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This book contains the successful invited submissions [1–21] to a Special Issue of Symmetry on the
subject area of “Fuzzy Techniques for Decision Making”.

We invited contributions addressing novel techniques and tools for decision making (e.g., group or
multi-criteria decision making), with notions that overcome the problem of finding the membership
degree of each element in Zadeh’s original model. We could garner interesting articles in a variety of
setups, as well as applications. As a result, this Special Issue includes some novel techniques and tools
for decision making, such as:

• Instrumental tools for analysis like correlation coefficients [1,16] or similarity measures [4] and
aggregation operators [2,21] in various settings.

• Novel contributions to methodologies, like discrete optimization with fuzzy constraints [3],
COMET [5], or fuzzy bi-matrix games [7].

• New methodologies for hybrid models [12,15,18,20] inclusive of theoretical novelties [9].
• Applications to project delivery systems [6], maintenance performance in industry [8],

group emergencies [10], pedestrians flows [11], valuation of assets [13], water pollution control [17],
or aquaculture enterprise sustainability [19].

• A comparative study of some classes of soft rough sets [14].

Response to our call had the following statistics:

• Submissions (58);
• Publications (21);
• Rejections (37);
• Article types: Research Article (21);

Authors’ geographical distribution (published papers) is:

• China (11)
• Spain (4)
• Pakistan (2)
• Poland (1)
• Japan (1)
• Taiwan (1)
• Slovenia (1)

Published submissions are related to various settings like fuzzy soft sets, hesitant fuzzy sets,
(fuzzy) soft rough sets, neutrosophic sets, as well as other hybrid models.

I found the edition and selections of papers for this book very inspiring and rewarding. I also
thank the editorial staff and reviewers for their efforts and help during the process.
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3. Jelušič, P.; Žlender, B. Discrete Optimization with Fuzzy Constraints. Symmetry 2017, 9, 87. [CrossRef]
4. Jiang, W.; Shou, Y. A Novel Single-Valued Neutrosophic Set Similarity Measure and Its Application in

Multicriteria Decision-Making. Symmetry 2017, 9, 127. [CrossRef]
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Some Single-Valued Neutrosophic Dombi Weighted
Aggregation Operators for Multiple
Attribute Decision-Making
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Abstract: The Dombi operations of T-norm and T-conorm introduced by Dombi can have the
advantage of good flexibility with the operational parameter. In existing studies, however, the Dombi
operations have so far not yet been used for neutrosophic sets. To propose new aggregation
operators for neutrosophic sets by the extension of the Dombi operations, this paper firstly presents
the Dombi operations of single-valued neutrosophic numbers (SVNNs) based on the operations
of the Dombi T-norm and T-conorm, and then proposes the single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator and the single-valued neutrosophic Dombi
weighted geometric average (SVNDWGA) operator to deal with the aggregation of SVNNs and
investigates their properties. Because the SVNDWAA and SVNDWGA operators have the advantage
of good flexibility with the operational parameter, we develop a multiple attribute decision-making
(MADM) method based on the SVNWAA or SVNWGA operator under a SVNN environment. Finally,
an illustrative example about the selection problem of investment alternatives is given to demonstrate
the application and feasibility of the developed approach.

Keywords: single-valued neutrosophic number; Dombi operation; single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator; single-valued neutrosophic Dombi weighted
geometric average (SVNDWGA) operator; multiple attribute decision-making

1. Introduction

In 1965, Zadeh [1] introduced a membership function between 0 and 1 instead of traditional
crisp value of 0 and 1 and defined the fuzzy set (FS). Fuzzy theory is an important and interesting
research topic in decision-making theory and science. However, FS is characterized only by its
membership function between 0 and 1, but not a non-membership function. To overcome the
insufficient of FS, Atanassov [2] introduced the concept of an intuitionistic fuzzy set (IFS), which is
characterized by its membership function and non-membership function between 0 and 1. As a further
generalization of an IFS, Atanassov and Gargov [3] further introduced the concept of an interval-valued
intuitionistic fuzzy set (IVIFS), which is characterized by its interval membership function and interval
non-membership function in the unit interval [0, 1]. Because IFSs and IVIFSs cannot represent
indeterminate and inconsistent information, Smarandache [4] introduced a neutrosophic set (NS)
from a philosophical point of view to express indeterminate and inconsistent information. In a NS
A, its truth, falsity, and indeterminacy membership functions TA(x), IA(x) and FA(x) are represented
independently, which lie in real standard or nonstandard subsets of ]−0, 1+[, i.e., TA(x): X → ]−0, 1+[,
IA(x): X → ]−0, 1+[, and FA(x): X → ]−0, 1+[. Thus, the nonstandard interval ]−0, 1+[ may result in the
difficulty of actual applications. Based on the real standard interval [0, 1], therefore, the concepts of

Symmetry 2017, 9, 82 3 www.mdpi.com/journal/symmetry
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a single-valued neutrosophic set (SVNS) [5] and an interval neutrosophic set (INS) [6] was presented
as subclasses of NS to be easily used for actual applications, and then Ye [7] introduced a simplified
neutrosophic set (SNS), including the concepts of SVNS and INS, which are the extension of IFS and
IVIFS. Obviously, SNS is a subclass of NS, while SVNS and INS are subclasses of SNS. As mentioned
in the literature [4–7], NS is the generalization of FS, IFS, and IVIFS. Thereby, Figure 1 shows the flow
chart extended from FS to NS (SNS, SVNS, INS).

 

FS IFS IVIFS SNS NS

INS 

SVNS 

Figure 1. Flow chart extended from fuzzy set (FS) to neutrosophic set (NS) (simplified neutrosophic set
(SNS), single-valued neutrosophic set (SVNS), interval neutrosophic set (INS)). IFS: intuitionistic fuzzy
set; IVIFS: interval-valued intuitionistic fuzzy set.

On the other hand, some researchers also introduced other fuzzy extensions, such as fuzzy soft
sets, hesitant FSs, and hesitant fuzzy soft sets (see [8,9] for detail).

However, SNS (SVNS and INS) is very suitable for the expression of incomplete, indeterminate,
and inconsistent information in actual applications. Recently, SNSs (INSs, and SVNSs) have
been widely applied in many areas [10–28], such as decision-making, image processing, medical
diagnosis, fault diagnosis, and clustering analysis. Especially, many researchers [7,29–36] have
developed various aggregation operators, like simplified neutrosophic weighted aggregation operators,
simplified neutrosophic prioritized aggregation operators, single-valued neutrosophic normalized
weighted Bonferroni mean operators, generalized neutrosophic Hamacher aggregation operators,
generalized weighted aggregation operators, interval neutrosophic prioritized ordered weighted
average operators, interval neutrosophic Choquet integral operators, interval neutrosophic exponential
weighted aggregation operators, and so on, and applied them to decision-making problems with
SNS/SVNS/INS information. Obviously, the aggregation operators give us powerful tools to deal with
the aggregation of simplified (single-valued and interval) neutrosophic information in the decision
making process.

In 1982, Dombi [37] developed the operations of the Dombi T-norm and T-conorm, which show
the advantage of good flexibility with the operational parameter. Hence, Liu et al. [38] extended
the Dombi operations to IFSs and proposed some intuitionistic fuzzy Dombi Bonferroni mean
operators and applied them to multiple attribute group decision-making (MAGDM) problems with
intuitionistic fuzzy information. From the existing studies, we can see that the Dombi operations
are not extended to neutrosophic sets so far. To develop new aggregation operators for NSs based
on the extension of the Dombi operations, the main purposes of this study are (1) to present some
Dombi operations of single-valued neutrosophic numbers (SVNNs) (basic elements in SVNS), (2) to
propose a single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) operator
and a single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operator for
the aggregation of SVNN information and to investigate their properties, and (3) to develop
a decision-making approach based on the SVNDWAA and SVNDWGA operators for solving multiple
attribute decision-making (MADM) problems with SVNN information.

The rest of the paper is organized as follows. Section 2 briefly describes some concepts of SVNSs
to be used for the study. Section 3 presents some new Dombi operations of SVNNs. In Section 4,
we propose the SVNDWAA and SVNDWGA operators and investigate their properties. Section 5
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Symmetry 2017, 9, 82

develops a MADM approach based on the SVNDWAA and SVNDWGA operators. An illustrative
example is presented in Section 6. Section 7 gives conclusions and future research directions.

2. Some Concepts of SVNSs

As the extension of IFSs, Wang et al. [5] introduced the definition of a SVNS as a subclass of NS
proposed by Smarandache [4] to easily apply in real scientific and engineering areas.

Definition 1. [5] Let X be a universal set. A SVNS N in X is described by a truth-membership function tN(x),
an indeterminacy-membership function uN(x), and a falsity-membership function vN(x). Then, a SVNS N can
be denoted as the following form:

N = {〈x, tN(x), uN(x), vN(x)〉|x ∈ X},

where the functions tN(x), uN(x), vN(x) ∈ [0, 1] satisfy the condition 0 ≤ tN(x) + uN(x) + vN(x) ≤ 3 for x ∈ X.
For convenient expression, a basic element <x, tN(x), uN(x), vN(x)> in N is denoted by s = <t, u, v>,

which is called a SVNN.
For any SVNN s = <t, u, v>, its score and accuracy functions [29] can be introduced, respectively,

as follows:
E(s) = (2 + t− u− v)/3, E(s) ∈ [0, 1], (1)

H(s) = t− v, H(s) ∈ [−1, 1]. (2)

According to the two functions E(s) and H(s), the comparison and ranking of two SVNNs are introduced
by the following definition [29].

Definition 2. [29] Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs. Then the ranking method for s1
and s2 is defined as follows:

(1) If E(s1) > E(s2), then s1 � s2,
(2) If E(s1) = E(s2) and H(s1) > H(s2), then s1 � s2,
(3) If E(s1) = E(s2) and H(s1) = H(s2), then s1 = s2.

3. Some Single-Valued Neutrosophic Dombi Operations

Definition 3. [37]. Let p and q be any two real numbers. Then, the Dombi T-norm and T-conorm between p
and q are defined as follows:

OD(p, q) =
1

1 +
{(

1−p
p

)ρ
+
(

1−q
q

)ρ}1/ρ
, (3)

Oc
D(p, q) = 1− 1

1 +
{(

p
1−p

)ρ
+
(

q
1−q

)ρ}1/ρ
, (4)

where ρ ≥ 1 and (p, q) ∈ [0, 1] × [0, 1].
According to the Dombi T-norm and T-conorm, we define the Dombi operations of SVNNs.
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Definition 4. Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs, ρ ≥ 1, and λ > 0. Then, the Dombi
T-norm and T-conorm operations of SVNNs are defined below:

(1) s1 ⊕ s2 =

〈
1− 1

1+
{(

t1
1−t1

)ρ
+
(

t2
1−t2

)ρ}1/ρ , 1

1+
{(

1−u1
u1

)ρ
+
(

1−u2
u2

)ρ}1/ρ , 1

1+
{(

1−v1
v1

)ρ
+
(

1−v2
v2

)ρ}1/ρ

〉
;

(2) s1 ⊗ s2 =

〈
1

1+
{(

1−t1
t1

)ρ
+
(

1−t2
t2

)ρ}1/ρ , 1− 1

1+
{(

u1
1−u1

)ρ
+
(

u2
1−u2

)ρ}1/ρ , 1− 1

1+
{(

v1
1−v1

)ρ
+
(

v2
1−v2

)ρ}1/ρ

〉
;

(3) λs1 =

〈
1− 1

1+
{

λ
(

t1
1−t1

)ρ}1/ρ , 1

1+
{

λ
(

1−u1
u1

)ρ}1/ρ , 1

1+
{

λ
(

1−v1
v1

)ρ}1/ρ

〉
;

(4) sλ
1 =

〈
1

1+
{

λ
(

1−t1
t1

)ρ}1/ρ , 1− 1

1+
{

λ
(

u1
1−u1

)ρ}1/ρ , 1− 1

1+
{

λ
(

v1
1−v1

)ρ}1/ρ

〉
.

4. Dombi Weighted Aggregation Operators of SVNNs

Based on the Dombi operations of SVNNs in Definition 4, we propose the two Dombi
weighted aggregation operators: the SVNDWAA and SVNDWGA operators, and then investigate
their properties.

Definition 5. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the SVNDWAA and SVNDWGA operators are
defined, respectively, as follows:

SVNDWAA(s1, s2, . . . , sn) =
n
⊕

j=1
wjsj, (5)

SVNDWGA(s1, s2, . . . , sn) =
n
⊗

j=1
s

wj
j . (6)

Theorem 1. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the aggregated value of the SVNDWAA operator
is still a SVNN, which is calculated by the following formula:

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
, (7)

By the mathematical induction, we can prove Theorem 1.

Proof. If n = 2, based on the Dombi operations of SVNNs in Definition 4 we can obtain the
following result:

SVNDWAA(s1, s2) = s1 ⊕ s2

=

〈
1− 1

1+
{

w1

(
t1

1−t1

)ρ
+w2

(
t2

1−t2

)ρ}1/ρ , 1

1+
{

w1

(
1−u1

u1

)ρ
+w2

(
1−u2

u2

)ρ}1/ρ , 1

1+
{

w1

(
1−v1

v1

)ρ
+w2

(
1−v2

v2

)ρ}1/ρ

〉

=

〈
1− 1

1+

{
2
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
2
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
2
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
.

6

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 82

If n = k, based on Equation (7), we have the following equation:

SVNDWAA(s1, s2, . . . , sk) =

〈
1− 1

1+

{
k
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
.

If n = k + 1, there is the following result:

SVNDWAA(s1, s2, . . . , sk, sk+1)

=

〈
1− 1

1+

{
k
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
⊕ wk+1sk+1

=

〈
1− 1

1+

{
k+1
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k+1
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k+1
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉 .

Hence, Theorem 1 is true for n = k + 1. Thus, Equation (7) holds for all n. �

Then, the SVNDWAA operator contains the following properties:

(1) Reducibility: When w = (1/n, 1/n, . . . , 1/n), it is obvious that there exists

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1

1
n

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1

1
n

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1

1
n

(
1−vj

vj

)ρ
}1/ρ

〉
.

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, SVNDWAA(s1, s2,
. . . , sn) = s.

(3) Commutativity: Let the SVNS (s1’, s2’, . . . , sn’) be any permutation of (s1, s2, . . . , sn). Then,
there is SVNDWAA(s1’, s2’, . . . , sn’) = SVNDWAA(s1, s2, . . . , sn).

(4) Boundedness: Let smin = min(s1, s2, . . . , sn) and smax = max(s1, s2, . . . , sn). Then, smin ≤
SVNDWAA(s1, s2, . . . , sn) ≤ smax.

Proof. (1) Based on Equation (7), the property is obvious.
(2) Since sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, by using Equation (7) we can obtain the

following result:

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉

=

〈
1− 1

1+
{
( t

1−t )
ρ
}1/ρ , 1

1+
{
( 1−u

u )
ρ
}1/ρ , 1

1+
{
( 1−v

v )
ρ
}1/ρ

〉
=

〈
1− 1

1+ t
1−t

, 1
1+ 1−u

u
, 1

1+ 1−v
v

〉
= 〈t, u, v〉 = s.

Hence, SVNDWAA(s1, s2, . . . , sn) = s holds.
(3) The property is obvious.
(4) Let smin = min(s1, s2, . . . , sn) = <t−, u−, v−> and smax = max(s1, s2, . . . , sn) = <t+, u+, v+>. Then,

we have t− = min
j
(tj), u− = max

j
(uj), v− = max

j
(vj), t+ = max

j
(tj), u+ = min

j
(uj), and v+ = min

j
(vj).

Thus, there are the following inequalities:

1− 1

1+

{
n
∑

j=1
wj

(
t−

1−t−
)ρ
}1/ρ ≤ 1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ ≤ 1− 1

1+

{
n
∑

j=1
wj

(
t+

1−t+

)ρ
}1/ρ ,

7

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 82

1

1 +

{
n
∑

j=1
wj

(
1−u+

u+

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−u−

u−

)ρ
}1/ρ

,

1

1 +

{
n
∑

j=1
wj

(
1−v+

v+

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−v−

v−

)ρ
}1/ρ

.

Hence, smin ≤ SVNDWAA(s1, s2, . . . , sn) ≤ smax holds. �

Theorem 2. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the aggregated value of the SVNDWGA operator
is still a SVNN, which is calculated by the following formula:

SVNDWGA(s1, s2, . . . , sn) =

〈
1

1+

{
n
∑

j=1
wj

(
1−tj

tj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
uj

1−uj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
vj

1−vj

)ρ
}1/ρ

〉
. (8)

The proof of Theorem 2 is the same as that of Theorem 1. Thus, it is omitted here.
Obviously, the SVNDWGA operator also contains the following properties:

(1) Reducibility: When the weight vector is w = (1/n, 1/n, . . . , 1/n), it is obvious that there exists
the following result:

SVNDWGA(s1, s2, . . . , sn) =

〈
1

1+

{
n
∑

j=1

1
n

(
1−tj

tj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1

1
n

(
uj

1−uj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1

1
n

(
vj

1−vj

)ρ
}1/ρ

〉
.

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, SVNDWGA(s1, s2,
. . . , sn) = s.

(3) Commutativity: Let the SVNS (s1’, s2’, . . . , sn’) be any permutation of (s1, s2, . . . , sn). Then,
there is SVNDWGA(s1’, s2’, . . . , sn’) = SVNDWGA(s1, s2, . . . , sn).

(4) Boundedness: Let smin = min(s1, s2, . . . , sn) and smax = max(s1, s2, . . . , sn). Then, smin ≤
SVNDWGA(s1, s2, . . . , sn) ≤ smax.

The proof processes of these properties are the same as the ones of the properties for the
SVNDWAA operator. Hence, they are not repeated here.

5. MADM Method Using the SVNDWAA Operator or the SVNDWGA Operator

In this section, we propose a MADM method by using the SVNDWAA operator or the SVNDWGA
operator to handle MADM problems with SVNN information.

For a MADM problem with SVNN information, let S = {S1, S2, . . . , Sm} be a discrete set of
alternatives and G = {G1, G2, . . . , Gn} be a discrete set of attributes. Assume that the weight vector of
the attributes is given as w = (w1, w2, . . . , wn) such that wj ∈ [0, 1] and ∑n

j=1 wj = 1. If the decision
makers are required to provide their suitability evaluation about the alternative Si (i = 1, 2, . . . , m)
under the attribute Gj (j = 1, 2, . . . , n) by the SVNN sij = <tij, uij, vij> (i = 1, 2, . . . , m; j = 1, 2, . . . , n),
then, we can elicit a SVNN decision matrix D = (sij)m×n.

Thus, we utilize the SVNDWAA operator or the SVNDWGA operator to develop a handling
approach for MADM problems with SVNN information, which can be described by the following
decision steps:
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Step 1. Derive the collective SVNN si (i = 1, 2, . . . , m) for the alternative Si (i = 1, 2, . . . , m) by
using the SVNDWAA operator:

si = SVNDWAA(si1, si2, . . . , sin)

=

〈
1− 1

1+

{
n
∑

j=1
wj

(
tij

1−tij

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uij

uij

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vij

vij

)ρ
}1/ρ

〉
, (9)

or by using the SVNDWGA operator:

si = SVNDWGA(si1, si2, . . . , sin)

=

〈
1

1+

{
n
∑

j=1
wj

(
1−tij

tij

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
uij

1−uij

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
vij

1−vij

)ρ
}1/ρ

〉
, (10)

where w = (w1, w2, . . . , wn) is the weight vector such that wj ∈ [0, 1] and ∑n
j=1 wj = 1.

Step 2. Calculate the score values of E(si) (the accuracy degrees of H(si) if necessary) of the
collective SVNN si (i = 1, 2, . . . , m) by using Equations (1) and (2).

Step 3. Rank the alternatives and select the best one(s).
Step 4. End.

6. Illustrative Example

An illustrative example about investment alternatives for a MADM problem adapted from Ye [10]
is used for the applications of the proposed decision-making method under a SVNN environment.
An investment company wants to invest a sum of money in the best option. To invest the money,
a panel provides four possible alternatives: (1) S1 is a car company; (2) S2 is a food company; (3) S3

is a computer company; (4) S4 is an arms company. The investment company must take a decision
corresponding to the requirements of the three attributes: (1) G1 is the risk; (2) G2 is the growth; (3) G3 is
the environmental impact. The suitability evaluations of the alternative Si (i = 1, 2, 3, 4) corresponding
to the three attributes of Gj (j = 1, 2, 3) are given by some decision makers or experts and expressed
by the form of SVNNs. Thus, when the four possible alternatives corresponding to the above three
attributes are evaluated by the decision makers, we can give the single-valued neutrosophic decision
matrix D(sij)m×n, where sij = <tij, uij, vij> (i = 1, 2, 3, 4; j = 1, 2, 3) is SVNN, as follows:

D(sij)4×3 =

⎡⎢⎢⎢⎣
〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.8, 0.2, 0.5〉
〈0.6, 0.1, 0.2〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.8〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.8〉
〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.6, 0.3, 0.8〉

⎤⎥⎥⎥⎦.

The weight vector of the three attributes is given as w = (0.35, 0.25, 0.4).
Then, we utilize the SVNDWAA operator or the SVNDWGA operator to handle the MADM

problem with SVNN information.
In this decision-making problem, the MADM steps based on the SVNDWAA operator can be

described as follows:
Step 1. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation (9)

for ρ = 1 as follows:
s1 = <0.6667, 0.2000, 0.3571>, s2 = <0.5652, 0.1250, 0.2857>, s3 = <0.4444, 0.2308, 0.4000>, and s4 =

<0.6418, 0, 0.1905>.
Step 2. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the alternatives

Si (i = 1, 2, 3, 4) by using Equation (1) as the following results:
E(s1) = 0.7032, E(s2) = 0.7182, E(s3) = 0.6046, and E(s4) = 0.8171.
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Step 3. Based on the obtained score values, the ranking order of the alternatives is S4 � S2 � S1

� S3 and the best one is S4.
Or we use the SVNDWGA operator for the MADM problem, which can be described as the

following steps:
Step 1’. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation

(10) for ρ = 1 as follows:
s1 = <0.5000, 0.2000, 0.3966>, s2 = <0.5556, 0.1429, 0.6364>, s3 = <0.4054, 0.2432, 0.6500>, and s4 =

<0.6316, 0.1661, 0.6298>.
Step 2’. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the alternatives

Si (i = 1, 2, 3, 4) by using Equation (1) as the following results:
E(s1) = 0.6345, E(s2) = 0.5921, E(s3) = 0.5041, and E(s4) = 0.6119.
Step 3’. Based on the obtained score values, the ranking order of the alternatives is S1 � S4 � S2

� S3 and the best one is S1.
In order to ascertain the effects on the ranking alternatives by changing parameters of ρ ∈ [1, 10]

in the SVNDWAA and SVNDWGA operators, all the results are depicted in Tables 1 and 2.

Table 1. Ranking results for different operational parameters of the single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator.

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order

1 0.7032, 0.7182, 0.6046, 0.8171 S4 � S2 � S1 � S3
2 0.7259, 0.7356, 0.6257, 0.8326 S4 � S2 � S1 � S3
3 0.7380, 0.7434, 0.6364, 0.8396 S4 � S2 � S1 � S3
4 0.7449, 0.7480, 0.6429, 0.8441 S4 � S2 � S1 � S3
5 0.7492, 0.7511, 0.6472, 0.8474 S4 � S2 � S1 � S3
6 0.7521, 0.7533, 0.6503, 0.8499 S4 � S2 � S1 � S3
7 0.7542, 0.7550, 0.6525, 0.8520 S4 � S2 � S1 � S3
8 0.7558, 0.7564, 0.6543, 0.8536 S4 � S2 � S1 � S3
9 0.7571, 0.7574, 0.6556, 0.8549 S4 � S2 � S1 � S3

10 0.7580, 0.7583, 0.6567, 0.8560 S4 � S2 � S1 � S3

Table 2. Ranking results for different operational parameters of the single-valued neutrosophic Dombi
weighted geometric average (SVNDWGA) operator.

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order

1 0.6345, 0.5921, 0.5041, 0.6119 S1 � S4 � S2 � S3
2 0.6145, 0.5602, 0.4722, 0.5645 S1 � S4 � S2 � S3
3 0.6026, 0.5460, 0.4549, 0.5454 S1 � S2 � S4 � S3
4 0.5950, 0.5374, 0.4439, 0.5351 S1 � S2 � S4 � S3
5 0.5898, 0.5316, 0.4363, 0.5286 S1 � S2 � S4 � S3
6 0.5861, 0.5272, 0.4308, 0.5241 S1 � S2 � S4 � S3
7 0.5834, 0.5238, 0.4266, 0.5208 S1 � S2 � S4 � S3
8 0.5813, 0.5211, 0.4234, 0.5183 S1 � S2 � S4 � S3
9 0.5797, 0.5190, 0.4208, 0.5163 S1 � S2 � S4 � S3

10 0.5784, 0.5172, 0.4188, 0.5147 S1 � S2 � S4 � S3

From Tables 1 and 2, we see that the ranking orders based on the SVNDWAA and SVNDWGA
operators indicate their obvious difference due to using different aggregation operators. Then,
the different operational parameters of ρ can change the ranking orders corresponding to the
SVNDWGA operator, which is more sensitive to ρ in this decision-making problem; while the different
operation parameters of ρ show the same ranking orders corresponding to the SVNDWAA operator,
which is not sensitive to ρ in this decision-making problem.

10

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 82

Compared with existing related method [38], the decision-making method developed in this
paper can deal with single-valued neutrosophic or intuitionistic fuzzy MADM problems, while existing
method [38] cannot handle single-valued neutrosophic MADM problems.

However, this MADM method based on the SVNDWAA and SVNDWGA operators indicates the
advantage of its flexibility in actual applications. Therefore, the developed MADM method provides
a new effective way for decision makers to handle single-valued neutrosophic MADM problems.

7. Conclusions

This paper presented some Dombi operations of SVNNs based on the Dombi T-norm and
T-conorm operations, and then proposed the SVNDWAA and SVNDWGA operators and investigated
their properties. Further, we developed to a MADM method by using the SVNDWAA operator
or the SVNDWGA operator to deal with MADM problems under a SVNN environment, in which
attribute values with respect to alternatives are evaluated by the form of SVNNs and the attribute
weights are known information. We utilized the SVNDWAA operator or the SVNDWGA operator and
the score (accuracy) function to rank the alternatives and to determine the best one(s) according to
the score (accuracy) values in the different operational parameters. Finally, an illustrative example
about the decision-making problem of investment alternatives was provided to demonstrate the
application and feasibility of the developed approach. The decision-making results of the illustrative
example demonstrated the main highlights of the proposed MADM method: (1) different operational
parameters of ρ in the SVNDWGA and SVNDWAA operators can affect the ranking orders; (2) the
decision-making process is more flexible corresponding to some operational parameter ρ specified by
decision makers’ preference and/or actual requirements; (3) the SVNDWGA and SVNDWAA operators
provide new aggregation methods of SVNNs to solve MADM problems under an SVNN environment.

In the future work, we shall further develop new Dombi aggregation operators for simplified
neutrosophic sets (including SVNSs and INSs) and apply them to solve practical applications in these
areas like group decision-making in [39,40], expert system, information fusion system, fault diagnosis,
medical diagnosis, and so on.

Acknowledgments: This paper was supported by the National Natural Science Foundation of China (No. 71471172).

Author Contributions: J. Ye proposed the single-valued neutrosophic Dombi weighted arithmetic average
(SVNDWAA) and single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operators,
and their decision-making method; J. Chen performed the calculation and analysis of the illustrative example;
J. Chen and J. Ye wrote the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [CrossRef]
4. Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis;

American Research Press: Rehoboth, DE, USA, 1998.
5. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct.

2010, 4, 410–413.
6. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and

Applications in Computing; Hexis: Phoenix, AZ, USA, 2005.
7. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets.

J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [CrossRef]
8. Bustince, H.; Barrenechea, E.; Fernandez, J.; Pagola, M.; Montero, J. The origin of fuzzy extensions. In Springer

Handbook of Computational Intelligence; Springer: Heidelberg, Germany, 2015; pp. 89–112.
9. Alcantud, J.C.R. Some formal relationships among soft sets, fuzzy sets, and their extensions. Int. J. Approx. Reason.

2016, 68, 45–53. [CrossRef]

11

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 82

10. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic
environment. Int. J. Gen. Syst. 2013, 42, 386–394. [CrossRef]

11. Majumdar, P.; Samant, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26,
1245–1252. [CrossRef]

12. Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making
problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [CrossRef]

13. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision
making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [CrossRef]

14. Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model.
2014, 38, 1170–1175. [CrossRef]

15. Guo, Y.; Sengur, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity score.
Measurement 2014, 58, 175–186. [CrossRef]

16. Ye, J. Multiple attribute decision-making method based on the possibility degree ranking method and
ordered weighted aggregation operators of interval neutrosophic numbers. J. Intell. Fuzzy Syst. 2015, 28,
1307–1317. [CrossRef]

17. Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.
Artif. Intell. Med. 2015, 63, 171–179. [CrossRef] [PubMed]

18. Sahin, R.; Kucuk, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2015, 29,
525–530. [CrossRef]

19. Zhang, H.Y.; Ji, P.; Wang, J.; Chen, X.H. An improved weighted correlation coefficient based on integrated
weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J.
Comput. Intell. Syst. 2015, 8, 1027–1043. [CrossRef]

20. Ye, J. Interval neutrosophic multiple attribute decision-making method with credibility information. Int. J.
Fuzzy Syst. 2016, 18, 914–923. [CrossRef]

21. Ye, J.; Fu, J. Multi-period medical diagnosis method using a single valued neutrosophic similarity measure
based on tangent function. Comput. Methods Program Biomed. 2015, 123, 142–149. [CrossRef] [PubMed]

22. Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under
single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [CrossRef]

23. Zhang, H.Y.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems
with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [CrossRef]

24. Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications
in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [CrossRef]

25. Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on
a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [CrossRef]

26. Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their
decision-making method for mechanical design schemes. J. Exp. Theor. Artif. Intell. 2016, 1–10. [CrossRef]

27. Ye, J. Single-valued neutrosophic clustering algorithms based on similarity measures. J. Classif. 2017, 34,
148–162. [CrossRef]

28. Ye, J. Single valued neutrosophic similarity measures based on cotangent function and their application in
the fault diagnosis of steam turbine. Soft Comput. 2017, 21, 817–825. [CrossRef]

29. Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision
making problems. Sci. World J. 2014, 2014, 645953. [CrossRef] [PubMed]

30. Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic
normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [CrossRef]

31. Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation
operators and their application to group decision making. J. Intell. Fuzzy Syst. 2014, 16, 242–255.

32. Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making
based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [CrossRef]

33. Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for
multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [CrossRef]

34. Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute
decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [CrossRef]

12

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 82

35. Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with
simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell.
Fuzzy Syst. 2016, 18, 1104–1116. [CrossRef]

36. Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision
making methods. Springerplus 2016, 5, 1488. [CrossRef] [PubMed]

37. Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures
induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [CrossRef]

38. Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their
application to multi-attribute group decision making. J. Oper. Res. Soc. 2017, 1–26. [CrossRef]

39. Maio, C.D.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A framework for context-aware heterogeneous
group decision making in business processes. Knowl-Based Syst. 2016, 102, 39–50. [CrossRef]

40. Maio, C.D.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A context-aware fuzzy linguistic consensus
model supporting innovation processes. In Proceedings of the 2016 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 1685–1692.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

13

Bo
ok
s

M
DP
I



symmetryS S

Article

A Novel Single-Valued Neutrosophic Set Similarity
Measure and Its Application in Multicriteria
Decision-Making

Wen Jiang * and Yehang Shou

School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China;
shouyehang@mail.nwpu.edu.cn
* Correspondence: jiangwen@nwpu.edu.cn; Tel.: +86-29-8843-1267

Received: 13 June 2017; Accepted: 17 July 2017; Published: 25 July 2017

Abstract: The single-valued neutrosophic set is a subclass of neutrosophic set, and has been proposed
in recent years. An important application for single-valued neutrosophic sets is to solve multicriteria
decision-making problems. The key to using neutrosophic sets in decision-making applications is to
make a similarity measure between single-valued neutrosophic sets. In this paper, a new method to
measure the similarity between single-valued neutrosophic sets using Dempster–Shafer evidence
theory is proposed, and it is applied in multicriteria decision-making. Finally, some examples are
given to show the reasonable and effective use of the proposed method.

Keywords: single-valued neutrosophic set; multicriteria decision-making; neutrosophic set;
Dempster–Shafer evidence theory; correlation coefficient; similarity

1. Introduction

The concept of a neutrosophic set, which generalizes the above-mentioned sets from philosophical
point of view, was proposed by Smarandache [1] in 1999, and it is defined as a set about the degree
of truth, indeterminacy, and falsity. According to the definition of a neutrosophic set, a neutrosophic
set A in a universal set X is characterized independently by a truth-membership function TA(x),
an indeterminacy-membership function IA(x), and a falsity-membership function FA(x), where in
X are real standard or nonstandard subsets of ]−0, 1+[. However, the neutrosophic set generalizes
the above-mentioned sets from a philosophical point of view. It is difficult to apply in practical
problems. So, the concept of interval neutrosophic sets (INSs) [2] and single-valued neutrosophic sets
(SVNSs) [3] were proposed by Wang et al. Because INS and SVNS are easy to express, and due to the
fuzziness of subjective judgment, these two kinds of neutrosophic sets are widely used in reality, such
as in multicriteria decision-making [4–9], image processing [10–12], medicine [13], fault diagnosis [14],
and personnel selection [15]. Among them, decision-making is a hot issue of research for scholars in
various fields [16,17].

This paper introduces how to measure the similarity between SVNSs, which is an important topic
in the neutrosophic theory. Similarity measure is key in the SVNS application, and many similarity
measures have been proposed by some researchers. In [18], the notion of distance between two SVNSs
is introduced and entropy of SVNS is also defined by Majumdar and Samanta. In [6], Ye presented
similarity measure of SVNSs using the weighted cosine. Then, in [5], a multicriteria decision-making
method is introduced based on the two aggregation operators and cosine similarity measure for SVNSs.
In [14], Ye presented two cotangent similarity measures for SVNSs based on cotangent function, and
these similarity measures were applied in the fault diagnosis of a steam turbine. However, the cosine
similarity measures defined [5,6] have some drawbacks. The results using cosine similarity measures
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are not consistent with intuition in some situations. Specific analysis will be presented in the following
sections. Therefore, similarity measure is still an open problem.

In this paper, a new method of calculating the similarity between SVNSs using Dempster–Shafer
(D–S) evidence theory is proposed and is applied in multicriteria decision-making. D–S evidence
theory was first proposed by Dempster and then developed by Shafer, and has received recent
attention in the field of information fusion. A significant advantage of D–S evidence theory over
the traditional probability is that a better fusion result can be obtained via simple reasoning process
without knowing the prior probability. In addition, an important property of this theory is that it can
easily describe the uncertainty of information [19–21]. In recent years, a number of papers about further
research in D–S evidence theory have been published. The main research topics include combination
rule [22–24], basic probability assignment(BPA) approximation [25,26], distance of evidence [27,28],
and BPA generation [29]. Besides, to solve the problem that frame of discernment is often not
incomplete, the generalized evidence theory (GET) is proposed and now there are many studies
on GET [30–32]. What is more, D–S evidence theory has been widely used in many fields, such as
image fusion [33,34], sensor data fusion [35], gender profiling [36], device fault diagnosis [37,38],
and so on [39–43]. In this paper, the method of measuring similarity between SVNSs is that SVNSs
are first converted to the basic probability assignment(BPA). Then, the value of similarity measure
between SVNSs can be obtained by computing the similarity of BPAs. The correlation between BPAs
can be obtained by the correlation coefficient or the evidential distance [44] in D–S evidence theory.
The correlation coefficient by Jiang [45] will be applied in our method to measure the similarity between
the SVNSs. This correlation coefficient is one of the coefficients which can effectively measure the
similarity or relevance of evidence. Finally, the new SVNSs similarity measure method-based D–S
evidence theory is used in multicriteria decision-making for single-valued neutrosophic sets, and some
examples are given to show its effectiveness.

The remainder of this paper is organized as follows: Section 2 introduces the theoretical
background of this research. The method which measures the similarity between SVNSs using
D–S evidence theory is introduced in Section 3. Next, compared with existing methods, some tests and
analysis are given in Section 4. Finally, D–S evidence theory is applied in multicriteria decision-making
under SVNS in Section 4 and we present our conclusions in Section 6.

2. Preliminaries

2.1. Neutrosophic Sets

The definition of a neutrosophic set as proposed by Smarandache [1] is as follows.

Definition 1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set A in X is characterized by a truth-membership function TA, an indeterminacy membership function IA,
and a falsity membership function FA. TA(x), IA(x), and FA(x) are real standard or non-standard subsets of
]0−, 1+[. That is

TA : X →]0−, 1+[
IA : X →]0−, 1+[
FA : X →]0−, 1+[

(1)

There is no restriction on the sum of TA(x), IA(x), and FA(x), so 0− ≤ sup TA(x) + sup IA(x) +
sup FA(x) ≤ 3+ .

Definition 2. The complement of a neutrosophic set A is denoted by c(A), and is defined by

Tc(A)(x) = {1+} − TA(x)
Ic(A)(x) = {1+} − IA(x)
Fc(A)(x) = {1+} − FA(x)

(2)

where all x is in X.
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Definition 3. A neutrosophic set A is contained in the other neutrosophic set B, A ⊆ B, if and only if

inf TA(x) ≤ inf TB(x), sup TA(x) ≤ sup TB(x)
inf FA(x) ≤ inf FB(x), sup FA(x) ≤ sup FB(x)

(3)

where all x is in X.

Definition 4. The union of two neutrosophic sets A and B is a neutrosophic set C, written as C = A ∪ B,
whose truth-membership, indeterminacy membership, and falsity membership functions are related to those of A
and B by

TC(x) = TA(x) + TB(x)− TA(x)× TB(x)
IC(x) = IA(x) + IB(x)− IA(x)× IB(x)
FC(x) = FA(x) + FB(x)− FA(x)× FB(x)

(4)

where all x is in X.

Definition 5. The intersection of two neutrosophic sets A and B is a neutrosophic set C, written as C = A ∩ B,
whose truth-membership, indeterminacy membership, and falsity membership functions are related to those of A
and B by

TC(x) = TA(x)× TB(x)
IC(x) = IA(x)× IB(x)
FC(x) = FA(x)× FB(x)

(5)

where all x is in X.

2.2. Single-Valued Neutrosophic Set

The definition of SVNS [3] and the weighted aggregation operators of SVNS [5] are introduced
as follows:

Definition 6. [3] Let X be a space of points (objects), with a generic element in X denoted by x. A single-valued
neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, indeterminacy-membership
function IA, and falsity-membership function FA, For each point x in X, TA(x), IA(x), FA(x) ∈ [0, 1].
Then, a simplification of the neutrosophic set A is denoted by

A = {〈x, T(x), I(x), F(x)〉 |x ∈ X} (6)

It is a subclass of neutrosophic sets. In this paper, for the sake of simplicity, the SVNS A =

{〈x, T(x), I(x), F(x)〉 |x ∈ X} is denoted by the simplified symbol A = {〈T(x), I(x), F(x)〉 |x ∈ X}.

Definition 7. [3] The complement of an SVNS A is denoted by c(A), and is defined:

Tc(A)(x) = FA(x)
Ic(A)(x) = 1− IA(x)
Fc(A)(x) = TA(x)

(7)

where all x is in X.

Definition 8. [3] An SVNS A is contained in the other SVNS B, A ⊆ B, if and only if TA(x) ≤
TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).

Definition 9. [3] Two SVNSs A and B are equal, written as A = B if and only if A ⊆ B and B ⊆ A.

Definition 10. [5] Let A, B be two SVNSs. Operational relations are defined by

A+B = 〈TA(x) + TB(x)− TA(x)TB(x),

IA(x) + IB(x)− IA(x)IB(x),

FA(x) + FB(x)− FA(x)FB(x)〉
(8)
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A · B = 〈TA(x)TB(x), IA(x)IB(x), FA(x)FB(x)〉 (9)

λA =
〈

1− (1− TA(x))λ, 1− (1− IA(x))λ, 1− (1− FA(x))λ
〉

, λ > 0 (10)

Aλ=
〈

Tλ
A(x), Iλ

A(x), Fλ
A(x)
〉

, λ > 0 (11)

Definition 11. [5] Let Aj(j = 1, 2, ..., n) be an SVNS. The simplified neutrosophic weighted arithmetic average
operator is defined by

Fw(A1, A2, ..., An) =
n

∑
j=1

wj Aj (12)

where W = (w1, w2, ..., wn) is the weight vector of Aj(j = 1, 2, ..., n), wj ∈ [0, 1] and
n
∑

j=1
wj = 1

2.3. Dempster–Shafer Evidence Theory

The Dempster–Shafer (D–S) evidence theory was introduced by Dempster and then developed by
Shafer, and has emerged from their works on statistical inference and uncertain reasoning.

Definition 12. In D–S evidence theory, there is a fixed set of N mutually exclusive and exhaustive elements,
called the frame of discernment. Let Θ be a set, indicated by

Θ = {θ1, θ2, · · · θi, · · · , θN}. (13)

Let us denote P(Θ) as the power set composed of 2N elements of Θ

P(Θ) = {∅, {θ1}, · · · {θN}, {θ1, θ2}, · · · , {θ1, θ2, · · · θi}, · · · , Θ}. (14)

Definition 13. A mass function is a mapping m from P(Θ) to [0,1], formally defined by:

m : P(Θ)→ [0, 1], A → m(A) (15)

which satisfies the following condition:
m(∅) = 0 (16)

∑
A∈P(Θ)

m(A) = 1. (17)

A represents any one of the elements in the P(Θ). The mass m(A) represents how strongly the evidence supports
A. When m(A)>0, A, which is a member of the power set, is called a focal element of the mass function.

Definition 14. In D–S evidence theory, a mass function is also called a basic probability assignment (BPA).
Let us assume there are two BPAs, operating on two sets of propositions B and C, respectively, indicated by m1

and m2. The Dempster’s combination rule is used to combine them as follows:

m(A) =

⎧⎨⎩ 0 ,
1

1−K ∑
B∩C=A

m1(B)m2(C)
A = ∅
A �= ∅

(18)

K = ∑
B∩C=∅

m1(B)m2(C), (19)

In Equations (18) and (19), K shows the conflict between the two BPAs m1 and m2.

2.4. A Correlation Coefficient

In order to measure the similarity between two BPAs, a correlation coefficient of belief functions
is proposed in [45], detailed as follows:
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Definition 15. For a discernment frame Θ with N elements, suppose the mass of two pieces of evidence denoted
by m1, m2. The correlation coefficient is defined as:

rBPA (m1, m2) =
c (m1, m2)√

c (m1, m1) · c (m2, m2)
(20)

where the correlation coefficient rBPA ∈ [0, 1] and c(m1, m2) is the degree of correlation denoted as:

c(m1, m2) =
2N

∑
i=1

2N

∑
j=1

m1(Ai)m2(Aj)

∣∣Ai ∩ Aj
∣∣∣∣Ai ∪ Aj
∣∣ (21)

where i, j = 1, . . . , 2N; Ai, Aj are the focal elements of mass, and |·| is the cardinality of a subset.

When the two BPAs are different absolutely, the degree of difference should be the least, which is
0. When the two BPAs are consistent absolutely, the result of the correlation coefficient is 1.

3. A New Similarity Measures for SNVS

The idea of the new similarity measure is that SNVSs can be converted to BPAs and the similarity
measure between the two SNVSs be obtained by computing the correlation coefficient between the
two BPAs by Equations (20) and (21). The innovation of our method is that a reasonable method for
converting SVNS to BPA is proposed and the new idea of using correlation coefficients by Jiang [45] to
measure similarity between SNVSs. The key of this method is to find the connection between SNVSs
and BPA. In other words, finding a way to generate the BPA reasonably is very important.

Definition 16. Suppose neutrosophic set A is an SNVS. A simplification of the neutrosophic set A is denoted
by A = {〈TA(x), IA(x), FA(x)〉 |x ∈ X}. Each point x is in X and TA(x),IA(x), FA(x) ∈ [0, 1]. According
to the meaning of SNVS and D–S evidence theory, the frame of discernment can be defined Θ = {Tx, Fx}. Tx

and Fx represent the trust for x and the opposition for x respectively. Subset {Tx, Fx} of Θ represents supporting
for both Tx and Fx. In other words, it means choice between Tx and Fx cannot be made. So, the power set P(Θ) is
{∅, {Tx}, {Fx}, {Tx, Fx}}. The BPA can be defined mA(∅), mA(Tx), mA(Fx), mA(Tx, Fx). They respectively
indicate the degree of the A support for ∅, Tx, Fx and Tx, Fx.

Definition 17. Suppose neutrosophic set A is an SNVS. A simplification of the neutrosophic set A is denoted by
A = {〈TA(x), IA(x), FA(x)〉 |x ∈ X}. Each point x is in X and TA(x),IA(x), FA(x) ∈ [0, 1]. The relationship
between SVNS and BPA can be expressed as follows:

mA(T) = TA(x)/(TA(x) + FA(x) + (1− IA(x)))
mA(F) = FA(x)/(TA(x) + FA(x) + (1− IA(x)))
mA(T, X) = (1− IA(x))/(TA(x) + FA(x) + (1− IA(x)))

(22)

TA(x) represents the degree of the trust for x. Similarly, mA(Tx) can also express the degree of the
trust for x. TA(x) and mA(Fx) both represent the degree of the opposition for x. So, mA(Tx) = TA(x)
and mA(Fx) = FA(x) are defined when generating the BPA according to the SNVS. IA(x) indicates
the degree of support for other, with the exception of trust and opposition. So, 1− IA(x) expresses
the degree of trust for x and opposition for x. The meaning of mA(Tx, Fx) is the same as 1− IA(x).
So, mA(Tx, Fx) = 1 − IA(x) is defined in Equation (22). We can see that using basic probability
assignment (BPA) can express the SNVS reasonably.

The new method to calculate the similarity between two SVNSs is presented as follows:
Assume that two SVNSs A and B are denoted by A = {〈TA(x), IA(x), FA(x)〉 |x ∈ X}, B =

{〈TB(x), IB(x), FB(x)〉 |x ∈ X}.

Step 1: According to A and B, two groups of BPAs mA and mB can be obtained by Equation (22);
Step 2: Compute correlation coefficient rBPA between mA and mB by Equations (20) and (21);
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Step 3: The similarity measure Sr(A, B) can be obtained as:

Sr(A, B) = rBPA(mA, mB)

In the following, one example is used to show the steps of our proposed method.

Example 1. Suppose two SVNSs A and B in X = x. The value of A is <0.7 0.8 0.2> and the value of B is
<0.6 0.8 0.1>. Calculating similarity using D–S evidence theory is as follows.

Step 1: According to A and B of SVNS, we can know

TA(x) = 0.7, IA(x) = 0.8, FA(x) = 0.2

TB(x) = 0.6, IB(x) = 0.8, FB(x) = 0.1

So, two groups of BPAs mA and mB can be obtained by Equation (22).

mA(∅) = 0,
mA(Tx) = TA(x)/(TA(x) + FA(x) + (1− IA(x))) = 0.6364,
mA(Fx) = TA(x)/(TA(x) + FA(x) + (1− IA(x))) = 0.1818,

mA(Tx, Fx) = TA(x)/(TA(x) + FA(x) + (1− IA(x))) = 0.1818

mB(∅) = 0,
mB(Tx) = TB(x)/(TB(x) + FB(x) + (1− IB(x))) = 0.6667,
mB(Fx) = TB(x)/(TB(x) + FB(x) + (1− IB(x))) = 0.1111,

mB(Tx, Fx) = TB(x)/(TB(x) + FB(x) + (1− IB(x))) = 0.2222

Step 2: Compute correlation coefficient rBPA between mA and mB by Equations (20) and (21). Firstly,
we can get the c by Equation (21).

c(mA, mA) = 0.5500, c(mB, mB) = 0.7500, c(mA, mB) = 0.6400

Then, rBPA can be obtained by Equation (20).

rBPA(mA, mB) = 0.9965

Step 3: The similarity measure of SNVSs can be obtained as

Sr(A, B) = 0.9965.

4. Test and Analysis

In this section, to compare the similarity measures with existing similarity measures [6],
the examples to demonstrate the effectiveness and rationality of similarity measures proposed of
SVNSs is provided.

Example 2. Suppose two SVNSs A and B in X = x. In this example, the value of A remains the unchanged,
which is <1 0 0>. Meanwhile, TB(x) in B increased gradually. The similarity measures are computed by the
method proposed by Ye’s method [6] and our method, respectively, and the results are shown in Table 1 and
Figure 1.

From Table 1 and Figure 1, we can see that our result is gradually increasing with the change of B.
However, the similarity measure remains unchanged by Ye’s method. Obviously, Ye’s results are not
consistent with intuition. With the growth of B, A and B are becoming more and more similar. In other
words, the trend of similarity should be changed from small to large in this example. Our results are
consistent with the intuitive analysis.
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Table 1. Similarity measure values.

Group Number A B Sr S [6]

1 <1 0 0> <0 0 0> 0.8660 1
2 <1 0 0> <0.1 0 0> 0.9042 1
3 <1 0 0> <0.2 0 0> 0.9333 1
4 <1 0 0> <0.3 0 0> 0.9549 1
5 <1 0 0> <0.4 0 0> 0.9707 1
6 <1 0 0> <0.5 0 0> 0.9820 1
7 <1 0 0> <0.6 0 0> 0.9897 1
8 <1 0 0> <0.7 0 0> 0.9948 1
9 <1 0 0> <0.8 0 0> 0.9979 1

10 <1 0 0> <0.9 0 0> 0.9995 1
11 <1 0 0> <1 0 0> 1 1

Figure 1. Comparison of correlation degree.

Example 3. Suppose two SVNSs A and B in X = x and we compare similarity measures using D–S evidence
theory with similarity measure using [6]. The comparison results of similarity measure are shown in Table 2.

Table 2. Similarity measure values.

Group Number A B Sr S [6]

1 <0.6 0.2 0.8> <0.3 0.1 0.4> 0.9862 1
2 <0.7 0.8 0.2> <0.6 0.8 0.1> 0.9965 0.9935
3 <0.2 0.1 0.5> <0.2 0.1 0.5> 1 1
4 <0.9 0.8 0.7> <0.1 0.2 0.1> 0.8440 0.9379

In Example 3, SVNSs of the four groups were calculated and the results are shown in Table 2. From
the analysis of data, we can see that the similarity measures of all SVNSs can be obtained reasonably
by our method. However, Ye’s result is not consistent with intuition in group 1.

5. Multicriteria Decision-Making

In this section, the similarity measure we proposed is applied to solve multicriteria
decision-making problems.

Assume that there are multiple groups of alternatives, which can be expressed as A1, A2, ..., Am.
C1, C2, ..., Cn is expressed as N criteria. In the decision process, the evaluation information of the
alternative Ai on the criteria is represented in the form of an SVNS:

Ai =
〈
Cj, TAi (Cj), IAi (Cj), FAi (Cj)

〉
. (23)
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where Ai ∈ {A1, A2, ..., Am}, Cj ∈ {C1, C2, ..., Cn} and 0 ≤ TAi (Cj) ≤ 1, 0 ≤ IAi (Cj) ≤ 1, 0 ≤ FAi (Cj) ≤
1. Besides, the importance of each criterion is expressed as w1, w2, ..., wn, which is wj ∈ [0, 1] and

n
∑

j=1
wj = 1. For convenience, Equation (23) is denoted by αij =

〈
tij, iij, fij

〉
, (i = 1, 2, ..., m; j = 1, 2, ..., n).

Therefore, simplified neutrosophic decision matrix D can be obtained as follows:

D =

⎡⎢⎢⎢⎣
α11 α12 · · · α1n
α21 α22 · · · α2n
· · · · · · · · · · · ·
αm1 αm2 · · · αmn

⎤⎥⎥⎥⎦ =

⎡⎢⎣ 〈t11, i11, f11〉 · · · 〈t1n, i1n, f1n〉
· · · · · · · · ·

〈tm1, im1, fm1〉 · · · 〈tmn, imn, fmn〉

⎤⎥⎦
(24)

Then, the simplified neutrosophic value αi for Ai is αi = 〈ti, ii, fi〉=Fiw(αi1, αi2, · · ·, αin) by
Equation (12) according to each row in the simplified neutrosophic decision matrix D.

In order to find the best alternative in all existing alternatives αi(i ∈ 1, 2, · · ·, m), the similarity
measure needs to be computed between the alternative αi and ideal alternative α∗ by Equation (20)
individually. Through the similarity measure between each alternative and the ideal alternative α∗, the
ranking order of all alternatives can be determined. The largest value of similarity measures is the best
alternative in all existing alternatives. In other words, the greater the similarity measure is, the closer it
is to the ideal alternative.

An example for a multicriteria decision-making problem of engineering alternatives is used as
a demonstration to show the effectiveness of the similarity measure proposed in this paper.

Example 4. Let us consider the decision-making problem adapted from [5]. There is an investment company
which wants to invest a sum of money in the best option. There is a panel with four possible alternatives to invest
the money: (1) A1 is a car company; (2) A2 is a food company; (3) A3 is a computer company; (4) A4 is an arms
company. The investment company must take a decision according to the following three criteria: (1) C1 is the
risk analysis; (2) C2 is the growth analysis; (3) C3 is the environmental impact analysis. Then, the weight vector
of the criteria is given by W = (0.35, 0.25, 0.4), where the value of W is given according to the importance of
three criteria. Ideal alternative α∗ = 〈1, 0, 0〉.

Four investment plans A1, A2, A3, A4 were scored by an expert. For example, when we ask
the opinion of an expert about investment in a car company in terms of the risk, they may say that
the possibility in which the statement is good is 0.4. The possibility in which the statement is poor
is 0.3, and the degree to which they are not sure is 0.2. The opinion of the expert can be expressed
as α11 = 〈0.4, 0.2, 0.3〉. Thus, all information given by the expert is represented by a simplified
neutrosophic decision matrix D:

D =

⎡⎢⎢⎢⎣
〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.2, 0.2, 0.5〉
〈0.6, 0.1, 0.2〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.2〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.2〉
〈0.7, 0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.4, 0.3, 0.2〉

⎤⎥⎥⎥⎦
The proposed method in Section 3 is applied to solve this problem separately according to the

following computational procedure:

Step 1: αi(i = 1, 2, 3, 4) can be obtained by Equation (12). The computing results are:

α1 = 〈0.3268, 0.2000, 0.3881〉
α2 = 〈0.5627, 0.1414, 0.2000〉
α3 = 〈0.4375, 0.2416, 0.2616〉
α4 = 〈0.5746, 0.1555, 0.1663〉
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Step 2: Correlation measure between each alternative αi and the ideal alternative α∗ were calculated
by the method proposed in Section 3. The results are as follows:

Sr(α∗, α1) = 0.8975
Sr(α∗, α2) = 0.9745
Sr(α∗, α3) = 0.9510
Sr(α∗, α4) = 0.9804

Step 3: According to the results in the second step, the ranking order of four alternatives is:

A4 > A2 > A3 > A1

It can be seen from the results that A4 is the closest to the ideal replacement. This result is
consistent with the result of Ye [5]. This example shows that our method is effective and correct
in general.

Example 5. The application background of this example is the same as in Example 4. In this example, an expert
gives different suggestions for investment. So, the value of simplified neutrosophic decision matrix D is changed.
A new D matrix is given as follows:

D =

⎡⎢⎢⎢⎣
〈0.001, 0, 0〉 〈0.001, 0, 0〉 〈0.001, 0, 0〉
〈0.9, 0, 0.01〉 〈0.95, 0, 0.05〉 〈0.96, 0, 0.01〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.2〉
〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.4, 0.3, 0.2〉

⎤⎥⎥⎥⎦
The final result of our method is:

Sr(α∗, α1) = 0.8665
Sr(α∗, α2) = 0.9997
Sr(α∗, α3) = 0.9510
Sr(α∗, α4) = 0.9804

The result calculated using the Ye’s method [5] is:

S(α∗, α1) = 1
S(α∗, α2) = 0.9998
S(α∗, α3) = 0.9510
S(α∗, α4) = 0.9804

According to results of our method , the ranking order of four alternatives is A4 > A2 > A3 > A1;
this result is reasonable and consistent with intuitive analysis. However, when the results of Ye are
sorted, the ranking order of four alternatives is A1 > A2 > A4 > A3. This is obviously not true.
The reason is that the similarity measure between α2 and α∗ is greater than the similarity measure
between α1 and α∗ by intuitive analysis, where α1 is 〈0.001, 0, 0〉 and α2 is 〈0.9417, 0, 0.0202〉.

Example 6. This example shows steam turbine faults diagnosed using multi-attribute decision-making.
In the vibration fault diagnosis of the steam turbine, the relation between the cause and the
fault phenomena of the steam turbine has been investigated in [46]. For the vibration fault
diagnosis problem of steam turbine, the fault diagnosis of the turbine realized by the frequency
features—which are extracted from the vibration signals of the steam turbine—is a simple and effective
method. In the fault diagnosis problem of the turbine, we consider a set of ten fault patterns
A = {A1(Unbalance), A2(Pneumatic force couple), A3(Offset center), A4(Oil−membrane oscillation),
A5(Radial impact friction of rotor), A6(Symbiosis looseness), A7(Damage of antithrust bearing),A8(Surge),
A9(Looseness of bearing block), A10(Nonuniform bearing stiffness)} as the fault knowledge and a set of
nine frequency ranges for different frequency spectrum C = {C1(0.01− 0.39 f ), C2(0.4− 0.49 f ), C3(0.5 f ),
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C4(0.51 − 0.99 f ), C5( f ), C6(2 f ), C7(3 − 5 f ), C8(Odd times of f ), C9{High frequency > 5 f }} under
operating frequency f as a characteristic set. Then, the information of the fault knowledge can be introduced
from [14], which is shown in Table 3 denoted by

〈
Tij, Iij, Fij

〉
.

In the vibration fault diagnosis of steam turbine, the real testing samples are introduced from
[], which are represented by the form of single-valued neutrosophic sets: B = {〈0, 0, 1〉 , 〈0, 0, 1〉,
〈0.1, 0, 0.9〉 , 〈0.9, 0, 0.1〉 , 〈0, 0, 1〉 , 〈0, 0, 1〉 , 〈0, 0, 1〉 , 〈0, 0, 1〉 , 〈0, 0, 1〉}.

Steam turbine faults can be found using multi-attribute decision-making according to the
following computational procedure:

Step 1: According to the data in Table 3, the D matrix can be obtained, which is not listed. Then,
αi(i = 1, 2, ..., 10) can be obtained by Equation (12). The computing results are:

α1 = 〈0.1974, 0.0234, 1〉 , α2 = 〈0.1349, 0.0301, 1〉
α3 = 〈0.1003, 0.0674, 1〉 , α4 = 〈0.1714, 0.0101, 1〉
α5 = 〈0.0950, 0.0367, 0.8713〉 , α6 = 〈0.1088, 0.0260, 1〉
α7 = 〈0.2037, 0.0125, 1〉 , α8 = 〈0.1224, 0.0193, 1〉
α9 = 〈0.1975, 0.0137, 1〉 , α10 = 〈0.1703, 0.0113, 1〉

Step 2: According to SVNS of the real testing samples B, β = 〈0.2347, 0, 1〉 can be obtained by
Equation (12). Additionally, correlation measure between each fault diagnosis problem αi and the
sample β were calculated by the method we proposed in Section 3 and that of Ye [5] individually.
Therefore, the two method ranking order of all faults is as follows:

Ours : A7 > A9 > A1 > A4 > A10 > A2 > A3 > A5 > A8 > A6

Ye′s : A7 > A9 > A1 > A4 > A10 > A2 > A8 > A6 > A5 > A3

By the comparison between our measure method and the Ye’s mehtod in the fault diagnosis of
the turbine, the same result can be obtained, which is the main fault of the testing sample B is the
damage of antithrust bearing (A7). Besides, the results obtained using our method are also same as
Ye’s result [14]. This example shows that our method of measuring SVNSs is very effective again, and
the expected results can be met in practical applications.

Through the above three examples, it can be seen that solving multicriteria desion-making
problems using the new method is very reasonable and effective. Through Examples 4 and 5,
compared with other method, we can see that the same correct result can be obtained by our method
in general, and more reasonable and logical results can be obtained by our method in some cases.
By Example 6, a real-world example is given, which is finding fault using multiple attribute decision
making. By comparing the final results, our method has also obtained the right conclusion and it can
effectively solve the problems in practical applications.
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6. Conclusions

This paper presented a new method to measure the similarity between SVNSs using D–S
evidence theory and it is applied in multicriteria decision-making. First of all, the background
of neutrosophic sets, single-valued neutrosophic set (SVNS), D–S evidence theory, and correlation
coefficient are introduced. Next, the proposed similarity measure method is introduced in detail. Some
numerical examples demonstrate that the proposed method can measure similarity more reasonably
and effectively compared with the exiting methods. Finally, this method is applied to solve multicriteria
decision-making problems. According to the experimental results, it is seen that the proposed method
can produce the expected results compared with exiting multicriteria decision-making method for
simplified neutrosophic sets. Therefore, it is concluded that the achievement of this paper has a great
application prospect and potential in solving multicriteria decision-making problems. Now, our
method is limited to measuring the similarity between SVNSs. In the future, we will study its
application in interval neutrosophic sets (INSs). At the end of this paper, we hope that the new method
can bring some new enlightenments to the related research.
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Abstract: As an effective aggregation tool, power average (PA) allows the input arguments being
aggregated to support and reinforce each other, which provides more versatility in the information
aggregation process. Under the probabilistic linguistic term environment, we deeply investigate the
new power aggregation (PA) operators for fusing the probabilistic linguistic term sets (PLTSs). In this
paper, we firstly develop the probabilistic linguistic power average (PLPA), the weighted probabilistic
linguistic power average (WPLPA) operators, the probabilistic linguistic power geometric (PLPG)
and the weighted probabilistic linguistic power geometric (WPLPG) operators. At the same time,
we carefully analyze the properties of these new aggregation operators. With the aid of the WPLPA
and WPLPG operators, we further design the approaches for the application of multi-criteria group
decision-making (MCGDM) with PLTSs. Finally, we use an illustrated example to expound our
proposed methods and verify their performances.

Keywords: power average operator; probabilistic linguistic term sets; multi-criteria decision making;
group decision making

1. Introduction

Yager [1] introduced an operator of power average (PA) to provide more versatility in the
information aggregation process. PA is a nonlinear weighted average aggregation tool for which
the weight vector depends on the input arguments and that allows the values being aggregated to
support and reinforce each other [2]. It has received a large amount of attention in the literature.
For instance, Xu and Yager [2] developed power geometric operator on the basis of a geometric
mean (GM) and power average (PA). Under the linguistic environment, Xu et al. [3] developed new
linguistic aggregation operators based on the power average (PA) to address the relationship of input
arguments. Zhou and Chen [4] discussed a generalization of the power aggregation operators for
linguistic environment and its application in group decision making (GDM). By extending the PA to
the linguistic hesitant fuzzy environment, Zhu et al. [5] established a series of linguistic hesitant fuzzy
power aggregation operators. With the above-mentioned literature, PA has successfully been extended
to many complex and real situations.

One of the useful theories in dealing with the multi-criteria decision making (MCDM) problems
is the theory of probabilistic linguistic term sets (PLTSs). This theory proposed by Pang et al. [6]
plays a key role in the decision process where experts express their preferences [7–9]. Nowadays,
PLTSs have become a hot topic in the area of hesitant fuzzy linguistic term sets (HFLTSs) [10–12] and
hesitant fuzzy sets (HFSs) [13,14]. For example, Pang et al. [6] established a framework for ranking
PLTSs and they conducted a comparison method via the score or deviation degree of each PLTS.
Bai et al. [7] stated that the existing approaches associated with PLTSs are limited or highly complex

Symmetry 2017, 9, 320 28 www.mdpi.com/journal/symmetry

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 320

in real applications. Thus they established more appropriate comparison method and developed
a more efficient way to handle PLTSs. Gou and Xu [15] defined novel operational laws for the
probability information. He et al. [16] proposed an algorithm for multi-criteria group decision making
(MCGDM) with probabilistic interval preference orderings. Wu and Xu [17] defined the concept of
possibility distribution and presented a new framework model to address MCDM. Zhang et al. [18]
introduced the concept of probabilistic linguistic preference relations to present the DMs preferences.
Under the hesitant probabilistic fuzzy environment, Zhou and Xu [19] studied the consensus building
with a group of decision makers. PLTSs generalize the existing models of HFLTSs and HFSs so as
to contain hesitations and probabilities. Compared with HFLTSs, the PLTSs have strong ability to
express the information vagueness and uncertainty in the hesitant situations under qualitative setting.
With respect to the PLTSs, the decision makers (DMs) can not only provide several possible linguistic
values over an object (alternative or attribute), but also reflect the probabilistic information of the set of
values [6]. In the existing literature, most aggregation operators developed for PLTSs are based on
the independence assumption and do not take into account information about the interrelationship
between PLTSs being aggregated.

For the PLTSs, it also can encounter the relationship phenomenon between the input arguments.
Meanwhile, PA provides a versatility in the aggregation process and has the ability to depict the
interrelationship of input arguments, i.e., it allows the input argument being aggregated to support and
reinforce each other. However, it rarely discusses in the research works of PLTSs. Hence, we introduce
PA into PLTSs and come out with new operators that will improved upon the existing aggregation
operators of PLTSs. In this paper, we firstly develop four new aggregation operators based on the
Power Average (PA) and the Power Geometric (PG), i.e., probabilistic linguistic power average (PLPA),
weighted probabilistic linguistic power average (WPLPA), probabilistic linguistic power geometric
(PLPG) and weighted probabilistic linguistic power geometric (WPLPG). These operators take into
account all the decision arguments and their relationships. On the basis of probabilistic linguistic GDM,
we utilize the WPLPA or WPLPG operator to aggregate the information and design the corresponding
approach. In a word, the desirable advantages of our research work are summarized as follows:
(1) We involve the probabilistic information. Our proposed methods can allow the collection of a few
different linguistic terms evaluated by the DMs and the opinions of the DMs will still remain the same.
(2) Our proposed methods also consider the interrelationship of the individual evaluation.

The rest of the paper is structured as follows: Some basic concepts and operations in relation to
PLTSs and PA are introduced in Section 2. In Section 3, we develop the PLPA operator, PLPG operator
and their own corresponding weighted forms. Meanwhile, we also study several desired properties of
these operators. In Section 4, we design the approaches for the application of MCGDM utilizing the
WPLPG and WPLPA operators. In Section 5, we give an illustrative example to elaborate and verify
our proposed methods. Section 6 concludes the paper and elaborates on future studies.

2. Preliminaries

In this section, we mainly review some basic concepts and operations in relation to PLTSs and PA.

2.1. Probabilistic Linguistic Term Sets (PLTSs)

The concept of PLTSs [6] is an extension of the concepts of HFLTSs. In the following, we review
some basic concepts of PLTSs and the corresponding operations.

Definition 1. [6] Let S = {st|t = 0, 1, · · · , τ} be a linguistic term set. Then a probabilistic linguistic term set
(PLTS) is defined as:

L(p) = {L(k)(p(k))|L(k) ∈ S, r(k) ∈ t, p(k) ≥ 0, k = 1, 2, · · · , #L(p),
#L(p)

∑
k=1

p(k) ≤ 1}, (1)
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where L(k)(p(k)) is the linguistic term L(k) associated with the probability p(k), r(k) is the subscript of L(k) and
#L(p) is the number of all linguistic terms in L(p).

Since the positions of elements in a set can be swapped arbitrarily, Pang et al. [6] proposed the
ordered PLTSs to ensure that the operational results among PLTSs can be straightforwardly determined.
It is described as:

Definition 2. Given a PLTS L(p) = {L(k)(p(k))|k = 1, 2, · · · , #L(p)}, and r(k) is the subscript of linguistic
term L(k). L(p) is called an ordered PLTS, if the linguistic terms L(k)(p(k)) are arranged according to the values
of r(k)p(k) in descending order.

Definition 3. Let S = {st|t = 0, 1, · · · , τ} be a linguistic term set. Given three PLTSs L(p), L1(p) and
L2(p), their basic operations are summarized as follows [6]:

(1) L1(p)⊕ L2(p) =
⋃

L(k)
1 ∈L1(p),L(k)

2 ∈L2(p)

{
p(k)1 L(k)

1 ⊕ p(k)2 L(k)
2

}
;

(2) L1(p)⊗ L2(p) =
⋃

L(k)
1 ∈L1(p),L(k)

2 ∈L2(p)

{
(L(k)

1 )p(k)1 ⊗ (L(k)
2 )p(k)2

}
;

(3) λ(L(p)) =
⋃

L(k)∈L(p)

{
λp(k)L(k)

}
and λ ≥ 0;

(4) (L(p))λ =
⋃

L(k)∈L(p)

{
(L(k))λp(k)

}
and λ ≥ 0.

To compare the PLTSs, Pang et al. [6] defined the score and the deviation degree of a PLTS:

Definition 4. Let L(p) = {L(k)(p(k))|k = 1, 2, · · · , #L(p)} be a PLTS, and r(k) is the subscript of linguistic
term L(k). Then, the score of L(p) is defined as follows:

E(L(p)) = sᾱ, (2)

where ᾱ = ∑
#L(p)
k=1 r(k)p(k)/ ∑

#L(p)
k=1 p(k). The deviation degree of L(p) is:

σ(L(p)) =
(∑

#L(p)
k=1 (p(k)(r(k) − ᾱ))2)0.5

∑
#L(p)
k=1 p(k)

. (3)

Based on the score and the deviation degree of a PLTS, Pang et al. [6] further proposed the
following laws to compare them.

Definition 5. Given two PLTSs L1(p) and L2(p). E(L1(p)) and E(L2(p)) are the scores of L1(p) and L2(p),
respectively. σ(L1(p)) and σ(L2(p)) denote the deviation degrees of L1(p) and L2(p). Then, we have:

(1) If E(L1(p)) > E(L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) > L2(p);
(2) If E(L1(p)) < E(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(3) If E(L1(p)) = E(L2(p)), then we need to compare their deviation degrees:

(a) If σ(L1(p)) = σ(L2(p)), then L1(p) is equal to L2(p), denoted by L1(p) ∼ L2(p);
(b) If σ(L1(p)) > σ(L2(p)), then L1(p) is smaller than L2(p), denoted by L1(p) < L2(p);
(c) If σ(L1(p)) < σ(L2(p)), then L1(p) is bigger than L2(p), denoted by L1(p) > L2(p).

When we analyze and discuss the comparison of PLTSs, we may realise that the number of their
corresponding number of the linguistic terms may not be equal. To solve this problem, Pang et al. [6]
normalized the PLTSs by increasing the numbers of linguistic terms for PLTSs. The normalized
Definition of PLTSs is the following.
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Definition 6. Let L1(p) = {L(k)
1 (p(k)1 )|k = 1, 2, · · · , #L1(p)} and L2(p) = {L(k)

2 (p(k)2 )|k =

1, 2, · · · , #L2(p)} be any two PLTSs. #L1(p) and #L2(p) are the numbers of the linguistic terms in L1(p) and
L2(p). If #L1(p) > #L2(p), then we will add #L1(p)− #L2(p) linguistic terms to L2(p) so that the numbers
of linguistic terms in L1(p) and L2(p) are identical. The added linguistic terms are the smallest ones in L2(p)
and the probabilities of all the linguistic terms are zero. Analogously, if #L1(p) < #L2(p), we can use the
similar method.

Based on the normalized PLTSs, Pang et al. [6] further defined the deviation degree between
PLTSs. The result is shown as follows.

Definition 7. [6] Let L1(p) = {L(k)
1 (p(k)1 )|k = 1, 2, · · · , #L1(p)} and L2(p) = {L(k)

2 (p(k)2 )|k =

1, 2, · · · , #L2(p)} be any two PLTSs, if #L1(p) = #L2(p), then the deviation degree between PLTSs is
defined as:

d(L1(p), L2(p)) =

√√√√#L1(p)

∑
k=1

(r(k)1 p(k)1 − r(k)2 p(k)2 )2/#L1(p). (4)

2.2. Power Average (PA)

Information fusion is a process of aggregating data operators from different resources by
proper aggregating operators. Power average (PA) operator, as a technique of fusing information,
was introduced by Yager [1], which allows the arguments to support each other in the
aggregation process.

Definition 8. [1] Let A = {a1, a2, · · · , an} be a collection of non-negative numbers. The power aggregation is
defined as follows:

PA(a1, a2, · · · , an) =
∑n

i=1(1 + T(ai))ai

∑n
i=1(1 + T(ai))

, (5)

where

T(ai) =
n

∑
j=1,j �=i

sup(ai, aj). (6)

In this case, sup(ai, aj) is denoted as the support for ai from aj, which satisfies the following three properties:

(1) sup(ai, aj) ∈ [0, 1];
(2) sup(ai, aj) = sup(aj, ai);
(3) sup(ai, aj) ≥ sup(ai, ak), if |ai − aj| < |ai − ak|.

From the result of Definition 7, the supports among the input arguments are involved in the
PA. In general, sup(ai, aj) can be measured by the distance between the arguments, e.g., d(ai, aj).
By introducing geometric mean (GM), Xu and Yager [2] defined a power geometric (PG) operator
as follows:

PG(a1, a2, · · · , an) =
n

∏
i=1

ai

(1+T(ai))
∑n

i=1(1+T(ai)) , (7)

where ai (i = 1, 2, · · · , n) are a collection of arguments, and T(ai) satisfies the condition above.
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3. Probabilistic Linguistic Power Aggregation Operators

Under the probabilistic linguistic environment, we assume that the input arguments are PLTSs and
we mainly study the extension of power average (PA) and power geometric (PG) aggregation operators.

3.1. Probabilistic Linguistic Power Average (PLPA) Aggregation Operators

In this section, we discuss the extension of power average (PA) aggregation operators to
accommodate the probabilistic linguistic environment. In the following, some probabilistic linguistic
power average aggregation operators should be developed, which allow the input data to support each
other in the aggregation process, i.e., Probabilistic Linguistic Power Average (PLPA) and Weighted
Probabilistic Linguistic Power Average (WPLPA).

3.1.1. PLPA

Based on the results of Definitions 1 and 7, we present the Definition of the PLPA aggregation
operator as follows:

Definition 9. Let L(p) =

{
L(k)

i (p(k)i ) | k = 1, 2, · · · , #Li(p)
}

(i = 1, 2, ..., n) be a collection of PLTSs.

A probabilistic linguistic power average (PLPA) is a mapping Ln(p)→ L(p) such that:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))Li(p)
∑n

i=1(1 + T(Li(p)))
, (8)

where:

T(Li(p)) =
n

∑
j=1,j �=i

sup(Li(p), Lj(p)). (9)

and sup(Li(p), Lj(p)) is considered to be the support for Li(p) from Lj(p) which satisfies the
following properties:

(1) sup(Li(p), Lj(p)) ∈ [0, 1];
(2) sup(Li(p), Lj(p)) = sup(Lj(p), Li(p));
(3) sup(Li(p), Lj(p)) ≥ sup(Li(p), Lk(p)) if d(Li(p), Lj(p)) < d(Li(p), Lk(p)).

In light of the operations law (1) of Definition 3, Definition 8 can be transformed into the
following form:

PLPA(L1(p), L2(p), · · · , Ln(p))

=
(1 + T(L1(p)))

∑n
i=1(1 + T(Li(p)))

L1(p)⊕ (1 + T(L2(p)))
∑n

i=1(1 + T(Li(p)))
L2(p)⊕ · · · ⊕ (1 + T(Ln(p)))

∑n
i=1(1 + T(Li(p)))

Ln(p).

Hence, we can deduce the following result from Definition 8.

Proposition 1. Let L(p) =

{
L(k)

i (p(k)i ) | k = 1, 2, · · · , #Li(p)
}

(i = 1, 2, ..., n) be a collection of PLTSs.

A probabilistic linguistic power average (PLPA) is calculated as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

viLi(p)

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
, (10)
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where vi =
(1+T(Li(p)))

∑n
j=1(1+T(Lj(p))) (i = 1, 2, ..., n).

On the basis of Definition 8 and Proposition 1, it can easily be proven that the PLPA aggregation
operator has the following desirable properties.

Theorem 1. (Commutativity) Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of
(L1(p), L2(p), · · · , Ln(p)), then PLPA(L1(p), L2(p), · · · , Ln(p)) =PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Proof. According to the result of Definition 2, Li(p) is called an ordered PLTS (i = 1, 2, ..., n).
By Proposition 1 and the operations law (1) of Definition 3, we can conclude that:

PLPA(L1(p), L2(p), · · · , Ln(p)) = PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Therefore, we complete the proof of Theorem 1.

Theorem 2. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs. If all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then PLPA(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then PLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))
∑n

i=1(1 + T(Li(p)))
Li(p)

=
n⊕

i=1

1
n

Li(p) = Li(p).

Hence, the statement of Theorem 2 holds.

Theorem 3. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i ,

where L ∈ PLPA(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Proposition 1, PLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

viLi(p)

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
.

Then, we can deduce the following relationship:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ p(k)i L(k)

i ≤ n
max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i .

By utilizing the result of Theorem 2, we can easily finish the proof of Theorem 1.

Theorem 4. (Monotonicity) Let Li(p) and Li(p)∗ be two sets of PLTSs and the numbers of linguistic terms
in Li(p) and Li(p)∗ are identical (i = 1, 2, · · · , n). If L(k)

i (p(k)i ) ≤ L(k)
i (p(k)i )∗ for all i, i.e., Li(p) ≤ Li(p)∗,

then PLPA(L1(p), L2(p), · · · , Ln(p)) ≤ PLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).
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Theorem 5. Let sup(Li(p), Lj(p)) = k for all i �= j, then PLPA(L1(p), L2(p), · · · , Ln(p)) =
⊕ 1

n Li(p).

Proof. If sup(Li(p), Lj(p)) = k for all i �= j, it indicates that all the supports are the same. In this
situation, the PLPA operator is computed as follows:

PLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

(1 + T(Li(p)))
∑n

i=1(1 + T(Li(p)))
Li(p)

=
n⊕

i=1

(1 + (n− 1)k)
∑n

i=1(1 + (n− 1)k)
Li(p) =

n⊕
i=1

1
n

Li(p).

It is a simple probabilistic linguistic averaging operator. Hence, the statement of Theorem 5 holds.

