k for k ≥ 1,
and f0(x) = | log(1− x)|−1. Applying the transformation formula yields Pk(x) = (1−
x)1−kF(1, 1; k+ 1, x), hence, we may write the winning probability with bygone as the series

S0(t, k; 0) = (1− x)
∞

∑
j=0

j! xj

(k + 1)j
, x = (1− t)q.

It is readily seen that, as k increases, this function decreases to 1− x. This result was
already observed in [18] using a probabilistic argument. The convergence to 1− x relates
to the fact that for large k, the point process of record epochs approaches a Poisson process.

For Rk(x, z), we derive an integral formula. Consider first the case k ≥ 1. The
probability generating function of the number of record epochs following (t, k) and falling
in the final interval [t + z(1− t), 1] has probability generating function

λ 
→ (1− x)k
∞

∑
j=0

(
k + j− 1

j

)
xj

j

∑
i=0

(
j
i

)
zi(1− z)j−i (k + i + λ)j−i

(k + i + 1)j−i
=

(1− x)k
∞

∑
i=0

(
k + i− 1

i

)
(xz)iF(k + i + λ, k + i, k + i + 1; x− xz) =

k(1− x)k
∞

∑
i=0

(
k + i

i

)
(xz)i

∫ 1

0

yk+i−1dy
(1− xy + xyz)k+i+λ

=

k(1− x)k
∫ 1

0

yk−1(1− xy + xyz)1−λdy
(1− xy)k+1 .

Differentiating at λ = 0 yields S1(k, t; z), which is the same as k(1− x)kRk(x, z) for
x = (1− t)q, whence

Rk(x, z) =
∫ 1

0

yk−1(1− xy + xyz)| log(1− xy + xyz)|dy
(1− xy)k+1 . (17)

For k = 0, a similar calculation with log-series weights NB(0, x) gives

R0(x, z) =
∫ 1

0

(1− xy + xyz) log(1− xy + xyz)
y(1− xy)

dy.

6.2. The Myopic Strategy

The positive root obtained by equating

P1(x) =
| log(1− x)|

x
and Q1(x) =

| log(1− x)|2
2x

is α1 = 1− e−2 = 0.864665 · · · . On the other hand, solving DzR1(x, 0) = 0 yields a smaller
value β1 = 0.756004 · · · , hence the interlacing condition of Theorem 3 fails for k = 1.
Translating in terms of the best-choice problem, this means that τ∗ stops at the first trial if
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this occurs before a1 = (1− α1/q)+, but a z-strategy will be more beneficial for a bigger
range of times t ≤ b1 = (1− β1/q)+. Therefore, at least for q > β1, it is not optimal to stop
at the first trial before b1 and the myopic strategy can be beaten.

The root α2 := 0.755984 · · · is found by equating

P2(x) =
2(x− L + xL)
(1− x)x2 and Q2(x) =

−2x + 2L− L2 + xL2

(1− x)x2 ,

where for shorthand L := − log(1− x). Formulas become more complicated for larger k.
We see that α1 > α2, which suggests monotonicity of the whole sequence. To show

this, pass to the quotient and re-define the root αk as a unique solution on [0, 1) to

Qk(x)
Pk(x)

= 1 ⇐⇒ DaF(k, k; k + 1; x)
F(k, k; k + 1; x)

= 1, (18)

where Da acts in the first parameter. As x increases from 0 to 1, this logarithmic derivative
runs from 0 to ∞.

Lemma 6. The logarithmic derivative (18) increases in k, hence the sequence of roots αk is strictly
decreasing.

Proof. Euler’s integral specialises as:

F(k + λ, k; k + 1; x) = k
∫ 1

0

yk−1

(1− xy)k+λ
dy.

Expanding in parameter at λ = 0 gives the integral representations

Pk(x) =
∫ 1

0

yk−1

(1− xy)k dy, Qk(x) =
∫ 1

0

yk−1| log(1− xy)|
(1− xy)k dy.

From these formulas,

Qk(x)Pk+1(x) =
∫ 1

0

yk−1| log(1− xy)|
(1− xy)k dy

∫ 1

0

zk

(1− xz)k+1 dz

=
∫ 1

0

∫ 1

0

yk−1zk−1| log(1− xy)|
(1− xy)k(1− xz)k

z
(1− xz)

dydz.

By the same kind of argument, a similar formula is obtained for Qk+1(x)Pk(x). Split-
ting the integration domain, and using symmetries of the integrand yields for x ∈ [0, 1)

Qk(x)Pk+1(x)−Qk+1(x)Pk(x) =∫ 1

0

∫ 1

0

yk−1zk−1| log(1− xy)|
(1− xy)k+1(1− xz)k+1 (z− y)dydz =

∫ ∫
0<y<z<1

yk−1zk−1

(1− xy)k+1(1− xz)k+1 log
(

1− xz
1− xy

)
(z− y)dydz < 0,

which implies the asserted monotonicity.

Figure 4 shows some shapes of fk(x)Pk(x) and fk(x)Qk(x) for k = 1, 2, 3.
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Figure 4. next and bygone curves for k = 1, 2, 3.

The log-series distribution weights satisfy wn+1/wn ↑ 1. Comparison with the geo-
metric distribution, as in [19], in combination with the lemma give αk ↓ (1− 1/e) as k→ ∞.
The same limit has been shown for analogous roots in the best-choice problem with the
negative binomial prior NB(ν, q) for integer ν ≥ 1; however, the monotonicity direction in
that setting is different [7].

To summarise findings of this section, we have:

Theorem 4. The monotone case of optimal stopping does not hold. The myopic strategy τ∗ is not
optimal and has the following features:

(i) for q > 1− 1/e, the cut-offs of τ∗ satisfy ak ↑ 1− (1− 1/e)/q;
(ii) for t ≥ (1− (1− 1/e)/q)+, bygone is the optimal action for every (t, k)◦;
(iii) for times as in (ii), the myopic strategy coincides with the optimal stopping strategy (in the

event τ∗ ≥ t).

6.3. Optimality and Bounds

For state (t, k) and x = q(1− t), define the continuation value Vk(x) to be the maximum
probability of the best choice, as achievable by stopping strategies starting in the state. By
the optimality principle, the overall optimal stopping strategy, starting from (0, 0), stops at
the first record (t, k)◦ satisfying k(1− x)kPk(x) ≥ Vk(x).

Given Nt = k, let Tk+1 be the next trial epoch (or 1 in the event N1 = k). Similar to the
argument in Lemma 5, we find that the random variable (1− Tk+1)/(1− t) has density

y 
→ kx(1− x)k

(1− x + xy)k+1 , y ∈ (0, 1].

By the (k + 1)st trial, the optimal stopping strategy stops if this is a record and bygone

is more beneficial than the optimal continuation, hence integrating out Tk+1 we obtain

Vk(x) =
∫ 1

0

[
1

k + 1
max{(1− y)k+1Pk+1(y), Vk+1(y)}+

k
k + 1

Vk+1(y)
]

kx(1− x)kdy
(1− x + xy)k+1 .

This has the equivalent differential form for k ≥ 1,

(1− x) DxVk(x) =
k

k + 1

(
(1− x)k+1Pk+1(x)−Vk+1(x)

)
+
+ k{Vk+1(x)−Vk(x))}. (19)
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For the special instance k = 0, integrating out the variable T1 gives

V0(x) =
∫ 1

0
max((1− y)P1(y), V1(y))

dy
(1− x + xy)| log(1− x)| ,

or, in the differential form with initial conditions V0(0) = 1 and Vk(0) = 0, for k ≥ 1

(1− x)| log(1− x)|DxV0(x) = max{(1− x)P1(x), V1(x)} −V0(x). (20)

By Corollary 4, the continuation value coincides with the winning probability of next
in a segment of the range; therefore:

Vk(x) = k(1− x)kQk(x), for 0 ≤ x ≤ 1− 1/e, k ≥ 0. (21)

As a check, for k ≥ 1 let V̂k(x) := k−1(1− x)−kVk(x). With this change of variable, (19)
simplifies as

DxV̂k(x) = (Pk+1(x)− V̂k+1(x))+ + (k + 1) V̂k+1(x).

For x in the range where Pk+1(x)− V̂k+1(x) ≥ 0, this becomes the recursion (16).
Outside the range covered by (21), Equations (19) and (20) should be complemented

by a ‘k = ∞’ boundary condition

lim
k→∞

Vk(x) =

{
1/e, for 1− 1/e ≤ x ≤ 1,
−(1− x) log(1− x), for 0 ≤ x ≤ 1− 1/e.

Figure 5 shows stop, continuation and z-strategy curves for k = 1, 2 and 3. The
numerical simulation suggests that the equation k(1 − x)kPk(x) = Vk(x), k ≥ 1 has a
unique solution γk and that the critical points increase with k, so the optimal stopping
strategy is similar to the myopic. These critical points have lower bounds δk defined as
the solution to k(1− x)kPk(x) = Ik(x) and upper bounds ρk defined as the critical points
where bygone is the same as the z-strategy.

To approximate the continuation value in the range 1− 1/e < x < 1, we simulated
some easier computable bounds

k(1− x)kQk ≤ k(1− x)k max
z

Rk(x, z) ≤ Vk(x) < Ik(x).

The upper information bound Ik(x) (see Figure 6) is the winning probability of an
informed gambler who in state (t, k) (with x = q(1− t)) knows the total number of trials
N1, as in Section 3. Two lower bounds stem from the comparison with the myopic and
z-strategies. The points βk computed for k ≤ 10 all satisfy βk < αk, and so the first relation
turns equality for 0 ≤ x ≤ βk. Therefore, the critical points satisfy

δk < γk < ρk ≤ αk.

The results of computation are presented in Figure 5 and Tables 1–4. The data show
excellent performance of the strategy that by the first trial chooses between stopping and
proceeding with a z-strategy.
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Figure 5. Stop, continuation, z-strategy values and bounds; k = 1, 2, 3 and zoomed-in view for k = 3.

Figure 6. Information bounds on the optimal strategy Ik(x).

Table 1. Critical points: αk: Solution to Pk(x) = Qk(x), βk: Solution to DzRk(x, z) = 0, γk: Solution to
k(1− x)kPk(x) = Vk(x), δk: Solution to k(1− x)kPk(x) = Ik(x), ρk: Solution to Pk(x) = maxz Rk(x, z).

k βk δk γk ρk αk

1 0.756004 0.826893 0.849635 0.850335 0.864665
2 0.714616 0.718332 0.753621 0.753727 0.755984
3 0.693549 0.683295 0.713957 0.713995 0.714596
4 0.680931 0.668986 0.693275 0.693311 0.693529
5 0.672567 0.661520 0.680687 0.680814 0.680911
6 0.666632 0.656902 0.672194 0.672499 0.672547
7 0.662206 0.653656 0.665900 0.666584 0.666611
8 0.658782 0.651188 0.661005 0.662169 0.662186
9 0.656055 0.649234 0.657108 0.658751 0.658761

10 0.653833 0.647653 0.653911 0.656028 0.656034
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Table 2. Winning probability and bounds for k = 1.

x (1 − x)P1(x) (1 − x)Q1(x) (1 − x)maxz R1(x, z) V1(x) I1(x)

0.60 0.6109 0.2799 0.2799 0.2799 0.2864
0.65 0.5653 0.2967 0.2967 0.2967 0.3069
0.70 0.5160 0.3106 0.3106 0.3106 0.3262
0.75 0.4621 0.3203 0.3203 0.3204 0.3439
0.80 0.4024 0.3238 0.3269 0.3275 0.3597
0.85 0.3348 0.3176 0.3342 0.3354 0.3728
0.90 0.2558 0.2945 0.3428 0.3446 0.3821
0.95 0.1577 0.2362 0.3532 0.3555 0.3848
0.995 0.0266 0.0705 0.3659 0.3667 0.3731

Table 3. Winning probability and bounds for k = 2.

x 2(1 − x)2P2(x) 2(1 − x)2Q2(x) 2(1 − x)2 maxz R2(x, z) V2(x) I2(x)

0.60 0.5189 0.3297 0.3297 0.3297 0.3743
0.65 0.4682 0.3429 0.3429 0.3429 0.3850
0.70 0.4149 0.3509 0.3509 0.3509 0.3926
0.75 0.3586 0.3521 0.3541 0.3543 0.3970
0.80 0.2988 0.3440 0.3570 0.3575 0.3981
0.85 0.2348 0.3227 0.3600 0.3608 0.3960
0.90 0.1654 0.2809 0.3630 0.3643 0.3903
0.95 0.0887 0.2018 0.3659 0.3674 0.3811
0.995 0.0098 0.0428 0.3678 0.3679 0.3694

Table 4. Winning probability and bounds for k = 3.

x 3(1 − x)3P3(x) 3(1 − x)3Q3(x) 3(1 − x)3 maxz R3(x, z) V3(x) I3(x)
0.60 0.4811 0.3460 0.3460 0.3460 0.3869
0.65 0.4296 0.3562 0.3562 0.3562 0.3923
0.70 0.3762 0.3603 0.3604 0.3605 0.3947
0.75 0.3207 0.3568 0.3620 0.3622 0.3946
0.80 0.2629 0.3431 0.3635 0.3640 0.3923
0.85 0.2026 0.3155 0.3649 0.3660 0.3881
0.90 0.1391 0.2674 0.3663 0.3679 0.3824
0.95 0.0719 0.1846 0.3673 0.3685 0.3755
0.995 0.0075 0.0359 0.3679 0.3679 0.3687
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1. Introduction

Consider cross-classified data: X1, X2, ..., Xn, where Xa = (ia, ja), ia ∈ [I], ja ∈ [J] (for
[I] = {1, 2, ..., I}). Such data are often presented as an I × J contingency table T = (tij)
where tij is the number of times (i, j) happens. Suppose that X1, ..., Xn are exchangeable
and extendible. Then, de Finetti’s theorem says:

Theorem 1. For exchangeable {Xi}∞
i=1 taking values in [I]× [J]

P[X1 = (i1, j1), ..., Xn = (in, jn)] =
∫

ΔI×J
∏
i,j

p
tij
ij μ(dp),

where ΔI×J = {pij ≥ 0, ∑i,j pij = 1}. The representing measure μ is unique.

A popular model for cross classified data is

pij = θiηj .

Here is a Bayesian, parameter free, description.

Theorem 2. For exchangeable {Xi}∞
i=1 taking values in [I]× [J], a necessary and sufficient condi-

tion for the mixing measure μ in Theorem 1 to be supported on ΔI × ΔJ (with ΔI = {p1, . . . , pI :
pi ≥ 0, ∑i pi = 1}), so

P[X1 = (i1, j1), ..., Xn = (in, jn)] =
∫

ΔI×ΔJ
∏ θ

ti∗
i η

t∗j
j μ(dθ, dη),

is that

P[X1 = (i1, j1), X2 = (i2, j2), X3 = (i3, j3), ..., Xn = (in, jn)] =

P[X1 = (i1, j2), X2 = (i2, j1), X3 = (i3, j3), ..., Xn = (in, jn)]. (1)

Condition (1) is to hold for any n ≥ 2 and any (ia, ja) 1 ≤ a ≤ n.

Proof. Condition (1) implies for all n and h ≥ 1 (surpressing P a.s. throughout)

P[X1 = (i1, j1), X2 = (i2, j2)|Xn = (in, jn), ..., Xn+h = (in+h, jn+h)] =

P[X1 = (i1, j2), X2 = (i2, j1)|Xn = (in, jn), ..., Xn+h = (in+h, jn+h)]. (2)
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Let h ↑ ∞ and then n ↑ ∞. Let T be the tail field of {Xi}∞
i=1. Then, Doob’s increasing

and decreasing martingale theorems show

P[X1 = (i1, j1), X2 = (i2, j2)|T ] = P[X1 = (i1, j2), X2 = (i2, j1)|T ].

However, a standard form of de Finetti’s theorem says that, given T , the {Xi}∞
i=1 are

i.i.d. with P[X1 = (i, j)] = pij. Thus

pij pi′ j′ = pij′ pi′ j for all i, i′, j, j′. (3)

Finally, observe that (3) implies (writing pi∗ := ∑j pij, p∗j := ∑i pij)

pi∗p∗j = ∑
h,l

pih plj = ∑
hl

pij phl = pij .

We remark the following points.

1. If Xi = (Yi, Zi) condition (2) is equivalent to

L((Y1, Z1), (Y2, Z2), ..., (Yn, Zn)) = L((Y1, Zσ(1)), ..., (Yn, Zσ(n)))

for all n and σ ∈ Sn (Sn is the symmetric group over 1, 2, . . . , n). Since {(Yi, Zi)}n
i=1

are exchangeable this is equivalent to saying the law is invariant under Sn × Sn.
2. The mixing measure μ(dθ, dη) allows general dependence between the row param-

eters θ and column parameters η. Classical Bayesian analysis of contingency tables
often chooses μ so that θ and η are independent. A parameter free version is that
under P, the row sums ti∗ and column sums t∗j are independent. It is natural to
weaken this to “close to independent” along the lines of [1] or [2]. See also [3].

3. Theorems 1 and 2 have been stated for discrete state spaces. By a standard discretiza-
tion argument, they hold for quite general spaces. For example:

Theorem 3. Let Xi = (Yi, Zi) be exchangeable with Yi ∈ Y , Zi ∈ Z , complete separable metric
spaces, 1 ≤ i < ∞. Suppose

P[X1 ∈ (A1, B1), X2 ∈ (A2, B2), ..., Xn ∈ (An, Bn)] =

P[X1 ∈ (A1, B2), X2 ∈ (A2, B1), ..., Xn ∈ (An, Bn)]

for all measurable Ai, Bi and all n. Then,

P(X1 ∈ (A1, B1), ..., Xn ∈ (An, Bn)) =
∫
P(Y )×P(Z )

n

∏
1

θ(Ai)η(Bi)μ(dθ, dη),

with P(Y ),P(Z ) the probabilities on the Borel sets of Y , Z . The mixing measure μ is unique.

4. Theorem 2 is closely related to de Finetti’s work in [1,4].
5. De Finetti’s law of large numbers holds as well, in Theorem 3

1
n ∑ δXi (A× B)→ μ(θ(A), η(B)).

One object of this paper is to develop similar parameter free de Finetti theorems for
widely used log-linear models for discrete data. Section 2 begins by relating this to an
ongoing conversation with Eugenio Regazzini. Section 3 provides needed background on
discrete exponential families and algebraic statistics. Sections 4 and 5 apply those tools to
give de Finetti style partially exchangeable theorems for some widely used hierarchical
and graphical models for contingency tables. Section 6 shows how these exponential
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family tools can be used for other Bayesian tasks: building “de Finetti priors” for “almost
exchangeability” and running the “exchange” algorithm for doubly intractable Bayesian
computation. Some philosophy and open problems are in the final section.

2. Some History

I was lucky enough to be able to speak at Eugenio Regazzini’s 60TH birthday celebra-
tion, in Milan, in 2006. My talk began this way:

 Hello, my name is Persi and I have a problem. "
For those of you not aware of the many “10 step-programs” (alcoholics anonymous,

gamblers anonymous, ...) they all begin this way, with the participants admitting to having
a problem. In my case the problem was this:

(a) After 50 years of thinking about it, I think that the subjectivist approach to probability,
induction and statistics is the only thing that works;

(b) At the same time, I have done a lot of work inventing and analyzing various schemes
for generating random samples for things like contingency tables with given row and
column sums; graphs with given degree sequences; ...; Markov Chain Monte Carlo.
These are used for things like permutation tests and Fisher’s exact test.

There is a lot of nice mathematics and hard work in (b) but such tests violate the
likelihood principle and lead to poor scientific practice. Hence my problem (I still have it):
(a) and (b) are incompatible.

There has been some progress. I now see how some of the tools developed for (b) can
be usefully employed for natural tasks suggested by (a). Not so many people care about
such inferential questions in these ’big data’ days. However, there are also lots of small
datasets where the inferential details matter. There are still useful questions for people like
Eugenio (and me).

3. Background on Exponential Families and Algebraic Statistics

The following development is closely based on [5], which should be considered for
examples, proofs and more details.

Let X be a finite set. Consider the exponential family:

pθ(x) =
1

Z(θ)
eθ·T(x) θ ∈ Rd, x ∈ X . (4)

Here, Z(θ) is a normalizing constant and T : X → Nd − {0}. If X1, X2, ..., Xn are
independent and identically distributed from (4), the statistic t = T(X1) + · · ·+ T(Xn) is
sufficient for θ. Let

Yt = {(x1, ..., xn) : T(x1) + · · ·+ T(xn) = t}.

Under (4), the distribution of X1, ..., Xn given t is uniform on Yt. It is usual to write

t =
n

∑
i=1

T(Xi) = ∑
X

σ(x)T(x) with σ(x) = #{i : T(Xi) = T(x)}.

Let
Ft = { f : X → N : ∑ f (x)T(x) = t}.

Example 1. For contingency tables X = {(i, j) : 1 ≤ i ≤ I, 1 ≤ j ≤ J}. The usual model for
independence has T(i, j) ∈ NI+J a vector of length I + J with two non zero entries equal 1. The 1’s
in T(i, j) are in the ith place and position j of the last j places. The sufficient statistic t contains the
row and column sums of the contingency table associated to the first n observations. The set Ft is
the set of an I × J tables with these row and column sums.
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A Markov chain on this Ft can be based on the following moves: pick i �= i′, j �= j′ and change
the entries in the current f by adding ±1 in pattern

j j′

i + −
i′ − +

or
− +
+ −

This does not change the row sums and it does not change the column sums. If told to go
negative, just pick new i, i′, j, j′. This gives a connected, aperiodic Markov chain on Ft with a
uniform stationary distribution. See [6].

Returning to the general case, an analog of
+ −
− +

moves is given by the following:

Definition 1 (Markov basis). A Markov basis is a set of functions f1, f2, ..., fL from X to Z

such that
∑
X

fi(x)T(x) = 0 1 ≤ i ≤ L (5)

and that for any t and f , f ′ ∈ Ft there are (t1, fi1), ..., (tA, fiA) with ti = ±1, such that

f ′ = f +
A

∑
j=1

tj fij and f +
a

∑
j=1

tj fij ≥ 0, for 1 ≤ a ≤ A. (6)

This allows the construction of a Markov chain on Ft: from f , pick I ∈ {1, 2, ..., L}
and t = ±1 at random and consider f + t f I . If this is positive, move there. If not, stay at f .
Assumptions (5) and (6) ensure that this Markov chain is symmetric and ergodic with a
uniform stationary distribution. Below, I will use a Markov basis to formulate a de Finetti
theorem to characterize mixtures of the model (4).

One of the main contributions of [5] is a method of effectively constructing Markov
bases using polynomial algebra. For each x ∈ X , introduce an indeterminate, also called x.
Consider the ring of polynomials k[X ] in these indeterminates where k is a field, e.g., the
complex numbers. A function g : X → N is represented as a monomial X g = ∏X xg(x).
The function T : X → Nd gives a homomorphism

ϕT : k[X ] −→ k[t1, ..., td]

x 
−→ tT1(x)
1 tT2(x)

2 · · · tTd(x)
d ,

extended linearly and multiplicatively (ϕT(x + y) = ϕT(x) + ϕT(y) and ϕT(x2) = ϕT(x)2

and so on). The basic object of interest is the kernel of ϕT :

IT = {p ∈ k[X ] : ϕT(p) = 0}.

This is an ideal in k[X ]. A key result of [5] is that a generating set for IT is equivalent
to a Markov basis. To state this, observe that any f : X → Z can be written f = f+ − f−
with f+(x) = max( f (x), 0) and f−(x) = max(− f (x), 0). Observe ∑ f (x)T(x) = 0 iff
X f+ −X f− ∈ IT . The key result is

Theorem 4. A collection of functions f1, f2, ..., fL is a Markov basis if and only if the set

X fi+ −X fi− 1 ≤ i ≤ L

generates the ideal IT.

Now, the Hilbert Basis Theorem shows that ideals in k[X ] have finite bases and
modern computer algebra packages give an effective way of finding bases.
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I do not want (or need) to develop this further. See [5] or the book by Sullivant [7] or
Aoki et al. [8]. There is even a Journal of Algebraic Statistics.

I hope that the above gives a flavor for what I mean by “working in (b) is hard honest
work”. Most of the applications are for standard frequentist tasks. In the following sections,
I will give Bayesian applications.

