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Editorial

Symmetry in Quantum Theory of Gravity

Chris Fields

23 Rue des Lavandières, 11160 Caunes Minervois, France; fieldsres@gmail.com; Tel.: +33-(0)6-44-20-68-69

Nicolas Gisin [1,2] has emphasized that, prior to Einstein’s imposition of a finite
speed of light, and hence of information, in the Special Theory of Relativity, physics was
nonlocal. While Newton was, as Gisin points out, rather unhappy with this situation,
pre-relativistic classical physics was a physics of “instantaneous” (prior to Cantor, this
must be considered an informal notion) interactions across arbitrary distances. Spacetime
in this classical setting was merely a container; indeed, it was merely a set of labels. The
gravitational and, later, electromagnetic interactions operating in this classical container
were, moreover, in principle completely deterministic. Indeed, Tipler [3] has shown that
this Laplacian, globally deterministic classical theory is equivalent to quantum theory in
its Bohmian representation. Classical physics is not, of course, globally deterministic in
the classroom or in practice; classical interactions are typically represented as occurring
on isolated billiard tables or in isolated solar systems. It is the sigularities created by
assumptions of isolation—effectively, screening of all exterior forces—that are removed by
adding a Bohmian “quantum” potential to classical physics.

What, then, is the relationship between classical and quantum physics? How does this
relationship depend on assumptions of locality or isolation? The difficulty of obtaining a
satisfactory quantum theory of gravity is often attributed to a fundamental conflict between
the demands of covariance and those of unitarity, as illustrated, for example, by discussions
of the black hole information paradox [4–10]. These, as well as [3], suggest, however, that
what is fundamentally at stake is the relation between classical and quantum information, or
in more operational (or indeed philosophical) language, the relation between observational
outcomes and the physics that they describe. Observational outcomes always characterize
particular physical systems; hence this question can be rephrased as the question of whether
“systems” can be considered to be both local and observer-independent.

The papers in this Special Issue all address some aspect of this latter question. The
first, by Y.-Q. Gu, continues the author’s previous efforts [11] to develop a fully “realist”
representation—with observer-independent space and time coordinates—of spacetime
that is consistent with GR by deriving a representation for the spinor connection within
such a spacetime [12]. The treatment is fully geometric, employing the formalism of
Clifford algebra to represent both the spinor and the spacetime. Gu suggests that, in these
coordinates, the (global) cosmological constant is reproduced by the self-interaction of the
(global) spinor field.

The second paper, by Illuminati, Lambiasi, and Petruzziello, extends previous work [13]
on the breaking of Lorentz symmetry that results when the Heisenberg uncertainty principle is
generalized to account for the effects of long-range spacetime curvature on locally-observable
momenta [14]. This symmetry breaking is shown to be equivalent to one generated by a
string-theoretic extension of the standard model. They provide an improved theoretical bound
on the strength of this symmetry breaking, but note that this bound is still much larger than
values that near-Earth observations might be expected to yield.

The paper of Moradpour, Aghababaei, and Ziaie examines the effects of generalizing
the uncertainty principle from a different perspective, computing the behavior of both the
Maxwell–Boltzmann distribution and its relativistic extension, the Jüttner distribution, as
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the long-range curvature effects are increased [15]. As expected, long-range corrections
have a smaller effect on the Jüttner distribution; however, and consistent with the above,
they remain far outside the bounds of current observational capabilities.

The paper of Kaparulin, Lyakhovich, and Nosyrev extends previous work [16] that
seeks to achieve both stability and gauge invariance in higher-order (extended Cherns-
Simons) theories with n-particle interactions [17]. Its key result is that achieving both
stability and gauge invariance requires introducing a further “gauging field” that deforms
the equations of motion. This additional field is interpreted as a “Higgs-like” mechanism
that maintains on-shell masses.

Jack Ng’s paper applies a previously developed heuristic model of spacetime foam
that is compliant with the holographic principle [18] to characterize the accelerating regimes
of the early (i.e., inflationary) and late (i.e., dark energy-dominated) universe [19]. Ng
equates the “quanta” of spacetime foam with holographically encoded bits of informa-
tion, and shows that these quanta must be distinguishable—i.e., must collectively encode
macroscopic, multibit information—to generate a macroscopic spacetime. He suggests that
“ordinary” bosons and fermions can be considered collective modes of these foam quanta.

The final paper, by Fields, Glazebrook, and Marcianò, develops some consequences
of a previous [20] generalization of the holographic principle to arbitrary pairs of finite
quantum systems in the weak interaction limit [21]. We provide formal criteria under which
arbitrary interactions can be regarded as “measurements” that deploy defined quantum
reference frames (QRFs) [22], and show that such interactions induce decoherent sectors
on the holographic screen separating the interacting systems. We also show that joint-
state separability breaks down as the QRFs deployed by the interacting systems approach
functional equivalence.

While the papers collected here do not, and could not be expected to, reach a consensus
on the path forward toward a satisfactory quantum theory of gravity, they do share a
common theme: that nonlocality must be built somehow into coordinate systems (Gu),
measurement uncertainties (Illuminati et al., Moradpour et al.), ancillary fields (Kaparulin
et al.), underlying fundamental quanta (Ng) or the notion of “system” itself (Fields et al.).
They thus contribute to the growing body of evidence that a local theory of observation,
i.e., of classical information exchange, does not require, and may indeed be inconsistent
with, a local theory of physics.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GR General relativity
QRF Quantum reference frame
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Abstract: By means of Clifford Algebra, a unified language and tool to describe the rules of nature,
this paper systematically discusses the dynamics and properties of spinor fields in curved space-time,
such as the decomposition of the spinor connection, the classical approximation of the Dirac equation,
the energy-momentum tensor of spinors and so on. To split the spinor connection into the Keller
connection Υμ ∈ Λ1 and the pseudo-vector potential Ωμ ∈ Λ3 not only makes the calculation simpler,
but also highlights their different physical meanings. The representation of the new spinor connection
is dependent only on the metric, but not on the Dirac matrix. Only in the new form of connection
can we clearly define the classical concepts for the spinor field and then derive its complete classical
dynamics, that is, Newton’s second law of particles. To study the interaction between space-time
and fermion, we need an explicit form of the energy-momentum tensor of spinor fields; however,
the energy-momentum tensor is closely related to the tetrad, and the tetrad cannot be uniquely
determined by the metric. This uncertainty increases the difficulty of deriving rigorous expression.
In this paper, through a specific representation of tetrad, we derive the concrete energy-momentum
tensor and its classical approximation. In the derivation of energy-momentum tensor, we obtain a
spinor coefficient table Sμν

ab , which plays an important role in the interaction between spinor and
gravity. From this paper we find that Clifford algebra has irreplaceable advantages in the study of
geometry and physics.

Keywords: Clifford algebra; tetrad; spinor connection; natural coordinate system; energy-momentum
tensor; local Lorentz transformation; spin-gravity interaction

PACS: 04.20.Cv; 04.20.-q; 04.20.Fy; 11.10.Ef; 11.10.-z

1. Introduction

The Dirac equation for spinor is a magic equation, which includes many secrets of
nature. The interaction between spinors and gravity is the most complicated and subtle
interaction in the universe, which involves the basic problem of a unified quantum theory
and general relativity. The spinor connection has been constructed and researched in many
works [1–5]. The spinor field is used to explain the accelerating expansion of the universe
and dark matter and dark energy [6–11]. In the previous works, we usually used spinor
covariant derivative directly, in which the spinor connection takes a compact form and its
physical meaning becomes ambiguous. In this paper, by means of Clifford algebra, we split
the spinor connection into geometrical and dynamical parts (Υμ, Ωμ), respectively [12].
This form of connection is determined by metric, independent of Dirac matrices. Only
in this representation, we can clearly define classical concepts such as coordinate, speed,
momentum and spin for a spinor, and then derive the classical mechanics in detail. Υμ ∈ Λ1

only corresponds to the geometrical calculations, but Ωμ ∈ Λ3 leads to dynamical effects.
Ωμ couples with the spin Sμ of a spinor, which provides location and navigation functions
for a spinor with little energy. This term is also related with the origin of the magnetic field
of a celestial body [12]. So this form of connection is helpful in understanding the subtle
relation between spinor and space-time.

The classical theory for a spinor moving in gravitational field is firstly studied by
Mathisson [13], and then developed by Papapetrou [14] and Dixon [15]. A detailed deriva-
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tion can be found in [16]. By the commutator of the covariant derivative of the spinor
[∇α,∇β], we obtain an extra approximate acceleration of the spinor as follows

aα(xμ) = − h̄
4m

Rαβγδ(xμ)uβ(xμ)Sγδ(xμ), (1)

where Rαβγδ is the Riemann curvature, uα 4-vector speed and Sγδ the half commutator of
the Dirac matrices.

Equation (1) leads to the violation of Einstein’s equivalence principle. This problem
was discussed by many authors [16–23]. In [17], the exact Cini–Touschek transforma-
tion and the ultra-relativistic limit of the fermion theory were derived, but the Foldy–
Wouthuysen transformation is not uniquely defined. The following calculations also show
that the usual covariant derivative ∇μ includes cross terms, which is not parallel to the
speed uμ of the spinor.

To study the coupling effect of spinor and space-time, we need the energy-momentum
tensor (EMT) of spinor in curved space-time. The interaction of spinor and gravity is
considered by H. Weyl as early as in 1929 [24]. There are some approaches to the general
expression of EMT of spinors in curved space-time [4,8,25,26]; however, the formalisms are
usually quite complicated for practical calculation and different from each other. In [6–9,11],
the space-time is usually Friedmann–Lemaitre–Robertson–Walker type with diagonal met-
ric. The energy-momentum tensor Tμν of spinors can be directly derived from Lagrangian
of the spinor field in this case. In [4,25], according to the Pauli’s theorem

δγα =
1
2

γβδgαβ + [γα, M], (2)

where M is a traceless matrix related to the frame transformation, the EMT for Dirac spinor
φ was derived as follows,

Tμν =
1
2
�〈φ† (γμi∇ν + γνi∇μ)φ〉, (3)

where φ† = φ+γ is the Dirac conjugation, ∇μ is the usual covariant derivatives for spinor.
A detailed calculation for variation of action was performed in [8], and the results were a
little different from (2) and (3).

The following calculation shows that, M is still related with δgμν, and provides
nonzero contribution to Tμν in general cases. The exact form of EMT is much more complex
than (3), which includes some important effects overlooked previously. The covariant
derivatives operator i∇μ for spinor includes components in grade-3 Clifford algebra Λ3,
which is not parallel to the classical momentum pμ ∈ Λ1. The derivation of rigorous Tμν is
quite difficult due to non-uniqueness representation and complicated formalism of vierbein
or tetrad frames. In this paper, we provide a systematical and detailed calculation for EMT
of spinors. We clearly establish the relations between tetrad and metric at first, and then
solve the Euler derivatives with respect to gμν to obtain an explicit and rigorous form
of Tμν.

From the results we find some new and interesting conclusions. Besides the usual
kinetic energy momentum term, we find three kinds of other additional terms in EMT of
bispinor. One is the self interactive potential, which acts like negative pressure. The other
reflects the interaction of momentum pμ with tetrad, which vanishes in classical approxima-
tion. The third is the spin-gravity coupling term ΩαSα, which is a higher-order infinitesimal
in weak field, but becomes important in a neutron star. All these results are based on Clif-
ford algebra decomposition of usual spin connection Γμ into geometrical part Υμ and
dynamical part Ωμ, which not only makes calculation simpler, but also highlights their
different physical meanings. In the calculation of tetrad formalism, we find a new spinor
coefficient table Sμν

ab , which plays an important role in the interaction of spinor with gravity
and appears in many places.
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This paper is an improvement and synthesis of the previous works arXiv:gr-qc/0610001
and arXiv:gr-qc/0612106. The materials in this paper are organized as follows: In the next
section, we specify notations and conventions used in the paper, and derive the spinor
connections in form of Clifford algebra. In Section 3, we set up the relations between
tetrad and metric, which is the technical foundations of classical approximation of Dirac
equation and EMT of spinor. We derive the classical approximation of spinor theory in
Section 4, and then calculate the EMT in Section 5. We provide some simple discussions in
the last section.

2. Simplification of the Spinor Connection

Clifford algebra is a unified language and efficient tool for physics. The variables and
equations expressed by Clifford algebra have a neat and elegant form, and the calculation
has a standard but simple procedure [12]. At first we introduce some notations and
conventions used in this paper. We take h̄ = c = 1 as units. The element of space-time is
described by

dx = γμdxμ = γμdxμ = γaδXa = γaδXa, (4)

in which γa stands for tetrad, and γa for co-frame, which satisfies the following C�1,3
Clifford algebra,

γaγb + γbγa = 2ηab, γμγν + γνγμ = 2gμν, (5)

γμ = f a
μ γa, γμ = f μ

aγa, ηab = diag(1,−1,−1,−1). (6)

The relation between the local frame coefficient ( f μ
a, f a

μ ) and metric is given by

f a
μ f μ

b = δa
b , f a

μ f ν
a = δν

μ, f μ
a f ν

bηab = gμν, f a
μ f b

ν ηab = gμν. (7)

We use the Latin characters (a, b ∈ {0, 1, 2, 3}) for the Minkowski indices, Greek
characters (μ, ν ∈ {0, 1, 2, 3}) for the curvilinear indices, and (j, k, l, m, n ∈ {1, 2, 3}) for
spatial indices. For local frame coefficient in matrix form ( f a

μ ) and ( f μ
a), the curvilinear

index μ is row index and Minkowski index a is column index. The Pauli and Dirac matrices
in Minkowski space-time are given by

σa ≡
{(

1 0
0 1

)
,
(

0 1
1 0

)
,
(

0 −i
i 0

)
,
(

1 0
0 −1

)}
, (8)

σ̃a ≡ (σ0,−�σ), �σ = (σ1, σ2, σ3), (9)

γa ≡
(

0 σ̃a

σa 0

)
, γ5 =

(
I 0
0 −I

)
. (10)

Since the Clifford algebra is isomorphic to the matrix algebra, we need not distinguish
tetrad γa and matrix γa in algebraic calculation.

There are several definitions for Clifford algebra [27,28]. Clifford algebra is also called
geometric algebra. If the definition is directly related to geometric concepts, it will bring
great convenience to the study and research of geometry [12,29].

Definition 1. Assume the element of an n = p + q dimensional space-time Mp,q over R is given
by (4). The space-time is endowed with distance ds = |dx| and oriented volumes dVk calculated by

dx2 =
1
2
(γμγν + γνγμ)dxμdxν = gμνdxμdxν = ηabδXaδXb, (11)

dVk = dx1 ∧ dx2 ∧ · · · ∧ dxk = γμν···ωdxμ
1 dxν

2 · · · dxω
k , (1 ≤ k ≤ n), (12)

7
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in which the Minkowski metric (ηab) = diag(Ip,−Iq), and Grassmann basis γμν···ω = γμ ∧ γν ∧
· · · ∧ γω ∈ ΛkMp,q. Then the following number with basis

C = c0 I + cμγμ + cμνγμν + · · ·+ c12···nγ12···n, (∀ck ∈ R) (13)

together with multiplication rule of basis given in (11) and associativity define the 2n-dimensional
real universal Clifford algebra C�p,q.

The geometrical meanings of elements dx, dy, dx ∧ dy are shown in Figure 1.

Figure 1. Geometric meaning of vectors dx, dy and dx ∧ dy.

Figure 1 shows that the exterior product is oriented volume of the parallel polyhedron
of the line element vectors, and the Grassmann basis γab···c is just the orthonormal basis of
k-dimensional volume. Since the length of a line element and the volumes of each grade
constitute the fundamental contents of geometry, the Grassmann basis set becomes units to
represent various geometric and physical quantities, which are special kinds of tensors.

By straightforward calculation we have [5,12,29]

Theorem 1. For C�1,3, we have the following useful relations

I, γa, γab = i
2 εabcdγcdγ5, γabc = iεabcdγdγ5, γ0123 = −iγ5. (14)

γμγν = gμν + γμν, γμνγω = γμgνω − γνgμω + γμνω. (15)

The above theorem provides several often used relations between the Clifford products
and the Grassmann products. Since the calculations of geometric and physical quantities are
mostly in the form of Clifford products, but only by expressing these forms as Grassmann
products, their geometric and physical significance is clear. Thus the above transformation
relations become fundamental and important.

For Dirac equation in curved space-time without torsion, we have [1–4,30],

γμ(i∇μ − eAμ)φ = mφ, ∇μφ = (∂μ + Γμ)φ, (16)

in which the spinor connection is given by

Γμ ≡ 1
4

γνγν
;μ =

1
4

γνγν;μ =
1
4

γν(∂μγν − Γα
μνγα). (17)

8
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The total spinor connection γμΓμ ∈ Λ1 ∪ Λ3. Clearly, γμΓμ is a Clifford product,
and its geometric and physical significance is unclear. Only by projecting it onto the
Grassmann basis γa and γabc, its geometric and physical meanings become clear [12].

Theorem 2. Dirac equation (16) can be rewritten in the following Hermitian form

(αμ p̂μ − SμΩμ)φ = mγ0φ, (18)

in which αμ is current operator, p̂μ momentum and Sμ spin operator,

αμ = diag(σμ, σ̃μ), p̂μ = i(∂μ + Υμ)− eAμ, Sμ =
1
2

diag(σμ,−σ̃μ), (19)

where Υμ is Keller connection and Ωμ Gu–Nester potential, they are respectively defined as

Υν ≡ 1
2

f μ
a(∂ν f a

μ − ∂μ f a
ν ) =

1
2

[
∂ν(ln

√
g)− f μ

a∂μ f a
ν

]
, (20)

Ωα ≡ 1
2

f α
d f μ

a f ν
b∂μ f e

ν εabcdηce =
1

4
√

g
εαμνωηab f a

ω (∂μ f b
ν − ∂ν f b

μ ). (21)

Proof. By (14) and (15), we have the following Clifford calculus

γμΓμ =
1
4

γμγν(∂μγν − Γα
μνγα) =

1
4
(gμν + γμν)(∂μγν − Γα

μνγα)

=
1
4
(γ

μ
;μ + γμν∂μγν) =

1
4
(∂μγμ + ∂μ ln(

√
g)γμ) +

1
4

f μ
a f ν

b∂μ f c
ν γabγc

=
1
4
[γa∂μ f μ

a + ( f ν
a∂μ f a

ν )γμ] +
1
4

f μ
a f ν

b∂μ f d
ν γabγcηcd

=
1
4

f μ
aγν(−∂μ f a

ν + ∂ν f a
μ ) +

1
4

f μ
a f ν

b∂μ f d
ν (ηbcγa − ηacγb + γabc)ηcd

=
1
2

f μ
aγν(∂ν f a

μ − ∂μ f a
ν ) +

1
4

f μ
a f ν

b∂μ f e
ν γabcηce

= Υμγμ +
i
2

Ωαγαγ5. (22)

Substituting it into (16) and multiplying the equation by γ0, we prove the theorem.

The following discussion shows that Υμ and Ωμ have different physical meanings.
∂μ + Υμ as a whole operator is similar to the covariant derivatives ∇μ for vector, it only
has a geometrical effect; however, Ωμ couples with the spin of a particle and leads to the
magnetic field of a celestial body [12]. Ωμ ≡ 0 is a necessary condition for the metric to be
diagonalized. If the gravitational field is generated by a rotating ball, the corresponding
metric, similar to the Kerr one, cannot be diagonalized. In this case, the spin-gravity
coupling term has a non-zero coupling effect.

In axisymmetric and asymptotically flat space-time we have the line element in quasi-
spherical coordinate system [31]

dx = γ0
√

U(dt + Wdϕ) +
√

V(γ1dr + γ2rdθ) + γ3
√

U−1r sin θdϕ, (23)

dx2 = U(dt + Wdϕ) 2 − V(dr2 + r2dθ2)− U−1r2 sin2 θdϕ2, (24)

in which (U, V, W) is just functions of (r, θ). As r → ∞ we have

U → 1 − 2m
r

, W → 4L
r

sin2 θ, V → 1 +
2m
r

, (25)

9
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where (m, L) are mass and angular momentum of the star, respectively. For common stars
and planets we always have r � m � L. For example, we have m=̇3 km for the sun.
The nonzero tetrad coefficients of metric (23) are given by⎧⎨⎩ f 0

t =
√

U, f 1
r =

√
V, f 2

θ = r
√

V, f 3
ϕ = r sin θ√

U
, f 0

ϕ =
√

UW,

f t
0 = 1√

U
, f r

1 = 1√
V

, f θ
2 = 1

r
√

V
, f ϕ

3 =
√

U
r sin θ , f t

3 = −√
UW

r sin θ .
(26)

Substituting (26) into (21) or the following (54), we obtain

Ωα = f t
0 f r

1 f θ
2 f ϕ

3(0, ∂θ gtϕ,−∂rgtϕ, 0)

=
(

Vr2 sin θ
)−1

(0, ∂θ(UW),−∂r(UW), 0)

→ 4L
r4 (0, 2r cos θ, sin θ, 0). (27)

By (27) we find that the intensity of Ωα is proportional to the angular momentum of
the star, and its force line is given by

dxμ

ds
= Ωμ ⇒ dr

dθ
=

2r cos θ

sin θ
⇔ r = R sin2 θ. (28)

Equation (28) shows that, the force lines of Ωα is just the magnetic lines of a magnetic
dipole. According to the above results, we know that the spin-gravity coupling potential of
charged particles will certainly induce a macroscopic dipolar magnetic field for a star, and it
should be approximately in accordance with the Schuster–Wilson–Blackett relation [12].

For diagonal metric

gμν = diag(N2
0 ,−N2

1 ,−N2
2 ,−N2

3 ),
√

g = N0N1N2N3, (29)

where Nμ = Nμ(xα), we have Ωμ ≡ 0 and

γμ =

(
γ0

N0
,

γ1

N1
,

γ2

N2
,

γ3

N3

)
, Υμ =

1
2

∂μ ln
(√

g
Nμ

)
. (30)

For Dirac equation in Schwarzschild metric,

gμν = diag(B(r),−A(r),−r2,−r2 sin2 θ), (31)

we have

γμ =

(
γ0
√

B
,

γ1
√

A
,

γ2

r
,

γ3

r sin θ

)
, Υμ =

(
1,

1
r
+

B′

4B
,

1
2

cot θ, 0
)

. (32)

The Dirac equation for free spinor is given by

i
(

γ0
√

B
∂t +

γ1
√

A
(∂r +

1
r
+

B′

4B
) +

γ2

r
(∂θ +

1
2

cot θ) +
γ3

r sin θ
∂ϕ

)
φ = mφ. (33)

Setting A = B = 1, we obtain the Dirac equation in a spherical coordinate system.
In contrast with the spinor in the Cartesian coordinate system, the spinor in the (33) includes
an implicit rotational transformation [12].

3. Relations between Tetrad and Metric

Different from the cases of vector and tensor, in general relativity the equation of
spinor fields depends on the local tetrad frame. The tetrad γα can be only determined
by metric to an arbitrary Lorentz transformation. This situation makes the derivation of
EMT quite complicated. In this section, we provide an explicit representation of tetrad and

10
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derive the EMT of spinor based on this representation. For convenience to check the results
by computer, we denote the element by dxμ = (dx, dy, dz, cdt) and δXa = (δX, δY, δZ, cδT).

For metric gμν, not losing generality we assume that, in the neighborhood of xμ, dx0 is
time-like and (dx1, dx2, dx3) are space-like. This means g00 > 0, gkk ≤ 0(k �= 0), and the
following definitions of Jk are real numbers

J1 =
√−g11, J2 =

√∣∣∣∣ g11 g12
g21 g22

∣∣∣∣, J3 =

√√√√√−
∣∣∣∣∣∣

g11 g12 g13
g21 g22 g23
g31 g32 g33

∣∣∣∣∣∣, J0 =
√−det(g). (34)

u1 =

∣∣∣∣ g11 g12
g31 g32

∣∣∣∣, u2 =

∣∣∣∣ g11 g12
g01 g02

∣∣∣∣, u3 =

∣∣∣∣ g21 g22
g31 g32

∣∣∣∣, (35)

v1 =

∣∣∣∣∣∣
g12 g13 g10
g22 g23 g20
g32 g33 g30

∣∣∣∣∣∣, v2 =

∣∣∣∣∣∣
g11 g13 g10
g21 g23 g20
g31 g33 g30

∣∣∣∣∣∣, v3 =

∣∣∣∣∣∣
g11 g12 g10
g21 g22 g20
g31 g32 g30

∣∣∣∣∣∣. (36)

The following conclusions can be checked by computer program.

Theorem 3. For LU decomposition of matrix (gμν)

(gμν) = L(ηab)L+, (gμν) = U(ηab)U+, U = L∗ = (L+)−1, (37)

with positive diagonal elements, we have the following unique solution

L = (L a
μ ) =

⎛⎜⎜⎜⎝
− g11

J1
0 0 0

− g21
J1

J2
J1

0 0
− g31

J1

u1
J1 J2

J3
J2

0
− g01

J1

u2
J1 J2

− v3
J2 J3

J0
J3

⎞⎟⎟⎟⎠, (38)

U = (Uμ
a) =

⎛⎜⎜⎜⎜⎝
1
J1

g21
J1 J2

u3
J2 J3

v1
J3 J0

0 J1
J2

− u1
J2 J3

− v2
J3 J0

0 0 J2
J3

v3
J3 J0

0 0 0 J3
J0

⎞⎟⎟⎟⎟⎠. (39)

Theorem 4. For any solution of tetrad (7) in matrix form ( f a
μ ) and ( f μ

a), there exists a local
Lorentz transformation δX′a = Λa

bδXb independent of gμν, such that

( f a
μ ) = LΛ+, ( f μ

a) = UΛ−1, (40)

where Λ = (Λa
b) stands for the matrix of Lorentz transformation.

Proof. For any solution (7) we have

(gμν) = L(ηab)L+ = ( f a
μ )(ηab)( f a

μ )+ ⇔ L−1( f a
μ )(ηab)(L−1( f a

μ ))+ = (ηab). (41)

So we have a Lorentz transformation matrix Λ = (Λa
b), such that

L−1( f a
μ ) = Λ+ ⇔ ( f a

μ ) = LΛ+, or f a
μ = L b

μ Λa
b. (42)

Similarly we have ( f μ
a) = UΛ−1. The proof is finished.

11



Symmetry 2021, 13, 1931

The decomposition (37) is similar to the Gram–Schmidt orthogonalization for vectors
dxμ in the order dt → dz → dy → dx. In matrix form, by (37) we have δX = L+dx and

ds2 = gμνdxμdxν = ηabδXaδXb

= (L T
t dt)2 − (L X

x dx + L X
y dy + L X

z dz + L X
t dt)2

−(L Y
y dy + L Y

z dz + L Y
t dt)2 − (L Z

z dz + L Z
t dt)2. (43)

Equation (43) is a direct result of (38), but (43) manifestly shows the geometrical
meanings of the tetrad components L a

μ . Obviously, (43) is also the method of completing
the square to calculate the tetrad coefficients f a

μ .
The above theorems Theorems 3 and 4 provide the solution of the Equation (7),

and the geometric meaning of the solution is (4). In differential geometry, the element (4)
is more fundamental than the distance formula ds2 = gμνdxμdxν, because (4) clarifies the
geometric meanings of the basis vectors γμ and γa, and Clifford algebra (5) or (11) as well
as Grassmann algebra (12) and (13) provide the calculating rules of the basis [12,29].