3.1.2. WPLPA

With respect to the PLPA operator, the weights of the arguments should be considered, because
each argument that is being aggregated has a weight indicating its importance [3]. Based on this idea,
we extend the PLPA and give the Definition of the weighted probabilistic linguistic power average
(WPLPA) operator as follows:

Definition 10. Let Li(p) be a collection of PLTSs. w = (w1, w2, ..., wn)T denotes the weighting vector of
Li(p) and wi ∈ [0, 1], ∑n

i=1 wi = 1. Given the value of the weight vector w = (w1, w2, ..., wn)T, we define
weighted probabilistic linguistic power average (WPLA) operator as follows:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)))Li(p)
∑n

i=1 wi(1 + T′(Li(p)))
. (11)

In this case, T′(Li(p)) = ∑n
j=1,j �=i wjsup(Li(p), Lj(p)).

Based on the operations of the PLTSs described in Definition 3, we can derive the following
Proposition 2.

Proposition 2. Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then their aggregated values by using the
WPLPA operator is also a PLTS, and:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
v′1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v′2 p(k)2 L(k)

2

}

⊕ · · · ⊕
⋃

L(k)
n ∈Ln(p)

{
v′n p(k)n L(k)

n

}
. (12)

where v′i =
wi(1+T′(Li(p)))

∑n
j=1 wj(1+T′(Lj(p))) (i = 1, 2, · · · , n).

Especially, if sup(Li(p), Lj(p)) = 0 for all i �= j, then T(Li(p) = 0.
Thus, WPLPA(L1(p), L2(p), · · · , Ln(p)) =

⊕n
i=1 wiLi(p). Under this situation, the WPLPA operator

reduces to PLWA proposed by Ref. [6]. If the weight vector w = (w1, w2, ..., wn)T = ( 1
n , 1

n , · · · , 1
n )

T ,
v′i of Proposition 2 is computed as:

v′i =
wi(1 + T′(Li(p)))

∑n
j=1 wj(1 + T′(Lj(p)))

=
(1 + T′(Li(p)))

∑n
i=1(1 + T′(Li(p)))

= vi.
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Thus, the WPLPA operator is computed as:

WPLPA(L1(p), L2(p), · · · , Ln(p))

=
⋃

L(k)
1 ∈L1(p)

{
v1 p(k)1 L(k)

1

}
⊕

⋃
L(k)

2 ∈L2(p)

{
v2 p(k)2 L(k)

2

}
⊕ · · · ⊕

⋃
L(k)

n ∈Ln(p)

{
vn p(k)n L(k)

n

}
= PLPA(L1(p), L2(p), · · · , Ln(p)).

It indicates that the WPLPA reduces to the PLPA operator. According to the results of
Definitions 3 and 10, it can easily prove that the WPLPA operator has the following properties.

Theorem 6. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, if all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then WPLPA(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then WPLPA(L1(p), L2(p), · · · , Ln(p)) is computed as:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)))Li(p)
∑n

i=1 wi(1 + T′(Li(p)))

=
n⊕

i=1

1
n

Li(p) = Li(p).

Thus, the statement of Theorem 6 holds.

Theorem 7. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i .

where L ∈ WPLPA(L1(p), L2(p), · · · , Ln(p)).

If we let sup(Li(p), Lj(p)) = k for all i �= j, we have: T′(Li(p)) = ∑n
j=1,j �=i wjsup(Li(p), Lj(p)) =

k ∑n
j=1,j �=i wj (i = 1, 2, · · · , n). Based on the result of Definition 10, we have:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + k ∑n
j=1,j �=i wj)

∑n
i=1 wi(1 + k ∑n

j=1,j �=i wj)
Li(p).

In this case, WPLPA(L1(p), L2(p), · · · , Ln(p)) is not equivalent to
PLPA(L1(p), L2(p), · · · , Ln(p)) = 1

n
⊕n

i=1 Li(p).

Theorem 8. Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of (L1(p), L2(p), · · · , Ln(p)), then we
can deduce the following relationship:

WPLPA(L1(p)∗, L2(p)∗, · · · , Ln(p)∗) �= WPLPA(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Definition 10, we can obtain:

T′(L∗p) =
n

∑
j=1,j �=i

wjsup(Li(p)∗, Lj(p)∗).
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Then, we can deduce:

WPLPA(L1(p), L2(p), · · · , Ln(p)) =
n⊕

i=1

wi(1 + T′(Li(p)∗))
∑n

i=1 wi(1 + T′(Li(p)∗))
Li(p)∗.

Since (T′(L1(p)∗), T′(L2(p)∗), · · · , T′(L2(p)∗)) may not be the permutation of
(T′(L1(p)), T′(L2(p)), · · · , T′(Ln(p))), we can judge that the WPLPA operator is not commutative.
Therefore, we complete the proof of Theorem 8.

3.2. Probabilistic Linguistic Power Geometric (PLPG) Aggregation Operators

In this section, we investigate the extension of power geometric (PG) aggregation operators under
the probabilistic linguistic environment, i.e., the probabilistic linguistic power geometric (PLPG) and
weighted probabilistic linguistic power geometric (WPLPG).

3.2.1. PLPG

By utilizing the results of Definition 1 and Equation (7), we present the Definition of the PLPG
operator as follows.

Definition 11. Let L(p) =

{
L(k)

i (pk
i )|k = 1, 2, · · · , #Li(p)

}
(i = 1, 2, · · · , n) be a collection of PLTSs.

A probabilistic linguistic power geometric (PLPG) operator is a mapping Ln(p)→ L(p) such that:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
(1+T(Li(p)))

∑n
i=1(1+T(Li(p))) , (13)

where T(Li(p)) = ∑n
j=1,j �=i sup(Li(p), Lj(p)). sup(Li(p), Lj(p)) is considered to be the support of Li(p)

from Lj(p) which also satisfies the following properties:

(1) sup(Li(p), Lj(p)) ∈ [0, 1];
(2) sup(Li(p), Lj(p)) = sup(Lj(p), Li(p));
(3) sup(Li(p), Lj(p)) ≥ sup(Lj(p), Li(p)) if d(Li(p), Lj(p)) < d(Li(p), Lk(p)).

By the operations law (2) of Definition 3, Definition 11 can be transformed into the following form:

PLPG(L1(p), L2(p), · · · , Ln(p))

= (L1(p))
(1+T(L1(p)))

∑n
i=1(1+T(Li(p))) ⊗ (L2(p))

(1+T(L2(p)))
∑n

i=1(1+T(Li(p))) ⊗ · · · ⊗ (Ln(p))
(1+T(Ln(p)))

∑n
i=1(1+T(Li(p))) .

Therefore, we can deduce the following based on the results of Definition 9:

Proposition 3. Let L(p) =

{
L(k)

i (pk
i )|k = 1, 2, · · · , #Li(p)

}
(i = 1, 2, · · · , n) be a collection of PLTSs.

A probabilistic linguistic power geometric (PLPG) operator is calculated as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))vi

=
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v2 p(k)2

}
⊗ · · · ⊗

⋃
L(k)

n ∈Ln(p)

{
(L(k)

n )vn p(k)n

}
, (14)

where vi =
(1+T(Li(p)))

∑n
j=1(1+T(Lj(p))) (i = 1, 2, ..., n).

On the basis of Definition 11 and Proposition 3, it can be proved that the PLPG operator has the
following desirable properties:
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Theorem 9. (Commutativity) Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) be any permutation of
(L1(p), L2(p), · · · , Ln(p)) then PLPG(L1(p), L2(p), · · · , Ln(p))=PLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Proof. According to the result of Definition 2, Li(p) is called an ordered PLTS (i = 1, 2, · · · , n). By the
results of Proposition 3 and the operations laws (2) of Definition 3, we can conclude that:

PLPG(L1(p), L2(p), · · · , Ln(p)) = PLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗).

Therefore, we complete the proof of Theorem 9.

Theorem 10. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs. If all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then PLPG(L1(p), L2(p), · · · , Ln(p)) = L(p).

Proof. If Li(p) = L(p) for all i, then PLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
(1+T(Li(p)))

∑n
i=1(1+T(Li(p)))

=
n⊗

i=1

(Li(p))
1
n = L(p).

Hence, the statement of Theorem 10 holds.

Theorem 11. (boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

(L(k)
i )p(k)i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

(L(k)
i )p(k)i ,

where L ∈ PLPG(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Proposition 3, PLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

PLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))vi

=
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v2 p(k)2

}
⊗ · · · ⊗

⋃
L(k)

n ∈Ln(p)

{
(L(k)

n )vn p(k)n

}
.

Then, we can deduce the following relationship:

n
min
i=1

#Li(p)
min
k=1

(L(k)
i )p(k)i ≤ (L(k)

i )p(k)i ≤ n
max
i=1

#Li(p)
max
k=1

(L(k)
i )p(k)i .

In light of the results of Theorem 10, we can easily finish the proof of Theorem 11.

3.2.2. WPLPG

Considering the importance of the aggregated arguments, we extend the PLPG and give the
Definition of the weighted probabilistic linguistic power geometric (WPLPG) operator as following.
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Definition 12. Let Li(p) be a collection of PLTSs. w = (w1, w2, · · · , wn)T denotes the weighting vector of
Li(p), wi ∈ [0, 1] and ∑n

i=1 wi = 1. Given the value of the weight vector w = (w1, w2, · · · , wn)T, we define
weighted probabilistic linguistic power geometric (WPLPG) operator as follows:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
wi(1+T′(Li(p)))

∑n
i=1 wi(1+T′(Li(p))) . (15)

In this case, T′(Li(p)) = ∑n
j=1,j �=i wjsup(Li(p), Lj(p)).

Based on the operations of the PLPTs described in Definition 3, we can derive the
following Proposition:

Proposition 4. Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then their aggregated values by using the
WPLPG operator is also a PLTS, and:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v′1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v′2 p(k)2

}

⊗ · · · ⊗
⋃

L(k)
n ∈Ln(p)

{
(L(k)

n )v′n p(k)n

}
. (16)

where v′i =
wi(1+T′(Li(p)))

∑n
j=1 wj(1+T′(Lj(p))) (i = 1, 2, · · · , n).

For the result of Proposition 4, if sup(Li(p), Lj(p)) = 0 for all i �= j, then T(Li(p)) = 0.
Thus, we have:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))wi .

Under this situation, the WPLPG operator reduces to PLWG proposed by Ref. [6]. If the weight
vector w = (w1, w2, ..., wn)T = ( 1

n , 1
n , · · · , 1

n )
T , v′i of Proposition 4 is computed as:

v′i =
wi(1 + T′(Li(p)))

∑n
j=1 wj(1 + T′(Lj(p)))

=
(1 + T′(Li(p)))

∑n
i=1(1 + T′(Li(p)))

= vi.

Hence, the WPLPG operator is computed as:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
⋃

L(k)
1 ∈L1(p)

{
(L(k)

1 )v′1 p(k)1

}
⊗

⋃
L(k)

2 ∈L2(p)

{
(L(k)

2 )v′2 p(k)2

}

⊗ · · · ⊗
⋃

L(k)
n ∈Ln(p)

{
(L(k)

n )v′n p(k)n

}
= PLPG(L1(p), L2(p), · · · , Ln(p)).

Thus, it indicates that the WPLPG can be reduced to the PLPG operator. According to the results
of Definitions 3 and 12, it can easily prove that the WPLPG operator has the following properties.

Theorem 12. (Idempotency) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, if all Li(p) (i = 1, 2, · · · , n)
are equal, i.e., Li(p) = L(p), then WPLPG(L1(p), L2(p), · · · , Ln(p)) = L(p).
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Proof. If Li(p) = L(p) for all i, then WPLPG(L1(p), L2(p), · · · , Ln(p)) is computed as:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p))
wi(1+T′(Li(p)))

∑n
i=1 wi(1+T′(Li(p)))

=
n⊗

i=1

(Li(p))
1
n = L(p).

Thus, the statement of Theorem 12 holds.

Theorem 13. (Boundedness) Let Li(p) (i = 1, 2, · · · , n) be a collection of PLTSs, then we have:

n
min
i=1

#Li(p)
min
k=1

p(k)i L(k)
i ≤ L ≤ n

max
i=1

#Li(p)
max
k=1

p(k)i L(k)
i ,

where L ∈ WPLPG(L1(p), L2(p), · · · , Ln(p)).

Theorem 14. Let (L1(p)∗, L2(p)∗, · · · , Ln(p)∗) is any permutation of (L1(p), L2(p), · · · , Ln(p)), then we
can deduce the following relationship:

WPLPG(L1(p)∗, L2(p)∗, · · · , Ln(p)∗) �= WPLPG(L1(p), L2(p), · · · , Ln(p)).

Proof. According to the result of Definition 12, we can obtain:

T′(L∗p) =
n

∑
j=1,j �=i

wjsup(Li(p)∗, Lj(p)∗).

Then, we can deduce:

WPLPG(L1(p), L2(p), · · · , Ln(p)) =
n⊗

i=1

(Li(p)∗)
wi(1+T′(Li(p)∗)

∑n
i=1 wi(1+T′(Li(p)∗) .

Since (T′(L1(p)∗), T′(L2(p)∗), · · · , T′(L2(p)∗)) may not be the permutation of
(T′(L1(p)), T′(L2(p)), · · · , T′(Ln(p))), we can judge that the WPLPG operator is not commutative.
Hence, we complete the proof of Theorem 14.

4. Approaches to Multi-Criteria Group Decision Making with Probabilistic Linguistic Power
Aggregation Operators

In this section, we firstly present a MCGDM problem in which the evaluation information may
be expressed by PLTSs. Then, we utilize the WPLPA or WPLPG operator to support our decision.
Let X = {x1, x2, · · · , xm} be a finite set of m alternatives and C = {c1, c2, · · · , cn} be a set of n
attributes. Suppose that D = {d1, d2, · · · , de} denotes the set of DMs. By using the linguistic scale
S = {sα|α = 0, 1, · · · , τ}, each DM dq provides his or her linguistic evaluations over the alternative
xi with respect to the attribute aj, i.e., Aq = (Lq

ij)m×n (i = 1, 2, · · · , m; j = 1, 2, · · · , n; q = 1, 2, · · · , e).
Then, we determine the collective evaluations of DMs for each alternative in terms of PLTSs. In the
context of GDM, the linguistic evaluation values L(k)

ij (k = 1, 2, · · · , #Lij(p)) with the corresponding

probability p(k)ij are described as the PLTS Lij(p) = {L(k)
ij (p(k)ij )|k = 1, 2, · · · , #Lij(p)} and #Lij(p) is the

number of linguistic terms in Lij(p). The PLTS Lij(p) denotes the evaluation values over the alternative

xi (i = 1, 2, · · · , m) with respect to the attributes cj (j = 1, 2, · · · , n), where L(k)
ij is the kth value of Lij(p),

and p(k)ij is the probability of L(k)
ij (k = 1, 2, · · · , #Lij(p)). In the case, p(k)ij ≥ 0 and ∑

#Lij(p)
k=1 p(k)ij = 1.
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All the PLTSs are contained in the probabilistic linguistic decision matrix R. Hence, the result is shown
as follows:

R = (Lij(p))m×n =

⎛⎜⎜⎜⎜⎝
L11(p) L12(p) · · · L1n(p)
L21(p) L22(p) · · · L2n(p)

...
...

...
...

Lm1(p) Lm2(p) · · · Lmn(p)

⎞⎟⎟⎟⎟⎠ . (17)

Without loss of generality, we assume that each PLTS Lij(p) is an ordered PLTS.
w = (w1, w2, · · · , wn)T denotes the weighting vector of the attributes C and wj ∈ [0, 1], ∑n

j=1 wj = 1.
Based on the above results, we will use the WPLPA or WPLPG aggregation operator to develop the
corresponding approach for MCGDM with probabilistic linguistic information. This approach is
designed as follows:

Step 1: According to the practical decision-making problem, we determine the alternatives
X = {x1, x2, · · · , xm} and a set of the attributes C = {c1, c2, · · · , cn}. Then, we can obtain the decision
matrix Aq = (Lq

ij)m×n provided by the DM dq. By using the PLTSs, we construct the collective matrix
R = (Lij(p))m×n.

Step 2: With respect to the collective matrix R = (Lij(p))m×n, we can normalize the entries of R
as stated in Definition 6.

Step 3: Based on the matrix R and the result of Definition 7, the deviation degree between PLTSs
Lij(p) and Lit(p) is calculated below (i = 1, 2, · · · , m; j, t = 1, 2, · · · , n):

d(Lij(p), Lit(p)) =

√√√√∑
#Lij(p)
k=1 (p(k)ij r(k)ij − p(k)it r(k)it )2

#Lij(p)
.

Step 4: By using the results of Definitions 7 and 8, we calculate the support of the alternative xi
as follows:

sup(Lij(p), Lit(p)) = 1−
d(Lij(p), Lit(p))

∑n
g=1,g �=j d(Lij(p), Lig(p))

, (18)

which satisfies the support conditions (1)–(3) of Definition 9.
Step 5: According to the result of Definition 10, we can calculate the support T

′
(Lij(p)) of Lij(p)

by all of other Lit(p) (j, t = 1, 2, · · · , n; t �= j):

T
′
(Lij(p)) =

n

∑
t=1,t �=j

wtsup(Lij(p), Lit(p)).

Step 6: With the aid of Proposition 2, we further compute the weight v
′
ij associated with the

PLTS Lij(p):

v
′
ij =

wj(1 + T
′
(Lij(p)))

∑n
j=1 wj(1 + T′(Lij(p)))

.
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Step 7: If the DM prefers the WPLPA operator, then the aggregated value of the alternative xi is
determined based on Equation (12). The result is:

WPLPA(Li1(p), Li2(p), · · · , Lin(p)) =
⋃

L(k)
i1 ∈Li1(p)

{
v′i1 p(k)i1 L(k)

i1

}
⊕

⋃
L(k)

i2 ∈Li2(p)

{
v′i2 p(k)i2 L(k)

i2

}

⊕ · · · ⊕
⋃

L(k)
in ∈Lin(p)

{
v′in p(k)in L(k)

in

}
.

If the DM uses the WPLPG operator, then the aggregated value of the alternative xi is determined
based on Equation (16). The result is:

WPLPG(Li1(p), Li2(p), · · · , Lin(p)) =
⋃

L(k)
i1 ∈Li1(p)

{
(L(k)

i1 )v′i1 p(k)i1

}
⊗

⋃
L(k)

i2 ∈Li2(p)

{
(L(k)

i2 )v′i2 p(k)i2

}

⊗ · · · ⊗
⋃

L(k)
in ∈Lin(p)

{
(L(k)

in )v′in p(k)in

}
.

In this case, we denote the aggregated value of the alternative xi as Zi.
Step 8: Based on the results of Definition 4, the score and the deviation degree of Zi of the

alternative xi are computed, i.e., E(Zi) and σ(Zi) (i = 1, 2, · · · , m).
Step 9: Rank all of the alternatives in accordance with the ranking results of Definition 5.

5. An Illustrative Example

In recent years, there has been considerable concern regarding problems associated with
undergraduate school rankings, graduate school rankings, evaluating and rewarding university
professors in China and other countries of the world. Katz et al. [20] mentioned that these problems
always existed and political activism together with various economic recession have worsen
them. Katz and his partners were concerned with the criteria for evaluating them. They came
out with multiple regression analysis to determine the factors important in salary and promotion
decision-making at the university level and developed a more rational means of evaluating and
rewarding university professors. They were motivated by the fact that there is a discriminatory policy
in rank and reward in the universities which is not necessarily justifiable. They went further to state
that rewarding professors goes through an arbitrary and chaotic process and a more equitable system
could be instituted to enhance decision-making process. Another concern raised was that decisions on
salaries and promotions were made in an intuitive manner in such a way that the weights attached to
the various criteria for classification lack clear understanding. In this section, we illustrate our proposed
approach by evaluating some university faculty for tenure and promotion in China adapted from
Bryson et al. [21]. Hence, we firstly present a MCGDM problem in which the evaluation information
may be expressed by PLTSs. Then, we utilize the WPLPA and WPLPG operator to support our decision.
In light of the results of Ref. [21], the criteria considered for the assessment of the decision problem are
summarized as follows: (1) teaching (c1); (2) research (c2); (3) service (c3). Let X = {x1, x2, x3, x4, x5}
be the set of five alternatives and C = {c1, c2, c3} be the set of three attributes. The linguistic scale
is S = {sα|α = 0, 1, · · · , 8}. Suppose that D = {d1, d2, d3, d4} denotes the set of DMs. Based on the
results of Ref. [22], their evaluations are shown in Tables 1–4.
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Table 1. Decision matrix A1 provided by d1.

c1 c2 c3

x1 s8 s6 s6
x2 s6 s7 s7
x3 s5 s8 s7
x4 s7 s4 s6
x5 s8 s6 s7

Table 2. Decision matrix A2 provided by d2.

c1 c2 c3

x1 s6 s8 s5
x2 s5 s6 s7
x3 s7 s6 s7
x4 s8 s6 s7
x5 s8 s7 s6

Table 3. Decision matrix A3 provided by d3.

c1 c2 c3

x1 s7 s8 s6
x2 s4 s5 s6
x3 s8 s7 s6
x4 s7 s5 s8
x5 s6 s7 s6

Table 4. Decision matrix A4 provided by d4.

c1 c2 c3

x1 s6 s7 s6
x2 s8 s7 s7
x3 s7 s6 s8
x4 s5 s7 s6
x5 s5 s6 s5

5.1. Decision Analysis with Our Proposed Approaches

Based on the proposed approaches of Section 4, we need to fuse the information presented in
the decision matrices A1 − A4 by (17). In the context of GDM, all the PLTSs are contained in the
probabilistic linguistic decision matrix R. Hence, the result is shown in Table 5.

Table 5. The probabilistic linguistic decision matrix R.

c1 c2 c3

x1

{
s8(0.25), s6(0.5), s7(0.25)

} {
s6(0.25), s8(0.5), s7(0.25)

} {
s6(0.75), s5(0.25)

}
x2

{
s6(0.25), s5(0.25), s4(0.25), s8(0.25)

} {
s7(0.5), s6(0.25), s5(0.25)

} {
s7(0.75), s6(0.25)

}
x3

{
s5(0.25), s7(0.5), s8(0.25)

} {
s8(0.25), s6(0.5), s7(0.25)

} {
s7(0.5), s6(0.25), s8(0.25)

}
x4

{
s7(0.5), s8(0.25), s5(0.25)

} {
s4(0.25), s6(0.25), s5(0.25), s7(0.25)

} {
s6(0.5), s7(0.25), s8(0.25)

}
x5

{
s8(0.5), s6(0.25), s5(0.25)

} {
s6(0.5), s7(0.5)

} {
s7(0.25), s6(0.5), s5(0.25)

}
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For Table 5, each PLTS Lij(p) is assumed to be an ordered PLTS (i = 1, 2, 3, 4, 5; j = 1, 2, 3). In this
case, the weighting vector of the attributes C is w = (w1, w2, w3)

T = (0.3, 0.4, 0.3)T . We use the WPLPA
or WPLPG aggregation operator to analyze the results of Table 5. Based on the above results and the
proposed methods of Section 4, the detailed steps are shown as follows:

Step 2: With respect to the collective matrix R = (Lij(p))5×3, we can find that the number of their
corresponding number of the linguistic terms is not equal. Thus, we normalize the entries of R as
stated in Definition 6. The normalized probabilistic linguistic decision matrix is shown in Table 6.

Table 6. The normalized probabilistic linguistic decision matrix.

c1 c2 c3

x1

{
s6(0.5), s8(0.25), s7(0.25), s6(0)

} {
s8(0.5), s7(0.25), s6(0.25), s6(0)

} {
s6(0.75), s5(0.25), s5(0), s5(0)

}
x2

{
s8(0.25), s6(0.25), s5(0.25), s4(0.25)

} {
s7(0.5), s6(0.25), s5(0.25), s5(0)

} {
s7(0.75), s6(0.25), s6(0), s6(0)

}
x3

{
s7(0.5), s8(0.25), s5(0.25), s5(0)

} {
s6(0.5), s8(0.25), s7(0.25), s6(0)

} {
s7(0.5), s8(0.25), s6(0.25), s6(0)

}
x4

{
s7(0.5), s8(0.25), s5(0.25), s5(0)

} {
s7(0.25), s6(0.25), s5(0.25), s4(0.25)

} {
s6(0.5), s8(0.25), s7(0.25), s6(0)

}
x5

{
s8(0.5), s6(0.25), s5(0.25), s5(0)

} {
s7(0.5), s6(0.5), s6(0), s6(0)

} {
s6(0.5), s7(0.25), s5(0.25), s5(0)

}

Step 3: According to the results of Definition 7 and Table 6, the deviation degree between PLTSs
Lij(p) and Lit(p) (i = 1, 2, 3, 4, 5; j, t = 1, 2, 3) can be calculated by the following equation:

d(Lij(p), Lit(p)) =

√√√√∑
#Lij(p)
k=1 (p(k)ij r(k)ij − p(k)it r(k)it )2

#Lij(p)
.

Then, we can calculate the deviation degree of any two Lij(p), respectively. For alternative x1,
the deviation degrees are shown as follows:

d(L11, L12) = 0.5303; d(L12, L13) = 0.8292; d(L11, L13) = 1.2119.

For alternative x2, the deviation degrees are shown as follows:

d(L21, L22) = 0.9014; d(L22, L23) = 1.0752; d(L21, L23) = 1.8114.

For alternative x3, the deviation degrees are shown as follows:

d(L31, L32) = 0.3536; d(L32, L33) = 0.2795; d(L31, L33) = 0.125.

For alternative x4, the deviation degrees are shown as follows:

d(L41, L42) = 1.0383; d(L42, L43) = 0.875; d(L41, L43) = 0.3536.

For alternative x5, the deviation degrees are shown as follows:

d(L51, L52) = 1.00778; d(L52, L53) = 0.9185; d(L51, L53) = 0.5154.

Step 4: Based on the results of Definitions 7 and 8, we can calculate the support of the alternative
xi by using (18) (i = 1, 2, 3, 4, 5). The results are summarized as follows:

sup(L11, L12) = 0.7938; sup(L12, L13) = 0.6775; sup(L11, L13) = 0.5287.
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sup(L21, L22) = 0.7620; sup(L22, L23) = 0.7161; sup(L21, L23) = 0.5218.

sup(L31, L32) = 0.5335; sup(L32, L33) = 0.6313; sup(L31, L33) = 0.8351.

sup(L41, L42) = 0.5419; sup(L42, L43) = 0.6140; sup(L41, L43) = 0.8440.

sup(L51, L52) = 0.5873; sup(L52, L53) = 0.6238; sup(L51, L53) = 0.7889.

Step 5: In light of the result of Definition 10, we can calculate the support T
′
(Lij(p)) of Lij(p) by

all of other Lit(p) (j, t = 1, 2, 3; t �= j) by the following equation:

T
′
(Lij(p)) =

3

∑
t=1,t �=j

wtsup(Lij(p), Lit(p)).

These results are shown as the following matrix:

T
′
(Lij(p)) =

⎛⎜⎜⎜⎜⎜⎝
0.47613 0.44139 0.42961
0.46134 0.44343 0.44298
0.46393 0.34944 0.50305
0.46996 0.34677 0.49880
0.47159 0.36333 0.48619

⎞⎟⎟⎟⎟⎟⎠ .

Step 6: With the aid of Proposition 2, we further compute the weight v
′
ij associated with the PLTS

Lij(p) by the following equation (i = 1, 2, 3, 4, 5; j = 1, 2, 3):

v
′
ij =

wj(1 + T
′
(Lij(p)))

∑3
j=1 wj(1 + T′(Lij(p)))

.

These results are shown as the following matrix:

v
′
ij =

⎛⎜⎜⎜⎜⎜⎝
0.3057 0.3981 0.2961
0.3026 0.3986 0.2988
0.3071 0.3775 0.3154
0.3085 0.3769 0.3146
0.3082 0.3806 0.3112

⎞⎟⎟⎟⎟⎟⎠
Step 7: If the DM prefers the WPLPA operator, then the aggregated value of the alternative xi is

determined based on Equation (12) (i = 1, 2, 3, 4, 5). We denote the aggregated value of the alternative
xi as Zi. The results are:

Z1 = WPLPA(L11(p), L12(p), L13(p))

= ((0.9171, 0.6114, 0.5349, 0); (1.5924, 0.6967, 0.5972, 0); (1.3325, 0.3701, 0, 0))

= (3.8420, 1.6782, 1.1321, 0),

Z2 = WPLPA(L21(p), L22(p), L23(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (3.569, 1.5, 0.8766, 0.3026),
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Z3 = WPLPA(L31(p), L32(p), L33(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (3.3113, 2, 1.5176, 0),

Z4 = WPLPA(L41(p), L42(p), L43(p))

= ((0.6052, 0.4539, 0.3738, 0.3026); (1.3951, 0.5979, 0.4983, 0); (1.5687, 0.4482, 0, 0))

= (2.6824, 1.8116, 1.4073, 0.3769),

Z5 = WPLPA(L51(p), L52(p), L53(p))

= ((1.2326, 0.4622, 0.3852, 0); (1.3322, 1.1419, 0, 0); (0.9336, 0.5446, 0.3890, 0))

= (3.4985, 2.1488, 0.7742, 0).

If the DM uses the WPLPG operator, then the aggregated value of the alternative xi is determined
based on Equation (16) (i = 1, 2, 3, 4, 5). In the same way, we denote the aggregated value of the
alternative xi as Zi. The results are:

Z1 = WPLPG(L11(p), L12(p), L13(p))

= ((1.3150, 1.1722, 1.1603, 1); (1.5127, 1.2137, 1.1952, 1); (1.4887, 1.1265, 1, 1))

= (2.9613, 1.6026, 1.3868, 1),

Z2 = WPLPG(L21(p), L22(p), L23(p))

= ((1.1703, 1.1452, 1.1295, 1.1106); (1.4738, 1.1955, 1.1739, 1); (1.5466, 1.132, 1, 1))

= (2.6676, 1.5651, 1.3259, 1.1106),

Z3 = WPLPG(L31(p), L32(p), L33(p))

= ((1.3482, 1.1731, 1.1315, 1); (1.4024, 1.2168, 1.2016, 1); (1.3592, 1.1782, 1.1517, 1))

= (2.5698, 1.6818, 1.5658, 1),

Z4 = WPLPG(L41(p), L42(p), L43(p))

= ((1.3500, 1.1739, 1.1322, 1); (1.2012, 1.1839, 1.1637, 1.1395); (1.3256, 1.1777, 1.1654, 1))

= (2.1496, 1.6367, 1.5355, 1.1395),

Z5 = WPLPG(L51(p), L52(p), L53(p))

= ((1.3777, 1.1480, 1.1320, 1); (1.4482, 1.4064, 1, 1); (1.3216, 1.1635, 1.1334, 1))

= (2.6367, 1.8784, 1.2830, 1).

Step 8: Based on the results of Definition 4, the scores of the alternative xi can be computed,
i.e., E(Zi). If the DM uses WPLPA operator to aggregate the decision formation, the scores are
determined as follows:

E(Z1) = 1.6632; E(Z2) = 1.5620; E(Z3) = 1.7072; E(Z4) = 1.5697; E(Z5) = 1.6054.
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If the the DM uses WPLPG operator to aggregate the decision formation, the scores are determined
as follows:

E(Z1) = 1.7379; E(Z2) = 1.6673; E(Z3) = 1.7044; E(Z4) = 1.6154; E(Z5) = 1.6995.

Step 9: If the DM uses WPLPA operator, we can determine the ranking of the scores of the
alternatives based on the results of the Step 8. It is shown as follows:

E(Z3) > E(Z1) > E(Z5) > E(Z4) > E(Z2).

That is to say, the ordering of the alternatives is:

x3 > x1 > x5 > x4 > x2.

If the DM uses WPLPG operator, we can obtain the ranking of the scores of the alternatives
as follows:

E(Z1) > E(Z3) > E(Z5) > E(Z2) > E(Z4).

In this situation, the ordering of the alternatives is:

x1 > x3 > x5 > x2 > x4.

5.2. Comparison Analysis

Under the probabilistic linguistic information, Pang et al. [6] have developed an aggregation-based
method for MAGDM. In order to verify the performance of our proposed methods, we compare our
decision results with Pang et al. [6] based on our illustrative example. Torra [13], Merigó et al. [22] and
Zhang et al. [23] also developed some methods for the lingusitic information and GDM. Thus, we also
compare our results with the methods of Refs. [12,22,23]. The decision results are shown in Table 7.

Table 7. The decision results of different methods.

Method Rank

Aggregation-based method of Ref. [6] x3 > x1 > x5 > x2 > x4
The method with HFLWA of Ref. [23] x3 > x1 > x5 > x2 = x4
The method with HFLWG of Ref. [23] x1 > x2 > x5 > x3 > x4

Max lower operator of Ref. [12] x3 > x2 = x5 = x4 > x1
ILGCIA with group decision making of Ref. [22] x3 > x2 > x1 > x4 > x5

Our proposed method with WPLPA x3 > x1 > x5 > x4 > x2
Our proposed method with WPLPG x1 > x3 > x5 > x2 > x4

In Table 7, we can find the rank result of the method proposed in Ref. [6] is:
x3 > x1 > x5 > x2 > x4. Compared with the decision results of our proposed method with WPLPA,
the aggregation-based method with PLTSs can select the same best candidate, i.e., x3. Meanwhile,
for the WPLPG, the best candidate is x1. Under the result of Ref. [23], HFLWA has the rank:
x3 > x1 > x5 > x2 = x4. Meanwhile, the ranking of HFLWG is x1 > x2 > x5 > x3 > x4. By using the
max lower operator of Ref. [12], we can find the rank is: x3 > x2 = x5 = x4 > x1. For ILGCIA with
group decision making of Ref. [22], the result is x3 > x2 > x1 > x4 > x5. On the MCGDM problems
under linguistic environment, we introduced our model to achieve the same acceptable performance
with the existing techniques or to improve upon them. Unlike the existing models considered in this
paper, our model contains probabilities which normally help in getting a comprehensive and accurate
preference information of the DMs [6]. In Ref. [3], for instance, the developed approaches take all the
decisions and their relationships into account, and the decision arguments reinforce and support each
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other, but since probabilities were not considered, the accuracy of preference information of the DMs
might be questionable. In addition, without the PLTS, it might not be easy for the DMs to provide
several possible linguistic values over an alternative or an attribute. This situation translates into some
kind of limitation of the model proposed in Ref. [3] inspite of the power average (PA) involvement in
the aggregation process.The PLTSs itself as a theory has some limitations . In general, WPLPG applies
to the average of the ratio data and is mainly used to calculate the average growth (or change) rate of
the data. From the trait of Table 6, the WPLPA is much better than WPLPG.

6. Conclusions

With respect to the support and reinforcement among input arguments with PLTSs, we introduce
PA into the probabilistic linguistic environment. Meanwhile, we develop the corresponding new
operators, i.e., the PLPA, PLPG, WPLPA and WPLPG operators. In light of the PLMCGDM, we describe
the decision-making problem and design corresponding approaches by employing the WPLPA and
WPLPG. In this paper, we expanded the applied field of the original PA and enrich the research work
of PLTSs. Future research work may focus on exploring the decision-making mechanisms when the
weight information is unknown or incomplete and developing some new generalized aggregation
operators of PLTSs. In addition, we also deeply investigate a more complex case study with more
alternatives and criteria.
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Abstract: Through the combination of different types of sets such as fuzzy sets, soft sets and rough
sets, abundant hybrid models have been presented in order to take advantage of each other and
handle uncertainties. A comparative study of relationships and interconnections of some existing
hybrid models has been carried out. Some foundational properties of modified soft rough sets
(MSR sets) are analyzed. It is pointed out that MSR approximation operators are some kinds of
Pawlak approximation operators, whereas approximation operators of Z-soft rough fuzzy sets are
equivalent to approximation operators of rough fuzzy sets. The relationships among F-soft rough
fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets are surveyed. A new model called
soft rough soft sets has been provided as the generalization of F-soft rough sets, and its application in
group decision-making has been studied. Various soft rough sets models show great potential as a
tool to solve decision-making problems, and a depth study of the connections among these models
contributes to the flexible application of soft rough sets based decision-making approaches.

Keywords: rough set; soft set; soft rough set; soft rough fuzzy set

1. Introduction

Various types of uncertainties exist in real life situations, which calls for useful mathematic
tools to meet various information process demands. Usually complicated problems take place
with uncertainties, and most of these complex situations can not be handled by adopting classical
mathematic methods, considering the fact that with classical mathematic tools all notions are
requested to be strict. Up to now, abundant mathematic tools such as fuzzy set theory [1] and
rough set theory [2,3] have already been developed and proved to be useful in handling several
kinds of the problems that contain uncertainties, and all of these theories share a common inherent
difficulty, which is mainly the inadequacy of the parametrization tool [4,5]. However, it is noticed that,
without proper parametrization tools, sometimes a practical problem can not be described in a way as
much as information collected from different aspects could be taken into account. To handle this issue
and to enrich mathematical methodologies for coping with uncertainties, soft set theory was initially
proposed by Molodtsov [4] in 1999, which considers every specific object from different attributes’
aspects, in this way, this new model goes beyond all other existing mathematical tools to avoid the
above-mentioned difficulties. After soft set theory comes out, in the past few years, there appears a
continuous growth of interest in studying theoretical aspects of soft set theory, as well as the practical
applications of soft sets.

Abundant mathematical models have already been designed in order to model and process vague
concepts, among which it is noteworthy that fuzzy set theory and rough set theory have already drawn
worldwide attention from researchers. The development of these two theories makes contributions
to handle lots of complicated problems in engineering, economics, social science, et al. The main
character of fuzzy set theory is that it describes a vague concept by using a membership function,
and the allowance of partial memberships contributes to providing an appropriate framework to
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represent and process vague concepts. The character of rough set theory relies on handling vagueness
and granularity in information systems by indirectly describing a vague concept through two exact
concepts called its lower and upper approximations. In Pawlak’s rough set model, the equivalence
relation is a vital concept, by replacing the equivalence relation with a fuzzy similarity relation,
fuzzy rough sets and rough fuzzy sets have been proposed [6].

The combinations of soft sets, rough sets and fuzzy sets have been extensively studied to
benefit each other and to take the best advantage of them. Research on generalization models of
soft sets is promising since usually the generalized models are not short of parameter tools, that is,
all of the generalized soft set models usually keep the most important feature of soft set theory in
considering issues from various aspects. The history of research on extending soft sets applying
fuzzy set theory goes beyond fifteen years already since Maji et al. introduced fuzzy soft sets in [7].
Therefore far, the soft sets have been extended to intuitionistic fuzzy soft sets [8], interval-valued
intuitionistic fuzzy soft sets [5,9], vague soft sets [10], soft interval sets [11] and many other hybrid
soft sets models. The history of research on the generalization of soft sets by using rough set theory
is relatively short. To introduce parametrization tools to rough set theory, Feng et al. [12,13] initially
put forward the concept of soft rough sets and soft rough fuzzy sets, in which a soft set looks for the
lower and upper approximations of a subset of the universe. Afterwards, Meng et al. [14] proposed
soft fuzzy rough set, in which model the fuzzy soft set has been adopted into granulate the universe.
Benefitting from similarity measures induced by soft sets and soft fuzzy sets, Qin et al. [15] provided
several soft fuzzy rough set models through introducing confidence threshold values. Recently,
Shabir et al. [16] noticed that Feng et al.’s soft rough sets [12] suffer from some unexpected properties
such as the upper approximation of a non-empty set might be empty and a subset set X might not be
contained in its upper approximation. To resolve this problem, Shabir et al. [16] modified their soft
rough sets and introduced the modified soft rough set (MSR set), which has already been extended to
fuzzy soft sets [17], and Z-soft rough fuzzy sets was proposed, and its application in decision-making
problems was analyzed.

The exploitation of soft sets and hybrid soft sets models in decision-making shows a great
development in the recent years [18–22]. The utilization of soft rough sets models in decision-making
shows a promising prospect. Different decision-making approaches have been put forth based on MSR
set [20], Z-soft rough fuzzy sets [17], Z-soft fuzzy rough set [21], and other soft rough sets models [23,24].
If the researchers could have a thorough knowledge of the connections among various soft rough sets,
we believe that decision-making approaches under framework of soft rough sets could be applied in
a more flexible and reliable way. However, the relationships among these hybrid sets have not been
systematically studied so far. Furthermore, we notice that a soft set S can be looked upon an information
system IS. Based on this information system, we can establish Pawlak rough approximations and
rough fuzzy approximations. What is the relationship between soft rough approximations (soft rough
fuzzy approximations) in S and Pawlak rough approximations (rough fuzzy approximations) in IS?
Additionally, soft set and formal context are mathematically equivalent. The relationships among soft
rough approximation operators and derivation operators used in formal concept analysis (FCA) are
also interesting issues to be addressed. In this paper, we will concentrate on the discussion of these
problems. The paper is structured as follows: Section 2 revises several basic concepts of soft sets, fuzzy
sets and rough set. Section 3 studies relationships among several soft rough sets. The properties of
MSR approximation operators and different connections between MSR approximation operators and
F-soft rough approximation operators are analyzed. It is shown that MSR approximation operators
and a kind of Pawlak approximation operators are equivalent, while Z-soft rough fuzzy approximation
operators and a kind of rough fuzzy approximation operators are equivalent. The relationships
among F-soft rough fuzzy sets, M-soft rough fuzzy sets and Z-soft rough fuzzy sets have also been
investigated. Section 4 discusses the relationship between F-soft rough sets and modal-style operators
in formal concept analysis. Section 5 proposes a new generalization of F-soft rough set, which is called
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a soft rough soft set, and a simple application of soft rough soft sets in group decision-making has been
studied. Eventually, Section 6 concludes the paper by presenting some remarks and future works.

2. Preliminaries

Here, several concepts of fuzzy sets, soft sets and rough sets are briefly reviewed. Please refer
to [1,2,4,7] for details.

An advantageous framework has been offered by fuzzy set theory [1] to handle vague concepts
through the allowance for partial memberships. Let U be the universe set. Define a fuzzy set μ on U
by its membership function μ : U → [0, 1]. μ(x) indicates the degree to which x belongs to the fuzzy
set μ for all x ∈ U. In what follows, we denote the family of all subsets of U by P(U) and the family of
all fuzzy sets on U by F(U). The operations of fuzzy sets can be found in [1].

Molodtsov [4] introduced the concept of soft set. Let U be the universe set and E the set consisted
of all parameters that is related to U. Hence, a soft set is defined as below:

Definition 1. A pair (F, A) is called a soft set over U, where A ⊆ E and F is a mapping given by F : A →
P(U) [4].

The soft set is characterized by a parameter set and a function defined on the parameter set.
For every parameter e ∈ A, F(e) is said to be the e-approximate elements and, correspondingly, the
soft set can be viewed as a parameterized family of subsets of U.

A soft set (F, A) is called a full soft set if ∪e∈AF(e) = U [12]; Ñ(U,A) = (N, A) is called a relative
null soft set (with respect to the parameter set A), if N(e) = ∅ for all e ∈ A; W̃(U,B) = (W, B) is called
a relative whole soft set (with respect to the parameter set B) if W(e) = U for all e ∈ B [25]. Maji et al.
in [7] introduced the concept of fuzzy soft set.

Definition 2. Let (U, E) be a soft space. A pair (F, A) is called a fuzzy soft set over U, where A ⊆ E and F is
a mapping defined as F : A → F(U) [7].

The fuzzy soft set is also characterized by a parameter set and a function on the parameter set,
whereas a fuzzy set on U takes place of a crisp subset of U corresponds to each parameter. It follows
that, to a certain degree, a soft set can also be viewed as a special kind of fuzzy soft set.

Pawlak introduced rough set theory in [2], the application of which is based on a structure called
information system.

Definition 3. An information system is a pair I = (U, A) of non-empty finite sets U and A, where U is a set
of objects and A is a set of attributes; each attribute a ∈ A is a function a : U → Va , where Va is the set of all
values (called domain) of attribute a [3].

Soft sets and information systems are closely related [13,26,27]. S = (F, A) is assumed to be a soft
set over U and IS = (U, A) an information system induced by S. For any attribute a ∈ A, a function
a : U → Va = {0, 1} is defined by a(x) = 1 if x ∈ F(a); or else a(x) = 0. In this way, every soft
set could be viewed as an information system. In what follows, IS is called the information system
induced by soft set S.

By contrast, suppose the information system, I = (U, A). It uses a parameter set as

B = {(a, va); a ∈ A ∧ va ∈ Va},

and it follows that through setting F(a, va) = {x ∈ U; a(x) = va} for each a ∈ A and va ∈ Va, a soft set
(F, B) can be defined, which is the soft set induced by I.
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Let U be the universe of discourse and R be an equivalence relation on U. (U, R) is called Pawlak
approximation space. For each X ⊆ U, the upper approximation R(X) and lower approximation R(X)

of X with respect to (U, R) are defined as [2]:

R(X) = {x ∈ U; [x]R ∩ X �= ∅}, (1)

R(X) = {x ∈ U; [x]R ⊆ X}. (2)

X is so-called definable in (U, R) if R(X) = R(X), or else X is a rough set. Thus, in rough set
theory, a rough concept is characterized by a couple of exact concepts, namely, its lower approximation
and upper approximation. PosR(X) = R(X) and NegR(X) = U − R(X) are the R-positive region
and R-negative region of X, respectively. Furthermore, BndR(X) = R(X) − R(X) is called the
R-boundary region.

Up to now, various types of extension models of the Pawlak rough set have been proposed to
enrich the theory and to meet different application demands [28,29]. In [12], by the combination of soft
set, rough set and fuzzy set theory, soft rough sets and soft rough fuzzy sets were introduced. To make
them easy to be distinguished from other models mentioned in the current work and also to facilitate
the discussion, these two notions are called F-soft rough sets and F-soft rough fuzzy sets.

Definition 4. Let S = ( f , A) be a soft set over U. P = (U, S) is called a soft approximation space.
Two operations can be defined based on P as follows [12]:

apr
P
(X) = {u ∈ U; ∃a ∈ A(u ∈ f (a) ⊆ X)}, (3)

aprP(X) = {u ∈ U; ∃a ∈ A(u ∈ f (a), f (a) ∩ X �= ∅)}. (4)

For all X ⊆ U, apr
P
(X) and aprP(X) are respectively called the F-lower and F-upper soft rough approximations

of X in S. X is F-soft definable in P if apr
P
(X) = aprP(X), or else X is a F-soft rough set.

It is noted that we can present apr
P
(X) and aprP(X) in a more concise manner [13]:

apr
P
(X) = ∪{ f (a); a ∈ A ∧ f (a) ⊆ X}, (5)

aprP(X) = ∪{ f (a); a ∈ A ∧ f (a) ∩ X �= ∅}. (6)

In this definition, the soft set S is regarded as the elementary knowledge on the universe. F-lower
and F-upper soft rough approximation operators are not dual to each other, that is, apr

P
(Xc) =

(aprP(X))c usually does not hold, where the complement of set X is computed by Xc = U − X. If the
condition ∪a∈A f (a) = U holds in a soft set S = ( f , A) over U, this soft set is a full soft set [12]. In this
case, { f (a); a ∈ A} comes into being a cover of the universe U. It is pointed out that apr

P
, aprP and

covering rough approximations [30] are closely related but fundamentally different [13]. Additionally,
if { f (a); a ∈ A} forms a partition of U, we will call S = ( f , A) a partition soft set [13,31].

It is pointed out by Shabir et al. [16] that ∃ x ∈ U s.t. x ∈ NegP(X) = U − aprP(X) for all X ⊆ U,
if S = ( f , A) is not a full soft set. In other words, x /∈ aprP(X) for all X ⊆ U. Thus, X ⊆ aprP(X) and
some basic properties of rough set do not hold in general. Based on these observations, modified soft
rough sets (MSR sets) was defined as follows.

Definition 5. Let ( f , A) be a soft set over U and ϕ : U → P(A) be a map defined as
ϕ(x) = {a ∈ A; x ∈ f (a)}. Then, (U, ϕ) is called MSR-approximation space and for any X ⊆ U, its lower
MSR approximation Xϕ and upper MSR approximation Xϕ are defined as [16]:

Xϕ = {x ∈ U; ∀y ∈ Xc(ϕ(x) �= ϕ(y))}, (7)
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Xϕ = {x ∈ U; ∃y ∈ X(ϕ(x) = ϕ(y)). (8)

X is MSR definable if the condition Xϕ = Xϕ holds, or else X is a MSR set.

Mathematically speaking, (U, ϕ) can be looked upon a soft set over A. In [32], (U, ϕ) was
considered as a pseudo soft set that is induced by ( f , A), afterwards a decision-making method related
to pseudo soft set was provided.

3. Relationships among Several Soft Rough Sets

3.1. Relationships between F-Soft Rough Approximations and MSR Approximations

The notion of MSR set is the modification of a F-soft rough set, and some inherent connections
between these two models should exist, which have not drawn enough attention from scholars
yet. In this subsection, a theoretical analysis of F-soft rough sets and MSR sets will be provided,
and some connections between F-soft rough approximations and MSR approximations will be
pointed out.

It is noted that Ref. [16] apr
P
(X) ⊆ Xϕ for any X ⊆ U and the containment may be proper.

Furthermore, in general, Xϕ ⊆ aprP(X) or aprP(X) ⊆ Xϕ does not hold. Now, we provide an example:

Example 1. Let A = {a, b, c, d} be a parameter set and U = {x1, x2, x3, x4, x5, x6} the universe. Suppose that
S = ( f , A) is a soft set over U, in which F(a) = {x1, x6}, F(b) = {x3}, F(c) = ∅, F(d) = {x1, x2, x5}.

(1) By the definition, aprP(U) = ∪a∈A f (a) = {x1, x2, x3, x5, x6}. It follows that x4 /∈ aprP(U) and
hence x4 /∈ aprP(X) for any X ⊆ U.

(2) Let X = {x3, x4, x5}. By direct computation, we know that aprP(X) = {x1, x2, x3, x5},
Xϕ = {x2, x3, x4, x5}. Thus, aprP(X) ⊆ Xϕ, or Xϕ ⊆ aprP(X) does not hold.

However, only a shallow impression can be obtained noticing the above-mentioned conclusions
in [16], and no details have been provided discussing the properties of and connections among
aprP(X), Xϕ, apr

P
(X) and Xϕ. The questions still remain: is there any possibility Xϕ ⊆ aprP(X) or

aprP(X) ⊆ Xϕ that holds? Which features will be requested if these conditions need to be established?
Now, we will pay attention to these questions and provide answers.

A general assumption for Theorems 1–3 and Corollaries 1 and 2 is presented as below:
Let S = ( f , A) be a soft set over U and P = (U, S) a soft approximation space.

Theorem 1. S is a full soft set iff Xϕ ⊆ aprP(X) for any X ⊆ U.

Proof. (⇒). It is assumed that S is a full soft set and X ⊆ U. For all x ∈ Xϕ, ∃ y ∈ X s.t. ϕ(x) = ϕ(y).
By y ∈ U = ∪a∈A f (a), ∃ a ∈ A s.t. y ∈ f (a). Then, y ∈ X ∩ f (a) and X ∩ f (a) �= ∅. By y ∈ f (a) we
obtain a ∈ ϕ(y) = ϕ(x) and hence x ∈ f (a). Consequently, x ∈ aprP(X). Thus, Xϕ ⊆ aprP(X).

(⇐). Suppose that, for all X ⊆ U, the condition Xϕ ⊆ aprP(X) holds. It can be observed that
x ∈ {x}ϕ ⊆ aprP({x}) = ∪{ f (a); f (a) ∩ {x} �= ∅} = ∪{ f (a); x ∈ f (a)}, for any x in U.

Thus, ∃ a ∈ A s.t. x ∈ f (a). S is a full soft set by the arbitrary of x.

Theorem 2. aprP(X) ⊆ Xϕ for any X ⊆ U iff for any a, b ∈ A, f (a) ∩ f (b) = ∅ whenever f (a) �= f (b).

Proof. (⇐). Assume that for any a, b ∈ A, f (a) ∩ f (b) = ∅ whenever f (a) �= f (b). Let X ⊆ U.
For any x ∈ aprP(X), attribute a ∈ A exists s.t. x ∈ f (a) and f (a) ∩ X �= ∅. Thus, we know that there
exists y ∈ U s.t. y ∈ f (a) ∩ X. For any b ∈ A, if f (a) �= f (b), then f (a) ∩ f (b) = ∅ and hence x /∈ f (b)
by x ∈ f (a). Thus, ϕ(x) = {b ∈ A; f (b) = f (a)}. Similarly, we have ϕ(y) = {b ∈ A; f (b) = f (a)} and
hence ϕ(x) = ϕ(y). By y ∈ X, we know that x ∈ Xϕ and consequently aprP(X) ⊆ Xϕ.
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(⇒). Assume that aprP(X) ⊆ Xϕ for any X ⊆ U. For any a, b ∈ A, if f (a) ∩ f (b) �= ∅, ∃ x ∈ U
s.t. x ∈ f (a) ∩ f (b). By x ∈ f (a), we conclude that

f (a) ⊆ ∪{ f (c); x ∈ f (c)} = ∪{ f (c); {x} ∩ f (c) �= ∅} = aprP({x})
⊆ {x}ϕ = {y ∈ U; ϕ(y) = ϕ(x)}.

Meanwhile, if ϕ(y) = ϕ(x), then a ∈ ϕ(x) = ϕ(y) and hence y ∈ f (a). Therefore,
f (a) = {y ∈ U; ϕ(y) = ϕ(x)}. Similarly, by x ∈ f (b), we have f (b) = {y ∈ U; ϕ(y) = ϕ(x)} and
hence f (a) = f (b).

Theorems 1 and 2 shows that ∃ containment relationships between Xϕ and aprP(X) if some
specific conditions hold. Based on these two theorems, we can have a clear idea about under which
conditions the containment relationships can be held. Furthermore, by Theorems 1 and 2, we obtain

Corollary 1. Let f (e) �= ∅ for each e ∈ A. S is a partition soft set iff aprP(X) = Xϕ for any X ⊆ U.

Corollary 2. S is a full soft set iff X ⊆ aprP(X) for any X ⊆ U.

Proof. It is assumed that S is a full soft set. For all X ⊆ U, it is obvious that X ⊆ Xϕ ⊆ aprP(X)

by Theorem 1. On the contrary, assume that X ⊆ aprP(X) for any X ⊆ U. For each x ∈ U,

x ∈ {x} ⊆ aprP({x}) = ∪{ f (a); f (a) ∩ {x} �= ∅} = ∪{ f (a); x ∈ f (a)}.

Thus, ∃ a ∈ A s.t. x ∈ f (a). Consequently, S is a full soft set as required.

Theorem 3. Xϕ ⊆ apr
P
(X) for any X ⊆ U iff for any x ∈ U, ∃ a ∈ A s.t. f (a) = {y ∈ U; ϕ(y) = ϕ(x)}.

Proof. (⇒). Suppose that Xϕ ⊆ apr
P
(X) for all X ⊆ U. For any x ∈ U, let X = {y ∈ U; ϕ(y) = ϕ(x)}.

It follows that

Xϕ = {u ∈ U; ∃y ∈ X(ϕ(u) = ϕ(y))} = {u ∈ U; ϕ(u) = ϕ(x)} = X.

By x ∈ X and Xϕ ⊆ apr
P
(X), then x ∈ apr

P
(X) and hence ∃ a ∈ A s.t. x ∈ f (a) and f (a) ⊆ X.

On the other hand, for any y ∈ X, we have ϕ(y) = ϕ(x), therefore a ∈ ϕ(x) = ϕ(y). Then,
y ∈ f (a) and hence X ⊆ f (a). Thus, f (a) = X = {y ∈ U; ϕ(y) = ϕ(x)}.

(⇐). Assume that X ⊆ U and x ∈ Xϕ. For each y ∈ U, if ϕ(x) = ϕ(y), we have y ∈ X by x ∈ Xϕ.
It follows that {y ∈ U; ϕ(y) = ϕ(x)} ⊆ X and ∃ a ∈ A such that f (a) = {y ∈ U; ϕ(y) = ϕ(x)}.
Thus, x ∈ f (a) and f (a) ⊆ X. It follows that x ∈ apr

P
(X) and consequently Xϕ ⊆ apr

P
(X).

By Theorem 3, we obtain a clear mind about the necessary conditions for Xϕ ⊆ apr
P
(X)

to be held, which has not been discussed in other literature yet. The connections between
F-soft rough approximations and MSR approximations have been discussed in detail through the
theorems presented above.

Keeping in mind that all of the theoretical research should serve practical applications. It is
noted that F-soft rough sets and MSR sets group decision-making approaches have been put forward
in [20,31], respectively. Based on the analysis about the connections of F-soft rough approximations
and MSR approximations, the relationships between decision schemes by using these two different
hybrid models could be further discussed in the future, and the decision results obtained by the two
decision schemes may have some inherent relationship.
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3.2. The Relationships between MSR Approximations and Pawlak’s Rough Approximations

After the notion of MSR sets was put forward, it was applied to different circumstances to cope
with practical problems. However, since there is systematic research on its relationship with Pawlak’s
rough sets up to now, the rationality of MSR sets may be questioned by scholars from a theoretical
point of view.

Let S = ( f , A) be a soft set. S induces an information system IS = (U, A). According to
Pawlak [2], A determines an indiscernibility relation RS on U given by

RS = {(x, y) ∈ U ×U; ∀a ∈ A(a(x) = a(y))}. (9)

Clearly, (U, RS) is a Pawlak approximation space. The equivalence class determined by the equivalence
relation RS that contains x is denoted by [x]RS . What is the relationship between Pawlak’s rough
approximations in (U, RS) and F-soft rough approximations (MSR approximations) induced by soft
set S? This section offers the discussion of this problem.

Theorem 4. Let S = ( f , A) be a partition soft set over U and P = (U, S) a soft approximation space. Define an
equivalence relation R on U by

R = {(x, y) ∈ U ×U; ∃a ∈ A({x, y} ⊆ f (a)}. (10)

Then, for all X ⊆ U, apr
P
(X) = R(X) and aprP(X) = R(X) [13,31].

Theorem 5. Let S = ( f , A) be a partition soft set over U and IS = (U, A) the information system induced by
soft set S = ( f , A). Then, RS = R, where R is determined by Equation (10).

Proof. Let x, y ∈ U and (x, y) ∈ R. By the definition, ∃ a ∈ A s.t. {x, y} ⊆ f (a). It follows
that a(x) = 1 = a(y). For any b ∈ A − {a}, if f (b) = f (a), then {x, y} ⊆ f (a) = f (b) and
hence b(x) = 1 = b(y); if f (b) �= f (a), then f (b) ∩ f (a) = ∅ and hence x /∈ f (b), y /∈ f (b).
Then, b(x) = 0 = b(y). Thus, c(x) = c(y) for each c ∈ A. Consequently, (x, y) ∈ RS.

Conversely, let x, y ∈ U and (x, y) ∈ RS. By x ∈ U = ∪a∈A f (a), ∃ a ∈ A s.t. x ∈ f (a). It follows
that a(y) = a(x) = 1 and hence y ∈ f (a). Consequently, {x, y} ⊆ f (a) and thus (x, y) ∈ R.

By Theorems 4 and 5, in cases when a partition soft set is used as the underlying soft set, F-soft
rough sets in (U, S) could be identified with Pawlak’s rough sets in (U, RS). For MSR sets, we have
the following results.

Theorem 6. Let S = (F, A) be a soft set over U and IS = (U, A) be the information system induced by soft
set S = (F, A).

(1) For any x ∈ U, [x]RS = {y ∈ U; ϕ(x) = ϕ(y)}.
(2) For any X ⊆ U, Xϕ = RS(X).
(3) For any X ⊆ U, Xϕ = RS(X).

Proof. (1) Let x, y ∈ U and y ∈ [x]RS . Then, a(x) = a(y) for each a ∈ A. For any b ∈ ϕ(x), we have
x ∈ f (b) and hence b(x) = 1. We can observe that b(y) = b(x) = 1 and y ∈ f (b). Thus, b ∈ ϕ(y) and
hence ϕ(x) ⊆ ϕ(y). Similarly, we have ϕ(y) ⊆ ϕ(x) and consequently ϕ(x) = ϕ(y).

On the contrary, suppose that ϕ(x) = ϕ(y). For any a ∈ A, if a(x) = 1, then x ∈ f (a) and hence
a ∈ ϕ(x) = ϕ(y). Thus, y ∈ f (a) and a(y) = 1; if a(x) = 0, then x /∈ f (a) and hence a /∈ ϕ(x) = ϕ(y).
Thus, y /∈ f (a) and a(y) = 0. Then, a(x) = a(y) for any a ∈ A and hence y ∈ [x]RS .

(2) Let X ⊆ U and x ∈ Xϕ. For any y ∈ [x]RS , we have ϕ(x) = ϕ(y) by (1). By x ∈ Xϕ, we have
ϕ(x) �= ϕ(z) whenever z ∈ Xc. Thus, y ∈ X by ϕ(x) = ϕ(y). Then, [x]RS ⊆ X and hence x ∈ RS(X).
We conclude that Xϕ ⊆ RS(X).
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On the contrary, assume that x ∈ RS(X). It follows that [x]RS ⊆ X. For any y ∈ Xc, we have
y /∈ X and hence y /∈ [x]RS . Thus, ϕ(x) �= ϕ(y) by (1). Consequently, x ∈ Xϕ and hence RS(X) ⊆ Xϕ.

(3) Let X ⊆ U and x ∈ Xϕ. It follows that ∃ y ∈ X s.t. ϕ(x) = ϕ(y). Thus, y ∈ [x]RS .
Consequently, [x]RS ∩ X �= ∅ and hence x ∈ RS(X).

Conversely, suppose that x ∈ RS(X). Thus, [x]RS ∩ X �= ∅. It follows that there exists y ∈ X s.t.
y ∈ [x]RS . Consequently, ϕ(x) = ϕ(y) and hence x ∈ Xϕ.

Theorem 6 shows that MSR approximation operator is a kind of Pawlak rough approximation
operator. The two mathematic models that correspond with these approximation operators have been
interconnected by this theorem, which could be regarded as a theoretical proof for the rationality of
MSR sets. Benefitting from the notion of MSR set, Zhan et al. provided the definition of Z-soft rough
fuzzy set in a recent work [17] .

Definition 6. Let ( f , A) be a soft set over U and (U, ϕ) the MSR approximation space. For any fuzzy set
μ ∈ F(U), the Z-lower and Z-upper soft rough approximations of μ are denoted by μ

ϕ
and μϕ, respectively,

which are fuzzy sets on U given by [17]:

μ
ϕ
(x) = ∧{μ(y); y ∈ U ∧ ϕ(x) = ϕ(y)}, (11)

μϕ(x) = ∨{μ(y); y ∈ U ∧ ϕ(x) = ϕ(y)}, (12)

for each x ∈ U, and the operators μ
ϕ

and μϕ are the Z-lower and Z-upper soft rough approximation operators
on a fuzzy set, respectively. Specifically, if μ

ϕ
= μϕ, μ is a Z-soft definable; or else μ is a Z-soft rough fuzzy set.

By Theorem 6 (1), the following corollary could easily be achieved:

Corollary 3. Let S = (F, A) be a soft set over U and IS = (U, A) the information system induced by soft set
S = (F, A). Then,

(1) μ
ϕ
(x) = ∧{μ(y); y ∈ [x]RS}, and

(2) μϕ(x) = ∨{μ(y); y ∈ [x]RS}

for any μ ∈ F(U), x ∈ U.

By Corollary 3, Z-lower and Z-upper soft rough approximation operators are equivalent to
Dubois and Prade’s lower and upper rough fuzzy approximation operators in [6]. Benefitting from
this corollary, the researchers may refer to both of the theories’ aspects and the applications of rough
fuzzy sets to better study the development of Z-soft rough sets. Furthermore, the utilization of
rough set theory in decision system has been extensively studied during the past few decades.
Through discussing the connections between F-soft rough set and and Pawlak rough set, as well
as the connections between MSR approximation operators and Pawlak rough approximation operators,
the exploitation of various soft rough sets models in decision-making may be studied in a more logic
and systematic way in the future.

3.3. The Relationships among Several Soft Rough Fuzzy Sets

A soft rough fuzzy set can be viewed as an extension model of a soft rough set, where the
approximations of a fuzzy set in a soft approximation space are characterized. There are several
distinct soft rough fuzzy set models in the literature. In the current part, the connections between soft
rough fuzzy set and rough fuzzy set will be discussed, as well as the relationships among several soft
rough fuzzy sets.

Soft rough approximation operators on fuzzy sets were initially proposed by Feng et al. in [12].
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Definition 7. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
and upper soft rough approximations of a fuzzy set, μ ∈ F(U), with respect to P are noted as sap

P
(μ) and

sapP(μ), respectively, which are defined by [12]:

sap
P
(μ)(x) = ∧{μ(y); ∃a ∈ A({x, y} ⊆ f (a))}, (13)

sapP(μ)(x) = ∨{μ(y); ∃a ∈ A({x, y} ⊆ f (a))}, (14)

for all x ∈ U. The operators sap
P

and sapP are the F-lower and F-upper soft rough approximation operators on
fuzzy sets. If sap

P
(μ) = sapP(μ), μ is said to be F-soft definable, or else μ is called a F-soft rough fuzzy set.

Note that sap
P

and sapP are dual to each other, i.e., sapP(μ
c) = (sap

P
(μ))c for every μ ∈ F(U).

It has already been figured out that rough fuzzy sets in Pawlak approximation space (U, R) can be
identified with F-soft rough fuzzy sets in soft approximation space (U, S) when the underlying soft set
S is a partition soft set [13].

Meng et al. [14] noted that sapP is a generalization of aprP, i.e., sapP(X) = aprP(X) if X ∈ P(U).
On the contrary, sap

P
is a not a generalization of apr

P
. Considering this issue, Meng et al. presented

another soft rough fuzzy set model in [14].

Definition 8. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. The lower
soft rough approximation sap

′
P
(μ) and upper soft rough approximation sap

′
P(μ) of the fuzzy set μ ∈ F(U) are

fuzzy sets in U defined as [14]:
sap

′

P
(μ)(x) = ∨x∈ f (a) ∧y∈ f (a) μ(y), (15)

sap
′
P(μ)(x) = ∧x∈ f (a) ∨y∈, f (a) μ(y) (16)

for all x ∈ U. μ is called soft definable if the condition sap
′
P
(μ) = sap

′
P(μ) holds; or else μ is a soft rough fuzzy

set. For avoiding confusion with other soft rough fuzzy set models, it will be called M-soft rough fuzzy set in the
following parts.

It is proved that [14] sap
′
P

and sap
′
P are dual to each other, and sap

′
P

is a generalization of apr
P

,

i.e., sap
′
P
(X) = apr

P
(X) for any X ⊆ U.

Theorem 7. Let S = ( f , A) be a partition soft set over U, P = (U, S) a soft approximation space, and (U, R)
a Pawlak approximation space, where R is given by Equation (10). For each μ ∈ F(U), sap

′
P
(μ) = R(μ) and

sap
′
P(μ) = R(μ).

Proof. Assume that μ ∈ F(U) and x ∈ U. For each y ∈ [x]R, ∃ a ∈ A s.t. {x, y} ⊆ f (a). Suppose that
b ∈ A and x ∈ f (b). We note that ( f , A) is a partition soft set. By x ∈ f (a) ∩ f (b), it follows that
f (a) ∩ f (b) �= ∅ and hence f (a) = f (b). Hence,

sap
′

P
(μ)(x) = ∨x∈ f (a) ∧z∈ f (a) μ(z) = ∧z∈ f (a)μ(z) ≤ μ(y).

Consequently, sap
′
P
(μ)(x) ≤ ∧{μ(y); y ∈ [x]R} = R(μ)(x).

Conversely, suppose that x ∈ f (a). For each y ∈ f (a), since {x, y} ⊆ f (a), we get y ∈ [x]R.

μ(y) ≥ ∧{μ(z); z ∈ [x]R} = R(μ)(x),

hence ∧y∈ f (a)μ(y) ≥ R(μ)(x). Consequently,

sap
′

P
(μ)(x) = ∨x∈ f (a) ∧z∈ f (a) μ(z) ≥ R(μ)(x),
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and sap
′
P(μ) = R(μ) can be proved similarly.

By this theorem, the (classical) rough fuzzy sets in Pawlak approximation space (U, R) and M-soft
rough fuzzy sets in soft approximation space (U, S) are equivalent when the underlying soft set S
is a partition soft set. It is shown by Corollary 3 that Z-soft rough fuzzy sets could be regarded as a
kind of rough fuzzy set, which indicates that there also exist some fantastic relationships between
these two distinct models. The following theorem demonstrates the correlation between Z-soft rough
approximation operators and M-soft rough approximation operators.

Theorem 8. Let S = ( f , A) be a full soft set over U, P = (U, S) a soft approximation space and μ ∈ F(U):

(1) sap
′
P
(μ) ⊆ μ

ϕ
,

(2) μϕ ⊆ sap
′
P(μ).

Proof. (1) Let x ∈ U, a ∈ A, x ∈ f (a). For any y ∈ U, if y ∈ [x]R, then ϕ(x) = ϕ(y).
It follows that a ∈ ϕ(x) = ϕ(y) and hence y ∈ f (a). Then, [x]R ⊆ f (a) and hence
∧y∈ f (a)μ(y) ≤ ∧{μ(y); y ∈ [x]R} = μ

ϕ
(x). Consequently, we conclude that

sap
′

P
(μ)(x) = ∨x∈ f (a) ∧y∈ f (a) μ(y) ≤ μ

ϕ
(x)

and hence sap
′
P
(μ) ⊆ μ

ϕ
.

(2) Let x ∈ U, a ∈ A and x ∈ f (a). By (1), we have [x]R ⊆ f (a) and hence
μϕ(x) = ∨{μ(y); y ∈ [x]R} ≤ ∨y∈ f (a)μ(y). It follows that

μϕ(x) ≤ ∧x∈ f (a) ∨y∈ f (a) μ(y) = sap
′
P(μ)(x)

and hence μϕ ⊆ sap
′
P(μ).

It is noted that F-soft rough approximation operators apr
P
(μ), aprP(μ) can be expressed

equivalently as [15]:

sap
P
(μ)(x) = ∧{μ(y); ∃a ∈ A({x, y} ⊆ f (a))} = ∧x∈ f (a) ∧y∈ f (a) μ(y),

sapP(μ)(x) = ∨{μ(y); ∃a ∈ A({x, y} ⊆ f (a))} = ∨x∈ f (a) ∨y∈ f (a) μ(y).

Therefore, we have the following corollary:

Corollary 4. Let S = ( f , A) be a full soft set over U and P = (U, S) a soft approximation space. For any
μ ∈ F(U),

sap
P
(μ) ⊆ sap

′

P
(μ) ⊆ μ

ϕ
⊆ μ ⊆ μϕ ⊆ sap

′
P(μ) ⊆ sapP(μ).

Meng et al. [14] presented a kind of soft fuzzy approximation space, where a fuzzy soft set is
regarded as the elementary knowledge on the universe and used to granulate the universe.

Definition 9. Let F = ( f , A) be a fuzzy soft set over U. The pair SF = (U,F ) is called a soft fuzzy
approximation space. For a fuzzy set μ ∈ F(U), the lower and upper soft fuzzy rough approximations of μ with
respect to SF are denoted by Apr

SF
(μ) and AprSF(μ), respectively, which are given by [14]:

Apr
SF
(μ)(x) = ∧a∈A((1− f (a)(x)) ∨ (∧y∈U((1− f (a)(y)) ∨ μ(y)))), (17)

AprSF(μ)(x) = ∨a∈A( f (a)(x) ∧ (∨y∈U( f (a)(y) ∧ μ(y)))), (18)
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for all x ∈ U. The operators Apr
SF

and AprSF are called the lower and upper soft fuzzy rough approximation
operators on fuzzy sets.

It is proved that [14] Apr
SF

and AprSF are extensions of sap
SF

and sapSF,

respectively, i.e., if F = ( f , A) is a soft set, then Apr
SF
(μ) = sap

SF
(μ) and AprSF(μ) = sapSF(μ) for

any μ ∈ F(U).

Theorem 9. Suppose that F = ( f , A) is a fuzzy soft set over U and SF = (U,F ). Let RF be the fuzzy
relation on U given by RF (x, y) = ∨a∈A( f (a)(x) ∧ f (a)(y)). For each μ ∈ F(U),

(1) Apr
SF
(μ) = RF (μ),

(2) AprSF(μ) = RF (μ).

By this theorem, the soft fuzzy rough approximation presented in Definition 9 is a kind of Dubois
and Prade’s fuzzy rough approximation in [6]. We note that RF (x, y) describes a kind of similarity
between x and y, and RF is symmetric but RF (x, x) �= 1 in general.

The utilization of Z-soft rough fuzzy set in decision-making has already been studied in [17].
Through discussing the connections among different soft rough fuzzy set models, we can further
explore the applications of the other two kinds of soft rough fuzzy sets models in decision-making,
enrich the decision mechanisms and pay attention to the selection of the most suitable mechanism
according to environments. The soft fuzzy rough approximation operators on fuzzy sets proposed by
Meng et al. [14] have the potential to be utilized to handle decision-making problems, discussion on the
connections between which and fuzzy rough approximation operators confirm the rationality of this
model from the theoretical perspective and lays the foundation for subsequent practical applications.

4. F-Soft Rough Sets and Modal-Style Operators in FCA

FCA [22,33,34] provides a methodology for knowledge description and summarization. In this
section, several absorbing connections between F-soft rough sets and modal-style operators in FCA
will be discussed. Formal concept analysis is carried out based on a formal context specifying which
objects posses what properties or attributes. A formal concept is formulated as a pair of two sets, one is
consists of objects and another consists of properties or attributes, and these two sets are connected
by two set-theoretic operators. A complete lattice called concept lattice is constituted by the set of all
formal concepts, which reflects the correlation of generalization and specialization for formal concepts.

Definition 10. A formal context (G, M, I) consists of two sets G and M and a relation I between G and M.
The elements of G are called the objects and the elements of M are called the attributes of the context. (g, m) ∈ I
indicate that the object g has the attribute m, or the attribute m is possessed by the object g [33].

Let (G, M, I) be a formal context. For A ⊆ G, B ⊆ M, Duntsch and Gediga [6] defined a pair of
modal-style operators�,� as follows:

A� = {m ∈ M; ∃g ∈ A((g, m) ∈ I)}, (19)

A� = {m ∈ M; ∀g ∈ G((g, m) ∈ I → g ∈ A)}, (20)

B� = {g ∈ G; ∃m ∈ B((g, m) ∈ I)}, (21)

B� = {g ∈ G; ∀m ∈ M((g, m) ∈ I → m ∈ B)}. (22)

Recently, the granular computing based concept lattice theory has received much attention [35].
Rough set theory, soft set theory and concept lattices have similar basis data description.

Mathematically speaking, the notions of soft set and formal context are equivalent. Furthermore, both a
formal context and a soft set can be considered as a two-valued information system.
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Theorem 10. Let S = (F, A) be a soft set over U. A formal context CS = (U, A, IS) is induced by S, where IS
is provided as

IS = {(x, a) ∈ U × A; x ∈ F(a)}.

Conversely, let C = (U, A, I) be a formal context. A set-valued mapping FC : A → P(U) is defined by

FC(a) = {x ∈ U; (x, a) ∈ I}

for all a ∈ A, and SC = (FC, A) is a soft set. Moreover, we have SCS = S and CSC = C.

Proof. Only the proof for SCS = S and CSC = C will be provided here. Suppose that S = (F, A) is a
soft set over U and a ∈ A. For any x ∈ U, from the definition, we obtain that

x ∈ FCS(a)⇔ (x, a) ∈ IS ⇔ x ∈ F(a).

That is, FCS(a) = F(a) for all a ∈ A. Thus, FCS = F, whence SCS = S.
Next, assume that C = (U, A, I) is a formal context, x ∈ U and a ∈ A. Then, by definition,

(x, a) ∈ ISC ⇔ x ∈ FC(a)⇔ (x, a) ∈ I.

Therefore, we conclude that CSC = C as required.

Theorem 11 shows the relationship among operators�,� and soft rough approximation operators.

Theorem 11. Let S = (F, A) be a soft set over U. For any X ⊆ U, apr
P
(X) = X��, aprP(X) = X��.

Proof. (1) For any x ∈ apr
P
(X), ∃ a ∈ A s.t. x ∈ f (a) ⊆ X. Then, x ∈ a� and a� ⊆ X.

Therefore, a ∈ X� and consequently x ∈ a� ⊆ X��. We conclude that apr
P
(X) ⊆ X��.

Conversely, if x ∈ X��, then ∃ a ∈ X� s.t. x ∈ a�. Then, x ∈ f (a) and f (a) ⊆ X.
Thus, x ∈ { f (c); f (c) ⊆ X} = apr

P
(X) and hence X�� ⊆ apr

P
(X).

(2) For any x ∈ aprP(X), ∃ a ∈ A satisfying x ∈ f (a) and f (a) ∩ X �= ∅. It follows that x ∈ a�

and a� ∩ X �= ∅. Thus, a ∈ X� and consequently x ∈ a� ⊆ X��.
Conversely, ∃ a ∈ X� s.t. x ∈ a� if x ∈ X��. Then, x ∈ f (a) and f (a) ∩ X �= ∅. Consequently,

x ∈ { f (c); f (c) ∩ X �= ∅} = aprP(X).

FCA has become increasingly popular among various methods of conceptual data analysis,
knowledge representation and decision-making. Depth study on the connections of soft rough sets
theory and FCA contributes to the reference and fusion for decision-making approaches in these two
different fields.

5. A New Generalization of F-Soft Rough Set: Soft Rough Soft Sets

In this section, by extending the notion of F-soft rough set, a new generalization model called soft
rough soft set will be proposed. In this new model, we use a soft set is as the elementary knowledge
to compute the approximations of soft set. In this way, parameterized tools can be used to the
greatest extent. Some basic properties of the new proposed model are discussed. A multi-group
decision-making approach based on soft rough soft sets has been provided.

Definition 11. Let U be the universe set and A, A1 be parameter sets. Let S1 = ( f1, A1) be a full soft set
over U and (U,S1) be a soft approximation space. Let S = ( f , A) be a soft set over U. The lower and upper
soft rough approximations of S in (U,S1) are denoted by sapr

S1
(S) = ( fS1 , A) and saprS1

(S) = ( f S1 , A),
which are soft sets over U defined by:
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fS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ f (e)]},

f S1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) �= ∅]},

for all e ∈ A. sapr
S1

, saprS1
are the lower and the upper soft rough approximation operators on soft set S ,

respectively. If sapr
S1
(S) = saprS1

(S), the soft set S is soft definable, or else S is so-called a soft rough soft set.