4. Log Linear Model for Contingency Tables

Log linear models for multiway contingency tables are a healthy part of the modern
statistics. The index set is X = ∏γ∈Γ Iγ with Γ indexing categories and Iγ the levels of γ.
Let p(x) be the probability of falling into cell x ∈ X . A log linear model can be specified
by writing:

log p(x) = ∑
a⊆Γ

ϕa(x) .

The sum ranges over subsets a of Γ and ϕa(x) means a function that only depends on x
through the coordinates in a. Thus, ϕ∅(x) is a constant and ϕΓ(x) is allowed to depend on
all coordinates. Specifying ϕa = 0 for some class of sets a determines a model. Background
and extensive references are in [9]. If the a with ϕa �= 0 permitted form a simplicial complex
C (so a ∈ C and ∅ �= a′ ⊆ a ⇒ a′ ∈ C) the model is called hierarchical. If C consists of
the cliques in a graph, the model is called graphical. If the graph is chordal (every cycle of
length ≥ 4 contains a chord) the graphical model is called decomposable.

Example 2 (3 way contingency tables). The graphical models for three way tables are:

2

1 3

2

1 3 1 3 2

2

1 3

Complete
independece

One variable
independent

1 and 2 conditionally
independent given 3

saturated

pijk pi∗∗p∗j∗p∗∗k pi∗∗p∗jk pi∗k p∗jk/p∗∗k pijk

Sufficient
statistics

Ti∗∗, T∗j∗, T∗∗k Ti∗∗, T∗jk Ti∗k, T∗jk Tijk

The simplest hierarchical model that is not graphical is No Three Way Interaction Model.
This can be specified by saying ’the odds rate of any pair of variables does not depend

on the third’. Thus,

pijk pi′ j′k

pij′k pi′ jk
is constant in k for fixed i, i′, j, j′. (7)

As one motivation, recall that for two variables, the independence model is specified by

pij = θiηj.

For three variables, suppose there are parameters θij, ηjk, ψik satisfying:

pijk = θijηjkψik for all i, j, k. (8)

It is easy to see that (8) entails (7) hence ’no three way interaction’. Cross multiplying
(7) entails

pijk pi′ j′k pij′k′ pi′ jk′ = pijk′ pi′ j′k′ pij′k pi′ jk. (9)

This is the form we will work with for the de Finetti theorems below.
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For background, history and examples (and some nice theorems) see ([10],
Section 8.2), [11,12], Simpsons ’paradox’ [13] is based on understanding the no three way
interaction model. Further discussion is in Section 5 below.

5. From Markov Bases to de Finetti Theorems

Suppose X is a finite set, T : X → Nd − {0} is a statistic and { fi}L
i=1 is a Markov

basis as in Section 3. The following development shows how to translate this into de Finetti
theorems for the contingency table examples of Section 4. The first argument abstracts the
argument used for Theorem 2 above.

Lemma 1 (Key Lemma). Let X be a finite set and {Xi}∞
i=1 an exchangeable sequence of X -valued

random variables. Suppose for all n > m

P[X1 = x1, ..., Xm = xm, Xm+1 = xm+1, ..., Xn = xn] =

P[X1 = y1, ..., Xm = ym, Xm+1 = xm+1, ..., Xn = xn]. (10)

In (10), x1, ..., xm, y1, ..., ym are fixed and xm+1, ..., xn are arbitrary. Then, if T is the tail field
of {Xi}∞

i=1 and p(x) = P[X1 = x|T ],
m

∏
i=1

p(xi) =
m

∏
i=1

p(yi). (11)

Proof. From (10) and exchangeability

P[X1 = x1, ..., Xm = xm, Xn+1 = xn+1, ..., Xn+h = xn+h] =

P[X1 = y1, ..., Xm = ym, Xn+1 = xn+1, ..., Xn+h = xn+h]

so

P[X1 = x1, ..., Xm = xm|Xn+1 = xn+1, ..., Xn+h = xn+h] =

P[X1 = y1, ..., Xm = ym|Xn+1 = xn+1, ..., Xn+h = xn+h] .

Let h ↑ ∞ and then n ↑ ∞, use Doob’s upward and then downward martingale
convergence theorems to see:

P[X1 = x1, ..., Xm = xm|T ] = P[X1 = y1, ..., Xm = ym|T ].

Now, de Finetti’s theorem implies (11).

Remark 1. The Key Lemma shows that the p(x) satisfy certain relations. Using choices of
{xi}, {yi} derived from a Markov basis will show that p(x) satisfy the required independence
properties. Suppose that ∑X f (x)T(x) = 0, ∑X f (x) = 0 and f ∈ {0,±1}. Let S+ = {x :
f (x) = 1}, S− = {y : f (y) = −1}. Say |S+| = |S−| = m. Enumerate S+ = {x1, ..., xm},
S− = {y1, ..., ym}. Assumptions (10) and conclusion (11) will give our theorems.

Example 3 (Independence in a two way table). Let X = [I]× [J]. A minimal basis for the
independence model is given by fi,j,i′ ,j′ :

j j′

i + −
i′ − +

(all other entries = 0).

The condition of the Key Lemma becomes:

P[X1 = (i, j), X2 = (i′, j′), X3 = (i3, j3), ..., Xn = (in, jn)] =
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P[X1 = (i, j′), X2 = (i′, j), X3 = (i3, j3), ..., Xn = (in, jn)].

Passing to the limit gives
pij pi′ j′ = pij′ pi′ j

and so
pi∗p∗j = ∑

i′ j′
pij′ pi′ j = pij.

This is precisely Theorem 2 of the Introduction.

Example 4 (Complete independence in a three way table). The sufficient statistics are
Ti∗∗, T∗j∗, T∗∗k. From [5], there are two kinds of moves in a minimal basis. Up to symmetries,
these are:

Class I Class II
j j′

i + −
i′ − +

j j′

i + −
j j′

i′ − +

Passing to the limit, this entails:

pijk pij′k = pij′k pi′ jk and pijk pi′ j′k′ = pij′k pijk′ .

These may be said as ’the product of any pijk, pi′ jk remains unchanged if the middle coordinates
are exchanged’. By symmetry, this remains true if the two first or last coordinates are exchanged. As
above, this entails

pi∗∗p∗j∗p∗∗k = pijk.

These observations can be rephrased into a statement that looks more similar to the classical de
Finetti theorem; using symmetry:

Theorem 5. Let {Xi}∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then

P[X1 = (i1, j1, k1), ..., Xn = (in, jn, kn)] =

P[X1 = (σ(i1), ζ(j1), η(k1)), ..., Xn = (σ(in), ζ(jn), η(kn))]

for all n, {(ia, ja, ka)}n
a=1 and (σ, ζ, η) ∈ SI × SJ × SK is necessary and sufficient for there to exist

a unique μ on ΔI × ΔJ × ΔK with

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

ΔI×ΔJ×ΔK

n

∏
a=1

pia qja rka μ(dp, dq, dr).

Example 5 (One variable independent of the other two). Suppose, without loss, that the
graph is

1 2 3

Identify the pairs (j, k) with {1, 2, ..., L} with L = JK. The problem reduces to Example 4. A
minimal basis consists of (again, up to relabeling)

l l′

i + −
i′ − +

We may conclude
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Theorem 6. Let {Xi}∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then

P[X1 = (i1, j1, k1), ..., Xn = (in, jn, kn)] =

P[X1 = (σ(i1), ζ(j1, k1)), ..., Xn = (σ(in), ζ(jn, kn))]

for all n, {(ia, ja, ka)}n
a=1 and (σ, ζ) ∈ SI × SJ×K is necessary and sufficient for there to exist a

unique μ on ΔI × ΔJK with

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

ΔI×ΔJK

n

∏
a=1

paqaμ(dp, dq).

Example 6 (Conditional independence). Suppose variable i and j are conditionally independent
given k.

1 3 2

Rewrite the parameter condition of section four as

p∗∗k pijk = pi∗k p∗jk for all i, j, k

The sufficient statistics are {Ti∗k}i,k, {T∗jk}jk. From [5], a minimal generating set is

jk j′k
ik + −
i′k − +

K× I(I − 1)
2

× J(J − 1)
2

moves in all.

From this, the Key Lemma shows (for all i, j, k)

pijk pi′ j′k = pij′k pi′ jk.

This entails:

pi∗k p∗jk = ∑
i′ ,j′

pij′k pi′ jk = ∑
i′ j′

pijk pi′ j′k = pijk p∗∗k.

Again, phrasing the condition (10) in terms of symmetry.

Theorem 7. Let {Xi}∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then,

P[X1 = (ii, ji, ki), ..., Xn = (in, jn, kn)] =

P[X1 = (σk1(i1), ζk1(j1), k1), ..., Xn = (σkn(in), ζkn(jn), kn)] (12)

for all n, {(ia, ja, ka)}n
a=1 and σk, ζk ∈ SI × SJ, 1 ≤ k ≤ K, is necessary and sufficient for there to

exist a unique family μ×∏k
b=1 μb,r on ΔK × (ΔI × ΔJ)

K

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] = ∫
ΔK×(ΔI×ΔJ)K

n

∏
a=1

rka pka
ia

qka
ja

k

∏
b=1

μb,r(pib qib)μ(dr). (13)

Both (12) and (13) have a simple interpretation. For (12), {Xi}n
i=1 are exchangeable

3-vectors. For any k and specified sequence of values {(ia, ja, k)}n
a=1 the chance of observing

these values is unchanged under permuting the (ia, ja, k), by permutations σk ∈ SI , ζk ∈ SJ .
Here σk, ζk are allowed to depend on k.
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On the right of (13), the mixing measure may be understood as follows. There is a
probability μ on ΔK. Pick r = (r1, ..., rk) ∈ ΔK. Given this r, pick (pk, qk) from μk,r on the kth

copy of ΔI ×ΔJ . These choices are allowed to depend on r but are independent, conditional
on r, 1 ≤ k ≤ K.

All of this simply says that, conditional on the tail field,

P[Xa = (i, j, k)|T ] = P[Xa = (i, ∗, k)|T )P(Xa = (∗, j, k)|T ].

The first two coordinates are conditionally independent given the third.

Example 7 (No three way interaction). The model is described in Section 4. The sufficient
statistics are {Tij∗}, {Ti∗k}, {T∗jk}. Minimal Markov bases have proved intractable. See [5] or [8].
For any fixed I, J, K, the computer can produce a Markov basis but these can have a huge number of
terms. See [7,8] and their references for a surprisingly rich development.

There is a pleasant surprise. Markov bases are required to connect the associated Markov
chain. There is a natural subset, the first moves anyone considers, and and these are enough for a
satisfactory de Finetti theorem (!).

Described informally, for an I × J × K array, pick a pair of parallel planes, say the k, k′ planes
in the three dimensional array, and consider moves depicted as

j j′

i + −
i′ − +

j j′

i + −
i′ − +

k k′

These moves preserve all line sums (the sufficient statistics). They are not sufficient to
connect any two datasets with the same sufficient statistics. Using the prescription in the Key
Lemma, suppose:

P[X1 = (i, j, k), X2 = (i′, j′, k), X3 = (i, j′, k′), X4 = (i′, j, k′),

Xa = (ia, ja, ka) 5 ≤ a ≤ n] =

P[X1 = (i, j′, k), X2 = (i′, j, k), X3 = (i, j, k′), X4 = (i′, j′, k′),

Xa = (ia, ja, ka) 5 ≤ a ≤ n]. (14)

Passing to the limit gives

pijk pi′ j′k pij′k′ pi′ jk′ = pij′k pi′ jk pijk′ pi′ j′k′ . (15)

This is exactly the no three way interaction condition. Or, equivalently:

pijk pi′ j′k

pij′k pi′ jk
=

pijk′ pi′ j′k′

pij′k′ pi′ jk′
.

The odds ratios are constant on the kth and k′th planes (of course, they depend on i, j, i′, j′).
These considerations imply:

Theorem 8. Let {Xi}∞
i=1 be exchangeable, taking values in [I]× [J]× [K]. Then, condition (14)

is necessary and sufficient for the existence of a unique probability μ on ΔI JK, supported on the no
three way interaction variety (15) satisfying

P[Xa = (ia, ja, ka), 1 ≤ a ≤ n] =
∫

ΔI JK
∏ p

ηijk
ijk μ(dpijk).

We remark on the following points.
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1. It follows from theorems in [12] and [11] that, if all pijk > 0, condition (15) is equivalent
to the unique representation,

pijk = rαjkβkiγij, (16)

where r, α, β, γ have positive entries and satisfy

∑
k

αjk = ∑
i

βki = ∑
j

γij = 1 for all i, j, k

and
r ∑

i,j,k
αjkβkiγij = 1 .

The integral representation in the theorem can be stated in this parametrization. The
condition pijk > 0 is equivalent to P(X1 = (i, j, k)) > 0 on observables.

2. Condition (14) does not have an obvious symmetry interpretation.
3. Conditions (14) and (15) are stated via varying the third variable when i, j, i′, j′ are

fixed. Because of (16), if they hold in this form, they hold for any two variables fixed
as the third varies.

4. It is possible to go on, but, as John Darroch put it, ’the extensions to higher order
interactions... are not likely to be of practical interest’. The most natural development—
the generalization to decomposable models—is being developed by Paula Gablenz.

5. There are many extensions of the Key Lemma above. These allow a similar develop-
ment for more general log linear models and exponential families.

6. Discussion and Conclusions

The tools of algebraic statistics have been harnessed above to develop partial exchange-
ability for standard contingency table models. I have used them for two further Bayesian
tasks: approximate exchangeability and the problem of ’doubly intractable priors’. As both
are developed in papers, I will be brief.

Approximate exchangeability.Consider n men and m women along with a binary
outcome. If the men are judged exchangeable (for fixed outcomes for the women) and vice
versa, and, if both sequences are extendable, de Finetti [1] shows that there is a unique
prior on the unit square [0, 1]2 such that, for any outcomes t1, ..., tn, σ1, ..., σm in {0, 1}

P[X1 = t1, ..., Xn = tn, Y1 = σ1, ..., Ym = σm] =∫
[0,1]2

pS(1− p)n−SθT(1− θ)m−Tμ(dp, dθ),

with S = ∑n
i=1 ti, T = ∑m

j=1 σj.
If, for the outcome of interest, {Xi, Yj} were almost fully exchangeable (so the men/

women difference is judged practically irrelevant) the prior μ would be concentrated near
the diagonal of [0, 1]2. De Finetti suggested implementing this by considering priors of
the form

μ(dp, dθ) = Z−1e−A(p−θ)2
dpdθ

for A large.
In joint work with Sergio Bacallado and Susan Holmes [3], multivariate versions of

such priors are developed. These are required to concentrate near sub-manifolds of cubes
or products of simplicies; think about ‘approximate no three way interaction’. We used
the tools of algebraic statistics to suggest appropriate many variable polynomials which
vanish on submanifold of interest. Many ad hoc choices were involved. Sampling from
such priors or posteriors is a fresh research area. See [2,14,15].

Doubly intractable priors. Consider an exponential family as in Section 3:

pθ(x) =
1

Z(θ)
eθ·T(x) .
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Here x ∈ X a finite set, T : X → Rd and θ ∈ Rd. In many real examples, the
normalizing constant Z(θ) will be unknown and unknowable. For a Bayesian treatment,
let Π(dθ) be a prior distribution on Rd. For example, the conjugate prior.

If X1, X2, ..., Xn is as i.i.d. sample from pθ , T is a sufficient statistic and the posterior
has the form

Z(Z−1(θ))neθFΠ(dθ),

with F = ∑n
i=1 T(Xi) and Z another normalizing constant. The problem is that Z−1(θ)

depends on θ and is unknown!
The exchange algorithm and many variants offer a useful solution. See [16,17].
In practical implementations, there is an intermediary step requiring a sample form

pT
θ′ , the measure induced by pn

θ under ∑n
i T(xi) : X n → R. This is a discrete sampling task

and Markov basis techniques have been proved useful. See [16].
A philosophical comment. The task undertaken above, finding believable Bayesian

interpretations for widely used log linear models, goes somewhat against the grain of
standard statistical practice. I do not think anyone takes a reasonably complex, high
dimensional hierarchical model seriously. They are mostly used as a part of exploratory
data analysis; this is not to deny their usefulness. Making any sense of a high dimensional
dataset is a difficult task. Practitioners search through huge collections of models in an
automated way. Usually, any reflection suggests the underlying data is nothing like a
sample from a well specified population. Nonetheless, models are compared using product
likelihood criteria. It is a far far cry from being based on anyone’s reasoned opinion.

I have written elsewhere about finding Bayesian justification for important statistical tasks
such as graphical methods or exploratory data analysis [18]. These seem like tasks similar to
’how do you form a prior’. Different from the focus of even the most liberal Bayesian thinking.

The sufficiency approach. There is a different approach to extending de Finetti’s theorem.
This uses ‘sufficiency’. Consider exchangeable {Xi}∞

i=1. For each n, suppose Tn : X n → Y
is a function. The {Tn} have to fit together according to simple rules satisfied in all of the
examples above. Call {Xi} partially exchangeable with respect to Tn if P[X1 = x1, . . . , Xn =
xn|Tn = tn] is uniform. Then, Diaconis and Freedman [19] show that a version of de
Finetti’s theorem holds. The law of {Xi} is a mixture of i.i.d. laws indexed by extremal laws.
In dozens of examples, these extremal laws can be identified with standard exponential
families. This last step remains to be carried out in the generality of Section 3 above. What
is required is a version of the Koopman–Pitman–Darmois theorem for discrete random
variables. This is developed in [19] when X ⊆ N and Tn(X1, . . . , Xn) = X1 + · · ·+ Xn.
Passing to interpretation, this version of partial exchangeability has the following form:

if Tn(x1, . . . , xn) = Tn(y1, . . . , yn),

then P[X1 = x1, . . . , Xn = xn] = P[X1 = y1, . . . , Xn = yn] .

This is neat mathematics (and allows a very general theoretical development). How-
ever, it does not seem as easy to think about in natural examples. Exchangeability via
symmetry is much easier. The development above is a half-way house between symme-
try and sufficiency. A close relative of the sufficiency approach is the topic of ‘extremal
models’ as developed by Martin-Löf and Lauritzen. See [20] and its references. Moreover,
Refs. [21,22] are recent extensions aimed at contingency tables.

Classical Bayesian contingency table analysis. There is a healthy development of para-
metric analysis for the examples of Section 5. This is based on natural conjugate priors. It
includes nice theory and R packages to actually carry out calculations in real problems.
Three papers that I like are [23–26]. The many wonderful contributions by I.J. Good are
still very much worth consulting. See [27] for a survey. Section 5 provides ‘observable
characterizations’ of the models. The problem of providing ‘observable characterizations’
of the associated conjugate priors (along the lines of [28]) remains open.
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Single-Block Recursive Poisson–Dirichlet Fragmentations of
Normalized Generalized Gamma Processes

Lancelot F. James

Department of Information Systems, Business Statistics and Operations Management, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; lancelot@ust.hk

Abstract: Dong, Goldschmidt and Martin (2006) (DGM) showed that, for 0 < α < 1, and θ > −α,
the repeated application of independent single-block fragmentation operators based on mass parti-
tions following a two-parameter Poisson–Dirichlet distribution with parameters (α, 1− α) to a mass
partition having a Poisson–Dirichlet distribution with parameters (α, θ) leads to a remarkable nested
family of Poisson—Dirichlet distributed mass partitions with parameters (α, θ + r) for r = 0, 1, 2, . . . .
Furthermore, these generate a Markovian sequence of α-diversities following Mittag-Leffler distribu-
tions, whose ratios lead to independent Beta-distributed variables. These Markov chains are referred
to as Mittag-Leffler Markov chains and arise in the broader literature involving Pólya urn and random
tree/graph growth models. Here we obtain explicit descriptions of properties of these processes when
conditioned on a mixed Poisson process when it equates to an integer n, which has interpretations in
a species sampling context. This is equivalent to obtaining properties of the fragmentation operations
of (DGM) when applied to mass partitions formed by the normalized jumps of a generalized gamma
subordinator and its generalizations. We focus primarily on the case where n = 0, 1.

Keywords: fragmentations of mass partitions; generalized gamma process; Mittag-Leffler Markov
Chains; Poisson—Dirichlet distributions; species sampling

1. Introduction

Let Z = (Zr, r ≥ 0) denote a Markov chain characterized by a stationary transition
density Zr|Zr−1 = z given for y > z and 0 < α < 1:

P(Zr ∈ dy|Zr−1 = z)/dy =
α(y− z)

1−α
α −1ygα(y)

Γ( 1−α
α )gα(z)

, (1)

where gα(s) := fα(s−
1
α )s−

1
α−1/α is the density of a variable T−α

α , with a Mittag-Leffler
distribution, Tα := Tα,0 is a positive stable variable with density denoted as fα(t), and
Laplace transform E[e−λTα ] = e−λα

. More generally, as in [1–4], for θ > −α, let Tα,θ
denote a variable with density fα,θ(t) = t−θ fα(t)/E[T−θ

α ]; then, T−α
α,θ is said to have a

generalized Mittag-Leffler distribution with parameters (α, θ) and distribution denoted as
ML(α, θ). In the cases where Z0 = T−α

α,θ ∼ ML(α, θ), the marginal distributions of each Zr are
ML(α, θ + r). Furthermore, there is a sequence of random variables (Bj, j ≥ 1) defined for
each integer j as Bj = Zj−1/Zj; hence, there is the exact point-wise relation Zj−1 = Zj × Bj,

where, remarkably, the Bj are independent Beta( θ+α+j−1
α , 1−α

α ) variables, and (B1, . . . , Bj)

is independent of Zj, for j = 1, 2, . . . . Note further that by setting Zr = T−α
α,θ+r, there is the

point-wise equality Tα,θ = Tα,θ+r ×∏r
j=1 B−

1
α

j , where all the variables on the right-hand
side are independent. In these cases, the sequence may be referred to as a Mittag-Leffler
Markov chain with law denoted as Z ∼ MLMC(α, θ), as in [5] and, subsequently, [6]. The
Markov chain is described prominently in various generalities, that is, ranges of α and θ,
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in [5–9]. See for example [5,6,10–15] for more references concerning Pólya urn and random
tree/graph growth models.

Now, let PD(α, θ) denote a two-parameter Poisson–Dirichlet distribution over the
space of mass partitions summing to 1, say P∞ := {s = (s1, s2, . . .) : s1 ≥ s2 ≥ · · · ≥ 0
and ∑∞

i=1 si = 1}, as described in [3,4,16]. Let (P�) := ((P�), � ≥ 1) ∼ PD(α, θ) corre-
spond in distribution to the ranked lengths of excursion of a generalized Bessel bridge on
[0, 1], as described and defined in [1,4]. In particular, PD(1/2, 0) and PD(1/2, 1/2) corre-
spond to excursion lengths of standard Brownian motion and Brownian bridge, on [0, 1],
respectively. As noted in [6], the single-block PD(α, 1− α) fragmentation results for PD(α, θ)
mass partitions by [17], which we shall describe in more detail in Section 1.2, allow one to
couple a version of Z ∼ MLMC(α, θ) with a nested family of mass partitions ((P�,r), r ≥ 0),
where each (P�,r) := ((P�,r), � ≥ 1) takes its values in P∞, initial (P�,0) ∼ PD(α, θ) has
α-diversity Z0 = T−α

α,θ , and each successive (P�,r) ∼ PD(α, θ + r) has α-diversity Zr = T−α
α,θ+r.

The distribution of this family is denoted as ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ).
Recall from [2] that for (P�,0) ∼ PD(α, 0), (P�,0)|Tα = t has distribution PD(α|t),

and for a probability measure ν on (0, ∞), one may generate the general class of Pois-
son–Kingman distributions generated by an α-stable subordinator with mixing ν, by form-
ing PKα(ν) =

∫ ∞
0 PD(α|t)ν(dt). Some prominent examples of interest in this work are

PD(α, θ) =
∫ ∞

0 PD(α|t) fα,θ(t)dt and P[n]
α (λ) =

∫ ∞
0 PD(α|t) f [n]α (t|λ)dt, where f [n]α (t|λ) ∝

tne−λt fα(t). Hence, P[0]
α (λ) corresponds to the law of the ranked normalized jumps of

a generalized gamma subordinator, say (τα(y); y ≥ 0), where τα(λα)/λ has density
f [0]α (t|λ) = e−λteλα

fα(t). In [6], we obtained some general distributional properties of
((P�,r), Zr; r ≥ 0) formed by repeated application of the fragmentation operations in [17]
to the case where (P�,0) ∼ PKα(ν). Furthermore, letting (e�) denote a sequence of iid
Exp(1) variables forming the arrival times, say (Γ� = ∑�

j=1 ej; � ≥ 1), of a standard Poisson
process, we ([6], Section 4.3) focused in more detail on the special case of ((P�,r), Zr; r ≥
0)|NT−α

α,θ
(λ) = j for j = 0, 1, 2, . . . , when ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, θ) and (NT−α

α,θ
(t)

= ∑∞
�=1 I{Γ�/T−α

α,θ ≤t}, t ≥ 0) is a mixed Poisson process with random intensity depending on

T−α
α,θ . That is to say, (P�,0)|NT−α

α,θ
(λ) = j corresponds in distribution to (P�,0(λ)) following a

PKα(ν) distribution, where ν corresponds to the distribution of T−α
α,θ |NT−α

α,θ
(λ) = j.

