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1. Smart Manufacturing (SM) Theories

Smart manufacturing (SM) distinguishes itself from other system paradigms by in-
troducing ‘smartness’ as a measure to a manufacturing system; however, researchers in
different domains have different expectations of system smartness from their own perspec-
tives. In this Special Issue (SI), SM refers to a system paradigm where digital technologies are
deployed to enhance system smartness by (1) empowering physical resources in production,
(2) utilizing virtual and dynamic assets over the internet to expand system capabilities,
(3) supporting data-driven decision making at all domains and levels of businesses, or
(4) reconfiguring systems to adapt changes and uncertainties in dynamic environments.
System smartness is measured by one or a combination of system performance metrics,
such as the degree of automation, cost-effectiveness, leanness, robustness, flexibility, adapt-
ability, sustainability, and resilience. This SI aims to present the most representative works
in advancing the theories, methods, and applications of SM.

Rapidly developed digital technologies have continuously stimulated shifts of man-
ufacturing system paradigms; most recently, the study of SM has attracted numerous
researchers in academia and practitioners in industry [1–5]. However, people in different
domains have highly diversified expectations of system smartness, leading to the ambiguity,
diversity, and inconsistency of SM concepts in terms of system architecture, reference mod-
els, enabling technologies, and evaluation matrices. Bi et al. [6] generalized the definition
of SM by unifying diversified expectations of system smartness as customizable measures,
and they presented two concepts of digital triad (DT-II) and the Internet of Digital Triad Things
(IoDTT) to emphasize the functional requirements (FRs) of SM to accommodate changes
and uncertainties in sustainable and cost-effective ways. Bányai [7] analyzed the needs of
adaptability and flexibility in matrix production; he argued that flexible manufacturing sys-
tems could be the correct solutions to deal with changes in production. He emphasized the
importance of effective models and methods in optimizing system controls. In particular,
he proposed a hybrid metaheuristic algorithm based on multiphase black hole and flower
pollination to plan and schedule manufacturing resources in material handling systems
using robots.

Sahal et al. [8] investigated the roles of digital twins (DTs) in modelling physical assets
and supporting decision-making activities in decentralized and distributed manufacturing.
They found that DTs required collaboration among stakeholders to reach the consensuses
of decisions and predict risks; the critical FRs of collaborations were defined in terms of
interoperability, authentication, scalability, and the avoidance of single-point failures. A
ledger-based collaborative framework was proposed to fulfill the identified FRs in smart
transportation systems, and the incorporated technologies included blockchain technolo-
gies (BCTs), predictive analysis techniques, and other digital technologies. Ubiquitous
smart things in the Internet of Things (IoT) make it feasible to collect real-time data of
the conditions of any manufacturing resources from anywhere at any time; Tan et al. [9]
adopted DTs to synchronize and utilize real-time data in a cyber space; the challenges of
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integrating DTs with smart things in IoT were explored, and a new scheme and framework
were constructed to simulate DTs with real-time data.

2. System Design Methods

SM has benefited greatly from rapidly developed information technologies, such
as DTs, BCT, IoT, cloud computing (CC), big data analytics (BDA), cyber-physical systems
(CPSs), and edge-computing. These technologies have been changing the landscape of
the research and development of SM radically, in a sense that (1) solutions of acquiring
and transferring data become increasingly more affordable in regards to implementing,
deploying, and integrating ‘smarter’ things in a system; (2) business-relevant data become
increasingly bigger in terms of ‘volume’, ‘variety’, and ‘velocity’, where advanced data
analytics can be used to capture, store, process, and utilize data to cope with changes in
dynamic environments; (3) the system boundary becomes increasingly vaguer, and system
architecture has to be dynamically adaptable to physical and virtual collaborations of
business partners over time [10–13].

System design methods are used to select system elements, configure these elements
into components and systems, and model, evaluate, and compare design options against key
performance indicators (KPIs) for system optimization. However, traditional system design
methods are mostly for the design of static systems with clear system boundaries. There are
needs required for the advancement of system design methods so that a smart manufactur-
ing system can be reconfigurable to achieve high-level smartness in its system lifecycle. The
configurations of a smart system must be customized to the constraints of manufacturing
resources and the prioritized KPIs. Bi et al. [14,15] proposed a systematic design methodol-
ogy as the guide for designs of smart manufacturing systems in specified applications. The
axiomatic design theory (ADT) was adopted and expanded to design, analyze, and assess
smart manufacturing systems, and the applicability of the proposed methodology was
verified using three case studies. Erasmus et al. [16] proposed an information architecture
to integrate CC and IoT with smart devices for human–robot collaboration; the architecture
was modularized for small- or medium-sized enterprises (SMEs) to access extensible cloud
services, and it was used as a reference architecture for information management systems in
Industry 4.0. The architecture was tested and evaluated with the information systems of ten
real-world factories. Kim and Lee [17] extended the SM concept to a maintenance system
in ship building and servicing; the framework, procedure, and architecture of a smart
maintenance system were developed to systematically design large-scale SM systems.

3. Applications

SM is expected to meet some emerging requirements of automation, adaptability, sus-
tainability, and resilience of modern manufacturing systems in the digital era at numerous
aspects, including (1) dealing with any level of system complexity relating to the number
and variants of system elements, the interactions of system elements, and anticipated and
unanticipated changes over time; (2) maximizing system entropy to adopt changes in a
dynamic environment; (3) responding to real-time changes in the shortest possible time;
(4) monitoring, diagnosing, and predicting system states and trends, generating preven-
tive solutions for adverse changes, and upgrading systems to adapt preferable changes;
(5) supporting the seamless coordination, collaboration, and cooperation of stakeholders;
(6) orchestrating manufacturing resources across enterprise bounds to seize novel opportu-
nities; (7) providing generic architecture applicable to different products, functions, and
regions [1,18–20].

Cutting-edge digital technologies have been widely explored in regard to solving
various engineering problems in real-world applications. For examples, Hou et al. [21]
developed a function–structure model to evaluate performance and cost in product devel-
opment; products were characterized in functional and structural domains, respectively,
and an evolutionary algorithm (EA) was used to map functions into corresponding struc-
tures for the verification of design constrains and the evaluation of design solutions. Kang
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et al. [22] discussed various challenges of using vibrioses to protect the environment dur-
ing fossil fuel exploration; numerical simulation models were developed to analyze the
response of a vibriosis subjected to specific boundary conditions and excitations, and simu-
lation results were used to identify the weakest vibriosis junctions. Liu et al. [23] proposed
an integrated robotic system for its application in an ill-structured on-site environment
with the purpose of cost-efficiency. The proposed system consisted of two-terminal ma-
nipulators for parallel sorting processes, and it was seamlessly integrated in an automated
assembly system to perform sorting tasks consistently in a shortened cycle time. Yung
et al. [24] discussed the challenges in designing and manufacturing highly diversified
space instruments. The specifications of space instruments were greatly distinguished
from those of products on Earth, and careful considerations had to be determined on the
size, weight, cost, complexity, and extreme space environments. A systematic literature
search method was used to look into the impact of product design and innovation on the
development of space instruments; the survey provided important information and critical
considerations for using cutting-edge digital technologies in designing and manufacturing
space instruments.

4. Future Research Directions

Increasingly more manufacturing enterprises are ready to incorporate newly devel-
oped technologies, such as DTs, CPSs, IoT, BDA, and BCT, with traditional manufacturing
technologies, such as flexible manufacturing systems (FMSs), total quality management (TQM),
supply chain management (SCM), enterprise resource planning (ERP), and computer-integrated
manufacturing (CIM). However, existing theories, methods, and tools still exhibit limitations
in supporting cost-effective vertical integration, decentralization, smart sensing and actuating,
autonomy and self-organization, and uses of semantic models [25]. The research of SM in
theories, methods, and applications should be advanced to transfer integrated digital tech-
nologies into productivity, profitability, and sustainability of systems. This Editorial Team
anticipated that future research in SM would mainly incorporate areas of (1) ubiquitous
sensing, (2) fusing and integrating data from heterogeneous sources, (3) effective BDA meth-
ods, (4) data visualization methods for human interactions, (5) data-driven decision-making
supports, (6) workflow composition methods, (7) the standardization and specifications of
smart modules, and (8) quantified criteria such as adaptability, sustainability, and resilience
for system evaluation [1,6,14].
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Abstract: Rapidly developed information technologies (IT) have continuously empowered manu-
facturing systems and accelerated the evolution of manufacturing system paradigms, and smart
manufacturing (SM) has become one of the most promising paradigms. The study of SM has attracted
a great deal of attention for researchers in academia and practitioners in industry. However, an
obvious fact is that people with different backgrounds have different expectations for SM, and this
has led to high diversity, ambiguity, and inconsistency in terms of definitions, reference models,
performance matrices, and system design methodologies. It has been found that the state of the art
SM research is limited in two aspects: (1) the highly diversified understandings of SM may lead to
overlapped, missed, and non-systematic research efforts in advancing the theory and methodologies
in the field of SM; (2) few works have been found that focus on the development of generic design
methodologies for smart manufacturing systems from the practice perspective. The novelty of this
paper consists of two main aspects which are reported in two parts respectively. In the first part, a
simplified definition of SM is proposed to unify the existing diversified expectations, and a newly
developed concept named digital triad (DT-II) is adopted to define a reference model for SM. The
common features of smart manufacturing systems in various applications are identified as functional
requirements (FRs) in systems design. To model a system that is capable of reconfiguring itself to
adapt to changes, the concept of IoDTT is proposed as a reference model for smart manufacturing
systems. In the second part, these two concepts are used to formulate a system design problem, and
a generic methodology, based on axiomatic design theory (ADT), is proposed for the design of smart
manufacturing systems.

Keywords: smart manufacturing; information technologies (IT); system of systems (SoS); digital
manufacturing (DM); digital twins (DT-I); digital triad (DT-II); cyber-physical systems; Internet of
Things (IoT); Internet of Digital Triad Things (IoDTT); big data analytics (BDA); cloud computing
(CC); axiomatic design theory (ADT)

1. Introduction

Manufacturing creates products for customers, and the demand for new and advanced
products has been increasing monotonically due to (1) the rise of the global population,
(2) an increase in the standards of living, and (3) the way of consumption in “throwaway”
societies. Accordingly, manufacturing technologies have been greatly advanced to meet the
needs of consumers’ markets [1–5]. In the 2020s, traditional manufacturing systems face
strong pressure to enhance their capabilities in handling the growing complexity and scale

Machines 2021, 9, 207. https://doi.org/10.3390/machines9100207 https://www.mdpi.com/journal/machines5
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of—and changes to—the manufacturing environment, and the manufacturing industry
has entered the digital era, due to the adoption of advanced information technologies and
operation technologies [6].

The historical advancement of manufacturing technologies has been widely dis-
cussed [7,8], and the following trends have become common sense to researchers in manu-
facturing: (1) products become increasingly advanced, diversified, and with fragmented
demand; (2) global manufacturing capabilities become saturated in comparison to cus-
tomers’ needs, and manufacturing enterprises face ever-increasing competitions regionally
and globally; (3) the scope and complexities of manufacturing businesses are continuously
increased, and this forces enterprises to adopt more advanced technologies to automate
manufacturing operations and decision making in various domains and levels of business;
(4) the boundaries of manufacturing systems become vague and dynamic, since enterprises
have to collaborate with others to make complex products or systems; (5) manufactur-
ing systems are expected to be optimized against more performance metrics, including
functionality, quality, productivity, cost, lead-time, personalization, adaptability, and sus-
tainability; (6) the businesses of manufacturing systems are gradually extended to cover
all the stages of product lifecycles, from raw materials to the disposal of used products;
(7) manufacturing technologies have advanced from human operation to automation, from
disciplinary to multidisciplinary, from standalone to integrated and comprehensive, and
from sophisticated to adaptable and reconfigurable.

Since the advances in manufacturing technologies can be characterized by the degree
of automation (of either (1) manufacturing processes or (2) the decision making support
at different domains and levels of system operations), information technologies (IT) have
played indispensable roles in advancing manufacturing technologies. Every leap in the
manufacturing paradigms was triggered by the corresponding IT; to name a few, mech-
anization and electronic and electrical controls for mass production, numerical controls
(NC) or computer NC (CNC), networking, and group technologies (GT) for flexible manu-
facturing systems (FMS), computer aided design and manufacturing (CADM), material
resource planning (MRP), and enterprise resource planning (ERP) for computer integrated
manufacturing (CIM), quality control (QC) and total quality management (TQM) for lean
production (LP), product data management (PDM), product lifecycle management (PLM),
and enterprise systems (ES) for agile manufacturing (AM), business process management
(BPM), service-oriented architecture (SoA), and agent-based techniques for virtual manu-
facturing (VM), and Internet of Things (IoT), radio frequency identification (RFID) [9–11],
cyber-physical systems (CPS), human-cyber-physical systems (HCPS), blockchain technol-
ogy (BCT), big data analytics (BDA), and cloud computing (CC) for digital manufacturing
(DM) and smart manufacturing (SM) [3,4]. The studies in DM have attracted a great deal
of attention recently. For example, Dey et al. [12,13] investigated the impacts of optimized
autonomation policies on the control variables in the inventory management of a smart
production system. In the digital era, the digitization of manufacturing businesses has pro-
gressed exponentially, and the increasing adoption of digital technologies in our economy
has reshaped the way we live and work. The trend of digitization has brought new oppor-
tunities and challenges for manufacturing enterprises to gain business competitiveness
over their strategical competitors in the globalized market [14,15]. The further develop-
ment of the digital economy in the near future will be characterized by four dimensions of
smartness: smart manufacturing, smart products and services, smart supply chains, and
smart processes [16].

SM or DM have become the frontier in advancing manufacturing technologies [17].
However, today’s manufacturing systems are, in fact, systems of systems, due to the
high-level of system complexity, the large variety of manufacturing assets and enabling
technologies, and the dynamics of systems over time. This causes diversity and confu-
sion for practitioners in understanding SM and its relevant concepts, reference models,
performance matrices, and the selection of design methodologies. On the one hand, any
manufacturing system should be a sophisticated system tailored to the given manufactur-
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ing resources, markets, and business environment, and there is no universal SM solution
for enterprises. On the other hand, manufacturing businesses are involved with the trans-
formation of materials, values, information, and knowledge of multiple disciplines, and
system performances are assessed very differently in these disciplines. In other words, the
stakeholders of one manufacturing system have different expectations of SM, which might
be correlated, coupled, or even conflicted with each other.

The authors are highly motivated to gain a thorough understanding of the state of
the art development of smart manufacturing (SM) systems and to identify the direction of
future research in the field of SM. The main contributions from the reported work are as
follows:

(1) It is found that the existing works on SM show the limitations of at two aspects, i.e.,
(a) the highly diversified understandings of the functionalities and expectations of SM
that may result in overlapped, missed, or non-systematic research efforts in advancing
the theory and methodologies in the field of SM; (b) few works have been published
that propose a generic design methodology for the design of smart manufacturing
systems in practice.

(2) The definition of SM is simplified to unify the diversified expectations. A newly
developed concept, digital triad (DT-II), is adopted to define a reference model for
SM; it reflects all of the main characteristics of digital solutions at the different levels
and domains of system operations.

(3) The common features of various smart manufacturing systems are identified; par-
ticularly, the concept of IoDTT is proposed as a reference model to represent the
need for system reconfiguration in the event of uncertainties and changes in business
environments.

(4) The generality and specialty in designing and implementing various smart manufac-
turing systems are discussed, to illustrate the need for developing a general design
methodology to guide the design of a smart manufacturing system from a practical
perspective.

The remainder of paper is organized as follow. In Section 2, an overview of SM
and its development is provided, to understand the limitations of the existing works. In
Section 3, the concept of SM is refined, and the corresponding reference model is proposed,
using the concept of digital triad (DT-II). In Section 4, the design of a modular robotic
system is used as an example to illustrate the system design problems at different phases,
and the generality of designing and implementing tailored smart systems is discussed, to
highlight the need for generic design methodologies. In the following part II of this work,
two proposed concepts are adopted for formulating system design problems, and ADT is
suggested as the generic design methodology for SM. Three case studies are introduced
to illustrate the application of the proposed design methodology, and the future research
directions regarding SM are discussed as a summary.

2. Overview of Smart Manufacturing (SM)

2.1. Original Definition and Variations

Smart manufacturing (SM) is also commonly referred to as “Industry 4.0” in Europe
and “Made in China 2025” in China, as the latest iteration of the industrial revolution
that began 260 years ago. The recent development of information technologies (IT) has
provided the concrete foundation to revolutionize manufacturing in the form of SM [18].
The concept was coined by the National Science Foundation (NSF) at its workshop on
cyberinfrastructure in 2006 [19]. SM was originally defined as a fully integrated and collab-
orative manufacturing system that responds in real time to meet the changing demands
and conditions in the factory, the supply chain, and customer needs [20,21]. The vision
and goals of SM were then developed by the Smart Manufacturing Leadership Coalition in
2011 [22]. The roadmaps and standards for Industry 4.0 and SM were firstly developed by
the German Commission for Electrical, Electronic & Information Technologies [23] in 2014
and the National Institute of Standards and Technology (NIST) in 2016 [20], respectively.
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The clean energy smart manufacturing innovation institute (CESMII) was created to pro-
mote SM as a sustainable driving force for manufacturing in the United States to adopt
smart sensors, controls, platforms, and models in 2016. The closely related concept, Made
in China 2025, was initialized to advance the independent manufacturing technologies
in China in 2015 [24]. From the perspective of applications, SM refers to an IoT-based
application to automate manufacturing processes and utilize data analytics tools to im-
prove the performances of manufacturing systems. SM uses information technologies,
computer-integrated technology, flexible workforces, and digital technology to improve
the system adaptability for the changes and uncertainties in system operations [25]. SM
was treated as an application of Industry 4.0 in manufacturing, where advanced IT, such as
the Internet of Things (IoT), cyber physical systems (CPS), machine learning (ML), additive
manufacturing (AM), and robotics, were used in process automation and decision making
support [26]. It should be noted that Industry 4.0 refers to a system in which automated
facilities are networked, so that data can be collected, processed, and utilized to make
smart decisions in system operations.

SM distinguishes itself from other manufacturing paradigms by defining the meaning
of “smart”, whereas researchers in different disciplines and roles define different expecta-
tions of smartness. For example, the smartness of a manufacturing system, according to
Romero et al. [27] covers (1) the ability to communicate to exchange data, and to collect
and report data regarding the state of manufacturing assets; (2) the embedded knowledge
for the representation of human expertise and the understanding of system elements and
environments; (3) learning capabilities through the application of diversified algorithms,
methods, and tools; (4) reasoning capabilities for data-driven decision making; (5) the per-
ception capability to sense, understand, and respond to environmental changes; (6) control
capabilities to ensure smooth manufacturing processes, and to make and deliver products
to end-users; (7) self-organization to reconfigure systems to accommodate changes and
uncertainties; (8) context awareness that retrieves the information and knowledge that
characterizes the state of the systems and environments. Lenz et al. [28] extended the
scope of SM to the collection of raw materials; the data in the entire product lifecycle was
acquired and processed to improve the accuracy and reliability of the process signatures
and to improve manufacturing processes. Filleti et al. [29] used a grinding unit as an
example to discuss the impact of manufacturing processes and real-time monitoring on
the performance of production and environmental indicators. The manufacturing assets
were mostly developed with assured safety and security at the device level; security as-
surance became a critical challenge when the manufacturing assets were interactive and
interoperative. In addition, Maggi et al. [30] and Viriyasitava et al. [31–35] emphasized the
importance of addressing cybersecurity awareness regarding the configuring systems, to
adjust to changes and uncertainties in dynamic business environments.

Felice et al. [36] proposed a bibliometric model for analyzing the existing works on
SM from 2011 to 2018; their objectives were to identify relevant topics and explore the
interdependencies of these topics. It was found that researchers generally expected SM
to improve the efficiency, cost-effectiveness, safety, and sustainability of systems, and the
main enabling technologies for SM were automation, IoT, CPS, BDA, cloud computing (CC),
modelling and simulation, and additive manufacturing (AM). SM integrated manufactur-
ing assets, sensors, technological platforms, networks, data-driven modelling, simulations,
decision making, and diagnoses and predictions to improve efficiency, flexibility, adapt-
ability, and resilience [37,38]. With the trend of digitization, SM becomes the new frontier
of manufacturing systems [17]. SM, as a flexible system, should be able to self-optimize
performance across a broader network, self-adapt to change and learn from new conditions
in real or near-real time, and autonomously run entire production processes.

2.2. Main Characteristics

The five main characteristics of SM identified by Deloitte (2021) are that they are:
(1) connected to all smart things through the internet, including traditional datasets, real-
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time data enabling collaboration, and the collaborations across departments; (2) optimized
for predictable capacities, increased asset uptime and efficiency, highly automated pro-
duction and material handling, and minimized cost; (3) transparent for live metrics and
tools, and have real-time linkages to demand forecasts and order tracking; (4) proactive
for anomaly identification and resolutions, restocking and replenishment, and the identi-
fication of quality issues; (5) agile for flexible and adaptable scheduling and production
changes, with configurable machines and layouts. SM was expected to improve the ef-
ficiency of manufacturing assets, improve the quality of products and manufacturing
processes, reduce the cost of system operations, and to increase the safety and sustainability
of products, manufacturing processes, systems, and human living environments. SM was
characterized as networked, big data, digitization, data-driven, resource sharing, connected,
sustainable and resilient; in particular, sustainability and resiliency distinguished SM from
other manufacturing paradigms [39].

SM, as an engineering system, was compared to a biological system by Byrne et al. [40],
and it was suggested that SM should be the convergence of biology and SM, as part of
the evolution of the system paradigms involved in bio-inspiration, bio-integration and
bio-intelligence. Therefore, SM would incorporate components, features, characteristics,
and capabilities to converge a manufacturing system with a biological system. SM is a type
of intelligent manufacturing (IM) system, although it is certainly at a more advanced level
of intelligence in comparison to traditional IM. Wang et al. [41] elaborated the differences
between SM and IM in detail, and they argued that SM was a comprehensive outcome of
integrating an increasing number of digital tools with an intelligent manufacturing system.
IM and SM were closely correlated; indeed, the differences were mainly in qualitative and
quantitative measures, and SM was seen as the advanced stage of IM.

2.3. Technological Drivers

Manufacturing paradigms are enabled by the available technologies, particularly in-
formation technologies in the digital era. Kulvatunyou et al. [42] analysed the development
of the standards for the integration of semantic data and concluded that the standards
for digital manufacturing must be advanced to maintain, represent, and present data in
the form of knowledge and insight for collaborative decision making support. It is well
known that the digital transformation from Industry 3.0 to 4.0 was enabled by some critical
ITs, such as IoT, CC, BDA, and AI [16]. IoT enables the connection of everything in manu-
facturing, in the same way as Industrial IoT (IIoT); in return, IIoT supports the new and
unprecedented interactions among the hardware, software, virtual assets, and humans. In
addition, IIoT can be integrated with AI for enterprises to increase their flexibility, agility,
efficiency, and resilience [21].

Bi and Zhang [3] classified technical drivers into three types, as shown in Figure 1.
From the perspective of system inputs, manufacturing businesses are pushed by hu-
mans’ expectations for civilization and continuous development. From the perspective
of system outputs, manufacturing businesses are pulled by users’ demand for better and
more products. From the perspective of system transformation, manufacturing processes
are gradually advanced by integrating an increasing number of relevant technologies
through the iteration of continuous improvement (CI). For system transformation, the
trends of the reciprocating drivers were (1) the increasing decentralization of the manufac-
turing businesses, (2) additive manufacturing using polymeric, metallic, and bio-materials,
(3) networks and the integration of supply chains, (4) cyber security assurance, (5) the elim-
ination of latency, (6) high-level automation and self-optimization, (7) the unprecedented
scale and level of connections, (8) the adoption of advanced artificial intelligence and
machine learning, (9) the sustainability of products, processes, and systems, and (10) the
expectations of responsiveness, robustness, and residence [40].
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Figure 1. Three types of technological drivers in manufacturing (Reprinted with permission from ref. [3]. 2021, Springer
Nature).

SM relies on the integration of various digital technologies. Ghobakhloo [14] argued
that digitization was attributed to the information technologies that are used for decentral-
ization, horizontal and vertical integrations, interoperability, virtualization, and modularity.
Modularity was viewed as one of the most effective ways to deal with the complexity,
changes, and uncertainties in a dynamic environment, and the idea of modularity was
applicable to both internal and external manufacturing assets [43]. The virtual assets were
used for servitization, and the corresponding manufacturing system was referred to as
a product-service system. Brad and Murar [44] discussed the business model, economic
impact, and reconfiguring technologies of a product-service system. Feldner and Her-
ber [45] evaluated the communication protocol of IPv6 to support the interactions and
interoperations of networked things. Kumar [46] discussed the impact of IoT, CPS, human–
robot interaction (HRI), and augmented reality (AR) on the development of new materials
and manufacturing processes in SM. Innovation in digital technologies led to advances in
new materials and manufacturing processes. SM became practical due to rapidly growing
technologies, the ever-increasing complexity of the supply chains, the global fragmentation
of production and demands, the growing pressure of competitiveness from unexpected
sources, organizational realignment caused by the marriage of information technologies
and organization technologies, and ongoing talent challenges [17]. Standardization is
powerful in developing and implementing advanced manufacturing technologies. For the
seamless integration of various manufacturing assets, the efforts regarding standardization
are indispensable. Leading standards organizations, such as the International Organiza-
tion for Standardization (ISO), National Institute of Standards and Technology (NIST),
International Telecommunication Union (ITU), and Institute of Electrical and Electronics
Engineers (IEEE), have developed the standards for the architecture, reference models, and
frameworks of smart manufacturing [5,18,20,21].

2.4. Applications

The manufacturing industry has a strong impact on the anthropogenic environment;
with the growing concern regarding the deterioration of the environment, SM must expand
its business scope to the entire product lifecycle by recycling, reusing, and remanufacturing
to promote circular economy. Barletta et al. [47] considered the bounds of distinguishing
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products and services as the environmental breakeven points that could be determined
by environmental assessment. Blomeke et al. [5] proposed a recycling 4.0 framework with
integrated SM technologies and solutions to support recycling, reusing, and remanufactur-
ing. Jaspert et al. [48] referred to the reconfiguration of SM as smart retrofitting, and an SM
could be retrofitted at any functional layer of an enterprise, from the physical, sensor, con-
nectivity, and data layers, to the application layer. Most of the reported applications were
in the preliminary stages and met the expectations only for certain aspects. For example,
Zenisek et al. [49] introduced an experimental SM system with integrated mixed reality
and additive manufacturing for predictive maintenance, and they identified challenges in
data merging, online applicability, the conflict of reactivity and false positive rates, and
shortfalls in customers’ other expectations.

Rodger et al. [50] discussed the need for sustainability in highly automated car body
manufacturing; existing methods and algorithms were surveyed to identify the bottlenecks
for improving the sustainability of manufacturing systems from the perspective of product
lifecycles. Siiskonen et al. [51] explored the potential application of SM in producing
personalized medicines; however, they limited this to the synergic outcomes by integrating
the platforms for the design of products and manufacturing processes. They found that
customer satisfaction was improved by modularized table designs at increased production
costs. Ghobakhloo and Ching [15] surveyed the application of digital technologies in small-
and medium-sized enterprises (SMEs); they found the use of SM in SMEs was restrained,
due to technological, organizational, and environmental factors. Kamble et al. [52] investi-
gated the application of SM in India’s automotive industry, and the benefits of SM were
assessed across 10 dimensions (i.e., quality, cost, time, flexibility, integration, productivity,
computing, sustainability, diagnosis, and prognosis).

2.5. Limitations of Existing Works

Despite its great potential, numerous researchers discussed the limitations of the
existing works on SM. For example, Phuyal et al. [53] analyzed the technological gaps
in adopting state of art IT in smart manufacturing systems. Their main concerns were
the maturity and readiness of these technologies (i.e., AI, CPS, BDA, AR, IoT, and robotic
technologies) in achieving tangible expectations in real-world industrial applications.
Others discussed the challenges regarding the integration and complexity of systems.

SM integrates many newly developed manufacturing technologies in systems. While
advanced technologies are generally complex, a system that is poorly or inappropriately
designed for a particular application is not expected to benefit enterprises. Uysal and
Mergen [54] expressed concern over the sharing and integration of data across systems
and products, and discussed the feasibility of using an intelligent digital mesh (IDM) to
form a system made up of dynamically interconnected elements. SM aims for a high
level of automation with minimized human effort in collecting, transferring, processing,
and mining data. However, the relevant studies were mostly fragmented by focusing on
one or a small number of issues, such as decision making, cyber–physical interactions,
information infrastructures, digitalization, human–machine interactions, cloud computing,
and virtual services [55], and generalizability was lacking from system perspectives. For
example, a smart manufacturing system focused on the utilization of hardware assets
may undervalue the impact of these assets on system-level performances. To improve the
agility and adaptability of SM, advanced methods and tools are needed to connect digital
technologies and their business goals for cost effectiveness [56].

The cost of a smart manufacturing system is another significant downside. This is
particularly true for small to midsize enterprises (SMEs). Over 95% of enterprises are
SMEs that lack manufacturing assets, other than their core competencies for new business
opportunities. SMEs were not able to afford the considerable expense for the advanced
technology, since short-term benefits were mostly prioritized, and the savings over the
long term would outweigh the startup costs. Although the gaps regarding the adoption of
digital technologies by SMEs were discussed [37,38], limited works were found that focused
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on the development of roadmaps and system frameworks for assessing the maturity and
readiness of SMEs to adopt digital technologies.

A set of the performance metrics are used to compare and optimize systems. Helu
et al. [57] indicate that there are limitations in the assessment of the performances of
adopted digital technologies; since the evaluation relies on an appropriate model for
the breadth and depth of the technologies that were usually unavailable. Quantitative
measures are essential to develop the systematic design methodologies of manufacturing
systems. However, the existing assessment models, methods, and criteria are mostly
empirical, and built on numerous assumptions and hypotheses; manufacturing systems are
viewed as black or grey boxes, and system performances are mainly evaluated based on
system inputs and outputs, with the limited context of value-added and non-value-added
manufacturing processes in systems [58]. Most models lack consistent data, reliable analysis
methods, and user-friendly tools for decision makers to assess system performance in an
understandable way [59]. The performance assessment methods fail to match advanced
technologies to market demands in manufacturing [60]. Few methods were available to
design and evaluate system configurations and implement a smart manufacturing system
based on a set of the specified assessment metrics. Despite the large variety of available
performance metrics, the importance of selecting the right metrics was overlooked, and
no coherent framework was available to adequately measure the effectiveness of system
configurations [61].

Despite its attractiveness, the research topic of SM is relatively new, and the relevant
studies are mostly preliminary. From the perspective of its applications, the existing works
on SM show the following limitations.

SM tends to pursue a full wish list of the functional requirements of the traditional
manufacturing paradigms, including automation, productivity, leanness, flexibility, agility,
sustainability, adaptability, and resilience. While it is reasonable to represent system expec-
tations from different perspectives, system complexity will easily become unmanageable
when designing and controlling a smart manufacturing system. Moreover, the resulting
system might not be optimized, since many performance metrics conflict with each other,
and the most critical metrics for the weakest aspects must be emphasized.

SM emphasizes (a) the necessities of digital technologies, (b) networking and virtual
assets, and (c) adaptability to environmental changes and uncertainties. However, in the
existing definitions of SM, the uniqueness of digital technologies was not distinguished
from those of other advanced technologies, or from the representations of all advanced
technologies in traditional manufacturing paradigms. Additionally, there is no mechanism
to distinguish fixed/dynamic, internal/external, and physical/virtual resources, as well
as their corresponding roles in systems’ lifecycles. Lastly, SM was still modelled as a
system with stable structures (commonly known as a hierarchical or multidimensional
grid structure), which is ineffective in representing system configurations that are intended
to adapt to changes and uncertainties over time. There are some conflicts among steady
system models, system reconfiguration, and the adaptability over system lifecycles [3,4].

Other than some discussions on enabling technologies, system architecture, reference
models, and performance metrics, no systematic methodology has been explored in design-
ing a smart manufacturing system. The existing examples of smart manufacturing systems
were conceptual and lacking in details of system developments.

The available performance metrics were highly diversified. Moreover, most of the
metrics limited their applications to system designs only, since the quantifications were
data-driven and made for black box or gray box systems. It should be noted that, during
the phase of system design or reconfiguration, an evaluation model should be a white box
and should represent the dependencies of the performance metrics (such as the level of
automation, configurability, and residence) on the design variables (such as the selection of
system elements, and the assembly and interaction of system elements) directly.
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3. Proposed Definition of SM

In good manufacturing practices, any manufacturing system must be tailored to a
specified application, and the same applies for a smart manufacturing system. Therefore, it
is our argument that SM is better defined to satisfy the most common system requirements,
rather than all requirements, which might be optional, of less importance, and tailored to
specific applications. Based on a generic definition of SM focusing on its core values, a
reference model can be derived to develop a systematic methodology for the designs of
SM. In this section, a new definition of SM is proposed, and the rationales of this proposal
are provided by (1) identifying the common features of SM as functional requirements
(FRs), (2) adopting two new concepts, DT-II and IoDTT, as the design solutions (DSs) for
the given FRs, and (3) discussing the solutions for the limitations of the existing works
identified in Section 2.

3.1. New Definition of SM

We propose to redefine SM and clarify the relevant concept of smartness as follows:
“Smart manufacturing (SM) is a type of manufacturing paradigm for the enhanced

smartness of systems, in which digital technologies are used to empower the physical
things in manufacturing products, access virtual assets over networks for expanded manu-
facturing capabilities, support data-driven decision making in any domain and at any level
of manufacturing operations, and reconfigure systems to adapt to the changes in customer
needs when making products”.

“The smartness of a manufacturing system refers to its ability to (1) offer better
manufacturing processes or (2) support better decision making in other manufacturing
operations. Smartness can be measured by one, or a combination of, system performance
metric(s), such as the degree of automation, cost-effectiveness, leanness, robustness, flexi-
bility, adaptability, sustainability, and resilience”.

In comparison to the existing definitions of SM, the proposed definition is generic
and applicable to any smart system that adopts digital technologies and is capable of
using virtual resources and reconfiguring systems. More importantly, the proposed defi-
nition considers the continuous improvement (CI) of system smartness at any increment,
domain and level, rather than the overall system-level performance of everything with
unmanageable complexity.

3.2. Functional Requirements (FRs) of SM

We are interested in developing a generic model for the system elements in SM. There-
fore, the core values of SM with its new definition are treated as functional requirements
(FRs). Consequently, a new representation of a generic system element must meet the
following FRs.

FR1—Performing manufacturing processes: a manufacturing system transforms raw
materials into the final products through a series of manufacturing processes in the material
flows of systems. Manufacturing processes are performed on physical manufacturing assets.
Therefore, making products (FR1) is the primary FR of a manufacturing system, and it
should be defined based on the variants and volumes of products that customers need. In
addition, since a complex product involves many parts and components that are made
using different manufacturing processes, physical manufacturing assets can be defined
for the products, components, parts, and processes. For the purpose of generality, one
physical entity is involved in one system element; such a physical entity can be present at
any level of the product, from a specific process, part, component, product, product family,
or product series over its lifecycle.

FR2—Dealing with changes in customer needs in manufacturing processes: a smart
manufacturing system is sustainable; it is capable of reconfiguring itself to deal with the
changes in customers’ needs, as well as the disturbances and uncertainties in manufacturing
environments. Customers’ needs correspond to the functionalities, variations, volumes,
delivery times, and other expectations of products that change in the market over time. The
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solutions for a system model to adapt to changes are (1) the software flexibility of adjustable
assets, (2) the hardware modularity, which is capable of configuring the system by selecting
different modules and assembling them in different ways, and (3) the combination of
software and hardware flexibility [43].

FR3—Supporting virtual analyses of manufacturing processes: to perform a man-
ufacturing process successfully, engineers must define, plan, program, verify, validate,
control, and monitor the process to ensure it is carried out correctly the first time. With
the ever-increasing complexity of manufacturing processes, performing these complex
tasks is far beyond manual effort. In SM, digital models are developed as digital twins
(DT-I) of the corresponding physical assets; digital twins are utilized for the optimization,
simulation, and verification of manufacturing processes, and for controlling, monitoring,
and diagnosing manufacturing processes in actual operations.

FR4—Acquiring, processing, and mining data for use in digital models: maintaining a
manufacturing system involves numerous decision-making activities at all levels, domains,
and aspects of businesses. On the other hand, SM emphasizes responsiveness, adaptability,
and resilience to the changes and uncertainties in dynamic environments. Therefore,
decision-making activities are closed-loop and data-driven processes that rely on reliable
and abundant data about everything in the system. Physical assets, in SM, are intended to
acquire real-time data; they are networked to collect and share data, and the collected data
is processed, mined, and utilized by digital models for decision making support.

FR5—Making decisions for enhanced system smartness: the decisions for manufac-
turing operations are made based on the data collected from machines, operators, sensors,
suppliers, markets, and users. Due to the rapid growth in networked elements in a system,
decision-making activities about manufacturing operations usually involve exceptionally
large data sets that are characterized as big data in terms of variety, volume, velocity,
veracity, and value (5V). Big data is analyzed and mined to allow smarter decisions to be
made regarding manufacturing operations, and to achieve better system performance for
any aspects of interest, such as agility, robustness, adaptability, flexibility, and resilience.

FR6—Accessing virtual resources: the scope of manufacturing businesses has been
continuously increased due to the growing complexity of products and the need for
manufacturing businesses to extend over product lifecycles. Manufacturing systems are
highly pressured by having to reconfigure themselves to meet the changes in customer
needs over time. Virtual manufacturing resources become increasingly important for
the host enterprises to cover the increasing scope of manufacturing businesses [8]. The
information infrastructure of an enterprise system (ES) should be capable of accessing
virtual resources and supporting the interactions and interoperations of internal and
external resources seamlessly.

FR7—Supporting decision making for incorporation-level businesses: in the digital
era, manufacturing systems become increasingly distributed and decentralized, and manu-
facturing businesses within a system become more closely related to the stakeholders, such
as suppliers, service providers, logistic systems, and users, across the boundaries of the sys-
tem. Therefore, sustainable manufacturing operations require numerous decision-making
processes at the incorporation-level, such as the selection of suppliers or service providers,
the composition of workflows for emerging business opportunities, and the reconfiguration
of systems or virtual enterprise alliances to adapt to changing customer needs. Decision
making support systems should be able to deal with the incorporation-level big data to
support the interactions and interoperations of enterprises with assured security, privacy,
and responsiveness [31–35].

3.3. Generic Model of System Elements—Digital Triad (DT-II)
A system can generally be modelled by (1) a set of system elements, (2) the relations

between system elements, (3) a series of the transformation from the inputs to the outputs
of the system, and (4) a set of the performance metrics that are quantified based on (1),
(2), and (3). Modelling a system begins with the representation of the system’s elements.
A smart manufacturing system is, in fact, a system of systems (SoS). SM is a multiplicity
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of technologies and elements, such as IoTs, CPSs, BDA, ML, BCT, CC, and collaborative
robots [62]. Here, the newly developed concept, digital triad (DT-II), is used to represent
an abstract system element of SM [3,4]. DT-II is an extension of the concept of digital twins
(DT-I), and DT-II includes the enablers to meet the functional requirements FR1, FR2, FR3,
FR4, and FR5 that were discussed in Section 3.2. As shown in Figure 2, a digital triad
(DT-II) is a coalition of life models, digital models, and the corresponding physical models.
Accordingly, DT-II is modelled by three models and their interactions as,

DT − II(t) = {LM(t), DM(t), PM(t), CN(LM(t), DM(t), PM(t), t), ET(t)} t = t1 , t2, . . . tn, . . . (1)

where DT-II (t) represents the state of a digital triad at time t, LM(t), DM(t), andPM(t) are
the sets of life, digital, and physical models at t, respectively; CN(LM(t), DM(t), PM(t), t)
are the interactions of life, digital, and physical models at t; ET(t) is the set of enablers for
the operations of DT-II; t1, t2, t3, . . . are timeframes to update DT-II.

Figure 2. Generic model of digital triad DT-II (t).

In a DT-II model, a physical model PM(t) represents one, or a group of, physical
thing(s), such as the parts, products, processes, systems, or other tangible things, and
a digital model DM(t) is a virtual model of PM(t). One physical model PM(t) may
need multiple DM(t) to represent its behaviors from different perspectives. A life model
LM(t) represents the changes of physical things over time; it keeps historical data, com-
ponents, templates, and knowledge that are used to design, analyze, optimize, and re-
configure the physical models. The interactions of the three models, PM(t), DM(t), and
LM(t), are represented by CN(LM(t), DM(t), PM(t), t). There are three types of interactions
CN(LM(t), DM(t), PM(t), t) in DT-II, (i.e., CN,1(DM(t), PM(t)), CN,2(LM(t), DM(t), t), and
CN,3(LM(t), PM(t), t)). In addition, a particular DT-II model can be instantiated by spec-
ifying a set of enablers ET(t) to create, operate, and sustain the models. As discussed in
Section 2.3, the most commonly mentioned enablers in ET(t) are IoT, CC, AI, CPS, ML, BDA,
BCT, machine learning (ML), reference models, standardizations, and edge technologies.
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The proposed DT-II serves as a modelling solution to FR1, FR2, FR3, FR4, and FR5 of
a smart manufacturing system at the element level as,

{MS}E
{FR}E {MR}R⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FR1
FR2
FR3
FR4
FR5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

× ×
× ×

× ×
× ×
× × × ×

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PM(t)
LM(t)
DM(t)
CN,1(t)
CN,2(t)
CN,3(t)
ET(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where {FR}E and {MS}E are the set of functional requirements (FR) and modelling solu-
tions at the element level, respectively; {MR}E is a matrix for mapping from {MS}E and
{FR}E; “×” and “�” represent a closely and loosely relevant mapping, respectively.

3.4. Internet of Digital Triad Things (IoDTT) as a Reference Model

A smart manufacturing system is, in fact, a system of systems (SoS). Despite the
distributed, decentralized, and heterogeneous nature of system elements, an abstract
element model based on DT-II can only represent the characteristics at the element level,
rather than all system characteristics, including the needs for accessing virtual resources
and reconfiguring systems over time.

It should be noted that the existing reference models are highly diversified and lack
the generality required for users to understand, analyze, engineer, improve, optimize,
manage, control, and maintain the systems in specific applications. System models are
fundamental to enterprise engineering, integration, and management [63]. A reference
SM model should support (1) the integration of the data, knowledge, and wisdom of
all stakeholders, from suppliers to users, (2) the evaluation of system options based on
high-level performance indicators (KPIs), (3) the adaptation to dynamic changes and
uncertainties, (4) the seamless connection of information technology infrastructure, and
(5) the affordable cost of modelling, simulation, and data analytics [25]. A reference model
traditionally consists of multiple views to look at the transformation of manufacturing
businesses from different views. For example, Vernadat [63] included functional, business,
organizational, information, infrastructural, product, economic, and collaboration views as
the main facets of a reference model. Essakly et al. [64] developed a reference framework to
evaluate digitalization solutions for SMEs. The impact of technology adoption was assessed
across 16 main fields of action. Moghaddam et al. [65] discussed the existing works on
the development of reference SM models; popular reference SM architectures include
Reference Architectural Model Industrie 4.0 (RAMI4.0), the Industrial Internet Reference
Architecture (IIRA), IBM Industry 4.0, and NIST smart manufacturing. These architectures
were service-oriented and the manufacturing assets were digitized and integrated as on-
demand services, and SM enabled the collaboration and integration of manufacturing
assets via smart plug-and-produce systems. Yang et al. [66] argued that the main objective
of SM is to improve the flexibility and adaptability of manufacturing systems; therefore, SM
should be data-driven and should support knowledge-based engineering. The reference
SM model created by Part and Febriani [67] for welding operations was service-oriented,
since virtual manufacturing assets became mandatory for dealing with the ever-growing
complexity, scale, and system dynamics.

To model the interaction of system elements in SM, the concept of the Internet of
Digital Triad Things (IoDTT), developed by the authors, is introduced here. Figure 3
illustrates a representation of IoDTT for SM. A smart manufacturing system is developed
upon an information infrastructure {ET(t)} that consists of all of the accessible tools to
acquire, process, mine, and utilize data regarding the system elements for decision making
support. IoDTT uses a flat architecture in which all of the system elements {DT-II (t)} are
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networked and interact. Each DT-II (t) is reconfigurable to sustain its lifecycle, and the
lifecycle of SM is represented as a series of (SoS (t) at specific times. A smart manufacturing
system, at a specific time ti, is formed by one host digital triad DT-IIh (ti) with selected
others. The life model Lm,h (ti) of the host digital triad selects a set of appropriate digital
triads and constructs them as a system of systems (SoS (ti)). The digital and physical
models, Dm,h (ti) and Pm,h (ti), are upgraded to adapt to the changes resulting from their
interactions with others.

 
Figure 3. Internet of Digital Triad Things (IoDTT) as reference model for SM.

The proposed IoDTT serves as the modelling solution to FR6 and FR7 of a smart
manufacturing system at the SoS level as,

{FR}S{ {FR}E
{FR}N

}
=

{FR}S⎧⎨
⎩

{FR}E
FR6
FR7

⎫⎬
⎭ =

{MR}S {MS}S⎡
⎣ {MR}E ×

× ×
×

⎤
⎦

⎧⎨
⎩

{MS}E
{SoS(t)}
{ET(t)}

⎫⎬
⎭ (3)

where {FR}E, {MR}E, and {MS}E are the functional requirements, mapping relations,
and modelling solutions determined in Equation (1) at the element level; {FR}N = {FR6,
FR7}T are the functional requirements at the system level; {SoS(t)} is a set of system
configurations in the system lifecycle; {ET(t)} is the information infrastructure including
all of the accessible enabling technologies. “×” and “�” represent a closely and loosely
relevant mapping, respectively.

4. Discussion on Generality and Specialty in Designing and Implementing Custom
Smart Manufacturing Systems

The designs involved in a modular robotic system in Figure 4 were used to illustrate the
applications of an ad hoc approach to designing and implementing a smart manufacturing
system, and to elaborate the need for developing a generic design methodology for the
design of smart manufacturing systems.
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Figure 4. Example of designing and implementing a smart manufacturing system using an ad hoc approach (Reprinted
with permission from ref. [4]. 2021, Springer Nature).

Robots play increasingly critical roles in modern manufacturing [62,68]. However, con-
ventional robots were sophisticated and applicable only to specific types of tasks. Robots
in SM should be advanced to reconfigure themselves, both in hardware and software
aspects, so that the same system can be applied to different types of tasks in uncertain
environments. As shown in Figure 4a, the architecture of a smart robotic system is modu-
larized; it consists of various types of functional modules, rather than an integral robotic
structure. Different modules can be selected and assembled in different ways to build
different configurations for given tasks over time. Similar to the designs of other complex
systems, ad hoc approaches are used in designing and implementing a modular robotic
system. The three main design issues are architecture design, configuration design, and
control design [69,70]. Architecture design determines the available functional modules
and their possible interfaces. The design of a functional module is encapsulated, and
the internal change of one module does not affect its interaction with other modules. A
system’s architecture must offer as many configuration variants as possible, subjected to a
given pool of available modules. The more configurations a system can generate, the better
the system can deal with changing tasks in a dynamic environment. Architecture design is
also involved in upgrading a smart system. Configuration design involves the selection
and assembly of modules in a robot instance to optimally perform a given task. An active
module has its local controller, an assembled robot has its system-level goals, and the
control is designed to coordinate system modules to fulfill system-level tasks satisfactorily.
Control design is involved during the phase of system operation.

Several research teams worldwide have contributed to the design theories and method-
ologies of modular robotic systems. However, every group emphasized the specialties of
their proposed systems, and these systems are designed and implemented in ad hoc ways
in general. Bi and Lang [69] and Bi et al. [70] discussed the limitations of ad hoc system
approaches, including repetitive design efforts, inconsistency in system upgradations, the
difficulty in scaling systems, and, most importantly, the lack of predictivity for future
technologies to maintain the sustainability of a smart system.

It seems that any complex system, including a smart manufacturing system, should
be customized to its specific application; the design of a smart manufacturing system is
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carried out on a case-by-case basis. However, a smart manufacturing system emphasizes
its continuity from one system configuration to another to achieve adaptability and sus-
tainability over time. The authors argue that it is critical to investigate the commonalities
of different smart systems, since a general design methodology addressing the identified
commonalities will help to significantly alleviate the aforementioned challenges.

It should be noted that any system design can be viewed as a transformation from the
given inputs to the expected outputs, and different smart manufacturing systems share
many commonalities in such a transformation. While the implementation of a specific
system deals with the definitions of customers’ needs and the expected outputs that are
specialized, many commonalities can be identified. Taking the example of smart manufac-
turing systems: (1) customer requirements share the commonalities of the quantification
of adaptability, resilience, and configurability; (2) the expected system designs share the
commonalities of digitization, modularization, and high levels of automation and auton-
omy; (3) the design transformations share time-dependence, dynamics, concurrence, and
continuous improvement. Therefore, the generality of a design methodology and the
specialty of system implementation are not conflicted with each other. While a generic
design methodology cannot be used to substitute all of the design efforts in defining quan-
tifiable functional requirements, system measures, and modelling system behaviors to
evaluate design solutions, following the generic guidance and design procedure will help
users to reduce repetitive efforts, achieve consistency for system upgradation, enhance
system scalability, and increase the visibility of prosperous technologies for long-term
system sustainability.

5. Summary

To promote the application of digital technologies in manufacturing, particularly for
small and medium sized companies, and for continuous improvement practice, we aimed
to develop a generic methodology for the design of smart manufacturing systems. A con-
cise definition of smart manufacturing (SM) was provided (based on the newly developed
concepts of digital triad (DT-II) and Internet of Digital Triad Things (IoDTT), which covers
the common requirements and enabling digital technologies of various manufacturing
systems that are customized for specific applications. Axiomatic design theory was pro-
posed to formulate system designs, or to reconfigure systems into mathematic models by
defining the functional requirements (FRs), identifying the feasible design solutions (DSs),
and evaluating system smartness based on the mapping of FRs and DSs. It should be
noted that ADT is widely adopted as a systematic design approach in designing complex
systems [71,72]. Part II of this paper will provide the details of ADT applications in the
design of smart manufacturing, and three case studies will be introduced to demonstrate
the generality and applicability of using the proposed method for designing smart manu-
facturing systems. The proposed concepts have theoretical and practical significance for
exploring the essentials of different smart manufacturing systems, so that a systematic
design methodology can be developed to guide the design of smart manufacturing systems
with diversified applications. It should be noted that the proposed concepts and design
methods are generic, and are used as the systematic guides in designing and analyzing a
smart manufacturing system. However, every manufacturing system must be customized
to its specific applications, and additional design effort is required to prioritize FRs, identify
the pool of DSs, and develop performance metrics for the appropriate mapping of FRs and
DSs when using the proposed concepts and design methods.
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Abstract: In a traditional system paradigm, an enterprise reference model provides the guide for
practitioners to select manufacturing elements, configure elements into a manufacturing system, and
model system options for evaluation and comparison of system solutions against given performance
metrics. However, a smart manufacturing system aims to reconfigure different systems in achieving
high-level smartness in its system lifecycle; moreover, each smart system is customized in terms
of the constraints of manufacturing resources and the prioritized performance metrics to achieve
system smartness. Few works were found on the development of systematic methodologies for the
design of smart manufacturing systems. The novel contributions of the presented work are at two
aspects: (1) unified definitions of digital functional elements and manufacturing systems have been
proposed; they are generalized to have all digitized characteristics and they are customizable to
any manufacturing system with specified manufacturing resources and goals of smartness and (2) a
systematic design methodology has been proposed; it can serve as the guide for designs of smart
manufacturing systems in specified applications. The presented work consists of two separated parts.
In the first part of paper, a simplified definition of smart manufacturing (SM) is proposed to unify
the diversified expectations and a newly developed concept digital triad (DT-II) is adopted to define
a generic reference model to represent essential features of smart manufacturing systems. In the
second part of the paper, the axiomatic design theory (ADT) is adopted and expanded as the generic
design methodology for design, analysis, and assessment of smart manufacturing systems. Three
case studies are reviewed to illustrate the applications of the proposed methodology, and the future
research directions towards smart manufacturing are discussed as a summary in the second part.