For LU decomposition (39), we define a spinor coefficient table by

Sμν
ab ≡

⎛⎜⎜⎜⎜⎝
0 −U{μ

1 Uν}
2 −U{μ

1 Uν}
3 −U{μ

1 Uν}
0

U{μ
2 Uν}

1 0 −U{μ
2 Uν}

3 −U{μ
2 Uν}

0

U{μ
3 Uν}

1 U{μ
3 Uν}

2 0 −U{μ
3 Uν}

0

U{μ
0 Uν}

1 U{μ
0 Uν}

2 U{μ
0 Uν}

3 0

⎞⎟⎟⎟⎟⎠ = −Sμν
ba , (44)

in which

U{μ
a Uν}

b =
1
2
(Uμ

aUν
b + Uν

aUμ
b) = U{μ

b Uν}
a . (45)

Sμν
ab = U{μ

a Uν}
b sign(a − b) = −Sμν

ba is not a tensor for indices (a, b), it is symmetrical for
Riemann indices (μ, ν) but anti-symmetrical for Minkowski indices (a, b). For diagonal
metric we have Sμν

ab ≡ 0. It should be stressed again, Sμν
ab is not a tensor for indices (a, b);

however, for any local Lorentz transformation δX′ = ΛδX, if taking (44) as the proper
values and setting Lorentz transformation

(S′μν
ab ) = Λ∗(Sαβ

cd )Λ
−1, Λ∗ ≡ (Λ−1)+,

then Sμν
ab becomes a tensor for indices (a, b).

By representation of (38), (39) and relation (40), we can check the following results by
straightforward calculation.

Theorem 5. For tetrad (40), we have

∂ f n
α

∂gμν
=

1
4
(δ

μ
α f ν

m + δν
α f μ

m)η
nm +

1
2

Sμν
ab f a

α ηnb. (46)

∂ f α
a

∂gμν
= −1

4
( f μ

agαν + f ν
agμα)− 1

2
Sμν

ab f α
nηnb. (47)

Or equivalently,

∂γα

∂gμν
=

1
4
(δ

μ
α γν + δν

αγμ) +
1
2

Sμν
ab f a

α γb. (48)

∂γα

∂gμν
= −1

4
(gμαγν + gναγμ)− 1

2
Sμν

ab f α
nγaηnb. (49)

12
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Or equivalently,

δγα =
1
2

γβ(δgαβ + Sμν
ab f a

α f b
β δgμν), (50)

δγλ = −1
2

gλβγα(δgαβ + Sμν
ab f a

α f b
β δgμν) = −gλαδγα. (51)

For any given vector Aμ, we have

Aα ∂γα

∂gμν
=

1
4
(Aμγν + Aνγμ) +

1
4

Sμν
ab (Aaγb − Abγa), (52)

Aα
∂γα

∂gμν
= −1

4
(Aμγν + Aνγμ) +

1
4

Sμν
ab (Aaγb − Abγa). (53)

In (46)–(53), we set ∂γα

∂gμν
= ∂γα

∂gνμ
= 1

2
dγα

dgμν
for μ �= ν to obtain the tensor form. d

dgμν
is the

total derivative for gμν and gνμ. Sμν
ab is transformed from (44).

The following derivation only use the property Sμν
ab = −Sμν

ba . For Ωα, we have

Ωd =
1
4

εabcd f α
aSμν

bc ∂αgμν, Ωα = −1
4

εdabc f α
d f β

aSμν
bc ∂βgμν. (54)

4. The Classical Approximation of Dirac Equation

In this section, we derive the classical mechanics for a charged spinor moving in grav-
ity, and disclose the physical meaning of connections Υμ and Ωμ. By covariance principle,
the Dirac Equation (18) is valid and covariant in any regular coordinate system; however,
in order to obtain the energy eigenstates of a spinor we need to solve the Hamiltonian
system of quantum mechanics, and in order to derive its classical mechanics we need
to calculate the spatial integrals of its Noether charges such as coordinates, energy and
momentum. These computations cannot be realized in an arbitrary coordinate system,
but must be performed in a coordinate system with realistic global simultaneity; that is, we
need the Gu’s natural coordinate system (NCS) [12,32]

ds2 = gttdt2 − ḡkldxkdxl , dτ =
√

gttdt = f 0
t dt, dV =

√
ḡd3x. (55)

in which ds is the proper time element, dτ the Newton’s absolute cosmic time element and
dV the absolute volume element of the space at time t. NCS generally exists and the global
simultaneity is unique. Only in NCS we can clearly establish the Hamiltonian formalism
and calculate the integrals of Noether charges. In NCS, we have

f 0
t =

√
gtt, f t

0 =
1√
gtt

, γt =
√

gttγ0, γt =
1√
gtt

γ0. (56)

Then by (20) we obtain

Υμ =
1
2

(
∂t ln

√
ḡ, f a

k ∂j f j
a + ∂k ln

√
g
)

, Υt = gttΥt, Υk = −ḡklΥl . (57)

In NCS, to lift and lower the index of a vector means Ωt = gttΩt, Ωk = −ḡklΩl .
More generally, we consider the Dirac equation with electromagnetic potential eAμ

and nonlinear potential N(γ̌) = 1
2 wγ̌2, where γ̌ = φ+γ0φ. Then (18) can be rewritten in

Hamiltonian formalism

iαt∇tφ = Hφ, H = −αk p̂k + eαt At + SμΩμ + (m − N′)γ0, (58)

where H is the Hamiltonian or energy of the spinor, αt = f t
0α0 = (

√
gtt)−1 and ∇μ =

∂μ + Υμ. Since dτ = f 0
t dt is the realistic time of the universe, only iαt∇t = i∂τ is the true

13
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energy operator for a spinor. gtt represents the gravity, and it cannot be generally merged
into dτ as performed in a semi-geodesic coordinate system.

In traditional quantum theory, we simultaneously take coordinate, speed, momentum
and wave function of a particle as original concepts. This situation is the origin of logical
confusion. As a matter of fact, only wave function φ is independent concept and dynamical
Equation (58) is fundamental in logic. Other concepts of the particle should be defined by
φ and (58). Similarly to the case in flat space-time [33], we define some classical concepts
for the spinor.

Definition 2. The coordinate �X and speed �v of the spinor is defined as

Xk(t) ≡
∫

R3
xk|φ|2√ḡd3x =

∫
R3

xkqt√gd3x, vk ≡ d
dτ

Xk = f t
0

d
dt

Xk, (59)

where R3 stands for the total simultaneous hypersurface, qμ = φ+αμφ = α̌μ is the current.

By definition (59) and current conservation law qμ
;μ = (

√
g)−1∂μ(qμ√g) = 0, we have

vj = f t
0

∫
R3

xj∂t(qt√g)d3x = − f t
0

∫
R3

xj∂k(qk√g)d3x

= f t
0

∫
R3

qj√gd3x →
∫

R3
qj√ḡd3x. (60)

Since a spinor has only a very tiny structure, together with normalizing condition∫
R3 qt√gd3x = 1, we obtain the classical point-particle model for the spinor as [33]

qμ → uμ
√

1 − v2δ3(�x − �X), v2 = ḡklvkvl , uμ =
dXμ

ds
=

vμ

√
1 − v2

, (61)

where the Dirac-δ means
∫

R3 δ3(�x − �X)
√

ḡd3x = 1.

Theorem 6. For any Hermitian operator P̂, P ≡ ∫R3
√

ḡφ+ P̂φd3x is real for any φ. We have the
following generalized Ehrenfest theorem,

dP
dt

= �
∫

R3

√
gφ+

(
αt∂t P̂ − i f t

0[P̂, f 0
t ]H + i[H, P̂]

)
φd3x, (62)

where � means taking the real part.

Proof. By (57) and (58), we have

dP
dt

=
d
dt

∫
R3

√
ḡφ+ P̂φd3x

= �
∫

R3

√
ḡ
(
φ+(∂t P̂)φ + i(i∂tφ)

+ P̂φ − iφ+ P̂(i∂tφ) + φ+ P̂φ∂t ln
√

ḡ
)
d3x

= �
∫

R3

√
ḡ
(

φ+(∂t P̂)φ + i f 0
t (Hφ)+ P̂φ − iφ+ P̂( f 0

t Hφ)
)

d3x

= �
∫

R3

√
gφ+

(
αt∂t P̂ − i f t

0[P̂, f 0
t ]H + i[H, P̂]

)
φd3x

+�
∫

R3

√
gφ+(∂kαk + αk∂k ln

√
g − 2αkΥk)P̂φd3x

= �
∫

R3

√
gφ+

(
αt∂t P̂ − i f t

0[P̂, f 0
t ]H + i[H, P̂]

)
φd3x. (63)

Then we prove (62). The proof clearly shows the connection Υμ has only geometrical
effect, which cancels the derivatives of

√
g. Obviously, we cannot obtain (62) from the

conventional definition of spinor connection Γμ.
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Definition 3. The 4-dimensional momentum of the spinor is defined by

pμ = �
∫

R3
(φ+ p̂μφ)

√
ḡd3x. (64)

For a spinor at energy eigenstate, we have classical approximation pμ = muμ, where m defines
the classical inertial mass of the spinor.

Theorem 7. For momentum of the spinor pμ = � ∫R3
√

ḡφ+ p̂μφd3x, we have

d
dτ

pμ = f t
0�
∫

R3

√
g
(
eFμνqν + Ša∂μΩa − ∂μN − φ+(∂μαν) p̂νφ

)
d3x, (65)

in which

Fμν = ∂μ Aν − ∂ν Aμ, Ša = φ+Saφ. (66)

Proof. Substituting P̂ = p̂μ and Hφ = αti∇tφ into (62), by straightforward calculation
we obtain

d
dτ

pμ = f t
0�
∫

R3

√
gφ+

(
−eαt∂t Aμ − (∂μαt)i∇t + αk∂k p̂μ

)
φd3x

+ f t
0�
∫

R3

√
gφ+

(
∂μ(−αk p̂k + eαt At + SνΩν − N′γ0)

)
φd3x

= f t
0�
∫

R3

√
g
(
eFμνqν + φ+∂μ(SνΩν)φ − ∂μN

)
d3x − Kμ, (67)

in which

Kμ = f t
0�
∫

R3

√
gφ+(∂μαν) p̂νφd3x. (68)

By SμΩμ = SaΩa, we prove the theorem.

For a spinor at particle state [33], by classical approximation qμ → vμδ3(�x − �X) and
local Lorentz transformation, we have∫

R3
eFμνqν√gd3x → f 0

t eFμνuν
√

1 − v2, (69)∫
R3

φ+Saφ(∂μΩa)
√

gd3x → f 0
t S̄a∂μΩa

√
1 − v2 = f 0

t ∂μ(S̄aΩa)
√

1 − v2, (70)∫
R3

∂μN
√

gd3x =
∫

R3
∂μ(N

√
g)d3x −

∫
R3

NΓν
μν
√

gd3x

→ δt
μ

d
dt
( f 0

t w̄
√

1 − v2)− f 0
t Γν

μνw̄
√

1 − v2, (71)

in which the proper parameters S̄a =
∫

R3 φ+Saφd3X is almost a constant, S̄a equals to ± 1
2 h̄

in one direction but vanishes in other directions. w̄ =
∫

R3 Nd3X is scale dependent. Then
(65) becomes

d
ds

pμ → eFμνuν + ∂μ(S̄νΩν) + w̄
(

Γα
μα − δt

μ
d
dt

ζ

)
− Kμ√

1 − v2
, (72)

where ζ = ln( f 0
t w̄

√
1 − v2).

Now we prove the following classical approximation of Kμ,

Kμ → −1
2
(∂μgαβ)muαuβ

√
1 − v2. (73)
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For LU decomposition of metric, by (47) we have

∂ f ν
a

∂gαβ
= −1

4
( f α

agνβ + f β
agαν)− 1

2
Sαβ

ab f ν
nηnb, (74)

where Sμν
ab = −Sμν

ba is anti-symmetrical for indices (a, b). Thus we have

(∂μαν) p̂ν = ∂μgαβ
∂ f ν

a
∂gαβ

αa p̂ν = ∂μgαβ

(
−1

4
(αα p̂β + αβ p̂α)− 1

2
Sαβ

ab f ν
nηnbαa p̂ν

)
= −1

4
∂μgαβ

(
(αα p̂β + αβ p̂α) + 2Sαβ

ab αa p̂b
)

. (75)

For classical approximation we have

α̌a = φ+αaφ → vaδ3(�x − �X), p̂bφ → mubφ, Sαβ
ab = −Sαβ

ba . (76)

Substituting (76) into (75), we obtain∫
R3

√
gφ+(∂μαν) p̂νφd3x → −1

2
f 0
t (∂μgαβ)pαuβ

√
1 − v2. (77)

So (73) holds.
In the central coordinate system of the spinor, by relations

Γν
αβ =

1
2

gμν(∂αgμβ + ∂βgμα − ∂μgαβ),
d

dτ
gμν =

√
1 − v2uα∂αgμν, (78)

it is easy to check

gμνΓν
αβ pαuβ

√
1 − v2 − pν dgμν

dτ
= −1

2
(∂μgαβ)pαuβ

√
1 − v2. (79)

Substituting (79) into (73) we obtain

Kμ → gμνΓν
αβ pαuβ

√
1 − v2 − pν dgμν

dτ
. (80)

Substituting (80) and ds =
√

1 − v2dτ into (72), we obtain Newton’s second law for
the spinor

d
ds

pμ + Γμ
αβ pαuβ = gαμ

(
eFαβuβ + w̄(Γβ

αβ − δt
α

d
dt

ln ζ) + ∂α(S̄νΩν)

)
. (81)

The classical mass m weakly depends on speed v if w̄ �= 0.
By the above derivation we find that Newton’s second law is not as simple as it looks,

because its universal validity depends on many subtle and compatible relations of the
spinor equation. A complicated partial differential equation system (58) can be reduced to
a 6-dimensional dynamics (59) and (81) is not a trivial event, which implies the world is a
miracle designed elaborately. If the spin-gravity coupling potential SμΩμ and nonlinear
potential w̄ can be ignored, (81) satisfies ‘mass shell constraint’ d

dt (pμ pμ) = 0 [33,34]. In this
case, the classical mass of the spinor is a constant and the free spinor moves along geodesic.
In some sense, only vector potential is strictly compatible with Newtonian mechanics and
Einstein’s principle of equivalence.

Clearly, the additional acceleration in (81) Ωμ ∈ Λ3 is different from that in (1), which
is in Λ2. The approximation to derive (1) h̄ → 0 may be inadequate, because h̄ is a universal
constant acting as unit of physical variables. If w̄ = 0, (81) obviously holds in all coordinate
system due to the covariant form, although we derive (81) in NCS; however, if w̄ > 0
is large enough for dark spinor, its trajectories will manifestly deviate from geodesics,
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so the dark halo in a galaxy is automatically separated from ordinary matter. Besides,
the nonlinear potential is scale dependent [12].

For many body problem, dynamics of the system should be juxtaposed (58) due to the
superposition of Lagrangian,

iαt(∂t + Υt)φn = Hnφn, Hn = −αk p̂k + eαt At + (mn − N′
n)γ0 + ΩμSμ. (82)

The coordinate, speed and momentum of n-th spinor are defined by

�Xn(t) =
∫

R3
�xqt

n
√

gd3x, �vn =
d

dτ
�Xn, pμ

n = �
∫

R3
φ+

n p̂μφn
√

ḡd3x. (83)

The classical approximation condition for point-particle model reads,

qμ
n → uμ

n

√
1 − v2

nδ3(�x − �Xn), uμ
n ≡ dXμ

n
dsn

= (1,�vn)/
√

1 − v2
n. (84)

Repeating the derivation from (72) to (76), we obtain classical dynamics for each spinor,

d
dsn

pμ
n + Γμ

αβ pα
nuβ

n = gαμ

(
enFαβuβ

n + w̄n(Γ
β
αβ − δt

α
d
dt

ln ζn) + ∂α(S̄νΩν)

)
. (85)

5. Energy-Momentum Tensor of Spinors

Similarly to the case of metric gμν, the definition of Ricci tensor can also differ by a
negative sign. We take the definition as follows

Rμν ≡ ∂αΓα
μν − ∂μΓα

να − Γα
μβΓβ

να + Γα
μνΓβ

αβ, R = gμνRμν. (86)

For a spinor in gravity, the Lagrangian of the coupling system is given by

L =
1

2κ
(R − 2Λ) + Lm, Lm = �〈φ+αμ p̂μφ〉 − φ+ΩμSμφ − mφ+γ0φ + N, (87)

in which κ = 8πG, Λ is the cosmological constant, and N = 1
2 wγ̌2 the nonlinear potential.

Variation of the Lagrangian (87) with respect to gμν, we obtain Einstein’s field equation

Gμν + Λgμν + κTμν = 0, Gμν ≡ Rμν − 1
2

gμνR = − δ(R
√

g)√
gδgμν

. (88)

where δ
δgμν

is the Euler derivatives, and Tμν is EMT of the spinor defined by

Tμν = −2
δ(Lm

√
g)√

gδgμν
= −2

∂Lm

∂gμν
+ 2(∂α + Γγ

αγ)
∂Lm

∂(∂αgμν)
− gμνLm. (89)

By detailed calculation we have

Theorem 8. For the spinor φ with nonlinear potential N(γ̌), the total EMT is given by

Tμν =
1
2
�〈φ+(αμ p̂ν + αν p̂μ + 2Sμν

ab αa p̂b)φ〉+ gμν(N′γ̌ − N) + Kμν + K̃μν, (90)

Kμν =
1
2

εabcdŠd

(
1
2

f β
aSμν

bc gλκ +
∂( f β

aSμν
bc )

∂gλκ
− ∂( f β

aSλκ
bc )

∂gμν

)
∂βgλκ , (91)

K̃μν =
1
4

εabcdSμν
cd (∂aŠb − ∂bŠa), Šμ ≡ φ+Sμφ. (92)
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Proof. The Keller connection iΥα is anti-Hermitian and actually vanishes in �〈φ+αα p̂αφ〉.
By (89) and (53), we obtain the component of EMT related to the kinematic energy as

Tμν
p ≡ −2

δ

δgμν
�〈φ+αα p̂αφ〉 = −2�〈φ+

(
∂αα

∂gμν

)
(i∂α − eAα)φ〉

=
1
2
�〈φ+(αμ p̂ν + αν p̂μ + 2Sμν

ab αa p̂b)φ〉, (93)

where we take Aμ as independent variable. By (54) we obtain the variation related with
spin-gravity coupling potential as

∂(φ+ΩdSdφ)

∂gμν
=

1
4

εabcdŠd
∂( f α

aSλκ
bc )

∂gμν
∂αgλκ , (94)

(∂α + Γβ
αβ)

∂(φ+ΩdSdφ)

∂(∂αgμν)
=

1
4

εabcd(∂α + Γβ
αβ)( f α

aSμν
bc Šd)

=
1
4

εabcd

[
Sμν

bc ∂aŠd + Šd

(
∂( f α

aSμν
bc )

∂gλκ
+

1
2

f α
aSμν

bc gλκ

)
∂αgλκ

]
. (95)

Then we have the EMT for term ΩμŠμ as

Tμν
s = −2

∂(ΩdŠd)

∂gμν
+ 2(∂α + Γβ

αβ)
∂(ΩdŠd)

∂(∂αgμν)
= Kμν + K̃μν. (96)

Substituting Dirac Equation (18) into (87), we get Lm = N − N′γ̌. For nonlinear
potential N = 1

2 wγ̌2, we have Lm = −N. Substituting all the results into (89), we prove
the theorem.

For EMT of compound systems, we have the following useful theorem [12].

Theorem 9. Assume matter consists of two subsystems I and II, namely Lm = LI(φ) + LI I(ψ),
then we have

Tμν = Tμν
I + Tμν

I I . (97)

If the subsystems I and II have not interaction with each other, namely,

δ

δψ
LI(φ) =

δ

δφ
LI I(ψ) = 0, (98)

then the two subsystems have independent energy-momentum conservation laws, respectively,

Tμν
I;ν = 0, Tμν

I I;ν = 0. (99)

For classical approximation of EMT, we have φ+Sμν
ab αa p̂bφ → Sμν

ab ua pb = 0. By the
symmetry of the spinor, the proper value

∫
R3 K̃μνd3X = 0. By the structure and covariance,

we should have

Kμν = k1ŠαΩαgμν + k2(ΩμŠν + ΩνŠμ), (100)

where k1, k2 are constants to be determined. By (82), we find that the energy of spin-gravity
interaction is just ŠμΩμ. Besides, if Aμ = 0, the spinor is an independent system and its
energy-momentum conservation law Tμν

;ν = 0 holds, so its classical approximation should
give (81) as Fμν = 0. This means we have k1 = 1 and k2 = 0, or equivalently Kt

t = ŠμΩμ.
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For the classical approximation of (90), by the summation of energy we have the total
EMT as

Tμν → [muμuν + (S̄αΩα + w̄)gμν]
√

1 − v2δ3(�x − �X). (101)

w̄ > 0 acts like negative pressure, which is scale dependent. If the metric is diagonalizable,
then we have Ωμ ≡ 0, so the term S̄αΩα vanishes in cosmology.

Some previous works usually use one spinor to represent matter field. This may be
not the case, because spinor fields only has a very tiny structure. Only to represent one
particle by one spinor field, the matter model can be comparable with general relativity,
classical mechanics and quantum mechanics [11,12,33]. By the superposable property of
Lagrangian, the many body system should be described by the following Lagrangian

Lm = ∑
n

(
�〈φ+

n αμ p̂μφn〉 − Šμ
nΩμ − mnγ̌n + Nn

)
. (102)

The classical approximation of EMT becomes

Tμν → ∑
n

[
mnuμ

nuν
n + (w̄n + Šα

nΩα)gμν
]√

1 − v2
nδ3(�x − �Xn), (103)

which leads to the EMT for average field of spinor fluid as follows

Tμν = (ρ + P)UμUν + (W − P)gμν. (104)

The self potential becomes negative pressure W, which takes the place of cosmological
constant Λ in Einstein’s field equation. W has very important effects in astrophysics [12].

6. Discussion and Conclusions

From the calculation of this paper, we can find that Clifford algebra is indeed a unified
language and efficient tool to describe the laws of nature. To represent the physical and ge-
ometric quantities of Clifford algebra, the formalism is neat and elegant and the calculation
and derivation are simple and standard. The decomposition of spinor connection into Υμ

and Ωμ by Clifford algebra, not only makes the calculation simpler, but also highlights their
different physical meanings. Υμ ∈ Λ1 only corresponds to geometric calculations similar
to the Levi–Civita connection, but Ωμ ∈ Λ3 results in physical effects. Ωμ is coupled with
the spin of spinor field, which provides position and navigation functions for the spinor,
and is the origin of the celestial magnetic field. Ωμ ≡ 0 is a necessary condition of the
diagonalizablity of metric, which seems to be also sufficient.

In the theoretical analysis of the spinor equation and its classical approximation, we
must use Gu’s natural coordinate system with realistic cosmic time. This is a coordinate
system with universal applicability and profound philosophical significance, which can
clarify many misunderstandings about the concept of space-time. The energy-momentum
tensor of the spinor field involves the specific representation of the tetrad. Through the LU
decomposition of metric, we set up the clear relationship between the frame and metric,
and then derive the exact EMT of spinor. In the derivation, we discover a new non-tensor
spinor coefficient table Sμν

ab , which has some wonderful properties and appears in many
places in the spinor theory, but the specific physical significance needs to be further studied.

We usually use limits such as h̄ → 0 and c → ∞ in classical approximation of quantum
mechanics. In some cases, such treatment is inappropriate. (h̄, c) are constant units for
physical variables, how can they take limits? In the natural unit system used in this paper
or the dimensionless equations, we do not even know where the constants are. We can only
make approximations such as |v| � c or (61) while the average radius of the spinor is much
smaller than its moving scale. Most paradoxes and puzzles in physics are caused by such
ambiguous statements or overlapping concepts in different logical systems. A detailed
discussion of these issues is given in [12,33].
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This paper clearly shows how general relativity, quantum mechanics and classical
mechanics are all compatible. Newton’s second law is not as simple as it looks, its universal
validity depends on many subtle and compatible relations of the spinor equation as shown
in Section 4. A complicated Dirac equation of spinor can be reduced to a 6-dimensional
ordinary differential dynamics is not a trivial event, which implies that the world is a
miracle designed elaborately. In fact, all the fundamental physical theories can be unified
in the following framework expressed by the Clifford algebra [12,33]:

A1. The element of space-time is described by

dx = γμdxμ = γaδXa, (105)

where the basis γa and γμ satisfy the C�1,3 Clifford algebra (5).
A2. The dynamics for a definite physical system takes the form as

γμ∂μΨ = F (Ψ), (106)

where Ψ = (ψ1, ψ2, · · · , ψn)T, and F (Ψ) consists of some Clifford numbers of Ψ, so that the total
equation is covariant.

A3. The dynamic equation of a physical system satisfies the action principle

S =
∫

L(Ψ, ∂Ψ)
√

gd4x, (107)

where the Lagrangian L ∈ R is a superposable scalar.
A4. Nature is consistent, i.e., for all solutions to (106) we always have

Ψ(x) ∈ L∞(M1,3). (108)
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Abstract: In this paper, we investigate a novel implication of the non-negligible spacetime curvature
at large distances when its effects are expressed in terms of a suitably modified form of the Heisenberg
uncertainty relations. Specifically, we establish a one-to-one correspondence between this modified
uncertainty principle and the Standard Model Extension (SME), a string-theoretical effective field
theory that accounts for both explicit and spontaneous breaking of Lorentz symmetry. This tight
correspondence between string-derived effective field theory and modified quantum mechanics with
extended uncertainty relations is validated by comparing the predictions concerning a deformed
Hawking temperature derived from the two models. Moreover, starting from the experimental
bounds on the gravity sector of the SME, we derive the most stringent constraint achieved so far on
the value of the free parameter in the extended Heisenberg uncertainty principle.

Keywords: extended uncertainty principle; Standard Model Extension; Lorentz violation

1. Introduction

Since the establishment of quantum mechanics and general relativity, there has been a
constantly growing effort to merge quantum and gravitational effects at arbitrary energy
scales in a complete and consistent theoretical framework. This effort has produced several
plausible candidates for a quantum theory of the gravitational interaction, such as string
theory [1,2], loop quantum gravity [3,4], and doubly special relativity [5–7]. The study
of the interplay between quantum and gravitational effects appears to be particularly
important at the currently reachable energies, as this is the regime where we have hope
that physical predictions can factually be probed in tabletop laboratory tests. Therefore, the
analysis of low-energy, infrared (IR) quantum gravitational manifestations may represent a
promising starting point for the possible construction of ultraviolet (UV) complete models
of quantum gravity. In this respect, an additional motivation for the study of IR phenomena
stems from the UV/IR duality discovered for the first time in the context of the AdS/CFT
correspondence [8–10].