In this work, we obtain results for the case where ((P�,r), Zr; r ≥ 0) is such that

(P�,0)∼P[n]
α (λ), which is when (P�,0) corresponds to the ranked normallized jumps of a

generalized gamma process, (τα(y); y ≥ 0), and its size-biased generalizations. Interest-
ingly, our results equate in distribution to the following setup involving ((P�,r), Zr; r ≥
0)∼MLMCfrag(α, 0). Let NTα be a mixed Poisson process defined by replacing T−α

α,θ in
NT−α

α,θ
with Tα. Using the mixed Poisson framework in the manuscript of Pitman [18]

(see also [6,19] for more details), we obtain some explicit distributional properties of
((P�,r), Zr; r ≥ 0)|NTα(λ) = n and corresponding variables (B1, . . . , Br, Tα,r)|NTα(λ) = n
for n = 0, 1, 2, . . . , when ((P�,r), Zr; r ≥ 0)∼MLMCfrag(α, 0). That is when (P�,0)∼PD(α, 0).
The equivalence in distribution to the fragmentation operations of [17] applied in the gen-
eralized gamma cases may be deduced from [18], who shows that when (P�,0)∼PD(α, 0),

(P�,0)|NTα = n corresponds to the distribution of (P�,0(λ)) ∼ P[n]
α (λ). We shall primarily

focus on the case of n = 0, 1, corresponding to the generalized gamma density and its sized
biased distribution, which yields the most explicit results. The fragmentation operations (6)
applied to ((P�,0))∼P[1]

α (λ) allow one to recover the entire range of PD(α, θ) distributions

for θ > −α, by gamma randomization, whereas the case for ((P�,0))∼P[0]
α (λ) only applies

to θ ≥ 0. We note that descriptions of our results for n = 0, 1, albeit less refined ones, appear
in the unpublished manuscript ([9], Section 6). See also [20] for an application of P[0]

α (λ) for
randomized λ.
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We close this section by recalling the definition of the first size-biased pick from a
random mass partition (P�) ∈ P∞ (see [2,3,16]). Specifically, P̃1 is referred to as the first
size-biased pick from (P�), if it satisfies, for k = 1, 2, . . . ,

P(P̃1 = Pk|(P�)) = Pk. (2)

Hereafter, let (P�)1 := (P�) \ P̃1 denote the remainder, such that (P�) = Rank(((P�)1, P̃1)),
where Rank(·) denotes the operation corresponding to ranked re-arrangement. From [1],
P̃1 may be interpreted as the length of excursion (i.e., one of the (P�)), first discovered
by dropping a uniformly distributed random variable onto the interval [0, 1]. The frag-
mentation operation of [17] may be interpreted as shattering/fragmenting that interval
by the excursion lengths of a process on [0, 1], with distribution PD(α, 1− α) and then
re-ranking. For clarity and comparison, we first recall some details of the more well-known
Markovian size-biased deletion operation leading to stick-breaking representations, as
described in [1–3], and more related notions arising in a Bayesian nonparametric context in
the PD(α, θ) setting, in the next section.

Remark 1. Although we acknowledge the influence and contributions of the manuscript [18], the
pertinent distributional results we use from that work are re-derived at the beginning of Section 2.
Otherwise, the interpretation of NTα from that work is briefly mentioned in Section 1.3.

1.1. PD(α, θ) Markovian Sequences Obtained from Successive Size-Biased Deletion

Following [1], we may define SBD(·) to be a size-biased deletion operator on P∞,
as SBD((P�)) := Rank(((P�)1/(1− P̃1))), where it can be recalled from (2) that (P�) =

Rank(((P�)1, P̃1)). Now, let (SBD(j)(·), j ≥ 1) be a collection of such operators. From [1], as
per the description in ([4], Proposition 34, p. 881), it follows that for (P�,0) := (P̂�,0)∼PD(α, θ),
SBD(1)((P̂�,0)) := (P̂�,1)∼PD(α, θ + α) and is independent of the first size-biased pick
P̃1 := V1 ∼ Beta(1− α, θ + α), and hence, for r = 2, . . . ,

(P̂�,r) := SBD(r)((P̂�,r−1)
)
= SBD(r) ◦ · · · ◦ SBD(1)((P̂�,0)

)
∼ PD(α, θ + rα). (3)

This leads to a nested Markovian family of mass partitions ((P̂�,r), r ≥ 0), where
(P�,0) := (P̂�,0)∼PD(α, θ) with inverse local time at time 1, Tα,θ(see ([3], Equation (4.20),
p. 83)), and for each r, (P̂�,r)∼PD(α, θ + rα) with inverse local time at time 1, Tα,θ+rα. Fur-
thermore, (Tα,θ+rα, r ≥ 0) form a Markov chain with pointwise equality Tα,θ+(j−1)α =
Tα,θ+jα/(1−Vj), where Vj are independent Beta(1− α, θ + jα) variables and are the respec-
tive first size-biased picks from (P̂�,j−1) for j ≥ 1. Furthermore, (V1, . . . , Vr) is independent
of Tα,θ+rα and, more generally, (P̂�,r) for r = 1, 2, . . . .

From this, one obtains the size-biased re-arrangement of a PD(α, θ) mass partition, say
(P̃�)∼GEM(α, θ), satisfying P̃1 = V1∼Beta(1− α, θ + α), and for � ≥ 2, P̃� = V� ∏�−1

j=1 (1−
Vj). Refs. [3,21] discuss the GEM(α, θ) distribution and these other concepts in a species
sampling and Bayesian context. We mention the roles of corresponding random distribution
functions as priors in a Bayesian non-parametric context. Let (U�) denote a sequence of
iid Uniform[0, 1] variables independent of (P�) ∼ PD(α, θ); then, the random distribution
Fα,θ(y) = ∑∞

�=1 P�I{U�≤y} is said to follow a Pitman–Yor distribution with parameters
(α, θ), (see [21,22]). Fα,θ is a two-parameter extension of the Dirichlet process [23] (which
corresponds to F0,θ) and has been applied extensively as a more flexible prior in a Bayesian
context, but it also arises in a variety of areas involving combinatorial stochastic processes [3,
21]. An attractive feature of Fα,θ is that it may be represented as Fα,θ(y) = ∑∞

�=1 P̃�I{Ũ�≤y},
where (Ũ�) are the iid Uniform[0, 1] concomittants of the (P̃�), as exploited in [22] (see
also [21]). This constitutes the stick-breaking representation of Fα,θ . Furthermore, we can
describe P̃1 as folllows: let X1|Fα,θ have distribution Fα,θ , and denote the first value drawn
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from Fα,θ ; then, P̃1 is the mass in (P�) corresponding to that atom of Fα,θ . The size-biased
deletion operation described above, as in (3), leads to the following decomposition of Fα,θ :

Fα,θ(y) = (1− P̃1)Fα,θ+α(y) + P̃1I{Ũ1≤y} (4)

where (P̃1, Ũ1) are independent of Fα,θ+α(y)
d
= ∑∞

k=1 P̂k,1I{Uk,1≤y}, where (P̂�,1) ∼ PD(α, θ + α),

and independent of this, where (U�,1)
iid∼ Uniform[0, 1]. See [1,4,24] and references therein

for various interpretations of (4).

1.2. DGM Fragmentation

The single-block PD(α, 1− α) fragmentation operator of [17] is defined over the space
P∞. However, for further clarity we start with an explanation at the level of random
distribution functions involving the representation in (4). Suppose that Gα,1−α(y) :=

∑∞
k=1 QkI{U′k,1≤y}, with (Q�) ∼ PD(α, 1− α) and, independent of this, (U′�,1)

iid∼ Uniform[0, 1];

hence, Gα,1−α
d
= Fα,1−α. Suppose that Gα,1−α is chosen independent of Fα,θ in (4); then, it

follows from [17] that

Fα,θ+1(y)
d
= (1− P̃1)Fα,θ+α(y) + P̃1Gα,1−α(y), (5)

and it is evident that the mass partition (Q�) shatters/fragments P̃1 into a countably infinite
number of pieces (P̃1(Q�)) := (P̃1Q�, � ≥ 1) = (P̃1Q1, P̃1Q2, . . .). It follows that, in this
case, Rank

(
(P�)1, P̃1(Q�)

)
∼PD(α, θ + 1), which is the featured case of the PD(α, 1 − α)

fragmentation described in [17]. Hence, for general (P�) = Rank(((P�)1, P̃1)) ∈ P∞, a
PD(α, 1− α) fragmentation of (P�) is defined as

F̂ragα,1−α

(
(P�)

)
:= Rank

(
((P�)1, P̃1(Q�))

)
∈ P∞,

where, independent of (P�), (Q�) ∼ PD(α, 1− α). Let
(
(Q(j)

� ); j ≥ 1
)

denote an independent
collection of PD(α, 1− α) mass partitions defining a sequence of independent fragmentation

operators
(
F̂rag

(j)
α,1−α(·); j ≥ 1

)
. It follows from [17] that a version of the family ((P�,r),

Zr; r ≥ 0)∼MLMCfrag(α, θ) may be constructed by the recursive fragmentation, for r =
1, 2, . . . :

(P�,r) = F̂rag
(r)
α,1−α

(
(P�,r−1)

)
(6)

In particular, (P�,r)∼PD(α, θ + r) when (P�,0) ∼ PD(α, θ).

1.3. Remarks

We close this section with remarks related to some relevant work of Eugenio Regazzini
and his students, arising in a Bayesian context. From [18], in regards to a species sampling
context using Fα,θ (see [21]), NTα,θ (λ) interprets as the number of animals trapped and
tagged up until time λ, and hence, Γj/Tα,θ interprets as the time when the j-th animal
is trapped for j = 1, . . . . Ref. [18] indicates that this gives further interpretation to such
types of quantities arising in [25,26]. Using a Chinese restaurant process metaphor, the
animals may be replaced by customers arriving sequentially to a restaurant. More gener-
ically, NTα,θ (λ) is the number of exchangeable samples drawn from Fα,θ up until time λ.
Furthermore, Fα,n(y)|NTα,n(λ) = n for each n = 0, 1, 2, . . . is equivalent in distribution to

Fα(y|λ) d
= τα(λαy)/τα(λα), which is now referred to in the Bayesian literature as a normal-

ized generalized gamma process. While, according to [2], Fα(y|λ) appears in a relevant
species sampling context in the 1965 thesis of McCloskey [27], and certainly elsewhere, the
paper by Reggazzini, Lijoi, and Prünster [28] and subsequent works by Regazzini’s students
(see [29]) helped to popularize the usage of Fα(y|λ) in the modern literature on Bayesian
non-parametrics. Our work presents a view of Fα(y|λ) subjected to the fragmentation
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operations in [17]. Although we do not consider specific Bayesian statistical applications in
this work, we note that other types of fragmentation/coagulation of PD(α, θ) models have
been applied, for instance, in [30]. We anticipate the same will be true of the operations
considered here.

2. Results

Hereafter, we shall focus on the case of PD(α, 0), as we will recover the general (α, θ)
cases by applying gamma randomization as in ([4], Proposition 21) for θ ≥ 0 or ([19],
Corollary 2.1) for θ > −α and other results. See also ([6], Section 2.2.1). We first re-derive
some relevant properties related to NTα that are easily verified by first conditioning on Tα

and otherwise can be found in [18]. First, for fixed λ, and for j = 0, 1, . . . ,

P(NTα(λ) = j, Tα ∈ ds) =
λj

j!
sje−λs fα(s)ds, (7)

and for j = 1, 2, . . . ,

P

( Γj

Tα
∈ dλ, Tα ∈ ds

)
/dλ =

λj−1

(j− 1)!
sje−λs fα(s)ds. (8)

Note these simple results hold for any variable T with density fT in place of Tα and
fα. It follows from (7) and (8) that Tα|NTα(λ) = 0 has the generalized gamma density

f [0]α (t|λ) = e−λteλα
fα(t). Furthermore, for j = 1, 2, . . . ; Tα|NTα(λ) = j has the same dis-

tribution as Tα|Γj/Tα = λ with density f [j]α (t|λ). Since it is assumed that (Γ�; � ≥ 1) is
independent of (P�), it follows that for (P�) ∼ PD(α, 0), the conditional distribution of
(P�)|Tα = t, NTα(λ) = n is PD(α|t), and hence, (P�)|NTα(λ) = n has distribution P[n]

α (λ)
for n = 0, 1, . . . , as mentioned previously.

Remark 2. For the next results, which are extensions to ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0),

conditioned on NTα(λ) = n, we note, as in [19], that the densities f [n]α (t|λ) are well-defined for
any real number � in place of [n], with density f [�]α (t|λ), provided that λ > 0, and for λ = 0 only
in the case where � = −θ < α, which corresponds to fα,θ(t). Ref. ([19], Corollary 2.1) shows that
distributions for � can be expressed as randomized (over λ) distributions for any n > �.

For clarity, with respect to ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0), Bj = Zj−1/Zj are

independent Beta( α+j−1
α , 1−α

α ) variables for j = 1, 2, . . . , and (B1, . . . , Br) is independent of
Zr = T−α

α,r and (P�,r) for each r = 1, 2, . . . .

Proposition 1. Consider ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0), formed by the fragmentation
operations in (6), when (P�,0) ∼ PD(α, 0). Denote the conditional distribution of ((P�,r), Zr; r ≥
0)|NTα(λ) = n as MLMC[n]

frag(α|λ) and its corresponding component values as ((P�,r(λ)), Zr(λ);
r ≥ 0). Then, the distribution has the following properties.

(i) (P�,0)|NTα(λ) = n is equivalent in distribution to (P�,0(λ)) ∼ P[n]
α (λ) =

∫ ∞
0 PD(α|t)

f [n]α (t|λ)dt.

(ii) (P�,r)|NTα(λ) = n, ∏r
i=1 Bi = br has distribution P[n−r]

α (λb
− 1

α
r ), for r = 1, 2, . . . .

(iii) (P�,r)|NTα(λ) = n, ∏r
i=1 Bi = br has the same distribution as (P�,r)|NTα,r (λb

− 1
α

r ) = n.

Proof. Statement (i) has already been established. For (ii) and equivalently (iii), we use

Tα = Tα,r ×∏r
i=1 B−

1
α

i , to obtain NTα(λ) = NTα,r (λ ∏r
i=1 B−

1
α

i ). Use (7) and (8) with Tα,r,

with density fα,r(t), in place of Tα, to conclude that Tα,r|NTα,r (λb
− 1

α
r ), ∏r

i=1 Bi = br has
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density f [n−r]
α (t|λb

− 1
α

r ). Then, apply (P�,r)|Tα,r = t, NTα(λ) = n, ∏r
i=1 Bi = br is PD(α|t) for

(P�,r) ∼ PD(α, r).

3. Results for n = 0, 1

We will now focus on results for (B1, . . . , Br, Tα,r), given NTα(λ) = n, in the cases
where n = 0, 1, and ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0). This is equivalent to providing
more explicit distributional results than Proposition 1 for the generalized gamma and its
size-biased case, where (P�,0(λ)) ∼ P[n]

α (λ), for n = 0, 1, subjected to the fragmentation
operations in (6). We first highlight a class of random variables that will play an important
role in our descriptions.

Throughout, we define γθ ∼ Gamma(θ, 1) for θ ≥ 0, with γ0 := 0. Let (e(�)) and
(γ

(�)
1−α

α

) denote, respectively, iid collections of exponential(1) and Gamma( 1−α
α , 1) ran-

dom variables that are mutually independent. Use this to form iid sums γ
(k)
1
α

:= e(k) +

γ
(k)
1−α

α

∼ Gamma( 1
α , 1), and construct increasing sums Γα,k := ∑k

j=1 γ
(j)
1
α

∼Gamma( k
α , 1) for

k = 1, 2, . . . .

Lemma 1. For k = 1, 2, . . . , set Yk(λ) = (Γα,k−1 + λα)/(Γα,k + λα), with Γα,0 = 0, and
hence Y1(λ) = λα/(Γα,1 + λα). Then, for any r = 1, 2, . . . , and λ > 0, the joint density of
(Y1(λ), . . . , Yr(λ)) can be expressed as

ϑ
[0]
α,r(y1, . . . , yr|λ) =

λr

[Γ( 1
α )]

r
e−λα/(∏r

j=1 yj)eλα
r

∏
l=1

y−
(r−l+1)

α −1
l (1− yl)

1
α−1. (9)

Furthermore, λα/ ∏r
j=1 Yj(λ) = Γα,r + λα.

3.1. Results for (P�,0(λ)) ∼ P[0]
α (λ), the Generalized Gamma Case

Let (β
(k)
( 1−α

α ,1)
) denote a collection of iid Beta( 1−α

α , 1) variables, and independent of

this, let (τ
(r)
α (y)) denote, for each fixed y ≥ 0, a collection of iid variables such that

τ
(r)
α (y) d

= τα(y). In addition, for each r, (β
(1)
( 1−α

α ,1)
, . . . , β

(r)
( 1−α

α ,1)
, τ

(r)
α (λ)) is independent of

(Y1(λ), . . . , Yr(λ)).

Proposition 2. Consider ((P�,r), Zr; r ≥ 0) ∼ MLMCfrag(α, 0); then, for each r, the joint
distribution of the random variables (B1, . . . , Br, Tα,r)|NTα(λ) = 0 is equivalent component-wise
and jointly to the distribution of (B[0]

1 (λ), . . . , B[0]
r (λ), T[0]

α,r(λ)), where:

(i) B[0]
k (λ)

d
= 1− β

(k)
( 1−α

α ,1)
[1−Yk(λ)], with conditional density given Yk(λ) = yk,

1− α

α
(1− bk)

1−α
α −1(1− yk)

1− 1
α I{yk≤bk≤1},

for k = 1, 2, . . ..
(ii) The conditional distribution of Tα,r|NTα(λ) = 0 is equivalent to that of

T[0]
α,r(λ)

d
=

τ
(r)
α (Γα,r + λα)

(Γα,r + λα)1/α

where recall λα/ ∏r
j=1 Yj(λ) = Γα,r + λα.

(iii) The conditional density of T[0]
α,r(λ)|∏r

i=1 Yi(λ) = yr, is f [0]α (t|λyr
− 1

α ).

(iv) Hence, (P�,r)|NTα(λ) = 0 ∼ E[P[0]
α ((Γα,r + λα)1/α)].

(v) (B[0]
1 (λ), . . . , B[0]

r (λ), T[0]
α,r(λ))|Y1(λ), . . . , Yr(λ) are independent.
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Corollary 1. Suppose that (P�,0(λ))
d
= (P[0]

� (λ)) ∼ P[0]
α (λ) =

∫ ∞
0 PD(α|t)e−λteλα

fα(t)dt,
then for r = 1, 2, . . . ,

(P�,r(λ)) = F̂rag
(r)
α,1−α

(
(P�,r−1(λ))

) d
= (P[0]

� ((Γα,r + λα)1/α)) (10)

where Γα,r = ∑r
j=1 γ

(j)
1
α

∼ Gamma( r
α )

Proof. This follows from statement (iv) of Proposition 2.

The corollary shows that the fragmentation operations in (6) lead to a nested family
of (mixed) normalized generalized gamma distributed mass partitions, with λα replaced
by the random quantities λα/ ∏r

j=1 Yj(λ) = Γα,r + λα. In other words, (P�,r)|NTα,0(λ) = 0
equates in distribution to the ranked masses of the random distribution function, for
v ∈ [0, 1]:

Fα(v|(Γα,r + λα)1/α)
d
=

τα([Γα,r + λα]v)
τα(Γα,r + λα)

.

Now, in order to recover MLMCfrag(α, θ) for θ ≥ 0, when (P�,0(λ))∼P[0]
α (λ), set, for

θ ≥ 0, G̃α,θ
d
= G

1
α
θ
α

d
= γθ

Tα,θ
, where G θ

α
∼Gamma( θ

α , 1). When (P�,0(λ))
d
= (P[0]

� (λ))∼P[0]
α (λ),

as in Corollary 1, it follows from ([4], Proposition 21) that (P�,0(G̃α,θ))∼PD(α, θ). Hence
((P�,r(G̃α,θ)), Zr(G̃α,θ); r ≥ 0)∼MLMCfrag(α, θ). It follows from Proposition 2 that,

B[0]
k (G̃α,θ)

ind∼Beta( θ+α+k−1
α , 1−α

α ) for k = 1, 2, . . . . Notably, (Y1(G̃α,θ), . . . , Yr(G̃α,θ)) are in-
dependent variables, such that 1−Yr(G̃α,θ) ∼ Beta( 1

α , θ+r−1
α ) for r = 1, 2, . . . . When θ = 0,

or equivalently λ = 0, Y1(0) = 0, and 1−Yr(0)∼Beta( 1
α , r−1

α ) for r = 2, . . . .

3.2. Results for (P�,0(λ))∼P[1]
α (λ)

Proposition 3. Consider ((P�,r), Zr; r ≥ 0)|NTα(λ) = 1∼MLMC[1]
frag(α|λ); then, for each r, the

joint distribution of the random variables (B1, . . . , Br, Tα,r)|NTα(λ) = 1 is equivalent component-
wise and jointly to the distribution of (B[1]

1 (λ), . . . , B[1]
r (λ), T[1]

α,r(λ)), where:

(i) B[1]
1 (λ)

d
= λα/(γ 1−α

α
+ λα), where γ 1−α

α
∼Gamma( 1−α

α , 1).

(ii) B[1]
k (λ)

d
= B[0]

k−1((γ 1−α
α

+ λα)1/α) for k = 2, 3, . . . , component-wise and jointly.

(iii) T[1]
α,r(λ) is equivalent in distribution to Tα,r|NTα(λ) = 1 and equivalent in distribution to

T[0]
α,r−1((γ 1−α

α
+ λα)1/α)

d
=

τ
(r−1)
α (Γα,r−1 + γ 1−α

α
+ λα)

(Γα,r−1 + γ 1−α
α

+ λα)1/α
,

r = 1, 2, . . ..

Corollary 2. The distributions of the components of ((P�,r(λ)), Zr(λ); r ≥ 0)∼MLMC[1]
frag(α|λ),

where (P�,0(λ))
d
= (P[1]

� (λ)) ∼ P[1]
α (λ), for λ > 0, satisfies for r = 1, 2, . . . ,

(P�,r(λ)) = F̂rag
(r)
α,1−α

(
(P�,r−1(λ))

) d
= (P[1]

� ((Γα,r + λα)1/α)), (11)

where (P[1]
� ((e1 + Γα,r−1 + γ 1−α

α
+ λα)1/α))

d
= (P[0]

� ((Γα,r−1 + γ 1−α
α

+ λα)1/α)) for e1∼

exponential(1) independent of the other variables. In this case, Γα,r
d
= e1 + Γα,r−1 + γ 1−α

α
.
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Proof. (P�,r)|NTα(λ) = 1, has the same distribution as (P�,r(λ)) in (11), and (iii) of Propo-

sition 3 shows that they are equivalent in distribution to (P[0]
� ((Γα,r−1 + γ 1−α

α
+ λα)1/α)).

From ([19], Corollary 2.1, Proposition 3.2), there is the equivalence (P[1]
� ((e1 + λα)1/α))

d
=

(P[0]
� (λ)) for any λ ≥ 0, yields (11).

Now, in order to recover MLMCfrag(α, θ) for θ > −α, when (P�,0(λ))) ∼ P[1]
α (λ), use

Ĝα,θ
d
= G

1
α
θ+α

α

d
=

γ1+θ
Tα,θ

, where G θ+α
α
∼Gamma( θ+α

α , 1), and, ((P�,r(λ)), Zr(λ); r ≥ 0)∼

MLMC[1]
frag(α|λ). It follows from ([19], Corollary 2.1) that ((P�,r(Ĝα,θ)), Zr(Ĝα,θ); r ≥ 0)∼

MLMCfrag(α, θ), for θ > −α.