Keywords: smart manufacturing; information technologies (IT); system of systems (SoS); digital
manufacturing (DM); digital twins (DT-I); digital triad (DT-II); cyber-physical systems; Internet of
Things (IoT); Internet of Digital Triad Things (IoDTT); big data analytics (BDA); cloud computing
(CC); axiomatic design theory (ADT)

1. Introduction

Smart manufacturing (SM) has been identified as one of the prioritized areas to
strengthen a nation’s economy in both developed and developing countries. The studies in
smart manufacturing technologies have attracted a great deal of attention from researchers
in multiple disciplines. On the one hand, SM is a comprehensive solution to manufacturing
systems with the integration of recent information technologies (IT); on the other hand,
every smart manufacturing system is customized to the needs of a specific enterprise with
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limited resources and its own interests of business domains, strategies, and performance
metrics. This leads to a high diversity for developers and users to understand the true
meanings of SM, and accordingly, to select and integrate existing technologies adequately in
the context of given circumstances of manufacturing businesses. To fill this gap, this paper
attempts to unify the definition of SM with a newly proposed concept called digital triad
(DT-II) to cover all common features of digital technologies towards system smartness; the
contents of system smartness can be tailored to the needs of specific companies especially
in terms of flexibility, scalability, adaptability, and resilience. Moreover, the concept of
Internet of Digital Triad Things (IoDTT) is proposed as a system reference model to deal
with the integrations of digital solutions at upper levels. The rationales of DT-II and
IoDTT have been elaborated in the first part of the paper [1]. In the second part here,
these concepts will be used to develop a systematic methodology for designs of smart
manufacturing systems. To this end, the rest of the paper is organized as follow. In
Section 2, the design of a smart manufacturing system is formulated to define a design
space for the discussed functional requirements (FRs) of SM [1]; the design space consists of
commonly adopted digital technologies including DT-I, CPS, IoT, CC, AI, VM, BDA, SoA,
and BCT. In Section 3, the methods for the evaluation and comparison of design solutions
(DS) are discussed, and the focus is put on the quantification as well as system performance
indicators in dealing with the changes and uncertainties in dynamic business environments.
In Section 4, axiomatic design theory (ADT) is adopted as a systematic methodology in
designing a smart manufacturing system; a general design procedure is proposed with
the detailed discussions of customizing FRs and DSs to specific applications. In Section 5,
three case studies are introduced to illustrate how ADT can be applied in customizing a
smart manufacturing systems when the performance indicators for system smartness are
given. In Section 6, the innovation of the presented work is summarized for its theoretical
and practical significance and the authors’ future works in advancing the concepts of
DT-II, IoDDT, and the ADT-based design methodology for smart manufacturing systems
are outlined.

2. Design of Smart Manufacturing Systems

Since a smart manufacturing system aims for system adaptability in dealing with
changes and uncertainties, and such a capability is achieved by either the flexibility of
system elements or the configurability at system level, design of a smart manufacturing
system involves three iterative phases in its system lifecycle, i.e., system design phase,
system operation phase, and system reconfiguration phase, as shown in Figure 1. At the
system design phase, a set of functional requirements (FRs) is defined, available physical
assets and accessible virtual assets are considered to define a design space with all feasible
design solutions (DSs), and system performances are ranked to define a set of prioritized
performance metrics. At the system operation phase, design analysis and synthesis are
performed to optimize a system, and thus implement it in application; all smart things in
the system are monitored to determine if system elements or the whole system has to be
reconfigured to meet the identified changes. At the system reconfiguration phase, either
system elements or the whole system is reconfigured to make the smart manufacturing
system sustainable.

Many researchers have investigated the design methodologies of intelligent manufac-
turing systems. Unglert et al. [2] proposed a computational design synthesis to analyze
reconfigurable manufacturing cells where functional modules were reorganized to balance
the capability and capacity of system. It was used in the concurrent design of system con-
figurations. Kurgan et al. [3] proposed an integrated design methodology and considered
manufacturing requirements at the phase of system design; it led to the cost saving of 18%
and time reduction of 17% in the case study. SM is a type of reconfigurable systems that
is sustainable over time. A system configuration of a reconfigurable system consists of a
set of functional building blocks that are selected and assembled from available physical
and virtual manufacturing assets for specific tasks [4–7]. A reconfigurable system allows

26



Machines 2021, 9, 208

the additions, removals, and modifications of functional modules without affecting the
functions of other modules, and this helps scale the capacity of productions [8]. A reconfig-
urable system is characterized by its modularity, integrability, customization, convertibility,
scalability, diagnosability, mobility, and adaptability. The high-level building blocks of
SM were classified by Mittal et al. [9], and the most commonly used ones were intelligent
controls, data-driven production managements, data analytics, smart products, smart
materials, interoperability, data sharing, and standards.

Figure 1. Three phases in design of a smart manufacturing system.

Here, the axiomatic design theory (ADT) is used to describe the design procedure of
smart manufacturing systems. However, the authors’ main interests are (1) the determi-
nations of functional requirements (FRs) and design spaces by the solutions, and (2) the
evaluation of the mappings from design solutions (DSs) to functional requirements (FRs).
How to decompose FRs to meet the independence principle and minimized information
principle is of less interest in this section. As the matter of fact, for a complex and multi-
disciplinary system, every system element is conceptually coupled with others, which
makes it impractical to achieve the independence of functional requirements in decomposi-
tion. Since FRs have been discussed in part I, we discuss common digital technologies as
design solutions (DSs) and performance evaluations (PSs) for system smartness as follows.

A smart manufacturing system has been modelled as an instance of the Internet of
Digital Triad Things (IoDTT), and the system consists of a set of networked digital triads.
Therefore, various digital technologies are the essential enablers to satisfy the functional
requirements of smart manufacturing systems. Here, commonly used digital technologies
as well as the roles in SM are discussed.
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2.1. Digital Technologies for Smart Materials and Processes

Similar to traditional manufacturing, SM aims to make and deliver products to users.
However, products from SM are generally more advanced in terms of their intelligence
level, functionalities, and more importantly, their sustainability from the perspectives
of economy, environment, and human society. Akrivos et al. [10] argued that future
products should be sustainable, and products from SM should be made to enhance their
sustainability, especially the self-healing properties of materials, products, and systems.
A smart product could sense occurred damage and heal the damage autonomously to
sustain the product life, so that the product life is extended, even lasting permanently. The
most advanced digital technologies such as extreme ultraviolet lithography (EUV) [11]
and 4D or 5D printing [12] became commercially available to prepare raw materials for
smart products.

2.2. Digital Twins (DT-I)

To practice the first-time right in decision-making processes, decisions should be
verified and validated before they are executed in the physical world. Modelling and
simulation tools used to be standalone system that were widely applied to predict system
behaviors based on assumed conditions, changes, disturbances, and randomness [13].
DT-I has been advanced from traditional modelling and simulation approaches in the
sense that physical and virtual models are connected and interacted directly. The concept
of digital twins (DT-I) has enabled the interactions and integrations of information and
physical worlds in real-time manners. For example, augmented reality was adopted
specifically for the interaction interfaces in smart manufacturing [14]. DT-I could be
multidimensional: for example, geometric, physical capability, rule, and behavior models
in the five-dimensional model [15]. DT-I could be expanded to represent reconfigurable
systems at different granularities and for corresponding missions. In a recent literature
review by Semeraro et al. [16], DI-I itself was treated as a system paradigm where virtual
models were embedded as indispensable components to model the behaviors of physical
components and make smart decisions for system operations.

2.3. Cyber-Physical Systems (CPS)

CPS is related closely to DT-II; while the former focuses on the interactions of digital
and physical twins in the cyber and physical worlds, respectively. CPS supports real-time
communication and interaction of cyber and physical systems to close control loops, moni-
tor system states in real-time, and adjust system behaviors promptly when the changes
are detected [17,18]. The CPS-based system elements are applicable to many tasks such
as communication, controls, scalability, validation and verifications, and system manage-
ments [19,20]. CPS can be data-driven to optimize system controls using real-time data
collected from the physical world; CPS makes a manufacturing system smart by improving
the responsiveness, adaptability, and predictivity of system elements and facilitating the
collaboration of stakeholders in the entire process of mass customization of products [21].

2.4. Human Cyber-Physical Systems (HCPS)

Due to a high-level of uncertainty and complexity, many fully automated solutions in-
volve in a high cost, and such solutions become impractical due to limited cost-effectiveness.
Therefore, humans still play indispensable roles in making manufacturing systems flexible
and adaptable. D’Addona et al. [22] analyzed the needs of human operations for cognition
in practicing adaptive automation through case studies. Cognition was utilized to respond
out-of-the-loop conditions such as abnormal transitions, and skill loss, automation-induced
errors, adaptable behaviors, and inappropriate trusts in collaborative manufacturing pro-
cesses. Humans must be in the loop to achieve the desired performances of production.
In such a way, the safety and comfortableness of workers were well balanced in uncer-
tain environments. Humans are integrated with CPS and human cyber-physical systems
(HCPS). Enabling technologies such as augmented reality (AR) are critical to support
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human-machine collaborations and interactions. Baroroh et al. [23] showed that AR were
used in SM in implementing interactions, manufacturing processes, machine functions,
and knowledge explorations.

2.5. Internet of Things (IoT)

IoT seems essential to SM due to two main reasons: (1) SM is data-driven, and
real-time data about smart things, stakeholders, and business environments must be
available to support the decision-making processes at any level and scope of manufacturing
businesses and (2) SM requires the access to virtual resources over the Internet to deal
with manufacturing businesses over product lifecycles. SM adopts IoT as the information
infrastructure to network manufacturing assets such as products, parts, machine tools,
sensors, and decision-making units in the heterogeneous environment. IoT allows a
smart manufacturing system to sense system elements and environment, access virtual
services over the Internet, and provide abundant data to drive decision-making processes
at all levels and scopes of manufacturing businesses in system lifecycles [24–26]. IoT
consists of countless smart things that are built over the Internet with wired and wireless
communications [27,28].

2.6. Cloud Computing (CC)

Modern manufacturing systems tend to be decentralized and distributed, while
decision-making activities for smart manufacturing are facing a number of challenges, such
as (1) sharing and accessing data in distributed environments, (2) storing and maintaining
an ever-increasing amount of data in the network, (3) the high demand of computing to
optimize decisions with the limited local computing resources, and (4) the complexity
of coordination, collaboration, and interoperation of manufacturing resources over the
Internet. Cloud computing (CC) is built upon service-oriented architecture (SoA); every
task that manipulates data, accesses virtual resource, or run a model for decision-making
can be treated as a service (XaaS), and any system element with a limited computing
capability can utilize CC to support its decision-making activities [29] To select services
to meet manufacturing needs in cloud manufacturing, Huang and Wu [30] developed a
two-layer trust fuzzy model which consisted of time, cost, availability, reliability, and safety
at the first-layer and 13 other indexes at the second-layer.

2.7. Artificial Intelligence (AI)

In making a decision for a manufacturing business, it is an ideal scenario that (1) an
explicit mathematic model is available to represent the relations of inputs, outputs, and
system parameters, (2) all of the required data of the decision model are available and
accurate when a decision is made, and (3) the computation is manageable by the system to
reach decisions in time. Unfortunately, most of decision-making processes are too complex
to develop explicit mathematic models, and the required data in decision-making are often
incomplete, ambiguous, and not free of error. Artificial intelligence (AI) is a cognitive
science for data mining and decision-making support in the fields of data analytics, image
processes, robotics, natural language processes, and machine learning. AI became the
frontier of manufacturing technologies in future industrial systems, and was integrated
with industrial IoT (IIoT), BDA, CC, and CPS to support industrial operations in an efficient,
flexible, and sustainable way [31].

2.8. Virtual Manufacturing (VM)

Utilizing virtual assets over the Internet transferred certain manufacturing businesses
into services, and, accordingly, the manufacturing system became a product-service system.
This leveraged the flexibility and capability of a smart manufacturing system to deal with
the complexity and changes [32]. To access virtual assets over the Internet, manufacturing
assets must support interoperations. Adamczyk et al. [33] introduced a knowledge-based
expert system to support the semantic interoperations in SM; note that the semantic
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interoperations must address the divergence and misinterpretation of heterogenic data from
various sources. Landolfi et al. [34] referred to the use of virtual assets as manufacturing
as a service (MaaS). A MaaS based platform was developed to connect service vendors,
suppliers, and customers to enterprises directly for system-level optimization.

2.9. Big Data Analytics (BDA)

SM is built upon IoT. To achieve a high system diagnosability, predictivity, and
responsiveness, SM must rely on big data connected over the Internet to support its
decision-making systems at all levels and scopes. SM applications involved the challenges
to assure integrity, quality, privacy, availability, scalability, transformation, legitimacy,
surveillance, and governance of data [19]. BDA and SM used to be investigated in the fields
of information technologies and intelligent manufacturing, respectively. These concepts
were recently bridged due to close correspondences [35]. Ren et al. [36] analyzed emerging
issues and potential solutions when BDA is integrated as one of critical technologies to
deal with big data and data-driven decision-makings from the perspective of product
lifecycles. Tao et al. [37] discussed the importance of big data analytics from the historical
perspective, identified the bottlenecks of BDA in utilizing abundant data in developing SM,
and proposed a conceptual framework to integrate BDA tools for effective data-driven SM.

SM fully utilized advanced data analytics tools to support decision making activities
at various domains and levels of manufacturing businesses. Accordingly, with the increase
of volume, velocity, and variety of data acquired from business environment, it posed
the challenge of processing data efficiently [38]. On the other hand, BDA also relies on
reliable and trustworthy data from IoT to reduce knowledge and information for decision
makings; therefore, BDA relates to numerous activities in an information flow including
data collection, sharing, processing, and fusion. Wang and Luo [39] proposed a reference
framework to take advantage of digital-twin models to fuse the data from virtual and
physical models seamlessly.

2.10. Blockchain Theologies (BCT)

SM applications involved the challenge of assuring integrity, quality, privacy, avail-
ability, scalability, transformation, legitimacy, surveillance and governance of data, value
transfer, and manufacturing services [19]. In contrast to traditional standalone information
systems, SM is networked and its system boundaries are open; SM is more vulnerable in
terms of security, privacy, and safety. Tuptuk and Hailes [40] discussed the challenges in
securing smart manufacturing systems in terms of existing vulnerability, potential cyber-
attacks, awareness and preparations for security loopholes, and security measures. The
blockchain technology (BCT) has been explored to embed trustworthiness and visibility
in SM. Viriyasitavat et al. [41–43] developed a few algorithms to (1) select partners and
compose them as virtual enterprises over the Internet and (2) assure the privacy, trustiness,
and security in value transfer and interoperations of business partners.

3. Performance Metrics (PMs) for System Smartness

The expectations for SM can be classified into functional requirements (FRs) and per-
formance metrics (PMs). On the one hand, FRs are a set of hard goals that a manufacturing
system must achieve; FRs are treated as design constraints in developing DSs. On the other
hand, PMs are a set of soft goals for which DSs of a smart manufacturing system should be
optimized. Since a system solution is specific to given applications, the classification of
system expectations for FRs and PMs is different from one system to another. The common
FRs of smart manufacturing systems have been discussed in Section 3.2; in this section, the
commonly used PMs will be discussed.

Researchers have proposed many evaluation models and performance metrics for
manufacturing systems from different perspectives. However, performance metrics can
conflict with each other. Jiang et al. [44] discussed the contradictions of metrics in multi-
objective optimizations (MOO). Based on their relevance, the metrics were classified into
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capacity, convergence, diversity, and convergence-diversity, and one performance eval-
uation model was developed to achieve the consistencies of Pareto fronts in (MOO). In
evaluating system sustainability, Moldavska and Welo [45] emphasized the importance
of sustainable development goals and proposed incorporating these goals in evaluating
system sustainability. Auer et al. [46] assessed manufacturing systems from the perspective
of products, and life-cycle assessment and life-cycle costing was used to determine the
impact of manufacturing systems on the eco-environment. Jung et al. [47] tried to map
strategy-level performance metrics to the structure of SM, and the identified challenges
were the selection of performance metrics, the correspondences of performance metrics
and manufacturing activities, and the representation of system models for comparisons.
Some researchers investigated the impact of certain information technologies on the perfor-
mances of a smart manufacturing system. For example, Kiesel et al. [48] discussed the roles
of 5G in reducing the latency of critical applications since 5G was able to accelerate digital
transformation in the sense that the latency could be below 1 milliseconds (ms) in monitor-
ing and controlling complex production processes. The potential economic benefits were
quantified. Barletta et al. [49] valued SM for its contribution to environmental sustainability,
and they presented the assessment model and tools to evaluate sustainability readiness
of smart manufacturing systems. Ante et al. [50] proposed a hierarchical structure of key
performance indicators (KPIs) to measure the performance of smart manufacturing sys-
tems; the performances were evaluated at strategic, tactical, and operational levels, and the
dependences of system elements were taken into consideration in quantifying KPIs. Zhang
et al. [51] emphasized the impact of disposed products on economy and environment, and
they suggested combining the gray correlation decision-making trials to evaluate products
in layout designs of manufacturing plants. Both centralized and decentralized production
systems were modelled by Moutzis et al. [52] and system performances were evaluated
from the perspectives of lead time, cost, flexibility, throughout, and environmental im-
pact relevant to transportation. It is a difficult challenge for a small and medium-sized
enterprise (SME) to choose an appropriate digital solution for specific decision-making.
Martin et al. [53] argued that the core value of smart manufacturing was to utilize data to
predict behaviors of cyber physical production systems, and they adopted the value stream
mapping method (VSM) to analyze and compare smart manufacturing solutions.

Quantitative evaluations are critical in the analysis and synthesis of system designs.
Georgoulias et al. [54] indicated that existing empirical evaluation models were only ap-
plicable to specific applications, and they argued that an evaluation model or algorithm
should be generic, holistic, and quantitative. Georgoulias et al. [55] further developed
an evaluation model to quantify the system flexibility (i.e., product flexibility, capacity
flexibility, and operation flexibility) in dealing with the changes of management processes
in manufacturing organization; the developed model was used to optimize the system for
better effectiveness and competitiveness. Youssef et al. [56] used the universal generation
function to evaluate the availability of manufacturing assets; it considered the changes
of production rates and demands in assessing system configurations. Cagno et al. [57]
proposed a framework to measure the sustainability of enterprises and the sustainability
was assessed based on economic, social, and environmental indicators. In the framework
by Farias et al. [58], the green performance and leanness were emphasized in determining
the assessment criteria and metrics of manufacturing systems. Junior et al. [59] proposed a
balanced scorecard method to evaluate system sustainability based on the correspondences
of economic, environmental, and social lines to the learning and growing, process, and
market and financial perspectives. Cai and Lai [60] evaluated the system sustainability
from the perspective of energy flow within manufacturing plants. Unfortunately, the infor-
mation for the assessment model would not be available until the physical system was built
and in operation and the statistical data were collected and available for use. Brennan [61]
discussed the need for holonic manufacturing systems to develop corresponding perfor-
mance metrics. A holonic system was required to handle disturbance, support human
integration, and provide reliability, robustness, and flexibility in coping with changes, and
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a system design was evaluated based on reliability, responsiveness, flexibility, cost, and
assets. Mahmood et al. [62] used modeling and simulation to assess the performance of ap-
plied technologies in integrated production lines while only the performances at shop-floor
level were evaluated without the consideration of external partners and end-users. Burggra
et al. [63] compared the performances of artificial intelligence (AI) and human beings in
job-shop scheduling of a cyber-production management system using a reinforcement
learning algorithm. Ottesjo et al. [64] proposed an assessment tool to measure the level
of digitization of SMEs, and it aimed to analyze administrative awareness and technical
capabilities and identify digitalization gaps for SMEs to advance their manufacturing
systems from the system lifecycle perspective.

The following section will focus on the smartness of system that is exhibited in its
system lifecycle.

3.1. Visibility, Diagnosability, and Predictivity

A smart manufacturing system must be a closed system that is responsive to internal
and external changes; the primary condition is that the system possesses an ability to
understand the past, present, and future of the system. Visibility, diagnosability, and
predictivity reflect the levels of system smartness in detecting changes and disturbances,
diagnosing and troubleshooting problems, and predicting the trends of changes based on
data collected from various sources over manufacturing systems. System visibility relies
on the sensors and instrumentations installed on smart things, and diagnosability and
predictivity rely on the capabilities of advanced information technologies such as AI, CC,
and BDA [1].

3.2. Upgradability

Upgradability measures how easily a system or system element can be upgraded
to newly developed technologies. Manufacturing technologies are essential tools to run
manufacturing businesses, and manufacturing technologies are continuously evolving
with the advance of fundamental science and technologies, especially digital technologies.
To prolong the lifecycle, manufacturing systems should be modularized so that individual
functional modules can be maintained and upgraded with a minimized impact on sys-
tems [65,66]. The smartness of a system can be measured by the upgradability of adopting
technologies, enterprise systems, and decision-making units at various levels and domains.

3.3. Adaptability

Adaptability measures the capability of a system to deal with changes and uncertain-
ties [67]. Adaptability is measured from system outputs; correspondingly, adaptability
is achieved by the flexibility of system elements and the reconfigurability among system
elements. Internal or external changes and uncertainties can only be tackled by the changes
that can be possibly implemented on system elements or system configurations; therefore,
system adaptability can alternatively be measured on (1) internal adjustable components,
(2) modular system architecture, and (3) a combination of adjustable and modular compo-
nents and use of external assets [68,69]. In particular, a modularized architecture makes
a system reconfigurable to meet new manufacturing needs by reconfiguring its physical
and logical structures. Note that aiming at high-level adaptability involves in an increased
cost and complexity in general. The challenges in developing a reconfigurable system are
high initial investments, long-term of investment returns, limited system performances at
reconfiguration and ramp up phases, and the complexity of task-oriented configuration
designs [66,70–72].

3.4. Resilience

The wish-list of future manufacturing systems provided by O’Connell et al. [73]
emphasized system resilience. Resilience refers to the system ability to achieve high-level
objectives (i.e., adaptation, sustainability, and reliability) in the presence of unpredicted
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changes and disturbances [74–77]. In particular, adaptation referred to the enhanced
ability to achieve desired goals in a dynamic environment, including the ability to reduce
vulnerability to threats and adverse disturbances. To improve system resilience, Zhang
et al. [78] developed a dynamic model to control a reconfigurable electronic assembly line
that was subjected to spatio-temporal disruptions. Resilience dynamics were analyzed by
max-plus algebra, the analyzed results were used to generate digital twins, and the control
of the assembly line was implemented over an open reconfigurable architecture.

3.5. Flexibility

Flexibility is similar to adaptability, but it is measured on system elements rather
than system outputs. Lafou et al. [79] defined flexibility as the ability of a manufacturing
system to deal with variations of products, and system flexibility was quantified based on
the mappings of products and manufacturing assets. They commented that modularity
and standardization of manufacturing resources and products generally minimized the
introduction costs of new variations. System flexibility can be achieved by software,
hardware, or a combination of both. The flexibility of a hardware system must be supported
by the corresponding software system. Keddis et al. [80] discussed the flexibility of data-
driven communication to match the flexibility of adaptable hardware system.

All of the performance indicators are driven from manufacturing systems; therefore,
performance indicators are associated with each other in certain ways. It is important to
understand their correspondences. For example, Lufi and Besenfelder [81] investigated the
dependence of robustness on system flexibility of manufacturing systems since system flex-
ibility tackled with volatile and unpredictable environments and a manufacturing system
should make a trade-off between optimization and robustness for the best interest of system
performance. Mass personalization needs high-level flexibility and responsiveness of a
manufacturing system to make personalized products in small batch sizes cost-effectively.
Traditional manufacturing systems have their limits in reconfiguring systems to accommo-
date changes, and SM should be capable of self-reconfiguring and optimizing to achieve
flexible, autonomous, and error-tolerant productions in turbulent business environments.
System elements in a self-organizing system are distributed, adaptable, self-autonomic,
and supportive to bottom-up reconfiguration [82].

3.6. Sustainability

Alike to humankind, a smart manufacturing system aims ultimately at a long system
lifespan; manufacturing enterprises are facing an increasing pressure to optimize system
sustainability in addition to traditional performance measures such as reliability, cost, and
productivity. Sustainability becomes necessary to consider in decision-making processes
over system lifecycles. A manufacturing process is a type of mechanical, chemical, elec-
trical, or biological transformation that can be modelled by energy generation, transfer,
storage, or consumption. Hoang et al. [83] developed a mathematic model with thermo-
dynamic, physical-thermodynamic, and economic-thermodynamic indicators to estimate
energy efficiency of manufacturing systems. Huang and Badurdeen [84] investigated the
impacts of products and processes respectively in evaluating system sustainability; the
framework for sustainability evaluation included the metrics involved at five stages. In
the assessment by Jiang et al. [85], system sustainability was quantified for decomposing
system-level mission into device-level manufacturing processes and integrating data from
device-level to enterprise-level executions. Sustainability was evaluated comprehensively
from economic, environmental, and social perspectives. SMEs have limited resources to
pursue system sustainability as prioritized business objectives; the required sustainabil-
ity is treated as the constraint of business rather than the performance to be optimized.
Singh et al. [20] introduced an expert system to quantify system sustainability for SMEs.
Sustainability becomes mandatory simply because the ecosystem of the earth and desired
quality of humankinds could not be maintained without sustainable manufacturing [86].
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Zhang et al. [87] developed a business case to make system-level decisions in SMEs; it
considered system dynamics in assessing sustainability and lifecycle costing of products.

4. Systematic Methodology for Design of Smart Manufacturing Systems

The main functional requirements enabling digital technologies and a complete list
of expectations of a smart manufacturing system have been discussed in Sections 3 and 4;
however, it is extremely rare that an enterprise has the access to any digital technologies
when the enterprise needs, and a manufacturing system can be designed and implemented
from scratch. It is impractical to design an ideal smart manufacturing system without
physical constraints. In practice, the smartness of a manufacturing system will be iteratively
improved by upgrading and incorporating more digital methodologies in continuous
improvement (CI).

To make system complexity manageable at each iteration, the axiomatic design theory
(ADT) is adopted in Figure 1 to narrow down a set of FRs, DSs, and PMs that are most
critical to given applications, and the rest of FRs, DSs, and PMs should be formulated
as design constraints based on available manufacturing assets and current system states.
In other words, design of a smart manufacturing system at each iteration only involves
(1) one or a few metrics relevant to system smartness (i.e., flexibility, visibility, sustainability,
resilience, and even some traditional metrics such as efficiency and agility) and (2) one
or a few corresponding digital triads (DT-II) or the configuration in IoDTT. Available
manufacturing assets and given marketing conditions are formulated as design constraints.

5. Case Studies

Three examples of manufacturing system designs by the authors and their collabo-
rators are introduced here to illustrate how the proposed methodology was applied in
the system development to increase system smartness in continuous improvement (CI).
Note that the application scenarios were specified, the design solutions (DSs) were lim-
ited to certain digital technologies, and system smartness was associated with the system
performance of interests in achieving specified functional requirements (FRs) in the given
applications. In all of these three cases, FRs and system smartness were interpreted and
defined based on customers’ needs. The design space of DSs were for digital technologies
and determined by system developers based on accessible manufacturing resources, and
the following discussions were limited to using the proposed methodology to formulate a
smart system design problem. Interested readers might find the details and rad data of
these design examples in the corresponding publications [5,7,88–90].

5.1. Case Study 1: BDA for Visibility and Diagnosability in Continuous Improvement (CI)

The purpose of the first case study was to show that the definition of system smartness
in a smart manufacturing system can be customized to the prioritized key performance
indicators (KPIs). In other words, pursuing a smart manufacturing system is a long-term
effort of continuous improvement, and targeted system smartness should be as specific as
possible to be measured quantitatively. The process was applicable to system design in any
sectors. With real-time data collected from the things in the physical world and simulation
models in the digital world, the decision-making processes at any level and domain could
be data driven to improve system responsiveness, since big data helps to improve system
smartness in terms of the visibility of system states and changes and the diagnosability of
defects and malfunctions.

Figure 2 shows a case where system smartness was defined for visibility and diag-
nosability, and digital technologies for data collection and analysis were identified as
the design solutions of interest. In the developed solution, BDA was incorporated in an
enterprise system, heterogeneous and data were analyzed and processed to make the scale
of the datasets manageable, and the decisions for the actions in continuous improvement
could be made promptly. Note that the data of past, present, and prediction could be
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maintained in a life model together with digital and physical things as DT-II in system
implementation [88–90].

Figure 2. Case study I–Improve visibility and diagnosability by big data analytics (BDA).

5.2. Case Study 2: Incorporating Additive Manufacturing for Flexibility and Adaptability

The purpose of the second case study was to show that the proposed design method-
ology was ready to be applied at the phase of system operations when some system
performances were found unsatisfactory, and the solution to critical processes must be ob-
tained in enhancing system smartness. In such a case, DSs were for certain manufacturing
processes, and system smartness was related to unsatisfactory performances of interests.
The process was applicable to design problems in system operations in any continuous
improvement practice. In general, a manufacturing system transfers raw materials into
final products through a series of manufacturing processes. When an enterprise aims at
system smartness for dealing with the changes and disturbance in its material flow, the
hardware systems must have flexibility and capabilities to accommodate these changes in
manufacturing processes. From this perspective, incorporating more and more advanced
digital technologies in production systems helps to improve system smartness in terms of
the adaptability and robustness.

Figure 3 showed a case where system smartness was defined for high-level flexibil-
ity and adaptability in dealing with unavoidable defects occurring to production lines;
system flexibility and adaptability was directly measured by the direct run rate (DRR) of
products, i.e., the percentage of products that meet the requirements of quality at the first
try. A product might be damaged due to numerous potential interactions of tooling and
products over production lines. System flexibility and adaptability was measured by a set
of decomposed FRs shown in Figure 3 and Table 1. Additive manufacturing (AM) was
introduced as the design solutions (DSs) to enhance the capabilities of the manufacturing
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system in producing protective tools when they are needed. In the developed solution,
3D printers were introduced to make protective parts for problematic tools where product
defects occurred. A number of DT-II units were developed to implement the whole process
from monitoring production lines to detecting defects on products, identifying problematic
tools, generating and verifying digital models for protective parts, producing parts, and
finally to mounting parts on assembling tools in the production lines. According to ADT,
the design solutions (DSs) in Figure 4 were developed to fulfill the identified FRs [7].

Figure 3. Decomposition of system smartness (flexibility and adaptability) in case study 2 (Reprinted with permission from
ref. [7]. 2021 Taylor & Francis).

Table 1. The meanings of decomposed FRs in case study 2 (Reprinted with permission from ref. [7]. 2021 Taylor & Francis).

FRs Description

FR-0: Develop the solution to improve DRR of truck assembly line by integrating AM processes

FR-01: Utilize the data of truck quality inspection for surface defects, identify the sources (workstations and assistive tools)
of defects.
FR-011: Detect surface defects.
FR-012: Identify problematic assembling processes and assistive tools.

FR-02: Develop and model parts as the protective solutions to identified defects.
FR-021: Utilize information of assistive tools.
FR-022: Optimize design for strength, fabrication time, and cost.

FR-03: Provide the tested physical solutions to assembly workstations in less than 24 h.
FR-031: Perform tests on physical parts for material strength.
FR-032: Perform simulation for functional validation and process optimization.

FR-04: Standardize the procedure and practice of AM processes.
FR-041: Maintain normal operations of AM machines.
FR-042: Provide guides and training manuals for operators and procedure.
FR-043: Standardize the interactions of functional modules.

FR-05: Routinize the operations of AM machines with the aid of inventory, design library, planning and scheduling of printing
jobs for cost reduction.
FR-051: Build and maintain design libraries for knowledge-based engineering
FR-052: Manage the inventory of protective parts.

5.3. Case Study 3: Using IoT for Automation

The purpose of the third case study was to show that the proposed design method-
ology can be extended to design any systems or products as long as FRs, DSs, and per-
formance metrics (PMs) could be tailored to the specified applications. The proposed
design methodology is generally applicable to designs of any smart systems or products,
since the systems are tailored to given applications by defining system smartness and
feasible design solutions of most interests. As mentioned before, system smartness can
be defined for high-level adaptability and sustainability in dynamic environment; system
smartness can also be defined for some traditional performance metrics such as efficiency,
agility, robustness, cost-effectiveness, and degree of automation. Such design types have a
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significant advantage in practice since adopting digital technologies has a direct impact on
these system metrics.

Figure 4. Proposed digital solutions in case study 2 (Reprinted with permission from ref. [7]. 2021 Taylor & Francis).

Figure 5 showed a case of designing an automatic fuel-recharging system. System
smartness was defined for the degree of automation in performing relevant tasks for drivers
to refill gas on vehicles. System smartness was measured by the minimized cost for fully
automated refueling services at gas stations. The IoT-based technologies were explored
as the design solutions to minimize users’ interferences cost-effectively. The system-level
goal was decomposed into four FRs, i.e., FR11 for ‘data collection and processing’, FR12
for ‘controls for abnormal events’, FR13 for ‘refueling operation’, and FR14 for ‘controls
for normal events’. To meet FR11, various sensors and instrumentations such as vision,
laser scanning, bar-code scanning, compliant sensors, and controllable platform were used
as DSs to detect incoming vehicles and determine the relative position and orientation of
fuel spout; embedded chips and apps on phones can be integrated with the Internet of
Things (IoT) database to obtain customers’ intent and payment information and collect
information about vehicle and fuel. To meet FR13, gantry systems, robots, and sophisticated
mechanisms were integrated with multi-functional tools to access a fuel port, open a fuel-
filler cover, retrieve a refueling tool, close a fuel-filler cover, and reset the refueling tool.
To meet FR12 and FR14, the system-level controls for normal and abnormal events were
implemented as stand-alone systems or IoT-enabled apps; in addition, all processing
parameters could be specified manually through the interfaces of programmable logic
controllers (PLC) or IoT-based apps.
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Figure 5. Design solutions (DSs) to fully automated refueling (Reprinted with permission from ref. [5]. 2021 Emerald
Publishing Limited).

6. Conclusions and Future Directions

To the authors’ knowledge, limited works are available on the development of system-
atic methodologies for designs of smart manufacturing systems. The novel contributions
of the presented work were made at two aspects: (1) unified definitions of digital elements
and manufacturing systems have been proposed; they are generalized to have all of the
digitized characteristics and they are customizable to be applied in any manufacturing
system with specified manufacturing resources and goals of smartness and (2) a systematic
design methodology has been proposed; it can serve as the guide for designs of smart
manufacturing systems in certain applications from a practical perspective. Note that
‘practical perspective’ here refers to the views of specific enterprises with given resources,
technology accesses, and the interests of business domains, strategies, and performance
indicators including costs.

The proposed design methodology deals with the high diversified systems by some
customizing efforts in defining prioritized goals of system smartness and affordable digital
technologies in achieving system goals; in addition, the performance metrics for system
smartness must be quantifiable so that different design solutions can be analyzed, evalu-
ated, and compared to optimize system solutions. Future research efforts will be needed in
many areas such as (1) developing quantifiable performance metrics for system smartness
of interest and synergizing multiple performance metrics when they are considered simul-
taneously; (2) establishing design libraries which include commonly design solutions (DSs);
(3) developing some design templates which correspond to design solutions (DSs) and
functional requirements (FRs) with consideration of the sustainability at both of component
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and system levels; (4) using BDA and AI in dealing with the combinatory complexity
in tailoring digital solutions to specific manufacturing applications’ effective computing;
(5) making a trade-off between system reconfigurations and the utilization of virtual assets
in system lifecycle; (6) developing some systematic approaches to verify and validate a
system before it will be actually implemented in physical world; (7) developing the stan-
dardized procedures for design of smart manufacturing systems based on the proposed
methodology; (8) reshaping the proposed design methodology as a standardized procedure
in designing smart manufacturing systems; (9) adapting the proposed design methodology
to supply network systems since they are a model of the social-technological-economic
system—a reality of mankind.
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Abstract: In the context of Industry 4.0, the matrix production developed by KUKA robotics rep-
resents a revolutionary solution for flexible manufacturing systems. Because of the adaptable and
flexible manufacturing and material handling solutions, the design and control of these processes
require new models and methods, especially from a real-time control point of view. Within the
frame of this article, a new real-time optimization algorithm for in-plant material supply of smart
manufacturing is proposed. After a systematic literature review, this paper describes a possible
structure of the in-plant supply in matrix production environment. The mathematical model of
the mentioned matrix production system is defined. The optimization problem of the described
model is an integrated routing and scheduling problem, which is an NP-hard problem. The inte-
grated routing and scheduling problem are solved with a hybrid multi-phase black hole and flower
pollination-based metaheuristic algorithm. The computational results focusing on clustering and
routing problems validate the model and evaluate its performance. The case studies show that matrix
production is a suitable solution for smart manufacturing.

Keywords: cyber-physical system; heuristics; logistics; matrix production; optimization; smart manufacturing

1. Introduction

Thanks to digitization and Industry 4.0 technologies and solutions, today’s economy is
in the middle of significant transformation processes regarding the fulfilment of customers’
demands. Production companies must apply the solutions of the fourth industrial revolu-
tion to improve their efficiency. The ever-changing production and service sector requires
the improvement of these attributes. Logistics and material handling operations have
more and more importance related to the purchasing, production, distribution, and reverse
processes, and they have a significant impact on the strategic, tactical, and operative level
of enterprise systems.

As Figure 1 shows, Industry 4.0 technologies offer new innovation accelerators,
like augmented and virtual reality, cloud and fog computing related to big data problems,
additive manufacturing, Internet of Thing (IoT), autonomous standardized production
and material handling resources, smart tools, gentelligent products, simulation and digital
twin solutions, cyber security, and system integration. These Industry 4.0 technologies
are important influencing factors for manufacturing processes [1,2] and they lead to the
appearance of dynamic manufacturing networks [3].

Augmented and virtual reality is a key technology for smart manufacturing because
it makes it possible to realize an interactive human–machine interaction in a real-world
environment while the components of the physical world are extended by perceptual
information. Augmented and virtual reality can be used in training, design, manufacturing,
operation, services, sales, and marketing. In the field of manufacturing, the most important
applications are quality control and total quality management; maintenance operations,
especially in a dangerous environment; assembly work instructions; and performance
monitoring [4].
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Figure 1. Industry 4.0 technologies as new innovation accelerators and their impact on matrix production.

Complex manufacturing systems generate unprecedented amounts of data that are
difficult to handle with traditional computing methods. Cloud, edge, and fog computing
make it possible to manage big data problems. Big data is coming from a wide range of
sensors from manufacturing systems. Cloud and fog computing integrate servers, storages,
databases to support efficient networking, analytics, and intelligence solutions [5].

The introduction of additive manufacturing will have a great impact on the supply
chain processes and logistics solutions, because both external and in-plant material flow
solutions will change dramatically. It is caused by the fact that this technology is based
on the building of 3D objects by adding layer-upon-layer of various materials, like plastic,
metal, or organic materials [6].

The new concept of gentelligent products aims to develop genetically intelligent
products and components, which collect data through their lifecycle and bequeath them to
the next generation in various time spans. The appearance of gentelligent products has a
great impact on big data problems [7].

The application of digitalization-based technologies enables the virtualization of
product and process planning and control [8]. Digital twins represent an integrated prob-
abilistic simulation of complex products or processes using physical models, sensor up-
dates, and cloud-based information to mirror the product or process of its corresponding
twin [9,10]. Digital twin technology makes it possible to convert conventional manu-
facturing systems into cyber-physical systems, and this transformation can lead to the
improvement of the design process of in-plant material supply, adding a real-time phase to
the conventional in-plant supply process. In conventional manufacturing systems, the real
time optimization is almost impossible, because real time optimization is based on real time
data and status information. Using digital twin technology and smart sensor networks,
real time data and status information can be collected from the physical system, and a real
time model for discrete event simulation can be generated to perform scenario analysis for
real time decision making.

The Internet of Things describes an integrated system of computers and mechanical
machines provided with unique identifiers. The IoT in manufacturing systems makes
it possible to transfer data through a network among manufacturing equipment (stan-
dardized production cells and assembly cells), materials handling machines (autonomous
mobile robots and automated guided vehicles), intelligent tools, gentelligent products,
and ERP systems [11].

The Industry 4.0 technologies make it possible to transform conventional manufac-
turing processes to cyber-physical manufacturing processes to aim for higher flexibility,
productivity, availability, cost-efficiency, energy-efficiency, and sustainability. The fulfil-
ment of more and more diverse customers’ demands requires more and more sophisticated,
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flexible, and intelligent solutions based on these technologies both inside and outside of
the production plants in all fields of industry including automotive industry as a flagship.

The in-plant material supply solutions are commonly based on milk-run material
supply, especially in the field of automotive industry. KUKA AG (one of the world’s leading
specialists in automation) offered a new, revolutionary solution for flexible manufacturing,
transforming conventional manufacturing into cyber-physical manufacturing with the
application of Industry 4.0 technologies. This new solution is the matrix production. With
its new demonstration plant opened on March 2018 in Augsburg, KUKA demonstrates the
advantages of this matrix production under real conditions. In a matrix production system,
standardized configurable production or assembly cells are arranged in a grid layout.
Manufacturing and logistics are separated and fully automatized. The matrix production
system uses various Industry 4.0 technologies, like robots and turntables in the production
and assembly cells, autonomous guided vehicles, digital twin support for real time control,
prediction, and performance analysis. However, as a journalist wrote [12], “However,
all theory is gray.” There is a huge number of open questions focusing on manufacturing
and logistics.

Manufacturing systems of increased complexity face a number of new design and
operation problems that can be addressed by the opportunities provided by the Fourth
Industrial Revolution. In the case of matrix production, the material supply of standardized
configurable production or assembly cells is one of the most important tasks of logistics,
because the separated manufacturing and logistics and the increased flexibility require
new models and methods. This article focuses on the optimization of in-plant supply in
matrix production. The highlights of the article are the following: (1) integrated model to
solve the in-plant material supply problem in matrix production system, which enables
both the conventional and real time planning of in-plant material supply; (2) integrated
solution of assignment and routing problems based on heuristic optimization algorithms.

The article is organized as follows. Section 2 presents a systematic literature review,
which summarizes the research background of in-plant supply optimization in manufactur-
ing systems. Section 3 is the problem description including the mathematical model of inte-
grated assignment and routing problem in matrix production systems. Section 4 presents
a metaheuristic optimization algorithm to solve the integrated assignment and routing
problem, based on flower pollination and black hole heuristics. Section 5 demonstrates
the numerical results. Conclusions, managerial impacts, and future research directions are
discussed in the remaining part of the article.

2. Literature Review

Within the frame of the systematic literature, the main scientific results, scientific
gaps, and bottlenecks are identified and described [13]. The optimization of logistics and
supply chain design and control of manufacturing systems has been researched in the past
30 years. The first articles in this field were published before 2000, focusing on heuristic
optimization of rough-mill yield with production priorities [14], optimum allocation of
jobs on machine-tools [15], and facility location problem for large-scale logistics [16].
The number of published research papers has increased; it shows the importance of the
optimization of manufacturing-related supply chain solutions.

The literature introduces a wide range of design methods used to solve problems of
manufacturing-related processes, like unified decomposition, decision-making methods,
queuing theory, data-driven modelling, fuzzy description, and heuristic and metaheuristic
algorithms and simulation.

Researchers solved a simultaneous planning task of an integrated production, inven-
tory, and inbound transportation problem as a mixed-integer linear program and proposed
a three-phase unified decomposition heuristic [17]. A bi-objective nonlinear programming
model was proposed as a decision-making tool to select the carriers between supply chain
levels with emphasis on the environmental factors [18], and the problem was solved with a
multi-objective meta-heuristic imperialist competitive algorithm. For the solution of coor-

47



Machines 2021, 9, 220

dination problems of production planning and transportation planning, a mixed-integer
linear programming model and a non-linear programming model were supposed, with
a decomposition-based heuristic and a Lagrangian relaxation method [19]. Service load
balancing, task scheduling, and transportation optimization problem were formulated
as a new queuing network for parallel scheduling of multiple processes and orders from
customers to be supplied [20]. Data-driven decision-making models are more and more
important in manufacturing, especially in the field of cyber-physical manufacturing and
logistics. The design and operation of manufacturing-related logistics and supply problems
can be managed using data-driven models and methods [21]. Simulation models can
be used both for the design of machines [22] and for the optimization of systems and
processes. Simulation techniques can be used as a decision support method for process
improvement of intermittent production systems [23]. A hybrid approach of discrete event
simulation integrated with location search algorithm was used to solve a cells assignment
problem in an assembly facility [24]. An ontology-driven, component-based framework
shows the application of Jellyfish-type simulation models [25]. The suggested integration
of simulation and encompassing mathematical optimization reduced the complexity of the
assembly facility and generated alternative assignments in two phases.

Various heuristic and metaheuristic algorithm make it possible to solve NP-hard
optimization problems in manufacturing systems. Service load balancing, scheduling,
and logistics optimization in cloud manufacturing are solved with a genetic algorithm [26].
A supply chain configuration problem of manufacturing plants, distributors, and retailers is
formulated as an integer-programming model and solved with an ant colony optimization-
based heuristic [27]. A new mathematical model for multi-product economic order quantity
model with imperfect supply batches was supposed by researchers. They developed three
robust possibilistic programming approaches and solved the problems with two novel
meta-heuristic algorithms named water cycle and whale optimization algorithms [28].
The whale optimization algorithm was also used to solve a production-distribution net-
work problem [29]. A novel integrated bacteria foraging algorithm embedding a five-phase
based heuristic was supposed to solve an integrated model of facility transfer and pro-
duction planning in dynamic cellular manufacturing-based supply chain [30]. The design
problems of closed-loop supply chains represent a special form of manufacturing-related
supply problems, where disassembly operations are performed instead of manufacturing.
An optimized disassembly process is required for efficient remanufacturing and recycling
of returned products. The dynamic lot-sizing and vehicle routing problem of this integrated
process was solved with a two-phase iterative heuristic [31]. Time- and capacity-related
constraints of manufacturing-related logistics are usually taken into consideration as hard
constraints, but they are in truth soft constraints, because they are influenced by more exter-
nal factors and their stochastic environment. Soft constraints can be taken into consideration
using biased-randomized algorithms as an effective methodology to cope with NP-hard
and non-smooth optimization problems in many practical applications [32]. One optimiza-
tion approach uses set partitioning and another approach employs the concept of seed
routes to determine the solution of an integrated production, inventory, and distribution
model for supplying retail demand locations from a production facility [33]. Iterated greedy
algorithm solved the optimization problem of makespan for the distributed no-wait flow
shop scheduling problem [34]. Other interesting solutions are represented by hybrid algo-
rithms, like a hybrid genetic algorithm for multi-product competitive supply chain network
design with price-dependent demand [35], a hybrid firefly-chaotic simulated annealing
approach for facility layout problem [36], or a prioritized K-mean clustering hybrid genetic
algorithm for discounted fixed charge transportation problems [37]. Manufacturing and
in-plant supply processes are typical uncertain environments, where fuzzy modelling and
fuzzy optimization offer suitable tools, and fuzzy approach can easily integrate with other
analytical or heuristic algorithms [38].

Several scenarios and case studies related to the research field were assessed and eval-
uated in various articles. The case studies of manufacturing-related logistics and supply
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chain problems are generally focusing on traditional manufacturing, cloud manufactur-
ing [26], or dynamic cellular manufacturing [30], and only a few of them are discussing
the logistics and in-plant supply problems of cyber-physical manufacturing systems, espe-
cially the matrix production concept. The most important fields of case studies are from
the automotive industry, but valuable case studies have been published in the fields of
perishable inventory systems [39], biofuel supply [40], fast moving parts [41], garment
manufacturing [42], rice supply chain [43], luxury watches [44], or winery [45].

In this article, black hole and flower pollination heuristic is used. Albert Einstein was
the first scientist who predicted the existence of black holes in 1916. American astronomer
John Wheeler was the denominator of black holes. When a star burns out, it may collapse,
or fall into itself. In the case of smaller stars, they become a neutron star or a white dwarf,
while in the case of larger stars they will create a stellar black hole. Black holes are invisible,
but the environment outside of the Schwarzschild radius can be analyzed. The black holes
have a great impact on particles near them. If the distance between the particle and the
core of the black hole is smaller than the Schwarzschild radius, the particle can move in
any direction, but in the other case, the space-time is deformed and the particle will be
absorbed by the black hole. The black hole heuristic is based on this phenomenon of black
holes in the outer space [46]. There are various applications of the black hole heuristic, like
discrete sizing optimization of planar structures [47], feature selection and classification on
biological data [48], and optimization of consignment-store-based supply chain [49] or for
urban traffic network control [50].

Flower pollination-based heuristic belongs to the bio-inspired algorithms [51]. This
algorithm is used in various fields, like identifying essential proteins [52], multi-level image
thresholding [53], visual tracking [54], EEG-based person identification [55], or double-
floor corridor allocation problem [56]. The solutions of the mathematical problems are
represented by pollen grains, and the optimization process is based on the moving of these
grains in the search space modelled by biotic, probiotic, and self-pollination. The algorithm
can be described in four important steps.

As the above-mentioned content analysis shows, existing studies focus on the analyt-
ical and heuristic optimization of both conventional and cyber-physical manufacturing
systems, while only a few of them consider the energy efficiency aspects of in-plant material
supply in cyber-physical systems.

More than 50% of the articles were published in the last 5 years. This result indicates
the scientific potential of the design of in-plant supply solution of cyber-physical manufac-
turing environment. The articles that addressed the design and control problems of the
manufacturing system and their material supply problems are focusing on conventional
manufacturing, and only a few of them describe the logistic problems of cyber-physical
manufacturing. Therefore, this research topic still needs more attention and research.
According to that, the focus of this research is the modelling and optimization of in-plant
supply of the matrix production system, focusing on cell assignment and routing problems.

Table 1 summarizes the main contributions of the related research works from the
main contribution and the focus on manufacturing, optimization method, and sustain-
ability point of view. As the analysis shows, a wide range of research works focus on the
optimization of conventional manufacturing systems from technology and in-plant supply
point of view, and these works are using both analytical methods and heuristics. There are
some research works related to the in-plant supply optimization in cyber-physical systems,
but these researches are focusing on KPIs (Key Performance Indicators). The table identifies
a research gap, because the in-plant material supply of cyber-physical systems has not
been extensively published until now. As a consequence related to the analysis shown
in Table 1, the main contributions of this article are the followings: (1) model framework
of autonomous guided vehicles-based supply of matrix production; (2) mathematical de-
scription of cell assignment and routing problem in matrix production; (3) computational
method based on flower pollination algorithm to solve the assignment and routing problem
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in matrix production; and (4) computational results of the described model to validate the
models and the methods.

Table 1. Authors’ contributions related to the optimization of cyber-physical production systems including I4.0 and heuristic
optimization approaches.

Research Contribution

Optimization Manufacturing
Sustain-
abilityAnalyti-

cal
Heuris-
tics

Conven-
tional

Cyber-
physical

Rosin et al., 2020 [1] Application of principles and tools of I4.0 in lean management �
Skapinyecz et al., 2018 [2] Optimal selection of logistics service providers in Industry 4.0 � �

Tchoffa et al., 2019 [3] Extension of federated interoperability framework in I4.0 � �
Alcácer et al., 2019 [4] Information and communication technologies in I4.0 �

Dastjerdi et al., 2016 [5] Impact of fog computing on IoT solutions �
Huang et al., 2013 [6] Additive manufacturing and sustainability � �

Wu et al., 2010 [7] Magnetic magnesium for data storage in gentelligent products � � �
Guo et al., 2019 [8] Modular based flexible digital twin for factory design �
Tao et al., 2018 [9] Digital twin-enabled product design, manufacturing, and

service �
Ding et al., 2019 [10] Digital twin-based cyber-physical production system �
Cui et al., 2020 [11] Big data applications � �

Schahinian, 2020 [12] Concept of matrix production �
Bányai et al., 2019 [13] Real time optimization of matrix production systems � �
Azarm et al., 1991 [14] Production priorities in the heuristic optimization of rough-mill

yield � �
Kops et al., 1994 [15] Optimum allocation of jobs on machine tools � �

Hidaka et al., 1997 [16] Facility location for large-scale logistics using heuristics � �
Chitsaz et al., 2019 [17] Joint optimization of production and distribution � �

Eydi et al., 2020 [18] Decision making for supplier and carrier selection � � �
Feng et al., 2018 [19] Integrated production and transportation planning � � �

Ghomi et al., 2019 [20] Optimization in cloud manufacturing � �
Sadati et al., 2018 [21] Identification of significant control variables in manufacturing � � �

Haberer et al., 2016 [22] Optimization of a crawler track unit � �
Tamás, 2017 [23] Simulation-enabled decision making in manufacturing

processes � �
Saez-Mas et al., 2020 [24] Hybrid approach for cell assignment problems � �

Bohács et al., 2017 [25] Ontology-driven framework for Jellyfish-type simulation � � �
Ghomi et al., 2019 [26] Optimization of queueing problems in cloud manufacturing � �
Hong et al., 2018 [27] Multi-stage supply chain optimization � � �
Khalilpourazari et al.,

2019 [28] Analysis of impact of defective supply batches � �
Mehranfar et al., 2019 [29] Sustainability oriented product distribution � � �

Liu et al., 2017 [30] Impact of facility transfer on cellular manufacturing � � �
Habibi et al., 2017 [31] Integrated optimization f collection and disassembly � �

Juan et al., 2020 [32] Soft constraints in production optimization � � �
Russel, 2017 [33] Optimization in production routing � �

Shao et al., 2017 [34] No wait flow shop scheduling optimization � �
Saghaeeian et al., 2018 [35] Multi-product competitive supply chain network design � � �

Tayal et al., 2018 [36] Facility layout optimization from big data point of view � � �
Tari et al., 2018 [37] Discounted fixed charge transportation problems � � �

Sakalli et al., 2018 [38] Integrated stochastic production and distribution planning � �
Abouee-Mehrizi et al.,

2019 [39]
Design of perishable inventory systems with Markov decision

process � �
Aboytees et al., 2020 [40] Optimization of hub-and-spoke network problems � � �
Behfard et al., 2018 [41] Optimization of last time buy problem for fast moving parts � �

Ma et al., 2018 [42] Resource sharing optimization � �
Cheraghalipour et al.,

2019 [43]
Agricultural supply chain optimization for wide geographic

range � � �
Respen et al., 2017 [44] Perturbations in production plan, demand, and dispatching � �
Varas et al., 2018 [45] Lot sizing for uncertain demands � �
Hatamlou, 2013 [46] Heuristic data clustering �

Gholizadeh et al., 2019 [47] Discrete sizing optimization with heuristics �
Pashaei et al., 2017 [48] Binary black hole heuristics �
Bányai et al., 2017 [49] Consignment-store-based supply chain optimization � � �

Khooban et al., 2017 [50] Fuzzy logic-based urban traffic network control �
Lei et al., 2019 [51] Flower pollination heuristics �
Lei et al., 2018 [52] Application of flower pollination heuristics �

Shen et al., 2018 [53] Multi-level image thresholding with flower pollination
heuristics �
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Table 1. Cont.