Example 2. Suppose that the universe set U = {x1, x2, x3, x4, x5, x6} and the parameters set
E = {e1, e2, e3, e4, e5, e6, e7}. Let A = {e1, e2, e3, e4} ⊆ E and A1 = {e3, e4, e5, e6, e7} ⊆ E. Let S1 = ( f1, A1)

be a full soft set and S = ( f , A) be a soft set over U as shown by Tables 1 and 2, respectively. In the soft
approximation space (U,S1), by Definition 11, we get the lower soft rough approximation sapr

S1
(S) = ( fS1 , A)

and the upper soft rough approximation saprS1
(S) = ( f S1 , A) of soft set S = ( f , A), as shown by

Tables 3 and 4, respectively. In order to facilitate the readers to understand, Figure 1 is given to show the
process of computing fS1(e4) and f S1(e4) from f (e4).

Table 1. Soft set ( f1, A1).

A
U x1 x2 x3 x4 x5 x6

e3 1 0 0 0 0 1
e4 0 1 1 0 0 0
e5 0 0 0 0 0 0
e6 0 0 0 0 1 0
e7 0 0 0 1 1 1

Table 2. Soft set ( f , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 3. Soft set ( fS1 , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 0 0 0 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 0 0 1

Table 4. Soft set ( f S1 , A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 1 1 1 1
e2 0 1 1 0 0 1
e3 1 0 0 1 1 1
e4 1 1 1 1 1 1
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Figure 1. The process of computing fS1 (e4) and f S1 (e4) from f (e4) in Example 2.

Proposition 1. Let S1 = ( f1, A1) be a full soft set over U and (U,S1) be a soft approximation space.
Let S = ( f , A) be a soft set over U. The following properties hold:

(1) sapr
S1
(S) ⊆ S ⊆ saprS1

(S),
(2) sapr

S1
(Ñ(U,A)) = Ñ(U,A) = saprS1

(Ñ(U,A)),
(3) saprS1

(W̃(U,A)) = W̃(U,A) = sapr
S1
(W̃(U,A)).

Proof. The lower and upper soft rough approximations of Ñ(U,A) = (N, A) in (U,S1) are denoted
by sapr

S1
(Ñ(U,A)) = (NS1 , A) and saprS1

(Ñ(U,A)) = (NS1 , A); the lower and upper soft rough

approximations of W̃(U,A) = (W, A) in (U,S1) are denoted by sapr
S1
(W̃(U,A)) = (WS1 , A) and

saprS1
(W̃(U,A)) = (WS1 , A).

(1a) For all x ∈ U, e ∈ A, if x ∈ fS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ f (e)]}, then we obtain
x ∈ f (e), so fS1(e) ⊆ f (e);

(1b) For all e ∈ A, if x ∈ f (e), since ( f1, A1) is a full soft set, we obtain that ∃e′ ∈ A1, s.t. x ∈ f1(e′),
then x ∈ f1(e′) ∩ f (e) �= ∅, then x ∈ {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) �= ∅]}, that is,
x ∈ f S1(e) and f (e) ⊆ f S1(e) for all e ∈ A.

Hence, we know that fS1(e) ⊆ f (e) ⊆ f S1(e) for all e ∈ A, that is, sapr
S1
(S) ⊆ S ⊆ saprS1

(S).
(2a) By the definition of relative null soft set, we know N(e) = ∅ for all e ∈ A. For all e ∈ A, we

have NS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ N(e)]} = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ ∅]} = ∅ =

N(e), that is, sapr
S1
(Ñ(U,A)) = Ñ(U,A);

(2b) By the definition of relative null soft set, we know N(e) = ∅ for all e ∈ A. For all e ∈
A, we have NS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ N(e) �= ∅]} = ∅ = N(e), that is,
saprS1

(Ñ(U,A)) = Ñ(U,A).
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(3a) By the definition of relative whole soft set, we know W(e) = U for all e ∈ A. For all
e ∈ A, we have WS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩W(e) �= ∅]} = U = W(e), that is,
saprS1

(W̃(U,A)) = W̃(U,A).
(3b) By the definition of relative whole soft set, we know W(e) = U for all e ∈ A. Since ( f1, A1) is

a full soft set over U, for all e ∈ A, we have WS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ W(e)]} = {x ∈
U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ U]} = U = W(e), that is, sapr

S1
(W̃(U,A)) = W̃(U,A).

Proposition 2. Suppose that S1 = ( f1, A1) is a full soft set over U and (U,S1) is a soft approximation space.
Let S = ( f , A), T = (g, A) be two soft sets over U. The following properties hold:

(1) S ⊆ T ⇒ sapr
S1
(S) ⊆ sapr

S1
(T ),

(2) S ⊆ T ⇒ saprS1
(S) ⊆ saprS1

(T ),
(3) sapr

S1
(S ∩ T ) ⊆ sapr

S1
(S) ∩ sapr

S1
(T ),

(4) sapr
S1
(S ∪ T ) ⊇ sapr

S1
(S) ∪ sapr

S1
(T ),

(5) saprS1
(S ∪ T ) ⊇ saprS1

(S) ∪ saprS1
(T ),

(6) saprS1
(S ∩ T ) ⊆ saprS1

(S) ∩ saprS1
(T ).

Proof. The lower and upper soft rough approximations of S in (U,S1) are denoted by
sapr

S1
(S) = ( fS1 , A) and saprS1

(S) = ( f S1 , A); the lower and upper soft rough approximations of T
in (U,S1) are denoted by sapr

S1
(T ) = (gS1 , A) and saprS1

(T ) = (gS1 , A).

(1) If S ⊆ T , then for all e ∈ A, we have f (e) ⊆ g(e). Assume that x ∈ fS1(e) = {x ∈ U : ∃e′ ∈
A1[x ∈ f1(e′) ⊆ f (e)]}. From f (e) ⊆ g(e), we obtain x ∈ {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′) ⊆ g(e)]} =

gS1(e). Therefore, we get fS1(e) ⊆ gS1(e) for all e ∈ A, i.e., sapr
S1
(S) ⊆ sapr

S1
(T );

(2) If S ⊆ T , then for all e ∈ A, we have f (e) ⊆ g(e). Assume that x ∈ f S1(e) =

{x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ f (e) �= ∅]}, from f (e) ⊆ g(e), we obtain ∃e′ ∈ A1, s.t.
x ∈ f1(e′), f1(e′) ∩ g(e) �= ∅, so x ∈ gS1(e) = {x ∈ U : ∃e′ ∈ A1[x ∈ f1(e′), f1(e′) ∩ g(e) �= ∅]},
it follows that f S1(e) ⊆ gS1(e) for all e ∈ A, i.e., saprS1

(S) ⊆ saprS1
(T );

(3) It is obvious that S ∩ T ⊆ S and S ∩ T ⊆ T . From property (1), we obtain sapr
S1
(S ∩ T ) ⊆

sapr
S1
(S) and sapr

S1
(S ∩ T ) ⊆ sapr

S1
(T ). Thus, sapr

S1
(S ∩ T ) ⊆ sapr

S1
(S) ∩ sapr

S1
(T ).

(4) It is obvious that S ∪ T ⊇ S and S ∪ T ⊇ T . From property (1), we obtain sapr
S1
(S ∪ T ) ⊇

sapr
S1
(S) and sapr

S1
(S ∪ T ) ⊇ sapr

S1
(T ). Thus, sapr

S1
(S ∪ T ) ⊇ sapr

S1
(S) ∪ sapr

S1
(T ).

(5) It is obvious that S ∪ T ⊇ S and S ∪ T ⊇ T . From property (2), we obtain saprS1
(S ∪ T ) ⊇

saprS1
(S) and saprS1

(S ∪ T ) ⊇ saprS1
(T ). Thus, saprS1

(S ∪ T ) ⊇ saprS1
(S) ∪ saprS1

(T ).
(6) It is obvious that S ∩ T ⊆ S and S ∩ T ⊆ T . From property (2), we obtain saprS1

(S ∩ T ) ⊆
saprS1

(S) and saprS1
(S ∩ T ) ⊆ saprS1

(T ). Thus, saprS1
(S ∩ T ) ⊆ saprS1

(S) ∩ saprS1
(T ).

Proposition 3. Let S1 = ( f1, A1) be a full soft set over U and (U,S1) be a soft approximation space.
Let S = ( f , A) be a soft set over U. The following properties hold:

(1) sapr
S1
(S) ⊆ sapr

S1
(saprS1

(S)),
(2) saprS1

(S) ⊇ saprS1
(sapr

S1
(S)).

Proof. From property (1) in Proposition 1, it is obvious that sapr
S1
(S) ⊆ S ⊆ saprS1

(S). From property

(1) and (2) in Proposition 2, we get sapr
S1
(S) ⊆ sapr

S1
(saprS1

(S)) and saprS1
(S) ⊇ saprS1

(sapr
S1
(S)),

respectively.

In [12], a group decision-making approach based on F-soft rough sets was proposed; however,
if we carefully check their decision scheme, it is not hard to find that they actually use the tool of a
soft rough soft set since the best alternatives provided by each specialist gather together to form a soft
set and they compute the upper and lower soft rough approximations (soft sets) on the preliminary
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evaluation soft set during the decision process. That is, although the concept has not been formally
proposed, the application of soft rough soft sets has already appeared in literature. From another
perspective, the decision-making problem that can be solved by F-soft rough sets in [12] can also be
solved by using soft rough soft sets. It is necessary to propose the concept for soft rough soft sets as
well as its application to introduce parameter tools to the universe description, that is, make it feasible
to describe objects in the universe from different aspects at the same time, information obtained from
different aspects be able to be handled as a whole before the approximations of a soft set are computed,
and allow the flexibility to make operations such as the restricted intersection “∩” [25] on soft sets
whose soft rough approximations need to be computed; in this way, soft rough soft sets have the
potential to be applied in more complex decision-making situations to meet demands of applications in
real life cases. As follows, we provide a simple application of soft rough soft sets in decision-making.

Let G = {T1, T2, ..., Tp} and A1 = {e′1, e′2, ..., e′q} be two groups of specialists to evaluate all the
candidates U = {x1, x2, ..., xm}. In group G, each specialist is asked to point out if the candidates
satisfy benefit properties in A = {e1, e2, ..., en} or not. In this way, a serious of evaluations provided
by specialists are obtained as (g1, A), (g2, A), (g3, A), . . . , (gp, A). Afterwards, the evaluation
made by group G could be obtained by S = ( f , A) = (g1, A) ∩ (g2, A) ∩ (g3, A) ∩ . . . (gp, A).
Meanwhile, in another group A1 = {e′1, e′2, ..., e′q}, the specialists are under time pressure, and a lack of
patience, or, because of some other issues, each specialist only points out the best alternatives; however,
we have no clear idea about which properties are under their consideration. The best alternatives
chosen by specialists in group A1 form another soft set S1 = ( f1, A1). We say the assessments provided
by group G are more reliable since the assessments provided by them are more specific than group
A1. However, in order to make full use of information provided by the two independent groups,
we can compute the lower soft rough approximation on ( f , A) in soft approximation space (U, S1).
If xi ∈ fS1(ej), from the axiomatic definition of soft rough soft sets, we know that the best alternatives of
one or more specialists in A1 are totally contained in f (ej), that is, the best alternatives chosen by some
specialists in A1 certainly occupy property ej, which indicates that this benefit property ej considered
by group G may also be very important to group A1. The final decision is to select the alternative that
occupies the most number of beneficial properties that may be important for both groups.

The steps of this soft rough soft sets based multi-group decision-making approach can be listed as:
Step 1. Input the evaluations on alternatives U = {x1, x2, ..., xm} provided by specialists group

G = {T1, T2, ..., Tp} as (g1, A), (g2, A), (g3, A), . . . , (gp, A).
Step 2. Input the best alternatives selected by specialists group A1 as S1 = ( f1, A1).
Step 3. Compute the group evaluation made by the specialists in G as S = ( f , A) = (g1, A) ∩

(g2, A) ∩ (g3, A) ∩ . . . (gp, A).
Step 4. Compute the lower soft rough approximation of ( f , A) in (U, S1), i.e. ( fS1 , A).
Step 5. Compute the score of alternatives of each xj (j = 1, 2, . . . , m) as s(xj) = ∑n

i=1 fS1(ei)(xj),
and the decision result is xk if it satisfies s(xk) = maxj=1,2,...,m s(xj).

Example 3. Suppose that a factory needs to purchase the best machine from U = {x1, x2, ..., x6} according to
evaluations provided by two specialists groups G and A1, which form a multi-group decision-making problem.
G = {T1, T2, T3, T4} consists of four specialists and each of them provides assessments on machines in U
with respect to beneficial properties A = {e1 = low price, e2 = high endurance, e3 = advanced technology,
e4 = good compatibility}. Each specialist in G points out if the machines satisfy properties in A or not.
In this way, a serious of evaluation soft sets provided by specialists are obtained as (g1, A), (g2, A), (g3, A),
(g4, A) (see Tables 5–8 as their tabular representations) and the group evaluation of G can be computed by
( f , A) = (g1, A) ∩ (g2, A) ∩ (g3, A) ∩ (g4, A) (see also Table 2 as the tabular representation for ( f , A)).
Meanwhile, each specialist in another specialist group A1 = {e′3, e′4, e′5, e′6, e′7} only points out the best machines
according to his/her own cognition, which form soft set ( f1, A1) (replace e′3 − e′7 by e3 − e7 and see also Table 1
for its tabular representation). The lower soft rough approximation of ( f , A) in (U, S1) can be easily computed
as ( fS1 , A) (see also Table 3 for its tabular representation). It is easy to obtain that s(x1) = s(x2) = s(x3) = 2,
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s(x4) = s(x5) = 1 and s(x6) = 3, hence x6 should be the machine purchased by the factory since it satisfies
largest number of beneficial properties that are important to two groups.

Table 5. Soft set (g1, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 1 1 0 1
e2 0 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 6. Soft set (g2, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 1 1 1 0 0 0
e3 0 0 0 1 1 1
e4 1 1 1 1 0 1

Table 7. Soft set (g3, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 1 0 0 1 1 1
e4 1 1 1 1 0 1

Table 8. Soft set (g4, A).

A
U x1 x2 x3 x4 x5 x6

e1 1 1 0 1 0 1
e2 0 1 1 0 0 0
e3 0 0 1 1 1 1
e4 1 1 1 1 0 1

As is mentioned at the beginning of this section, soft rough soft set is an extension model of F-soft
rough set. Sometimes, in a practical situation, the universe set that needs to be granulated is presented
from different attributes’ aspects simultaneously. In other words, the parameter tools are necessary not
only for the knowledge presentation, but also for the universe description. The new model provides
a framework for dealing with these kinds of problems and the exploration of its potential use in
decision-making is promising. Compared to F-soft rough sets, soft rough soft sets introduce parameter
tools to the universe description and a soft set (instead of a subset of the universe) is approximated.
Compared to rough soft set [12], a soft set instead of an equivalence relation has been adopted in
soft rough soft sets to compute the approximations of soft sets [36,37]. In this section, only a small
application attempt of soft rough soft sets in decision-making has been provided, which is far from
enough to meet various demands in real life situations. More flexible and effective approaches need to
be developed in the future.

6. Conclusions

This paper has presented a comparative study of some existing soft rough set models, and new
discoveries on the relationships among various hybrid sets have been summarized in Table 9. It has
been shown that the Z-soft rough fuzzy set is a kind of rough fuzzy set. Therefore, decision-making
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approaches based on rough fuzzy sets have the potential to be addicted to more specific situations in
which Z-soft rough fuzzy sets should be applied to solve the problem. Various soft rough set models
have shown great potential in coping with decision-making problems. Some potential applications of
connections among various soft rough set models in decision-making have been briefly discussed in
the current work. For instance, benefitting from the connections between F-soft rough approximations
and MSR approximations that have been discussed, it is possible to further study the relationships
between the decision results made by using soft rough sets and MSR sets. In future works, deeper and
more specific research on the applications of these connections in decision-making will be conducted.

Table 9. Summary on relationships among various hybrid models.

Various Hybrid Models Relationships

F-soft rough approximations and modified soft Xϕ ⊆ aprP(X), aprP(X) ⊆ Xϕ, Xϕ ⊆ apr
P
(X),

rough approximations (MSR approximations) if some specific conditions hold, respectively
(see Theorems 1–3)

F-soft rough sets in (U, S) and Pawlak’s rough sets F-soft rough sets in (U, S) could be identified
in (U, RS) with Pawlak’s rough sets in (U, RS), when the

underlying soft set is a partition soft set
(see Theorems 4 and 5)

MSR approximations and Pawlak’s MSR approximation operator is a kind of
rough approximations Pawlak rough approximation operator

(see Theorem 6)

Z-lower, Z-upper soft rough approximation operators Z-lower and Z-upper soft rough approximation
and Dubois and Prade’s lower and upper rough fuzzy operators are equivalent to Dubois and Prade’s
approximation operators in [6] lower and upper rough fuzzy approximation

operators in [6] (see Corollary 3)

The (classical) rough fuzzy sets and M-soft rough The (classical) rough fuzzy sets in Pawlak
fuzzy sets approximation space (U, R) and M-soft rough

fuzzy sets in soft approximation space (U, S)
are equivalent when the underlying soft
set S is a partition soft set (see Theorem 7)

Z-soft rough approximation operators and M-soft sap
P
(μ) ⊆ sap

′

P
(μ) ⊆ μ

ϕ
⊆ μ ⊆ μϕ ⊆ sap

′
P(μ)

Rough approximation operators and F-soft rough ⊆ sapP(μ) (see Theorem 8 and Corollary 4)
approximation operators

The soft fuzzy rough approximation in Definition 9 The soft fuzzy rough approximation is a kind of
and Dubois and Prade’s fuzzy rough approximation Dubois and Prade’s fuzzy rough approximation
in [6] in [6] (see Theorem 9)

F-soft rough set and soft rough soft set Soft rough soft set is an extension of F-soft
rough set
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Abstract: In fuzzy decision problems, the ordering of fuzzy numbers is the basic problem. The fuzzy
preference relation is the reasonable representation of preference relations by a fuzzy membership
function. This paper studies Nakamura’s and Kołodziejczyk’s preference relations. Eight cases,
each representing different levels of overlap between two triangular fuzzy numbers are considered.
We analyze the ranking behaviors of all possible combinations of the decomposition and intersection
of two fuzzy numbers through eight extensive test cases. The results indicate that decomposition and
intersection can affect the fuzzy preference relations, and thereby the final ranking of fuzzy numbers.

Keywords: fuzzy number; ranking; preference relations

1. Introduction

For solving decision-making problems in a fuzzy environment, the overall utilities of a set of
alternatives are represented by fuzzy sets or fuzzy numbers. A fundamental problem of a decision-making
procedure involves ranking a set of fuzzy sets or fuzzy numbers. Ranking functions, reference sets and
preference relations are three categories with which to rank a set of fuzzy numbers. For a detailed
discussion, we refer the reader to surveys by Chen and Hwang [1] and Wang and Kerre [2,3]. For ranking
a set of fuzzy numbers, this paper concentrates on those fuzzy preference relations that are able to
represent preference relations in linguistic or fuzzy terms and to make pairwise comparisons. To propose
the fuzzy preference relation, Nakamura [4] employed a fuzzy minimum operation followed by the
Hamming distance. Kołodziejczyk [5] considered the common part of two membership functions and
used the fuzzy maximum and Hamming distance. Yuan [6] compared the fuzzy subtraction of two
fuzzy numbers with real number zero and indicated that the desirable properties of a fuzzy ranking
method are the fuzzy preference presentation, rationality of fuzzy ordering, distinguishability and
robustness. Li [7] included the influence of levels of possibility of dominance. Lee [8] presented a
counterexample to Li’s method [7] and proposed an additional comparable property. The methods of
Wang et al. [9] and Asady [10] were based on deviation degree. Zhang et al. [11] presented a fuzzy
probabilistic preference relation. Zhu et al. [12] proposed hesitant fuzzy preference relations. Wang [13]
adopted the relative preference degrees of the fuzzy numbers over average.

This paper evaluates and compares two fundamental fuzzy preference relations—one is proposed
by Nakamura [4] and the other by Kołodziejczyk [5]. The intersection of two membership functions and
the decomposition of two fuzzy numbers are main differences between these two preference relations.
Since the desirable criteria cannot easily be represented in mathematical forms, their performance
measures are often tested by using test examples and judged intuitively. To this end, we consider
eight complex cases that represent all the possible cases the way two fuzzy numbers can overlap
with each other. For Nakamura’s and Kołodziejczyk’s fuzzy preference relations, this paper analyzes
and compares the ordering behaviors of the decomposition and intersection through a group of
extensive cases.
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The organization of this paper is as follows—Section 2 briefly reviews the fuzzy sets and fuzzy
preference relations and presents the eight test cases. Section 3 analyzes Nakamura’s fuzzy preference
relation and presents an algorithm. Section 4 presents the behaviors of Kołodziejczyk’s fuzzy preference
relation. Section 5 analyzes the effect of the decomposition and intersection on fuzzy preference
relations. Finally, some concluding remarks and suggestions for future research are presented.

2. Fuzzy Sets and Test Problems

We first review the basic notations of fuzzy sets and fuzzy preference relations. Consider a
fuzzy set A defined by a universal set of real numbers R by the membership function A(x), where
A(x) : � → [0, 1] .

Definition 1. Let A be a fuzzy set. The support of A is the crisp set SA = {x ∈ �|A(x) > 0} . A is called
normal when supx∈SA

A(x) = 1. An α-cut of A is a crisp set Aα = {x ∈ �|A(x) ≥ α}. A is convex if, and
only if, each of its α-cut is a convex set.

Definition 2. A normal and convex fuzzy set whose membership function is piecewise continuous is called a
fuzzy number.

Definition 3. A triangular fuzzy number A, denoted A = (a, b, c), is a fuzzy number with membership
function given by:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x−a
b−a if a ≤ x ≤ b

c−x
c−b if b ≤ x ≤ c

0 otherwise

where −∞ < a ≤ b ≤ c < ∞. The set of all triangular fuzzy numbers onR is denoted by TF(�).

Definition 4. For a fuzzy number A, the upper boundary set A of A and the lower boundary set A of A are
respectively defined as:

A(x) = supy≥x A(y)

and:
A(x) = supy≤x A(y).

Definition 5. The Hamming distance between two fuzzy numbers A and B is defined by:

d(A, B) =
∫

R
|A(x)− B(x)|dx

=
∫

A(x)≥B(x)
A(x)− B(x)dx +

∫
B(x)≥A(x)

B(x)− A(x)dx.

Definition 6. Let A and B be two fuzzy numbers and × be an operation on R , such as +, –, *, ÷ . . . .
By extension principle, the extended operation ⊗ on fuzzy numbers can be defined by:

μA⊗B(z) = sup
x,y:z=x×y

min{A(x), B(y)}.

Definition 7. A fuzzy preference relation R is a fuzzy binary relation with membership function R(A, B)
indicating the degree of preference of fuzzy number A over fuzzy number B.
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1. R is reciprocal if, and only if, R(A, B) = 1− R(B, A) for all fuzzy numbers A and B.
2. R is transitive if, and only if, R(A, B) ≥ 0.5 and R(B, C) ≥ 0.5 implies R(A, C) ≥ 0.5 for all fuzzy

numbers A, B and C.
3. R is a fuzzy total ordering if, and only if, R is both reciprocal and transitive.
4. R is robust if, and only if, for any given fuzzy numbers A, B and ε > 0, there

exists δ > 0 for which |R(A, B)− R(A′, B)| < ε, for all fuzzy number A′ and
max
α>0

(|infAα − infBα|, |supAα − supBα|) < δ.

For simplicity, we denote R′(A, B) for the degree of preference of fuzzy number B over fuzzy
number A.

The evaluation criteria for the comparison of two fuzzy numbers cannot easily be represented
in mathematical forms therefore it is often tested on a group of selected examples. The membership
functions of two fuzzy numbers can be overlapping/nonovelapping, convex/nonconvex, and
normal/non-normal. All the approaches proposed in the literature seem to suffer from some
questionable examples, especially for the portion of overlap between two membership functions.

Let A(a1, b1, c1) and B(a2, b2, c2) be two triangular fuzzy numbers. Figure 1 displays eight test
cases of representing all the possible cases the way two fuzzy numbers A and B can overlap with each
other. Table 1 shows the area Qi of i-th region in each case. More precisely, the eight extensive test
cases are as follows:

Case 1. a1 ≤ a2, b1 ≤ b2, c1 ≤ c2.
Case 2. a1 ≤ a2, b1 ≥ b2, c1 ≤ c2.
Case 3. a1 ≤ a2, b1 ≤ b2, c1 ≥ c2.
Case 4. a1 ≤ a2, b1 ≥ b2, c1 ≥ c2.
Case 5. a1 ≥ a2, b1 ≤ b2, c1 ≤ c2.
Case 6. a1 ≥ a2, b1 ≥ b2, c1 ≤ c2.
Case 7. a1 ≥ a2, b1 ≤ b2, c1 ≥ c2.
Case 8. a1 ≥ a2, b1 ≥ b2, c1 ≥ c2.

Figure 1. Cont.
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Figure 1. Cont.
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Figure 1. Eight test cases for two fuzzy numbers A( a1, b1, c1) and B( a2, b2, c2) .

Table 1. The area Qi of i-th region for eight cases.

Case Area

1

Q3 =
∫ 1
(c1−a2)/(c1−b1+b2−a2)

−(c1 − a2 − (c1 − b1 + b2 − a2)α)dα

Q2 =
∫ 1

0 a2 − a1 + (b2 − a2 − b1 + a1)αdα−Q3

Q4 =
∫ 1

0 c2 − c1 − (c2 − b2 − c1 + b1)αdα−Q3

Q6 =
∫ (c1−a2)/(c1−b1+b2−a2)

0 (c1 − a2 − (c1 − b1 + b2 − a2)αdα

2

Q1 =
∫ (−a2+a1)/(b2−a2−b1+a1)

0 a2 − a1 + (b2 − a2 − b1 + a1)αdα

Q3 =
∫ 1
(c2−a1)/(c2−b2+b1−a1)

−(c2 − a1 − (c2 − b2 + b1 − a1)α)dα

Q2 =
∫ 1
(−a1+a2)/(b1−a1−b2+a2)

a1 − a2 + (b1 − a1 − b2 + a2)αdα−Q3

Q4 =
∫ 1
(c1−c2)/(c1−b1−c2+b2)

c1 − c2 − (c1 − b1 − c2 + b2)αdα−Q3

Q5 =
∫ (c2−c1)/(c2−b2−c1+b1)

0 c2 − c1 − (c2 − b2 − c1 + b1)αdα

Q6 =
∫ (c2−a1)/(c2−b2+b1−a1)

0 (c2 − a1 − (c2 − b2 + b1 − a1)α)dα−Q1 −Q5

73

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 228

Table 1. Cont.

Case Area

3

Q3 =
∫ 1
(c1−a2)/(c1−b1+b2−a2)

−(c1 − a2 − (c1 − b1 + b2 − a2)α)dα

Q2 =
∫ 1

0 a2 − a1 + (b2 − a2 − b1 + a1)αdα−Q3

Q4 =
∫ 1
(c2−c1)/(c2−b2−c1+b1)

c2 − c1 − (c2 − b2 − c1 + b1)αdα−Q3

Q5 =
∫ (c1−c2)/(c1−b1−c2+b2)

0 c1 − c2 − (c1 − b1 − c2 + b2)αdα

Q6 =
∫ (c1−a2)/(c1−b1+b2−a2)

0 (c1 − a2 − (c1 − b1 + b2 − a2)αdα−Q5

4

Q1 =
∫ (−a2+a1)/(b2−a2−b1+a1)

0 a2 − a1 + (b2 − a2 − b1 + a1)αdα

Q3 =
∫ 1
(c2−a1)/(c2−b2+b1−a1)

−(c2 − a1 − (c2 − b2 + b1 − a1)α)dα

Q2 =
∫ 1
(−a1+a2)/(b1−a1−b2+a2)

a1 − a2 + (b1 − a1 − b2 + a2)αdα−Q3

Q4 =
∫ 1

0 c1 − c2 − (c1 − b1 − c2 + b2)αdα−Q3

Q6 =
∫ (c2−a1)/(c2−b2+b1−a1)

0 (c2 − a1 − (c2 − b2 + b1 − a1)α)dα−Q1

5

Q1 =
∫ (−a1+a2)/(b1−a1−b2+a2)

0 a1 − a2 + (b1 − a1 − b2 + a2)αdα

Q3 =
∫ 1
(c1−a2)/(c1−b1+b2−a2)

−(c1 − a2 − (c1 − b1 + b2 − a2)α)dα

Q2 =
∫ 1
(−a2+a1)/(b2−a2−b1+a1)

a2 − a1 + (b2 − a2 − b1 + a1)αdα−Q3

Q4 =
∫ 1

0 c2 − c1 − (c2 − b2 − c1 + b1)αdα−Q3

Q6 =
∫ (c1−a2)/(c1−b1+b2−a2)

0 (c1 − a2 − (c1 − b1 + b2 − a2)αdα−Q1

6

Q3 =
∫ 1
(c2−a1)/(c2−b2+b1−a1)

−(c2 − a1 − (c2 − b2 + b1 − a1)α)dα

Q2 =
∫ 1

0 a1 − a2 + (b1 − a1 − b2 + a2)αdα−Q3

Q4 =
∫ 1
(c1−c2)/(c1−b1−c2+b2)

c1 − c2 − (c1 − b1 − c2 + b2)αdα−Q3

Q5 =
∫ (c2−c1)/(c2−b2−c1+b1)

0 c2 − c1 − (c2 − b2 − c1 + b1)αdα

Q6 =
∫ (c2−a1)/(c2−b2+b1−a1)

0 (c2 − a1 − (c2 − b2 + b1 − a1)α)dα−Q5

7

Q1 =
∫ (−a1+a2)/(b1−a1−b2+a2)

0 a1 − a2 + (b1 − a1 − b2 + a2)αdα

Q3 =
∫ 1
(c1−a2)/(c1−b1+b2−a2)

−(c1 − a2 − (c1 − b1 + b2 − a2)α)dα

Q2 =
∫ 1
(−a2+a1)/(b2−a2−b1+a1)

a2 − a1 + (b2 − a2 − b1 + a1)αdα−Q3

Q4 =
∫ 1
(c2−c1)/(c2−b2−c1+b1)

c2 − c1 − (c2 − b2 − c1 + b1)αdα−Q3

Q5 =
∫ (c1−c2)/(c1−b1−c2+b2)

0 c1 − c2 − (c1 − b1 − c2 + b2)αdα

Q6 =
∫ (c1−a2)/(c1−b1+b2−a2)

0 (c1 − a2 − (c1 − b1 + b2 − a2)αdα−Q1 −Q5

8

Q3 =
∫ 1
(c2−a1)/(c2−b2+b1−a1)

−(c2 − a1 − (c2 − b2 + b1 − a1)α)dα

Q2 =
∫ 1

0 a1 − a2 + (b1 − a1 − b2 + a2)αdα−Q3

Q4 =
∫ 1

0 c1 − c2 − (c1 − b1 − c2 + b2)αdα−Q3

Q6 =
∫ (c2−a1)/(c2−b2+b1−a1)

0 (c2 − a1 − (c2 − b2 + b1 − a1)α)dα

3. Nakamura’s Fuzzy Preference Relation

Using fuzzy minimum, fuzzy maximum, and Hamming distance, Nakamura’s fuzzy preference
relations [4] are defined as follows:

Definition 8. For two fuzzy numbers A and B, Nakamura [4] defines N(A, B) and N′(A, B) as fuzzy preference
relations by the following membership functions:

N(A, B) =
d
(

A, m̃in(A, B)
)
+ d
(

A, m̃in
(

A, B
))

d(A, B) + d
(

A, B
)
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and:

N′(A, B) =
d(A ∩ B, 0) + d(A, m̃ax(A, B))

d(A, 0) + d(B, 0)

respectively. Yuan [6] showed that N(A, B) is reciprocal and transitive, but not robust. Wang and Kerre [3]
derived that:

d
(

A, m̃in(A, B)
)
= d(B, m̃ax(A, B))

d
(

A, m̃ax
(

A, B
))

= d
(

B, m̃in
(

A, B
))

d
(

A, m̃in(A, B)
)
+ d(A, m̃ax(A, B)) = d(A, B)

d
(

A, m̃in
(

A, B
))

+ d
(

A, m̃ax
(

A, B
))

= d
(

A, B
)

and:
2d(A∩ B, 0) + d(A, m̃ax(A, B)) + d(B, m̃ax(A, B)) = d(A, 0) + d(B, 0).

It follows that:
N(A, B) + N(B, A) = 1

and:
N′(A, B) + N′(B, A) = 1.

For two triangular fuzzy numbers A(a1, b1, c1) and B(a2, b2, c2), then:

Aα = [L1, U1] = [a1 + (b1 − a1)α, c1 − (c1 − b1)α]

Bα = [L2, U2] = [a2 + (b2 − a2)α, c2 − (c2 − b2)α]

so:
N(A, B) =

d(A,m̃in(A,B))+d(A,m̃in(A,B))
d(A,B)+d(A,B)

=

∫
L1≥L2

L1−L2dα+
∫

U1≥U2
U1−U2dα∫

L1≥L2
L1−L2dα+

∫
L2≥L1

L2−L1dα+
∫

U1≥U2
U1−U2dα+

∫
U2≥U1

U2−U1dα
.

Define:

S1 =
∫

L1≥L2

L1 − L2dα =
∫

a1−a2+(b1−a1−b2+a2)α≥0
a1 − a2 + (b1 − a1 − b2 + a2)αdα

S2 =
∫

L2≥L1

L2 − L1dα =
∫

a2−a1+(b2−a2−b1+a1)α≥0
a2 − a1 + (b2 − a2 − b1 + a1)αdα

S3 =
∫

U1≥U2

U1 −U2dα =
∫

c1−c2−(c1−b1−c2+b2)α≥0
c1 − c2 − (c1 − b1 − c2 + b2)αdα

S4 =
∫

U2≥U1

U2 −U1dα =
∫

c2−c1−(c2−b2−c1+b1)α≥0
c2 − c1 − (c2 − b2 − c1 + b1)αdα,

then:
N(A, B) =

S1 + S3

S1 + S2 + S3 + S4
.

Let A = a2 − a1, B = b2 − b1 and C = c2 − c1. The steps for implementing the Nakamura’s fuzzy
preference relation N(A, B) are as in Algorithm 1:
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Algorithm 1. Nakamura’s fuzzy preference relation

If A ≥ 0
If C ≥ 0

If B ≥ 0, then N(A, B) = 0 else N(A, B) = B2(A−2B+C)
(A2+B2)(−B+C)+(B2+C2)(A−B) .

else if B ≥ 0, then N(A, B) = C2

(A+B)(B−C)+B2+C2 else

N(A, B) = 1− A2

(A−B)(−B−C)+A2+B2 .

else if C ≥ 0
If B ≥ 0, then N(A, B) = A2

(−A+B)(B+C)+A2+B2 else

N(A, B) = 1− C2

(A+B)(B−C)+B2+C2 .

else if B ≥ 0, then N(A, B) = 1− B2(A−2B+C)
(A2+B2)(−B+C)+(B2+C2)(A−B) else N(A, B) = 1.

Table 2 shows the values of N(A, B) and N′(A, B) for each test case. The first observation of this
table is that:

N1(A, B) + N8(A, B) = 1

N2(A, B) + N7(A, B) = 1

N3(A, B) + N6(A, B) = 1

N4(A, B) + N5(A, B) = 1.

Secondly, comparing the values of N(A, B) with that of N′(A, B), we have that
1− N′1(A, B) ≥ N1(A, B) and 1− N′8(A, B) ≤ N8(A, B). If a2 + 2b2 + c2 ≥ a1 − 2b1 − c1, we obtain
that 1− N′2(A, B) ≤ N2(A, B), 1− N′3(A, B) ≥ N3(A, B), 1− N′4(A, B) ≤ N4(A, B), 1− N′5(A, B) ≥
N5(A, B), 1− N′6(A, B) ≤ N6(A, B) and 1− N′7(A, B) ≥ N7(A, B).

Table 2. N(A, B) and N′(A, B) for eight cases.

Case N(A, B) N′(A, B)

1 0 1 + (a2−c1)
2

(a2+b1−b2−c1)(−a1−a2+c1+c2)

2 (b2−b1)
2(a2−a1−2(b2−b1)+(c2−c1))

((a2−a1)
2+(b2−b1)

2)(b1−b2+c2−c1)+((b2−b1)
2+(c2−c1)

2)(a2−a1−b2+b1)
(a1−c2)

2

(a1−b1+b2−c2)(a1+a2−c1−c2)

3 (c2−c1)
2

(a2−a1+b2−b1)(b2−b1−c2+c1)+(b2−b1)
2+(c2−c1)

2 1 + (a2−c1)
2

(a2+b1−b2−c1)(−a1−a2+c1+c2)

4 1− (a2−a1)
2

(a2−a1−b2+b1)(−b2+b1−c2+c1)+(a2−a1)
2+(b2−b1)

2
(a1−c2)

2

(a1−b1+b2−c2)(a1+a2−c1−c2)

5 (a2−a1)
2

(a2−a1−b2+b1)(−b2+b1−c2+c1)+(a2−a1)
2+(b2−b1)

2 1 + (a2−c1)
2

(a2+b1−b2−c1)(−a1−a2+c1+c2)

6 1− (c2−c1)
2

(a2−a1+b2−b1)(b2−b1−c2+c1)+(b2−b1)
2+(c2−c1)

2
(a1−c2)

2

(a1−b1+b2−c2)(a1+a2−c1−c2)

7 1− (b2−b1)
2(a2−a1−2b2+2b1+c2−c1)

((a2−a1)
2+(b2−b1)

2)(b1−b2+c2−c1)+((b2−b1)
2+(c2−c1)

2)(a2−a1−b2+b1)
1 + (a2−c1)

2

(a2+b1−b2−c1)(−a1−a2+c1+c2)

8 1 (a1−c2)
2

(a1−b1+b2−c2)(a1+a2−c1−c2)

4. Kołodziejczyk’s Fuzzy Preference Relation

By considering the common part of two membership functions, Kołodziejczyk’s method [5] is
based on fuzzy maximum and Hamming distance to propose the following fuzzy preference relations:

Definition 9. For two fuzzy numbers A and B, Kołodziejczyk [5] defines K1′(A, B) and K2′(A, B) as fuzzy
preference relations by the following membership functions:

K1′(A, B) =
d(A, m̃ax(A, B)) + d

(
A, m̃ax

(
A, B
))

+ d(A ∩ B, 0)
d(A, B) + d

(
A, B
)
+ 2d(A ∩ B, 0)
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and:

K2′(A, B) =
d(A, m̃ax(A, B)) + d

(
A, m̃ax

(
A, B
))

d(A, B) + d
(

A, B
)

respectively. K1′(A, B) is reciprocal, transitive and robust [3,5]. Since:

K2′(A, B) = 1− N(A, B)

the results of K2′(A, B) can be obtained from those of N(A, B).

For two triangular fuzzy numbers A(a1, b1, c1) and B(a2, b2, c2), then:

Aα = [L1, U1] = [a1 + (b1 − a1)α, c1 − (c1 − b1)α]

Bα = [L2, U2] = [a2 + (b2 − a2)α, c2 − (c2 − b2)α].

Define:
S1 = d(A, m̃ax(A, B)) =

∫
L2≥L1

L2 − L1dα

S2 =
∫

L1≥L2

L1 − L2dα

d(A, B) = S1 + S2

S3 = d
(

A, m̃ax
(

A, B
))

=
∫

U2≥U1

U2 −U1dα

S4 =
∫

U1≥U2

U1 −U2dα

d
(

A, B
)
= S3 + S4

and:
S5 = d(A ∩ B, 0) =

∫
U1≥L2

U1 − L2dα−
∫

U1≥U2

U1 −U2dα−
∫

L1≥L2

L1 − L2dα.

Then:
K1′(A, B) =

S1 + S3 + S5

S1 + S2 + S3 + S4 + 2S5

and:
K2′(A, B) =

S1 + S3

S1 + S2 + S3 + S4
.

In Table 3, we display the values of K1′(A, B) and K2′(A, B) for each test case. An examination of
the table reveals that:

K1′1(A, B) = K1′3(A, B) = K1′5(A, B) = K1′7(A, B)

= 1− (c1−a2)
2

(c1−a2+c2−a1)(c1−a2−b1+b2)+2(b2−b1)
2

and:

K1′2(A, B) = K1′4(A, B) = K1′6(A, B) = K1′8(A, B) = (c2−a1)
2

(c2−a1)
2+(c2−a1−b2+b1)(c1−a2−b2+b1)+(b2−b1)

2 .

If b1 = b2, we have:

K1′1(A, B) = 1− c1 − a2

(c1 − a2 + c2 − a1)
=

c2 − a1

(c1 − a2 + c2 − a1)

and:
K1′2(A, B) =

c2 − a1

(c1 − a2 + c2 − a1)
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so:
K1′1(A, B) = K1′2(A, B)

and:

K1′1(A, B) + K1′2(A, B) =
2(c2 − a1)

(c1 − a2 + c2 − a1)
.

It follows that:
K1′1(A, B) + K1′2(A, B) = 0 for b1 = b2 and c2 = a1.

and:
K1′1(A, B) + K1′2(A, B) = 1 for b1 = b2 and c1 − a2 = c2 − a1.

Table 3. K1′(A, B) and K2′(A, B) for eight cases.

Case K1′(A, B) K2′(A, B)

1 1− (c1−a2)
2

(c1−a2+c2−a1)(c1−a2−b1+b2)+2(b2−b1)
2 1

2 (c2−a1)
2

(c2−a1)
2+(c2−a1−b2+b1)(c1−a2−b2+b1)+(b2−b1)

2 1− (b2−b1)
2(a2−a1−2(b2−b1)+(c2−c1))

((a2−a1)
2+(b2−b1)

2)(b1−b2+c2−c1)+((b2−b1)
2+(c2−c1)

2)(a2−a1−b2+b1)

3 1− (c1−a2)
2

(c1−a2+c2−a1)(c1−a2−b1+b2)+2(b2−b1)
2 1− (c2−c1)

2

(a2−a1+b2−b1)(b2−b1−c2+c1)+(b2−b1)
2+(c2−c1)

2

4 (c2−a1)
2

(c2−a1)
2+(c2−a1−b2+b1)(c1−a2−b2+b1)+(b2−b1)

2
(a2−a1)

2

(a2−a1−b2+b1)(−b2+b1−c2+c1)+(a2−a1)
2+(b2−b1)

2

5 1− (c1−a2)
2

(c1−a2+c2−a1)(c1−a2−b1+b2)+2(b2−b1)
2 1− (a2−a1)

2

(a2−a1−b2+b1)(−b2+b1−c2+c1)+(a2−a1)
2+(b2−b1)

2

6 (c2−a1)
2

(c2−a1)
2+(c2−a1−b2+b1)(c1−a2−b2+b1)+(b2−b1)

2
(c2−c1)

2

(a2−a1+b2−b1)(b2−b1−c2+c1)+(b2−b1)
2+(c2−c1)

2

7 1− (c1−a2)
2

(c1−a2+c2−a1)(c1−a2−b1+b2)+2(b2−b1)
2

(b2−b1)
2(a2−a1−2b2+2b1+c2−c1)

((a2−a1)
2+(b2−b1)

2)(b1−b2+c2−c1)+((b2−b1)
2+(c2−c1)

2)(a2−a1−b2+b1)

8 (c2−a1)
2

(c2−a1)
2+(c2−a1−b2+b1)(c1−a2−b2+b1)+(b2−b1)

2 0

5. Two Comparative Studies of Decomposition and Intersection of Two Fuzzy Numbers

If the fuzzy number A is less than the fuzzy number B, then the Hamming distance between
A and m̃ax(A, B) is large. Two representations are adopted. One is d(A, m̃ax(A, B)). The other
is d(A, m̃ax(A, B)) + d

(
A, m̃ax

(
A, B
))

which decomposes A into A and A. To analyze the effect of
decomposition, we consider the following preference relations without decomposition:

T1′(A, B) =
d(A, m̃ax(A, B)) + d(A ∩ B, 0)

d(A, 0) + d(B, 0)

and:

T2′(A, B) =
d(A, m̃ax(A, B))

d(A, B)

which are the counterparts of the Kołodziejczyk’s preference relations K1′(A, B) and K2′(A, B).
Therefore, the preference relations K1′(A, B) and K2′(A, B) consider the decomposition of fuzzy
numbers, while T1′(A, B) and T2′(A, B) do not. The preference relations K1′(A, B) and T1′(A, B)
consider the intersection of two membership functions, while K2′(A, B) and T2′(A, B) do not.
For completeness, Table 4 displays the values of N(A, B), N′(A, B), K1′(A, B), K2′(A, B), T1′(A, B) and
T2′(A, B) of each test case in terms of the values of Qi. The K1′(A, B) considers both decomposition
and intersection of two fuzzy numbers, while T2′(A, B) do not. From K1′(A, B) to T2′(A, B), two
representations are:

K1′(A, B)→ K2′(A, B)→ T2′(A, B)

and:
K1′(A, B)→ T1′(A, B)→ T2′(A, B).
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Table 4. N(A, B) , N′(A, B), K1′(A, B), K2′(A, B), T1′(A, B) and T2′(A, B) for eight cases.

Case N(A, B) N′(A, B) K1′(A, B) K2′(A, B) T1′(A, B) T2′(A, B)

1 0 Q2+Q4+Q6
Q2+Q4+2Q6

Q2+2Q3+Q4+Q6
Q2+2Q3+Q4+2Q6

1 Q2+Q4+Q6
Q2+Q4+2Q6

1

2 Q2+2Q3+Q4
Q1+Q2+2Q3+Q4+Q5

Q1+Q5+Q6
Q1+Q2+Q4+Q5+2Q6

Q1+Q5+Q6
Q1+Q2+2Q3+Q4+Q5+2Q6

Q1+Q5
Q1+Q2+2Q3+Q4+Q5

Q1+Q5+Q6
Q1+Q2+Q4+Q5+2Q6

Q1+Q5
Q1+Q2+Q4+Q5

3 Q5
Q2+2Q3+Q4+Q5

Q2+Q4+Q6
Q2+Q4+Q5+2Q6

Q2+2Q3+Q4+Q6
Q2+2Q3+Q4+Q5+2Q6

Q2+2Q3+Q4
Q2+2Q3+Q4+Q5

Q2+Q4+Q6
Q2+Q4+Q5+2Q6

Q2+Q4
Q2+Q4+Q5

4 Q2+2Q3+Q4
Q1+Q2+2Q3+Q4

Q1+Q6
Q1+Q2+Q4+2Q6

Q1+Q6
Q1+Q2+2Q3+Q4+2Q6

Q1
Q1+Q2+2Q3+Q4

Q1+Q6
Q1+Q2+Q4+2Q6

Q1
Q1+Q2+Q4

5 Q1
Q1+Q2+2Q3+Q4

Q2+Q4+Q6
Q1+Q2+Q4+2Q6

Q2+2Q3+Q4+Q6
Q1+Q2+2Q3+Q4+2Q6

Q2+2Q3+Q4
Q1+Q2+2Q3+Q4

Q2+Q4+Q6
Q1+Q2+Q4+2Q6

Q2+Q4
Q1+Q2+Q4

6 Q2+2Q3+Q4
Q2+2Q3+Q4+Q5

Q5+Q6
Q2+Q4+Q5+2Q6

Q5+Q6
Q2+2Q3+Q4+Q5+2Q6

Q5
Q2+2Q3+Q4+Q5

Q5+Q6
Q2+Q4+Q5+2Q6

Q5
Q2+Q4+Q5

7 Q1+Q5
Q1+Q2+2Q3+Q4+Q5

Q2+Q4+Q6
Q1+Q2+Q4+Q5+2Q6

Q2+2Q3+Q4+Q6
Q1+Q2+2Q3+Q4+Q5+2Q6

Q2+2Q3+Q4
Q1+Q2+2Q3+Q4+Q5

Q2+Q4+Q6
Q1+Q2+Q4+Q5+2Q6

Q2+Q4
Q1+Q2+Q4+Q5

8 1 Q6
Q2+Q4+2Q6

Q6
Q2+2Q3+Q4+2Q6

0 Q6
Q2+Q4+2Q6

0

The first feature of Table 4 is that the differences between K1′(A, B) and T1′(A, B) and between
K2′(A, B) and T2′(A, B) are Q3. More precisely, the numerators and denominators of both K1′(A, B)
and K2′(A, B) include 2Q3 for cases 1, 3, 5 and 7, the denominators of both K1′(A, B) and K2′(A, B)
include 2Q3 for cases 2, 4, 6 and 8. Therefore, 2Q3 represents the effect of the decomposition of fuzzy
numbers. The differences between K1′(A, B) and K2′(A, B) and between T1′(A, B) and T2′(A, B) are
Q6. More precisely, the numerators and denominators of both K1′(A, B) and T1′(A, B) include Q6 and
2Q6, respectively. Therefore, Q6 represents the effect of the intersection of two membership functions.
After some computations, the characteristics of K1′(A, B), K2′(A, B), T1′(A, B) and T2′(A, B) are
described as follows:

Theorem 1. Let T2′(A, B) = α
α+β .

(1) If b1 ≤ b2, β ≤ 2Q3 + α or b1 ≥ b2, β + 2Q3 ≤ α, then K1′(A, B) ≤ K2′(A, B). If b1 ≤ b2,
β ≥ 2Q3 + α or b1 ≥ b2, β+ 2Q3 ≥ α, then K1′(A, B) ≥ K2′(A, B).

(2) If b1 ≤ b2, then K2′(A, B) ≥ T2′(A, B). If b1 ≥ b2, then K2′(A, B) ≤ T2′(A, B).
(3) If α ≥ β, then T1′(A, B) ≤ T2′(A, B). If α ≤ β, then T1′(A, B) ≥ T2′(A, B).
(4) If b1 ≤ b2, then K1′(A, B) ≥ T1′(A, B). If b1 ≥ b2, then K1′(A, B) ≤ T1′(A, B).
(5) If b1 ≤ b2, β(2Q3 + Q6) ≤ αQ6 or b1 ≥ b2, βQ6 ≤ α(Q3 + 2Q6), then K1′(A, B) ≤ T2′(A, B).

If b1 ≤ b2, β(2Q3 + Q6) ≥ αQ6 or b1 ≥ b2, βQ6 ≥ α(Q3 + 2Q6), then K1′(A, B) ≥ T2′(A, B).

For each test case of two triangular fuzzy numbers A(a1, b1, c1) and B(a2, b2, c2), we analyze the
behaviors of K1′(A, B), K2′(A, B), T1′(A, B) and T2′(A, B) by applying Theorem 1 as follows: Firstly,
for b1 ≤ b2, we have:

T1′(A, B) ≤ K1′(A, B) ≤ K2′(A, B) = T2′(A, B) = 1

for case 1. For cases 3, 5 and 7, we have the following results.

(1) From 2Q3 + α− β = 1
2 (a2 + 2b2 + c2 − a1 − 2b1 − c1), we have that if a2 + 2b2 + c2 ≥ a1 + 2b1 + c1,

then K1′(A, B) ≤ K2′(A, B); if a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then K1′(A, B) ≥ K2′(A, B).
(2) K2′(A, B) ≥ T2′(A, B).

(3) From α−β = (a2−c1)(a2−b1+b2−c1+c2−a1)+(b1−b2)(c2−a1)
2(a2+b1−b2−c1)

, it follows that if a2 + b2 + c2 ≥ a1 + b1 + c1,
then T1′(A, B) ≤ T2′(A, B); if a2 + b2 + c2 ≤ a1 + b1 + c1, then T1′(A, B) ≥ T2′(A, B).

(4) K1′(A, B) ≥ T1′(A, B).
(5) If a2 + 2b2 + c2 ≥ a1 + 2b1 + c1, then K1′(A, B) ≥ T2′(A, B). If a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then

K1′(A, B) ≤ T2′(A, B).
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Therefore, for the cases 3, 5 and 7, if a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then:

K1′(A, B) ≥ K2′(A, B) ≥ T2′(A, B)

and:
K1′(A, B) ≥ T1′(A, B) ≥ T2′(A, B).

Secondly, for b1 ≥ b2, we have:

K2′(A, B) = T2′(A, B) = 0 ≤ K1′(A, B) ≤ T1′(A, B)

for case 8. For cases 2, 4 and 6, we have the following results.

(1) From α− 2Q3 − β = 1
2 (a2 + 2b2 + c2 − a1 − 2b1 − c1), we obtain if a2 + 2b2 + c2 ≥ a1 + 2b1 + c1,

then K1′(A, B) ≤ K2′(A, B); if a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then K1′(A, B) ≥ K2′(A, B).
(2) K2′(A, B) ≤ T2′(A, B).

(3) From α− β = 1
2

(
−a1 + a2 − 2b1 + 2b2 − c1 + c2 +

2(b1−b2)
2

−a1+b1−b2+c2

)
, it follows thatif a2 + 2b2 +

c2 ≥ a1 + 2b1 + c1, then T1′(A, B) ≤ T2′(A, B); if a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then
T1′(A, B) ≥ T2′(A, B).

(4) K1′(A, B) ≤ T1′(A, B).
(5) If a2 + 2b2 + c2 ≥ a1 + 2b1 + c1, then K1′(A, B) ≤ T2′(A, B). If a2 + 2b2 + c2 ≤ a1 + 2b1 + c1, then

K1′(A, B) ≥ T2′(A, B).

Therefore, for the cases 2, 4 and 6, if a2 + 2b2 + c2 ≥ a1 + 2b1 + c1, then:

K1′(A, B) ≤ K2′(A, B) ≤ T2′(A, B)

and:
K1′(A, B) ≤ T1′(A, B) ≤ T2′(A, B).

For the two triangular fuzzy numbers A(a1, b1, c1) and B(a2, b2, c2), the second comparative study
is comprised of the five case studies shown in Figure 2, which compares the fuzzy preference relations
K1′(A, B), K2′(A, B), T1′(A, B) and T2′(A, B).

Case (a) ( , , ) and ( , , ) with . 

 
Case (b) ( , , + ) and ( , , + ). 

Figure 2. Cont.
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Case (c) ( , + , + 2 ) and ( + , + + + , + + 2 + ). 

 
Case (d) A( , , + ) and B( , + , + ). 

 
Case (e) ( + , b, 1 + ) and ( , 0.5, 1 ). 

Figure 2. Five case studies of A and B for K1′(A, B), K2′(A, B), T1′(A, B) and T2′(A, B).

Case (a) A(a1, b1, c1) and B(a2, b2, c2) with a2 ≥ c1.

It follows that:

K1′(A, B) =
(Q1 + Q3) + (Q2 + Q3) + 0
(Q1 + Q3) + (Q2 + Q3) + 0

= 1

K2′(A, B) =
(Q1 + Q3) + (Q2 + Q3)

(Q1 + Q3) + (Q2 + Q3)
= 1

T1′(A, B) =
0 + (Q1 + Q2)

(Q1 + Q2)
= 1

and:

T2′(A, B) =
(Q1 + Q2)

(Q1 + Q2)
= 1. (1)

For this simple case, all the preference relations give the same degree of preference of B over A.

Case (b) A(c− a, c, c + a) and B(c− b, c, c + b).

We have:
K1′(A, B) =

Q1 + 0 + Q2

Q1 + Q3 + 2Q2
= 1/2

K2′(A, B) =
Q1 + 0

Q1 + Q3
= 1/2

T1′(A, B) =
Q2 + Q1

(Q1 + Q2 + Q3) + Q2
= 1/2
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and:
T2′(A, B) =

Q1

Q1 + Q3
= 1/2.

From the viewpoint of probability, the fuzzy numbers A and B have the same mean, but B has a
smaller standard deviation. The results indicate that the differences between the decomposition and
intersection of A and B cannot affect the degree of preference for B over A.

Case (c) A(a, a + b, a + 2b) and B(a + α, a + b + α+ β, a + α+ 2b + 2β).

For this case, the fuzzy number B is a right shift of A. Therefore, B should have a higher ranking
than A based on the intuition criterion. We obtain:

K1′(A, B) =
(Q2 + Q3) + (Q3 + Q4) + Q6

(Q2 + Q3) + (Q3 + Q4) + 2Q6
=

(2b + α + 2β)2

2(α2 + 4b2 + 4bβ + 2bα + 2β2)
> 1/2

K2′(A, B) =
(Q2 + Q3) + (Q3 + Q4)

(Q2 + Q3) + (Q3 + Q4)
= 1

T1′(A, B) =
Q6 + (Q2 + Q4)

(Q2 + Q6) + (Q6 + Q4)
= 1− (−2b + α)2

2(2b + β)2

and:
T2′(A, B) =

Q2 + Q4

Q2 + Q4
= 1.

All methods prefer B, but T1′(A, B) is indecisive. More precisely,

If 2b + β < α, then T1′(A, B) < 1/2, so A > B
If 2b + β = α, then T1′(A, B) = 1/2, so A = B
If 2b + β > α, then T1′(A, B) > 1/2, so A < B.

Hence, a conflicting ranking order of T1′(A, B) exists in this case.

Case (d) A(a, a, a + b) and B(c, c + b, c + b) with a ≥ c.

This case is more complex for the partial overlap of A and B. The membership function of B has
the right peak, B expands to the left of A for the left membership function, and A expands to the right
of B for the right membership function. We have:

K1′(A, B) =
(Q2 + Q3) + (Q3 + Q4) + Q6

(Q1 + Q2 + Q3) + (Q3 + Q4 + Q5) + 2Q6
= 0.5 +

b(−2a + b + 2c)
a2 + 3b2 + 2bc + c2 − 2ab− 2ac

K2′(A, B) =
(Q2 + Q3) + (Q3 + Q4)

(Q1 + Q2 + Q3) + (Q3 + Q4 + Q5)
=

(−a + b + c)2

2a2 + b2 + 2bc + 2c2 − 2ab− 4ac

T1′(A, B) =
Q6 + (Q2 + Q4)

(Q2 + Q5 + Q6) + (Q1 + Q6 + Q4)
=

(a + 3b− c)(−a + b + c)
4b2

and:

T2′(A, B) =
Q2 + Q4

Q1 + Q2 + Q4 + Q5
=

(−a + b + c)2

3a2 + b2 + 2bc + 3c2 − 2ab− 6ac
.

It follows that:

If −2a + b + 2c < 0, then K1′(A, B) < 1/2 and K2′(A, B) < 1/2, so A > B;
If −2a + b + 2c = 0, then K1′(A, B) = 1/2 and K2′(A, B) = 1/2, so A = B;
If −2a + b + 2c > 0, then K1′(A, B) > 1/2 and K2′(A, B) > 1/2, so A < B;

If b <
(

1 +
√

2
)
(a− c), then T1′(A, B) < 1/2 and T2′(A, B) < 1/2, so A > B;

If b =
(

1 +
√

2
)
(a− c), then T1′(A, B) = 1/2 and T2′(A, B) = 1/2, so A = B;
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If b >
(

1 +
√

2
)
(a− c), then T1′(A, B) > 1/2 and T2′(A, B) > 1/2, so A < B.

Three special subcases are considered as follows:

(1) Subcase (d1) If b =
(

1 +
√

2
)
(a− c), then A

(
a, a,
(

2 +
√

2
)

a−
(

1 +
√

2
)

c
)

and

B
(

c,
(

1 +
√

2
)

a−
√

2c,
(

1 +
√

2
)

a−
√

2c
)

, therefore T1′(A, B) = T2′(A, B) = 0.5, so

A = B. However, K1′(A, B) = 6−
√

2
8 , K2′(A, B) = 2/3 and A < B.

(2) Subcase (d2) If b = 2(a− c), then A(a, a, 3a− 2c) and B(c, 2a− c, 2a− c), therefore
T1′(A, B) = 7/16, T2′(A, B) = 1/3, so A > B. However, K1′(A, B) = K2′(A, B) = 0.5 and
A = B.

(3) Subcase (d3) If A(0.3, 0.3, 0.9) and B(0.1, 0.7, 0.7), then K1′(A, B) = 0.5556, K2′(A, B) = 0.6667,
T1′(A, B) = 0.5556, T2′(A, B) = 0.6667, so A < B.

Therefore, if b < 2(a− c), then K1′(A, B) < 1/2, K2′(A, B) < 1/2, T1′(A, B) < 1/2 and
T2′(A, B) < 1/2, so A > B; if b >

(
1 +

√
2
)
(a− c), then K1′(A, B) > 1/2, K2′(A, B) > 1/2,

T1′(A, B) > 1/2 and T2′(A, B) > 1/2, so A < B.
Case (e) A(c + a, b, 1− c + a) and B(c, 0.5, 1− c).
For this case, the membership function B is symmetric with respect to x = 0.5. The membership

function of A is parallel translation of that of B except its peak. We have the following results:

(1) K1′(A, B) = (Q2+Q3)+(Q3+Q4)+Q6
(Q1+Q2+Q3)+(Q3+Q4+Q5)+2Q6

= 5−8b−12c+8bc−2a2+4b2+8c2

7+4a−8b−20c−8ac+8bc+4b2+16c2 .
If (1− 2a− 2b)(3 + 2a− 2b− 4c) < 0, then K1′(A, B) < 1/2, so A > B. For simplicity,
the other two conditions are omitted.

(2) K2′(A, B) = (Q2+Q3)+(Q3+Q4)
(Q1+Q2+Q3)+(Q3+Q4+Q5)

= (1−2b)2

4a2+(1−2b)2 . If 2a + 2b− 1 > 0, then K2′(A, B) < 1/2, so A > B.

(3) T1′(A, B) = Q6+(Q2+Q4)
(Q2+Q5+Q6)+(Q1+Q6+Q4)

= 2(1−b−c)(1−2c)−a2

2(1+2a−2b)(3+2a−2b−4c)(1−2c) and T2′(A, B) =

Q2+Q4
Q1+Q2+Q4+Q5

= (1−2b)2(1−2c)
4a3+(1−2b)2(1−2c)+a2(6−4b−8c)

. If > −0.5 + c+ 1
2

√
(1− 2c)(3− 4b− 2c), then

T1′(A, B) < 1/2 and T2′(A, B) < 1/2, so A > B.

Four special subcases are considered as follows:

(1) Subcase (e1) If a = −0.5 + c + 1
2

√
(1− 2c)(3− 4b− 2c), then T1′(A, B) = T2′(A, B) = 0.5, so

A = B. However, K1′(A, B) > 0.5, K2′(A, B) > 0.5 and A < B.

(2) Subcase (e2) If 2a + 2b − 1 = 0, then T1′(A, B) = 0.5 − (1−2b)2

16(1−b−c)(1−2c) < 0.5, T2′(A, B) =
(1−2c)

(3−2b−4c) < 0.5, so A > B. However, K1′(A, B) = K2′(A, B) = 0.5 and A = B.

(3) Subcase (e3) If A(0.3, 0.4, 0.9) and B(0.2, 0.5, 0.8), then K1′(A, B) = 0.4896, K2′(A, B) = 0.4286,
T1′(A, B) = 0.4896, T2′(A, B) = 0.4286, so A > B.

(4) Subcase (e4) If b ≥ 0.5, then (1− 2a− 2b)(3 + 2a− 2b− 4c) < 0, 2a + 2b − 1 > 0 and
a > −0.5 + c + 1

2

√
(1− 2c)(3− 4b− 2c), so K1′(A, B) < 1/2, K2′(A, B) < 1/2, T1′(A, B) < 1/2

and T2′(A, B) < 1/2, hence A > B.

6. Conclusions

This paper analyzes and compares two types of Nakamura’s fuzzy preference relations—(N(A, B)
and N′(A, B))—two types of Kołodziejczyk’s fuzzy preference relations—(K1′(A, B) and
K2′(A, B))—and the counterparts of the Kołodziejczyk’s fuzzy preference relations—(T1′(A, B) and
T2′(A, B))—on a group of eight selected cases, with all the possible levels of overlap between
two triangular fuzzy numbers A(a1, b1, c1) and B(a2, b2, c2). First, for N(A, B) and N′(A, B) we
obtain that Nj(A, B) + N8−j(A, B) = 1, j = 1, 2, 3, 4. If a2 + 2b2 + c2 ≥ a1 − 2b1 − c1, we have
that 1 − N′j (A, B) ≥ Nj(A, B) for j = 1, 3, 5, 7 and 1 − N′j (A, B) ≤ Nj(A, B) for j = 2, 4, 6, 8.
Secondly, for K1′(A, B) and K2′(A, B), we have that K1′1(A, B) = K1′j(A, B) for j = 3, 5, 7 and
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K1′2(A, B) = K1′j(A, B) for j = 4, 6, 8. Furthermore, K1′1(A, B) + K1′2(A, B) = 0 for b1 = b2 and
c2 = a1 and K1′1(A, B) + K1′2(A, B) = 1 for b1 = b2 and c1 − a2 = c2 − a1. Thirdly, for test case 1,
T1′(A, B) ≤ K1′(A, B) ≤ K2′(A, B) = T2′(A, B) = 1. For the test cases 3, 5 and 7, if a2 + 2b2 + c2 ≤
a1 + 2b1 + c1, then K1′(A, B) ≥ K2′(A, B) ≥ T2′(A, B) and K1′(A, B) ≥ T1′(A, B) ≥ T2′(A, B).
For the test case 8, we have K2′(A, B) = T2′(A, B) = 0 ≤ K1′(A, B) ≤ T1′(A, B). For the test
cases 2, 4 and 6, if a2 + 2b2 + c2 ≥ a1 + 2b1 + c1, then K1′(A, B) ≤ K2′(A, B) ≤ T2′(A, B) and
K1′(A, B) ≤ T1′(A, B) ≤ T2′(A, B). These results provide insights into the decomposition and
intersection of fuzzy numbers. Among the six fuzzy preference relations, the appropriate fuzzy
preference relation can be chosen from the decision-maker’s perspective. Given this fuzzy preference
relation, the final ranking of a set of alternatives is derived.

Worthy of future research is extending the analysis to other types of fuzzy numbers. First, the
analysis can be easily extended to the trapezoidal fuzzy numbers. Second, for the hesitant fuzzy set
lexicographical ordering method, Liu et al. [14] modified the method of Farhadinia [15] and this was
more reasonable in more general cases. Recently, Alcantud and Torra [16] provided the necessary tools
for the hesitant fuzzy preference relations. Thus, the analysis of hesitant fuzzy preference relations is a
subject of considerable ongoing research.
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Abstract: The normal distribution is a usual one of various distributions in the real world. A normal
neutrosophic set (NNS) is composed of both a normal fuzzy number and a neutrosophic number,
which a significant tool for describing the incompleteness, indeterminacy, and inconsistency of the
decision-making information. In this paper, we propose two correlation coefficients between NNSs
based on the score functions of normal neutrosophic numbers (NNNs) (basic elements in NNSs)
and investigate their properties. Then, we develop a multiple attribute decision-making (MADM)
method with NNSs under normal neutrosophic environments, where, by correlation coefficient
values between each alternative (each evaluated NNS) and the ideal alternative (the ideal NNS), the
ranking order of alternatives and the best one are given in the normal neutrosophic decision-making
process. Finally, an illustrative example about the selection problem of investment alternatives is
provided to demonstrate the application and feasibility of the developed decision-making method.
Compared to the existing MADM approaches based on aggregation operators of NNNs, the proposed
MADM method based on the correlation coefficients of NNSs shows the advantage of its simple
decision-making process.

Keywords: multiple attribute decision-making; normal neutrosophic set; normal neutrosophic
number; correlation coefficient

1. Introduction

In probability theory [1], the normal (or Gaussian) distribution is a very common continuous
probability distribution. Normal distribution is an important distribution form in statistics and is very
useful in the natural and social sciences to express real-valued random variables whose distributions
are not known. Hence, it has been widely applied to various fields. Then, the fuzziness and uncertainty
of the real decision-making information are a common phenomenon because some numerical values
may be inadequate or insufficient to complex decision-making problems. In some occasions, it can be
more reasonable to describe the attribute values by the fuzzy numbers in a fuzzy environment. Thus,
Zadeh [2] firstly introduced the fuzzy set, which is described by the membership function. After that,
Yang and Ko [3] defined a normal fuzzy number (NFN) to express the normal fuzzy information in
random fuzzy situations. It is obvious that its main advantage is reasonable and realistic to normal
distribution environments. As an extension of the fuzzy set, Atanassov [4] proposed the intuitionistic
fuzzy set (IFS) by adding the non-membership function to the fuzzy set. However, because NFN only
contains its normal fuzzy membership degree, Wang et al. [5] presented an intuitionistic normal fuzzy
number (INFN) based on the combination of both an NFN and an intuitionistic fuzzy number (IFN)
(a basic element in IFS), defined the score function and operational laws of INFNs, and presented some
aggregation operators of INFNs, including an ordered intuitionistic normal ordered fuzzy weighted
averaging operator, an INFN ordered weighted geometric averaging operator, two INFN-related
ordered weighted arithmetic and geometric averaging operators, two induced INFN-related ordered
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weighted arithmetic and geometric averaging operators, and they then applied them to multiple
criteria decision-making (MCDM) problems, where the criteria are interactive and the criteria values
are the INFNs. Then, Wang and Li [6] proposed a score function of INFN based on relative entropy and
an INFN weighted arithmetic averaging operator, and then applied them to normal intuitionistic fuzzy
MCAD problems. Wang and Li [7] also introduced Euclidean distance between INFNs and an INFN
weighted arithmetic averaging operator and an INFN weighted geometric averaging operator for
MCDM problems with INFNs. Wang et al. [8] further introduced a normal intuitionistic fuzzy number
(NIFN) weighted arithmetic averaging operator, an NIFN weighted geometric averaging operator, an
NIFN-induced ordered weighted averaging operator, an NIFN-induced ordered weighted geometric
averaging operator, and an NIFN-induced generalized ordered weighted averaging (NIFN-IGOWA)
operator, and then applied the NIFN-IGOWA operator to MCDM problems with NIFN information.
To express the truth, indeterminacy, and falsity information in real world, Smarandache [9] proposed a
concept of a neutrosophic set from a philosophical point of view. As a subclass of the neutrosophic
set, Smarandache [9] and Wang et al. [10] introduced the concept of a single-valued neutrosophic set
(SVNS). Obviously, SVNS is a generalization of IFS and represents incomplete, indeterminate, and
inconsistent information, which cannot be expressed by IFS. For example, assume that an investment
company wants to invest a sum of money to some investment alternative. Then, there are 10 voters in
the voting process of the investment alternative. Five vote “aye”, four vote ‘blackball’, and one votes
‘indeterminacy/neutrality’. From neutrosophic notation, it can be represented as (x, 0.5, 0.4, 0.1). It is
obvious that this expression is beyond the scope of IFS. Hence, SVNS is suitable for the expression
of indeterminate and inconsistent information. Recently, the neutrosophic sets have been applied
in many decision-making problems [11–17]. Liu and Teng [18] presented a normal neutrosophic
number (NNN) as an extension of NIFN and its generalized weighted power averaging operator, and
then applied it to multiple attribute decision-making (MADM) problems with normal neutrosophic
information. Liu and Li [19] further introduced some normal neutrosophic Bonferroni mean operators
for decision-making problems with normal neutrosophic information. After that, Sahin [20] proposed
some normal neutrosophic generalized prioritized aggregation operators for MADM problems under
normal neutrosophic environments.

However, the aforementioned decision-making methods depend on aggregation operators
of NNNs in the normal neutrosophic decision-making process. Then, the correlation coefficient
is an important mathematical tool in decision-making problems [11–13]. Compared with the
decision-making methods using aggregation operators [18–20], the decision-making methods based
on correlation coefficients imply relatively simple decision-making processes. However, there is
no research on correlation coefficients of NNSs in existing normal neutrosophic decision-making
methods. On the other hand, the applications of NNNs (basic elements in NNSs) in science and
engineering fields are necessary and significant because the normal distribution is a typical and
common distribution in the real world [18–20]. Additionally, NNN contain much more information
than the general neutrosophic number because NNN is expressed by the combination information
of both an NFN and a single-valued neutrosophic number (SVNN) (a basic element in SVNS).
Hence, NNN used in decision-making can show its rationality and reality. Motivated by the
decision-making methods [18–20], this study firstly proposes two correlation coefficients of normal
neutrosophic sets (NNSs) based on the score functions of NNNs and then develops an MADM method
using the correlation coefficients of NNSs to simplify the decision-making process under normal
neutrosophic environments.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts of NIFNs
and NNSs. In Section 3, two correlation coefficients between NNSs are presented based on the score
functions of NNNs. Section 4 develops an MADM method using the correlation coefficients of NNSs
under normal neutrosophic environments. In Section 5, an illustrative example about the selection
problem of investment alternatives is provided to demonstrate the applications and effectiveness of

86

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 80

the proposed MADM method with normal neutrosophic information. Conclusions and future work
are contained in Section 6.

2. Some Basic Concepts of NIFNs and NNSs

Yang and Ko [4] defined an NFN to express the normal fuzzy information in random
fuzzy situations.

For a real number set X, if the membership function satisfies the form

N(x) = e−(
x−μ

σ )
2

(1)

then N(x) is called NFN, where μ is the mean or expectation of the distribution (and its median and
mode) and σ is standard deviation. Then, this NFN is symmetric around x = μ, denoted by N(μ, σ).

Based on the combination of an IFN and an NFN, Wang et al. [8] defined an NIFN A = <x| N(μ, σ),
tA(x), vA(x)>, where its membership function is expressed as

tA(x) = tAe−(
x−μ

σ )
2

, x ∈ X

and its non-membership function is expressed as

vA(x) = 1− (1− vA)e−(
x−μ

σ )
2

, x ∈ X

where tA and vA are a membership degree and a non-membership degree in an IFN and satisfy tA,
vA ∈ [0,1], and 0 ≤ tA + vA ≤ 1.

To express indeterminate and inconsistent information in the real world, Smarandache [9]
introduced a concept of a neutrosophic set from a philosophical point of view. A neutrosophic
set B in a universe of discourse X can be described independently by its truth, indeterminacy, and
falsity membership functions tB(x), uB(x), and vB(x) in real standard interval [0,1] or nonstandard
interval ]−0, 1+[, such that tB(x): X → ]−0, 1+[, uB(x): X → ]−0, 1+[, vB(x): U → ]−0, 1+[, and −0 ≤ sup
tB(x) + sup uB(x) + sup vB(x) ≤ 3+ for x ∈ X.

However, when the three membership functions in the neutrosophic set lie in the nonstandard
interval ]−0, 1+[, the neutrosophic set shows the difficulty of its actual applications. Thus,
Smarandache [9] and Wang et al. [10] introduced the concept of an SVNS as a subclass of the
neutrosophic set when the three membership functions in the neutrosophic set are constrained in the
real standard interval [0,1].

Definition 1. [9,10]. Let X be a universe of discourse. An SVNS S in X is described independently
by its truth, indeterminacy, and falsity membership functions tS(x), uS(x), and vS(x), where tS(x), uS(x),
vS(x) ∈ [0,1], and 0 ≤ tS(x) + uS(x) + vS(x) ≤ 3 for x ∈ X. Then, the SVNS S can be denoted as.
S = {〈x, tS(x), uS(x), vS(x)〉 : x ∈ X}.

For convenience, a basic element 〈x, tS(x), uS(x), vS(x)〉 in S is denoted by s = <t, u, v> for short,
which is called an SVNN.

As an extension of NIFN, Liu and Teng [11] and Liu and Li [12] presented a concept of NNS based
on the combination of NFN and SVNN.

Definition 2. [11,12]. Let X be a finite non-empty set and N(μ, σ) be a normal distribution function. An NNS
is defined as

P = {〈x|N(μP, σP), (tP(x), uP(x), vP(x))〉 : x ∈ X} (2)
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where the three functions tP(x), uP(x), and vP(x) for x ∈ X satisfy the following properties:

tP(x) = tPe−(
x−μ

σ )
2

uP(x) = 1− (1− uP)e−(
x−μ

σ )
2

vP(x) = 1− (1− vP)e−(
x−μ

σ )
2

0 ≤ tP(x) + uP(x) + vP(x) ≤ 1

and tp, up, and vp are the truth, indeterminacy, and falsity degrees in the SVNN, respectively, and satisfy tp, up,
and vp ∈ [0,1] and 0 ≤ tp + up + vp ≤ 3.

Then, an NNN (a basic element) in the NNS P is denoted by p = <N(μ, σ), (t, u, v)> for convenience,
where t, u, and v are the truth, indeterminacy, and falsity degrees, respectively, in the SVNN (t, u, v)
and satisfy t, u, v ∈ [0,1] and 0 ≤ t + u + v ≤ 3.

Definition 3. [12]. Let p = <N(μ, σ), (t, u, v)> be an NNN. Then, its score functions are defined as

S1(p) = μ(2 + t− u− v),
S2(p) = σ(2 + t− u− v).

(3)

3. Correlation Coefficients between NNSs

Based on the score functions of NNNs in Definition 3, we can give the definitions of the correlation
and correlation coefficients between NNSs under normal neutrosophic environments.

Definition 4. Let two NNSs be P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}, where pj = <N(μpj, σpj),
(tpj, upj, vpj)> and qj = <N(μqj, σqj), (tqj, uqj, vqj)> for j = 1, 2, . . . , n are NNNs in P and Q. The correlation
between two NNSs P and Q is defined as

C(P, Q) =
n

∑
j=1

[
(2 + tPj − uPj − vPj)(2 + tqj − uqj − vqj)(μpjμqj + σpjσqj)

]
(4)

Thus, based on the correlation between two NNSs P and Q, we can introduce the definition of the
following correlation coefficients between two NNSs P and Q.

Definition 5. Let two NNSs be P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}, where pj = <N(μpj, σpj),
(tpj, upj, vpj)> and qj = <N(μqj, σqj), (tqj, uqj, vqj)> for j = 1, 2, . . . , n are NNNs in P and Q. The correlation
coefficients between two NNSs P and Q are defined as

ρ1(P, Q) = C(P,Q)

[C(P,P)C(Q,Q)]1/2

=

n
∑

j=1
[(2+tPj−uPj−vPj)(2+tqj−uqj−vqj)(μpjμqj+σpjσqj)]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
n
∑

j=1

{[
(2 + tPj − uPj − vpj)μpj

]2
+
[
(2 + tpj − upj − vpj)σpj

]2}
×
√

n
∑

j=1

{[
(2 + tqj − uqj − vqj)μqj

]2
+
[
(2 + tqj − uqj − vqj)σqj

]2}
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(5)
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ρ2(P, Q) = C(P,Q)
max[C(P,P),C(Q,Q)]

=

n
∑

j=1
[(2+tPj−uPj−vPj)(2+tqj−uqj−vqj)(μpjμqj+σpjσqj)]

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n
∑

j=1

{[
(2 + tPj − uPj − vpj)μpj

]2
+
[
(2 + tpj − upj − vpj)σpj

]2},

n
∑

j=1

{[
(2 + tqj − uqj − vqj)μqj

]2
+
[
(2 + tqj − uqj − vqj)σqj

]2}
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(6)

Proposition 1. The correlation coefficients of ρk(P, Q) (k = 1, 2) satisfy the following properties:

1. 0 ≤ ρk(P, Q) ≤ 1;
2. ρk(P, Q) = 1 if P = Q, i.e., N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj);

3. ρk(P, Q) = ρk(Q, P).