In the present paper, we focus on IR gravity to exhibit how Lorentz symmetry is
affected by the non-negligible spacetime curvature at large distances. In a quantum
mechanical setting, such a feature can be incorporated by extending the Heisenberg uncer-
tainty principle (HUP) with the addition of a position-dependent correction that introduces
a non-vanishing minimal uncertainty in momentum [11–15] and provides a form of an
extended uncertainty principle (EUP). Among different versions of the EUP, the best known
one includes a universal modification that is geometric-independent; indeed, such a gen-
eralization of the standard uncertainty relations arises naturally when merging quantum
mechanics and general relativity. In other scenarios, the version of the EUP that is ac-
counted for entails a dependence on the intrinsic geometric properties of the underlying
background curvature; for more details along this direction, see Refs. [16–20]. For the

Symmetry 2021, 13, 1854. https://doi.org/10.3390/sym13101854 https://www.mdpi.com/journal/symmetry
23



Symmetry 2021, 13, 1854

sake of completeness, it is worth mentioning that several works inspired by string the-
ory [21–24] also allow for the existence of a momentum-dependent correction to the HUP;
such an extension is known as the generalized uncertainty principle (GUP) (for several
development of this subject, see Refs. [25–38] and therein).

In order to quantify the breakdown of Lorentz symmetry induced by the EUP, we con-
sider a string-theoretical effective field theory according to which any operator appearing
in the Standard Model (SM) Lagrangian is contracted with Lorentz-violating fields [39,40].
This model is known as the Standard Model Extension (SME), and we will focus in par-
ticular on its gravity sector [41,42] in the non-relativistic limit [43]. Specifically, along
the line of Ref. [44], in the following, we establish a one-to-one correspondence between
the predictions of the EUP and of the SME concerning the deformation of the Hawking
temperature for a Schwarzschild black hole:

TH =
h̄c3

8πkBGM
. (1)

In so doing, we essentially relate the free deformation parameter arising in the frame-
work of the EUP with the Lorentz-violating fields contained in the SME Lagrangian, thereby
explaining spontaneous Lorentz symmetry breaking in terms of large-scale effects. More-
over, by relying on the experimental bounds associated with the SME gravity sector, we
manage to derive novel constraints on the EUP free deformation parameter, which are
more stringent than the previously known ones [15].

The paper is organized as follows: in Section 2, we briefly give an overlook of the main
aspects of EUP together with a heuristic derivation of the modified Hawking temperature.
The same procedure is carried out for the SME in Section 3, whereas Section 4 contains
the theoretical and numerical comparison between the two predictions. Finally, Section 5
contains the concluding remarks and discussion.

2. Extended Uncertainty Principle and Modified Hawking Temperature

Starting from the Heisenberg uncertainty principle

ΔxΔp ≥ h̄
2

, (2)

one can incorporate the influence of spacetime curvature at large distances by adding a
position-dependent term in the r.h.s. of Equation (2), namely [11,13–15]

ΔxΔp ≥ h̄
2

(
1 + αΔx2

)
, (3)

with α being the inverse of a squared length and αΔx2 � 1. One possible interpretation of
the free deformation parameter α is to conceive it as a function of the cosmological constant
Λ in a (anti-) de Sitter space [45]. However, in greater generality, it can simply be seen
as a consequence of the intrinsic spacetime curvature at large cosmological distances that
enforces a limit to the precision with which to resolve the momentum of a point particle [15].
In turn, this fact implies that there exists a minimal uncertainty for p proportional to the
constant α, i.e., Δpmin � h̄

√|α|. Note that the parameter α does not have to be necessarily
constant; indeed, it may be a function of spacetime position or even a stochastic variable.
Similar considerations have already been addressed in the context of GUP [30,38] and they
equally hold true for the EUP currently investigated.

The above inequality (3) can be straightforwardly derived from the deformed canoni-
cal commutation relation: [

X̂, P̂
]
= ih̄

(
1 + αX̂2

)
. (4)
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From the previous equation, one can deduce a simple representation of X̂ and P̂ in
terms of auxiliary operators x̂ and p̂ for which the standard canonical commutation relation
holds (i.e., [x̂, p̂] = ih̄). Specifically:

X̂ = x̂ , P̂ =
(

1 + αx̂2
)

p̂ − 2iαh̄x̂ , (5)

where the second term in the r.h.s. of the second expression ensures that P̂ = P̂†. The
three-dimensional analysis of the above framework would allow for the emergence of
spatial non-commutativity [11,12], since one can immediately verify that [X̂j, X̂k] �= 0.
Nevertheless, we can safely ignore all the non-commutative corrections associated with the
operators X̂j, as they would depend on higher powers of α, i.e.,

X̂j = x̂j +O(α2) , (6)

which, in the present, case are neglected. We refer to Refs. [11,12] for further mathematical
details.

To evaluate the deformed Hawking temperature of a Schwarzschild black hole of
mass M, we follow some simple heuristic considerations as outlined, e.g., in Refs. [27,46].
The starting point is the natural assumption that the position uncertainty of the photons
just after they have been emitted by the black hole is proportional to the Schwarzschild
radius, namely Δx � γrs, with γ to be fixed by requiring consistency with the standard
picture in the limit α → 0. Under these circumstances, from Equation (3), we obtain

Δp � h̄c2

4γGM

[
1 + 4α

G2M2

c4 γ2
]

. (7)

Now, we can express the characteristic energy of the emitted photons Δpc in terms of
the temperature of the radiation in compliance with the equipartition theorem [27,46], by
virtue of which Δpc � kBT. Finally, the equation for the α-deformed Hawking temperature
TEUP reads

TEUP =
h̄c3

4γkBGM

[
1 + 4α

G2M2

c4 γ2
]

, (8)

which, in terms of the Hawking temperature TH , reads:

TEUP = TH

[
1 + 16απ2 G2M2

c4

]
, (9)

where we have set γ = 2π in order to recover the original Hawking result in the limit
α → 0. For a thorough discussion on the above correspondence, we refer the reader to
Ref. [47].

3. Standard Model Extension and Modified Hawking Temperature

The Standard Model Extension is a generalization of the Standard Model of parti-
cle physics, which predicts both explicit and spontaneous Lorentz symmetry breaking.
Motivated by string-theoretical arguments [39,40], the SME enlarges the SM domain by con-
tracting any SM field with Lorentz-violating operators that give rise to new phenomenology.
Although the Standard Model Extension was originally conceived to extend the Standard
Model only, later on, the gravitational interaction was also added, with the ensuing Lorentz-
violating coefficients.

For our purposes, we are interested in investigating the minimal SME gravity sec-
tor [41–44], which includes exclusively Lorentz-violating operators of mass dimension

25



Symmetry 2021, 13, 1854

three or four. In particular, by denoting with SEH and Sm the Einstein–Hilbert and the
matter action, respectively, the minimal SME total gravitational action reads [43]

S = SEH + Sm + SLV , SLV =
c4

16πG

∫
d4x
√−g

(
−uR + sμνRT

μν + tμνρλCμνρλ

)
, (10)

where SLV denotes the effective Lorentz symmetry-breaking action derived from string
theory, R is the Ricci scalar, RT

μν is the traceless Ricci tensor, Cμνρλ is the Weyl conformal
tensor, and u, sμν and tμνρλ are the Lorentz-violating effective fields.

In the regime of the post-Newtonian (PPN) approximation [48,49], a Schwarzschild-
like solution of the linearized field equations for the minimal SME can be found [43], and it
is given by

ds2 = f (r)c2dt2 − 1
f (r)

dr2 − r2dΩ2 , (11)

where
f (r) = 1 − 2GM

rc2

[
1 + s̄ijgij(θ, φ)

]
. (12)

In the above, s̄ij denote the vacuum expectation values of the fields sij and gij(θ, φ) are
functions of the angular coordinates, for which the inequality gij(θ, φ) ≤ 1 holds regardless
of the choice for θ and φ. The absence of ū in Equation (12) is related to the fact that a non-
vanishing value for such parameter only amounts to a scaling of the PPN metric [43], and
thus it can be set to zero. On the other hand, the disappearance of t̄μνρλ is a typical feature
occurring in the post-Newtonian SME gravitational phenomenology known as “t puzzle”,
and it has been extensively discussed in several works (see, for instance, Refs. [50–56]).

In order to evaluate the deformed Hawking temperature TSME arising in the SME
framework, we must compute [44,57,58]

TSME =
h̄c

4πkB

d f (r)
dr

∣∣∣
r=r0

, (13)

where r0 solves the equation f (r0) = 0, thereby denoting the horizon radius. At this point,
a straightforward calculation yields

TSME = TH

[
1 − s̄ijgij(θ, φ)

]
, (14)

which has to be compared with Equation (9) derived in the EUP framework. Before
concluding this section, it is worth pointing out that the temperature (14) is anisotropic,
as it explicitly depends on the angular position. However, such an observation does not
undermine the validity of our main goal; indeed, Equation (9) might be anisotropic as well,
since α is not bound to be a constant.

4. Comparison and Consistency Conditions

We will now look at the relations that are required in order to achieve consistency
between the predictions (9) and (14) and thus relate the large-scale effects of spacetime
curvature with spontaneous breaking of the Lorentz symmetry. The comparison of the
deformed Hawking temperatures deduced from the two distinct physical settings shows
that the two are consistent provided that the following identification holds:

α = − c4

16π2G2M2 s̄ijgij(θ, φ) , (15)

for fixed values of θ and φ. Therefore, as already argued, the magnitude of α is not constant,
but it varies with the angular displacement, thus giving rise to an anisotropic T also for the
EUP-corrected Hawking temperature. Since the gij(θ, φ) can always be taken as positive
quantities [44], the sign of α strictly depends on the sign of the Lorentz-violating coefficients
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s̄ij. Additionally, by means of consistency arguments that do not require Lorentz invariance,
it is known that α correctly characterizes an EUP associated with an expanding universe if
and only if α < 0 [13,14,45]. Therefore, to allow agreement with experimental evidence,
assuming gij(θ, φ) � 1 ∀i, j [44], we must necessarily impose

∑
i,j

s̄ij > 0, (16)

which realizes a novel bound on the admissible values of the Lorentz-violating coefficients.
Of course, by virtue of Equation (15), the bounds holding for the quantities s̄ij in turn
imply bounds on the EUP free deformation parameter that lead to an extremely significant
improvement with respect to the existing constraints [15] on the possible values of α.

In Table 1, we report the known bounds on s̄ij, the ensuing constraints that they entail
on
√|α| by virtue of Equation (15) and the corresponding experimental frameworks used

to determine each bound.

Table 1. Estimated bounds on the EUP parameter.

Experiments Bounds on |s̄ij| Bounds on
√|α|

Geodetic effect
(M = M⊕) [59] |s̄ij| � 10−3

√|α| � 6.37 × 10−2 m−1

Gravity Probe B
(M = M⊕) [59]

|s̄ij| � 10−4
√|α| � 2.01 × 10−2 m−1

Frame dragging
(M = M⊕) [59]

|s̄ij| � 10−7
√|α| � 6.37 × 10−4 m−1

Gravimetry (M = M⊕) [59] |s̄ij| � 10−10
√|α| � 2.01 × 10−5 m−1

Lunar laser ranging
(M = M⊕) [59,60]

|s̄ij| � 10−12
√|α| � 2.01 × 10−6 m−1

Torsion pendulum
(M = M⊕) [59]

|s̄ij| � 10−15
√|α| � 6.37 × 10−8 m−1

Perihelion precession
(M = M�) [59]

|s̄ij| � 10−9
√|α| � 1.98 × 10−10 m−1

Binary pulsar
(M = 2.8 M�) [59,61]

|s̄ij| � 10−11
√|α| � 7.05 × 10−12 m−1

Solar-spin precession
(M = M�) [59]

|s̄ij| � 10−13
√|α| � 1.98 × 10−12 m−1

The bounds on
√|α| derived from the geodetic effect and Gravity Probe B are similar to

the ones typically encountered in phenomenological works on this topic [15]. Consequently,
we note that all the other results contained in Table 1 considerably strengthen the constraint
on α. Specifically, the inequality

√|α| � 1.98 × 10−12 m−1 provides the best current bound
on the EUP free deformation parameter α, and further refinement of the experimental
sensitivity may allow for an even more stringent constraint.

It is worth observing that, should one regard α as emergent from a non-vanishing
cosmological constant in de Sitter space, we would have α = −Λ/3 � −3.66 × 10−53 m−2,
which, in the framework of a near-Earth experiment, would correspond to |s̄ij| � 9.06 × 10−54.
This is in line with the expectation that Lorentz-violating coefficients should be indeed
extremely small corrections to Lorentz-symmetric physics [43].

5. Concluding Remarks

In this work, we have investigated the consequences of relating large-scale effects as-
cribable to the non-negligible spacetime curvature and the spontaneous Lorentz symmetry
breaking as described by the gravity sector of the Standard Model Extension. The relation
is obtained by requiring consistency between the different modifications of the Hawking
temperature predicted by the SME and by a quantum mechanical model endowed with
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an extended uncertainty principle deformed due to spacetime curvature effects. Inves-
tigating the consequences of the consistency relations imposed between the SME and
the EUP, we have shown how to significantly enhance the existing bounds on the EUP
curvature-induced deformation parameter starting from the experimental constraints on
the Lorentz-violating coefficients that enter the gravity sector of the SME. This simple
comparison points at the possibility, in suitable settings, of probing high-energy quan-
tum physics via low-energy gravitational effects. To some extent, the idea underlying
the present study shares the same philosophy characterizing the well-known AdS/CFT
correspondence [8], as it may potentially provide some further insight towards a full
understanding of the UV/IR duality.
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Abstract: In recent years, the implications of the generalized (GUP) and extended (EUP) uncertainty
principles on Maxwell–Boltzmann distribution have been widely investigated. However, at high
energy regimes, the validity of Maxwell–Boltzmann statistics is under debate and instead, the
Jüttner distribution is proposed as the distribution function in relativistic limit. Motivated by these
considerations, in the present work, our aim is to study the effects of GUP and EUP on a system
that obeys the Jüttner distribution. To achieve this goal, we address a method to get the distribution
function by starting from the partition function and its relation with thermal energy which finally
helps us in finding the corresponding energy density states.

Keywords: generalized uncertainty principle; extended uncertainty principle; Jüttner distribution

1. Introduction

A general prediction of any quantum gravity theory is the possibility of the existence
of a minimal length in nature, known as the Planck length, below which no other length
can be observed. It is commonly believed that in the vicinity of the Planck length, the
smooth structure of spacetime is replaced by a foamy structure due to quantum gravity
effects [1–3]. Therefore, the Planck scale can be regarded as a separation line between
classical and quantum gravity regimes. There is a general consensus that in the scale
of this minimal size, the characteristics of different physical systems would be altered.
For instance, the introduction of a minimal length scale results in a generalization of the
Heisenberg uncertainty principle (HUP) in such a way that it incorporates gravitationally
induced uncertainty, postulated as the generalized uncertainty principle (GUP) [4]. In fact,
the HUP breaks down for energies near the Planck scale, i.e., when the Schwarzschild
radius is comparable to the Compton wavelength and both are close to the Planck length.
This deficiency is removed by revising the characteristic scale through the modification of
HUP to GUP.

In recent decades, numerous studies on the effects of GUP in various classical and
quantum mechanical systems have been performed [5–30]. Uncertainty in momentum
is also bounded from below and it is proposed that its minimum is non-zero, a proposal
which modifies HUP to the extended uncertainty principle (EUP) [31–35]. In the presence
of EUP and GUP, the general form of modified HUP is proposed as

ΔxΔp ≥ �

2

(
1 + α(Δx)2 + η(Δp)2 + γ

)
, (1)

in which α, η, and γ are positive deformation parameters [35,36]. It should be noted that
there is another formulation of GUP and EUP [37], and also that extended forms of HUP
like GUP may break the fundamental symmetries such as Lorentz invariance and CPT [38].

On the other hand, it is known that heavy ions can be accelerated to very high
kinetic energies constituting an ensemble of ideal gas with relativistic velocities in large
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particle accelerators [39]. In such high energy regimes, minimal length effects may appear
and could have their own influences on the statistics of ideal gases. Therefore, particle
accelerators could provide a setting to examine the phenomena related to short-distance
physics [40,41]. Based on minimum observable length, the quantum gravity implications
on the statistical properties of ideal gases have been investigated in many studies, see,
e.g., [42–45] and references therein. In the framework of GUP: (i) deformed density of states
and an improved definition of the statistical entropy have been introduced in [46,47], (ii)
Maxwell–Boltzmann statistics have been investigated in [48], and (iii) employing Maxwell–
Boltzmann statistics, the thermodynamics of relativistic ideal gas has also been analyzed
in [49]. In the same manner, there have been some studies on the deformation of statistical
concepts in the EUP framework [50,51].

Jüttner distribution is a generalization of Maxwell–Boltzmann statistics to the rela-
tivistic regimes, which appears in high energy physics. Since quantum gravity is a high
energy physics scenario, its statistical effects may be more meaningful in the framework
of Jüttner distribution function compared to the Maxwell–Boltzmann distribution [52].
Here, our main aim is to study the effects of GUP and EUP on Maxwell–Boltzmann and
Jüttner distributions and density of states in energy space. To achieve this goal, we begin
by providing an introductory note on Maxwell–Boltzmann and Jüttner distributions. We
then address a way to find these functions by starting from the partition function of the
system. The effects of GUP and EUP on these statistics are also studied in the subsequent
sections, respectively. The last section is devoted to a summary of the work.

2. The Maxwell–Boltzmann and Jüttner Distribution Functions

We begin by considering an ideal gas composed of non-interacting particles and set
the units so that ω0 = 2π� = 1, where ω0 denotes the fundamental volume of each cell
in the two-dimensional phase-space. This value of ω0 originates from the well-known
commutation relation between canonical coordinates x and p, and indeed, it is the direct
result of HUP [22]. Therefore, any changes in HUP can affect ω0.

2.1. Non-Relativistic Gas

Let us consider a 3-dimensional classical gas consisting of N identical non-interacting
particles of mass m with E = mv2/2, where E and v denote the energy and velocity of
each particle, respectively. At temperature T, the Maxwell–Boltzmann (MB) distribution
function is given by

fMB(v, β) = ZMB exp
(
− βmv2

2

)
, (2)

where ZMB is a normalization constant, and β ≡ 1/KBT with KB being the Boltzmann
constant. In terms of E, we have

fMB = 4πv2(E) fMB(v(E), β)
dv
dE

= ZMBEE
1
2 exp(−βE), (3)

in which ZMBE is a new normalization constant and E
1
2 denotes the density of states with

energy E. The normalization constants can be calculated using the normalization constraint∫ ∞

0
fMB(v, β)d3v =

∫ ∞

0
fMB(E, β)dE = 1. (4)
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The extremum of fMB(E, β) is located at E = 1/2β ≡ Eext
MB or equally at velocity v =

1/
√

βm ≡ vext
MB. One can also evaluate the partition function of the mentioned gas (with

Hamiltonian H = p2/2m) as

NNR
N N

N

N

Q
Q H d xd p

N N
(5)

where

QNR
1 =

∫
exp(−βH)d3xd3 p = V

(
2πm

β

) 3
2
, (6)

denotes the single partition function of a nonrelativistic gas and V refers to the total volume
of the system. In this manner, the corresponding thermal energy per particle (U) takes
the form

UNR =

∞∫
0

E fMB(E, β)dE = −∂ ln QNR
1

∂β
=

3
2β

= 3Eext
MB. (7)

Although the use of Equation (7) dates back to before the discovery of special relativity
theory by Einstein, the ultra-relativistic expression of E produces interesting results in this
framework [53].

2.2. Relativistic Gas

In the relativistic situations, where E =
√

p2c2 + m2c4 in which c denotes the light
velocity and m is the rest mass, one can employ Equation (5) to get

QR
1 = QNR

1 Ψ(σ),

Ψ(σ) =
i

3
2 m3c6

√
π
2 H(1)

2 (iσ)

(iσ)
5
2

,
(8)

as the partition function of a single particle [52,54,55]. Finally, we obtain the thermal energy
per particle as

UR =
1
β

[
1 − iσ

H′(1)
2 (iσ)

H(1)
2 (iσ)

]
= − ∂

∂β
ln QR

1 . (9)

In the above equations, σ = βmc2, H(j)
n (iσ) is the n-th order Hankel function of the

j-th kind, and prime denotes a derivative with respect to the argument of the function.
The above results were first reported in 1911 by Jüttner [52], who attempted to calculate
the energy of a relativistic ideal gas using the conventional theory of relativistic statistical
mechanics. According to Jüttner’s results, a comprehensive study of a 3-dimensional
relativistic system requires the Jüttner distribution ( f J)

f J(γ, β) = ZJ(γ
2 − 1)

1
2 γ exp(−βmγ), (10)

instead of MB distribution ( fMB) [56–61]. Jüttner distribution is indeed the relativistic
extension of generalized isotropic MB distribution when E(p) = mγ(p)c2. Here, ZJ is the
normalization constant and γ = 1√

1−v2 refers to the Lorentz factor, where the units have
been set so that c = 1. In terms of E, simple calculations give us Jüttner distribution as

f J(E, β) = ZJEaJ(E) exp(−βE), (11)
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where aJ(E) = E
√

E2 − m2 denotes the density of states in energy representation, and in
terms of v one finds

f J = (v, β) = ZJV

(
1√

1 − v2

)5
exp

(
− mβ√

1 − v2

)
, (12)

in which ZJE and ZJV are new normalization constants [57]. These constants can be
evaluated using the normalization condition∫ ∞

1 f J(γ, β)dγ =
∫ ∞

m fJ(E, β)dE = 1
=
∫ 1

0 f J(γ(v), β) dγ
dv dv =

∫ 1
0 f J(v, β)d3v,

(13)

which clearly states that

f J(v, β) =
1

4πv2 f J(γ(v), β)
dγ

dv
. (14)

It is finally useful to note that the extremum of f J(v, β) is located at v =

√
1 −

(
βm
5

)2 ≡
vext

J leading to Eext
J = 5

β , a solution which is valid only when βm < 5. There are also other
proposals for Jüttner function ( f J(γ, β)) [56–61], but the standard form Equation (11) con-
sidered in this paper is confirmed by some previous studies [58–60]. The corresponding
thermal energy per particle (i.e., 〈γ〉) (or equally, the ratio U/N in Equation (12)) can also
be obtained by using f J(γ, β), as

UR ≡ m〈γ〉 =
∫ ∞

m
E fJ(E, β)dE = − ∂

∂β
ln QR

1 . (15)

Although Equations (7) and (15) are simple examples, they confirm that the mean
value of energy (or equally, thermal energy) can be calculated by using either the partition
function or the distribution function. Moreover, employing these equations, one can find
the distribution functions whenever the partition function is known. Indeed, if the phase-
space geometry is deformed, then the partition function will also be modified. Therefore,
one can find the corresponding modified MB and Jüttner distributions by directly using
Equations (7) and (15) for the non-relativistic and relativistic cases, repetitively.

3. Generalized Uncertainty Principle, Partition and Distribution Functions

In the units of � = c = 1, the relation [xk, pl ] = iδkl is the standard commutation
relation between the canonical coordinates x and p. This relation leads to HUP in the
framework of quantum mechanics and is the backbone of calculating ω0 [48,53]. Thus, the
volume element d3xd3 p changes whenever different coordinates (commutation relations)
are used [42–44,48]. For GUP, we have [14,31]

ΔXΔP ≥ 1
2

[
1 + η(ΔP)2 + . . .

]
, (16)

where η denotes the GUP parameter and it is based on modified commutation relations

[Xk, Pl ] = i
(
δkl(1 + ηP2) + η′PkPl

)
,

[Pk, Pl ] = 0,

[Xk, Xl ] = i 2η−η′+(2η+η′)ηP2

1+ηP2 (PkXl − PlXk),
(17)

where k, l = 1, 2, 3 for a 3-dimensional space [43,62]. P and X are generalized coordinates
which are not necessarily equal to the canonical coordinates p and x. In this manner,
assuming η′ = 0 and η is independent of �, one finds

d3xd3 p → d3Xd3P

(1 + ηP2)
3 , (18)
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which must be considered as the volume element in X-P space instead of d3xd3 p [42–44,48].
This means that the density of states in the X-P phase space is affected by the factor of(

1 + ηP2) [42]. In this situation, the single particle partition function can also be found as

QGUP
1 =

∫
exp(−βH(P, X))

d3Xd3P

(1 + ηP2)
3 , (19)

where H(P, X) denotes Hamiltonian in generalized coordinates [42,43,50]. The correspond-
ing thermal energy (UGUP) can be calculated using the relation

UGUP = − ∂

∂β
ln QGUP

1 , (20)

along with Equation (19), which finally gives

UGUP =

∫
H(P) exp(−βH(P)) d3P

(1+ηP2)
3∫

exp(−βH(P)) d3P
(1+ηP2)

3

. (21)

In obtaining this equation, the fact that H(≡ E) is independent of X has been used
which cancels integration over d3X. Indeed, the density of states in phase-space is changed
under the shadow of GUP [42,43,48], a result which affects the distribution function.

For a single free particle with H = P2

2m , the ideal gas law is still valid, and therefore

QNR,GUP
1 = QNR

1 I
(

2mη

β
, 3
)

, (22)

while the explicit form of the function I
(

2mη
β , 3

)
can be followed in [44] and QNR

1 is

introduced in Equation (6). The effects of GUP are stored in I
(

2mη
β , 3

)
, and in the limit of

η → 0, one gets the ordinary single partition function of a free particle. Correspondingly,
the partition function of a single free relativistic particle can also be evaluated using
H2 = P2 + m2 in Equation (19). By doing so one finds

QR,GUP
1 =

∫
exp

(
−β
√

P2 + m2
) d3Xd3P

(1 + ηP2)3 , (23)

for which the solution reads

QR,GUP
1 = QR

1

(
1 − η

15
2

1
βm

)
, (24)

when m � 1
β [50].

3.1. Maxwell–Boltzmann Statistics

Bearing in mind the recipe which led to the expression for fMB(E, β), one can get the
modified MB distribution in the X-P space as

f GUP
MB (E, β) = 4πP2(E) exp(−βE)

(1+ηP2(E))3
dP
dE

= ZGUP
MBE

E
1
2 exp(−βE)
(1+2ηmE)3 ,

(25)

where ZGUP
MBE denotes the normalization constant in the presence of GUP. The thermal

energy then reads

UGUP =
∫ ∞

0
E f GUP

MB (E, β)dE. (26)
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One can also find the normalization constant ZGUP
MBE as

ZGUP
MBE =

[∫ ∞

0

E
1
2 exp(−βE)

(1 + 2ηmE)3 dE

]−1

, (27)

which is equal to ZMBE in the limit where η → 0. Obviously, the MB distribution fMB(E, β),
is recovered through Equation (25) at the appropriate limit of η = 0. For the density of
states in HUP framework we have aMB(E) =

√
E. This relation is modified in the presence

of GUP effects and thus, the density of states will take the following form

aGUP
MB (E) =

√
E

(1 + 2ηmE)3 , (28)

which is in agreement with the results of [18]. The extremum of f GUP
MB (E, β) is also located

at

εext
MB =

1 + 10mηEext
MB

4mη

⎛⎝√√√√1 +
8mηEext

MB

(1 + 10mηEext
MB)

2 − 1

⎞⎠, (29)

which clearly indicates εext
MB → Eext

MB whenever η → 0 . In Figure 1, the effects of GUP on
the distribution function in MB statistics are shown where the temperature is considered to
be constant (β = 1).