3.3. Proofs of Propositions 2 and 3

Although the joint conditional density of (B1, . . . , Br, Tα,r)|NTα(λ) = 0 in the MLMC(α, 0)
setting can be easily obtained from ([6], p. 324), with h(t) = e−λteλα

, for clarity, we derive it
here. Since P(NTα(λ) = 0|Tα,r = s, ∏r

i=1 Bi = br) = e−λs/br
1/α

, and P(NTα(λ) = 0) = e−λα
,

it follows that the desired conditional density of (B1, . . . , Br, Tα,r)|NTα(λ) = 0, can be
expressed as,

αr

[Γ( 1−α
α )]r

r

∏
i=1

b
α+i−1

α −1
i (1− bi)

1−α
α −1 × s−r fα(s)e−λs/br

1/α
eλα

. (12)

Now, a joint density of (B[0]
1 (λ), . . . , B[0]

r (λ), T[0]
α,r(λ), Y1(λ), . . . , Yr(λ)) follows from

the descriptions in Proposition 2 and Lemma 3.1 and can be expressed, for 0 ≤ yk ≤ bk ≤
1,k = 1, . . . , r, as

eλα
fα(s)

λr

[Γ( 1−α
α )]r

r

∏
k=1

(1− bk)
1−α

α −1 × e−λs/yr
1/α

r

∏
l=1

y−
(r−l+1)

α −1
l , (13)

for yr = ∏r
i=1 yi. Proposition 2 is verified by showing that integrating over (y1, . . . , yr)

in (13) leads to (12). This is equivalent to showing that

∫ b1

0
· · ·
∫ br

0
e−λs/yr

1/α
r

∏
l=1

y−
(r−l+1)

α −1
l dyr · · · dy1 = αrλ−rs−re−λs/br

1/α
r

∏
i=1

b
i−1

α
i .

which follows by elementary calculations involving the change of variable vi = y−1/α
i , for

i = 1, . . . , r and exponential integrals. Now, to establish Proposition 3, first note that since

P(NTα(λ) = 1|Tα,1 = s, B1 = b1) = λsb−
1
α

1 e−λs/b
1
α
1 , and P(NTα(λ) = 1) = αλαe−λα

, the
joint density of B1, Tα,1|NTα(λ) = 1 can be expressed as

λ1−α

Γ( 1−α
α )

b−
1
α

1 (1− b1)
1−α

α −1 × e−λs/b1
1/α

eλα
fα(s). (14)

Hence, the conditional density of B1|NTα(λ) = 1 can be expressed as,

λ1−α

Γ( 1−α
α )

b−
1
α

1 (1− b1)
1−α

α −1 × e−λα/b1eλα
. (15)

which corresponds to B[1]
1 (λ)

d
= λα/(γ 1−α

α
+ λα), verifying statement (i) of Proposition 3.

Refs. (14) and (15) show that Tα,1|NTα(λ) = 1, B1 = b1 is f [0]α (s|λb−
1
α

1 ), which leads to

(P�,1)|NTα(λ) = 1, B1 = b1 having distribution P[0]
α (λb−

1
α

1 ). This agrees with statement (ii)
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of Proposition 1, with n = r = 1. Using λα/B1(λ)
d
= γ 1−α

α
+ λα and applying Proposition 2

starting with (P�,1)|NTα(λ) = 1, B1 = b1 subject to (6) concludes the proof of Proposition 3.
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Abstract: The point estimation problems that emerge in Bayesian predictive inference are concerned
with random quantities which depend on both observable and non-observable variables. Intuition
suggests splitting such problems into two phases, the former relying on estimation of the random pa-
rameter of the model, the latter concerning estimation of the original quantity from the distinguished
element of the statistical model obtained by plug-in of the estimated parameter in the place of the
random parameter. This paper discusses both phases within a decision theoretic framework. As a
main result, a non-standard loss function on the space of parameters, given in terms of a Wasserstein
distance, is proposed to carry out the first phase. Finally, the asymptotic efficiency of the entire
procedure is discussed.

Keywords: asymptotic efficiency; bayesian predictive inference; compatibility equations; decision
theory; de Finetti’s representation theorem; exchangeability; Wasserstein distance

MSC: 62A01; 62C10; 62C12; 60F17

1. Introduction

This paper carries on a project—conceived by Eugenio Regazzini some years ago, and
partially developed in collaboration with Donato M. Cifarelli—which aims at proving why
and how some classical, frequentist algorithms from the theory of point estimation can be
justified, under some regularity assumptions, within the Bayesian framework. See [1–4].
This project was inspired, in turn, by the works and the thoughts of Bruno de Finetti about
the foundation of statistical inference, substantially based on the following principles.

1. De Finetti’s vision of statistics is grounded on the irrefutable fact that the Bayesian
standpoint—intended as the use of basic tools of probability theory and, especially,
of conditional distributions—becomes a necessity for those who intend statistical
inference as the utilization of observed data to update their original beliefs about
other quantities of interest, not yet observed. See [5,6].

2. Rigorous notions of point estimation and optimality of an estimator can be achieved
only within a decision-theoretic framework (see, e.g., [7]), at least if we admit all
estimators into competition and disregard distinguished restrictions such as unbiased-
ness or equivariance. In turn, decision theory proves to be genuinely Bayesian, thanks
to a well-known result by Abraham Wald. See [8] [Chapter 4].

3. At least from a mathematical stance, the existence of the prior distribution can be
drawn from various representation theorems which, by pertaining to the more basic
act of modeling incoming information, stand before the problem of point estimation.
The most luminous example is the celebrated de Finetti representation theorem for
exchangeable observations. See [6,9] and, for a predictive approach [10,11].

Indeed, these principles do not force the assessment of a specific prior distribution,
but just lead the statistician to take cognizance that some prior has, in any case, to exist.
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This fact agrees with de Finetti’s indication to keep the concepts of “Bayesian standpoint”
and “Bayesian techniques” as distinguished. See also [12].

Despite their robust logical coherence, orthodox Bayesian solutions to inferential
problems suffer two main drawbacks on the practical, operational side, which may limit
their use. On the one hand, it is rarely the case that a prior distribution is fully specified
due to a lack of prior information, this phenomenon even being amplified by the choice of
complex statistical models (e.g., of nonparametric type). On the other hand, the numerical
tractability of the Bayesian solutions often proves to be a serious hurdle, especially in
the presence of large datasets. For example, it suffices to mention those algorithms from
Bayesian nonparametrics that involve tools from combinatorics (like permutations or
set/integer partitions) having exponential algorithmic complexity. See, e.g., [13]. Finally,
the implicit nature of the notion of Bayesian estimator, although conceptually useful, makes
it hard to employ in practical problems, especially in combination with non-quadratic loss
functions, even if noteworthy progress has been achieved from the numerical side in the
last decade. All these issues still pervade modern statistical literature while, historically,
they have paved the way firstly to the “Fisherian revolution” and then to more recent
techniques such as empirical Bayes and objective Bayes methods. The ultimate result has
been a proliferation of many ad hoc algorithms, often of limited conceptual value, that
provide focused and operational solutions to very specific problems.

Aware of this trend, Eugenio Regazzini conceived his project with the aims of: re-
framing the algorithms of modern statistics—especially those obtained by frequentist
techniques—within the Bayesian theory as summarized in points 1–3 above, showing
whether they can be re-interpreted as good approximations of Bayesian algorithms. The
rationale is that orthodox Bayesian theory could be open to accept even non-Bayesian
solutions (hence, suboptimal ones if seen “through the glass of the prior”) as long as such
solutions prove to be more operational than the Bayesian ones and, above all, asymptoti-
cally almost efficient, in the Bayesian sense. This concept means that, for a fixed prior, the
Bayesian risk function evaluated at the non-Bayesian estimator is approximately equal
to the overall minimum of such risk function (achieved when evaluated at the Bayesian
estimator), the error of approximation going to zero as the sample size increases. Of course,
these goals can be carried out after providing quantitative estimates for the risk function,
as done, for example, in some decision-theoretic work on the empirical Bayes approach
to inference. See, e.g., the seminal work [14]. Indeed, Regazzini’s project has much in
common with the empirical Bayes theory, although the former strictly remains on the
“orthodox Bayesian main way” whilst the latter mixes Bayesian and frequentist techniques.
As to more practical results, an archetype of Regazzini’s line of reasoning can be found
in a previous statement from [15] [Section 5] which proves that the maximum likelihood
estimator (MLE)—obtained in the classical context of n i.i.d. observations, driven by a
regular parametric model—has the same Bayesian efficiency (coinciding with the mean
square error, in this case) as the Bayesian estimator up to O(1/n)-terms, provided that the
prior is smooth enough. Another example can be found in [16] where the authors, while
dealing with species sampling problems, rediscover the so-called Good–Turing estima-
tor for the probability of finding a new species (which is obtained via empirical Bayes
arguments) within the Bayesian nonparametric setting described in [17]. Other examples
are contained in [2,4]. In any case, Regazzini’s project is not only a matter of “rigorously
justifying” a given algorithm, but rather of logically conceiving an estimation problem from
the beginning to the end by quantifying coherent degrees of approximation in terms of the
Bayesian risk or, more generally, in terms of speed of shrinkage of the posterior distribution
with respect to distances on the space of probability measures, these goals being proved
uniformly with respect to an entire class of priors. Hence, this plan of action is conceptually
antipodal to that of (nowadays called) “Bayesian consistency”, i.e., to justify a Bayesian
algorithm from the point of view of classical statistics.
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1.1. Main Contributions and General Strategy

In this paper, we pursue Regazzini’s project by considering some predictive prob-
lems where the quantity Un,m to be estimated depends explicitly on new (hitherto unob-
served) variables Xn+1, . . . , Xn+m, possibly besides the original sample variables X1, . . . , Xn
and an unobservable parameter T. Thus, Un,m = un,m(Xn+1, . . . , Xn+m; X1, . . . , Xn; T).
For simplicity, we confine ourselves to the simplest case in which both (X1, . . . , Xn) and
(Xn+1, . . . , Xn+m) are segments of a whole sequence {Xi}i≥1 of exchangeable X-valued
random variables, while T is a random parameter that makes the Xi’s conditionally i.i.d.
with a common distribution depending on T, in accordance with de Finetti’s representation
theorem. From the statistical point of view, the exchangeability assumption just reveals
a supposed homogeneity between the observable quantities while, from a mathematical
point of view, it simply states that the joint distribution of any k-subset of the Xi’s depends
only on k and not on the specific k-subset, for any k ∈ N. Thus, we are setting our esti-
mation problem within an orthodox Bayesian framework where, independently of the
fact that we are able or not to precisely assess the prior distribution, such a prior has to
exist for mere mathematical reasons. This solid theoretical background provides all the
elements to logically formulate the original predictive estimation problem as the following
decision-theoretic question: find

Ûn,m = ArgminZE[LU(Un,m, Z)] , (1)

where: LU is a suitable loss function on the space U in which Un,m takes its values; Z runs
over the space of all U-valued, σ(X1, . . . , Xn)-measurable random variables; the expectation
is taken with respect to the joint distribution of (X1, . . . , Xn+m) and T. It is remarkable
that the same estimation problem would have been meaningless in classical (Fisherian)
statistics, which can solely consider the estimation of (a function of) the parameter, and not
of random quantities. Now, the solution displayed in (1) depends of course on the prior
and it is the optimal one when seen, in terms of the Bayesian risk, “with the glass of that
prior”. However, the above-mentioned difficulties about the assessment of a specific prior
can diminish the practical (but not the conceptual) value of this solution, in the sense that it
could prove to be non-operational in the case of a lack of prior information. Sometimes,
when the prior is known up to further unknown parameters, another estimation problem
is needed.

Our research is then focused on formalizing a general strategy aimed at producing,
under regularity conditions, alternative estimators U∗n,m which prove to be asymptotically
nearly optimal (as specified above), uniformly with respect to any prior in some class. More
precisely, for any fixed prior in that class, we aim at proving the validity of the asymptotic
expansions (as n→ +∞),

E
[
LU(Un,m, Ûn,m)

]
= R̂0,m +

1
n

R̂1,m + o
(

1
n

)
(2)

E
[
LU(Un,m, U∗n,m)

]
= R∗0,m +

1
n

R∗1,m + o
(

1
n

)
, (3)

along with R̂i,m = R∗i,m for i = 0, 1, where Ûn,m is the same as in (1). This is exactly the
content of Theorem 5.1 and Corollary 5.1 in [15], which deal with the case where: Un,m = T
(estimation of the parameter of the model), so that U coincides with the parameter space
Θ ⊆ R; LU is the quadratic loss function, so that the risk function coincides with the
mean square error; Ûn,m = E[T | X1, . . . , Xn] is the Bayesian estimator with respect to LU;
U∗n,m coincides with the MLE; R̂0,m = R∗0,m = 0 and R̂1,m = R∗1,m =

∫
Θ[I(θ)]

−1π(dθ), I
denoting the Fisher information of the model and π being any prior on Θ with positive
and sufficiently smooth density (with respect to the Lebesgue measure). Moving to truly
predictive problems, the main operational solutions come from the empirical Bayes theory,
which shares Equation (1) with the approach we are going to present. However, the
empirical Bayes theory very soon leaves the “Bayesian main way” by bringing some sort of
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Law of Large Numbers into the game, in order to replace the unknown quantities (usually,
the prior itself). Here, on the contrary, we pursue Regazzini’s project by proposing a new
method that remains on the Bayesian main way. It consists of the following six steps.

Step 1. Reformulate problem (1) into another (orthodox Bayesian) estimation problem
about T, the random parameter of the model. Roughly speaking, start from the following
de Finetti representation:

P[X1 ∈ A1, . . . , Xk ∈ Ak | T = θ] = μ⊗k (A1 × . . .× Ak | θ) :=
k

∏
i=1

μ(Ai | θ) , (4)

valid for all k ∈ N, Borel sets A1, . . . , Ak, θ ∈ Θ, and some probability kernel μ(·|·), which
coincides with the statistical model for the single observation. Then, consider the following
estimation problem: find

T̂n,m = ArgminWE
[
LΘ,(X1,...,Xn)(T, W)

]
, (5)

where: LΘ,(X1,...,Xn) is a suitable loss function on Θ; W runs over the space of all Θ-valued,
σ(X1, . . . , Xn)-measurable random variables; the expectation is taken with respect to the
joint distribution of (X1, . . . , Xn) and T. The explicit definition of LΘ,(X1,...,Xn) is given in
terms of a Wasserstein distance, as follows:

LΘ,(x1,...,xn)(θ, τ) = inf
Γ

∫
U2
LU(u, v)Γ(dudv), (6)

where Γ runs over the Fréchet class of all probability measures on U2 with marginals
γθ,(x1,...,xn) and γτ,(x1,...,xn), respectively, and γθ,(x1,...,xn) stands for the pull-back measure
μ⊗m(·|θ) ◦ un,m(·; x1, . . . , xn; θ)−1 on U.

Step 2. After getting the estimator T̂n,m from (5), consider estimators U∗n,m that satisfy
the following approximated version of problem (1): find

U∗n,m = ArgminZ

∫
Xm
LU
(

un,m(y1, . . . , ym; X1, . . . , Xn; T̂n,m), Z
)

μ⊗m(dy1 . . . dym | T̂n,m), (7)

where Z runs over the space of all U-valued, σ(X1, . . . , Xn)-measurable random variables.
Step 3. For the estimators Ûn,m and U∗n,m that solve (1) and (7) respectively, prove

that (2) and (3) hold along with R̂i,m = R∗i,m for i = 0, 1. This entails the asymptotic almost
efficiency of U∗n,m, which it is still a prior-dependent estimator. In any case, this step is
crucial to show that the loss function LΘ,(x1,...,xn) given in (6) is “Bayesianly well-conceived”,
that is, in harmony with the original aim displayed in (1).

Step 4. Identities (2) and (3) provides conditions on the statistical model μ(·|·) that
possibly allows the existence of some prior-free estimator T̃n,m of T which turns out to be
asymptotically almost efficient, with respect to the same risk function as that displayed on
the right-hand side of (5). More precisely, this fact consists of proving the validity of the
following identities (as n→ +∞)

E
[
LΘ,(X1,...,Xn)(T, T̂n,m)

]
= ρ̂0,m +

1
n

ρ̂1,m + o
(

1
n

)
(8)

E
[
LΘ,(X1,...,Xn)(T, T̃n,m)

]
= ρ̃0,m +

1
n

ρ̃1,m + o
(

1
n

)
, (9)

along with ρ̂i,m = ρ̃i,m for i = 0, 1, where T̂n,m is the same as in (5), for all prior distributions
in a given class.

Step 5. After getting estimators T̃n,m as in Step 4, consider the prior-free estimators
Ũn,m satisfying the analogous minimization problem as in (7), with T̂n,m replaced by T̃n,m.
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Step 6. For any estimator Ũn,m found as in Step 5, prove the validity of the following
identity (as n→ +∞):

E
[
LU(Un,m, Ũn,m)

]
= R̃0,m +

1
n

R̃1,m + o
(

1
n

)
, (10)

along with R̂i,m = R̃i,m for i = 0, 1, where the R̂i,m’s are the same as in (2), for all prior
distributions in the same class as specified in Step 4. This last step shows why and how
the frequentist (i.e., prior-free) estimator Ũn,m can be used, within the orthodox Bayesian
framework, as a good approximation of the Bayesian estimator Ûn,m. This is particularly
remarkable at least in two cases that do not exclude each other: when the estimator T̃n,m
obtained from Step 4 is much simpler and numerically manageable than T̂n,m; when prior
information is sufficient to characterize only a class of priors, but not a specific element of it.

This plan of action obeys the following principles:

(A) The loss functionLΘ,(x1,...,xn) on Θ is harmoniously coordinated with the original choice
of the loss function LU on U. This principle is much aligned with de Finetti’s thought
(see [18]), since it remarks on the more concrete nature of the space U compared with
the space Θ which is, in principle, only a set of labels. Hence, it is much more reasonable
to firstly metrize the space U and then the space Θ accordingly (as in (6)), rather than
directly metrize Θ—even without taking account of the original predictive aim.

(B) The Bayesian risk function associated with both U∗n,m and Ũn,m can be bounded from
above by the sum of two quantities: the former taking account of the error in estimating
T, the latter reflecting the fact that we are estimating both U∗n,m and Ũn,m from an
“estimated distribution”.

The former principle, whose formalization constitutes the main novelty of this work, is
concerned with the geometrical structure of the space of the parameters Θ. This is what we
call a relativistic principle in point estimation theory: the goal of estimating a random quan-
tity that depends on the observations (possibly besides the parameter) yields a modification
of the geometry of Θ, to be now thought of as a curved space according to a non-trivial
geometry. Of course, this modified geometry entails a coordinated notion of mean square
error, now referred to the Riemannian geodesic distance. The term relativistic principle just
hints at the original main principle of General Relativity Theory according to which the
presence of a massive body modifies the geometry of the physical surrounding space, by
means of the well-known Einstein tensor equations. These equations formalize a sort of
compatibility between the physical and the geometric structures of the space. Thus, the
identities (43) and (44), as stated in Section 3 to properly characterize the (Riemannian) met-
ric on Θ, we will call compatibility equations. Actually, the idea of metrizing the parameter
space Θ in a non standard way is well-known since the pioneering paper [19] by Radhakr-
ishna Rao, and has received so much attention in the statistical literature to give birth to
a fertile branch called Information Geometry. See, e.g., [20]. In particular, the concepts of
efficiency, unbiasedness, Cramér–Rao lower bounds, Rao–Blackwell and Lehmann–Scheffé
theorems are by far best-understood in this non-standard (i.e., non-Euclidean) setting.
See [21]. In any case, to the best of our knowledge, this is the first work which connects the
use of a non-standard geometric setting on Θ with predictive estimation problems—even
if some hints can be drawn from [22]. In our opinion, the lack of awareness about the
aforesaid relativistic principle, combined with an abuse of the quadratic loss function on
Θ, has produced a lot of actually sub-efficient algorithms, most of which focused on the
estimation of certain probabilities, or of nonparametric objects. In these cases, the efficiency
of the ensuing estimators is created artificially through a misuse of the quadratic loss, and
it proves to be drastically downsized whenever these estimators are evaluated by means of
other, more concrete loss functions which take account (as in (6)) of the natural geometry
of the spaces of really observable quantities. To get an idea of this phenomenon, see the
discussion about Robbins’ estimators in Section 4.4 below.
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1.2. Organization of the Paper

We conclude the introduction by summarizing the main results of the paper, which
are threefold. The first block of results, including Theorem 1, Proposition 1 and Lemma 1
in Section 2.2, concerns some refinement of de Finetti’s Law of Large Numbers for the
log-likelihood process. The second block of theoretical results, developed in Section 3,
contains:

(i) Proposition 2, which shows how to bound from above the Bayesian risk of any
estimator of Un,m by using the Wasserstein distance;

(ii) Proposition 3, which explains how to use the Laplace method of the approximation of
integrals to get asymptotic expansions of the Bayesian risk functions;

(iii) the formulation of the compatibility Equations (43) and (44);
(iv) the proof of the “asymptotic almost efficiency” of the estimator U∗n,m obtained in Step

2, via verification of identities (2) and (3);
(v) the successful completion of Step 6, that is, the proof of the “asymptotic almost

efficiency” of estimators Ũn,m obtained in Step 5, via verification of identity (10).

The last block of results, contained in Section 4, consists of explicit verifications of
the compatibility equations for some simple statistical models (Sections 4.1–4.3), and
also the adaptation of our plan of action to the same Poisson-mixture model used by
Herbert Robbins in [23] to illustrate his empirical Bayes approach to predictive inference
(Section 4.4). Finally, all the proofs of the theoretical results are deferred to Section 5, while
some conclusions and future developments are hinted at in Section 6.

2. Technical Preliminaries

We begin by rigorously fixing the mathematical setting, split into two subsections. The
former will contain a very general framework which will serve to give a precise meaning
to the questions presented in the Introduction and to state in full generality one of the
main results, that is, Proposition 2 in Section 3. In fact, this statement will include some
inequalities that, by carrying out the goal described in point (B) of the Introduction will
constitute the starting point for all the results presented in Section 3. The second subsection
will deal with a simplification of the original setting—essentially based on additional
regularity conditions for the spaces U and Θ and for the statistical model μ(·|·)—aimed at
introducing the novel compatibility equations without too many technicalities.

2.1. The General Framework

Let (X, X ) and (Θ, T ) be standard Borel spaces called sample space (for any single
observation) and parameter space, respectively. Consider a sequence {Xi}i≥1 of X-valued
random variables (r.v.’s, from now on) along with another Θ-valued r.v. T, all the Xi’s and T
being defined on a suitable probability space (Ω, F ,P). Assume that (4) holds for all k ∈ N,
A1, . . . , Ak ∈ X and θ ∈ Θ with some given probability kernel μ(·|·) : X ×Θ → [0, 1],
called statistical model (for any single observation). The validity of (4) entails that the Xi’s
are exchangeable and that

P[X1 ∈ A1, . . . , Xk ∈ Ak] =
∫

Θ
μ⊗k (A1 × . . .× Ak | θ)π(dθ) =: αk(A1 × . . .× Ak) (11)

holds for all k ∈ N and A1, . . . , Ak ∈ X with some given probability measure (p.m.) π on
(Θ, T ) called prior distribution. Identity (11) uniquely characterizes the p.m. αk on (Xk, X k)
for any k ∈ N, this p.m. being called law of k-observations, where Xk (X k, respectively)
denotes the k-fold cartesian product (σ-algebra product, respectively) of k copies of X (X ,
respectively). Moreover, let

πk(B | x1, . . . , xk) := P[T ∈ B | X1 = x1, . . . , Xk = xk]

βk(A | x1, . . . , xk) := P[Xk+1 ∈ A | X1 = x1, . . . , Xk = xk]
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be two probability kernels, with πk(·|·) : T ×Xk → [0, 1] and βk(·|·) : X ×Xk → [0, 1],
defined as respective solutions of the following disintegration problems

P[X1 ∈ A1, . . . , Xk ∈ Ak, T ∈ B] =
∫

A1×...×Ak

πk(B | x1, . . . , xk)αk(dx1 . . . dxk)

P[X1 ∈ A1, . . . , Xk ∈ Ak, Xk+1 ∈ A] =
∫

A1×...×Ak

βk(A | x1, . . . , xk)αk(dx1 . . . dxk)

for any k ∈ N, A1, . . . , Ak, A ∈ X and B ∈ T . The probability kernels πk(·|·) and βk(·|·)
are called posterior distribution and predictive distribution, respectively.