Proof.

Firstly, we prove that the correlation coefficient of ρ1(P, Q) satisfies the properties (1)–(3).
The inequality ρ1(P, Q) ≥ 0 is obvious. Then, we only prove ρ1(P, Q) ≤ 1.
Based on the Cauchy–Schwarz inequality:

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤
(

x2
1 + x2

2 + · · · x2
n

)
×
(

y2
1 + y2

2 + · · · y2
n

)
where (x1, x2, . . . , xn) ∈ Rn and (y1, y2, . . . , yn) ∈ Rn, we can yield the following inequality:

(x1y1 + x2y2 + · · ·+ xnyn) ≤
√(

x2
1 + x2

2 + · · · x2
n
)
×
√(

y2
1 + y2

2 + · · · y2
n
)

Corresponding to the above inequality and the definition of correlations coefficients in Definition 3,
we have the following inequality:

n
∑

j=1

[
(2 + tpj − upj − vpj)μpj × (2 + tqj − uqj − vqj)μqj

]
+

n
∑

j=1

[
(2 + tpj − upj − vpj)σpj × (2 + tqj − uqj − vqj)σqj)

]
≤√

n
∑

j=1

[
(2 + tpj − upj − vpj)μpj

]2
+

n
∑

j=1

[
(2 + tpj − upj − vpj)σpj

]2 ×√ n
∑

j=1

[
(2 + tqj − uqj − vqj)μqj

]2
+

n
∑

j=1

[
(2 + tqj − uqj − vqj)σqj

]2
Hence, there is the following result:

n
∑

j=1

[
(2 + tpj − upj − vpj)(2 + tqj − uqj − vqj)(μpjμqj + σpjσqj)

]
≤√

n
∑

j=1

{[
(2 + tpj − upj − vpj)μpj

]2
+
[
(2 + tpj − upj − vpj)σpj

]2}×√ n
∑

j=1

{[
(2 + tqj − uqj − vqj)μqj

]2
+
[
(2 + tqj − uqj − vqj)σqj

]2}

Based on Equation (5), we have ρ1(P, Q) ≤ 1. Hence, 0 ≤ ρ1(P, Q) ≤ 1 holds.
(2) P = Q ⇒ N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj) ⇒ μpj = μqj, σpj = σqj, tpj = tqj,

upj = uqj, and vpj = vqj for j = 1, 2, . . . , n⇒ ρ1(P, Q) = 1.
(3) It is straightforward.
Secondly, we prove that the correlation coefficient of ρ2(P, Q) satisfies the properties (1)–(3).
By the similar proof manner of the properties (1)–(3) of ρ1(P, Q), we can prove the properties (1)–(3)

of ρ2(P, Q). It is not repeated here.
Therefore, we complete these proofs. �
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When the weight of the elements pj and qj (j = 1, 2, . . . , n) is taken into account,
w = {w1, w2, . . . , wn} is given as the weight vector of the elements pj and qj (j = 1, 2, . . . , n) with
wj ∈ [0,1] and ∑n

j=1 wj = 1. Then, we have the following weighted correlation coefficients of NNSs:

ρ1w(P, Q) =

n
∑

j=1
wj
[
(2 + tpj − upj − vpj)(2 + tqj − uqj − vqj)(μpjμqj + σpjσqj)

]
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
n
∑

j=1
wj

{[
(2 + tpj − uPj − vpj)μpj

]2
+
[
(2 + tpj − upj − vpj)σpj

]2}
×
√

n
∑

j=1
wj

{[
(2 + tqj − uqj − vqj)μqj

]2
+
[
(2 + tqj − uqj − vqj)σqj

]2}
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(7)

ρ2w(P, Q) =

n
∑

j=1
wj
[
(2 + tPj − uPj − vPj)(2 + tqj − uqj − vqj)(μpjμqj + σpjσqj)

]

max

⎧⎪⎪⎨⎪⎪⎩
n
∑

j=1
wj

{[
(2 + tPj − uPj − vpj)μpj

]2
+
[
(2 + tpj − upj − vpj)σpj

]2},

n
∑

j=1
wj

{[
(2 + tqj − uqj − vqj)μqj

]2
+
[
(2 + tqj − uqj − vqj)σqj

]2}
⎫⎪⎪⎬⎪⎪⎭

(8)

Proposition 2. The weighted correlation coefficients of ρkw(P, Q) (k = 1, 2) also satisfy the following properties:

1. 0 ≤ ρkw(P, Q) ≤ 1;
2. ρkw(P, Q) = 1 if and only if P = Q, i.e., N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj);

3. ρkw(P, Q) = ρkw(Q, P).

By the similar proofs of the properties in Proposition 1, we can prove the ones in Proposition 2.
They are not repeated here.

Especially when w = {1/n, 1/n, . . . , 1/n}, Equations (7) and (8) are reduced to Equations (5) and (6).

4. The MADM Method Using the Correlation Coefficients of NNSs

In this section, we present a handling method for the MADM problems with normal neutrosophic
information by means of the weighted correlation coefficients between NNSs.

In an MADM problem with normal neutrosophic information, assume that P = {P1, P2, . . . , Pm} is
a set of m alternatives and R = {R1, R2, . . . , Rn} is a set of n attributes. The weight vector of the attributes
is given as w = (w1, w2, . . . , wn) satisfying wj ∈ [0,1] and ∑n

j=1 wj = 1. Then, the average value μij and
standard derivation σij in the normal distribution N(μij, σij) are obtained by the statistical analysis of
data corresponding to the alternative Pi (i = 1, 2, . . . , m) over the attribute Rj (j = 1, 2, . . . , n), while the
evaluation values of SVNNs corresponding to the alternative Pi (i = 1, 2, . . . , m) over the attribute
Rj (j = 1, 2, . . . , n) are given by decision-makers. Based on the obtained NNNs pij = <N(μij, σij),
(tij, uij, vij)> (i = 1, 2, . . . , m; j = 1, 2, . . . , n), we can yield the normal neutrosophic decision
matrix M(pij)m×n:

M(pij)m×n =

⎡⎢⎢⎢⎢⎣
〈N(μ11, σ11), (t11, u11, v11)〉 〈N(μ12, σ12), (t12, u12, v12)〉 · · · 〈N(μ1n, σ1n), (t1n, u1n, v1n)〉
〈N(μ21, σ21), (t21, u21, v21〉 〈N(μ22, σ22), (t22, u22, v22)〉 · · · 〈N(μ2n, σ2n), (t2n, u2n, v2n)〉

...
...

...
...

〈N(μm1, σm1), (tm1, um1, vm1)〉 〈N(μm2, σm2), (tm2, um2, vm2)〉 · · · 〈N(μmn, σmn), (tmn, umn, vmn)〉

⎤⎥⎥⎥⎥⎦
In MADM problems, the concept of the ideal point has been used to help the identification of

the best alternative in the decision set. It does provide a useful method to evaluate alternatives [13].
However, there are two types of attributes, i.e., benefit type and cost type, in decision-making problems.
Hence, we firstly need to determinate an ideal solution/alternative (an ideal NNS) corresponding
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to the benefit type and cost type of attributes. Then, by correlation coefficient values between each
alternative (each evaluated NNS) and the ideal alternative (the ideal NNS), the ranking order of
alternatives and the best one are given in the normal neutrosophic decision-making process.

Thus, we use the developed method to deal with the MADM problem with normal neutrosophic
information, which is described by the following procedures:

Step 1: Establish an ideal solution (an ideal alternative) P∗ =
{

p∗1, p∗2, . . . , p∗n
}

by the ideal NNN

p∗j =

〈
N
(

max
i

(mij), min
i
(σij)

)
,
(

max
i

(tij), min
i
(uij), min

i
(vij)

)〉
corresponding to the benefit type of

attributes and p∗j =

〈
N
(

min
i
(mij), min

i
(σij)

)
,
(

min(
i

tij), max
i

(uij), max
i

(vij)

)〉
corresponding to the

cost type of attributes.
Step 2: Calculate the weighted correlation coefficients between an alternative Pi (i = 1, 2, . . . , m)

and the ideal solution P* by using Equation (7) or Equation (8) and obtain the values of ρ1w(Pi, P*) or
ρ2w(Pi, P*) (i = 1, 2, . . . , m).

Step 3: Rank the alternatives in a descending order corresponding to the weighted correlation
coefficient values and select the best one(s) according to the bigger value of ρ1w(Pi, P*) or ρ2w(Pi, P*).

Step 4: End.

5. Illustrative Example

For convenient comparison, an illustrative example about the selection problem of investment
alternatives adopted from [18] is provided to demonstrate the applications and effectiveness of the
proposed MADM method with normal neutrosophic information.

An investment company wants to invest a sum of money to the best industry. Then, four possible
alternatives are considered as four potential industries: (1) P1 is a car company; (2) P2 is a food
company; (3) P3 is a computer company; (4) P4 is an arms company. In the decision-making process,
the four possible alternatives must satisfy the requirements of the three attributes: (1) R1 is the risk;
(2) R2 is the growth; (3) R3 is the environment, where the attributes R1 and R2 are benefit types
and the attribute R3 is a cost type. Assume that the weighting vector of the attributes is given by
w = (0.35, 0.25, 0.4). By the statistical analysis and the evaluation of investment data regarding the four
possible alternatives of Pi (i = 1, 2, 3, 4) over the three attributes of Rj (j = 1, 2, 3), we can establish the
following NNN decision matrix [18]:

M(pij)4×3 =

⎡⎢⎢⎢⎣
〈N(3, 0.4), (0.4, 0.2, 0.3)〉 〈N(7, 0.6), (0.4, 0.1, 0.2)〉 〈N(5, 0.4), (0.7, 0.2, 0.4)〉
〈N(4, 0.2), (0.6, 0.1, 0.2)〉 〈N(8, 0.4), (0.6, 0.1, 0.2)〉 〈N(6, 0.7), (0.3, 0.5, 0.8)〉
〈N(3.5, 0.3), (0.3, 0.2, 0.3)〉 〈N(6, 0.2), (0.5, 0.2, 0.3)〉 〈N(5.5, 0.6), (0.4, 0.2, 0.7)〉
〈N(5, 0.5), (0.7, 0.1, 0.2)〉 〈N(7, 0.5), (0.6, 0.1, 0.1)〉 〈N(4.5, 0.5), (0.6, 0.3, 0.8)〉

⎤⎥⎥⎥⎦
Then, we use Equation (7) to deal with the MADM problem with normal neutrosophic information,

which is described by the following procedures:
Step 1: Establish an ideal solution (an ideal alternative) P∗ =

{
p∗1, p∗2, . . . , p∗n

}
expressed by

the ideal NNS P∗ = {〈N(5, 0.2), (0.7, 0.1, 0.2)〉, 〈N(8, 0.2), (0.6, 0.1, 0.1)〉, 〈N(4.5, 0.4), (0.3, 0.5, 0.8)〉}
corresponding to the benefit types and cost types of attributes.

Step 2: Calculate the weighted correlation coefficient between the alternative P1 and the ideal
solution P* by using Equation (7) as follows:
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ρ1w(P1, P∗) =

3
∑

j=1
wj

[
(2+tp1j−up1j−vp1j )(2+tp∗j

−up∗j
−vp∗j

)(μp1j μp∗j
+σp1j σp∗j

)

]
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√
3
∑

j=1
wj

{[
(2 + tp1j − uP1j − vp1j)μp1j

]2
+
[
(2 + tp1j − up1j − vp1j)σp1j

]2}
×
√

3
∑

j=1
wj

{[
(2 + tp∗j

− up∗j
− vp∗j

)μp∗j

]2
+
[
(2 + tp∗j

− up∗j
− vp∗j

)σp∗j

]2}
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.35× [(2 + 0.4− 0.2− 0.3)× (2 + 0.7− 0.1− 0.2)× (3× 5 + 0.4× 0.2)]
+0.25× [(2 + 0.4− 0.1− 0.2)× (2 + 0.6− 0.1− 0.1)× (7× 8 + 0.6× 0.2)]
+0.4× [(2 + 0.7− 0.2− 0.4)× (2 + 0.3− 0.5− 0.8)× (5× 4.5 + 0.4× 0.4)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√√√√√
0.35×

{
[(2 + 0.4− 0.2− 0.3)× 3]2 + [(2 + 0.4− 0.2− 0.3)× 0.4]2

}
+0.25×

{
[(2 + 0.4− 0.1− 0.2)× 7]2 + [(2 + 0.4− 0.1− 0.2)× 0.6]2

}
+0.4×

{
[(2 + 0.7− 0.2− 0.4)× 5]2 + [(2 + 0.7− 0.2− 0.4)× 0.4]2

}

×

√√√√√√√√
0.35×

{
[(2 + 0.7− 0.1− 0.2)× 5]2 + [(2 + 0.7− 0.1− 0.2)× 0.2]2

}
+0.25×

{
[(2 + 0.6− 0.1− 0.1)× 8]2 + [(2 + 0.6− 0.1− 0.1)× 0.2]2

}
+0.4×

{
[(2 + 0.3− 0.5− 0.8)× 4.5]2 + [(2 + 0.3− 0.5− 0.8)× 0.4]2

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0.8820.

By similar calculations, the weighted correlation coefficients between each alternative Pi (i = 2, 3, 4)
and the ideal solution P* can be given as the following values of ρ1w(Pi, P*) (i = 2, 3, 4):

ρ1w(P2, P*) = 0.9891, ρ1w(P3, P*) = 0.9169, and ρ1w(P4, P*) = 0.9875.
Step 3: According to the values of ρ1w(Pi, P*) (i = 1, 2, 3, 4), the ranking order of the alternatives is

P2 > P4 > P3 > P1 and the best one is P2. These results are the same as in [18].
We could also use Equation (8) to deal with the MADM problem with normal neutrosophic

information, which is described by the following steps:
Step 1’: The same as Step 1.
Step 2’: Calculate the weighted correlation coefficient between the alternative P1 and the ideal

solution P* by using Equation (8) as follows:

ρ2w(P1, P∗) =

3
∑

j=1
wj

[
(2+tp1j−up1j−vp1j )(2+tp∗j

−up∗j
−vp∗j

)(μp1j μp∗j
+σp1j σp∗j

)

]

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3
∑

j=1
wj

{[
(2 + tp1j − uP1j − vp1j)μp1j

]2
+
[
(2 + tp1j − up1j − vp1j)σp1j

]2}
,

3
∑

j=1
wj

{[
(2 + tp∗j

− up∗j
− vp∗j

)μp∗j

]2
+
[
(2 + tp∗j

− up∗j
− vp∗j

)σp∗j

]2}
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.35× [(2 + 0.4− 0.2− 0.3)× (2 + 0.7− 0.1− 0.2)× (3× 5 + 0.4× 0.2)]
+0.25× [(2 + 0.4− 0.1− 0.2)× (2 + 0.6− 0.1− 0.1)× (7× 8 + 0.6× 0.2)]
+0.4× [(2 + 0.7− 0.2− 0.4)× (2 + 0.3− 0.5− 0.8)× (5× 4.5 + 0.4× 0.4)]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
0.35×

{
[(2 + 0.4− 0.2− 0.3)× 3]2 + [(2 + 0.4− 0.2− 0.3)× 0.4]2

}
+0.25×

{
[(2 + 0.4− 0.1− 0.2)× 7]2 + [(2 + 0.4− 0.1− 0.2)× 0.6]2

}
+0.4×

{
[(2 + 0.7− 0.2− 0.4)× 5]2 + [(2 + 0.7− 0.2− 0.4)× 0.4]2

}
⎞⎟⎟⎟⎠,

⎛⎜⎜⎜⎝
0.35×

{
[(2 + 0.7− 0.1− 0.2)× 5]2 + [(2 + 0.7− 0.1− 0.2)× 0.2]2

}
+0.25×

{
[(2 + 0.6− 0.1− 0.1)× 8]2 + [(2 + 0.6− 0.1− 0.1)× 0.2]2

}
+0.4×

{
[(2 + 0.3− 0.5− 0.8)× 4.5]2 + [(2 + 0.3− 0.5− 0.8)× 0.4]2

}
⎞⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= 0.7544.

By similar calculations, the weighted correlation coefficients between each alternative Pi (i = 2, 3, 4)
and the ideal solution P* can be given as the following values of ρ2w(Pi, P*) (i = 2, 3, 4):
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ρ2w(P2, P*) = 0.9151, ρ2w(P3, P*) = 0.6575, and ρ2w(P4, P*) = 0.9522.
Step 3’: According to the values of ρ2w(Pi, P*) (i = 1, 2, 3, 4), the ranking order of the alternatives is

P4 > P2 > P1 > P3, and the best one is P4. These results also are the same as in [18].
Obviously, the above two ranking orders are different corresponding to different correlation

coefficients for this decision-making problem; these results are thus in accordance with the ones
in [18]. Hence, the proposed normal neutrosophic decision-making method based on the correlation
coefficients illustrates its feasibility and effectiveness. Compared with existing decision-making
methods based on aggregation operators of NNNs, the proposed decision-making method based
on the correlation coefficients of NNSs shows that it is simpler to employ than existing normal
neutrosophic decision-making methods in [18–20] under normal neutrosophic environments because
the decision-making method proposed in this paper implies its simple algorithms and decision steps
in the normal neutrosophic decision-making problems.

From the decision results of the illustrative example, we see that different correlation
coefficients used in the decision-making problem can result in different ranking orders and selecting
alternatives. Hence, the decision-maker can select one of both corresponding to his/her preference or
actual requirements.

6. Conclusions

To simplify the complex decision-making process/steps and algorithms of existing normal
neutrosophic decision-making methods in [18–20], this paper proposed two correlation coefficients
between NNSs based on the score functions of NNNs under normal neutrosophic environments. Then,
we developed an MADM method with normal neutrosophic information by using the correlation
coefficients of NNSs under normal neutrosophic environments. An illustrative example about the
selection problem of investment alternatives was provided to demonstrate the applications and
effectiveness of the proposed MADM method under normal neutrosophic environments.

The main advantages of this study are (1) the evaluation information expressed by NNNs is
relatively more reasonable and more realistic than the evaluation information expressed by general
neutrosophic numbers in the decision-making process; (2) the proposed decision-making method based
on the correlation coefficients of NNSs is simpler to employ than existing ones based on aggregation
operators of NNNs in the normal neutrosophic decision-making algorithms; (3) the proposed
decision-making method with NNNs contains much more information and shows its rationality
and reality, while the existing decision-making methods with single neutrosophic information may
lose some useful evaluation information of attributes in the decision-making process.

In future work, the study about new similarity measures of NNSs and applications in science and
engineering fields are necessary and significant because the applications of the normal distribution
widely exist in many domains.
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Abstract: Correlation coefficient is one of the broadly use indexes in multi-criteria decision-making
(MCDM) processes. However, some important issues related to correlation coefficient utilization
within probabilistic hesitant fuzzy environments remain to be addressed. The purpose of this study
is introduced a MCDM method based on correlation coefficients utilize probabilistic hesitant fuzzy
information. First, the covariance and correlation coefficient between two PHFEs is introduced,
the properties of the proposed covariance and correlation coefficient are discussed. In addition,
the northwest corner rule to obtain the expected mean related to the multiply of two PHFEs is
introduced. Second, the weighted correlation coefficient is proposed to make the proposed MCDM
method more applicable. And the properties of the proposed weighted correlation coefficient are
also discussed. Finally, an illustrative example is demonstrated the practicality and effectiveness
of the proposed method. An illustrative example is presented to demonstrate the correlation
coefficient propose in this paper lies in the interval [−1, 1], which not only consider the strength of
relationship between the PHFEs but also whether the PHFEs are positively or negatively related. The
advantage of this method is it can avoid the inconsistency of the decision-making result due to the
loss of information.

Keywords: probabilistic hesitant fuzzy element; covariance; correlation coefficient; northwest corner
rule; multi-criteria decision-making

1. Introduction

With the rapid development of economic and the progress of modern society, people are facing
more and more complicated decision-making problems, group decision-making plays an increasingly
important role when dealing with multi-criteria decision-making (MCDM) problems [1–3]. In our
daily life, group decision-making has turned out to be a commonly used tool in human activities,
whose purpose is to determine the most preferred alternative among several alternatives (or a series
of alternatives) using the evaluation values provided from a group of decision makers. In group
decision-making processes, the information provided by the experts has different forms. Because of
this, many scholars have investigated the techniques based on various kinds of decision information,
including intuitionistic fuzzy sets [4,5], hesitant fuzzy sets (HFSs) [6–8], probabilistic hesitant fuzzy
sets (PHFSs) [9,10] and probabilistic linguistic term sets [11] and so on.

Correlation coefficient is one of the broadly use indexes in MCDM processes [12–14]. Since many
data may be fuzzy and uncertain, the utilization of correlation coefficient has been extended to fuzzy
environments [15–17] and intuitionistic fuzzy environments [18–21]. For example, Huang et al. [18]
proposed a correlation coefficient formula utilizing the centroid of intuitionistic fuzzy numbers. Ye [19]
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utilizing entropy weights of intuitionistic fuzzy numbers proposed the weighted correlation coefficient.
In a sequent, Dong et al. [21] proposed weighted correlation coefficient based on the relationship of an
arbitrary alternative and the ideal alternative. Afterwards, correlation coefficient has been extended
to hesitant fuzzy environments [22–25]. At the same time, some correlation coefficients formulas
have been proposed. Such as, Chen et al. [22] derived some correlation coefficients based on the
membership degree of the HFSs and applied them in clustering analysis. Liao et al. [23] pointed out
there are some shortcoming in the correlation coefficients were introduced in [22] and then proposed a
novel correlation coefficient. The significant characteristic of the proposed formula is that it lies in the
interval [−1, 1]. Based on the same idea, Liao et al. [24] proposed several types of correlation coefficients
for hesitant fuzzy linguistic term sets and then applied them to traditional medical diagnosis problems.
Because of the potential application of the correlation coefficient, some other extensions are still going
on—for example, dual hesitant fuzzy environments [26] and neutrosophic fuzzy environments [27–29]
and so on.

Although the concept of correlation coefficient has been extended to various kinds of fuzzy
environments and has been applied in many fields. There are still some disputes in the utilization of it.
Some decision makers noticed that the correlation coefficients were proposed in above mention papers
mainly lies on the statistics formula, that is, the correlation coefficient between two random variables
X and Y is ρ(X, Y) = E(X−E(X))(Y−E(Y))√

D(X)
√

D(Y)
. In addition, the correlation coefficient has lots of important

properties, such as lies in the range of [−1, 1]. Unfortunately, most of the correlation coefficients
in above mention papers always positive, which lies in the range of [0, 1] and ignored the negative
correlation information. This shortcoming has been pointed out by some scholars [18,23,25] and the
ignored information may result in unreasonable decision-making results. Based on this consideration,
the correlation coefficient be applied in fuzzy environment should be further discussion.

Since Zhu [30] first proposed the concept of PHFSs, it has been attracted some scholars’ attention
and many achievements have been made. For example, Zhang et al. [31] pointed out that there are
some shortcoming in the concept of PHFSs that was proposed in [30], they asserted that there were
maybe some incomplete information in the decision-making processes and then they proposed the
improvement PHFSs. He et al. [32] extended the PHFSs to the probabilistic interval preference ordering
sets and Hao et al. [33] extended it to the probabilistic dual hesitant fuzzy sets. In addition, PHFSs
have been extended to probabilistic linguistic term sets [11,34,35]. Although the concept of PHFSs has
been extended to various kinds of fuzzy environments and some decision-making methods have been
proposed. For example, Zhou et al. [36] discussed group consensus based on additive consistency
and Li et al. [9] introduced a MCDM process based on Hausdorff distance. However, some important
issues in PHFSs utilization remain to be addressed. For example, the probability part does not pay
enough attention, the existing decision-making methods mainly directly integrated the probability
part into the membership degree part [9,36], this make cause a lot of information loss.

Considering that PHFSs consists of two parts, that is, the membership degree of the elements
to the set and the corresponding probabilities of the membership degree, this information can be
interpreted as a probability distribution function. Inspired by statistics knowledge, each probabilistic
hesitant fuzzy element (PHFE) can be treated as a discrete random variable. Since every PHFE has
two parts, that is: γi and pi, where γi can be regarded as the condition of a random variable, pi can be
regarded as the corresponding probability with γi, the similar opinion has been proposed by Hung [37].
Based on this consideration, we can apply some concepts in statistics such as expected value, variance,
covariance and correlation coefficient, to construct a novel MCDM method within the background of
a probabilistic hesitant environment. Considering sometimes two random variables maybe do not
mutual independent. In this paper, the expected mean related to the multiply of two PHFEs can be
obtained through using the northwest corner rule, from the course of operations research, balance
problems of transport model [38].

To overcome the above mention limitations, this paper focuses on the correlation coefficient
between two PHFSs and based on the northwest corner rule to obtain the expected mean related to the
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multiply of two PHFEs when the PHFEs are not mutual independent. Finally, a novel MCDM method
with the probabilistic hesitant fuzzy environment is introduced based on the proposed weighted
correlation coefficient. The primary motivations and contributions of this paper are summarized
as follows.

(1) A novel formula to calculate the correlation coefficient between two PHFSs is proposed.
The correlation coefficient is proposed in this paper utilize the knowledge of statistics, the
significant characteristic of the proposed formula is that it lies in the interval [−1, 1]. The proposed
formula not only consider the strength of the PHFSs but also whether the PHFSs are positively
or negatively related, it avoids the inconsistency of the decision-making result due to the loss
of information.

(2) The existing decision-making methods within probabilistic hesitant fuzzy environments, few
papers discussed the condition when two PHFEs are not mutual independent. In this paper,
the northwest corner rule to obtain the expected mean related to the multiply of two PHFEs
is introduced.

(3) A novel MCDM method within the probabilistic hesitant fuzzy environment is introduced based
on the proposed weighted correlation coefficient and this proposed method is applied to practical
decision-making problems, that is, the evaluation of the alternatives.

The rest of this paper is organized as follows. Section 2 reviews some basic concepts related
to HFSs and PHFSs and some correlation coefficient formulas related to HFSs. In Section 3, we
introduce a novel correlation coefficient formula for PHFSs, the properties of the proposed covariance
and correlation coefficient are discussed. And the northwest corner rule to obtain the expected
mean related to the multiply of two PHFEs is introduced. In Section 4, the weighted correlation
coefficient is proposed and the properties of the proposed weighted correlation coefficient are discussed.
The weighted correlation coefficient of two PHFEs is applied to an evaluation of the alternatives
problem in Section 5. Finally, the conclusions are given in Section 6.

2. Preliminaries

In this section, several basic definitions and notations related to our research will be reviewed,
mainly including HFS, correlation coefficient and the concept of PHFS, its score function and
indeterminacy index function. In addition, an evaluation information integrate method is introduced.

Definition 1. [39] Let X be a reference set, a HFS A on X is defined in terms of a function hA(x) when applied
to X returns a finite subset of [0, 1].

To be easily understand, Xia et al. [40] expressed the HFS by a mathematical symbol:

A = {< x, hA(x) > |x ∈ X }. (1)

Here, the function hA(x) is a set of some different values in [0, 1], representing the possible
membership degrees of the element x in X to A. For convenience, hA(x) is called a HFE.

Example 1. Let X = {x1, x2, x3} be a reference set, hA(x1) = {0.2, 0.4, 0.6}, hA(x2) = {0.3, 0.4, 0.5} and
hA(x3) = {0.2, 0.3, 0.5, 0.6}.

Be three HFEs of xi(i = 1, 2, 3) to a set A, respectively. Then A can be considered as a HFS,

A = {〈x1, {0.2, 0.4, 0.6}〉, 〈x2, {0.3, 0.4, 0.5}〉, 〈x3, {0.2, 0.3, 0.5, 0.6}〉}.

Correlation coefficient is a frequently use formulas and has been applied in measure the similarity
between two objects. Liao et al. [23] defined the correlation coefficient between two HFSs as follows.
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Definition 2. [23] Let X = {x1, x2, · · · , xn} be a discrete universe of discourse and Fi be the hesitant

fuzzy space containing all HFSs defined over X. For any two HFSs, hA(xi) =

{
γAi1 , γAi2 , · · · , γAilAi

}
and

hB(xi) =

{
γBi1 , γBi2 , · · · , γBilBi

}
, the correlation coefficient between them is defined as follows:

ρ(A, B) =
Cov(A, B)

[D(A)D(B)]1/2 , (2)

where

Cov(A, B) =
1
n

n

∑
i=1

[−
h A(xi)−

−
A
]
·
[−

hB(xi)−
−
B
]

,

D(A) =
1
n

n

∑
i=1

[−
h A(xi)−

−
A
]
·
[−

h A(xi)−
−
A
]

,

D(B) =
1
n

n

∑
i=1

[−
hB(xi)−

−
B
]
·
[−

hB(xi)−
−
B
]

.

and,
−
h A(xi) = 1

lAi
∑

lAi
k=1 γAik ,

−
hB(xi) = 1

lBi
∑

lBi
k=1 γBik ,

−
A = 1

n ∑n
i=1

−
h A(xi) and

−
B = 1

n ∑n
i=1

−
hB(xi). Where

lAi and lBi are respectively denotes the number of the elements in hA(xi) and hB(xi).

Recently, Zhang et al. [31] proposed the improvement of PHFSs, which have added the partial
ignorance information to PHFSs that was proposed by Zhu [30].

Definition 3. [31] Let X be a reference set, then a PHFS P on X can be expressed by as:

P = {< x, hx(px) > |x ∈ X }. (3)

Here, the function hx is a set of several different values in [0, 1], which is described by the
probability distribution px. Where hx denotes the possible membership degree of element x in X to P.
For convenience, hx(px) is called a PHFE and denoted as h(p) and is indicated by

h(p) = {γi(pi)|i = 1, 2, · · · , |h(p)| },

where pi satisfying ∑
|h(p)|
i=1 pi ≤ 1, is the probability of the possible value γi and |h(p)| is the number of

all γi(pi) in h(p). If ∑
|h(p)|
i=1 pi < 1, means there is some missing values in PHFE. If there is no special

explanation, in this paper, we only discuss the condition ∑
|h(p)|
i=1 pi = 1.

Example 2. Let X = {x1, x2} be a reference set, h1(p1) = {0.2(0.3), 0.4(0.2), 0.5(0.1), 0.7(0.4)} and
h2(p2) = {0.3(0.1), 0.4(0.9)} be two PHFEs of xi(i = 1, 2) to a set P, respectively. Then P can be considered
as a PHFS,

P = {〈x1, {0.2(0.3), 0.4(0.2), 0.5(0.1), 0.7(0.4)}〉, 〈x2, {0.3(0.1), 0.4(0.9)}〉}.

If we ignore the probabilities of the possible values in a PHFE, then the possible values are with
the same probability, in this case, PHFE turn to HFE.

In order to rank the PHFEs, Xu et al. [41] introduced the score function and indeterminacy index
function of PHFEs. As a matter of fact, the score function and indeterminacy index function can be
regarded as expect mean and variance of PHFEs.
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Definition 4. [41] Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the expect mean of it is defined as:

E(A) =
|h(p)|
∑
i=1

γi pi. (4)

It is noted that if the probabilities of PHFE are equally, that is p1 = p2 = · · · = p|h(p)| =
1

|h(p)| , in
this case, expect mean will turn to the score function of HFS that was introduced in Definition 4 in [40].

Definition 5. [41] Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the variance of it is defined as:

D(A) =
|h(p)|
∑
i=1

(γi − E(A))2 pi. (5)

Example 3. Let hA(pA) = {0.5(0.25), 0.6(0.5), 0.7(0.25)} be a PHFE, according to Definition 4 and
Definition 5, we have E(A) = 0.5× 0.25 + 0.6× 0.5 + 0.7× 0.25 = 0.6, D(A) = (0.5− 0.6)2 × 0.25 +

(0.6− 0.6)2 × 0.5 + (0.7− 0.6)2 × 0.25 = 0.005.

Remark 1. If there is only one element in a PHFE, in this case, we have D(A) = 0.

Remark 2. According to statistics knowledge, there is an equivalence formula related to the variance of hA(pA)

in Definition 5, that is:

D(A) =
|h(p)|
∑
i=1

γ2
i pi − E(A)2. (6)

In order to integrate the evaluation information obtained from decision makers in the
decision-making processes, according to the total probability formula in statistics, Li et al. [42]
introduced an information integrate method as follows.

Definition 6. [42] For a reference set X, let P = {〈x, hx(px)|x = 1, 2, · · · , n 〉} be a PHFS, where h(p) =
{γi(pi)|i = 1, 2, · · · , |h(p)|} is the PHFE indicating all possible values in P. Then, the probability of the value
γi can be calculated as follows:

P(x = γi) =
n

∑
i=1

P(x = h(p))P(x = γi/x = h(p)), (7)

where n is the number of all PHFEs in P.

Example 4. Let P = {〈x1, {0.4(0.6), 0.6(0.3), 0.7(0.1)}〉, 〈x2, {0.3(0.7), 0.4(0.3)}〉, 〈x3, {0.8(0.2), 0.9(0.8)}〉}
be a PHFS. The probability of value 0.4 in P is calculated as follows: P(x = 0.4) = 1

3 × 0.6+ 1
3 × 0.3+ 1

3 × 0 = 0.3.

3. The Correlation Coefficient of PHFEs

Since every PHFE has two parts, that is: γi and pi, where γi can be regarded as the condition of a
random variable, pi can be regarded as the corresponding probability of γi. Based on this consideration,
every PHFE can be regarded as a discrete random variable. In the following section, covariance and
the correlation coefficients of PHFEs will be introduced.

In order to obtain the correlation coefficients of PHFEs. First, the standard deviation of it is
calculated. Second, the expect value related to the multiple of two PHFEs is calculated. Then, the
covariance of the PHFEs is obtained. Finally, based on the standard deviation and covariance, the
correlation coefficient of PHFEs can be obtained.

According to the statistics knowledge, the standard deviation of PHFEs can be obtained from the
square of the deviation. And in order to obtain the expect value related to the multiply of AB, that is,
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PHFE hA(pA) multiply PHFE hB(pB). First, the joint distribution law between hA(pA) and hB(pB) will
be determined and then based on the joint distribution law, we can calculate the expect value related
to the multiply of AB. Considering sometimes two PHFEs maybe do not mutual independent, in the
following section, a method to determine the joint distribution law between hA(pA) and hB(pB) will
be introduced.

Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be two
PHFEs, utilizing the northwest corner rule [38], the joint distribution law between hA(pA) and hB(pB)

can be determined and is shown in Table 1.
Where ∑

|l(p)|
j=1 pij = pi, (i = 1, 2, · · · , |h(p)|) and ∑

|h(p)|
i=1 pij = p′j, (j = 1, 2, · · · , |l(p)|) and |h(p)|

and |l(p)| are respectively denotes the number of the elements in hA(pA) and hB(pB).
Base on the joint distribution law, expect value related to the multiply of AB can be obtained

as follows.

Table 1. Joint distribution law between hA(pA) and hB(pB).

γ′
1 γ′

2 · · · γ′
j · · · γ′

|l(p)| pi·
γ1 p11 p12 · · · p1j · · · p1|l(p)| p1
γ2 p21 p22 · · · p2j · · · p2|l(p)| p2
...

...
...

...
...

...
...

...
γi pi1 pi2 · · · pij · · · pi|l(p)| pi
...

...
...

...
...

...
...

...
γ|h(p)| p|h(p)|1 p|h(p)|2 · · · p|h(p)|j · · · p|h(p)||l(p)| p|h(p)|

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

Definition 7. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, then expect value related to the multiply of AB is calculated as:

E(AB) =
|h(p)|
∑
i=1

|l(p)|
∑
j=1

γiγ
′
j pij. (8)

Example 5. Let hA(pA) = {0.5(0.25), 0.6(0.5), 0.7(0.25)} and hB(pB) = {0.2(0.25), 0.3(0.75)} be two
PHFEs, utilizing the northwest corner rule, the joint distribution law between hA(pA) and hB(pB) can be
determined and is shown in Table 2.

Table 2. Joint distribution law between hA(pA) and hB(pB) of Example 5.

0.2 0.3 pi·
0.5 0.25 0 0.25
0.6 0 0.5 0.5
0.7 0 0.25 0.25
p·j 0.25 0.75 1

According to Definition 8, we have E(AB) = 0.5 × 0.2 × 0.25 + 0.6 × 0.3 × 0.5 + 0.7 × 0.3 ×
0.25 = 0.64.

Remark 3. If hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be two
mutual independent PHFEs, according to statistics knowledge (the properties of mutual independent discrete
random variable), the joint distribution law between hA(pA) and hB(pB) can be determined and is shown in
Table 3.
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Table 3. Joint distribution law between hA(pA) and hB(pB) of Remark 3.

γ′
1 γ′

2 · · · γ′
j · · · γ′

|l(p)| pi·
γ1 p1 p′1 p1 p′2 · · · p1 p′j · · · p1 p′|l(p)| p1

γ2 p2 p′1 p2 p′2 · · · p2 p′j · · · p2 p′|l(p)| p2
...

...
...

...
...

...
...

...
γi pi p′1 pi p′2 · · · pi p′j · · · pi p′|l(p)| pi
...

...
...

...
...

...
...

...
γ|h(p)| p|h(p)|p

′
1 p|h(p)|p

′
2 · · · p|h(p)|p

′
j · · · p|h(p)|p

′
|l(p)| p|h(p)|

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

Example 6. Let hA(pA) and hB(pB) be two PHFEs are shown in Example 5, if hA(pA) and hB(pB) are mutual
independent, according to Remark 3, the joint distribution law between them can be determined and is shown in
Table 4.

Table 4. Joint distribution law between hA(pA) and hB(pB) of Example 6.

0.2 0.3 pi·
0.5 0.0625 0.1875 0.25
0.6 0.125 0.375 0.5
0.7 0.0625 0.1875 0.25
p·j 0.25 0.75 1

According to Definition 8, we have E(AB) = 0.0625× 0.5× 0.2 + 0.1875× 0.5× 0.3 + 0.125×
0.6× 0.2 + 0.375× 0.6× 0.3 +0.0625× 0.7× 0.2 + 0.1875× 0.7× 0.3 = 0.165.

Utilizing Definitions 4 and 7, the covariance between hA(pA) and hB(pB) is obtained as follows.

Definition 8. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, the covariance between them is obtained as:

Cov(A, B) = E(A− E(A))(B− E(B)). (9)

The covariance defined in Equation (9) has the following properties.

Property 1. For any PHFEs hA(pA) and hB(pB), the covariance defined in Equation (9) satisfies:

(1) Cov(A, A) = D(A);
(2) Cov(A, B) = Cov(B, A);
(3) Cov(A, B) = E(AB)− E(A)E(B);
(4) If one of the PHFEs has only one element in it, in this case, we have Cov(A, B) = 0.

The proof of Property 1 is shown in Appendix A.
Utilizing Definitions 5 and 8, correlation coefficient between two PHFEs is obtained as follows.

Definition 9. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) =
{

γ′j(p′j)|j = 1, 2, · · · , |l(p)|
}

be
two PHFEs, the correlation coefficient between them is obtained as:

ρ(A, B) =
E(A− E(A))(B− E(B))√

D(A)
√

D(B)
. (10)

The correlation coefficient obtained in Equation (10) has the following properties.
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Property 2. For any PHFEs hA(pA) and hB(pB), the correlation coefficient obtained in Equation (10) satisfies:

(1) ρ(A, B) = ρ(B, A);
(2) −1 ≤ ρ(A, B) ≤ 1;
(3) if hA(pA) = hB(pB)⇒ ρ(A, B) = 1 ;
(4) if hB(pB) = hA(pA)

c ⇒ ρ(A, Ac) = −1 .

The proof of Property 2 is shown in Appendix B.

Remark 4. In Property 2, if hA(pA) = hB(pB)⇒ ρ(A, B) = 1 , conversely, it is not hold. That is, if
ρ(A, B) = 1, � hA(pA) = hB(pB).

4. Weighted Correlation Coefficient of PHFEs

Considering in some situations, the objects may be assigned with different weights. In this section,
the weighted form of the expect mean, variance, covariance and correlation coefficient of PHFEs will
be introduced.

Let w = (w1, w2, · · · , wn) be the weight vector of xi ∈ X, (i = 1, 2, · · · , n) with wi ∈
[0, 1] and ∑n

i=1 wi = 1. For two PHFEs hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} and hB(pB) ={
γ′j(p′j)|j = 1, 2, · · · , |l(p)|

}
, the following definitions can be developed.

Definition 10. Let hA(pA) = {γi(pi)|i = 1, 2, · · · , |h(p)|} be a PHFE, the weighted probabilistic hesitant
fuzzy element (WPHFE) on X is obtained as:

Aw = {(wiγi)(pi)|i = 1, 2, · · · , h(p)}. (11)

Definition 11. Let Aw be a WPHFE, the weighted expect mean of it is obtained as:

Ew(A) =
|h(p)|
∑
i=1

wiγi pi. (12)

Definition 12. Let Aw be a WPHFE, the weighted variance of it is obtained as:

Dw(A) =
|h(p)|
∑
i=1

(wiγi − Ew(A))2 pi. (13)

Let Aw and Bw′ be two WPHFEs, utilizing the northwest corner rule, the weight joint distribution
law between them can be determined and is shown in Table 5.

Where ∑
|l(p)|
j=1 p′ij = pi, (i = 1, 2, · · · , |h(p)|) and ∑

|h(p)|
i=1 p′ij = p′j, (j = 1, 2, · · · , |l(p)|).

Base on the weight joint distribution law, the weighted except mean Ew(AB) related to the
multiply of AB can be obtained as follows.

Table 5. Weight joint distribution law between Aw and Bw′ .

w′
1γ′

1 w′
2γ′

2 · · · w′
jγ

′
j · · · w′

|l(p)|γ
′
|l(p)| pi·

w1γ1 p′11 p′12 · · · p′1j · · · p′1|l(p)| p1

w2γ2 p′21 p′22 · · · p′2j · · · p′2|l(p)| p2
...

...
...

...
...

...
...

...
wiγi p′i1 p′i2 · · · p′ij · · · p′i|l(p)| pi

...
...

...
...

...
...

...
...

w|h(p)|γ|h(p)| p′|h(p)|1 p′|h(p)|2 · · · p′|h(p)|j · · · p′|h(p)||l(p)| p|h(p)|
p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1
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Definition 13. Let Aw and Bw′ be two WPHFEs, the weighted expect mean between them is obtained as:

Ew(AB) =
|h(p)|
∑
i=1

|l(p)|
∑
j=1

wiw′jγiγ
′
j p
′
ij. (14)

Using Definitions 11 and 13, the weighted covariance between two WPHFEs can be derived
as follows.

Definition 14. Let Aw and Bw′ be two WPHFEs, the weighted covariance between them is obtained as:

Covw(A, B) = E(A− Ew(A))(B− Ew′(B)). (15)

Using Definitions 13 and 15, the weighted correlation coefficient between two WPHFEs can be
calculated as follows.

Definition 15. Let Aw and Bw′ be two WPHFEs, the weighted correlation coefficient between them is
obtained as:

ρw(A, B) =
E(A− Ew(A))(B− Ew′(B))√

Dw(A)
√

Dw′(B)
. (16)

The weighted correlation coefficient obtained in Equation (16) has the following properties.

Property 3. For any WPHFEs Aw and Bw′ , the weighted correlation coefficient obtained in
Equation (16) satisfies:

(1) ρw(A, B) = ρw(B, A);
(2) −1 ≤ ρw(A, B) ≤ 1;
(3) if Aw = Bw′ ⇒ ρw(A, B) = 1 .

The proof of Property 3 is similar to the proof of Property 2, so it has been omitted here.

5. Multi-Criteria Decision-Making Based on Probabilistic Hesitant Fuzzy Information

In this section, a MCDM problems within probabilistic hesitant fuzzy environment is adopted to
demonstrate how to apply the proposed method.

5.1. Problems Description

For a MCDM problems, let A = {A1, A2, · · · , An} be a set of alternatives, G = {G1, G2, · · · , Gm}
be a set of criteria, the criteria weights are completely unknown. Assume the criteria are independent
to each other. D = {D1, D2, · · · , Dt} be a set of decision makers. And the evaluation of the alternative
Aj with respect to the criterion Gi is represent in PHFEs.

The MCDM processes designed to find the best alternative is given by the following steps:

Step 1: Construct individual probabilistic hesitant fuzzy decision matrix

The individual probabilistic hesitant fuzzy decision matrix can be constructed and denoted as
Dk = (γij(pij)

k)m×n;

Step 2: Integrate individual probabilistic hesitant fuzzy decision matrix into one

Use Equation (6) to integrate individual probabilistic hesitant fuzzy decision matrix into an overall
decision matrix and denotes as D = (γij(pij))m×n;

Step 3: Derive the criteria weights
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The criteria weights can be derived utilizing the following formula:

wi =

n
∑

j=1
E
(
γij(pij)

)
n
∑

j=1

m
∑

i=1
E
(
γij(pij)

) , (i = 1, 2, · · · , m). (17)

Step 4: Calculate the weighted correlation coefficient

By applying Equation (12), the ideal alternative A∗ under the criterion Gi can be obtained
as follows:

A∗ = max
{

Aj
∣∣wiγij pij, i = 1, 2, · · · , m; j = 1, 2, · · · , n

}
. (18)

Here, the weighted of wi is obtained from Equation (17).
And then calculate the weighted correlation coefficient between any alternative A and ideal

alternative A∗.
Use Equation (16), calculate the weighted correlation coefficient between A and A∗ as follows:

ρw(A, A∗) =
E(A− Ew(A))(A∗ − Ew′(A∗))√

Dw(A)
√

Dw′(A∗)
. (19)

Step 5: Rank all alternatives

Since the higher the score of the weighted correlation coefficient obtain from Equation (19),
means that the more similarity between any alternative A and the ideal alternative A∗, the better the
alternative A is. Based on this consideration, the ranking result of the alternatives Aj, (j = 1, 2, · · · , n)
can be obtained according to the following formula:

rj =
m

∑
i=1

βij, (j = 1, 2, · · · , n). (20)

Here, βij is the value of weighted correlation coefficient, obtained from Step 4.

5.2. Illustrative Example

Suppose there is an investment company, which wants to invest a sum of money in the best
option, there is a panel with four possible alternatives to invest: (1) A1 is a car company; (2) A2 is a
food company; (3) A3 is a computer company; (4) A4 is an arms company. The investment company
must take a decision according to the following five criteria: (1) G1 is the productivity; (2) G2 is the
technological innovation capability; (3) G3 is the marketing capability; (4) G4 is the management; (5) G5

is the risk avoidance.
An expert group is formed which consists of four experts Dt (t = 1, 2, 3, 4) from each strategic

decision area (whose weight vector is equally). Suppose each expert consulted 10 people in the same
industry through online questionnaire and the 10 people they consulted were not exactly similar.
Four experts provided their preference evaluations on alternatives in the form of PHFEs, as shown
in Tables 6–9, respectively. Take the evaluation values {0.6(0.4), 0.7(0.6)} from Expert 1, for example,
evaluation information is obtained from 10 people related to computer company A3 with respect to
productivity G1. Four of them set a value of 0.6, whereas six of them set a value 0.7 and thus, the
probability of the vale 0.6 is 0.4 and the probability of the vale 0.7 is 0.6. Other entries, that is, other
PHFEs, in Tables 6–9 can be similarly explained. Because four experts consulted the people in the same
industry may be communicate with each other, in this case, the evaluation information obtained from
four experts are interact with each other.
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Table 6. The evaluation information provided from D1.

A1 A2 A3 A4

G1 0.5 0.3 {0.6(0.4), 0.7(0.6)} 0.4
G2 0.7 0.4 {0.4(0.5), 0.5(0.5)} 0.3
G3 {0.4(0.4), 0.3(0.6)} {0.6(0.5), 0.5(0.5)} 0.3 0.5
G4 0.6 0.7 0.3 0.5
G5 0.5 0.6 0.4 {0.4(0.5), 0.5(0.5)}

Table 7. The evaluation information provided from D2.

A1 A2 A3 A4

G1 0.5 0.4 0.6 0.3
G2 0.6 0.5 0.6 0.4
G3 0.4 0.4 0.5 0.5
G4 0.7 0.6 0.3 0.5
G5 0.3 0.6 0.4 0.7

Table 8. The evaluation information provided from D3.

A1 A2 A3 A4

G1 0.5 {0.2(0.4), 0.3(0.6)} {0.6(0.4), 0.7(0.6)} 0.6
G2 {0.8(0.4), 0.7(0.6)} 0.4 {0.4(0.5), 0.5(0.5)} 0.3
G3 0.4 0.5 0.6 {0.4(0.5), 0.3(0.5)}
G4 0.7 0.4 0.5 {0.4(0.7), 0.5(0.3)}
G5 0.4 0.6 0.7 0.2

Table 9. The evaluation information provided from D4.

A1 A2 A3 A4

G1 0.7 0.3 0.4 0.2
G2 0.7 0.5 0.5 0.6
G3 0.6 0.8 0.2 {0.4(0.5), 0.3(0.5)}
G4 {0.4(0.5), 0.3(0.5)} {0.7(0.5), 0.6(0.5)} 0.1 0.6
G5 0.8 0.4 {0.7(0.5), 0.6(0.5)} 0.5

The processes are designed to find the best alternative is given by the following steps:

Step 1: Construct individual probabilistic hesitant fuzzy decision matrix

The individual probabilistic hesitant fuzzy decision matrix has been constructed and is shown in
Tables 6–9.

Step 2: Integrate individual probabilistic hesitant fuzzy decision matrix

Use Equation (7) to integrate individual probabilistic hesitant fuzzy decision matrix into an overall
decision matrix and is shown in Table 10.

Step 3: Derive the criteria weights

By applying Equation (17), the weights of criteria are calculated as follows:

w1 = 0.19, w2 = 0.21, w3 = 0.19, w4 = 0.20 and w5 = 0.21.

Step 4: Calculate the weighted correlation coefficient
By applying Equation (19), the weighted correlation coefficient can be obtained and is shown in

Table 11.
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Table 10. Integrate individual evaluation information.

A1 A2 A3 A4

G1 {0.5(0.75), 0.7(0.25)}
{

0.2(0.1), 0.3(0.65)
0.4(0.25)

} {
0.4(0.25), 0.6(0.45)

0.7(0.3)

} {
0.2(0.25), 0.3(0.25)
0.4(0.25), 0.6(0.25)

}
G2

{
0.6(0.25), 0.7(0.65)

0.8(0.1)

}
{0.4(0.5), 0.5(0.5)}

{
0.4(0.25), 0.5(0.5)

0.6(0.25)

} {
0.3(0.5), 0.4(0.25)

0.6(0.25)

}
G3

{
0.3(0.15), 0.4(0.6)

0.6(0.25)

} {
0.4(0.25), 0.5(0.375)
0.6(0.125), 0.8(0.25)

} {
0.2(0.25), 0.3(0.25)
0.5(0.25), 0.6(0.25)

} {
0.3(0.25), 0.4(0.25)

0.5(0.5)

}
G4

{
0.3(0.125), 0.4(0.125)

0.6(0.25), 0.7(0.5)

} {
0.4(0.25), 0.6(0.375)

0.7(0.375)

} {
0.1(0.25), 0.3(0.5)

0.5(0.25)

} {
0.4(0.175), 0.6(0.25)

0.5(0.575)

}
G5

{
0.3(0.25), 0.4(0.25)
0.5(0.25), 0.8(0.25)

}
{0.6(0.75), 0.4(0.25)}

{
0.4(0.5), 0.6(0.125)

0.7(0.375)

} {
0.2(0.25), 0.5(0.325)
0.4(0.125), 0.7(0.25)

}

Table 11. Weight correlation coefficient.

ρw(A1, A∗) ρw(A2, A∗) ρw(A3, A∗) ρw(A4, A∗)
G1 0.62 0.75 1 0.28
G2 1 0.61 0.86 0.64
G3 0.94 1 0.9 −0.03
G4 0.95 1 0.91 0.27
G5 −0.93 1 −0.67 −0.74

Step 5: Rank all alternatives.

The ranking result of the alternatives Aj (j = 1, 2, · · · , 4) can be obtained according to the
Formula (20) as follows:

r1 = 2.28, r2 = 4.36, r3 = 3, r4 = 0.42.

Since r2 > r3 > r1 > r4, then A2 � A3 � A1 � A4. Hence, the most desirable alternative is A2.
That is, the food company is the best option to invest.

It is stated that in this example, the correlation coefficient is proposed in this paper lies in the
interval [−1, 1], which not only consider the strength of relationship between the PHFSs but also
whether the PHFSs are positively or negatively related. In this illustrative example, we can also use
the methods proposed in [8,36] to solve the problem illustrative in the example. However, the method
proposed in [36] directly integrated the probability part into the membership degree part, this make
cause a lot of information loss. For example, the positively or negatively related obtained from the
proposed method. And the method proposed in [8] fail in the condition when two PHFEs are not
mutual independent.

6. Conclusions

This article puts forward a framework to tackle MCDM problems within probabilistic hesitant
fuzzy environments with completely unknown criteria weight information. Since every PHFE
consists of two parts, that is, the membership degree of the element to the set and the corresponding
probability of the membership degree, this information can be treated as a probabilistic distribution
function, inspired by statistics knowledge, each PHFE can be regarded as a discrete random variable.
The primary contributions of this paper are summarized as follows. (1) The correlation coefficient is
proposed in this paper adopt the knowledge of statistics, the significant characteristic of the proposed
formula is that it lies in the interval [−1, 1]. The proposed formula not only consider the strength of
the PHFSs but also whether the PHFSs are positively or negatively related, it avoids the inconsistency
of the decision-making result due to the loss of information; (2) The existing decision-making methods
related to probabilistic hesitant fuzzy environments, very few papers discussed the condition when two
random variables are not mutual independent. In this paper, the northwest corner rule to obtain the
expected mean of two PHFEs multiply is introduced; (3) A novel MCDM method with the probabilistic
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hesitant fuzzy environment is introduced based on the proposed weighted correlation coefficient and
this proposed method is applied to practical decision-making processes.

In this paper, we have applied the proposed correlation coefficient in evaluation of the alternatives.
In the future, we will apply it in other aspects, such as, pattern recognition and cluster analysis. In
addition, in this paper, we only discuss the correlation coefficients between two PHFSs, in future
study, the proposed correlation coefficients will be extended to other extension of PHFSs, such as,
interval-valued probabilistic hesitant fuzzy sets, probabilistic linguistic term sets and so on.
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Appendix A. Proof of Property 1

Proof. The proof of (1), (2) and (3) is obvious, so it has been omitted here. And the proof of (4) will be
demonstrated as follows:

Suppose hA(pA) has only one element in it, denoted by hA(pA) = {h1(p1)}, according to
Definition 3, we have p1 = 1. Let hB(pB) =

{
γ′j(p′j)|j = 1, 2, · · · , |l(p)|

}
, utilizing the northwest

corner rule, the joint distribution law between them can be determined and is shown in Table A1.

Table A1. Joint distribution law between hA(pA) and hB(pB) in Property 1.

γ′
1 γ′

2 · · · γ′
j · · · γ′

|l(p)| pi·
γ1 p′1 p′2 · · · p′j · · · p′|l(p)| p1

p·j p′1 p′2 · · · p′j · · · p′|l(p)| 1

According to Definition 8, we have

E(AB) = γ1γ′1 p′1 + γ1γ′2 p′2 + · · ·+ γ1γ′|l(p)|p
′
|l(p)|

= γ1

(
γ′1 p′1 + γ′2 p′2 + · · ·+ γ′|l(p)|p

′
|l(p)|

)
= γ1 p1

(
γ′1 p′1 + γ′2 p′2 + · · ·+ γ′|l(p)|p

′
|l(p)|

)
= E(A)E(B).

Therefore, we have Cov = E(A− E(A))(B− E(B)) = E(AB)− E(A)E(B) = 0.
The similar proof can be obtained if hB(pB) has only one element in it.
This completes the proof.

Appendix B. Proof of Property 2

Proof.

(1) It is straightforward.
(2) According to Property 1, we have

Cov(A, B) = E(AB)− E(A)E(B) = E(A− E(A))(B− E(B)),
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and

E(A− E(A))(B− E(B)) =
|h(p)|

∑
i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

= ∑
|l(p)|
j=1 (γ1 − E(A))(γ′j − E(B))p1j + ∑

|l(p)|
j=1 (γ2 − E(A))(γ′j − E(B))p2j

+ · · ·+ ∑
|l(p)|
j=1 (γ|h(p)| − E(A))(γ′j − E(B))p|h(p)|j

= ∑
|l(p)|
j=1 (γ1 − E(A))

√p1j(γ
′
j − E(B))√p1j + ∑

|l(p)|
j=1 (γ2 − E(A))

√p2j(γ
′
j − E(B))√p2j

+ · · ·+ ∑
|l(p)|
j=1 (γ|h(p)| − E(A))

√p|h(p)|j(γ
′
j − E(B))√p|h(p)|j.

Using the Cauchy-Schwarz inequality: (a1b1 + a2b2 + · · ·+ anbn)
2 ≤

(a2
1 + a2

2 + · · ·+ a2
n)(b2

1 + b2
2 + · · ·+ b2

n), it follows that

[Cov(A, B)]2 =

[
|h(p)|

∑
i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

]2

≤
[
∑
|l(p)|
j=1 (γ1 − E(A))2 p1j + ∑

|l(p)|
j=1 (γ2 − E(A))2 p2j + · · ·+ ∑

|l(p)|
j=1 (γ|h(p)| − E(A))2 p|h(p)|j

]
×
[
∑
|l(p)|
j=1 (γ′j − E(B))2 p1j + ∑

|l(p)|
j=1 (γ′j − E(B))2 p2j + · · ·+ ∑

|l(p)|
j=1 (γ′j − E(B))2 p|h(p)|j

]
=
[
(γ1 − E(A))2∑

|l(p)|
j=1 p1j + (γ2 − E(A))2∑

|l(p)|
j=1 p2j + · · ·+ (γ|h(p)| − E(A))2∑

|l(p)|
j=1 p|h(p)|j

]
×
[
(γ′1 − E(B))2∑

|h(p)|
i=1 pi1 + (γ′2 − E(B))2∑

|h(p)|
i=1 pi2 + · · ·+ (γ′|l(p)| − E(B))2∑

|h(p)|
i=1 pi|l(p)|

]
=
[
(γ1 − E(A))2 p1 + (γ2 − E(A))2 p2 + · · ·+ (γ|h(p)| − E(A))2 p|h(p)|

]
×
[
(γ′1 − E(B))2 p′1 + (γ′2 − E(B))2 p′2 + · · ·+ (γ′|l(p)| − E(B))2 p′|l(p)|

]
=
[
∑
|h(p)|
i=1 (γi − E(A))2 pi

]
×
[
∑
|l(p)|
j=1 (γ′j − E(B))2 p′j

]
.

Taking the square root of both sides, this inequality reduces to:

∣∣∣∣∣|h(p)|
∑
i=1

|l(p)|
∑
j=1

(γi − E(A))(γ′j − E(B))pij

∣∣∣∣∣ ≤
[|h(p)|

∑
i=1

(γi − E(A))2 pi

] 1
2

×
[|l(p)|

∑
j=1

(γ′j − E(B))2 p′j

] 1
2

Therefore, this inequality can be rewritten as:∣∣∣∣∣|h(p)|
∑

i=1

|l(p)|
∑

j=1
(γi − E(A))(γ′j − E(B))pij

∣∣∣∣∣√
∑
|h(p)|
i=1 (γi − E(A))2 pi ×

√
∑
|l(p)|
j=1 (γ′j − E(B))2 p′j

≤ 1.

Therefore, we have −1 ≤ ρ(A, B) ≤ 1.

(3) if hA(pA) = hB(pB)⇒ γi = γ′j , pi = p′j and |h(p)| = |l(p)|, utilizing the northwest corner rule,
the joint distribution law between them can be determined and is shown in Table A2.
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Table A2. Joint distribution law between hA(pA) and hA(pA) in Property 2.

γ1 γ2 · · · γi · · · γ|h(p)| pi·
γ1 p1 0 · · · 0 · · · 0 p1
γ2 0 p2 · · · 0 · · · 0 p2
...

...
...

...
...

...
...

...
γi 0 0 · · · pi · · · 0 pi
...

...
...

...
...

...
...

...
γ|h(p)| 0 0 · · · 0 · · · p|h(p)| p|h(p)|

p·j p1 p2 · · · pi · · · p|h(p)| 1

And
E(A2) = γ2

1 p1 + γ2
2 p2 + · · ·+ γ2

|h(p)|p|h(p)|,

E(A) = γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|

Thus, we have

Cov(A, A) = E(A2)− E(A)2

= γ2
1 p1 + γ2

2 p2 + · · ·+ γ2
|h(p)|p|h(p)| − (γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|)

2

= D(A).

Thus, we have
ρ(A, A) = 1.

(4) If hB(pB) = hA(pA)
c, according to the supplement operation law was introduced in [41], we

obtain: hA(pA)
c = {(1− γi)(pi)| i = 1, 2, · · · , |h(p)|}, utilizing the northwest corner rule, the

joint distribution law between them can be determined and is shown in Table A3.

And

Since
E(Ac) = (1− γ1)p1 + (1− γ2)p2 + · · ·+

(
1− γ|h(p)|

)
p|h(p)|

= p1 − γ1 p1 + p2 − γ2 p2 + · · ·+ p|h(p)| − γ|h(p)|p|h(p)|
= p1 + p2 + · · ·+ p|h(p)| −

(
γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|

)
= 1− E(A).

Thus, we have
Cov(A, Ac) = E(AAc)− E(A)E(Ac)

= E(A)− E(A2)− E(A)(1− E(A))

= −E(A2) + E(A)2.
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for D(A) = γ2
1 p1 + γ2

2 p2 + · · ·+ γ2
|h(p)|p|h(p)| − E(A)2 = E(A2)− E(A)2.

D(Ac) = (1− γ1)
2 p1 + (1− γ2)

2 p2 + · · ·+
(

1− γ|h(p)|
)2

p|h(p)| − (1− E(A))2

= p1 − 2γ1 p1 + γ2
1 p1 + p2 − 2γ2 p2 + γ2

2 p2 + · · ·+ p|h(p)| − 2γ|h(p)|p|h(p)| + γ2
|h(p)|p|h(p)| − (1− E(A))2

= p1 + p2 + · · ·+ p|h(p)| − 2
(

γ1 p1 + γ2 p2 + · · ·+ γ|h(p)|p|h(p)|
)
+ γ2

1 p1 + γ2
2 p2 + · · ·+ γ2

|h(p)|p|h(p)| − (1− E(A))2

= 1− 2E(A) + E(A2)− (1− E(A))2

= E
(

A2)− E(A)2.

Thus, we have

ρ(A, Ac) =
Cov(A, Ac)√

D(A)
√

D(Ac)
=

−E2(A) + E(A)2√
E(A2) − E(A)2

√
E(A2) − E(A)2

= −1.

This completes the proof. �

Table A3. Joint distribution law between hA(pA) and hA(pA)
c in Property 2.

1 − γ1 1 − γ2 · · · 1 − γi · · · 1 − γ|h(p)| pi·
γ1 p1 0 · · · 0 · · · 0 p1
γ2 0 p2 · · · 0 · · · 0 p2
...

...
...

...
...

...
...

...
γi 0 0 · · · pi · · · 0 pi
...

...
...

...
...

...
...

...
γ|h(p)| 0 0 · · · 0 · · · p|h(p)| p|h(p)|

p·j p1 p2 · · · pi · · · p|h(p)| 1
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6. Faizi, S.; Rashid, T.; Sałabun, W.; Zafar, S.; Wątróbski, J. Decision making with uncertainty using hesitant
fuzzy sets. Int. J. Fuzzy Syst. 2017, 1–11. [CrossRef]

7. Faizi, S.; Sałabun, W.; Rashid, T.; Atróbski, J.W.; Zafar, S. Group decision-making for hesitant fuzzy sets
based on characteristic objects method. Symmetry 2017, 9, 136. [CrossRef]

8. Alcantud, J.C.R.; Torra, V. Decomposition theorems and extension principles for hesitant fuzzy sets.
Inf. Fusion 2018, 41, 48–56. [CrossRef]

9. Li, J.; Wang, J.Q. An extended QUALIFLEX method under probability hesitant fuzzy environment for
selecting green suppliers. Int. J. Fuzzy Syst. 2017, 1–14. [CrossRef]

10. Zhu, B.; Xu, Z.S. Probability-hesitant fuzzy sets and the representation of preference relations. Technol. Econ.
Dev. Econ. 2017, in press.

11. Pang, Q.; Wang, H.; Xu, Z.S. Probabilistic linguistic term sets in multi-attribute group decision making.
Inf. Sci. 2016, 369, 128–143. [CrossRef]

12. Lv, Z.; Zhao, J.; Liu, Y.; Wang, W. Data imputation for gas flow data in steel industry based on
non-equal-length granules correlation coefficient. Inf. Sci. 2016, 367–368, 311–323. [CrossRef]

110

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 259

13. Bai, X.Z. Morphological center operator based infrared and visible image fusion through correlation
coefficient. Infrared Phys. Technol. 2016, 76, 546–554. [CrossRef]

14. Rao, C.S.; Raju, S.V. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation
coefficient, rank correlation coefficient and cosine similarity measures. Genom. Data 2016, 7, 202–209.

15. Yang, C.C. Correlation coefficient evaluation for the fuzzy interval data. J. Bus. Res. 2016, 69, 2138–2144.
[CrossRef]

16. Hong, D.H. Fuzzy measures for a correlation coefficient of fuzzy numbers under TW (the weakest
t-norm)-based fuzzy arithmetic operations. Inf. Sci. 2006, 176, 150–160. [CrossRef]

17. Liu, S.T.; Kao, C. Fuzzy measures for correlation coefficient of fuzzy numbers. Inf. Sci. 2006, 128, 267–275.
[CrossRef]

18. Hung, W.L.; Wu, J.W. Correlation of intuitionistic fuzzy sets by centroid method. Inf. Sci. 2002, 144, 219–225.
[CrossRef]

19. Ye, J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy
environment. Eur. J. Oper. Res. 2010, 205, 202–204. [CrossRef]

20. Ye, J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of
interval-valued intuitionistic fuzzy sets. Appl. Math. Model. 2010, 34, 3864–3870. [CrossRef]

21. Dong, G.P.; Kwun, Y.C.; Jin, H.P.; Park, I.Y. Correlation coefficient of interval-valued intuitionistic fuzzy sets
and its application to multiple attribute group decision making problems. Math. Comput. Model. Int. J. 2009,
50, 1279–1293.

22. Chen, N.; Xu, Z.S.; Xia, M.M. Correlation coefficients of hesitant fuzzy sets and their applications to clustering
analysis. Appl. Math. Model. 2013, 37, 2197–2211. [CrossRef]

23. Liao, H.C.; Xu, Z.S.; Zeng, X.J. Novel correlation coefficients between hesitant fuzzy sets and their application
in decision making. Knowl.-Based Syst. 2015, 82, 115–127. [CrossRef]

24. Liao, H.C.; Xu, Z.S.; Zeng, X.J. Qualitative decision making with correlation coefficients of hesitant fuzzy
linguistic term sets. Knowl.-Based Syst. 2015, 76, 127–138. [CrossRef]

25. González-Arteaga, T.; Alcantud, J.C.R.; Andrés, R.D. New correlation coefficients for hesitant fuzzy sets.
In Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European
Society for Fuzzy Logic and Technology (IFSA-EUSFLAT), Gijon, Spain, 30 June–3 July 2015.

26. Ye, J. Correlation coefficient of dual hesitant fuzzy sets and its application to multiple attribute decision
making. Appl. Math. Model. 2014, 38, 659–666. [CrossRef]
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Abstract: We introduce notions of soft rough m-polar fuzzy sets and m-polar fuzzy soft rough sets
as novel hybrid models for soft computing, and investigate some of their fundamental properties.
We discuss the relationship between m-polar fuzzy soft rough approximation operators and crisp
soft rough approximation operators. We also present applications of m-polar fuzzy soft rough sets
to decision-making.

Keywords: soft rough m-polar fuzzy sets; m-polar fuzzy soft rough sets; m-polar fuzzy soft rough
approximation operators; decision-making

1. Introduction

The notion of bipolar fuzzy sets was generalized to m-polar fuzzy sets by Chen et al. [1] in 2014.
Chen et al. [1] proved that bipolar fuzzy sets and 2-polar fuzzy sets are cryptomorphic mathematical
tools. In many real life complicated problems, data sometimes comes from n agents (n ≥ 2), that is,
multipolar information (not just bipolar information, which corresponds to two-valued logic) exists.
There are many applications of m-polar fuzzy sets to decision-making problems when it is compulsory
to make assessments with a group of agreements. For example, similarity degrees of two logic formulas
that are based on n logic implication operators (n ≥ 2), ordering results of a magazine, a group of
friends wants to plan to visit a country, ordering results of a university. Akram et al. [2–5] promoted the
work on m-polar fuzzy graphs and introduced many new concepts. Li et al. [6] considered different
algebraic operations on m-polar fuzzy graphs. In 1982, Pawlak [7] introduced the idea of rough
set theory, which is an important mathematical tool to handle imprecise, vague and incomplete
information. In fuzzy set theory [8], membership function plays the vital role. However, the selection
of membership function is uncertain. The fuzzy set theory is an uncertain tool to solve the uncertain
problems, but, in rough set theory, two precise boundary lines are established to describe the vague
concepts. Consequently, the rough set theory is a mathematical tool to solve uncertain problems.
Dubois and Prade [9] introduced the ideas of rough fuzzy sets and fuzzy rough sets by combining fuzzy
sets and rough sets. Recently, works on granular computing are progressing rapidly. Xu and Gou [10]
described an overview of interval-valued intuitionistic fuzzy information aggregation techniques, and
their applications in different fields such as decision-making, entropy measure and supplier selection.
Das et al. [11] introduced a robust decision-making approach using intuitionistic trapezoidal fuzzy
number. Cai et al. [12] defined dynamic fuzzy sets by means of shadowed sets and proposed an
analytic solution to computing the pair of thresholds by searching for a balance of uncertainty in the
framework of shadowed sets. Pedrycz and Chen [13] provided various methods of fuzzy sets and
granular computing, brings new concepts, architectures and practice of fuzzy decision-making with
various applications.
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Many real-world problems in different domains, including social sciences, physical sciences,
applied sciences and life sciences contain vague and imprecise information. The classical mathematical
tools and theories are unfit to handle the difficulties of the data having uncertainties, whereas a lot
of theories including probability theory and fuzzy set theory [8] are very helpful mathematical tools
for dealing with different types of uncertain data. Molodtsov [14] indicated the drawbacks of these
theories. In order to overcome these difficulties, Molodtsov [14] introduced the concept of soft set
theory. Maji et al. [15] proposed some fundamental algebraic operations for soft sets. Maji et al. [16]
generalized the idea of soft sets and presented a hybrid model fuzzy soft sets. Alcantud [17–19]
gave a novel approach to the problems of fuzzy soft sets based decision-making. Alcantud and
Santos-Garcia [20,21] produced a completely new approach to soft set based decision-making problems
when information is incomplete. They also proposed and compared an algorithmic solution with
previous approaches in the literature in [20]. Feng et al. [22] gave the novel idea of rough soft sets
by combining the Pawlak rough sets and soft sets. In 2011, Feng et al. [23] introduced the idea of
soft rough sets. All mathematical models, including fuzzy sets, rough sets, soft sets and fuzzy soft
sets have their advantages and drawbacks. One of the crucial drawbacks of all of these models is
that they have a lack of a sufficient number of parameters to handle the uncertain data. In order to
overcome this problem, we combine rough sets, soft sets with m-polar fuzzy sets and propose the
concepts of new hybrid models called soft rough m-polar fuzzy sets and m-polar fuzzy soft rough sets.
We define the lower and upper soft approximations of an m-polar fuzzy set. The idea of m-polar fuzzy
soft rough sets can be utilized to solve different real-life problems. Thus, we present a new method to
decision-making based on m-polar fuzzy soft rough sets.

2. Soft Rough m-Polar Fuzzy Sets

Definition 1. An m-polar fuzzy set (mF set, for short) on a universe Y is a function Q = (p1 ◦ Q(z), p2 ◦
Q(z), . . . , pm ◦Q(z)) : Y → [0, 1]m, where the i-th projection mapping is defined as pi ◦Q : [0, 1]m → [0, 1].
Denote 0 = (0, 0, · · · , 0) is the smallest element in [0, 1]m and 1 = (1, 1, · · · , 1) is the largest element in
[0, 1]m [1].

Definition 2. ([14]) Let Y be a nonempty set called universe, T a set of parameters. A pair (η, T) is called a
soft set over Y if η is a mapping given by η : T → P(Y), where P(Y) is the collection of all subsets of Y.

Definition 3. ([24]) Let Y be an initial universe, (η, T) a soft set on Y. For any N ⊆ Y × T, the crisp soft
relation N over Y× T is given by

N =
{〈

(v, w), �N(v, w)
〉
| (v, w) ∈ Y× T

}
,

where �N : Y× T → {0, 1}, �N(v, w) =

{
1 i f (v, w) ∈ N,
0 i f (v, w) /∈ N.

Definition 4. ([25]) Let Y be the universe of discourse and let T be a set of parameters. For any crisp soft
relation ξ ⊆ Y× T, a set-valued function ξs : Y → P(T) is given by

ξs(v) = {w ∈ T | (v, w) ∈ ξ}, v ∈ Y.

ξ is referred to as serial if ∀ v ∈ Y, ξs(v) �= ∅. The pair (Y, T, ξ) is said to be a crisp soft approximation space.
For any Q ⊆ T, the lower and upper soft approximations of Q about (Y, T, ξ), denoted by ξ(Q) and ξ(Q),
respectively, are defined as

ξ(Q) = {v ∈ Y | ξs(v) ∩Q �= φ},

ξ(Q) = {v ∈ Y | ξs(v) ⊆ Q}.
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The pair (ξ(Q), ξ(Q)) is said to be a crisp soft rough set and ξ, ξ : P(T)→ P(Y) are, respectively, called
lower and upper crisp soft rough approximation operators. Furthermore, if ξ(Q) = ξ(Q), then Q is called a
definable set.

We now define soft rough m-polar fuzzy sets.

Definition 5. Let Y be an initial universe and T a universe of parameters. For any crisp soft relation ξ over
Y× T, the pair (Y, T, ξ) is called a crisp soft approximation space. For an arbitrary Q ∈ m(T), the lower and
upper soft approximations of Q about (Y, T, ξ), denoted by ξ(Q) and ξ(Q), respectively, are defined by

ξ(Q) =
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

ξ(Q) =
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

where
Qξ(v) =

∧
w∈ξs(v)

pi ◦Q(w), Qξ(v) =
∨

w∈ξs(v)

pi ◦Q(w).

The pair (ξ(Q), ξ(Q)) is called the soft rough mF set of Q about (Y, T, ξ), and ξ, ξ : m(T)→ m(Y) are,
respectively, said to be lower and upper soft rough mF approximation operators. Moreover, if ξ(Q) = ξ(Q),
then Q is referred to as definable.

Example 1. Let Y = {y1, y2, y3, y4, y5, y6} be a universe of discourse, T = {k1, k2, k3, k4} a set of parameters.
Assume that a soft set on Y is defined by

η(k1) = {y1, y2, y5}, η(k2) = {y3, y4, y5},
η(k3) = ∅, η(k4) = Y.

Then, a crisp soft relation ξ over Y× T is given by

ξ =
{
(y1, k1), (y2, k1), (y5, k1), (y3, k2), (y4, k2), (y5, k2), (y1, k4), (y2, k4), (y3, k4), (y4, k4), (y5, k4), (y6, k4)

}
.

By Definition 4, we have

ξs(y1) = {k1, k4}, ξs(y2) = {k1, k4},
ξs(y3) = {k2, k4}, ξs(y4) = {k2, k4},
ξs(y5) = {k1, k2, k4}, ξs(y6) = {k4}.

Consider a 3-polar fuzzy set Q ∈ m(T) as follows:

Q =
{
(k1, 0.75, 0.25, 0.13), (k2, 0.12, 0.7, 0.4), (k3, 0.3, 0.85, 0.6), (k4, 0.1, 0.3, 0.5)

}
.

By Definition 5, we have lower and upper soft approximations:

Qξ(y1) = (0.1, 0.25, 0.13), Qξ(y1) = (0.75, 0.3, 0.5),
Qξ(y2) = (0.1, 0.25, 0.13), Qξ(y2) = (0.75, 0.3, 0.5),
Qξ(y3) = (0.1, 0.3, 0.4), Qξ(y3) = (0.12, 0.7, 0.5),
Qξ(y4) = (0.1, 0.3, 0.4), Qξ(y4) = (0.12, 0.7, 0.5),
Qξ(y5) = (0.1, 0.25, 0.13), Qξ(y5) = (0.75, 0.7, 0.5),
Qξ(y6) = (0.1, 0.3, 0.5), Qξ(y6) = (0.1, 0.3, 0.5).
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Thus,

ξ(Q) =
{
(y1, 0.1, 0.25, 0.13), (y2, 0.1, 0.25, 0.13), (y3, 0.1, 0.3, 0.4), (y4, 0.1, 0.3, 0.4),

(y5, 0.1, 0.25, 0.13), (y6, 0.1, 0.3, 0.5)
}

,

ξ(Q) =
{
(y1, 0.75, 0.3, 0.5), (y2, 0.75, 0.3, 0.5), (y3, 0.12, 0.7, 0.5), (y4, 0.12, 0.7, 0.5),

(y5, 0.75, 0.7, 0.5), (y6, 0.1, 0.3, 0.5)
}

.

Hence, the pair (ξ(Q), ξ(Q)) is said to be a soft rough 3-polar fuzzy set.

We now present properties of soft rough mF sets.