Figure 1. Maxwell–Boltzmann (MB) distribution versus energy for η = 0.5, 1, 1.5. The ordinary MB
distribution is denoted by the solid curve. Here, we have set the units so that � = c = KB = 1.

3.2. Jüttner Statistics

In the relativistic situation, where H =
√

P2 + m2(≡ E), following the above recipe,
we get the modified Jüttner distribution as

f GUP
J (E, β) = ZGUP

JE
E
√

E2 − m2 exp(−βE)

(1 + η[E2 − m2])
3 , (30)

which recovers f J(E, β) in the limit where η → 0 . Here, ZGUP
JE is also a normalization con-

stant which can be calculated by utilizing the normalization constraint
∫ ∞

m f GUP
J (E, β)dE =

1. We also find

aGUP
J (E) =

E
√

E2 − m2

(1 + η[E2 − m2])
3 , (31)

as the density of states in Jüttner statistics in the presence of GUP. Figure 2 shows the
behavior of f GUP

J (E, β) for some positive values of η parameter.
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Figure 2. Behavior of Jüttner distribution against energy for η = 0.5, 1, 1.5. The solid curve belongs
to the ordinary Jüttner distribution and we have set the units so that � = c = KB = 1.

4. Extended Uncertainty Principle, Partition and Distribution Functions

The modified Heisenberg algebra in the EUP framework can be recast into the follow-
ing form [

Xi, Pj
]
= i
(
δij + αXiXj

)
, (32)

where α is a small positive parameter known as the EUP parameter. In the limit of α → 0 ,
the canonical commutation relation of the standard quantum mechanics is recovered. Based
on the commutation relation Equation (32), the HUP is modified by

(ΔXi)(ΔPi) ≥ 1
2

[
1 + α(ΔXi)

2 + . . .
]
, (33)

which leads to a non-zero minimum uncertainty in momentum as (ΔPi)min =
√

α. Here,
we apply the coordinate representation of the operators Xi and Pi expressed as

Xi = xi,
Pi =

(
δij + αxixj

)
pj,

(34)

where xi and pj satisfy the standard commutation relation of ordinary quantum mechanics.
This representation yields the following commutation relation for the momentum operator[

Pi, Pj
]
= iα

(
xi pj − pixj

)
. (35)

In the X-P space, the modified volume element

d3Xd3P

(1 + αX2)3 , (36)

should be considered instead of d3xd3 p [20]. We then proceed to consider the consequences
of such a modification in calculating the partition and distribution functions. For a single
particle, the partition function in X-P space can be found as

QEUP
1 =

∫
exp(−βH(P, X))

d3Xd3P

(1 + αX2)3 , (37)

whence we get the corresponding thermal energy as

UEUP = − ∂

∂β
ln QEUP

1 . (38)
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The above expression can also be combined with Equation (37) to give Equation (21). For
the free non-relativistic and relativistic particles, one finds

QNR,EUP
1 = Ve f f (α, r)

(
2πm

β

) 3
2
=

Ve f f (α, r)
V

QNR
1 , (39)

and

QR,EUP
1 =

Ve f f (α, r)
V

QR
1 , (40)

respectively, where we have defined Ve f f (α, r) =
∫ r

0
d3X

(1+αX2)
3 as the effective volume, and

in the limit of α → 0 , the usual volume V is recovered. Since Ve f f (α, r) is independent of β,
the thermal energy related to EUP is the same as what we obtained in Equations (7) and
(9), respectively. Consequently, EUP does not affect the Maxwell–Boltzmann and Jüttner
distribution functions, because the corresponding effective volume has no dependence on
β.

5. Conclusions

The Jüttner function is the relativistic version of MB distribution and is proper for
studying relativistic (high energy) systems. On the other hand, the minimal length comes
into play in the realms of high energy physics. Hence, compared with MB distribution,
the study of its effects on Jüttner distribution would be more meaningful. Thus, our
attempt in the present work was to address an algorithm with the help of which, one
can get the distribution function, starting from the partition function. Motivated then
by the abovementioned arguments, we studied the effects of GUP and EUP (two aspects
of quantum gravity) on Jüttner distribution and the corresponding density of states in
energy space. We also addressed the consequence of applying our approach to the MB
distribution in order to find the density of states Equation (28) which is in agreement with
previous reports [42,48], a result which confirms our approach. The results of our study are
summarized in Tables 1 and 2 for the non-relativistic and relativistic regimes, respectively.

Table 1. Non-relativistic ideal gas (2π� = 1).

HUP GUP EUP

The volume of phase
space element 1

(
1 + ηP2)3 (

1 + αX2)3

Density of States
√

E
√

E
(1+2mηE)3

√
E

Single Partition
Function V

(
2πm

β

) 3
2 V

(
2πm

β

) 3
2 I
(

2mη
β , 3

)
Ve f f (α, r)

(
2πm

β

) 3
2

Table 2. Relativistic ideal gas (2π� = 1).

HUP GUP EUP

The volume of phase
space element 1

(
1 + ηP2)3 (

1 + αX2)3

Density of States E
√

E2 − m2 E
√

E2−m2

(1+η(E2−m2))3 E
√

E2 − m2

Single Partition
Function V

(
2πm

β

) 3
2 Ψ(σ)

V
(

2πm
β

) 3
2 Ψ(σ)

(
1 − η 15

2
1

βm

)
,

when m � 1
β

Ve f f (α, r)
(

2πm
β

) 3
2 Ψ(σ)

It is obvious from Figures 1 and 2, that the effects of the existence of a non-zero
minimal length (η �= 0) on distribution functions become more sensible as energy increases.
This means that the probability of achieving high energy states when η �= 0 is smaller than
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the η = 0 case. It is also worth mentioning that though there exist some proposals to test
observable effects of the minimal length [63], the Planck scale is currently far beyond our
reach. Since by comparing the Planck energy (≈1016 TeV) [64] to the energy achieved in the
Large Hadron Collider (≈10 TeV) [65], or the Planck length (≈10−35 m) to the uncertainty
within the position of the LIGO mirrors (≈10−18 m) [66] or the Planck time (≈10−44 s) to
the shortest light pulse produced in laboratory(≈10−17 s) [67], we observe that we are at
best 15 orders of magnitude away from achieving the Planck scale. In this regard, future
developments within these experimental setups are expected in order to search for the
footprints of GUP effects in nature.

Finally, regarding the results reported in [68] and [69] the usefulness of Tsallis distribu-
tion function in high energy physics is expected. In line with these results, some researchers
study the possibility of describing the distribution of transverse momentum in the Large
Hadron Collider and Relativistic Heavy Ion Collider, employing the Tsallis distribution,
expressed as [70–73]

fT(q, β) = ZT [1 − (1 − q)βE]
1

1−q . (41)

Here ZT and q denote the normalization constant and non-extensivity parameter, respec-
tively. Although utilizing our approach to investigate the effects of GUP and EUP on Equa-
tion (41) is straightforward, such a study needs more careful analysis owing to the issues
raised by [38] which states a criterion on the domains of validity of Maxwell–Boltzmann,
Jüttner, and Tsallis distributions as a special high energy phenomenon. Therefore, it can be
considered as an attractive topic for future studies.
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Abstract: We consider a gauge theory of vector fields in 3D Minkowski space. At the free level,
the dynamical variables are subjected to the extended Chern–Simons (ECS) equations with higher
derivatives. If the color index takes n values, the third-order model admits a 2n-parameter series
of second-rank conserved tensors, which includes the canonical energy–momentum. Even though
the canonical energy is unbounded, the other representatives in the series have a bounded from
below the 00-component. The theory admits consistent self-interactions with the Yang–Mills gauge
symmetry. The Lagrangian couplings preserve the energy–momentum tensor that is unbounded
from below, and they do not lead to a stable non-linear theory. The non-Lagrangian couplings are
consistent with the existence of a conserved tensor with a 00-component bounded from below. These
models are stable at the non-linear level. The dynamics of interacting theory admit a constraint
Hamiltonian form. The Hamiltonian density is given by the 00-component of the conserved tensor. In
the case of stable interactions, the Poisson bracket and Hamiltonian do not follow from the canonical
Ostrogradski construction. Particular attention is paid to the “triply massless” ECS theory, which
demonstrates instability even at the free level. It is shown that the introduction of extra scalar field,
serving as Higgs, can stabilize the dynamics in the vicinity of the local minimum of energy. The
equations of motion of the stable model are non-Lagrangian, but they admit the Hamiltonian form of
dynamics with a Hamiltonian that is bounded from below.

Keywords: higher-derivative theories; extended Chern–Simons; Hamiltonian formalism; stability

1. Introduction

The higher-derivative theories are well known for their better convergency properties
at classical and quantum levels and wider symmetry. In most instances, these advantages
come at the price of dynamic instability, which is the typical problem for the models
in this class. At the classical level, the solutions to the equations of motion demonstrate
runaway behavior (“collapse”). At the quantum level, ghost poles appear in the propagator,
and so the unitarity of dynamics is an issue. These peculiarities follow from a single
fact: the canonical energy is unbounded in every non-singular higher derivative theory.
For a review of the problem, we cite recent articles [1–3] and references therein. The
canonical energy of singular models can be bounded. The examples include f (R)-theories
of gravity [4–7]. These models do not demonstrate instability. The stability problem for
constrained higher-derivative theories is discussed in [8]. In the majority of interesting
(constrained or unconstrained) models, the instability has a special form: the classical
dynamics are regular (no “collapse”), but the canonical energy is unbounded from below.
The Pais–Uhlenbeck oscillator [9], Podolsky [10] and Lee–Wick [11,12] electrodynamics,
ECS theory [13] and conformal gravity [14] are examples. With regard to the current studies,
we refer readers to [15–18] and references therein. In all these models, the quantum theory
is expected to be well defined [2,19], but the application of the canonical quantization
procedure based on the Ostrogradski procedure (The canonical Hamiltonian formalism for
the non-singular higher-derivative theories was first proposed in [20]. Its generalization
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for singular theories was developed in [21]: see also [22]. For recent studies, see [23,24].)
leads to a model with a spectrum of energy that is unbounded from below; that is why the
stability and unitarity of quantum dynamics is the most important issue.

Recently, it has been recognized that the higher-derivative dynamics can be stable at
the classical and quantum levels even if the canonical energy of the model is unbounded.
The articles [25,26] explain the stability of Pais–Uhlenbeck theory from the perspective
of the existence of the Hamiltonian form of dynamics with a bounded (non-canonical)
Hamiltonian. The quantization of the model with an alternative Hamiltonian leads to a
quantum theory with a well-defined vacuum state with the lowest energy. In [27,28], the
authors use a special PT-symmetry for the construction of stable quantum mechanics in
the higher-derivative oscillator model. In [1–3,29], the authors state that the non-linear
higher derivative models may exhibit well-defined classical dynamics without “collapsing”
trajectories with runaway behavior. In the latter articles, the existence of stable classical
dynamics serves as a necessary prerequisite for the construction of a well-defined quantum
theory. With regard to the studies of field theories, we refer readers to [30,31]. All the
models mentioned in this paragraph have one common feature: they admit alternative
(in contrast to the canonical energy) conserved quantities that are bounded from below.
Quantum stability is achieved if the model admits the Hamiltonian form of dynamics,
with the bounded conserved quantity being the Hamiltonian. This means that the stable
higher-derivative theory is characterized by two ingredients: the bounded conserved
quantity and the Poisson bracket on its phase space that brings the equations of motion to
the Hamiltonian form with a Hamiltonian bounded from below.

In [32], the stability is studied in the class of models of the derived type. At the free
level, the wave operator of the theory is given by a polynomial (characteristic polyno-
mial) in another formally self-adjoint operator of lower order. It has been shown that
each derived theory admits a series of conserved tensors, which includes the canonical
energy–momentum [33]. The number of entries in the series grows with the order of the
characteristic polynomial. Even though the canonical energy is unbounded, the other
conserved tensors in the series can be bounded from below [33]. The bounded conserved
quantity stabilizes the classical dynamics of the theory. The quantum stability is explained
by the existence of the Lagrange anchor, which relates a bounded conserved quantity
with the invariance of the model with respect to the time translations. (The concept of the
Lagrange anchor was proposed in [34] in the context of the quantization of non-Lagrangian
field theories. Later, it was recognized that the Lagrange anchor connects symmetries and
conserved quantities [35].) In the first-order formalism, the Lagrange anchor defines the
Poisson bracket [36]. The Hamiltonian is given by the conserved quantity in the series and
is expressed in terms of phase-space variables. The linear higher-derivative theory is stable
if a bounded conserved quantity, related to time-translation symmetry, is admitted by the
model [32]. In [37,38], the authors consider the problem of the consistent deformations of
symmetries and conserved quantities that preserve the stability of dynamics in the class of
derived-type models. In all cases, interaction vertices do not come from the least-action
principle with higher derivatives, but the equations of motion admit the Hamiltonian
form of dynamics. The main difficulty of the procedures cited above is that they do not
automatically preserve gauge invariance. This restricts their applications in gauge systems.

The ECS model [13] is the simplest gauge theory of the derived type. In current
studies, it often serves as a prototype of the class of gauge theories with higher deriva-
tives; see, e.g., [39–41]. The stability of the ECS model was first studied in [33]. It has
been observed that the theory of order p admits a p − 1-parameter series of second-rank
conserved tensors, which includes the canonical energy–momentum. The canonical energy
of the model is always unbounded from below. The other tensors in the series may have a
00-component that is bounded from below. The stability conditions for the theory are deter-
mined by the structure of the roots of the characteristic polynomial [33]. The theory is stable
if all the nonzero roots of the characteristic polynomial are real and different and the zero
root has a multiplicity of one or two. The stability of the ECS theory is confirmed in [42].
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The ECS model was shown to be a multi-Hamiltonian at the free level in [43]. The series of
Hamiltonians includes the canonical (Ostrogradski) Hamiltonian, which is unbounded,
and the other representatives, which are bounded or unbounded depending on the model
parameters. If the Hamiltonian is bounded, this ensures the stability of the model at both
classical and quantum levels. The model admits the inclusion of stable non-Lagrangian
interactions with scalar, fermionic and gravitational fields that preserve a selected repre-
sentative in the series of conserved quantities of free model [38,43,44]. However, the gauge
symmetry is abelian in the sector of the vector field in all these examples.

The concept of the consistency of interaction between the gauge fields was developed
in [45]. The consistent couplings between gauge vectors were studied in [46,47]. It was
shown that the Yang–Mills vertex is unique in the covariant setting. The Lagrangian self-
interactions of the gauge vector multiplet subjected to the ECS equations at the free level
were reconsidered in [42]. The most general consistent non-linear theory has been proven to
have the Yang–Mills gauge symmetry, and the Lagrangian is given by the covariantization
of the free ECS Lagrangian. The interacting model demonstrates Ostrogradski instability at
the non-linear level in all instances, even though the free theory is stable. This result implies
a no-go theorem for stable Lagrangian interactions in the ECS model. The conclusion is not
surprising because the Lagrangian couplings preserve the conservation law of canonical
energy, being unbounded already at the free level. The inclusion of non-Lagrangian
interactions can solve the issue of the dynamic stability at the interacting level, because
such couplings preserve bounded conserved quantities. However, the problem of the
construction of stable and consistent non-Lagrangian (self-)couplings (stable or unstable)
has not been studied in the ECS model in the literature before.

In the current work, we present a class of stable self-interactions in the theory of
vector multiplets. The free fields are subjected to the ECS equations of the third order.
The interaction is (in general) non-Lagrangian. The non-linear equations of motion are
consistent with Yang–Mills gauge symmetry. A selected second-rank conserved tensor
of the free model is preserved by the coupling. Depending on the values of coupling
constants, this can be bounded or unbounded. The Lagrangian interaction vertex in [42] is
unstable. The non-Lagrangian coupling can be consistent with the existence of the bounded
conserved tensor. The equations of motion admit the Hamiltonian form of dynamics. On
the shell, the Hamiltonian density is given by the 00-component of the conserved tensor.
For Lagrangian interactions, the canonical formalism with the unbounded Ostrogradski
Hamiltonian is reproduced. The bounded Hamiltonians do not follow from the Ostrograski
procedure, and thus we find non-canonical Hamiltonian formalism in this case. In all
the instances, the Poisson bracket is a non-degenerate tensor, so the model admits a
Hamiltonian action principle. The quantization of the first-order action with the bounded
Hamiltonian leads to a stable quantum theory with a well-defined vacuum state.

In the case of resonance (multiple roots of a charlatanistic polynomial), the dynamics
of the theory are unstable even at the free level. The inclusion of self-interaction does
not improve the stability properties of dynamics of this model because the conserved
quantities have the same structure in the free and non-linear models. In the current article,
a model with the third-order zero resonance root is of interest. The free field is subjected to
the “triply massless” Chern–Simons (CS) equations. The wave operator of free equations
is given by a cube of the CS operator. To stabilize the dynamics at the non-linear level,
we apply the “Higgs-like” mechanism described in [48]. Introducing an extra scalar, we
generate a coupling such that the energy of the interacting theory obtains a local minimum
for a solution with nonzero values of dynamical variables. The motions of small fluctuations
in the vicinity of this solution are stable because the non-linear theory has no resonance.
The dynamics of fluctuations admit the Hamiltonian form, with the Hamiltonian being
given by the positive definite quadratic form of the fields. This means that the dynamics of
the theory with a resonance can be stabilized by the inclusion of an appropriate interaction.

The article is organized as follows. In Section 2, we consider the third-order ECS
model for a vector multiplet. Particular attention is paid to the structure of symmetries,
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conserved quantities of the theory and the stability of the dynamics. In Section 3, we
propose stable self-interactions between the multiplet of vector fields with the Yang–Mills
gauge symmetry. The general model in the class model preserves a selected conserved
tensor of the free theory, which can be bounded or unbounded from below depending on
the values of coupling constants. The stable interactions are inevitably non-Lagrangian. In
Section 4, we construct the constrained Hamiltonian formalism for the non-linear model.
The density of the Hamiltonian is given by the 00-component of the conserved tensor, being
expressed in terms of the phase-space variables. In Section 5, we consider the issue of the
stability of “triply massless” ECS theory. We propose the class of consistent couplings,
with the scalar field stabilizing the dynamics in the vicinity of equilibrium position. The
equations of motion are non-Lagrangian, but they admit the constrained Hamiltonian form
with a bounded Hamiltonian. The concluding section discusses the potential applications
of the model that are considered in the article.

2. Higher-Derivative Chern–Simons Model

We consider the most general third-order gauge theory of the vector multiplet
Aa = Aa

μ(x)dxμ, μ = 0, 1, 2, a = 1, 2, . . . , n in three-dimensional Minkowski space. The
action functional of the model reads

S[A(x)] =
1
2

∫
Aa

μ(α1Faμ + α2Gaμ + α3Kaμ)d3x . (1)

where the real numbers α1, α2 and α3 are model parameters. Without loss of generality, we
assume that the coefficient at the higher derivative term is nonzero, α3 �= 0. The vectors
Fa

μ, Ga
μ and Ka

μ denote the (generalized) field strengths of the potential Aa
μ,

Fa
μ = εμνρ∂ν Aaρ , Ga

μ = εμνρ∂νFaρ , Ka
μ = εμνρ∂νGaρ , (2)

where the Levi–Civita symbol εμνρ, ε012 = 1 is antisymmetric with respect to indices. All
the tensor indices are raised and lowered by the Minkowski metric. We use the mostly
positive convention for the signature of metrics throughout the paper. The summation is
implied over the isotopic indices a = 1, . . . , n repeated at one level unless otherwise stated.
For α3 = α1 = 1, α2 = 0, n = 1, the action functional Equation (1) was first proposed in the
article [13]. We refer to the model Equation (1) as the ECS theory for a vector multiplet.

The least-action principle for the functional Equation (1) brings us to the following
Lagrange equations for the field Aμ:

δS
δAaμ ≡ α1Fa

μ + α2Ga
μ + α3Ka

μ = 0 , a = 1, . . . , n . (3)

These equations have the derived form [33] because the wave operator is a polynomial
in the CS operator ∗d. The symbol ∗ denotes the Hodge star operator, and d is the de Rham
differential. For the exposition of differential form theory concepts, we refer readers to
the book [49]. The structure of the Poincare group representation, being described by the
Equation (3), is determined by the roots of the characteristic polynomial

M(α; z) = α1z + α2z2 + α3z3 . (4)

The polynomial M(α; z) follows from Equation (3) after the formal replacement of the
CS operator ∗d by the complex-valued variable z. The following cases are distinguished in [33].

(1a) α1 �= 0 , (α2)
2 − 4α1α3 > 0 . The characteristic polynomial has a zero root and two

different nonzero real roots. Equation (3) describes two massive spin-1 self-dual fields.
(The theory of a massive spin-1 field being subjected to the self-duality condition was
proposed in [50]. For the theory of representations of the 3D Poincare group, we refer
readers to [51–53]). A zero root corresponds to the CS mode, which is a pure gauge;
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(1b) α1 �= 0 , (α2)
2 − 4α1α3 < 0. The characteristic polynomial has a zero root and two

complex roots. The case is similar to (1a), but the masses of vector modes are complex.
The Poincare group representation is non-unitary;

(2a) α2 �= 0, α1 = 0. The characteristic polynomial has multiple two zero roots and a
simple nonzero root. The set of subrepresentations includes a massless spin-1 field
and a massive spin-1 mode subjected to the self-duality condition;

(2b) α2 �= 0, (α2)
2 − 4α1α3 = 0. The characteristic polynomial has multiple two nonzero

roots and a simple zero root. The subrepresentations describe a “doubly massive” mas-
sive mode and a gauge CS mode. The Poincare group representation is non-unitary;

(3) α1 = α2 = 0. The characteristic polynomial has multiple three zero roots. Equation (3)
describes the “triply” massless extended CS theory. The Poincare group representation
is non-unitary.

As we see, the ECS model describes the unitary representation of the Poincare group
if all the nonzero roots of the characteristic equation are different, and the zero root has a
multiplicity of one or two. The dynamical degrees of freedom include the massive spin-1
vector subjected to the self-duality condition and/or spin-1 massless field, meeting the 3D
Maxwell equations. In all instances, the model has two local physical degrees of freedom
(four physical polarizations).

The action function Equation (1) is preserved by the 2n-parameter series of infinitesi-
mal transformations:

δξ;β Aa
μ = −εμνρξρ(βa

1Faρ + βa
2Gaρ) , a = 1, . . . , n, (5)

(no summation in a). The transformation parameters are the constant vector ξμ and real
numbers βa

k, a = 0, . . . , n, k = 1, 2. The series Equation (5) includes the space–time
translations with the independent parameters for the individual vector Aa

μ in the multiplet
and higher-order transformations, whose value is determined by βa

2. The Noether theorem
associates symmetries Equation (5) with the 2n-parameter series of second-rank conserved
tensors, which has the form

Θμν(β; α) =
n

∑
a=1

(βa
1Θaμν

1(α) + βa
2Θaμν

2(α)) , (6)

where

Θaμν
1(α) = α3(GaμFaν + GaνFaμ − gμνGa

ρFaρ) + α2(FaμFaν − 1
2

gμνFa
ρFaρ) ; (7)

Θaμν
2(α) = α3(GaμGaν − 1

2
gμνGa

ρGaρ)− α1(FaμFaν − 1
2

gμνFa
ρFaρ) (8)

(no summation in a). The quantities Θaμν
1 and a = 1, . . . , n Equation (7) represent the

canonical energy–momentum tensors of individual fields in the vector multiplet Aa
μ. The

tensors Θaμν
2 and a = 1, . . . , n Equation (8) are other conserved quantities. The total

number of independent conserved tensors in the free theory is 2n because each field in the
multiplet admits two different symmetries.

The 00-component of the conserved tensor Equation (6) reads

Θ00(β; α) =
1
2

n

∑
a=1

{
β2α3(Ga0Ga0 + GaiGai) + 2β1α3(Ga0Fa0 + GaiFai)+

+(β1α2 − β2α1)(Fa0Fa0 + FaiFai)
}

.

(9)
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The summation over the index i = 1, 2 repeated at one level is implied. The quadratic
form Equation (9) can be reduced to the principal axes as follows:

Θ00(β; α) =
n

∑
a=1

{α3(Xa0Xa0 + XaiXai)

2βa2
+

C(βa; α)(Fa0Fa0 + FaiFai)

2βa2

}
. (10)

where Xa
μ = βa

1Fa
μ + βa

2Gμ, and the following notation is used:

C(βa; α) = −(βa
2)

2α1 + βa
2βa

1α2 − (βa
1)

2α3 . (11)

In Section 4, we see that Xa0Xa0 + XaiXai and Fa0Fa0 + FaiFai depend on different
initial data (See the detailed discussion in [43]). In this case, the 00-component Equation (9)
is bounded from below if the coefficients at squares are positive:

βa
2α3 > 0, C(βa; α) > 0 , a = 1, . . . , n . (12)

We ignore the case of the semi-positive quadratic form because the degenerate con-
served quantities do not ensure the stability of dynamics. Relations Equation (12) are
consistent if and only if the model parameters α1, α2, α3 meet conditions (1a) and (2a) of
classification on pages 4–5. In cases (1b), (2b) and (3) of this classification, the conditions
in Equation (12) are inconsistent. This means that the free model Equation (1) is stable if
the wave Equation (3) describes a unitary representation of the Poincare group. This result
is quite natural because the theories that correspond to the unitary representations of the
Poincare group should have stable dynamics.

3. Stable Interactions

In this section, we present an example of stable self-interactions in the model
Equation (1). The interactions are non-Lagrangian. The dynamics of the non-linear the-
ory are determined by the equations of motion. The interactions are associated with the
deformations of free equations of motion that preserve the gauge symmetries and gauge
identities of the free model. The interaction is consistent if the number of physical degrees
of freedom is preserved by coupling. For details of the concept of the consistency of
interaction in the class of unnecessary Lagrangian theories, we refer readers to [54].