Let (U, dU) be a Polish metric space and, for fixed n, m ∈ N, let un,m : Xm×Xn×Θ→ U
be a measurable map. Let Un,m := un,m(Xn+1, . . . , Xn+m; X1, . . . , Xn; T) be the random
quantity to be estimated with respect to the loss function LU(u, v) := d2

U(u, v). Now, recall
the notion of barycenter (also known as Fréchet mean) of a given p.m.. Let (S, dS) be a Polish
metric space, endowed with its Borel σ-algebra B(S). Given a p.m. μ on (S, B(S)), define

BaryS[μ; dS] := Argminy∈S

∫
S

d2
S(x, y)μ(dx)

provided that μ has finite second moment (μ ∈ P2(S, dS), in symbols) and that at least
one minimum point exists. See [24–26] for results on existence, uniqueness and some
characterizations of barycenters. Then, put

ρn,m(C | x1, . . . , xn) := P[Un,m ∈ C | X1 = x1, . . . , Xn = xn],

meaning that ρn,m(·|·) : B(U)×Xn → [0, 1] is a probability kernel that solves the disinte-
gration problem

P[X1 ∈ A1, . . . , Xn ∈ An, Un,m ∈ C] =
∫

A1×...×An
ρn,m(C | x1, . . . , xn)αk(dx1 . . . dxk)

for any A1, . . . , An ∈ X and C ∈ B(U). If E[d2
U(Un,m, u0)] < +∞ for some u0 ∈ U and

BaryU[ρn,m(· | x1, . . . , xn); dU] exists uniquely for αn-almost all (x1, . . . , xn), then

Ûn,m = BaryU[ρn,m(· | X1, . . . , Xn); dU] (12)

solves the minimization problem (1). To give an analogous formalization to the minimiza-
tion problem (7), define

γθ,(x1,...,xn)(C) := μ⊗m
(
{(y1, . . . , ym) ∈ Xm | un,m(y1, . . . , ym; x1, . . . , xn; θ) ∈ C}

∣∣∣ θ
)

for any θ ∈ Θ, (x1, . . . , xn) ∈ Xn and C ∈ B(U). Again, if γθ,(x1,...,xn) ∈ P2(U, dU) and
BaryU[γθ,(x1,...,xn)(·); dU] exists uniquely for any θ ∈ Θ and αn-almost all (x1, . . . , xn), then

U∗n,m = BaryU[γT̂n,m ,(X1,...,Xn)
; dU] (13)

solves the minimization problem (7). By the way, notice that a combination of de Finetti’s
representation theorem with basic properties of conditional distributions entails that

ρn,m(C | x1, . . . , xn) =
∫

Θ
γθ,(x1,...,xn)(C)πn(dθ | x1, . . . , xn) (14)

for αn-almost all (x1, . . . , xn). It remains to formalize the minimization problem (5). If
γθ,(x1,...,xn), γτ,(x1,...,xn) ∈ P2(U, dU), then the loss function in (6) satisfies

LΘ,(x1,...,xn)(θ, τ) =W2
U

(
γθ,(x1,...,xn); γτ,(x1,...,xn)

)
,
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where WU denotes the 2-Wasserstein distance on P2(U, dU). See [27] [Chapters 6–7]
for more information on the Wasserstein distance. Therefore, if πn(· | x1, . . . , xn) ∈
P2(Θ,L1/2

Θ,(x1,...,xn)
) and BaryΘ[πn(· | x1, . . . , xn);L1/2

Θ,(x1,...,xn)
] exists uniquely for αn-almost

all (x1, . . . , xn), then

T̂n,m = BaryΘ

[
πn(· | X1, . . . , Xn);L1/2

Θ,(X1,...,Xn)

]
(15)

solves the minimization problem (5).
To conclude, it remains to formalize the definition of various Bayesian risk func-

tions, that will appear in the formulation of the main results. For any estimator U†
n,m =

u†
n,m(X1, . . . , Xn) of Un,m, obtained with a measurable u†

n,m : Xn → U, put

RU[U†
n,m] := E

[
LU(Un,m, U†

n,m)
]

=
∫

Θ

∫
Xn+m

LU
(

un,m(y; x; θ), u†
n,m(x)

)
μ⊗n+m(dydx | θ)π(dθ)

=
∫
Xn

∫
Θ

∫
Xm
LU
(

un,m(y; x; θ), u†
n,m(x)

)
μ⊗m(dy | θ)πn(dθ | x)αn(dx) (16)

provided that the integrals are finite. Here and throughout, the bold symbols x, y are just
short-hands to denote the vectors (x1, . . . , xn) and (y1, . . . , ym), respectively. Analogously, for
any estimator T†

n,m = t†
n,m(X1, . . . , Xn) of T, obtained with a measurable t†

n,m : Xn → Θ, put

RΘ[T†
n,m] := E

[
LΘ,(X1,...,Xn)(T, T†

n,m)
]

=
∫

Θ

∫
Xn
LΘ,x

(
θ, t†

n,m(x)
)

μ⊗n(dx | θ)π(dθ)

=
∫
Xn

∫
Θ
LΘ,x

(
θ, t†

n,m(x)
)

πn(dθ | x)αn(dx) (17)

provided that the integrals are finite.

2.2. The Simplified Framework

Start by assuming that U = R and LU(u, v) = |u− v|2. Then, restrict the attention to
those predictive problems in which the quantity to be estimated depends only on the new
observations Xn+1, . . . , Xn+m and on the random parameter T, but not on the observable
variables X1, . . . , Xn. This restriction is actually non-conceptual, and it is made only to
diminish the mathematical complexity of the ensuing asymptotic expansions (valid as
n → +∞), having this way fewer sources of dependence from the variable n. Thus,
the quantity to be estimated has the form um(Xn+1, . . . , Xn+m; T) for some measurable
um : Xm ×Θ→ R. From now on, it will be assumed that

E
[
(um(Xn+1, . . . , Xn+m; T))2

]
< +∞ . (18)

Whence, for the Bayesian estimator Ûn,m in (12) existence and uniqueness are well-
known: its explicit form is given by Ûn,m = ûn,m(X1, . . . , Xn) with

ûn,m(x1, . . . , xn) = E[um(Xn+1, . . . , Xn+m; T) | X1 = x1, . . . , Xn = xn]

=
∫

Θ

∫
Xm

um(y1, . . . , ym; θ)μ⊗m(dy1 . . . dym | θ)πn(dθ | x1, . . . , xn),
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which is finite for αn-almost all (x1, . . . , xn). The risk function RU evaluated at Ûn,m achieves
its overall minimum value and, from (16), it takes the form:

RU[Ûn,m] =
∫
Xn

{∫
Θ
v(θ)πn(dθ | x) +

∫
Θ
[m(θ)]2πn(dθ | x)

−
(∫

Θ
m(θ)πn(dθ | x)

)2
}

αn(dx), (19)

with

m(θ) :=
∫
Xm

um(y1, . . . , ym; θ)μ⊗m(dy1 . . . dym | θ)

v(θ) :=
∫
Xm

[um(y1, . . . , ym; θ)−m(θ)]2μ⊗m(dy1 . . . dym | θ)

thanks to the well-known “Law of Total Variance”. See, e.g., [28] [Problem 34.10(b)]. As
to the issue of estimating T, the first remarkable simplification induced by the above
assumptions is that the p.m. γθ,(x1,...,xn) is independent of (x1, . . . , xn). Whence,

Δ(θ, τ) := [LΘ,(x1,...,xn)(θ, τ)]1/2 =WU

(
γθ,(x1,...,xn); γτ,(x1,...,xn)

)
, (20)

is, in turn, independent of (x1, . . . , xn) and defines a distance on Θ provided that

γθ,(x1,...,xn) = γτ,(x1,...,xn)

entails θ = τ. Thus, for any estimator T†
n,m = t†

n,m(X1, . . . , Xn) of T, obtained with a
measurable t†

n,m : Xn → Θ, (17) becomes

RΘ[T†
n,m] =

∫
Xn

∫
Θ
[Δ(θ, t†

n,m(x))]
2πn(dθ | x)αn(dx) . (21)

The last simplifications concern the basic object of the inference, i.e., the statistical
model μ(·|·) and the prior π. First, assume that Θ = (a, b) ⊆ R and that π has a density
p (with respect to the Lebesgue measure). Even if this one-dimensionality assumption
can seem a drastic simplification, it is again of a non-conceptual nature, and it is made
to diminish the mathematical complexity of the ensuing statements. In fact, one of the
goals of this work is to provide a Riamannian-like characterization of the metric space
(Θ, Δ), and this is particularly simple in such a one-dimensional setting. The following
arguments should be quite easily reproduced at least in a finite-dimensional setting (i.e.,
when Θ ⊆ Rd) by using basic tools of Riemannian geometry, such as local expansions of
the geodesic distance. See, e.g., [29] [Chapter 5]. As to the statistical model μ(·|·), consider
the following:

Assumption 1. μ(·|·) is dominated by some σ-finite measure χ on (X, X ) with a (distinguished
version of the) density f (·|θ) that satisfies:

(i) f (x| θ) > 0 for all x ∈ X and θ ∈ Θ;
(ii) for any fixed x ∈ X, θ 
→ f (x| θ) belongs to C4(Θ);
(iii) there exists a separable Hilbert space H for which log f (x| ·) ∈ H for all x ∈ X, and such

that, for any open Θ′ whose closure is compact in Θ (Θ′ � Θ, in symbols), the restriction
operatorsRΘ′ : h 
→ h|Θ′ are continuous fromH to C0(Θ′);

(iv)
∫
X | log f (x| θ)|2μ(dx | θ) < +∞ for π-a.e. θ, and the Kullback-Leibler divergence

K(t ‖ θ) :=
∫
X

(
log f (x| t)
log f (x| θ)

)
μ(dx | t) (22)

is well-defined.
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A canonical choice for the Hilbert space H is in the form of a weighted Sobolev space
Hr(Θ; π) for some r ≥ 1. See, e.g., [30,31] for definition and further properties of weighted
Sobolev spaces, such as embedding theorems. By the way, it is worth remarking that such
assumptions are made to easily state the following results. It is plausible they could be
relaxed in future works.

In this regularity setting, introduce the sequence {Hn}n≥1, where Hn : Ω → H
represents the (normalized) log-likelihood process, that is

Hn :=
1
n
�n(·; X1, . . . , Xn) :=

1
n

n

∑
i=1

log f (Xi| ·) =
∫
X

log f (ξ| ·)e(X1,...,Xn)
n (dξ) (23)

the symbol e(X1,...,Xn)
n standing for the empirical measure based on (X1, . . . , Xn), i.e.,

e
(X1,...,Xn)
n :=

1
n

n

∑
i=1

δXi .

For completeness, any notation like �n(·; X1, . . . , Xn) is just a short-hand to denote the
entire function θ 
→ �n(θ; X1, . . . , Xn). First of all, observe that Hn is a sufficient statistics in
both classical and Bayesian sense. See [11]. Then, a version of de Finetti’s Law of Large
Numbers (see [9,32]) for the log-likelihood process can be stated as follows:

Theorem 1. Under Assumption 1, define the followingH-valued r.v.

H :=
∫
X

log f (z| ·)μ(dz | T) = −K(T ‖ ·) +
∫
X

log f (z| T)μ(dz | T)

along with νn(D) := P[Hn ∈ D] and ν(D) := P[H ∈ D], for any D ∈ B(H). Then, it
holds that

Hn
L2
−→ H (24)

which, in turn, yields that νn ⇒ ν, where⇒ denotes weak convergence of p.m.’s on (H, B(H)).

Then, to carry out the objectives mentioned in the Introduction, a quantitative refine-
ment of the thesis νn ⇒ ν is needed, as stated in the following proposition.

Proposition 1. Let C2
b(H) denote the space of bounded, C2 functionals onH. Besides Assumption 1,

suppose there exists a function Γ(·; μ, π) : H → R such that

1
2
E
[
Hess[Ψ]H ⊗CovT [log f (Xi| ·)]

]
= E[Ψ(H)Γ(H; μ, π)] (25)

holds for all functional Ψ ∈ C2
b(H), where Hess[Ψ]h denotes the Hessian of Ψ at h ∈ H, ⊗ is the

tensor product between quadratic forms (operators) and Covt[log f (Xi| ·)] stands for the covariance
operator of theH-valued r.v.’s log f (Xi| ·) with respect to the p.m. μ(· | t). Then,∫

H
Ψ(h)νn(dh) =

∫
H

Ψ(h)ν(dh) +
1
n

∫
H

Ψ(h)Γ(h; μ, π)ν(dh) + o
(

1
n

)
(26)

holds as n→ +∞ for all continuous Ψ : H → R for which the above integrals are convergent.

For further information on second-order differentiability in Hilbert/Banach spaces,
see [33,34]. By the way, the above identity (26) is a quantitative strengthening of de Finetti’s
theorem similar to the identities stated in Theorem 1.1 of [8] [Chapter 6], valid in a finite-
dimensional setting. Later on, we will resort to uniform versions of (26), meaning that the
o( 1

n )-term is uniformly bounded with respect to h. However, such a kind of results—much
more in the spirit of the Central Limit Theorem—are very difficult to prove and, to the best
of the author’s knowledge, there are no known results in infinite-dimension. Examples in
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finite-dimensional settings are given in [35,36], which prove Berry–Esseen like inequalities
in the very specific context of Bernoulli r.v.s. See also [37]. Anyway, since one merit of [35]
is to show how to use the classical Central Limit Theorem to prove an expansion as in (26),
one could hope to follow that very same line of reasoning by resorting to some version of
the central limit theorem for Banach spaces, such as that stated in [38]. Research on this
is ongoing.

Now, to make the above Proposition 1 a bit more concrete, it is worth noticing the case
in which f (·|θ) is in exponential form. In fact, in this case, the identity (26) can be rewritten
in a simpler form, condensed in the following statement.

Lemma 1. Besides Assumption 1, suppose that f (x | θ) = exp{θS(x) − M(θ)}, with some
measurable S : X → R and M(θ) := log

(∫
X eθS(x)χ(dx)

)
∈ R for all θ ∈ Θ. Then, (26)

holds with
ν(D) := P

[(
θ 
→ θM′(T)−M(θ)

)
∈ D

]
and

Γ
(
(θ 
→ θM′(t)−M(θ)); μ, π

)
=

M′′(t)
p(t)

d2

dy2

[
M′′(V(y))p(V(y))V′(y)

]∣∣y=M′(t)
,

where V(M′(t)) = t for any t ∈ Θ.

To conclude this subsection, consider the expressions (19)–(21) and notice that they de-
pend explicitly on the posterior distribution πn(· | x1, . . . , xn). Now, thanks to Assumption 1,
the mapping t 
→ δt can be seen as defined on Θ and taking values in the dual space H∗,
with Riesz representative ht ∈ H. More formally, for any h ∈ H and t ∈ Θ, it holds that
h(t) = H〈h, δt〉H∗ = 〈h, ht〉, where 〈·, ·〉 stands for the scalar product onH while H〈·, ·〉H∗
denotes the pairing betweenH andH∗. In this notation, the posterior distribution can be
rewritten in exponential form as:

πn(B | X1, . . . , Xn) =

∫
B exp{n〈Hn, hθ〉}π(dθ)∫
Θ exp{n〈Hn, hθ〉}π(dθ)

= π∗n(B | Hn) (27)

for any B ∈ T , the probability kernel π∗n(·|·) : T ×H → [0, 1] being defined by

π∗n(B | h) :=

∫
B exp{n〈h, hθ〉}π(dθ)∫
Θ exp{n〈h, hθ〉}π(dθ)

. (28)

This is particularly interesting because it shows that the posterior distribution can
always be thought of, in the presence of a dominated statistical model characterized by
strictly positive, smooth densities, as an element of an exponential family, even if the
original statistical model μ(·|·) is not in exponential form. By utilizing the kernel π∗n in
combination with the p.m. νn, the following re-writings of (19)–(21) are valid:

RU[Ûn,m] =
∫
H

{∫
Θ
v(θ)π∗n(dθ | h) +

∫
Θ
[m(θ)]2π∗n(dθ | h)

−
(∫

Θ
m(θ)π∗n(dθ | h)

)2
}

νn(dh) (29)

RΘ[T†
n,m] =

∫
H

∫
Θ
[Δ(θ,T†

n,m(h))]
2π∗n(dθ | h)νn(dh), (30)

where the mapping T†
n,m is such that T†

n,m(Hn) = t†
n,m(X1, . . . , Xn) holds P-a.s.
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3. Main Results

The first result establishes a relationship between the Bayesian risk functions RU and
RΘ defined in (16) and (17), respectively. Due to the central role of this relationship, it will
be formulated within the general framework described in Section 2.1.

Proposition 2. Consider any estimator U†
n,m = u†

n,m(X1, . . . , Xn) of Un,m and any estimator
T†

n,m = t†
n,m(X1, . . . , Xn) of T such that E[d2

U(U
†
n,m, u0)] < +∞ holds for some u0 ∈ U along

with E
[
LΘ,(X1,...,Xn)(T

†
n,m, t0)

]
< +∞ for some t0 ∈ Θ. Then, it holds

RU[U†
n,m] ≤ RΘ[T†

n,m] +E

[∫
U

d2
U(U

†
n,m, u)γT†

n,m ,(X1,...,Xn)
(du)

]
+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T†

n,m)

(∫
U

d2
U(U

†
n,m, u)γT†

n,m ,(X1,...,Xn)
(du)

)1/2
]

. (31)

In particular, if the Bayesian risk function RΘ is optimized by choosing T†
n,m = T̂n,m, where

T̂n,m is as in (15), and U†
n,m is chosen equal to U∗n,m, where U∗n,m is as in (13), then (31) becomes

RU[U∗n,m] ≤ RΘ[T̂n,m] +E

[∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]

= inf
T†

n,m

RΘ[T†
n,m] +E

[
inf

U†
n,m

∫
U

d2
U(U

†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)

]

+ 2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]
. (32)

As an immediate remark, notice that the last member of (32) is obtained by first
optimizing the risk RΘ with respect to the choice of T†

n,m and then, after getting T̂n,m, the
term E

[ ∫
U d2

U(U
†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

is optimized with respect to the choice of U†
n,m.

Of course, it can be argued about the convenience of this procedure—and it is actually
due—even if, in most problems, it seems that the strategy proposed in Proposition 2 proves
indeed to be the simplest and the most feasible one, above all if computational issues are
taken into account. In fact, the absolute best theoretical strategy—consisting of optimizing
the right-hand side of (31) jointly with respect to the choice of (U†

n,m, T†
n,m)—turns out to be

very often too complex and onerous to carry out. Therefore, it seems reasonable to quantify,
at least approximately, how far the strategy of Proposition 2 is from absolute optimality, in
terms of efficiency. Finally, the additional term

2E

[
L1/2

Θ,(X1,...,Xn)
(T, T̂n,m)

(∫
U

d2
U(U

∗
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
)1/2

]
(33)

will be reconsidered in next statement, within the simplified setting of Section 2.2. Indeed,
by arguing asymptotically, it will be shown that it is essentially negligible, proving in this
way a sort of “Pythagorean inequality”.

Henceforth, to make the above remark effective, we will formulate the subsequent
results within the simplified setting introduced in Section 2.2. Indeed, Steps 1–3 mentioned
in the Introduction are worthy of being reconsidered in light of Proposition 2. On the one
hand, Steps 1 and 2 boil down to checking the existence and uniqueness of the barycenters
appearing in (15) and (13), for instance by using the results contained in [24–26]. On the
other hand, Step 3 hinges on the validity of (2) and (3), which are somewhat related to
inequality (32). More precisely, (2) will be proved directly by resorting to identity (29),
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while (3) will be obtained by estimating the right-hand side of (32). Here is a precise
statement.

Proposition 3. Besides Assumptions 1 and (18), suppose that p > 0 and p ∈ C1(Θ), m, v ∈
C2(Θ), Δ2 ∈ C2(Θ2), and κt is any element of H ∩ C3(Θ) with a unique minimum point at
t ∈ Θ. Then, it holds

∫
Θ

{
v(θ) + [m(θ)]2

}
π∗n(dθ | − κt)−

(∫
Θ
m(θ)π∗n(dθ | − κt)

)2

= v(t) +
1

nκ
′′
t (t)

{
[m
′
(t)]2 +

1
2
v
′′
(t) + v

′
(t)

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
+ o
(

1
n

)
(34)∫

Θ
Δ2(θ, τ)π∗n(dθ | − κt)

= Δ2(t, τ) +
1

nκ
′′
t (t)

{
1
2

∂2

∂θ2 Δ2(θ, τ)∣∣θ=t
+

∂

∂θ
Δ2(θ, τ)∣∣θ=t

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
+ o
(

1
n

)
(35)

as n→ +∞, for any τ ∈ Θ.

Here, it is worth noticing that the asymptotic expansions derived in the above propo-
sition are obtained by means of the Laplace method, as first proposed in [39]. See
also [40] [Chapter 20]. At this stage, we face the problem of optimizing the left-hand side
of (35) with respect to τ. Since the explicit expression of Δ2(t, τ) will be hardly known in
closed form, a reasonable strategy considers, for fixed t ∈ Θ, the optimization of the right-
hand side of (35) with respect to τ, disregarding the remainder term o(1/n). If Δ2 ∈ C3(Θ2),
this attempt leads to considering the equation

∂

∂τ

[
Δ2(t, τ) +

1
nκ
′′
t (t)

{
1
2

∂2

∂θ2 Δ2(θ, τ)∣∣θ=t
+

∂

∂θ
Δ2(θ, τ)∣∣θ=t

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}]
= 0 (36)

and, since
∂

∂τ
Δ2(t, τ)∣∣τ=t

= 0 , (37)

we have that any solution of (36) is of the form τ̂n = t + εn, with some εn that goes to zero
as n→ +∞. For completeness, the validity of (37) could be obtained by using the explicit
expression of the Wasserstein distance due to Dall’Aglio. See [41].