Theorem 1. Let (Y, T, ξ) be a crisp soft approximation space. Then, the lower and upper soft rough mF
approximation operators ξ(Q) and ξ(Q), respectively, satisfy the following properties, for any Q, R ∈ m(T):

1. ξ(Q) =∼ ξ(∼ Q),
2. Q ⊆ R ⇒ ξ(Q) ⊆ ξ(R),
3. ξ(Q ∩ R) = ξ(Q) ∩ ξ(R),
4. ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R),
5. ξ(Q) =∼ ξ(∼ Q),
6. Q ⊆ R ⇒ ξ(Q) ⊆ ξ(R),
7. ξ(Q ∪ R) = ξ(Q) ∪ ξ(R),
8. ξ(Q ∩ R) ⊆ ξ(Q) ∩ ξ(R),

where ∼ Q denotes the compliment of Q.

Proof. 1. From Definition 5, we have

∼ ξ(∼ Q) =
{〈

v,
(
1− (∼ Q)ξ(v)

)〉
| v ∈ Y

}
,

=
{〈

v,
(

1−
∨

w∈ξs(v)

pi ◦ (∼ Q)(w)
)〉
| v ∈ Y

}
,

=
{〈

v,
(

1 ∧
∧

w∈ξs(v)

pi ◦Q(w)
)〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦Q(w)
〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v)
〉
| v ∈ Y

}
,

= ξ(Q).

It follows that ξ(Q) =∼ ξ(∼ Q).
2. It can be easily proved by Definition 5.

116

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 271

3. By Definition 5,

ξ(Q ∩ R) =
{〈

v, (Q ∩ R)ξ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦ (Q ∩ R)(w)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w) ∧ pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w)

)
∧
∧

w∈ξs(v)

(
pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v) ∧ Rξ(v)
〉
| v ∈ Y

}
,

= ξ(Q) ∩ ξ(R).

Hence, ξ(Q ∩ R) = ξ(Q) ∩ ξ(R).
4. From Definition 5,

ξ(Q ∪ R) =
{〈

v, (Q ∪ R)ξ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

pi ◦ (Q ∪ R)(w)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w) ∨ pi ◦ R(w)

)〉
| v ∈ Y

}
,

⊇
{〈

v,
∧

w∈ξs(v)

(
pi ◦Q(w)

)
∨
∧

w∈ξs(v)

(
pi ◦ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qξ(v) ∨ Rξ(v)
〉
| v ∈ Y

}
,

= ξ(Q) ∪ ξ(R).

Hence, ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R).
Similarly, properties (5–8) of the upper soft rough mF approximation operator ξ(Q) can be proved

by using the above arguments.

Example 2. Let Y = {g1, g2, g3, g4} be a universe and let T = {n1, n2, n3} be a set of parameters. Consider a
soft set (η, T) over Y is defined as

η(n1) = {g1, g2, g4}, η(n2) = {g3}, η(n3) = Y.

Then, a crisp soft relation ξ on Y× T is given by

ξ =
{
(g1, n1), (g2, n1), (g4, n1), (g3, n2), (g1, n3), (g2, n3), (g3, n3), (g4, n3)

}
.

By Definition 4,

ξs(g1) = {n1, n3}, ξs(g2) = {n1, n3},
ξs(g3) = {n2, n3}, ξs(g4) = {n1, n3}.

Consider 3-polar fuzzy sets Q, R ∈ m(T) as follows:

Q =
{
(n1, 0.5, 0.2, 0.3), (n2, 0.2, 0.6, 0.5), (n3, 0.5, 0.9, 0.1)

}
,

R =
{
(n1, 0.7, 0.5, 0.1), (n2, 0.1, 0.7, 0.4), (n3, 0.3, 0.8, 0.6)

}
.
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Then,

∼ Q =
{
(n1, 0.5, 0.8, 0.7), (n2, 0.8, 0.4, 0.5), (n3, 0.5, 0.1, 0.9)

}
,

Q ∪ R =
{
(n1, 0.7, 0.5, 0.3), (n2, 0.2, 0.7, 0.5), (n3, 0.5, 0.9, 0.6)

}
,

Q ∩ R =
{
(n1, 0.5, 0.2, 0.1), (n2, 0.1, 0.6, 0.4), (n3, 0.3, 0.8, 0.1)

}
.

By Definition 5, we have

ξ(Q) =
{
(g1, 0.5, 0.2, 0.1), (g2, 0.5, 0.2, 0.1), (g3, 0.2, 0.6, 0.1), (g4, 0.5, 0.2, 0.1)

}
,

ξ(Q) =
{
(g1, 0.5, 0.9, 0.3), (g2, 0.5, 0.9, 0.3), (g3, 0.5, 0.9, 0.5), (g4, 0.5, 0.9, 0.3)

}
,

ξ(R) =
{
(g1, 0.3, 0.5, 0.1), (g2, 0.3, 0.5, 0.1), (g3, 0.1, 0.7, 0.4), (g4, 0.3, 0.5, 0.1)

}
,

ξ(R) =
{
(g1, 0.7, 0.8, 0.6), (g2, 0.7, 0.8, 0.6), (g3, 0.3, 0.8, 0.6), (g4, 0.7, 0.8, 0.6)

}
,

ξ(∼ Q) =
{
(g1, 0.5, 0.1, 0.7), (g2, 0.5, 0.1, 0.7), (g3, 0.5, 0.1, 0.5), (g4, 0.5, 0.1, 0.7)

}
,

ξ(∼ Q) =
{
(g1, 0.5, 0.8, 0.9), (g2, 0.5, 0.8, 0.9), (g3, 0.8, 0.4, 0.9), (g4, 0.5, 0.8, 0.9)

}
,

∼ ξ(∼ Q) =
{
(g1, 0.5, 0.9, 0.3), (g2, 0.5, 0.9, 0.3), (g3, 0.5, 0.9, 0.5), (g4, 0.5, 0.9, 0.3)

}
,

∼ ξ(∼ Q) =
{
(g1, 0.5, 0.2, 0.1), (g2, 0.5, 0.2, 0.1), (g3, 0.2, 0.6, 0.1), (g4, 0.5, 0.2, 0.1)

}
,

ξ(Q ∪ R) =
{
(g1, 0.5, 0.5, 0.3), (g2, 0.5, 0.5, 0.3), (g3, 0.2, 0.7, 0.5), (g4, 0.5, 0.5, 0.3)

}
,

ξ(Q ∪ R) =
{
(g1, 0.7, 0.9, 0.6), (g2, 0.7, 0.9, 0.6), (g3, 0.5, 0.9, 0.6), (g4, 0.7, 0.9, 0.6)

}
,

ξ(Q ∩ R) =
{
(g1, 0.3, 0.2, 0.1), (g2, 0.3, 0.2, 0.1), (g3, 0.1, 0.6, 0.1), (g4, 0.3, 0.2, 0.1)

}
,

ξ(Q ∩ R) =
{
(g1, 0.5, 0.8, 0.1), (g2, 0.5, 0.8, 0.1), (g3, 0.3, 0.8, 0.4), (g4, 0.5, 0.8, 0.1)

}
.

Now,

ξ(Q) ∪ ξ(R) =
{
(g1, 0.5, 0.5, 0.1), (g2, 0.5, 0.5, 0.1), (g3, 0.2, 0.7, 0.4), (g4, 0.5, 0.5, 0.1)

}
,

ξ(Q) ∪ ξ(R) =
{
(g1, 0.7, 0.9, 0.6), (g2, 0.7, 0.9, 0.6), (g3, 0.5, 0.9, 0.6), (g4, 0.7, 0.9, 0.6)

}
,

ξ(Q) ∩ ξ(R) =
{
(g1, 0.3, 0.2, 0.1), (g2, 0.3, 0.2, 0.1), (g3, 0.1, 0.6, 0.1), (g4, 0.3, 0.2, 0.1)

}
,

ξ(Q) ∩ ξ(R) =
{
(g1, 0.5, 0.8, 0.3), (g2, 0.5, 0.8, 0.3), (g3, 0.3, 0.8, 0.5), (g4, 0.5, 0.8, 0.3)

}
.

From the above calculations, we observe that the following properties are satisfied:

∼ ξ(∼ Q) = ξ(Q), ∼ ξ(∼ Q) = ξ(Q),
ξ(Q ∩ R) = ξ(Q) ∩ ξ(R), ξ(Q ∪ R) ⊇ ξ(Q) ∪ ξ(R),
ξ(Q ∪ R) = ξ(Q) ∪ ξ(R), ξ(Q ∩ R) ⊆ ξ(Q) ∩ ξ(R).

Proposition 1. Let (Y, T, ξ) be a crisp soft approximation space. Then, lower and upper soft rough
approximations of mF sets Q and R satisfies the following laws:

1. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

2. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

3. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

4. ∼
(

ξ(Q) ∪ ξ(R)
)
= ξ(∼ Q) ∩ ξ(∼ R),

5. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),

6. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),

7. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R),
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8. ∼
(

ξ(Q) ∩ ξ(R)
)
= ξ(∼ Q) ∪ ξ(∼ R).

Proof. Its proof follows immediately from the Definition 5.

3. mF Soft Rough Sets

Definition 6. Let Y be a universe of discourse, T a set of parameters and V ⊆ T. A pair (τ, V) is referred to as
an mF soft set on Y if τ is a mapping τ : T → m(Y).

Definition 7. Let (τ, V) be an mF soft set over Y. Then, an mF subset ζ of Y× T is referred to as an mF soft
relation from Y to T is given by

ζ =
{〈

(x, t), pi ◦ ζ(x, t)
〉
| (x, t) ∈ Y× T

}
,

where ζ : Y× T → [0, 1]m.

If Y = {x1, x2, · · · , xn}, T = {t1, t2, · · · , tn}, then an mF soft relation ζ over Y×T can be presented
as follows:

ζ t1 t2 · · · tn

x1 pi ◦ (x1, t1) pi ◦ (x1, t2) · · · pi ◦ (x1, tn)

x2 pi ◦ (x2, t1) pi ◦ (x2, t2) · · · pi ◦ (x2, tn)
...

...
...

. . .
...

xn pi ◦ (xn, t1) pi ◦ (xn, t2) · · · pi ◦ (xn, tn).

Example 3. Let Y = {x1, x2, x3} be a universe, T = {t1, t2, t3} a set of parameters. A 3-polar fuzzy soft
relation ζ : Y → T of the universe Y× T is given by

ζ t1 t2 t3

x1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2)
x2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6)
x3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5).

We now define m-polar fuzzy soft rough sets.

Definition 8. Let Y be a nonempty set called universe, T a universe of parameters. For any mF soft relation
ζ on Y × T, the pair (Y, T, ζ) is referred to as an mF soft approximation space. For an arbitrary Q ∈ m(T),
the lower and upper soft approximations of Q about (Y, T, ζ), denoted by ζ(Q) and ζ(Q), respectively, are
defined as follows:

ζ(Q) =
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

ζ(Q) =
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

where

Qζ(v) =
∧

w∈T

[(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

]
,

Qζ(v) =
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
.

The pair (ζ(Q), ζ(Q)) is called mF soft rough set of Q about (Y, T, ζ), and ζ, ζ : m(T) → m(Y) are,
respectively, said to be lower and upper mF soft rough approximation operators. Moreover, if ζ(Q) = ζ(Q),
then Q is said to be definable.
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Example 4. Let Y = {x1, x2, x3, x4, x5} be the set of five laptops and let T =
{

t1 = size, t2 = beauti f ul,
t3 = technology, t4 = price

}
be the set of parameters. Consider a 3-polar fuzzy soft relation ζ : Y → T is

given by
ζ t1 t2 t3 t4

x1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2) (0.4, 0.6, 0.2)
x2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6) (0.7, 0.3, 0.6)
x3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5) (0.2, 0.9, 0.9)
x4 (0.4, 0.3, 0.6) (0.5, 0.1, 0.4) (0.3, 0.1, 0.0) (0.6, 0.4, 0.4)
x5 (0.2, 0.7, 0.3) (0.4, 0.8, 0.1) (0.4, 0.0, 0.7) (0.8, 0.9, 0.0).

Consider a 3-polar fuzzy subset Q of T as follows:

Q =
{
(t1, 0.3, 0.1, 0.7), (t2, 0.3, 0.6, 0.4), (t3, 0.5, 0.6, 0.1), (t4, 0.9, 0.1, 0.4)

}
.

From Definition 8, the lower and upper soft approximations are given by

Qζ(x1) = (0.4, 0.4, 0.4), Qζ(x1) = (0.4, 0.6, 0.4),
Qζ(x2) = (0.5, 0.6, 0.4), Qζ(x2) = (0.7, 0.6, 0.4),
Qζ(x3) = (0.5, 0.1, 0.4), Qζ(x3) = (0.5, 0.4, 0.4),
Qζ(x4) = (0.5, 0.6, 0.6), Qζ(x4) = (0.6, 0.1, 0.6),
Qζ(x5) = (0.6, 0.1, 0.3), Qζ(x5) = (0.8, 0.6, 0.3).

Now,

ζ(Q) =
{
(x1, 0.4, 0.4, 0.4), (x2, 0.5, 0.6, 0.4), (x3, 0.5, 0.1, 0.4), (x4, 0.5, 0.6, 0.6),

(x5, 0.6, 0.1, 0.3)
}

,

ζ(Q) =
{
(x1, 0.4, 0.6, 0.4), (x2, 0.7, 0.6, 0.4), (x3, 0.5, 0.4, 0.4), (x4, 0.6, 0.1, 0.6),

(x5, 0.8, 0.6, 0.3)
}

.

Hence, the pair (ζ(Q), ζ(Q)) is called a 3-polar fuzzy soft rough set.

We now present properties of mF soft rough sets.

Theorem 2. Let (Y, T, ζ) be an mF soft approximation space. Then, the lower and upper soft rough mF
approximation operators ζ(Q) and ζ(Q), respectively, satisfy the following properties, for any Q, R ∈ m(T):

1. ζ(Q) =∼ ζ(∼ Q),
2. Q ⊆ R ⇒ ζ(Q) ⊆ ζ(R),
3. ζ(Q ∩ R) = ζ(Q) ∩ ζ(R),
4. ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R),
5. ζ(Q) =∼ ζ(∼ Q),
6. Q ⊆ R ⇒ ζ(Q) ⊆ ζ(R),
7. ζ(Q ∪ R) = ζ(Q) ∪ ζ(R),
8. ζ(Q ∩ R) ⊆ ζ(Q) ∩ ζ(R),

where ∼ Q denotes the compliment of Q.
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Proof. 1. From Definition 8,

∼ ζ(∼ Q) =
{〈

v,
(
1− (∼ Q)ζ(v)

)〉
| v ∈ Y

}
,

=
{〈

v, 1−
∨

w∈T

(
pi ◦ (∼ Q)ζ(v, w) ∧ pi ◦ (∼ Q)(w)

)〉
| v ∈ Y

}
,

=
{〈

v, 1 ∧
∧

w∈T

(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦Qζ(v, w)

)
∨ pi ◦Q(w)

〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v)
〉
| v ∈ Y

}
,

= ζ(Q).

Thus, ζ(Q) =∼ ζ(∼ Q).
2. It can be proved directly by Definition 8.
3. By Definition 8,

ζ(Q ∩ R) =
{〈

v, (Q ∩ R)ζ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦ (Q ∩ R)(v, w)

)
∨ pi ◦ (Q ∩ R)(w)

〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦

(
Q(v, w) ∧ R(v, w)

))
∨ pi ◦

(
Q(w) ∧ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v) ∧ Rζ(v)
〉
| v ∈ Y

}
,

= ζ(Q) ∩ ζ(R).

Hence, ζ(Q ∩ R) = ζ(Q) ∩ ζ(R).
4. Using Definition 8,

ζ(Q ∪ R) =
{〈

v, (Q ∪ R)ζ(v)
〉
| v ∈ Y

}
,

=
{〈

v,
∧

w∈T

(
1− pi ◦ (Q ∪ R)(v, w)

)
∨ pi ◦ (Q ∪ R)(w)

〉
| v ∈ Y

}
,

⊇
{〈

v,
∧

w∈T

(
1− pi ◦

(
Q(v, w) ∨ R(v, w)

))
∨ pi ◦

(
Q(w) ∨ R(w)

)〉
| v ∈ Y

}
,

=
{〈

v, Qζ(v) ∨ Rζ(v)
〉
| v ∈ Y

}
,

= ζ(Q) ∪ ζ(R).

Thus, ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R).
The properties (5–8) can be proved by using similar arguments.

Example 5. Let Y = {w1, w2, w3, w4} be the set of four cars and let T =
{

v1, v2, v3
}

be the set of
parameters, where

• v1 denotes the Fuel efficiency,
• v2 denotes the Price,
• v3 denotes the Technology.
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Consider a 3-polar fuzzy soft relation ζ : Y → T is given by

ζ v1 v2 v3

w1 (0.6, 0.3, 0.1) (0.4, 0.7, 0.6) (0.4, 0.6, 0.2)
w2 (0.5, 0.3, 0.2) (0.5, 0.2, 0.8) (0.6, 0.9, 0.6)
w3 (0.3, 0.2, 0.1) (0.3, 0.4, 0.8) (0.7, 0.3, 0.5)
w4 (0.4, 0.3, 0.6) (0.5, 0.1, 0.4) (0.3, 0.1, 0.0).

Consider 3-polar fuzzy subsets Q, R of T as follows:

Q =
{
(v1, 0.2, 0.1, 0.9), (v2, 0.7, 0.5, 0.3), (v3, 0.5, 0.6, 0.1)

}
,

R =
{
(v1, 0.4, 0.2, 0.5), (v2, 0.6, 0.7, 0.3), (v3, 0.4, 0.7, 0.8)

}
.

Then,
∼ Q =

{
(v1, 0.8, 0.9, 0.1), (v2, 0.3, 0.5, 0.7), (v3, 0.5, 0.4, 0.9)

}
,

Q ∪ R =
{
(v1, 0.4, 0.2, 0.9), (v2, 0.7, 0.7, 0.3), (v3, 0.5, 0.7, 0.8)

}
,

Q ∩ R =
{
(v1, 0.2, 0.1, 0.5), (v2, 0.6, 0.5, 0.3), (v3, 0.4, 0.6, 0.1)

}
.

By Definition 8, we have

ζ(Q) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.4, 0.3), (w4, 0.5, 0.1, 0.6)

}
,

ζ(R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.4, 0.7, 0.3), (w3, 0.4, 0.7, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.4, 0.4, 0.5), (w4, 0.5, 0.2, 0.5)

}
,

∼ ζ(∼ Q) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.4, 0.3), (w4, 0.5, 0.1, 0.6)

}
,

∼ ζ(∼ Q) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.5, 0.6, 0.3), (w3, 0.5, 0.6, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q ∪ R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.5, 0.7, 0.3), (w3, 0.5, 0.7, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q ∪ R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.5, 0.4, 0.5), (w4, 0.5, 0.2, 0.6)

}
,

ζ(Q ∩ R) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.4, 0.6, 0.3), (w3, 0.4, 0.6, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(Q ∩ R) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.1, 0.5)

}
.

Now,

ζ(Q) ∪ ζ(R) =
{
(w1, 0.4, 0.7, 0.4), (w2, 0.5, 0.7, 0.3), (w3, 0.5, 0.7, 0.3), (w4, 0.6, 0.7, 0.6)

}
,

ζ(Q) ∪ ζ(R) =
{
(w1, 0.4, 0.7, 0.3), (w2, 0.5, 0.7, 0.6), (w3, 0.5, 0.4, 0.5), (w4, 0.5, 0.2, 0.6)

}
,

ζ(Q) ∩ ζ(R) =
{
(w1, 0.4, 0.5, 0.4), (w2, 0.4, 0.6, 0.3), (w3, 0.4, 0.6, 0.3), (w4, 0.6, 0.7, 0.5)

}
,

ζ(Q) ∩ ζ(R) =
{
(w1, 0.4, 0.6, 0.3), (w2, 0.5, 0.6, 0.3), (w3, 0.4, 0.4, 0.3), (w4, 0.5, 0.1, 0.5)

}
.

From the above calculations,

∼ ζ(∼ Q) = ζ(Q), ∼ ζ(∼ Q) = ζ(Q),
ζ(Q ∩ R) = ζ(Q) ∩ ζ(R), ζ(Q ∪ R) ⊇ ζ(Q) ∪ ζ(R),
ζ(Q ∪ R) = ζ(Q) ∪ ζ(R), ζ(Q ∩ R) ⊆ ζ(Q) ∩ ζ(R).

Remark 1. In Theorem 2, properties (1) and (5) show that the lower and upper mF soft rough approximations
operators ζ and ζ, respectively, are dual to one another.
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Proposition 2. Let (Y, T, ζ) be an mF soft approximation space. Then, the lower and upper soft rough
approximations of mF sets Q and R satisfy the following laws:

1. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

2. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

3. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

4. ∼
(

ζ(Q) ∪ ζ(R)
)
= ζ(∼ Q) ∩ ζ(∼ R),

5. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

6. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

7. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R),

8. ∼
(

ζ(Q) ∩ ζ(R)
)
= ζ(∼ Q) ∪ ζ(∼ R).

Proof. Its proof follows immediately from Definition 8.

Definition 9. Let Y be a universe, Q = {(v, pi ◦Q(v)) | v ∈ Y} ∈ m(Y), and σ ∈ [0, 1]m. The σ-level cut
set of Q and the strong σ-level cut set of Q, denoted by Qσ and Qσ+, respectively, are defined as follows:

Qσ = {v ∈ Y | pi ◦Q(v) ≥ σ},

Qσ+ = {v ∈ Y | pi ◦Q(v) > σ}.

Definition 10. Let ζ be an mF soft relation on Y× T, we define

ζσ = {(v, w) ∈ Y× T | pi ◦ ζ(v, w) ≥ σ},

ζσ(v) = {w ∈ T | pi ◦ ζ(v, w) ≥ σ},

ζσ+ = {(v, w) ∈ Y× T | pi ◦ ζ(v, w) > σ},

ζσ+(v) = {w ∈ T | pi ◦ ζ(v, w) > σ}.

Then, ζσ and ζσ+ are two crisp soft relations on Y× T.

We now prove that the mF soft rough approximation operators can be described by crisp soft
rough approximation operators.

Theorem 3. Let (Y, T, ζ) be an mF soft approximation space and Q ∈ m(T). Then, the upper mF soft rough
approximation operator can be described as follows, ∀ v ∈ Y:

1.

Qζ(v) =
∨

σ∈[0,1]m

(
σ ∧ ζσ(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ(Qσ+)(v)

)
,

=
∨

σ∈[0,1]m

(
σ ∧ ζσ+(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ+)(v)

)
.

2. [ζ(Q)]σ+ ⊆ ζσ+(Qσ+) ⊆ ζσ+(Qσ) ⊆ ζσ(Qσ) ⊆ [ζ(Q)]σ.
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Proof. 1. For all v ∈ Y,∨
σ∈[0,1]m

(
σ ∧ ζσ(Qσ)(v)

)
= sup{σ ∈ [0, 1]m | v ∈ ζσ(Qσ)},

= sup{σ ∈ [0, 1]m | ζσ(v) ∩Qσ},

= sup{σ ∈ [0, 1]m | ∃ w ∈ T[w ∈ ζσ(v), w ∈ Qσ]},

= sup{σ ∈ [0, 1]m | ∃ w ∈ T[pi ◦Qζ(v, w) ≥ σ, pi ◦Q(w) ≥ σ]},

=
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
,

= Qζ(v).

By similar arguments, we can compute

Qζ(v) =
∨

σ∈[0,1]m

(
σ ∧ ζσ(Qσ+)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ)(v)

)
=

∨
σ∈[0,1]m

(
σ ∧ ζσ+(Qσ+)(v)

)
.

2. By Definitions 9 and 10, we directly verified that ζσ+(Qσ+) ⊆ ζσ+(Qσ) ⊆ ζσ(Qσ). Now, it is
sufficient to show that [ζ(Q)]σ+ ⊆ ζσ+(Qσ+) and ζσ(Qσ) ⊆ [ζ(Q)]σ.

For all v ∈ [ζ(Q)]σ+, we have Qζ(v) > σ. By Definition 8,
∨

w∈T

(
pi ◦Qζ(v, w) ∧ pi ◦Q(w)

)
> σ.

Then, there exists w0 ∈ T, such that pi ◦ Qζ(v, w0) ∧ pi ◦ Q(w0) > σ, that is, pi ◦ Qζ(v, w0) > σ

and pi ◦ Q(w0) > σ. Thus, w0 ∈ ζσ+(v) and w0 ∈ Qσ. It follows that ζσ+(v) ∩ Qσ �= ∅.
By Definition 4, we have v ∈ ζσ+(Qσ+). Hence, [ζ(Q)]σ+ ⊆ ζσ+(Qσ+).

To prove ζσ(Qσ) ⊆ [ζ(Q)]σ, let an arbitrary v ∈ ζσ(Qσ), we have ζσ(Qσ)(v) = 1.
Since Qζ(v) =

∨
σ∈[0,1]m

[ζσ(Qσ)(v)] ≥ σ ∧ ζσ(Qσ)(v) = σ, we obtain v ∈ [ζ(Q)]σ.

Hence, ζσ(Qσ) ⊆ [ζ(Q)]σ.

Theorem 4. Let (Y, T, ζ) be an mF soft approximation apace. If ζ is serial, then the lower and upper mF soft
rough approximation operators ζ(Q) and ζ(Q), respectively, satisfy the following:

1. ζ(∅) = ∅. ζ(T) = Y,
2. ζ(Q) ⊆ ζ(Q), for all Q ∈ m(T).

Proof. Its proof follows directly by Definition 8.

Definition 11. Let Q be an mF set of the universe set Y and let ζ(Q), ζ(Q) be the lower and upper soft rough
approximation operators. Then, ring sum operation about mF sets ζ(Q) and ζ(Q) is defined by

ζ(Q)⊕ ζ(Q) =
{(

v, pi ◦Qζ(v) + pi ◦Qζ(v)− pi ◦Qζ(v)× pi ◦Qζ(v)
)
| v ∈ Y

}
.

4. Applications to Decision-Making

4.1. Selection of a Hotel

The selection of the right hotel to stay is always a difficult task. Since every person has different
needs when searching for a hotel. The location of the hotel is something that is very important for an
enjoyable stay. There are a number of factors to take into consideration for selecting the right hotel,
whether we are looking for a great location, a great meal option or a great service. Suppose a person
(Mr. Adeel) wants to stay in a hotel for a long period. There are four alternatives in his mind.
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The alternatives are y1, y2, y3, y4. He wants to select the most suitable hotel. The location, meal options
and services are the main parameters for the selection of a hotel.
Let Y = {y1, y2, y3, y4} be the set of four hotels under consideration and let T = {z1, z2, z3} be the set
of parameters related to the hotels in Y, where,

‘z1’ represents the Location,
‘z2’ represents the Meal Options,
‘z3’ represents the Services.

We give more features of these parameters as follows:

• The “Location” of the hotel include close to main road, in the green surroundings, in the city center.
• The “Meal options” of the hotel include fast food, fast casual, casual dining.
• The “Services” of the hotel include Wi-Fi connectivity, fitness center, room service.

Suppose that Adeel explains the “attractiveness of the hotel” by forming a 3-polar fuzzy soft
relation ζ : Y → T, which is given by

ζ z1 z2 z3

y1 (0.2, 0.6, 0.1) (0.3, 0.4, 0.7) (0.7, 0.3, 0.2)
y2 (0.4, 0.5, 0.7) (0.4, 0.5, 0.5) (0.7, 0.4, 0.1)
y3 (0.7, 0.8, 0.3) (0.8, 0.9, 0.4) (0.6, 0.2, 0.6)
y4 (0.5, 0.6, 0.4) (0.6, 0.7, 0.1) (0.8, 0.5, 0.3).

Thus, ζ over Y× T is the 3-polar fuzzy soft relation in which location, meal option and price of
the hotels are considered. For example, if we consider “Location” of the hotel, ((y1, z1), 0.2, 0.6, 0.1)
means that the hotel y1 is 20% close to the main road, 60% in the green surroundings and 10% in the
city center.

We now assume that Adeel gives the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(z1, 0.5, 0.6, 0.7), (z2, 0.7, 0.6, 0.9), (z3, 0.9, 0.6, 0.8)

}
.

By Definition 8,

Qζ(y1) = (0.7, 0.6, 0.8), Qζ(y1) = (0.7, 0.6, 0.7),
Qζ(y2) = (0.6, 0.6, 0.7), Qζ(y2) = (0.7, 0.5, 0.7),
Qζ(y3) = (0.5, 0.6, 0.7), Qζ(y3) = (0.7, 0.6, 0.6),
Qζ(y4) = (0.5, 0.6, 0.7), Qζ(y4) = (0.8, 0.6, 0.4).

Now, 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively, are given by

ζ(Q) =
{
(y1, 0.7, 0.6, 0.8), (y2, 0.6, 0.6, 0.7), (y3, 0.5, 0.6, 0.7), (y4, 0.5, 0.6, 0.7)

}
,

ζ(Q) =
{
(y1, 0.7, 0.6, 0.7), (y2, 0.7, 0.5, 0.7), (y3, 0.7, 0.6, 0.6), (y4, 0.8, 0.6, 0.4)

}
.

These operators are very close to the decision alternatives yn, n = 1, 2, 3, 4.
By Definition 11, we have the choice set as follows:

ζ(Q)⊕ ζ(Q) =
{
(y1, 0.91, 0.84, 0.94), (y2, 0.88, 0.8, 0.91), (y3, 0.85, 0.84, 0.88), (y4, 0.9, 0.84, 0.82)

}
.

Thus, Mr. Adeel will select the hotel y1 to stay because the optimal decision in the choice set
ζ(Q)⊕ ζ(Q) is y1.
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The method of selecting a suitable hotel is explained in the following Algorithm 1.

Algorithm 1: Selection of a suitable hotel

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ : Y → T according to the different needs of the

decision maker.
4. Give an mF subset Q over T, which is an optimal normal decision object according to the

various requirements of decision maker.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision yk. If pi ◦ S(yk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(yk), n is equal to

the number of objects in Y, then the optimal decision will be yk.

If there exists more than one optimal choice in step 7 of the Algorithm 1, that is, yki
= ykj

, where
1 ≤ ki �= kj ≤ n, one may go back and change the optimal normal decision object Q and repeat the
Algorithm 1 so that the final decision is only one.

4.2. Selection of a Place

Choosing a place to go when some people have the opportunity to travel can sometimes be very
difficult task. Suppose that a group of ten peoples plan a tour to a suitable place in a country Z.
There are four alternatives in their mind. The alternatives are q1, q2, q3, q4. They want to select the best
place for the tour. It is a challenge to find advice in one place. The environment and cost are the main
parameters for the selection of a suitable place. In the environment of the place, they want to check
whether the place has availability of built environment, natural environment and social environment.
The term built environment refers to the man-made surroundings. Built environment of the place
includes buildings, parks and every other things that are made by human beings. Natural environment
of the place includes forests, oceans, rivers, lakes, atmosphere, climate, weather, etc. The social
environment includes the culture and lifestyle of the human beings. Lastly, the tour cost is an important
criteria for the place selection. It includes low, medium and high.

Let Y = {q1, q2, q3, q4} be the set of four places and T = {a1, a2} be the set of parameters, where

‘a1’ represents the Environment,
‘a2’ represents the Tour Cost.

We give more characteristics of these parameters.

• The “Environment” of the place includes built environment, natural environment, and
social environment.

• The “Tour Cost” of the place may be low, medium, or high.

Suppose that they describe the “attractiveness of the place” by constructing a 3-polar fuzzy soft
relation ζ over Y× T, which is given by

ζ a1 a2

q1 (0.8, 0.8, 0.9) (0.4, 0.7, 0.6)
q2 (0.5, 0.7, 0.6) (0.5, 0.7, 0.8)
q3 (0.8, 0.6, 0.7) (0.8, 0.9, 0.4)
q4 (0.7, 0.9, 0.6) (0.6, 0.7, 0.8)
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Thus, ζ : Y → T is the 3-polar fuzzy soft relation in which environment and tour cost of the places
are considered. For example, if we consider “Environment” of the place, ((q1, a1), 0.8, 0.8, 0.9) means
that the place q1 include 80% built environment, 80% natural environment and 90% social environment.

We now assume that they give the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(a1, 0.8, 0.7, 0.9), (a2, 0.7, 0.6, 0.8)

}
.

From Definition 8,

Qζ(q1) = (0.7, 0.6, 0.8), Qζ(q1) = (0.8, 0.7, 0.9),
Qζ(q2) = (0.7, 0.6, 0.8), Qζ(q2) = (0.5, 0.7, 0.8),
Qζ(q3) = (0.7, 0.6, 0.8), Qζ(q3) = (0.8, 0.6, 0.7),
Qζ(q4) = (0.7, 0.6, 0.8), Qζ(q4) = (0.7, 0.7, 0.8).

We now have 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively,
as follows:

ζ(Q) =
{
(q1, 0.7, 0.6, 0.8), (q2, 0.7, 0.6, 0.8), (q3, 0.7, 0.6, 0.8), (q4, 0.7, 0.6, 0.8)

}
,

ζ(Q) =
{
(q1, 0.8, 0.7, 0.9), (q2, 0.5, 0.7, 0.8), (q3, 0.8, 0.6, 0.7), (q4, 0.7, 0.7, 0.8)

}
.

These operators are very close to the decision alternatives qn, n = 1, 2, 3, 4.
By Definition 11,

ζ(Q)⊕ ζ(Q) =
{
(q1, 0.94, 0.88, 0.98), (q2, 0.85, 0.88, 0.96), (q3, 0.94, 0.84, 0.94), (q4, 0.91, 0.88, 0.96)

}
.

Thus, the optimal decision in the choice set ζ(Q)⊕ ζ(Q) is q1. Therefore, they will select the place
q1 for the tour.

The method of selecting a suitable place for tour is explained in the following Algorithm 2.

Algorithm 2: Selection of a suitable place

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ over Y× T according to the different needs of the

decision makers.
4. Give an mF subset Q of T, which is an optimal normal decision object according to the

various requirements of decision makers.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision qk. If pi ◦ S(qk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(qk), n is equal to the

number of objects in Y, and then the optimal decision will be qk.

If there exists more than one optimal choice in step 7 of the Algorithm 2, that is, qki
= qkj

where
1 ≤ ki �= kj ≤ n, one may go back and change the optimal normal decision object Q and repeat the
Algorithm 2 so that the final decision is only one.

4.3. Selection of a House

Buying a house is an exhilarating time in many people lives, but it is also a very difficult task to
those who are not particularly real estate savvy. There are a number of factors to take into consideration
for buying the house such as location of the house, size of the house and price of the house. These factors
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among many others influence house buyers before they even get to start thinking about buying a new
house. Suppose a person (Mr. Ali) wants to buy a house. The alternatives in his mind are u1, u2, u3.
The size, location and price are the main parameters for the selection of a suitable house.

Let Y = {u1, u2, u3} be the set of three houses and let T = {t1, t2, t3} be the set of parameters
related to the houses in Y, where

‘t1’ represents the Size,
‘t2’ represents the Location,
‘t3’ represents the Price.

We give further characteristics of these parameters.

• The “Size” of the house include small , large, and very large.
• The “Location” of the house include close to the main road, in the green surroundings, and in the

city center.
• The “Price” of the house includes low, medium, and high.

Suppose that Ali describes the “attractiveness of the house” by forming a 3-polar fuzzy soft
relation ζ : Y → T, which is given by

ζ t1 t2 t3

u1 (0.5, 0.7, 0.9) (0.7, 0.6, 0.8) (0.5, 0.6, 0.9)
u2 (0.8, 0.9, 0.1) (0.6, 0.8, 0.9) (0.8, 0.4, 0.2)
u3 (0.9, 0.7, 0.6) (0.9, 0.8, 0.9) (0.4, 0.6, 0.3).

Thus, ζ over Y× T is the 3-polar fuzzy soft relation in which size, location and price of the houses
are considered. For example, if we consider “Location” of the house, ((u2, t1), 0.8, 0.9, 0.1) means that
the house u1 is, 80% close to the main road, 90% in the green surroundings and 10% in the city center.

We now assume that Ali gives the optimal normal decision object Q, which is a 3-polar fuzzy
subset of T as follows:

Q =
{
(t1, 0.6, 0.8, 0.7), (t2, 0.5, 0.8, 0.8), (t3, 0.9, 0.8, 0.7)

}
.

By Definition 8,

Qζ(u1) = (0.5, 0.8, 0.7), Qζ(u1) = (0.5, 0.7, 0.8),
Qζ(u2) = (0.5, 0.8, 0.8), Qζ(u2) = (0.8, 0.8, 0.8),
Qζ(u3) = (0.5, 0.8, 0.7), Qζ(u3) = (0.6, 0.8, 0.8).

Now, 3-polar fuzzy soft rough approximation operators ζ(Q), ζ(Q), respectively, are given by

ζ(Q) =
{
(u1, 0.5, 0.8, 0.7), (u2, 0.5, 0.8, 0.8), (u3, 0.5, 0.8, 0.7)

}
,

ζ(Q) =
{
(u1, 0.5, 0.7, 0.8), (u2, 0.8, 0.8, 0.8), (u3, 0.6, 0.8, 0.8)

}
.

These operators are very close to the decision alternatives un, n = 1, 2, 3.

Using Definition 11,

ζ(Q)⊕ ζ(Q) =
{
(u1, 0.75, 0.94, 0.94), (u2, 0.9, 0.96, 0.96), (u3, 0.8, 0.96, 0.94)

}
.

Hence, Ali will buy the house u2 because the optimal decision in the choice set ζ(Q)⊕ ζ(Q) is u2.
The method of selecting a suitable house is explained in the following Algorithm 3.
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Algorithm 3: Selection of a suitable house

1. Input Y as universe of discourse.
2. Input T as a set of parameters.
3. Construct an mF soft relation ζ : Y → T according to the different needs of the

decision maker.
4. Give an mF subset Q over T, which is an optimal normal decision object according to the

various requirements of the decision maker.
5. Compute the mF soft rough approximation operators ζ(Q) and ζ(Q) by Definition 8.
6. Find the choice set S = ζ(Q)⊕ ζ(Q) by Definition 11.
7. Select the optimal decision uk. If pi ◦ S(uk) ≥ M, where M =

∨
1≤k≤n

pi ◦ S(uk), n is equal to

the number of objects in Y, and then the optimal decision will be uk.

If there exist too many optimal choices in step 7 of Algorithm 3, that is, uki
= ukj

, where
1 ≤ ki �= kj ≤ n, change the optimal normal decision object Q and repeat the Algorithm 3 so that
the final decision is only one.

5. Conclusions

The theory of mF sets plays a vital role in decision-making problems, when multiple information
is given. An mF soft rough set is a combination of an mF set, soft set and rough set. In this paper, we
have presented the concepts of two new hybrid models called soft rough mF sets and mF soft rough
sets, which provide more exactness and compatibility with a system when compared with other hybrid
mathematical models. We have discussed the properties of both hybrid models. We have examined
the relationship between mF soft rough approximation operators and crisp soft rough approximation
operators. We have discussed some applications of mF soft rough sets in real-life decision-making
problems. We are expanding our research work to (1) soft rough mF graphs; (2) soft rough mF
hypergraphs; (3) mF soft rough graphs; (4) mF soft rough hypergraphs; and a (5) decision support
system based on mF soft rough hypergraphs.
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Abstract: There are many real-life problems that, because of the need to involve a wide domain of
knowledge, are beyond a single expert. This is especially true for complex problems. Therefore, it is
usually necessary to allocate more than one expert to a decision process. In such situations, we can
observe an increasing importance of uncertainty. In this paper, the Multi-Criteria Decision-Making
(MCDM) method called the Characteristic Objects Method (COMET) is extended to solve problems for
Multi-Criteria Group Decision-Making (MCGDM) in a hesitant fuzzy environment. It is a completely
new idea for solving problems of group decision-making under uncertainty. In this approach, we use
L-R-type Generalized Fuzzy Numbers (GFNs) to get the degree of hesitancy for an alternative under
a certain criterion. Therefore, the classical COMET method was adapted to work with GFNs in group
decision-making problems. The proposed extension is presented in detail, along with the necessary
background information. Finally, an illustrative numerical example is provided to elaborate the
proposed method with respect to the support of a decision process. The presented extension of the
COMET method, as opposed to others’ group decision-making methods, is completely free of the
rank reversal phenomenon, which is identified as one of the most important MCDM challenges.

Keywords: hesitant fuzzy sets; L-R-type generalized fuzzy numbers; Multi-Criteria Group
Decision-Making (MCGDM); Characteristic Objects Method (COMET)

1. Introduction

For human activities and their problems, the Multi-Criteria Group Decision-Making (MCGDM)
is an important tool [1,2]. In complex real-world conditions, it is not possible for a single Decision-Maker
(DM) to recognize all of the relevant aspects of a decision-making problem [3]. Thus, the decision-making
procedure requires considering many DMs or experts from different fields. In many group decision-making
problems, a group is established by various DMs from different fields, including work experience,
education backgrounds and knowledge structure [4]. It could be implemented to select the most
suitable alternative from a given set of decision variants or their subset [5,6]. The essential prerequisite
of the MCGDM is the combination of experts’ preferences and judgments about the candidate
alternatives versus the conflicting criteria [7], which is a popular trend of present research to develop
new group MCDM methods [8–11].

In the decision-making, the problems of uncertainty and hesitancy usually turn out to be
unavoidable. To express the DMs’ evaluation information more objectively, several tools have been
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developed, such as fuzzy set [1,12], interval-valued fuzzy set [13,14], linguistic fuzzy set [15–17], which
allow one to present an element’s membership function as a set denoted by a fuzzy number, an interval
fuzzy number, a linguistic variable and a fuzzy set, respectively. Intuitionistic fuzzy set [18] and fuzzy
multiset [19,20] are another two generalizations of the fuzzy set. Whilst the former contains three
types of information (the membership, the non-membership and the hesitancy), the latter permits the
elements to repeat more than once.

In many practical problems, sometimes, it is difficult to define the membership grade of an element,
because of a set of possible membership values [21]. This issue is very important in MCGDM problems,
when the DMs do not support the same membership grade for an element [22,23]. In this case,
the difficulty of establishing a common membership grade is caused not by the margin of error
(as happens in Intuitionistic Fuzzy Set (IFS)) or some possible distribution values (as happens in Type-2
Fuzzy Sets), but by the fact that several membership values are possible [10]. To deal with these
cases, the Hesitant Fuzzy Set (HFS) was introduced [24] as a new generalization of fuzzy sets. Many
MCDM methods have been extended by using the HFS theory, e.g., the ELECTRE family methods
[25], Viekriterijumsko Kompromisno Rangiranje (VIKOR) [26] or prospect theory [27]. There was also
established a number of new methods [13,28–30] or aggregation operators [31,32], which are based
on the HFS concept. Presently, group decision-making problems are solved for hesitant fuzzy sets
and with aggregation operators in [33–36]. Interval-valued hesitant fuzzy sets have been used in
the applications of group decision-making in [28,37–40]. MCGDM with hesitant two-tuple linguistic
information and by using trapezoidal valued HFSs is discussed in [41,42]. Yu [43] gave the concept of
triangular hesitant fuzzy sets and used it for the solution of decision-making problems. Unfortunately,
all of the mentioned group decision-making methods are susceptible to the occurrence of the rank
reversal phenomenon paradox, which lies at the heart of the main MCDM challenges.

The Characteristic Objects Method (COMET) is a useful technique in dealing with Multi-Criteria
Decision-Making (MCDM) problems [44–48]. It helps a DM to organize the structure of the
problems to be solved and carry out the analysis, comparisons and ranking of the alternatives,
where the complexity of the algorithm is completely independent of the alternatives’ number [49,50].
Additionally, comparisons between the Characteristic Objects (COs) are easier than comparisons
between alternatives. However, the most important merit of the COMET method is the fact that
this method is completely free of the rank reversals phenomenon [51] because the final ranking is
constructed based on COs and fuzzy rules.

In this study, we extend the COMET concept to develop a methodology for solving multi-criteria
group decision-making problems under uncertainty. The proposed method allows a group of DMs to
make their opinion independent of linguistic terms by using HFS. The proposed method is designed
for modeling uncertainty from different sources, which are related to expert knowledge. The main
motivation of this research is the fact that the presented extension is also completely free of the rank
reversals paradox as the classical version.

The group version of the HFS COMET method can be used in various research fields and disciplines
such as economics [29,30,32], resource management [51], production [52], transport [53], game theory
(Nash equilibrium) [54–63], medical problems [48,64], sustainability manufacturing [65] or web systems
[66]; especially in decision situations requiring the involvement of many experts [67].

The rest of this paper is organized as follows. In Section 2, we introduced some basic concepts
related to the hesitant fuzzy sets, L-R-type Generalized Fuzzy Numbers (GFNs), the fuzzy rule, the
rule base and the t-norm. In Section 3, we established a group decision-making method based on
COMET to deal with the uncertainty environment. In Section 4, an illustrative example is given to
demonstrate the practicality and effectiveness of the proposed approach. Finally, we conclude the
paper and give some remarks in Section 5.
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2. Preliminaries

The HFS [24], as a generalization of the fuzzy set, maps the membership degree of an element
to a set presented as several possible values between zero and one, which can better describe the
situations where people have hesitancy in providing their preferences over objects in the process of
decision-making.

In this section, we recall some important concepts that are necessary to understand our proposed
decision-making method.

Definition 1. A hesitant fuzzy set A on X is a function hA that when applied to X returns a finite subset of
[0, 1], which can be represented as the following mathematical symbol [24]:

A = {(x, hA(x))|x ∈ X},

where hA(x) is a set of some values in [0, 1], denoting the possible membership degrees of the element x ∈ X to
the set A. For convenience, Xia and Xu [68] named hA(x) a Hesitant Fuzzy Element (HFE).

Definition 2. For an HFS represented by its membership function h, we define its complement as follows [24]:

hc(x) =
⋃

γ∈h(x)

{1− γ}.

Definition 3. In reference [68], for an HFE h, Sc(h) = 1
lh ∑γ∈h γ, is called the score function of h, where lh is

the number of elements in h and Sc(h) ∈ [0, 1]. For two HFEs h1 and h2, if Sc(h1) > Sc(h2), then h2 ≺ h1,
if TODOSc(h1) = Sc(h2), then h1 ≈ h2.

Xia and Xu [68] define some operations on the HFEs (h, h1 and h2) and the scalar number k :

1. kh =
⋃

γ∈h

{1− (1− γ)k};

2. h1 ⊕ h2 =
⋃

γ1∈h1,γ2∈h2

{γ1 + γ2 − γ1γ2};

3. h1 ⊗ h2 =
⋃

γ1∈h1,γ2∈h2

{γ1γ2}.

Definition 4. Let L and R both be decreasing, shape functions from �+ = [0, ∞) to [0, 1] with L(0) =

ω; L(x) < ω for all x < 1; L(1) = 0 or (L(x) > 0 for all x and L(+∞) = 0) (and the same for R). A GFN is
called the L-Rtype if there are real numbers m, α > 0, β > 0 and ω (0 ≤ ω ≤ 1) with [69]:

μÃ(x) =

{
ωL(m−x

α ), x ≤ m
ωR( x−m

β ), x ≥ m

where m is called the mean value of Ã and α and β are called the left and right spreads, respectively. The L-R-type
GFN Ã is symbolically denoted by Ã = (m, α, β; ω)LR. If ω = 1, then Ã is called the L-R-type fuzzy number
and simply denoted by Ã = (m, α, β)LR.

For an L-R-type GFN Ã = (m, α, β; ω)LR, if L and R are of the form:

T(x) =

{
1− x, 0 ≤ x ≤ 1
0, otherwise

Then, Ã is called a generalized triangular fuzzy number denoted by Ã = (m, α, β; ω)T . Similarly, for
ω = 1, Ã is simply called a triangular fuzzy number denoted by Ã = (m, α, β)T .
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A fuzzy number Ã is called an L-R-type generalized trapezoidal fuzzy number if there are real numbers
m1, m2, α > 0 and β > 0 with the following membership function:

μÃ(x) =

⎧⎪⎨⎪⎩
ωL(m1−x

α ), x ≤ m1

ω, m1 ≤ x ≤ m2

ωR( x−m2
β ), x ≥ m2

where m1 and m2 are called the mean values of Ã and α, β are called the left and right
spreads, respectively. Symbolically, Ã is denoted by (m1, m2, α, β; ω)LR. The L-R-type generalized
trapezoidal fuzzy number Ã = (m1, m2, α, β; ω)LR divides into three parts: left part, middle part
and right part. The left, middle and right parts include the intervals [m1 − α, m1], [m1, m2] and
[m2, m2 + β], respectively.

If we take L and R to be of the form as mentioned in Equation (4), then Ã is called the generalized trapezoidal
fuzzy number denoted by (m1, m2, α, β; ω)T. A generalized trapezoidal fuzzy number Ã(m1, m2, α, β; ω)T is
simply called a trapezoidal fuzzy number denoted by Ã(m1, m2, α, β)T when ω = 1.

We know that the L-R-type fuzzy numbers are used to present real numbers in a fuzzy environment,
and trapezoidal fuzzy numbers are used to present fuzzy intervals that are widely applied in linguistics,
knowledge representation, control systems, database, and so forth [21,70–72]. Similarly, the L-R-type GFNs
are very general and allow one to represent the different types of information. For example, the L-R-type GFN
B̃ = (m, m, 0, 0; ω)LR with m ∈ � = (−∞, ∞) is used to denote a real number B̃, and the L-R-type GFN
C̃ = (m1, m2, 0, 0; ω)LR with m1, m2 ∈ � and m1 < m2 is used to denote an interval C̃.

Definition 5. For a triangular fuzzy number Ã, we define:

1. The support of Ã is S(Ã) = {x : μÃ(x) > 0} .
2. The core of Ã is C(Ã) = {x : μÃ(x) = 1} .

Definition 6. The fuzzy rule [73,74]:
The single fuzzy rule can be based on the modus ponens tautology [73,74]. The reasoning process uses

logical connectives IF-THEN, OR and AND.

Definition 7. The rule base [75]:
The rule base consists of logical rules determining causal relationships existing in the system between the

fuzzy sets of its inputs and outputs [75].

Definition 8. In reference [76], a triangular norm (t-norm) is a binary operation T : [0, 1]× [0, 1] → [0, 1]
satisfying ∀x, y, z ∈ [0, 1] :

1. T(x, y) = T(y, x) (commutativity),
2. T(x, y) ≤ T(x, z), if y ≤ z (monotonicity),
3. T(x, T(y, z)) = T(T(x, y), z) (associativity),
4. T(x, 1) = x (neutrality of one).

Throughout this paper, only the product is used as a t-norm operator, i.e.,
P(μα1(x), μα2(y)) = μα1(x).μα2(y).

3. COMET for MCGDM Using HFS

Consider an MCGDM problem in which the ratings of the alternative evaluations are expressed
as HFSs. The solution procedure for the proposed MCGDM approach is described below.

Let Aj (j = 1, 2, ..., m) be the set of alternatives and suppose a group of DMs D = {d1, d2, ..., dk} is
asked to evaluate the given alternatives with respect to several criteria Ci (i = 1, 2, ..., n). The ranking
algorithm of the COMET has the following five steps:
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Step 1: Define the space of the problem as follows:
Let F be the collection of all L-R-type GFNs and F1δ

i , F2δ
i , ..., Fqδ

i be different families of subsets of
F selected by a DM dδ (δ = 1, 2, ..., k) for each criterion Ci (i = 1, 2, ..., n) where

F1δ
i = {F1δ

i1 , F1δ
i2 , ..., F1δ

ici
};

F2δ
i = {F2δ

i1 , F2δ
i2 , ..., F2δ

ici
};

...
Fqδ

i = {Fqδ
i1 , Fqδ

i2 , ..., Fqδ
ici
}.

In this way, the following result is obtained:
C1 =

{
Fbδ

11 , Fbδ
12 , ..., Fbδ

1c1

}
;

C2 =
{

Fbδ
21 , Fbδ

22 , ..., Fbδ
2c2

}
;

...
Cn =

{
Fbδ

n1, Fbδ
n2, ..., Fbδ

ncn

}
;

where 1 ≤ b ≤ q and c1, c2, ..., cn are the numbers of fuzzy numbers in each family Fbδ
i (1 ≤ b ≤ q, 1 ≤

i ≤ n) for all criteria.
Initially, suppose each alternative is assessed by all DMs by means of n criteria in the form of a

single family of TFNs Ft
i (1 ≤ i ≤ n) with their fuzzy semantics as shown in Figures 1–6. Suppose

each DM further provides the hesitant information of an alternative for each criterion in the form of
L-R-type GFNs. Note that, in this method, the observations already provided by all of the DMs for
each criterion in the form of the single family of TFNs set Ft

i (1 ≤ i ≤ n) is a necessary part of all of
the family of the remaining L-R-type GFNs set during the computation. The core of each criterion is
defined as the core of each Ft

i (1 ≤ i ≤ n), i.e.,

C(C1) =
{

C(Ft
11), C(Ft

12), ..., C(Ft
1c1

)
}

;

C(C2) =
{

C(Ft
21), C(Ft

22), ..., C(Ft
2c2

)
}

;
...
C(Cn) =

{
C(Ft

n1), C(Ft
n2), ..., C(Ft

ncn)
}

.

Step 2: Generate the characteristic objects:
By using the Cartesian product of all TFNs cores, the COs can be obtained as follows:
CO = C(C1)× C(C2)× ...× C(Cn)

As the result of this, the ordered set of all COs is obtained:
CO1 =

{
C(Ft

11), C(Ft
21), ..., C(Ft

n1)
}

;
CO2 =

{
C(Ft

11), C(Ft
21), ..., C(Ft

n2)
}

;
...
COs =

{
C(Ft

1c1
), C(Ft

2c2
), ..., C(Ft

ncn)
}

;

where s =
n
∏
i=1

ci is a number of COs.

Step 3: Rank and evaluate the characteristic objects:
A comparison of COs is obtained by adding the opinion of DMs. After this, determine the Matrix

of Expert Judgment (MEJ) as follows:

MEJ=

⎡⎢⎢⎢⎢⎣
h̃11 h̃12 · · · h̃1s
h̃21 h̃22 · · · h̃2s

...
...

. . .
...

h̃s1 h̃s2 · · · h̃ss

⎤⎥⎥⎥⎥⎦
where h̃αβ = {h̃ω

αβ, ω = 1, 2, ..., lh̃αβ
} is the HFE containing preferences of all DMs and is obtained as

a result of comparing COα and COβ. The more preferred CO obtains a stronger preference degree,
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and the second object obtains a weaker one. If the preferences are balanced, then both objects obtain a
preference degree denoted by HFE h̃ f = {0.5}. The selection of h̃αβ depends solely on the knowledge
and opinion of the experts. Mathematically, h̃αβ should satisfy the following conditions:

1. h̃σ(ω)
αβ + h̃

σ(lh̃αβ
−ω+1)

βα = 1, α, β = l, 2, ..., s;
2. h̃αα = {0.5}, α = l, 2, ..., s;
3. lh̃αβ

= lh̃βα
, α, β = l, 2, ..., s.

where the values in h̃αβ are assumed to be arranged in increasing order for convenience, and let

h̃σ(ω)
αβ (ω = 1, 2, ..., lh̃αβ

) denote the ωth smallest value in h̃αβ and lh̃αβ
the number of the values in h̃αβ.

The last equation indicates that the sum of the ωth smallest value in h̃αβ and the ωth largest value
in h̃βα should be equivalent to one, which is the complement condition as introduced by Torra in [24]
(see Definition 2). In other words, if h̃αβ = {h̃ω

αβ, ω = 1, 2, ..., lh̃αβ
} is known, then we can obtain h̃βα,

which is given by h̃βα = {1− h̃ω
αβ, ω = 1, 2, ..., lh̃αβ

}. The second equation indicates that the diagonal

elements in MEJ should be equivalent to {0.5}, which implies the balanced preference degrees of COα

and COβ. The third equation indicates that the number of elements in h̃αβ and h̃βα should be the same.
Suppose H̃α = ⊕s

β=1h̃αβ, where each H̃α is an HFE. Afterward, we get a vertical vector SJ of the

summed judgments where SJα = Sc(H̃α) =
1

lH̃α
∑γ∈H̃α

γ (see Definition 3). To assign the approximate

value of preference to each CO, we use the same MATLAB code as used by Salabun in [45]. As a
result, we get a vertical vector P, where the α-th component of P represents the approximate value of
preference for COα.

Step 4: The rule base:
Each CO and value of preference is converted to a fuzzy rule as follows:
IF COα THEN Pα

IF C(Ft
1α) AND C(Ft

2α) AND ... THEN Pα

In this way, the complete fuzzy rule base is obtained, which can be presented as follows:
IF CO1 THEN P1

IF CO2 THEN P2
...
IF COs THEN Ps

Step 5: Inference in a fuzzy model and final ranking:
Each alternative activates the specified number of fuzzy rules, where for each one, the fulfillment

degree of the conjunctive complex premise is determined. The fulfillment degrees of each activated
rule corresponding to each element of Fb

i (1 ≤ b ≤ q, 1 ≤ i ≤ n) always sum to one. Each alternative is
a set of crisp numbers, corresponding to criteria C1, C2, ..., Cn. It can be presented as follows:

Aj =
{

a1j, a2j, ..., anj
}

, where the following conditions must be satisfied:
a1j ∈ [C(Ft

11), C(Ft
1c1

)];
a2j ∈ [C(Ft

21), C(Ft
2c2

)];
...
anj ∈ [C(Ft

n1), C(Ft
ncn)].

To infer the final ranking of the alternatives corresponding to each criterion, we proceed as follows:
For each j = 1, 2, ..., m,

a1j ∈ [C(Ft
1k1

), C(Ft
1(k1+1))];

a2j ∈ [C(Ft
2k2

), C(Ft
2(k2+1))];

...
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anj ∈ [C(Ft
nkn

), C(Ft
n(kn+1))];

where ki = 1, 2, ..., (ci − 1), (1 ≤ i ≤ n). The activated rules (COs), i.e., the group of those COs where
the membership function of each alternative Aj (1 ≤ j ≤ m) is non-zero, are:(

C(Ft
1k1

), C(Ft
2k2

), ..., C(Ft
nkn

)
)

;(
C(Ft

1k1
), C(Ft

2k2
), ..., C(Ft

n(kn+1))
)

;
...(

C(Ft
1(k1+1)), C(Ft

2(k2+1)), ..., C(Ft
n(kn+1))

)
.

The number of COs are obviously 2n and 1 ≤ 2n ≤ s.
Let p1, p2, ..., p2n be the approximate values of the preference of the activated rules (COs), which

were already calculated in Step 3, where pη’s (1 ≤ η ≤ 2n) are some values in Pα’s (1 ≤ α ≤ s). We
denote the HFE at the point x ∈ Aj (1 ≤ j ≤ m) provided by a DM dδ (δ = 1, 2, ..., k) as:

hδ
ij(x) = {F1δ

ij (x), F2δ
ij (x), ..., Fqδ

ij (x)}

for each criterion Ci (i = 1, 2, .., n).
To aggregate the information in the form of HFEs from every DM, in order to achieve a single HFE,

which summarizes all of the information provided by the different DMs, there are several aggregation
operators that are available in the literature. However, in this paper, we simply use the average
operator to get the average of the membership values obtained from LR-type GFNs provided by the
DMs in the form of HFE corresponding to each aij ∈ Aj (1 ≤ i ≤ n, 1 ≤ j ≤ m). Suppose hij(x) is an
HFE obtained as a result of aggregating the HFEs hδ

ij(x), (δ = 1, 2, ..., k) where:

hij(x) = {F1
ij(x), F2

ij(x), ..., Fq
ij(x)}

Let Aj be HFE, which is computed as the sum of the products of all activated rules, as their
fulfillment degrees and their values of the preference, i.e.,

Aj = p1
(
h1k1(a1j)⊗ h2k2(a2j)⊗ . . . hnkn(anj)

)
⊕ p2

(
h1k1(a1j)⊗ h2k2(a2j)⊗ . . . hn(kn+1)(anj)

)
⊕ . . . p2n

(
h1(k1+1)(a1j)⊗ h2(k2+1)(a2j)⊗ . . . hn(kn+1)(anj)

)
The preference of each alternative Aj (1 ≤ j ≤ m) can be found by finding the score of the

corresponding HFE Aj (1 ≤ j ≤ m) as follows:

Sc(Aj) =
1

lAj
∑

y∈Aj

y

The final ranking of alternatives is obtained by sorting the preference of alternatives. The greater
the preference value, the better the alternative Aj (1 ≤ j ≤ m).

As the summary of this section, Figure 1 presents the stepwise procedure of the proposed extension
of the COMET method. After initiating the decision process, the procedure starts by modeling the
structure of a considered decision problem. At this point, each expert determine generalized fuzzy
numbers for each criterion. This is followed by generating characteristic objects in Step 2, evaluating
the preferences of the characteristic objects in Step 3 and generating the fuzzy rule base in Step 4. The
procedure ends by computing the assessment for each alternative from the considered set. The set of
alternatives can be ranked according to the descending order of the computed assessments.
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Figure 1. The procedure of the proposed extension of COMET to group decision-making.

4. An Illustrative Example

In this section, an example is given to understand our approach. We used the method proposed
in Section 3 to get the most desirable alternative, as well as to rank the alternatives from the best to the
worst or vice versa.

Let us consider a factory, whose maximum capacity of using mobile units is a total of 1000
per month, which intends to select a new mobile company. Four companies A1, A2, A3 and A4 are
available, and three DMs are asked to consider two criteria C1 (fixed line rent) and C2 (rates per unit)
to decide which mobile company to choose. The fixed line rent, rates per unit and the original ranking
order of the feasible mobile companies are shown in Table 1.
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Table 1. Original ranking of the alternatives, where LR - fixed line rent and R/U - rates per unit.

Alternatives C1 (LR) C2 (R/U) Bill Amount Original Rank

A1 150 1500 1650 2
A2 50 2000 2050 3
A3 250 1250 1500 1
A4 30 2150 2180 4

A set of TFNs and trapezoidal fuzzy numbers for both criteria C1 and C2 set by three DMs are
shown in Tables 2 and 3. The average of the membership values obtained from LR-type GFNs for both
the criteria are shown in Table 4.

Table 2. LR-type Group Fuzzy Numbers (GFNs) selected by the Decision-Makers (DMs) for criteria C1.

DM1 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 170), (30, 170, 220, 300), (220, 300, 300, 300)}

DM2 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 180), (30, 180, 230, 300), (230, 300, 300, 300)}

DM3 {(30, 30, 200), (30, 200, 300), (200, 300, 300)}
{(30, 30, 30, 160), (30, 160, 215, 300), (215, 300, 300, 300)}

Table 3. LR-type GFNs selected by the DMs for criteria C2.

DM1 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1600), (1200, 1600, 1900, 2500), (1900, 2500, 2500, 2500)}

DM2 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1700), (1200, 1700, 1900, 2500), (1900, 2500, 2500, 2500)}

DM3 {(1200, 1200, 1800), (1200, 1800, 2500), (1800, 2500, 2500)}
{(1200, 1200, 1200, 1650), (1200, 1650, 1950, 2500), (1950, 2500, 2500, 2500)}

Table 4. Average of the membership values obtained from LR-type GFNs for criteria C1.

Average of the Membership Values Obtained from LR-Type GFNs for Criterion C2

30 50 150 250
(1, 0, 0) (0.8824, 0.1176, 0) (0.2941, 0.7059, 0) (0, 0.5000, 0.5000)
(1, 0, 0) (0.8567, 0.1433, 0) (0.8567, 0.1433, 0) (0, 0.6425, 0.3575)

1250 1500 2000 2150
(0.9167, 0.0833, 0) (0.5000, 0.5000, 0) (0, 0.7143, 0.2857) (0, 0.5000, 0.5000)
(0.8880, 0.1120, 0) (0.3278, 0.6722, 0) (0, 0.8586, 0.1414) (0, 0.6010, 0.3990)

The graphical representation of L-R-type GFNs selected by the DMs for both the criteria C1 and
C2 are shown in Figures 2–7, respectively.
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Figure 2. Graphical representation of LR-type GFNs selected by DM1 for the criterion C1.

Figure 3. Graphical representation of LR-type GFNs selected by DM1 for the criterion C2.

Figure 4. Graphical representation of LR-type GFNs selected by DM2 for the criterion C1.
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Figure 5. Graphical representation of LR-type GFNs selected by DM2 for the criterion C2.

Figure 6. Graphical representation of LR-type GFNs selected by DM3 for the criterion C1.

Figure 7. Graphical representation of LR-type GFNs selected by DM3 for the criterion C2.
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The cores of the family of TFNs for both the criteria C1 and C2 are respectively {30, 200, 300} and
{1200, 1800, 2500}. The solution of the COMET is obtained for different number of COs. The simplest
solution involves the use of nine COs, which are presented as follows:

CO1 = {30, 1200}, CO2 = {30, 1800}, CO3 = {30, 2500}
CO4 = {200, 1200}, CO5 = {200, 1800}, CO6 = {200, 2500}
CO7 = {300, 1200}, CO8 = {300, 1800}, CO9 = {300, 2500}

To rank and evaluate the COs, suppose the three DMs give their assessments by providing the
HFEs as shown in Tables 5 and 6, and therefore, the Matrix of Expert Judgment (MEJ) is as follows:

Table 5. Matrix of Expert Judgment (MEJ).

CO1 CO2 CO3 CO4 CO5

CO1 {0.5} {0.8, 1} {0.8, 0.9} {0.7, 0.8} {0.8, 0.9, 1}
CO2 {0, 0.2} {0.5} {0.8, 1} {0, 0.1, 0.2} {0.9, 1}
CO3 {0.1, 0.2} {0, 0.2} {0.5} {0, 0.2, 0.3} {0.1, 0.2}
CO4 {0.2, 0.3} {0.8, 0.9, 1} {0.7, 0.8, 1} {0.5} {0.8, 0.9, 1}
CO5 {0, 0.1, 0.2} {0, 0.1} {0.8, 0.9} {0, 0.1, 0.2} {0.5}
CO6 {0, 0.2} {0, 0.2} {0, 0.1} {0, 0.2} {0, 0.1, 0.2}
CO7 {0, 0.2} {0.8, 1} {0, 0.8} {0, 0.2} {0.8, 0.9, 1}
CO8 {0, 0.1, 0.2} {0.1, 0.2} {0.7, 0.8, 1} {0.1, 0.2} {0, 0.1, 0.2}
CO9 {0, 0.2} {0, 0.1} {0.2, 0.3} {0, 0.1, 0.2} {0, 0.2}

Table 6. Matrix of Expert Judgment (MEJ).

CO6 CO7 CO8 CO9 SJ

CO1 {0.8, 1} {0.8, 1} {0.8, 0.9, 1} {0.8, 1} 0.999999
CO2 {0.8, 1} {0, 0.2} {0.8, 0.9} {0.9, 1} 0.999980
CO3 {0.9, 1} {0, 0.2} {0, 0.2, 0.3} {0.7, 0.8} 0.995033
CO4 {0.8, 1} {0.8, 1} {0.8, 0.9} {0.8, 0.9, 1} 0.999998
CO5 {0.8, 0.9, 1} {0, 0.1, 0.2} {0.8, 0.9, 1} {0.8, 1} 0.999751
CO6 {0.5} {0, 0.1, 0.2} {0.2, 0.3} {0.8, 0.9, 1} 0.968745
CO7 {0.8, 0.9, 1} {0.5} {0.8, 1} {0.8, 0.9} 0.999970
CO8 {0.7, 0.8} {0, 0.2} {0.5} {0.7, 0.8, 0.9} 0.996636
CO9 {0, 0.1, 0.2} {0.1, 0.2} {0.1, 0.2, 0.3} {0.5} 0.841614

The vector SJ on the basis of MEJ is obtained as follows:

SJ = [0.999999, 0.999980, 0.995033, 0.999998, 0.999751, 0.968745, 0.999970,

0.996636, 0.841614]T

A vertical vector P is obtained by using a MATLAB code (see [45]) as follows:

P = [1.0000, 0.7500, 0.2500, 0.8750, 0.5000, 0.1250, 0.6250, 0.3750, 0]T

Each component of the vector P represents the approximate values of the preference for the
generated COs. Each CO and the value of preference pi is converted to a fuzzy rule, as follows:
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IF LR ∼ 30 AND R/U ∼ 1200 THEN P1 ∼ 1.0000
IF LR ∼ 30 AND R/U ∼ 1800 THEN P2 ∼ 0.7500
IF LR ∼ 30 AND R/U ∼ 2500 THEN P3 ∼ 0.2500
IF LR ∼ 200 AND R/U ∼ 1200 THEN P4 ∼ 0.8750
IF LR ∼ 200 AND R/U ∼ 1800 THEN P5 ∼ 0.5000
IF LR ∼ 200 AND R/U ∼ 2500 THEN P6 ∼ 0.1250
IF LR ∼ 300 AND R/U ∼ 1200 THEN P7 ∼ 0.6250
IF LR ∼ 300 AND R/U ∼ 1800 THEN P8 ∼ 0.3750
IF LR ∼ 300 AND R/U ∼ 2500 THEN P9 ∼ 0.0000

With respect to Model 4, for the alternative A1 = {150, 1500}, we have nine rules (COs), but the
activated rules are CO1, CO2, CO4, CO5. The approximate values of the preference of corresponding
COs are p1 ∼ 1, p2 ∼ 0.7500, p3 ∼ 0.8750, p4 ∼ 0.5000. The HFE A1 and the preference value of the
corresponding alternative A1 are computed respectively as follows:

A1 = p1 h11(150)⊗ h21(1500)⊕ p2 h11(150)⊗ h22(1500)⊕ p3h12(150)⊗ h21(1500)⊕
p4h12(150)⊗ h22(1500)

Sc(A1) =
1

lA1
∑y∈A1

y = 0.5725

Similarly, we can find the preference values for the rest of the alternatives and their ranking,
which are shown in Table 7.

Table 7. Comparison of the original ranking with the ranking obtained using the proposed method.

Alternatives C1 (LR) C2 (R/U) Original Ranking Preference Values New Ranking

A1 150 1500 2 0.5725 3
A2 50 2000 3 0.6236 2
A3 250 1250 1 0.6272 1
A4 30 2150 4 0.5281 4

The best choice is the alternative A3 followed by A2, A1 and A4. The worst choice is the alternative
A4. The extrema elements are consistent with the original ranking. However, the ranking obtained by
the COMET method is not perfect. The main reason is that this problem was solved under an uncertain
environment by a group of decision-makers. In other words, it is extremely difficult to make a reliable
decision using uncertain data, but we believe that it is possible. This example also illustrates how hard
it is to make a group decision under uncertainty. Notwithstanding, the COMET method shows the
best and the worst decision.

The main contribution of the proposed approach can be expressed by the most important
properties of this extension, i.e., the proposed approach is completely free of the rank reversal
phenomenon and obtains not only a discrete value of priority, but the mathematical function, which
can be used to calculate the priority for all alternatives from the space of the problem. Quantitative
expression of efficiency is a very difficult task because a large number of assumptions is needed.
Additionally, the reference ranking of the alternatives set is needed in this task, but the reference rank
is almost always unknown. However, the problem of quantitative effectiveness assessment is a very
important and interesting direction for further research.

5. Conclusions

The hesitant fuzzy sets theory is a useful tool to deal with uncertainty in multi-criteria group
decision-making problems. Various sources of uncertainty can be a challenge to make a reliable decision.
The paper presented the extension of the COMET method, which was proposed for solving real-life
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problems under the opinions of experts in a hesitant fuzzy environment. Therefore, the proposed
approach successfully helps to deal with group decision-making under uncertainty. The basic concept
of the proposed method is based on the distance of alternatives from the nearest characteristic objects
and their values of preference. The characteristic objects are obtained from the crisp values of all of the
considered fuzzy numbers for each criterion. The proposed method is different from all of the previous
techniques for MCGDM due to the fact that it uses hesitant fuzzy sets theory and the modification
of the COMET method. The prominent feature of the proposed method is that it could provide a
useful and flexible way to efficiently facilitate DMs under a hesitant fuzzy environment. The related
calculations are simple and have a low computational complexity. Hence, it enriched and developed
the theories and methods of MCGDM problems and also provided a new idea for solving MCGDM
problems. Finally, a practical example was given to verify the developed approach and to demonstrate
its practicality and effectiveness.

During the research, some possible areas of improvement of the proposed approach were
identified. From a formal way, the COMET method can be extended over intuitionistic fuzzy sets,
hesitant intuitionistic fuzzy sets, hesitant intuitionistic fuzzy linguistic term sets or other uncertain
forms. Additionally, analysis and improvement of the accuracy of the presented extension of the
COMET method should be performed. The future works may cover the practical usage of the proposed
approach in the different decision-making domains.
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Abstract: The primary benefit of fuzzy systems theory is to approximate system behavior where
analytic functions or numerical relations do not exist. In this paper, heuristic fuzzy rules were used
with the intention of improving the performance of optimization models, introducing experiential
rules acquired from experts and utilizing recommendations. The aim of this paper was to define soft
constraints using an adaptive network-based fuzzy inference system (ANFIS). This newly-developed
soft constraint was applied to discrete optimization for obtaining optimal solutions. Even though the
computational model is based on advanced computational technologies including fuzzy logic, neural
networks and discrete optimization, it can be used to solve real-world problems of great interest
for design engineers. The proposed computational model was used to find the minimum weight
solutions for simply-supported laterally-restrained beams.

Keywords: uncertainty; discrete optimization; neuro-fuzzy technique; structural optimization

1. Introduction

The theory of fuzzy sets can be used to model imprecision, ambiguity or fuzziness in the
formulation of structural optimization problems. In the formulation of such problems, a major
source of imprecision, or fuzziness, occurs in the evaluation of constraints. In traditional optimization
algorithms, constraints are satisfied with a tolerance defined by a crisp or non-fuzzy number. In reality,
in common engineering practice, this evaluation involves many sources of approximations [1]. A design
of structure is considered satisfactory when the several constraints are satisfied within a given
predetermined tolerance. However, when an optimization algorithm satisfies the constraints precisely
(for a defined small tolerance degree of numerical computations), it can miss the true optimum design
within the confines of practical and realistic approximations.

Adeli [2] demonstrated that by taking into account the fuzziness and imprecision in the constraints
and employing fuzzy set theory, it is possible to reduce the objective function further and substantially
increase the probability of finding the actual global optimum solution. The goal of the present research,
carried out by several authors, was to model the effects of fuzziness in the formulation of a genetic
algorithm (GA)-based structural design optimization problem [3–6]. Another objective of the authors’
research was to improve the convergence and efficiency of GAs through the use of fuzzy set theory [7–9].
Several articles have been published on the fuzzy optimization of structures [10,11], with the objective
of reducing the number of iterations and the total computer processing time needed.

Uncertainty exists in almost every real-world problem. In general, uncertainty is inseparable
from measurement. It emerges from a combination of the limits of measurement with instruments
and unavoidable errors in measurement. In this paper, the fuzziness was considered as part of the
constraints. The constraints were developed using the neuro-fuzzy technique, which was based
on past experience, recommendations and measurements. Fuzzy constraints were then used in
discrete optimization along with other crisp constraints. This allowed us to include experience,
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recommendations and experimental measurements in the optimization problem. Optimization using
non-linear programming (NLP) and fuzzy constraints has been done by Jelusic [12], however without
the discrete optimization approach. While NLP deals with the continuous optimization of structures,
mixed-integer linear programming (MILP) performs continuous-discrete optimization, where the
structural topology, discrete materials (steel) and standard dimensions (steel sections) are known.

In order to find the minimum weight solutions for simply-supported laterally-restrained beams,
the appropriate deflection limit should be specified. The comparison of different design codes
showed that the deflection limits are too liberal. This paper defines the soft constraint for the
deflection limit based on experiential rules acquired from experts and utilizing recommendations.
This newly-developed soft constraint obtained with an adaptive network-based fuzzy inference system
(ANFIS) is then used in the optimization model. ANFIS can learn from examples and is fault tolerant
in the sense that it is able to handle noisy or incomplete data. The expert evaluations for the deflection
limit are very subjective; therefore, the data for approximation function are expected to be vague,
imprecise, incomplete or even contradictory. Additionally, the proposed ANFIS techniques include
fuzzy clustering (FCM), which searches for patterns in data points. The study suggests that deflection
limits could be reconsidered in the future by the experts who have a prolonged or intense experience
through practice.

2. Structural Optimization and Fuzzy Set Theory

A crisp non-fuzzy structural optimization is formulated as follows: find the vector of the
design variables x such that the objective function F(x) is minimized subject to the equality and
inequality constraints:

minz = F(x) (1)

s.t.

hi(x) = 0, i = 1, 2, . . . , Nec

gl
i(x) ≤ gi(x) ≤ gu

i (x), i = 1, 2, . . . , Niec

(2)

where Nec is the number of equality constraints and Niec is the number of inequality constraints;
gu

i (x) is the upper bound on the constraint gi(x), and gl
i(x) is the lower bound on the constraint gi(x).

If vagueness is considered in the objective function and constraints, then the variables (x) can be
obtained from a fuzzy decision D, such that the membership function μD for the fuzzy decision D can
be obtained from the intersection of the fuzzy membership functions for the objective function and
constraints; see Equation (3):

μD = μF(x) ∩
[

∩
i = 1, 2, . . . , Niec

μgi (x)

]
(3)

where μF(x) is the membership functions for the objective function and μgi (x) is the membership
functions for the i-th inequality design constraint. From this fuzzy decision, the optimum solution (x∗)
for the variable x can be obtained by using the max-min procedure [13]; see Equation (4):

μD(x∗) = maximize μD(x) (4)

where:

μD(x) = min

[
μF(x),

min
i = 1, 2, . . . , Niec

μgi (x)

]
(5)

The max-min procedure can be solved by maximizing a scalar parameter λ (overall satisfaction
parameter) [14]; see Equations (6)–(9):
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Maxλ

s.t:

λ ≤ μF(x) (6)

λ ≤ μu
gi
(x), i = 1, 2, . . . , Niec (7)

λ ≤ μl
gi
(x), i = 1, 2, . . . , Niec (8)

0 ≤ λ ≤ 1 (9)

where μu
gi
(x) and μl

gi
(x) are the membership functions for the upper and lower bounds of the inequality

constraints μgi (x) (Equation (2)), respectively. The equality constraints, in Equation (1), are not included
in the fuzzy formulations because they have to be satisfied strictly.

2.1. ANFIS Architecture for the Development of Soft Constraint Functions

For a Sugeno fuzzy model, a rule set with n fuzzy “if-then” is as follows:
Rule 1: If x is A1 and y is B1, then:

f1 = a1
0 + a1

1x + a1
2y (10)

Rule i: If x is Ai and y is Bi, then:

fi = ai
0 + ai

1x + ai
2y (11)

Rule n: If x is An and y is Bn, then:

fn = an
0 + an

1 x + an
2 y (12)

where a1
0, a1

1, a1
2, ai

0, ai
1, ai

2, an
0 , an

1 , an
2 are consequent parameters and x and y are input variables.