Research Contribution

Optimization Manufacturing
Sustain-
abilityAnalyti-

cal
Heuris-
tics

Conven-
tional

Cyber-
physical

Gao et al., 2018 [54] Visual tracking with flower pollination heuristics �
Rodrigues et al., 2016 [55] Binary flower pollination algorithm �

Guan et al., 2019 [56] Double-floor corridor allocation �
Kherabadi et al., 2017 [57] Gravitational search algorithm in Fuzzy controllers �

Szentesi et al., 2021 [58] Process optimization for distribution logistics � �
Bányai et al., 2017 [59] Optimization of blending technologies � �
Hardai et al., 2021 [60] Logistics aspects of I4.0 �

Kundrák et al., 2019 [61] Efficiency improvement in manufacturing technologies �
This proposal Optimization of in-plant supply for matrix production � � �

3. Materials and Methods

The optimization problem of the matrix production-based in-plant supply has two
stages. Within the frame of the first stage, the various production orders must be assigned
to the available standardized production cells, while the second phase focuses on the
optimal routing of automated guided vehicles. The structure of the integrated assignment
and routing model can be seen in Figure 2.

Figure 2. Integrated model of assignment and routing problem in a cyber-physical manufacturing en-
vironment.

Phase 1 includes the assignment of production orders to the grid cells. Production
orders are generated by the Enterprise Resource Planning (ERP) using the results of Material
Requirement Planning (MRP-I) and Manufacturing Resource Planning (MRP-II). The ERP
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is connected to the sensors and data collection units of cyber-physical environment through
a digital twin solution, which makes it possible to make real time analysis, controlling,
and forecasting. The size of the AGV pool defines the number of available AGVs, which
has a great impact on the in-plant supply process from an availability and efficiency
point of view. The more available AGV in the AGV pool, the higher the flexibility and
availability, which can influence the utilization of technological resources caused by the
changeover time. The second part of the matrix production system includes the storages
for tools and components required for the manufacturing. The more the available tool set
for required changeover operation, the higher the flexibility and resource utilization for
technological resources.

Phase 2 includes the routing of AGVs available in the AGV pool. A typical route
of an AGV includes the following tracks: (1) from AGV pool to the warehouse, (2) from
the warehouse to the first cell grid of the scheduled route, (3) tracks among cells grids,
and (4) from the last cell grid back to the AGV pool. The objective function is either resource-
or sustainability-based. Resource-based objective function means the minimization of
numbers of required AGVs, while sustainability-based objective means the minimization of
energy-consumption of material supply operations. The input parameters of the integrated
assignment and routing problem are the followings:

• τ
p
ij is the production lead time of production order i at production cell j, where

i = 1 . . . m and j = 1 . . . n;

• τc
ikj is the changeover time among production orders between production order i and

production order k at production cell j, where k = 1 . . . m, and τc
ikj ≥ 0 if it is possible

to perform a change between production order i and k at production cell j, otherwise
τc

ikj = −1;

• aij is the availability matrix, which takes a value of 1 if the production order i can be
assigned to matrix cell j, otherwise 0.

• ac
ikj is the changeover availability matrix, which takes a value of 1 if it is possible to

change from production order i to production order k at matrix cell j, otherwise 0;

• τlower1
i and τ

upper
i are the lower and upper time limits of finishing operation i in the

first phase (assignment) of the optimization;

• τlower2
i and τ

upper2
i are the lower and upper time limits of finishing operation i in the

second phase (routing) of the optimization;

• supper1
j is the upper limit of operations at production cell j;

• zij is the required toolset for production order i at matrix cell j; and

• rmax
g is the available number of required toolset g.

3.1. Assignment of Production Operations to Matrix Cells

Within the frame of this phase, the assignment problem of required production opera-
tions (production orders) to available standardized flexible production cells is described.
The decision variable of the assignment problem is the assignment matrix xjk, which defines
that operation xjk production order is assigned to the matrix cell j as kth operation.

The objective function of the first phase of the optimization problem is the minimiza-
tion of the total operation time within a predefined timeframe, which can be calculated as
a sum of the production operations and changeover times:

τ = τp + τc, (1)
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where τp is the production lead time, and τc is the changeover time among the various
production operations of the standardized production cells. The first part of the objective
function represents the total operation time, which can be calculated as follows:

τp = ∑n
j=1∑�

k=1τ
p
xjk j, (2)

where �j is the number of assigned production orders to production cell j.
The second part of the objective function describes the changeover time among the

scheduled operation of matrix cells depending on the assignment:

τc = ∑n
j=1∑

�j−1
k=1 τc

xjkxjk+1 j. (3)

As an alternative objective function, it is also possible to take into consideration the
minimization of the required time spans to fulfil all production orders:

τa = max
j
(

�

∑
k=1

τ
p
xjk j +

�j−1

∑
k=1

τc
xjkxjk+1 j) → min. (4)

Within the frame of the assignment problem, various constraints must be taken into
consideration, like time- and capacity-related constraints. The solution of the assignment
problems is limited by these constraints.

Constraint 1 defines that production orders can be assigned to suitable produc-
tion cells:

∀j, k : axjk j = 1 → xjk > 0, (5)

Constraint 2 describes that there are production operation pairs and matrix cells,
where it is not possible to perform a changeover:

ac
ikj = 1 → τc

ikj ≥ 0 and ac
ikj = 0 → τc

ikj = −1. (6)

Constraint 3 describes that the operation of production orders must be finished be-
tween the lower and upper limit of end time, so it is not allowed to exceed these time-
related constraints:

∀i = xjk : τlower1
i ≤ ∑k

l=1τ
p
xjl j + ∑k−1

l=1 τc
xjl xjl+1 j ≤ τ

upper1
i . (7)

Constraint 4 describes that the number of operations is limited at each production cell,
so it is not allowed to exceed the upper limit of operations at a chosen production cell:

∀j : max
k

(
xjk > 0

)
≤ supper

j . (8)

Constraint 5 describes that one production order can be assigned exactly to one
production cell:

∀j �= j∗ ∧ k �= k∗ : xjk �= xj∗k∗ . (9)

Constraint 6 describes that it is not allowed to exceed the available number of toolsets
within a time frame:

∀t :
n

∑
j=1

zxjk j(t) ≤ rmax
g . (10)

3.2. Routing of AGVs in Cell Grid

Within the frame of this phase, the assignment of production orders to matrix cells
is given (the production plan is defined) and the optimal routing of available automated
guided vehicles must be solved based on the results of the assignment problem. The deci-
sion variable of this routing problem is a matrix including permutation arrays, where one
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permutation array represents the optimal route of an automated guided vehicle. The yab
routing matrix defines that the bth station of AGV a is the matrix cell assigned to production
order yab.

The objective function of the second phase routing problem is the minimization of
vehicle fleet size and the minimization of energy consumption of in-plant supply:

kAGV → min. and c → min. (11)

where kAGV is the required number of AGVs and c is the calculated energy consumption.
The minimization of the fleet size can be described as the maximum size of fleet within

the frame of the time frame:

kAGV = max
b

(yab > 0) → min. (12)

The minimization of the energy consumption cannot be defined as the minimization
of the routes, because energy consumption depends on the weight of the load:

c = cI + cI I + cI I I (13)

where cI is the energy consumption of the AGVs from the warehouse to the first station
(matrix cell) of the in-plant supply route, cI I is the energy consumption of the AGVs among
the stations (matrix cells), while cI I I is the energy consumption of the AGVs from the last
station (matrix cell) to the warehouse.

The energy consumption of the AGV from the warehouse to the first station (matrix
cell) of the in-plant supply route can be defined as a function of length of the route and the
weight of the load:

cI = ∑kAGV
a=1 (l0j(ya1)∑

bmax
a

b=1 qyab), (14)

where bmax
a is the number of stations of in-plant supply route a, qyab is the weight of the

load for production order scheduled as station b of route a, and l0j(ya1)
is the length of the

transportation between the warehouse and the first matrix cell of the route.
The energy consumption of the AGV among matrix cells can be defined as follows:

cI I = ∑kAGV
a=1

(
∑bmax

a −1
b=1

(
lj(yab)j(yab+1)∑

bmax
a

d=b qyad

))
, (15)

where j(yab) is the matrix cell ID assigned to the production order, which is scheduled to
route a as station b.

The energy consumption of the AGV from the last matrix cell of the in-plant supply
route and the warehouse can be defined as follows:

cI I I = ∑kAGV
a=1 (lj(yabmax

a
)0qyabmax

a
), (16)

where qyabmax(a)
is the weight of the load for production order scheduled to the last station

of in-plant supply route a, and lj(yabmax
a

)0 is the length of the transportation between the last
matrix cell of route a and the warehouse.

Within the frame of this routing problem, various constraints must be taken into con-
sideration, like time-, capacity- and energy consumption-related constraints. The solution
of the routing problem is limited by these constraints.

Constraint 1 defines that it is not allowed to exceed the maximum number of stations
within one supply route:

∀a : bmax
a = max

b
(yab >max

a ) ≤ vmax
a , (17)

where vmax
a is the upper limit of the number of stations assigned to route a.

54



Machines 2021, 9, 220

In the case of electric AGVs and heavy loadings, it is important to take into consid-
eration the impact of weight and route length on the energy consumption, because in
the case of heavy loadings the transportation route can be limited. Energy consumption
constraints can be transformed to material flow intensity constraints, because we can
define a proportion of energy consumption and material flow intensity (product of length
and weight).

Constraint 2 defines that it is not allowed (and not possible) to exceed the material
flow intensity, which depends on the weight of loading and length of route:

∀a : qI
a + qII

a + qII I
a ≤ qmax

a , (18)

where
qI

a = l0j(ya1)∑
bmax

a
b=1 qyab (19)

qII
a = ∑bmax

a
b=1 (lj(yab)j(yab+1)∑

bmax
a

d=b qyab) (20)

qII I
a = lj(yabmax

a
)0qyabmax

a
≤ qmax

a (21)

Constraint 3 defines that it is not allowed to exceed the upper and lower limit of
arrival time at the matrix cells:

∀yab : τlower2
i ≤ ∑b−1

d=0τt
j(yad)j(yad+1)

+ τt
j(yad+1)

≤ τ
upper2
i (22)

where τt
j(yad)j(yad+1)

is the transportation time between matrix cells assigned to the station b

of route a, and τh
j(yad+1)

is the material handling time (loading and unloading) at matrix cell
assigned to the station d + 1 of route a. The lower and upper limit for arrival time depends
on the assignment matrix.

Constraint 4 defines that it is not allowed to exceed the upper limit of capacity (weight
or volume) of automated guided vehicles:

∀a : ∑bmax
a

b=0 qyab ≤ qmax
a (23)

where qmax
a is the upper limit of capacity of route (or vehicle) a.

Constraint 5 defines that supply demands can be transported only with appropri-
ate vehicles:

∀yab : a(yab) ∈ Ξyab (24)

where Ξyab is the set of vehicles appropriate for transportation of required materials and
tools of production order yab from the warehouse to the assigned matrix cell. The descrip-
tion of nomenclatures used in the mathematical model can be seen in Appendix A.

To solve the above-described integrated assignment and routing problem, a multi-
phase optimization algorithm will be described.

4. Results

The multiphase solution algorithm includes the optimization of assignment of pro-
duction orders to matrix cells and the routing of autonomous guided vehicles among
AGV pool, warehouse, and matrix cells. The solution of the assignment problem is based
on a black-hole heuristic, while the routing (which also includes a virtual scheduling of
production orders) is solved with a flower pollination-based heuristic.

4.1. Black-Hole Heuristic for the Assignment Problem

This population-based heuristic can be summarized in five major steps. The first step
is the generation of an initial population of stars representing the initial solutions of the
real problem. The coordinates of the generated stars describe the decision variables of the
optimization problem. The decision variable of the above-described assignment problem is
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the assignment matrix, which defines the assignment of production orders to matrix cells,
so the initial solutions of the black hole algorithm can be defined as follows:

X0α =
[

x0α
jk

]
(25)

where x0α
jk is the ID of the production order assigned to the matrix cell j as kth operation of

the initial solution α. The initial solution matrix has m numbers, where x0α
jk ≥ 1. α = 1...λ,

and λ is the number of initial solutions.
The second step is the evaluation of the initial solutions with the objective function

and calculate the gravity force of the star.

eμα
jk = max

j

(
∑�

k=1τ
p
xjk j + ∑

�j−1
k=1 τc

xjkxjk+1 j

)
(26)

where μ is the iteration step and μ = 0 directly after the initialization of the solution matrix.
We can write that

xμα
jk ≥ 1 → eμα

jk > 0 (27)

The third phase is to find the best solution in this iteration step. This best solution
is dedicated as the black hole of the search space and all other stars representing worst
solutions will move toward this solution. We can also define more black holes, but in this
case the algorithm is like gravity force algorithm [57].

eμ
BH = max

α

(
eμα

jk

)
= max

α

(
max

j

(
∑�

k=1τ
p
xjk j + ∑

�j−1
k=1 τc

xjkxjk+1 j

))
(28)

The fourth phase of the black hole heuristic is to move the stars towards the black
holes. The speed and distance of moving depends on the value of objective function, which
is represented by the gravity force of the star.

xμα
jk = xμ−1,α

jk + round
(

rnd
∣∣∣xμ−1

BH − xμ−1,α
jk

∣∣∣) (29)

Stars reaching the event horizon described by the value of Schwarzschild radius will
be absorbed and a new star will be initialized. After this step, various termination criteria
can be taken into consideration, like computational time or the measure of convergence.

Within the frame of a scenario including 16 production orders and 9 matrix cells, this
paper will demonstrate the described model and the results of the black hole heuristic-
based assignment optimization. We can define both the availability matrix of matrix
cells and the operation time of matrix cells for each production order. Table 2 shows the
operation time of production orders. It is not necessary to describe both matrices, because
the operation time can be defined as a ∞ value if the production order cannot be fulfilled
in the matrix cell.

We can define the changeover time of matrix cells between production orders. This
changeover time is caused by the various required tool sets of production orders. If the
production orders are changed at a matrix cell, the following operations are required:
(1) take down the used tool set of the matrix cell, (2) collect remaining components of
previous production order, (3) transport the old tool set to the tool storage and the remaining
components to the warehouse, (4) transport the new required tool set to the next production
order from the tool store to the matrix cell, (5) transport the required components from the
warehouse to the matrix cell, and (6) set up the new tool set of the production order. These
changeover times for this scenario are summarized as a total changeover time in Table 3.
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Table 2. Operation time of production orders [min].

Production Order ID
Matrix Cell ID

1 2 3 4 5 6 7 8 9

1 2.5 3.3 4.0 5.6 7.9 1.2 9.5 4.8 1.5
2 5.4 4.8 7.4 8.6 6.1 1.3 9.8 9.7 3.6
3 8.0 1.0 9.6 9.9 9.9 1.6 8.8 6.5 5.7
4 9.1 1.1 2.7 2.1 6.9 1.5 9.2 3.9 9.9
5 7.6 1.8 2.0 4.8 5.4 1.3 8.5 4.9 5.5
6 6.8 1.6 7.2 3.8 4.3 1.6 9.3 2.3 5.3
7 9.2 8.0 6.9 8.0 7.5 .17 8.6 1.5 5.6
8 4.5 7.1 8.0 1.7 2.1 1.3 9.0 8.7 8.0
9 6.8 5.3 9.5 4.2 2.6 1.2 8.5 7.2 9.0
10 4.6 6.1 4.1 6.6 2.4 1.2 9.0 6.1 5.0
11 8.3 5.6 5.0 3.9 8.7 1.1 9.6 8.3 5.2
12 7.6 9.1 8.2 8.8 5.6 1.1 9.6 2.5 5.9
13 2.0 4.5 6.3 7.7 3.1 1.1 9.6 3.4 5.8
14 4.4 5.9 3.2 2.7 1.0 1.5 8.8 6.5 2.6
15 7.9 6.9 6.7 8.3 1.8 1.4 9.1 4.6 6.5
16 8.1 4.5 9.0 8.4 8.3 1.4 9.2 8.2 4.9

Table 3. Changeover time between production operations (OID = Production order ID) [min].

OID
OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1.8 3.0 3.5 2.9 8.3 2.0 7.5 7.0 1.1 1.0 2.1 4.3 6.5 7.7 7.8
2 7.3 0 4.1 7.2 5.0 8.3 8.9 8.7 7.5 4.0 9.5 3.4 8.2 9.7 9.7 2.6
3 1.1 9.6 0 2.6 1.1 6.8 7.9 5.9 4.1 5.8 8.2 7.4 8.1 6.5 1.7 7.2
4 5.5 1.1 7.1 0 7.1 6.1 9.1 8.4 7.6 8.3 7.1 5.4 2.7 4.3 9.3 2.1
5 8.3 4.4 1.2 7.9 0 4.9 7.8 1.2 8.7 4.2 9.1 8.5 8.2 7.1 9.3 9.9
6 5.6 2.5 3.4 8.2 4.4 0 1.9 2.9 6.5 6.8 4.8 9.2 9.0 7.9 5.5 4.0
7 5.4 3.9 9.4 9.6 5.4 5.2 0 1.5 9.7 5.6 2.5 2.8 6.2 5.4 2.1 9.9
8 5.3 8.1 2.8 5.6 5.4 9.8 4.5 0 1.5 2.0 4.0 3.1 2.6 8.8 8.2 3.6
9 9.4 6.1 9.0 4.2 6.0 2.4 7.6 1.2 0 8.6 9.1 2.5 8.4 2.7 1.0 5.1

10 1.5 4.7 7.7 8.8 1.6 8.2 1.5 9.0 3.1 0 3.5 6.2 1.8 3.9 2.6 5.4
11 4.4 5.1 1.1 8.6 3.1 8.6 5.7 6.2 5.5 3.3 0 3.8 2.2 5.7 1.9 3.9
12 6.4 4.0 2.2 5.6 1.6 8.0 5.0 5.2 7.8 3.2 5.0 0 1.8 5.8 8.2 3.6
13 3.0 3.6 1.0 8.8 3.6 8.6 9.2 2.0 9.5 7.0 8.1 6.8 0 3.0 9.0 8.3
14 1.2 1.5 4.4 8.0 6.3 6.9 4.4 6.9 5.4 5.2 1.9 5.6 4.2 0 2.8 4.6
15 7.4 1.2 4.6 1.7 9.2 7.2 8.3 9.9 2.3 9.6 9.4 9.0 4.2 5.9 0 5.5
16 2.1 6.7 5.8 6.8 2.2 7.9 5.3 9.2 1.0 8.9 8.4 3.7 4.4 6.0 1.3 0

The time constraints can be defined as the lower and upper limits of the beginning and
finishing of production order-related operations. Table 4 shows the time-based constraints
of the scenario. The ∞ value of upper time limit defines that there is no time limit for this
production order.

Table 4. Time constraints of production time (PTC = production time constraints. OID = Production order ID. BMIN = be-
ginning time lower limit. BMAX = beginning time upper limit. FMIN = finishing time lower limit. FMAX = finishing time
upper limit) [min].

PTC
OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bmin 0 2.6 6.3 0 0 0 0 2.2 0 2.2 0 4.4 7.1 0 0 0
Bmax 2.3 5.3 ∞ ∞ ∞ 9.4 2.2 7.2 8.7 3.9 5.5 7.3 9.1 ∞ ∞ 2.1
Fmin 2.1 5.6 3.4 2.2 8.1 3.2 1.1 5.5 4.1 7.6 4.2 6.1 6.6 2.4 8.1 1.1
Fmax 3.2 ∞ ∞ ∞ 9,8 ∞ 5.5 8.8 8.9 9.1 6.3 7.9 ∞ ∞ ∞ 3.8
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Figure 3 shows the result of the black hole heuristic-based solution algorithm. The value
of the objective function is 9.1 min, which means that the last production order will be
finished in 9.1 min, which is the cycle time of the 16 production orders. This numerical
result shows that the described optimization algorithm can take the time-related constraints
into consideration and the algorithm makes it possible to find an optimal solution for the
in-plant supply optimization problem. As Figure 3 shows, in the case of the first scenario
the algorithm takes a wide range of the predefined constraints into consideration, including
the production time (or lead time) constraint, and the upper and lower limit of beginning
and ending time for the production process. At first glance, it may seem that the changeover
time in matrix cell 6 could be relocated to the matrix cells 3 or 5, thereby reducing the total
manufacturing time, but this is not the case as changeover operations and idle times are
not freely moveable due to technological limitations.

Figure 3. Gantt chart of the working process resulting from the optimal assignment of production
orders to matrix cells in scenario A.

The total idle time of the matrix cells within the time window of the fulfilment of the
16 production demands is 18.4 min. The distribution of the idle time among the matrix
cells is shown in Figure 4.

Figure 4. Idle time distribution among matrix cells within the cycle time of the 16 production orders
in scenario A.
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The technological and logistics resources of the matrix production system are usually
state-of-the-art technologies and have expensive operation costs; therefore, it is important
to optimize their idle time in order to increase their utilization. In the case of an even
distribution of idle time, the production time could be reduced in this case as well, however,
as in the case of the changeover time, the time-related constraints and the availability of
technological resources do not allow this. The distribution of idle time and the changeover
time depends on the flexibility and availability of matrix cells. Higher availability and
flexibility makes it possible to produce a wider range of products, which can lead to
increased changeover time.

Figure 5 shows the results of a second scenario, where the same operation and
changeover times were used, but the number of available matrix cells was reduced to
six and the solution was not limited by the time constraints of the previous scenario.
The value of the objective function is 13.8 min, which means that the last production order
will be finished in 13.8 min. As Figure 5 shows, the number of available standardized
configurable productions or assembly cells has a great impact on the results of in-plant
supply processes from a time and capacity point of view. However, in the matrix produc-
tion system, the processes of technology and logistics are separated, but the decreased
number of available technological resources influences the required logistics resources and
the computation result shows a higher time span for the working process. In this case,
the technological resources must have an increased flexibility and availability for the same
manufacturing time. If the availability and flexibility of matrix cells does not increase,
the decreased number of technological resources will result in a longer time period being
required to complete production, even with a better distribution of idle times.

The total idle time of the matrix cells within the time window of the fulfilment of
the 16 production demands is 9.6 min. The distribution of the idle time among the matrix
cells is shown in Figure 6. The result shows that the decreased available technological
resource influences also the idle time. In this case, the distribution of idle time is more
even, but this change in the distribution of idle time has no positive impact on the required
manufacturing time because of the decreased number of technological resources.

Figure 5. Gantt chart of the working process resulting from the optimal assignment of production
orders to matrix cells in scenario B.
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Figure 6. Idle time distribution among matrix cells within the cycle time of the 16 production orders
in scenario B.

4.2. Flower Pollination Heuristic for Routing Problem

The first step of the optimization algorithm is the initialization steps, where the basic
parameters of the algorithm regarding the real problem and the process of optimization
will be defined. The parameters of the real problem are the size and dimension of the
search space, as well as the impact of constraints on the search space. The parameters
of the algorithm are the followings: switching process between global and local search
(biotic and probiotic pollination), termination criteria (computation time, iteration steps,
or convergence), and the number of initial solutions (pollen grains).

The second step is the initialization of the solutions, which means the definition of the
pollen grains in the search space (pastureland).

Y0α =
[
y0α

ab

]
(30)

where y0α
ab is the ID of the matrix cell assigned to route a as bth station as the initial solution

α. The initial solution matrix has m numbers, where y0α
ab ≥ 1. α = 1...λ, and λ is the number

of initial solutions.
The next step is the evaluation of the pollen grains, which is based on the objective

function of the routing problem describing the minimization of the energy consumption of
the routes defined by solution α in iteration step μ:

eμα
ab = ∑kAGV

a=1

(
∑

bmax
a −1

b=1

(
lj(yab)j(yab+1) ∑

bmax
a

d=b qyad

))
+

+∑kAGV ∑
a=1 (l0j(ya1) ∑bmax

a
b=1 qyab) + ∑kAGV

a=1 (lj(yabmax
a

)0qyabmax
a

)
(31)

where μ is the iteration step and μ = 0 directly after the initialization of the solution matrix.
We can write that

yμα
ab ≥ 1 → eμα

ab > 0 (32)

The third phase is the initialization of a decision number that defines the switch-
possibility between biotic and probiotic pollination. The fourth step is the pollination
depending on the type of search. In the case of global search, a biotic pollination is
performed:

yμ+1,α
ab = yμ,α

ab + L(λ)
(

ybest,α
ab − yμ,α

ab

)
(33)

where L(λ) is the Levy-distribution.
In the case of local search, an abiotic pollination is performed:

yμ+1,α
ab = yμ,α

ab + ϑ
(

yμ,α
r1r2 − yμ,α

r3r4

)
(34)
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where yμ,α
r1r2 and yμ,α

r3r4 are random solutions in the iteration step μ, and ϑ is a random number
between 0 and 1. To transform the continuous representation to a discrete permutation
representation, the smallest position value rule was used.

Within the frame of a scenario including 15 production orders and 9 matrix cells, this
paper demonstrates the described routing model of the matrix production and the results of
the flower pollination-based routing optimization. The optimal assignment of production
orders is given, so we can define the lower and upper time limits of production orders,
as shown in Table 5.

Table 5. Optimal assignment of production orders to matrix cells and their lower and upper time limits as input parameters
if there is a routing problem in the matrix grid (OID = production order ID. AMC = assigned matrix cell ID. MHT = material
handling time of the production order at the matrix cell. BMin = beginning time lower limit. BMax = beginning time
upper limit).

OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AMC 3 2 7 4 6 5 8 1 6 9 1 9 5 6 2
MHT 0.8 1.3 0.85 0.9 0.45 0.4 1.2 1.1 0.45 0.3 1.1 0.3 0.4 0.45 1.3
Bmin 1.1 0.3 1.1 4.2 5.1 3.2 2.2 0.4 1.1 2.2 6.5 4.5 5.1 3.7 7.8
Bmax 3.4 3.4 5.4 8.5 6.9 8.4 6.2 3.3 4.4 5.1 10.3 6.7 7.5 6.5 9.9

The distances among matrix cells, warehouses, and storages are shown in Table 6.

Table 6. Distances in the matrix grid [10 m].

Production Order ID
Matrix Cell ID

WH/ST 1 2 3 4 5 6 7 8 9

WH/ST 0 0.65 0.65 0.65 1.3 1.3 1.3 1.95 1.95 1.95
1 0.65 0 0.65 1.3 0.65 1.3 1.95 1.3 1.95 2.6
2 0.65 0.65 0 0.65 1.3 0.65 1.3 1,95 1,3 1,95
3 0.65 1.3 0.65 0 1.95 1.3 0.65 2.6 1.95 1.3
4 1.3 0.65 1.3 1.95 0 0.65 1.3 0.65 1.3 1.95
5 1.3 1.3 0.65 1.3 0.65 0 0.65 1.3 0.65 1.3
6 1.3 1.95 1.3 0.65 1.3 0.65 0 1.95 1.3 0.65
7 1.95 1.3 1.95 2.6 0.65 1.3 1.95 0 0.65 1.3
8 1.95 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0 0.65
9 1.95 2.6 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0

Figure 7 shows the optimal routing in the matrix grid. There are three routes in the
matrix cell within the time span of routing. Six production orders are assigned to route 1
(blue), five production order are assigned to route 2 (red), and three production orders are
assigned to route 3 (green). This computational result shows that more AGVs are required
in the matrix production system. As presented in the chapter discussing the optimization
algorithm, clusters must be formed from the manufacturing tasks. It can be seen in Figure 7
that the clustering algorithm, when designing the clusters of the production task forming
each route, try to form clusters with an even number of production tasks, taking into
account the time- and capacity-related constraints. The increased number of available
AGVs can lead to decreased cluster, which influences the required manufacturing time and
lead time.
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Figure 7. Three optimized in-plant supply routes in the matrix grid optimized with flower pollination-
based heuristics.

Figure 8 shows the efficiency of the flower pollination-based heuristics. The scheduled
production orders are between the predefined lower and upper time limits. The results
show that time-related constraints also can be taken into consideration. It is especially
important from the production orders point of view, because the predefined time limits,
which are based on ERP data, are assumptions of the high service level in matrix pro-
duction system. The time frame defined by the lower and upper limits influences the
solution. In the case of a narrow time frame defined for the manufacturing of production
orders, both the availability of technological resources and the availability of logistics
resources must be increased to minimize the total required time frame for manufacturing
all production orders.

Figure 8. The distribution of scheduled production order between the related lower and upper
time limits.
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The assignment of production orders to matrix cells and the routing of production
orders led to an optimal in-plant supply of matrix cells. The energy consumption, as the
objective function of the design problem, can be calculated based on Equation (13) and
is shown in Figure 9. As the computed energy consumption rates show, the energy con-
sumptions of the in-plant supply routes are quasi-uniform, because the state-space of the
heuristic optimization model representing the potential solutions of the real problem makes
it possible. In the case of a decreased number of AGVs, this uniform distribution is not
possible. The energy consumption has a great impact on both the operation cost and on
the environmental impact. Depending on the energy generation source (oil, wind, photo-
voltaic, water, nuclear, biomass, etc.), we can define the emission, and this emission can be
taken into consideration as a virtual emission of the manufacturing process. The energy
consumption of AGVs influences the required loading of batteries, therefore, the even
distribution of energy consumption makes it possible to make a more transparent loading
process for the AGVs.

Figure 9. The distribution of energy consumption in each in-plant supply route (TEC = total en-
ergy consumption).

4.3. Challenges and Applicability in Real Industrial Environment

The above-described methodology is applicable in a real industrial environment,
but there are challenges that may be faced while applying this proposed model in reality.
The application is based on data from the ERP and from the digital twin. The conven-
tional ERP data sets and real-time digital twin-enabled information for simulation-based
scenario analysis and forecasting are available using standard interfaces, because standard-
based interoperability is an important challenge for large, complex manufacturing systems.
The optimization module for in-plant supply design can be implemented either as a part
of the ERP or MES, or as an add-on software using standardized channels for informa-
tion sharing. The implementation cost of these solutions can vary, add-on solutions are
cheaper, but ERP-integrated optimization can lead to a more robust and stable solution.
The validation of input data for digital twin is also a challenge, because the smart sensor
network must have stringent dependability, especially from a reliability and availabil-
ity point of view, as sensor failures can cause bad data, which influences the results of
digital twin-enabled simulation and influences real time decisions. In the case of a con-
ventional manufacturing system, the development of digital twin solutions requires new
business models considering expected costs and profit as well as the design, operation,
and maintenance requirements. These aspects are summarized in Figure 10.

Figure 10. Challenges regarding the proposed model and method.
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The practical application of the above-described methodology can be performed in
many ways, depending on the available IT environment (ERP, sensor networks, simulation
software). As an example, Figure 11 shows a possible solution focusing on the integration
of SAP and Technomatix Plant Simulation. Technomatix Plant Simulation is a discrete event
simulation software, which makes it possible to use SAP data and integrate real time data
from the digital twin of the physical processes in the manufacturing system [62]. The SAP
can generate a data file using Advanced Business Application Programming (ABAB)
and this data file can be used by the Technomatix Plant Simulation for scenario analysis,
especially in the field of production planning. The transformation of a conventional
manufacturing system into a cyber-physical manufacturing system using IoT technologies
makes it possible to mirror the physical manufacturing system, and the real time data
including failure data and status information from the smart sensor network makes it
possible to create a digital twin, which is available for the Technomatix Plant Simulation
using ODBC or SQL for Oracle. The SAP data is also available as an Excel file export using
Dynamic Data Exchange (DDE), Visual Basic Script (VBS) or Component Object Model
(COM). The Technomatix Plant Simulation provides a built-in optimization library (BiOL)
for stochastic optimization problems, and it is possible to use this heuristics-enabled solver
to perform the proposed optimization tasks.

The above-described scenarios validated the presented in-plant supply model in a
cyber-physical production environment and justify the fact that the matrix production, as a
new production concept, is suitable for the efficient production of diversified customers’
demands; not only the technology but also the logistic processes must be optimized. In
this relation, efficiency means that the matrix production system makes it possible to fulfil
diversified customers’ demands near to the efficiency of mass production. KUKA defines
this efficiency in the following context: “It (matrix production) will thus become possible to
implement the manufacture of customized series as an integral part of Industry 4.0 without
limitations in the context of industrial mass production [12]”. The validation includes the
following aspects: (1) the proposed functional model is suitable to support the in-plant
supply optimization in a matrix production system; (2) the mathematical model includes
time-, capacity-, and energy-related objective functions and constraints, and these objectives
have a great impact on the cost-efficiency, availability, performance, energy consumption,
and sustainability of the matrix production system; the computational results shows that
the optimization algorithm resulted in valid solutions in the matrix production system,
where time-, capacity- and energy-related constraints are taken into consideration.

Figure 11. Practical applicability of the proposed methodology for integrating SAP and Technomatix
Plant Simulation.

To summarize, the proposed model based on assignment and routing problems of
matrix production makes it possible to analyze the impact of assignment of production

64



Machines 2021, 9, 220

order to matrix cells and the routing of automated guided vehicles in the matrix grid on
the energy efficiency, availability, and required resources of material handling.

As the findings of the literature review show, the articles that addressed the analysis
of in-plant supply are focusing on a conventional production environment, but only a
few of them aimed to identify the optimization aspects of in-plant supply solutions in
matrix production.

The comparison of the results with those from other studies shows that the optimiza-
tion of material handling processes in cyber-physical systems still need more attention
and research. The reason for this is that, in the case of cyber-physical systems, where
Industry 4.0 technologies make possible the realization of flexible and efficient operation,
the improvement of in-plant supply solutions and the optimization of their processes must
be taken into consideration.

5. Discussion and Conclusions

The efficiency of manufacturing systems influences the efficiency of value chains,
including purchasing and distribution processes; therefore, it is important to analyze the
influencing factors of manufacturing systems and transform them into smart manufacturing
systems using IoT technologies [58–60]. Within the frame of this research work, the authors
developed an integrated model of in-plant supply based on the matrix production concept
of KUKA. This model makes it possible to optimize the assignment and routing tasks of this
new cyber-physical solution in the era of Industry 4.0. More generally, this paper focused
on the mathematical description of the in-plant supply solutions in matrix production,
including the assignment of technology and logistics (matrix cells as production resources
and production order) and routing of autonomous guided vehicles. Why is so much
effort being put into this research? Conventional production environments have been
transformed into cyber-physical production, and this new production environment needs
more attention both from a technology [61] and logistics point of view. A comparative
table contrasted the proposed methodology in front of related analyzed research works,
where the relationship between this solution and past literature was discussed. The existing
studies include the optimization of both conventional and cyber-physical manufacturing
systems, while only a few of them consider the sustainability-related aspects in matrix
production and other cyber-physical manufacturing environments.

The added value of the paper is in the description of the autonomous guided vehicles-
based in-plant supply in a cyber-physical environment, where production is based on
standardized flexible manufacturing resources. The scientific contribution of this paper for
researchers in this field is the mathematical modelling of in-plant supply in cyber-physical
production including assignment, routing, and virtually scheduling. The results can be
generalized because the model can be applied for different production environments. Man-
agerial decisions can be influenced by the results of this research, because the described
method makes it possible to analyze various supply strategies and make decisions regard-
ing the size of AGV pool or strategy of warehousing of components or storage of tools
and toolsets for the standardized flexible production cells. This managerial impact results
from the fact that the above-mentioned algorithm takes different values of the size of the
AGV pool as well as available tools required for changeovers into consideration, and the
optimization results show whether or not the in-plant supply process can be performed
with the given parameters.

However, there are also limitations of the study and the described model, which pro-
vides direction for further research. Within the frame of this model, stochastic parameters
were not taken into consideration. In further studies, the model can be extended to a more
complex model including Fuzzy sets to describe stochastic processes.
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Appendix A. Description of Nomenclatures

Table A1. Description of nomenclatures used in the mathematical model.

Nomenclature Description Dimension

i Production order, i = 1 . . . m [-]
j Production cell in the matrix grid, j = 1 . . . n [-]

k

Production order, which can be defined either as a
unique order, or as a lot, depending on the customers’
demand. The customers’ demand is available from the
ERP. k = 1 . . . m

[-]

τ
p
ij

Production lead time of production order i at
production cell j [min]

τc
ikj

Changeover time, which is the required time for the
process of converting a matrix cell from the initial
production process generated by the production order i
to another generated by production order k at
production cell j.

[min]

aij

Availability matrix, which takes value 1 if the
production order i can be assigned to matrix cell j,
otherwise 0. The availability depends on technological
and logistic conditions and parameters.

[-]

ac
ikj

Changeover availability matrix, which takes value 1 if it
is possible to converting matrix cell from production
order i to production order k at matrix cell j, otherwise 0

[-]

τlower1
i

Lower time limit of finishing operation i in the first
phase (assignment) of the optimization. [min]

τ
upper1
i

Upper time limit of finishing operation i in the first
phase (assignment) of the optimization. [min]

τlower2
i

Lower time limit of finishing operation i in the second
phase (routing) of the optimization. [min]

τ
upper2
i

Upper time limit of finishing operation i in the second
phase (routing) of the optimization. [min]

supper1
j

Upper limit of operations at production cell j. [-]

zij

Required toolset for production order i at matrix cell j.
The toolset is available from the tool storage and it
includes tools and equipment for production and
related measuring.

[-]

rmax
g Available number of required toolset g. [pcs]
τp Production lead time. [min]

τc Changeover time among the various production
operations of the standardized production cells. [min]

�j
Number of assigned production orders to production
cell j. [pcs]

kAGV Required number of AGVs. [pcs]
c Calculated energy consumption.
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Table A1. Cont.

Nomenclature Description Dimension

cI Energy consumption of the AGVs from the warehouse to
the first station (matrix cell) of the in-plant supply route. [kWh]

cI I Energy consumption of the AGVs among the stations
(matrix cells). [kWh]

cI I I Energy consumption of the AGVs from the last station
(matrix cell) to the warehouse. [kWh]

bmax
a Number of stations of in-plant supply route a. [pcs]

qyab

Weight of the load for production order scheduled as
station b of route a. [kg]

l0j(ya1)
Length of the transportation between the warehouse and
the first matrix cell of the route. [m]

j(yab)
Matrix cell ID assigned to the production order, which is
scheduled to the route a as station b. [-]

qyabmax(a)

Weight of the load for production order scheduled to the
last station of in-plant supply route a. [kg]

lj(yabmax
a

)0
Length of the transportation between the last matrix cell
of route a and the warehouse. [m]

vmax
a Upper limit of the number of stations assigned to route a. [pcs]

τt
j(yad)j(yad+1)

Transportation time between matrix cells assigned to the
station b of route a. [min]

τh
j(yad+1)

Material handling time (loading and unloading) at matrix
cell assigned to the station d+1 of route a. [min]

qmax
a Upper limit of capacity of route (or vehicle) a. [kg]

Ξyab

Set of vehicles appropriate for transportation of required
materials and tools of production order yab from the
warehouse to the assigned matrix cell.

[-]
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Abstract: Digital twins (DTs) is a promising technology in the revolution of the industry and essential
for Industry 4.0. DTs play a vital role in improving distributed manufacturing, providing up-to-date
operational data representation of physical assets, supporting decision-making, and avoiding the
potential risks in distributed manufacturing systems. Furthermore, DTs need to collaborate within
distributed manufacturing systems to predict the risks and reach consensus-based decision-making.
However, DTs collaboration suffers from single failure due to attack and connection in a centralized
manner, data interoperability, authentication, and scalability. To overcome the above challenges, we
have discussed the major high-level requirements for the DTs collaboration. Then, we have proposed
a conceptual framework to fulfill the DTs collaboration requirements by using the combination of
blockchain, predictive analysis techniques, and DTs technologies. The proposed framework aims to
empower more intelligence DTs based on blockchain technology. In particular, we propose a concrete
ledger-based collaborative DTs framework that focuses on real-time operational data analytics and
distributed consensus algorithms. Furthermore, we describe how the conceptual framework can
be applied using smart transportation system use cases, i.e., smart logistics and railway predictive
maintenance. Finally, we highlighted the future direction to guide interested researchers in this
interesting area.

Keywords: blockchain; digital twins; Industry 4.0; smart manufacturing; data analysis; transporta-
tion; logistics; railway

1. Introduction

Industry 4.0 revolution is considered to be a new paradigm of digital, autonomous,
and decentralized control with the Industrial Internet of Things (IIoT), Machine Learn-
ing (ML), big data, and edge computing [1,2]. For smart manufacturing, distributed
manufacturing is a form of decentralized manufacturing practiced by enterprises using
digitalization [3,4]. It uses an effective collaboration form in terms of information sharing,
analytics, and collaborative decision-making in real-time. A Digital Twin technology (DT)
is one of the core elements of manufacturing digitalization, representing a real-world sys-
tem such as production systems in a virtual space [5]. Multiple DTs are used to represent a
distributed production system in hierarchical levels [6]: (i) DTs in a flat network represent
individual things at the machine level. They exchange information with each other on
things and learn about their operation and behavior to build a common understanding of
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the machine condition, (ii) DTs for things in a tree or a chain represent the sub-system level
and the system level where each DT is passing on information to the next level.

Multiple DTs are deployed to represent the up-to-date industrial data of the physical
assets in operation, including the asset status and the relevant historical data. The deployed
DTs can intelligently collaborate by utilizing the intelligence of DT-driven operational data
to predict the potential risks within the distributed manufacturing systems. In particular,
the DTs are collaborating by applying predictive data analytics to analyze DT-based histor-
ical operating data, learn about their things using shared knowledge and real-time data,
and then predict the potential risks in real-time. A better understanding of the predicted
potential risks can facilitate consensus decision-making among participants on the man-
agement floor within the distributed manufacturing systems. However, the DT paradigm
is still at an early stage, and many challenges still exist to adopt DTs collaboration in the
distributed manufacturing environment, including:

• Interoperability: The models and strategies of the sharing policies (i.e., internal and
external data) need to define the DTs data schema and the collaboration requirements.

• Authentication: In some scenarios in distributed manufacturing systems, the deployed
DTs are owned by independent entities that want to collaborate. Therefore, securing a
digital distributed manufacturing system needs efficient technology to acquire secure
real-time data exchange and analysis across multiple participants.

• Distributed machine learning: A large-scale input data size from multiple participants
needs to be analyzed to obtain accurate predictions about the potential risks within
the distributed manufacturing system.

• Distributed decision-making: Centralizing suffers from single failure data, while
decentralization suffers from lacking global data, so the decision-making consensus
is required.

• Scalability and robustness: a system needs to accommodate a large number of DTs
which represent multiple participants, e.g., objects, devices, machines, nodes, people,
workstations, etc., within manufacturing systems. The distributed manufacturing
system also needs to deal with multiple deployed DTs and simultaneously maintain
the robustness at a required level, especially with hacked nodes and malfunctioning.

Most works have proposed adopting blockchain with DTs to guarantee transparency,
decentralized data storage, data sharing, peer-to-peer communication, secure and trusted
traceability, and scalability [7]. Using blockchain, multiple DTs can collaborate in a hier-
archical and granular manner, using shared knowledge to manage and trace the product
assembly data [8]. A smart contract is used to execute some actions automatically to
increase data sharing efficiency, and higher security [9], and provide trusted data prove-
nance, audit, traceability, and tracking transactions initiated by participants involved in
the creation of DTs [10]. However, the existing research lacks solutions for collaborative
DTs based on operational data analytics because its focus is mainly related to blockchain
adoption for DTs. There are still many challenges requiring further investigation to identify,
diagnose, and remove the potential risks in distributed manufacturing systems using the
intelligence of the DT-driven operational data.

1.1. Contribution

The combination of blockchain and DT technologies represents the key technologies
that allow continuous data acquisition in Industry 4.0. Furthermore, the combination
of both technologies has significant advantages to address the challenges mentioned
above such as traceability, security, the guarantee of ownership rights, decentralization,
etc. [7,8,10–12]. However, the combination of blockchain and DT is rather still under
exploration. Many research works have proposed simple blockchain model adoption of DT
with a focus on centralized production systems. In contrast, these works have fallen short
of providing DT-based solutions for distributed manufacturing. Moreover, the blockchain
is not designed for DTs collaboration scenarios of risk prediction. On the other hand, the
distributed consensus decision-making has been adopted in blockchain technology [13,14].

72



Machines 2021, 9, 193

Various consensus implementations were proposed to make replicas reach an agreement
on transactions updating using a distributed ledger. However, the development of many
ledger-based DTs with the distributed consensus decision-making for risk prediction is still
an unsolved problem. Therefore, more smart and collaborative solutions for DTs based on
Distributed Ledger Technology (DLT) and distributed consensus decision-making for risk
prediction are required to add progressive value to distributed manufacturing.

Consequently, the main purpose of this work is to develop a conceptual framework for
data-driven ledger-based collaborative DT. In particular, the proposed framework targets
smart distributed manufacturing to predict the potential risks using the intelligence of shar-
ing operational data. Figure 1 depicts the high level of the blockchain-based collaborative
DTs using predictive data analysis (i.e., analysis DT-based operational data).

Figure 1. The high-level of the blockchain-based collaborative digital twins (DTs) using predictive data analysis (i.e., analysis
DT-based operational data).

Our main contributions in this conceptual framework paper are summarized as
follows:

• We explore how blockchain employing in DTs collaboration with highlighting the
benefits of the combination.

• We propose the conceptual framework of the data driving-based DTs collabora-
tion with the help of blockchain technology. The proposed framework consists of
two components:

1. The data-driven ledger-based predictive model is used to predict the potential
risks using DT-driven operational data. The DLT performs intelligent and secure
interoperability, including real-time operational data exchange, querying the real-
time operational database, and dynamic interactions among the deployed DTs.
At the same time, the distributed predictive model plays a vital role in developing
and evaluating DT deployment locally using the DT-driven operational data.

2. A distributed consensus algorithm to improve the decentralized DTs collabora-
tion. The distributed decision-making algorithm develops based on the essence
of the consensus mechanism and the dynamic prediction, which uses real-time
DT-driven operational data. The developed distributed consensus algorithm can
make most nodes agree on the potential risks and notify the decision-makers
within the distributed manufacturing systems.

• We describe how the conceptual framework can be applied in smart transportation
systems, i.e., smart logistics and railway predictive maintenance.
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1.2. Paper Organization

The remainder of this paper is organized as shown in Figure 2. The comparison with
other existing solutions of blockchain empowering digital twins collaboration is introduced
in Section 2. The proposed conceptual framework for collaborative DTs is introduced
in Section 3. The use case of smart transportation is described in Section 4. The discus-
sion, validation, and future direction are presented in Section 5. Finally, conclusions are
presented in Section 6.

Figure 2. Paper structure.

2. Comparison with Other Existing Solutions of Blockchain Empowering Digital
Twins Collaboration

In this section, we compare the contributions of our work with state-of-the-art solu-
tions, particularly solutions based on the use of blockchain and digital twins.

2.1. Digital Twins Collaboration

DTs are merging the virtual worlds and real worlds. It is used to describe the detailed
presentation of machines, devices, robots in the warehouse, production, and process.
The DTs’ advantages in Industry 4.0 include improving data security and quality, reducing
cost, and faster decision-making. The authors of [15] described DTs as one virtual replica
of a machine, robots, and devices containing data, function, and communication interfaces.
The main parts of DTs are the physical entity, virtual entity, and information that connect
virtual and physical entities [16,17] as shown in Figure 3 [18].

Collaboration means sharing and exchange information among entities and share tasks
to act accordingly. The authors of [19,20] discussed the importance of Artificial Intelligence
(AI) and Machine Learning (ML) for robots. The collaboration is based on improving
the quality of services, connectivity, and reliability. Furthermore, the collaboration of
drones and the Internet of things to enhance smartness of smart cities applications [21] and
public safety [22], and for better Quality of Service (QoS) [23]. The collaboration among
multi-user and identifying the activities is described in [24]. Collaboration of DTs and
humans is described with details in [25]. However, the authors highlighted the challenges
of collaboration in industry platform [26–28].

Collaboration is essential for a group of users to perform complex activities effectively
and efficiently, while a single can not do [24]. In [29], the authors introduced blockchain
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technology for heterogeneous multi-robot collaboration to combat COVID-19 in decentral-
ized peer-to-peer networks without human intervention. Furthermore, the authors of [30]
applied blockchain for decentralized multi-drone collaboration to combat COVID -19 in de-
livering goods and monitoring people in the quarantine area. Furthermore, the authors [19]
introduced a machine learning technique for multi-robot collaboration based on keeping
connectivity, maintaining the quality of services, and improving mobility during task per-
formances. In [22] addressed drones and IoT devices collaboration to improving greener
and smarter cities, while the drones and IoT collaboration resulting green IoT [31,32]. How-
ever, no one of the above studies addresses DTs collaboration and applications. Therefore,
we discuss DTs collaboration for improving transportation and logistics applications.

Figure 3. The main parts of DTs [18].

Smart industries depend on gathered data from smart IoT devices or their DTs of
the production lines. Collected data can be erratic sensors, RFID, actuators, or their
DTs injecting and producing incorrect data for analyzing and taking affecting decision-
making. Based on this, the author [18] has proposed a unified interaction mechanism for
collaborative DTs to provide an auto-detection using the intelligence of operational data in
the cyber-physical production system. The proposed mechanism can detect whether the
DT has erratic behavior by interacting with other collaborative DTs within the edge level.
The authors [33] introduced architecture for smart factories, relying on service-based DTs.
The architecture was presented how automatically DTs combine the corresponding physical
processes and sharing analogies with web services. The authors of [34] introduced DT
and big data in the smart industry, focusing on applications, manufacturing, production,
maintenance prediction, etc. Furthermore, the authors of [35] discussed the enabling
technologies for DT in smart industries. He et al. [36] presented DT-driven sustainable
smart industries. Moreover, the authors of [37] introduced DTs with Industry 4.0 and
data analytics.

2.2. Digital Twins and Blockchain

DT technology has been aligned with blockchain technology in different industrial
sectors [7]. ManuChain is an iterative bi-level model proposed based on the incorporation
of blockchain into DT on decentralized manufacturing [11]. ManuChain model has defined
the lower-level for fine-grained self-organization intelligence and upper-level to iterate
the coarse-grained holistic optimization intelligence by utilizing decentralized features
of blockchain. Makerchain is another blockchain-driven model based on DTs, which was
proposed to handle the cyber-credit of social manufacturing among various makers [38].
The Makerchain model has used DTs to synchronize the updating of data tags and ensure
the personalized demands to make manufacturing service transactions among makers
more trustworthy. In [39], the authors have proposed a manufacturing blockchain of
things (MBCoT) architecture for secure, traceable, and decentralized manufacturing con-
figuration. The authors have defined the data-and knowledge-driven DT manufacturing
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cell as a reference model for decentralized manufacturing. They have also introduced the
consensus-oriented transaction logic of MBCoT for the fault-tolerant protocol to support the
autonomous manufacturing process. In [40], the authors have developed ExplorerChain,
including online ML, metadata of transaction, and the Proof-of-Information-Timed algo-
rithm to serve as a reference for researchers who would like to implement and deploy
blockchain technology in the healthcare/genomic domain. In [12], the authors have used
DLT to develop a protocol to guarantee the transfer of values between DTs in economic
systems. Furthermore, a framework for secure DT data sharing based on DLT is proposed
to track events and provenance information along with an asset’s lifecycle and increase
transparency for all participants [41].

All of the above literature discussed collaboration in smart industries. Still, none of
the studies focused on discussing the collaboration of DTs using blockchain technologies
to improve management in the distributed smart manufacturing.

2.3. Digital Twins and Predictive Data Analysis

A predictive DTs methodology has been proposed to enable data-driven physics-based
DTs using a library of component-based reduced-order models and interpretable machine
learning [42]. The predictive DTs methodology has been performed using a case study of
fixed-wing UAVs. The UAV uses structural sensors to detect damage or degradation on
one of its wings to inform the UAV’s decision-making about performing an aggressive
maneuver or a more conservative one to avoid structural failure. In [43], a smart city DT
architecture is proposed where knowledge representation, reasoning, and ML formalisms
are used to provide complementary and supportive roles in the collection and processing
of data, identification of events, and automated decision-making.

Maintenance is one of the predictive data analysis-based applications in Industry
4.0, which is referred to as predictive maintenance 4.0 or PM 4.0. It is one of the recent
researched industrial applications as its impact on the manufacturing sectors. The authors
in [44] have reviewed the use of DTs technologies to apply maintenance strategies to
provide a deeper insight into the synergies between both DTs and maintenance in the
industrial sectors. Furthermore, the authors in [1] proposed a set of requirements to
enable predictive maintenance with big data for Industry 4.0 applications. The authors
have studied the railway industry concerning big data streaming processing platforms,
distributed message queue management systems, big data storage platforms, and streaming
SQL engines. Moreover, the authors in [45] have proposed a ledger-based DT reference
model for predictive maintenance defined in three layers: edge, fog, and cloud. Regarding
data analysis of DTs, Song et al., introduced a predictive maintenance model that comprised
DTs plurality [46]. DTs corresponded to the plurality of remotely located physical machines.
Each DT combined product nameplate data that correspond to a unique physical device
with more simulation models. The database contained the run time and logged data
gathered from sensors with the associated physical machine. Moreover, modular-based
corrective maintenance was used in DTs, which was proposed for automating decision-
making in complex systems [47]. The proposed model was corrective maintenance and
was relied on DTs development. Aivaliotis et al., proposed the physics approach to predict
the maintenance by using DTs [48]. The proposed approach was discussed to reduce
modeling efforts and provide the modeling framework of different resources for enabling
DTs. The machine modeling was included the machine dynamic behavior using the grey
box, black box, and white box. The virtual sensor modeling referred to gather data during
the simulation. Furthermore, modeling parameters were included parameters updated
with frequency to guarantee machine DT.