We begin the construction of a non-linear theory by assuming that the dynamical fields
take values in the Lie algebra of a semisimple Lie group with the generators ta, a = 1, . . . , n,

Aμ = Aa
μ(x)tadxμ , [ta, tb] = f abctc , tr(tatb) = δab . (13)

The covariant analogs of the (generalized) field strength vectors Equation (2) are
defined as follows:

Fμ = εμνρ(∂
νAρ +

1
2
[Aν,Aρ]) , Gμ = εμνρDνF ρ , Kμ = εμνρDνGρ. (14)

The vectors Fμ, Gμ, Kμ lie in the Lie algebra of a semisimple Lie group, and D stands
for the covariant derivative

Dμ = ∂μ + [Aμ, · ] . (15)

The vector Fμ represents a dual of the standard Yang–Mills strength tensor. The
generalized field strengths Gμ and Kμ are other covariant quantities that involve second
and third derivatives of Aμ.

We consider the interactions that are polynomial in the gauge invariants of Equation (14)
and do not involve the highest derivative in the non-linear part. In this setting, the most gen-
eral self-consistent non-linear theory is determined by the following equations of motion:

T
μ = α3Kμ + α2Gμ + α1Fμ − α3

2

2C(β; α)
εμνρ[β1F ν + β2Gν, β1F ρ + β2Gρ] = 0 . (16)
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We prove the uniqueness of this coupling in Appendix A. The model parameters are
the real numbers αk, k = 1, 2, 3, βl , l = 1, 2 and f abc, a, b, c = 1, . . . , n. The constants α1, α2
determine the free limit of the Equation (16). The numbers β1 and β2 distinguish admissible
couplings with the same gauge group. Throughout this section and below, we assume that
C(β; α) �= 0. The equations of motion Equation (16) come from the least-action principle if
β1 = 1, β2 = 0. In this case, the action functional reads

S[A(x)] =
1
2

tr
∫

Fμ(α1Aμ + α2Fμ + α3Gμ)d3x . (17)

This action functional was first derived in [42] (The higher-derivative Yang–Mills
theory with a similar structure of the Lagrangian has been known for a long time [55]). The
same paper tells us that Equation (17) is the most general form of consistent self-interaction
in the gauge theory of vector fields. This means that the most general consistent Lagrangian
coupling Equation (17) is included in the model Equation (16). If the parameter β2 is
nonzero, Equation (16) does not follow from the least-action principle for any functional
with higher derivatives. The variational principle with auxiliary fields still exists, even if the
higher-derivative model is non-Lagrangian. In the last case, the theory Equation (16) admits
consequent quantization and the establishment of a relationship between symmetries and
conserved quantities.

The concept of interaction consistency for theories that are not necessarily Lagrangian
has been developed in [54]. This paper tells us that the non-Lagrangian interaction is
consistent if the non-linear theory admits the same number of (i) gauge symmetries, (ii)
gauge identities and (iii) physical degrees of freedom as a free model. All these facts
are easily verified. At first, the equations of motion Equation (16) are preserved by the
Yang–Mills gauge symmetry:

δζAμ = Dμζ , δζTμ = [ ζ ,Tμ] , (18)

where ζ = (ζa(x), a = 1, . . . , n) is the gauge transformation parameter. The free model
Equation (17) is preserved by the standard gradient gauge symmetry, δζ Aa

μ = ∂μζa. As re-
quired, the gauge symmetry Equation (18) is given by the deformation of the gradient gauge
symmetry of free model. The important difference is that the gauge symmetry Equation (18)
is non-abelian. Thus, the inclusion of interaction tends towards the model with non-abelian
gauge symmetry. We have an obvious set of gauge identities between the Equation (16),

DμT
μ = 0 , Dμ = Dμ +

α3

C(β; α)
[β1Fμ + β2Gμ, ·] . (19)

Again, the leading term of the gauge identity is given by the free contribution. This
agrees with the concept of interaction consistency. At the final step of analysis, we verify
that the physical degrees of freedom number is preserved by the coupling. Equation (8)
of [54] expresses the number of physical degrees of freedom via the orders of gauge
symmetries, gauge identities and equations of motion in the involutive of dynamics.
The systems Equations (3) and (16) are involutive, and they have equal orders of gauge
symmetries, gauge identities and equations of motion. Thus, they have to possess the same
number of physical degrees of freedom. All the above implies that the non-Lagrangian
interaction Equation (16) is consistent for the general values of the parameters β, α.

The theory Equation (16) admits a symmetric conserved tensor of second rank of the
following form:

Θμν(β; α) = tr
{

β2α3(GμGν − 1
2

gμνGρGρ) + β1α3(GμF ν + GνFμ−

−gμνGρF ρ) + (β1α2 − β2α1)(FμF ν − 1
2

gμνF ρF ρ)
}

,

(20)
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where αk, k = 1, 2, 3 and βl , l = 1, 2 are the model parameters. The divergence of the
quantity Θμν(β; α) reads

∂νΘμν = −tr(εμνρ(β1F ν + β2Gν)Tρ) . (21)

Expression Equation (20) is the covariantization of a selected representative in the
conserved tensor series: Equation (6),

βa
1 = β1 , βa

2 = β2 , a = 1, . . . , n . (22)

As is seen, the model Equation (16) represents the class of deformations of free ECS
Equation (3) that preserves a selected representative in the series Equation (6) of conserved
quantities at the non-linear level. It is important to note that the other representatives in
the series Equation (20) are no longer conserved in the non-linear theory Equation (16).
This happens because the parameters βk, k = 1, 2 in the conserved tensor Equation (20) are
unambiguously fixed by the interaction.

As far as stability is concerned, the 00-component of the tensor Equation (20) is
relevant. The latter reads

Θ00(β; α) = tr
{1

2
β2α3(G0G0 + G iG i) + β1α3(G0F 0 + G iF i)+

+
1
2
(β1α2 − β2α1)(F 0F 0 +F iF i)

}
.

(23)

The conserved tensor is a bilinear form in (generalized) strengths Fμ, Gμ. The
application of the quadratic form Equation (23) to the principal axes reveals that the
model is stable if

β2α3 > 0 , C(β; α) > 0 . (24)

These conditions can be consistent or inconsistent depending on the values of the
model parameters αk, k = 1, 2, 3 and βl , l = 1, 2. The Lagrangian interaction vertex
Equation (17) does not meet stability requirements. This confirms the instability of the
variational coupling proposed in [42]. The stable interactions in the class of models
Equation (16) are inevitably non-Lagrangian. The similar form of stability conditions
Equation (12), Equation (24) at the free and interacting cases implies that the linear and
non-linear dynamics are stable or unstable simultaneously. In the class of theories of stable
dynamics at the linear level, Equation (16) determines a class of non-linear models that
preserve a selected bounded conserved quantity in the series Equation (6).

Now, we can return to the special case C(β; α) = 0, which is excluded in Equation (16).
The conserved quantity Equations (6) and (22) are a degenerate quadratic form of the
initial data. The 00-component of the free conserved tensor can be bounded from below,
but its degeneracy implies the existence of zero vectors. The motion of the system in the
degenerate direction can be infinite, and the corresponding conserved quantity appears
to be irrelevant to stability even at the free level. The formula Equation (16) prevents the
construction of interacting theories that preserve the conserved tensors with a semi-definite
00-component.

4. Hamiltonian Formalism

In this section, we construct a constrained Hamiltonian formalism for the higher-
derivative theory Equation (16).

Let us first explain what we understand by the constrained Hamiltonian formalism for
the system of not necessarily Lagrangian field equations with higher derivatives. A general
fact is that the higher-derivative system can be reduced to the first order by the introduction
of extra fields that absorb the time derivatives of original dynamical variables. The set of
original dynamical variables and extra fields is denoted by {ϕI(x, t), λA(x, t)}, where t = x0
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is the time, and x = (x1, x2) stands for space coordinates. The multi-indices A, I label the
phase-space variables. The first-order equations are said to be Hamiltonian if there exists a
Hamiltonian function H(ϕI ,∇ϕI ,∇2 ϕI , ...) (∇ stands for derivatives by the space x) and
a Poisson bracket {ϕI(x), ϕJ(y)} such that the equations constitute a constrained Hamilto-
nian system; i.e.,

ϕ̇I(x) = {ϕI(x),
∫ Hdy }, θA(ϕI(x),∇ϕI(x), . . .) = 0 ;

H = H0(ϕJ(x),∇ϕJ(x), . . .) + λA(x)θA(ϕI(x),∇ϕI(x), . . .) .
(25)

where the dot denotes the derivative by time

ϕ̇I =
dϕI

dx0 . (26)

The system is multi-Hamiltonian if there exists a series of Hamiltonian Hβ and Poisson
brackets {ϕI(x), ϕJ(y)}β parameterized by constraints β1, . . . , βk such that they determine
the same equations of motion for the dynamical fields. The existence of the constrained
Hamiltonian formulation is not guaranteed for a system of general non-Lagrangian equa-
tions of motion. In particular, the Hamiltonian formulation for the ECS theory may not
exist, at least for certain combinations of model parameters.

We begin the construction of the Hamiltonian formalism with the reduction of order of
Equation (16). The space components of the field strength Fi, i = 1, 2, and generalized field
strength of second order Gi, i = 1, 2, are chosen as extra fields. By construction, they absorb
the first and second time derivatives of space components of the vector field Ai, i = 1, 2,

F i = εij(Ȧj − ∂iA0 + [A0,Aj]) ,

G i = −Äi + ∂i Ȧ0 − [Ȧ0,Ai]− [A0, Ȧi] + [A0,Ai − ∂iA0 + [A0,Ai]]−

−εijεkl∂j(∂kF l + 1/2[Ak,Al ]) + εijεkl [Aj, ∂kF l + 1/2[Ak,Al ]] .

(27)

where εij, ε12 = 1 is the 2D Levi–Civita symbol. The Latin indices i, j run over the values
1, 2. Summation over Latin indices repeated at the same level is implied. As can be seen
from the equations, in Equation (27), the fields F i absorb the first time derivatives of space
components of original vector field Ai. The vector G i involves the second time derivatives
of Ai. The time components F0,G0 of vectors Equation (27) are functions of A0, Ai, F i and
G i, with no new combinations of time derivatives being involved:

F 0 ≡ εij(∂iAj + [Ai,Aj]) , G0 ≡ εij(∂iFj + [Ai,Gj]) . (28)

In the remaining part of the article, we associate the quantities F0, G0 with their
expressions in terms of the phase-space variables A0, Ai and F i.

Substituting the extra variables in Equation (27) into Equation (16), we obtain the
first-order equations for the fields Ai, Fi, Gi:

Ȧi = ∂iA0 − [A0,Ai]− εijFj ; (29)

Ḟ i = ∂iF0 + [Ai,F 0]− [A0,F i]− εijGj ; (30)

Ġ i = ∂iG0 +
α2

α3
εijGj +

α1

α3
εijFj + [Ai,G0]− [A0,G i] +

+
α3

2

C(β; α)
[β1F 0 + β2G0, β1F i + β2G i] .

(31)
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The evolutionary Equations (29)–(31) are supplemented by the constraint

Θ ≡ εij(α1∂iAj + α2∂iF j + α3∂iG j + [Ai,
1
2

α1Aj + α2F j + α3G j]−

− α3

2C(β; α)
[β1F i + β2G i, β1F j + β2G j]) ≈ 0 .

(32)

The Equations (16), (29)–(32) are equivalent. Evolutionary
Equations (29) and (30) express the auxiliary fields F i and G i in terms of time deriva-
tives of the original vector potential Aμ. Solving them with respect to the unknown Fi,
Gi, we obtain the relations in Equation (27). Equations (31) and (32) represent the space
and time components of the original higher-derivative system in Equation (16), where
all the higher derivatives of the vector potential are expressed in terms of extra variables
F i, G i. The left-hand side of Equation (32) does not involve time derivatives, so we have
the constraint Θ ≈ 0. The sign ≈ means the equality modulo constraint in Equation (32).
Once the time evolution is preserved (see the gauge identity, Equation (19)), no secondary
constraints are imposed on the fields.

We associate the on-shell Hamiltonian H0 with the 00-component of the conserved
tensor in Equation (20). In terms of the phase-space variables Ai, F i and G i, it reads

H0 =
1
2

tr
{

β2α3(G0G0 + G iG i) + 2β1α3(G0F 0 + G iF i)+

+(β1α2 − β2α1)(F 0F 0 +F iF i)
}

.

(33)

where the functions F 0 and G0 are defined in Equation (28). The on-shell Hamiltonian H0
depends on the free model parameters αk, k = 1, 2, 3 and coupling constants βl , l = 1, 2.
Off-shell, the Hamiltonian is a sum of the on-shell part of Equation (33) and a linear
combination of constraints. We chose the following ansatz for the total Hamiltonian:

H = H0 + tr
[ C(β; α)

β2α2 − β1α3
A0 − β2β1α3

β2α2 − β1α3
F0 − β2

2α3

β2α2 − β1α3
G0

]
Θ , (34)

where β, α are constant parameters. The on-shell vanishing terms included in the Hamil-
tonian do not contribute to the equations of motion of gauge-invariant quantities. The
equations of motion do alter for non-gauge-invariant variables. As we are attempting to
determine the Hamiltonian and Poisson bracket by literally reproducing the first-order
Equation (29)–(32) of Equation (16), the on-shell vanishing contributions are kept under
control in Equation (34).

The Hamiltonian is well-defined if the parameters β and α are subject to the
following conditions:

C(β; α) �= 0 , β1α3 − β2α2 �= 0. (35)

These relations have a clear origin. The first condition in this set ensures that the on-
shell Hamiltonian is a non-degenerate quadratic form of the phase-space variables Ai, F i,
G i. This requirement is reasonable because the degenerate Hamiltonian cannot generate the
evolution of all physical degrees of freedom. The second relation of Equation (35) ensures
that the numerical factor at the Lagrange multiplier A0 is non-singular. This is necessary
to reproduce the correct gauge transformations for all the dynamical variables. We also
note that the obstructions to the existence of the Hamiltonian remain valid in the free
limit. This means that the inclusion of an interaction by the scheme presented in Section 3
does not restrict the class models that admit the Hamiltonian formulation. In other words,
every theory in the class of Equation (16) admitting the Hamiltonian formulation with the
Hamiltonian Equation (34) in the free limit is Hamiltonian at the interacting level. Hereafter,
we assume that the relations in Equation (35) are satisfied. The Hamiltonian is on-shell
bounded from below if the conditions in Equation (24) are satisfied. In this case, we expect
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to construct the constrained Hamiltonian formulation with a bounded Hamiltonian. The
corresponding quantum theory has a good chance to be stable.

Now, let us find the Poisson bracket between the fields Ai, F i and G i that leads
Equations (29)–(32) to adhere to the Hamiltonian form Equation (25) with the Hamiltonian
Equation (34). Comparing the right-hand sides of Equations (25), (29)–(31), we obtain the
following system of algebraic equations:{

Ai,
∫

H(y)dy
}
≈ ∂iA0 − [A0,Ai]− εijFj ; (36)

{
Fi,
∫

H(y)dy
}
≈ ∂iF0 + [Ai,F 0]− [A0,F i]− εijGj ; (37)

{
Gi,

∫
H(y)dy

}
≈ ∂iG0 +

α2

α3
εijGj +

α1

α3
εijFj + [Ai,G0]− [A0,G i] +

+
α3

2

C(β; α)
[β1F 0 + β2G0, β1F i + β2G i] .

(38)

In Equations (36)–(38), the sign ≈ means the equality modulo constraint seen in
Equation (32). The Poisson bracket defined by these equations depends on five independent
arguments: the free model parameters α3, α2 and α1 and coupling constants β2 and β1. The
bracket has the following form:

{Ga
i(x),Gb

j(y)} =
β1α2

2 − β1α1α3 − β2α2α1

α32C(β; α)
εijδ

abδ(2)(x − y) ; (39)

{F a
i(x),Gb

j(y)} =
β2α1 − β1α2

α3C(β; α)
εijδ

abδ(2)(x − y) ; (40)

{F a
i(x),F b

j(y)} = {Aa
i(x),Gb

j(y)} =
β1

C(β; α)
εijδ

abδ(2)(x − y) ; (41)

{Aa
i(x),F b

j(y)} =
−β2

C(β; α)
εijδ

abδ(2)(x − y) ; (42)

{Aa
i(x),Ab

j(y)} = 0 . (43)

where δ(2)(x − y) = δ(x1 − y1)δ(x2 − y2) is the 2D δ-function in the space coordinates.
The Poisson bracket in Equations (39)–(43) is a covariant generalization of its free analog,
which is derived in [43]. This result is not surprising. The free limit of expressions in
Equations (39)–(43) is determined by the linear model, while the Poisson brackets with
a polynomial dependence on fields contradict the structure of Equation (25). In the last
case, the Poisson bracket with the Hamiltonian involves higher powers of fields than the
right-hand side of first-order Equations (29)–(31).

The Poisson bracket in Equations (39)–(43) is a non-degenerate tensor, so it has an
inverse, being a symplectic two-form. The latter defines a Hamiltonian action functional

Sh =
∫ {

tr
( C(β; α)

β2α2 − β1α3
εij(α1Ai + 2α2F i + 2α3G i)Ȧj +

β1
2α3

β2α2 − β1α3
×

×εij(β1F i + β2G i)(β1F j + β2G j)
)
−H

}
dxdt ,

(44)

where H denotes the Hamiltonian Equation (34). In the case β2 = 0 , β1 = 1, Equation (44)
reproduces the Ostrogradski action for the variational model Equation (17),
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Sc =
∫ {

tr(εij(α1Ai + 2α2F i + 2α3G i)Ȧj − εijF iḞ j)−Hc

}
dxdt , (45)

where Hc is the canonical Hamiltonian,

Hc =
1
2

tr
(

α3(G0F 0 + G iF i) + α2(F 0F 0 +F iF i) +A0Θ
)

. (46)

In the free case, the Hamiltonian formulation Equation (44) was first proposed in [43].
Later, it was re-derived in [42] by the direct application of the Ostrogradski procedure to
the action functional Equation (1). The comparison of Equations (12) and (35) implies that
the Hamiltonian Equation (34) is on-shell unbounded for all the Lagrangian interactions.
For non-Lagrangian interactions, the Hamiltonian Equation (34) can be on-shell bounded
or unbounded depending on the value of model parameters. If the Hamiltonian is on-shell
bounded, the interacting theory is stable at the quantum level. To our knowledge, the
ECS theory Equation (16) is the first higher-derivative model with a non-abelian gauge
symmetry admitting an alternative Hamiltonian formulation with a bounded Hamiltonian.
This means that the concept of the stabilization of dynamics by means of an alternative
Hamiltonian formalism applies beyond the linear level.

In the free limit, the Hamiltonian Equation (34) and Poisson bracket in
Equations (39)–(43) depend on the parameters β1 and β2, while the equations of motion
in Equations (29)–(32) do not. This means that the free ECS theory Equation (1) is a multi-
Hamiltonian theory. The general representative of the series of Hamiltonian formulations
does not follow from the Ostrogradski procedure. The reason is that the bounded and un-
bounded Hamiltonian cannot be connected by the change of coordinates in the phase space.
The number of entries in the free Hamiltonian series equals 2n, where n is the number of
color indices. The on-shell Hamiltonian is given by the 00-component Equation (9) of the
conserved tensor Equation (6). The Poisson bracket between the phase-space variables
Aa

i, Fa
i ,Ga

i is determined by the formulas Equations (39)–(43), but the parameters β1, β2
are replaced by βa

1, βa
2 for each field in the multiplet. At the non-linear level, a selected

Poisson bracket, as shown in Equations (39)–(43), is preserved. If the respective Hamilto-
nian is bounded, the Poisson bracket cannot follow from the Ostrogradski construction;
thus, the Hamiltonian formalism for the stable non-linear theories does not follow from the
canonical formulation.

In the conclusion of this section, we present the Poisson brackets between the con-
straints Equations (39)–(43):

{Θa(x), Θb(y)} =
β2α2 − β1α3

C(β; α)
f abcΘc(x)δ(x − y). (47)

The Hamiltonian is gauge-invariant,

{Θa(x),H0(y)} = 0 , a = 1, . . . , n . (48)

As can be seen, the first-order model, Equation (44), is a gauge theory of a special
form in the whole range, Equation (35), of admissible values of the parameters α, β.
Equation (44) determines the least-action principle for the model. The quantization of this
theory can be performed by means of the well-known procedures [56]. In all instances
with a Hamiltonian that is bounded from below, we expect the stability of the model. This
means that Equation (16) determines a higher-derivative theory, which can be stable at the
classical and quantum level. Because of the existence of first-order formalism, the model is
as good as the Lagrangian theories. In particular, this admits consequent quantization and
correspondence between symmetries and conserved quantities. The Hamiltonian serves as
a quantity that is associated to the invariance of the model in Equation (44) with respect to
the time translations. The Hamiltonian Equation (34) is on-shell bounded if the conditions
in Equation (24) are satisfied.
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5. Resonance Case

In case of resonance (positions (2b), (3) of classification on pages 4–5), the non-linear
theory Equation (3) admits the Hamiltonian form of dynamics, but the Hamiltonian is
unbounded in all instances (conditions Equation (24) are inconsistent). Thus, the model has
to be considered to be unstable. In this section, we demonstrate that the dynamics of the
theory with resonance can be stabilized by means of the inclusion of an interaction with an
extra dynamical field. We apply the “Higgs-like” mechanism, which was first proposed in
the context of study of the “doubly massless” generalized Podolsky electrodynamics in the
paper [48]. Here, we use it in the theory with non-abelian gauge symmetry for the first time.
We mostly consider the model (Equation (16)) with the third-order resonance. We chose
the following values for the parameters of free theory, Equation (1): α1 = α2 = 0, α3 = −1.
This choice does not restrict the generality of our work, because the constant α3 accounts
for the possibility of multiplication of equations of motion by an overall factor. The wave
operator of the free model (Equation (3)) appears to be cube of the CS operator, so we have
a sort of “triply massless” extended theory.

We begin the construction of the interaction by extending the set of dynamical variables
by a real scalar field φ(x). The non-linear theory of the vector multiplet Aμ(x) and scalar
field φ(x) is determined by the equations of motion, which have the following form:

Tμ = εμνρ

{
Dν[(γ̃2φ2 − 1)G + γ2φ2F ]ρ +

(γ̃2φ2 − 1)2

2β1
2 [β1F ν + β2Gν, β1F ρ + β2Gρ]

}
= 0 ,

T =
{

∂μ∂μ − (m2 − γ̃2 (β1Fρ + β2Gρ)(β1F ρ + β2Gρ)

β1
2 + φ2

}
φ = 0 .

(49)

where the vectors Fμ and Gμ are defined in Equation (2), and the abbreviation γ̃2 = γ2β2/β1
is used. The constants β2, β1 and γ, m are model parameters and are real numbers. Through-
out this section, we assume that m, γ > 0 and β1 �= 0. The option β1 = 0 is not admissible
because the self-coupling Equation (16) between the vector fields becomes inconsistent
in this case. The value β2 can be an arbitrary real number (positive, negative or zero).
Only positive values of β2, β1 lead to stable couplings. This justifies the notation γ̃2 for
the quantity γ2β2/β1. Without loss of generality, we put a unit coefficient at φ3-term. An
overall factor at the φ3-vertex can be absorbed by the scaling of the scalar field, φ �→ λφ,
with the appropriate λ �= 0.

Equation (49) has a clear meaning. The first line of the system in Equation (49)
describes the motion of the vector multiplet. The linear term in the fields in the equations
corresponds to the “triply massless” ECS theory. The coupling includes the self-interaction
term of Equation (16) and an extra contribution involving the scalar field. It is convenient
to think that Equation (49) follows from Equation (16) after the formal redefinition of the
model parameters:

α1 = 0 , α2 = γ2φ2 , α3 = γ̃2φ2 − 1 . (50)

The characteristic polynomial in (Equation (4)) for the model reads

M(α; z) = γ2φ2z2 + (γ̃2φ2 − 1)z3 . (51)

If the scalar field is set to a nonzero constant from the outset, we obtain Equation (16)
with the second-order resonance for the zero root (case (2a) of classification on pages 4–5).
As explained above, the corresponding model describes a massless spin-1 field and a
massive spin-1 vector subjected to the self-duality condition. It is stable at the classical and
quantum levels. The second equation in the system of Equation (49) describes the motion
of the scalar field. This equation includes φ3-coupling, which ensures the existence of a
nonzero stationary solution for Aμ = 0. This means that φ serves as the Higgs field in the
model of Equation (49).
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The interaction defined by Equation (49) is consistent. The equations are preserved by
the standard Yang–Mills gauge symmetry in Equation (18). The scalar field is preserved by
the gauge transformation. The gauge identity has a slightly different form:

DμT
μ = 0 , Dμ = Dμ +

γ̃2φ2 − 1
β1

2 [β1Fμ + β2Gμ, ·] . (52)

We note that the gauge generator involves the scalar field explicitly. The model has
the same number of physical degrees of freedom as the free theory because the orders
of equations of motion in Equation (49), gauge identities in Equation (52) and gauge
symmetries in Equation (18) are preserved by coupling. Equations (49) do not follow from
the least-action principle for a function with higher derivatives unless β2 = 0. In the case
of Lagrangian coupling, the action principle reads

S[φ(x),A(x)] =
1
2

∫ {
Fμ(Gμ + γ2φ2Fμ) + ∂μφ∂μφ + m2φ2 − 1

2
φ4
}

d3x . (53)

The dynamics of the Lagragian theory are unstable. In the case of non-Lagragian
couplings, the dynamics of the model can be stable. In the remaining part of this section,
we address an issue of the construction of the constrained Hamiltonian formalism with
a bounded Hamiltonian for the higher-derivative Equation (49). The existence of such a
formalism implies the classical and quantum stability of the model. To avoid repetition, we
outline the most crucial steps of the construction, while the details are provided above.

We introduce a special notation for the linear combination of generalized strengths
Fμ, Gμ entering the free part of Equation (49),

Wμ = (γ̃2φ2 − 1)Gμ + γ2φ2Fμ . (54)

We choose the space components of the vectors F i and W i, i = 1, 2 Equation (27)
as variables absorbing the first and second derivatives of the original dynamical field
Aμ. In the sector of the scalar field, we introduce the canonical momentum π = φ̇. We
consider W0 as a special notation for the combination Equation (54) of the derivatives
of phase-space variables Aμ,F i. In terms of the variables φ, π Aμ, F i, G i, the first-order
equations eventually read

Ȧi = ∂iA0 − [A0,Ai]− εijFj ; (55)

Ḟ i = ∂iF0 + [Ai,F 0]− [A0,F i]− εij
W j − γ2φ2F j

γ̃2φ2 − 1
; (56)

Ẇ i = ∂iW0 + [Ai,W0]− [A0,W i] + εij[β2W0 − β1F 0, β2W j − β1F j] ; (57)

π̇ =
{

∂i∂i − m2 + γ̃2 (β2Wμ − β1Fμ)(β2Wμ − β1Fμ)

(γ̃2φ2 − 1)2 + φ2
}

φ ; (58)

φ̇ = π . (59)

The evolutionary Equations (55)–(59) are supplemented by the constraint

Θ ≡ εij

(
∂iW j + [Ai,W j] +

1
2β22 [β2W i − β1F i, β2W j − β1F j]

)
= 0 . (60)

The constraint conserves the on-shell property if the identity Equation (52) is taken
into account. The higher-derivative system Equation (49) follows from
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Equations (55)–(57) and (60) if all the extra variables are expressed in terms of the deriva-
tives of original dynamical fields φ,A.