The output of each rule is equal to the constant, and the final output is the weighted average of
each rule’s output.

f =
n

∑
i=1

wi· fi =
n

∑
i=1

wi·
(

ai
0 + ai

1x + ai
2y
)

(13)

The weights are obtained from a Gaussian membership function.

μ(x) = exp

[
−
(

x− c
σ·
√

2

)2
]

(14)

where c is the position of the center of the curve's peak and σ is the width of the curve. Parameters c
and σ are premise parameters. The first membership grade of the fuzzy set (Ai, Bi, Ci, Di) is calculated
with the following equations:

μAi (x) = exp

⎡⎣−( x− cAi

σAi ·
√

2

)2
⎤⎦ (15)

μBi (y) = exp

⎡⎣−( y− cBi

σBi ·
√

2

)2
⎤⎦ (16)

where x and y are the input variables in the Gaussian membership function. After this, the product of
the membership function for every rule is calculated:

wi = μAi (x)·μBi (y) (17)
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where wi represents the fire strength of the rule i. The ratio of the i-th rule’s firing strength to the sum
of all of the rule’s firing strengths is defined with:

wi =
wi

w1 + . . . + wi + . . . + wn
for i = 1, 2, . . . , n. (18)

In order to achieve the desired input-output mapping, the consequent and premise parameters
need to be updated according to the given training data and the hybrid learning procedure. This hybrid
learning procedure [15] is composed of a forward pass and backward pass. In the forward pass, the
algorithm uses the least-squares method to identify the consequent parameters. In the backward pass,
the errors are propagated backward, and the premise parameters are updated by gradient descent.

3. Discrete Optimization

Exhaustive enumeration (EE) is the simplest of the discrete optimization techniques. It evaluates
an optimum solution for all combinations of the discrete variables. The best solution is obtained by
scanning the list of all feasible solutions for the minimum value. The total number of evaluations is:

ne =
nd

∏
i=1

pi (19)

where nd is the number of discrete variables and pi is the pre-established set of discrete values. If either
nd or pi (or both) are large, it shows that much work will be required. It also shows an exponential
growth in the calculations with the number of discrete variables. In a mixed optimization problem,
this would involve the continuous optimum solution of a reduced model. It is not a serious problem
if the mathematical model and its computer calculations are easy to implement. If the mathematical
model requires extensive calculations, then some concerns may arise. Programming exhaustive
enumeration is straightforward. The processing speed, large available desktop-memory and easy
programming, through software like MATLAB [16], make exhaustive enumeration a very good idea
today. This program is also ideal because the solution is a global optimum. The most important step is
translating the mathematical model into a program code.

The number of design variables in the model is reduced by the number of discrete variables.
Model reduction is involved in enumeration techniques.

The algorithm with feasibility requirements is as follows:

Step 1. s∗ = in f , K = [0, 0, . . . , 0]
For every allowable combination of (y1, y2, . . . , ynd)⇒ (Yb)

Solve optimization problem (solution K*)
I f h(K∗, Yb) = [0] and

I f g(K∗, Yb) ≤ [0] and
I f f (K∗, Yb) < s∗

Then s∗ ← f (K∗, Yb)

K ← K∗

Y ← Yb

End I f
End I f

End I f
End For

This application example presents how soft constraints are included in discrete optimization.
ANFIS is used to integrate recommendations of deflection limits into an optimization model.
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4. Example Design of a Simply-Supported Laterally-Restrained Beam Application

The basic design process is formed by determining the design loads acting on the structure,
determining the design loads on individual elements and calculating the bending moments, shear
forces and deflections of the beams. Generally, laterally-restrained beams should be checked for their
ultimate limit state (ULS) and serviceability limit state (SLS). As this article is about the design of steel
structural elements, the following were examined:

(1) resistance of the cross-section to bending (ULS),
(2) resistance to shear buckling (ULS),
(3) resistance to flange-induced buckling (ULS),
(4) resistance of the web to transverse forces (ULS) and
(5) deflection (SLS).

The beam is loaded by a uniformly-distributed dead load gk and a uniformly-distributed imposed
load qk, as shown in Figure 1.

Figure 1. Simply-supported beam and steel section.

The civil engineer must evaluate the possible future levels of loading (self-weight, snow, wind),
which the structure may be subjected to during its design life. Then, using hand calculations or
computer methods, the loads acting on individual construction elements can be evaluated. The loads
are used to calculate the shear forces, bending moments and deflections at critical sections along the
construction elements. Finally, sufficient dimensions for the construction element can be defined.

4.1. Design Loads

The loads acting on a beam are divided into imposed and dead loads. For each type of loading
there will be characteristic values and design values that must be estimated. In addition to this,
the designer will have to determine the particular combination of loading that is likely to produce
the most adverse effect on the structure in terms of shear forces, bending moments and deflections.
The design loads are obtained by multiplying the characteristic loads by the partial safety factor for
loads. However, before flexural members, such as beams, can be sized, the design bending moments
and shear forces must be evaluated. Design shear forces and moments in beams are calculated using
standard equations (Equations (21) and (22)). Having calculated the shear force and design bending
moment, all that now remains to be done is to estimate the dimensions and strength of the beam
required. Yield strength and section classification are used for the initial choice of the section. If the
section is thick, i.e., has thick flanges and web, it can sustain the formation of a plastic hinge. On the
other hand, a slender section, for example with thin flanges and web, will fail by local buckling before
the yield stress can be reached.

Design action:
FEd =

(
γG·gk + γQ·qk

)
·l (20)

Design bending moment:
MEd = FEd·l/8 (21)
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Design shear force:
VEd = FEd/2 (22)

Strength classification:
ε =
(
235/ fy

)0.5 (23)

Section classification:
c/t f ≤ 10·ε (24)

c∗/tw ≤ 83·ε (25)

where:
c = (b− tw − 2·r)/2 (26)

and:
c∗ = d (27)

4.2. Resistance of Steel Cross-Sections

The structural design of steel beams primarily involves predicting the strength of their members.
This requires the designer to imagine all of the ways in which each member may fail during its design
life. Common modes of failure associated with beams are local buckling, shear, shear buckling, web
bearing and buckling, lateral torsional buckling, bending and deflection.

4.2.1. Bending Moment

When shear force is absent or of a low value, the design value of the bending moment, MEd, at
each section should satisfy the following:

MEd/Mc,Rd ≤ 1.0 (28)

where Mc,Rd is the design resistance for bending around one principal axis, taken as follows:
(a) the plastic design resistance moment of the gross section:

Mpl,Rd = Wpl · fy/γM0 (29)

where Wpl is the plastic section modulus, for Class 1 and 2 sections only;
(b) the elastic design resistance moment of the gross section:

Mel,Rd = Wel,min· fy/γM0 (30)

where Wel,min is the minimum elastic section modulus for Class 3 sections;
(c) the local buckling design resistance moment of the gross section:

Mc,Rd = We f f ,min· fy/γM0 (31)

where Weff,min is the minimum effective section modulus for Class 4 cross-sections only;
(d) the ultimate design resistance moment of the net section at bolt holes Mu,Rd, if this is less than

the appropriate values above. In calculating this value, fastener holes in the compression zone do not
need to be considered; they would need to be if they were oversized, slotted or filled by fasteners. In
the tension zone, holes do not need to be considered, provided that:

A f ,net·0.9·fu/γM2 ≥ A f · fy/γM0 (32)

4.2.2. Shear

The design value of the shear force VEd at each cross-section should satisfy the following:
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VEd/Vc,Rd ≤ 1.0 (33)

where Vc,Rd is the design shear resistance. For the plastic design, Vc,Rd is taken as the design plastic
shear resistance, Vpl,Rd, given by:

VPl,Rd = Av·
(

fy/
√

3
)

/γM0 (34)

where Av is the shear area, which, for the rolled I and H sections, loaded parallel to the web, is:

Av = A− 2bt f + (tw + 2r)t f ≥ ηhwt f (35)

where:

b overall breadth
r root radius
tf flange thickness
tw web thickness
hw depth of the web
η conservatively taken as 1.0
A cross-sectional area

Fastener holes in the web do not have to be considered in shear verification. Shear buckling
resistance for unstiffened webs must additionally be considered when:

hw/tw > 72ε/η (36)

For a stiffened web, shear buckling resistance will need to be considered when:

hw/tw > 31ε
√

kτ/η (37)

where kτ is the buckling factor for shear and is given by:

for a/hw < 1; kτ = 4 + 5.34(hw/a)2 (38)

for a/hw ≥ 1; kτ = 5.34 + 4(hw/a)2 (39)

4.2.3. Resistance of Cross-Section-Bending and Shear

The plastic resistance moment of the section is reduced by the presence of shear force. When the
design value of the shear force, VEd, exceeds 50 percent of the plastic shear design resistance, Vpl,Rd,
the design resistance moment of the section, Mv,Rd, should be calculated using a reduced yield strength
taken as:

ρ =
(

2VEd/Vpl,Rd − 1
)2

(40)

Thus, for the rolled I and H sections, the reduced design resistance moment for the section around
the major axis, My,v,Rd, will be given by:

My,v,Rd = fy

(
Wpl,y − ρAv

2/4tw

)
/γM0 ≤ My,c,Rd (41)

4.2.4. Shear Buckling Resistance

As noted above, the shear buckling resistance of unstiffened beam webs has to be checked when:

hw/tw > 72ε/η (42)
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The value of 1.0 for η for all steel grades up to and including S460 is recommended. For standard
rolled beams and columns, this check is rarely necessary. However, as hw/tw is usually less than 72ε, it
was not discussed in this section.

4.2.5. Flange-Induced Buckling

To prevent the possibility of the compression flange buckling in the plane of the web,
Eurocode 3–5 [17] requires that the ratio hw/tw of the web should satisfy the following criterion:

hw/tw ≤ k·E/fyf
√

Aw/Afc (43)

where:

Aw is the area of the web = (h−2·tf)·tw

Afc is the area of the compression flange = b·tf
fyf is the yield strength of the compression flange

The factor k assumes the following values: plastic rotation utilized, i.e., Class 1 flanges: 0.3; plastic
moment resistance utilized, i.e., Class 2 flanges: 0.4; elastic moment resistance utilized, i.e., Class 3 or
Class 4 flanges: 0.55.

4.2.6. Resistance of the Web to Transverse Forces

Eurocode 3–5 [17] categorize between two types of forces applied through a flange to the web:

(a) forces resisted by shear in the web (loading Types (a) and (c)).
(b) forces transferred through the web directly to the other flange (loading Type (b)).

For loading Types (a) and (c), the web is likely to fail as a result of:

(i) crushing of the web close to the flange accompanied by yielding of the flange; the combined
effect is sometimes referred to as web crushing

(ii) localized buckling and crushing of the web beneath the flange; the combined effect is
sometimes referred to as web crippling.

For loading Type (b) the web is likely to fail as a result of:

(i) web crushing
(ii) buckling of the web over most of the depth of the member.

Provided that the compression flange is sufficiently restrained in the lateral direction, the design
resistance of webs of beams under transverse forces can be determined in accordance with the
recommendations in Eurocode 3 [17].

In Eurocode 3 [17], it is stated that the design resistance of webs to local buckling is given by:

FRd = fy·Le f f ·tw/γM1 (44)

where:
fyw is the yield strength of the web
tw is the thickness of the web
γM1 is the partial safety factor = 1.0
Leff is the effective length of the web that resists transverse forces = χFly, in which χF is the

reduction factor due to local buckling.
ly is the effective loaded length, appropriate to the length of the stiff bearing ss. As stated in

Clause 6.3 of Eurocode 3–5 [17], ss should be taken as the distance over which the applied load is
effectively distributed at a slope of 1:1, but ss ≤ hw.
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Reduction factor, χF: The reduction factor χF is given by:

χF = 0.5/λF ≤ 1 (45)

where:
λF =

√
ly·tw· fyw/Fcr (46)

in which:
Fcr = 0.9·kF·E·t3

w/hw (47)

Effective load length, ly: As stated in Clause 6.5 [17] for loading Types (a) and (b), the effective
load length, ly, is given by:

ly = ss + 2·t f ·
(
1 +

√
m1 + m2

)
≤ a (48)

where:
m1 = fyt·b f /

(
fyw·tw

)
(49)

and if:
λF > 0.5; m2 = 0.02·

(
hw/t f

)2
(50)

or if:
λF ≤ 0.5; m2 = 0 (51)

For loading Type (c), ly is taken as the smallest value obtained from Equations (52) and (53),
as follows:

ly = le + t f ·
√

m2/2 +
(

le/t f

)2
+ m2 (52)

ly = le + t f ·
√

m1 + m2 (53)

where:
le = kF·E·t2

w/
(
2· fyw·hw

)
≤ ss + c (54)

4.3. Deflections

Several vertical deflections are defined in the Eurocode [18]. However, the National Annex to
Eurocode 3 [17] recommends that verification of vertical deflections, δ, under unfactored imposed
loads should be carried out. The designer is responsible for specifying appropriate limits of vertical
deflections, which should be agreed upon with the client. However, like British Standard (BS)
5950 [19], the National Annex to Eurocode 3 [17] also recommends that verifications be made on
vertical deflections, δ, under unfactored imposed loads. It suggests that in the absence of other limits,
the recommendations in the Eurocode may be used.

The recommendations were examined and used for the building of the model and to predict the
limits of vertical deflection. Two parameters with the biggest influence on the vertical deflection limits
were considered. The influence of each parameter was determined on the basis of recommendations
and engineering judgment. The comparison of different design codes (Eurocode, American Institute
of Timber Construction (AITC) [20]) showed, that the deflection limits are very different. The study
also suggests that deflection limits could be reconsidered in the future by the designers who have a
prolonged or intense experience through practice.

4.3.1. ANFIS for the Development of the Constraint Function

A model to limit the vertical deflection based on recommendations was developed. The ANFIS
model has two inputs: applied live load LL (kN/m2) and classification CLASS (-); and it has one
output: LIMIT. The ANFIS-LIMIT model was proposed in order to calculate the deflection limits.
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MATLAB [16] and a Fuzzy Logic Toolbox were used as an interface for mathematical modeling and
data handling.

One of the most important stages in the ANFIS technique is the collection of data. The training data
were chosen based on the recommendations in AITC [20], Eurocode (Table 1), professional experience
and past projects (Table 2). The classification used is separated into three groups. The first group
is reserved for railway bridge stringers and beams used for commercial and institutional buildings
with plaster ceilings. The second group is reserved for highway bridge stringers and beams used
for commercial and institutional buildings without plaster ceilings. The third group is reserved for
industrial roof beams.

Table 1. Deflection limit according to the recommendations.

Use Classification Deflection Limit

Roof beams (industrial) L/180
Roof beams (commercial and institutional without plaster ceiling) L/240

Roof beams (commercial and institutional with plaster ceiling) L/360
Floor beams (ordinary usage) L/360

Highway bridge stringers L/200 to L/300
Railway bridge stringers L/300 to L/400

LL < 2.5 kN/m2 L/480
2.5 kN/m2 < LL < 4.0 kN/m2 L/420

LL > 4.0 kN/m2 L/360

Table 2. Training data for the ANFIS-LIMIT model.

Inputs Output

Applied Live Load LL Classification Deflection Limit

(kN/m2) CLASS * LIMIT

20 1 360
10 1 360
4 1 360

3.5 1 420
3 1 420

2.5 1 480
2 1 480

1.5 1 480
1 1 480

0.5 1 480
0 1 480

20 2 240
10 2 240
4 2 240

3.5 2 280
3 2 280

2.5 2 320
2 2 320

1.5 2 320
1 2 320

0.5 2 320
0 2 320

20 3 180
10 3 180
4 3 180

3.5 3 210
3 3 210

2.5 3 240
2 3 240

1.5 3 240
1 3 240

0.5 3 240
0 3 240

* 1, Railway bridge stringers, beams used for commercial and institutional buildings with plaster ceiling; 2, highway
bridge stringers and beams used for commercial and institutional buildings without plaster ceiling; 3, industrial
roof beams.
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The applied load (LL) and the classification system (CLASS) were taken as input parameters;
whereas, the deflection limit (LIMIT) was considered as an output parameter. The training dataset
(see Table 2) can be improved by adding additional recommendations and more past experience.
These values can be assigned to the parameters and deflection limit. In this model, 33 evaluations were
defined for a different applied live load and classification.

For the Sugeno fuzzy model [21], a rule set with i, i I, I = {1, 2} and fuzzy “if-then” rules were
defined by Equations (55) and (56):

Rule 1: If LL is A1 and CLASS is B1, then:

LIMIT1 = a1
0 + a1

1·LL + a1
2·CLASS (55)

Rule 2: If LL is A2 and CLASS is B2, then:

LIMIT2 = a2
0 + a2

1·LL + a2
2·CLASS (56)

where a1
0, a1

1, a1
2, a2

0, a2
1, a2

2 are consequent parameters and LL and CLASS are input variables.
The calculation procedure of the ANFIS models is as follows:

1. the membership grade of the fuzzy set (Ai, Bi, Ci, Di) is calculated;
2. the product of membership function for each rule is calculated;
3. the ratio between the i-th rule’s firing strength and the sum of all rules’ firing strengths

is calculated;
4. the output of each rule is calculated; and
5. the weighted average of each rule’s output is calculated.

The first membership grade of the fuzzy set (Ai, Bi, Ci, Di) is calculated with Equations (57)
and (58):

μAi (LL) = exp

⎡⎣−( LL− cAi

σAi ·
√

2

)2
⎤⎦ (57)

μBi (CLASS) = exp

⎡⎣−(CLASS− cBi

σBi ·
√

2

)2
⎤⎦ (58)

where LL and CLASS are inputs to Gaussian membership functions, and the parameters cAi, cBi, σAi,
σBi are premise parameters. In addition to this, the products between the membership functions for
every rule are calculated; see Equations (59) and (60):

w1 = μA1(LL)·μB1(CLASS) (59)

w2 = μA2(LL)·μB2(CLASS) (60)

where w1 and w2 represent the firing strength of the each rule. The weighted average of each rules’
output is defined as the ratio between the i-th rule’s firing strength and the sum of all of the rule’s
firing strengths; see Equation (61):

wi =
wi

w1 + w2
, for i = 1, 2. (61)

The output of each rule is finally determined as the sum of products between the weighted average
of each rule’s output and the linear combination between input variables and consequent parameters:

LIMIT =
2

∑
i=1

wi·LIMITi =
2

∑
i=1

wi·
(

ai
0 + ai

1·LL + ai
2·CLASS

)
(62)
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For the model, the following values were evaluated: premise parameters, consequent parameters,
firing strengths and weighted averages of rules outputs.

The structure of the model is shown in Figure 2. While the nodes on the left side represent the
input data, the right node stands for the output. The model includes two inputs, the applied live load
LL (kN/m2) and the classification CLASS (-), as well as a single output deflection limit LIMIT (-).

In a conventional fuzzy inference system, the number of rules is decided by the
researcher/engineer who is familiar with the system to be modeled. There are no simple ways
of determining in advance the minimum number of membership functions to achieve a desired
performance level. In the present attempt, the number of membership functions assigned to each
input variable was chosen empirically by examining the desired input-output data and by trial and
error. For the deflection limit model, two membership functions were chosen for each input. Figure 2
shows the membership functions for LL and CLASS for the deflection model LIMIT. Note that all of the
membership functions used were Gaussian membership functions, defined by Equations (57) and (58).

Figure 2. Fuzzy inference system implemented within the framework of adaptive networks
ANFIS-LIMIT.

After the numbers of membership functions associated with each input were fixed, the initial
values of premise parameters were set in such a way that membership functions were equally spaced
along the operating range of each input variable. The LIMIT model contained two rules with two
membership functions being assigned to each input variable. The total number of fitting parameters
was 14, composed of eight premise parameters and six consequent parameters. These parameters
were obtained by using a hybrid algorithm. MATLAB [16] was used as an interface for mathematical
modeling. Premise and consequent parameters are presented in Table 3.

Table 3. Premise and consequent parameters of the ANFIS-LIMIT model.

Membership Function Premise Parameters Consequent Parameters

i σi ci -
A1 6.61768494044089 2.90117735987428 a0

1 −771.211045670957
A2 7.47150990794045 2.08316049335067 a1

1 8.40911494744558
B1 0.962309787332703 1.62121248482762 a2

1 172.024353054372
B2 0.979723951565027 1.27590144219536 a0

2 1535.72815330126
- - - a1

2 −29.7774593495827
- - - a2

2 −158.884574516486

5. Fuzzy Optimization Model: Beam Implementation

In accordance with the exhaustive enumeration (EE) problem formulation, an EE optimization
model for the optimization of a simply-supported beam (BEAM) was developed. Since the model
BEAM is proposed to be used in the design of steel elements, all decisive design constraints were
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involved in the model. The model enables optimization of the system for various spans, loads
and different material properties. For mathematical modeling and data input/output, a high level
language, MATLAB [16], was used. The proposed optimization model includes input data, variables
and the BEAM system’s weight objective function, which is subjected to the structure’s crisp and soft
constraints; see Appendix A.

Choosing an I-beam from the list also identifies all of the design variables. This then becomes a
single variable problem, the variable being the particular item from the list of beams.

The input data (constants) represent various design data for the optimization, i.e.,
constants/coefficients, which are involved in the objective function and (in) equality constraints.
The design data are comprised of the span length L (m), the characteristic dead gk (kN/m) and
imposed qk (kN/m) loads, the yield strength of the steel fy (MPa), the modulus of elasticity E (MPa),
the density of the steel gam (kg/m3), bearings width ss (mm) and the allowable deflection of the beam
lim (-). In addition to this, the data also include the coefficients involved in the design inequality
constraints: safety factor for dead loads SFg (-), safety factor for imposed loads SFq (-), partial factor
for resistance of cross-sections SFm0, partial factor for resistance of members to instability SFm1,
modification factor k (-), non-dimensional slenderness lamflim (-) and the reduction factor for the
relevant buckling curve ksiflim (-).

The objective variable f defines the weight of the steel beam. The aim of optimization is to find a
steel beam with the minimum weight that satisfies all of the design constraints.

Design constraints that enable the ULS and SLS are satisfied by the following conditions:

• Condition 1, resistance of the cross-section to bending (ULS): verified by Equation (28), by
which the design bending moment MEd (kNm) must not exceed the bending moment resistance
MRd (kNm).

• Condition 2, resistance of the cross-section to shear (ULS): verified by Equation (33), by which the
design shear force VEd (kN) must not exceed the shear resistance VRd (kNm).

• Condition 3, deflection (SLS) is considered: the calculated vertical deflection of the steel beam
must be less than specified by the ANFIS-LIMIT model.

• Condition 4, resistance to flange-induced buckling (ULS): to prevent the possibility of the
compression flange buckling in the plane of the web.

• Condition 5, Condition 6, Condition 7 and Condition 8, resistance of the web to transverse forces
(ULS): to prevent the possibility of the local buckling of webs.

This is a single-variable problem, the variable being the particular item from the list of beams.
In this case, there are no necessary geometrical constraints or side constraints. A complete enumeration
can be performed on the selected beams from the stock list (see Appendix B), and the best beam can
easily be identified.

In this example, the beam was used as a horizontal member. The objective was to design a
minimum mass beam that would not fail, according to recommendations, under bending, shear and
specified deflection. The length L of the beam was specified as 25 m. The steel beam was loaded by
uniformly-distributed loading gk = 5 kN/m and qk = 15 kN/m, as shown below. Steel was chosen
from the material of the beam. The modulus of elasticity of the steel was E = 210 GPa. The weight of
the steel was ρ = 7850 kg/m3. The yield strength in tension was fy = 335 MPa. The specified applied
load LL was 3 kN/m2 and used a classification of 1. A safety factor of 1.35 on the permanent load
and 1.50 on the variable load were assumed. The results of an exhaustive enumeration computer code
showed that the optimal section is HE 1000 × 393, with a weight of 9816.4 kg.

6. Conclusions

The article presents how recommendations can be implemented in a discrete optimization model.
Good engineering judgment should be integrated into construction design; therefore, a mathematical
model was developed based on engineering judgment and past experience. For this purpose, the theory
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of fuzzy sets was used. The advantages of the proposed fuzzy algorithm ANFIS are acknowledged
and incorporated into the model based on the imprecision and fuzziness in the code-based design
constraints. The comparison of different design codes showed that the deflection limits are very
different and too liberal. The expert evaluations for the deflection limit are subjective; therefore, the
data obtained from experts are expected to be vague, imprecise, incomplete or even contradictory.
Additionally, the proposed ANFIS techniques include fuzzy clustering (FCM), which searches for
patterns in data points [22]. The study also suggests that deflection limits could be reconsidered in the
future by the experts who have a prolonged or intense experience through practice [23]. The advantages
of using the exhaustive enumeration are reduced optimum weight values and obtaining a solution
that is at a global optimum. The proposed computational model was used to find minimum weight
solutions for simply-supported laterally-restrained beams. For selected design variables, an optimum
steel section was found based on steel sections found on the market, according to the European beams
tables. The computational model is based on advanced computational technologies, including fuzzy
logic, neural networks and discrete optimization. It was developed to solve real-world problems that
are of great interest to design engineers.

Author Contributions: The manuscript was written by both authors. The Assistant Professor Dr. Primož Jelušič
developed the computer code. The Associate Professor Dr. Bojan Žlender developed the constraint function for
limit deflection.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Computer code for discrete optimization of fully laterally restrained beams with soft
constraint ANFIS-LIMIT.

% Optimization of Fully Laterally Restrained Beams with soft constrain
% Simply supported steel beam
%--------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Discrete Optimization with soft constrain
% Dr. P. Jelusic
% See Text for Problem description
% The Beam Properties are loaded from the file
% BeamPropertiesEU.m
%***************************************************

%%%
clear
clear global
clc
close
format compact
warning off

%%% Run File %%%%%%%%%
BeamPropertiesEU
%%%%%%%%%%%%%%%%%%%%%%%%
%%% monitor cpu time
starttime = cputime;

fprintf('\n********************************')
fprintf('\nSimply supported steel beam (Enumeration)')
fprintf
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% %******************************
% % Computer Code
% %*******************************

%Span, safety factors and loads
L = 25; % span (m)
SFg = 1.35; % safety factor for dead load (-)
SFq = 1.50; % safety factor for imposed load (-)
gk = 5; % dead load(kN/m)
qk = 15; % imposed load(kN/m)
ss = 100; % bearings width (mm)
eta = 1; % shear factor eta (-)
k = 0.3; % factor k (-)
lamflim = 0.5; % factor lamflim (-)
ksiflim = 1; % factor ksiflim (-)
CLASS = 1; % use classification (-)
LL = 3; % Applied live load (kN/m2)

%ANFIS model coefficients
sigA1 = 6.61768494044089;
sigA2 = 7.47150990794045;
sigB1 = 0.962309787332703;
sigB2 = 0.979723951565027;
cA1 = 2.90117735987428;
cA2 = 2.08316049335067;
cB1 = 1.62121248482762;
cB2 = 1.27590144219536;
a01 = -771.211045670957;
a11 = 8.40911494744558;
a21 = 172.024353054372;
a02 = 1535.72815330126;
a12 = -29.7774593495827;
a22 = -158.884574516486;

%Material properties
fy = 355; % yield strength (MPa)
E = 210000; % modulus of elasticity (MPa)
SFmo = 1.00; % safety factor for material bending (-)
SFm1 = 1.05; % safety factor for elastic resistance deflection (-)
gam = 7850; % density (kg/m3)

%%%Start Exhaustive Enumeration :
fstar = inf;
xstar = [inf inf inf inf];
gstar = [inf inf inf];
istar = 1;
% %
%
fprintf('\n----------------------------')
fprintf('\nFeasible Beams')
fprintf('\n-----------------------------\n\n')
for i = 1:length(RolledSteelBeamSI)
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x1 = RolledSteelBeamSI(i).D;
x2 = RolledSteelBeamSI(i).B;
x3 = RolledSteelBeamSI(i).tw;
x4 = RolledSteelBeamSI(i).tf;

%*******************************

A = RolledSteelBeamSI(i).Area;
D = RolledSteelBeamSI(i).D;
B = RolledSteelBeamSI(i).B;
tw = RolledSteelBeamSI(i).tw;
tf = RolledSteelBeamSI(i).tf;
Rr = RolledSteelBeamSI(i).Rr;
dd = RolledSteelBeamSI(i).dd;
Ix = RolledSteelBeamSI(i).Ix;
Welx = RolledSteelBeamSI(i).Welx;
Wplx = RolledSteelBeamSI(i).Wplx;

%Design action. The reason for discrete optimization is to choose off-the-shelf I-beam which will keep the cost
and production time down. Several mills provide information on standard rolling stock they manufacture.

Fed = (SFg*(gk+A*gam*9.81/10000000) +
SFq*qk)*L;

%design action (kN)

Med = Fed*L/8; %design bending moment (kNm)
Ved = Fed/2; %design shear force (kN)

%Section resistance
Mrd = Wplx*fy/(SFmo*1000); %moment resistance (kNm)
Av = A*100-2*B*tf + (tw + 2*Rr)*tf; %shear area(mm2)
Vrd = Av*(fy/(3)ˆ0.5)/(SFmo*1000); %design shear resistance(kN)

%Deflection

Mmax = (gk+qk)*Lˆ2/8;
%maximum bending moment due to working load

(kNm)
Mcrd = Welx*fy/(SFm1*1000); %elastic resistance (kNm)
u = 5*qk*(L*1000)ˆ4/(384*E*Ix*10000); %deflection (mm)

%ANFIS calculation procedure
A1ev = exp(-0.5*(((LL-cA1)/(sigA1))ˆ2));
A2ev = exp(-0.5*(((LL-cA2)/(sigA2))ˆ2));
B1ev = exp(-0.5*(((CLASS-cB1)/(sigB1))ˆ2));
B2ev = exp(-0.5*(((CLASS-cB2)/(sigB2))ˆ2));
w1 = A1ev*B1ev;
w2 = A2ev*B2ev;
w1n = w1/(w1+w2);
w2n = w2/(w1+w2);
fun1 = a01+a11*LL+a21*CLASS;
fun2 = a02+a12*LL+a22*CLASS;
nfun1 = w1n*fun1;
nfun2 = w2n*fun2;
lim = nfun1+nfun2;
uult = L*1000/lim; %permissible deflection (mm)
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%Section classification
eps = (235/fy)ˆ0.5; %factor eps (-)
c = (B-tw-2*Rr)/2; %depth between fillets (mm)
hw = D-2*tf; %depth between flanges (mm)

%Flange-induced buckling
Aw = (D-2*tf)*tw; %area of the web (mm2)
Afc = B*tf; %area of the compression flange (mm2)
Fib = hw/tw; %criteria ratio of flange-induced buckling(-)
Fibalw = k*(E/fy)*(Aw/Afc)ˆ0.5; %criteria ratio (-)

%Web buckling
kf = 2+6*(ss/hw); %buckling coefficient (-)
kfalw = 6; %limit of buckling coefficient(-)
Fcr = (0.9*kf*E*twˆ3)/hw; %elastic critical buckling load(N)
m1 = fy*B/(fy*tw); %coefficient m1(-)
m2 = 0.02*(hw/tf)ˆ2; %coefficient m2(-)
le = min(kf*E*twˆ2/(2*fy*hw),ss); %effective loaded length(mm)
ly = min(le+tf*(m1/2+(le/tf)ˆ2+m2)ˆ0.5,le +

tf*(m1+m2)ˆ0.5);
%(mm)

lamf = (ly*tw*fy/Fcr)ˆ0.5; %reduction factor lamf (-)
lamflim = 0.5; %permissible reduction factor lamflim(-)
ksif = 0.5/lamf; %reduction factor ksif(-)
leff = ksif*ly; %effective length of web(mm)
Frdweb = fy*leff*tw/1000; %design resistance of web(kN)

%Objective function
f = gam*L*A/10000; %weight of steel beam (kg)

%Constraints
g1 = Med - Mrd; %bending (kNm)
g2 = Ved - Vrd; %shear (kN)
g3 = u - uult; %deflection(mm)
g4 = Fib - Fibalw; %flange-induced buckling (-)
g5 = kf - kfalw; %web buckling constraint 1 (-)
g6 = lamflim - lamf; %web buckling constraint 2 (-)
g7 = ksif - 1; %web buckling constraint 3(-)
g8 = Ved - Frdweb; %resistance of web constraint (kN)

%%% total constraint vector
G = [g1 g2 g3 g4 g5 g6 g7 g8];

if (g1 <= 0) & (g2 <= 0) & (g3 <= 0)
if (g4 <= 0) & (g5 <= 0) & (g6 <= 0)

if (g7 <= 0) & (g8 <= 0)
if (f <= fstar)
xstar = [x1 x2 x3 x4];
fstar = f
Gstar = G;
istar = i
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end
end

end
end

end

fprintf('\n******************************************')
fprintf('\nOptimum Fully Laterally Restrained Beam')
fprintf('\n******************************************\n\n')
fprintf('Rolled Beam Designation : '),disp(RolledSteelBeamSI(istar).Name)
fprintf('Depth(mm) Width(mm) Web Thickness(mm) Flange Thickness (mm)\n')
fprintf('%8.5f %8.5f %8.5f %8.3f\n',xstar)
fprintf('\nObjective Function(kg): '),disp(fstar)
fprintf('\nConstraints\n')
fprintf('---------------\n')
fprintf('Bending Stress Constraint - g1 (kNm): '),disp(Gstar(1))
fprintf('Shear Stress Constraint - g2 (kN): '),disp(Gstar(2))
fprintf('Deflection Constraint - g3 (mm): '),disp(Gstar(3))
fprintf('flange-induced buckling - g4 (-): '),disp(Gstar(4))
fprintf('web buckling constraint 1 - g5 (-): '),disp(Gstar(5))
fprintf('web buckling constraint 2 - g6 (-): '),disp(Gstar(6))
fprintf('web buckling constraint 3 - g7 (-): '),disp(Gstar(7))
fprintf('resistance of web constraint - g8 (kN): '),disp(Gstar(8))

%%% print time
totaltime = cputime - starttime;
fprintf('\n\nTotal cpu time (s)= %7.4f \n\n',totaltime)

The companion file for the problem of fully-laterally-restrained beams is a file that contains beam
properties for standard steel beams.

% EE - Exhaustive Enumeration
% For constrained optimization of fully laterally restrained beams
% Dr. P. Jelusic
% University of Maribor, Faculty of Civil Engineering
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% File UniversalbeamsEU.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Discrete Variables
%--------------------------------------------------
% See Text for Problem description
%**********************************************
%%% COMPANION FILE FOR PROBLEM Fully laterally restrained beams
%%% This file contains Beam Properties for universal beams
%%% beams in SI Units
%**********************************************

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Define the section properties
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

RolledSteelBeamSI(1).Name ='IPE AA 80'; %beam identifier (-)
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RolledSteelBeamSI(1).Area = 6.31; %area (cm2)
RolledSteelBeamSI(1).D = 78; %Depth of section (mm)
RolledSteelBeamSI(1).B = 46; %width of section (mm)
RolledSteelBeamSI(1).tw = 3.2; %web thickness (mm)
RolledSteelBeamSI(1).tf = 4.2; %flange thickness (mm)
RolledSteelBeamSI(1).Rr = 5; %root radius (mm)
RolledSteelBeamSI(1).dd = 59.6; %depth between fillets(mm)
RolledSteelBeamSI(1).Ix = 64.1; %second moment of area Ixx (cm4)
RolledSteelBeamSI(1).Welx = 16.4; %elastic modulus Welx (cm3)
RolledSteelBeamSI(1).Wplx = 18.9; %plastic modulus Wplx (cm3)

RolledSteelBeamSI(2) = struct('Name','IPE A 80','Area',6.38, ...
'D',78,'B',46,'tw',3.3,'tf',4.2, ...
'Rr',5,'dd',59.6,'Ix',64.4, ...
'Welx',16.5,'Wplx',19);

RolledSteelBeamSI(3) = struct('Name','IPE 80','Area',7.64, ...
'D',80,'B',46,'tw',3.8,'tf',5.2, ...
'Rr',5,'dd',59.6,'Ix',80.1, ...
'Welx',20,'Wplx',23.2);

RolledSteelBeamSI(75) = struct('Name','HE 1000 X 584','Area',743.7, ...
'D',1056,'B',314,'tw',36,'tf',64, ...
'Rr',30,'dd',868,'Ix',1246100, ...
'Welx',23600,'Wplx',28039);

return;

The results are given in the following form:

******************************************
Optimum Fully Laterally Restrained Beam
******************************************

Rolled Beam Designation : HE 1000 X 393
Depth(mm) Width(mm) Web Thickness(mm) Flange Thickness (mm)

1016.00000 303.00000 24.40000 43.900

Objective Function(kg): 9.8164e+003

Constraints
---------------
Bending Stress Constraint - g1 (kNm): -3.8903e+003
Shear Stress Constraint - g2 (kN): -5.1282e+003
Deflection Constraint - g3 (mm): -12.9339
flange-induced buckling - g4 (-): -193.5248
web buckling constraint 1 - g5 (-): -3.3536
web buckling constraint 2 - g6 (-): -0.0742
web buckling constraint 3 - g7 (-): -0.1293
resistance of web constraint - g8 (kN): -1.8169e+003

Total cpu time (s)= 0.2184
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Abstract: This paper considers linear programming problems (LPPs) where the objective functions
involve discrete fuzzy random variables (fuzzy set-valued discrete random variables). New decision
making models, which are useful in fuzzy stochastic environments, are proposed based on both
possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the
proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal
solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy
random variables can be transformed into deterministic nonlinear mathematical programming
problems which can be solved through a conventional mathematical programming solver under
practically reasonable assumptions. A numerical example of agriculture production problems is
given to demonstrate the applicability of the proposed models to real-world problems in fuzzy
stochastic environments.

Keywords: discrete fuzzy random variable; linear programming; possibility measure; necessity
measure; expectation model; Pareto optimal solution

1. Introduction

One of the traditional tools for taking into consideration uncertainty of parameters involved
in mathematical programming problems is stochastic programming [1,2]. Stochastic programming
approaches implicitly assume that uncertain parameters involved in problems can be expressed as
random variables. For example, demanding amounts of products are often mathematically modeled
as random variables. In this case, realized values of random parameters under event occurrence are
assumed to be represented with deterministic values such as real values.

On the other hand, random variables are not always suitable to estimate parameters of problems,
when human judgments and/or knowledge have to be mathematically handled. It is worth utilizing
not only historical or past data but also experts’ knowledge or judgments involving ambiguity or
vagueness which are often represented as fuzzy sets.

Simultaneous consideration of fuzziness and randomness is highly important in modeling
decision making problems, because decision making by humans in stochastic environments is
intrinsically based not only on randomness but also on fuzziness. In the last decade, mathematical
models which take into consideration both fuzziness and randomness have considerably drawn
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attentions in the research field of decision making such as linear programming [3–12], integer
programming [13], inventory [14,15], transportation [16], facility layout [17], flood management [18]
and network optimization [19,20].

In this paper, we focus on mathematical optimization models in fuzzy stochastic decision making
situations where possible realized values of random parameters in linear programming problems
(LPPs) are ambiguously estimated by experts as fuzzy sets or fuzzy numbers. Such fuzzy set-valued
random variables, namely, random parameters whose realized values are represented with fuzzy sets,
can be expressed as fuzzy random variables [21–26].

Previous studies on fuzzy random LPPs have mainly focused on the case where the coefficients
of the objective function and the constraints are expressed by continuous fuzzy random variables,
which is an extended concept of continuous random variables. Fuzzy random optimization models
were firstly developed by Luhandjula and his colleagues [27,28] as LPPs with fuzzy random variable
coefficients, and further studied by Liu [29,30], Katagiri et al. [4,6] and Yano [11] and so on. A brief
survey of major fuzzy stochastic programming models including mathematical programming models
using fuzzy random variables was found in the paper by Luhandjula [8].

On the other hand, there are a few studies [13,31,32] on LPPs with discrete fuzzy random
variables. As will be discussed later in more details, it is quite important to propose more general
fuzzy random LPP models in order to widen the range of application of fuzzy stochastic programming,
which motivates this article to provide new generalized mathematical programming models with
discrete fuzzy random variables.

This paper is organized as follows: In Section 2, the definitions of fuzzy random variables
are introduced. Some types of fuzzy random variables are newly defined. Section 3 focuses on
discrete fuzzy random variables and defines some types of discrete fuzzy random variables. Section 4
formulates a single/multiple objective LPP where the coefficients of the objective function(s) are
discrete fuzzy random variables. In Section 5, we construct new optimization criteria for optimization
problems with discrete fuzzy random variables, which are based both on possibility theory and
on probability theory. Section 6 proposes decision making models using optimization criteria
introduced in Section 5, and defines (weak) Pareto optimal solutions of the proposed models in
the multi-objective case. Section 7 discusses how the proposed model can be solved and construct an
algorithm for obtaining a Pareto optimal solution of the proposed models. In Section 8, we execute a
numerical experiment with an example of agriculture production problems in order to demonstrate
the applicability of the proposed model to real-world decision making problems. It is shown that the
R [33] language can be used to solve the problems with hundreds of decision variables in a practical
computational time. Finally, Section 9 summarizes this paper and discusses future research works.

2. Preliminaries

In this section, we review some mathematical concepts related to discrete fuzzy random variables,
such as convex fuzzy sets and fuzzy numbers. Definitions of fuzzy random variables are also provided.

2.1. Fuzzy Set and Fuzzy Number

As a preparation for the introduction of fuzzy random variables, we firstly introduce the definition
of fuzzy sets.

Definition 1. (Normal convex fuzzy set)
A normal convex fuzzy set is characterized by a membership function μÃ : R→ [0, 1], that is, μÃ(x) ∈ [0, 1],
for all x ∈ R, such that Aα is a nonempty compact interval

Aα =

{
{x ∈ R| μÃ(x) ≥ α} if α ∈ (0, 1]
cl(supp μÃ) if α = 0,
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where cl(supp μÃ) denotes the closure of set supp μÃ, and supp μÃ denotes a support of membership
function μÃ.

An L-R fuzzy number was introduced by Dubois and Prade [34] and is defined based on a normal
convex fuzzy set.

Definition 2. (L-R fuzzy number)
A normal convex fuzzy set F̃ is said to be an L-R fuzzy number, denoted by (d, β, γ)LR, if its membership

function μF̃ is defined as follows:

μF̃(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

d− τ

β

)
if τ ≤ d

R
(

τ − d
γ

)
if τ > d,

(1)

where L and R are reference functions satisfying the following conditions:

1. L(t) and R(t) are nonincreasing for any t > 0.
2. L(0) = R(0) = 1.
3. L(t) = L(−t) and R(t) = R(−t) for any t ∈ R.
4. There exists a tL

0 > 0 such that L(t) = 0 holds for any t larger than tL
0 . Similarly, there exists a tR

0 > 0
such that R(t) = 0 holds for any t larger than tR

0 .

Fuzzy numbers are regarded as extended concepts of real numbers because F̃ is reduced to a real
number d if β = γ = 0 in Definition 2. Fuzzy numbers are a useful tool for representing human
knowledge and/or estimation. Figure 1 shows a typical membership function of an L-R fuzzy number.

μ

1

0

(τ)
F

τ

L R

d
β γ

~

Figure 1. L-R fuzzy number.

In Definition 2, if L = R and β = γ, we call such an L-R fuzzy number an L fuzzy number. In
other words, L fuzzy numbers are symmetric fuzzy numbers defined as follows:

Definition 3. (L fuzzy number)
A normal convex fuzzy set F̃ is said to be an L fuzzy number if its membership function μF̃ is defined as follows:

μF̃(τ) = L
(

d− τ

β

)
, (2)

where L is a reference function satisfying the following conditions:

1. L(t) is nonincreasing for any t > 0.
2. L(0) = 1.
3. L(t) = L(−t) for any t ∈ R.
4. There exists a tL

0 > 0 such that L(t) = 0 holds for any t larger than tL
0 .
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Figure 2 shows a typical membership function of an L fuzzy number.

μ

1

0

(τ)
F

τ

L L

d
β β

~

Figure 2. L fuzzy number.

In Definition 2, if L(t) = R(t) = max{0, 1− |t|}, we call such an L-R fuzzy number a triangular
fuzzy number.

Definition 4. (Triangular fuzzy number)
An L-R fuzzy number F̃ is said to be a triangular fuzzy number, denoted by (d, β, γ)tri, if the reference functions
L and R of an L-R fuzzy number are given as L(t) = R(t) = max(1− |t|, 0). In other words, a triangular
fuzzy number F̃ is characterized by the following piece-wise linear membership function:

μF̃(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |d− τ|
β

, 0
}

if τ ≤ d

max
{

1− |τ − d|
γ

, 0
}

if τ > d.
(3)

Figure 3 shows a typical membership function of a triangular fuzzy number.

μ

1

0

(τ)
F

τ

L R

d
β γ

~

Figure 3. Triangular fuzzy number.

2.2. Fuzzy Random Variable

In this section, we review and define some important concepts underlying fuzzy random
programming problems. There are mainly two definitions of fuzzy random variables. A fuzzy
random variable was firstly defined by Kwakernaak [24] as an extended concept of random variables
in the sense that the realized values for given events or scenarios are not real but fuzzy numbers. Kruse
and Meyer [35] provided some concepts similar to the model by Kwakernaak. Puri and Ralescu [25]
defined fuzzy random variables as random fuzzy sets and developed a mathematical basis of fuzzy
random variables with Klemment [23]. Overviews of fuzzy random variables have been provided by
Gil et al. [22] and Shapiro [26].

We introduce a general definition of fuzzy random variables, which is based on the works of
Kwakernaak [24], Kruse and Meyer [35] and Gil et al. [21]:
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Definition 5. (Fuzzy random variable)
Let (Ω,F , P) be a probability space and F(R) denote the set of all fuzzy numbers in R, where F(R) denotes
a class of normal convex fuzzy subsets of R having compact α level set for α ∈ [0, 1]. A fuzzy random variable is
a mapping ˜̄A : Ω → F(R) such that for any α ∈ [0, 1] and all ω ∈ Ω, the real-valued mapping

inf ˜̄Aα : Ω → R, satisfying inf Ãα(ω) = inf(Ã(ω))α

and
sup ˜̄Aα : Ω → R, satisfying sup Ãα(ω) = sup(Ã(ω))α

are real-valued random variables, that is, Borel measurable real-valued functions. (Ã(ω))α is a nonempty
compact interval defined by

(Ã(ω))α =

{
{x ∈ R| μÃ(ω)(x) ≥ α} if α ∈ (0, 1]
cl(supp μÃ(ω)) if α = 0,

where μÃ(ω) is the membership function of a fuzzy set Ã(ω), cl(supp μÃ(ω)) denotes the closure of set
supp μÃ(ω), and supp μÃ(ω) denotes a support of function μÃ(ω).

2.3. Special Types of Fuzzy Random Variables Used in Decision Making

For the purpose of applying fuzzy random variables to decision making problems,
Katagiri et al. [4,6,20,36,37] introduced some special types of fuzzy random variables where the
realized values of random variables for given events or scenarios are L-R fuzzy numbers or triangular
fuzzy numbers. Since these fuzzy random variables are useful for modeling various decision making
problems, we categorize these fuzzy random variables into several types such as L-R fuzzy random
variable, L fuzzy random variable and triangular fuzzy random variable, together with their examples
which were originally introduced in the previous papers.

First, we define L-R fuzzy random variable as follows:

Definition 6. (L-R fuzzy random variable)
Let d̄, β̄ and γ̄ be random variables whose realization for a given event ω ∈ Ω are d(ω), β(ω) and γ(ω),

respectively, where Ω is a sample space, and β(ω) and γ(ω) are positive constants for any ω ∈ Ω. Then,
a fuzzy random variable ˜̄F is said to be an L-R fuzzy random variable, denoted by (d̄, β̄, γ̄)LR, if its realized
values F̃(ω) = (d(ω), β(ω), γ(ω))LR for any event ω ∈ Ω are L-R fuzzy numbers defined as

μF̃(ω)(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

d(ω)− τ

β(ω)

)
if τ ≤ d(ω)

R
(

τ − d(ω)

γ(ω)

)
if τ > d(ω).

(4)

L-R fuzzy random variables were introduced to decision making problems such as a portfolio
selection problem [38], an LPP [36] and a multi-objective programming problem [4]. In these studies,
the coefficients of objective functions are represented as a special type of L-R fuzzy random variables
in which the spread parameters β and γ are constants, not random variables, as shown in the
following example:
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Example 1. In Definition 6, let ḡ be a Gaussian (normal) random variable N(m, σ2) where m is the mean and
σ is the standard deviation. Also, let β̄ and γ̄ be positive constants, not random variables. Then, ˜̄F is a kind of
L-R fuzzy random variables if the membership function of the realization of ˜̄F is defined as

μF̃(ω)(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

g(ω)− τ

β

)
if τ ≤ g(ω)

R
(

τ − g(ω)

γ

)
if τ > g(ω),

(5)

where g(ω) is a realized value of ḡ for a given event ω ∈ Ω, and Ω is a sample space.

Another example of L-R fuzzy random variables is shown in the study on a multi-objective
LPP [6] as follows:

Example 2. Let d̄, β̄ and γ̄ be random variables expressed as

d̄ = d1 · t̄ + d2, β̄ = β1 · t̄ + β2, γ̄ = γ1 t̄ + γ2,

where t̄ is a random variable whose mean and variance are m and σ2, respectively, and d1, d2, β1, β2, γ1 and
γ2 are constant values. Then, ˜̄A is a kind of L-R fuzzy random variables if the membership function of the
realization of ˜̄A is defined as

μÃ(ω)(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

d1 · t(ω) + d2 − τ

β1 · t(ω) + β2

)
if τ ≤ d1 · t(ω) + d2

R
(

τ − d1 · t(ω) + d2

γ1 · t(ω) + γ2

)
if τ > d1 · t(ω) + d2,

(6)

where t(ω) is a realized value of t̄ for a given event ω ∈ Ω, and Ω is a sample space.

When the reference functions of left-hand and right-hand sides are the same in Definition 6,
namely, if it holds L = R, we call such an L-R fuzzy random variable an L fuzzy random variable
defined as follows:

Definition 7. (L fuzzy random variable)
Let d̄ and β̄ be random variables whose realization for a given event ω ∈ Ω are d(ω) and β(ω), respectively,
where Ω is a sample space, and β(ω) is a positive constant for any ω ∈ Ω. Then, a fuzzy random variable
˜̄F is said to be an L fuzzy random variable if its realized values for any event ω ∈ Ω are L-R fuzzy numbers
defined as

μF̃(ω)(τ) = L
(

d(ω)− τ

β(ω)

)
. (7)

L fuzzy random variables were introduced in network optimization problems such as bottleneck
minimum spanning tree problems [20,39]. In these studies, the cost for constructing each edge in
an optimal network construction problem was expressed as an L fuzzy random variable shown in the
following example:

Example 3. In Definition 7, let ḡ be a Gaussian (normal) random variable N(m, σ2) where m is the mean and
σ is the standard deviation. Also, let β be a positive constant, not a random variable. Then, ˜̄F is a kind of L fuzzy
random variables if the membership function of the realization of ˜̄F is defined as

μF̃(ω)(τ) = L
(

g(ω)− τ

β

)
, (8)
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where g(ω) is a realized value of ḡ for a given event ω ∈ Ω, and Ω is a sample space.

The L fuzzy random variable shown in Example 3 can be interpreted as a “hybrid number.”
The hybrid number, which was originally introduced by Kaufman and Gupta [40], is composed
of a series of fuzzy numbers, and is obtained by shifting fuzzy numbers in a random way along
the abscissa.

Especially if L(t) = R(t) = max{0, 1− |t|} in Definition 6, we call such an L-R fuzzy random
variable a triangular fuzzy random variable.

Definition 8. (Triangular fuzzy random variable)
An L-R fuzzy random variable ˜̄F is said to be a triangular fuzzy random variable, denoted by (d̄, β̄, γ̄)tri,

if the realization F̃(ω) for each ωk ∈ Ω is represented by a triangular fuzzy number (d(ω), β(ω), γ(ω))tri,
where Ω is a sample space. In other words, a discrete triangular fuzzy random variable ˜̄F is a discrete fuzzy
random variable whose realization for each event ω is a triangular fuzzy number characterized by the following
membership function:

μF̃(ω)(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |d(ω)− τ|
β(ω)

, 0
}

if τ ≤ d(ω)

max
{

1− |τ − d(ω)|
γ(ω)

, 0
}

if τ > d(ω).
(9)

Triangular fuzzy random variables were introduced in the study on a multi-objective LPP [37].
In this study, spread parameters β̄ and γ̄ are not random variables but constant values as shown in the
following example:

Example 4. In Definition 8, let β̄ and γ̄ be positive constants, not random variables. Then, ˜̄F is a kind of
triangular fuzzy random variables if the membership function of the realization of ˜̄F is defined as

μF̃(ω)(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |d(ω)− τ|
β

, 0
}

if τ ≤ d(ω)

max
{

1− |τ − d(ω)|
γ

, 0
}

if τ > d(ω),
(10)

where d(ω) is a realized value of d̄ for a given event ω ∈ Ω, and Ω is a sample space.

3. Discrete Fuzzy Random Variable

In this section, we discuss discrete fuzzy random variable as for a preparation for proposing
a new framework of LPPs with discrete fuzzy random variables.

Firstly, we review the definition of discrete fuzzy random variable given by Kawakernaak [41].
Secondly, we provide the definition of discrete L-R fuzzy random variable and that of discrete
triangular fuzzy random variable which was applied to a network optimization problem [31],
an LPP [32] and a multi-objective 0-1 programming problem [13].

Definitions of Discrete Fuzzy Random Variables

In the 1970s, Kwakernaak [41] originally proposed a concept of discrete fuzzy random variable.
In this paper, we provide the definition of discrete fuzzy random variable as follows:

Definition 9. (Discrete fuzzy random variable)
Let Ω be a set of events such that the occurrence probability of each event ωk ∈ Ω is pk and that ∑k pk = 1.

Let F̃k be a fuzzy set characterized by a membership function μF̃k
, and let F be a set of Fk, ∀k ∈ K, where K is
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an index set of k. Let ˜̄F be a mapping from Ω to F such that ˜̄F(ωk)
�
= F̃k. Then, a mapping ˜̄F is said to be a

discrete fuzzy random variable.

Considering the applicability of the discrete fuzzy random variables in real-world decision making,
we define discrete L-R fuzzy random variables as a special type of discrete fuzzy random variables.

Definition 10. (Discrete L-R fuzzy random variable)
A discrete fuzzy random variable ˜̄F is said to be a discrete L-R fuzzy random variable, denoted by (d̄, β̄, γ̄)LR,

if the realization of ˜̄F = (d̄, β̄, γ̄)LR for any event ωk ∈ Ω is an L-R fuzzy number F̃k = (dk, βk, γk)LR, where
dk, βk and γk are the realized values of d̄, β̄, and γ̄ for a given event ωk ∈ Ω, respectively, and Ω is a sample
space. Then, ˜̄F is an L-R fuzzy random variable in which the membership function of the realization F̃k for each
event ωk ∈ Ω is defined as

μF̃k
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

dk − τ

βk

)
if τ ≤ dk

R
(

τ − dk
γk

)
if τ > dk.

(11)

The following is an example of discrete L-R fuzzy random variables:

Example 5. Consider βk and γk vary dependent on events or scenarios. Then, ˜̄F is a discrete L-R fuzzy random
variable in which the membership functions of the realized fuzzy numbers of F̃k, k = 1, 2, 3 are defined as follows:

μF̃1
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

300− τ

35

)
if τ ≤ 300

R
(

τ − 300
20

)
if τ > 300,

μF̃2
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

200− τ

25

)
if τ ≤ 200

R
(

τ − 200
10

)
if τ > 200,

(12)

μF̃3
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

100− τ

30

)
if τ ≤ 100

R
(

τ − 100
15

)
if τ > 100.

Figure 4 shows a typical membership function of a discrete L-R fuzzy random variable.

Figure 4. Discrete L-R fuzzy random variable.
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In particular, if L(t) = R(t) = max{0, 1− |t|} in Definition 10, we call such a discrete L-R fuzzy
random variable a discrete triangular fuzzy random variable.

Definition 11. (Discrete triangular fuzzy random variable)
A discrete L-R fuzzy random variable ˜̄F is said to be a discrete triangular fuzzy random variable, denoted by
(d̄, β̄, γ̄)tri, if the realization F̃k for each ωk ∈ Ω is represented by a triangular fuzzy number (dk, βk, γk)tri,
where Ω is a sample space. In other words, a discrete triangular fuzzy random variable ˜̄F is a discrete fuzzy
random variable whose realization for each event ωk is a triangular fuzzy number characterized by the following
membership function:

μF̃k
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |dk − τ|
βk

, 0
}

if τ ≤ dk

max
{

1− |τ − dk|
γk

, 0
}

if τ > dk.
(13)

Example 6. When it holds that L(t) = R(t) = max{0, 1− |t|} in Example 5, ˜̄F is a discrete triangular fuzzy
random variable whose realized values F̃k, k = 1, 2, 3 are characterized by the following membership function:

μF̃1
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |300− τ|
35

, 0
}

if τ ≤ 300

max
{

1− |τ − 300|
20

, 0
}

if τ > 300,

μF̃2
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |200− τ|
25

, 0
}

if τ ≤ 200

max
{

1− |τ − 200|
10

, 0
}

if τ > 200,
(14)

μF̃3
(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |100− τ|
30

, 0
}

if τ ≤ 100

max
{

1− |τ − 100|
15

, 0
}

if τ > 100.

Figure 5 shows a typical membership function of a discrete triangular fuzzy random variable.

Figure 5. Discrete triangular fuzzy random variable.

Discrete triangular fuzzy random variables were firstly introduced in some of previous studies on
a network optimization problem [31], an LPP [32] and a multi-objective 0-1 programming problem [13].

In these studies, the spread parameters βk and γk do not vary with events ωk but they are fixed
as constants for any events. To the author’s best knowledge, there has been no study on linear
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programming model where the spread parameters βk and γk of discrete fuzzy random variables vary
with different events ωk ∈ Ω.

In the next section we shall propose new linear programming models with discrete fuzzy random
variables in which spread parameters vary with stochastic events.

4. Problem Formulation

Assuming that the coefficients of the objective functions are given as discrete fuzzy random
variables, we consider the following fuzzy random programming problem:

minimize ˜̄Cl x, l = 1, 2, . . . , q
subject to Ax ≤ b, x ≥ 0,

}
(15)

where ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q are n dimensional coefficient row vectors whose elements are
discrete fuzzy random variables, x is an n dimensional decision variable column vector, A is an m× n
coefficient matrix, and b is an m dimensional column vector. When the number of objective functions is
equal to 1 (q = 1), then problem (15) becomes a single-objective fuzzy random programming problem;
otherwise, when q ≥ 2, (15) is a multi-objective fuzzy random programming problem. In problem (15),
all the objective functions are to be minimized. Without loss of generality, this paper considers
minimization problems, because any maximization problems can be transformed into minimization
problems by multiplying the original objective function in the maximization problem by −1.

4.1. Model Using Discrete L-R Fuzzy Random Variables

In problem (15), we firstly consider the case where each element ˜̄Clj of the coefficient vectors
˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q in (15) is a discrete L-R fuzzy random variable (d̄l j, β̄l j, γ̄l j)LR whose

realization for a given event ωlk ∈ Ωl is an L-R fuzzy number C̃ljk
�
= (dljk, βl jk, γl jk)LR, l = 1, 2, . . . , q,

j = 1, 2, . . . , n, k = 1, 2, . . . , rl with the membership function defined as

μC̃ljk
(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L

(
dljk − τ

βl jk

)
if τ ≤ dljk

R

(
τ − dljk

γl jk

)
if τ > dljk,

(16)

where Ωl
�
= {ωl1, ωl2, . . . , ωlrl

} denotes a set of events related to the lth objective function. In (16),
the values of dljk, βl jk and γl jk are constant, and βl jk and γl jk are positive. The probability that each
event ωlk occurs is given as plk, where ∑rl

k=1 plk = 1, ∀l ∈ {1, 2, . . . , q}. Figure 6 shows that a typical
membership function of an L-R fuzzy number defined by (16).

Figure 6. Realized values C̃ljk for the kth event of a discrete L-R fuzzy random variable ˜̄Clj.
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Through the extended sum of fuzzy numbers [42] based on the Zadeh’s extension principle [43],
the objective function ˜̄Cl x is represented by a single fuzzy random variable whose realized value
for an event or scenario ωlk is an L-R fuzzy number C̃lkx = (dlkx, βlkx, γlkx)LR characterized by the
membership function

μC̃lkx(υ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L
(

dlkx− υ

βlkx

)
if υ ≤ dlkx

R
(

υ− dlkx
γlkx

)
if υ > dlkx,

(17)

where dlk, βlk and γlk are n dimensional column vectors whose values vary dependent on events
ωlk ∈ Ωl , l ∈ {1, 2, . . . , q}. Figure 7 shows that the membership function of an L-R fuzzy number
defined by (17).

Figure 7. Realized values C̃ljk for the kth event of a discrete L-R fuzzy random variable ˜̄Clj.

4.2. Model Using Discrete Triangular Fuzzy Random Variables

As a special type of discrete L-R fuzzy random variable defined in (17), we also consider the
case where ˜̄Clj is a discrete triangular fuzzy random variable in which its realized values for events
or scenarios are triangular fuzzy numbers C̃ljk = (dljk, βl jk, γl jk)tri for ωkl ∈ Ωl , l = 1, 2, . . . , q,
j = 1, 2, . . . , n, k = 1, 2, . . . , rl with the following membership function:

μC̃ljk
(τ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

{
1−

|dljk − τ|
βl jk

, 0

}
if τ ≤ dljk

max

{
1−

|τ − dljk|
γl jk

, 0

}
if τ > dljk.

(18)

Then, through the Zadeh’s extension principle, the realized value of each objective function ˜̄Cl x
for a given event ωlk is represented by a single triangular fuzzy number (dlkx, βlkx, γlkx)tri which is
characterized by

μC̃lkx(υ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max
{

1− |dlkx− υ|
βlkx

, 0
}

if υ ≤ dlkx

max
{

1− |υ− dlkx|
γlkx

, 0
}

if υ > dlkx.
(19)

Figures 8 and 9 show the membership functions of C̃ljk and C̃lkx.
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Figure 8. Realized value C̃ljk for the kth event of a discrete triangular fuzzy random variable ˜̄Clj.

Figure 9. Realized value C̃lkx for the kth event of a discrete triangular fuzzy random variable ˜̄Cl x.

5. Possibility/Necessity-Based Probabilistic Expectation

This section is devoted to discussing optimization criteria to solve problem (15) with discrete
fuzzy random variables whose realized values are given as L-R fuzzy numbers defined by (17) or
triangular fuzzy numbers defined by (19).

It should be noted here that problem (15) is not a well-defined mathematical programming
problem because, even when a decision vector x is determined, the objective function value C̃lkx is
not determined as a constant due to both randomness and fuzziness of C̃lk. In other words, a certain
optimization criterion is needed to compare the value of fuzzy random objective function.

In this section, we propose some useful optimization criteria based on both possibility and
probability measures, called a possibility/necessity-based probabilistic expectation.

5.1. Preliminary: Possibility and Necessity Measures

As a preparation for optimization criteria in fuzzy stochastic decision making environments, we
review the definition of possibility and necessity measures, and discuss how the measures are applied
to our problems with discrete fuzzy random variables.

5.1.1. Possibility Measure

Considering that membership functions of fuzzy sets can be regarded as possibilistic distributions
of possibilistic variables [44], a definition of possibility measure is given [34,44] as follows:

Definition 12. (Possibility measure)
Let Ã and B̃ be fuzzy sets characterized by membership functions μÃ and μB̃, respectively. Then, under

a possibilistic distribution of μÃ of a possibilistic variable α, possibility measure of the event that α is in a fuzzy
set B̃ is defined as follows:

ΠÃ(B̃)
�
= sup

v
min (μÃ(v), μB̃(v)) . (20)
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In decision making situations where the objective function is to be minimized, decision makers
(DMs) often have a fuzzy goal such as “the objective function value C̃lkx is substantially less than or
equal to a certain value fl ,” which is expressed by ˜̄Clkx <∼ fl , where <∼ denotes “substantially less than
or equal to” defined in (12). Let μG̃l

be a membership function of fuzzy set G̃l such that the degree of y
being substantially less than or equal to a certain value fl is represented with μG̃l

(y).
Assume that a certain event ωlk has occurred, on the basis of possibility theory and notations (20).

Then, the degree of possibility that C̃lkx satisfies fuzzy goal G̃ (namely, the degree of possibility that
the objective function value ˜̄Clkx for any event ωlk ∈ Ωl is substantially less than or equal to a certain
aspiration level fl) is defined as

Π
(

C̃lkx <∼ fl

) �
= ΠC̃lkx(G̃l)

= sup
y

min
{

μC̃lkx(y), μG̃l
(y)
}

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .
(21)

Figure 10 illustrates the degree of possibility defined by (21) for a fixed event ωlk, which is the
ordinate of the crossing point between the membership functions of fuzzy goal G̃l and the objective
function C̃lkx.

Figure 10. Degree of possibility Π
(

C̃lkx <∼ fl

)
.

5.1.2. Necessity Measure

For DMs who make decisions from pessimistic view points, a necessity measure is recommended.
The necessity measure defined by Zadeh [44] and Dubois and Prade [34] is as follows:

Definition 13. (Necessity measure)
Let Ã and B̃ be fuzzy sets characterized by membership functions μÃ and μB̃, respectively. Then, under

a possibilistic distribution of μÃ of a possibilistic variable α, the necessity measure of the event that α is in a fuzzy
set B̃ is defined as follows:

NÃ(B̃)
�
= inf

v
max (1− μÃ(v), μB̃(v)) . (22)

Then, in view of (22), the degree of necessity that the objective function value ˜̄Clkx for any event
ωlk ∈ Ωl satisfies the fuzzy goal G̃l is defined as

N
(

C̃lkx <∼ fl

) �
= NC̃lkx(G̃l)

= inf
y

max
{

1− μC̃lkx(y), μG̃l
(y)
}

, l = 1, 2, . . . , q.
(23)

Figure 11 illustrates the degree of necessity defined by (23), which is the ordinate of the crossing
point between the membership functions of fuzzy goal G̃l and the upside-down of the membership
function of the objective function C̃lkx.
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Figure 11. Degree of necessity N
(

C̃lkx <∼ fl

)
.

Possibilistic programming [45,46] is one of the most promising tools for handling mathematical
optimization problems with ambiguous parameters.

5.2. Optimization Criteria in Fuzzy Random Environments

Possibilistic programming approaches cannot directly be applied to solving problems with discrete
fuzzy random variables. This is because the degrees of possibility or necessity defined in (21) or (23)
are not constants but vary dependent on events ωlk.

In this section, taking into consideration both fuzziness and randomness involved in the
coefficients of the problems, we newly propose some useful optimization criteria for problems
with discrete fuzzy random variables. As novel optimization criteria, we provide possibility-based
probabilistic expectation (PPE) and necessity-based probabilistic expectation (NPE) as follows:

Definition 14. (Possibility-based probabilistic expectation (PPE))
Let ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q be n dimensional coefficient row vectors of fuzzy random variables in

(multi-objective) LPP (15). Suppose that the realized value of ˜̄Clj is a fuzzy set (or fuzzy number as a special

case) ˜̄Cljk. Let Π
(

C̃lkx <∼ fl

)
be the degree of possibility for a fixed event ωlk defined in (21). By using plk

which is the probability that an event or scenario wlk occurs, the optimization criterion called a possibility-based
probabilistic expectation (PPE) is defined and calculated as follows:

E
[
Π
(

˜̄Cl x
<∼ fl

)] �
=

rl

∑
k=1

plk ·Π
(

C̃lkx <∼ fl

)

=
rl

∑
k=1

plk ·ΠC̃lkx(G̃l) (24)

=
rl

∑
k=1

plk · sup
y

min
{

μC̃lkx(y), μG̃l
(y)
}

, l = 1, 2, . . . , q,

where E[·] denotes a probabilistic expectation.

Possibility measures are recommended to optimistic DMs. On the other hand, since DMs are not
always optimistic in general, we introduce the following new optimization criterion based on necessity
measures in order to construct an optimization criterion for pessimistic DMs:

Definition 15. (Necessity-based probabilistic expectation (NPE))
Let ˜̄Cl = ( ˜̄Cl1, . . . , ˜̄Cln), l = 1, 2, . . . , q be n dimensional coefficient row vectors of fuzzy random variables in
(multi-objective) LPP (15). Suppose that the realized value of ˜̄Clj is a fuzzy set (or fuzzy number as a special
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case) ˜̄Cljk. Let N
(

C̃lkx <∼ fl

)
be the degree of necessity for a fixed event ωlk defined in (21). Then, the following

optimization criterion is said to be necessity-based probabilistic expectation (NPE):

E
[

N
(

˜̄Cl x
<∼ fl

)] �
=

rl

∑
k=1

plk · N
(

C̃lkx <∼ fl

)

=
rl

∑
k=1

plk · NC̃lkx(G̃l) (25)

=
rl

∑
k=1

plk · inf
y

max
{

1− μC̃lkx(y), μG̃l
(y)
}

, l = 1, 2, . . . , q.

6. Discrete Fuzzy Random Linear Programming Models Using Possibility/Necessity-Based
Probabilistic Expectation

On the basis of the new optimization criteria defined as (24) or (25) in the previous section, we
propose new linear programming-based decision making models in fuzzy stochastic environments.

6.1. Possibility-Based Probabilistic Expectation (PPE) Model

When the DM is optimistic, it is reasonable to use the model based on PPE. Then, we consider the
following problem to maximize the probabilistic expectation of the degree of possibility:

[Possibility-based probabilistic expectation model (PPE model)]

maximize E
[
Π
(

˜̄Cl x
<∼ fl

)]
, l = 1, 2, . . . , q

subject to x ∈ X,

⎫⎬⎭ (26)

where the objective functions of problem (26) are given as (24).

In general, problem (26) is a multi-objective programming problem. Especially in the case of
q = 1, (26) becomes a single-objective programming problem, and the optimal solution is a feasible
solution which maximizes the objective function. On the other hand, when q �= 1, the problem to
be solved has multiple objective functions, which means there does not generally exist a complete
solution that simultaneously maximizes all the objective functions. In such multi-objective cases, one
of reasonable solution approaches to (26) is to seek a solution satisfying Pareto optimality, called a
Pareto optimal solution. We define Pareto optimal solutions of (26). Firstly, we introduce the concepts
of weak Pareto optimal solution as follows:

Definition 16. (Weak Pareto optimal solution of PPE model)
x∗ ∈ X is said to be a weak Pareto optimal solution of the possibility-based probabilistic expectation model if and
only if there is no x ∈ X such that
E
[
Π
(

˜̄Cl x
<∼ fl

)]
> E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}.

As a stronger concept than a weak Pareto optimal solution, a (strong) Pareto optimal solution of
(26) is defined as follows:

Definition 17. ((Strong) Pareto optimal solution of PPE model)
x∗ ∈ X is said to be a (strong) Pareto optimal solution of the possibility-based probabilistic expectation model
if and only if there is no x ∈ X such that E

[
Π
(

˜̄Cl x
<∼ fl

)]
≥ E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q},

and that E
[
Π
(

˜̄Cl x
<∼ fl

)]
> E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}.
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In order to obtain a (weak/strong) Pareto optimal solution of PPE model, we consider the
following maximin problem, which is one of scalarization methods for obtaining a (weak/strong)
Pareto optimal solution of multi-objective programming problems [47]:

[Maximin problem for PPE model]

maximize min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X.

⎫⎬⎭ (27)

In the theory of multi-objective optimization, it is known that an optimal solution of the maximin
problem assures at least weak Pareto optimality. Then, we show the following proposition:

Proposition 1. (Weak Pareto optimality of the maximin problem for PPE model)
Let x∗ be an optimal solution of problem (27). Then, x∗ is a weak Pareto optimal solution of problem (26), namely,
a weak Pareto optimal solution for PPE model.

Proof. Assume that an optimal solution x∗ of (27) is not a weak Pareto optimal solution of PPE
model defined in Definition 16. Then, there exists a feasible solution x̂ ∈ X of (27) such that
E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}. Then, it follows

min
l

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> min

l
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

This contradicts the fact that x∗ is an optimal solution of (27). �

Since an optimal solution of (27) is not always a (strong) Pareto optimal solution but only a weak
Pareto optimal solution in general, we consider the following augmented maximin problems in order
to find a solution satisfying strong Pareto optimality instead of weak Pareto optimality.

[Augmented maximin problem for PPE model]

maximize zΠ(x)
�
= min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
<∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X,

⎫⎪⎬⎪⎭ (28)

where ρ is a sufficiently small positive constant, say 10−6.
In the theory of multi-objective optimization [47], it is known that an optimal solution of the

augmented maximin problem assures (strong) Pareto optimality. Then, we obtain the following
proposition:

Proposition 2. ((Strong) Pareto optimality of augmented maximin problem for PPE model)
Let x∗ be an optimal solution of problem (28). Then, x∗ is a (strong) Pareto optimal solution of (26), namely,
a (strong) Pareto optimal solution for PPE model.

Proof. Assume that an optimal solution of (28), denoted by x∗, is not (strong) Pareto optimal solution
of PPE model. Then, there exists x̂ such that
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E
[
Π
(

˜̄Cl x
<∼ fl

)]
≥ E

[
Π
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}, and that E

[
Π
(

˜̄Cl x
<∼ fl

)]
>

E
[
Π
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}. Then, it follows

min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
≥ min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

Therefore, it holds that

min
l∈{1,2,...,q}

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x̂
<∼ fl

)]
> min

l∈{1,2,...,q}
E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
+ ρ

q

∑
l=1

E
[
Π
(

˜̄Cl x
∗ <∼ fl

)]
.

This contradicts the fact that x∗ is an optimal solution of the augmented minimax problem. �

6.2. Necessity-Based Probabilistic Expectation Model (NPE Model)

Unlike the case discussed in the previous section, when the DM is pessimistic, the NPE
model is recommended, instead of the PPE model. This section is devoted to addressing how the
necessity-based probabilistic expectation (NPE) model based on (25) can be solved in the case of linear
membership functions.

Using the necessity-based probabilistic mean defined in (25), we consider another new decision
making model called NPE model and formulate the mathematical programming problem as follows:

[Necessity-based probabilistic expectation model (NPE model)]

maximize E
[

N
(

˜̄Cl x
<∼ fl

)]
, l = 1, 2, . . . , q

subject to x ∈ X.

⎫⎬⎭ (29)

When q = 1, (29) is a single-objective problem. Otherwise, namely, when q ≥ 2, (29) is
a multi-objective problem in which a solution satisfying (strong) Pareto optimality, called a (strong)
Pareto optimal solution, is considered to be a reasonable optimal solution. We define (strong) Pareto
optimal solutions of (29). The concept of weak Pareto optimal solution for NPE model is defined
as follows:

Definition 18. (Weak Pareto optimal solution of NPE model)
x∗ ∈ X is said to be a weak Pareto optimal solution of the necessity-based probabilistic expectation model if and
only if there is no x ∈ X such that
E
[

N
(

˜̄Cl x
<∼ fl

)]
> E
[

N
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q}.

As a stronger concept than weak Pareto optimal solutions, (strong) Pareto optimal solutions of (29)
is defined as follows:

Definition 19. ((Strong) Pareto optimal solution of NPE model)
x∗ ∈ X is said to be a (strong) Pareto optimal solution of the necessity-based probabilistic expectation model
if and only if there is no x ∈ X such that E

[
N
(

˜̄Cl x
<∼ fl

)]
≥ E
[

N
(

˜̄Cl x∗
<∼ fl

)]
for all l ∈ {1, 2, . . . , q},

and that E
[

N
(

˜̄Cl x
<∼ fl

)]
> E
[

N
(

˜̄Cl x∗
<∼ fl

)]
for at least one l ∈ {1, 2, . . . , q}.
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Scalarization-Based Problems for Obtaining a Pareto Optimal Solution

In order to obtain a (weak) Pareto optimal solution of NPE model, we consider the following
maximin problem, which is one of well-known scalarization methods for solving multi-objective
optimization problems:

[Maximin problem for NPE model]

maximize min
l∈{1,2,...,q}

E
[

N
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X.

⎫⎬⎭ (30)

Similar to the case of PPE model discussed in the previous section, we obtain the following
proposition:

Proposition 3. (Weak Pareto optimality of the maximin problem for NPE model)
Let x∗ be an optimal solution of problem (30). Then, x∗ is a weak Pareto optimal solution of (29), namely, a weak
Pareto optimal solution for NPE model.

Since the proof of Proposition 3 is very similar to that of Proposition 1, we omit its proof. Similar
to the property of the optimal solution of problem (29), an optimal solution of (30) is not always
a (strong) Pareto optimal solution but only a weak Pareto optimal solution in general.

To find a solution satisfying (strong) Pareto optimality instead of weak Pareto optimality,
we consider the following augmented maximin problem.

[Augmented maximin problem for NPE model]

maximize min
l∈{1,2,...,q}

E
[

N
(

˜̄Cl x
<∼ fl

)]
+ ρ

q

∑
l=1

E
[

N
(

˜̄Cl x
<∼ fl

)]
subject to x ∈ X,

⎫⎪⎬⎪⎭ (31)

where ρ is a sufficiently small positive constant, say 10−6.
Then, we obtain the following proposition:

Proposition 4. ((Strong) Pareto optimality of augmented maximin problem for NPE model)
Let x∗ be an optimal solution of problem (31). Then, x∗ is a (strong) Pareto optimal solution of (29), namely,
a (strong) Pareto optimal solution for NPE model.

We omit the proof of Proposition 4 because it is similar to that of Proposition 2.

7. Solution Algorithms

7.1. Solution Algorithm for the PPE Model

Now we discuss how to solve problem (28) in order to obtain a (strong) Pareto optimal solution for
the PPE model. Here, we focus on the case where all the membership functions of fuzzy numbers and
fuzzy goals are represented by linear membership functions. To be more specific, we restrict ourselves
to considering the case that the coefficients of objective function in (15) are triangular fuzzy random
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variables defined in (11), and that the membership function of the fuzzy goal G̃l for the lth objective
function is the following piecewise linear membership function, called a linear membership function:

μG̃l
(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if y < f 1

l , l = 1, 2, . . . , q
y− f 0

l
f 1
l − f 0

l
if f 1

l ≤ y ≤ f 0
l

0 if y > f 0
l ,

(32)

where f 0
l and f 1

l are parameters whose values are determined by a DM. Figure 12 shows the
membership of fuzzy goal G̃l which is expressed by a linear membership function.