If Δ2 ∈ C4(Θ2), we can plug the expression of τ̂n into (35), and expand further the
right-hand side. Exploiting that

Δ2(t, τ̂n) =
1
2

∂2

∂τ2 Δ2(t, τ)∣∣τ=t
· ε2

n + o(ε2
n)

∂

∂t
Δ2(t, τ̂n) =

∂

∂τ

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t
· εn +

1
2

∂2

∂τ2

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t
· ε2

n + o(ε2
n)

∂2

∂t2 Δ2(t, τ̂n) =
∂2

∂t2 Δ2(t, τ)∣∣τ=t
+

∂

∂τ

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t
· εn

+
1
2

∂2

∂τ2

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t
· ε2

n + o(ε2
n),
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we get ∫
Θ

Δ2(θ, τ̂n)π
∗
n(dθ | − κt)

=
1
2

∂2

∂τ2 Δ2(t, τ)∣∣τ=t
· ε2

n +
1

nκ
′′
t (t)

{
1
2

∂2

∂t2 Δ2(t, τ)∣∣τ=t
+

1
2

∂

∂τ

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t
· εn

+
1
4

∂2

∂τ2

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t
· ε2

n +

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂

∂τ

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t
· εn

+
1
2

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂2

∂τ2

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t
· ε2

n

}
+ o(ε2

n) + o
(

1
n

)
. (38)

The right-hand side of this expression has the form

a · ε2
n +

1
n

[
A · ε2

n + B · εn + C
]
+ o(ε2

n) + o
(

1
n

)
,

so that the choice

εn = − B
2na

(
1 +

A
na

)
+ o
(

1
n2

)
= − B

2na
+ o
(

1
n

)
optimizes its expression. Whence,

τ̂n = t− 1
nκ
′′
t (t)

(
∂2

∂τ2 Δ2(t, τ)∣∣τ=t

)−1

·
{

1
2

∂

∂τ

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t

+

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]
· ∂

∂τ

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t

}
+ o
(

1
n

)
(39)

and consequently

∫
Θ

Δ2(θ, τ̂n)π
∗
n(dθ | − κt) =

1
2nκ

′′
t (t)

∂2

∂t2 Δ2(t, τ)∣∣τ=t
+ o
(

1
n

)
. (40)

A first consequence of these computations is that the (Bayesian) estimator T̂n,m in (15)
has the same form as (39) with t and κt replaced by the MLE, denoted by θ̂n, and −Hn,
respectively. Of course, this fact has some relevance only in the case that θ̂n exists and is
unique. Moreover, coming back to (32), it is worth noticing that

inf
U†

n,m

∫
U

∣∣U†
n,m − u

∣∣2γτ̂n(du) = v(τ̂n) = v(t) + v
′
(t)εn + o

(
1
n

)
, (41)

where we have dropped the dependence on (X1, . . . , Xn) in the expression of γτ̂n , in agree-
ment with the simplified setting of Section 2.2 we are following. The last preliminary remark
is about the additional term (33) that appears in the last member of (32). In fact, exploiting
from the beginning that U = R and LU(u, v) = |u− v|2, we find that it reduces to

2E
[ ∫

Θ

∫
Xm

(
um(y, θ)− um(y, T̂n,m)

)(
um(y, T̂n,m)−m(T̂n,m)

)
×

× μ⊗m(dy | θ)πn(dθ | X1, . . . , Xn)
]

(42)

by which we notice that it also involves “covariance terms”. The way is now paved to state
the following
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Theorem 2. Besides Assumptions 1 and (18), suppose that m, v ∈ C2(Θ) and Δ2 ∈ C4(Θ2).
Then, the identities

∂2

∂τ2 Δ2(t, τ)∣∣τ=t
= − ∂

∂τ

[
∂

∂t
Δ2(t, τ)

]∣∣τ=t
(43)

1
2
v
′′
(t) + [m

′
(t)]2 =

1
2

∂2

∂t2 Δ2(t, τ)∣∣τ=t

− 1
2

(
∂2

∂τ2 Δ2(t, τ)∣∣τ=t

)−1
∂

∂τ

[
∂2

∂t2 Δ2(t, τ)

]∣∣τ=t
v
′
(t) (44)

entail that ∫
Θ

{
v(θ) + [m(θ)]2

}
π∗n(dθ | − κt)−

(∫
Θ
m(θ)π∗n(dθ | − κt)

)2

=
∫

Θ
Δ2(θ, τ̂n)π

∗
n(dθ | − κt) + v(t) + v

′
(t)εn + o

(
1
n

)
(45)

for any t ∈ Θ, any κt inH∩C3(Θ) with a unique minimum point at t ∈ Θ, and any p > 0 with
p ∈ C1(Θ), provided that the term in (42) is of o( 1

n )-type. Thus, if either

(A1) (26) holds uniformly with respect to some class F of continuous functionals Ψ : H → R, in
the sense that

sup
Ψ∈F

∣∣∣∣∫H Ψ(h)νn(dh) =
∫
H

Ψ(h)ν(dh) +
1
n

∫
H

Ψ(h)Γ(h; μ, π)ν(dh)
∣∣∣∣ = o

(
1
n

)

(A2) both the functionals h 
→
∫

Θ{v(θ) + [m(θ)]2}π∗n(dθ | h) −
(∫

Θ m(θ)π∗n(dθ | h)
)2 and

h 
→ infT†
n,m

∫
Θ[Δ(θ,T†

n,m(h))]2π∗n(dθ | h) belong to F, for all n ∈ N

or

(B1) (34) and (40) hold uniformly for all κt belonging to a given subset D ofH
(B2) νn(D) = 1 for all n ∈ N

then (2)–(3) are in force with

R̂0,m = R∗0,m =
∫

Θ
v(t)π(dt) (46)

R̂1,m = R∗1,m =
∫

Θ

1
κ
′′
t (t)

{
[m
′
(t)]2 +

1
2
v
′′
(t) + v

′
(t)

[
p
′
(t)

p(t)
− 1

2
κ
′′′
t (t)

κ
′′
t (t)

]}
π(dt)

+
∫

Θ
v(t)Γ(κt; μ, π)π(dt), (47)

where κt(θ) := K(t || θ), for any p > 0 with p ∈ C1(Θ).

As announced in the Introduction, here we have minted the term compatibility equations
to refer to identities (43) and (44). They actually constitute two “compatibility conditions”
that involve only the statistical model, without any mention to the prior. The dependence
on the quantity to be estimated is indeed hidden in the expression of Δ2. More deeply, these
equations can be viewed as a check on the compatibility between the original estimation
problem (1) and the fact that we have metrized the space of the parameters Θ as in (20).
Actually, they could have a more general value if interpreted as relations aimed at char-
acterizing Δ2, rather than imposing that this distance is given in terms of the Wasserstein
distance as in (20). However, for a distance that is characterized differently from (20), an
analogous of inequality (32) should be checked in terms of this new distance on Θ. As to
the concrete check of the compatibility equations, we notice that the former identity (43) is
generally valid as a consequence of the representation formula or the Wasserstein distance
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due to Dall’Aglio (see [41]), as long as the exchange between derivatives and integrals is
allowed. For the other identity (44), we have instead collected in Section 4 some examples
of simple statistical models for which its verification proves to be quite simple. Finally, the
issue of extending these equations in a higher dimension, including the infinite dimension,
is deferred to Section 6.

Apropos of the other assumptions, the verification that the term in (42) is of o( 1
n )-type

is generally straightforward. For instance, such a term is even equal to zero if um is inde-
pendent of θ. As to the two groups of assumptions which are needed to prove (46) and (47),
the latter block, formed by (B1) and (B2), is certainly easier to check. However, (B1) and
(B2) can prove to be rather strong since they require the existence of the MLE for any n ∈ N.
On the other hand, checking (A1) and (A2) is generally harder since it constitutes a strong
reinforcement of de Finetti’s Law of Large Number for the log-likelihood process, similar
in its conception to those stated in [35,36]. Moreover, the check of (A2) is more or less
equivalent to prove a uniform regularity of the mapping h 
→ π∗n(dθ | h), as a map from
H into the space of p.m.’s on (Θ, T ) metrized with a Wasserstein distance. This theory
is presented and developed in [42,43]. In any case, these lines of research deserve further
investigations, to be deferred to a forthcoming paper.

Finally, we consider Steps 4–6 mentioned in the Introduction, in light of the previous
results. In fact, the compatibility Equations (43) and (44) suggest two new compatibility
conditions, which are necessary to get (10) along with R̂i,m = R̃i,m for i = 0, 1. A formal
statement reads as follows.

Theorem 3. Besides Assumptions 1 and (18), suppose that m, v ∈ C2(Θ), Δ2 ∈ C4(Θ2). Assume
also that either (A1) and (A2) or (B1) and (B2) of Theorem 2 are in force. Then, any solution τ̂n of
the following equations:

v(θ̂n) = v(τ̂n) + Δ2(τ̂n, θ̂n) + o
(

1
n

)
(48)

v
′
(θ̂n) =

∂

∂t
Δ2(τ̂n, t)∣∣t=θ̂n

+ o
(

1
n

)
(49)

1
2
v
′′
(θ̂n) + [m

′
(θ̂n)]

2 =
1
2

∂2

∂t2 Δ2(τ̂n, t)∣∣t=θ̂n
+ o
(

1
n

)
, (50)

where θ̂n stands for the MLE, yields a prior-free estimator T̂n,m and, through Step 5, another
prior-free estimator Ũn,m that satisfies (10) along with R̂i,m = R̃i,m for i = 0, 1, where R̂0,m and
R̂1,m are as in (46) and (47), respectively, provided that the term in (42) is of o( 1

n )-type.

The derivation of new prior free-estimators via this procedure represents a novel line
of research that we would like to pursue in forthcoming works.

4. Applications and Examples

This section is split into four subsections, and has two main purposes. In fact,
Sections 4.1–4.3 just contain explicit examples of very simple statistical models for which
the compatibility equations are satisfied. These models are the one-dimensional Gaus-
sian, the exponential and the Pareto model. Section 4.4 has a different nature, since it is
devoted to a more concrete application of our approach to the original Poisson-mixture
setting used by Herbert Robbins to introduce his own approach to empirical Bayes theory.
Finally, Section 4.5 carries on the discussion initiated in Section 4.4 by showing a concrete
application relative to one year of claims data for an automobile insurance company.

4.1. The Gaussian Model

Here, we have X = Θ = R and

μ(A | θ) =
∫

A

1√
2πσ2

exp{− 1
2σ2 (x− θ)2}dx (A ∈ B(R))
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for some known σ2 > 0. For simplicity, we put m = 1 and u1(y, θ) = y, which is tantamount
to saying that the original predictive aim was focused on the estimation of Xn+1. In this
setting, it is very straightforward to check that m(θ) = θ and v(θ) = σ2. Moreover,
in view of well-know computations on the Wasserstein distance (see [44,45]), it is also
straightforward to check that Δ2(θ, τ) = |θ − τ|2. Therefore, (43) becomes 2 = 2, while (44)
reduces to 1 = 1. Finally, it is also possible to check the validity of (48)–(50) with the
simplest choice τ̂n = θ̂n.

The case of constant mean and unknown variance will not be dealt with here because
its treatment is substantially included in the following subsection. Apropos of the mul-
tidimensional variant of this model, very important in many statistical applications, we
just mention the interesting paper [46] which paves the way, mathematically speaking,
to write down the multidimensional analogous of the compatibility equations in a full
Riemannian context.

4.2. The Exponential Model

Here, we have X = Θ = (0, ∞) and

μ(A | θ) =
∫

A
θe−θxdx (A ∈ B(0,+∞)) .

Again, for simplicity, we put m = 1 and u1(y, θ) = y, which is tantamount to saying
that the original predictive aim was focused on the estimation of Xn+1. In this setting, it is
very straightforward to check that m(θ) = 1/θ and v(θ) = 1/θ2. Moreover, by resorting to
Dall’Aglio representation of the Wasserstein distance (see [41]), it is also straightforward
to check that Δ2(θ, τ) = 2|1/θ − 1/τ|2. Although very simple, this is a very interesting
example of non-Euclidean distance on Θ = (0, ∞). As to the validity of the compatibility
equations, we easily see that (43) yields 4/t4 = 4/t4, while (44) becomes:

3
t4 +

(
1
t2

)2
=

1
2
· 4

t4 −
1
2

(
8
t5

)
·
(

4
t4

)−1
·
(
− 2

t3

)
.

4.3. The Pareto Model

Here, we have X = Θ = (0, ∞) and

μ(A | θ) =
∫

A∩(θ,+∞)

αθα

xα+1 dx (A ∈ B(0,+∞))

for some known α > 2. Again, for simplicity, we put m = 1 and u1(y, θ) = y, which is
tantamount to saying that the original predictive aim was focused on the estimation of Xn+1.
In this setting, it is very straightforward to check that m(θ) = α

α−1 θ and v(θ) = α
(α−2)(α−1)2 θ2.

Moreover, by resorting to the Dall’Aglio representation of the Wasserstein distance (see [41]),
it is also straightforward to check that Δ2(θ, τ) = α

α−2 |θ− τ|2. Of course, this is not a regular
model since the support of μ(·|θ) varies with θ. Anyway, it is interesting to notice that
the compatibility equations are still also valid in this case. Therefore, the analysis of such
non-regular models should motivate further investigations about their intrinsic value.

4.4. Robbins Approach to Empirical BAYES

In his seminal paper [23], Herbert Robbins introduced the following model to present
his own approach to empirical Bayes theory. The problem that he considers is inspired by
car insurance data analysis, and it is only slightly different from a “standard” predictive
problem. We start by putting X = N2

0 and U = N0, and considering exchangeable random
variables Xi’s with Xi = (ξi, ηi). The practical meaning is that ξi represents the number of
accidents experienced by the i-th customer in the past year, while ηi represents the number
of accidents that the same i-th customer will experience in the current year. Then, Robbins
(in his own notation) attaches to each customer a random parameter, say λi > 0 to the i-th
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customer, which represents the rate of a Poisson distribution for that customer. Moreover,
he considers the λi’s as i.i.d. and, conditionally on the λi’s, the Xi’s become independent,
and in addition ξi and ηi become i.i.d. with distribution Poi(λi), for all i ∈ N. Robbins calls
G the common distribution of the λi’s and interpret it as a “prior distribution”. However,
if we strictly follow the Bayesian main way, we should call this distribution θ to avoid
confusion, and just realize that we have, this way, defined the statistical model, that is

μ({(k, h)} | θ) =
∫ +∞

0

e−zzk

k!
e−zzh

h!
θ(dz) ((k, h) ∈ N2

0) . (51)

Thus, the actual prior (Bayesianly speaking) is some p.m. π on the space of all p.m.’s
on ((0,+∞), B(0,+∞)), while the random parameter T considered in the present paper is
some random probability measure. Here, the objective—actually very practical and intuitively
logic—is to estimate η1 on the basis of the sample (ξ1, . . . , ξn). Thus, our Un,m coincides
with η1 and the loss function is just, as usual, the quadratic loss. Throughout his paper,
Robbins works under the conditioning to T = θ (that his under a fixed prior, in his own
terminology). Hence, his “theoretical estimator” reads

Eθ [η1 | (ξ1, . . . , ξn)] = Eθ [η1 | ξ1] = (ξ1 + 1)
pθ(ξ1 + 1)

pθ(ξ1)
, (52)

where pθ(k) := μ({k} ×N0 | θ). To get rid of the unobservable θ, Robbins exploits that
θ = Eθ [ξ1] = ∑+∞

k=0 kpθ(k) to bring the Strong Law of Large Numbers into the game.
Indeed, since

p̂(k) :=
1
n

n

∑
i=1

1{ξi = k} Pθ−a.s.−→ pθ(k)

holds for any θ, then it could be worth considering the (prior-free) estimator:

Ũn,m = (ξ1 + 1)
p̂(ξ1 + 1)

p̂(ξ1)
. (53)

At this stage, if we want to maintain the Bayesian main way, we should make three
basic considerations. First, given the statistical model (51), independently of the estimation
problem, the assumption of exchangeability of the Xi’s entails the existence of some prior
distribution π, by de Finetti’s representation theorem. Second, given the quadratic loss
function on U, the best (i.e., the most efficient) estimator is given by:

Ûn,m := E[η1 | (ξ1, . . . , ξn)],

where the expectation E depends of course on the prior π. Third, if we consider the above
estimator as useless, because of an effective ignorance about the prior π, we are justified to
consider the above Ũn,m as a possible approximation of Ûn,m, in the sense expressed by the
joint validity of (2) and (10), with R̂i,m = R̃i,m for i = 0, 1, uniformly with respect to a whole
(possible very large) class of priors π. Unfortunately, it is not the case. Or rather, we could
actually achieve this goal, in the presence of distinguished choices of π. Therefore, if there
is ignorance on π, we can only consider the Robbins estimator as efficient “at zero-level”,
and not also “at O( 1

n )-level”. If we follow the approach presented in this paper, the natural
choice for an estimator is given by:

U∗n,m = (ξ1 + 1)

∫ +∞

0

(
e−zzξ1+1

(ξ1 + 1)!

)
T̂n,m(dz)∫ +∞

0

(
e−zzξ1

ξ1!

)
T̂n,m(dz)

, (54)
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where the estimator T̂n,m belongs to the effective space of the parameters Θ, that is the
space of all p.m.’s on ((0,+∞), B(0,+∞)), and is identified as:

T̂n,m = Argminτ

∫
Θ
W2

2
(
μξ1,θ , μξ1,τ

)
πn(dθ | ξ1, . . . , ξn), (55)

with

μk,θ(A) :=

∫
A

(
e−zzk

k!

)
θ(dz)

∫ +∞

0

(
e−zzk

k!

)
θ(dz)

(A ∈ B(0,+∞)) .

The proof of the fact that our estimator is more efficient than Robbins estimator—at
least asymptotically and uniformly with respect to a whole class of priors—will be given
in a forthcoming paper. Indeed, such a proof will constitute only a first step towards a
complete vindication of our approach. The crowing achievement of the project would be
represented by the production of some prior-free approximation of T̂n,m that could lead,
through (54), to an efficient estimator Ũn,m up to the “O( 1

n )-level”. Research on this is
ongoing.

4.5. An Example of Real Data Analysis

This subsection represents a continuation of the analysis of Robbins’ approach to
empirical Bayes theory, hinting at some concrete applications. We display below a Table 1
from [47] which is relative to one year of claims data for a European automobile insurance
company. The original source of the data is the actuarial work [48].

Table 1. Table reporting, in the second line, the exact counts of claimed accidents. Third and fourth
lines display estimated numbers of accidents.

Claims 0 1 2 3 4 5 6 7

Counts 7840 1317 239 42 14 4 4 1

Robbins estimator 0.168 0.363 0.527 1.33 1.43 6.00 1.25 0

Gamma MLE 0.164 0.398 0.633 0.87 1.10 1.34 1.57 0

Here, a population of 9461 automobile insurance policy holders is considered. Out
of these, 7840 made no claims during the year; 1317 made a single claim; 239 made two
claims each and so forth, continuing to the one person who made seven claims. The
insurance company is concerned about the claims each policy holder will make in the next
year. The third and the fourth lines provide estimations of such numbers by following
the original Robbins method (based on (53)) and another compound model discussed
in Section 6.1 of [47], respectively. In particular, the Robbins estimator predicts that the
7840 policy holders that made no claims during the year will contribute to an amount of
7840× 0.168 ≈ 1317 accidents, and so on. Analogously, the compound model predicts that
the same 7840 policy holders will contribute to an amount of 7840× 0.164 ≈ 1286 accidents,
and so on. Moreover, it is worth noticing that the original Robbins estimator suffers
the lack of certain regularity properties, such as monotonicity, so that various smoothed
versions of it have been provided by other authors. See [49]. See also [50] [Chapter 5] for a
comprehensive treatment.

Here, we seize the opportunity to give the reader a taste of our approach, as explained
in Section 4.4. A detailed treatment would prove, in any case, too complex to be thor-
oughly developed in this paper, due to the significant amount of numerical techniques
which are necessary to carry out our strategy. Indeed, the big issue is concerned with
the implementation of the infinite-dimensional minimization problem (55), which is still
under investigation. However, we can simplify the treatment by restricting the attention
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on prior distributions π that put the total unitary mass, for example, on the set E of expo-
nential distributions, so that θ(dz) = βe−βzdz for z > 0 and some hyper-parameter β > 0.
Thus, given some hyper-prior ζ on the hyper-parameter β, we can easily see that (55) boils
down to a simple, one-dimensional minimization problem. Its solution T̂n,m is provided by
the distribution

β̂ne−β̂nzdz

with β̂n coinciding with the harmonic mean of the posterior distribution of the hyper-
parameter β. On the basis of the theory developed in the paper, this solution will prove
asymptotically nearly optimal uniformly with respect to the (narrow) class of prior distri-
butions that put the total unitary mass on E . Whence, the estimator U∗n,m in (54) assumes
the form

U∗n,m =
ξ1 + 1
β̂n + 1

.

This last estimator is, of course, not prior-free, because β̂n depends on the prior ζ.
However, to get a quick result, we can approximate β̂n by means of the Laplace methods
again yielding

ξ1 + 1
β̂n + 1

≈ (ξ1 + 1)
Sn

Sn + n
:= Ũn,m,

where Sn represents the total amount of accidents. Since n = 9461 and Sn = 2028 in the
dataset under consideration, we provide the following new Table 2,

Table 2. Table reporting, in the second line, the exact counts of claimed accidents. Third line displays
estimated numbers of accidents.

Claims 0 1 2 3 4 5 6 7

Counts 7840 1317 239 42 14 4 4 1

Estimator Ũn,m 0.176 0.353 0.53 0.706 0.882 1.06 1.23 1.41

which is indeed comparable with the previous one. To give an idea, the Robbins estimator
predicts 2019 total accidents for the next year, while the estimator Ũn,m above predicts 2033
total accidents for the next year.

In any case, a thorough analysis of this specific example deserves more attention, and
will be developed in a forthcoming new paper.

5. Proofs

Gathered here are the proofs of the results stated in the main body of the paper.

5.1. Theorem 1

First, by following the same line of reasoning as in [32], conclude that the sequence
{Hn}n≥1 is a Cauchy sequence in L2(Ω;H) := {W : Ω → H | E[‖W‖2

H] < +∞}. Thus,

by completeness, there exists a random element H∗ in L2(Ω;H) such that Hn
L2
−→ H∗.

Now, exploit the continuous embeddingH ⊂ C0(Θ). By de Finetti’s Strong Law of Large
Numbers (see [9]), Hn(θ) converges P-a.s. to −K(T ‖ θ) +

∫
X log f (z| T)μ(dz | T) = H(θ),

for any fixed θ ∈ Θ. Since H ∈ H by Assumption 1, then H = H∗ as elements ofH. At this
stage the conclusion that νn ⇒ ν follows by the standard implication that L2-convergence
implies convergence in distribution, which is still true for random elements taking values
in a separable Hilbert space. See [51].

5.2. Proposition 1

Start by considering a functional Ψ in C2
b(H). Notice that∫

H
Ψ(h)νn(dh) = E[Ψ(Hn)]
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and then expand the term Ψ(Hn − H + H) by the Taylor formula (see [33,34]) to get

Ψ(Hn) = Ψ(H) + 〈∇Ψ(H), Hn − H〉+ 1
2
〈Hess[Ψ]H(Hn − H), Hn − H〉+ o(‖Hn − H‖2) .

Observe that H is σ(T)-measurable while, by de Finetti’s representation theorem, the
distribution of Hn − H, given T, coincides with the distribution of a sum of n i.i.d. random
elements. Whence, the tower property of the conditional expectation entails:

E[Ψ(Hn)] = E[Ψ(H)] +
1

2n
E[Hess[Ψ]H ⊗CovT [log f (Xi| ·)]] + o

(
1
n

)
since E[Hn − H | T] = 0 and, then,

E[〈∇Ψ(H), Hn − H〉 | T] = 〈∇Ψ(H),E[Hn − H | T]〉 = 0

the expression E[Hn − H | T] being intended as a Bochner integral. Thus, the main iden-
tity (26) follows immediately from (25), for any Ψ ∈ C2

b(H). Once (26) is established
for regular Ψ’s, one can extend its validity to more general continuous Ψ’s by standard
approximation arguments.

5.3. Lemma 1

First, observe that:

−K(T ‖ θ) +
∫
X

log f (z| T)μ(dz | T) = θM
′
(T)−M(θ) .

Notice also that:

∫
H

Ψ(h)νn(dh) = E

[
Ψ

(
θ 
→ θ

n

n

∑
i=1

S(Xi)−M(θ)

)]
.

Then, repeat the same arguments as in the previous proof, getting∫
H

Ψ(h)νn(dh) =
∫
H

Ψ(h)ν(dh)

+
1

2n

∫
Θ

[
d2

dx2 Ψ(θ 
→ xθ −M(θ))

]∣∣x=M′(t)
M
′′
(t)p(t)dt + o

(
1
n

)
.

For standard exponential families, the function M′ is ono-to-one, with inverse function
V. Whence, by indicating the range of M′ as Cod(M′),

∫
Θ

[
d2

dx2 Ψ(θ 
→ xθ −M(θ))

]∣∣x=M′(t)
M
′′
(t)p(t)dt

=
∫

Cod(M′)

[
d2

dx2 Ψ(θ 
→ xθ −M(θ))

]
M
′′
(V(x))p(V(x))V

′
(x)dx

=
∫

Cod(M′)
Ψ(θ 
→ xθ −M(θ))

[
d2

dx2 [M
′′
(V(x))p(V(x))V

′
(x)]
]

dx,

where, for the last identity, a double integration-by-parts has been used. Finally, changing
the variable according to x = M

′
(t) leads to the desired result.
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5.4. Proposition 2

A disintegration argument shows that

RU[U†
n,m] =

∫
Xn

∫
Θ×Xm

LU
(

un,m(y; x; θ), u†
n,m(x)

)
×

×P[(Xn+1, . . . , Xn+m) ∈ dy, T ∈ dθ | (X1, . . . , Xn) = x]αn(dx)

=
∫
Xn

∫
Θ×Xm

LU
(

un,m(y; x; θ), u†
n,m(x)

)
μ⊗m(dy | θ)πn(dθ | x)αn(dx)

=
∫
Xn

∫
Θ
W2

U

(
γθ,x; δu†

n,m(x)

)
πn(dθ | x)αn(dx) .

Then, use the triangular inequality for the Wasserstein distance to obtain:

WU

(
γθ,x; δu†

n,m(x)

)
≤ WU

(
γθ,x; γτ,x

)
+WU

(
γτ,x; δu†

n,m(x)

)
for any τ ∈ Θ. Take the square of both side and observe that:

WU

(
γτ,x; δu†

n,m(x)

)
=
∫
U

d2
U(u, u†

n,m(x))γτ,x(du) .