Table 1 describes a comparison of existing work and the present work concerning
the applications, including blockchain, DTs, collaboration, data analysis, Industry 4.0,
and transportation. Because only a few publications exist in blockchain-based DT, DT col-
laboration has not yet been a focus in the literature to date. Moreover, data interoperability-
by-design concepts have not been considered yet.
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3. Proposed Conceptual Framework of Data-Driven Blockchain-Based Collaborative
Digital Twins

The conceptual framework of data-driven blockchain-based collaborative DTs is pro-
posed to empower more intelligent and collaborative solutions for DTs based on DLT and
distributed consensus decision-making. The proposed framework is considered one level
higher than the adoption of blockchain with DT in production systems that could integrate
blockchain and operational data analysis. Moreover, the proposed framework could be
developed and implemented on top of the DT platform, which exploits blockchain capa-
bilities to guarantee transparency, decentralized data storage, data sharing, peer-to-peer
communication, secure and trusted traceability, and scalability.

3.1. High-Level Requirements for Digital Twins Collaboration

In this subsection, we have identified a set of requirements regarding DTs collaboration
in distributed manufacturing. Table 2 summarizes nine criteria to fulfill the requirements
for digital twins collaboration. For any manufacturing process, the data is collected from
the data sources, which are DTs of physical things such as devices, machines, people . . . ,
etc., across the entire network within the manufacturing units. This data is frequently
updated in real-time, beneficial to the organization’s decision-making process (R1 & R2).
Interestingly, the collected data from the collaborative DTs are data-driven learning systems.
In particular, DTs provide the data analysis engine by continuously updating data fed into
the learning models to enable advanced predictions of the potential risks (R3).

Basically, simulation models help to understand what may happen when changes
occur on the physical assets. However, DTs help understands what is currently happening
on the physical asset and what could happen in the future (R4). For the collaborative
environment, the virtual visibility of the potential risks in the future within the physical
assets can help to refine the product design, real-time troubleshooting, and implement new
ideas. Furthermore, DTs networks are used to enhance the connectivity of the network
participants (e.g., devices, machines, people, departments, organizations). The interaction
between the participants through the DTs network is used for reliable data exchange
to allow internal and external data sharing (R5). However, the connected DTs network
needs to be authenticated to maintain trust among network peers (R6). So, authentication
provides a trust level that can keep secure collaboration and interactions among the DTs
network. DT is a virtual representation of a real thing and transparently visualizes the
physical things and their behavior within the collaborative environment. In particular,
the transparent visibility of things through the DT model allows accurate traceability across
the DT network (R7).

For any centralized network, all nodes are connected under a single authority. How-
ever, the decentralized network has not a single authority server that controls the nodes,
where all nodes have individual entities. Substantially, centralizing suffers from single fail-
ure data, while decentralization suffers from lacking global data, so decision-making
is required for DTs collaboration (R8 & R9). Substantially, the consensus-based dis-
tributed decision-making process provides insightful and delivers efficient and reliable
collaborative solutions.
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Table 2. Requirement of digital twins collaboration.

Req. No Requirement Reason

R1 Data collection supporting data-driven decision making

R2 Data update frequency providing realtime update of the physical twin

R3 Data analysis enabling advanced predictions of the potential risks

R4 Simulation capabilities enabling virtual visibility of the products

R5 Data exchange allowing internal and external data sharing

R6 Authentication maintaining trust among network peers

R7 Transparency allowing traceability across the entire network

R8 Distributed decision
making capabilities

providing insightful consensus-based
decision making process

R9 Decentralization delivering efficient and reliable solutions

3.2. Components of the Proposed Framework

The developing blockchain can overcome the safety and security that have prevented
DT initiatives. Because of blockchain characteristics like immutability and decentralization,
DTs initiatives can evolve more effectively and quickly in their environments [53]. A de-
centralized blockchain network can help trust DTs with a data track and digital identity.
Furthermore, decentralization, secure and safe data transportation is more related to au-
thenticate DTs industry environments cases. The authors of [10] introduced blockchain
for DTs processing which guarantees safe, secure, and reliable transactions without data
accessibility, traceability, and immutability. Smart contracts are used to track and manage
the transactions in the developed DTs. Blockchain technology is used to exchange and
store DTs data to exchange information between DTs in a decentralized fashion.

Consequently, to implement DTs collaboration in distributed manufacturing, the afore-
mentioned high-level requirements could be fulfilled using a combination of DTs, blockchain,
and artificial intelligence. Based on these requirements, two main components are required
to equip the conceptual framework of blockchain-based DTs collaboration. Figure 4 depicts
the components including (1) data-driven ledger-based collaborative DTs for predictive
analytics and, (2) consensus-based decision making. These two parts will be elaborated
flowingly. Furthermore, A more detailed architecture with an in-depth discussion of every
component is beyond the scope of this paper.

3.2.1. Data-Driven Ledger-Based Collaborative DTs for Predictive Analytics

This component is used to develop a methodology for creating and updating data-
driven ledger-based collaborative DTs. It demonstrates the predictive analytics approach
by developing offline and online predictive models using the data ledger-based historical
DTs data and live streaming DTs data. Two main sub-components are required to equip
the data-driven ledger-based collaborative DTs for predictive analytics as follows:

Ledger-Based DTs Model

Multiple DTs could be connected through the blockchain network using DLT to
secure distributed operational data management and analytics across multiple participants.
Figure 5 describes the ledger-based DT model. At the technical level, the ledger-based
DT model needs to define the five components [10,41]: (1) registered DT owner, (2) DT
status, (3) timestamp, (4) transaction, and (5) ledger database. The information that
maintains a physical object’s specifications is stored within the ledger, such as the DT
owner. The communication mechanism that transfers bi-directional data between a DT and
its physical counterpart will generate data that is considered DT status within timestamp,
which is used to create a transaction. DLT is used to store the transactions, DTs data,
and actions.
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Moreover, DLT guarantees the transfer of values between DTs for collaborative DTs-
based applications. In doing so, the ledger-based running database synchronizes the
updated DTs’ status within the manufacturing systems in real-time, which leads to an
increase in real-time prediction accuracy, such as the potential risks to improve the qual-
ity of the decision making. The requirements of the DTs in terms of data schema and
collaborations, including information and analytics sharing, will be identified based on
the collaborative DTs-based applications [54]. Accordingly, the participants represented
by DTs (i.e., if they are the same type or different types) should be defined. The type of
collaborations in the participants’ communications activities should also be determined
based on the collaboration scenario from the beginning.

Figure 4. The architecture of the conceptual framework of data-driven blockchain-based for
DTs collaboration.

Figure 5. Ledger-based DTs.
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Data-Driven DTs Based Predictive Analytics

For data-driven DTs collaborations, the DTs collaboration concept within the proposed
framework will help to understand the DT status, interact with other DTs at the edge
level, learn from other DTs, and share common semantic knowledge within industrial
systems [18]. Figure 6 shows the workflow description of building a predictive model for
data-driven ledger-based collaborative DTs. The workflow consists mainly of two phases:
building an offline predictive model and deploying an online predictive model [55,56].
For the offline predictive model, we will use the distributed predictive model (i.e., classi-
fier) by applying the distributed machine learning frameworks like Apache Spark MLlib.
Apache Spark MLlib is a scalable library that implements many machine learning algo-
rithms (i.e., regular machine learning and deep learning) [57]. An offline predictive model
will be developed and trained using ledger-based historical DT operational data. For the
online predictive model, the developed predictive model (i.e., classifier) could be evaluated
in the smart contracts. In particular, the developed model will be used to predict the poten-
tial risks online using DT-driven real-time operational data. It will be run until it reaches a
consensus. The smart contract will make decisions based on these output predictions and
then store the decisions in the blockchain ledger. The smart contract executed the devel-
oped model and applied it using the DT-driven live streaming data stores in the ledgers.
One example of the predicted potential risk with production systems is detecting the early
faults indicated by degraded performance or damaged physical counterpart (e.g., node,
device). Consequently, the proposed framework can help the decision-makers dynamically
replan a set of safety precautions and take the proper action to decrease downtime within
the production systems.

Figure 6. The workflow of building a predictive model for data-driven ledger-based collabora-
tive DTs.

3.2.2. Consensus-Based Decision Making

This component is used to develop a distributed consensus algorithm to improve the
DTs collaboration. The proposed conceptual framework aims to develop a collaborative
DTs system to provide distributed decision-making to avoid potentially threatening the
production system. Therefore, a distributed decision-making algorithm will be developed
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based on the essence of the consensus mechanism and the dynamic prediction, which
uses real-time DT-driven operational data [13,14]. The developed distributed consensus
algorithm will provide evidence that most nodes agree on the potential risks to notify the
decision-makers within the distributed manufacturing systems. Some examples of the
use of the consensus algorithms include Proof of Work (PoW), Practical Byzantine Fault
Tolerance (PBFT), Proof of Stake (PoS), Proof of Burn (PoB), Proof of Capacity, and Proof of
Elapsed Time.

To do so, the Directed Acyclic Graph (DAG) structured DLT solution will be considered
as part of its consensus mechanism that would make it possible to have a fully decentralized
manufacturing environment [45,58]. Furthermore, DLT can ensure that all the participants
(i.e., deployed DTs) share identical knowledge to allow the possibility of prediction that
needs to reach a global agreement regarding the object of interest (e.g., fault diagnosis) [41].
This agreement will be reached using the consensus mechanism, which utilizes the local
interaction of deployed DTs within a manufacturing node, and then globally using the
ledger-based running database [59].

4. Smart Transportation Use Case

This section introduces an overview of the smart transportation industry, followed
by the three selective use cases, including smart logistics, railway predictive maintenance,
and their mapping to our proposed framework.

4.1. Overview of Smart Transportation Industry

The concept of Smart Transportation Systems (STS) includes a wide variety of ad-
vanced technologies, such as communication, sensing, and power, which have been utilized
to process massive volumes of information to overcome the issues in the urban region [60].
We present an overview of the literature by considering the DTs’ role and data analytics in
transportation systems.

The authors in [61] have addressed the data fusion generated from the connected
vehicles in STS. The authors have introduced a multi-variate data fusion (MVDF) technique.
The proposed MVDF aims to handling asynchronous and discrete data from the environ-
ment and streamlining them into continuous and delay-less inputs for the applications.
They have used regression learning to identify the errors, and they have used network
simulator experiments for the metrics error, data utilization ratio, and computation time.
In the context of the Internet of Vehicles and security, the authors in [62] have proposed
two models to enhancing the security and performance of nodes on the Internet of Vehicles.
The first model has been proposed to detect the data fascination attack using the hashing
technique, while the second model has been proposed to reduce the travel time in case
of traffic congestion. Furthermore, the authors in [63] have introduced the hybridized
cryptographic-integrated steganography (HCIS) algorithm. The HCIS algorithm is used
with auxiliary data inputs for secured data sharing in IoT assisted cloud environment for
the urban transportation system.

In the context of logistics, the authors in [64] have proposed an IoT-assisted intelligent
logistics transportation management framework to design an optimized logistics plan, im-
prove customer service and reduce transportation costs. The authors focused on identifying
the optimal routes for the directed autonomous vehicle, considering different vehicles.’ ne-
cessities, renewable generations, logistic requests, and the essential transportation systems.
In [65], the authors have explored the potential of using DT technology in synchromodal
transport. They have introduced a proof-of-concept for long-distance DTs solution. The DT-
based solution aims to connect real-time data generated from the physical system to a
virtual GIS environment and then utilize this data in real-time synchromodal deliveries.

For the predictive maintenance in the transportation context, the authors in [44]
have reviewed the use of DTs technologies to apply maintenance strategies to provide
a deeper insight into the synergies between both DTs and maintenance in the industrial
sectors. Furthermore, the authors in [1] proposed a set of requirements to enable predictive
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maintenance with big data for Industry 4.0 applications. The authors have studied the
railway industry concerning big data streaming processing platforms, distributed message
queue management systems, big data storage platforms, and streaming SQL engines.
For the railway, the authors in [66] have also explored the potential use of blockchain
technology in the railway industry by providing a simple analysis of the possible adoption
rate. The authors have introduced a prototype for speech recognition and a mobility-based
data collection solution to enhance the technology adoption rate.

In the context of adoption DTs in crane operations, the authors in [67,68] have proposed
a maintenance model called Integrated Maintenance Decision Making Model (IDMM) for
cranes operating in control terminals. The IDMM model targets to improve crane operations
using DTs technologies by introducing crane maintenance based on Monte Carlo Markov
Chain and Particle Swarm Optimization. Furthermore, Autiosalo et al.,[69] have introduced
a multi-component DT for an industrial overhead crane. The authors have proposed a
prototype called Ilmatar based on DTs technologies. The Ilmatar prototype aims to provide
a maintenance service for cranes’ daily tasks.

On the other hand, the authors in [70] have introduced the Robotic Process Automation
(RPS) solutions to deliver service for the patients. They have proposed a simulation-
based framework using RPA solution, development, 3-D building information collection,
supply chain simulation, and optimization. The authors have also studied the Greenfield
hospital in Singapore and then used DTs technology to visualize the operational logistics
supply chain. The authors in [71] have explored the potential of using DTs technologies to
manage the COVID-19 pandemic by supporting flexible decision making. The authors have
discussed various challenges, including modeling and data-driven analysis for pandemic
management and modeling and predictive analysis. Finally, the authors have introduced a
framework using DTs and AI tools to improve the control of the COVID-19 pandemic.

Table 3 describes a comparison of existing work and the present work concerning the
STS use cases, including blockchain, DTs, collaboration, DT, data analysis, IoT, and the
three selected transportation use cases; logistics and railway.
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4.2. Selective Use Cases for Smart Transportation Industry

Today, many transportation systems connect their information systems using new
technologies, including IoT, big data, DTs, and AI. DTs are used to visualize the transporta-
tion infrastructure to support collaborations for accelerating the transportation process.
In particular, DTs represent the physical assets in the transportation system to under-
stand the assets’ status and model their performances. They are continuously updated in
real-time from multiple transportation systems, including sensors, vehicles, CCTV, peo-
ple, road networks, etc. These DTs can be collaborated by sharing their operational data
to provide insightful information about the assets throughout the lifecycle within the
transportation system.

Consequently, DT collaboration is considered the backbone of the transportation
system. It provides up-to-date information to implement the approaches based on pre-
dictive analytics for making decisions. In particular, decisions will be taken based on the
predicted potential risks within the transportation system to avoid delays and optimize
transportation asset performance.

This section introduces two use cases of smart transportation that use blockchain-
based collaborative DTs: (1) smart logistics and (2) railway predictive maintenance. The pro-
posed framework, data-driven blockchain-based collaborative DTs, could be applied in
actual use cases for smart transportation. A set of concepts can be discussed using the
proposed framework for designing smart transportation use cases, which are the need
for DTs collaborations, DLT, predictive data analysis, and distributed consensus decision
making. To guide this research work, we stated these five questions derived from the
objectives of the proposed framework.

1. Why do we have to use collaborative DTs in this use case?
2. What are the data schema and requirements which DTs will represent?
3. How could a DLT be used for data sharing to support collaborative DTs?
4. How can the DTs-based operational data intelligence help gain insight to enhance the

prediction about the potential risks?
5. How could a distributed consensus algorithm be used to ensure a consensus of the

decision-making based on the predicted potential risks?

4.2.1. Smart Logistics

In this subsection, an overview of smart logistics is presented together with a detailed
mapping of our proposed framework.

Overview

In the supply chain context, the transportation process refers to the movement of
products from one location to another to deliver them. Smart logistics makes supply
chain transportation more effective and efficient at each step. This means that logistics are
becoming increasingly challenged, and the transport of large items is becoming a huge issue.
The efficient logistics system can purchase, transportation, and store the raw materials
until they are delivered, making more profits for the business and ensuring reasonable
customer satisfaction about timely delivery. The connected devices in the transportation
system are used to visualize the logistics process and track the movement of the products.
For example, the sensors within the containers are used to track each stage of shipment,
weather conditions, temperature, and humidity to give companies real-time visibility of
the product movement through the logistics life cycle.

One of the state-of-the-art research works of logistics collaboration, Jabeur et al., has
addressed the problem of collaboration within logistics [72]. The authors have proposed
a multi-agent-based solution for collaboration between logistics objects. Three types of
logistics applications could be considered: shipment alert, dynamic routing, and predictive
maintenance. Dynamic routing in logistics operation is the key to a successful logistics
company. Therefore, optimizing the dynamic routing is essential in logistics for the most
efficient routes allocated to delivery fleets. Due to the COVID-19 pandemic, logistics
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companies face challenges providing high logistics services for customers who prefer a
safer and faster delivery method rather than venturing out for the same.

Consequently, the dynamic route plays a vital role in ensuring online deliveries to the
quarantine areas. This motivates us to discuss the dynamic routing scenario within the
logistics use case concerning our proposed framework. Based on this, Figure 7 depicts the
high level of mapping of our proposed framework to logistics systems. Further details are
elaborated following:

Figure 7. Blockchain-based DTs collaboration for logistics system.

DTs Collaboration in Logistics

Recently, Logistics 4.0 technologies have emerged as one of the dimensions of Industry
4.0, including smart robotics, self-driving vehicles, and automated systems for managing
the movement of products among warehouses and factories. Logistics 4.0 solutions aim to
create interoperable and connected logistics chains to become more innovative. The logistics
process generates big data generated by tracking the movement of goods. According to
the Industry 4.0 principles, Logistics 4.0 can be described as collaborative cyber-physical
systems. Therefore, collaborative digital twins are used to represent the logistics data.
The DTs-based logistics data is used for potential logistics optimization by monitoring
physical assets and other equipment to eliminate downtime within the logistics system.
The physical asset could be a fleet, truck, ship, container, robots, warehouse, and people
with a set of sensors that can collect real-time data and operational status about the logistics
supply chain. The digital logistics supply chain twin is used for end-to-end product tracking
and identifying issues by visualizing goods’ digital movements over time. Furthermore,
the decentralized digital logistics supply chain twin comprises the DTs representing the
geographical logistics warehouses, logistics centers, and participants.

In particular, the data generated from the elements within the logistics supply chain
could be represented in DTs. The collaborative DTs are adopted to visualize the logistics
supply chain, which could track products and provide end-to-end service from unloading at
the quayside to shipping goods to their destinations. The proposed data-driven blockchain-
based collaborative DTs framework will provide smart logistics service for a faster flow of
goods, real-time analysis of comprehensive supply chain data, better synchronization of
dynamic routing logistics processes, unbroken shipment tracking to improve distribution
planning and delivery reliability.

Data Schema and Requirements for DTs

The collaborative DTs model consists of three components; (1) digital model, (2) data
analytics, and (3) knowledgebase. The logistics data within the digital supply chain is
generated from sensors attached to containers, fleets, warehouses, and robots to capture
real-time data about logistic items and report on-time data about environmental changes.
For warehouse management, the sensors monitor the weather, e.g., temperature and
humidity in the warehouse for storing safety items. For containers, sensors are used to
monitor the environmental conditions during deliveries. For fleet management, sensors
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attached to ships, trucks, buses, airplanes are used to collect the operating parameters of
the fleet. Finally, for logistics workers, sensor data are used to track staff’s physical safety.

DLT and Logistics Operational Data Sharing

The complexity of the logistics system comes from the distribution of goods, from raw
materials to finished products. The logistic supply chain is divided into hundreds of
geographically distributed stages globally, among multiple warehouses and logistic centers.
These distributed logistic processes have massive data, making monitoring and analyzing
targeted actions in response difficult. Another relevant aspect of complexity is represented
by the security, integrity, sharing, and interoperability of logistic data sources. Conse-
quently, DLT can implement collaborative DTs that allow data sharing among multiple
DTs in a decentralized supply logistic chain. Therefore, the ledger-based data sharing
for DTs collaboration will be considered for DT data, sharing data, and collaboration-by-
communication within logistic participants.

Data-Driven DTs Based Predictive Analytics

With dynamic routing, logistics systems have a flexible and powerful scheduling
capability to deliver the products to the customers on time to keep their reputation and
quality of services aligned with the customers’ stratification. The logistics companies can
use real-time information such as weather or construction delays to change carrier routes
on the fly. They can plan for future shipping routes based on collected historical logistics
operational data. They can also increase their profits by taking place the dynamic routing
to continue delivering a flawless shipping experience.

To assess the potential risks within the decentralized logistics manufacturing (e.g.,
whether it is harmful to the products such as medicines and frozen food), a prediction
is needed to estimate how long a refrigerated truck will require to arrive at one or more
processing plants. Therefore, dynamic routing is essential to direct the fleets based on
past experiences and real-time tracking of the on-road performance of the fleet. When
any problem occurs due to weather or roadblocks, the dynamic rerouting feature helps
decision-makers suggest alternate and efficient routes for delivery. Consequently, many
variables are operating within trucks that are needed to be monitored (i.e., temperature
and humidity inside the containers, driver’s road time, and the route conditions). The data
generated from the elements regarding the refrigerated truck could be represented into DTs
at hierarchical levels: (1) With local DT at each container, (2) intermediate more powerful
DTs on the refrigerated truck at the network edge, and (3) much more powerful when
DTs represent the logistics units in the cloud. The refrigeration unit’s collaborative DTs
system can predict the product state and queue length using the DT-driven operational
data. Based on these predictions, the decision can be made in a consensus-based manner to
direct the truck to the best plant to avoid potential risks.

Consensus-Based Decision Making

A consensus is a decision-making process in which members of a group of logistics
centers agree to develop and support decisions to speed up the logistics supply chain
considering mutual logistics traceability. Using collaborative DTs provides a better under-
standing of potential risks for logistics supply chains and facilitates consensus-building
among participants involving the decision-makers. In doing so, many nodes involved
in logistics information that is represented in DTs are divided into multiple consensus
sets. The consensus mechanism which could be used is the PBFT algorithm. According to
the PBFT algorithm, some amount of fault (damaged objects, hijacking, and theft, climate
change, fleet failure, CCTVs failure, staff’s physical safety, transportation conditions ) can
be tolerated without affecting the integrity of the network. The PBFT algorithm is used
in Hyperledger in the transaction approval process to avoid malicious decisions among
participants with logistics supply chains [73].
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4.2.2. Railway Predictive Maintenance

In this subsection, an overview of predictive railway maintenance is presented together
with a detailed mapping of our proposed framework.

Overview

Railway 4.0 is one of Industry 4.0 dimensions using new digital technologies including
big data, IoT, DT, AI, and cloud computing [1,74,75]. The railway companies compete to
provide high and attractive service to the passengers by utilizing automation and emerging
technologies. One of the significant challenges that the rail industry faces is avoiding
delays to meet passengers’ satisfaction and maximize their profits. To do that, the rail
companies start to deploy predictive maintenance applications to early diagnoses the fault
and perform maintenance actions.

Nowadays, railway companies use DTs to improve railway performance by utilizing
railway DT-based operational data analysis intelligence. In particular, they use the DTs col-
laboration to gain improved information visibility and better understand the past, present,
and future predictions. With the DT-based prediction of the potential risks, the decision-
makers in rail companies can support the transformation of rail track maintenance and
deliver safe, reliable, and resilient service.

As the result of digitalization in the railway sector, blockchain has been adopted to
provide security, scalability, traceability, transparency, and decentralization [66]. However,
the adoption rate of the blockchain can be seen as slow due to the lack of technology stability,
maturity, and developers’ skills. Despite that, the combination of blockchain and DTs
technologies in the railway sector has a beneficial role in providing high quality and safe
service by (1) representing the complete railway supply chain, (2) automating of internal
accounting process and passenger traveling, (3) Conducting contracts between machines
and objects, and (4) monitoring the railway assets including station, train, track, switches,
point machine, and sensors, and (5) managing signaling, passenger information systems,
physical flows, ticketing, and goods delivery. One of the biggest challenges for the rail
companies is making their stations service with a minimum maintenance cost by avoiding
unnecessary expenses for the maintenance company. As the late railway maintenance can
result in failure and additional costly repair, using simulation by utilizing DTs capabilities,
predictive data analysis, and blockchain technologies can capture the early fault and notify
the decision-makers to take the proper actions. Based on this, Figure 8 depicts the high
level of mapping of our the proposed framework for fault diagnosis in railway systems.
Further details are elaborated following. Furthermore, Table 4 summarizes a comparison
of some current research work in predictive maintenance.

Figure 8. Blockchain-based DTs collaboration for railway.
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DTs Collaboration in Railway

The rail sector is a complex network of assets and systems that come together to enable
people and goods to travel safely, in a timely way at various speeds and distances. The rail
assets are including station, process, rail system, and individual assets such as train, switch,
sensors, etc. These rail assets could be represented in interoperable and collaborative DTs to
show high visibility of the rail supply chain. The DTs representing the rail supply chain of
the transportation industry can collaborate to diagnose the railway’s fault, whether caused
by hardware failures (e.g., rail, train, switch) or weather conditions that affect the rail, for
example temperature and humidity. The DTs collaboration can understand each DT status,
interact with other DTs, learn from other DTs, and share common semantic knowledge
across geographical railways.

Data Schema and Requirements for DTs

In the rail industry, the physical assets (e.g., trains, track, switches, point machines)
generate a vast amount of machine data from sensors such as temperature, light, vibra-
tion, and GPS. The rail data can be used to identify potential railway failures. To do
so, the physical rail assets are being monitored by collecting their sensory data. As DTs
represent the railway industry, the DT model is defined based on the data required for
data-driven analytics for fault diagnosis, holding data fields that could be fitted in the
predictive data models. Consequently, the collaborative DT model is defined based on
the basic DT model, and it is consists of three components, including digital model, data
analytics, and knowledgebase [78]. These components are integrated to investigate the DTs
collaboration, locating the fault within the rail industry.

The Digital model of the operational data contains semi-structured content, e.g., JSON
and XML. According to the domain of the rail industry, the data is generated from rail assets
such as station, process, train, and weather sensors. For example, the rail data describes
the physical system of the rail station, and the weather sensors are used to monitor climate
change. Their data represent the weather variables, including temperature and humidity.
Furthermore, the model is used to semantically model the data, reflecting the DT features
and their relations using object-oriented concepts. Some semantic work could describe the
relationships between the models by using model-to-model, e.g., OOP, RDF, and OWL in
the case of the complex DT systems with heterogeneous DTs types.

DLT and Railway Operational Data Sharing

Distributed ledgers provide a novel technology for multi-party data sharing that
emphasizes data sharing and integrity. To implement a collaborative DTs system that allows
data sharing among multiple DTs in a decentralized railway supply chain, we consider
DLT. The proposed framework for DLT-based architecture for DT data sharing to support
DTs collaborations [41] could be extended to adopt DTL for collaborative DTs. Regarding
data sharing, both the communication between lifecycle parties and the bidirectional
communication between the DT and its real-world railway asset counterpart need to
be considered. Therefore, the proposed ledger-based data sharing for DTs collaboration
should consider: (1) DT data, (2) sharing data, and (3) collaboration-by-communication.
Regarding using the DLT for the rail industry, each ledger should share data for the rail
station with all parties.

Data-Driven DTs Based Predictive Analytics

Predictive data analytical models are used to support decision-making by utilizing
the intelligence of the DTs-based operational data. For instance, data analytics can be used
within DTs’ interaction and communication to describe, diagnose, predict, and prescribe the
behavior of the physical rail system for fault diagnosis. The outcome of the data analytics
will be used as inputs for the consensus algorithm to make the best decision for abnormal
data or warn the decision-makers in case of potential failure over the rail industry supply
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chain. The knowledgebase also contains the set of knowledge learned through relevant
machine learning techniques from historical maintenance.

The component of data-driven ledger-based collaborative DTs for predictive analytics
in our proposed framework can perform the potential failure risk using rail-based opera-
tional data including heterogeneous data sources (i.e., sensor data and historical data) [79].
To do so, the offline predictive model will be trained using ledger-based historical DT
operational data. For the online predictive model, the developed predictive model (i.e.,
classifier) could be evaluated to predict the future faults with the railway. The outcome
of the data analytics will be used as inputs for the consensus algorithm to make the best
decision for abnormal data or warn the decision-makers in case of potential failure over
the rail industry supply chain.

Consensus-Based Decision Making

The consensus algorithms will be used to provide the agreement of the diagnosed
fault provided by collaborative DTs in the railway. This agreement will be reached locally
utilizing the interaction of deployed DTs within a railway and then globally using the
running database within the distributed ledger, which synchronizes the updated DTs’
status within the supply chain [54]. The average consensus about the fault within the
rail (e.g., fleet, train, station), which relies on a belief consensus technique, will advise the
decision-makers about the fault within the rail industry supply chain.

5. Discussion, Validation, and Future Direction

In this section, we discuss the validity of our proposed framework concerning the
requirements and future directions.

5.1. Validation of the Proposed Framework

This section validates the proposed framework, which aims to apply a data-driven
blockchain-based for DTs collaboration. For this purpose, we also consider who the afore-
mentioned high-level requirements were fulfilled by using the industrial technologies and
informative concepts. Table 5 shows the overview of mapping the industrial technologies
to the identified requirements for the proposed framework. For the data collection, IoT
technologies are used to allow various data sources, such as physical things like devices,
machines, people, etc. These collected data are stored into DTs, which are considered
as the image of physical things. These data are also frequently updated to inform the
current status of the physical things. To consider this rapid update of the physical things,
the concept of timely updating can be offered by using DTs technology. DTs technology can
provide an AI-based system for the data analysis requirement by continuously updating
data to give timely predictions that help the decision-making process. Furthermore, the DTs
technology has been adopted for its dynamic simulation capability to understand what is
currently happening on the physical asset and what could happen in the future.

Besides that, the update frequency of the data needs to be exchanged among the
DTs network in a secure, trust, authenticated, and transparent process. Furthermore,
collaboration means sharing and exchange information among entities and share tasks to
act accordingly. Blockchain technology is beneficial for DTs collaboration to (1) maintain
the trust among peer to peer network [10], which DTs represent, (2) allow traceability
across the entire DTs network [7], (3) provide insightful consensus-based decision-making
process [80], and (4) deliver efficient solutions by utilizing the decentralization feature of
blockchain technology [81]. Additionally, with a decentralized infrastructure of physical
nodes represented in DTs, the blockchain particularly, DLT technologies can help relieve the
risk of the point of failure. The blockchain and DLT technologies can overcome the safety
and security that have prevented DT initiatives. The decentralized blockchain network
can help trust DTs with a data track and digital identity. For a reliable decision-making
process, the Consensus algorithms are used to improve the DTs collaboration in terms of the
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agreement of the majority of nodes about the potential risks to notify the decision-makers
within the distributed manufacturing systems.

Table 5. Validation of the proposed framework.

Req. No Requirement Enabled by

R1 Data collection IoT technology

R2 Data update frequency DT technology

R3 Data analysis AI techniques

R4 Simulation capabilities DT technology

R5 Data exchange Blockchain
DLT technology

R6 Authentication Blockchain technology

R7 Visibility and transparency Blockchain technology

R8 Distributed decision
making capabilities Consensus algorithms

R9 Decentralization Blockchain
DLT technology

Validation of the Smart Logistics Use Case

A usual way to assess the validity of the conceptual frameworks is to define a set of
criteria and then compare the capability of the proposed framework with the specified
criteria. The criteria used above (see Table 5) may serve as a starting point. As the proposed
conceptual framework implementation is a work in progress, the smart logistics use case
scenario has been obtained to be validated [72]. Concerning that the proposed framework
is implemented-dependent, Figure 9 describes the workflow of blockchain-based DTs
collaboration in the logistics system. Being implementation-dependent, the participants
in the blockchain network of the logistics system (i.e., represented in DTs) are detailed
as follows:

• The factory is responsible for transporting the loads to the suppliers. Each factory
DT checks the smart contact to meet the load requirements. Then factory DT has all
the data about the loading status, certificates, suppliers’ locations, and the number
of batches written into the ledgers. Once the factory sends the load to the supplier,
the blockchain network is updated.

• The supplier is responsible for transporting the load to the warehouse. Each supplier
DT has frequently updated data about the loaded products, warehouses locations,
and shipments date. The collected data about the products and shipments are written
into ledgers, and then the blockchain network is updated.

• The logistics operator is responsible for updating all necessary records, including a
packing list, order number, batch number, production data, etc. Each logistics operator
DT has frequently updated data about the corresponding shipment data recorded
by the operator. The recorded data are written into ledgers, and then the blockchain
network is updated.

• The long haul carrier is used to carry the heavy shipment and transport them to the
warehouses. Each carrier DT checks the smart contact to meet the rules of shipment
transportation. As a result, the carrier DT frequently has the updated bill of loading,
shipment details, the destination warehouses location, and diver details. The shipment
data are written into ledgers, and then the blockchain network is updated about the
shipment movement track.

• The warehouse is used to store the shipments. Each warehouse DT has the data about
the stored products, including location, temperature, humidity, product items, etc.
These updated warehouse DT data are used to check the product storing conditions
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concerning the smart contract rules to avoid product damages. The warehouse DT
data, including the product quantity, are also used to check the smart contract for
new orders. The stored product data are written into ledgers, and then the blockchain
network is updated about the stored products.

• The delivery process is responsible for delivering the orders to the customers. Each de-
livery DT has updated data about the warehouse location, customer address, routing
instruction, packing details, driver details, bills, etc. The delivering product data are
written into ledgers, and then the blockchain network is updated about the products
being delivered.

• A customer is a person who orders the product and who receives it. The customer DT
has the data about the customer delivery address, customer ID, etc. The smart contract
will check the delivery data based on the customer data, and then the delivering
information is recorded into the ledgers. Once the delivery process is successfully
completed, all the blockchain network participants are updated about completing the
delivery process.

• The decision-making unit is responsible for deciding in case of potential risk for the
products during the loading, storing, and delivering processes.

Based on the criteria above and the participant in the blockchain network, the validity
of the proposed conceptual framework are discussed as follows:

Tracking. Blockchain network allows efficient tracking of the changes along the logis-
tics process. Using the combination of emerging technologies like the blockchain, AI,
and DTs can improve the productivity of the logistics process with effective tracking.
The proposed framework can incorporate blockchain with DTs to get accurate data
about every step in the shipping process. Once the products are loaded and shipped,
the logistics participants’ DTs collaborate to exchange the logistics data. The logistics
data is stored along with the information on the product movement [65]. Therefore,
the blockchain network can provide the participants with the logistics by-product data
like showing the person handling the product at that time. For example, the logistics
system can track the product damage using the ledger-based logistics records in case
of product damage. The smart contracts are settled, the logistics data will be stored
in the public ledgers. All logistics records are stored to track the changes (i.e., what
is the change, why it is done, and who made the changes). Furthermore, sharing
information about logistics tracking with the customers across the blockchain network
can increase the transparency of the logistics system.
Delivery. To assess the potential risks within the decentralized logistics manufactur-
ing delivery process (e.g., whether it is harmful to the products such as medicines
and frozen food), a prediction is needed to estimate how long a refrigerated truck
will require to arrive at one or more processing plants. The proposed framework
can incorporate blockchain with AI and DTs to predict the potential risks in advance
and then take the appropriate action like routing redirection [64]. On the other hand,
the proposed framework can improve the secure delivery process by reducing fraud
and theft issues. To do this, the smart contracts check the detailed rules, such as
requiring government-approved photo IDs to access the goods for pickup or delivery.
Performance monitoring. Based on the components of the proposed framework
(see Section 3.2), the predictive data analysis component is used to monitor the
performance of the logistics process by analyzing the product data which are collected
from logistics participants DTs including factory DT, supplier DT, long haul carrier DT,
logistics operator DT, warehouse DT, and delivery DT. These DTs are collaborating
and interacting to feed the learning models to predict the potential risk of the product,
such as harmful product, damage, theft, and so on. The decision is making based on
the consensus to avoid the risk such as logistics process delay.
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Figure 9. The workflow of blockchain-based DTs collaboration for logistics system.

5.2. Future Directions
5.2.1. Security and Privacy

The security and privacy associated with DTs are challenging within smart transporta-
tion because of the massive amount of data and the risk of sensitive data created from
smart transportation systems. Therefore, IoT devices should analyze DTs data locally using
federated learning and then share only the model to the blockchain instead of sending the
raw data. Thus, the issue of security can be solved by using blockchain technology, while
privacy can be solved by using federated learning. The combination of both techniques can
significantly enhance the security and privacy of DTs in transportation systems.

5.2.2. Connectivity

With the growth of smart devices in smart transportation systems, connectivity is still
a challenge for these smart devices to perform the goal in real-time. The massive number
of smart devices in smart transportation needs for advanced communication technologies
like Beyond Fifth Generation (B5G) or Sixth Generation (6G). If any smart devices get
disconnected, blockchain may help devices borrow data from neighboring devices to keep
the transportation system working efficiently. Running machine learning at the edge may
ensure full connectivity, high accuracy and prevent missing data.
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5.2.3. Global Logistic Networks

DTs in logistic networks play a vital role in improving logistics such as highways,
railways, streets, oceans and smart cars can create their data from surrounding resources
and make their map accordingly. They can then share their data with others to reduce traffic.
The shared data can be traffic speed, parking, road closures, etc. and blockchain technology
collaborates with them quickly in the decentralized network. While federated learning
can improve processes locally and sharing only the model, this will help solve blockchain
storage issues and resources. Therefore, digital twins of smart cars can collaborate in the
real-time location of a specific car or people with the help of blockchain and federated
learning for creating compelling, optimize, and efficient logistics.

5.2.4. Timing, Speed, and Response

Beyond logistics and transportation, DTs timing and speed are challenging. Timing
and speed can lead to several changes in logistics and transportation. First, time improves
decision-making and response of taking decisions and taking actions for the customer
service demand, which needs high accuracy and fast responses. Businesses based on
transportation and logistics do not want data, but they want visibility to be quick and timely.

5.2.5. Packaging and Containers in Transportation

In logistics, most of the transportation is in the packaging form. Therefore, the devel-
opment, management, and monitoring of containers and packaging face many logistics
sector challenges. Currently, due to COVID-19, increasing demand for containers and
packaging can be noted due to growth in E-commerce. Furthermore, varieties of packaging
also need to be taken into consideration. These results significantly reduce operation
efficiency and waste due to poor utilization. A container model can be created using DTs
in conjunction with computer vision, and such problems can be automatically detected.
Historical information storage in the blockchain of the containers moments for starting
DT can influence decision-making about container status. The decision-making should be
repaired, used, and maintained as a fault in the container. DTs with blockchain technology
can develop a lighter, more robust, and eco-friendly environment for packaging goods and
managing containers effectively and efficiently.

5.2.6. Decision-Making Process

The proposed framework work could be extended by integrating two levels of the
decision-making process to derive alternative system configurations. The decision-making
process levels are 1) decision to avoid the potential risks and 2) dynamic planning to
reconfigure the system in cases of unexpected events. For example, in the case of the
railway transportation industry, the system can predict failure then diagnose and trigger
maintenance by using IoT. In another instance, in the transportation logistics industry,
the system can predict the potential risks of the product state within a truck. Based on
these predictions, the decision can be made in a consensus-based manner to direct the truck
to the best plant to avoid potential risks.

6. Conclusions

This conceptual framework shows how blockchain technology-empowered DTs col-
laboration in smart distributed manufacturing. DTs collaboration supports the interaction
mechanism to understand the DT status, sharing a goal, exchange information, interacting
with each other, mutual learning, and mutual adaption. Based on the literature, we present
the challenges that DTs collaboration is suffering and then how blockchain technology
solves these challenges. The proposed framework can improve DTs collaboration and
analysis data in real-time. Furthermore, we discuss how the conceptual framework can
be applied in smart transportation, i.e., smart logistics and railway predictive mainte-
nance. Finally, we highlighted the future direction to guide interested researchers in this
interesting area.
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Abstract: With the rapid development of mobile and wireless networking technologies, data
has become more ubiquitous and the IoT (Internet of Things) is attracting much attention due
to high expectations for enabling innovative service, efficiency, and productivity improvement.
In next-generation manufacturing, the digital twin (DT) has been proposed as a new concept and
simulation tool for collecting and synchronizing real-world information in real time in cyber space to
cope with the challenges of smart factories. Although the DT is considered a challenging technology,
it is still at the conceptual stage and only a few studies have specifically discussed methods for its
construction and implementation. In this study, we first explain the concept of DT and important
issues involved in developing it within an IoT-aided manufacturing environment. Then, we propose
a DT construction framework and scheme for inputting data derived from the IoT into a simulation
model. Finally, we describe how we verify the effectiveness of the proposed framework and scheme,
by constructing a DT-oriented simulation model for an IoT-aided manufacturing system.

Keywords: IoT; cyber-physical systems; digital twin; simulation approach; smart factory

1. Introduction

With the rapid development of mobile and wireless networking technologies, the Internet of
Things (IoT) has turned the vision of a more connected world into reality by emerging volume of data
and numerous services offered through heterogeneous networks. The IoT, also called the Internet of
Everything or the Industrial Internet, is a new technology paradigm envisioned as a global network of
machines and devices capable of interacting with each other [1], realizing innovative service, efficiency
and productivity improvement.

Unlike other excessive marketing terms in the information technology industry, the IoT is now
widely accepted as a technology already having a major impact on industrial manufacturing systems.
The IoT has the potential of drastically changing the competitive domain in various industries.
Gartner [2] predicted that by the year 2017, 8.4 billion connected things—up by 31 percent from
2016—will be in use worldwide and the figure will reach 20.4 billion by the year 2020. According
to IDC [3], the global annual spending in 2017 on the IoT was estimated to exceed US$800 billion,
which was an increase of 17% as compared to the previous year. By 2021, the figure is expected to
reach US$1.4 trillion. As a representative movement of the application of the IoT to the manufacturing
industry, the German government proposed the Industrie 4.0 strategy in 2011. Immediately thereafter,
countries around the world, including the Industrial Internet Consortium established in the United
States, the “Made in China 2025” plan announced by the Chinese government, and the Robot
Revolution Initiative jointly initiated by the Japanese industry, government, and academia, have
launched their own IoT manufacturing strategies.
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When referring to the IoT and Industrie 4.0, some concepts and terms, including big data,
cyber-physical systems (CPS), and digital twin (DT), have recently appeared and evolved. Regarded as
the convergence of the physical and digital worlds, a CPS implies a system that includes gathering data
in the real world (physical space) through the IoT, automatically analyzing the data using large-scale
data processing technologies in cyberspace and feeding the results back to physical space to solve
problems in the real world. Each CPS includes smart machines, storage systems, and production
facilities that can exchange information with autonomy and intelligence, make decisions and trigger
actions, and control each other independently. To implement a CPS in industry, the virtual simulation
of products and processes before and during operations is a key aspect of achieving critical goals for
product design and production flexibility [4]. In this context, there is a need for a new concept or
methodology to address these new issues in the CPS environment.

The concept of twin (which later evolved into the concept of DT) was initially proposed and
adopted by NASA for the monitoring and optimizing of the safety and reliability of spacecraft [5,6].
Recently, the scope of DT application has extended beyond the scope of aerospace equipment to the field
of manufacturing, including product life-cycle management (PLM). The DT has been proposed as a tool
for collecting data from the IoT and synchronizing real-world information in real time on the cyber
side. This tool facilitates the cyber-physical integration of manufacturing, which is a critical bottleneck
to achieving the next-generation manufacturing concept of smart manufacturing [7]. The research
firm, Gartner, highlighted the DT as number four in the top 10 strategic technology trends for 2018 and
predicted that these trends would mark the course of the next decade [8].

Although the DT is considered a challenging technology, it is still at the conceptual stage [9] and
only a few studies have specifically discussed methods for their construction and implementation in
the manufacturing domain. Yang et al. [10] focused on simulation experiments with real-time data and
constructed a prototypical DT-driven simulation using data derived from a distributed train model
equipped with sensors. Zhang et al. [5] presented a DT-based approach to production design and
optimization. In [5], DT-based simulation was proposed and utilized for the individualized design of
a hollow glass production line. These previous studies provided some conceptual frameworks and
case studies that guide the approach to DT implementation. However, issues such as the reception of
real-time data from the IoT, as well as the conversion and inputting of the data into a simulation model
have not yet been completely solved. Even though some general roadmaps and frameworks have been
proposed, it is still not clear what kind of data and information must be integrated. When constructing
a DT, a specific framework to guide the process of extracting the necessary data from the physical
system and a scheme for entering these data into the cyber-side simulation model are required.

In response to these issues, in this study, we first explain the concept of a DT and highlight the
important issues of developing a DT remaining in an IoT-aided manufacturing environment. Then,
we propose a framework for the construction of a DT and a scheme for inputting data derived from
the IoT into a simulation model. Finally, we discuss how we verified the effectiveness of our proposed
framework and scheme by constructing a DT-oriented prototype simulation model for a CPS-based
manufacturing system.

2. Simulation Approach and Digital Twin

Simulation is a method to replicate a real-world system (or conceptual scenarios) on a computer,
conducting experiments to understand the behavior of the system, and/or evaluating various strategies
for the operation of the system. Simulation-based optimization has been widely implemented and
validated in various industries.

In the IoT environment, an enormous amount of data can be collected in real time from the
network of sensors and devices. However, only less than one percent of the data is being utilized
today [11]. Additional value can be obtained by using the remaining 99 percent of valuable IoT data
for predictive maintenance or optimizing operational management. On the other hand, traditional
simulation approaches have limitations in processing large amounts of real-time data. Novel simulation
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techniques are required to enhance scalability and permit the real-time execution of a largescale
IoT environment.

From the perspective of the Industrie 4.0, the DT can be considered as a simulation
approach utilizing data collected from sensors attached to industrial equipment used for smart
manufacturing [10]. Using the real-time data generated from the equipment, a computer-based
real-time simulation can model events, such as part locations and machine states, in the physical world.
This simulation model acts as a twin of the real world in cyberspace and behaves in the same way as
the physical space.

Different from the traditional simulation architecture, the simulation in DT is used as a validation
tool for optimizing solutions rather than only visually displaying the simulation of random events [5].
Although the concept of the DT was born in the field of aerospace engineering for the re-engineering
of structural life prediction and management, the concept has also been adopted in manufacturing
contexts. The DT paves the way for cyber-physical integration and serves as a bridge between
the physical world and the cyber world, providing manufacturing enterprises with a new way
of implementing smart production and precision management [7]. A DT consists of a virtual
representation of a production system that is able to use sensory data, connected smart devices,
mathematical models, and real-time data elaborations. The DT can be run on different simulation
disciplines that are characterized by the synchronization of virtual and real systems [9]. With its
capabilities of conceptualization, comparison, and collaboration, the DT frees us from the physical
realm, where humans operate relatively inefficiently [12]. The concept of the DT and its relation to the
CPS considered in this study are shown in Figure 1.

In industrial practice, the definition and understanding of DT may be different by industry.
For example, General Electric focuses on forecasting the health and performance of their products over
their lifetimes [6], whereas some product developers regard DT as a set of augmented reality (AR)
tools and integrate DT with other computer-aided design software to improve product development
efficiency. By integrating these definitions of DT in various industries, we think that a DT should
include the functions of real-time synchronization, prediction, and testing. In order to achieve these
three functions, the DT should be executed separately in three modes, that is, synchronization mode,
evaluation mode, and experimental mode.

Figure 1. Digital twin with a cyber-physical system.

A DT is realized through simulation software, hardware, and data transmission and processing
techniques in addition to other components. From the perspectives of simulation granularity and scope
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of analysis, a DT can be classified into three levels from the bottom to the top: phenomenon-based,
device- and product-based, and social and process-based. Figure 2 shows a hierarchical structural
diagram of a DT.

Figure 2. Hierarchical structure of digital twins.

In the conventional simulation model, stochastic or deterministic parameters are assigned to
a specific simulation model all at once and the results are analyzed on the basis of these data. The model
itself is usually fixed and seldom changed. However, manufacturing and logistics in the real world
are affected by their internal and external environments, so their characteristics and functions may
change frequently and quickly, possibly leading to an increasing gap between the simulation model
and reality. Contrary to this weakness in conventional simulation models, the DT always uses the
latest information to synchronize the mirroring of real-world behaviors so that the virtual models can
be closer to reality and perform more complex simulations.

With the utilization of DTs, it is possible to visually check and inspect the states of manufacturing
plants even from remote areas. Furthermore, by virtualizing the processes from product design to
production, operation, and maintenance, the DT integrates the whole factory into the simulation
models in cyberspace, facilitating the control and management of the factory in physical space to
achieve efficient smart manufacturing.

3. Digital Twin and Monitoring Systems

The DT may not be a new concept if we only consider it as a tool for monitoring things and
behaviors in the real world through the digital world, because digital mock-up technologies based on
monitoring systems and 3D models are being widely used. However, with technological innovations,
such as IoT, artificial intelligence (AI), and big data, the necessity for DTs is increasing more than ever
and their applications continue to expand.

Even though a monitoring system may observe movements in the real world, it cannot be used
to predict the occurrence of a failure or irregularity. Moreover, it cannot be used for hypothetical
experiments or predictive analytics but only for gathering data from the real world and compiling
and displaying them in the digital world. It does not provide a mechanism for feeding the decision
support information back to the real world to allow for optimization.

Addressing the above problems, the DT is a simulation method that can be used for evaluation
and optimization. As shown in Figure 1, the DT continuously acquires data from a data lake and
incorporates the data into a real-time simulation model. In real time, the data lake gathers and stores
data from machines and sensors connected to industrial equipment in the real world. After the DT
processes and analyzes the data, the results are fed back to physical space to optimize the real-world
system. The DT is a concept that applies a CPS to the field of manufacturing. A DT compares
and analyzes sensory data obtained from the IoT with computer-aided design data derived from
a product design, and then incorporates the data into a module inside a synchronous simulation
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model for monitoring. Compared to traditional monitoring systems, the DT not only represents
the real world but also makes predictions, provides solutions, and supports decision-making before
a failure or anomaly occurs. Thus, the DT simulates possible future events. As a result, it can prevent
unplanned shutdowns and their incurred costs. The DT has been listed by major industrial equipment
manufacturers, such as General Electric and Siemens, as an important technology for supporting the
next generation of Industrie 4.0.

4. Framework for Constructing Digital Twin-oriented Simulations

As mentioned above, the DT is still at the conceptual stage and only a few studies specifically
mention model construction and implementation methods. In this paper, we propose a framework for
constructing a DT in an IoT-aided manufacturing environment. The proposed framework is shown
in Figure 3.

In this study, we propose that a DT should include the functions of real-time synchronization,
prediction, and testing. To perform these three functions, the DT should be executed separately in three
modes, which are synchronization mode, evaluation mode, and experimental mode. The evaluation
mode and the experimental mode are actually provided in conventional simulation models which are
often used for what-if analysis and optimization. Unlike the evaluation mode and the experimental
mode, the synchronization mode is a mode unique to the DT. The DT is constantly updating of the
simulation model with data being drawn from the IoT.

As shown in Figure 3, the first step in building a DT model is to design the concept. Next, similarly
to the typical process of constructing a conventional simulation model, after performing the input
analysis, a simulation model using stochastic data is constructed and validated. This simulation model
can be used for the evaluation mode and experimental mode for prediction and optimization. After
constructing a model using stochastic parameters, a simulation model is built for the synchronization
mode. To use the real-time data of the IoT to synchronize the physical world, it is necessary to convert
the stochastic parameters in the model into deterministic parameters to reconfigure the model. We
can use the synchronization mode to monitor behaviors in physical space and save the historical data
gathered from the IoT. Those historical data can be converted into stochastic distributions assigned to
the simulation models of the evaluation and experimental modes, of which the results are fed back to
the model of the synchronization mode.

 
Figure 3. Framework for construction of a DT-oriented simulation model.
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5. Proposal for Data Input Scheme for Simulation Model Construction of a Digital Twin

Generally, in constructing a simulation model, data inputs with randomness are employed to
model the uncertainty events. When entering the parameters into a simulation model, instead of
directly inputting the observed data, the probability distributions estimated from the observation
value are utilized, and the model is executed. Distributions such as the triangular distribution and the
normal distribution together with the associated parameters are specified as the input of the simulation
model, especially for processing time and interval time, and so on.

Naturally, entering parameters with randomness into the model also leads to the randomness of
execution results (outputs). Therefore, to obtain statistically significant results, it is necessary to perform
statistical analyses on the repetitive execution results of the model. However, when constructing the
synchronization mode (the real-time simulation) in DT, to express the behavior in the physical world
as it is, the simulation needs to be carried out at the actual-time progressing speed. Therefore, it is
necessary to avoid entering parameters with randomness, which causes random outputs, into the
model as much as possible.

For this reason, we propose a data input scheme, as shown in Figure 4, for simulation models in
a DT. When constructing a synchronization mode in DT, we enter the data into a simulation model
by using a numerical sheet such as an Excel sheet, rather than probability distribution parameters.
The digital sheets in the database collect and record the status data of the machines (e.g., instant
processing time) in real-world production systems in real time via IoT. Then, the simulation model
reads the status data from the digital sheet in real time and executes the simulation. Figure 4 indicates
the differences between the conventional and DT simulation models in the data entry scheme.

As shown in Figure 4, these real-time data collected from the machines and equipment written to
the digital sheet is aggregated and stored in a database. The evaluation and experimental modes of the
DT will then read the historical data stored in the database and enter the fitted probability distribution
parameters into the simulation model.

Figure 4. Proposal of data input scheme for simulation models in a DT.

6. Application of Digital Twin Construction

To validate the proposed DT construction framework and data input scheme, a DT-oriented
simulation model for an IoT-aided manufacturing factory model was constructed.