Figure 12. Linear membership function μG̃l
of a fuzzy goal G̃l .

From a practical aspect, it is important to show how to determine the values of parameters f 0
l and

f 1
l in the linear membership functions (32) of fuzzy goals G̃l , l = 1, 2, . . . , q. When a DM can easily set

the values of f 0
l and f 1

l , l = 1, 2, . . . , q, these values should be determined by the DM’s own idea or
choice. On the other hand, when it is difficult for a DM to determine the parameter values of fuzzy
goals, we recommend that the values of f 1

l and f 0
l are determined as follows:

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdljk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdljk x̂r∗
j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for l = 1, 2, . . . , q, (33)

where x̂l∗ denotes an optimal solution of the following lth optimization problem which has a single
objective function:

minimize
n

∑
j=1

rl

∑
k=1

plkdljkxj

subject to x ∈ X

⎫⎪⎬⎪⎭ for l = 1, 2, . . . , q. (34)

The above calculation method is similar to the Zimmermann’s method [48] which was originally
introduced for fuzzy (non-stochastic) linear programming.

We consider the case where the coefficients of the objective function are given as discrete triangular
fuzzy random variables. Assuming that μC̃ljk

and μG̃l
are given by (18) and (32), respectively, we can

show that the following theorem holds:
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Theorem 1. Assume that ˜̄Clj is a discrete triangular fuzzy random variable whose realized values for events
are triangular fuzzy numbers characterized by (18), and that the membership function of each fuzzy goal G̃l is
characterized by (32) and (33). Then, the possibility-based probabilistic expectation (PPE) is calculated as

E
[
Π
(

˜̄Cl x
<∼ fl

)]
=

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

, l = 1, 2, . . . , q, (35)

where

gΠ
lk (x)

�
=

n

∑
j=1

(βl jk − dljk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (36)

Proof. The calculation of Π
(

C̃lkx <∼ fl

)
is done by dividing into three cases, namely, 1) Case 1:

If dlkx < f 1
l , 2) Case 2: If f 1

l ≤ dlkx ≤ f 0
l + γlkx, 3) Case 3: If dlkx > f 0

l + γlkx.

1. Case 1: If dlkx < f 1
l the value of Π

(
C̃lkx <∼ fl

)
is equal to 1, as shown in Figure 13.

2. Case 2: If f 1
l ≤ dlkx ≤ f 0

l + γlkx, the value of Π
(

C̃lkx <∼ fl

)
is calculated as the ordinate of the

crossing point between the membership function of fuzzy goal G̃l and the objective function Clkx,
as shown in Figure 14. The abscissa of the crossing point of two functions (μC̃lkx and μG̃l

) is
obtained by solving the equation

1− dlkx− y
βlkx

=
y− f 0

l
f 1
l − f 0

l
, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (37)

Then, the solution yΠ∗
lk of (37) is

yΠ∗
lk =

f 1
l

n

∑
j=1

βl jkxj + ( f 0
l − f 1

l )
n

∑
j=1

dljkxj

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

Consequently, the ordinate of the crossing point is calculated as

μG̃l

(
yΠ∗

lk

)
= μC̃lkx(y

Π∗
lk ) =

n

∑
j=1

(βl jk − dljk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

(
�
= gΠ

lk (x)
)

for l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

3. Case 3: If dlkx > f 0
l + γlk, the value of Π

(
C̃lkx <∼ fl

)
is equal to 0, as shown in Figure 15.
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Therefore, the computational results of the above three cases can be integrated and represented as
a single form

Π
(

C̃lkx <∼ fl

) �
= ΠC̃lkx(G̃l)

=

⎧⎪⎪⎨⎪⎪⎩
1 if dlkx < f 1

l

gΠ
lk (x) if f 1

l ≤ dlkx ≤ f 0
l + γlkx

0 if dlkx > f 0
l + γlkx

= min
[
1, max

{
0, gΠ

lk (x)
}]

.

Consequently, E
[
Π
(

˜̄Cl x
<∼ fl

)]
is calculated based on Definition 14 as follows:

E
[
Π
(

˜̄Cl x
<∼ fl

)] �
=

rl

∑
k=1

plk ·Π
(

C̃lkx <∼ fl

)

=
rl

∑
k=1

plk ·ΠC̃lkx(G̃l)

=
rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

, l = 1, 2, . . . , q.

�

Figures 13–15 illustrate the degrees of possibility that the fuzzy goal G̃l is fulfilled under the
possibility distribution μC̃lkx, each of which is corresponding to Case 1, Case 2 and Case 3, respectively.

In each figure, the bold line expresses the value of min
{

μC̃lkx(y), μG̃l
(y)
}

. In Figure 13, the maximum
of the bold line is 1. In Figure 14, the maximum of the bold line is between 0 and 1. In Figure 15,
the maximum of the bold line is 0.

Figure 13. Case 1 in the proof of Theorem 1.

Figure 14. Case 2 in the proof of Theorem 1.
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Figure 15. Case 3 in the proof of Theorem 1.

From Proposition 2, the optimal solution of augmented maximin problem (28) is a (strong) Pareto
optimal solution. In the case of linear membership functions, the augmented maximin problem (28)
for the PPE model is formulated using (35) and (36) as follows:

[Augmented maximin problem for PPE model (linear membership function case)]

maximize zΠ(x)
�
= min

l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

subject to x ∈ X,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(38)

where gΠ
lk is given by (36), namely,

gΠ
lk (x)

�
=

n

∑
j=1

(βl jk − dljk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.
Now we summarize an algorithm for obtaining a (strong) Pareto optimal solution of

possibility-based probabilistic expectation model (PPE model) in the multi-objective case.

[An algorithm for obtaining a (strong) Pareto optimal solution of PPE model (linear membership

function case)]

Step 1: (Calculation of possible objective function values)
Using a linear programming technique, solve individual minimization problems (34) for
l = 1, 2, . . . , q, namely

minimize
n

∑
j=1

rl

∑
k=1

plkdljkxj

subject to x ∈ X

⎫⎪⎬⎪⎭ for l = 1, 2, . . . , q,

and obtain optimal solutions xl∗ of the lth minimization problems for l = 1, 2, . . . , q.
Step 2: (Setting of membership functions of fuzzy goals)

Ask the DM to specify the values of f 0
l and f 1

l , l = 1, 2, . . . , q. If the DM has no idea of how f 0
l
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and f 1
l , l = 1, 2, . . . , q are determined, then the DM can set the following values calculated by

(33) as

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdljk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdljk x̂r∗
j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for l = 1, 2, . . . , q,

using the optimal solutions xl∗ obtained in Step 1.
Step 3: (Derivation of a strong Pareto optimal solution of PPE model)

Using a nonlinear programming technique, solve the following augmented maximin
problem (38):

maximize min
l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gΠ

lk (x)
}]

subject to x ∈ X,

where

gΠ
lk (x)

�
=

n

∑
j=1

(βl jk − dljk)xj + f 0
l

n

∑
j=1

βl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.

It should be noted here that (38) is a nonlinear programming problem (NLPP) with linear
constraints in which the objective function has points at which the gradient is not calculated. In such
a case, a certain heuristic or metaheuristic algorithm can be used to solve the problem. Another
applicable solution method is the Nelder-Mead method [49] which can solve a linear-constrained
NLPPs without any information on the derivative of the objective function and constraints.

7.2. Solution Algorithm for the NPE Model

When a DM is pessimistic for the attained objective function values, a necessity-based probabilistic
expectation (NPE) model is recommended. In a manner similar to Theorem 1 which holds for the PPE
model, we obtain the following theorem with respect to the NPE model:

Theorem 2. Assume that ˜̄Clj is a discrete triangular fuzzy random variable whose realized values for events
are triangular fuzzy numbers characterized by (18), and that the membership function of each fuzzy goal G̃l is
characterized by (32) and (33). Then, the necessity-based probabilistic expectation defined in (25) is calculated as

E
[

N
(

˜̄Cl x
<∼ fl

)]
=

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

, l = 1, 2, . . . , q, (39)

where

gN
lk (x)

�
=

−
n

∑
j=1

dljkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (40)
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Proof. From the definition of necessity measure, the calculation of N
(

C̃lkx <∼ fl

)
is done by dividing

by three cases, namely, 1) Case 1: If dlkx < f 1
l , 2) Case 2: If f 1

l ≤ dlkx ≤ f 0
l + γlkx, 3) Case 3:

If dlkx > f 0
l + γlkx.

1. Case 1: If (dlk + γlk)x < f 1
l , the value of N

(
C̃lkx <∼ fl

)
is equal to 1, as shown in Figure 16.

2. Case 2: If f 1
l − γlkx ≤ dlkx ≤ f 0

l + γlkx, the value of N
(

C̃lkx <∼ fl

)
is calculated as the ordinate of

the crossing point between the membership functions of fuzzy goal G̃l and the objective function
Clkx, as shown in Figure 17. The abscissa of the crossing point of two functions (μC̃lkx and μG̃l

) is
obtained by solving the equation

y− dlkx
γlkx

=
y− f 0

l
f 1
l − f 0

l
, l = 1, 2, . . . , q, k = 1, 2, . . . , rl . (41)

Then, the solution of (41) is

yN∗
lk =

f 0
l

n

∑
j=1

γl jkxj + ( f 0
l − f 1

l )
n

∑
j=1

dljkxj

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

Consequently, the ordinate of the crossing point is calculated as

μG̃l

(
yN∗

lk

)
= 1− μC̃lkx(y

N∗
lk ) =

−
n

∑
j=1

dljkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

(
�
= gN

lk (x)
)

for l = 1, 2, . . . , q, k = 1, 2, . . . , rl .

3. Case 3: If dlkx > f 0
l , the value of N

(
C̃lkx <∼ fl

)
is equal to 0, as shown in Figure 18.

The computational results of the three cases above can be integrated and expressed as a single form

N
(

C̃lkx <∼ fl

) �
= NC̃lkx(G̃l)

=

⎧⎪⎪⎨⎪⎪⎩
1 if dlkx < f 1

l − γlkx

gN
lk (x) if f 1

l − γlkx ≤ dlkx ≤ f 0
l + γlkx

0 if dlkx > f 0
l

= min
[
1, max

{
0, gN

lk (x)
}]

.

Consequently, the necessity-based probabilistic expectation defined in (25) is calculated as

E
[

N
(

˜̄Cl x
<∼ fl

)] �
=

rl

∑
k=1

plk · N
(

˜̄Clkx <∼ fl

)
=

rl

∑
k=1

plk · NC̃lkx(G̃l)

=
rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

, l = 1, 2, . . . , q.

�
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Figures 16–18 illustrate the degrees of necessity that the fuzzy goal G̃l is fulfilled under the
possibility distribution μC̃lkx, each of which is corresponding to Case 1, Case 2 and Case 3, respectively.

In each figure, the bold line expresses the values of max{1 − μC̃lkx(yl), μG̃l
(yl)}. In Figure 16,

the minimum of the bold line is 1. In Figure 17, the minimum of the bold line is between 0 and 1.
In Figure 18, the minimum of the bold line is 0.

Figure 16. Case 1 in the proof of Theorem 2.

Figure 17. Case 2 in the proof of Theorem 2.

Figure 18. Case 3 in the proof of Theorem 2.

From Proposition 4, the optimal solution of augmented maximin problem (31) is a (strong) Pareto
optimal solution of NPE model. In the case of linear membership functions, the augmented maximin
problem (42) for NPE model is formulated using (39) and (40) as follows:
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[Augmented maximin problem for the NPE model (linear membership function case)]

maximize zN(x)
�
= min

l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

subject to x ∈ X,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(42)

where gN
lk (x) is given by (40), namely,

gN
lk (x)

�
=

−
n

∑
j=1

dljkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.
Now we summarize an algorithm for obtaining a (strong) Pareto optimal solution of the

necessity-based probabilistic expectation model (NPE model) in the multi-objective case.

[An algorithm for obtaining a (strong) Pareto optimal solution of NPE model (linear membership

function case)]

Step 1: (Calculation of possible objective function values)
By using a linear programming technique, solve individual minimization problems (34) for
l = 1, 2, . . . , q, namely

minimize
n

∑
j=1

rl

∑
k=1

plkdljkxj

subject to x ∈ X

⎫⎪⎬⎪⎭ for l = 1, 2, . . . , q,

and obtain optimal solutions xl∗ of the lth minimization problems for l = 1, 2, . . . , q.
Step 2: (Setting of membership functions of fuzzy goals)

Ask the DM to specify the values of f 0
l and f 1

l , l = 1, 2, . . . , q. If the decision has no idea of how
f 0
l and f 1

l , l = 1, 2, . . . , q are determined, the DM could set the values calculated by (33) as

f 1
l =

n

∑
j=1

rl

∑
k=1

plkdljk x̂l∗
j

f 0
l = max

r∈{1,2,...,q}

n

∑
j=1

rl

∑
k=1

plkdljk x̂r∗
j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ for l = 1, 2, . . . , q,

using the optimal solutions xl∗ obtained in Step 1.
Step 3: (Derivation of a (strong) Pareto optimal solution of the NPE model)

Solve the following augmented maximin problem (42) using a nonlinear programming technique:

maximize min
l∈{1,2,...,q}

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

+ρ
q

∑
l=1

rl

∑
k=1

plk ·min
[
1, max

{
0, gN

lk (x)
}]

subject to x ∈ X,
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where gN
lk (x) is given by (40), namely,

gN
lk (x)

�
=

−
n

∑
j=1

dljkxj + f 0
l

n

∑
j=1

γl jkxj − f 1
l + f 0

l

, l = 1, 2, . . . , q, k = 1, 2, . . . , rl ,

and ρ is a sufficiently small positive constant.

Similar to the case of PPE model in the previous section, (42) is a nonlinear programming problem
with linear constraints, which can be solved by a certain nonlinear programming technique.

8. Numerical Experiments

In order to demonstrate feasibility and efficiency of the proposed model, we consider an example
of agriculture production problems. One of classical approaches to crop planning problems is stochastic
programming [1] using several stochastic events or scenarios related to climate and/or economic
conditions. However, it is sometimes difficult to definitely estimate the exact values of the profit and
the working time in crop planning problems because of lack of data and/or some factors such as
human skills. Zeng et al. [50] considered a fuzzy multi-objective programming approach to a crop
planning problem. In this section, we apply the proposed model to solve a crop planning problem in
a fuzzy stochastic environment where the profit and the working times are given as discrete fuzzy
random variables.

In order to solve the problem, we employ ‘constrOptim’ function which is prepared as a standard
function in the R language [33] and is often used as a solver for NLPPs with linear constraints. It should
be stressed here that some state-of-the-art algorithms based on heuristics or metaheuristics [51] may
solve problems more efficiently. Nonetheless, we do not propose a specific solution algorithm for the
proposed model in this article, because the proposal of a specific solution algorithm is not a purpose of
this paper. The R language is easy to use for many researchers and practical persons, even if they are
not good at writing their own programming codes.

8.1. Crop Area Planning Problem Under a Fuzzy Random Environment

Assume that an agricultural company (DM) produces 5 kinds of summer vegetables (bell pepper,
cucumber, eggplant, tomato and watermelon). We consider the following fuzzy random LPP with
bi-objective functions (q = 2), 5 decision variables (n = 5) and 5 constraints (m = 5):

maximize ˜̄C11x1 +
˜̄C12x2 +

˜̄C13x3 +
˜̄C14x4 +

˜̄C15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(43)

where the first objective function represents the profit (×10 thousand yen) earned by producing and
selling vegetables, and the second one expresses the total working time (×8 h). Let xj, j = 1, 2, . . . , 5
denote the growing area (×103 m2) of vegetables j = 1 (bell pepper), j = 2 (cucumber), j = 3 (eggplant),
j = 4 (tomato) and j = 5 (watermelon), respectively.

In the objective function, let ˜̄C1j and ˜̄C2j be the profit and the working time per unit of vegetables
j = 1, 2, . . . , 5, respectively. Assume that ˜̄C1j and ˜̄C2j, j = 1, 2, . . . , 5 are estimated as discrete triangular
fuzzy random variables. On the basis of the research results on relationships between vegetable
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diseases and humidity [52], we assume that the number of events (scenarios) related to the 1st objective
function and the second one are 5 (r1 = r2 = 5). To be more specific, the set of events are given as
Ω1 = {ω11, ω12, . . . , ω15} and Ω2 = {ω21, ω22, . . . , ω25} as shown in Table 1.

Table 1. Events related to the 1st and 2nd objective functions.

Event Probability Situation

ω11 p11 = 0.50 average annual temperature is normal.
ω12 p12 = 0.25 average annual temperature is high.
ω13 p13 = 0.15 average annual temperature is low.
ω14 p14 = 0.06 it happens an epidemic disease for cucurbitaceous vegetables such

as cucumber and watermelon, due to a very high-temperature.
ω15 p15 = 0.04 it happens an epidemic disease for solanaceae vegetables

such as bell pepper, eggplant and tomato, due to a very low-temperature.

ω21 p21 = 0.50 average annual humidity is normal.
ω22 p22 = 0.20 average annual humidity is high.
ω23 p23 = 0.16 average annual humidity is low.
ω24 p24 = 0.08 it happens an epidemic disease for cucurbitaceous vegetables such

as cucumber and watermelon, caused by very low-humidity.
ω25 p25 = 0.06 it happens an epidemic disease for solanaceae vegetables such

as bell pepper, eggplant and tomato, due to a very low-temperature.

Tables 2 and 3 show the parameter values of the realized fuzzy numbers C̃1jk =(d1jk, β1jk, γ1jk)tri
and C̃2jk =(d2jk, β2jk, γ2jk)tri, j = 1, 2, . . . , 5, k = 1, 2, . . . , 5, which characterize fuzzy random variables
˜̄C1j and ˜̄C2j, j = 1, 2, . . . , 5, respectively. The values of d1jk are given in Table 2, each of which is based on

the statistical data in 2007 by the Japanese Ministry of Agriculture, Forestry and Fisheries (JMAFF) [53].
The values of d2jk are given in Table 3, each of which is based on the report of Mekonnen et al. [54].
By taking into consideration the degree of risk of producing different vegetables, it is assumed that the
parameter values of βl jk and γl jk for j = 1, 2, 5 are larger than those for j = 3, 4.

Table 2. Parameters of C̃1jk in the 1st objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5

d11k 89.50 95.10 83.80 97.50 61.80
d12k 118.50 118.80 117.90 79.60 117.00
d13k 122.60 123.60 125.60 113.30 83.40
d14k 90.30 82.60 93.10 85.10 66.10
d15k 25.80 28.90 24.40 21.50 23.70
γ11k 8.20 8.60 7.40 10.20 5.70
γ12k 10.70 10.90 10.60 8.50 11.20
γ13k 9.00 8.70 8.80 8.70 5.90
γ14k 8.10 7.60 8.40 7.30 5.80
γ15k 2.60 3.20 2.50 2.10 2.20
β11k 11.40 11.80 11.30 12.20 8.60
β12k 10.70 10.30 10.20 7.10 9.70
β13k 9.70 9.10 9.80 8.60 5.10
β14k 6.40 6.20 6.40 5.90 5.00
β15k 3.90 4.20 3.60 3.30 3.60
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Table 3. Parameters of C̃2jk in the 2nd objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5

d21k 97.00 100.20 90.30 102.50 124.50
d22k 116.50 114.60 119.50 172.50 121.90
d23k 131.10 133.80 128.10 146.40 172.50
d24k 88.60 86.10 93.50 89.90 139.70
d25k 27.60 23.10 28.10 31.40 29.50
β21k 18.40 18.80 16.90 20.20 23.60
β22k 11.70 11.40 12.20 17.90 13.20
β23k 14.70 15.60 12.90 15.90 21.80
β24k 5.40 5.20 5.80 5.30 7.20
β25k 5.10 4.80 5.40 6.30 5.70
γ21k 6.80 7.10 6.80 8.10 11.70
γ22k 19.10 19.20 19.90 27.80 20.50
γ23k 6.60 7.20 6.60 7.00 8.80
γ24k 12.30 12.70 12.10 12.60 26.70
γ25k 3.30 2.90 3.70 3.80 3.50

As shown in problem (43), there are five constraints in the crop planning problem. Tables 4 and 5
shows the coefficients of these constraints. The 1st constraint reflects that there is the upper limit of the
total cost of cropping, sales, etc. The unit of a1j and b1 in the 1st constraint is converted from a unit area
to 10 thousand yen, based on the statistical data in 2007 by JMAFF [53]. The 2nd constraint and the 3rd
one represents the upper limit and the lower limit of the total growing area of vegetables, respectively.
The 4th and 5th constraints represent that the agricultural company signs contracts with two major
customers for selling certain amounts of specific vegetables. In these two constraints, the unit for these
constraints is converted from area to kilo gram, based on the statistical data in 2007 by JMAFF [53].

Table 4. Left-hand side coefficients in constraints.

LHS Value j = 1 j = 2 j = 3 j = 4 j = 5

a1j 53.20 58.80 57.70 63.70 33.00
a2j 1.00 1.00 1.00 1.00 1.00
a3j −1.00 −1.00 −1.00 −1.00 −1.00
a4j −53.90 −80.50 −75.30 0.00 0.00
a5j 0.00 0.00 0.00 −75.00 −48.40

Table 5. Right-hand side values in constraints.

RHS Value i = 1 i = 2 i = 3 i = 4 i = 5

bi 30,000.00 500.00 −300.00 −10,500.00 −7000.00

In problem (43), the 1st objective function is the profit to be maximized. Since the algorithm
proposed in Section 5 is valid for minimization problems, we transform the maximization problem
into a minimization problem by multiplying the original 1st objective function by −1 as follows:

minimize − ˜̄C11x1 − ˜̄C12x2 − ˜̄C13x3 − ˜̄C14x4 − ˜̄C15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(44)
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In order to utilize the results obtained in the previous sections, we transform maximization into

minimization of the 1st objective function by setting ˜̄C
′
ij
�
= − ˜̄Cij as follows:

minimize ˜̄C
′
11x1 +

˜̄C
′
12x2 +

˜̄C
′
13x3 +

˜̄C
′
14x4 +

˜̄C
′
15x5

minimize ˜̄C21x1 +
˜̄C22x2 +

˜̄C23x3 +
˜̄C24x4 +

˜̄C25x5

subject to a11x1 + a12x2 + a13x3 + a14x4 + a15x5 ≤ b1

a21x1 + a22x2 + a23x3 + a24x4 + a25x5 ≤ b2

a31x1 + a32x2 + a33x3 + a34x4 + a35x5 ≤ b3

a41x1 + a42x2 + a43x3 + a44x4 + a45x5 ≤ b4

a51x1 + a52x2 + a53x3 + a54x4 + a55x5 ≤ b5

xj ≥ 0, j = 1, 2, . . . , 5,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(45)

where ˜̄C
′
ij are discrete triangular fuzzy random variables expressed as C̃

′
ijk = (d

′
ijk, β

′
ijk, γ

′
ijk)tri. Then,

the following remark should be noted:

Remark 1. Let ˜̄C and ˜̄C
′
ij be L-R fuzzy random variables expressed as C̃ijk = (dijk, βijk, γijk)tri and C̃

′
ijk =

(d
′
ijk, β

′
ijk, γ

′
ijk)tri. If ˜̄C

′
ij = − ˜̄Cij, it holds that

d
′
ijk = −dijk, β

′
ijk = γijk, γ

′
ijk = βijk.

Then, the values of parameters in the 1st objective function as shown in Table 2 can be replaced
by Table 6, where we use the property of triangular fuzzy random variables described in Remark 1.

Based on the algorithm proposed in the previous section, a Pareto optimal solution in the crop
planning problem is obtained. Firstly, the fuzzy goals for each objective function are given, by solving
LPPs in Step 1 and computing f 1

l and f 0
l for l = 1, 2 in Step 2, as ( f 1

1 , f 0
1 ) = (−57026.56,−19396.41)

and ( f 1
2 , f 0

2 ) = (20447.14, 63438.03). In Step 3, based on the DM’s preference, the augmented
maximin problems (38) and/or (42) are solved, which corresponds to the possibility-based probabilistic
expectation model (PPE model) and the necessity-based probabilistic expectation model (NPE model),
respectively. Since the obtained solutions through the function in the R language do not always
satisfy global optimality but local optimality, we apply this function to 100 initial solutions that are
randomly generated, and select the best solution among 100 local optimal solutions. Thus, we obtain
the following optimal solutions for PPE model and NPE model:

xΠ = (65.74, 240.25, 0.00, 4.87, 189.10), zΠ(xΠ) = 0.5693,

xN = (0.13, 163.08, 50.35, 114.48, 134.89), zN(xN) = 0.4668,

where xΠ and xN are optimal solutions of (38) and (42), respectively, and zΠ(xΠ) and zN(xN) are
their objective function values, respectively. From the computational results, the possibility-based
probabilistic expectation model (PPE model) tends to crop high-risk high-return vegetables such as
bell pepper, cucumber and watermelon, and few areas are assigned to other vegetables. On the other
hand, the necessity-based probabilistic expectation model (NPE model) has a tendency to increase the
cropping areas of low-risk low-return vegetables such as tomato and to decrease those of high-risk
low-return vegetables such as bell pepper.
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Table 6. Parameters of C̃
′
1jk(

�
= −C̃1jk) in the 1st objective function.

Parameter k = 1 k = 2 k = 3 k = 4 k = 5

d
′
11k −89.50 −95.10 −83.80 −97.50 −61.80

d
′
12k −118.50 −118.80 −117.90 −79.60 −117.00

d
′
13k −122.60 −123.60 −125.60 −113.30 −83.40

d
′
14k −90.30 −82.60 −93.10 −85.10 −66.10

d
′
15k −25.80 −28.90 −24.40 −21.50 −23.70

β
′
11k 11.40 11.80 11.30 12.20 8.60

β
′
12k 10.70 10.30 10.20 7.10 9.70

β
′
13k 9.70 9.10 9.80 8.60 5.10

β
′
14k 6.40 6.20 6.40 5.90 5.00

β
′
15k 3.90 4.20 3.60 3.30 3.60

γ
′
11k 8.20 8.60 7.40 10.20 5.70

γ
′
12k 10.70 10.90 10.60 8.50 11.20

γ
′
13k 9.00 8.70 8.80 8.70 5.90

γ
′
14k 8.10 7.60 8.40 7.30 5.80

γ
′
15k 2.60 3.20 2.50 2.10 2.20

8.2. Computational Times for Different Size Problems

As we mentioned before, we do not propose a specific solution algorithm for the proposed model,
because it may take much time and efforts for researchers or practical persons to write programming
codes even if we propose new solution algorithms.

Instead of proposing a specific solution algorithm, we use the R language and show the R language
can solve problems with hundreds of decision variables in a practical computational time. We expect
that the use of the R language can promote the use of our model for solving real-world problems in
fuzzy stochastic environments.

In order to show the applicability of the R language to our model in terms of computational time,
we conduct additional experiments using 5 numerical examples in which the number of decision
variables and that of constraint are different. To be more precise, the numbers of decision variables in
7 examples are 10, 30, 60, 100, 150, 200, 250, respectively. The number of constraints in each example is
set to be the half number of decision variables.

To focus on the effect of the number of decision variables and that of constraints, the number of the
objective functions and that of events (scenarios) are fixed. To be more specific, we fix the number of the
objective functions and that of events (scenarios) as 5 (q = 5) and 10 (rl = 10, l = 1, 2, . . . , 5), respectively.

The values of parameters dljk are randomly chosen in {−5,−4, . . . , 5}, βl jk and γl jk are the absolute
values of the products of dljk and values randomly chosen in [0.1, 0.2] for l = 1, 2, . . . , 5, j = 1, 2, . . . , n,
k = 1, 2, . . . , 10. As for the constraints, the values of aij in matrix A are randomly chosen in {1, 2, . . . , 10},
and the values of bi are given as the sum of elements in ai for any i = 1, 2, . . . , m, j = 1, 2, . . . , n. Similar
to the experiment in Section 8.1, we used constrOptim function in the R language and conducted 30
runs in which initial solutions are randomly generated. We conducted this numerical experiment
using R version 3.2.0 on iMac (OS X Yosemite version 10.10.3, CPU: 3.4 GHz Intel Core i7, RAM: 32 GB
1600 MHz DDR3). Table 7 shows computational times for solving 7 problem instances.

Table 7. Computational times for different size problems.

No. of Decision Variable 10 30 60 100 150 200 250
CPU Times (s) 34.08 106.26 116.95 309.49 515.94 741.12 769.94

Figure 19 shows the relationship between the number of decision variables and computational
times obtained in Table 7. It is shown from this graph that the computational time linearly increases as
the numbers of decision variables and constraints increase.
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Figure 19. Relationship between the number of decision variables and computational times.

9. Conclusions

In this paper, we have considered LPPs in which the coefficients of the objective functions are
discrete fuzzy random variables. Incorporating possibility and necessity measures into a probability
measure, we have proposed new decision making models in fuzzy stochastic environments, called
possibility/necessity-based probabilistic expectation model (PPE/NPE model), which is to maximize
the expectation of the degree of possibility or necessity that the objective function values satisfy the
given fuzzy goals. It has been shown that the formulated problems based on the proposed models
can be transformed into deterministic nonlinear (multi-objective) programming problems, especially,
into more simple problems when linear membership functions are used. In addition, we have defined
(strong) Pareto optimal solutions of the proposed models in the multi-objective case, and proposed
an algorithm for obtaining a solution satisfying (strong) Pareto optimality. In order to show how the
proposed model can be applied to real-world problems, we have conducted a numerical experiment
with an agriculture production problem. We also have demonstrated that a standard function in the
R language is applicable to solve the problems with hundreds of decision variables in a practical
computational time.

In the near future, we will show a generalized variance minimization model which is an extended
version discussed in the previous study [32]. Furthermore, some applications of the proposed models
to real-world problems will be discussed elsewhere.
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Abstract: In this paper, a decision model based on a fuzzy soft set and ideal solution approaches
is proposed. This new decision-making method uses the divide-and-conquer algorithm, and it is
different from the existing algorithm (the choice value based approach and the comparison score
based approach). The ideal solution is generated according to each attribute (pros or cons of the
attributes, with or without constraints) of the fuzzy soft sets. Finally, the weighted Hamming distance
is used to compute all possible alternatives and get the final result. The core of the decision process
is the design phase, the existing decision models based on soft sets mostly neglect the analysis of
attributes and decision objectives. This algorithm emphasizes the correct expression of the purpose of
the decision maker and the analysis of attributes, as well as the explicit decision function. Additionally,
this paper shows the fact that the rank reversal phenomenon occurs in the comparison score algorithm,
and an example is provided to illustrate the rank reversal phenomenon. Experiments indicate that
the decision model proposed in this paper is efficient and will be useful for practical problems.
In addition, as a general model, it can be extended to a wider range of fields, such as classifications,
optimization problems, etc.

Keywords: fuzzy sets; soft sets; fuzzy soft sets; decision making; rank reversal; ideal solution

1. Introduction

The complicated problems in economics, engineering, environmental science and social science are
full of imprecision and vagueness. For the various types of uncertainties presented in these problems,
the methods in classical mathematics are not always successful. There are some mathematical tools for
dealing with uncertainties. Some of them are probability theory, fuzzy set theory, rough set theory,
and interval mathematics, but all these theories have their own difficulties. In 1999, Molodtsov [1]
introduced the concept of soft sets, which can be considered as a new mathematical tool for dealing with
uncertainties. It has proven useful in many fields such as decision-making, data analysis, forecasting
and texture classification [2].

Research works on soft set theory and its applications in various fields are progressing rapidly,
and many significant results have been achieved. Maji et al. [3] initiated the study of hybrid structures
involving fuzzy sets and soft sets and introduced the notion of fuzzy soft set. Qin et al. [4] combine
interval sets and soft sets. Zhang [5] studies interval soft sets. Shao and Qin [6] define fuzzy soft lattices
and discuss their structure. Basu [7] introduce the structure and form of soft set theory. Li et al. [8]
investigates roughness of fuzzy soft sets, introduced the concept of fuzzy soft rough sets. Bustince [9]
proved that fuzzy sets are intuitionistic fuzzy sets. Torra et al. [10] extended this theory by introducing
hesitant fuzzy sets. An extension of traditional fuzzy sets that permit the membership degree of
an element to be a set of several possible values in [0, 1] and whose main purpose is to model the
uncertainty produced by human doubt when eliciting information [11].
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There is vast literature on fuzzy soft sets and their applications, including many successful
generalizations. The comparison score and choice value are two different approaches applying soft
set theory to decision-making problems. Maji et al. [3] pioneered soft set based decision-making and
firstly proposed the choice value based approach. They established the criterion that an object could
be selected if it maximizes the choice value of the problem. The comparison score based approach is
proposed by Roy et al. [12] to dealing with the fuzzy soft set based decision-making problems. In this
approach, they compare the membership values of two objects with respect to a common attribute to
determine which one relatively possesses that attribute. Rodríguez et al. [13] overviewed on fuzzy
modeling of complex linguistic preferences in decision-making and pointed out the different points of
view used in each proposal to model these complex preferences. Kong et al. [14] revised this method,
and their revision (the fuzzy choice value based method) has been proved as another method based
on the maximum fuzzy choice value. Feng et al. [15] presented a novel approach to fuzzy soft set
based decision-making problems by using level soft sets. They investigated the fuzzy soft set based
decision-making problems more deeply, and their new method can be successfully applied to some
decision-making problems.

The core of the decision process is the design phase. Firstly, the purpose of the decision
maker should be expressed very clearly. Secondly, the data set should be analyzed accurately.
Thirdly, choose the correct and efficient decision-making function. In general, the traditional
decision-making algorithm (the score based method and the choice value based method) based on soft
sets have some shortcomings. Firstly, the purpose of the decision maker is ignored, and it is generally
assumed that the greater the value of each attribute, the better. Secondly, the analysis of the data set is
ignored. In the fuzzy soft sets (F̃, A), all the attributes are treated uniformly, that is, all attributes are
treated as good attributes. Sometimes, the value of the attribute is not the bigger the better, for example,
expensive. Thirdly, there is ambiguity of the decision function such as comparison score algorithm
because of reversal phenomenon occurred in this algorithm, which can lead to unacceptable choices in
practice. It is unrealistic to use a fixed method to deal with the ever-changing problems. Therefore,
based on the above factors, a decision model based on the ideal solution is proposed for the fuzzy soft
set decision problem.

We will shortly describe the algorithm. In this study, we use the divide-and-conquer algorithm to
design a decision-making model, and the model can dynamically adjust the ideal solution according
to each attribute (positive attributes, negative attributes, and constraint attributes) of the fuzzy soft
set. In addition, the weighted Hamming distance is used to compute all possible choices and get the
final result. In other words, the (F̃, A) is a fuzzy soft set, according to the membership function of each
attribute, and the ideal solution ugoal can be generated. By measuring the similarity between object ux

and ugoal , the object that is the most similar to ugoal is the optimal choice. The algorithm emphasizes
the correct expression of the purpose of the decision maker at the design stage and emphasizes the
analysis of attributes, as well as the explicit decision function. This clear decision-making structure
makes fuzzy soft sets more practical in decision-making.

The rest of this paper is organized as follows. Section 2 describes the basic concept of soft
set theory. Section 3 gives an analysis of previous soft set-based decision-making algorithms and
their limitations. Section 4 presents an alternative approach to the decision model by ‘ideal solution’
algorithm, and Section 5 shows the real-life applications of the proposed algorithm. Section 6 presents
conclusions and future work.

2. Fuzzy Sets, Soft Sets and Fuzzy Soft Sets

In this section, we recall some fundamental notions of fuzzy sets, soft sets, and fuzzy soft sets,
their relation to decision-making, and existing research.
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2.1. Fuzzy Sets

In 1965, Zadeh [16] created a mathematical method of describing the fuzzy phenomenon in
mathematics-fuzzy set theory.

Definition 1. ([16]) Let U be a set, called a universe. A fuzzy set μ on U is defined by a membership function
μ : U → [0, 1]. For any x ∈ U, the μ(x) represents the extent to which the x belongs to the fuzzy set μ.

The fuzzy sets μ(x) is denoted as follows:

μ(x) = {(x, μ(x)), x ∈ U}. (1)

A fuzzy set can be discrete or continuous. For discrete fuzzy sets, μ(x) can be expressed as follows:

μ(x) =
n

∑
i=1

(μ(xi)/xi). (2)

n is the number of elements in U.
There are several forms of operations on fuzzy sets. According to maximum-minimal operator

Zadeh proposed by [16], the intersection, union, and complement on fuzzy sets are defined as follows:

(μ ∩ υ)(x) = μ(x) ∧ υ(x),
(μ ∪ υ)(x) = μ(x) ∨ υ(x),

μc(x) = 1− μ(x).

The decision-making theory plays a fundamental role in many scientific branches, such as AI
(Artificial Intelligence), robots and big data. It is mainly developed in the setting of fuzzy decision
theory. In 1965, fuzzy sets were proposed to confront the problems of linguistic or uncertain information.
With the successful applications in the field of automatic control, fuzzy sets have been incorporated
into fuzzy decision-making for dealing with decision-making problems. The idea of applying fuzzy
sets in decision sciences comes from the seminal paper of Bellman and Zadeh. The application of the
Bellman-Zadeh approach to decision-making in the fuzzy environment proposed in [17].

2.2. Soft Sets and Fuzzy Soft Sets

We review some fundamental notions of soft sets and fuzzy soft sets. Let U be the universe set and
E be the set of all possible parameters under consideration with respect to U. Usually, parameters are
attributes, characteristics, or properties of objects in U. (U, E) will be called a soft space.
Molodtsov defined the notion of a soft set in the following way:

Definition 2. ([1]) A pair (F, A) is called a soft set over U, where A ⊆ E and F is a mapping given by
F : A → P(U).

In other words, a soft set over U is a parameterized family of subsets of U. A is called the
parameter set of the soft set (F, A). For e ∈ A, F(e) may be considered as the set of e-approximate
elements of (F, A). For illustration, we consider the following example of soft set.

Example 1. Suppose that there are six houses in the universe U given by U = {h1, h2, h3, h4, h5, h6} and
E = {e1, e2, e3, e4, e5} is the set of parameters. e1, e2, e3, e4 and e5 stand for the parameters ‘expensive’,
‘beautiful’, ‘wooden’, ‘cheap’ and ‘in the green surroundings’, respectively.

In this case, to define a soft set means to point out expensive houses, beautiful houses, and so on. The soft set
(F, E) may describe the ‘attractiveness of the houses’ that Mr.X is going to buy. Suppose that F(e1) = {h2, h4},
F(e2) = {h1, h3}, F(e3) = {h3, h4, h5}, F(e4) = {h1, h3, h5}, F(e5) = {h1}. Then, the soft set (F, E) is
a parameterized family {F(ei); 1 ≤ i ≤ 5} of subsets of U and give us a collection of approximate descriptions
of an object. F(e1) = {h2, h4} means ‘houses h2 and h4’ are ‘expensive’.
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Maji et al. [18] introduced the concept of fuzzy soft sets by combining soft set and fuzzy set.

Definition 3. ([18]) Let (U, E) be a soft space. A pair (F̃, A) is called a fuzzy soft set over U, where A ⊆ E
and F̃ is a mapping given by F̃ : A → F̃(U), F̃(U) is the set of all fuzzy subsets on U.

Let us denote μF̃(e)(x) the membership degree that object x holds attribute e where x ∈ U and e ∈ A.

Then, F̃(e) can be written as F̃(e) = {< x, μF̃(e)(x) > |x ∈ U}.

Definition 4. ([18]) Let (F̃, A) and (G̃, B) be a fuzzy soft set over a common universe U.

(1) (F̃, A) is said to be a fuzzy soft subset of (G̃, B), denoted by (F̃, A) ⊆ (G̃, B), if A ⊆ B and ∀e ∈ A,
F̃(e) ⊆ G̃(e).

(2) (F̃, A) is said to be a null fuzzy soft set, denoted by ∅A, if F̃(e) = ∅ for any e ∈ A.
(3) (F̃, A) is said to be a absolute fuzzy soft set, denoted by UA, if F̃(e) = U for any e ∈ A.

Definition 5. ([19]) For any fuzzy soft set (F̃, E) over U, a pair (F̃−1, E) is called an induced fuzzy soft set
over E of (F̃, E), where F̃−1(x) = {e ∈ E, x ∈ F̃(e)} for each x ∈ U.

Definition 6. The quadruple (U, A, F, V) is called an information system, where U = {x1, ..., xn} is a universe
containing all interested objects, A = {a1, ..., an} is a set of attributes, V =

⋃m
i=1 Vi where Vj is the value set of

the attribute aj, and F = { f1, ..., fm} where fj :
⋃→ Vj.

Information systems can represent fuzzy sets, soft sets, and fuzzy soft sets. If (F, A) is a soft
set over the universe U, then (F, A) is a Boolean-valued information system S = (U, A, V{0,1}, f ).
As shown in Table 1.

A soft set is a simple information system in which the attributes only take two values 0 and 1,
and partition-type soft sets and information systems are the same formal structures.

Table 1. Soft set (F, A) represented as a boolean-valued information system.

U e1 e2 e3 e4

x1 0 0 0 0
x2 0 1 0 1
x3 0 1 1 1
x4 1 0 0 0
x5 1 0 1 0

If (F̃, A) is a fuzzy soft set over the universe U, then (F̃, A) is a real-valued information system
S = (U, A, V[0,1], f ), as shown in Table 2.

Table 2. Fuzzy soft set (F̃, A) represented as a real-valued information system.

U e1 e2 e3 e4 e5 e6 e7

x1 0.2 0.4 0.1 0.5 0.8 0.1 0.1
x2 0.3 0.2 0.3 0.6 0.3 0.9 0.6
x3 0.3 0.1 0.6 0.7 0.8 0.8 0.3
x4 0.3 0.7 0.9 0.9 0.1 0.4 0.5
x5 0.3 0.9 0.1 0.3 0.2 0.2 0.3
x6 0.3 0.9 0.1 0.3 0.9 0.7 0.8
x7 0.3 0.9 0.1 0.3 0.2 0.8 0.9
x8 0.3 0.9 0.1 0.3 0.1 0.4 0.2
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3. Fuzzy Soft Set Based Decision-Making and Their Limitations

The decision-making is a process of choosing among alternative courses of action for the purpose
of attaining a goal or goals. The decision-making problems based on fuzzy soft sets actually is
multi attributes decision-making problems. Two different approaches applying soft set theory
to decision-making problems: the choice value based approach and the comparison score based
approach. Maji et al. [3] proposed the choice value algorithm for the application of soft set theory
in decision-making problems. Roy and Maji [12] proposed the comparison score based approach to
solving fuzzy soft set based decision-making problems.

3.1. The Choice Value Algorithm (Algorithm 1)

Let (F, A) be a soft set, (F, A) can be expressed as a binary table. Let hij be the entries in the table,
and if hi ∈ F(ei), then hij = 1. Otherwise, hij = 0. The choice value ci of an object hi is computed by
ci = ∑j hij, the object with the maximum choice value is selected as the optimal decision. The algorithm
is as follows:

Algorithm 1 The choice value algorithm

1: Input the soft set (F, A).
2: Compute the choice values ci for each object hi, where ci = ∑j hij.
3: The decision is hi i f ci = maxjcj.
4: If i has more than one value then any one of hi may be chosen.

For decision-making problems using soft sets, the choice value of an object precisely represents
the number of ‘good’ attributes possessed by the object. Hence, it is reasonable to select the object with
the maximum choice value as the optimal alternative.

Example 2. From Table 3, it can be seen that Mr. X will select the house h1 or h6.

Table 3. A soft set (F, A) with choice values.

U e1 e2 e3 e4 Choice Value

h1 1 1 1 1 4
h2 1 1 1 0 3
h3 1 0 1 1 3
h4 1 0 1 0 2
h5 1 0 0 0 1
h6 1 1 1 1 4

In real decision-making problems, the choice parameters are not entirely of the equal importance.
To cope with such problems, we can impose different weights to different decision parameters.
Additionally, it has been generalized to deal with the fuzzy soft set. In this case, the choice value
will be computed by: ci = ∑j F(ej)(hi), where F(ej)(hi) is the membership value of hi with respect
to fuzzy set F(ej). Tables 3 and 4 are examples of the soft sets and weighted soft sets with choice
values, respectively.
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Table 4. A weighted soft set (F, A) with choice values.

U e1, w1 = 1
2 e2, w2 = 1

4 e3, w3 = 1
8 e4, w4 = 1

16 Choice Value

h1 1 1 1 1 0.9375
h2 1 1 1 0 0.8750
h3 1 0 1 1 0.6875
h4 1 0 1 0 0.6250
h5 1 0 0 0 0.5000
h6 1 1 1 1 0.9375

Example 3. From Table 4, it can be seen that Mr. X will select the house h1 or h6.

Remark 1. The choice value algorithm is essentially a weighted sorting algorithm, the logic is rational and
understandable and the computation processes are straightforward. Algorithm 1, which returns the maximum
value in an array with size of n and it takes O(n) times. The time complexity of the algorithm is O(n).

However, there is a prerequisite for using this method, that is, all attributes are ‘good’ descriptions, and
the greater the value, the better. However, in practice, attributes may be ‘good’, ‘bad’, and ‘constrained’, so this
algorithm needs to be further improved according to the actual problem.

3.2. The Comparison Score Algorithm (Algorithm 2)

In the comparison score algorithm, rather than utilizing the concept of choice values designed for
crisp soft sets, it compares the membership values of two objects concerning a common attribute to
determine which one relatively possesses that attribute. The algorithm is as follows:

Algorithm 2 The comparison score algorithm

1: Input the fuzzy soft sets (F̃, A).
2: Construct the comparison-table of the fuzzy soft sets (F̃, A) and compute ri and ti for oi, ∀i.
3: Compute the score of oi, ∀i.
4: The decision is Sk if, Sk = maxiSi.
5: If k has more than one value then any one of ok may be chosen.

The comparison table of a fuzzy soft set (F̃, A) is a square table in which rows and columns
are both labeled by the objects o1, o2, ..., on of the universe. The entries cij indicate the number of
parameters for which the membership value of oi exceeds or equal to the membership value of oj.
The cij is computed by

cij = |{e ∈ A; F(e)(oi) ≥ F(e)(oj)}|. (3)

The row-sum ri of object oi is computed by

ri =
n

∑
j=1

cij. (4)

The column-sum tj of object oj is computed by

ti =
n

∑
i=1

cij. (5)

The score si of object oi is defined as

si = ri − ti. (6)
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The objects with the maximum score computed from the comparison table will be regarded as the
optimal decision.

Example 4. We consider fuzzy soft set (F̃, A) given in Table 2. The comparison table and the comparison score
table of (F̃, A) are given in Tables 5 and 6, respectively. From Table 6, it is seen that Mr. X will select the
house h2.

Table 5. The comparison table of fuzzy soft set (F̃, A).

U x1 x2 x3 x4 x5 x6 x7 x8

x1 7 2 2 1 3 2 3 3
x2 5 7 4 4 6 4 5 6
x3 6 4 7 3 6 4 5 6
x4 6 4 5 7 5 3 3 6
x5 5 2 3 3 7 4 5 6
x6 6 4 4 5 7 7 5 7
x7 5 3 4 5 7 6 7 7
x8 5 2 2 4 5 4 4 7

Table 6. The comparison score table of fuzzy soft set (F̃, A).

Row-Sum (ri) Column- Sum (ti) Comparison Score (si)

h1 23 45 −22
h2 41 28 13
h3 41 31 10
h4 39 32 7
h5 35 46 −11
h6 45 34 11
h7 44 37 7
h8 33 48 −15

Remark 2. The number of objects in the fuzzy soft set (F̃, A) is assumed to be n. For calculating each entry
of the comparison table, the objects need to compare with each other, and the complexity of computing the
comparison table is O(n2). The complexity of computing each score of each object is O(2n), and the complexity
of selecting the max value is O(n). Thus, the complexity of Algorithm 2 is O(n2).

However, the comparison score algorithm presents certain limitations. Alcantud [20] shows that
Algorithm 2 may result in a loss of information along the construction of a resultant fuzzy soft set from
the multi-observer data. The main novelty in his proposal regarding Algorithm 2 is in the definition of the
comparison matrix. Our concerns are as follows:

1. Rank reversal occurs in the comparison score algorithm. In this phenomenon, the objects’ order of
preference changes when an object is added to or removed from the decision problem. We will illustrate this
phenomenon in Section 3.3.

2. Add/delete an object, and the comparison matrix needs to be recalculated. This means that a new comparison
table has to be recalculated when the attributes/objects need to be added/deleted, which indicates that plenty
of recalculations should be involved to get a new solution set.

3. Attribute importance is considered to be the equal importance, and then the option cannot be distinguished
according to the importance of the attribute.

3.3. Rank Reversal in the Comparison Score Algorithm

In a decision-making problem, the rank reversal means a change in the rank ordering of the
preferability of possible alternative decisions when the method of choosing changes or the set of other
available alternatives changes. Such a phenomenon was first pointed out by Belton and Gear [21].
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Some decision-making algorithms have been criticized for the possible rank reversal phenomenon
caused by the addition or deletion of an alternative [21–24].

There are strong arguments on which a fuzzy soft sets based decision-making method is more
reasonable than others. The purpose of this paper is not to contribute further to that debate, but to
point out problems and analyze the causes, and prepare for further improvements. Here, an example
is provided to illustrate the rank reversal phenomenon in the comparison score algorithm.

Example 5. Let (F̃, A) be a fuzzy soft set; it can be expressed in Equation (7). By the comparison score
algorithm, we can get comparison table (8) and comparison score (9):

(F̃, A) =

⎡⎢⎣0.2 0.3 0.6 0.3 0.9 0.6
0.9 0.1 0.3 0.9 0.7 0.8
0.4 0.1 0.5 0.8 0.1 0.1

⎤⎥⎦ , (7)

Comparison Table =

⎡⎢⎣6 3 4
3 6 5
2 2 6

⎤⎥⎦ , (8)

Comparison Score =

⎡⎢⎣13 11 2
14 11 3
10 15 −5

⎤⎥⎦ . (9)

From the comparison score (9), it is seen that h2 will be chosen, and we have a sorted sequence h2 � h1 � h3.

Example 6. We add an object h4 = (0.9, 0.3, 0.3, 0.2, 0.8, 0.9) to (F̃, A), as Equation (10), and then we can
get comparison table (11) and comparison score (12):

(F̃, A) =

⎡⎢⎢⎢⎣
0.2 0.3 0.6 0.3 0.9 0.6
0.9 0.1 0.3 0.9 0.7 0.8
0.4 0.1 0.5 0.8 0.1 0.1
0.9 0.3 0.3 0.2 0.8 0.9

⎤⎥⎥⎥⎦ , (10)

Comparison Table =

⎡⎢⎢⎢⎣
6 3 4 4
3 6 5 3
2 2 6 2
3 5 4 6

⎤⎥⎥⎥⎦ , (11)

Comparison Score =

⎡⎢⎢⎢⎣
17 14 3
17 16 1
12 19 −7
18 15 3

⎤⎥⎥⎥⎦ . (12)

From the comparison score (12), it is seen that h1 and h4 will be chosen, and we have a sorted sequence
(h1 = h4) � h2 � h3.

Remark 3. Examples 5 and 6 show that rank reversal phenomenon occurs in the comparison score algorithm;
it caused by the addition or deletion of an object. As can be seen from Examples 5 and 6, the ranking between h1

and h2 is h2 � h1 before h4 is introduced, but becomes h1 � h2 after h4 is added, where the symbol ‘�’ means
‘is superior to.’ The ranking is reversed after the addition of alternative h4. Such a phenomenon is referred to as
rank reversal, which may occur not only when a copy of an alternative is added, but also when a new alternative
is added as well as when an existing alternative is removed. In some cases, this may lead to total rank reversal,
where the order of preferences is entirely inverted. That is, that the alternative considered the best, with the
inclusion or removal of an alternative, then becomes the worst. Such a phenomenon in many cases may not be
acceptable, for example, the ranking of candidates in recruitment, choosing the best students according to their

211

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 246

grades, and so on. In practice, we can construct special test problems to test the validity of the decision-making
algorithm. If the solution shows some logical contradictions, then one might argue that there is a problem with
the method that derives them.

In classical mathematics, the decision-making problems description is (A, Θ, Ξ, κ, D)

(Grabisch et al.) [25]. The A is the set of alternatives or possible actions. The Θ is a set of states
of the environment in which decisions are taken. The Ξ is a set of consequences resulting from the
choice of a particular alternative. The κ is a mapping A×Θ → Ξ specifying a consequence for each
element of the environment. The space A×Θ defines the solution space. The D is the decision function
D : Θ → R reflects the preference structure of the decision maker.

Definition 7. ([26]) The decision function D incorporates the goals of the decision maker. It induces a preference
ordering on the set of consequences Ξ such that

ξi � ξ j i f f D(ξi) � D(ξ j), (13)

where ξi, ξ j ∈ Ξ, and � is the preference relation, i.e., consequence is preferred to consequence.

Let (F̃, A) be two fuzzy soft sets on the universe U. Suppose that oi and oj are objects in
the universe U. In the fuzzy soft set (F̃, A), let D be the decision function, and D(oi) � D(oj) .
Add an object ok to (F̃, A), let D

′
be the decision function, but D

′
(oj) � D

′
(oi). This means D �= D

′
,

the decision function changed caused by the addition of an object.
From Examples 5 and 6, we can see D(o2) � D(o1) in Example 5, but D

′
(o1) � D

′
(o2) in

Example 6. The instability of the selection result indicates that the ‘decision rule’ is ambiguous, that is,
the decision function will be changed according to the addition/deletion of objects.

In practice, suppose k students U = {n1, n2..., nk} participated in a competition, by the comparison
score algorithm, you can choose the desired candidate nx and nx ∈ U. When a new student nk+1
participation in the competition, U

′
= U ∪ {nk+1}, by the comparison score algorithm you can choose

the desired candidate ny, and (ny ∈ U and ny �= nx). This means the ranking of nx and ny

is reversed when candidate nk+1 participation in the competition. In real life, a decision maker’s
preference ordering between two alternatives should remain unchanged if an additional alternative
added or removed. Usually, if nx < nk+1, then nk+1 will be chosen, else nx still be selected.

4. Improved Decision-Making Algorithm Based on Fuzzy Soft Set and Ideal Solution

Most of our real-life problems are imprecise in nature. The classical crisp mathematical tools are
not capable of dealing with such problems. The fuzzy set theory has been used quite extensively to deal
with such imprecisions. In general, the traditional decision-making algorithm based on soft sets have
some shortcomings. All the attributes are treated uniformly, that is, all attributes are treated as ‘good’
attributes. Sometimes, the value of the attribute is not the bigger the better, for example, ‘expensive’.
The purpose of the decision maker ignored, and it usually assumed that the bigger (the value of each
attribute) the better. It is unrealistic to use a fixed method to deal with the ever-changing problems.

In order to overcome these shortcomings, this paper proposes improvement from the following
aspects, as shown in Figure 1:

Firstly, the ideal solution is introduced in the design phase, that is, a very clear decision objective
is formulated. We will illustrate this in Section 4.1.

Secondly, make clear the meaning of attributes. The attribute will be divided into ‘pros’ and ‘cons’
attributes. The ‘pros attribute’ is a ‘good’ description of the object, and the ‘cons attribute’ is a ‘bad’
description of the object. At the same time, whether attributes contain constraints is also taken into
account. We will illustrate this in Section 4.2.

Finally, when an ideal solution is generated, the decision is made by comparing the similarity
between the object and the ideal solution. We will illustrate this in Section 4.3.
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Figure 1. The decision-making model.

4.1. The Ideal Solution Method

Yoon and Hwang [27] developed the algorithm for order preference by similarity to the ideal
solution in 1981. The ideal solution method aims to obtain the best compromise solution, which is the
one that is the closest to the ideal solution, that is, it has the shortest distance from the ideal solution.
Let S = (S1, S2, ..., Sn), Si = (si1, sil , ..., sim), i = 1, ..., n be a solution of a decision-making problem from
the ith group member, m be the number of objectives (m > 1). Let S0 = (s01, s0l , ..., s0m) be the ideal
solution. The ideal solution method is formulated as follows:

f ind p

s.t. d∗ = dp = min{di; i = 1, 2, ..., n} (14)

= min{
m

∑
j=1
|s′ij − s0j|; i = 1, 2, ..., n},

where

s
′
ij =

⎧⎨⎩
sij
s̃j

, i f s̃j �= 0,

0, i f s̃j = 0,
i = 1, 2, ..., n, j = 1, 2, ..., m, (15)

s̃j = max{sij; i = 1, 2, ..., n}, j = 1, 2, ..., m.

When an ideal solution S0 = (s01, s0l , ..., s0m) is generated, the algorithm starts to measure the
distance of the ideal solution to the other candidates. A distance matrix D for each objective of solutions
to the ideal solution is thus established:

D =

⎡⎢⎢⎢⎢⎣
(d11) (d12) . . . (d1m)

(d21) (d22) . . . (d2m)
...

...
...

(dn1) (dn2) . . . (dnm)

⎤⎥⎥⎥⎥⎦ , (16)

where dij = |s
′
ij − s0j|, i = 1, ..., n, j = 1, ..., m.

The distances from different objective values of each solution are obtained:

di =
m

∑
j=1

dij, i = 1, ..., n. (17)
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The final solution that has the shortest distance is then found from

f ind p

s.t. d∗ = dp = min{di, i = 1, 2, ..., n}, 1 ≤ p ≤ n, (18)

where d∗ is the shortest total-distance between the solutions and the ideal solution, and the pth solution
is the closest solution as the final compromise solution of this decision-making problem.

4.2. The Ideal Solution of Each Attribute

In practice, when we use a soft set to solve a problem, the attribute can be a ‘good’ description
of an object or a ‘bad’ one. Likewise, attributes sometimes contain constraints, and sometimes do
not contain constraints. In this situation, a choice value based approach and comparison score based
approach are not useable. In other words, there are two prerequisites for the choice value based
approach and the comparison score based approach, that is, on the universal U, all attributes are
positive descriptions and are unconstrained. For each attribute, a bigger value indicates a better
candidate. In reality, this is not always reasonable.

Bellman and Zadeh proposed [17] a fuzzy decision model in 1970, and discuss how to apply these
concepts to the decision-making process under a fuzzy environment.

Definition 8. ([17]) The X represents all possible strategies, and the fuzzy objective G̃ is a fuzzy set on the
X, the membership function μG̃ : X → [0, 1]. The objective function is the reaction of the decision-maker to a
certain ambiguity of the target. The μG̃ response strategy x achieves satisfaction with target G̃.

Definition 9. ([17]) Let G̃ and C̃ be fuzzy targets and fuzzy constraints in universal X, the fuzzy decision D̃
is also a fuzzy set of X, and it is defined as the intersection of G̃ and C̃, that is, D̃ = G̃ ∩ C̃, the membership
function is

μD̃(x) = min{μG̃(x), μC̃(x)}.

In fuzzy decision-making, the membership function of μG̃(x) that achieves maximum value strategy is
called maximizing strategy, and the membership function is

μD̃(x∗) = maxx∈Xmin{μG̃(x), μC̃(x)}.

For the attribute with constraints, we can use Bellman and Zadeh’s model to find the best solution.
For the attribute without constraints, it is a maximum/minimum problem.

Let U = {u1, u2, ..., un} and (F̃, A) be a fuzzy soft set of dimension k over U, ej ∈ A. For attribute ej,
let μj be the membership function and j ∈ {1, 2, ..., k}. F̃(ej) = {μj(u1)/u1, μj(u2)/u2, ..., μj(un)/un}.
Let �ej be the maximum target of attribute ej, �ej = μjD̃(x∗).

Definition 10. Let (F̃, A) be a fuzzy soft set, and μjG̃(x) is the membership function of attribute ej. μjC̃(x) is
the constraint function. The ideal solution of ej is formulated as follows:⎧⎨⎩�ej = maxx∈Xmin{μjG̃(x), μjC̃(x)},

s.t. x ∈ U,
(19)

as shown in Figure 2.
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Figure 2. Attribute with constraint D̃ = G̃ ∩ C̃.

Let (F̃, A) be a fuzzy soft set,μjG̃(x) is the membership function of attribute ej and without
constraints function.

Definition 11. The attribute ej without constraints is a ‘good’ description, and the ideal solution is the
maximum value of μj(x). The ideal solution of ej is formulated as follows:{

�ej = maxμj(x),

s.t. x ∈ U,
(20)

as shown in Figure 3a.

Definition 12. The attribute ej without constraints is a ‘bad’ description, and the ideal solution is the minimum
value of μj(x). The ideal solution of ej is formulated as follows:{

�ej = minμj(x),

s.t. x ∈ U,
(21)

as shown in Figure 3b.

(a) (b)

Figure 3. Attribute without constraints. (a) ‘Good’ attribute without constraints; (b) ‘Bad’ attribute
without constraints.
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The ideal solution ugoal of (F̃, A) is the combination of each attribute ugoal = {�e1 ,�e2 , ...,�ek}.

4.3. The Decision Function—Hamming Distance

The decision function is used to determine the similarity between ux and ugoal in the fuzzy soft
set. Many algorithms can be used as efficient decision functions, especially when the fuzzy soft set
(F̃, A) has many objects, such as fuzzy S-trees, signature trees, t-concept lattice, Artificial Bee Colony
(ABC) algorithm [28–31], and so on. Here, we use the widely used Hamming distance.

The normalized Hamming distance is a useful technique for calculating the differences between
two elements, two sets, etc [32]. For two sets A and B, it can be defined as follows.

Definition 13. A normalized Hamming distance of dimension n is a mapping dH : Rn × Rn → R such that:

dH(A, B) =
1
n
(

n

∑
i=1
|ai − bi|),

where ai and bi are the ith arguments of the sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bn}, respectively.

Let (F̃, A) be a fuzzy soft set over U. All attributes have the same degree of importance, ugoal is the
ideal solution, and ui is the object. The decision-making problem becomes the optimization problem:{

min dH(ugoal , ui),

s.t. ui ∈ U,
i = 1, 2, ..., n. (22)

Definition 14. A weighted Hamming distance of dimension n is a mapping dWH : Rn × Rn → R that has an
associated weighting vector W of dimension n such that the sum of the weights is 1 and wj ∈ [0, 1]. Then:

dWH(A, B) = (
n

∑
i=1

ωi|ai − bi|),

where ai and bi are the ith arguments of the sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bn}, respectively.

Almost all methods of decision-making problems require information regarding the relative
importance of each attribute. The relative importance is usually given by a set of weights that
are normalized to sum to one. In the case of n attributes, a weight set is ω = (ω1, ω2, ..., ωn) and
∑n

j=1 ωj = 1. The weights can be assigned by the decision maker directly, or calculated using the
eigenvector method or the weighted least square method. The IOWA operator was introduced by
Yager and Filev [33].

Definition 15. ([33]) An IOWA operator of dimension n is a mapping f : Rn → R that has an associated
weighting vector ω of dimension n such that the sum of the weights is 1 and wj ∈ [0, 1]. Then,

fIOWA(< u1, a1 >,< u2, a2 >, ...,< un, an >) =
n

∑
j=1

wjbj,

where bj is the ai value of the IOWA pair ui ,ai having the jth largest ui, ui is the order inducing variable and ai
is the argument variable.

Let (F̃, A) be a fuzzy soft set over U, all attributes have the same degree of importance, the
attribute has a weight of ω, ugoal is the optimal target, and ui is the object. The decision-making
problem becomes the optimization problem:

216

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 246

{
min dWH(ugoal , ui),

s.t. ui ∈ U,
i = 1, 2, ..., n. (23)

4.4. The Decision-Making Algorithm Based on Fuzzy Soft Sets and Ideal Solution

Let U = {u1, u2, ..., un} and (F̃, A) be a fuzzy soft set with k attributes A = {e1, e2, ..., ek}, as
Equation (24):

(F̃, A) =

⎡⎢⎢⎢⎢⎣
(u11) (u12) . . . (u1k)

(u21) (u22) . . . (u2k)
...

...
...

(un1) (un2) . . . (unk)

⎤⎥⎥⎥⎥⎦ . (24)

We can analyze each attribute ex independently, and the ideal solution �ex of each attribute can
be obtained. The analysis and processing are described in Section 4.2.

By combining the ideal solution of each attribute, we can get the ideal solution ugoal of the fuzzy
soft sets:

ugoal = {�e1 ,�e2 , ...,�ek}.

The decision-making fuzzy soft set (F̃D, A) can be expressed in matrix form as Equation (25):

(F̃D, A) =

⎡⎢⎢⎢⎢⎢⎢⎣
(�e1) (�e2) . . . (�ek )

(u11) (u12) . . . (u1k)

(u21) (u22) . . . (u2k)
...

...
...

(un1) (un2) . . . (unk)

⎤⎥⎥⎥⎥⎥⎥⎦ . (25)

In the fuzzy soft set (F̃, A), we first establish the ideal solution and then find the object closest to
the ideal solution through the choice algorithm, which is the result of selection. The decision-making
algorithm based on fuzzy soft sets and ideal solution (Algorithm 3) is formulated as follows:

f ind p,

s.t. d∗ = dp = min{di; i = 1, 2, ..., n}, (26)

where di = dHi (ugoal , ui); i = 1, 2, ..., n when using the normalized Hamming distance and
di = dWHi (ugoal , ui); i = 1, 2, ..., n when using the weighted Hamming distance, respectively.

The algorithm is as follows:

Algorithm 3 The decision-making algorithm based on fuzzy soft sets and ideal solution

1: Input the fuzzy soft set (F̃, A).
2: Sort the attributes (e1, e2, ..., en) in descending order according to its weight, and set the IOWA

operator ω according to the purpose of the decision maker.
3: Compute the optimization target ugoal = {�1,�2, ...,�k} according to membership function of

each attribute.
4: Compute the Hamming distance di(ugoal , ui), i = 1, 2, ..., n.
5: The decision is dk if, dk = minkdi.
6: If k has more than one value, then any one of ok may be chosen.
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Remark 4. If ugoal = {1, 1, ..., 1} and dH(ugoal , ui) is used, it is a choice value decision-making model.
If ugoal = {1, 1, ..., 1} and dWH(ugoal , ui) is used, it is a weighted choice value decision-making model. It should
be noted that ugoal = {1, 1, ..., 1} is not always reasonable in practical problems.

As can be seen from Table 7, the fuzzy soft sets and ideal solution based algorithm focuses on the modular
structure, and it emphasizes the analysis of decision objectives, attributes analysis and the flexible decision
function. In Algorithm 3, each object needs to compare with the ideal solution, and, to deal with n items,
its algorithm complexity is O(n).

Table 7. Features of the fuzzy soft set based decision-making algorithms.

Algorithm
Time
Complexity

Subjective
Weights

Attribute
Analysis

Decision
Function

[3] O(N) Yes No Choice value
[12] O(N2) No No Comparison matrix
[14] O(N) Yes No Fuzzy choice value
[15] O(N) Yes No Choice value of level soft set
[20] O(N2) No No New relative comparison matrix

Algorithm 3 O(N) Yes Yes Similarity measure & Substitutable

5. Numerical Experiments

We provide numerical experiments in this section. We will use an example to illustrate
Algorithm 3, see Section 5.1. In Section 5.2, we will use Hwang and Yoon [27]’s example to illustrate
the algorithm proposed in this paper. As a comparison, the traditional method and the algorithm
proposed in this paper are applied to this example. We’ve added Python programs and validation
data to validate examples in this article easily [34].

5.1. Example of Fuzzy Soft Sets and Ideal Solution Based Decision-Making Algorithm

Let U = {u1, u2, ..., u8} and (F̃, A) be a fuzzy soft set with seven attributes. Then, we add the ugoal

to (F̃, A) and the decision fuzzy soft set as Equation (27).
Assuming that all attributes are ‘good’ description and without constraints. By Equation (20) ,

μgoal = {1, 1, ..., 1}:

(F̃D, A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6 e7

ugoal 1 1 1 1 1 1 1
u1 0.2 0.4 0.1 0.5 0.8 0.1 0.1
u2 0.3 0.2 0.3 0.6 0.3 0.9 0.6
u3 0.3 0.1 0.6 0.7 0.8 0.8 0.3
u4 0.3 0.7 0.9 0.9 0.1 0.4 0.5
u5 0.3 0.9 0.1 0.3 0.2 0.2 0.3
u6 0.3 0.9 0.1 0.3 0.9 0.7 0.8
u7 0.3 0.9 0.1 0.3 0.2 0.8 0.9
u8 0.3 0.9 0.1 0.3 0.1 0.4 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (27)

dH(ugoal , u1) =
4.8
7

, dH(ugoal , u2) =
3.8
7

,

dH(ugoal , u3) =
3.4
7

, dH(ugoal , u4) =
3.2
7

,

dH(ugoal , u5) =
4.7
7

, dH(ugoal , u6) =
3.0
7

,

dH(ugoal , u7) =
3.5
7

, dH(ugoal , u8) =
4.7
7

.
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From the normalized Hamming distance, it is seen that u6 will be chosen.
Letting ω = { 1

2 , 1
4 , 1

8 , 1
16 , 1

32 , 1
64 , 0},

dWH(ugoal , u1) = 0.714, dWH(ugoal , u2) = 0.686,

dWH(ugoal , u3) = 0.653, dWH(ugoal , u4) = 0.481,

dWH(ugoal , u5) = 0.569, dWH(ugoal , u6) = 0.539,

dWH(ugoal , u7) = 0.559, dWH(ugoal , u8) = 0.569.

From the weighted Hamming distance, it is seen that u4 will be chosen.

5.2. Algorithm Comparison

A country decided to purchase a fleet of jet fighters from the U.S. The Pentagon officials offered
the characteristic information of four models that may be sold to that country. The Air Force analyst
team of that country agreed that six characteristics (attributes) should be considered. They are
maximum speed (X1) ferry range (X2), maximum payload (X3), purchasing cost (X4), reliability (X5),
and maneuverability (X6). The measurement units for the attributes are mach, miles, pounds,
dollars (in millions), high-low scale, and high-low scale, respectively. The decision matrix for the
fighter aircraft selection problem, then, is:

D =

⎡⎢⎢⎢⎢⎢⎣
X1 X2 X3 X4 X5 X6

A1 2.0 1500 20000 5.5 average veryhigh
A2 2.5 2700 18000 6.5 low average
A3 1.8 2000 21000 4.5 high high
A4 2.2 1800 20000 5.0 average average

⎤⎥⎥⎥⎥⎥⎦ . (28)

5.2.1. The Traditional Decision-Making Method

Attribute ratings are usually normalized to eliminate computational problems caused by different
measurement units in a decision matrix. Linear normalization is a simple procedure that divides the
ratings of a certain attribute by its maximum value. The normalized value of xij is given as

rij =
xij

x∗j
i = 1, ..., m; j = 1, ..., n, (29)

where x∗j is the maximum value of the jth attribute. Clearly, the attribute is more satisfactory as rij
approaches 1, (0 ≤ rij ≤ 1):

D =

⎡⎢⎢⎢⎢⎢⎣
X1 X2 X3 X4 X5 X6

A1 0.8 0.56 0.95 0.82 0.71 1.0
A2 1.0 1.0 0.86 0.69 0.43 0.56
A3 0.72 0.74 1.0 1.0 1.0 0.78
A4 0.88 0.64 0.95 0.9 0.71 0.56

⎤⎥⎥⎥⎥⎥⎦ . (30)

The key idea of the weighting method is to transform the multiple objectives in the
decision-making problem into weighted single objective functions, which are described as follows
(Zadeh, 1963) [17]: {

max w f (x) = ∑k
i=1 ωi fi(x),

s.t. x ∈ X,

where ω = {ω1, ω2, ..., ωk} is a vector of weighting coefficients assigned to the objective functions.
Let (F̃, A) = D, and ej the jth attribute. Let ω1 = ω2 = ω3 = ω4 = ω5 = ω6 = 1

6 .
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The decision table is as shows in the following:

D̃ =

⎡⎢⎢⎢⎢⎢⎣
X1 X2 X3 X4 X5 X6

A1 0.8 0.56 0.95 0.82 0.71 1.0
A2 1.0 1.0 0.86 0.69 0.43 0.56
A3 0.72 0.74 1.0 1.0 1.0 0.78
A4 0.88 0.64 0.95 0.9 0.71 0.56

⎤⎥⎥⎥⎥⎥⎦ Score =

⎡⎢⎢⎢⎢⎢⎣
ω f (x)
0.8067
0.7567
0.8733
0.7733

⎤⎥⎥⎥⎥⎥⎦ . (31)

From Equation (31), A3 will be chosen.

Remark 5. Let (F̃, A) = D, and ej the jth attribute. By using linear normalization,

μej(x) =
x
x∗j

, j = 1, ...., n,

where x∗j is the maximum value of the jth attribute.
In other words, in the traditional decision-making mode, the membership function of the attribute is always

established in the form of a linear function. This is not always accurate and feasible.

5.2.2. The Decision-Making Based on Fuzzy Soft Sets and Ideal Solution

In this subsection, we illustrate the decision process with the following examples. Suppose three
groups of air force analyst team make the following goals:

Team 1: “Spare no expense to buy a jet fighter, and the jet fighter that is the fastest, most stable and
has the best maneuverability".

Team 2: “Buy a jet fighter with a budget of 5 million, and a jet fighter that is stable and has the best
maneuverability”.

Team 3: “Spend the least money to buy the indicators of a relatively good jet fighter”.

Let A = {e1 = ‘maximum speed’, e2 = ‘ferry range’, e3 = ‘maximum payload’, e4 = ‘purchasing
cost’, e5 = ‘reliability’, e6 = ‘maneuverability’}. The attributes {e1 = ‘maximum speed’, e2 =

‘ferry range’, e3 = ‘maximum payload’, e5 = ‘reliability’, e6 = ‘maneuverability’} are ‘pros’ attributes,
and they are all positive descriptions of jet fighters. For the attribute {e4 = ‘purchasing cost’},
of course, the cheaper, the better.

For Team 1, the attribute {e4 = ‘purchasing cost’} is a factor that doesn’t need to be considered,
no matter how expensive it is. The attribute {e1 = ‘maximum speed’} is the primary consideration,
{e5 = ‘reliability’} second, and finally consider {e6 = ‘maneuverability’}. Other factors are relatively
unimportant. Therefore, the degree of importance is: e1 > e5 > e6 > (e2 = e3) > e4.

For Team 2, the attribute {e4 = ‘purchasing cost’} is the primary consideration. This is a user
constraint, and, by Equation (19), we can get the ideal solution of e4. The attributes {e5 = ‘reliability’}
and {e6 = ‘maneuverability’} are relatively important attributes, and e5 > e6 . Therefore, the degree
of importance is: e4 > e5 > e6 > (e1 = e2 = e3).

For Team 3, the attribute {e4 = ‘purchasing cost’} is the primary consideration, and the cheaper
the better. All other attributes are secondary attributes that are equally important, which is: e4 > (e1 =

e2 = e3 = e5 = e6).
The attributes are normalized by a small number of samples, and a rigorous decision maker

needs to analyze each indicator carefully. To determine its membership function through investigation
and research (the definition of membership function is subjective, and the optimal membership
function is not the problem discussed in this paper), we can obtain the optimal goal of our decision
more accurately.

Suppose the membership function of each attribute is formulated as follows.
Let μ1(x) be the membership function of fast jet fighters:
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μ1(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 3.5,

1
1+e−2.1×(x−1.5) , 0.5 < x < 3.5,

0, x ≤ 0.5.

Let μ2(x) be the membership function of ferry range:

μ2(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 3200,

1
1+e−0.003×(x−2000) , 1000 < x < 3200,

0, x ≤ 1000.

Let μ3(x) be the membership function of maximum payload:

μ3(x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ≥ 32,000,

1
e−0.0005×(x−20,000) , 15,000 < x < 32,000,

0, x ≤ 15,000.

Let μ4(x) be the membership function of the expensive jet fighter:

μ4(x) =

⎧⎨⎩ 1
1+e−(x−3) , 0 < x,

0, x ≤ 0.

Let μ5(x) be the membership function of reliability:

μ5(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
4 , 0 ≤ x < 0.25,
2
4 , 0.25 ≤ x < 0.5,
3
4 , 0.5 ≤ x < 0.75,

1, 0.75 ≤ x ≤ 1.

Let μ6(x) be the membership function of maneuverability:

μ6(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
4 , 0 ≤ x < 0.25,
2
4 , 0.25 ≤ x < 0.5,
3
4 , 0.5 ≤ x < 0.75,

1, 0.75 ≤ x ≤ 1.

The decision table for the fighter aircraft selection can be changed to a fuzzy soft set,
as Equation (32):

(F̃, A) =

⎡⎢⎢⎢⎢⎢⎣
e1 e2 e3 e4 e5 e6

A1 0.741 0.182 0.5 0.924 0.5 1
A2 0.891 0.891 0.269 0.971 0 0.5
A3 0.652 0.5 0.622 0.818 0.75 0.75
A4 0.813 0.354 0.5 0.881 0.5 0.5

⎤⎥⎥⎥⎥⎥⎦ . (32)

Example 7. Team 1: Spare no expense to buy a jet fighter, and the jet fighter that is the fastest, most stable and
has the best maneuverability.

Without user constraints, the weight of attributes is: e1 > e5 > e6 > (e2 = e3) > e4.
Let ω = {ω1 = 1

2 , ω5 = 1
4 , ω6 = 1

8 , ω2 = 1
16 , ω3 = 1

16 , ω4 = 0}, ∑6
i=1 ωi = 1.
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�1 = 1,�2 = 1,�3 = 1,�4 = 0,�5 = 1,�6 = 1, ugoal = {1, 1, 1, 0, 1, 1},

(F̃D, A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6

Agoal 1 1 1 0 1 1
A1 0.741 0.182 0.5 0.924 0.5 1
A2 0.891 0.891 0.269 0.971 0 0.5
A3 0.652 0.5 0.622 0.818 0.75 0.75
A4 0.813 0.354 0.5 0.881 0.5 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (33)

dWH(Agoal , A1) = 0.337, dWH(Agoal , A2) = 0.419,

dWH(Agoal , A3) = 0.323, dWH(Agoal , A4) = 0.353.

From the weighted Hamming distance, it is seen that A3 will be the choice because it is the closest object to
Agoal . In addition, dA2 � dA4 � dA1 � dA3 .

Example 8. Team 2: Buy a jet fighter with a budget of 5 million, and a jet fighter that is stable and has the best
maneuverability.

The prices include user constraints: x∗ = 5, then,�4 = μ4(5) = 0.881.
The weight of attributes is: e4 > (e5 = e6) > (e1 = e2 = e3).
Let ω = {ω4 = 14

60 , ω5 = 11
60 , ω6 = 11

60 , ω1 = 8
60 , ω2 = 8

60 , ω3 = 8
60}, ∑6

i=1 ωi = 1.
�1 = 1,�2 = 1,�3 = 1,�4 = 0.881,�5 = 1,�6 = 1, ugoal = {1, 1, 1, 0.881, 1, 1}.