Now, (31) is proved by letting τ = T†
n,m after noticing that the latter summand in the

above right-hand side is independent of θ.
Finally, (32) is obtained by first optimizing the risk RΘ with respect to the choice of T†

n,m
and then, after getting T̂n,m, the term E

[ ∫
U d2

U(U
†
n,m, u)γT̂n,m ,(X1,...,Xn)

(du)
]

is optimized
with respect to the choice of U†

n,m.

5.5. Proposition 3

Preliminarily, use Theorem 1 in [52] [Section II.1] to prove that:

∫
Θ

ϕ(θ)e−κt(θ)dθ =
2
√

π√
n

e−κt(t)
[

c0 +
c2

2n
+ o
(

1
n

)]
holds for any ϕ ∈ C2(Θ) such that ϕ(t) �= 0, where

c0 :=
b0

2a1/2
0

c2 :=

{
b2

2
− 3a1b1

a0
+ [5a2

1 − 4a0a2]
3b0

16a2
0

}
× 1

a3/2
0

,

with a0 := 1
2 κ
′′
t (t), a1 := 1

3! κ
′′′
t (t), a2 := 1

4! κ
′′′′
t (t), b0 = ϕ(t), b1 = ϕ

′
(t) and b2 = 1

2 ϕ
′′
(t).

Moreover, from that very same theorem, it holds that:∫
Θ

ϕ(θ)e−κt(θ)dθ =
√

πe−κt(t)
[

c1

n3/2 + o
(

1
n3/2

)]
for any ϕ ∈ C2(Θ) with a zero of order 1 at t, where

c1 :=
[

b∗1
2
− a1b∗0

2a0

]
1
a0

with b∗0 := ϕ
′
(t) and b∗1 := 1

2 ϕ
′′
(t). At this stage, application of this formulas gives:

∫
Θ
m(θ)π∗n(dθ | − κt) = m(t) +

1
na0

[
1
4
m
′′
(t) +

1
2
m
′
(t)

p′(t)
p(t)

− 3
4

a1

a0
m
′
(t)
]
+ o
(

1
n

)
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and ∫
Θ
m2(θ)π∗n(dθ | − κt) = m2(t) +

1
na0

[
1
2
(m
′
(t))2 +

1
2
m
′′
(t)m(t)

+m
′
(t)m(t)

p′(t)
p(t)

− 3
2

a1

a0
m
′
(t)m(t)

]
+ o
(

1
n

)
.

Then, in addition,∫
Θ
[v(θ)− v(t)]π∗n(dθ | − κt) =

1
na0

[
1
4
v
′′
(t) +

1
2
v
′
(t)

p′(t)
p(t)

− 3
4

a1

a0
v
′
(t)
]
+ o
(

1
n

)
and ∫

Θ
Δ2(θ, τ)π∗n(dθ | − κt) = Δ2(t, τ)

+
1

na0

[
1
2

∂

∂θ
Δ2(θ, τ)∣∣θ=t

p
′
(t)

p(t)

+
1
2

∂2

∂θ2 Δ2(θ, τ)∣∣θ=t
− 3

4
a1

a0

∂

∂θ
Δ2(θ, τ)∣∣θ=t

]
+ o
(

1
n

)
completing the proof just by mere substitutions.

5.6. Theorem 2

The core of the proof hinges on the identity (45). Now, the asymptotic expansion of
its left-hand side is provided by (34), while the analogous expansion for right-hand side
follows from a combination of (40) with (41). It is now straightforward to notice that the
validity of (43) and (44) entails (45). At this stage, the validity of (46) and (47) for R̂0,m
and R̂1,m follows directly by substitution. As to the same identities for R∗0,m and R∗1,m, the
argument rests on the combination of (3) with (32), exploiting the fact that the additional
term (33) is of o(1/n)-type. Thus, the asymptotic expansion of the left-hand side of (3) is
given in terms of integrals with respect to ν of the sum of the two left-hand sides of (40)
and (41), respectively. Resorting once again to (45), one gets the desired identities for R∗0,m
and R∗1,m by substitution.

5.7. Theorem 3

The core is the proof of (10), with the same expressions (46) and (47) also for R̃0,m and
R̃1,m, respectively. As in the proof of Theorem 2, the left-hand side of (10) is analyzed by
resorting to inequality (32), exploiting the fact that the ensuing additional term, similar to
that in (33), is of o(1/n)-type. Now, the argument is very similar to that of the preceding
proof, with the variant that now the expansion (35) is not optimized in τ, but it is just
evaluated at τ = τ̂n. The conclusion reduces once again to a matter of substituting the
expressions (48)–(50) into the two expansions (35) and (41).

6. Conclusions and Future Developments

This paper should be seen as a pioneering work in the field of predictive prob-
lems, whose main aim is to show how the practical construction of efficient estima-
tors of random quantities (that depend on future and/or past observations) entails non-
standard metrizations of the parameter space Θ. This is the essence of the compatibility
Equations (43) and (44). Of course, all the lines of research proposed in this paper deserve
much more attention, in order to produce new results of wider validity.

The first issue deals with the extension of the compatibility equations to higher dimen-
sions, including the infinite dimension. For finite dimensions, this is only a technical fact.
Indeed, the question relies on extending the asymptotic expansion given in Proposition 3
from dimension 1 to dimension d > 1. This is done in [39] as far as the Bayesian setting,
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and in [53,54] for a general mathematical setting. See also [55] [Section 2.2]. For the infinite
dimension, the mathematical literature is rather scant. Some interesting results on asymp-
totic expansions of Laplace type for separable Hilbert spaces with Gaussian measure are
contained in [56]. Finally, the topic is still in its early stage as far as metric measure spaces
(i.e., the full nonparametric setting) are concerned. See [57,58].

Another mathematical tool that proves to be critical to our study is the Wasserstein
distance. As explained in specific monographs like [27,59], the Wasserstein distance has sev-
eral connections with other fields of mathematical analysis, such as optimal transportation
and the theory of PDEs. Actually, the achievement of some estimators within our theory
(like the one in (55)) is tightly connected with some optimization issues in transport theory.
In this respect, an interesting mathematical area to explore is represented by the theory of
Wasserstein barycenters and the ensuing numerical algorithms. See [60]. Research on this
is ongoing.

Then, all the extensions of de Finetti’s Law of Large Numbers for the log-likelihood
process, stated in Theorem 1, Proposition 1 and Lemma 1 in Section 2.2, are worth being
reconsidered, independently of their use for the purposes of this paper. As to possible
extensions, the first hint is concerned with the analysis of dominated, parametric non-
regular models, as those considered in [61–63]. Here, in fact, we never used the properties
of the MLE as the root of the gradient of the log-likelihood, so that the asymptotic results
contained in the quoted works should be enough to extend our statements. Subsequently,
it would be also very interesting to consider dominated models which are parametrized by
infinite-dimensional objects, where typically the MLE does not exist. See, e.g., the recent
book [64] for plenty of examples.

As to more statistical objectives, it would be interesting to further deepen the connec-
tion between our approach and some relevant achievements obtained within the empirical
Bayes theory, such as those contained in [22,23,65–68]. See also the book [69] for plenty
of applications. In particular, the discussion contained in Section 4.4 about the original
Poisson-mixture setting considered by Herbert Robbins deserves more attention.

A very fertile area of the application of predictive inference is that of species sampling
problems. The pioneering works on this topic can be identified with the works [66,67,70].
Nowadays, the Bayesian approach (especially of nonparametric type) has received much
attention, and has produced noteworthy new results in this field. See [17,71–73] and
also [55,74,75] for novel asymptotic results. Indeed, it would be interesting to investigate
whether it is possible to derive, within the approach of this paper, both asymptotic results
and new estimators, hopefully more competitive than the existing ones.

Another prolific field of application is that of density estimation, aimed at solving
clustering and/or classification problems. See [76] for a Bayesian perspective. Here, there
is an additional technical difficulty due to the fact that the parameter is an element of some
infinite-dimensional manifold, so that the characterization of any metric on Θ will prove
mathematically more complex.

A last mention is devoted to predictive problems with “compressed data”. This kind
of research comes directly from computer science, where the complexity of the observed
data make the available sample essentially useless for statistical inference purposes. For
this reason, many algorithms have been conceived to compress the information in order
to make it useful in some sense. See, e.g., [77]. Here, the Bayesian approach is in its early
stage (see [78]), and the results of this paper can provide a valuable contribution.
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1. Introduction

R.A. Fisher was—famously—an outspoken critic of Bayesian inference. Yet, anyone
who reads Fisher’s later work cannot but be struck by Fisher’s evident admiration for Bayes
himself. This paper discusses this apparent paradox. There are really three threads to this
story. One is to recognize that Fisher was a critic of “inverse probability” (in the narrow
sense of the use of uniform priors to capture the notion of ignorance or lack of knowledge
about a prior) and not “Bayesian inference” per se (if by the latter, we mean the use of prior
distributions summarizing genuine knowledge). Indeed, Fisher appears to have introduced
the use of the term “Bayesian”; see [1]. A second thread in our story is Fisher’s discovery
of fiducial inference in 1930 as an alternative to the Bayesian approach. Never widely
accepted in the statistical community (unlike virtually all of Fisher’s other contributions to
statistics), its ultimately inference-based approach meant Fisher came to associate himself
more with statisticians such as his fellow Cambridge don Harold Jeffreys (an “objective
Bayesian”) rather than his arch-enemy and rival, the frequentist Jerzy Neyman. The final
thread is how all this played itself out in the 1950s. Sensing then that he was on the wrong
side of history, during the last decade of his life, Fisher made a supreme effort to clarify
and recast the logical basis of his approach to statistical inference, most notably in his 1956
book Statistical Methods and Scientific Inference [2–5]. This in turn led him to return to Bayes
himself and his famous paper [6], for which Fisher had only praise.

2. Fisher on Inverse Probability in the 1920s

With two exceptions [7,8], Fisher’s papers on statistics all date from 1920 on. By this
point, he was already a dedicated opponent of the use of inverse probability, writing that
Bayes’ attempt admittedly depended upon an arbitrary assumption, so that the whole
method has been widely discredited" [9] (p. 4), and a year later was even more forceful,
pointing with disdain to:

 inverse probability, which like an impenetrable jungle arrests progress towards
precision of statistical concepts." [10] (p. 311)

However, it was not always so; this position represented a change in view, as Fisher
later acknowledged:

 I may myself say that I learned [inverse probability] at school as an integral
part of the subject, and for some years saw no reason to question its validity."
[11] (p. 248)

Indeed, Fisher conceded that not only had he accepted the legitimacy of inverse
probability, he had even employed it in his very first paper:
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 I must indeed plead guilty in my original statement of the Method of Maximum
Likelihood [in 1912] to having based my argument upon the principle of inverse
probability; in the same paper, it is true, I emphasized the fact that such inverse
probabilities were relative only." [12] (p. 326)

There has indeed been some discussion and debate about the extent to which Fisher’s
1912 paper did employ “the principle of inverse probability” (see [13,14]), but for our
purposes, the key point is Fisher’s unambiguous statement that, initially, he “saw no reason
to question its validity”.

2.1. Fisher’s Critique of the Uniform Prior

By inverse probability, Fisher really meant the classical assumption and use of uniform
priors (rather than Bayesian inference in the more modern sense of the use of a prior
summarizing initial information). Fisher had several grounds on which he criticized the
use of such uniform priors; one of these was that uniform priors are not scale invariant. For
example, if 0 ≤ p ≤ 1 is the probability of a success in a sequence of Bernoulli trials, and:

sin θ = 2p− 1,

then the flat prior dp on the p scale corresponds to the prior:

cos θ

2
dθ

on the θ scale (see [10] (p. 325) and [4]) (pp. 16–17). Thus, this formulation of ignorance is
scale dependent, even though, in a hypothetical state of “complete ignorance” (whatever
that is), there should be no reason to prefer one scale over the other; instead of the parameter
p, we “might, so far as cogent evidence is concerned, equally have taken any monotonic
function of p” in its place.

Interestingly, Fisher was not the first to raise this objection; much earlier, the German
physiologist Johannes von Kries (1853–1928), in his Principien der Wahrscheinlichkeitsrechnung
(see [15] (p. 31) and also [16]), gave the scientifically more interesting example of

σ: specific weight, ω =
1
σ

: specific volume,

noting that a uniform prior for one is not uniform for the other, and thereby concluding
“Der Wahrscheinlichkeits-Ansatz ist also unbestimmt” (the probability assumption is thus
indeterminate). Nor was this an isolated, special instance: other examples could easily
be given, such as in the case of a pendulum, the length and the duration or frequency
of oscillation.

2.2. Fisher vs. Pearson on the Correlation Coefficient

Although this objection (and other critiques given in von Kries and later reported by
Keynes in his classic 1921 Treatise on Probability, see [17]) were certainly cogent, one might
wonder at the vehemence with which the young Fisher pressed. However, here, there
is a simple explanation, stemming from Fisher’s conflicted relations with Karl Pearson
(1857–1936), then the towering figure in English statistics, the only person at that point to
hold a chair in statistics in England (at University College London).

In 1915, Fisher published his first great paper on the distribution of the sample cor-
relation coefficient, in Pearson’s journal Biometrika. In the last section of his paper (see [8]
(pp. 520–521)), Fisher derived a point estimate for the theoretical correlation coefficient ρ
using his earlier method of maximum likelihood (see [7]).

The MLE can be interpreted as the mode of the posterior distribution of a parameter
starting from a uniform prior, although Fisher did not frame the issue this way in his 1912
paper. Two years later, however, a “Cooperative Study” in Biometrika with Pearson as a
co-author (see [18]) interpreted Fisher as doing precisely this, criticizing his ostensible use
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of a uniform prior in this case as contrary to common experience, and going on to discuss
several alternative priors (pp. 352–360). Angered, Fisher wrote in response:

 [Pearson’s] comments upon my methods imply such a serious misunderstand-
ing of my meaning that a brief reply is necessary. . .

From this passage a reader, who did not refer my paper, which had appeared in
the previous year, and to which the Cooperative Study was called an “Appendix”,
might imagine that I had used Boole’s ironical phrase “equal distribution of
ignorance”, and that I had appealed to“Bayes’ theorem”. I must therefore state
that I did neither."
These words did not appear in Pearson’s journal Biometrika, for Pearson had refused to

publish Fisher’s response, and marked a clear and acrimonious break in relations between
the two. It is easy to appreciate Fisher’s bitterness given his relative youth and professional
vulnerability at this early stage in his career. It is nevertheless surprising to see how much
this still rankled twenty years after Pearson’s death, when Fisher wrote in his book Statistical
Methods and Scientific Inference ([2] (pp. 2–3), cited below as SMSI, page references to the
third, 1973 edition unless otherwise noted):

 Pearson’s energy was unbounded. In the course of his long life he gained
the devoted service of a number of able assistants, some of whom he did not
treat particularly well. He was prolific in magnificent, or grandiose, schemes
capable of realization perhaps by an army of industrious robots responsive to a
magic wand.

The terrible weakness of his mathematical and scientific work flowed from his
incapacity in self-criticism, and his unwillingness to admit the possibility that
he had anything to learn from others, even in biology, of which he knew very
little. His mathematics, consequently, though always vigorous, were usually
clumsy, and often misleading. In controversy, to which he was much addicted, he
constantly showed himself to be without a sense of justice."
Another revealing episode was an ill-advised invitation to Fisher to write an entry

on Pearson for the Dictionary of National Biography shortly after Pearson’s death in 1936;
see [19]. After several drafts in which the editors were unable to persuade Fisher to tone
down his evident contempt for Pearson, the project was abandoned by mutual agreement.

3. The Fiducial Argument

Fisher’s harsh criticism of inverse probability was ultimately grounded in principle,
even if it was in part sharpened by his animus towards Pearson. However, it is difficult to
replace something by nothing, and as long as a credible alternative to inverse methods was
missing, inverse probability could be expected to survive. As the Harvard mathematician
Julian Lowell Coolidge noted, defective as it is, Bayes’ formula is the only thing we have
to answer certain important questions which do arise in the calculus of probability. . . we
use Bayes’ formula with a sigh, as the only thing available under the circumstances"
(see [20] p. 100). However, in 1930, Fisher believed he had in fact found such an alternative.

3.1. The Original Fiducial Argument

In 1930, Fisher wrote a short paper titled “Inverse probability” [21], which was the ori-
gin of his “fiducial argument”, ultimately leading to more than three decades of controversy.
After revisiting his oft-stated attack on the inverse probability approach, Fisher wrote:

 There are, however, certain cases in which statements in terms of probability
can be made with respect to the parameters of the population."
How did Fisher succeed in this, breaking the “Bayesian omelet without breaking the

Bayesian eggs”? From a modern perspective, what Fisher discovered was a general method
of constructing confidence intervals in the case of a continuous one-parameter family of
probability distributions. Curiously and remarkably, there is (almost) nothing controversial
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in this paper. Indeed, according to Charles Stein (who was in no way a Fisherian), there
was only a single objectionable passage in the entire paper (personal communication from
Charles Stein to SZ, c. 1980; this would have been the reference on p. 534 to “the fiducial
distribution of a parameter θ for a given statistic T”).

Here is a brief précise of Fisher’s discovery recast in modern language. Let:

• T be a sample statistic having a continuous distribution;
• θ be a one-dimensional parameter for the distribution of T;
• tp(θ) be the p-th quantile for T under θ:

Pθ [T < tp(θ)] = p.

If tp is strictly increasing in θ, then t−1
p is also strictly increasing, and

Pθ [t−1
p (T) < θ] = p.

Therefore, (t−1
p (T), ∞) is a (lower) 100p% confidence interval for θ.

Perhaps Fisher’s clearest statement of what he had in mind here was a letter from
Fisher to Tukey, dated 27 April 1955 ([22] pp. 220–222):

 The probability integral of the exact frequency distribution, in finite samples,
of an exhaustive statistic is used to form a continuum of probability-statements,
of the form

Pr{T < TP(θ)} = P,

and using the monotonic property of the functions Tp for all P, this is transformed
to the equivalent

Pr{θ1−P(T) < θ} = P,

a complete set of probability statements about θ, in terms known for a given
sample value T."

3.2. Example

The following simple example should clarify the basic conceptual issues. Suppose
T is an exponentially distributed random variable with parameter θ > 0 and cumulative
distribution function:

F(t, θ) := Pθ(T ≤ t) = 1− e−θt (0 < t < ∞).

If we let F(t, θ) = p, then the relation p = 1− e−θt implicitly defines functions

tp(θ) := −1
θ

log(1− p), θp(t) := −1
t

log(1− p).

It is immediate that tp and θp are strictly decreasing functions mapping (0, ∞) to itself
and inverses of each other:

θp(tp(θ)) = θ, tp(θp(θ)) = θ.

In modern parlance, tp(θ) is the critical value for a 100(1− p)% test of significance for
the parameter θ in which one rejects θ whenever T > tp(θ). Since T > tp(θ)⇐⇒ θp(T) < θ,
the random interval (0, θp(T)] consists of precisely those θ consistent with the observed
value of T in the sense that it contains those θ not rejected by the test of significance.
Put another way, this random interval contains the true value of θ 100p% of the time; in
Neyman’s terminology, it is a 100p% confidence interval for θ conveniently summarizing
the corresponding continuum of tests of significance.

For any θ, F(t, θ) is the cumulative distribution function of the random variable T
under θ, but equally, given 1 − e−θt is symmetric in t and θ, for every t, the function

178



Mathematics 2022, 10, 1634

F(t, θ) is a mathematical distribution function (in the sense that it is a left-continuous
increasing function such that limθ→0 F(t, θ) = 0 and limθ→∞ F(t, θ) =1). In the statistical
model initially described, however ({Pθ , 0 < θ < ∞}), it is not immediately evident what
random variable it is the distribution of. Although we are given a family of distributions
Pθ on R+, the sample space of possible values of T, we do not have a corresponding
family of distributions Pt on Θ := (0, ∞), the space of possible values of θ, let alone a joint
distribution on R+ ×Θ.

Fisher recognized this, for he was at pains to explain (in the context of his more
complex example involving the sample correlation coefficient) the intimate relationship
between the interpretation of a fiducial percentile and the original sampling distribution of
the underlying statistic, and that the former only has a meaning when expressed in terms of
the latter. Using the concrete example of four pairs of observations drawn from a bivariate
normal and using a table that had been computed in this case, Fisher wrote:

 From the table we can read off the 95 per cent. r for any given ρ, or equally
the fiducial 5 per cent. ρ for any given r. Thus if a value r = 0.99 were obtained
from the sample, we should have a fiducial 5 per cent. ρ equal to about 0.765. The
value of ρ can then only be less than 0.765 in the event that r has exceeded its
95 per cent. point, an event which is known to occur just once in 20 trials. In this
sense ρ has a probability of just 1 in 20 of being less than 0.765." [21] (p. 534)

Can such an approach be extended to the case of several parameters? Fisher tried
to do this after Jerzy Neyman advanced his own multi-parameter theory of confidence
intervals ([23]), but the resulting difficulties led to an important shift in Fisher’s views,
including almost immediately the abandonment of the sampling interpretation of fiducial
probabilities; see generally [24]. This led after Fisher’s break with Neyman to a surprising
detente with the objective Bayesian Sir Harold Jeffreys. On one occasion, Fisher told
Jeffreys he agreed with Jeffreys’ approach more than the current school of Neyman, and
Jeffreys very emphatically replied,  Yes, we are closer in our approach", as related
by S. K. Runcorn, who knew Fisher as a Fellow at Fisher’s College Gonville and Caius;
see [25] (p. 441). This change is evident in Fisher’s last book, Statistical Methods and Scientific
Inference (1956).

3.3. A Short Period of Peaceful Coexistence

Another interesting aspect of Fisher’s views in this early period was his willingness to
accept that Bayesian and fiducial probabilities can co-exist.

 The fiducial frequency distribution will in general be different numerically
from the inverse probability distribution obtained from any particular hypothesis
as to a priori probability. Since such an hypothesis may be true, it is obvious
that the two distributions must differ not only numerically, but in their logical
meaning.

There is . . . no contradiction between the two statements."
Fisher later changed his mind on this, arguing at the end of his life that both statements

had the same logical meaning (referring to probabilities of the same nature), the fiducial
distribution corresponding to the case of the complete lack of information, the Bayesian
prior representing a state of very specific information. This is discussed below in Section 5.

4. Bayes and Predictive Inference

Fisher’s 1956 book Statistical Methods and Scientific Inference (SMSI) was an attempt
to explain and justify his statistical methods and views. It is not in a class with his other,
prewar books: Statistical Methods for Research Workers (1925) gave a coherent framework
for statistical theory and methods that dominated the field for more than half a century;
The Genetical Theory of Natural Selection (1930) established Fisher as one of the three leading
population geneticists of the first half of the 20th Century; The Design of Experiments (1935)
created an entirely new field of statistics. Nevertheless, SMSI is filled with interesting ideas
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and examples that reward a close reading. Here, we focus primarily on what it has to say
about the two (interrelated) topics of Bayes and predictive inference. Page references are to
the third (posthumous) 1973 edition. See the note at the beginning of the bibliography.

4.1. Bayes’ “Billiard Ball”

Fisher (SMSI, p. 132) distinguished between what Bayes actually wrote in his Essay,
and the later, uncritical use of uniform priors by other writers:

 In mathematical teaching the mistake is often made of overlooking the fact that
Bayes obtained his probabilities a priori by an appropriate experiment, and that
he specifically rejected the alternative of introducing them axiomatically on the
ground that this “might not perhaps be looked at by all as reasonable”; moreover,
he did not wish to “take into his mathematical reasoning anything that might
admit dispute”. This passage (and additional text) was added in the 2nd edition,
pp. 127–128, and still further further material was added to this section (5.26,
“Observations of two kinds”) in the 3rd edition as well."
What was Bayes’ experimental alternative to the axiomatic assumption of a prior?

Bayes envisaged the following procedure:

• Pick a point uniformly on a rectangular table.
• Project this point onto the horizontal axis of the table.
• Posit the position of this point O on the axis to be uniformly distributed.
• Record whether or not subsequent points X selected on the axis in this way lie to the

left of O.

This hypothetical process generates a sequence of independent Bernoulli p-trials:

X1, X2, . . . , Xn, . . . having p ∼ Unif[0, 1].