110



Machines 2019, 7, 2

6.1. General Description of a Factory Simulation Model

The distributed model used in this study is an adoption of the Fischertechnik® Factory Simulation
9V model [13]. Table 1 shows a process schedule and processing parameters for this factory model. An
overhead view and overlapped processing map of the factory is shown in Figure 5. The letters A to H
in the circle represent the task codes shown in Table 1.

As shown in Figure 5, this factory model consists of three main parts: the Controller Automated
High-Bay Warehouse with a Vacuum Gripper Robot (VGR), Controller Multiprocessing Station with
Oven, and Controller Sorting Line with Detection. This system simulates a series of basic processes,
including material storage, multiprocessing, and product sorting.

Table 1. Process schedule and processing parameters in the factory model.

Proc. Seq. Task Code Processes
Processing Time
(Unit: Second)

Resources

1 A
Picking and transporting

workpieces from high-bay rack to
identification station

TRIA(13.4, 18.1, 26.3) High-bay rack feeder

2 B
Scanning and carrying workpieces

by conveyor belt to vacuum
gripper robot

TRIA(3.60, 3.66, 3.71) Conveyor system with
identification

3 C
Picking and carrying workpieces

to the multiprocessing station
with oven

TRIA(20.7, 20.8,21.0) 3D Vacuum Gripper Robot A

4 D Processing by the oven TRIA(17.6, 17.8, 17,9) Conveyor belt, Oven

5 E Picking and transporting
workpieces to saw station TRIA(9.1, 9.3, 9.4) Vacuum Gripper Robot B

6 F Processing by the saw TRIA(9.73, 9.77, 9.89) Saw, ejector

7 G Color sorting line with detection TRIA(7.3, 7.96, 9.37) Color detection, conveyor belt,
storage locations

8 H Conveyor belt carries workpieces
to storage location TRIA(4,6,8) Conveyor belt, storage

locations

Note: TRIA(Min, Mod, Max) indicates the triangle distribution.

 

Figure 5. Overhead view and the sequence of processes of the factory model.
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Workpieces are stored at the high-bay warehouse, which is designed as a pallet rack storage system
for storing and retrieving goods. These are handled by a rack feeder that moves in a lane between
three rows of racks. This area is part of the receiving station, where the identification of goods takes
place. This is known as a conveyor system with identification, as the workpieces are transferred by
a conveyor belt and identified by a barcode reader. Then, the workpieces are handled and transported
by VGR A from the storage area to the processing area, where the workpiece automatically runs
through several stations.

Processing begins with the oven, which represents the firing process. The light barrier is
interrupted when a workpiece is placed on the kiln feeder, triggering the opening of the oven’s
door and drawing in the kiln feeder. At the same time, VGR B is requested to transport the workpiece
to the turntable after the firing process is complete. The turntable positions the workpieces under the
saw for processing and conveys them to the ejector, which slides the workpieces onto the conveyor
belt to carry to the sorting area.

The sorting line is used for the automated separation of different colored workpieces by color
detection, which is handled by a color sensor that detects color on the basis of different surface
reflections. With the help of a pulse switch, the workpieces are transferred to the correct position and
pushed to the appropriate storage locations by the ejector. Meanwhile, several light barriers monitor
the fill level of the storage locations. The system’s control logic, such as the warehousing principle,
VGR movements, machine processing time, and sorting into the storage locations, are programmed by
ROBO Pro and controlled with TXT controllers.

6.2. The IoT-Aided Manufacturing System in the Factory Model

Although Fischertechnik’s Factory Simulation 9V model is equipped with some sensors, such as
color sensors, it is not connected to the Internet and does not have the structure or functionality of the
IoT. To convert this factory model into an IoT-aided manufacturing system, we added eight sets of
light sensors wirelessly connected to the Internet. Figure 6 shows an example of a light sensor unit
with a wireless module. As an example of the IoT system, the high-bay warehouse area with built-in
light sensors is shown in Figure 7. The positions where other light sensors are installed are marked
in Figure 5. The sets of the light sensor units are numbered. With the light sensor, we can obtain the
working status and operating time of each machine.

To construct a DT model, we need to receive data from the sensors connected to the IoT and save
the data to a data lake (see Figure 1). We receive data wirelessly from the light sensors in real time and
utilize the data to build a DT-driven simulation model. To wirelessly receive and record data from the
factory model, we use an Arduino microcomputer with sensors and Microsoft Excel VBA programs.

The Arduino has an original application development environment based on C/C++. For the
sensors, we used Grove Light Sensor v1.2 and Grove Ultrasonic Ranger (Seeed Studio). The former
sensor sent a changed value depending on the light intensity to Arduino as a signal, while the latter
sensed the distance of an object away from it. A total of 8 sets (16 units) of sensors were installed and
assigned numbers from 1 to 8 according to their locations, as shown in Figure 5.

To wirelessly send the data, an XBee ZB (S2C) (manufactured by Digi) was attached to the Arduino
(Figure 6). Along with the defined algorithm in Arduino, the Arduino received signals from the sensors
and sent the sensor number to the computer if the condition set by the algorithm was satisfied.

An Excel VBA program was also developed. When Excel received a signal from the Arduino,
the time of the reception was recorded in a worksheet in real time. If the reaction sensor was not Sensor
No. 1, the program calculated the interval between the current and the previous time, then wrote the
interval times onto a specific worksheet. Then, a VBA module, EasyComm, received the signal via
serial communication. Figure 8 shows the flow of the processing logic of the Excel VBA program.
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Figure 6. A light sensor unit body with a wireless module attached.

Figure 7. High-bay warehouse area with built-in light sensors.

 

 

Figure 8. Flow of processing logic of the Excel VBA program.
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6.3. Construction of Prototypical Model for DT-Oriented Simulation

To validate the proposed DT construction framework and data input scheme, we developed
a DT-oriented simulation model for the factory model. The simulation model was programmed in
Arena [14] and overlaid on a scaled layout. The main stochastic parameters were the processing time
and resources used by each process, as shown in Table 1.

According to the framework proposed in Figure 3, we firstly constructed a conventional simulation,
using the stochastic parameters for evaluation and optimization. Subsequently, we converted the
stochastic parameters into deterministic parameters and rebuilt the model. When the model was
executed, Excel acquired the data from the IoT in real time according to the processing logic shown
in Figure 8, and then the simulation model continuously updated the parameter values by reading
the data from Excel. This model was used to monitor and synchronize the behavior in physical space.
The historical data were fed back to the simulation models for evaluation and experimental mode to
calculate the stochastic distribution of the stochastic parameters (Figure 4). A DT schematic diagram of
this factory is shown in Figure 9. Now, there are three modes for the DT-oriented simulation model,
namely the evaluation model, the experimental mode and the synchronization mode. We can use these
simulation models according to our needs.

Figure 9. A DT schematic diagram of the factory.

6.4. Experiment and Results

After building the DT model, it was validated by an interactive process between the factory model
and the simulation model modelers. This process compared the model’s output with the actual sensory
data. After confirming the reliability of the model, the simulation models were run and the results
were analyzed. Figure 10 shows a synchronized display of experimental results on the input and
output of workpiece interval time between physical and cyber sides. As shown in Figure 10, the time
interval received from sensors as input from the real world is exactly the same as the interval time
output from the simulation model on cyberspace. It was confirmed that the synchronization mode of
the DT simulation could accurately mirror the actual behavior of the factory model.
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Figure 10. Synchronized display of input and output of interval time between physical and cyber sides.

The main research objectives of this study are to propose a framework and a data input scheme
for the construction of a DT, as well as develop a prototype model for the DT based on the proposed
framework. Therefore, this article does not focus on the what-if analysis of the experiment. However,
from the operational experiment, we obtained the following findings:

• The DT’s synchronization mode can be used to remotely observe the factory’s operation and the
statuses of the machines via a network. However, the DT differs from the conventional monitoring
system in that it can quantitatively grasp an entity’s time-related performance indicators, resource
utilization, etc.

• Like the conventional simulation model, the DT’s evaluation mode can be used to predict the
system’s behaviors, such as machine failures and entity cycle times.

• The DT’s optimization mode can be used to optimize a system just like the conventional simulation
model. This mode can be used to seek and find a solution, such as shortening the lead time of
orders, by scenario comparison analysis.

7. Conclusions

The IoT is recognized as a technology that has already had economic impacts and created
high expectations for drastically changing the competitive domain in various industries. In the
manufacturing field, sensor-equipped machines can collect data from the production system in real
time. On the cyber side, the DT has been proposed as a tool for collecting and synchronizing real-world
information in real time. By updating data in real time and comparing cyberspace with physical space
in parallel, the DT can be continuously improved and synchronized with the real world. Although the
DT is considered a challenging technology, it is still at the conceptual stage.

In this study, in order to develop the DT, we proposed a framework for constructing a DT.
We proposed that the DT should contain three execution modes, that is, the evaluation mode,
the experimental mode, and the synchronization mode. The evaluation mode and experimental
mode can be developed as conventional simulation models using stochastic parameters for prediction
and optimization. Therefore, the DT’s evaluation mode can be used to predict machine failures and
test failure avoidance methods. The synchronization mode is used to observe the factory’s operation
and the machine status remotely via a network, but differs from a conventional monitoring system.
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Traditionally, randomness is adopted to execute simulation experiment. However, when
constructing the synchronization mode in DT, it is necessary to avoid entering parameters with
randomness. For this reason, we proposed a data input scheme for inputting data derived from the
IoT into a simulation model of a DT.

In order to verify the effectiveness of the framework as a prototype of a DT-oriented simulation
model, a DT-oriented model for an IoT-aided bench-scale factory system was constructed. In this
factory model system, to simulate the IoT environment, we modified a simple IoT system by attaching
some sensor units. With the proposed framework for DT construction and proposed data input scheme,
we were able to receive real-time data from an IoT-aided manufacturing system and construct a DT
model that successfully reflected the real situation of the physical system. A simulated factory model
was developed for research and education.

In this study, a digital twin was constructed for a bench-scale model of the factory. In actual
factories, increasing the number of devices and processes may increase the complexity of the model.
In that case, further discussion is still needed on how to efficiently input large amounts of data
into the simulation model. In addition, when considering the implementation of a smart factory,
there remains a problem of connection experiments between ERP (Enterprise Resources Planning),
MES (Manufacturing Execution System) and simulation. Furthermore, what-if analysis using digital
twin should be done, following this study. Forecasting, experimentation and optimization are other
important features of DT to predict the future status or performance. These issues should be developed
and examined in future researches.
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Abstract: Industry 4.0 is expected to deliver significant gains in productivity by assimilating
several technological advancements including cloud computing, the Internet-of-Things, and smart
devices. However, it is unclear how these technologies should be leveraged together to deliver
the promised benefits. We present the architecture design of an information system that integrates
these technologies to support hybrid manufacturing processes, i.e., processes in which human and
robotic workers collaborate. We show how well-structured architecture design is the basis for a
modular, complex cyber-physical system that provides horizontal, cross-functional manufacturing
process management and vertical control of heterogenous work cells. The modular nature
allows the extensible cloud support enhancing its accessibility to small and medium enterprises.
The information system is designed as part of the HORSE Project: a five-year research and innovation
project aimed at making recent technological advancements more accessible to small and medium
manufacturing enterprises. The project consortium includes 10 factories to represent the typical
problems encountered on the factory floor and provide real-world environments to test and evaluate
the developed information system. The resulting information system architecture model is proposed
as a reference architecture for a manufacturing operations management system for Industry 4.0. As a
reference architecture, it serves two purposes: (1) it frames the scientific inquiry and advancement of
information systems for Industry 4.0 and (2) it can be used as a template to develop commercial-grade
manufacturing applications for Industry 4.0.

Keywords: smart manufacturing; Industry 4.0; human-robot collaboration

1. Introduction

Industry 4.0 is a trend in automation and digitization that promises significant gains in production
output, product customizability, and manufacturing flexibility [1]. This new industrial age stems from
the coincident rise of cloud computing, the Internet-of-Things (IoT), and smart devices [2]. It is expected
that mass customized products will be produced by smart robotics in dynamic processes managed
in the cloud [3]. It is even conceptually understood how these technologies should work together to
achieve smart manufacturing and deliver on the promises of Industry 4.0 [4,5]. Computation that is
not time-critical is relegated to the cloud. The IoT facilitates commands and responses to and from
devices and teams of humans and smart robotics perform sophisticated operations. Figure 1 gives an
overview of the technologies and their roles in smart manufacturing.

Machines 2018, 6, 62; doi:10.3390/machines6040062 www.mdpi.com/journal/machines
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Figure 1. Roles of selected technologies in smart manufacturing.

The technologies that underpin Industry 4.0 are increasingly appealing and accessible to
manufacturing enterprises. Cloud computing and internet connectivity is prevalent in industrialized
countries and robots are becoming increasingly intelligent and affordable [6,7]. Future scenarios are
proposed where humans and robots harmoniously collaborate to perform irregular and complicated
tasks [8]. Even small and medium enterprises (SMEs) now consider user-friendly automation solutions.
For example, a robot that can be programmed by a demonstration is significantly easier and inexpensive
to introduce in a relatively low-tech environment [9].

Although more accessible, affordable, and available, these technologies are developed
independently and remain largely detached. The separate technologies can be acquired and even
implemented, but it is unclear how to unlock the promised benefit of an integrated solution.
Monostori [10] argues that these new technologies threaten the traditional automation hierarchy,
which further distorts our understanding of the manufacturing system and its various elements. Thus,
the adoption of smart manufacturing technology is hindered by utilization and integration instead of
acquisition. In fact, the absence of out-of-the-box solutions that combine the different technologies is
considered a primary impediment on the path towards smart manufacturing [6].

The symptoms of the problem manifest most fervently on a factory floor with humans and robots.
The activities of humans and robots are controlled differently. Humans receive written, oral, or visual
instructions while machines are compelled to action via their control systems. These control regimes
function independently [11], which makes it difficult to transfer tasks between humans and robots
even if their capabilities would allow this [12,13]. Furthermore, robot control is often poorly integrated
with cross-functional processes management [14]. Robot control follows a vertical orientation focused
on the operations within a work cell. Process management follow a horizontal orientation focused on
the operations across work cells and in the context of enterprise information processing. Thus, current
robot control does not support simple reassignment of robots to different work cells. The most apparent
symptom is the increased safety hazards introduced by automation. Robots must be equipped with
extensive safety precautions to allow close collaboration with humans (the accident in a car factory [15]
is well known in the domain). To compensate, human and robot working spaces are usually physically
separated. These symptoms and concerns hamper mainstream adoption of human-robot collaboration
technology [13,16].

The contribution of this paper is an architecture model of an information system that utilizes
modern manufacturing technologies to deliver seamless integration between human and automated
activities. The model is proposed as a reference architecture for a manufacturing operations
management system for Industry 4.0. As reference architecture, it serves two purposes: (1) it frames
the scientific inquiry and advancement of information systems for Industry 4.0 and (2) it can be used
as a template or at least a starting point to develop commercial-grade manufacturing applications for
Industry 4.0.
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The information system model is developed as part of the HORSE Project, which is a European
research and innovation project in the Horizon 2020 program [17]. The project brings together
22 organizations including research institutions, technology vendors, and manufacturing enterprises.
The primary objective of the project is to make advanced manufacturing technology more accessible to
SMEs. These technologies are packaged in a modular, integrated “HORSE System” and include human
intention detection, robot force control, teaching-by-demonstration, augmented reality, dynamic
allocation of tasks to humans and robots, and manufacturing process management. The intended
SME context of the HORSE System often implies limited availability of on-site information technology
resources. Therefore, the use of cloud services can be an important enabling factor in the application of
HORSE concepts and technology in an SME.

This paper starts with a detailed explanation of the research approach derived from the Reference
Architecture for Industry 4.0 (RAMI4.0) and the Kruchten 4 + 1 software engineering framework.
In Section 3, the logical system architecture is presented at three levels of aggregation to give insight
into the function and structure of the HORSE System. Thereafter, Section 4 presents the physical
architecture of the HORSE System in two stages: first, determining which parts of the system
can be located ‘in the cloud’ and, second, presenting the HORSE System as an IoT application.
The consideration of cloud-support expands on earlier work of Grefen et al. [18]. In Section 5, three
real-world scenarios are presented as proof of concept of the HORSE System. Section 6 considers the
possibilities of cloud-based management of inter-organizational manufacturing processes and supply
chains. Lastly, conclusions and findings are discussed in Section 7.

2. Research Approach

The information system architecture presented in this paper is the result of rigorous design and
science research. The purpose of design science research is to generate prescriptive knowledge that can
be used to solve practical problems [19]. As such, problems from the industry are studied to ensure
practical relevance and an artefact is created to help solve similar problems. The artefact in this paper
is in the form of a conceptual design of an information system [20] to serve as reference architecture to
develop and build an information system for the management of smart manufacturing operations.

To structure the research, the design science research framework of Hevner et al. [21] is adopted
and discussed in Section 2.1. More importantly, the design approach is thoroughly reported to ensure
repeatability. A similar result should be achieved given the same problem and context. The design
approach is documented in the form of principles and process. The principles that guide the design are
based on information systems architecture theory and discussed in Section 2.2. The research process
is based on the widely adopted Kruchten 4 + 1 framework for software engineering [22], which is
explained in Section 2.3.

2.1. Research Framework

The HORSE System must be both practical and relevant for the typical challenges faced in
SMEs. To achieve this goal, the design science research framework of Hevner et al. [21] is adopted.
The framework emphasizes practical relevance by advocating for consideration of business need
during the development and evaluation of the results in a realistic environment. The research
framework, based on the Hevner et al. framework [21], is shown in Figure 2.
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Figure 2. Research framework used in the HORSE Project.

The design science research column of Figure 2 consists of development and evaluation.
It produces validated reference architecture. The reference architecture is presented in a logical
and physical view in Sections 3 and 4, respectively, according to the Kruchten 4 + 1 framework.
The remaining development and process views of the Kruchten framework are omitted in the interest
of brevity. The evaluation is articulated in scenarios that demonstrate application of the information
system. For relevance, three pilot cases act as the organizations that have the business need while
three core concepts of Industry 4.0. provide the technology push driving the artifact development.
The artifact is applied in the applicable environments of the three pilot cases, as articulated in the
scenarios. For rigor, design principles are derived from industry standards and the design process
is based on the Kruchten 4 + 1 framework. Lastly, the contribution toward the knowledge base is a
validated information system model.

2.2. Design Principles

RAMI4.0 was established and defined in DIN SPEC 91345:2016-04 [23] to give some structure
to the rapidly developing and changing technologies in manufacturing. According to the standard,
“the fundamental purpose of Industrie 4.0 is to facilitate cooperation and collaboration between
technical objects, which means they have to be virtually represented and connected.” The reference
architecture brings together the business, life cycle, and hierarchical views of an asset by relating the
concepts on three orthogonal dimensions [24]:

• The layers dimension is more formally referred to as the architecture axis. This axis “represents the
information that is relevant to the role of an asset.” It covers the business-to-technology spectrum
by relating different aspects of an asset to layers of the enterprise architecture.

• The life cycle and value stream dimension “represents the lifetime of an asset and the value-added
process.” This axis distinguishes between the type and instance of the factory and its elements.
For example, the digital design of a product and its instantiation as a manufactured product.

• The hierarchy levels dimension is used to “assign functional models to specific levels” of
an enterprise. This axis uses aggregation to establish enterprise levels that range from the
connected world (i.e., networks of manufacturing organizations in their eco-systems) via stations
(manufacturing work cells) to devices and products.

The life cycle and value stream dimension of RAMI4.0 distinguishes between the type and instance
of a product and its value-added processes [23]. Type can be equated to the design of the product
and processes while instance is the execution of processes to produce a product. This separation
emphasizes the importance of consistency across the product life cycle.
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The hierarchy levels dimension of RAMI4.0 references the international standard IEC62264:2013 [25].
More specifically, the physical hierarchy of IEC62264:2013 is referenced. The physical hierarchy establishes
a naming convention for the sections in the factory. Enterprise is the highest level of the hierarchy and work
cell is the lowest for a discreet manufacturing facility. Figure 3 shows an illustrative physical hierarchy of a
hypothetical manufacturing enterprise.

Figure 3. Illustrative physical hierarchy of a manufacturing enterprise showing the different control
regimes applied at different levels of the enterprise.

The separation of concerns is widely used to manage complexity in system design [26–28].
The technique allows the designer to consider some aspect of the system separately from the rest of
the system, which decreases local complexity. We apply the technique to create two separations in the
HORSE System derived from RAMI4.0 and apply these as design principles below.

1. Separation between design-time and run-time system functions based on the life cycle and value
stream dimension.

2. Separation between horizontal and vertical control based on the hierarchy levels dimension.

The first separation between design-time and run-time is applied to both the manufacturing
processes and the participants in those processes. Manufacturing processes and agents (the participants
in the processes) are identified and described during the design period and then instantiated and
activated to perform activities during the run-time.

The second separation between the horizontal and vertical control is derived from the physical
hierarchy, which is shown in Figure 3. Horizontal control is concerned with the sequence of activities
performed by several participants to transform materials into products, i.e., management of the
manufacturing processes across multiple work cells. Vertical control is concerned with the actions
performed by a single participant or a team of participants within a single work cell of the factory.
The different control regimes are also indicated in Figure 3. Thus, horizontal and vertical control
is separated to account for different control regimes. Horizontal control is concerned with the
coordination of activities that may be spatially dispersed while vertical control is concerned with the
sub-second synchronization of actions.

2.3. Design Process

The HORSE System includes several disparate technologies and stresses the need for systematic
development and sound architectural principles. The Kruchten 4 + 1 framework [22] is used to deal with
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the various views of stakeholders and their sequencing in time. The framework, as shown in Figure 4,
employs phased development resulting in four views with their respective primary stakeholders.

1. The logical view is concerned with what the system should do. It specifies the functionality of
the system in the form of modules and relationships between modules. The main stakeholders
are the end users of the system.

2. The development view is concerned with good software management. It specifies how the
software system is organized in a developmental environment. The main stakeholders are the
software engineers.

3. The process view is concerned with the performance and scalability of the system. It specifies
the concurrency and synchronization of the system modules. The main stakeholders are the
integrators of the system.

4. The physical view is concerned with realization and deployment of the system. It specifies the
allocation of hardware resources to software modules. The main stakeholders are the engineers
who are responsible for installing and maintaining the system.

Separate views with different stakeholders can result in a divergence of ideas and an
understanding about the system. To avoid such a divergence, the four views are reconciled by a
fifth concept:

5. Scenarios represent user cases of the system that demonstrate system functionality and
performance. The scenarios should be specific and practical enough to facilitate discussion
about the expected operation of the system in its intended context.

Figure 4. Kruchten 4 + 1 framework [22].

The Kruchten 4 + 1 framework is used to sequence the development of the HORSE System. First,
the logical architecture is used to specify the functional structure of the system without reference to
specific implementation techniques, technologies, or deployment. The main input into this design is a
clear description of the scenarios and the problems faced in those scenarios. The output of this phase is
a logical architecture design with five aggregation levels along with one context level [29]. We discuss
four of these six levels in Section 3 of this paper. The development and process views are concerned
with a good software engineering practice and are, thus, omitted from this paper.

In the physical view, it is determined how and where the software resulting from the previous
two views will run. The exact software and hardware may be different for each deployment of the
HORSE System, but the type of technology remains the same. The exact software and hardware used
in the HORSE Project is specified in this case study [30]. This research paper is more concerned with
the separation between cloud-based and on-premise deployments. Thus, the cloud-supported parts of
the HORSE System are identified, which leads to a clear division between the modules running ‘in
the cloud’ and those running on premise. This division is discussed and justified in Section 4 of this
paper based on performance and security considerations. The scenarios are located within the three
industrial pilot cases of the project and discussed in Section 5.
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3. Logical View of the HORSE System

The logical system architecture of the HORSE System is a hierarchical, multi-level view.
The complete design comprises six levels of aggregation, but only the first four levels are discussed in
this paper in the interest of brevity. The full system design report [29] elaborates on the remaining two
levels of aggregation, but it limits the discussion to system structure and design decisions. Conversely,
this research paper emphasizes scientific rigor and presents the HORSE System in the context of
Industry 4.0. The four levels discussed in this paper are labeled Context Architecture and Architecture
Levels 1, 2, and 3. The Level 2 architecture is divided into the design time half and the execution time
half. Only the execution time subsystem on the local layer is discussed because this subsystem is the
most complicated and is responsible for the main interface between software and hardware on the
factory floor.

3.1. HORSE Context Architecture

The HORSE System is primarily concerned with highly configurable, flexible manufacturing
processes involving human and robotic participants. All three pilot cases in the HORSE Project, which
are discussed in Section 5, feature processes with cooperation between humans and robots. Therefore,
the HORSE System interfaces with a variety of humans, robots, and sensors that participate in the
manufacturing processes. These processes do not exist in isolation. Any manufacturing enterprise
also performs other business processes such as purchasing, product development, sales, and customer
support. Consequently, the HORSE system must be contextualized in the existing hardware and
software systems of the enterprise.

An illustrative enterprise architecture is shown in Figure 5 with the HORSE System positioned
as a central hub amongst typical systems found in factories [14]. Business management systems are
represented with an enterprise resource planning system (ERP), which is a manufacturing execution
system (MES) and a product life-cycle management system (PLMS) at the top of Figure 5. Toward the
lower end of Figure 5, the HORSE System is connected to a robot, human, and sensor, which promotes
human-robot co-existence. In practice, the situation is typically more complicated, but this simplified
view shows the context of the HORSE System.

Figure 5. Context of the HORSE System simplified to only show typical systems.
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3.2. HORSE System Architecture Level 1

Level 1 of the architecture model unpacks the HORSE System box of Figure 5 to refine its contents.
This refinement applies the two design principles described in Section 2.2: separation of design-time
and run-time system functions and separation of horizontal and vertical control. The first design
principle calls for system functionality dedicated to design and control, respectively. This consideration
gives the architecture a columned style with a design-time column and an execution-time column.
The second design principle calls for separation between functionality that is aimed at the support of
activities within a single manufacturing work cell and functionality that is aimed at synchronizing
activities across multiple work cells. This consideration gives the architecture a layered style with
global and local control layers. The global layer interfaces with business management systems at the
top of Figure 5 while the local layer interfaces with humans and robot controllers, which is shown at
the bottom of Figure 5.

Applying the two design principles results in a system architecture with four sub-systems and
two data stores, as shown in Figure 6. This is a columned architecture embedded in a layered
architecture [31]. The design-time and execution-time columns are connected via databases that
contain specifications of manufacturing activities and the participants involved in the activities.
During design-time, the global and local layers are indirectly connected via the data stores since these
subsystems are used to create and edit the manufacturing activities and actors. However, for execution
time, HORSE Exec Global and HORSE Exec Local are directly coupled to pass messages directly
between global and local control. Note that the design-time subsystem on the local layer is labeled as
configuration instead of design, since this fits better with the configuration of equipment and tools
within work cells.

Figure 6. HORSE architecture, aggregation level 1.

In the two subsections below, the HORSE system architecture is further elaborated. The design
period and execution time columns of Figure 6 are discussed separately to manage the inherent
complexity of the system.

3.3. HORSE Design Time Architecture Level 2

This section elaborates on the design-time column of the HORSE System, which is shown in
Figure 7. On the global layer, the HORSE Design Global subsystem provides functionality to design
manufacturing processes across multiple work cells populated by multiple, possibly heterogenous,
actors. As such, the subsystem contains two modules dedicated to the design of processes and agents
(terminology used to denote any independent process participant), respectively. For the Process Design
module, existing business process management (BPM) technology is used as the basis and extended
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to accommodate the physical nature of manufacturing processes as opposed to the administrative
processes for which this technology is traditionally used [32]. Most significantly, the location of
manufacturing operations must be considered to accommodate the time it takes for material to flow
between locations. The Agent Design module is a graphical user interface that enables the user to create
new agent profiles or edit existing agent profiles. Such a profile comprises attributes that describe the
agent including abilities, skills, authorization, cost, and performance.

Figure 7. HORSE architecture, design time aspect, aggregation level 2.

HORSE Config Local provides functionality for defining the operations performed within a work
cell. The terminology of ‘task’ and ‘step’ is used here to distinguish between the actions of multiple
and single agents. The task design module is used to specify the synchronization of a team of agents
within a work cell like the interplay between a human worker and a robot. The actions performed by
the individual members of a team are specified using the two-step design modules. The human step
design module is used to create work instructions. These work instructions may range from simple
textual descriptions to technology-supported guidance like augmented reality. The automated agent
step design module is used to create execution scripts for robot, automated guided vehicles or any
other non-human agents. Several different instances of this module may exist in the same enterprise,
which corresponds to the different types of automated agents used and supports textual scripting,
graphical scripting, and scripting by physical manipulation (physically showing the robot what to do,
which is also called programming by demonstration [9]). The latter requires a direct connection to the
involved robot, which is shown in Figure 7. Lastly, the work cell simulator module is used to digitally
define and evaluate the physical constraints within which a task will be executed. Physical constraints
may include inter alia, the space available for agents to move, the location of the work cell, and the
mounted position of the automated agents.
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3.4. HORSE Execution Time Architecture Level 2

This section elaborates the execution-time column of the HORSE System, as shown in Figure 8.
Within the global and local layers, each contain an execution and an awareness module. HORSE Exec
Global provides the functionality to enact and monitor manufacturing processes across multiple work
cells. Analogous to global design subsystem, the HORSE Exec Global subsystem is based on BPM
technology with extensions to make it suitable for manufacturing processes [33].

HORSE Exec Local provides the functionality to control and monitor the activities of a team
of agents in a single work cell (a team may be only one agent). This subsystem directly interacts
with agents by sending commands and receiving responses. The interaction differs between humans
and automated agents. Work instructions are displayed on handheld devices or fixed monitors and
responses are received via physical or virtual buttons. For example, an operator may receive the
instruction to perform a task via an instant message. Once at the station, the augmented reality
guidance is displayed via the local awareness module and hand movements are detected via a
sensor. Automated agents receive execution scripts and respond according to predefined parameters.
The Local Awareness module is concerned with regular activity monitoring and exception detection.

Figure 8. HORSE architecture, execution time aspect, aggregation level 2.

An instance of HORSE Exec Local is created for each team formed to perform a task. Therefore,
multiple instances of the subsystem may exist at the same time and may even build on different
technology platforms. The abstraction layers facilitate the communication between the HORSE Exec
Global and multiple instances of HORSE Exec Local. Integration between the global and local layers,
as facilitated by the abstraction layers, is illustrated with a video available on the project website
(http://www.horse-project.eu/Media). The HORSE Exec Local subsystem is discussed in more detail
in Section 3.5.
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3.5. HORSE Exec Local at Aggregation Level 3

Figure 9 shows the refinement of the HORSE Exec Local system module at aggregation level 3.
It is, in this part of the HORSE architecture, that the cyber-physical character of the system becomes
most apparent because this subsystem is responsible for the real-time control of physical agents.

 
Figure 9. HORSE architecture, execution time aspect, aggregation level 3.

The Local Execution module, as shown on the left side of Figure 9, is responsible for driving the
execution of manufacturing tasks. The Hybrid Task Supervisor module delivers the human-robot
collaboration capability of the HORSE System. The module controls synchronize the actions of
multiple human and/or robotic workers (in HORSE terminology, human agents and automated
agents, respectively). These workers receive their instructions via Step Execution modules that manage
individual work steps for individual agents and Execution Interfaces that abstract from specific agent
control characteristics (such as specific robot control interfaces). Local Execution implements actuation
controls from an IoT perspective.

The Local Awareness module, on the right side of Figure 9, is responsible for monitoring the work
cell. This module is coupled to sensors and cameras in the work cell that provide real-time information
about the status of the work cell such as the position of robotic arms and manipulated products. These
sensors and cameras may be attached to robots such as for measuring torque or applying pressure
sensors on robot arms. Part of this information can be fed to displays that provide information to
human workers. Local Awareness implements sensing controls from an IoT perspective.

4. Physical View of the HORSE System

The logical view of the HORSE System architecture is explained in Section 3. In this section, the
physical view of the Kruchten 4 + 1 framework is applied. The goal of this section is to analyze the
role of Industry 4.0 technologies in the HORSE System instead of specifying the actual hardware,
infrastructure, and physical systems. Given the primary context of small and medium manufacturing
enterprises, it is first determined, in Section 4.1, which modules of the system can be situated in the
cloud. Since the design time sub-system and the execution time sub-system of the HORSE system have
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very different technical requirements, we perform this analysis per sub-system. This analysis naturally
establishes the divide between the cloud-supported modules of the system and the Things on the
factory floor. The divide is used to construct an IoT-view of the HORSE System, which is presented in
Section 4.2.

4.1. Cloud Support for the HORSE System

To determine which modules of the HORSE System can be hosted in the cloud, we consider the
performance expectations of various modules. For example, modules used during the design period
generally do not require guaranteed sub-second response times. Hence, such modules can be hosted
as cloud applications and be subjected to the normal performance impact of distance and Internet
traffic. To add some nuance to the discussion, we distinguish between two cloud-based models and a
non-cloud model for software deployment [34].

• The Software-as-a-Service (SaaS) model provides a software application as a hosted service on the
Internet, eliminating the need to install and run the application on local computers.

• The Platform-as-a-Service (PaaS) model provides an application environment in which users can
create their own application that will run on the cloud.

• The on-premise model represents traditional computing with no part of the software or computer
hardware hosted in the cloud.

Rimal et al. [35] advocates for scalability, performance, multi-tenancy, configurability, and
fault-tolerance as the primary considerations for cloud support of applications. Table 1 lists the advantages
and disadvantages inherent to each cloud-support model in relation to the five considerations.

Table 1. Advantages and disadvantages of SaaS, PaaS, and on-premise models in relation to the five
considerations for cloud-support.

Consideration SaaS PaaS On-Premise

Scalability
Software and computing
resources can be scaled
quickly.

Computing resources
can be scaled quickly.

Scaling requires
installation of new
software and hardware.

Performance

Cannot be guaranteed
because it is subject to
network quality, traffic, and
distance.

Cannot be guaranteed
because it is subject to
network quality, traffic,
and distance.

Best response-time
performance attainable.

Multi-tenancy
Tenancy can easily be
extended to any agent with
Internet access.

Additional tenants
added with additional
software installation or
expansion.

Only within its local
environment.

Configurability

Software and computing
resource changes are subject
to the agreements with the
service provider.

Computing resource
changes are subject to
agreements with the
service provider.

All changes are under
the control of the user.

Fault-tolerance
Fault-tolerance is defined as
part of the quality-of-service
agreements.

Fault-tolerance is
defined as part of the
quality-of-service
agreements.

Fault-tolerance is under
the control of the user.

We apply the five considerations listed in Table 1 to determine which modules of the HORSE
System can be hosted with the SaaS or PaaS cloud computing models. The results of the analysis are
listed in Table 2.
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Table 2. Application of the five considerations for cloud-support for the modules of the HORSE System.

System Module or
Data Store

Cloud Support Rationale

Process Design
Agent Design
Process/Agent Data
Global Execution
Global Awareness
Task/Step/Cell Data

SaaS

The scalability and multi-tenancy afforded by SaaS is an
opportunity to extend service to additional production areas,
sites, or even enterprises.
Singular deployment implies no configurability requirements.
No strict performance guarantees required.
Fault-tolerance can be addressed with the quality-of-service
agreements with the service provider.

Exec Global
Abstraction Layer
Exec Local Abstraction
Layer

SaaS

The scalability, multi-tenancy, and configurability of a
SaaS-based abstraction layer makes it possible to extend the
global functionality across multiple production areas, sites, or
enterprises.
No strict performance guarantees required.
Fault-tolerance can be addressed with quality-of-service
agreements with the service provider.

Task Design
Human Step Design PaaS

The platform can be scaled to additional production areas, sites,
or enterprises.
Tenancy can be extended with additional software deployments
on the same platform.
Technology-heterogeneity requires extensive configuration of
software on the same platform.
No strict performance guarantees required.
Fault-tolerance can be addressed with the quality-of-service
agreements with the service provider.

Automated Step
Design

PaaS or
On-premise

PaaS or On-premise model depends on the direct connection to
an automated agent.
For textual execution scripts, the PaaS model can provide
scalability and multi-tenant support for
technology-heterogenous deployments with no strict
performance or fault-tolerance requirements.
Programming-by-demonstration requires on-premise hardware
and software to support immediate response to the movements
performed by the human.

Work Cell Simulator PaaS

The platform can be scaled to additional production areas, sites,
or enterprises.
Tenancy can be extended with additional software deployments
on the same platform.
Technology-heterogeneity requires extensive configuration of
software on the same platform.
No strict performance guarantees required.
Fault-tolerance can be addressed with quality-of-service
agreements with the service provider.

Local Execution
Local Awareness On-premise

Multiple, technology-heterogeneous realizations for each local
deployment requires no scalability or multi-tenancy.
The configuration is done during the design-time.
The control of multiple, interacting agents require strict
performance guarantees in the millisecond domain and
near-zero fault tolerance.

Figure 10 shows the result of the five considerations as an overlay on the logical view of the
HORSE System architecture. The modules at the global layer support process design, agent design,
process enactment, and monitoring. Process and agent design are interactive modules but do require
any guaranteed performance. A further advantage of the SaaS model is simplified versioning and
upgrade of the software since manufacturing is becoming more flexible [36,37]. Process enactment
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and monitoring has a real-time character but without very strict timing requirements. Consequently,
it is possible to deploy all global layer modules and both the data stores in the cloud. An important
requirement for the cloud environment is a very high quality of service (QoS) in terms of availability:
unavailability of global functionality typically brings a process-oriented manufacturing plant to a halt
within minutes if not seconds.

Figure 10. Overview of cloud support for the HORSE System.

The modules at the local layer control the activities of agents—either individually or in teams—are
very much real-time cyber-physical systems. This means that part of their functionality has very
strict response-time requirements. A good example is safety management, which requires fast
synchronization between sensors, local awareness functionality, local execution functionality, and
agents (humans and robots). Figure 11 shows the communication path in the system (as a simplified
view of Figure 9 to make things clearer) when a human agent enters the operating space of a robotic
agent and the robotic agent must immediately stop.

Figure 11. Local communication path in case of an observed safety breach.

4.2. The HORSE System as an IoT Application

With HORSE Exec Global in the cloud and HORSE Exec Local on-site, the HORSE System relies
heavily on communication between the cloud and the Things that perform manufacturing activities.
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Significant disagreement exists regarding the nature and scope of the IoT [38], but Wortmann and
Flüchter [39] offer a complete overview of the concept by bringing together computing, connectivity,
and devices in a single technology stack. The technology stack follows the concept of functional
abstraction [31], i.e., each layer builds on the functionality of the layer below. For example, the control
software of a thing/device makes use of the actuating and sensing components to exert control over
the hardware of the thing/device.

The technology stack draws attention to the division between the things or devices (including its
embedded control system) on the factory floor and software situated in the IoT cloud. The connectivity
layer facilitates communication between the IoT Cloud and one or more things/devices.

Functional abstraction and the division between the cloud and the device is applied to construct a
technology stack for the HORSE System. The resulting technology stack, which is shown in Figure 12,
serves two purposes: (1) to describe how modern technologies contribute to realize the HORSE System
and (2) to justify the designation of the HORSE System as an IoT application.

Figure 12. Technology stack showing the HORSE System as an IoT application.

Starting from the bottom of Figure 12, to simplify the explanation of the assimilation of
technologies, the various things and devices are shown as simple icons. Human interfaces are
represented with displays and handheld devices. The sensors are represented with a camera and
microphone while robots are represented with a robotic arm and a vehicle. Lastly, augmented reality
is represented with wearable glasses and a sensor to track human movements. The distinction
between hardware and components is omitted here because it adds no value to the current discussion.
The displayed things or devices are only representative since the actual set may differ in a factory.
On the second layer from the bottom, the various devices and things are controlled by their respective
software systems. These software systems are left purposefully abstract to signify the open nature
of the HORSE System. Many different technologies can be utilized in conjunction with the HORSE
System. The software systems of the devices are connected to the HORSE System via the local area
network of the factory.
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The HORSE Local Execution subsystem serves as thing/device communication and management.
This is the most significant deviation from the IoT technology stack of Wortmann and Flüchter [39].
The thing/device communication and management is not included in the Cloud grouping of the
technology stack because of the requirement for guaranteed, sub-second communication and
synchronization between teams of agents, which is discussed in Section 3.4. The HORSE System
currently has two realizations of the Local Execution subsystem based on the Robot Operating
System (ROS) and Kuka Sunrise software, respectively. Both these variations can control various
technologies involved in smart manufacturing processes and can even be deployed simultaneously in
the same factory.

A singular block named Internet is shown to represent the connectivity between Local and Global
features. This implies all standard infrastructure and protocols because the current realization of
the HORSE System uses standard internet protocols to transport JavaScript Object Notation (JSON)
messages. These messages are directed via the message bus of the Open Services Gateway initiative
(OSGi) application platform, which allows all subsystems of the HORSE System to subscribe to it and
publish messages. The OSGi application platform ties in well with the PaaS model, which is explained
in Section 4.1. With an OSGi-based platform and accompanying computing resources hosted in the
cloud, the user can install a variety of thing/device communication and management systems based
on different technologies to control the activities of different robots and sensors.

HORSE Global Execution, which represents the process management technology, publishes
messages and subscribes to listen for responses. Similarly, the HORSE Global Awareness subsystem
represents the data analytics technology by listening for various pre-defined events that may indicate
unwanted or unexpected factory floor conditions. Thus, the HORSE System is an IoT application with
multiple layers of functionality covering the complete technology stack of Wortmann and Flüchter [39].

5. Scenarios as Proof of Concept

The HORSE System is positioned as a manufacturing operations management system for Industry
4.0. Therefore, it is claimed that the HORSE System can be used to manage operations that involve
modern manufacturing technologies. To substantiate this claim, manufacturing processes that utilize
the smart technologies are demonstrated to serve as proof of concept of the HORSE System. For each
process, the involvement and role of various technologies are highlighted in the process models and
are subsequently discussed.

The three pilot cases considered in the HORSE Project represent a wide range of problems
encountered in the manufacturing industry. These pilot cases are analyzed to articulate clear scenarios
where smart manufacturing technology is applied to solve common problems. Each scenario is
described to give context, represented as a process model, and demonstrated with video footage.

5.1. Pilot Case 1: Tool Assembly

The first pilot site of the HORSE Project is a medium-sized factory in The Netherlands that
produces highly configurable metal products used in furniture assembly. The pilot case features two
processes including tool assembly and surface treatment of metal profiles. The first process involves
a human operator who attaches tool parts to a base-plate to assemble a configurable tool used for
deformation operations. In parallel, a mobile robotic arm fetches bins containing the parts needed by
the operator. To alleviate the complication and variability of the assembly task, the human assists by
augmented reality technology that highlights which parts are needed and how to attach those parts.
The model of this process is specified using the Business Process Model & Notation 2.0 (BPMN2.0) and
shown in Figure 13. Video footage of the executed process with augmented reality and robotic support
is available online (https://youtu.be/bqTDEZvOdVI).
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Figure 13. Process model used to enact the demonstration of Case 1a.

The model shown in Figure 13 is created using the Design Global subsystem of the HORSE System
(see Section 3.3). Thereafter, the process model is parsed by the Global Execution to enact the process
during the demonstration. Tasks, as specified in the process model, are globally instantiated and
assigned to agents. The task instructions are sent to the Exec Local subsystem via the message bus.
The Exec Local subsystem ensures synchronization between the robot and human and is guided by
augmented reality.

The full stack of technology, as shown in Figure 12, is utilized to execute the tool assembly process.
As a summary, the various technologies have the following roles in the process.

• Cloud-based process management to coordinate the activities of human and automated agents.
• IoT-enabled connectivity between cloud-based process management and multiple production agents.
• Augmented reality to guide the human agent through the tool assembly steps.
• Smart robotics to fetch and return tooling parts from the storage zone.

Pilot case 1 is a particularly compelling case for the HORSE Project because it is not a simple
replacement of a human operator with a robot. Instead, the operations are granularized to determine
which activities are more suited to human or robot execution. The cognitive and sensory abilities of the
human are exploited for the complicated assembly task, but the monotonous fetching and returning
tasks are allocated to a mobile robot. Therefore, instead of being replaced by automation, the human is
rather supported by automation and allowed to focus on the task that requires deep concentration,
which increases process throughput.

The primary limitation in this pilot case is related to the definition of augmented reality tasks.
The images and instructions displayed during augmented reality supported tool assembly are currently
manually programmed for a particular subset of tool configurations. This is perfectly adequate for
demonstration purposes in a research and innovation project, but it must be simplified or at least
streamlined for commercial purposes.

5.2. Pilot Case 2: Final Assembly of Automotive Parts

The second pilot site of the HORSE Project is a medium-sized factory in Spain that assembles
highly customizable automotive parts. The case includes the final inspection and packaging of the
assemblies before distribution to customers. The process involves three agents: (1) a robotic arm to
pick up an assembly from the conveyor belt, present it for inspection, and, if accepted, place it in a
box, (2) a sophisticated, bespoke camera system to inspect the assemblies, and (3) a human operator to
evaluate assemblies flagged by the camera system to determine whether to discard or repair it. To deal
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with the complication of inspecting mass customized products, the human operator is assisted by an
augmented reality system that indicates where and what the operator should inspect. Figure 14 shows
the model used to enact the process of the second pilot case. Additional information and photos of
pilot case 2 in operation are available online (http://www.horse-project.eu/Pilot-Experiment-1).

 
Figure 14. Assembly inspection and packaging process model of pilot case 2.

As can be seen from the lanes in Figure 14, the process involves four different roles, which are
potentially performed by as many agents. The following technology is involved in this process.

• Cloud-based process management across multiple work cells.
• IoT-enabled connectivity between cloud-based process management and multiple production agents.
• Synchronized collaboration between smart robot and camera system to detect product defects.
• Augmented reality to guide the human agent with an inspection of highly customizable assemblies.

Pilot case 2 is a complex scenario involving four process participants and various eventualities
that affect process execution. Communication from the factory floor is of utmost importance here
to allow the HORSE System, track progress, and adjust accordingly. Communication is facilitated
by handheld devices and sensors connected to the local network. The most compelling part of pilot
case 2 is the human-robot collaborative task to inspect assemblies that are flagged as defective by the
camera system. The Hybrid Task Supervisor module (see Section 3.5), in this case, is realized as a ROS
application and uses state-machine models to synchronize the actions of the human and robot.

136



Machines 2018, 6, 62

As with the first pilot case, pilot case 2 involves automation of some tasks in the process. Picking
and placing is automated, but a human operator is still necessary to respond to detected defects
and ensure that packaging material is available. This automation is beneficial but constraining. It is
beneficial to the health of the human because the repetitive lifting and manipulation of heavy parts
is eliminated. However, the robot can only handle one assembly at a time, which forces it to wait
for the human if he or she is not immediately available. Therefore, the introduction of the HORSE
System and associated smart technologies, in this case, improves operator health but not necessarily
process performance.

5.3. Pilot Case 3: Separation of Castings

The third pilot site of the HORSE Project is a large foundry in Poland. The foundry uses
sand casting to produce a large range of products for several industries including automotive,
rail transport, and industrial equipment. Due to excess metal in the mold, four to eight castings
are physically attached to each other after solidification. Those castings must be separated before
further surface processing is performed. The separation can be automated. However, the high
customizability of the product makes it infeasible to define cutting plans for all products. Each
production run is ostensibly unique and, therefore, necessitates a new cutting plan. To handle such
high product variability, a robot equipped with teaching-by-demonstration technology is deployed
to lift some of the human operator. The operator physically moves the arm and the end-effector
of the robot through the necessary cutting trajectories to teach the cutting plan instead of labor
intensive approaches such as computer-aided manufacturing modeling or programming. Once
the cutting plan is recorded, then the operator enables an execution mode to process the batch of
products. Figure 15 shows the model used to enact the grape separation process, which highlights the
teaching-by-demonstration task. Additional information and photos of pilot case 2 in operation are
available online (http://www.horse-project.eu/Pilot-Experiment-2).

 
Figure 15. Grape separation process model of pilot case 3.

Although teaching-by-demonstration is the most noticeable feature of this process, several other
technologies contribute to such a smart manufacturing process. The following technologies are
involved in this process.

• Cloud-based process management to invoke the actions of humans, robots, and computer services.
• IoT-enabled connectivity between cloud-based process management and multiple production agents.
• Synchronized collaboration between human and robot during the teaching-by-demonstration task.
• Smart robotics with human intrusion detection to halt the execution in the case of safety risks.
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Pilot case 3 is a clear demonstration of smart manufacturing with the utilization of
teaching-by-demonstration and modern process management technology. More importantly, these
technologies are demonstrated in an environment that is not particularly conducive to sophisticated
and delicate computer systems. The factory floor is teaming with fine dust particles from the grinding
operations. In this case, the cloud-based nature of the HORSE System proves valuable because only the
robot is exposed to the dusty environment. However, this proves to be a limiting factor as well because
the operator does not have access to any troubleshooting functionality. If something goes wrong,
production management must be contacted to address the problem. Thus, Industry 4.0 technologies
present many opportunities but also many new considerations when deploying smart technologies.

6. Inter-Organizational Process Perspective

Thus far, we explored how parts of the HORSE system can be deployed to achieve advantages in
software management and computing infrastructure investments, i.e., advantages that do not influence
the nature of the functionality offered. The focus of these developments is within one manufacturing
enterprise. However, the technology employed in the HORSE System may offer improved functionality:
cloud computing and the IoT can improve interoperability within manufacturing networks where a
manufacturing process takes place across multiple sites or even autonomous enterprises.

Software modules that are used in a SaaS paradigm are typically of a standardized kind so that
the same functionality can be used by multiple parties. Applying functional standardization to the
modules at the global layer of the HORSE System in the context of multiple manufacturing enterprises
that collaborate can improve interoperability between those enterprises. Consequently, it may be
simpler to set up supply chains or supply networks with automated support for manufacturing
processes (and related enterprise processes as discussed in Section 3.1) across enterprises. The current
realization of the global layer of the HORSE System is run as a single application instance with multiple
tenants for the three pilot cases. While the current pilot cases do not participate in the same supply
chain, it does prove the feasibility of a single global layer serving multiple instances of the local layer
across geographically separated sites. Figure 16 shows an expansion of the HORSE technology stack
(see Figure 12) to include two sites with a different, illustrative set of things/devices.

Cross-organizational manufacturing is an ongoing research topic due to its numerous potential
benefits [40,41]. The concept has been demonstrated in the CrossWork project [42,43], albeit without
complete vertical integration down to the factory floor as in the HORSE project. In the CrossWork
project, multiple manufacturing enterprises in the same supply chain network use a single, centralized
process management system to synchronize their activities. These connected enterprises temporarily
form an instant virtual enterprise, i.e., non-permanent collaborations with the sole purpose of
producing a single product series. The CrossWork approach has been prototyped in the automotive
industry, which provides a similarity with one of the pilot cases of the HORSE project. The CrossWork
concept is illustrated in Figure 17 and it shows a global process that flows across four autonomous
enterprises in a single supply chain network [42,43].
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Figure 16. HORSE technology stack expanded to include multiple sites.

 
Figure 17. Networked manufacturing process crossing the boundaries of multiple organizations.

An alternative approach that allows more distribution of autonomy is the use of a multi-tenant
SaaS process management solution that embodies the global execution module of HORSE for several
enterprises in a chain and that also synchronizes the links between their manufacturing processes.
Both alternatives lead to networked process management [44]. This is a relevant development since
inter-organizational processes in manufacturing are receiving more attention in an Industry 4.0
setting [45,46]. This trend is required because of increasing product complexity, increasing producer
specialization, and increasing mass customization of products [1].
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7. Conclusions

This paper outlines the architecture design of the HORSE System. It is shown how structured,
hierarchical design produces a modular architecture with clearly defined subsystems and interfaces.
The system embodies the assimilation of traditional enterprise information systems (e.g., explicit
process management) and advanced manufacturing technology (e.g., human-robot collaboration and
the IoT). The HORSE System architecture is proposed as a reference architecture for a manufacturing
operations management system for Industry 4.0. Thus, the architecture model of the HORSE System
serves two purposes: (1) it can be used as a template or framework to position and develop a
commercial-grade manufacturing operations management system for Industry 4.0 and (2) it helps frame
the scientific inquiry into the management of manufacturing operations involving cloud computing,
the IoT, and smart devices.

The proposed reference architecture model is the main contribution of this paper. Due to its
complexity, it is presented and discussed in two views including the logical and physical views.
The logical view details the functional operation of the system without any commitment to specific
technologies. The logical view is elaborated at four levels of aggregation (two additional levels are
covered in the full design report [29]). The physical view explores how the various technologies
enabling Industry 4.0 are used to realize the HORSE System. Each module of the system is considered
in order to determine whether it can be hosted in the cloud. To summarize, we show the leading
drivers for cloud deployment for each of the four HORSE main sub-systems (as in Figure 6) in Table 3.

Table 3. Leading drivers for cloud deployment.

Design-Time Execution-Time

Global layer Flexibility Availability
Local layer Configurability Responsiveness

The HORSE System has three notable embedded characteristics that have potential advantages
and disadvantages. First, cloud computing is emphasized as a fundamental enabling technology of the
system. Cloud-based software lowers the barriers-to-entry for Industry 4.0. SMEs can focus on the use
of smart devices to solve problems on the factory floor instead of being concerned with the installation
and maintenance of software for those smart devices. However, cloud-based software especially with
the SaaS model limits the flexibility available to SMEs. It is more time-consuming or expensive to
make changes to a SaaS application than an application entirely under the control of the enterprise.