The model in Equation (49) admits a second-rank symmetric conserved tensor:

Θμν(β; α) = tr
{ γ̃2φ2 − 1

β2

(
(β1Fμ + β2Gμ)(β1F ν + β2Gν)−

2
gμν(F ρ + Gρ)(F ρ + Gρ)

)
+

+
β2

2

β1

(
FμF ν − 1

2
gμνF ρF ρ

)}
+ ∂μφ∂νφ + gμν(−1

2
∂ρφ∂ρφ − 1

2
m2φ2 +

1
4

φ4) ;

(61)

∂νΘμν(β; α) = −tr(εμνρ(β1F ν + β2Gν)Tρ) + ∂μφ ·T . (62)

The Hamiltonian is given by a sum of the 00-component of the conserved ten-
sor and is expressed in terms of variables φ, π, Aμ, F i, W i Equations (27) and (54)
and a constraint term:

H = tr
{ (β2W0 − β1F 0)(β2W0 − β1F 0) + (β2W i − β1F i)(β2W i − β1F i)

2(γ̃2φ2 − 1)β2
+

+
β1

2

2β2
(F 0F 0 +F iF i)− (A0 − β1F0 + β2W0)Θ

}
+

+
1
2
(ππ + ∂iφ∂iφ)− 1

2
m2φ2 +

1
4

φ4 .

(63)

where the quantities F 0,W0 denote abbreviations of Equations (28) and (54), and the
numbers m, γ are model parameters. The Hamiltonian is on-shell bounded if

γ̃2φ2 − 1 > 0 , β2 > 0 . (64)

These conditions involve the scalar field φ. Once the initial value of φ is a Cauchy
datum for Equation (49), the Hamiltonian cannot be globally bounded. However, the
Hamiltonian is given by a positive definite quadratic form in the variables F , G in the
range |γ̃φ| > 1 of values of the scalar field. This corresponds to the case of a stability island.

The Poisson bracket between the fields φ, π, Aμ, F i and G i is determined by the
following system of equations:{

Ai,
∫

H(y)dy
}
≈ ∂iA0 − [A0,Ai]− εijFj ; (65)

{
F i,

∫
H(y)dy

}
≈ ∂iF0 + [Ai,F 0]− [A0,F i]− εij

W j − γ2φ2F j

γ̃2φ2 − 1
; (66)

{
Gi,

∫
H(y)dy

}
≈ ∂iW0 + [Ai,W0]− [A0,G i] +

εij

β1
2 [β2W0 − β1F 0, β2W j − β1F j] . (67)

{
π,
∫

H(y)dy
}
≈ ∂i∂iφ +

(
m2 − γ̃2 (β2Wμ − β1Fμ)(β2Wμ − β1Fμ)

(γ̃2φ2 − 1)2 − φ2
)

φ ; (68)

{
φ,
∫

H(y)dy
}
≈ π. (69)

All the equalities are considered modulo terms that remove the modulo constraint of
Equation (60). The solution for Equations (65)–(69) reads

{W a
i(x),W b

j(y)} = {F a
i(x),W b

j(y)} = {Aa
i(x),Ab

j(y)} = 0 ; (70)
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{Aa
i(x),W b

j(y)} = −{F a
i(x),F b

j(y)} =
1
β1

εijδ
abδ(2)(x − y) ; (71)

{Aa
i(x),F b

j(y)} =
β2

β1
2 εijδ

abδ(2)(x − y) ; (72)

{φ(x), π(y)} = δ(2)(x − y) . (73)

All the Poisson brackets between φ, π and Ai, F i and Gi vanish. The relations of
Equations (70)–(72) can be obtained from Equations (39)–(42) after the substitution of
Equation (50). We note that the Poisson bracket between the fields Ai, F i, W i is constant,
even though the theory involves extra fields π, φ.

Now, we can demonstrate the phenomenon of dynamic stabilization by means of the
“Higgs-like” mechanism proposed in [48]. Equation (49) admits a nonzero stationary solution:

A(x) = F (x) = G(x) = 0 , π(x) = 0 , φ(x) = ±m . (74)

Introducing the notation φ∗(x) = φ(x)∓m and expanding Equation (49) in the vicinity
of this vacua, we obtain the linearized equations for the fields

Tμ = (m2γ̃2 − 1)Kμ + m2γ2Gμ + . . . = 0 ,

T = (∂μ∂μ + 5m2)φ∗ + . . . = 0 .

(75)

The dots denote the terms that are at least quadratic in the fields. As we see, the
dynamics of the field A are described by the higher-derivative of Equation (3) with
α3 = m2γ̃2 − 1, α2 = m2γ2, α1 = 0. In this case, the system has a second-order resonance
for the zero root, which does not affect the stability of the dynamics, at least at the free
level. The on-shell Hamiltonian reads

H = tr
{ 1

2(m2γ̃2 − 1)β2
((β1W0 − β1F 0)(β1W0 − β1F 0) + (β2W i − β1F i)(β2W i − β1F i))+

+
β1

2

2β2
(F 0F 0 +F iF i)− (A0 − β1F0 + β2W0)Θ

}
+

+
1
2
(ππ + ∂iφ∗∂iφ∗ + 5m2(φ∗)2) + . . .

(76)

The dots denote the terms that are at least cubic in the fields. The quadratic part of the
Hamiltonian is on-shell bounded if mγ̃ > 1. This means that the dynamics of small
fluctuations in the vicinity of vacua in Equation (74) are stable. Once local stability is
sufficient for the construction of stable quantum theory, the “Higgs-like” mechanism
can stabilize the dynamics of the non-linear theory of Equation (16) with the third-order
resonance.

6. Conclusions

The results of the article demonstrate that the inclusion of non-Lagrangian couplings
can solve the problem of the inclusion of stable interactions in higher-derivative models.
Equation (16) introduces a two-parameter series of couplings in the theory of vector
fields with Yang–Mills gauge symmetry. The dynamics of the model are stable if the
coupling parameters meet the conditions in Equation (24). To our knowledge, Equation (
16) represents a first example of a stable non-linear higher derivative model with non-
abelian gauge symmetry whose canonical energy is unbounded from below in the free
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limit (Here, we mean the class of models that demonstrate the Ostrogradski instability
at the free level. In the f (R)-theories of gravity [4,5], the canonical energy is bounded
from below in the free approximation). The stable couplings do not follow from the least-
action principle, but they admit the Hamiltonian form of dynamics with a Hamiltonian
that is bounded from below. The presence of the Hamiltonian action principle allows the
consecutive construction of quantum theory, which is expected to be free of ghosts. The
model Equation (16) can be considered as the stable 3D generalization of the conventional
higher derivative Yang–Mills symmetry [55]. The theory admits the inclusion of stable
interactions with the scalar, spinor and gravitational fields in a similar manner to [38,43,44].
The constructed models can serve as the 3D higher-derivative generalizations of scalar
electrodynamics, quantum chromodynamics and gravity with higher-derivative matter.
These theories can mimic the actual 4D models that describe the real world. Finally, the
procedure of the inclusion of non-Lagrangian couplings can be generalized to the case
of arbitrary space–time dimensions. This will lead to the construction of new models of
fundamental interactions with the non-Lagrangian equations of motion for the fields. In
future studies, these models can be applied to unsolved problems such as the physics
beyond the standard model [57] or dark matter [58].

The study of the “triply massless” ECS provides a new insight into the well-known
problem of the stability of Pais–Uhlenbeck-type theories with equal frequencies [9,28].
Even though the theories with resonance are usually considered as unstable even at the
free level, our results propose a constructive procedure of the stabilization of dynamics
by the inclusion of coupling with an extra field. Equations of motion of the model are
given in Equation (49). The dynamics are metastable in the vicinity of the energy minimum,
while global stability in the model with resonance is impossible. A similar phenomenon
is observed in higher-derivative gravities [31]. The ECS model provides a simple setting
for the study of the metastability phenomenon of dynamics in the class of gauge theories.
The conclusions of the study can be applied to gravity models of interest. We also mention
that the inclusion of an interaction in the model with resonance does not change the gauge
symmetry of vector fields, which remains of the Yang–Mills form. The gauge symmetry-
preserving deformations of equations of motion are known as “gaugings” [59,60]. The
results of this article tell us that the “gaugings” are essential in the context of the stabiliza-
tion of higher-derivative dynamics with resonance. This application of this special type of
interactions has never been considered before. Further studies will allow the construction
of a new class of stable vector-scalar models with higher derivatives.
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Appendix A. Uniqueness of Consistent Interaction Vertex

In this Appendix, we demonstrate the fact of the uniqueness of the interaction vertex in
Equation (16) in the class of Poincare-covariant couplings that are polynomial in the
invariants Fμ, Gμ without higher derivatives. We apply the method of the inclusion of not
necessarily Lagrangian consistent interactions in [54].

Let us first explain the concept of interaction consistency in the class of non-Lagrangian
field theories. The dynamics of the theory are determined by a system of partial differential
equations (equations of motion) imposed onto the dynamical fields ϕI(x):

Ta(ϕI(x), ∂ϕI(x), ∂2 ϕI(x), . . .) = 0 . (A1)

The equations of motion do not necessarily follow from the least-action principle for
any functional S[ϕ(x)], so I and a may run over different sets. For the free model, the
left-hand side of Equation (A1) is supposed to be linear in the fields. The interactions
are associated with the deformations of system Equation (A1) by non-linear terms. The
equations of motion for the theory with coupling are polynomial in the fields

Ta = T
(0)

a +T
(1)

a +T
(2)

a + . . . = 0 . (A2)

where T(0), T(1) and T(2) are linear, quadratic and cubic in the dynamical variables.
Throughout the section, the system Equation (A1) (or, equivalently, Equation (A2)) is
supposed to be involutive. The concept of involution implies that Equation (A1) has no dif-
ferential consequences of lower order (hidden integrability conditions). The ECS Equation
(16) is involutive.

The defining relations for gauge symmetries and gauge identifies in the system of
partial derivative Equation (A1) read

δε ϕI = RI
αεα, δεTa|T=0 = 0 ; (A3)

La
ATa ≡ 0 . (A4)

where RI
α, La

A are certain differential operators. For non-Lagrangian equations, the gauge
symmetries and gauge identities are not related to each other, so the multi-indices A, α are
different. In the perturbative setting, the gauge symmetry and gauge identity generators
are supposed to be polynomial in fields

RI
α = R(0) I

α + R(1) I
α + R(2) I

α + . . . , La
A = L(0)a

A + L(1)a
A + L(2)a

A + . . . (A5)

where R(0), L(0, R(1), L(1) and R(2), L(2) are field-independent, linear and quadratic in the
dynamical variables. The interaction is consistent if all the gauge symmetries and gauge
identities of the free model are preserved by the deformation of equations of motion.
Equation (8) of paper [54] provides a simple formula for the computation of the number of
physical degrees of freedom based on the orders of derivatives involved in the equations
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of models, gauge symmetries and gauge identities. The free and non-linear theory must
have the same number of physical degrees of freedom.

Relations in Equations (A3) and (A4) imply the following consistency conditions for
T(k), R(k), L(k) and k = 0, 1, 2, . . .:

R(0) I
α∂IT

(0)
a = 0 ; (A6)

R(0) I
α∂IT

(1)
a + R(1) I

α∂IT
(0)

a = 0 ; (A7)

R(0) I
α∂IT

(2)
a + R(1) I

α∂IT
(1)

a + R(2) I
α∂IT

(0)
a = 0 (A8)

(where the symbol ∂I denotes a variational derivative with respect to the field ϕI);

L(0)a
AT

(0)
a = 0 ; (A9)

L(0)a
AT

(1)
a + L(1)a

AT
(0)

a = 0 ; (A10)

L(0)a
AT

(2)
a + L(1)a

AT
(1)

a + L(2)a
AT

(0)
a = 0 . (A11)

Equations (A6) and (A9) determine the gauge symmetry and gauge identity generators
R(0), L(0) of the free theory. These quantities are usually given from the outset. Relations in
Equations (A7) and (A10) determine the first-order corrections to the equations of motion
T(1), gauge symmetry generators R(1) and gauge identity generators L(1). Relations of
Equations (A7) and (A10) determine the second-order corrections to the equations of
motion T(2), gauge symmetry generators R(2) and gauge identity generators L(2). The
procedure of interaction construction can be extended to the third and higher orders.
Once the most general covariant ansatz is applied for T(k), k = 1, 2, . . . the procedure of
Equations (A6)–(A11), . . . allows a complete classification of consistent interactions in
a given field theory. An important subtlety of this procedure is that some lower-order
couplings can be inconsistent at the higher orders of perturbation theory. The first critical
step is the extension of the first-order (quadratic) interaction vertex to the second order of
perturbation theory.

Equation (3) determines the left-hand side of the free ECS equations T(0):

T
(0)a

μ = α1Fa
μ + α2Ga

μ + α3Ka
μ = 0 . (A12)

The gauge symmetries and gauge identities are defined by the gradient and
divergence operators:

R(0)
μ = ∂μ , L(0)μ = ∂μ . (A13)

The free gauge identity of Equation (A6) and free gauge transformation read

∂μT
(0)μ ≡ 0 , δε Aa

μ = ∂μζa , (A14)

where ζ values are gauge transformation parameters. We consider the Poincare-covariant
interactions that are expressed in terms of gauge covariants Fμ, Gμ, Kμ Equation (14) with
no higher-derivative terms being included in the coupling. In this case, the equations of mo-
tion are automatically preserved by the Yang–Mills gauge symmetry (Equations (A6)–(A8)
are satisfied). Consistent interaction vertices of first and second orders are selected by the
conditions in Equations (A10)–(A11). We elaborate on this problem below.
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We assume that the equations of motion are polynomial in gauge covariants Fμ, Gμ,
Kμ. The linear term is given by the covariantization of the free Equation (3). The most
general covariant first-order interaction vertex without higher-derivatives reads

T
(0)

μ +T
(1)

μ =

= α1Fμ + α2Gμ + α3Kμ + εμνρ

(1
2

k1[F ν,F ρ] + k2[F ν,Gρ] +
1
2

k3[Gν,Gρ]
)

,
(A15)

where kl , l = 1, 2, 3 are constants. The covariant divergence of equations of motion reads

DμT
μ = − 1

α3
[k2Fμ + k3Gμ,Tμ]+

+
1
α3

(α3
2 − α3k1 + α2k2 − α1k3)[Fμ,Gμ] + (k2

2 − k3k1)εμνρ[Fμ, [F ν,Gρ]] .
(A16)

The gauge identity is satisfied in the first-order approximation in Equation (A10) if
the coefficients kl , l = 1, 2, 3 satisfy the relation

α3
2 − α3k1 + α2k2 − α1k3 = 0 . (A17)

The general solution to this equations reads

k1 = − β1
2α3

2

C(β; α)
+ α1β3 , k2 = − β2β1α3

2

C(β; α)
k3 = − β2

2α3
2

C(β; α)
+ α3β1 , (A18)

where β1, β2, β3 are coupling parameters. The parameters β1, β2 determine the coupling
vertex of Equation (16) (two constants determine a single coupling because the ratio
β1/β2 is relevant). The constant β3 is responsible for another interaction vertex, which is
consistent at the first order of perturbation theory. The interaction vertex of Equation (16)
is self-consistent, with no higher-order corrections required for the equations of motion.
The other coupling needs cubic corrections to the equations of motion in the fields. To
prove the uniqueness of the interaction of Equation (16), we should demonstrate that the
ansatz of Equations (A15) and (A18) is inconsistent at the second order of perturbation
theory for β3 �= 0.

The most general second-order covariant interaction vertex reads

T
(2)

μ = l1[F ν, [Fμ,F ν]] + l2[F ν, [Gμ,F ν]] + l3[F ν, [Fμ,Gν]]+

+l4[Gν, [Fμ,Gν]] + l5[Gν, [Gμ,F ν]] + l6[Gν, [Gμ,Gν]] ,

(A19)

where lp, p = 1, 6 are constants. The covariant divergence of equations of motion reads
(only cubic terms are written out)

DμT
μ =

1
α3

εμνρ[Sμν,Tρ] +
1
2

C1(k; l)εμνρ[Fμ, [F ν,Gρ]] +
1
2

C2(k; l)εμνρ[Gμ, [Gν,F ρ]]+

+
l1
2
[Fμ, [F ν, DμF ν + DνFμ]] +

l3 − l2
2

[Gμ, [F ν, DμF ν + DνFμ]] +
2l2 − l3

2
[Fμ, [Gν, DμF ν + DνFμ]]+

+
l5
2
[Gμ, [Gν, DμF ν + DνFμ]] +

l3
2
[Fμ, [F ν, DμGν + DνGμ]] +

l5 − l4
2

[Fμ, [Gν, DμGν+

+DνGμ]] +
2l4 − l5

2
[Gμ, [F ν, DμGν + DνGμ]] +

l6
2
[Gμ, [Gν, DμGν + DνGμ]] .

(A20)
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Here, the following notation is used:

C1(k; l) = k2
2 − k1k3 − 3l1 − α1

α3
l4 − α1

α3
l5 − α1

α3
l6 , C2(k; l) = 3l2 + l3 − α2

α3
l5 − α1

α3
l6 ; (A21)

Sμν = l3[Fμ, [F ν, ·]] + l4[Gμ, [F ν, ·]] + l6[Gμ, [Gν, ·]]− l4[[Fμ,F ν], ·]−

−l5[[Fμ,Gν], ·]− l6[[Gμ,Gν], ·] .

(A22)

The interaction is consistent at the second order of perturbation theory if the right-hand
side of this expression causes the modulo free Equation (3) to vanish. The critical observa-
tion is that the expressions of the form [Xμ , [Yν , DμZν + DνZμ]], where Yμ,Zμ,Yμ = Fμ

or Gμ represent on-shell independent combinations of fields and their derivatives. Once
they are made to vanish, we conclude

k2
2 − k3k1 = 0 , lp = 0 , p = 1, 6 . (A23)

The general solution to these equations has the form (A18) with β3 = 0. Taking
account of this fact, the interaction (16) is unique in the class of covariant couplings without
higher derivatives.
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Abstract: Quantum fluctuations endow spacetime with a foamy texture. The degree of foaminess is
dictated by black hole physics to be of the holographic type. Applied to cosmology, the holographic
foam model predicts the existence of dark energy with critical energy density in the current (late)
universe, the quanta of which obey infinite statistics. Furthermore, we use the deep similarities
between turbulence and the spacetime foam phase of strong quantum gravity to argue that the early
universe was in a turbulent regime when it underwent a brief cosmic inflation with a “graceful”
transition to a laminar regime. In this scenario, both the late and the early cosmic accelerations have
their origins in spacetime foam.

Keywords: spacetime foam; holography; dark energy; cosmic inflation; infinite statistics; turbulence

1. Introduction

There are two cosmic accelerations that we are aware of: a brief inflationary acceler-
ation [1–5] in the early universe and the present (“late” universe”) acceleration [6,7] that
is attributed to dark energy. Normally they are treated independently and separately;
but there are also some works [8,9] that consider both regimes of accelerated expansions.
We think it is conceptually necessary and aesthetically pleasing to trace both cosmic accel-
erations to a common cause in fundamental theory. Following Wheeler [10–12], we believe
that space is composed of an ever-changing geometry and topology called spacetime foam
and that the foaminess is due to quantum fluctuations of spacetime. We argue for a scenario
in which spacetime foam is the origin of both cosmic accelerations.

The outline of this paper is as follows. We begin with a brief review of the holographic
spacetime foam model. In Section 2, we use the quantum uncertainty principle coupled
with black-hole physics to show that spacetime is indeed foamy and the degree of foaminess
is consistent with the holographic principle; we further argue that there necessarily exists
a dark sector in the universe. In Section 3, we apply the holographic spacetime foam
to cosmology (with the corresponding cosmology called holographic foam cosmology
(HFC) [13–16]) and argue for the existence of dark energy with critical energy density
in the present universe and its quanta obey infinite statistics, also known as quantum
Boltzmann statistics. In Section 4, we use the deep similarities between the physics of
turbulence and the universal geometric properties of the holographic spacetime foam
to heuristically argue that the early universe was in a turbulent phase during which
the universe underwent a brief cosmic inflationary acceleration. Section 5 contains our
concluding remarks, especially with respect to the naturalness and inevitability of inflation
in the early universe.

We will use the subscript “P” to denote Planck units (with, e.g., lP ≡ (h̄G/c3)1/2 ∼
10−33 cm being the Planck length). Furthermore, for simplicity, h̄, c, and the Boltzmann
constant kB are often put equal to unity.

Symmetry 2021, 13, 435. https://doi.org/10.3390/sym13030435 https://www.mdpi.com/journal/symmetry65
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2. Holographic Spacetime Foam

One manifestation of spacetime fluctuations is in the induced uncertainties in any
distance measurement. Consider the following gedanken experiment [17] to measure
the distance l between a clock at one point and a mirror at another. By sending a light
signal from the clock to the mirror in a timing experiment, we can determine the distance.
The quantum uncertainty in the positions of the clock and the mirror introduces an inac-
curacy δl. Let us concentrate on the clock (of mass m). If it has a linear spread δl when
the light signal leaves the clock, then its position spread grows to δl + h̄l(mcδl)−1 when
the light signal returns to the clock, with the minimum uncertainty at δl = (h̄l/mc)1/2.
Hence one concludes that δl2 � h̄l

mc . One can supplement this requirement with a limit from
general relativity [18,19], viz., δl must be larger than the Schwarzschild radius Gm/c2 of the
clock, yielding δl � Gm

c2 (henceforth we will neglect multiplicative constants of order unity),
the product of which with the bound from quantum fluctuations finally gives [18,20,21]

δl � (ll2
P)

1/3 = lP

(
l

lP

)1/3
. (1)

This bound on δl can also be derived by the following method which provides ad-
ditional valuable insights. Consider a spherical volume of radius l over the amount of
time T = 2l/c it takes light to cross the volume. One way to map out the geometry of this
spacetime region [22] is to fill the space with clocks, exchanging signals with other clocks
and measuring the signals’ times of arrival. This process of mapping the geometry is a sort
of computation; hence the total number of operations is bounded by the Margolus-Levitin
theorem [23], which stipulates that the rate of operations for any computer cannot exceed
the amount of energy E that is available for computation divided by πh̄/2. To avoid
collapsing the region into a black hole, the total mass M of clocks must be less than lc2/2G,
corresponding to the upper bound on energy density

ρ ∼ l/G
l3 = (llP)

−2. (2)

Together, these two limits imply that the total number of operations that can occur in
a spatial volume of radius l for a time period 2l/c is no greater than ∼(l/lP)

2. (Here and
henceforth we set c = 1 = h̄). To maximize spatial resolution, each clock must tick only
once during the entire time period. Furthermore, if we regard the operations partitioning
the spacetime volume into “cells”, then on the average each cell occupies a spatial volume
no less than ∼l3/(l2/l2

P) = ll2
P, yielding an average separation between neighboring

cells no less than l1/3l2/3
P . This spatial separation is interpreted as the average minimum

uncertainty in the measurement of a distance l, that is, δl � l1/3l2/3
P , in agreement with the

result Equation (1) obtained above.
We can now heuristically derive the holographic principle. Since, on the average, each

cell occupies a spatial volume of (δl)3 � ll2
P, a spatial region of size l can contain no more

than l3/(ll2
P) = (l/lP)

2 cells. Thus, this spacetime foam model corresponds to the case of
maximum number of bits of information l2/l2

P in a spatial region of size l, that is allowed
by the holographic principle [24–27]. Accordingly, we will refer to this spacetime foam
model (corresponding to δl � l1/3l2/3

P ) as the holographic spacetime foam model.

3. From Spacetime Foam to Dark Energy

As a corollary to the above discussion, we can now give a heuristic argument [13,22,28]
on why the universe cannot contain ordinary matter only. Start by assuming the universe
(of size l) has only ordinary matter. According to the statistical mechanics for ordinary
matter at temperature T, energy scales as E ∼ l3T4 and entropy goes as S ∼ l3T3. Black
hole physics can be invoked to require E � l

G = l
l2
P

. Then it follows that the entropy S and

hence also the number of bits I (or the number of degrees of freedom) on ordinary matter
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are bounded by � (l/lP)
3/2. We can repeat verbatim the argument given in Section 2 to

conclude that, if only ordinary matter exists, δl �
(

l3

(l/lP)3/2

)1/3
= l1/2l1/2

P which is much

greater than l1/3l2/3
P , the result found above from our analysis of the gedanken experiment

and implied by the holographic principle. Thus, there must be other kinds of matter/energy
with which the universe can map out its spacetime geometry to a finer spatial accuracy
than is possible with the use of only conventional ordinary matter. We conclude that a dark
sector necessarily exists in the universe!

The above discussion leads to the prediction of dark energy. To see that, let us now
generalize this discussion for a static spacetime region with low spatial curvature to the
case of the recent/present universe by substituting l by 1/H, where H is the Hubble

parameter [13,28]. Equation (2) yields the cosmic energy density ρ ∼
(

H
lP

)2 ∼ (RHlP)
−2 ∼

10−120M4
P with RH being the Hubble radius. Next, recall that we have also shown that

the universe contains I ∼ (RH/lP)
2 bits of information (∼10120 for the current epoch) [13].

Hence the average energy carried by each of these bits or quanta is ρR3
H/I ∼ R−1

H . These
long-wavelength bits or “particles” (quanta of spacetime foam) carry negligible kinetic
energy. (Alternatively one can interpret these quanta as constituents of dark energy,
contributing a more or less uniformly distributed cosmic energy density and hence acting
as a dynamical effective cosmological constant Λ ∼ H2.) Note: Such long-wavelength
quanta can hardly be called particles. We will simply call them “particles” in quotation
marks. Since pressure (energy density) is given by kinetic energy minus (plus) potential
energy, a negligible kinetic energy means that the pressure of the unconventional energy
is roughly equal to minus its energy density, leading to accelerating cosmic expansion, in
agreement with observation [6]. This scenario is very similar to that of quintessence [29,30],
but it has its origin in the holographic spacetime foam [15,31].