Proceeding in this way has some immediate, but simple mathematical consequences:
if Sn = X1 + · · ·+ Xn, q = 1− p and n = a + b, then:

1. P(Sn = a) =
1

n + 1
, 0 ≤ a ≤ n (the discrete uniform prior);

2. The posterior of p given Sn = a :
(a + b + 1)!

a!b!
paqb dp;

3. P(Xn+1 = 1|Sn = a) = a+1
n+2 (Laplace’s “rule of succession”);

4. P(c, d|a, b) = (a+b+1)!
a!b! · (a+c)!(b+d)!

(a+b+c+d+1)! ·
(c+d)!

c!d! .

Fisher had no problem with this approach because Bayes was assuming the uniform
prior on p was the result of a physical mechanism, rather than the claim that it captured
the idea of a supposed state of ignorance. The point is that if the distribution of p is
uniform, then P(Sn = a) is also uniform, and Bayes argued it was this that captured
the idea of the absence of knowledge concerning the probability of the event; see [26,27]
and [28] (pp. 743–753) for further discussion. Bayes [6] (p. 393) refers to an event con-
cerning the probability of which we absolutely know nothing antecedently to any trials
made concerning it", making it clear the ignorance in question is about the probability
of the event, not the event itself. Similarly, Fisher (SMSI, p. 58) refers to the “absence of
knowledge a priori of the distribution of θ” as the precondition for the applicability of the
fiducial argument.

4.1.1. Karl Pearson Enters the Fray

However, to virtually all readers of Bayes, the subtlety of this passage from the
uniformity of the distribution of the continuous parameter p to that of the discrete parameter
a went unappreciated, and thus, there remained the nagging problem of justifying the
assumption of uniformity. Against this background, in 1920 Karl Pearson, in his paper “The

180



Mathematics 2022, 10, 1634

fundamental problem of practical statistics” in Biometrika, thought he had at last discovered
a solution to this conundrum ([29] p. 4):

 It has occurred to me that possibly the bull itself is a chimera, and there may
be no need whatever to master it. In short, is it not possible that any continuous
distribution of a priori chances would lead us equally well to the Bayes-Laplace
result? If this be so, then the main line of attack of its critics fails."
Then, after a page of dense mathematical argumentation, Pearson triumphantly con-

cluded:

 Thus it would appear that the fundamental formula of Laplace . . . in no way
depends on the equal distribution of ignorance. It is sufficient to assume any
continuous distribution–which may vary from one type of a priori probability
problem to a second."
This bold claim did not go unchallenged, and soon after, both Edgeworth [30] (pp. 82–83)

and the mathematician William Burnside [31] wrote to challenge Pearson’s bold claim.
In fact, Pearson’s assertion is obviously absurd: one need only use any mathematically
convenient prior (such as the Dirichlet) to compute the resulting posterior predictive
distribution and see it is not uniform. Therefore, what did Pearson actually discover?
Suppose:

• X is the position of the initial point O;
• F(x) = P(X ≤ x) is the CDF of X;
• F is continuous, but not necessarily uniform.

Then, as is well known, the distribution of the probability integral is uniform:
p = F(X)∼Unif[0, 1]. That is, the distribution of the chance p is still uniform even though
the location of X (the mechanism for generating it) need not be.

Karl Pearson eventually understood this crucial distinction [32,33], but only with
some help:

 I owe to Miss Ethel Newbold this insight into the exact relation between the
two hypotheses." [33] (p. 192)

4.1.2. Fisher’s Version

Fisher discusses this example in SMSI (not mentioning Pearson), playfully invoking
radioactive decay in place of Bayes’ “billiard ball”. Letting p = e−ξθ be the probability (for
some fixed θ > 0) that an atomic particle does not decay up to time ξ, Fisher [2] (p. 132)
considered the case where ξ is a multiple c of an earlier observation x, ξ = cx (so that when
c = 1, we are back in Bayes’ original setting):

 In many continental countries this distinction, which Bayes made perfectly
clear, has been overlooked, and the axiomatic approach which he rejected has
actually been taught as Bayes’ method. The example of this Section exhibits Bayes’
own method, replacing the billiard table by a radioactive source, as an apparatus
more suitable for the 20th century."

4.2. The Rule of Succession

Fisher, as a harsh critic of inverse probability, would presumably not feel kindly
towards one of its most famous applications, Laplace’s rule of succession, but somewhat
surprisingly, he effectively endorses it. In [2] (Chapter III, Section 5), Fisher contrasts three
posterior means of p:
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a
N

+
b− a
2N2 −

3(b− a)
2N3 + . . . (the fiducial approximation),

a + 1
N + 2

=
a
N

+
b− a
N2 −

2(b− a)
2N3 + . . . (arising from the flat prior),

a + 1
2

N + 1
=

a
N

+
b− a
2N2 −

(b− a)
2N3 + . . . (arising from the Jeffreys prior

1
π
√

pq
dp).

All of these agree to first order, and so, as Fisher notes, “to this extent a particular
given distribution a priori may be nearly equivalent to complete ignorance a priori”. This is
one of those places in SMSI where significant changes were made between the first and
second editions. In [3] (pp. 68–69), Fisher noted that the fiducial approximate and Jeffreys’
posterior means in fact agree to fourth (N4) order if allowance is made for the effects of the
non-normality of the binomial distribution.

Of course, given that the second and third methods closely approximate Fisher’s
fiducial approximation (approximate because the variate is discrete), he could scarcely
argue (as Venn did in the second edition of his Logic of Chance) that the answer given by the
rule of succession was absurd on its face.

4.3. Bayesian Prediction: A Conundrum

As a final example of Fisher’s discussion of predictive inference, let us turn to a curious
passage on pp. 116–117 of SMSI. Returning to the fourth and last of the mathematical
consequences of Bayes’ postulate listed earlier, Fisher observes:

 It may be noticed that the last factor in the expression developed above [pre-
dicting (c, d) from (a, b) assuming a uniform prior],

(c + d)!
c! d!

stands only for the binomial coefficients forming the last line, or base, of Fermat’s
arithmetical triangle; but

c+d

∑
c=0

(c + d)!
c! d!

pcqd

is not the only polynomial in p, q the value of which is constantly equal to unity."
Fisher then gives the following interesting diagram by way of illustration (reproduced

courtesy of University of Adelaide Library, Rare Books and Manuscripts) and comments:

 If, in fact, the triangle is extended to any chosen boundary, as for example in
the diagram, the thirteen totals outside the boundary are the coefficients ω(c, d)
of a polynomial

∑ ω(c, d)pcqd = p4 + 4p6q + 18p6q2 + . . .

of which the value is unity for all values of p.

Then, based on previous experience of a successes out of a + b, we may infer the
probability of reaching the terminal value (c, d) to be

(a + b + 1)!
a! b!

· (a + c)!(b + d)!
(a + b + c + d + 1)!

·ω(c, d),

if the subsequent trial were made with these endpoints."
What is going on here? In ordinary coin-tossing, stopping after n-tosses is a simple

stopping rule, which permits us to partition the space of outcomes into those sequences of
heads and tails that result in k heads, 0 ≤ k ≤ n. However, more generally, suppose the
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stopping rule is to stop when, as in Figure 1, one exits the area delineated by the dark line.
Then, one can again decompose the sequence of possible outcomes into those resulting in c
heads and d tails. The probability of any one such sequence is, as before,

(a + b + 1)!
a!b!

· (a + c)!(b + d)!
(a + b + c + d + 1)!

but now we have to multiple this single-path probability by the number of such paths
ω(c, d) to obtain the probability of having c heads and d tails when we stop. Since we have
to terminate in some (c, d) pair, the sum of their probabilities is one. In effect, Fisher is
calculating the consequences of a sequential stopping rule assuming Bayes’ postulate.

Figure 1. The arithmetical triangle extended.

4.4. Fiducial Prediction

Of course, having first considered Bayesian prediction, it was only to be expected
Fisher would also discuss prediction from the fiducial standpoint as well (Section 5.3).
Suppose that for j = 1, 2 that Xj is the sum of Nj independent exponentials (parameter θ).
Then, Xj ∼ Γ(Nj, θ), and one has the “pivotal” quantity:

χ2
2Nj

= 2θXj.

The fiducial distribution of θ given X1 is Γ(N1, X1); that is, it has density:

xN1
1

(N1 − 1)!
θN1−1e−x1θdθ.

The predictive distribution of X2 given X1 therefore has density:

f (X2|X1) =
N1 + N2 − 1)!

(N1 − 1)!(N2 − 1)!
· XN1

1 XN2−1
2

(X1 + X2)N1+N2
.

Suppose that θ has an initial distribution given the Jeffreys’ prior dθ/θ. Then, as Fisher
notes, the posterior distribution of θ given X1 is the same as the fiducial distribution given by
Fisher. Therefore, once again, the Fisher and Jeffreys’ approaches arrive at similar (here, in
fact, identical) conclusions. However, Fisher had much earlier [12] rejected the use of this
improper Jeffreys’ prior.

Predictive fiducial inference in the case of the normal distribution had been considered
much earlier in [34] and was discussed by him at length in [2] (Section 5.4).
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4.5. Are Fiducial Probabilities Verifiable?

At the end of his discussion of fiducial prediction for exponential variates, Fisher
remarks [2] (p. 118):

 Such fiducial probability statements about future observations are verifiable
by subsequent observations to any degree of position required."
Fisher’s comment is readily understood in the case of this particular example, because

the ratio (N1X2)/(N2X1) has an F distribution on N2, N1 degrees of freedom. For example,
if N1 = N2 = 10, then P(X2/X1 < 2) = 0.8552, and the prediction that the observed
value of X2 will be less than twice the observed value of X1 exactly 86% of the time can be
directly verified.

Fisher’s more sweeping statement, however, that fiducial probabilities are in gen-
eral verifiable, made both elsewhere in [2] (pp. 62 and 70) and on other occasions (as
in his correspondence with Tukey; see [22] (pp. 221–231)), led to considerable mystifi-
cation. When asked by Tukey about the case of the Behrens–Fisher distribution, Fisher
justified his claim by pointing to the distributions of the two t-statistics entering into the
calculation [22] (p. 230)); this suggests that what Fisher had in mind was the use of pivotals
as building blocks in arriving at the final probability, but hardly answered Tukey’s question.

5. The Fiducial Argument Revisited

The fiducial argument as presented in SMSI both differs from and expands on Fisher’s
earlier prewar views in several important ways and is related to his changing views
about Bayes.

5.1. The Logical Status of the Fiducial Distribution

In 1930, Fisher wrote that fiducial and Bayesian posterior distributions differed not
only numerically, but also in their logical meaning. A quarter of a century later, Fisher no
longer believed this, writing in [2] (p. 59):

 It is essential to introduce the absence of knowledge a priori as a distinctive
datum in order to demonstrate completely the applicability of the fiducial method
of reasoning to the particular and real experimental cases for which it was devel-
oped. This last point I failed to perceive when, in 1930, I first put forward the
fiducial argument for calculating probabilities. For a time this led me to think that
there was a difference in logical content between probability statements derived
by different methods of reasoning. They are in reality no grounds for any such
distinction. This contradicts Fisher’s later statement in [2] (p. 105) that he had
simply failed to make clear the need for this “distinctive datum” in his 1930
paper (scarcely credible given essentially the same language appears in two later
papers, [12,34]), and then compounded this by going on to criticize Neyman and
Pearson for not perceiving its necessity at the time."
This shift did not occur for some time: in two papers written shortly after, Fisher

reprised the fiducial argument, using the examples of estimating the variance σ2 by s2 ([12])
and μ using t ([34]) in the case of the normal distribution, in terms virtually identical to
those in his 1930 paper. (In his 1935 paper, Fisher added the caveat that “the statistics used
contain the whole of the relevant information which the sample provides.” This reflected
what he regarded as an important distinction between Neyman’s confidence intervals
and a fiducial distribution.) Indeed, as late as 1940, in an exchange of letters with the
French mathematician Maurice René Fréchet (1878–1973), Fisher sent Fréchet a copy of his
1930 paper as representative of his current views on the fiducial argument and specifically
reiterated that “statements of fiducial probability have a logical content different from the
more familiar statements of inverse probability” ([22] p. 121).
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5.2. Is T Fixed?

The logical status of the fiducial distribution was closely related to the observed value
of the statistic T. Initially, Fisher did not view T as fixed. In his 1940 correspondence with
Fréchet, Fisher was very clear on this:

 For the population of cases relative to which a fiducial probability is defined,
the value of any relevant statistic T is not regarded as fixed. This I have deliber-
ately exerted myself to make clear since my first writings on the subject. . .

I shall be glad to give you all possible support in dissuading mathematicians from
thinking that they can obtain a true probability statement logically equivalent to
one of the kind aimed at by Bayes’ theorem, yet without using the approximate
basis of this theorem. Believe me, I have never attempted anything so foolish.
The inferences which can be drawn without the aid of Bayes’ axiom seem to me of
great importance, and quite precisely defined, but are certainly not statements of
the distribution of a parameter θ over its possible values in a population defined
by random samples selected to give a fixed estimate T." [22] (p. 124)

Later, Fisher changed his mind on this. Initially, he apparently thought the matter so
obvious he did not think through the matter carefully, writing in his 1955 paper that first
accepting a symbolic statement such as:

Pr{(x̄− ts) < μ < (x̄ + ts)} = α,

but then, after substituting observed values of x̄ and s, proceeding to reject the resulting
numerical statement, say:

Pr{92.99 < μ < 93.01} = 95 per cent.,

was to violate “the principles of deductive logic”, denying  the syllogistic process of
making a substitution in the major premise of terms which the minor premise establishes
as equivalent". This was an embarrassing gaffe: it is trivial to think of counterexamples
where such a substitution is invalid. For example, if a < b < c < d and X, Y are independent
random variables such that

P(X = a) = P(X = d) = P(Y = b) = P(Y = c) =
1
2

,

then
P(Y > X) =

1
2

, but P(Y > a) = 1 and P(Y > d) = 0.

Neyman of course pounced on this in a response, and it is surely significant that
Fisher never again used this argument. Instead, he conceded (in SMSI, p. 57) there was a
legitimate issue:

 The applicability of the probability distribution to the particular unknown
value of θ sought by an experimenter, without knowledge a priori, on the basis
of the particular value of T given by his experiment, has been disputed, and
certainly deserves to be examined."
In doing so, Fisher came up with an interesting and much more defensible (if ultimately

still flawed) defense.

5.3. Recognizable Subsets

This invoked the concept of a recognizable subset. The simple illustrative example
invoked by Fisher was that of tossing a die, and the question was the justification for
identifying the relative frequency of, say, an ace in a long sequence of trials with the
probability of obtaining an ace in a single toss. Fisher argued [2] (p. 35):
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 Before the limiting ratio of the whole set can be accepted as applicable to
particular throw, a second condition must be satisfied, namely that no [subset
having a different limiting ratio] can be recognized. This is a necessary and
sufficient condition for the applicability of the limiting ratio of the entire aggregate
of possible future throws as the probability of any one particular throw. On this
condition we may think of a particular throw, or succession of throws, as a random
sample from the aggregate, which is in this sense subjectively homogeneous and
without recognizable stratification (There is an obvious and close connection
here with Richard von Mises’s concept of a kollektiv, with its twin assumptions of
the existence of a limiting frequency (Fisher’s first condition) and its invariance
under place selection (Fisher’s second condition). Note however the two concepts
serve very different purposes. von Mises denied the existence of single-case
probabilities; the kollektiv was designed instead to give a formal mathematical
definition of random sequence, and the absence of place selections with differing
limiting frequencies was what characterized randomness. For Fisher in contrast
the absence of recognizable subsets permitted the identification of the class
frequency with the probability of the individual. For Fisher’s views on infinite
populations and continuous variates as convenient fictions, see [2] (pp. 35 and
114). He was never a frequentist in the von Mises sense)."
Somewhat surprisingly, Fisher went on to write [2] (p. 33):

 This fundamental requirement for the applicability to individual cases of the
concept of classical probability shows clearly the role of subjective ignorance, as
well as that of objective knowledge in a typical probability statement."
The knowledge here is that of a “well-defined” population having a known limiting

frequency ratio; the ignorance is our “inability to discriminate any of the different sub-
aggregates having different limiting frequency ratios”. There are obvious connections here
to de Finetti’s concept of exchangeability (see [35] for an interesting discussion) and more
generally subjective Bayesianism (so much so that Fisher appears to have regretted his
wording here, and in the third edition of SMSI, “subjective” and “objective” were changed
to “well-specified” and “specific”).

5.4. Recognizability and Fiducial Inference

In general, whether recognizable subsets exist in any specific setting is ultimately
a matter of judgment, but in the specific setting of statistical estimation, their existence
is a matter of mathematical fact. For the basic example of the t and the probability of
the inequality:

μ < x̄− 1√
N

ts,

Fisher asserted [2] (p. 84):

 The reference set for which this probability statement holds is that of the
values of μ, x̄, and s corresponding to the same sample, for all samples of a
given size of all normal populations. Since x̄ and s are jointly Sufficient for
estimation, and knowledge of μ and σ a priori is absent, there is no possibility of
recognizing any sub-set of cases, within the general set, for which any different
value of the probability should hold. The unknown parameter μ has therefore
a frequency distribution a posteriori defined by Student’s distribution (Contrast
this with Fisher’s discussion on pp. 61–62, where he advances a different, equally
lapidary justification (“in the absence of a prior distribution of population values
there is no meaning to be attached to the demand for calculating the results of
random sampling among populations, and it is just this absence which completes
the demonstration”). Savage [36] (p. 476), quoting at length from the passage
containing this statement, refers to it as illustrating “Fisher’s dogged blindness
about it all”)."
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No proof of this bold statement on Fisher’s part was ever given however; presumably,
he thought it so obvious as not to require one. Unfortunately for this approach, however,
and somewhat surprisingly, recognizable subsets with variable frequencies do exist in
the case of the t; see [37–39]. One cannot make the Bayesian omelet without breaking the
Bayesian eggs.

5.5. Fiducial Reprise

Fisher’s original fiducial construct gave a general method for constructing confidence
intervals in the continuous one-dimensional case. This indeed had a logical content entirely
different from that of a Bayesian prior. However, over time, the fiducial distribution—
initially so carefully yoked to a pure sampling theory interpretation—began to suffer from
mission creep. In 1934, after Neyman had advanced a more general theory of confidence
intervals for the multi-parameter case, Fisher added the requirement that the statistics
employed in a fiducial argument had to be exhaustive, even though this property did
not enter into the logic of his 1930 paper. Later, Fisher attempted to extend the fiducial
argument to the multi-parameter case, but could only accomplish this by approaches in
which the original sampling interpretation had to be jettisoned.

At the same time—despite his protestations to Fréchet in 1940—Fisher began to write
more and more in conditional rather than unconditional terms, culminating in his appeal
in 1956 to the absence of recognizable subsets. However, this meant fiducial distributions
could not co-exist with Bayesian posterior distributions, since the existence of a Bayesian
prior meant recognizable sets with differing relative frequencies might exist. The basic
requirement for using the fiducial argument it turned out was an absence of knowledge
about the underlying parameters. However, why the absence of knowledge ensured the
absence of such sets was never explained—just asserted—and in the case of the t, in fact,
turned out to be false.

5.6. Aftermath

From 1956, when SMSI appeared, until his death in 1962, Fisher’s book generated
considerable controversy. One instance of particular interest is Lindley’s review of the
book in the journal Heredity [40], because it sheds some further light on Fisher’s attitude
towards Bayes.

George Barnard later reported [41] (p. 184) that Fisher “had been much upset” by
Lindley’s review, as well he might: Lindley, who was by then a prominent Bayesian, was
highly critical of the book, beginning with what he described as a mathematical criticism,
which “demonstrates that an error has been made”, followed by “other criticisms which are
far more matters of opinion”. Fisher of course would not have cared about the criticisms
that were matters of opinion, but the charge of an outright mathematical error was quite
another matter. Fisher had asserted that the concept of probability involved in the fiducial
argument was “entirely identical with the classical probability of the early writers, such as
Bayes” (SMSI, p. 54). Lindley gave an example to show that this could not be the case.

Here is Lindley’s example, interesting precisely because it is so simple. Consider the
family of probability densities in x:

θ2

θ + 1
(x + 1)e−xθ (x ≥ 0, θ > 0).

Given one or more observations drawn from such a population, their sum is a sufficient
statistic for θ. In particular, given two independent observations x, y, let θxy denote the
result of using x to generate a fiducial distribution for θ, which one then in turn uses as
a Bayesian prior to generate a posterior distribution for θ using the other observation y.
Then, a trite calculation [42] shows that the result depends on the order in which the two
observations are used: θxy �= θyx, and both differ from the fiducial distribution ψ generated
by using x and y simultaneously. If fiducial probabilities were ordinary probabilities, how
could this be? Why should the order matter?
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Fisher clearly found Lindley’s example vexing. In both a letter to George Barnard
dated 27 February 1958 (quoted in [41]) and a paper two years later, Fisher interpreted
Lindley as criticizing a particular example in [2] (Chapter V, Section 6) “Observations of
two kinds”, the version of Bayes’ calculation “more suitable for the 20th century” discussed
earlier, in which a continuous time is combined with a discrete count (while in Lindley’s
examples, the two successive observations were of the same type). This was to completely
miss Lindley’s point, which was not the particular example or the method endorsed by
Fisher of combining the two observations, but the much more general issue of the lack of
consistency if probabilities generated by the fiducial argument were really probabilities in
the classical sense. Fisher added in his letter to Barnard:

 In fact, the more I consider it, the more clearly it would appear that I have
been doing almost exactly what Bayes had done in the 18th century. As Lindley
purports to be a protagonist of Bayes, it seems that his misunderstanding and
confusion goes deeper than anyone could imagine."
As Barnard notes, in his response to Fisher, his own confusion was “hardly less than

Lindley’s” and “led to an acrimonious encounter between Fisher and myself at a conference
later that year”.

Here, Fisher has in some ways come almost full circle, in effect defending his example
because of its agreement with Bayes’ own approach. Of the many other contemporaneous
critiques of Fisher’s defense of fiducial inference in SMSI and other papers from this period,
three of particular note are [43–45].

6. Conclusions

From relatively early on in his career, Fisher was a dedicated opponent of “inverse
probability”. This was certainly a matter of principle with him, but his vehemence may
also have been spurred on by what he regarded as Karl Pearson’s springing on him an
unwarranted criticism of an important part of his famous 1915 paper on the correlation
coefficient. However, it is difficult to replace something by nothing, and Fisher would
certainly have recognized the unsatisfactory state of affairs arising from abandoning the
Bayesian position without having an adequate alternative ready at hand.

Fisher later thought he had discovered such an alternative in 1930 in the guise of
fiducial inference. However, the happy accident that in the case of a single parameter,
fiducial percentiles can be spliced together to form a distribution function in the purely
mathematical sense (that is, a function increasing from 0 to 1) led him to regard this
construct as a viable and principled probabilistic replacement for a Bayesian posterior
distribution. His inability to extend this construction to the multi-parameter setting in a
way that won general acceptance never caused him to waver from this view. See [46] for
an outstanding discussion of the complexities that arise in the case of the Behrens–Fisher
problem, estimating a difference of means drawn from two normal populations having
possibly different variances.

However, Fisher’s evolving view of fiducial inference, one which downplayed its
sampling theory origins, led him to view the Bayesian and fiducial approaches as viable
alternatives based on qualitatively different states of knowledge, and this appears to have
led him to view Bayes’ original paper with increasing appreciation (Bayes’ “mathematical
contributions to the Philosophical Transactions show him to have been in the first rank of in-
dependent thinkers, very well qualified to attempt the really revolutionary task opened out
by his posthumous paper” (SMSI, p. 8)). His last book on statistical methods and scientific
inference, although controversial in many of its pronouncements, makes for fascinating
reading, in part because of its discussion of prediction, contrasting and developing the
Bayesian and fiducial approaches.

Note: There were three editions of Statistical Methods and Scientific Inference: 1956, 1959,
and 1973 [2–5]. Page references in this paper are to the 3rd edition, as being the most
available (in the 1990 Bennett reprint). Where there are differences between editions in
a passage being cited, this is noted. Sometimes the changes between editions consisted
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of additional material being inserted (as in Fisher’s discussion of the rule of succession
in the 2nd edition or Todhunter in the 3rd); and sometimes subtle changes that can only
be easily identified by a change to a lighter typeface (for an interesting example of the
latter, see [28] p. 380). In the 3rd, posthumous edition the changes were based on material
Fisher “had entered in his interleaved copy of the book for this purpose sometime before
his death” (p. v).
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