Second, the execution-time subsystem of the local layer of the system delivers real-time,
sub-second synchronization between humans and robots. The time-critical nature of human-robot
collaboration results in a clear separation between the cloud-based modules and modules for direct
control of the things/devices on the factory floor. This separation contributes to the modular nature
of the reference architecture and allows for technology heterogeneity on the factory floor. Multiple
instances of local execution can be realized with different technology underpinnings. However, the
separation places further importance on the reliability of Internet connectivity. If the cloud-based or
Internet connectivity services are unavailable, all operations will be uncoordinated at best or suspended
at worst.

Lastly, cross-functional, configurable manufacturing process management opens new ways for
smart manufacturing by supporting flexible process definitions, dynamic allocation of tasks to human
and robotic workers, and real-time coupling of work cell events for manufacturing processes. Such
process management processes also hold promise beyond a single site or enterprise. Cloud-based
process management supports improved interoperability in manufacturing chains and networks.

The HORSE Project is still ongoing and seeks to further enhance the system that bears its name.
The design science research approach adopted in the project ensures practical relevance but it also
increases the risk of overlooked problems or missed opportunities. The system design is informed by
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the real-world problems encountered by the three pilot cases and every attempt is made to extrapolate
to more general problems. However, completely unrelated problems may exist in other factories, which
may not be considered in the HORSE Project. Seven additional cases were subsequently added to the
HORSE Project to evaluate the effectiveness of the HORSE System and to identify any shortcomings.

Lastly, as a research and innovation project, the HORSE Project did not create a commercial-grade
manufacturing operations management system. Instead, a prototype was developed and implemented
to demonstrate the feasibility of a system incorporating cloud computing, the Internet-of-things, and
smart devices. Further complications will undoubtedly arise on the quest for a commercial-grade
system, but, at least, the current system architecture can serve as a proven template for such
a development.
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Abstract: The conceptualization and framework of smart factories have been intensively studied
in previous studies, and the extension to various business areas has been suggested as a future
research direction. This paper proposes a method for extending the smart factory concept in the
ship building phase to the ship servicing phase through actual examples. In order to expand the
study, we identified the differences between manufacturing and maintenance. We proposed a
smart transformation procedure, framework, and architecture of a smart maintenance factory. The
transformation was a large-scale operation for the entire factory beyond simply applying a single
process or specific technology. The transformations were presented through a vessel maintenance
depot case and the effects of improvements were discussed.

Keywords: smart factory; smart process transformation framework; smart maintenance architecture;
smart maintenance factory

1. Introduction

A smart factory is a production plant where the pillars of Industries 4.0 are imple-
mented, including additive manufacturing (3D printing), augmented reality (AR), Internet
of Things (IoT), big data analytics, autonomous robot, simulation, cyber-security, vertical
and horizontal integration, and cloud computing [1]. The concept of a smart factory has be-
come a keyword of manufacturing sites along with the technological development during
the fourth industrial revolution.

Hyundai Heavy Industries, Daewoo Shipbuilding & Marine Engineering Co., Ltd.,
and Samsung Heavy Industries are the three major global ship manufacturers in Korea
that lead smart ship and yard constructions by applying the new technologies of the fourth
industrial revolution and utilizing IT systems [2]. In the report by SPAR Associates. Inc.,
which have been serving in the shipbuilding and repairing industry for over 45 years,
about 23% of the total cost is ship acquisition cost, approximately 35% is labor cost, and
the remaining 42% is repairing and maintenance in the Naval Ship Life Cycle Cost (LCC)
Model [3]. Although the growth of a smart factory is limited to the ship building phase,
shipbuilders are interested in further expanding the smart factory concept to the service
phase in order to expand the scope of the maintenance, repair, and operations (MRO)
business. It is necessary to expand the research on manufacturing-oriented smart factory
research to cover the entire lifecycle.

This study takes focus on a practical case that expands the entire ship lifecycle from
build phase to service phase, as shown in Figure 1.

The adaptability of the concept of a smart factory to a repair and maintenance factory
(hereafter referred to as a maintenance factory) requires an understanding of the differences
at work. Ship building is the process of assembling modules produced in factories and
yards in accordance with the job schedule, whereas repair and maintenance tasks usually do
not follow a fixed assembly process plan. Repair and maintenance work has the following
variabilities:
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Figure 1. Ship lifecycle and smart factory expansion.

Variability in the plan: Ship building is progressed step by step following the working
plan, and the supply of each relevant component is proceeded on a planned basis. In
contrast, unplanned repair and maintenance requirements frequently occur since failures
of ships are unpredictable. Moreover, repair and maintenance plans may vary due to the
dock’s idle state because ships must be drawn on the dry dock.

Variability in the process: The process of ship building is usually done at fixed work-
places and workstations. However, the process of repair and maintenance include: draw
the ship to the dry dock—take away parts from the ship—taking parts out from the ship—
moving to the factory—disassembling parts—cleaning—repairing—reassembling—testing
performance—moving from the factory to the ship—taking in to the ship—assembling
on the ship—trial run. The required jobs in the repair and maintenance process to re-
pair/replace defective parts and improve performance are different from jobs in the ship
building process.

Variability in the time: Planned demand and standard working hours are set for
production and manufacturing. However, the work time of repair and maintenance varies
depending on the degree of failure and repair requirements. Because the delivery date of
each part is different (e.g., discontinued parts or parts that have a long delivery period),
repair and maintenance are hard to complete in a timely manner.

Variability in the workplace: In the case of ship manufacturing, the parts are first
assembled in the factory and then at the yard. On the other hand, repair and maintenance
are not only proceeded in the factory; the process may be done on the ship or through
remote maintenance system as needed.

The purpose of this paper is to present a method to extend the smart factory concept
of the build phase to the service phase through empirical examples. Smart transformation
procedure, the framework, and architecture were developed by repeating revisions and
improvements in the process of establishing a smart transformation plan for about one year.

The four contributions of this study are as follows. First, this study provides the
transformation procedure for a smart maintenance factory. Second, this study developed
a smart process transformation framework for building a smart maintenance factory to
improve highly volatile processes. Smart transformation occurs when site workers under-
stand strategies and voluntarily draw actual changes. To this end, this study developed
a practical template for site workers to participate in change and present their opinions.
Third, this study proposed the architecture of a smart maintenance factory that shows the
future look of a smart maintenance factory. This study suggested the value and technology
for transforming an existing factory to a smart repair and maintenance factory while giving
consideration to the characteristics of the process. Finally, smart transformation was imple-
mented for the vessel maintenance depot. Transformation is a large-scale operation that
changes the entire factory beyond simply applying a single process or specific technology.

The remainder of this paper is composed as follows. Section 2 reviews previous
studies, Section 3 introduces the materials and methods, Section 4 presents the application
cases, and in Section 5, we discuss the results, address the conclusions, and suggest
directions for further research.
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2. Literature Review

This study reviewed previous studies and categorized them into a practical application
and research extension from ship building phase to ship servicing phase. Research of the
building phase could be divided into smart manufacturing for the production process,
smart management by information, and smart maintenance for 5M + 1E (Man, Machine,
Material, Method, Measurement, and Environment), which supports production, as shown
Figure 2.

Figure 2. Research on smart factory and expansion.

Among numerous studies conducted in each area, the concept, the recent direction,
and research on the implementation will mainly be analyzed.

Smart manufacturing is a term coined by several agencies such as the Department
of Energy (DoE) and the National Institute of Standards and Technology (NIST) in the
United States. It highlights the use of information and communication technology (ICT)
and advanced data analytics to improve manufacturing operations on the shop floor [4,5],
factory [6], and supply chain [7,8].

Smart manufacturing incorporates various technologies, including cyber-physical
production systems (CPPS), IoT, robotics/automation, big data analytics, and cloud com-
puting to realize a data-driven, connected supply network [9]. Intelligent manufacturing
has often been used synonymously with smart manufacturing. Technologies and enabling
factors associated with smart manufacturing were reviewed to compare the differences
between smart manufacturing and intelligent manufacturing [4,10,11]. Studies on the
features and availability of smart manufacturing and intelligent related technologies were
carried out [12]. Compared to smart manufacturing, intelligent manufacturing focuses
more on the technological aspect and less on the organizational aspect.

The opportunities and organizational issues to be considered during smart transfor-
mation were analyzed for SMEs [13]. A smart manufacturing performance measurement
system was introduced based on exploratory and empirical research [14]. According to
these studies, a guide for investment in smart manufacturing was presented to ensure the
validity of investment. This study used a top-down approach to introduce the specific
implementation scheme from top-level planning for industrial practice in smart manufac-
turing [15].

By referring to the studies of smart maintenance in the build phase, the applicability
and implications for the service phase were examined. We analyzed the latest research on
a smart maintenance concept, the changing trend of the existing IT system, recent intensive
predictive maintenance studies, and maintenance architecture. Smart maintenance was
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defined as based on four main components through expert interviews and preliminary
research on manufacturing plants. The four main elements are data-driven decision-
making, human capital resources, internal integration, and external integration [16]

The Enterprise Resource Planning (ERP) system, which manages materials, budget,
and planning, and the Manufacturing Execution System (MES), which manages field data,
are the two representative factory management systems to support production. When a
traditional factory is transformed into a smart factory, the existing ERP and MES systems
would be advanced by applying cloud technology, big data-based data diagnostic, and
AI technology. The existing information management systems of smart factory processes
require more flexibility and a larger volume of data, which needs to connect to related
systems, to analyze, and to visualize the activities inside the organization [14,17,18]. The
introduction of AI systems that support decision making by making knowledge of the
production process between each system and data collected from various smart devices is
spreading [15,19].

In addition to academic research, the technology trends suggested by the operators
in the maintenance industry were analyzed and reflected in this study. The five transfor-
mational Trends Reshaping Industrial Maintenance [20] are: (1) Additive (3D printing)
Manufacturing in Maintenance, U.S. Department of Transportation to publish a notice
which aims at raising awareness about the use of Additive Manufacturing in the mainte-
nance, and preventive maintenance areas; (2) Internet of Things, Wireless Sensor Networks,
and IoT-based automated data collection increases workers’ productivity; (3) Augmented
Reality (AR) for Training and Remote Maintenance. AR is enabling new paradigms for
maintenance, including remote maintenance and maintenance customized to the workers’
under-standing and skills; (4) Maintenance as a Service (MaaS) could become a game
changer in industrial maintenance. It can motivate machine vendors to provide the best
service while also providing versatile, reliable, and functional equipment; (5) Supply Chain
Collaboration. Streamlining the supply chain management information has been proven to
be extremely beneficial for industrial maintenance as well, as it reduces the delivery times
for parts. At the same time, supply chain operators benefit from maintenance insights,
such as predictive maintenance.

The other operator of Manufacturer [21] stated that ERP and MES should be data-
driven management solutions to support Industry 4.0 as follows: (1) Modern ERP systems
must be built fundamentally different from the ground up; (2) The ERP system should also
be architected to interact with external systems with application programming interfaces
(APIs) available for any and all entities of the system; (3) IoT should be able to make
almost any product a smart, connected product. IoT operations support traditional MES
for shop floor automation and control adding the flexible communication and data collec-
tion protocols. The research theme of smart maintenance is changing from Time Based
Management (TBM) to Condition-Based Maintenance (CBM) [22] for predictive mainte-
nance and research on optimizing preventive intervention through CBM [23]. Studies on
collaborative-based architecture [24], web platform [25], decision support [26], sensor and
data analysis for predictive maintenance were discussed for CBM [27].

A study on the basics for designing the maintenance process of Industry 4.0 [28] and
a study on performance and KPI design are also presented [29]. SMEs do not exploit all
the resources for implementing Industry 4.0 and often limit themselves to the adoption of
Cloud Computing and the IoT [30,31]. These limitations will be experienced not only in
this study but also in most organizations.

In order to expand the smart factory concept to the service phase, practical application
research, and applications were emphasized [6,7,32]. The difficulties in applying the
concept of a production-oriented smart factory to a smart factory in the maintenance area
were discussed by site workers. The staff of vessel maintenance depot stated the limitations
in applying smart factory to the field of repair and maintenance sector. “Despite the rapid
growth of technology due to the fourth industrial revolution, smart factories are applied
in the maintenance field, not the manufacturing field, but in reality, there are technical
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limitations. Since nobody has ever done it, no one has been able to strongly suggest to
what extent it should be specified or what is needed to realize the future of the smart vessel
maintenance depot. [33], (p. 30).”

We reviewed the smart factories for the ship building phase, including the smart
manufacturing, management, and maintenance of a smart factory and the need for research
expansion in the service phase. The previous studies on the procedure, modeling, and
architecture to build a smart maintenance factory were also reviewed.

Reference [34] presented a step-by-step methodology for the efficient planning of a
smart factory from the initial idea to the final realization in the real environment. The
construction process from design, smart machining, smart monitoring, smart control, smart
scheduling, industrial applications, and the phases of data utilization were introduced [35].
The importance of stepwise starting from a small scale were argued [36,37]. The new
technology application in a limited area were demonstrated by building a smart factory [38]

Existing studies introduced different models for the smart factory model. Refer-
ence [39] proposed a human-centered model, [40] suggested IoT-based, [41] proposed IoT
and cloud computing, and [35] proposed a cloud-based control system as smart control
systems. Operation values are defined based on the environment and work of the main-
tenance factory. Reference [42] provided an overview of these principles in terms of the
general scope of Industry 4.0, and [7] investigated and analyzed the principles of a smart
factory and proposed modularity, interoperability, decentralization, virtualization, service
orientation, and real-time capability. Reference [36] suggested features of connectivity,
optimization, transparency, proactivity, and agility for smart factory construction.

Different studies on smart factory architecture were presented. Reference [24] in-
troduced a data-based smart maintenance architecture and reference model to perform
predictive equipment maintenance in a factory. Reference [43] described the three major
criteria of the general system architecture, including mechatronic changeability, individ-
ualized mass production, and internal/external networking. Product, production layer,
supply layer, integration layer, and IT are defined as the five layers. Reference [44] em-
phasized the integration of industrialization and informatization as the core of China’s
smart manufacturing implementation strategy and proposed the standards framework and
reference architecture of a smart factory. Reference [45] presented a technical architecture
and argued that the interoperability of the systems or components of the architecture at
every level is imminent. References [46–48] proposed the hierarchical architecture of a
smart factory including four layers, namely the physical resource layer, network layer, data
application layer, and terminal layer.

3. Materials and Methods

As suggested in previous studies, starting on a small scale [36,37] or limited area [38]
seems to be an effective way to minimize risk, but there may be situations in which it is
stopped or scaled down due to various obstacles in the process. Procedures for smart
conversion of specific tasks are limited in their application of transforming the entire plant.
Few studies suggested a method for the procedure for building a smart maintenance factory
in the field. We developed a hybrid procedure that combines the top-down procedure
that presents the future image and goals of a smart maintenance factory and the bottom-
up procedure that reflects on the site conditions and requirements for changes. After
approximately one year of revision and improvement, this procedure was eventually
developed as shown in Figure 3
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Figure 3. Implementation procedure.

(1) Goal and Scope

It is desirable to set the goal of a smart maintenance factory based on the organization’s
missions or policies, instead of the goal of an individual task or technology. In general, the
primary goal of maintenance factory management is to minimize variability, which is a
characteristic of maintenance, in order to complete the maintenance on time. The safety
of workers, jobs on the site, and the quality of maintenance could be ensured. Another
important goal is to increase the availability of ships. As a large-scale investment, increasing
availability is compared to increasing the value of investment.

(2) Requirements of Shop Floor

The requirements of transforming each workplace of the maintenance factory to a
smart factory are analyzed for selecting tasks to be improved. Such transformation require-
ments are handled systematically based on the smart process transformation framework
developed. The characteristic of the smart process transformation framework presented in
this study is that it leads to changes in the repair and maintenance process through the fol-
lowing three elements of smart transformation: data, system, and automation (technology).

While the traditional approach derived the necessary elements of data, system, and
automation through the direction of process change, the smart process transformation
framework in this study intends to lead process change through actual technologies of the
fourth industrial revolution. In addition, based on long-term field analysis and opinions
from site workers, this study identified that data, IT systems, and automation (technology)
take the lead in major changes in smart maintenance plants and thus reflected them in the
framework.

As illustrated in Figure 4, the smart process transformation framework is composed
of data, systems, and automation (technology) that induce process change. The smart
transformation strategy should be defined with KPI and the infrastructure and communi-
cation network should be selected to support the smart transformation. The organizational
capabilities required for the smart transformation operation should also be planned.
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Figure 4. Smart process transformation framework.

Ongoing effort and time are required to obtain the improvement needed from field
managers through the smart process transformation framework. Getting new opinions is
not easy since most workers and managers are immersed in existing work methods. Thus,
it is necessary to provide a specific and convenient template that shows the transforma-
tion direction to figure out the challenges to change the viewpoints of site workers and
managers. The template effectively helps derive the requirements of the site and encour-
age participation of the working site. Figure 5 illustrates the template for concretization
of changes on the site, which reflects the elements of the smart process transformation
framework.

Figure 5. Template for analysis of on-site requirements.

The template consists of the working process on the horizontal axis and the smart
transformation framework shown in Figure 4 on the vertical axis. The requirements for
jobs constituting the process are classified and organized into automation, IT system,
data, operating infrastructure and communication network, and strategy. Automation
describes smart technologies and equipment needed for smart transformation. In the IT
system, the requirements and functions of the operation support system that support the
job are described. Data describes the required data set and format. Support infrastructure
requirements such as warehouse and power system are described as infrastructure, and
requirements for sensors and communication networks are described in network. Strategies
are described in connection with improvement effects in each job and KPIs. In addition,
deletion, and integration of jobs in the process are also described.

151



Machines 2021, 9, 267

Workers on the site are sensitive to organizational changes and may consider the
transformation towards a smart maintenance factory a negative effect on job stability [30].
It is a reaction that can be easily felt in the field. Thus, it is recommended not to ask workers
on the site for opinions on changes in organization and manpower.

(3) Building Smart Maintenance Model

The model of a smart maintenance factory is according to the requirements on changes
to be made in strategic direction and operational values. Studies have introduced dif-
ferent models such as a human-centered model [39], IoT-based model [40], and cloud
computing [35,41] for a smart factory. Principles were suggested, such as modularity,
interoperability, decentralization, virtualization, service orientation, real-time capability,
connectivity, optimization, transparency, proactivity, and agility for smart factory construc-
tion [7,36].

The smart maintenance factory model consists of missions, a target model, operational
values, and the technology enabling the technologies of the fourth industry revolution for
process transformation. The target model of a smart maintenance factory can be defined
in various shapes by integrating the as-is state and strategic direction. When defining
the smart maintenance model, it is important to consider how to respond to variability,
which is a characteristic of maintenance work. Agile response, predictive, and readiness
should be defined as core operating values in order to respond to changes in the work plan,
process, time, and workplace of repair and maintenance work.

As an enabling technology for realizing operational values, it enables agile response
to changes on site through central control and mobile network. For predictive maintenance,
operational data of the vessel are collected and analyzed by a big data system. In addition,
inventory and work readiness are promoted through on-site operational support IT systems
and smart warehouses. These operating values and required enablers can be derived
through on-site interviews.

(4) Define Tasks to Transform

Tasks define the activities required for smart factories to achieve high performance,
from policy, process improvement, data improvement, system construction, infrastructure
improvement, and organizational change. Defining tasks is necessary in connection with
the workload, schedule, budget, and expected effects to be pursued in the future, so an
organizational consensus process is required through several meetings. After defining the
task, the selection of new technologies and targeting levels to implement the task should
be followed.

(5) Identify Smart Maintenance Elements

It is a step to define specific technological enablers to implement smart transformation
with the selected tasks. Enablers consist of changes in maintenance policies, work standards,
and the selection of appropriate technologies. The technology enablers consist of ICT
systems for managing the working process and necessary 5M + 1E, automation, data
collection, data system for management and analysis, a network that connects data to the
entire maintenance factory, a central control system that manages it in real time, and a
smart factory infrastructure.

Selecting the right technologies is one of the main tasks for the smart maintenance
element. Reference [49] reviewed research on technology selection over the past 20 years
to find out various new technologies needed for manufacturing and various methods for
technology selection due to the emergence of the fourth industrial revolution. In selecting
Industry 4.0 technology, it is recommended that long-term development or selection of
unstable technology be avoided. The hasty or wrong technology selection will weaken the
overall work productivity of the plant. It is recommended to apply validated and reliable
innovative technologies to the field at the initial stage, and to choose a business operator
that has sustainable development and maintenance capabilities. As an advanced work,
a written confirmation on the time and degree of the technology application should be
submitted for applying a particular technology that is required.

152



Machines 2021, 9, 267

The required technologies and the purpose of utilizing technologies for smart main-
tenance are referred from smart manufacturing. Reference [50] insisted on end-to-end
ICT-based integration between the manufacturing technologies of smart machines, ware-
housing systems, and production facilities that have developed digitally and feature
end-to-end ICT-based integration. Reference [34] mentioned equipment, a cloud-based
control system, communication network for real-time data collection and control, and the
importance of power monitoring to secure stable operation.

(6) Build Smart Maintenance Architecture

By configuring the architecture based on the operational values, the future shape
of the smart maintenance factory and its implementation technology are identified. The
architecture of a smart maintenance factory presents the direction of technical realization for
constructing the smart maintenance factory. The architecture may be presented differently
by point-in-time, by factory, or by composition direction.

Studies have introduced the data-based smart maintenance architecture [24], the
internal/external networking architecture [43], the integration of industrialization and
informatization architecture [44], the interoperability technical architecture [45], and the
hierarchical architecture of smart factory [46–48].

This study set one offsite layer and six onsite layers to classify the values and required
technological elements. The feature of the smart maintenance factory architecture in
this study contains seven layers according to the implementation characteristics, and
maintenance was divided into factory maintenance and remote maintenance of vessel
according to the required services and technologies. It also expressed the connection
between business management and field management as shown in Figure 6.

Figure 6. Architecture of a smart maintenance factory.

The first layer, Business O&M, is composed of ERP components that emphasize
management efficiency. It is composed of systems that share information through the
organization, such as scheduling, human resource, budgeting, procurement, etc. The other
six layers are field-oriented functions. Operational values such as visibility, stability, and
speed should be set to guide the design direction of each layer.

The control, intelligence, data, and network layers transform the visualized and data-
driven maintenance factory through close interlocking. The control layer manages risks
and fluctuations in the schedule and environment through the central control screen. In
the intelligent layer, the field workers want to secure the process visibility of their jobs
through the operation support system. In the data layer, the maintenance process is
identified by sharing specific data on-site. To this end, it consists of technical elements of
data standardization, collection, and sharing. For remote maintenance, the operational
conditions are monitored through remote diagnostic and operational supporting system.
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In the automation layer, productivity and safety are focused. It is composed of
industry 4.0 technologies applicable to each workplace to secure safety and productivity.
The network layer emphasizes connectivity for collecting data and sharing information of
workers and materials through wireless and wire. The remote maintenance is connected to
the vessel via satellite.

The shop flow emphasizes speed, quality, and safety. The shop flow layer consists of
the actual work processes and operational infrastructures. For remote maintenance, the
vessel is considered as the shop floor.

(7) Analyze Effect with KPIs

KPIs and effect analysis are the high priority parts of executing Industry 4.0 technolo-
gies in tasks and securing budgets. Reference [51] pointed out the direction, the contents
of the role, and the importance of key performance indicators of application Industry 4.0
technologies. Reference [52] demonstrated the expected effect of building a smart factory
and analyzed the effect of smart factory adoption with an empirical analysis based on a
sample representing local manufacturing units.

It is important to define KPIs based on the missions and operational value of the
maintenance factory. Although it is appropriate to present KPIs and the improvements of a
single task if a single task-oriented process is applied, it is essential to select the expected
effects and KPIs for the maintenance factory if the entire factory is transformed step by
step, as presented in this study. Linking KPIs with the expected effects is an operation
optimization plan that is done after the establishment of a smart maintenance factory by
aligning strategy and implementation.

(8) Plan Implementation

There are two ways to construct a smart maintenance factory. The first way is to
prioritize technology development to evaluate performance and expected effects, and
then apply them to the workplace on a technical basis. It is to expand according to the
technology development stage. The other way is to select a specific workplace as a pilot,
apply all technologies that are under consideration, and then evaluate the performance
and deploy the technologies horizontally to other work processes. It is to expand by the
organization or process unit.

While the first way has the disadvantage that it requires a long transformation time,
failure of technology may also cause failure of the smart transformation. The second way is
preferred if the smart maintenance factory needs to constructed in the short term, because
members of the organization are guided to participate in the processes, and improvements
or difficulties can be identified immediately in the field. Showing step-by-step outputs
will be an important factor that accelerates the implementation of smart transformation to
ensure enough budgets throughout the process. In the implementation phase, the priority
of transformation tasks will be determined according to budget size and urgency.

4. Application

The vessel maintenance depot was operated by the owner of a vessel established about
70 years ago, and it is in the process of smart transformation from mechanical and hydraulic
maintenance to 3D printers, articulated lifts, and pilot-level remote maintenance. Currently,
the smart factory is evaluated as Level 2.0 of mechanization and computerization.

In the vessel maintenance depot, vessels are towed to the dry dock and the broken
parts are separated from the vessel to be repaired in the factory. Vessels are sent to the
maintenance depot for regular maintenance and emergency repair due to failure. This
study derived the requirements for building a smart maintenance factory from more than
20 maintenance processes. The field issues to be improved through smart maintenance
factory construction are shown in Table 1 below.
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Table 1. Issues to be transformed in the vessel maintenance depot.

Classification Issues On Site Improvement Direction

Need to improve chronic delay in repair parts.

Predictive Maintenance

Need to improve poor linkage between schedules

Need fine-grained management of worker and working
hours

Avoid concentration on maintenance work at a specific time

Process

Neutralization of planned schedules by sudden
maintenance

Need information system to share and collect data on site

Data Diagnostic Management
Data-based analysis and managing on-site data are required
for predictive maintenance

Data

Need to identify maintenance history on the site

Maintenance knowledge should be secured

Onsite Operation Supporting
/Monitoring

Insufficient support for the on-site maintenance process by
the existing system

Integrated control and work monitoring system are needed
on site

Real-time monitoring system is required for safety
management

Need to check equipment status information for timely
maintenance

System

Supporting of remote maintenance are increasing

Need automation for work safety and reducing work lord

Automation
(safety and productivity)

Need to improvement of workability, convenience, and
safety

Insufficient quality control and deterioration of quality
control ability

Technology required to perform precise tasks such as
positioning a ship

Precise measurement system required for direct production
and quality assurance of manufactured products

Automation

Technology and equipment required to support remote
maintenance

Network
Need for mobile device, sensors, and network for data entry
and automatic data collection in the field IoT & Mobile

Emphasis on additional and emergency power supply
system

Safety and HealthWarehouse needed for immediate supply of inventoryInfrastructure

Removal of hazardous substances such as hazardous gas,
waste oil, and dust during maintenance.

The transformation of a smart maintenance factory is to establish a predictive main-
tenance process that is to respond to changes in demands and plans above all else. To
this end, the current task-oriented management would be transformed to data-oriented
management. The central operation supporting system of the management level would be
transited to the on-site supporting system including the monitoring system. The automa-
tion was expected to reduce the burden of moving heavy parts and to improve work quality
from poor precision. The entire maintenance depot would be connected and transformed
into a mobile workplace. A safe and healthy work environment was also required in order
to respond to environmental regulations. The research in this paper belongs to the design
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stage, not the implementation stage, and the simulation of the expected result is presented
as a goal of improvement.

A diagnosis of the current factory at the smart factory level was conducted through
years of learning, and the transformation from the existing factory to a smart maintenance
factory was confirmed. Nonetheless, the managers of the vessel maintenance depot in-
tended to carry forward the smart transformation of the existing factory, but they are facing
practical difficulties in planning to build the smart maintenance factory [33].

(1) Goal and Scope

This goal has been formulated as a unique mission of the maintenance depot. The
goal of the maintenance depot is to maintain and improve performance during the life
cycle of a vessel, and to improve the productivity of maintenance factory.

(2) Requirement of Shop floor

For each process, field workers were able to present automation, system, data, in-
frastructure, and expected effects according to the provided template. In addition, some
processes were able to be integrate in response to changes. Figure 7 illustrated the practical
requirements that were derived by using templates of the smart process transformation
framework.

Figure 7. Example of requirements analysis for smart transformation.

(3) Build Smart Maintenance Model

The maintenance depot requests an on-site smart maintenance factory model that
can support and manage tasks at the site. The on-site smart maintenance factory is no
longer equipment-oriented. Instead, a data-and technology-centered construction direction
was born after repeated discussions and strategic presentations. With consideration of
the requirements and strategic direction of the derived smart transformation, the strategic
model for constructing a smart maintenance factory focuses on two directions.

First, the goals of a data-oriented smart maintenance factory include visualization of
the maintenance process and predictive maintenance. Second, the technology-oriented
smart maintenance factory is to adopt Industry 4.0 technologies considering job specialty
of maintenance.

(4) Define Tasks to Transform

Tasks to build a smart maintenance factory of data driven and technology driven:

Task 1: data diagnostic management;
Task 2: on-site operation support system;
Task 3: semi-automation;
Task 4: remote maintenance system;
Task 5: IoT and mobile workplace;
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Task 6: operational and environmental infrastructure.

The six tasks were determined in consideration of the analyzed issues in the field and
the required direction of resolution. In order to implement the six tasks, about a dozen
detailed tasks have been embodied. The tasks were finalized through collaboration and
considerable time and consultation with managers and the project team.

(5) Identify Smart Maintenance Elements

Regarding automation and cutting-edge technologies for the smart maintenance fac-
tory, Industry 4.0 technologies that suit the specificities of the tasks in a maintenance factory
were decided to be applied. Among the various Industry 4.0 technologies, performance-
validated technologies and currently applicable technologies that do not require long
development and preparation time were prioritized.

In order to build a data diagnostic management of task 1, the data set must be defined
in advance. Since the existing IT system focuses on data storage and loss prevention, the
data management for utilization is insufficient. There is a lot of data stored in the system,
but usually the data is improper or the data format is incorrect for factual use. It is necessary
to establish governance rules for data standardization and collection in the field. The big
data system for analyzing a large amount of collected data and Quick Response (QR) for
sharing data in the fields are major systems for a data-driven smart factory. The QR system
was applied to allow verification of the maintenance history and objects at the site.

In order to implement task 2, the on-site support system is connected to the central
management system to share ERP information. It also plays roles of data collection, job
history identification, and job processing status on the site. The information of workers,
job status, job schedules, working inventories, and dangerous environments on the site
can be visually managed through the central control room with a huge screen. The control
room ensures comprehensive and rapid response to the various changes on the site.

The cloud-based smart control requires standardized maintenance works and pro-
cedures. Standardization is difficult due to variability in the maintenance area. Thus,
unlike manufacturing, establishing a separate on-site support system and linking it with
the central information and data sharing system may be a method to construct smart
maintenance effectively in a short period of time.

For task 3, semi-automation is more preferable to full-automation considering the
changeable working conditions. Full automation is recommendable on the basis of a stable
work environment, planned work schedules, and repetitive work procedures. Nevertheless,
it is not proper to apply full automation to a maintenance factory where works are unstable
and highly changeable.

The specific technology for semi-automation was selected in consideration of the work-
ing conditions and technology availability. 3D scanning technology for accurately locating
a vessel and smart vehicle/cart technology for the convenient movement of workers are
selected. For smart moving between processes, smart vehicles were selected as the optimal
technology rather than Automated Guided Vehicle (AGV) due to environmental variations,
advanced works, and excessive costs. In order to replace discontinued parts, 3D scanning
and printing technologies were applied to produce the parts internally without design
works. Co-robots are brought onto the site to assemble/disassemble heavy components
that need to be repaired, promoting convenience of work. In addition, wearable equipment
was introduced to reduce health and safety risks because workers no longer need to manu-
ally move heavy weights frequently. CPS (Cyber-Physical Systems) requires digitization of
all landmarks of the factory, which takes a considerable amount of time and expense. In
this case, a lower-level or simple CPS technologies should be selected. It is not necessary to
apply the most advanced Industry 4.0 technologies to build a smart maintenance factory.

In order to implement task 4, an AR system was implemented to support remote
maintenance. Workers and managers had a preconceived notion that VR technology shown
in the media could change the way of work. However, in order to apply VR technology, it
could only be applied to preliminary preparation work and repetitive and limited work
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environments. In addition, there have been studies [5,15,26,53] on the limitations of the
application of AR technology to maintenance work in advance. Simple AR technology that
can give immediate instructions while sharing a maintenance site through a remote screen
was finally selected.

In order to implement task 5: the Internet of Things (IoT) and a mobile workplace, a
mobile network based on IoT and Long Term Evolution (LTE) was built as a communication
network. The operation condition data of engines and the major equipment of vessels is
collected and transmitted through a satellite network in real-time. The data collected from
the vessel is diagnosed in the big data system for predictive maintenance. The collected
data are aggregated and operated on the IoT platforms and the on-site support system, and
are connected to the big data analysis system for predictive maintenance.

To implement task 6, operational and environmental infrastructure, facilities for
hazardous substances and the environment from maintenance were built as separate
collective facilities. The Energy Saving System (ESS) is equipped for a stable power supply
for the increase in power consumption due to the smart maintenance factory.

(6) Build Smart Maintenance Architecture

Figure 8 illustrates the technical architecture for the smart maintenance factory.

Figure 8. Technology architecture of a vessel smart maintenance factory.

The operating system of a smart maintenance factory promoted the integrated lo-
gistics support system of Business O&M (Operation and Management), for information
connectivity between the upper operating system and the on-site operating system. The
central control system consists of technologies similar to CCTV technology, such as big
screen, location identification, emergency call, remote conference, and messaging technolo-
gies. The operating support system (OSS) includes a factory management system and a
task management system to support works at the site. The data sets are identified and
standardized in type and collection period considering usage from the site. The QR system
was applied extensively to most works and materials at the maintenance site. Automation
is mainly composed of Industry 4.0 technologies. In this case, semi-automation and ease of
movement were focused due the characteristics of the works.

Three types of networks were applied: near distance communication by using IoT,
long-range communication via LTE, and remote communication via satellite. The wireless
and sensor networks allowed workers to access information conveniently and assured that
data created at the field could be collected immediately. Changes that occurred in each
work process due to smart data and technology should be carried out in future construction
and implementation stages. Acquiring data and technical experts to operate smart factories
is another task to be prepared to increase organizational competency in the future.

The operating infrastructure for building a smart maintenance factory is the power
supply system. Compared to a traditional machine-centered maintenance factory, a smart
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maintenance factory emphasizes the importance of a stable power supply. Thus, it is
essential to build an ESS system to assure an affordable and stable power supply.

Moreover, environmental pollutants such as noise, dusts, gases, and hazardous oil
generated during the maintenance process were to be carried out in a separate and safe
workplace. Furthermore, a separate smart warehouse was built to store inventory and
material for maintenance in order to minimize wait time. For the purpose of promoting a
worker use environment with work safety and convenient information utilization, such
as PDA terminals, smart helmets, and wearables, the smart maintenance factory was
constructed to associate with each technology and system.

(7) Analyze Effect with KPIs

It is proper to define KPIs based on the missions and operational values of a smart
maintenance factory. In this study, the analysis of an expected value requires an analysis of
the factory unit. In the case of a single operation, in order to improve the expected effect,
an excessive load or performance degradation of related operations may result, and a view
of managing the whole is necessary. Aligning KPIs with the expected effects is a plan for
operation optimization after the establishment of a smart maintenance factory by linking
strategy and implementation.

In connection with the goals of the vessel maintenance depot, the maintenance factory
used mean time to failure (MTTF) and mean time to repair (MTTR) as KPIs to increase the
availability rate of vessels and improve the productivity of the maintenance factory. Based
on the two KPIs, the expected effect was calculated by improving the vessel availability rate
and shortening the maintenance time through the establishment of a smart maintenance
factory. Through this, the alignment among the Goal-KPI-Expected effect was secured.

While constructing a smart maintenance factory, the question about the benefits of
smart transformation has arisen. The Korean Ministry of SMEs and Startups analyzed
the effect of smart factory introduction for 5003 SMEs from 2014 to 2017, and as a result,
productivity increased by 30% [54]. The report also provided the results of an application
system by companies. In this study, we set improvement goals for each stage and system,
based on the empirical productivity improvement effect and the MTTR and MTTF reference
values managed internally.

Since this project was in the stage of designing smart transformation, the goal to be
obtained in the future was set rather than the actual application result. The goals for each
stage are shown in Table 2.

Table 2. Goals of improvement.

MTTR Improvement MTTF Improvement
Transformation

Contribution
Weight Year0 Year1 Year2 Year3 Year4 Year0 Year1 Year2 Year3 Year4

Big data 10% 0.0% 0.6% 1.5% 2.4% 3.0% 0.0% 0.2% 0.6% 1.0% 1.2%

IoT & Mobile 10% 0.0% 0.6% 1.5% 2.4% 3.0% 0.0% 0.2% 0.6% 1.0% 1.2%

OSS 25% 0.0% 1.5% 3.8% 6.0% 7.5% 0.0% 0.6% 1.5% 2.4% 3.0%

Remote
Diagnostic 15% 0.0% 0.9% 2.3% 3.6% 4.5% 0.0% 0.4% 0.9% 1.4% 1.8%

Automation 20% 0.0% 1.2% 3.0% 4.8% 6.0% 0.0% 0.5% 1.2% 1.9% 2.4%

Infrastructure 20% 0.0% 1.2% 3.0% 4.8% 6.0% 0.0% 0.5% 1.2% 1.9% 2.4%

Total
Improvement

100% 0% 6% 15% 24% 30% 0% 2% 6% 10% 12%

In this project, when operating the smart maintenance factory for five years, the
expected effect was estimated to be up to 30% for productivity improvement and up to
12% for vessel operation rate improvement. The total cost of transforming the entire
smart maintenance factory was estimated to be about 30 million USD and the expected
payback period was three to five years (excluding equipment costs for infrastructure and
automation).

159



Machines 2021, 9, 267

(8) Plan Implementation

It took about one year to analyze the current status of the existing maintenance
factories and establish a construction plan for smart transformation on factory basis, rather
than on the particular job or technology basis.

In this study, we transformed by resolving the issues presented in Table 1. The deport
of mechanical and hydraulic maintenance feature was transformed to a data-driven and
technology-driven maintenance factory. The first change was to establish a data-driven
management with data set definition, gathering, analysis, and standardization on the basis
of big data governance. Second, QR, IoT (Bluetooth), and LTE-based networks enabled
data communication for the entire smart maintenance depot. Third, an on-site operation
support IT system was established to support workers, process, and field managers with
information and technical support. In particular, in order to secure the visibility of the
site, depot, 5M, and environmental status and information were centralized on the central
control system. Fourth, a remote data collection system and AR technology were applied
for remote maintenance.

Fifth, semi-automation was focused on 3D printing/scanning, Auto Guided Vehicle,
and co-Robot to ensure the accuracy of work and the convenience of moving heavy equip-
ment. Finally, a smart warehouse, Energy Saving System, and a workshop for hazardous
environments were constructed separately for health and safety. Figure 9 illustrates the
changed image of the smart maintenance depot.

The design and developed jobs of the proposed construction plan of the smart main-
tenance factory will be promoted to ensure that the smart maintenance factory is to be
implemented step by step. The pilot working process (shop) was selected and deployed all
technologies that were under consideration and will evaluate the performance and deploy
the technologies to other work processes over the next five years.

Figure 9. Future image of a transformed smart depot.

5. Discussion and Conclusions

In terms of the entire lifecycle, smart factories have been mainly studied in the building
phase, and the need to expand research to the service phase has been suggested [6,7,32].
This study emphasized the service phase of the smart factory for a vessel maintenance
depot. Due to the variability of repair and maintenance work, there was a limit to applying
the smart factory concept in the manufacturing field as it is. The procedures and methods
were proposed for the smart transformation of maintenance factory by applying Industrial
4.0 technology.

In order to respond to the variability of maintenance works, methods for securing
on-site agility and predicting maintenance were presented. For an agile response to the
field, we mainly set the direction of visualization on-site to control the processes in line
through the visual management and to secure the linkage between each job through the
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on-site operation support system. For predictive maintenance, data of the status of the
currently operating vessels was collected in real-time and analyzed by the big data system.
The entire maintenance depot was built as a mobile workplace with IoT and LTE enabling
data-based factory management.

In data-driven factories, data standardization should be implemented through data
governance. Although the goal is to achieve efficient management with big data analysis,
the reality is that factories neither collect/manage data nor have a modeling concept for
the data. Since the IT system has stored data without considering the data format or type,
it has been difficult to utilize the stored data.

The technology-oriented automation was implemented rather than equipment-oriented
automation. For automation, semi-automation was proposed rather than full automation
considering the work characteristics. Instead of the investment-oriented levels of a smart
factory, effect-driven automation should be given the top priority in consideration of the
difficulty of learning for operators and the work environment of the factory.

While IT innovation improves the process by applying the necessary technologies and
systems, smart transformation changes existing processes through the application of the
fourth industrial technologies of data, systems, automation, and infrastructure. In other
words, the approach of smart transformation is the opposite perspective to the legacy IT
approach.

The concept of a smart factory in the ship building phase needed to be changed for
the application of the smart maintenance factory, but most of the technologies including
3D, AR, big data, IoT, and mobile could be accommodated. The applied enablers in the
study were IoT system, wireless system, operation support IT system, big data system,
remote support system, semi-automation, and infrastructure improvement. Among them,
the contribution to improvement was evaluated to be the highest through the operating
support system that supports the connection and visualization on-site.

Through the linkage between the mission, KPIs, and expected effect, the goals of
smart transformation for the plant rather than the individual work could be carried out.
This linkage is considered as a basic strategic direction, enabling the performance-oriented
smart maintenance factory operation.

In summary, we conducted a study to expand the smart factory concept, which was
limited to the ship building phase and to the ship servicing phase. The smart transformation
procedure, framework, and architecture for a smart maintenance factory were proposed
with a practical case. The designed practical case was embodied as a data-driven and
technology-driven smart factory.

The results of this paper will be a reference model for building a smart maintenance
factory in the service area. Future studies should verify the actual increases of MTTFs and
reductions of MTTR through smart maintenance factory operation. The expansion and
improvement of the approach to business areas other than vessel maintenance could also
be studied further.
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Abstract: In this paper, an intelligent-design method to deal with conceptual optimization is
proposed for the decisive impact of the concept on the product-development cycle cost and
performance. On the basis of matter-element analysis, an effective functional-structure combination
model satisfying multiple constraints is first established, which maps the product characteristics
obtained by expert research and customer-requirements analysis of the function and structure
domain. Then, the Evolutionary Game Algorithm (EGA) was utilized to solve the model, in which
a strategy-combination space is mapped to the solution-search space of the conceptual-solution
problem, and the game-utility function is mapped to the objective functions of concept evaluation.
Constant disturbance and Best-Response Correspondence were applied cross-repeatedly until the
optimal equilibrium Pareto state corresponding to the global optimal solution was obtained. Finally,
the method was simulated on MATLAB 8.3 and applied to the design for fixed winch hoist, which
greatly shortens its design cycle.

Keywords: conceptual design; intelligent design; evolutionary game; domain mapping

1. Introduction

Research on product conceptual design is booming with regard to the direct influence of the
concept on the quality of the final product, and the vast majority of researchers agree that how to
scientifically evaluate candidate concepts and how to express a product concept with an accurate model
are two vital tasks in conceptual design [1]. Hence, advanced models and effective evaluation systems
have been intensively addressed by researchers worldwide. Danni et al. [2] presented an evaluation
and selection method composed of three modules: data mining, concept reconstruction, and decision
support, to improve the efficiency of concept review and evaluation. Sun et al. [3] established an
effective conceptual model for new-product concept development from two theoretical backgrounds
about organizational learning, and the model was applied to the design of a large scramjet with
satisfying results. Wang et al. [4] proposed an optimization decision model for product conceptual
design to help enterprises select key technical characteristics under the condition that cost and time
maximally meet customer requirements. Christoph F. et al. [5] presented methodology integration
with a knowledge model for conceptual design in accordance with model-driven engineering, and
the work extended Gero’s Function-Behavior-Structure model. Based on Bunge’s Scientific Ontology,
Chen et al. [6] developed an explicit and complete conceptual foundation for the establishment of a new
conceptual design model. Varun Tiwari et al. [7] proposed a novel way of performing design-concept
evaluations, where instead of considering the cost and benefit characteristics of the design criteria,
the work identifies the best concept that satisfies constraints imposed by the team of designers, as
well as fulfilling as many of a customer’s preferences as possible. To obtain the best comprehensive
performance of mechanical products, Wang et al. [8] established an evaluation model for product
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conceptual design based on the principle of maximum-entropy value, and solved the model by
constructing a Lagrange function.

The above work mainly focuses on product-model expression and product conceptual evaluation.
However, there could be many generated concepts through its combination nature, and the evaluation
of a larger number of concepts, one by one, is a very difficult work, although many novel and effective
methods of concept evaluation have been proposed [6–8]. As a result, the best design concept cannot
easily be obtained, and the internalization of the conceptual-design process becomes critical.

Computational intelligence, which consists of an evolutionary neural network and fuzzy logic, is a
novel technology aiming to bring intelligence into computation [9]. Attempts have been made in recent
years for the application of computational intelligence. Manu Augustin [10] proposed a framework
that uses a fuzzy inference process for evaluating each initial concept against identified decision
criteria, to select and/or evolve improved concepts. Integrated with ACO, Ma et al. [11] presented a
mathematical programming model to quantitatively predict change-propagation impact, and improved
the intelligence of change-propagation prediction during the design process. Ming-Chyuan et al. [12]
proposed an integrated procedure that involves neural-network training and genetic-algorithm
simulations within the Taguchi quality-design process to aid in searching for an optimal solution with
more precise design-parameter values for improving product development. Oliviu Matei et al. [13]
addressed the automated product-design problem with two distinct evolutionary approaches:
genetic algorithms and evolutionary ontology. S.H. Ling [14] developed intelligent particle-swarm
optimization (iPSO), where a fuzzy-logic system, developed based on human knowledge, is proposed
to determine the inertia weight for the swarm movement of the PSO and the control parameter of a
newly introduced cross-mutated operation.

Although the above methods greatly contribute to the process of conceptual-design intelligence,
the main focus is to study the commonality of various problem models [4,6,13,14]. While the
model can be solved to obtain a feasible solution, they ignore the personality of the problem. If
we choose or design a specific algorithm to solve a specific problem, the efficiency and accuracy of
the solution is improved [8]. In view of this, we explored the establishment of a constraint model for
product design, focusing on the functional variables and constraints of the model, and the optimal
or approximately optimal solution of the functional variable combination of the Evolutionary Game
Algorithm (EGA) search model was completed in this paper. In order to accurately express information
during conceptual design, product characteristics are extracted at first via customer-requirement
analysis and the application of expert knowledge, and the Analytic Network Process (ANP) is used
to assess their importance. Then, a model of product conceptual design is established by means of
mapping product characteristics to the functional and structural domains while comprehensively
taking all constraints of product conceptual design into account. Finally, to quickly solve the model,
intelligent algorithm EGA, with fast convergence speed, was used [15], and the optimal solution was
obtained after multiple evolutions.

The paper is organized as follows. Section 1 introduces the process of how a product-optimization
design model is established. Section 2 briefly introduces EGA. Section 3 provides a practical example
to illustrate how the method performs. Section 4 concludes the paper.

2. Modeling for Product Conceptual Design

2.1. Matter-Element Description

The matter-element model is a representation of objects for computer storage, recognition, and
operation, which is widely employed in product design and reliability assessment. Yue et al. [16]
applied matter-element theory to ecological-risk assessment, and successfully evaluated the
Gannan Plateau. To solve the formal description in the modular design of mechanical products,
Huang et al. [17] introduced extension theory into Reconfiguration Design Technology (RDT), and
built the matter-element model. Based on the model, the selection, matching, and transformation of a
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mechanical product and its modules were researched. Liu [18] proposed an assessment approach by
combining extension and ensemble empirical-mode decomposition (EEMD) to describe the bearing
performance-degradation (BPD) process that was denoted by the matter-element model. Lv et al. [19]
presented a new method for equipment-criticality evaluation based on a fuzzy matter-element model.

In this paper, a model of product conceptual design based on matter-element analysis was
constructed. Firstly, the function tree and structure tree could be obtained by mapping product
characteristics to functional and structural domains, before which the product characteristics and
their importance must be obtained through expert investigation and customer-requirement analysis.
Then, in order to obtain the utility function of a product, various constraints in conceptual design
are comprehensively considered, and the utility vector of the product characteristics is given to each
substructure with the knowledge of the expert team. Finally, a matter-element model of product
conceptual design is established with both utility attributes and design-constraint attributes invested
to express product information.

The above model can be described as Pro = (S_Attrib, U_Attrib, C_Attrib, Cl_Attrib), where
U_Attrib denotes the model-evaluation information of each product concept; Cl_Attrib denotes the
hierarchical information of the matter element; C_Attrib denotes the constraint information including
functional, structural, and relational constraints during product conceptual design; and S_Attrib
denotes product-feature information. In order to express it more clearly, the matter-element model of
product conceptual optimization design is expressed as follows:

⎛
⎜⎜⎜⎝

Pro, U_Attrib, v1

Cl_Attrib, v2

C_Attrib, v3

S_Attrib, v4

⎞
⎟⎟⎟⎠ (1)

where vi (i = 1, 2, 3, 4) is the value of an attribute belonging to a matter element, the larger the v1,
the better the concept; v2 denotes the hierarchical information of the matter element; v3 indicates
whether the solution is a feasible solution, for example, v3 = 0 means that the solution is feasible
without breaking any constraint; and v4 is the combined information of the substructures for achieving
a functional unit. The detailed information of each attribute is expressed via its submatter elements,
and the process of finding the optimal solution is transformed into the process of searching for a matter
element of a product concept with a maximum v1 under constraint conditions v3 via combination of
submatter elements.

2.2. Matter-Element Description

Product-characteristics set PC is obtained through the brainstorming of experts and technicians
involved in all phases of the product life cycle, with customer requirements being taken into
consideration (the ith element in PC is denoted by PCi). The original PC should be processed to
obtain the new one, as their relationships may be inclusion, cross, and independence. Generally
speaking, there are mutual relations between elements in PC, customer-requirement set CR (the jth
element in CR is denoted by CRj) and PCi, which should all be taken into account when synthetically
analyzing the importance of PC. The Analytic Network Process (ANP) method is a widely used
decision-making algorithm, mainly to determine the relative importance of a group with inter-related
elements in a multiobjective decision-making problem; therefore, it is adopted to analyze a PC and
calculate its importance.

1. Analyzing the importance of a PC driven by CR
Assume that each PCi is independent from the others. Importance vector ws = (w1, w2, . . . wm) is

obtained according the customers’ preference for each requirement. For each PCi, relative importance
matrix Ri between CR and PCi is evaluated by an expert team; for element rij ∈ [0,9] in Rk, which
indicates the importance of RCi for RCj when pursuing PCk, if rij �= 0, then rji = 1/rij; else, rij = rji = 0.
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In addition, the Analytic Hierarchy Process (AHP) [20] is used to obtain relative-importance vector wi
= (w1i, w2i . . . wii, wmi), where ∑m

j=1 wji = 1, and importance matrix Wcr-pc of a PC driven by CR can
finally be obtained.

Rk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 . . . r1i . . . r1m
r21 r22 . . . r2i . . . r2m
...

...
...

... . . .
...

ri1 ri2 . . . rii . . . rim
...

...
...

...
...

...
rm1 rm2 . . . rmi . . . rmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Wcr−pc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 w12 . . . w1i . . . w1n
w21 w22 . . . w2i . . . w2n

...
...

...
... . . .

...
wi1 wi2 . . . wii . . . win

...
...

...
...

...
...

wm1 wm2 . . . wmi . . . wmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where wij denotes the impact degree of CRi on PCj, and vector w (1) = ws × wcr-pc denotes the importance
of a PC driven by CR.

2. Gaining mutual importance among elements of PC
Relative-importance degree matrix R’i that is similar to Ri is obtained when considering the

correlations between PCi and the others. rij in R’i indicates the importance of PCi for PCj when

pursuing PCk, and importance vector w(2) = (w(2)
1 , w(2)

2 , . . . . . . w(2)
n ) is also obtained by AHP, where

∑n
j=1 w(2)

i = 1.

R’
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r11 r12 . . . r1i . . . r1n
r21 r22 . . . r2i . . . r2n
...

...
...

... . . .
...

ri1 ri2 . . . rii . . . rin
...

...
...

...
...

...
rn1 rn2 . . . rni . . . rnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Wpc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w11 w12 . . . w1i . . . w1n
w21 w22 . . . w2i . . . w2n

...
...

...
... . . .

...
wi1 wi2 . . . wii . . . win

...
...

...
...

...
...

wn1 wn2 . . . wni . . . wnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

w(2)
i =

∑n
j=1 wji

n
(4)

3. Gaining the importance of PC
The importance of PCi is shown in Equation (5) by comprehensively considering the two

relationships mentioned above.

wi =
w(1)

i × w(2)
i

∑n
k=1 w(1)

k × w(2)
k

(5)

2.3. Modeling Process

2.3.1. Multidomain PC mapping

With the fuzzy, complex, and tedious relationships between PC and the product structure,
inaccuracy of information mapping and loss of information occur if we directly map the PC to
the product-structure domain. Therefore, considering the correspondence between product function
and structure in axiomatic design [21], the functional domain is introduced as an intermediate medium
between PC and product structure, guiding mapping the PC to the product domain, and completing
the product-structure design of the specific PCi.
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2.3.2. Function Decomposition

The process of PC multidomain mapping is shown in Figure 1, where the product-function tree is
obtained by progressively decomposing product function to the tiniest independent functional units;
the structure tree corresponding to the function tree is obtained by an expert team that enumerates the
component structure corresponding to each function in the product-design database; the cell located at
the bottom of the structure tree is called a substructure.