How do these long-wavelength quanta differ from ordinary particles? Consider
N ∼ (RH/lP)

2 such “particles” in volume V ∼ R3
H at T ∼ R−1

H , the average energy carried
by each “particle”. If these “particles” obey Boltzmann statistics, the partition function
ZN = (N!)−1(V/λ3)N gives the entropy of the system S = N[ln(V/Nλ3) + 5/2], with
thermal wavelength λ ∼ T−1 ∼ RH . However, then V ∼ λ3, so S becomes negative unless
N ∼ 1 which is equally nonsensical. A simple solution is to stipulate that the N inside
the log in S, i.e, the Gibbs factor (N!)−1 in ZN , must be absent. (This means that the N
“particles” are distinguishable!) Then the entropy is positive: S = N[ln(V/λ3) + 3/2] ∼ N.
Now, the only known consistent statistics in greater than 2 space dimensions without the
Gibbs factor is the quantum Boltzmann statistics, also known as infinite statistics [32–34].
Thus, we conclude that the “particles” constituting dark energy obey infinite statistics,
rather than the familiar Fermi or Bose statistics [28,35]. For completeness, let us list some
of the properties of infinite statistics [32–34]. A Fock realization of infinite statistics is given
by aka†

l = δk,l . It is known that particles obeying infinite statistics are distinguishable, and
importantly their theories are non-local [34,36] (to be more precise, the fields associated
with infinite statistics are not local, neither in the sense that their observables commute at
spacelike separation nor in the sense that their observables are pointlike functionals of the
fields). Their quanta are extended (consistent with what we show above for dark energy).
The number operator and Hamiltonian, etc., are both nonlocal and nonpolynomial in the
field operators. This property of non-locality will be useful later in the discussion of the
early universe. However, we should note that TCP theorem and cluster decomposition still
hold; and quantum field theories with infinite statistics remain unitary [34].

4. From Spacetime Foam and Turbulence to Cosmic Inflation

To date, we have applied HFC to the present and recent cosmic eras (with ρ ∼
10−120M4

P). However, what about the early universe (with ρ ∼ 10−8M4
P)? Actually the

discussion in the preceding section has already given us some helpful hints [13] especially
with respect to inflation [1–5] in the early universe. For example: (1) The flatness prob-
lem is largely solved because, according to HFC, the cosmic energy is of critical density.
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(2) It is quite possible that HFC provides sufficient density perturbation as the model
contains the essence of a k-essence model. (Furthermore, the horizon problem may also
be solved since spacetime foam physics is essentially quantum black hole physics and
thus is closely related to wormhole physics which can be used [37] to solve the horizon
problem.) Nevertheless one important aspect of the early universe appears to be missing in
HFC. It is connected to the expectation (supported by Wheeler’s insight [38]) that, due to
quantum fluctuations, spacetime, when probed at very small scales, as is the case for the
early universe, will appear very complicated—something akin in complicity to a chaotic
turbulent froth. So, was spacetime turbulent in the early universe? To this question we
now sketch a positive response.

First let us show the deep similarities between the problem of quantum gravity and tur-
bulence [39,40]. The connection between them can be traced to the role of diffeomorphism
symmetry in classical gravity and the volume preserving diffeomorphisms of classical
fluid dynamics. In the case of irrotational fluids in three spatial dimensions, the equation
for the fluctuations of the velocity potential can be written in a geometric form [41] of a
harmonic Laplace–Beltrami equation: 1√−g ∂a(

√−ggab∂b ϕ) = 0 , where the effective space

time metric has the canonical ADM form ds2 = ρ0
c [c

2dt2 − δij(dxi − vidt)(dxj − vjdt)], with
c being the sound velocity. In this expression for the metric, it is apparent that the velocity
of the fluid vi plays the role of the shift vector Ni in the canonical Dirac/ADM treatment of
Einstein gravity: ds2 = N2dt2 − hij(dxi + Nidt)(dxj + Njdt). Hence in the fluid dynamics
context, Ni → vi, and a fluctuation of vi would imply a fluctuation of the shift vector
(and hence a fluctuation of the spacetime metric) and vice versa.

Next, recall that the onset of turbulence can be predicted by the dimensionless
Reynolds number Re = Lv/ν, where v is the velocity field, L is a characteristic scale
and ν is the kinematic viscosity which is given by the product of the mean free path l̃
and an effective velocity factor ṽ. At low Reynolds number, fluid flow is laminar, i.e.,
smooth; at high Reynolds number, the flow becomes turbulent. A characteristic signature
for turbulence is the formation of eddies at various scales. The energy cascades from
large-scale structures to smaller scale ones. The scale at which molecular diffusion becomes
important and viscous dissipation of energy transpires is the Kolmogorov length which we
will denote as �. Let us note that, in fully developed turbulence in three spatial dimensions,
Kolmogorov scaling specifies the behavior of n-point correlation functions of the fluid
velocity. The scaling [42,43] follows from the assumption of constant energy flux, v2

t ∼ ε,
where v stands for the velocity field of the flow, and the single length scale � is given
as � ∼ v · t. This implies that v ∼ (ε �)1/3 , consistent with the experimentally observed
two-point function 〈vi(�)vj(0)〉 ∼ (ε �)2/3δij (the famous two-thirds law, which yields, via
a one-dimensional Fourier transformation, the energy scaling E(k) ∼ k−5/3, Kolmogorov’s
seminal “5/3” law for the energy distribution in the turbulent fluid.) Now recall our
discussion above on distance fluctuations δ� ∼ �1/3�2/3

P , and define the velocity as v ∼ δ�
tc

,

since the natural characteristic time scale is tc ∼ �P
c , then it follows that v ∼ c

(
�
�P

)1/3.
(The implication is that at short distance, the spacetime is a chaotic and stochastic fluid in a
turbulent regime with the Kolmogorov length l. The energy cascades are a property of the
spacetime foam.) It is now obvious that a Kolmogorov-like scaling [42,43] in turbulence has
been obtained. This interpretation of the Kolmogorov scaling in the quantum gravitational
setting implies that the quantum fluctuation phase of strong quantum gravity in the early
universe could be governed by turbulence.

The discussion above is for the case of very large Reynolds number. However, was
Re actually large enough in the early universe to set off turbulence? For the purpose of
comparison and illustration, let us recall that, in conventional cosmology at time, say,
10−35 s, vL in the numerator of Re is roughly given by the product of v ∼ 10−2c and
L ∼ 108lP [44–46]. For HFC close to Planckian time, the denominator of Re is given by ν ∼
clP since, in that regime, momentum transport could only be due to Planckian dynamics.
For the discussion to follow, let us note that, relatively speaking, the effective velocity factor
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ṽ in ν is not that different from the v factor in the numerator of Re. The onset of turbulence
was due to the smallness of the length scale (which plays the role of an effective mean free
path) in the denominator of Re, viz., l̃ = lP << L ∼ 108lP that was mainly responsible for
yielding a large Re in the (very) early universe.

There remains one crucial hurdle to overcome. If, as we suggest, turbulence in the
early universe was related to inflation, we have to confront the “graceful” exit problem:
How to get a small enough Re to transit to the laminar phase and to end inflation in the
process? It is here the nonlocality property enjoyed by the quanta of spacetime foam (due to
the fact that they obey infinite statistics) came to the rescue since the length scale l̃ in ν
would naturally and eventually extend to the order of L. (Compare with the case of dark
energy discussed in Section 3.) This would yield a small enough Re to suppress turbulence
and to naturally end inflation.

5. Conclusions

We have sketched a scenario in which both the late and the early cosmic accelerations
have a common origin and can be traced to spacetime foam. The case for dark energy in
the current/recent (“late”) universe was proposed before [13,28], while the case for cosmic
inflation in the early Univerese is the main focus of this paper. One attractive feature of our
present proposal is that the scheme is very economical, involving no arbitrary or fine-tuned
parameters. It is also natural in that inflation was inevitable as turbulence set off by the
Planckian dynamics was inevitable in the early universe. The scheme also provides a
rationale for why inflation lasted only briefly (say, ∼10−33 s) as the turbulent phase was
quickly terminated due to the nonlocal (extended) property of the quanta of spacetime
foam. Of course it is important to check if this scenario is supported by more quantitative
arguments and calculations. In passing we should also mention that it will be of great
interest to see if our scenario for inflation discussed above can at least mitigate some of the
criticism [47,48] against the inflation paradigm.

We conclude with two observations the first of which involves the crucial question of
whether our approach yields enough e-folds of inflation to solve the myriad of cosmological
problems. The following heuristic argument would seem to say probably there were. Let us
follow the folklore: at the end of inflation, the energy stored in the quanta of spacetime foam
would be converted into hot ordinary particles (as well as dark matter). Since the Grand
Unification era is around ∼10−34 s, which, as an order-of-magnitude estimate, should also
mark the end of inflation, giving enough (say � 65) e-folds of inflation. This argument may
be strengthened, if, as has been proposed [49], quantum gravity can actually be the origin
of (ordinary-) particle statistics, and that infinite statistics (the statistics obeyed by quanta
of spacetime foam) is the underlying statistics. In that case, ordinary particles that obey
Bose or Fermi statistics are actually some sort of collective degrees of freedom of “particles”
of infinite statistics. (See [50] for a discussion of such a construction.) Thus, arguably,
at the end of inflation, quanta of spacetime foam could be converted into ordinary particles
as required.

We end this paper with our second observation. Our aesthetically pleasing scenario
can be compared to a recent model [8] of quintessential inflation based on the assumption
that the slow roll parameter has a Lorentzian form as a function of the number of e-folds.
Its form corresponds to the vacuum energy both in the inflationary (with ρ ∼ 10−8M4

P)
and the dark energy (with ρ ∼ 10−120M4

P) epochs which are treated symmetrically. In this
model the inflationary scale is exponentially amplified while the dark energy scale is
suppressed, producing a curious cosmological see-saw mechanism. In the present work,
the two cosmic accelerations are also attributed to a single mechanism; but they are related
by some sort of turbulent-laminar duality (or chaotic-smooth complementarity). It would
be interesting to see if our scheme can be approximated by an effective theory in which
a similar ansatz for the slow roll parameter naturally arises as in the see-saw model [8].
However, a full investigation may require a non-perturbative treatment of quantum gravity,
involving a truly non-local field theory of “particles” obeying infinite statistics. (We note
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that when the see-saw model is realized in the context of a single scalar field, the extracted
potential of the scalar field is fairly complicated. Can this complication be a reflection of
non-perturbative quantum gravity involving non-local quanta of spacetime foam?)
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Abstract: Any interaction between finite quantum systems in a separable joint state can be viewed as
encoding classical information on an induced holographic screen. Here we show that when such
an interaction is represented as a measurement, the quantum reference frames (QRFs) deployed to
identify systems and pick out their pointer states induce decoherence, breaking the symmetry of
the holographic encoding in an observer-relative way. Observable entanglement, contextuality, and
classical memory are, in this representation, logical and temporal relations between QRFs. Sharing
entanglement as a resource requires a priori shared QRFs.

Keywords: black hole; contextuality; decoherence; quantum error-correcting code; quantum refer-
ence frame; system identification; channel theory

1. Introduction

The holographic principle (HP) states, in its covariant formulation, that for any finite
spacelike boundary B, open or closed, the classical, thermodynamic entropy S(L(B)) of
any light-sheet L(B) of B satisfies:

S(L(B)) ≤ A(B)/4 , (1)

where A(B) is the area of B in Planck units [1]. The HP was motivated by the Bekenstein
bound on the thermodynamic entropy of a black hole (BH), and has traditionally been in-
terpreted as a bound on the thermodynamic entropy of, and hence the classical information
encodable on, an independently-defined surface B, e.g., the stretched horizon of a BH [2,3];
see [1,4] for reviews.

We can, however, also view (1) from a more general perspective, as a fundamental
principle of information geometry that associates a (finite) minimal surface B with any bit
string of (finite) entropy S, and hence with any classical channel of width S bits. Such a
channel can be constructed, without loss of generality, as follows: Let U = AB be a finite,
closed quantum system, assume separability, |AB〉 = |A〉|B〉 over any time interval of
interest, and write the interaction:

HAB = βkkBTk
N

∑
i

αk
i Mk

i , (2)

where k = A or B, the Mk
i are N Hermitian operators with eigenvalues in {−1, 1}, the

αk
i ∈ [0, 1] are such that ∑N

i αk
i = 1, kB is Boltzmann’s constant, Tk is k’s temperature,
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and βk ≥ ln 2 is an inverse measure of k’s thermodynamic efficiency that depends on the
internal dynamics Hk. At each time step, A obtains exactly N bits of information about B
from this channel and vice versa, entirely independently of the internal dynamics HA and
HB. With this construction, we can state the following generalized holographic principle
(cf. [5] Thm. 1):

GHP: If but only if a pair of finite quantum systems A and B have a separable
joint state |AB〉 = |A〉|B〉, there is a finite spacelike surface B, with area A(B) ≥
A(B)min = 4ln2Nl2

P, N the dimension of HAB and lP the Planck length, that
implements HAB as a classical channel.

This GHP is a purely information-theoretic principle that makes no reference to any
spatial embedding of A or B. We show in [5] that it holds for any spatial embedding of
A and B allowed by special relativity. As B is ancillary to the interaction HAB, we will
be unconcerned with the spatial scale of B; in systems with low energy densities, we can
expect A(B) � A(B)min.

The form of the Hamiltonian (2) has two immediately-apparent symmetries. First, the
number N of transferred bits is fixed; hence Equation (2) is symmetric as a channel. The
holographic screen B “looks the same” and encodes the same information, N bits, from
either A’s or B’s perspective. Second, the terms αk

i Mk
i of Equation (2) can be re-arranged in

any order. If we view B as implemented by an ancillary array of non-interacting qubits as
in [5,6], these qubits can be permuted arbitrarily; hence the state of B is invariant under the
symmetric group SN .

Here we consider the system A to be an “observer” of B, and study apparent, observer-
relative symmetry breaking on B induced by the implementation of one or more quantum
reference frames (QRFs) by the internal Hamiltonian HA. The role of reference frames
in physical theory is to allow observations made at different times and/or places to be
compared. While in classical physics reference frames are often treated in abstracto,
in quantum theory they must be considered to be physically implemented, and hence as
QRFs; meter sticks, clocks, and gyroscopes are canonical examples [7]. Sharing an external
QRF, e.g., a Cartesian frame, across either space or time requires the observers involved to
implement an equivalent internal QRF [8]; hence all QRFs deployed by A can, without loss
of generality, be considered to be implemented by HA (cf. [9,10]).

We begin in Section 2 below by briefly reviewing some consequences of separating
systems A and B by a holographic screen B; such separation prevents, in particular,
measurements by A of the entanglement entropy of B. We then introduce in Section 3 an
explicit, fully general, and semantically-rich category-theoretic formalism with which to
specify the QRFs deployed by any observer, focussing first on QRFs employed for system
identification (Section 3.1) and then considering QRFs employed for pointer measurements
(Section 3.2). We show that sequential pointer measurements break the SN symmetry of
the screen B, inducing decoherence (Section 3.3). For illustration, we turn to the particular
case of measuring Hawking quanta from a BH, showing explicitly that no experiment
can demonstrate entanglement between a BH and a distant free quantum of radiation
(Section 3.4). We close this section by showing that the free-energy costs of deploying a
QRF induce coarse-graining (Section 3.5). These results provide the background required
to prove, in Section 4, that sharing entanglement as a resource requires a priori shared,
entangled QRFs, and then to prove, in Section 5, that whether two observers share QRFs is
finite Turing undecidable. We close in Section 6 by showing that writing classical memories
to a screen B creates phase correlations that further disrupt the SN symmetry of the screen.
These results together suggest that, far from being “an apparent law of physics that stands
by itself” [1], the HP in its generalized GHP form is central to quantum information theory.

2. Instantaneous Interactions across B
To write the Hamiltonian (2), we require the joint state |AB〉 to be separable; it is this

separability that makes B a classical channel. Distinguishing the classical entropy (S) from
the entanglement entropy (S),we can restate the GHP in summary form as:
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Lemma 1. If systems A and B are separated by a finite holographic screen B, the entanglement
entropy of the joint state S(|AB〉) = 0.

Proof. By the definition of B; see [5], Thm. 1 showing that any finite-bandwidth classical
communication channel can be represented as a finite holographic screen for details.

Lemma 1 immediately rules out transfers of quantum information across B; hence A
has access to neither the internal Hamiltonian HB or the entanglement entropy S(B) =de f
max(S(|B1B2〉)) over tensor-product decompositions B1B2 = B. It is clear, moreover, that
Equation (2) can hold only if the Hilbert space dimensions dim(HA), dim(HB) ≥ N, where
equality holds only if A and B contain no “hidden” degrees of freedom that do not, over any
time interval under consideration, contribute to HAB. Hence A cannot place upper limits
on either the dimension dim(HB) or the entanglement entropy S(B) of B. We will assume
in what follows that B is “large,” dim(HB) � N, and has near-maximal entanglement
entropy S(B) ≈ dim(HB)/2; this is effectively the assumption that HAB only minimally
perturbs |B〉. As with this assumption the full state |B〉 is not observable by A, we will use
the notation |B〉A to indicate the “observed” (by A) partial state of B that is encoded on B.
By (2), this observed state |B〉A is an eigenstate of HAB with dimension N.

2.1. Example: Scattering

Consider a scattering process mediated by a gauge boson, as shown in Figure 1a.
Both incoming and outgoing joint states are asymptotically separable, so the exchanged
information is encoded on a holographic screen B. Ignoring charge and spin, the encoded
information specifies a classical momentum transfer Δ�p. No quantum information is
transferred across B; in particular, the scattering processes transfers no information about
the entanglement entropy S(B) to A (Figure 1b).

Figure 1. (a) A gauge boson transfers asymptotically-classical momentum information across a holographic screen B.
(b) The scattering process transfers no information about the entanglement entropy S(B).

Writing the Hamiltonian as in (2) requires the dimension N of the observed state |B〉A

to be finite and hence the momentum transfer Δ�p to be discrete. Discrete values of Δ�p
reflect the discrete cost of information in units of h̄. In a experimental setting in which
Δ�p is measured at some asymptotically-distant location, the dimension N, and hence the
number of (ancillary) qubits required to represent B as a channel, is set operationally
by the resolution of the detector. In this case Δ�p is the measured pointer value, and a
full description of the interaction requires specification of the QRF employed for system
identification as discussed in Section 3 below.
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2.2. Example: Hawking Radiation

For an asymptotic observer A, coupled pair annihilation and production near a
holographic screen B, with one positive- and one negative-energy mode transiting the
screen (Figure 2a) is indistinguishable from a scattering event at B (Figure 2b). Hence far
from a black hole (BH), Hawking radiation from the BH is indistinguishable from scattering
from the stretched horizon of the BH. Lemma 1 forbids any modes detectable by A from
carrying information about the entanglement entropy S(B) as discussed above; hence the
only observable entropy of B is the classical, thermodynamic entropy S(L(B)) given by
Equation (1).

Figure 2. (a) Hawking pair annihilation-production near a BH is asymptotically indistinguishable
from (b) symmetric scattering from the stretched horizon.

The distinction between the thermodynamic entropy S(L(B)) and the entanglement
entropy S(B) for B a BH, and hence B the stretched horizon, has been recently clarified
from a number of perspectives [11–14], showing in particular that preserving unitarity does
not require a firewall [15] to prevent detection of excess entanglement. Considering the
outgoing states to be measured by some observer requires specifying a QRF as noted above;
we consider this issue in the particular case of Hawking quanta further in Section 3.4 below.

2.3. Symmetry across B Corresponds to “Free Choice” of QRFs

A QRF deployed by A, i.e., implemented by HA, corresponds to a set of observables
held fixed while other observables are allowed to vary [6,8] as discussed more explicitly
in Section 3 below. It thus corresponds to a subset of the MA

i . Associative groupings of
the MA

i in Equation (2) are clearly independent of associative groupings of the MB
i ; hence

choices of QRF by A have no bearing on choices of QRF by B or vice versa. Equivalently,
swapping the labels A and B has no effect on Equation (2).

This “free choice” of QRFs corresponds to a the absence of superdeterminist correla-
tions between A and B. Such correlations implement entanglement [16,17] so are forbidden
if |AB〉 = |A〉|B〉. We discuss the effects of locally breaking this free-choice symmetry in
Section 4 below.
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3. Reference Frame Induced Decoherence

3.1. QRFs for System Identification

From A’s perspective, the partial state |B〉A encoded on B is pure: it encodes all of the
information about B that is accessible, even in principle, to A. Mixed or decoherent states
(we will use these terms interchangeably), in contrast, always indicate a lack of access to
information that is in principle accessible: a state ρS of S is decoherent if there is some
non-null system E such that ρS = TrEρSE = TrE|SE〉〈SE|. In this case, E is the purifier or
“environment” of the S and |SE〉 is the purification of ρS by E (see [18–20] for extended
discussions). That such a purifying E exists physically, not just formally, for any mixed ρS

is a fundamental assumption of quantum theory [21,22], sometimes stated as an explicit
axiom [23]. From an operation perspective, E comprises degrees of freedom that interact
with those of S but that cannot be, or at least are not observed when ρS is measured. If ρS

is, for example, the state of a particle beam, E would include the degrees of freedom of the
ion source, the magnetic fields, the ambient vacuum in the beam lines, etc.

The minimal setting employed here avoids the circularity that arises when a system-
environment decomposition B = SE is stipulated a priori [24–27] by forcing S to be
identified by some QRF implemented by A. As shown in [6], any QRF can be specified by
a cocone diagram (CCD), a category-theoretic construction comprising a hierarchical ar-
rangement of Barwise-Seligman Information Flow binary classifiers/classifications Aα [28]
as depicted in Figure 3. These classifiers represent observables in context; namely, each
classifier is a conceptual representation Aα = 〈eventα, (condition, context)α, valuationα〉
(essential details of the concepts and constructions are recalled in Appendix A, and in
particular Appendix A.1 for the latter concept) (More generally, these classifiers can be seen
as a triad of: (i) events (atomic, observed or experienced, imposition of boundaries, etc.);
(ii) conditions/contents/influences as paired with contexts/measurements/detectors; and
(iii) valuation. Again see Appendix A.1 for the formal details). Each classifier Aα is valued
in {−1, 1} in accordance with its associated operator MA

α implementing “yes/no questions”
as intrinsic to Equation (2) ([6], Section 3.2). In this sense, Aα may be alternatively regarded
as an eigen-classifier for MA

α .
To construct the CCD, we select a subset {MA

k , . . . MA
n } of measurement operators

and assign to each a binary classifier Ak, . . . ,An, respectively, with each requiring a fixed
value, +1 or −1, from the corresponding operator; the Ak . . .An thus specify a fixed bit
string as input to the CCD. Further binary classifiers, each of which can be thought of as a
classical logic gate, are added to form “hidden layers” C; the maps between classifiers are
“infomorphisms” as defined in [28] that satisfy the diagram-commutativity requirements
for a cocone (see [29,30] for general category-theoretic definitions, Reference [31] for dis-
cussion of the cocone as a general representation of complex conditionals, Reference [32]
for applications, examples, and discussion of the obvious analogy with artificial neural
networks, and [6] for summaries of the relevant definitions as they apply in the current
context). As shown in [6], a CCD exists over a subset Ak . . .An of classifiers if and only if
the corresponding subset {MA

k , . . . MA
n } of binary-valued operators all mutually commute

(see [33] for a formal proof). The colimit C of the CCD encodes the classical “output” of the
QRF as a bit string. As formulated in [33], the CCD then becomes manifestly a scale-free
context-dependent architecture. Operationally, it can be thought of as a “deep” neural
network with re-entrant connections [32]. In the general case these connections are imple-
mented by quantum processes (i.e., by HA); the intermediate classifiers at each layer C then
implement measurements, with the general form of (2), of the outcomes of these processes.

The channel implemented by the qubits q1...qN is free of classical noise by definition:
there is no external system to provide a noise source [6,8]. It is evident in Figure 3, however,
that this channel transmits a fixed classical bit string, e.g., (1, 1, 1, ..., 1) from B to A if but
only if A and B share a z axis. Hence we have:
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Figure 3. A cocone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) fij

between (eigen-)classifiers Ai and Aj, maps gkl from the Ak to one or more channels Cl over subsets
of the Ai, and maps hl from channels Cl to the colimit C (cf. Equation (6.7) of [32]). Such a CCD
can be associated (double-headed arrows) with any subset of binary operators MA

k ...MA
n provided

that these operators all mutually commute. The CCD specifies, in this case, a classical algorithm
implemented by HA. The complete set of operators MA

i and MB
i in (2) together with the array of

mutually noninteracting qubits q1...qN (i.e., the screen B) implement the classical channel between A
and B. Free choice of QRFs by A and B corresponds to independent, free choice of z axis by A and B at
each qubit. Note that should the CCD fail to commute (in which case the colimit becomes undefined),
then the Ai are considered as “non-co-deployable” (observables), and their corresponding distributed
system exhibits intrinsic contextuality ([33], Section 7).

Lemma 2. The channel implemented by a holographic screen between A and B is free of quantum
noise if and only if A and B share QRFs.

Proof. If A and B share QRFs, each channel qubit is prepared and then measured in the
same basis. As the preparation—measurement cycle is effectively instantaneous, prepared
and measured outcomes must be the same up to measurement resolution. If A and B do
not share QRFs, the preparation and measurement bases for each channel qubit may be
arbitrarily different, introducing arbitrary phase rotations, i.e., quantum noise, between B’s
preparation and A’s measurement.

Shared QRFs correspond to einselection of a preferred basis for decoherence [18,22] at
B. We show in Section 4 below that Lemma 2 strongly restricts classical communication,
and hence execution of local operations, classical communication (LOCC) protocols [7,34]
by spacelike separated observers.
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3.2. Reference and Pointer Measurements

The CCD in Figure 3 has a natural physical interpretation: it specifies the hierarchy
of logical constraints that must be satisfied to identify the outcome values produced by
the operators MA

k . . . MA
n , and hence the components k . . . n of the pure state |B〉A, as the

observed (effective or virtual) state ρS of an observed (effective or virtual) system S. The
state ρS of any such S has by convention two components, a time-varying pointer state
ρP that is of interest as a measurement outcome, and the remaining reference state ρR

that by remaining fixed over the macroscopic time required for multiple cycles of pointer
measurements enables the re-identification of the single, fixed system S with pointer state
ρP. The pointer state ρP here includes not just the traditional “pointer(s)” of S, but also
any adjustable “settings” of S that may vary during a sequence of measurements. The
reference state ρR, in contrast, specifies the fixed properties of the system S that fix its
identity and hence allow re-identification over time. If S is a macroscopic item of apparatus,
for example, these include both the exterior size, shape, color, brand name, and location
required to pick the apparatus out, e.g., by visual search, from the cluttered background of
the laboratory as a whole, as well as the internal structural and functional properties that
enable it to serve as a measurement device, i.e., as a QRF [10].

Following the notation of [6], we indicate by {MP
i } and {MR

j } the disjoint subsets of

MA
k . . . MA

n that measure ρP and ρR, respectively. Call the dimensions of these components
NP + NR = NS. As ρR serves as a fixed reference, clearly ∀i, j, [MP

i , MR
j ] = 0. Pointer

state measurements, however, generically do not commute; adjustable apparatus settings,
in particular, are useful only to the extent that they do not commute with pointer readings.
Hence generically, ∃i, j, [MP

i , MP
j ] �= 0. Call the set of mutually-commuting subsets of

{MP
i }, and hence of classifiers AP

i , {Pi}; in this case a state ρS
i is computed by a CCD over

RPi. This decomposition is shown in a simplified notation in Figure 4. Clearly under these
conditions the joint state ρS must be separable as ρRρPi , i.e., the system components R and
P must be mutually decoherent.