Figure 1. Product-characteristics set (PC) multidomain-mapping diagram.

2.3.3. Concept Modeling

Both functional units and substructures are denoted by the matter element after finishing the
multidomain mapping of PC. The optimal-design concept is obtained by solving the model through
the EGA via mapping product features to game players. A mechanical-product concept is expressed in
Figure 2; it has n functional units, and ith functional units have k substructures.

 
Figure 2. Matter-element model of a mechanical product.

where the information of the entire product concept is denoted by the matter-element model,
for example, the specific information of the ith functional unit of the product, which includes
structural information S_Attrib, constraint information C_Attrib, utility information U_Attrib, and
hierarchical information Cl_Attrib, is denoted by the second-level matter element. The substructures
to achieve a functional unit are denoted by third-level matter elements. It should be noted that the
third-substructure-layer matter elements are alternative substructures, which are optional strategies of
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the game player, since the effectiveness of structural combinations has not been judged; therefore, no
constraint information is required.

2.3.4. Values of Obtained Matter-Element Attributes

Linguistic terms such as ‘very unimportant’ and ‘medium’ are usually used to assess an attribute’s
importance, as they are always fuzzy during product design. Some linguistic terms should be
transferred to crisp numbers for accurate analysis and calculations.

• Strategy variables and utility vectors are obtained
For m substructures sij (j = 1, 2 . . . m) corresponding to a functional unit fi (i = 1, 2 . . . n), one

of them must be chosen to achieve fi during conceptual design, and the choice information of fi
for m substructures can be donated by the value of S_Attrib. For example, if m = 8 and the fourth
substructure is chosen, then the value of S_Attrib of fi is v4 = 00010000, and the utility vector for the
PC of substructure si4 is used to calculate the utility value of the product concept. A typical mapping
relationship between product features and matter-element attribute values is expressed in Figure 3.

Figure 3. Schematic of property values.

where uij is a utility vector of a jth substructure of an ith functional unit provided by experts
and designers based on a nine-point scale [22], which denotes the utility index of sij; xi is the strategy
variable of functional unit fi, which denotes the choice information of alternative substructures. In the
matter-element model proposed above, xi is the value of S_Attrib for a game player. The frequently
used nine-point scale is shown in Figure 4.

Figure 4. Nine-point scale.

• C_Attrib value is obtained
Product-design constraints, including functional, structural, and related constraints are ultimately

embodied in the portfolio optimization of product substructures. In the optimization model proposed
in this paper, a uniform expression C was used to specify dependency constraints that can denote the
multiple constraint forms, and a dual constraint is taken as an example, shown in Equation (4).

C
(
xi, xj

)
=
{(

uik, ujp
)}

(6)

where xi and xj are variables denoting the constraint relationship between functional units i and j, and
the ranges of xi and xj are expressed as uik and ujp, respectively. C indicates that j must choose the pth
substructure if i chooses the kth. The constraint between a fixed winch hoist coupling and its service
brake is used as an example.
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C (b, c) = {(Wheel break, Wheel coupling), (Disc break, Disc coupling)} (7)

This shows that the wheel brake must be matched with the wheel coupling; otherwise, the number of
constraints on the current composition strategy increases. If the number of constraints in the current
combination strategy is i, then the value of C_Attrib v3, which is used to decrease the utility value of a
concept in an evolutionary game, is i.

• Cl_Attrib value is obtained
The Cl_Attrib attribute in the model mainly denotes the hierarchical information of the matter

element. As shown in Figure 2, v2 = 1 indicates it is just a matter element of the product concept rather
than a component.

2.4. Benefits

•By focusing on functional variables and constraints of the model, the obtained solution is the
optimal solution that satisfies the constraint.

•Comprehensively considering PCs and CRs makes products perform well in terms of
performance and personalization.

•A modular product functions as a player in the EGA that performs well on combinatorial
optimization problems, and quickly obtains the optimal solution.

3. Introduction of Evolutionary-Game Algorithm

Considering that product conceptual design is actually a combinatorial optimization problem,
EGA was employed to solve the above optimization model as it is effective in solving
combinatorial optimization problems [23]. The optimal solution is obtained through the game for
functional-unit-layer matter elements, a combination of substructure-layer matter elements, and
comparison between matter elements in the conceptual layer.

The EGA is a novel kind of intelligent computation algorithm based on economic game theory
and dynamic evolution calculation, which takes maximum utility as its optimization objective and
searches the whole solution space by combining the strategies of game players, and simultaneously
considers local and global performances. Compared with the selection process of a stochastic genetic
algorithm, the EGA converges to a global optimal solution with probability 1, and is more certain in
evolution [24].

3.1. Key Issues

3.1.1. Fundamental Theorems

A basic game consists of game player i, strategy set S, and utility u; the two fundamental theorems
for EGA are shown as follows.

• If strategy combination S* satisfies Equation (8) for any strategy si ∈ Si of any game player i, then
it is called an S* Nash equilibrium, and Si is the strategy set of i. The specific form of Equation (8)
is as follows:

ui
(
s∗i , S∗

−i
) ≥ ui(si, S−i) (8)

where S−i is the strategy combination of players without i, S−i
* is the Nash equilibrium of strategy

combinations of players without i, and s∗i is the optimal strategy for i in a Nash equilibrium. It is
called a strict Nash equilibrium when

ui
(
s∗i , S∗

−i
)
= ui(si, S−i) (9)
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• Assuming that S−i = ∏ Sk, where k = 1,2 . . . n and k �= i. If Equation (10), established as follows,
is satisfied, then Bi is called the Best-Response Correspondence for player i.

Bi(s−i) = {s∗i ∈ Si : ui
(
s∗i , S∗

−i
) ≥ ui(si, S−i), ∀s(i) ∈ Si} (10)

Underlying the meaning of the Best-Response Correspondence is a process where i chooses the
strategy with the maximum utility in the current situation. The dynamic process that all game players
complete a Best-Response Correspondence in turn is called the Optimal-Response Dynamic.

3.1.2. EGA Expression

The specific form of the evolutionary-game algorithm is expressed as EGA= {G, S0, α,β, τ}, and
each member of the EGA is described in detail as follows.

• Game structure G
The game structure is described as G = [I, S, U], where I, S, and U denote the information of the

game players, the current situation, and utility, respectively. For the model described in this work,
game-player set I is obtained by mapping functional units to the strategy variables, and k substructures
for realizing a functional unit are mapped to the strategy set of the player.

The mathematical description is sij ∈ {0,1}, where i ∈ I (1 ≤ i ≤ n) and 1 ≤ j ≤ k; for example, if k
= 7 and the third substructure is selected when he functional unit i generates a strategy, according to
Section 2.3.3, the strategy of player i transfers to binary code 0010000. Then, the strategy combination
of n players constitutes a solution S (also called a situation) in the above model. Equation 11 is the
form of utility function f(S) that is used to calculate utility value U of the current situation.

Ui =

{
f (S) i f satis f y the constraint

f (S)− fmax else
i ∈ I

f (S) =
n
∑

i=1
GiWi

Gi =
m
∑

k=1
uij ∗ WPC

(11)

where uij is the utility vector of substructure sij, m is the element number of PC; WPC is the importance
degree of m PCi calculated by Equation (5); Wi is the importance degree of game player i in
product conceptual design, where ∑n

i=1 Wi = 1; n is the number of game players; and fmax is the
maximum-utility value of the current evolutionary generation. Compared with penalty functions in
other algorithms that are difficult to determine forms, fmax can be directly calculated. It should be
noted that game player i is only bound by the constraint rules associated with itself during the game.

• Initial situation S0

The EGA starts with S0, which is initialized by a randomization method.
• Optimization operator α

Game theory is based on the assumption that all game players are economic, and in the
process of evolution, each game player pursues maximum-utility values. Hence, the Best-Response
Correspondence is called the optimization operator for the maximum-utility value of a game player
made by it.
• Equilibrium perturbation operator β

In order to ensure that the solution obtained by the EGA is globally optimal, equalization
perturbation operator β is employed to break the current Nash equilibrium state reached after
several iterations; then, a new Nash equilibrium state is obtained by performing the Best-Response
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Correspondence of each player after the balance state is sequentially broken. The specific calculation
form of β is shown in Equation (12):

β(si) =

{
si i f Xi ≥ pi
Zi else

(12)

where pi is the perturbation probability assigned according to the importance degree of each functional
unit, and the functional units with much contribution to the utility value of a solution are easier to
deviate the system from the original state. Therefore, higher disturbance probability should be attached
to them, and the functional units with less contribution to the utility value should be given lower
probability. Xi is a decimal randomly generated from 0 to 1; si indicates that the disturbance operator
changed nothing and the former strategy is maintained; Zi is the disturbance operator that means a
strategy is randomly selected from the strategy set of player i to replace the current one.
• Termination condition τ

In a given situation, the process of Optimal-Response Dynamic is called one round, and the
Nash equilibrium state of the situation is reached after two rounds. Two rounds achieving a Nash
equilibrium state are defined as a generation. Setting the iteration termination condition as τ ≥ T, and
T is the preset iteration generation.

3.2. EGA Process

The specific process of EGA is shown in Figure 5.

Figure 5. Evolutionary Game Algorithm (EGA) flowchart.

Step 1: Set parameters.
First, maximum iteration number T and disturbance probability pi are set.
Step 2: Algorithm initialization.
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Update game structure to G = G0 with the strategy randomly initialized; then, initial situation S0

is generated, and the system starts to evolve from S0 when τ = 0.
Step 3: Calculate current-situation utility value.
Calculate the U of the current situation based on f(S).
Step 4: Application of optimization operator α.
α is first used to estimate updated player utility, and then to update the strategy combination

of game players from Sj to Sj+1 when the updated one is better than the before; otherwise, keep
Sj unchanged.

Step 5: Stability of the situation.
If the situation at timer τ = τ(i) satisfies Ui+1 = Ui, then strategy Si is stable and its corresponding

solution is a Nash equilibrium solution.
Step 6: Application of equalization perturbation operator β.
The new situation is achieved by applying β to the current situation; then, update situation

Sj to Sj+1 and calculate the utility value of Sj+1. Finally, estimate whether it is a stable evolution
strategy again.

Step 7: Estimation of termination condition.
The algorithm terminates when τ ≥ T is satisfied; otherwise, it returns to Step 6.
The EGA steps can be regarded as a stochastic process in a Nash equilibrium solution space

that continuously updates the current stable solution with a better Nash equilibrium until the
optimal situation equilibrium is reached. Since the main operation of EGA is only to compare the
utility value between different strategy combinations, the global optimal solution can always be
obtained by reasonably setting the number of iterations, because the utility of the global optimal
solution is greater than other feasible solutions, and the utility of all feasible solutions is greater
than infeasible solutions. Compared with frequently used evolutionary algorithms, such as Genetic
Algorithm, Ant-Colony Algorithm, and Artificial Neural Networks, which involve complex mutation
operations, path calculation, and network learning, respectively, the speed and efficiency of EGA are
obvious advantages.

4. Case Study

A 3600 KN fixed winch hoist that was supported by the Sinohydro hydraulic machinery company
was taken as an example to validate the method mentioned above. PC set F for the fixed winch
hoist was obtained by product investigation, customer-requirement analysis, technical, economic, and
social environments, and, finally, an expert team. Given F = { 1© low complexity, 2© manufacturability,
3© assembly ability, 4© reliability, 5© mechanical strength 6© environment-friendly, 7© brake, 8© low

noise, 9© Lifting stability, 10© low cost, 11© synchronicity, 12© high energy-conversion efficiency, and
13© lightweight}. How to express and implement the element-matter model of a fixed winch hoist is
introduced below.

4.1. Modeling of the Fixed Winch Hoist

4.1.1. Design Knowledge

A fixed winch hoist is a heavy-tonnage lifting machine that works in the water-conservancy and
hydropower industries, and it is composed of 10 components. As shown in Figure 6, only the structure
of a movable pulley is related to the lifting force, and the structure of the other components could have
different structures according to different PCs. Hence, the process of conceptual design according to
a PC is transformed into the process of selecting the optimal structure of each component based on
product characteristics.
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Figure 6. Schematic diagram of fixed winch hoist.

In order to solve the problem of fixed-winch-hoist conceptual design from the perspective
of product characteristics, the function tree was first obtained by an engineer through functional
decomposition, with the substructure set for each functional unit enumerated as shown in Table 1.
Then, based on knowledge and customer-requirement constraints, they were obtained as shown in
Figure 7. Finally, a model for product conceptual design was established, as shown in Figure 8.

Table 1. Function units and their alternative substructure.

Functional Unit Structure Alternative Substructure

Lifting S1 Drum gear

s11 single helix with intermediate rope, s12 single
helix with sides rope, s13 Single fold with center
rope, s14 single fold with sides rope s15 double

fold with intermediate rope, s16 double fold with
sides rope, s17 double helix with sides rope, s18

double helix with intermediate rope.

Balance S2 Pulley to balance s21 balanced pulley suspension, s22 balanced
pulley placement,

Stabilization S3 Fixed pulley
s31 fixed pulley is placed vertically, s32 fixed
pulley is hung vertically, s33 fixed pulley is

arranged in parallel, s34 No fixed pulley

Working brake S4 Working brake s41 wheel brake, s42 disc brake

Reducer S5 Reducer s51 horizontal speed reducer, s52
suspension reducer

Support S6 Bearing s61 Antifriction bearing, s62 sliding bearing, s63
hybrid bearing

Power transmission S7 Gear and coupling s71 wheel coupling with gear, s72 disc coupling
with gear, s73 wheel coupling, s74 disc coupling

Safety brake S8 Safety brake s81 safety brake, s82 no safety brake

Master support S9 Rack s91 motor fixed pulley same side, s92 motor fixed
pulley different side
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Figure 7. Constraint expression of hoist conceptual design.

Figure 8. Matter-element model of fixed winch hoist.

4.1.2. Acquiring PC importance

Analyzing the importance of PC driven by CR
According to customer preferences, the weight vector for five customer requirements CR = { 1©

maintainability, 2© long service life, 3© work stability and reliability, 4© energy utilization rate, 5©
environment-friendly}, ws = (0.29, 0.30, 0.31, 0.09, 0.05) appeared, and PC importance relationship
matrix Wcr-PC driven by customer requirement is obtained using the Analytic Hierarchy Process.
Relative importance matrix Ri between CR and PCi is evaluated by an expert team, and R1 was taken
as an example

CR1 CR2 CR3 CR4 CR5R1 =

CR1

CR2

CR3

CR4

CR5

⎛
⎜⎜⎜⎜⎜⎝

1 1
5

1
3 0 1

3
5 1 1

4 0 1
5

3 4 1 0 0
0 0 0 1 1

5
3 5 0 5 1

⎞
⎟⎟⎟⎟⎟⎠

According to AHP, Wcr_PC (1, j) =
∑5

j=1 R11j

∑5
i=1

∑5
j=1 R11j

5

Wcr_PC

=

⎛
⎜⎜⎜⎜⎜⎝

0.06 0.21 0.36 0.11 0.10 0 0.13 0.07 0.09 0.39 0.03 0 0.07
0.20 0.10 0.07 0.13 0.21 0 0.13 0.14 0.13 0.23 0.07 0 0.08
0.25 0.14 0.10 0.49 0.49 0 0.47 0.09 0.49 0.14 0.53 0 0.17
0.05 0.12 0.29 0.12 0.07 0.1 0.21 0.18 0.15 0.17 0.31 0.7 0.19
0.44 0.43 0.18 0.14 0.13 0.9 0.06 0.52 0.14 0.05 0.06 0.3 0.49

⎞
⎟⎟⎟⎟⎟⎠
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w(1) = ws × Wcr-PC = (0.3380, 0.1628, 0.1909, 0.2353, 0.2469, 0.0550, 0.2399, 0.1272, 0.2325, 0.2335, 0.2245,
0.0850, 0.1365).

Gaining Mutual Importance among PC Elements
Using the Analytic Hierarchy Process to obtain mutual importance vector w(2) among elements in

PC. Relative importance matrix R’i among PCi is evaluated by the expert team, and R’1 between PC1

and the others was taken as an example.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

R′
1 =

PC1

PC2

PC3

PC4

PC5

PC6

PC7

PC8

PC9

PC10

PC11

PC12

PC13

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
5

1
2

1
5

1
3 0 0 0 1

3
1
6 0 1

6
1
6

5 1 1
4

1
6

1
3

1
6 0 1

2 0 1
7 0 1

6 1
2 4 1 1

2 0 1
2 0 0 0 1

5 0 1 1
2

5 6 2 1 1
7

1
2 0 1

2
1
7

1
3

1
7 1 1

4
3 3 0 7 1 0 1

5 0 1
2

1
6 0 1

3
1
7

0 6 2 2 0 1 0 1
7

1
2

1
5 0 0 1

7
0 0 0 0 5 0 1 0 1

5
1
3 0 1

9
1
3

0 2 0 2 0 7 0 1 1
2

1
3 0 0 1

3
3 0 0 7 2 2 5 2 1 1

3
1
5 0 1

2
6 7 5 3 6 5 3 3 3 1 1

3
1
6

1
7

0 0 0 7 0 0 0 0 5 3 1 1
5 0

6 6 1 3 0 9 0 0 0 6 5 1 0
6 1 2 4 7 7 3 3 2 7 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Similar to the calculation method of Wcr-PC, the first column vector of Wpc was obtained: Wpc(:,1) =
(0.2359,0.6712,0.7462,1.2086,1.4282,0.9495,0.5368,1.1111,3.2800,1.7718,1.2462,2.8462,3.3077) according
to R1. Finally, similar to the calculation method of w (1), w (2) = (0.1110, 0.1321, 0.0852, 0.1231, 0.0742,
0.0173, 0.0952, 0.0952, 0.0903, 0.1123, 0.0548, 0.0100, 0.0300) was finally obtained.
Gaining PC Importance

Calculating the importance of PC according to Equation (5), w = (0.1681, 0.0965, 0.0730, 0.1299,
0.0822 0.0043, 0.1025, 0.0543, 0.0942, 0.1176, 0.0552, 0.0038, 0.0184).

4.1.3. Acquiring Functional-Unit = Importance

Wi denotes the importance of functional unit i in the whole product concept, where ∑n
i=1 Wi = 1,

and as for nine functional units of the hoist, 1© lifting, 2© balance, 3© stabilization, 4© working brake,
5© reducer, 6© support, 7© power transmission, 8© safety brake, and 9© master support, importance

vector Wi = (0.17, 0.11, 0.11, 0.10, 0.13, 0.09, 0.13, 0.07, 0.09) was obtained based on knowledge.

4.1.4. Obtaining PC Substructure Utility Vector

According to expert analysis, the impact of each candidate substructure on the PC was quantified
by 0 to 9. As shown in Table 2, the larger the number is, the greater the impact. Particularly, 0 indicates
that the substructure had no effect on this index.
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Table 2. Substructure utility vector for a PC.

Substructure Utility Vector

PC s11 s12 s13 s14 s15 s16 s17 s18 s21 s22 s31 s32 s33 s34 S41 . . . s91 s92

F1 7 7 8 8 9 9 9 9 2 2 5 7 9 1 5 . . . 2 2

F2 9 9 7 7 9 9 9 9 2 2 5 7 9 1 0 . . . 2 2

F3 9 9 9 9 7 7 7 7 5 3 5 9 7 1 3 . . . 2 2

F4 1 1 1 1 1 1 1 1 4 4 5 5 7 3 7 . . . 2 2

F5 5 5 5 5 7 7 7 7 4 4 5 5 7 3 7 . . . 2 2

F6 7 7 5 5 9 9 7 7 3 3 3 5 7 1 5 . . . 2 2

F7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 . . . 2 2

F8 0 0 1 1 1 1 0 0 0 0 0 0 0 0 5 . . . 0 0

F9 7 7 5 5 7 7 9 9 6 6 7 7 7 3 0 . . . 0 0

F10 4 4 3 3 5 5 6 6 4 4 5 7 9 0 5 . . . 0 0

F11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0

F12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 . . . 7 9

F13 3 3 3 3 3 3 3 3 3 3 3 3 3 7 7 . . . 7 9

4.2. Model Solution Process

In order to solve the above model with the EGA, the functional units were mapped to the game
players; the substructures were mapped to the strategy set for the player; and the constraints condition
was mapped to the game rules. Perturbation probability pi of each functional unit was given according
to the importance degree of the functional units for the entire hoist design, where pi = (0. 781, 0.547,
0.452, 0.343, 0.433, 0.536, 0.412, 0.246, 0.435), and maximum evolution generation T = 250 was set
according to multiple experiment simulations, as shown in Figure 9.

Figure 9. Nash equilibrium generation distribution.

Based on the above conditions, the evolutionary game was carried out in software environment
MATLAB 8.3, in which the result of the conceptual design was shown in Figure 10. The optimal
product design that meets the relevant PC was finally achieved as a single fold with center rope; fixed
pulley placed vertically; horizontal speed reducer; balanced pulley placement; sliding bearing; wheel
coupling; safety brake; and motor fixed pulley different side. The original data in this work were
provided by a water-conservancy and hydroelectric-machinery company.
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Figure 10. Solution optimization process.

4.3. Results and Discussion

Under the same conditions, the hoist concept was designed by the company’s designers using an
empirical design system of the company. As shown in Figure 11, the result was: single fold with center
rope; balanced pulley placement; sliding bearing; wheel coupling; safety brake; and motor fixed pulley
different side.

 
Figure 11. Current design-method result.

Comparing the concept designed by the company engineers with that achieved by the method
proposed in this paper, the main difference was that engineers think that a motor fixed pulley different
side makes the structure more compact, while there is neither CR nor PC related to compactness. From
this point of view, the proposed design method in this paper is less advanced in the application of
expert knowledge. A comprehensive comparison was made from occupation, design cycle, experiential
knowledge, result reliability, and economy. Results are shown in Table 3.

Obviously, this method needs to be improved in the acquisition and learning of empirical
knowledge, but performs well in other aspects.

179



Machines 2019, 7, 18

Table 3. Performance comparison.

Project Occupation
Design
Cycle

Experiential
Knowledge

Result
Reliability

Economy Total

Current
Design
Method

•Empirical
design system
•Experienced

designer

1–2 days

•Design
experience
•Knowledge

base

Reliable Poor General

Method of
this Paper Computer 0.5 h

Improved
knowledge

base
Reliable Well great

Improved Greatly Greatly Little Little Good Greatly

5. Conclusions

Product conceptual design was investigated in this paper. Based on the achieved experiment
results, the following conclusions are derived:

It was found that a problem could be effectively solved by the method proposed in this
paper. Using this process, the design cycle was reduced to 0.5 hour, and occupation and economy
greatly improved.

The method does not perform well in empirical-knowledge application. Hence, our future
work will focus on how to more accurately acquire design knowledge and objective–subjective
expert knowledge.
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Abstract: Current industrial robotics technology is often not well integrated with the enterprise’s
on-site environment and actual working conditions and small and medium-sized enterprises are
unable to achieve product automation due to production cost constraints. In order to meet the
medium and small scale production of the slide valve body of OCV (Oil Control Valve) of a certain
enterprise and its special process requirements, the automatic test system and sorting system based
on the production environment of the enterprise are studied and designed. Firstly, according to
the production conditions and process requirements of the enterprise, the overall design scheme
of the automatic production line is put forward based on the existing automatic assembly system.
Secondly, the test description is further improved by analysing and interpreting the test requirements
of the products in detail and the automatic test system and test process are designed. Finally,
according to the sorting process requirements, a Cartesian coordinate robot sorting system with
two-terminal manipulators parallel operation is designed and its sorting motion scheme is optimized.
The automatic test system and sorting system are seamlessly connected with the automatic assembly
system, which can efficiently complete the automatic test and sorting of products and meet the
production cycle time.

Keywords: slide valve body of OCV; automatic production line; test system; sorting system; Cartesian
coordinate robot

1. Introduction

The production and testing of OCV valve are very difficult owing to its complexity and high
precision. Although some international manufacturers have relatively complete production and testing
systems but the technology is closed. The OCV valve test system produced by Schaeffer Group in
Germany has powerful functions. It can simulate the control of the OCV valve by ECU (Electronic
Control Unit), adjust the oil temperature and pressure in a wide range and monitor the parameters of
the OCV valve. The system has high test accuracy and repeatability. The production of OCV valves
and actuators in most countries is still in the exploratory stage and few enterprises have a complete
production and testing system. An OCV valve performance test bench with higher automation and
better test accuracy was studied and designed by Tang and Deng [1]. An OCV valve flow experimental
platform was built by Xie to test the dynamic response characteristics of the OCV valve and verify
the reliability of the experiment [2]. An OCV displacement test bench was designed and developed
by Yao, Li and a Ningbo company [3,4]. The above research only provides guidance for OCV valve
testing but fails to provide specific test methods and reference test indicators, which cannot meet the
production needs.
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Automatic production lines are usually composed of the assembly system, the test system and
the sorting system, which can automatically complete all or part of the manufacturing process of the
product. Adopting automation line in mass production can improve labour productivity, improve and
stabilize product quality, improve labour conditions, shorten production cycle and have remarkable
economic benefits [5–7]. Cartesian coordinate robots have been widely used in automatic production
lines of various products because of their advantages such as strong load capacity, easy combination
and expansion, low cost and so on [8]. They are usually used for handling and sorting. However,
the mature, stable and reliable industrial robot technology on the market is often unable to combine
well with the on-site environment and the actual working conditions of enterprises; in addition, many
enterprises have realized automatic assembly of small and medium-sized products but the testing and
sorting of products are still manual operation due to the limitation of production cost, which is not
conducive to the improvement of product quality and stability. Moreover, poorly designed production
lines will not only reduce the efficiency of equipment but also may make the production lines too
complex. Therefore, according to the product type, production scale and actual working conditions of
the enterprise, it is of practical significance to study and design the industrial robot production line
suitable for the enterprise.

Because the production of OCV valve is not common, this paper takes the production of OCV
slide valve body as the background, aiming at efficient testing and sorting. The main purpose of the
study is to provide the actual test indicators as reference for test analysis and test description and to
propose a design scheme. At the same time, the design of a new sorting system and sorting movement
is emphasized and a novel application case of rectangular coordinate robot in a specific production
line is provided. According to the actual situation of small and medium-sized enterprises, the sorting
system of production line is reasonably designed, the cycle time is allocated and the sorting movement
is optimized, so as to reduce the cost and improve the sorting efficiency.

2. Design of the Automatic Production Line

2.1. Presentation of Problems

OCV is an important part of the traditional VVT (Variable Valve Timing) system and it is the
oil control valve that controls the timing of the engine intake valve. Most automotive engines use
the structure of extrapolated OCV to achieve the best performance [9–11]. OCV is essentially an
electromagnetic sliding valve which controls the direction and flow of engine oil [12], including the
magnet part and the slide valve body part. The slide valve body is also an important part of a new
type of intermediate VVT system.

The structure of the slide valve body of OCV is mainly composed of a centre bolt, a valve sleeve,
a valve core, a reset spring and a one-way valve ball and so forth, as shown in Figure 1. The oil inlet
and the oil outlet are arranged at both ends of the centre bolt and the oil inlet end is screwed into
the intermediate locking phase device through the thread to connect with the oil circuit of the intake
camshaft; the valve core of the oil outlet end is connected with the magnet part of OCV; four pairs of
holes are evenly opened on the circumferential surface of the centre bolt and the four holes A and four
holes B are respectively connected with the A cavity and the B cavity of the intermediate locking phase
device [13].

The automatic production line of the slide valve body of OCV should consist of an automatic
assembly system, a test system and a sorting system. The automatic assembly system mainly completes
the automatic assembly of the product parts; the test system is responsible for the automatic test of the
basic indicators of the product; the sorting system, also known as the loading and unloading robot,
on the one hand completes the automatic loading of the test products: loading the assembled products
to the test system; on the one hand, completes the automatic unloading and sorting of the tested
products: unloading the qualified products to the qualified storehouse and the unqualified products to
the unqualified storehouse after testing.
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Figure 1. Structure of the slide valve body of OCV.

The automatic assembly system of the slide valve body of OCV already exists in the enterprise,
as shown in Figure 2. The assembly system consists of five single-row assembly stations and a
multi-station rotary automatic feeding system is set beside each station. The rotary automatic feeding
system is assisted by manual feeding and the manipulators automatically feed products to the assembly
line and perform the assembly work. The products are conveyed in sequence by the clamping
conveying system in the direction of the arrow shown in the diagram and the products are gradually
assembled from station 1 to station 5.

The automatic test system and sorting system matching with the existing assembly system of
the enterprise are designed according to the production cycle time, test requirements, sorting process
requirements and so on. Detailed test requirements and process requirements are shown in Section 2.3
of this article.

Figure 2. The automatic assembly system.

2.2. General Design of the Automatic Production Line

The whole production line designed in this paper based on the production scale, production
environment and process requirements of the slide valve body of OCV is shown in Figure 3. It is
composed of an automatic assembly system, a test system and a sorting system. It is 1.2 m wide and
1.5 m high. The automatic test system and sorting system are arranged at the exit of the assembly line;
the test system is located on the ground and the sorting system is arranged above the test system and
supported by it. The overall workflow of the automatic production line is as follows:

(1) The products are automatically assembled and sent to the waiting test station of the automatic
test system.

(2) The product to be tested at the waiting test station is loaded to the test station of the test system
and is tightened by the sorting system.

(3) The automatic test system starts testing products and reads data;
(4) The tested products are unscrewed and unloaded by the sorting system.
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(5) The qualified products are unloaded to the qualified storehouse and the unqualified products to
the unqualified storehouse by the sorting system.

Figure 3. General structure of the automatic production line.

2.3. Design of the Automatic Test System

2.3.1. Test Requirements Analysis

The automatic test system tests the force, flow, displacement and other parameters of the slide
valve body of OCV delivered by the sorting system. The main test requirements are shown in Table 1.

Table 1. Test requirements.

NO. Category Requirements Remarks

1 Test media Dry air

2 Functional tests

1. Exercise (2 cycles minimum) to check
centre bolt assembly integrity & friction.
Test for First Contact (initial point) and
Spool Stroke.

See Figures 4 and 5 and Table 2 for
detailed test description.
Air test parameters are to be
determined after the fluid-to-air
correlation study.
Flow shows air flow and related
oil flow in the same time.

2. Spring rate test (three points force
tests: F1, F2, F3)
3. Midpoint force
4. Holding point force
5. Holding point leakage
6. Mid-width force
7. Hysteresis force
8. A point force
9. B point force
10. Initial (start) point flow
11. Full travel flow/valve core travel

In addition, in order to design the test system, the relevant data in Figures 4 and 5 and Table 2
is added in this paper to further improve the test description by analysing and interpreting the
test requirements.
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Figure 4. Stroke and force Curve.
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Figure 5. Force and flow characteristic curve.

Table 2. Test description and test parameters.

NO. Test Description Test Parameters

1

Exercise (2 cycles minimum):
Tests:
First contact
Maximum travel/Spool stroke

First contact: TBD mm
Max travel: TBD mm (maximum)

2 Spring rate test (3 points force tests): (F1), (F2), (F3)
(F1) = 1.4 ± 0.8 N @ 11.6 mm
(F2) = 4.45 ± 0.95 N @ 10.1 mm,
(F3) = 7.5 ± 1.1 N @ 8.6 mm

3 Midpoint force (Fc) (Fc) = 3.2 ± 0.8 N at TBD mm
4 Holding point force (Fk) (Fk) = 4 ± 0.8 N at TBD mm
5 Holding point leakage (Q1) (Q1) < 0.2 L/min
6 Mid-width force (Fr) (Fr) = 1.6 ± 0.6 N
7 Hysteresis force (Fs), Hysteresis band width (FH) (Fs) < 0.1 N, (FH) < 2.2 N
8 Point A force (Fa) (Fa) = 0.2 ± 0.1 N
9 Point B force (Fb) (Fb) = 0.2 ± 0.1 N

10 Start point flow (Sst), (Q2)

(Q2) > 4 L/min
Start Point: (S2) < (Sst) < (S3)
Force (Fst) = 0.9 ± 0.4 N
Lower Travel (S2) = 11.8 mm
Upper Travel Limit (S3) = 12.1 mm

11 Full travel flow and Valve core travel
Full travel (Fmax), Flow (Q3), Valve core travel (S)

(Q3) > 4 L/min, (S) = 3.5 ± 0.2 mm,
(Fmax) > 10 N, (S1) = TBD mm
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2.3.2. Scheme Design of the Automatic Test System

According to the test requirements and description of the slide valve body of OCV, the test scheme
of the test system is presented, as shown in Figure 6. And the automatic test system of the slide valve
body of OCV is designed based on this scheme.

Constant 
pressure Constant pressure 

supply

Flow sensor

Force sensorMechanical 
driving systemController

Displacement sensor
S0

Air flow

Figure 6. Testing scheme for the test system.

The inlet of the slide valve body of OCV is connected with a constant pressure source to provide
a constant pressure air input; the flow sensor and controller are connected with the inlet to detect
the input air flow and read data; and the valve core at the outlet is connected with a force sensor,
a mechanical driver, a displacement sensor and a controller.

The automatic test system of the slide valve body of OCV is designed based on the above test
scheme, as shown in Figure 7. It is mainly composed of a control cabinet and a test platform.

The control cabinet uses aluminium profile as its frame and the overall size is
1200 mm (length) × 700 mm (width) × 870 mm (height). The constant pressure source and its
regulating device, power supply, main control board and valve group are arranged in the control cabinet.

Figure 7. Composing of the automatic test system.

The test platform is composed of a panel, several test fixtures, airflow and force detection
devices, two finished product storehouses and so forth, as shown in Figure 8. The panel is
1200 mm (length) × 620 mm (width) × 10 mm (thickness), made of aluminium alloy plate, fixed on
the top of the control cabinet of the system, which supports the whole test platform. The test platform
can be divided into a waiting test station, a test station and a finished product station according to
the product flow direction. The waiting test station consists of a product to be tested and its fixture,
which is used to receive the finished product sent by the automatic assembly system. Eight identical
test items and their test fixtures are arranged side by side at the test station for receiving the products
sent from the waiting test station. The test fixture is made of nylon material and designed according to
the configuration and installation requirements of the centre bolt; the test fixture has a test interface
on it and is fixed on the panel. The airflow and force detection device is designed as a whole with
compact structure and the coupling and separation of the flow test port and the force value test
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port are completed simultaneously by the expansion of the light cylinder piston. Each test product
corresponds to a set of detection devices. The finished product station adopts two plastic containers
embedded under the panel and it is divided into a qualified product storehouse and an unqualified
product storehouse.

Figure 8. Composing of the test platform.

According to the actual working conditions and the requirement of production cycle time, the test
process is designed as follows:

(1) Feed the product to be tested into the test fixture of the test station and tighten it.
(2) Connect the airflow and force value detection device;
(3) Ventilation, power up, start testing and reading data;
(4) Disconnect the airflow and force detection device;
(5) Unscrew and remove the tested product.

2.4. Design of the Automatic Sorting System

2.4.1. General Design Requirements of the Sorting System

On the one hand, the automatic sorting system completes the automatic loading work of the test
system: loading the assembled products to the test station from the waiting test station of the test
system; on the other hand, completes the automatic unloading and sorting work of the test system:
unloading the tested products from the test station to the finished product station, unloading the
qualified products to the qualified product storehouse, the unqualified products to the unqualified
product storehouse. The whole working rhythm should meet the production cycle time of the whole
production line, the design requirements of the automatic sorting system are shown in Table 3.

Table 3. Design requirements of the automatic sorting system.

NO. Category Requirements

1 Part Handling
Automatic load.
Automatic unload accept to an accept conveyor.
Automatic unload reject to the reject conveyor.

2 Cycle Time Estimated 16 s/part

Combined with the automatic test system and testing process designed in this paper, sorting
actions can be refined as follows:

(1) Grab, unscrew and vertically lift the product to be tested at the waiting test station;
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(2) Move the product to be tested to the test station;
(3) Put the product to be tested vertically into the test fixture and tighten it;
(4) Grab, unscrew and lift the tested product vertically;
(5) Move the tested product to the corresponding product storehouse.

2.4.2. Type Selection of the Sorting Robot

A Cartesian coordinate robot is generally composed of the linear motion part, the control part,
the drive part and the terminal manipulator. The most basic component of the Cartesian coordinate
robot is the linear motion unit and various combinations of linear motion units can be used to form
one dimensional, two-dimensional and three-dimensional robot [14–16]. Cartesian coordinate robots
are generally supported at both ends and have higher rigid strength under the premise of fixed
stroke and given structure size; three joints are independent and the kinematics solution is simple
without coupling or singular state; at the same time, the accuracy and position resolution of Cartesian
coordinate robots are not easily affected by external factors and it is easy to achieve very high working
accuracy [17,18]. The Cartesian coordinate robot has great bearing capacity, flexible assembly and
convenient operation and maintenance. It can be seen from the above that the sorting action of this
production line is not complicated and the selection of the Cartesian coordinate robot can completely
meet the requirements.

2.4.3. General Design of the Sorting Robot

The sorting robot designed in this paper is made up of the robot body and the support bracket, as
shown in Figure 9. The support bracket is made up of four 40 mm × 80 mm aluminium profiles and is
fixed on the panel of the test platform to support the robot body. The robot body includes X, Y, Z axis
linear motion units and terminal manipulators, which can realize the linear motion of the terminal
manipulators along X axis, Y axis and Z axis in space, as well as the rotation (R axis) around Z axis
and the grabbing action. The Y axis of robot body is supported by two sides and driven unilaterally.
A Y axis linear motion unit is set on the right side of the robot body and a Y axis supporting slide rail
is set on the left side, which are respectively fixed at the top of the support bracket. The X axis of the
robot body has two sets of parallel linear motion units, which are fixed back to back on the Y axis
connecting plates. The Z axis has two sets of linear motion units, which are respectively fixed on the
connecting plates of the two sets of X axis linear motion units and two sets of terminal manipulators
are respectively fixed on the ends of the Z axis.

Z 

Y 
X 

Support bracket 

Y axis supporting 
slide rail 

Terminal 
manipulator 2 

Z axis linear 
motion unit 1 

Terminal 
manipulator 1 

Z axis linear 
motion unit 2 

X axis linear 
motion unit 1 

X axis linear 
motion unit 2 

Y axis linear 
motion unit 

Figure 9. General configuration of the sorting robot.
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2.4.4. Scheme Design of Sorting Motion

The sorting system has two sets of terminal manipulators completing the sorting work in parallel.
The linear motions along X axis, the linear motions along Z axis, the rotations around their respective
Z axis and the grabbing motions of the two terminal manipulators are independent of each other,
while their linear motions along Y axis are synchronous. This configuration can combine (1) and (4) of
the sorting actions described in 2.4.1 and combine (2), (3) and (5) into following actions:

(1) The system detects the number of the product (assuming NO. 2 represented by 2© in Figure 8
or Figure 10) that was first completed at the test station and the corresponding detection device is
disconnected. The terminal manipulator 1 moves to the No. 2 test position along X axis, drops
along Z axis, grabs, unscrews and lifts up the No. 2 tested product. At the same time, The terminal
manipulator 2 aligns with the product to be tested at the waiting test station, then drops along Z axis,
grabs, unscrews and lifts the product to be tested and moves the object along X axis to the position
corresponding to the test position No. 2 according to the system instructions. As shown in Figure 10.

Figure 10. Sketch map of sorting action 1.

(2) The system judges whether the tested product No. 2 is qualified or not. The terminal
manipulator 1 performs two-axis simultaneous motion according to the system instructions, that is,
moving along X axis and aligning the tested product NO. 2 to the centre of the corresponding product
storehouse while moving along Y axis. The paw is released when the terminal manipulator 1 reaches
the top of the product storehouse and drops the product into the product storehouse. At the same
time, the terminal manipulator 2 moves to the No. 2 test station along Y axis synchronously with the
terminal manipulator 1 and drops the product to be tested down into the No. 2 test fixture along Z axis
and screws it.

At this point, a work cycle is completed, as shown in Figure 11. You can compare Figure 11 with
Figure 10 to see the position changes of the terminal manipulator 1 and the terminal manipulator 2.

The sorting system has two sets of terminal manipulators working in parallel. Two sets of X axis
linear motion units are fixed back to back on the Y axis connecting plates. This design can eliminate
the deflection torque of X axis horizontal motion in the Y direction and improve the stability of the
system. More importantly, it can further improve the production efficiency and meet the production
cycle time.
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Figure 11. Sketch map of sorting action 2.

2.4.5. Design of Robot Transmission Form and Detailed Parameters

The linear motion unit is generally supported by the aluminium profile and the inner part is
the transmission device and the guide rail. The linear motion is accomplished by moving the slider.
The internal drive forms of linear motion unit mainly include the ball screw, the synchronous tooth
belt and the gear rack, which have different characteristics [19]. The linear motion unit based on
synchronous toothed belt is composed of the servo motor, the pulley bracket bearing, the pulley, the
synchronous belt, the coupling and so forth. It is commonly used in high speed, high acceleration,
heavy load equipment and with low cost.

(1) The X axis

The X axis is mainly used to complete the X direction movement of products. Its maximum load
includes a Z axis linear motion unit, a terminal manipulator, a slide valve body of OCV and so forth.
The total load of X axis is about 3.5 kg. The maximum running speed of X axis is 1.2 m/s and the
maximum acceleration is 2.4 m/s2. According to the size of the test platform, the effective travel of
X axis is 770 mm and the span is small. The two linear motion units of X axis adopt synchronous belt
linear modules and their motors are installed in opposite directions. Detailed parameters are shown in
Table 4.

Table 4. Parameters of the robot body.

Object Transmission Form Type
Effective

Travel
Maximum

Speed
Maximum

Acceleration
Load Capacity

X axis synchronous belt
linear module / 1000 mm 2.7 m/s 3 m/s2 30 kg

Y axis synchronous belt
linear module / 500 mm 2.7 m/s 3 m/s2 30 kg

Z axis double shaft linear
cylinder TN20×80-S 80 mm 0.5 m/s / 20 kg (@0.5 MPa)

Terminal
manipulator

Rotary cylinder MSQB10-A 190◦ 0.2~1 s/90◦ / 7.4 kg (radial);
0.89 N.m (@0.5 MPa)

Finger cylinder MHZ2-16D 6 mm / / 4.5 kg

(2) The Y axis

The Y-axis is mainly used to complete the Y direction movement of products. The maximum load
of the Y axis includes two X axis linear motion units, two Z axis linear motion units, two terminal
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manipulators, two slide valve bodies and so forth. Because the Y axis is supported by two sides,
a single linear motion unit only takes half of the total load, 18 kg. the maximum running speed of
Y axis is 1.2 m/s and the maximum acceleration is 2.4 m/s2. According to the size of the test platform,
the effective travel of Y axis is 212 mm. The synchronous belt linear module is selected and the detailed
parameters are shown in Table 4.

(3) The Z axis

The Z axis is mainly used to complete the vertical lifting and dropping of products. The load of
Z axis consists of a terminal manipulator and a slide valve body of OCV with a total load of about
2 kg. The maximum running speed of Z axis is 0.4 m/s and the effective travel is 60 mm, which can be
realized by using the double shaft linear cylinder. The detailed parameters are shown in Table 4.

(4) The terminal manipulator

The robot terminal manipulator can be divided into clamp and suction type according to
the clamping principle [20]. The terminal manipulator of this sorting system needs to complete
the grabbing and rotating action of the slide valve body of OCV. The pneumatic manipulator is
adopted [21,22], the rotation of the product is realized by a rotary cylinder and the product is grabbed
by a finger cylinder with parallel air claws. The rotary cylinder and the finger cylinder are selected
from standard type products, as shown in Table 4. At the same time, to adjust the air claw size and
improve the grabbing stability, the structure of the air claw is redesigned according to the shape
of the slide valve body of OCV, as shown in Figure 12. The rotary cylinder is connected with the
cylinder telescopic rod of Z axis through the mounting plate of rotary cylinder and the finger cylinder
is connected with the rotary cylinder through the mounting plate of finger cylinder.

Figure 12. Structure of Z axis and the terminal manipulator.

3. Conclusions

In this paper, the automatic production line of the slide valve body of OCV is designed based
on the existing production conditions of an enterprise. The automatic test system is designed based
on the further improved test description and the sorting system is a Cartesian coordinate robot
with two terminal manipulators working parallel, which can realize more reasonable and efficient
testing workflow and sorting motion. The automatic test system and sorting system are seamlessly
connected with the automatic assembly system and the automatic test and sorting of the products
can be completed efficiently on the basis of the specified production cycle time to meet the needs of
medium and small scale production. The automatic production line designed in this paper has the
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advantages of low cost, practicability and effectiveness and can solve the problems of low production
efficiency, high labour cost and unstable product quality. In addition, the scheme design of the
automatic production line can be applied to medium and small scale automatic production equipment
of other valve products, especially the design of the automatic test and the sorting system.
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Abstract: At present, vibroseis has become the major technique to achieve environmental protection
and high efficiency in fossil fuel exploration. During such exploration, a vibrator transmits seismic
waves to the surface. The waves are excited by continuously changing the load stress from the burden
of weight of the vehicle and the vibrator’s variable frequency load. This paper will apply a numerical
simulation method to develop research on the analysis of vibration plate cracking based on working
stress. Based on the structure and mechanism of vibroseis vibrator plate, a vibrator simulation model
is built under system dynamics to develop research on the vibroseis plate load stress feature and gain
distribution, and change pattern of the plate load stress. The results show that stress response around
the upright welding of is high, and there is evident distortion in plate area, which matches the actual
fracture position on the plate, and can be confirmed as a key area of plate fatigue.

Keywords: vibrator plate; working stress; simulated analysis

1. Introduction

At present, China’s shallow oil and gas resources are gradually being exhausted, so oil and gas
exploration is gradually moving to areas with complex topographies and harsh environments, such as
the Gobi desert, mountainous areas, and the ocean [1]. In these areas of petroleum exploration and
development, oil and gas exploration technology has been unable to meet the current reliability, safety,
environmental protection, and efficient exploration acquisition requirements. Now, more efficient,
environmentally friendly, and safe exploration technology is needed; therefore, the seismic method
is also proposed. At present, seismic exploration signal sources cause significant damage to the
environment [2]; however, vibroseis serves as a non-explosive source, which is not destructive to
the environment or living creatures, as are the output of seismic signals generated by explosion
sources. More importantly, though larger than the source of power in a short period of time to
produce high-energy, vibroseis uses low power, and requires a long time for scanning excitation.
During scanning, the continuous variation of the sinusoidal vibration waveform is known; vibroseis is
therefore more accurate and controllable than explosion sources [3].

Vibroseis has the following advantages:

• The seismic signal excited by vibroseis is controllable. Vibroseis can be used to independently
choose the appropriate excitation frequency width according to the working environment,
thus improving the signal excitation quality. The direction of the output force is also controllable;
vibroseis can reduce the energy loss in other directions and increase the signal-to-noise ratio (SNR)
of the vibroseis excitation signal.

• Vibroseis uses continuous excitation signals. According to the requirements, vibroseis can be
used to control the vibrator to continuously make contact with the earth within a few seconds,
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and generate the required signal waveform. The repeated superposition of the signal can eliminate
a large amount of random external interference, so as to obtain high-SNR data.

• Vibroseis is not destructive to the environment or organisms. Vibroseis is a low-power method
which can efficiently complete the exploration of deep-stratum oil and gas reservoirs in cities,
dykes, industrial areas, and other areas where it is inconvenient to use explosives.

• Vibroseis uses Combined Excitation Technology to effectively suppress the linear interference
energy during operation.

• Vibroseis can be operated without drilling, which improves the mobility and reduces a lot of
costs [4].

At present, vibroseis has become the first choice for oil and gas exploration in areas with
harsh environments, complex topographies, and high environmental protection requirements.
Wei established the finite element model of the vibrator plate and geo-coupling, and studied the
influence of the plate and the geo-coupling on vibroseis performance [4,5]. Ding compared and
analyzed the characteristics and performance of different vibrator plates, and put forward suggestions
for their structural design [6]. Zhuang Juan derived a dynamical equation of high-frequency vibroseis,
and analyzed the effect of plate area, plate mass, and soil medium density on the amplitude and
frequency characteristics of the vibroseis output signal [7]. The literature above mainly studied
the relationship between the macro characteristics of the plate and the output signal, but lacked
microscopic and quantitative analysis.

At present, research on vibration plate performance mainly focuses on single frequencies.
However, the excitation signal of vibroseis is a sinusoidal scanning signal, whose frequency increases
linearly with time. In practice, the response performance of the plate at different scanning frequencies
is different. The difference in plate response affects the stability of vibrator response performance
at full frequency, and restricts the development of vibroseis in terms of broadband and precision.
Therefore, it is necessary to carry out multi-frequency response analysis of the plate in order to master
the response change rule at different scanning frequencies, so as to provide guidance for the structural
design of the plate.

2. Structure and Working Principle of the KZ-28 Vibroseis Vehicle

Vibroseis mainly consists of a vibrator body and a vibrator. The vibrator is installed in the central
position of the vibrator car, as shown in Figure 1.

Figure 1. Schematic diagram of vibrator structure.
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When a vibroseis vehicle moves, the lifting hydraulic cylinder lifts the vibrator and separates
it from the ground [8]. As shown in Figure 2, at the beginning of the process, the lifting hydraulic
cylinder transfers the vibrator and jacks up the car body, and the whole weight of the vibroseis vehicle
acts upon the roof and plate of the vibrator through a vibration isolation air bag. When the vibroseis is
working, the servo valve opens. The high-pressure hydraulic oil produced by the hydraulic system
alternately enters the upper and lower cavity between the hammer and the piston rod, causing the
hammer to move up and down. The reaction of hydraulic oil produced by the piston rod is passed
to the tablet, and the signals produced by the vibrators are also passed to the earth, thereby exciting
seismic waves [9,10].

Figure 2. The working principle of a vibrator.

3. The Vibrator Cracking Problem

The vibrator is the key excitation device for the vibroseis seismic signal. The plate is an important
component which connects the vibroseis and the ground; the column supports the car body and
transfers the load. The column is fixed to the plate by welding.

In 2016, a group of vibroseis vehicles which had been sent to Saudi Arabia by Bureau of
Geophysical Prospecting INC, experienced cracks in the plate weld during operation. As shown
in Figure 3, the weld toe of the welding position between the vertical column and the plate was cracked
(the position of the red line). At the time of the accident, the vehicle was exploring in the desert [10].

 

Figure 3. Schematic diagram of the weld cracking position.
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It can be concluded by analyzing the causes of plate weld cracking that the weld structure is
closed, and the deformation near the welding is not uniform, resulting in large tensile stress, which is
one of the main reasons for the initiation of weld cracks.

When the vibrator is operating, under the effect of seismic wave excitation, the plate is affected
by its own weight and by vibrating force at the same time; working stress is therefore generated.
Additionally, the weld joint (especially in the weld toe) is prone to high tensile stress under the effect
of vibrator working load, and fatigue cracks easily arise in this position [11,12].

4. Establishment of Finite Element Model for Working Stress Analysis of Vibrator Plate

By analyzing the structure and working characteristics of the KZ-28 vibroseis vibrator, we decided
to use a simulation analysis to solve the problem of cracking. At present, there is a new method of
analysis: Nguyen-Thanh et al. presented a new concurrent simulation approach to couple isogeometric
analysis (IGA) with the mesh-free method for studying crack problems. The convergence rate of the
present method is higher than that of the traditional method. However, the Gaussian integration
of weak form is computationally expensive in the mesh-free sub-domain [13]. Therefore, we still
choose the traditional method; the model has been established in ANSYS LS-DYNA, and the vibrator
is simplified [14,15]:

• Simplify the hammer and its accessories without considering the weight of the hammer and the
impact action when the hydraulic oil drives the hammer. Remove the hammer and its accessory
parts in the analysis; the hammer force and dynamic hydraulic load are directly loaded into the
vibrator model as the known load.

• Simplify the piston base of I-steel plate. According to the plate structure, the piston rod base
is installed in the middle of the plate, which is used to connect the piston rod and I-steel plate.
For the convenience of the analysis, this was simplified into solid cylindrical structure.

• The vibrator needs to be in contact with the ground during operation. Therefore, it is necessary
to establish a ground model. However, the size cannot be unlimited; therefore, at the time of
the earth model size selection, the size should be considered so as not to affect the deformation
of the vibrator plate. Through repeated with different sizes of earth model, and considering
the calculation time and accuracy, it was eventually determined that the optimal values were:
diameter of the earth model, 5 m, and height, 2.5 m. The completed geometric model of the
vibrator is shown in Figure 4.

• Apply a relatively fine hexahedral mesh to the grid setting, the junction area of flat slab and
vertical column. The tetrahedral mesh is used in the grid as shown in Figure 5. For the sake of
accuracy and efficiency, the grid far from the flat slab and vertical column is sparse [16].

In the analysis process, the size of the cell will cause grid-dependent numerical instability. In order
to guarantee accuracy, the size of the flat cell was set to 6 mm, and the total number of grids was
119,988. The rest of the vibrator is not analyzed in detail, so the tetrahedral element with low calculation
accuracy and fast calculation speed is selected for mesh division. The tetrahedral elements are 8–20 mm
in size. The total number of grids after grid partitioning was 432,876. Since the vibrator plate is in
contact with the ground, in order to improve the calculation accuracy, in the ground model a hexahedral
mesh of equal size was adopted for the part that is in contact with the vibrator, while a larger tetrahedral
mesh was adopted for the part that is not in contact with the vibrator. The total number of meshes
after ground grid partitioning was 252,159. The material messages of the vibrator and earth are shown
in Table 1.
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Figure 4. Vibrator geometric model.