Figure 4. A cocone diagram (CCD) computing an effective (or virtual) “system state” ρS comprises
classifier channels computing an effective pointer state ρPi and an effective reference state ρR (cf. [6]).
These channels define the effective “subsystems” R and Pi comprising S. The CCD acts on the
pure physical state |B〉A encoded by HAB on the holographic screen B (blue) separating A from B.
The computation represented by the CCD is implemented by the internal dynamics HA.

3.3. Sequential Pointer Measurements Induce Decoherence

State transitions Gij : ρS
i (t) → ρS

j (t + Δt), although associative and invertible, in gen-
eral do not commute, and have a set of multiple identities; hence they can be represented
as elements of a groupoid [35,36] ({Gij}, ◦) such that Gij ◦ Gji �= Gji ◦ Gij if and only if
[MP

i , MP
j ] �= 0 [6]. The action of ({Gij}, ◦) on this set of system states, indexed by a macro-
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scopic discrete time τ, is illustrated in Figure 5 (for the formal definition of the action of a
groupoid on a set, see, e.g., ([36], Section 10.4)).

Figure 5. A sequence of CCDs identifying R (blue triangles) and measuring pointer components
Pi, Pj, Pk . . . Pl . Transitions between CCDs are implemented by groupoid elements, e.g., Gij and
labeled by discrete macroscopic times τi. The operators MP

i can equally well be generalized to
subsets {MP}i of mutually-commuting pointer-state observables.

A reference state ρR computed by a CCD R from the outcome values of a set of
operators MR

j is, effectively, a logical constraint on the identities of the qubits qj that the

MR
j measure. Hence we have:

Lemma 3. In any system AB characterized by (2), fixing a reference state ρR over a macroscopic
time interval τ locally breaks the SN symmetry of the holographic screen B encoding the eigenvalues
of HAB.

Proof. Suppose the MR
j measure the states of NR = n − k qubits as shown in Figure 3;

we can neglect P and assume that the other qubits constitute the environment and are
swap-symmetric. Holding ρR fixed for τ is holding the NR outcomes of the MR

j fixed for

τ; ∀j, MR
j |qj(t)〉 = |1〉 or | − 1〉 for t within τ. This cannot be guaranteed if qj is swapped

for some environmental qi with an unconstrained state; hence any such swap must be
forbidden by a “selection rule.” This breaks the SN symmetry on B.

Lemma 3 is in fact obvious: the CCD R assigns each of the physical degrees of freedom
qj a specific role in the computation of ρR, one that an arbitrary qubit in an arbitrary
state cannot satisfy. The qubits qj are classically phase-locked by R, while the phases of
the environmental qubits can vary freely, preserving their swap symmetry. The CCD R
effectively divides B into two (not necessarily simply connected) regions, one in which
the qubits are classically phase-correlated and the other in which they are not. Any such
division induces decoherence between non-swap-symmetric and swap-symmetric qubits.
These conditions equally hold for any CCD measuring a pointer state ρPi .

Lemma 3 associates decoherence with system identification as a necessary prerequisite
of pointer-state measurement. As Zurek emphasized ([22] p. 1794),

[T]he formulation of the measurement problem and its resolution through the
appeal to decoherence require a universe split into systems. Yet, it is far from
clear how one can define systems given an overall Hilbert space ‘of everything’
and the total Hamiltonian.

Subsequent work demonstrated that no preferred decomposition of an overall Hilbert
space or its Hamiltonian could legitimately be assumed a priori [37,38], rendering all
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formulations of decoherence that assumed an a priori B = SE decomposition circular
(see [24–27] for relevant discussion). By characterizing all observations as mediated by
a holographic screen B, the GHP localizes the B = SE decomposition to the observer’s
QRFs [5,6]. All systems S and states ρS are, therefore, virtual in the precise sense of compu-
tational processes implemented on underlying, observationally inaccessible hardware [39]:
the observer A itself with its Hamiltonian HA.

3.4. Example: Mass and Hawking radiation QRFs for a BH

Suppose A employs a local QRF RBH (e.g., a local sample of the ambient photon field)
to measure both the position x and the mass M of a distant BH B and a particle detector Rr
to measure the momentum �p of one or more quanta of radiation. Her task, familiar from
discussions of horizon complementarity [40] and the firewall paradox [15], is to determine
whether her local quantum r is a Hawking quantum rH from B (see [11–14] for relevant
discussion). As illustrated in Figure 6, answering this question requires a QRF RH that
associates �p with an identified Hawking quantum.

Figure 6. Identifying a local quantum of radiation as a Hawking quantum rH from a distant BH
requires a local Hawking QRF RH . Lemma 3 rules this out.

Lemma 3 shows that the required RH cannot be implemented, even in principle:
determining that the BH has lost information requires observation over macroscopic time,
inducing decoherence on B. Hence not only is A prevented by B from obtaining information
about the BH entanglement entropy S(B) (Lemma 1); she cannot obtain entanglement
information about identified systems if distinct QRFs are required for their identification.
The entanglement entropy S(|B > |r >) is, in particular, experimentally inaccessible even
in principle. Horizon complementarity is, therefore, not required to prevent observations
of no-cloning violations by Hawking quanta; such observations cannot be made because
the QRF needed to identify an observable BH as the source of the quanta is unavailable.
Thought experiments in which observers measure entanglement entropies before and after
falling into a BH, as employed in, e.g., [15], are unrealizable even in principle.

The limitation imposed by Lemma 3 generalizes, via the ER = EPR hypothesis, to any
system with a spatially-distributed purifier, e.g., an “octopus” BH topologically connected
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to its entangled Hawking quanta by ER bridges [11,41]. The complete system state is pure
but unobservable in principle, as the QRFs required to localize the spatially-distributed
components would induce decoherence separately on each component. This problem
of QRF-induced decoherence in spatially-distributed purifiers is similarly relevant to
treatments of potential entanglement effects surviving the inflationary epoch, e.g., [42–45].
Bell-type communication protocols, e.g., [46–49], circumvent this problem by employing
classical communication, treated as an a priori preferred QRF, to provide localization
information as discussed in Section 4 below.

3.5. Computation and Memory Costs Induce Coarse-Graining

Provided their intermediate states are not recorded to a persistent, classical memory,
logically reversible computations can in principle be performed without net energetic cost;
logically irreversible computations, in contrast, cost at least ln2 kBT per bit [50,51]. What
is of interest in practice, however, is the incremental cost of computation, including the
cost of writing intermediate states to a classical memory, even if the computational step
is to be reversed later. An observation can only be considered to have been “made” if the
result is written to a classical memory from which it can later reported, e.g., classically
communicated to another observer [52]. A system S can, in particular, only be regarded
as “observed” at a time t if its reference state ρR(t) is written to a classical memory from
which it can be reported. System identification over macroscopic τ clearly requires writing
to and reading from such a memory as discussed further in Section 6 below.

The free energy required to fund the incremental cost of computing and recording
must be supplied by what Landauer [50] called the “non-information-bearing degrees of
freedom” of the computer and/or its environment, even if this free energy is repaid in part
later. Viewed on the output side, i.e., in terms of A’s action on B, these non-information-
bearing degrees of freedom exhaust the waste heat generated by the computing and
recording processes. This distinction between information-bearing and non-information-
bearing degrees of freedom breaks SN symmetry as discussed above. As shown in [6],
this symmetry breaking can be expressed thermodynamically as the requirement that
βR, βP > βE ≥ ln 2, where βE is the efficiency of the operators ME

k acting on E. The
environment E provides, in other words, the incremental free energy required to irreversibly
identify R and measure P. The fuel value βEkBT is independent of the bit value (+1 or −1)
of the outcome; hence these outcomes are “non-information-bearing” for the computation
implemented by HA. They therefore retain full permutation symmetry, justifying the trace
over their joint state.

Any classical computation can be performed reversibly, e.g., with Toffoli gates, and
any reversible computation can be performed with some unitary operator [46]. The only
obligate classical steps in computing either ρR or ρPj are, therefore, the initial step of
writing the “input” outcomes of the MR

j and the selected MP
i onto the relevant classifiers

and the final step of writing the time-stamped joint state specification ρRPj on a classical
memory. The criterion of classicality for the memory is operational: the time-stamped
state specification must be reportable at any later time without disturbing other processes.
For a perfectly efficient system, the free energy required to write each (Reference, Pointer)
outcome ρRPj to memory is, therefore:

ΔHj ≥ ln2(NR + NP + Nρ + Nτ)kBT, (3)

where NR + NP is the number of bits required to record the inputs, Nρ is the number of
bits required to record ρRPj , Nτ is the number of bits required to record the timestamp.
This incremental ΔHj must be supplied by E during each interval τj, so (3) places a lower
limit NE ≥ NR + NP + Nρ + Nτ on the number of qubits of E and therefore on the total
area A(B) of the holographic screen B. In any realistic system thermodynamic efficiency is
less than ideal; hence βE > ln2 and A(B) is correspondingly larger.
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As NR + NP remains fixed, ΔHj is minimized as Nρ + Nτ → 0, i.e., as classical
memory is coarse-grained relative to B. We can, therefore, generically expect QRFs to
encode high redundancy over states |B〉A mapped to the same ρRPj , i.e., we can expect
any CCD implementing a QRF to include logical OR gates and hence to lose information.
Optimal coarse-graining jointly minimizes the cost of memory and the cost of redundancy.
Furthermore, any QRF that is coarse-grained engenders redundancy and can be considered
as a quantum error correcting code (QECC) [46]. This is relevant to the discussion in
Section 3.4 above: a QEEC can be used to reconstruct local effective field theory observables,
which as pointed out in [53], are applicable to BH states whose entanglement entropy falls
short of saturating the Bekenstein-Hawking bound. Such local observables are designed
to protect coherence in the Hilbert space of codes by correcting errors due to the emission
of Hawking quanta, by entangling radiation within other regions of Hilbert space and
inducing entanglement swaps that increase the entanglement entropy of the BH interior
over time. As discussed in Section 3.4 above, such postulated entanglement swaps are
unobservable even in principle.

4. Reference Frame Induced Entanglement

Communication protocols that employ shared entanglement depend on shared QRFs,
e.g., shared z-axis QRFs for sz measurements [8]. This suggests that the shared entan-
glement is in fact induced by the shared QRFs, a suggestion consistent with the general
observer-dependence of entanglement [37,38].

Consider a Bell protocol described in the lab frame, as shown in Figure 7. An entangled
state is distributed from a source to Alice and Bob, who remain spacelike-separated through-
out the protocol’s operation. They are free to adjust their detector settings during the interval
Δtset. Following data processing (the interval Δtproc), Bob sends his classically-encoded
measurement outcomes to Alice via a classical channel. Alice can then compute the joint
statistics, obtaining a Bell-inequality violation and hence an observation of entanglement
at tmeas. Alice’s ability to compute the joint statistics, and hence to observe entanglement,
critically depends on two assumptions. First, Alice must know the code that Bob employs to
encode his results; effectively, they must “speak the same language”. Second, the communi-
cation from Bob to Alice must be classical, i.e., must not involve a quantum measurement [7].
If the communication is not considered classical, i.e., if Bob sends Alice a QRF with which he
is entangled, Alice must identify the transmitted QRF in order to measure its state, inducing
decoherence as discussed in Section 3.4 above. These two assumptions are operationally
equivalent: Alice scrambling Bob’s message by decohering a transmitted quantum state has
the same effect as Alice scrambling Bob’s classical coding scheme by employing, e.g., an
obsolete one-time pad. In either case, Alice does not “understand” Bob’s encoded results
and her subsequent statistical analysis is meaningless [33].

The assumption of classical communication is, effectively, the assumption of a pre-
ferred pointer measurement that returns the content of the communicated message without
requiring prior identification, via a separate measurement, of the physical medium, i.e., the
QRF, via which the message has been transmitted. Alice, in other words, does not have to
identify Bob to receive his message, just as Wigner does not, in his famous thought experi-
ment, have to identify his friend to receive his friend’s observational outcomes [54]. Hence
assuming classical communication is assuming an a priori shared QRF [8]. This breaks
the free-choice symmetry across B as discussed in Section 2.3 above; if B is considered a
qubit array as in Figure 3, the assumption of classical communication is the assumption
that A and B use identical z-axis QRFs on a subset of qubits as confirmed by Lemma 2
above. Call this subset of qubits message; the observed states |message〉A and |message〉B

are superdeterministically correlated. Choosing a decomposition that identifies the shared
QRFs shows that |message〉 = |message〉AB is a single pure state. That such a pure state
exists is the operational meaning of the requirement that Alice and Bob “share a language”
for classical communication.
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Figure 7. A typical Bell protocol described in the lab frame. Sharing of measurements results via
a classical channel is required to observe a Bell-inequality violation. If Alice’s interaction with
Bob’s message is viewed as an ordinary quantum measurement, the entanglement disappears as in
Section 3.4 above.

Redescribing the Bell protocol in the frame of the entangled state, as illustrated in
Figure 8, makes both the shared QRF and its entangled state manifest. Hence we have:

Theorem 1. Sharing entanglement requires shared entanglement.

Proof. Spacelike-separated Alice and Bob can observe entanglement only if they can
compare their observational outcomes. By Lemma 2, this requires an a priori shared QRF.
Classical transfer of a QRF also requires an a priori shared QRF [8]; hence the shared QRF
can only be shared as an entangled state.

Superdeterminist correlations, i.e., absence of free choice of QRFs, is a general feature
of LOCC communication protocols. In the Bell protocol, Alice’s response to the bit string
received from Bob is predetermined by the requirement of a shared QRF. Other proto-
cols superdetermine the “choices” made during Δtset, and hence the outcomes observed.
Entanglement-enabled secure communication protocols, for example, require Alice and
Bob to deploy QRFs and execute measurement on an otherwise-uncharacterized qubit in
the order specified by the protocol. These protocols avoid decoherence, and hence enable
quantum communication, by rendering Alice’s and Bob’s QRFs effectively entangled for
the duration of the protocol. Here again, avoiding decoherence is equivalent, operationally,
to sharing a language in which, e.g., protocol instructions are classically communicated.
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Figure 8. (a) A Bell protocol in the frame of the entangled state (yellow circle). Alice and Bob collide
at tmeas, at which time they share, and together measure, the entangled state. (b) This is equivalent to
Alice and Bob sharing an entangled QRF that reports consistent pointer outcomes to each observer.

The special role played by classical communication in LOCC protocols has been in-
vestigated previously in extended Wigner’s friend experiments in which the outcomes of
classical communication between pairs of “observers” and “friends” are contrasted with
the outcomes of quantum measurements of “friends” by “observers” [55,56]. These experi-
ments have been interpreted as showing, subject to an assumption of no superdeterminism,
that observed events cannot be regarded as observer-independent. By treating all observed
events as relative to observer-implemented QRFs, we show here that the assumption of
classical communication between observers, widely regarded as physically inconsequential
prior to [55,56], is to enforce local superdeterminism.

5. Reference Frame Induced Contextuality

Contextuality and entanglement are conceptually equivalent [57]. For a fixed P,
switching between QRFs over MR

j and MT
k , where [MR

j , MT
k ] �= 0 for at least one pair

j, k induces contextuality, i.e., no non-contextual probability distribution consistent with
the Kolmogorov axioms and hence with Dutch-book coherence can be defined over the
combined set of outcomes [6,33].

Consistent with the findings of [55,56], no Kolmogorov-consistent, non-contextual
probability distribution can be defined over the combined outcomes of Alice’s and Bob’s
observations unless it can be demonstrated, for the relevant P, and for R and T the QRFs
deployed by Alice and Bob, respectively, that ∀j, k, [MR

j , MT
k ] = 0. This cannot, however,

be demonstrated by any observer of Alice and Bob, as no such observer has, by Lemma 1,
access to the internal Hamiltonians HAlice or HBob.

This result can be stated in more formal terms of undecidability.

85



Symmetry 2021, 13, 408

Theorem 2. Whether arbitrarily-chosen QRFs R and T compute the same function f is finite
Turing undecidable.

Proof. Let f designate the function computed by R, i.e., the function computed by the
CCD representing R; we then ask whether T computes this same f . Whether an arbitrarily
chosen computer computes any non-trivial function f cannot, however, be decided by any
finite Turing machine [58]. Hence whether T computes f is finite Turing undecidable.

As shown in [33], contextuality induced by non-commuting QRFs renders the Frame
problem, the problem of circumscribing the degrees of freedom that do not change their
values as the result of an action, e.g., a measurement [59] unsolvable even in domains with
small numbers of degrees of freedom (cf. [60]).

Theorems 1 and 2 have as an obvious corollary:

Corollary 1. Whether two observers share an entangled state is finite Turing undecidable.

Hence whether Alice and Bob have successfully completed a quantum communication
protocol is finite Turing undecidable.

6. Writing and Reading Classical Memories

As noted earlier, a sequence of observations made over macroscopic time is only
reportable at some later time if the observations have been recorded on a classical memory.
Distinguishing measurements made at different times requires, moreover, some method
of distinguishing the memories. We therefore assume that the bit string composing each
memory record includes a substring encoding a time stamp τj, which we take to be generated
by the groupoid action of the Gij. Considering this classical memory to be implemented
by HA would prima facie require internal decoherence, i.e., disrupt the purity of |A〉. This
can be avoided if A is regarded as writing all classical memories on B. As the result to be
written to memory is coarse-grained compared to the input from which it was generated
(Section 3.5), only a relatively small number of qubits on B need be devoted to memory.

Reversing the arrows in a CCD yields the dual construction, a cone diagram (CD)
with the single source classifier the limit over the bottom-level classifiers [32]. A CD can
be constructed to encode any finite bit string on an underlying bit array, i.e., to write any
finite bit string to memory. Regarding each memory bit as a preparation instruction for a
corresponding qubit on B, we can represent a memory-write operation to B as in Figure 9.

Figure 9. A CD Wjj (green triangle) specifies a memory-write operation of the time-stamped state
(ρRPj , τj) to B. The timestamp τj is generated by the groupoid action Gij.
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Reading the memory reverses the arrows on the memory-write CD Wjj to a CCD, i.e.,
a QRF for retrieving the time-stamped value (ρRPj , τj). Writing readable memory records
on B imposes phase correlations across time on B; such correlations obviously further
disrupt the SN symmetry of B. Reading and rewriting memory records also imposes an
energetic cost as in Section 3.

7. Conclusions

We have investigated, in this paper, a generalization of the HP in which interactions
HAB between finite quantum systems A and B that maintain a separable joint state are
represented as exchanges of information across a holographic screen B. While the role of B
is ancillary to the action of HAB, the permutation symmetry of B is broken when the internal
Hamiltonian HA is considered to implement QRFs that identify “systems” and measure
their states. This symmetry breaking induces decoherence of identified systems by forcing
the “environment” that remains to serve as both free energy source and waste heat sink.
Observable entanglement, contextuality, and classical memory are, in this representation,
logical and temporal relations between QRFs implemented by HA.

It is natural to interpret the holographic screen B not merely as ancillary, but as a
“physical” space, i.e., a stretched horizon, separating A from B. In this context, broken
permutation symmetries on B become broken exchange symmetries between points in the
2 + 1 spacetime defined by (B, τ), τ a characteristic “macroscopic” time scale for HAB as
above (see [61] for details). From A’s observational perspective, exchange-inequivalent
regions of (B, τ) correspond to coarse-grained, decoherent “systems” while exchange-
symmetric regions are “empty space” that supplies free energy and exhausts waste heat.
That the GHP itself forces these virtual decoherent systems to obey gauge symmetries is
shown in [61].

It is tempting to speculate that a third spatial dimension is induced when, but only
when, A implements QRFs capable of identifying single systems across time while varying
pointer observables such as size, shape, and color, and that inertial mass is a QRF rep-
resenting the observable response of an identified system to actions by A. Whether the
fundamental symmetries of space, time, and matter, or even all of physics can be completely
reconstructed “within” an observer A, and hence viewed as a computation implemented
by HA, remains to be determined. The fact that physics is done by physicists, systems that
appear to interact with their environments via a Hamiltonian of the form (2), suggests that
such a reconstruction is possible; possible routes forward are discussed in [62–64].

It is, finally, increasingly being suggested that the entropic structure of a BH may be
more than a phenomenological correlate of its mass, possibly providing a route toward
defining mass [65], specifying nontrivial internal topological structure [11], or even gener-
ating the phenomenology of dark energy or dark matter [66]. Theoretical investigation of
the QRFs implemented by a BH may, therefore, offer exciting future developments.
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Abbreviations

The following abbreviations are used in this manuscript:

BH Black Hole
CCD Cocone Diagram
CD Cone Diagram
EPR Einstein-Podolsky-Rosen
ER Einstein-Rosen
GHP Generalized Holographic Principle
LOCC Local Operations, Classical Communication
QECC Quantum Error-Correcting Code
QRF Quantum Reference Frame

Appendix A. The Basics of Channel Theory Information Flow and Context Dependency

The Channel Theory of [28] introduces the idea of a “classifier” (or “classification”) as
accommodating a “context” in terms of its constituent “tokens” in some language and the
“types” to which they belong.

Definition A1. A classifier A is a triple 〈Tok(A), Typ(A), |=A〉 where Tok(A) is a set of “to-
kens”, Typ(A) is a set of “types”, and |=A is a “classification” relation between tokens and types.

Note that this definition specifies a classifier/classification as an object in the category
of Chu spaces [67–69] where ‘|=A’ is realized by a satisfaction relation valued in some set
K (with no structure assumed). The arrows (morphisms) between classifiers are specified
by the following:

Definition A2. Given two classifiersA = 〈Tok(A), Typ(A), |=A〉 andB = 〈Tok(B), Typ(B), |=B
〉, an infomorphism f : A → B is a pair of maps

−→
f : Tok(B) → Tok(A) and

←−
f : Typ(A) →

Typ(B) such that ∀b ∈ Tok(B) and ∀a ∈ Typ(A),
−→
f (b) |=A a if and only if b |=B

←−
f (a).

Information is inherently a physical mode of distinctions and relationships between
them, and not simply a reduction to a quantity of bits as it would be for Shannon infor-
mation that passively neglects the substance of reasoning. Rather, it instead conforms to
the set of logical constraints as imposed by Definition A2. An infomorphism as a mapping
between classifiers provides the basic building blocks towards constructing multi-level,
quasi-hierarchical classification systems. Such a framework of information transfer is
indicative of causation, which itself may be viewed as a form of computation in view of
the regular relations in a distributed system [70]. References [6,32,33] bring to the forefront
many examples, and applications of the above concepts that include probability distribu-
tions, Bayesian belief networks, event space structures, formal concept analysis, and fuzzy
relationships (as further relevant to this issue, let us point out that the Sorkin model of
spacetime causal sets [71,72] has been interpreted in terms of classifiers (Chu spaces) in [73]
(reviewed in [32])). In particular, Reference [33] focuses on orders of contextuality with
ramifications to active inference and to the Frame Problem.

The specifics of transmitting information via classifiers and infomorphisms lead,
in [28], to defining the idea of an information channel over classifiers, the most general of
which leads to the categorical notion of a cocone with the core C the colimit of all possible
upward-going structure-preserving maps from the classifiers Ai. Such a colimit core, when
it exists, can be regarded as a classifier which embraces the totality of information that is
common to the component classifiers Ai. The resulting structure is a cocone diagram (CCD)
as exemplified Figure 3. Within such a framework, the means by which channels encode
sets of mutual constraints between classifiers is regulated by a local logic as presented
formally in ([28], Ch. 12) (reviewed in [32,33]). Basically, the idea is that the types of a
(regular) theory specify the logical structure of a given situation. A local logic is essentially
a classifier having a (regular) theory along with a subset of tokens that satisfy all constraints
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of the theory as specified by a sequent (a sequent M |=A N of a classifier A is a pair of
subsets M, N of Typ(A) such that ∀ x ∈ Tok(A), x |=A M ⇒ x |=A N). An infomorphism
preserving this additional logical structure is then promoted to a logic infomorphism.
In short then, a local logic “identifies” the token(s) satisfying all of the types, the logic
infomorphisms are those infomorphisms that transfer token-identification information
between local logics, and the channels comprise sets of (logic) infomorphisms encoding
mutual constraints that assemble multiple identified tokens. As demonstrated in [74], a
sequent of a theory can be weakened to a conditional probability such that a CCD becomes a
network of hierarchical Bayesian inference, as reviewed and formulated in [32,33] (cf. [75]),
and whose structure is compatible with the variational free energy principle as the latter
is fundamental to the precision of perceptual inference [76] (the sequent relation can be
weakened by requiring only that if x |=A M, there is some probability Prob(N|M) that
x |=A N. Essentially it is how a conditional probability interprets the logical implication
“⇒” [77]).

Appendix A.1. Example: Observables in Context

One fundamental example incorporating “context”, instrumental in [33] has the fol-
lowing Chu space ingredients: Consider the following countable (in practice, finite) sets:

(i) A a set of “events” (in the general sense of the term, e.g., as observed value combina-
tions or atomic), as related to

(ii) a set B of conditions specifying “objects/contents” or “influences,” and
(iii) a set R of contexts (or, in certain instances, a set of “detectors”, “measurements” or

“methods”).

The set B can be decomposed as B = BM ∪ BC (disjoint union), where BM contains
“objects/contents” or “degrees of freedom” that are observed or measured in some event
a ∈ A, and BC contains what is not observed in the events in A. This leads to defining a
‘large’ space,

X := B × R = (BM ∪ BC)× R, (A1)

in assuming that A, B and R are subsets of the same (even larger) probability space P
(We do not make any assumptions about corresponding types of probability distributions
(e.g., discrete versus continuous) in relationship to P . Neither do we specify the nature
of random variables, nor the possible orders of “connectedness” (of distributions)). Thus,
based on this data we consider the classifier,

A = 〈A, X, |=A〉, (A2)

as comprising observables in context, where as in Section 3, the classification relation ‘|=A’
is realized by the Chu space valuation in the set K = {−1, 1}. Notably, in [33], ‘|=A’ can
be realized for an inferential process by the conditional probability p(a|x) = p(a|{b, c}),
whenever defined, for a ∈ A, b ∈ B and c ∈ R, and which for suitable indexing, leads to an
information flow of hierarchical Bayesian inference within a CCD [33]. The background to
the results in Section 5 here can be found in ([33], Section 7). In particular, ([33], Th. 7.1)
states the criteria for intrinsic contextuality (non-co-deployable observables) in terms of
noncommutativity of a CCD. Note that the above classifier (Chu space) formulism of
contextuality is very general. Special cases of the set X = B × R are the sets of binary
random variables labelled by a measurement (contents-context) system as basic to the
theory of Contextuality-by-Default [78,79]. Much amounts to the question of determining
the nature of an empirical model e relative to how a probability distribution can be obtained
as the marginals of a global probability distribution on the outcomes to all measurements.
For example, e is said to be contextual in [80] if the corresponding probability distribution
cannot be obtained by such global means. This has a compatible interpretation in terms
of the non-existence of a global section of a sheaf defined relative to a “measurement
cover” in [81]. These methods of studying contextuality are also very general, and as
for those of [33], can extend beyond quantum theory to such disciplines as linguistics

89



Symmetry 2021, 13, 408

and psychology. To see the explicit connections between these various approaches would
indeed be a worthwhile undertaking.
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