Figure 5. Vibrator geogrid.

Table 1. Material parameters of the vibrator model.

Parts Materials
Density
(kg/m3)

Elastic Modulus
(Pa)

Poisson’s
Ratio

Yield Strength
(MPa)

Above-slab structure 45 steel 7890 2.09 × 1011 0.269 355
Tablet 16 Mn 7850 2.12 × 1011 0.310 345

Ground rock 2600 5.5 × 1010 0.270 –

Considering the actual situation, the simulated geodetic model is an elastic half-space, and the
non-reflecting boundary conditions of the LS-DYNA software can simulate the effect of infinite earth.
Therefore, the contact between the plate and the ground is defined as slide contact [17].

There are two kinds of loads on the vibrator, as described below:

(1) Static load (Figure 6 shows the loading diagram of static load).

The static load is mainly caused by the car body; its purpose is to ensure that the flat plate can stay
close to the ground under the huge working load without deformation. The weight of the car body is
28 t, of which 90% uniformly acts on the shock absorber air pad of the roof, and the roof is transferred
to the flat plate through the vertical column. The remaining 10% comes from the hammer [18,19].
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Figure 6. Vibrator loading diagram.

(2) Dynamic load

The size and variation of dynamic loads are shown in Figure 7. The initial analyzed frequency
in this study is 80 Hz, and the loading time is five cycles. The dynamic liquid pressure on the upper
and lower end surfaces of the piston rod of the vibrator is consistent with the changing law of linear
scanning signal. The rated peak pressure of hydraulic oil is 20 MPa. In the construction process,
in order to ensure that the output signal does not generate large distortion, the hydraulic pressure
is generally selected as 70–85% of the rated peak value. Therefore, 85% of the rated peak value was
selected in this paper, that is, the peak value of liquid pressure was 17 MPa. Additionally, due to the
instability of the system at the initial stage of loading, the data under the stable system (after three
periods) were analyzed [20].

Figure 7. Dynamic load curve of vibrator.

5. Analysis of Working Stress of Vibrator Plate under Maximum Liquid Pressure

In Figure 8, in order to facilitate the study of the working stress of the vibrator plate, the plate
area is divided into several parts for clarity of illustration.
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Figure 8. Regional location and labeling of the vibrator plate.

The stress distribution of the plate was extracted during a period when the liquid pressure reached
its peak at the upper and lower ends of the piston rod. The results are shown in Figure 9.

 

(a) (b) 

Figure 9. Stress distribution of plates. (a) plate stress distribution at the maximum of upper half cycle;
(b) plate stress distribution at the maximum of lower half cycle.

• In the upper half of cycle when the liquid pressure reaches the maximum, the von Mises stress
on the upper surface of the plate reaches the maximum value in the area of the piston rod;
the maximum value is 25.3 MPa, the larger value around the long side of columns A and C is 16.4
and 12.2 MPa, respectively, and the larger value around the short edge of columns B and D is 10.1
and 18.6 MPa, respectively.

• In the second half cycle when the liquid pressure reaches the maximum, the von Mises stress on
the upper surface of the plate reaches the maximum in the area of the piston rod; the maximum
value is 28.2 MPa, which presents large values on the short edges of columns A, B, C, and D of
13.6, 9.5, 8.6, and 14.6 MPa, respectively.
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• Based on the analysis of Figure 9, it can be found that the stress concentration and stress peak
exist when the short edge weld of the column reaches its maximum value within one cycle of
liquid pressure. The location of the peak area of stress concentration exists near the area of the
piston rod and the pillar. When the liquid pressure of the vertical columns B and D reached the
maximum in the upper and lower half periods, they all presented large values; the post short
edge weld is the part of the welding crack in practical engineering.

For further analysis, the data for the joint stress in the direction of the welding seam along the
short edge of the vertical column were extracted, and the stress–time curve was plotted, as shown in
Figures 10 and 11.

Figure 10. Longitudinal stress of weld joint.

Figure 11. Transverse stress of weld joint.

The longitudinal and transverse stress of columns on the short edge weld in a cycle (T = 0.125 s)
present the periodical change of tensile stress and compressive stress; the weld on each node of the
change trend of stress is very close. As shown in Figures 10 and 11, the curve which is formed by
the multiple nodes shows the same trend, so we can judge that the trends of these node stresses are
almost the same. Therefore, the mid-point of the short edge of the welding seam was taken as being
representative to analyze the variations of stress on the whole welding seam under one cycle, and the
variation data for stress over time were extracted and are shown in Figure 12.
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(a) 

 

(b) 

Figure 12. Schematic diagram of stress change at the mid-point of weld. (a) longitudinal stress.
(b) transverse stress.

As shown in Figure 12, after the system is stable (the fifth cycle), the longitudinal stress on
the weld mid-point in the first half cycle is converted from the tensile stress to compressive stress;
the maximum value is 5.5 MPa. In the second half cycle, the stress is converted from compressive
stress to tensile stress; the maximum value is 15.0 MPa. The transverse stress in the first half cycle is
converted from tensile stress to compressive stress; the maximum value is 6.4 MPa. In the second half
cycle, the stress is converted from compressive stress to tensile stress; the maximum value is 8.9 MPa.
The overall trend shows that stress is present at the periodical change of tensile stress and compressive
stress. Based on these observations, there is a peak stress in the weld.
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6. Analysis of Plate Deformation under Maximum Liquid Pressure

The deformation distribution of the plate was extracted respectively when the liquid pressure
reaches its peak at the upper and lower ends of the piston rod within one cycle. The results are shown
in Figure 13.

 

(a) (b) 

Figure 13. Schematic diagram of plate deformation. (a) plate deformation distribution at the upper
half cycle maximum. (b) plate deformation distribution at the lower half cycle maximum.

• In the upper half of the cycle, when the liquid pressure reaches the maximum value, the whole
plate deforms downward on the upper surface of the plate. The maximum value of deformation
is 3.2 × 10−4 m near the piston rod; it deformed downward near the vertical column, showing a
larger value. The edge of the plate has an upward deformation.

• In the second half of the cycle, when the liquid pressure reaches the maximum value, the whole
plate deforms upward on the upper surface of the plate. The maximum value of deformation is
2.2 × 10−4 m near the piston rod, and the upward deformation near the vertical column presents
a large value. The edge of the plate has downward deformation.

According to the deformation analysis, the whole of the plate is subjected to periodic deformation
in the working process. The position of the short edge weld of the vertical column plate is shown in
Figure 3. As a relatively fragile structure on the plate, the welding seam is prone to cracking under
such conditions, which is consistent with the crack position observed in the welding seam.

For further analysis, the data for the mid-point of the short edge seam of the vertical column were
extracted, and the displacement–time curve was drawn, as shown in Figure 14.
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Figure 14. Displacement at the mid-point of weld.

After the system is stable (the fifth cycle), the displacement at the mid-point of the weld shows
alternating changes with time in the positive and negative directions; the maximum value of the
downward deformation is 7.74 × 10−6 m, and the that of the upward deformation in the lower half
period is 1.69 × 10−4 m.

7. Analysis of Working Stress and Deformation of Plate at Different Frequencies under the
Action of Liquid Pressure

The working load will lead to the deformation of the plate, and change its stress distribution,
resulting in stress concentration, which is a hidden problem for the cracks in the plate’s welding seam.
Among them, the rated output and self-weight of vibroseis are restricted by the conditions. This does
not usually change, and the vibrator as a source of multiple frequency output, frequency fluid pressure
can be changed and controlled. With a working frequency for 5~125 Hz, we selected 50 Hz, 100 Hz,
and 80 Hz, analyzed the stress and displacement of plate by using the method of simulation under
three kinds of liquid pressure frequencies, and studied the influence of liquid pressure frequency on
working stress and plate deformation.

 

(a) (b) 

Figure 15. Distribution of plate stress under 50 Hz. (a) plate stress distribution at the maximum of
upper half cycle. (b) plate stress distribution at the maximum of lower half cycle.
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The stress distribution of the plate is obtained when the liquid pressure of 50 Hz reaches its peak
at the upper and lower ends of the piston rod within a period. The results are shown in Figure 15.

• In the upper half of the cycle, when the liquid pressure reaches the maximum value, the von Mises
stress on the surface of the plate reaches the maximum value in the piston rod area, 23.2 MPa.
Larger values are presented near the long side of columns A, B, C, and D, respectively 12.9, 8.6,
7.5, and 7.8 MPa. Large values are presented at air springs A and B, respectively 4.6 and 3.8 MPa.

• In the second half of the cycle, when the liquid pressure reaches the maximum value, the von Mises
stress on the upper surface of the plate reaches the maximum value in the piston rod area, 17.1
MPa, and larger values are displayed on the short edge of the vertical columns A, B, C, and D,
respectively 9.4, 8.4, 10.1, and 11.9 MPa.

• Compare the stress distribution of the plate under 80 Hz liquid pressure to others. When the upper
semi-periodic stress value under 50 Hz reaches the maximum, there is no stress concentration on
the short edge of the column.

Similarly, the mid-point of the short weld edge was taken as being representative, and the data
for the change of stress over time were extracted, as shown in Figure 16.

 
(a) 

 

(b) 

Figure 16. Variation of mid-point stress under 50 Hz. (a) longitudinal stress. (b) transverse stress.
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As shown in Figure 16, after the system is stable (the fifth cycle), the longitudinal stress on the weld
mid-point in the first half cycle is converted from tensile stress to compressive stress; the maximum
value is 2.4 MPa. In the second half cycle, the stress is converted from compressive stress to tensile
stress; the maximum value is 9.8 MPa. The transverse stress in the first half cycle is converted from
tensile stress to compressive stress; the maximum value is 0.9 MPa. In the second half cycle, the stress
is converted from compressive stress to tensile stress; the maximum value is 4.8 MPa. As an overall
trend, stress is present during the periodical change of tensile stress and compressive stress. Based on
this data, there is a peak stress in the weld.

The deformation distribution of 50 Hz liquid pressure on the plate in one cycle was extracted,
as was the mid-point displacement–time curve of the welding seam. The results are shown in
Figures 17 and 18.

• In the upper half of the cycle, when the liquid pressure reaches the maximum value, the whole
plate deforms downward on the upper surface. The maximum value of the deformation is
2.8 ×10−5 m near the piston rod, while the downward deformation near the column presents a
larger value, 8.8 × 10−6 m. The edge of the plate has upward deformation.

• In the second half of the cycle, when the liquid pressure reaches the maximum value, on the
upper surface of the plate the deformation has a maximum value near the piston rod,
1.5 × 10−4 m, the upward deformation near the four vertical columns. The short edge of the plate
deforms downward.

• By analyzing the deformation of the whole, under the effect of liquid pressure of 50 Hz,
the deformation law of the whole plate in the working process is quite similar to that under 80 Hz,
and the position of the short edge weld of the column plate shows up and down deformation
alternately over the whole cycle.

(a) (b) 

Figure 17. Deformation diagram under 50 Hz. (a) plate deformation distribution at the upper half
cycle maximum. (b) plate deformation distribution at the lower half cycle maximum.

The data for the mid-point of the short edge seam of the vertical column were extracted, and the
displacement–time curve was drawn, as shown in Figure 18.
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Figure 18. Displacement on mid-point of weld under 50 Hz.

After the system is stable (the fifth cycle), the displacement at the mid-point of the weld shows
alternating changes with time in the positive and negative direction; the maximum value of downward
deformation of the plate in the upper half of the cycle is 5.3 × 10−6 m. The maximum value of the
upward deformation in the second half of the cycle is 9.1 × 10−5 m.

The stress distribution of the plate when the liquid pressure reaches its peak at the upper and
lower ends of the piston rod within a period of 100 Hz was extracted, and the results are shown in
Figure 19.

• In the upper half of the cycle when the liquid pressure reaches the maximum value, the von
Mises stress on the upper surface of the plate reaches the maximum value in the piston rod area,
32.3 MPa, and the larger value is displayed near the vertical columns A, B, C, and D, respectively
10.1, 9.1, 13.4, and 9.6 MPa.

• In the second half of the cycle when the liquid pressure reaches the maximum value, the von Mises
stress on the upper surface of the plate reaches the maximum value in the piston rod area, 33.6 MPa,
and the larger value is shown at the long side of the vertical columns A and C, respectively 15.7
and 14.8 MPa, and the larger value is shown at the short edge of B and D, respectively 14.6 and
16.6 MPa.

• As for the stress distribution of the plate under 80 Hz liquid pressure, in the upper half of the
cycle, the stress value under 100 Hz reaches the maximum. There is also a stress concentration
near the column, while the stress distribution in the second half of the cycle is similar to that
under 80 Hz.
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(a) (b) 

Figure 19. Distribution of plate stress under 100 Hz. (a) plate stress distribution at the maximum of
upper half cycle. (b) plate stress distribution at the maximum of lower half cycle.

Similarly, the mid-point of the short weld edge was taken as being representative, and the data
for the change of stress over time was extracted, as shown in Figure 20.

 

(a) 

Figure 20. Cont.
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(b) 

Figure 20. Variation of mid-point stress of welding seam under 100 Hz. (a) longitudinal stress.
(b) transverse stress.

As shown in Figure 20, after the system is stable (the fifth cycle), the longitudinal stress on the
weld mid-point in the first half cycle is converted from tensile to compressive stress; the maximum
value is 10 MPa. In the second half cycle, the stress is converted from compressive stress to tensile
stress; the maximum value is 18.6 MPa. The transverse stress in the first half cycle is converted from
tensile stress to compressive stress; the maximum value is 7.43 MPa. In the second half cycle, the stress
is converted from compressive stress to tensile stress; the maximum value is 10.04 MPa. In the overall
trend, stress is present at the periodical change of tensile stress and compressive stress. Based on this
data, there is a peak stress in the weld.

The deformation distribution of 100 Hz liquid pressure on the plate over one cycle was extracted,
as was the time–displacement curve of the mid-point of the weld seam. The results are shown in
Figures 21 and 22.

• In the upper half of the cycle, when the liquid pressure reaches the maximum value, the piston
rod and the column are deformed downward and the rest of the parts are deformed upward on
the upper surface of the plate. The maximum deformation is 3.4 × 10−5 m near the piston rod,
and it is deformed downward near the vertical column, showing a larger value.

• In the second half of the cycle, when the liquid pressure reaches the maximum value, on the
upper surface of the plate, the deformation takes on a maximum value near the piston rod,
1.4 × 10−4 m, showing a larger value near the four vertical columns. The short edge of the plate
deforms downward.

• According to the global deformation analysis, under 100 Hz liquid pressure, the deformation law
of the whole plate in the working process is similar to that under 80 Hz, and the position of short
edge weld of the column plate shows up and down deformation alternately over the whole cycle.
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(a) (b) 

Figure 21. Deformation under 100 Hz. (a) plate deformation distribution at the upper half cycle
maximum. (b) plate deformation distribution at the lower half cycle maximum.

The data for the mid-point of the short edge seam of the vertical column were extracted, and the
displacement–time curve was drawn, as shown in Figure 22.

Figure 22. Displacement on mid-point of weld under 100 Hz.

After the system is stable (the fifth cycle), the displacement at the mid-point of the weld shows
alternating changes with time in the positive and negative direction. The maximum value of downward
deformation in the upper half cycle is 1.94 × 10−5 m, and that of upward deformation in the lower
half period is 1.83 × 10−4 m.

The data were collated under the three frequencies, as shown in Table 2.

• The stress on the welding seam of the vertical column is mostly tensile stress, but is compressive
stress in a small period.
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• The maximum transverse stress and maximum longitudinal stress of the vertical welding seam
of the vertical column increased with the rise in frequency, among which the tensile stress was
clearly higher than the compressive stress.

• The peak value and variation amplitude of the deformation of the welding seam increased with
the rise in liquid pressure frequency, and the deformation became more obvious with the rise
in frequency.

Table 2. Stress and displacement of the mid-point of the weld at different frequencies.

50 Hz 80 Hz 100 Hz

Maximum transverse tensile stress (MPa) 4.8 8.9 10
Maximum transverse compressive stress (MPa) 0.9 6.4 7.43
Maximum longitudinal tensile stress (MPa) 9.8 15.5 18.6
Maximum longitudinal compressive stress (MPa) 2.4 5.5 10
Maximum positive displacement (×10−5 m) 9.1 16.9 18.3
Maximum negative displacement (×10−5 m) 0.53 0.77 1.9

8. Summary

(1) The stress and displacement of the plate are greatly influenced by the liquid pressure frequency
in the working frequency of the vibrator.

(2) Under the working frequency of the vibration device, the maximum stress in the weld area of
the short edge of the vertical column increases with the increase in liquid pressure frequency.

(3) The welding zone of the short edge of the vertical column has a stress concentration under
three working frequencies; there is a peak value, and most of the time, stress is tensile stress.

(4) The deformation of the welds on the short edge of the primary welding line alternates in
positive and negative directions throughout the cycle, and the peak value and variation amplitude rise
with the increase in liquid pressure frequency, and the deformation is more obvious.

(5) A stress peak exists in the short edge weld area, and the displacement deformation is produced
continuously as the vibrator operates; this area can therefore be determined as being the most
susceptible to plate cracking.

(6) Crack propagation is not discussed. In further research, we will use the coupling approach
which integrates the mesh-free method and isogeometric analysis (IGA) for static and free-vibration
analyses of cracks in thin-shell structures [21,22].
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Abstract: The design and development of space instruments are considered to be distinct from that
of other products. It is because the key considerations are vastly different from those that govern
the use of products on planet earth. The service life of a space instrument, its use in extreme space
environments, size, weight, cost, and the complexity of maintenance must all be considered. As a
result, more innovative ideas and resource support are required to assist mankind in space exploration.
This article reviews the impact of product design and innovation on the development of space
instruments. Using a systematic literature search review and classification, we have identified over
129 papers and finally selected 48 major articles dealing with space instrument product innovation
design. According to the studies, it is revealed that product design and functional performance is
the main research focuses on the studied articles. The studies also highlighted various factors that
affect space instrument manufacturing or fabrication, and that innovativeness is also the key in the
design of space instruments. Lastly, the product design is important to affect the reliability of the
space instrument. This review study provides important information and key considerations for the
development of smart manufacturing technologies for space instruments in the future.

Keywords: space environment; space instrument; product design; performance; innovation;
manufacturing

1. Introduction

Gold et al. [1] stated that space instruments are essential components for most space
missions. The instruments help in gathering intelligence information, observing other plan-
ets, and monitoring the environment on earth. Providing the data to analysts and scientists
on the ground, instruments are important for spacecraft in conducting regular structural
verification (Garcia, [2]). During the launch operation of space missions, a mechanical
environment that combines high and low frequencies, shock loads and vibrations, and
high static acceleration, is generated. Each type of mechanical load must be simulated by
analysis and tested to qualify the mechanical design. Some examples of space instruments
include the supra thermal electrons and protons (STEP) instrument, which is constituted
with other instruments such as the supra thermal ion spectrograph (SIS) and the energy
particle detector (EPD) for solar orbiter spacecraft. Innovation, reliability, and product
design [1] are essential for scientists to miniaturize space instruments. The size of the
launch vehicle can reduce the weight of the instruments, allow the transition to smaller
launch vehicles and provide accurate measurements from the space. Scientists have also
modified the product designs of space instruments by creating completely new space
instruments that enable previously impossible measurements. For instance, hyperspectral
observations of the settings below the horizon and stars by visible imagers, spectrographic
imagers, and ultraviolet imagers on the Midcourse Space Experiment Spacecraft. Tam [3]
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states that the best way to improve space instruments is by improving the technology
through innovation, which may be in the form of designing space instruments with fewer
components. Chau et al. [4] investigated the critical success factors (CSFs) for improving
the management in manufacturing. Instead of using the traditional manufacturing method
of using nuts and bolts to join complex systems and subsystems, new technologies such as
Industry 4.0, 3D printing, and additive manufacturing could be used to produce complex
yet monolithic structures, which do not require nuts and bolts. The process of innovation
will help in reducing the number of pieces that might break down in case of a collision in
orbit. Recently, a new method to design using “replicative” structures in different sizes and
achieve required mechanical properties to manufacture with the minimum weight is inves-
tigated in [5]. In the study, manufacturing process parameters and design performance are
analyzed with various examples.

Nevertheless, most of the smart manufacturing processes are mainly applied to tra-
ditional product development. Not many works are focused on developing smart manu-
facturing for space instruments and devices. This is because the space instrument usually
consists of numerous factors such as size, weight, cost, extreme space environmental condi-
tions, as well as a large number of components, high reliability, and stability, etc. With the
recent advancement of Industry 4.0 and smart manufacturing technologies such as artificial
intelligence, big data, augmented reality [6], and blockchain, it is important to extensively
explore the product innovation, design, and reliability issues and CSFs in order to develop
an optimal solution of smart manufacturing for space instrument. The main aim of the
study is to explore how innovation and product design is essential in the development of
space instruments and manufacturing. The study addresses the following key research
questions.

RQ1: The research focuses on the development of space instruments;
RQ2: The key consideration factors that may influence the design of the space instrument.
This article presents the key contributions in the field. First, there is not much research

focus on the design and development of a complex space instrument. Second, this study
explores the influences of product innovation and design on the development of space
instruments that are important to formulate the key consideration factors in the design and
manufacturing of a complex space instrument. The key factors are important in formulating
the smart manufacturing protocol for space instruments in the future. This is important to
enhance the design and manufacturing efficiency of space products in the field.

2. Literature Review

2.1. Space Instrument

To design a space instrument or spacecraft to work in the space environment, three
issues are important, making the design process very difficult, challenging, and exciting.
The first one is that the complicated instrument work in a tough environment. This required
high precision on the material selection and the physical mechanism. Moreover, the design
and manufacture must have high precision to achieve the requirements for the best quality.
Second, as the instruments will work remotely from the Earth, signal communication
between the earth center and the instrument is a big concern. On the other hand, the
design for the processes command, self-calibrate and operation are the other remotely issue.
The third is the sensor. As there are many unknown environments in space, the sensor is
the only reliable and detectable component for us to understand the situation. However,
regarding the unknown environment, investing in a sensor to complete the mission is a big
challenge. These issues are important in many processes of a space mission instrument
such as space component replenishment. Yung et al. [7] proposed the multi-attribute fuzzy
ABC classification to support the space components inventory decisions based on the tough
situation of space missions.

All early and most current space programs are carried out or strongly dominated
by governmental programs and choices. The reason for those monopolies is related to
the high technical skill and knowledge required for developing space instruments and it

218



Machines 2021, 9, 244

is not worth it for a business to step into the industry. However, along with the mature
environment of technology and the large developing margin in the deep space environment,
such as mining, space travel, etc., more and more businesses are interested to enter the
space market. The most outstanding example is the SpaceX program, developed by Elon
Musk, the owner of the Tesla Company.

2.2. Product Development Process
2.2.1. Product Innovation

The exploitation and exploration of space have led to the emergence of new technolo-
gies in science including areas such as telecommunications, navigations, and medicine
(van der Veen et al. [8]). Product innovation is the major goal of the space fairing nations to
increase the capabilities of space technology to increase the benefits of space utilization.
Over the generations, the space sector has focused mainly on advancing the technology
conservatively, as well as innovation increments that are of low risks instead of disruptive,
radical, and breakthrough innovations.

According to Popa et al. [9], the concept of innovation presents the ability to contin-
uously make ideas and knowledge into new systems, processes, and products. Innova-
tion can be divided into three pairs, radical innovation-incremental innovation, process
innovation-product innovation, and technical innovation-administrative innovation. In-
cremental innovation refers to improving the existing processes, services, and products,
radical innovation refers to the re-conceptualization of the products and process, and
process innovation refers to the introduction of new elements to various processes. Ad-
ministrative innovations refer to innovations that are related to the basic activities of the
administrative processes as well as the management of those processes, and technical
innovations refer to the products and technology innovations in the production process
such as using Blockchain technology to enhance the traceability and trackability of the
aerospace and aviation industries (Ho et al., [10]).

Van der Veen et al. [8] described disruptive technology as the kind of technology that
emerges out of the niche market and dominates the market to the extent of disrupting the
status quo of the market. Innovation is described as disruptive when it starts to appeal
to the majority of users of the technology in the market. The technological capabilities
of the space sector are steadily increasing due to the development and research efforts
and the resulting space innovations. Tkatchova [11], however, indicated that innovation
in space is different from other technological innovations due to the harsh environment
experienced in space. The space environment makes it hard for space instruments to
operate. According to the authors, the operating environment in space is determined by
factors such as the microgravity environment, the high g-forces during the launch of the
instruments, the vacuum environment, the temperature variations, extreme temperatures,
and high-energy radiation. It is argued that space technologies are highly subject to the
performance of the customer, which is similar to non-space technologies. The disruptive
space technology differs from the other types of technologies in various ways: long devel-
opment time with a high response time for new disruptive technologies, flight heritage,
and market characteristics.

2.2.2. Disruptive Technologies in the Space Industry

Disruptive space technology is therefore a technology that changes the status of
the space sector radically by having an alternative perceived performance mix, which
fulfills the technical requirements of the user better than the previous technology (Van
der Veen et al. [6]). The key difference between disruptive space technology and other
space technologies is the fact that disruptive space technologies gain their relevance by
outperforming the alternative performance mix that is valued by the customers of the
niche market. In the space sector, there are various kinds of innovations to achieve the
outperforming value.
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A space elevator is an example of a disruptive innovation that has taken place in the
space sector in the past years. According to Courtland [12], space elevators were proposed
as a cheap alternative to costly rockets. The air elevator was considered a cheap alternative
to transport cargo and humans into space.

The space elevator was designed to be made of a cable that was to be anchored to
the surface of the earth and balanced by a counterweight in the space. On earth, the cable
would have lasers that would beam power the climbers. The climbers would then crawl
up the cable with their cargo to space. The technology has however stuck on the ground
for years without progress. One of the main reasons the disruptive technology has not
taken place is because the current materials are not strong enough to support the strain
on the cable. Through carbon nanotubes have been found, it would be great news for the
space elevators. Even with adequate materials, the concept of space elevators is still not
achievable as it will still be highly unstable. This is because of the gravitational force from
both the sun and moon as well as the pressure resulting from the solar wind. The solar
wind and gravitational force would shake the cable causing the elevator to crash with other
satellites. The author however recommends that thrusters are needed to keep the cable
in line. Some of the significant negative effects expected to be caused by space elevators
include sending a spacecraft to the wrong orbit, resulting in a slow crawl as compared to
rocket launchers.

The motion of the cargo in the elevator will cause the cable to shake, which will either
reduce or boost the velocity of the spacecraft exiting the elevator. The wobble could then
send the spacecraft to the wrong orbit as well as damaging the elevator. The climbers in the
space elevator also have to climb low to avoid creating large effects on the cable. Though
slowing down the climbers can help minimize the effect, it will also slow down the trips to
space. Ander Jorgensen of the New Mexico Institute of Mining and Technology indicated
that building space elevators seem to be more complicated than originally expected.

2.2.3. Product Design

Product design is a situation or activity where people take industrial products as the
main object for development and survival (Ren, [13]). The key to successful product design
is an understanding of the end-user customer, the person for whom the product is being
created. Khadke [14] stated that it is essential to consider the importance of technology
innovation in product designs to avoid the destruction of key components as well as
frequent redesign costs. Product designers attempt to solve real problems for real people
by using both empathy and knowledge of their prospective customers’ habits, behaviours,
frustrations, needs, and wants.

Other than product design in normal practice, the product design process is much
more complicated for space instruments. One of the reasons is the tough environments that
the instrument needs to face. Another reason is the high accuracy of the product. There are
a lot of trial-and-error processes during the product design stage. Moreover, there are many
concerns not considered in earth products that are required to be included in the space
instrument design. According to Meller [15], the product design for space instruments
must have a low mass as well as high strength because of the hostility they face in the space
environment. The product design used for creating the instruments should be able to avoid
metal-to-metal contacts, must use liquid lubricants that are vacuum compatible as well as
giving hardware error correction. In manufacturing space instruments, the manufacturers
also have to incorporate latch-up protection circuits into the product design as well as
radiative heat transfer mechanisms.

2.2.4. Reliability

The reliability of a space instrument is its ability to provide consistency in space and
time or from different observers (Souza et al. [16]). According to the authors, reliability is
one of the main quality criteria of an instrument regarding its ability to present aspects on
homogeneity, equivalence, stability, and coherence. It refers to the equivalence, internal
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consistency, and stability of the space instrument. In space instruments, have the responsi-
bility of ensuring the instruments are reliable for use in space. They should ensure that
the onboard computers for the satellites are reliable as well as the infrastructure required
for operating the instruments from the ground. According to the European Space Agency,
there are no second chances in space missions hence reliability is a crucial aspect of space
instruments. The current trend of increased autonomy of space systems and the unpre-
dictable and rapid rate of technology change also poses new challenges to the reliability of
the instruments. Reliability is therefore one of the main quality criteria of an instrument
regarding its ability to present homogeneity, equivalence, stability, and coherence.

3. Methodology

3.1. Research Design

The study explores the relationships of innovation, product design, and reliability
of space instruments. To do this, we conducted a review of previously published studies
regarding space instruments and then analyzed the articles to investigate their findings. We
systematically evaluate previous studies performed by different people to derive a conclu-
sion about the research being carried out (Haidich [17]). The outcomes of analysis include
a more precise estimate of the research body than any separate study, thus contributing to
the collective analysis. The systematic review was carried out using PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analysis). According to Labaree [18], the
PRISMA is designed to systematically summarize and evaluate the results from previous
studies that meet the selection criteria of the research paper.

The selection of studies to be used is the first step in systematic analysis. According
to Meline [19], the process involves the search of multiple databases to locate all studies
that are potentially useful to determine the answers to the research questions. Secondary
literature and data were used in the analysis. Secondary literature was composed of
explanations and assessments from the primary result literature. The primary literature
can be obtained, generalized, and summed up by researchers who can, later, generate
new research. The studies used for the research originated from various databases that
contained research papers related to the research topic. The research investigated papers
that were published in English and incorporated search terms such as qualitative research
and other terms related to the research topic. The Web of Science (WoS) database was used
for investigation in this study. It is because the WoS is one of the widely used databases
for research articles in academic disciplines. It also enables access to multiple databases
that provide comprehensive citation data. We applied the following keywords in this
study and select the articles until the end of September of 2021: “instrument” AND “space
environment” AND “design”.

This study mainly considers space instruments, the design of space instruments, and
the space environment. However, the research does not indicate a specific timeline for the
studies because we wish to acquire all the studies that had relevant information irrespective
of the year it is published in order to explore the evolution of the design and manufacturing
of space instruments.

3.2. Exclusion and Inclusion Criteria

The eligibility criteria specify the studies that will be included and those that will
be excluded from the review (Meline [19]). The studies were selected and evaluated for
eligibility based on their acceptability and relevance. The inclusion and exclusion criteria
were guided by two questions: whether the study was acceptable for the analysis and
whether the research was relevant to the purpose of the analysis. The full texts of the
studies examined during the research were used to determine the study’s trustworthiness
and reliability. This study considered articles that were peer-reviewed and were written in
the English language. After searching the terms based on the pre-defined keywords, the
articles were later screened. The articles selected were those that met the inclusion criteria
were retained within the study (Table 1).
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Table 1. Inclusion and exclusion criteria.

Inclusion Exclusion

Studies discussed space instruments and other topics
relating to space exploration

Studies that did not discuss space instruments and other
topics relating to space exploration

Studies that researched the space environment and the
current trends in space exploration

Studies that failed to research the space environment and
the current trends in space exploration

Journal articles that focus on the product designs or
manufacturing of the space instruments

Journal articles that did not focus on the product designs
or manufacturing of the space instruments

Journal articles published in the English language Articles not published in the English language

Peer-reviewed articles Articles that were not peer-reviewed

3.3. Sources of Information and Relevant Studies

This review followed the four-stage stream chart of PRISMA in looking for the inves-
tigations pertinent for the examination. PRISMA was utilized as it empowers to locate a
wide scope of investigations of premium and suitable examinations for the exploration
question (Moher et al. [20]). The four stages of PRISMA are recognizable proof, screen-
ing, qualification, and consideration of studies. The study used a single WoS database to
search for relevant papers. The databases were utilized as they were considered to have
increasingly centered data around the sort of studies and the researcher was searching for.

4. Results

To address the research questions of this study, the results are divided into several
sections. The first section is to addresses the first research question on investigating
the research focuses of the existing studies. Then, the research questions on the key
consideration factors that may influence the design of the space instrument are discussed
next. Further elaboration on the reviewed studies and the key consideration factors
are elaborated in Sections 4.3 and 4.4, followed by the review on the product design
and reliability.

4.1. Research Focuses

Figure 1 illustrates the overall systematic review process and the number of searched
articles based on PRISMA. After searching the databases, 129 records were found. After
removal of the similar and screening of the articles’, and screened based on the inclu-
sion and exclusion criteria, there were only 56 studies were left. Out of the 56 studies,
8 were excluded as the articles are not related to the instrument or product design nor
manufacturing. After running through the inclusion and exclusion criteria and screening
processes, only 48 remained for the final review. Any disagreement regarding the selection
of the studies was resolved by keeping the research objectives as the focus. A systematic
analysis was then conducted on the selected articles to extract information about the topic
of the studies, the sample sizes, and the findings of the studies. Table 2 illustrates the
summary of the research focuses of the articles on innovation, product design, instrument
performance, and manufacturing. The articles were sort according to the last name of the
first author. The instrument used in each study were also illustrated. It was found that
most of the space instruments were applied in various outer space environments including
orbit, spacecraft or space station, satellite or space telescope, lunar, mars, and mercury
planetary missions, etc. Most of the research articles were focused on product design and
instrument performance. It was also found that many of the product innovations were
associated with the instrument product design, followed by the instrument fabrication and
manufacturing of technologies. Innovation referred to the adoption of novel technologies
and ideas, improvement of existing instruments using new techniques. In which, most of
the instrument performance research focuses were related to the product design.
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Figure 1. Systematic review on the instrument design of the space industry.

Table 2. Summary of the studies information and their research focus on innovation, product design, instrument perfor-
mance, and manufacturing.

Authors Year Ref. Instrument Environment
Research Focus

Performance Product Design Innovation Manufacturing

Barker 2018 [21] Thermal Infrared Lunar,
Mercury � �

Biasotti 2020 [22] Lunar Orbiter Laser
Altimeter Lunar � � �

Borgarelli 1998 [23] Cassini Radar Spacecraft �

Bunce 2020 [24] Imaging X-ray
Spectrometer Orbit � �

Cavanaugh 2007 [25] Mercury Laser
Altimeter Mercury � �

Clark 2016 [26] Energetic Charged
Particle Detectors Space � � �

Cress 2020 [27]
Falcon Solid-State
Energetic Electron

Detector
Orbit � �

Delkowski 2021 [28] Optical and Radar
Instrument Space � �
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Table 2. Cont.

Authors Year Ref. Instrument Environment
Research Focus

Performance Product Design Innovation Manufacturing

Dichter 1998 [29]
Compact

Environmental
Anomaly Sensor

Spacecraft �

Dichter 2015 [30]
Gene Expression

Measurement
Module

Space � � �

Dickie 2017 [31] Micromachined
Plasma Spectrometer Satellites � � �

Dou 2017 [32] Proton Microprobe Space �

Gilbert 2010 [33] X-rays Space
Telescopes

Space
Telescope � �

Godet 2009 [34] X- and Gamma-Ray
Sensor Space �

Goldsten 2007 [35]
Gamma-Ray and

Neutron
Spectrometer

Spacecraft �

Hall 2017 [36] Charge-Coupled
Device Space � �

Han 2016 [37]
Differential

Electrostatic Space
Accelerometer

� � �

Hsiao 2010 [38] Radiatively Cooled
Instrument Space � �

Hu 2014 [39] Scanning Fabry-Perot
Interferometer Space Station �

Hudson 2007 [40]
Differential
Electrostatic

Accelerometer
Orbit � �

Koehn 2002 [41] Fast Imaging Plasma
Spectrometer Mercury � �

Koga 3002 [42] Neutron Monitor Space Station � �

Krebs 2005 [43] Mercury Laser
Altimeter Mercury �

Lepri 2017 [44] Fast Imaging Plasma
Spectrometer Mercury �

LIFE 2019 [45] Charged Particle
Instruments Orbit � � �

Lindstrom 2018 [46] Environmental
Anomaly Sensor Space �

Ling 2019 [47] Space Welding
Technology Space � �

Liu 2021 [48] Mass Spectrometers Space �

Lopes 2021 [49] Radiometers Space � �

MacDonald 2006 [50] Magnetospheric
Plasma Analyzer Satellites �

Magnes 2020 [51] Space Weather
Magnetometer Orbit �

Mauk 2017 [52] Energetic Particle
Detector Instruments Jupiter � �

Moretti 2010 [53] Magneto-Optical
Filter-based system Space �

Ostgaard 2019 [54] X- and Gamma-Ray
Sensor Space Station � �
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Table 2. Cont.

Authors Year Ref. Instrument Environment
Research Focus

Performance Product Design Innovation Manufacturing

Rothkaehl 2011 [55] Plasma-Wave
Complex Space Station � �

Sadrozinski 2002 [56] Gamma-ray Large
Area Space Telescope Space �

Schlemm 2007 [57] X-ray Spectrometer Mercury �

Soli 1995 [58] Proton-spectrometer Spacecraft,
Satellite �

Swinyard 2000 [59]

Moderate-Resolution
Imaging

Spectroradiometer
(MODIS) Instrument

Orbit � �

Thuillier 1992 [60] Michelson
Interferometer Satellites � �

Warren 2017 [61]
Differential

Electrostatic Space
Accelerometer

Space Station � �

Wei 2013 [62]
X-ray Detector and
Energetic Particle

Detectors
Space �

Wesolek 2005 [63] Microwave Sounder
Instrument Space � � �

Wise 1995 [64] Materials in Devices
as Superconductors Spaceflight � � �

Wright 2013 [65]
Thermal

Hyperspectral
Imager

Space �

Xiong 2019 [66] Optical Thin Films Space � �

Zanoni 2016 [67]
Doped Germanium

Photoconducting
Detectors

Space �

Zurbuchen 2016 [68] Plasma sensors Space �

4.2. Key Consideration Factors on Instrument Design

The results of the studies are summarized in Table 3. The summaries for the selected
papers are given in terms of objectives and the research of the key consideration factors
in the space environment. The summaries of the 48 studies are summarized in the table
as per the guidelines provided by Arksey et al. [19]. The key consideration factors of
the instrument in the space environment can be divided into categories including the
design and performance considerations. Design consideration refers to the key factors and
parameters considered in the space instrument design in order to suit the extreme space
environment, such as materials, duration, size, power consumption, weight can perform
its designed functions in long space travel. Performance consideration focuses on whether
the designed and manufactured instrument can achieve and maintain certain design
functions and accuracy under harsh space weather conditions and long-term operations.
The performance considers the accuracy of measurement on the collected data and signals.
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Table 3. Research objectives and the key consideration factors in the space environment.

Author Ref. Aims and Objectives The Key Considerations in Space

Barker [21]
Measured changes in the laser characteristics and obtain data to

understand the laser behavior and refine the instrument
pointing model

Long-term laser behavior

Biasotti [22] Describe the design, with the preliminary phonon dynamics
simulation, the fabrication, of first demonstration model Sensitivity

Borgarelli [23] Development of a passive mode, implemented to measure
Titan’s surface emissivity

Reduced mass, low available room, low
power consumption, severe

environmental conditions, specific
thermal control and on-ground test

accessibility

Bunce [24] The design, performance, scientific goals and operations plans
of the mercury imaging X-ray spectrometer Design, material, size

Cavanaugh [25] Describes the instrument design, prelaunch testing, calibration,
and results of postlaunch testing. Performance

Clark [26]
Review the Puck Energetic Particle Detector (EPD) design, its

heritage, unexpected results from these past missions and
future advancements

Review paper

Cress [27] Describes the design, development, and calibration of the
Falcon Solid-state Energetic Electron Detector (FalconSEED) Geosynchronous environment

Delkowski [28] Develop manufacturing methods for next generation of
advanced composites for space instrument Materials (composites)

Dichter [29] Designed an instrument to measure the local space radiation
environment. Small, lightweight, and low power

Dichter [30] Describe the design and novel features of the instruments and
discuss their calibration program Accurate measurements

Dickie [31] Design, manufacture, and characterization of a new frequency
selective surface (FSS) structure Performance

Dou [32] A systematic investigation of the ion beam optics to optimize
the design for the Harbin system Design optimization

Gilbert [33]
Demonstrate an optimized design of a linear-electric-field
time-of-flight technology that can be used to obtain a high

signal to noise
Signal to noise, size or complexity

Godet [34] Study the instrument background and sensitivity of the
coded-mask camera Optimise the performances

Goldsten [35]

Overview the gamma-ray and neutron spectrometer and
describes its science and measurement objectives, the design

and operation of the instrument, the ground calibration effort,
and early in-flight data.

Thermal behavior, performance

Hall [36] Optimise the device design to suffer minimum impact from
radiation damage effects Radiation

Han [37] Describe the design and capability of the differential
accelerometer to test weak space acceleration

Electrostatic suspension, electrostatic
motor

Hsiao [38] Design and fabrication of optical thin films for remote sensing
instruments Optical stability

Hu [39] Investigate the instrument design to measure the mesospheric
and thermospheric wind velocities

Mesospheric and thermospheric wind
velocities

Hudson [40]
This paper presents the current design of the accelerometer,

specifically the critical areas for the instrument design,
integration, and final performance requirements.

Accurate measurements
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Table 3. Cont.

Author Ref. Aims and Objectives The Key Considerations in Space

Koehn [41] Discuss the design and prototype tests of the fast-imaging
plasma spectrometer (FIPS) deflection system

Lightweight, fast, and have a very large
field of view

Koga [42] Discuss the results of the engineering model (EM) and its
properties Particle and plasma

Krebs [43] Develop the mercury laser altimeter Space-flight environmental tests

Lepri [44] Discuss an adaptation of the fast-imaging plasma spectrometer
(FIPS) for the measurement of negatively charged particles. Design modification

LIFE [45]
Developed an automated, miniaturized, integrated fluidic

system for in-situ measurements of gene expression in
microbial samples

Biological validation

Lindstrom [46] Design a new sensor compact environmental anomaly sensor
risk reduction (CEASE-RR) for anomaly attribution

Calibration and planned flight
experiment, radiation environment

Ling [47] Carry out the environmental adaptability design and analysis Mechanical property and the thermal
environment

Liu [48] Research on the effects of the space environment on the
welding technology

Microgravity, vacuum conditions, and
temperature differences

Lopes [49]
Understand how each component interferes with sensitivity

and response time of the instrument depending on its design,
material, volume, and thermal contact.

Thermal behavior, design, material,
size, performance effect

MacDonald [50]
Extrapolate the background response to the inner

magnetosphere, a highly relevant instrument design parameter
for future missions to this region.

Response to the inner magnetosphere

Magnes [51] Describes the magnetometer instrument design, discusses the
ground calibration methods and results.

Avoiding strict magnetic cleanliness
requirements, dynamic stray fields

Mauk [52]

Describe the science objectives of the Jupiter Energetic Particle
Detector Instruments (JEDI), the science and measurement

requirements, the challenges that the JEDI team had in meeting
these requirements, the design and operation of the JEDI

instruments, their calibrated performances, the JEDI inflight
and ground operations, and the initial measurements of the

JEDI instruments in interplanetary space

Performances

Moretti [53]
Present a low-cost, low-weight instrument, thus particularly fit

to space applications, capable of providing stability and
sensitivity of signals on long-term observations.

Stability and sensitivity of signals on
long-term observations

Ostgaard [54]
Describe the scientific objectives, design, performance, imaging

capabilities and operational modes of the modular X- and
gamma-ray sensor (MXGS) instrument.

Instrument performance, imaging
capabilities

Rothkaehl [55] Design of the instrument for monitoring the electromagnetic
ecosystem for space weather purpose

Ionospheric plasma property and
artificial noises

Sadrozinski [56]
The Gamma-ray Large Area Space Telescope (GLAST)

instrument designed for high sensitivity, high precision
gamma-ray detection in space.

High sensitivity, high precision
gamma-ray detection

Schlemm [57] Summarizes XRS’s science objectives, technical design,
calibration, and mission observation strategy. X-ray

Soli [58]
Presents radiation dosimetry results from the radiation and

reliability assurance experiments on the Clementine Spacecraft
and Interstage Adapter Satellite.

Performance

Swinyard [59]
Discuss the performance of the ten doped germanium

photoconducting detectors on the infrared space observatory
long wavelength spectrometer

Performance
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Table 3. Cont.

Author Ref. Aims and Objectives The Key Considerations in Space

Thuillier [60]
Performances of the WINDII, a Michelson interferometer used
to observe wind and temperature in the upper mesosphere and

thermosphere are shown and analyzed.
Performance

Warren [61] Describes the design, build, calibration, and initial
measurements from a new laboratory instrument Performance

Wei [62] Presents the special technologies applied, for the solar X-ray
spectrometer, and the first pre-flight calibration results

Solar X-ray and energetic charged
particles

Wesolek [63]
Design, fabrication, simulation, and testing of the instrument

front end that consists of a collimator, parallel plate energy
analyzer, and energy selector mask

Small-scale, energy analysis

Wise [64] Describes the design, fabrication, and testing of the primary
subsystems of the instrument. Critical superconductive properties

Wright [65] Describe the rationale for the project, the instrument design,
and the quality of the data Mass, volume, and power constraints

Xiong [66]
Overview the calibration algorithms, operational activities,
on-orbit performance, remaining challenges, and potential

improvements.
Performance

Zanoni [67] Investigate the performance of a radiatively cooled instrument Performance, thermal behavior

Zurbuchen [68] Review the innovation triggers in the context of the design
literature and with the help of two case studies Review

4.3. Product Innovation and Design

For the innovation concept of product design in a tough space environment and
mission, the findings of the study indicated that there is a relationship between innova-
tion, product design, and manufacturing of the space instruments. Figure 2 illustrates
the number of articles showing the relationship between design, manufacturing, prod-
uct innovation. Most of the reviewed articles demonstrated the relationship between
instrument design and fabrication. Most of the instrument innovation and related to the
instrument design.

Figure 2. The number of articles demonstrates the relationship between design, manufacturing,
product innovation.
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Jiao et al. [69] indicated that the process of outgassing in space is a unique phenomenon
in space instruments that can cause negative impacts on scientific exploration missions,
high-voltage devices, and spacecraft optical systems. According to the authors, to mitigate
the negative impact caused by outgassing, there is a need to develop a transient and long-
term physical model of outgassing. This would be by developing new testing methods by
combining the outgassing tests with the outgassing compound analysis, as well as on the
improvement of the existing product design and manufacturing technology.

Dichter et al. [30] describe the next generation of GOES satellites will include a new
suite of charged particle instruments. The design and novel features of the instruments
and discuss their calibration program in terms of accuracy of on-orbit measurements. The
innovation of the instrument development made significant improvements not only in the
operational measurement of the space environment but also in the overall performance of
the instrument covering a wider range of measuring abilities and lower power consumption
compare with the previous version of the instrument.

Koehn et al. [41] discussed the design and prototype tests of the fast-imaging plasma
spectrometer (FIPS) deflection system. The major piece of innovation is to improve the
instrument to enable a larger instantaneous field of view. This novel design also enables a
lightweight and fast product. Koga et al. [42] designed the engineering model (EM) and
investigated its properties. A new neutron monitor instrument is designed to understand
the particle acceleration mechanism at the solar surface. Life et al. [45] design a new
biological system that can be deployed in near future for space missions. platforms
other than the ISS to advance biological research in space. It can also prove useful for
numerous terrestrial applications in the field. The novel instrument provided an automated,
miniaturized, integrated fluidic system for biological validation.

4.4. Product Innovation and Manufacturing

As illustrated in Figure 2, the manufacturing of the instrument related to product
innovation was usually associated with product design. Delkowski et al. [28] developed a
new manufacturing method that was used to enhance polymer and composite structures
in spacecraft. The novel approach of composite materials led to research and innovation
over many decades. The new manufacturing of composite materials featuring 10–20 times
greater resistance to cracking without affecting the stiffness of dimensionally stable structures.

Another research associated instrument innovation with the product design and the
fabrication. In Clark et al. [26], new foil manufacturing processes were reviewed to discuss
the association of high-voltage anomalies and the use of curved foils on recent Puck EPD
designs. Han et al. [37] demonstrated the preliminary work on the development of the first
instrument prototype. The space accelerometer is a newly designed instrument proposed
to operate onboard China’s space station. The new prototype was tested under a weak
space acceleration. Modeling and simulation were performed to test the electrostatic
suspension and electrostatic motor based on attainable space microgravity conditions.
Noise evaluation was also performed to evaluate the performance of the instrument. This
development confirmed several crucial fabrication processes and measurement techniques
for the future design and development of space accelerometers.

Wesolek et al. [63] designed and fabricated a new version of a space environment that
re-designed the one run in 2008. The redesigned system presented a lower cost, lower
weight that fits space applications and long-term operations. The newly designed and
fabricated instrument could provide stability and sensitivity of signals.

4.5. Product Design and Reliability

In the design of the space instrument, reliability is another key consideration con-
cerned by the product designer. Indeed, the design and manufacturing of the instrument is
usually relating the reliability of the product. For innovative product design improving the
reliability of space instruments, García-Pérez et al. [2], found that the transient analysis per-
formed on the STEP instrument provided accurate simulations of the shock environment.
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The finite element method had higher confidence in the calculated results hence offering
more information than the data obtained for the shock tests. Jiao et al. [69] also found
that establishing a transient and long-term physical model of outgassing can help obtain
the outgassing characteristics of different products. This shows that using innovation to
develop new or improve the existing product designs helps increase the reliability of the
space instruments.

According to Conscience et al. [70], improving the space instruments increases their re-
liability. The authors gave an example of the SOVAP instrument and how its improvement
had increased its efficiency. According to the authors, the instrument has been improved
by adding the bolometric oscillation sensor (BOS) in order to increase the time resolution.
With the BOS, the SOVAP will be able to measure the albedo flux, the infrared flux of the
Earth, and the solar irradiance with a smaller sampling period of ten seconds. Malan-
draki et al. [71] on the other hand conducted an experiment to compare the testing abilities
of the space tool. The tool used microwave data that yielded no false alarms indicating that
the product design of the instruments affected their reliability. Gold et al. [1] added that
miniaturizing space instruments will help in improving the quality of the science from the
instruments. The authors gave an example of the instrument of imageries which improved
to include a version of the processing layer.

Jiggens et al. [72], found that the space radiation environment is an important factor for
both astronauts and instruments. Other than the traditional shielding protection methods,
the authors created a warning system for the solar particles event. The innovation in the
study help to improve the reliability of the instrument by avoiding the large SPEs. Tam [3],
raised the possibility of using new technology such as three-dimensional and additive
manufacturing to replace the old manufacturing method which has a complex design and
sub-system. The use of new manufacturing methods reduces the risk of pieces breaking off
during collisions in the space environment.

Yung et al. [73] added that space instruments need to be designed in a such way that
they perform reliably. The authors described an example of a new design of spacecraft made
in 2011 that could provide both qualitative and quantitative measures of the composition
of regolith. The SOPSYS however was designed in a such way that would enable it to the
grid, sieve, transport, and measure samples of regolith in the absence of gravity. To increase
its reliability, the instrument was developed with a reverse thread so that it would shroud
any regolith that stuck in the mechanisms of the actuator. In this way, any stuck regolith
would be pushed back to the grinding head. The author indicated that the new spacecraft
provided an anti-jam solution that did not require additional mass hence increasing the
reliability of space missions

5. Conclusions

In this study, we have explored the influences of innovation and reliability in the
product design of space instruments. This was performed by conducting a review of
previously published articles regarding space instruments and analyzing these articles to
investigate their findings and review. PRISMA was used to search the articles systemati-
cally. The results in the study indicate that the product design of the space instrument was
directly influenced by the innovation. This is because the space instrument is usually very
complex and consists of many factors considering the complex situation of the deep space
environment. On the other hand, the products are difficult to be found from the traditional
design of a product. The study also found that the reliability of the instruments is directly
influenced by the degree of innovation and product design of the space instruments. It was
determined from the examples gathered in various literature sources that all innovation
processes led to an improvement in the reliability of the instruments. This study is impor-
tant to formulate the critical factors in the design and development of a space instrument
that is important to develop the smart manufacturing protocol in the field in the future.

The current review focuses on articles about space instruments as well as product in-
novation, design. The criteria for inclusion are based on current trends in space exploration
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and product innovation. The keyword search focuses on the setting of the three themes
mentioned above. However, product design and fabrication or manufacturing technologies
are closely related but not included as one of the keywords in the search. Fabrication and
manufacturing are not included because the keywords are too specific generating a small
number of search results, particularly focusing on the space environment. As such, the
screening processes have to be performed manually leading to less objective conclusions.
In the future, more databases can be included in order to enhance the searching results and
related articles. On the other hand, the product design is usually related to the reliability
issue, particularly in space devices and instruments. Thus, a further review can be con-
ducted to summarize whether product innovation, design, and reliability are correlated
and affect the performances of space instruments. It is recommended that future research
can also be made related to the performance and design of the space instrument. Lastly,
instruments that are used in the space environment may include various interpretations
such as near space, deep space, orbits, planetary missions, etc. These keywords may also
be included in future review studies.
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