(F̃D, A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6

Agoal 1 1 1 0.881 1 1
A1 0.741 0.182 0.5 0.924 0.5 1
A2 0.891 0.891 0.269 0.971 0 0.5
A3 0.652 0.5 0.622 0.818 0.75 0.75
A4 0.813 0.354 0.5 0.881 0.5 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

dWH(Agoal , A1) = 0.312, dWH(Agoal , A2) = 0.423,

dWH(Agoal , A3) = 0.270, dWH(Agoal , A4) = 0.361.

From the weighted Hamming distance, it is seen that A3 will be the choice. In addition, dA2 � dA4 �
dA1 � dA3 .

Example 9. Team 3: Spend the least money to buy the indicators of a relatively good jet fighter”.
Without user constraints, the weight of attributes is:e4 > (e1 = e2 = e3 = e5 = e6).
Let ω = {ω4 = 5

15 , ω5 = 2
15 , ω6 = 2

15 , ω2 = 2
15 , ω3 = 2

15 , ω1 = 2
15}, ∑6

i=1 ωi = 1.
�1 = 1,�2 = 1,�3 = 1,�4 = 0,�5 = 1,�6 = 1, ugoal = {1, 1, 1, 0, 1, 1}.

(F̃D, A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 e3 e4 e5 e6

Agoal 1 1 1 0 1 1
A1 0.741 0.182 0.5 0.924 0.5 1
A2 0.891 0.891 0.269 0.971 0 0.5
A3 0.652 0.5 0.622 0.818 0.75 0.75
A4 0.813 0.354 0.5 0.881 0.5 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(35)
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dWH(Agoal , A1) = 0.585 dWH(Agoal , A2) = 0.650

dWH(Agoal , A3) = 0.503 dWH(Agoal , A4) = 0.605

From the weighted Hamming distance, it is seen that A3 will be the choice. In addition, dA2 � dA4 �
dA1 � dA3 .

Remark 6. The decision-making based on fuzzy soft sets and the ideal solution has some advantages. Firstly,
the soft set model can be combined with other mathematical models. When it is combined with fuzzy decision-making,
the soft set is a natural multi-attribute decision making model, which holds a wide range of application prospects in
decision-making and analysis. Secondly, in the traditional ideal solution algorithm, it can be seen that the normalization
process is the process of establishing the membership function μ(x). There are many commonly used normalization
methods, i.e., Equation (29), but few of them can reflect the nature of the problem. The fuzzy soft set already contains
the membership function μ(x), which can be used well. Thirdly, from the analysis of the attributes of the fuzzy soft sets,
we can see that the attributes themselves are associated with each other. For example, ‘price’ and other attributes are
related to each other, usually because of their high performance and therefore high pricing. Therefore, some attributes
have less impact on the decision results because other attributes already contain information about that attribute.

6. Conclusions

The decision-making is a significant problem, and a good decision system will undoubtedly
play a huge role in promoting economy, management, and society. However, it is hard for us to
expect a single mathematical model to accomplish such a difficult task. There are mainly two different
approaches applying soft set theory to decision-making problems. One is based on choice value,
and the other is based on comparison score. This paper analyzes the existing problems of these two
methods. The choice value algorithm is not always reasonable in practice because it lacks the analysis
of attributes. At the same time, we point out that the comparison score algorithm has the phenomenon
of rank reversal, which can be further analyzed and improved. This paper is dedicated to the analysis
of these approaches and proposes a new decision-making algorithm. We focus on the application of
fuzzy soft set and ideal solutions in decision-making problems. From the decision-making process,
we have found that the core of the decision process is the design phase, which is to formulate a model
for an identified decision problem. Therefore, this paper emphasizes the analysis of decision objectives,
attributes analysis and explicit decision function. Based on these results, we can further probe the
practical applications of soft set theory in decision-making problems. Thanks to this modular structure,
we can design more efficient decision functions for this model. Moreover, how to avoid rank reversal
of the comparison score algorithm is another promising research topic.
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Abstract: Mathematical modelling is an important aspect in apprehending discrete and continuous
physical systems. Multipolar uncertainty in data and information incorporates a significant role in
various abstract and applied mathematical modelling and decision analysis. Graphical and algebraic
models can be studied more precisely when multiple linguistic properties are dealt with, emphasizing
the need for a multi-index, multi-object, multi-agent, multi-attribute and multi-polar mathematical
approach. An m-polar fuzzy set is introduced to overcome the limitations entailed in single-valued
and two-valued uncertainty. Our aim in this research study is to apply the powerful methodology of
m-polar fuzzy sets to generalize the theory of matroids. We introduce the notion of m-polar fuzzy
matroids and investigate certain properties of various types of m-polar fuzzy matroids. Moreover,
we apply the notion of the m-polar fuzzy matroid to graph theory and linear algebra. We present
m-polar fuzzy circuits, closures of m-polar fuzzy matroids and put special emphasis on m-polar fuzzy
rank functions. Finally, we also describe certain applications of m-polar fuzzy matroids in decision
support systems, ordering of machines and network analysis.

Keywords: m-polar fuzzy matroid; m-polar fuzzy uniform matroid; m-polar fuzzy linear matroid;
m-polar fuzzy partition matroid; m-polar fuzzy cycle matroid; m-polar fuzzy rank function; closure;
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1. Introduction

Matroid theory had its foundations laid in 1935 after the work of Whitney [1]. This theory
constitutes a useful approach for linking major ideas of linear algebra, graph theory, combinatorics
and many other areas of Mathematics. Matroid theory has been a focus of active research during the
last few decades.

Zadeh’s fuzzy set theory [2,3] handles real life data having non-statistical uncertainty and
vagueness. Petković et al. [4] investigated the accuracy of an adaptive neuro-fuzzy computing
technique in precipitation estimation. Various applications of fuzzy sets in the field of automotive
and railway level crossings for safety improvements are studied in [5,6]. The fuzzy set plays a vital
role to solve various multi-criteria decision making problems. Some applications of fuzzy theory in
multi-criteria models are discussed in [7,8]. Zhang [9] extended fuzzy set theory to bipolar fuzzy
sets and discusses the bipolar behaviour of objects. The idea which lies behind such a description is
connected with the existence of “bipolar information”. For illustration, profit and loss, hostility and
friendship, competition and cooperation, conflicted interests and common interests , unlikelihood and
likelihood, feedback and feedforward, and so on, are generally two sides in coordination and decision
making. Just like that, bipolar fuzzy set theory indeed has considerable impacts on many fields,
including computer science, artificial intelligence, information science, decision science, cognitive
science, economics, management science, neural science, medical science and social science. Recently,
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bipolar fuzzy set theory has been applied and studied speedily and increasingly. Thus, bipolar fuzzy
sets not only have applications in mathematical theories but also in real-world problems [10–12].

In a number of real world problems, data come from m sources or agents (m ≥ 2), that is,
multi-indexed information arises which cannot be mathematically expressed by means of the existing
approaches of classical set theory, the crisp theory of graphs, fuzzy systems and bipolar fuzzy systems.
The research presented in this paper is mainly developed to handle the lack of a mathematical
approach towards multi-index, multipolar and multi-attribute data. Nowadays, analysts believe that
the natural world is approaching the ideas of multipolarity. Multipolarity in data and information
plays an important role in various domains of science and technology. In information technology,
multipolar technology can be oppressed to operate large scale systems. In neurobiology, multipolar
neurons in brain assemble a lot of information from other neurons. For instance, over a noisy
channel, a communication channel may have a different network range, radio frequency, bandwidth
and latency. In a food web, species may be of different types including strong, weak, vegetarian
and non-vegetarian, and preys may be energetic, harmful and digestive. In a social network, the
influence rate of different people may be different with respect to socialism, proactiveness, and trading
relationship. A company may have different market power from others according to its product quality,
annum profit, price control of its product, etc. These are multipolar information which are fuzzy in
nature. To discuss such network models, we need mathematical and theoretical approaches which
deal with multipolar information.

In view of this motivation, Chen et al. [13] extended bipolar fuzzy set theory and introduced
the powerful idea of m-polar fuzzy sets. The membership value of an object, in an m-polar fuzzy set,
belongs to [0, 1]m, which represents m different attributes of the object. Considering the idea of graphic
structures, m-polar fuzzy sets can be used to describe the relationship among several individuals.
In particular, m-polar fuzzy sets have found applications in the adaptation of accurate problems if
it is necessary to make decisions and judgements with a number of agreements. For instance, the
exact value of telecommunication safety of human beings is a point which lies in [0, 1]m(m ≈ 7× 109),
since different people are monitored in different times. Some other applications include ordering and
evaluation of alternatives and m-valued logic. m-polar fuzzy sets are shown to be useful to explore
weighted games, cooperative games and multi-valued relations. In decision making issues, m-polar
fuzzy sets are helpful for multi-criteria selection of objects in view of multipolar data. For example,
m-polar fuzzy sets can be implemented when a country elects its political leaders, a company decides to
manufacture an item or product, a group of friends wants to visit a country with multiple alternatives.
In wireless communication, it can be used to discuss the conflicts and confusions of communication
signals. Thus, m-polar fuzzy sets not only have applications in mathematical theories but also in
real-world problems.

Akram and Younas [14] implemented the concept of m-polar fuzzy set into graph theory and
discussed irregularity in m-polar fuzzy graphs. Several researchers have been applying this technique
to explore various applications of m-polar fuzzy theory including grouping of objects [15], detecting
human trafficking suspects [16], finding minimum number of locations [17] and decision support
systems [18]. In 1988, Goetschel [19] studied the approach to the fuzzification of matroids and discussed
the uncertain behaviour of matroids. The same authors [20] introduced the concept of bases of fuzzy
matroids, fuzzy matroid structures and greedy algorithm in fuzzy matroids. Akram and Sarwar [15,21]
have also discussed m-polar fuzzy hypergraphs, product formulae of distance for various types of
m-polar fuzzy graphs and applications of m-polar fuzzy competition graphs in different domains.
Akram and Waseem [22] constructed antipodal and self-median m-polar fuzzy graphs. Li et al. [23]
considered different algebraic operations on m-polar fuzzy graphs. Hsueh [24] discussed independent
axioms of matroids which preserve basic operational properties. Fuzzy matroids can be used to
study the uncertain behaviour of objects but if the data have multipolar information to be dealt with,
fuzzy matroids cannot give appropriate results. For this reason, we need the theory of m-polar fuzzy
matroids to handle data and information with multiple uncertainties. In this research paper, we present
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the notion of m-polar fuzzy matroids and study various types of m-polar fuzzy matroids. We apply
the concept of m-polar fuzzy matroids to graph theory, linear algebra and discuss their fundamental
properties. We present the notion of closure of an m-polar fuzzy matroid and give special focus to
the m-polar fuzzy rank function. We also describe certain applications of m-polar fuzzy matroids.
We have used basic concepts and terminologies in this paper. For other notations, terminologies and
applications not mentioned in the paper, the readers are referred to [22,25–34].

Throughout this research paper, we will use the notation “mF set" for an m-polar fuzzy set, denote
the elements of an m-polar fuzzy set A as (y, A(y)) and use A∗ as a crisp set and A as an m-polar
fuzzy set.

2. Preliminaries

The term crisp matroid has various equivalent definitions. We use here the simplest definition
of matroid.

Definition 1. If Y is a non-empty universe and I is a subset of P(Y), power set of Y, satisfying the
following conditions,

1. If D1 ∈ I and D2 ⊂ D1 then , D2 ∈ I,
2. If D1, D2 ∈ I and |D1| < |D2| then there exists D3 ∈ I such that D1 ⊂ D3 ⊆ D1 ∪ D2.

The pair M = (Y, I) is a matroid and I is known as the family of independent sets of M.

Definition 2. ([19]) If M = (Y, I) is a matroid then the mapping R : P(Y)→ {0, 1, 2, . . . , |Y|} defined by

R(D) = max{|F| : F ⊆ D, F ∈ I}

is a rank function for M. If D ∈ P(Y), R is known as rank of D.

Definition 3. ([19]) For any non-empty universe Y, a mapping μ : P(Y)→ [0, ∞) is called submodular if for
each, D, F ∈ P(Y),

μ(D) + μ(F) ≥ μ(D ∪ F) + μ(D ∩ F).

Definition 4. ([2,3]) A fuzzy set τ in a non-empty universe Y is a mapping τ : Y → [0, 1]. A fuzzy relation
on Y is a fuzzy subset δ in Y×Y. If τ is a fuzzy set in Y and δ is a fuzzy relation on Y then we can say that δ is
a fuzzy relation on τ if δ(y, z) ≤min{τ(y), τ(z)} for all y, z ∈ Y.

Definition 5. ([19]) If F (Y) is a power set of fuzzy subsets on Y and I ⊆ F (X) which satisfy the
following conditions,

1. If τ1 ∈ I and τ2 ⊂ τ1 then, τ2 ∈ I ,
where, τ2 ⊂ τ1 ⇒ τ2(y) < τ1(y), for every y ∈ X.

2. If τ1, τ2 ∈ I and |supp(τ1)| < |supp(τ2)| then there exists τ3 ∈ I such that

a. τ1 ⊂ τ3 ⊆ τ1 ∪ τ2, for any y ∈ X, τ1 ∪ τ2(y) = max{τ1(y), τ2(y)},
b. m(τ3) ≥ min{m(τ1), m(τ2)} where, m(ν) = min{ν(y) : y ∈ supp(ν)}.

The pair M = (X, I) is called a fuzzy matroid. I is known as the collection of independent fuzzy sets of M.

Definition 6. ([13]) An mF set C on a non-empty set Y is a mapping C = (P1 ◦ C(z), P2 ◦ C(z), . . . ,
Pm ◦ C(z)) : Y → [0, 1]m where, the jth projection mapping is defined as Pj ◦ C : [0, 1]m → [0, 1].

Definition 7. ([22]) An mF relation D = (P1 ◦ D, P2 ◦ D, . . . , Pm ◦ D) on C is a function D : C → C such
that, D(yz) ≤ inf{C(y), C(z)}, for all y, z ∈ Y. That is, for all y, z ∈ Y , Pj ◦ D(yz) ≤ inf{Pj ◦ C(y), Pj ◦
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C(z)}, for each 1 ≤ j ≤ m, where Pj ◦ C(z) and Pj ◦ D(yz) represent the jth membership values of the element
z and the relation yz.

Definition 8. ([13,22]) An mF graph G = (C, D) in a universe Y consists of two mappings C : Y → [0, 1]m

and D : Y × Y → [0, 1]m such that, D(yz) ≤ inf{C(y), C(z)}, for all y, z ∈ Y. That is, Pj ◦ D(yz) ≤
inf{Pj ◦ C(y), Pj ◦ C(z)}, for each 1 ≤ j ≤ m. Note that Pj ◦D(yz) = 0 for all yz ∈ Y×Y− E, 1 ≤ j ≤ m
where, E is the set of edges having non-zero degree of membership. mF relation, D, is called symmetric if
Pj ◦ D(yz) = Pj ◦ D(zy) for all y, z ∈ Y.

3. Matroids Based on mF Sets

In this section, we define mF vector spaces, mF matroids and study their properties.

Definition 9. An mF vector space over a field K is defined as a pair Ỹ = (Y, Cv) where, Cv : Y → [0, 1]m

is a mapping and Y is a vector space over K such that for all c, d ∈ F and y, z ∈ Y Cv(cy + dz) ≥
inf{Cv(y), Cv(z)}, i.e., for all 1 ≤ i ≤ m,

Pi ◦ Cv(cy + dz) ≥ inf{Pi ◦ Cv(y), Pi ◦ Cv(z)}.

Example 1. Let Y be a vector space of 2× 1 column vectors over R. Define a mapping Cv : Y → [0, 1]3 such

that for each z =
[

x y
]t

,

Cv(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1, 1, 1), z =

[
0 0
]t

,

(1, 1
3 , 2

3 ), z =
[

x 0
]t

or z =
[
0 y
]t

,

(1, 1, 1), x �= 0 and y �= 0.

It remains only to show that Ỹ = (Y, Cv) is a 3-polar fuzzy vector space. For z =
[
0 0
]t

, the case is
trivial. So the following cases are to be discussed.

Case 1: Consider two column vectors z =
[

x y
]t

and u =
[
u v
]t

then, for any scalars c and d,

Cv(cz + du) = Cv

([
cx + du
cy + dv

])
.

If either exactly one of c or d is zero or both are non-zero then, cx + du �= 0 and cy + dv �= 0 and so
Cv(cz + du) = (1, 1, 1) = inf{Cv(z), Cv(u)}. Also if c = 0 and d = 0 then , Cv(cz + du) = (1, 1, 1).

Case 2: If z =
[

x 0
]t

and u =
[
0 v
]t

then, cz + du =
[
cx dv

]t
. If either both c and d are zero or

both are non-zero then, Cv(cz + du) = (1, 1, 1) > inf{Cv(z), Cv(u)}. If exactly one of c or d is zero then,
Cv(cz + du) = (1, 1

3 , 2
3 ) = inf{Cv(z), Cv(u)}. Hence Ỹ is a 3-polar fuzzy vector space.

Definition 10. Let Ỹ = (Y, Cv) be an mF vector space over K. A set of vectors {xk}n
k=1 is known as mF

linearly independent in Ỹ if

1. {xk}n
k=1 is linearly independent,

2. Cv(
n
∑

k=1
ckxk) =

n∧
k=1

Cv(ckxk) for all {ck}n
k=1 ⊂ K.

Definition 11. A set of vectors B = {xk}n
k=1 is known to be an mF basis in Ỹ if B is a basis in Y and condition

2 of Definition 10 is satisfied.
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Proposition 1. If Ỹ = (Y, Cv) is an mF vector space then any set of vectors with distinct jth, for each
1 ≤ j ≤ m, degree of membership is linearly independent and mF linearly independent.

Proposition 2. Let Ỹ = (Y, Cv) be an mF vector space then,

1. Cv(0) = supy∈Y Cv(y),
2. Cv(ay) = Cv(y) for all a ∈ K \ {0} and y ∈ Y,
3. If Cv(y) �= Cv(z) for some y, z ∈ Y then Cv(y + z) = Cv(y) ∧ Cv(z).

Remark 1. If B is an mF basis of Ỹ then the membership value of every element of Y can be calculated from the
membership values of basis elements, i.e., if u = ∑n

k=1 ckuk then,

Cv(u) = Cv(
n

∑
k=1

ckuk) =
n∧

k=1

Cv(ckuk) =
n∧

k=1

Cv(uk).

We now come to the main idea of this research paper called mF matroids.

Definition 12. Let Y be a non-empty finite set of elements and C ⊆ P(Y) be a family of mF subsets, P(Y) is
an mF power set of Y, satisfying the following the conditions,

1. If η1 ∈ C, η2 ∈ P(Y) and η2 ⊂ η1 then, η2 ∈ C,
where, η2 ⊂ η1 ⇒ η2(y) < η1(y) for every y ∈ Y.

2. If η1, η2 ∈ C and |supp(η1)| < |supp(η2)| then there exists η3 ∈ C such that
a. η1 ⊂ η3 ⊆ η1 ∪ η2,
where for any y ∈ Y, (η1 ∪ η2)(y) = sup{η1(y), η2(y)},
b. m(η3) ≥ inf{m(η1), m(η2)},
m(ηi) = inf{ηi(x)|x ∈ supp(ηi)}, i = 1, 2, 3.

Then the pairM(Y) = (Y, C) is called an mF matroid on Y, and C is a family of independent mF subsets
ofM(Y).

{δ : δ ∈ P(Y), δ /∈ C} is the family of dependent mF subsets inM(Y). A minimal mF dependent
set is called an m-polar fuzzy circuit. The family of all mF circuits is denoted by Cr(M). An mF circuit
having n number of elements is called an mF n-circuit. An mF matroid can be uniquely determined
from Cr(M) because the elements of C are those members of P(Y) that contain no member of Cr(M).
Therefore, the members of Cr(M) can be characterized with the following properties:

1. ∅ /∈ Cr(M),
2. If δ1 and δ2 are distinct and δ1 ⊆ δ2 then, supp(δ1) = supp(δ2),
3. If δ1, δ2 ∈ Cr(G) and for A ∈ P(Y), A(e) = inf{δ1(e), δ2(e)}, e ∈ supp(δ1 ∩ δ2) then there exists

δ3 such that δ3 ⊆ δ1 ∪ δ2 − {(e, A(e)}.

Proposition 3. If Ỹ = (Y, Cv) is an mF vector space of p× q column vectors over R, and C is the family of
linearly independent mF subsets ηi in Ỹ then (Y, C) is an mF matroid on Y.

Proposition 4. If M = (Y, C) is an mF matroid and y is an element of Y such that C ∪ {(y, A(y))},
A ∈ P(Y) is dependent. Then M(Y) has a unique mF circuit contained in C ∪ {(y, A(y))} and this mF
circuit contains {(y, A(y))}.

Definition 13. Let Y be a non-empty universe. For any mF matroid, the mF rank function μr : P(Y) →
[0, ∞)m is defined as,

μr(ξ) = sup{|η| : η ⊆ ξ and η ∈ C}
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where, |η| = ∑
y∈Y

η(y). Clearly the mF rank function of an mF matroid possesses the following properties:

1. If η1, η2 ∈ P(Y) and η1 ⊆ η2 then μr(η1) ≤ μr(η2),
2. If η ∈ P(Y) then, μr(η) ≤ |η|,
3. If η ∈ C then, μr(η) = |η|.

We now describe the concept of mF matroids by various examples.

1. A trivial example of an mF matroid is known as an mF uniform matroid which is defined as,

C = {η ∈ P(Y) : |supp(η)| ≤ l}.

It is denoted by Ul,n = (Y, C) where, l is any positive integer and |Y| = n. The mF circuit of Ul,n
contains those mF subsets δ such that |supp(δ)| = l + 1.
Consider the example of a 2-polar fuzzy uniform matroidM = (Y, C) where, Y = {e1, e2, e3} and
C = {η ∈ P(Y) : |supp(η)| ≤ 2} such that for any η ∈ P(Y), η(y) = τ(y), for all y ∈ Y where,

τ(y) =

⎧⎪⎨⎪⎩
(0.2, 0.3), y = e1

(0.4, 0.5), y = e2

(0.1, 0.3), y = e3

.

C ={∅, {(e1, 0.2, 0.3)}, {(e2, 0.4, 0.5)}, {(e3, 0.1, 0.3)}, {(e1, 0.2, 0.3), (e2, 0.4, 0.5)},

{(e2, 0.4, 0.5), (e3, 0.1, 0.3)}, {(e1, 0.2, 0.3), (e3, 0.1, 0.3)}}.

The 2-polar fuzzy circuit of M is Cr(M) = {(e1, 0.2, 0.3), (e2, 0.4, 0.5), (e3, 0.1, 0.3)}.
For η = {(e2, 0.4, 0.5), (e1, 0.2, 0.3)}, μr(η) = (0.6, 0.8).

2. mF linear matroid is derived from an mF matrix. Assume that Y represents the column labels of an
mF matrix and ηx denotes an mF submatrix having those columns labelled by Y. It is defined as,

C = {ηx ∈ P(Y) : columns of ηx are m− polar fuzzy linearly independent}.

For any ηx ∈ P(Y), |ηx| =
r
∑

k=1
sup{ηx(ak1), ηx(ak2), . . . , ηx(akc)}, η∗x = [aij]r×c.

Let A = {1, 2, 3, 4} be a set of 3-polar fuzzy 2× 1 vectors over R such that for any ηx ∈ P(Y),
ηx(y) = A(y) where,

A =

⎡⎢⎣ 1 2 3 4

(0.1, 0.2, 0.3) (0.3, 0.4, 0.5) (0.5, 0.6, 0.7) (0.7, 0.8, 0.9)
(0.2, 0.3, 0.4) (0.4, 0.5, 0.6) (0.6, 0.7, 0.8) (0.8, 0.9, 1.0)

⎤⎥⎦.

Take C = {∅, {1}, {2}, {4}, {1, 2}, {2, 4}} then,M(A) = (A, C) is a 3-polar fuzzy matroid on A.
The family of dependent 3-polar fuzzy subsets of matroid M(A) is {{3}, {1, 3}, {1, 4}, {2, 3},
{3, 4}} ∪ {η : η ⊆ A, |supp(η)| ≥ 3}. For η = {2, 4}, μr(η) = (1.5, 1.7, 1.9).

3. An mF partition matroid in which the universe Y is partitioned into mF sets α1, α2, . . . , αr such that

C = {η ∈ P(Y) : |supp(η) ∩ supp(αi)| ≤ li, for all 1 ≤ i ≤ r}

for given positive integers l1, l2, . . . , lr. The circuit of an mF partition matroid is the family of those
mF subsets δ such that |supp(δ) ∩ supp(αi)| = li + 1.

4. The very important class of mF matroids are derived from mF graphs. The detail is discussed in
Proposition 5. The mF matroid derived using this method is known as m-polar fuzzy cycle matroid,
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denoted byM(G). Clearly C is an independent set in G if and only if for each η ∈ C, supp(≡) is
not edge set of any cycle. Equivalently, the members ofM(G) are mF graphs η such that supp(η)
is a forest.
Consider the example of an mF fuzzy cycle matroid (Y, C) where, Y = {y1, y2, y3, y4, y5} and for
any, η ∈ C, β(y) = D(y), (C, D) is an mF multigraph on Y as shown in Figure 1.

Figure 1. 3-polar fuzzy multigraph.

By Proposition 5, Cr(G) = {{(y5, 0.2, 0.3, 0, 4)}, {(y2, 0.1, 0.2, 0.3), (y3, 0.1, 0.2, 0.3)}, {(y1, 0.1,
0.2, 0.3), (y2, 0.1, 0.2, 0.3), (y4, 0.5, 0.6, 0.7)}, {(y1, 0.1, 0.2, 0.3), (y3, 0.1, 0.2, 0.3), (y4, 0.5, 0.6, 0.7)}}.

C ={∅, {(y1, 0.1, 0.2, 0.3)}, {(y2, 0.1, 0.2, 0.3)}, {(y3, 0.1, 0.2, 0.3)}, {(y1, 0.1, 0.2, 0.3),

(y2, 0.1, 0.2, 0.3)}, {(y1, 0.1, 0.2, 0.3), (y4, 0.5, 0.6, 0.7)}, {(y4, 0.5, 0.6, 0.7)}, {(y2, 0.1, 0.2, 0.3),

(y4, 0.5, 0.6, 0.7)}, {(y1, 0.1, 0.2, 0.3), (y3, 0.1, 0.2, 0.3)}, {(y3, 0.1, 0.2, 0.3), (y4, 0.5, 0.6, 0.7)}}

For η = {(y2, 0.1, 0.2, 0.3), (y4, 0.5, 0.6, 0.7)}, μr(η) = (0.6, 0.8, 1.0).

Proposition 5. For any mF graph G = (C, D) on Y, if Cr is the family of mF edge sets δ such that supp(δ) is
the edge set of a cycle in G∗. Then Cr is the family of mF circuits of an mF matroid on Y.

Proof. Clearly conditions 1 and 2 of Definition 12 hold. To prove condition 3, let δ1 and δ2 be mF edge
sets of distinct cycles that have yz as a common edge. Clearly, δ3 = δ1 ∪ δ2 − {(yz, D(yz))} is an mF
edge set of a cycle and so condition 3 is satisfied.

Example 2. For any mF graph G = (C, D) and 0 ≤ t ≤ 1 define,
Et = {yz ∈ supp(D)|D(yz) ≥ t},
Ft = {H|H is a forest in the crisp graph (Y, Et)},
Ct = {E(F)|F ∈ Ft}, E(F) is the edge set of F.
Clearly (Et , Ct) is a matroid for each 0 ≤ t ≤ 1. Define D = {η ∈ P(Y)|ηt ∈ Ct , 0 ≤ t ≤ 1} then, (Y,D) is
an mF cycle matroid.

Theorem 1. Let M = (Y, C) be an mF matroid and, for each 0 ≤ t ≤ 1, define Ct = {ηt |η ∈ C}.
Then (Y, Ct) is a matroid on Y.

Proof. We prove conditions 1 and 2 of Definition 12. Assume that η1t ∈ Ct and α ⊆ η1t . Define an mF
set η2 ∈ P(Y) by

η2(y) =

{
t y ∈ α,
0 otherwise.
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Clearly η2 ⊆ η1,η2 ∈ C and η2t = α therefore, α ∈ Ct. To prove condition 2, let α1, α2 ∈ Ct and
|α1| < |α2|. Then there exist η1 and η2 such that η1t = α1 and η2t = α2. Define η̂1 and η̂2 by

η̂1(y) =

{
t y ∈ η1,

0 otherwise .
η̂2(y) =

{
t y ∈ η2,

0 otherwise .

It is clear that supp(η̂1) < supp(η̂2). Since M is an mF matroid, there exists η3 such that
η̂1 ⊆ η3 ⊆ η̂1 ∪ η̂2. Since

η̂1 ∪ η̂2(y) =

{
t y ∈ α1 ∪ α2,

0 otherwise.

Therefore, there exists a set α3 such that

η3(y) =

{
t y ∈ α3,

0 otherwise.

Also, α1 ⊆ α3 ⊆ α1 ∪ α2, α3 ∈ Ct. HenceMt is a matroid on Y.

Remark 2. Let M = (Y, C) be an mF matroid and, for each 0 ≤ t ≤ 1, Mt = (Y, Ct) be the matroid on a
finite set Y as given in Theorem 1. As Y is finite therefore, there is a finite sequence 0 < t1 < t2 < . . . < tn

such thatMti = (Y, Cti ) is a crisp matroid, for each 1 ≤ i ≤ n, and

1. t0 = 0, tn ≤ 1,
2. Cw �= ∅ if 0 < w ≤ tn and Cw = ∅ if w > tn,
3. If ti < w, s < ti+1 then, Cw = Cs, 0 ≤ i ≤ n− 1,
4. If ti < w < ti+1 < s < ti+2 then, Cw ⊃ Cs, 0 ≤ i ≤ n− 2.

The sequence 0, t1, t2, . . . , tn is known as fundamental sequence ofM. Let t̄i =
1
2 (ti−1 + ti) for 1 ≤ i ≤ n.

The decreasing sequence of crisp matroidsMt1 ⊃Mt2 ⊃ . . . ⊃Mtn is known asM-indeced matroid sequence.

Theorem 2. If Y is a finite set and 0 = t0 < t1 < t2 < . . . < tn ≤ 1 is a finite sequence such that (Y, Ct1),
(Y, Ct2), . . . , (Y, Ctn) is a sequence of crisp matroids. For each m-tuple t, where, ti−1 < t ≤ ti (1 ≤ i ≤ n),
assume that Ct = Cti and Ct = ∅ if tn < t ≤ 1.

Define C∗ = {η ∈ P(Y)|ηt ∈ Ct, 0 < t ≤ 1} thenM = (Y, C∗) is an mF matroid.

Proof. Let η1 ∈ C∗, η2 ∈ P(Y), and η2 ⊆ η1. Clearly η1t ∈ Ct, η2t ⊆ η1t, and since (Y, Ct) is a crisp
matroid therefore, η2t ∈ Ct, so η2 ∈ C∗.

Assume that η1, η2 ∈ C∗ and |supp(η2)| < |supp(η1)|. Define

β = inf{ inf
y∈supp(η1)

C∗(y), inf
y∈supp(η2)

C∗(y)}.

It is easy to see that supp(η1), supp(η2) ∈ Cβ. Since Cβ is the family of independent sets of a crisp
matroid therefore, there exists an independent set A ∈ Cβ such that

supp(η2) ⊂ A ⊆ supp(η1) ∪ supp(η2).

Let

η3(y) =

⎧⎪⎪⎨⎪⎪⎩
η2(y) y ∈ supp(η2),

β y ∈ A \ supp(η2),

0 otherwise.

The mF set η3 satisfies condition 2 of Definition 12 and hence (Y, C∗) is an mF matroid.

233

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 319

Theorem 3. LetM = (Y, C) be an mF matroid and for each 0 < t ≤ 1,Mt = (Y, Ct) is a crisp matroid by
Theorem 2. Let C∗ = {η ∈ P(Y) : ηt ∈ Ct, 0 < t ≤ 1}. Then C = C∗.

Proof. It is clear from the definition of C∗ that C ⊆ C∗. To prove the converse part, we proceed on the
following steps.

Suppose that {α1, α2, . . . , αp} is the non-zero range of η ∈ C such that α1 > α2 > . . . > αp > 0.
For each 1 ≤ i ≤ p, ηαi ∈ Cαi and ηαi−1 ⊂ ηαi . Define f i ∈ P(Y) by

fi(y) =

{
αi if y ∈ ηαi ,

0 otherwise .

Since ηαi ∈ Cαi therefore, fi ∈ C and
q⋃

i=1
fi = η. Assume that supp(η) = {y1, y2, . . . , ynp}. We use

the induction method to show that η ∈ C. Since f1 ∈ C therefore, it remains to show that if
l−1⋃
i=1

fi ∈ C

then,
l⋃

i=1
fi ∈ C, for each l < p. Define

g1(y) =

{
αl if y ∈ {y1, y2, . . . , ynl−1 , ynl−1+1},

0 otherwise .

Since for each 1 ≤ i ≤ l − 1, αi > αl therefore, g1 ⊆ fl which implies that g1 ∈ C. Define
h1 ∈ P(Y) by

h1(y) =

{
η(ynl−1+1) = αl if y = ynl−1+1,

0 otherwise .

Since by induction method
l−1⋃
i=1

fi ∈ C and supp(
l−1⋃
i=1

fi) = {y1, y2, . . . , ynl−1}, m(
l−1⋃
i=1

fi) > αl

therefore, condition 2(b) of Definition 12 implies that
l−1⋃
i=1

fi ∪ h1 ∈ C. If nl−1 + 1 = nl then,
l⋃

i=1
fi ∈ C

and we are done. But if on the other hand, nl−1 + 1 < nl then define,

g2(y) =

{
αl if y ∈ {y1, y2, . . . , ynl−1 , ynl−1+1, ynl−1+2},

0 otherwise .

Since for each 1 ≤ i ≤ l − 1, αi > αl therefore, g2 ⊆ fl which implies that g2 ∈ C. Define
h2 ∈ P(Y) by

h2(y) =

{
η(ynl−1+2) = αl if y = ynl−1+2,

0 otherwise .

Since supp(
l−1⋃
i=1

fi ∪ h1) = {y1, y2, . . . , ynl−1 , ynl−1+1}, m(
l−1⋃
i=1

fi ∪ h1) > αl therefore, condition 2(b)

of Definition 12 implies that
l−1⋃
i=1

fi ∪ h1 ∪ h2 ∈ C. If nl−1 + 1 = nl then,
l⋃

i=1
fi ∈ C and we are done. If o

nl−1 + 2 < nl then we continue the process and obtain an mF set βn =
l−1⋃
i=1

fi ∪ h1 ∪ h2 ∪ . . . ∪ hn such

that βn =
l⋃

i=1
fi which completes the induction procedure and the proof.

The submodularity of an mF rank function μr is quiet difficult and it depends on Theorem 3 and
the following definition.
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Definition 14. Let t0, t1, . . . , tn be the fundamental sequence of an mF matroid. For any m-tuple t, 0 < t ≤ 1,
define Ct = Cti

where, ti−1 < t ≤ ti and ti =
1
2 (ti−1 + ti). If t > tn take Ct = Ct. Define

C = {η ∈ P(Y) : ηt ∈ Ct, for each t, 0 < t ≤ 1}.

ThenM = (Y, C) is known as closure ofM = (Y, C).

Example 3. We now explain the concept of closure by an example of a 3-polar fuzzy uniform matroid M =

(Y, C) where, Y = {y1, y2, y3} and C = {η ∈ P(Y) : |supp(η)| ≤ 1} such that for any η ∈ P(Y),
η(y) = τ(y), for all y ∈ Y where,

τ(y) =

⎧⎪⎨⎪⎩
(0.1, 0.2, 0.3), y = y1

(0.2, 0.3, 0.4), y = y2

(0.3, 0.4, 0.5), y = y3

.

C = {∅, {(y1, 0.1, 0.2, 0.3)}, {(y2, 0.2, 0.3, 0.4)}, {(y3, 0.3, 0.4, 0.5)}} .

The fundamental sequence ofM is {t0 = 0, t1 = (0.1, 0.2, 0.3), t2 = (0.2, 0.3, 0.4), t3 = (0.3, 0.4, 0.5)}.
From routine calculations, t1 = (0.05, 0.1, 0.15), t2 = (0.15, 0.25, 0.35), t3 = (0.25, 0.35, 0.45). Since for any
0 < t ≤ 1, Ct = Cti

, 1 ≤ i ≤ 3, therefore, Ct1
= Ct1 , Ct2

= {{y2}, {y3}}, Ct2
= {{y3}}. Hence the closure

of C can be defined as,

C ={∅, {(y1, 0.1, 0.2, 0.3)}, {(y2, 0.2, 0.3, 0.4)}, {(y3, 0.3, 0.4, 0.5)}, {(y1, 0.1, 0.2, 0.3), (y2, 0.2, 0.3, 0.4)},

{(y1, 0.1, 0.2, 0.3), (y3, 0.3, 0.4, 0.5)}, {(y2, 0.2, 0.3, 0.4), (y3, 0.3, 0.4, 0.5)}}.

Theorem 4. The closureM = (Y, C) of an mF matroidM = (Y, C) is also an mF matroid.

The proof of this theorem is a clear consequence of Theorem 1.

Definition 15. An mF matroid with fundamental sequence t0, t1, . . . , tn is known as a closed mF matroid if
for each ti−1 < t ≤ ti , Ct = Cti .

Remark 3. Note that the closure of an mF matroid is closed and that it is the smallest closed mF matroid
containingM. Also the fundamental sequence ofM andM is same.

Lemma 1. If μr and μr are mF rank functions ofM = (Y, C) andM = (Y, C), respectively then μr = μr.

Assume that M = (Y, C) is an mF matroid with fundamental sequence t0, t1, . . . , tn and rank
function μr. To prove that μr is submodular, we now define a function μ̂r : P(Y)→ [0, ∞)m which is
also submodular.

For any η ∈ P(Y), let 0 < α1 < α2 < . . . < αp be the non-zero range of η and β1 < β2 < . . . < βq
be the common refinement of t′is and α′js defined as,

{β1, β2, . . . , βq} = {α1, α2, . . . , αp} ∪ {t1, t2, . . . , tn}.

Ri is the rank function of crisp matroidMti = (Y, Cti ), for all 1 ≤ i ≤ n. For each integer j, there
is an integer i, 1 ≤ i ≤ n, such that ti−1 ≤ βj−1 < βj ≤ ti. Then (i, j) is known as a correspondence pair.
For each correspondence pair (i, j), define

γj(η) =

⎧⎨⎩(βj − βj−1)Ri(ηβj
) if βj ≤ tn,

0 if βj > tn.
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Since for each βj−1 < β < βj, ηβ = ηβj
. Define a new function μ̂r : P(Y)→ [0, ∞)m by

μ̂r =
q

∑
j=1

γj(η). (1)

Lemma 2. Assume that 0 < ρ1 < ρ2 < . . . < ρp and {β1, β2, . . . , βq} ⊆ {ρ1,ρ2, . . . ,ρp}. For each i,
1 ≤ i ≤ n, let (i, j) be the correspondence pair if ti−1 ≤ ρj−1 < ρj ≤ ti. For each correspondence pair (i, j),
define γ∗j : P(Y)→ Rm by

γ∗j (η) =

{
(ρj − ρj−1)Ri(ηρj) if ρj ≤ tn,

0 if ρj > tn.

Then
q
∑

j=1
γj(η) =

q
∑

j=1
γ∗j (η).

Theorem 5. If t0, t1, . . . , tn is the fundamental sequence of an mF matroid M = (Y, C) and μ̂r is defined
by (1) then, μ̂r is submodular.

Proof. Let η1, η2 ∈ P(Y) and {α1, α2, . . . , αs}, {β1, β2, . . . , βr} be the non-zero ranges of η1 and η2,
respectively. Define

{ρ1,ρ2, . . . ,ρp} = {α1, α2, . . . , αs} ∪ {β1, β2, . . . , βr} ∪ {t0, t1, . . . , tn}.

Lemma 2 implies that μ̂r =
q
∑

j=1
γ∗j (η). Since ρj − ρj−1 > 0, for each j therefore, by the

submodularity of the crisp rank function Ri,

p

∑
j=1

(ρj − ρj−1)Ri(η1t j)−
p

∑
j=1

(ρj − ρj−1)Ri(η2t j) ≥
p

∑
j=1

(ρj − ρj−1)Ri(η1t j ∪ η2t j)

+
p

∑
j=1

(ρj − ρj−1)Ri(η1t j ∩ η2t j).

⇒ μ̂r(η1) + μ̂r(η1) ≥ μ̂r(η1 ∪ η2) + μ̂r(η1 ∩ η2).

Example 4. Consider a 3-polar fuzzy matroid given in Example 3. For η = {(y2, 0.2, 0.3, 0.4)}, the non-zero
range of η is {α1 = (0.2, 0.3, 0.4)}. Define

{β1, β2, β3} = {t0, t1, t2, t3} ∪ {α1} = {β1 = (0.1, 0.2, 0.3), β2 = (0.2, 0.3, 0.4), β3 = (0.3, 0.4, 0.5)}.

Since t1 = β1 < β2 = t2 therefore, (2, 2) is correspondence pair. Similarly (3, 3) is also a correspondence
pair. Now γ1(η) = 0,

γ2(η) = (β2 − β1)R2(ηβ2
) = (0.1, 0.1, 0.1), γ3(η) = (β3 − β2)R3(ηβ3

) = (0, 0, 0).

Thus μ̂r(η) = (0.1, 0.1, 0.1).

Theorem 6. For any mF matroid, μr ≥ μ̂r.
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Proof. Since μr = μr therefore, assume that M is a closed mF matroid and μr(η1) �= 0 for some
η1 ∈ P(Y). Suppose that there exists η2 ∈ C η2 ⊆ η1 such that μr(η1) = |η2|. We will show that
μ̂r(η1) ≤ |η2|.

Take t0 < t1 < . . . < tn as the fundamental sequence of M and α1 < α2 < . . . < αp as the
non-zero range of η1. Let β1 < β2 < . . . < βq be defined by

{β1, β2, . . . , βq} = {α1, α2, . . . , αp} ∪ {t0, t1, . . . , tn}.

For each 0 < β ≤ 1, define

Cη1
β = {C ∈ Cβ : C ⊆ η1β}, β∗ = sup{β : Cη1

β �= ∅}.

Remark 2 implies that β∗ = βi∗ , for some βi∗ ∈ {βj}
q
j=1. The following properties of βi∗ always hold:

(i) βi∗ ≤ tn, μ̂r(η1) =
i∗

∑
i=1

γi(η1).

(ii) For η2 ∈ C, η2 ⊆ η1 we have, 0 < η2(y) ≤ βi∗ for each y ∈ supp(η2).

For each integer i ≤ i∗, let |Cβi
| = Rj(ηβi

) where, Aβi
∈ Cη1

βi
, ti−1 ≤ βj−1 < βj ≤ ti and

Ri is rank function of Mti . Clearly, |Cβi∗ | < |Cβi∗−1
| < . . . < |Cβ1

| and define a new sequence
Dβi∗ ⊆ Dβi∗−1

⊆ . . . ⊆ Dβ1
such that Dβi∗ = Cβi∗ and

Dβi∗−1
=

⎧⎨⎩Dβi∗ if |Dβi∗ | = |Cβi∗−1
|,

C′βi∗−1
if |Dβi∗ | < |Cβi∗−1

|,

where, |C′βi∗−1
| = |Cβi∗−1

| and Dβi∗ ⊆ C′βi∗−1
which is by condition 2 of Definition 12. Proceeding in

this way, we can find a sequence {Dβi∗ }
i∗
i=1 such that

(i) Dβi
is maximal in (Y, Cη1

βi
)

(ii) |Dβi
| = Rj(ηβi

) where, i and j are such that ti−1 ≤ βj−1 < βj ≤ ti.

For each positive integer i, 1 ≤ i ≤ i∗, define η2i as mF set such that supp(η2i) = Dβi
with

non-zero range {βi}. Let η2 =
i∗⋃

i=1
η2i. Since η2 ⊆ η1 and η2 ∈ C∗ therefore, by Theorem 3,

μr(η1) = |η2| ≥
i∗

∑
i=1

(βi − βi−1)|Dβi
| = μ̂r(η1).

4. Applications

mF matroids have interesting applications in graph theory, combinatorics and algebra.
mF matroids are used to discuss the uncertain behaviour of objects if the data have multipolar
information and have many applications in addition to Mathematics.

4.1. Decision Support Systems

mF matroids can be used in decision support systems to find the ordering of n tasks if each task
constitutes m linguistic values. All tasks are available at 0 time and each task has a profit p associated
with its m properties and a deadline d. The profit pj can be gained if each mF task j is completed at the
deadline dj. The problem is to find the mF ordering of tasks to maximize the total profit. mF matroids
can also be used in the secret sharing problem to share parts of secret information among different
participants such that we have multipolar information about each participant.
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It doesn’t look like an mF matroid problem because the mF matroid problem asks to find an
optimal mF subset, but this problem requires one to find an optimal schedule. However, this is an mF
matroid problem. The profit, penalty and expense of any ordering can be determined by an mF subset
of tasks that are on or before time. For an mF subset S of deadlines {d1, d2, . . . , dn} corresponding to
tasks T = {t1, t2, . . . , tn}, if there is a ordering such that every task in S is on or before time, and all
tasks out of S are late. The procedure for the selection of tasks has net time complexity is O(n2n).

4.2. Ordering of Machines/Workers for Certain Tasks

An important application is to divide a set of workers into different groups to perform a specific
task for which they are eligible. Consider the example of allocating a collection of tasks to a set of
workers W1, W2, . . . , W7 who are eligible to perform that task. The problem is to assign a task to a
group of workers to be fulfilled in required time, accuracy and cost. The 3-polar fuzzy set of workers is,

W ′ ={(W1, 0.8, 0.9, 0.9), (W2, 0.7, 0.9, 0.7), (W3, 0.7, 0.7, 0.6), (W4, 0.7, 0.9, 0.8), (W5, 0.6, 0.9, 0.8),

(W6, 0.6, 0.8, 0.75), (W7, 0.7, 0.7, 0.6)}.

The degree of membership of each worker shows the time taken by them, the accuracy of the
output if they work on the task and cost of the worker for service. The problem is to determine a
collection of workers for tasks T1 and T2 such that,

T1 = {(Wi, W ′(Wi)) | P1 ◦Wi ≤ 0.7, P2 ◦Wi ≥ 0.7, P3 ◦Wi ≤ 0.7},

T2 = {(Wi, W ′(Wi)) | P1 ◦Wi ≤ 0.8, P2 ◦Wi ≥ 0.9, P3 ◦Wi ≤ 0.9}.

The 3-polar fuzzy set of workers for both the tasks are,

T1 = {(W2, 0.7, 0.9, 0.7), (W3, 0.7, 0.7, 0.6), (W6, 0.6, 0.8, 0.75), (W7, 0.7, 0.7, 0.6)},

T2 = {(W1, 0.8, 0.9, 0.9), (W3, 0.7, 0.7, 0.6), (W4, 0.7, 0.9, 0.8)}.

The workers W2, W3, W6, W7 are preferable for task T1 and W1, W3, W4 are preferable for task T2.

4.3. Network Analysis

mF models can be used in network analysis problems to determine the minimum number of
connections for wireless communication. The procedure for the selection of minimum number of
locations from a wireless connection is explained in the following steps.

1. Input the n number of locations L1, L2, . . . , Ln of wireless communication network.
2. Input the adjacency matrix ξ = [Lij]n2 of membership values of edges among locations.
3. From this adjacency matrix, arrange the membership values in increasing order.
4. Select an edge having minimum membership value.
5. Repeat Step 4 so that the selected edge does not create any circuit with previous selected edges.
6. Stop the procedure if the connection between every pair of locations is set up.

Here we explain the use of mF matroids in network analysis. The 2-polar fuzzy graph in Figure 2
represents the wireless communication between five locations L1, L2, L3, L4, L5.
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Figure 2. Wireless communication.

The degree of membership of each edge shows the time taken and cost for sending a message
from one location to the other. Each pair of vertices is connected by an edge. However, in general we
do not need connections among all the vertices because the vertices linked indirectly will also have a
message service between them, i.e., if there is a connection from L2 to L3 and L3 to L4, then we can
send a message from L2 to L4, even if there is no edge between L2 and L4. The problem is to find a
set of edges such that we are able to send message between every two vertices under the condition
that time and cost is minimum. The procedure is as follows. Arrange the membership values of edges
in increasing order as, {(0.5, 0.28), (0.6, 0.33), (0.6, 0.37), (0.7, 0.41), (0.7, 0.44), (0.7, 0.46), (0.7, 0.48),
(0.8, 0.5), (0.8, 0.51), (0.8, 0.53)}. At each step, select an edge having minimum membership value
so that it does not create any circuit with previous selected edges. The 2-polar fuzzy set of selected
edges is,

{(L3L4, 0.5, 0.28), (L3L5, 0.6, 0.33), (L1L5, 0.6, 0.37), (L2L4, 0.7, 0.41), (L1L4, 0.7, 0.46)}.

The communication network with minimum number of locations and cost is shown in Figure 3.

Figure 3. Communication network with minimum connections.

Figure 3 shows that only five connections are needed to communicate among given locations in
order to minimize the cost and improve the network communication.
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5. Conclusions

In this research paper, we have applied the powerful technique of mF sets to extend the theory
of vector spaces and matroids. The mF models give more accuracy, precision and compatibility to
the system when more than one agreements are to be dealt with. We have mainly introduced the
idea of the mF matroid, implemented this concept to graph theory, linear algebra and have studied
various examples including the mF uniform matroid, mF linear matroid, mF partition matroid and mF
cycle matroid. We have also presented the idea of mF circuit, closure of mF matroid and put special
emphasis on mF rank function. The paper is concluded with some real life applications of mF matroids
in decision support system, ordering of machines to perform specific tasks and detection of minimum
number of locations in wireless network in order to motivate the idea presented in this research paper.
We are extending our work to (1) decision support systems based on intuitionistic fuzzy soft circuits,
(2) fuzzy rough soft circuits, (3) and neutrosophic soft circuits.
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Abstract: A multi-objective bi-matrix game model based on fuzzy goals is established in this paper.
It is shown that the equilibrium solution of such a game model problem can be translated into the
optimal solution of a multi-objective, non-linear programming problem. Finally, the results of this
paper are demonstrated through a numerical example.

Keywords: multi-objective fuzzy bi-matrix game; equilibrium solution; multi-objective
nonlinear programming

1. Introduction

When the bet is a small amount of money, the multi-objective bi-matrix game model is accurate.
In real life, however, the interests of the relationship are more complex, particularly in some areas
of the economy where the interests of the two players is precisely opposite. It is well known that
these games are two person non-zero-sum games, called multi-objective bi-matrix games. Therefore,
the research of multi-objective bi-matrix game problems has become more and more widespread in
recent years.

The fuzzy set theory was introduced initially in 1965 by Zadeh [1]. The fuzziness occurring in
game problems is categorized as fuzzy game problems. Single objective fuzzy game problems and
related problems attached a wide range of research [2–9]. Tan et al. [5] presented a concept of the
potential function for solving fuzzy games problems. They also reached a conclusion that the solution
of fuzzy games and the marginal value of potential functions are equivalent. Chakeri et al. [10] used
fuzzy logic to determine the priority of the pay-off based on the linguistic preference relation and
proposed the notion of linguistic Nash equilibriums. Fuzzy preference relation has been widely used
in fuzzy game theory [7–9,11]. At the same time, they [11] utilize the same method [10] to determine
the priority of the pay-off based on fuzzy preference relation. In order to deal with this game model, a
new approach was put forward. Moreover, Sharifian et al. [6] also applied fuzzy linguistic preference
relation to fuzzy game theory.

The notions of max–min and min–max values were the earliest applied to solve the multi-objective
game model in [12]. Roy et al. [13] presented solution procedures in view of the multi-objective
bi-matrix game model. Besides, they [14] applied fuzzy optimization means to solve the fuzzy
multicriteria bi-matrix game model. Nishizaki et al. [15–17] solved the multi-objective bi-matrix game
via the resolution approach. Chen et al. [18,19] proposed an alternative technique for solving fuzzy
multi-objective bi-matrix game problems through genetic algorithms in [20]. Angelov [21] proposed a
new concept of the optimization problem based on degrees of satisfaction. Precup [22] introduced a
new optimisation criteria in the development of fuzzy controllers with dynamics based on an attractive
development method. In order to solve numerical optimization problems, a new algorithm was
introduced in [23]. Ghosn et al. [24] investigated the use of parallel genetic algorithms in order to
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discuss the open-shop scheduling problem. Roy et al. [25] provided a mathematical optimization
model for solving the multiple objective bi-matrix goal game problem on account of the entropy
circumstance. Additionally, to solve the formulated mathematical model, they proposed a solution
procedure of the fuzzy optimization method.

Since Wierzbicki [26] proposed equilibrium solutions for game problems, he analysed
multi-objective game models based on pay-offs related to scalarising functions. There is a debate about
the existence of equilibrium solutions of multicriteria bi-matrix games put forward by Borm et al. [27].
Nishizaki et al. [17] studied an equilibrium solution of multi-objective bi-matrix games. Qiu et al.
[28] discussed the relationship of two fuzzy numbers via the lower limit− 1

2 of the possibility degree.
They also concluded that the equilibrium solution of multiple objective fuzzy games and the optimal
solution of multi-objective linear optimization problems are of equal value. Bector et al. [2] only
considered a single objective bi-matrix game based on fuzzy goals. Having gained enlightenment from
[2,29–31], we will consider a multiple objective bi-matrix game based on fuzzy goals, so as to obtain
better results.

The outline of this paper is as follows. Section 2 is about basic definitions and recalls results with
regard to a crisp multi-objective bi-matrix game. In Section 3, a multi-objective bi-matrix game model
based on fuzzy goals is established. Section 4 presents a kind of multicriteria, non-linear programming
problem in some special cases. The results of this paper are demonstrated through a numerical example
in Section 5.

2. Preliminaries

In this section, we recall some basic definitions and preliminaries. Further, we shall describe a
crisp multi-objective bi-matrix game model in [29].

Definition 1. [32] The set of mixed strategies for Player I is denoted by:

Sm = {x = (x1, x2, · · · , xm)
T ∈ R

m|
m

∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , m.} (1)

Similarly, the set of mixed strategies for Player II is denoted by:

Sn = {y = (y1, y2, · · · , yn)
T ∈ R

n|
n

∑
j=1

yj = 1, yj ≥ 0, j = 1, 2, · · · , n.} (2)

where xT is the transposition of x, Rm and Rn are m- and n-dimensional Euclidean spaces.

The multiple pay-off matrices of Player I and Player II in multi-objective bi-matrix games are
denoted by [29]:

A1 =

⎛⎜⎝ a1
11 · · · a1

1n
...

. . .
...

a1
m1 · · · a1

mn

⎞⎟⎠ , · · · , Ar =

⎛⎜⎝ ar
11 · · · ar

1n
...

. . .
...

ar
m1 · · · ar

mn

⎞⎟⎠ (3)

and

B1 =

⎛⎜⎝ b1
11 · · · b1

1n
...

. . .
...

b1
m1 · · · b1

mn

⎞⎟⎠ , · · · , Bs =

⎛⎜⎝ bs
11 · · · bs

1n
...

. . .
...

bs
m1 · · · bs

mn

⎞⎟⎠ (4)

respectively. Here, Player I and Player II have r and s objectives, respectively. Without any loss of
generality, we assume that the Player I and Player II are both maximized players.
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A multi-objective bi-matrix game (MOBG) model is taken as:

MOBG = (Sm, Sn, Ak(1, 2, · · · , r), Bl(l = 1, 2, · · · , s)).

Definition 2. [25] Let A = (A1, A2, · · · , Ar). When Player I chooses a mixed strategy x ∈ Sm, the expected
pay-off of Player I is denoted by:

E (x, y) = xT Ay = [E1 (x, y) , E2 (x, y) , · · · , Er (x, y)]
=
[
xT A1y, xT A2y, · · · , xT Ary

]
=

[
m
∑

i=1

n
∑

j=1
a1

ijxiyj,
m
∑

i=1

n
∑

j=1
a2

ijxiyj, · · · ,
m
∑

i=1

n
∑

j=1
ar

ijxiyj

] (5)

Similarly, let B = (B1, B2, · · · , Bs), when Player II chooses a mixed strategy y ∈ Sn, the expected pay-off
of Player II is denoted by:

E (x, y) = xT By = [E1 (x, y) , E2 (x, y) , · · · , Es (x, y)]
=
[
xT B1y, xT B2y, · · · , xT Bsy

]
=

[
m
∑

i=1

n
∑

j=1
b1

ijxiyj,
m
∑

i=1

n
∑

j=1
b2

ijxiyj, · · · ,
m
∑

i=1

n
∑

j=1
bs

ijxiyj

] (6)

Definition 3. [29] Suppose Dk = {xT Aky : (x, y) ∈ Sm × Sn} ⊆ R be the domain of kth pay-offs of Player I.
Then a fuzzy goal g̃k

I of Player I corresponding to the kth pay-offs is a fuzzy set on Dk, whose the membership
function is defined by:

ug̃k
I

: Dk → [0, 1], (7)

Similarly, suppose Dl = {xT Bly : (x, y) ∈ Sm × Sn} ⊆ R be the domain of lth payoff of Player II. Then a
fuzzy goal g̃l

I I of Player II corresponding to the lth pay-offs is a fuzzy set on Dl , whose the membership function
is defined by:

vg̃l
I I

: Dl → [0, 1]. (8)

3. A Multi-objective Bi-matrix Game with Fuzzy Goals

In this section, we first introduce the concepts of fuzzy sets and fuzzy numbers.
A fuzzy set F̃ of R is characterized by a membership function uF̃ : R→ [0, 1] [1]. An α-level set

of F̃ is given as [F̃]α = {x ∈ R : uF̃(x) ≥ α} for each α ∈ (0, 1]. A strict α-level set of F̃ is given by
(F̃)α = {x ∈ R : uF̃(x) > α} for each α ∈ (0, 1]. We define the set [F̃]0 by [F̃]0 = {x ∈ R : uF̃(x) > 0},
where F denotes the closure of a crisp set F. A fuzzy set F̃ is said to be a fuzzy number if it satisfies the
following conditions [33]:

(1) F̃ is normal, i.e., there exists an x0 ∈ R such that uF̃(x0) = 1;
(2) F̃ is convex, i.e., uF̃(λx1 + (1− λ)x2) ≥ min{uF̃(x1), uF̃(x2)}, for all x1, x2 ∈ R and λ ∈ [0, 1];
(3) F̃ is upper semi-continuous;
(4) [F̃]0 is compact.

In the following, we establish a multi-objective bi-matrix game model in the fuzzy environment.
Suppose Sm, Sn, Ak (k = 1, 2, · · · , r), and Bl (l = 1, 2, · · · , s) be as introduced in Section 2.

Definition 4. Let A = (A1, A2, · · · , Ar). When Player I chooses a mixed strategy x ∈ Sm, an aspiration level
of Player I with respect to the kth pay-offs is denoted by:

Vk
0 = max

y∈Sn
Ek (x, y) = max

y∈Sn
xT Aky, (k = 1, 2, · · · , r).
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Similarly, let B = (B1, B2, · · · , Bs), when Player II chooses a mixed strategy y ∈ Sn, an aspiration level
of Player II with respect to the lth pay-offs is denoted by:

Wl
0 = max

x∈Sm
El (x, y) = max

x∈Sm
xT Bly, (l = 1, 2, · · · , s).

Therefore, we obtain that the multi-objective bi-matrix game based on fuzzy goals, denoted by
MOBGFG, can be presented as:

MOBGFG = (Sm, Sn, Ak, Bl , Vk
0 ,�, Wl

0,�, (k = 1, 2, · · · , r; l = 1, 2, · · · , s)) (9)

where � and � are the fuzzified versions of symbols ≥ and ≤, respectively in [34].
Let t, a, and p ∈ R (p > 0), then the membership function of the fuzzy set F̃ defining the fuzzy

inequality t �p a, where this fuzzy inequality t �p a can be interpreted as “t essentially greater than or
equal to a with tolerance error p”, can be defined by [2]:

uF̃(t) =

⎧⎪⎨⎪⎩
1, t ≥ a,
1− ( a−t

p ), a− p ≤ t ≤ a,
0, t < a− p.

(10)

Based on the above discussion, let pk
0 and p

′k
0 (k = 1, 2, · · · , r) (respectively, ql

0 and q
′l
0 (l =

1, 2 · · · , s)) be the positive tolerance errors of Player I (respectively, Player II) about the fuzzy
inequalities, with respect to kth pay-offs (respectively, lth pay-offs). Thus the game MOBGFG
model becomes:

MOBGFG = (Sm, Sn, Ak, Bl , Vk
0 , pk

0, p
′k
0 , Wl

0, ql
0, q

′l
0 ,�,�, (k = 1, 2, · · · , r; l = 1, 2, · · · , s)) (11)

Definition 5. (x̄, ȳ) ∈ Sm × Sn is called a pair of equilibrium solution of the game (MOBGFG) model if:

xT Akȳ �pk
0

Vk
0 , k = 1, 2, · · · , r; ∀x ∈ Sm,

x̄T Bly �ql
0

Wl
0, l = 1, 2, · · · , s; ∀y ∈ Sn,

x̄T Akȳ �
p′k0

Vk
0 , k = 1, 2, · · · , r,

x̄T Bl ȳ �
q′l0

Wl
0, l = 1, 2, · · · , s.

(12)

In order to deal with the above game (MOBGFG) model, we can get the following theorem.

Theorem 1. Suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2) if and only if we have that
(x̄, ȳ) is a pair of equilibrium solution of the game (MOBGFG) model. Additionally, λ̄ is the security level of
satisfaction of Player I and Player II. Vk

0 (k = 1, 2, · · · , r) and Wl
0 (l = 1, 2, · · · , s) are the aspiration levels of

Player I and II, respectively.

(MONLP2) max λ (13)

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤ Wl

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥ Wl

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

Proof. Since (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model. By using
Definition 5, we can get that the equilibrium solution of the game (MOBGFG) model and the
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following multiple objective fuzzy optimization problem (MOFOP) are of equal value.

(MOFOP) Find (x, y) ∈ Sm× ∈ Sn subject to:

Ak
i y�pk

0
Vk

0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BTl

j x�ql
0
Wl

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky�

p′k0
Vk

0 , (k = 1, 2, · · · , r),

xT Bly�
q′l0

Wl
0, (l = 1, 2, · · · , s),

(14)

where Ak
i (i = 1, 2, · · · , m) is the ith row of the matrix Ak and Bl

j (j = 1, 2, · · · , n) is the jth column of

the matrix Bl .
By using (9), we obtain that membership functions uk

i (Ak
i y), (i = 1, 2, · · · , m) (respectively,

vl
j(BlT

j x), (j = 1, 2, · · · , n)) of fuzzy inequalities Ak
i y �pk

0
Vk

0 (∀y ∈ Sn) (respectively, BlT

j x �ql
0

Wl
0

(∀x ∈ Sm)) can be presented as:

uk
i (Ak

i y) =

⎧⎪⎪⎨⎪⎪⎩
1, Ak

i y ≤ Vk
0 ,

1− Ak
i y−Vk

0
pk

0
, Vk

0 ≤ Ak
i y ≤ Vk

0 + pk
0,

0, Ak
i y ≥ Vk

0 + pk
0,

(15)

and

vl
j(BlT

j x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, BlT

j x ≤ Wl
0,

1− BlT
j x−Wl

0

ql
0

, Wl
0 ≤ BlT

j x ≤ Wl
0 + ql

0,

0, BlT

j x ≥ Wl
0 + ql

0.

(16)

respectively.
Similarly, we have that the non-linear membership functions of the fuzzy inequalities xT Aky �

p′k0
Vk

0 (respectively, xT Bly �
q′l0

Wl
0) can be expressed as:

ug̃k
I
(xT Aky) =

⎧⎪⎪⎨⎪⎪⎩
1, xT Aky ≥ Vk

0 ,

1− Vk
0−xT Aky

p′k0
, Vk

0 ≥ xT Aky ≥ Vk
0 − p

′k
0 ,

0, xT Aky ≤ Vk
0 − p

′k
0 ,

(17)

and

vg̃l
I I
(xT Bly) =

⎧⎪⎪⎨⎪⎪⎩
1, xT Bly ≥ Wl

0,

1− Wl
0−xT Bl y

q′l0
, Wl

0 ≥ xT Bly ≥ Wl
0 − q

′l
0 ,

0, xT Bly ≤ Wl
0 − q

′l
0 .

(18)

respectively.
Inspired by [35], by combining (10)–(13) we obtain that the problem (MOFOP) model is

equivalent to the multicriteria non-linear programming (MONLP1) problem.
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(MONLP1) max λ

Subject to λ ≤ 1− Ak
i y−Vk

0
pk

0
, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

λ ≤ 1− BlT
j x−Wl

0

ql
0

, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

λ ≤ 1 + xT Aky−Vk
0

p′k0
, (k = 1, 2, · · · , r),

λ ≤ 1 + xT Bl y−Wl
0

q′l0
, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(19)

That is, by simplifying the above problem, that is equal to:

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤ Wl

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥ Wl

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(20)

Then, we have that (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model if and
only if (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2).

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤ Wl

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥ Wl

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(21)

Remark 1. Let λ̄ = 1 and suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2). Then, we
obtain that the game (MOBG) model is a special case of the game (MOBGFG) model.

Remark 2. Let λ̄ = 1 and suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2). Then the
problem (MONLP2) model changes into:

(MONLP3) max λ

subject to Ak
i y ≤ Vk

0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,
BlT

j x ≤ Wl
0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky ≥ Vk
0 , (k = 1, 2, · · · , r),

xT Bly ≥ Wl
0, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(22)
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4. Special Case:

In this section, we present a multicriteria non-linear programming problem in some special cases.

Theorem 2. Let Vk
0 = ak, pk

0 = p
′k
0 = ak − ak, Wl

0 = b
l
, and ql

0 = q
′l
0 = b

l − bl . Suppose (x̄, ȳ) are a pair
of equilibrium solutions of the game (MOBGFG) model if and only if (x̄, ȳ, λ̄) is an optimal solution of the
problem (MONLP4).

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn,

(23)

where
ak = min

x∈Sm
min
y∈Sn

xT Aky = min
x∈Sm

min
y∈Sn

ak
ij, ak = max

x∈Sm
max
y∈Sn

xT Aky = max
x∈Sm

max
y∈Sn

ak
ij,

bl = min
x∈Sm

min
y∈Sn

xT Bly = min
x∈Sm

min
y∈Sn

bl
ij, b

l
= max

x∈Sm
max
y∈Sn

xT Bly = max
x∈Sm

max
y∈Sn

bl
ij.

Proof. Since (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model and Vk
0 = ak, and

pk
0 = p

′k
0 = ak − ak, Wl

0 = b
l
, ql

0 = q
′l
0 = b

l − bl . By using Definition 5 and Theorem 1, we can get that
the equilibrium solutions of the game (MOBGFG) model and the following multiple objective fuzzy
optimization problem (MOFOP1) are of equal value.

(MOFOP1) Find (x, y) ∈ Sm× ∈ Sn subject to

Ak
i y �ak−ak ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BTl

j x �
b

l−bl b
l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky �ak−ak ak, (k = 1, 2, · · · , r),

xT Bly �
b

l−bl b
l
, (l = 1, 2, · · · , s),

(24)

Inspired by [2,29], now combining (10), (11), (12) and (13), we take membership functions
uk

i (Ak
i y) (i = 1, 2, · · · , m), vl

j(BlT

j x) (j = 1, 2, · · · , n), ug̃k
I
(xT Aky) and vg̃l

I I
(xT Bly) (k = 1, 2, · · · , r; l =

1, 2, · · · , s) as:

uk
i (Ak

i y) =

⎧⎪⎪⎨⎪⎪⎩
1, Ak

i y ≤ ak,

1− Ak
i y−ak

ak−ak , ak ≤ Ak
i y ≤ 2ak − ak,

0, Ak
i y ≥ 2ak − ak,

(25)

vl
j(BlT

j x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, BlT

j x ≤ b
l
,

1− BlT
j x−b

l

b
l−bl

, b
l ≤ BlT

j x ≤ 2b
l − bl ,

0, BlT

j x ≥ 2b
l − bl .

(26)

ug̃k
I
(xT Aky) =

⎧⎪⎨⎪⎩
1, xT Aky ≥ ak,

1− ak−xT Aky
ak−ak , ak ≥ xT Aky ≥ ak,

0, xT Aky ≤ ak,

(27)
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and

vg̃l
I I
(xT Bly) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, xT Bly ≥ b

l
,

1− b
l−xT Bl y

q′l0
, b

l ≥ xT Bly ≥ bl ,

0, xT Bly ≤ bl .

(28)

Similarly, we obtain that the problem (MOFOP1) model changes into:

(MONLP5) max λ

subject to λ ≤ 1− Ak
i y−ak

ak−ak , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

λ ≤ 1− BlT
j x−b

l

b
l−bl

, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

λ ≤ 1 + xT Aky−ak

ak−ak , (k = 1, 2, · · · , r),

λ ≤ 1 + xT Bl y−b
l

b
l−bl

, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(29)

That is, the problem (MONLP5) model is equal to:

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(30)

Then, we have that (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model if and
only if (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP4).

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(31)

Theorem 3. Suppose (x̄, ȳ, λ̄) are an optimal solution of the problem (MONLP2). Let Vk
0 = ak, and pk

0 =

p
′k
0 = ak − ak, Wl

0 = b
l
, ql

0 = q
′l
0 = b

l − bl . Then the problem (MONLP2) model changes into the following
problem (MONLP4).
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Proof. Since (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2), then we can get:

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤ Wl

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥ Wl

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(32)

Now, let Vk
0 = ak, pk

0 = p
′k
0 = ak − ak, Wl

0 = b
l
, and ql

0 = q
′l
0 = b

l − bl . Hence, we obtain that the
problem (MONLP2) model changes into:

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(33)

Then, we have that (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP4).

5. Example

Now, we consider the following multi-objective fuzzy bi-matrix game (MOBGFG) model.

Example 1. A the multi-objective bi-matrix game is considered. The multiple pay-off matrices of the Player I
and Player II are taken as:

A1 =

⎛⎜⎝ 6 3 4
3 6 8
7 3 4

⎞⎟⎠ , A2 =

⎛⎜⎝ 9 2 7
4 5 8
2 7 3

⎞⎟⎠ , A3 =

⎛⎜⎝ 5 1 2
3 4 8
1 8 1

⎞⎟⎠ ,

and

B1 =

⎛⎜⎝ 9 1 4
0 6 3
5 2 8

⎞⎟⎠ , B2 =

⎛⎜⎝ 1 6 7
8 2 3
4 9 3

⎞⎟⎠ , B3 =

⎛⎜⎝ 8 2 3
−5 6 0
−3 1 6

⎞⎟⎠
respectively.

We now solve this problem with the above model. Thus, by Theorem 2, we have:

a1 = min
x∈S3

min
y∈S3

a1
ij = 3, V1

0 = a1 = max
x∈S3

max
y∈S3

a1
ij = 8, p1

0 = p
′1
0 = a1 − a1 = 5; (34)

a2 = min
x∈S3

min
y∈S3

a2
ij = 2, V2

0 = a2 = max
x∈S3

max
y∈S3

a2
ij = 9, p2

0 = p
′2
0 = a2 − a2 = 7; (35)

a3 = min
x∈S3

min
y∈S3

a3
ij = 1, V3

0 = a3 = max
x∈S3

max
y∈S3

a3
ij = 8, p3

0 = p
′3
0 = a3 − a3 = 7; (36)

b1 = min
x∈S3

min
y∈S3

b1
ij = 0, W1

0 = b
1
= max

x∈S3
max
y∈S3

b1
ij = 9, q1

0 = q
′1
0 = b

1 − b1 = 9; (37)
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b2 = min
x∈S3

min
y∈S3

b2
ij = 1, W2

0 = b
2
= max

x∈S3
max
y∈S3

b2
ij = 9, q2

0 = q
′2
0 = b

2 − b2 = 8; (38)

b3 = min
x∈S3

min
y∈S3

b3
ij = −5, W3

0 = b
3
= max

x∈S3
max
y∈S3

b3
ij = 8, q3

0 = q
′3
0 = b

3 − b3 = 13. (39)

By the above numerical values, we can get that the equilibrium solutions of the above model and
the following multiple objective fuzzy optimization problem (MOFOP2) are of equal value.

(MOFOP2) Find (x, y) ∈ S3× ∈ S3

subject to 6y1 + 3y2 + 4y3 �5 8, 9x1 + 0x2 + 5x3 �9 9,
3y1 + 6y2 + 8y3 �5 8, 1x1 + 6x2 + 2x3 �9 9,
7y1 + 3y2 + 4y3 �5 8, 4x1 + 3x2 + 8x3 �9 9,
9y1 + 2y2 + 7y3 �7 9, 1x1 + 8x2 + 4x3 �8 9,
4y1 + 5y2 + 8y3 �7 9, 6x1 + 2x2 + 9x3 �8 9,
2y1 + 7y2 + 3y3 �7 9, 7x1 + 3x2 + 3x3 �8 9,
5y1 + 1y2 + 2y3 �7 8, 8x1 − 5x2 − 3x3 �13 8,
3y1 + 4y2 + 8y3 �7 8, 2x1 + 6x2 + 1x3 �13 8,
1y1 + 8y2 + 1y3 �7 8, 3x1 + 0x2 + 6x3 �13 8,

6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3 �5 8,
9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3 �7 9,
5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3 �7 8,
9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3 �9 9,
1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3 �8 9,
8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3 �13 8.

(40)

Now we get the following membership functions based on the above fuzzy inequalities.

u1
1(6y1 + 3y2 + 4y3) =

⎧⎪⎨⎪⎩
1, 6y1 + 3y2 + 4y3 ≤ 8,
1− 6y1+3y2+4y3−8

5 , 8 ≤ 6y1 + 3y2 + 4y3 ≤ 13,
0, 6y1 + 3y2 + 4y3 ≥ 13,

(41)

u1
2(3y1 + 6y2 + 8y3) =

⎧⎪⎨⎪⎩
1, 3y1 + 6y2 + 8y3 ≤ 8,
1− 3y1+6y2+8y3−8

5 , 8 ≤ 3y1 + 6y2 + 8y3 ≤ 13,
0, 3y1 + 6y2 + 8y3 ≥ 13,

(42)

u1
3(7y1 + 3y2 + 4y3) =

⎧⎪⎨⎪⎩
1, 7y1 + 3y2 + 4y3 ≤ 8,
1− 7y1+3y2+4y3−8

5 , 8 ≤ 7y1 + 3y2 + 4y3 ≤ 13,
0, 7y1 + 3y2 + 4y3 ≥ 13,

(43)

u2
1(9y1 + 2y2 + 7y3) =

⎧⎪⎨⎪⎩
1, 9y1 + 2y2 + 7y3 ≤ 9,
1− 9y1+2y2+7y3−9

7 , 9 ≤ 9y1 + 2y2 + 7y3 ≤ 16,
0, 9y1 + 2y2 + 7y3 ≥ 16,

(44)

u2
2(4y1 + 5y2 + 8y3) =

⎧⎪⎨⎪⎩
1, 4y1 + 5y2 + 8y3 ≤ 9,
1− 4y1+5y2+8y3−9

7 , 9 ≤ 4y1 + 5y2 + 8y3 ≤ 16,
0, 4y1 + 5y2 + 8y3 ≥ 16,

(45)

u2
3(2y1 + 7y2 + 3y3) =

⎧⎪⎨⎪⎩
1, 2y1 + 7y2 + 3y3 ≤ 9,
1− 2y1+7y2+3y3−9

7 , 9 ≤ 2y1 + 7y2 + 3y3 ≤ 16,
0, 2y1 + 7y2 + 3y3 ≥ 16,

(46)
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u3
1(5y1 + 1y2 + 2y3) =

⎧⎪⎨⎪⎩
1, 5y1 + 1y2 + 2y3 ≤ 8,
1− 5y1+1y2+2y3−8

7 , 8 ≤ 5y1 + 1y2 + 2y3 ≤ 15,
0, 5y1 + 1y2 + 2y3 ≥ 15,

(47)

u3
2(3y1 + 4y2 + 8y3) =

⎧⎪⎨⎪⎩
1, 3y1 + 4y2 + 8y3 ≤ 8,
1− 3y1+4y2+8y3−8

7 , 8 ≤ 3y1 + 4y2 + 8y3 ≤ 15,
0, 3y1 + 4y2 + 8y3 ≥ 15,

(48)

u3
3(1y1 + 8y2 + 1y3) =

⎧⎪⎨⎪⎩
1, 1y1 + 8y2 + 1y3 ≤ 8,
1− 1y1+8y2+1y3−8

7 , 8 ≤ 1y1 + 8y2 + 1y3 ≤ 15,
0, 1y1 + 8y2 + 1y3 ≥ 15,

(49)

v1
1(9x1 + 0x2 + 5x3) =

⎧⎪⎨⎪⎩
1, 9x1 + 0x2 + 5x3 ≤ 9,
1− 9x1+0x2+5x3−9

9 , 9 ≤ 9x1 + 0x2 + 5x3 ≤ 18,
0, 9x1 + 0x2 + 5x3 ≥ 18.

(50)

v1
2(1x1 + 6x2 + 2x3) =

⎧⎪⎨⎪⎩
1, 1x1 + 6x2 + 2x3 ≤ 9,
1− 1x1+6x2+2x3−9

9 , 9 ≤ 1x1 + 6x2 + 2x3 ≤ 18,
0, 1x1 + 6x2 + 2x3 ≥ 18.

(51)

v1
3(4x1 + 3x2 + 8x3) =

⎧⎪⎨⎪⎩
1, 4x1 + 3x2 + 8x3 ≤ 9,
1− 4x1+3x2+8x3−9

9 , 9 ≤ 4x1 + 3x2 + 8x3 ≤ 18,
0, 4x1 + 3x2 + 8x3 ≥ 18.

(52)

v2
1(1x1 + 8x2 + 4x3) =

⎧⎪⎨⎪⎩
1, 1x1 + 8x2 + 4x3 ≤ 9,
1− 1x1+8x2+4x3−9

8 , 9 ≤ 1x1 + 8x2 + 4x3 ≤ 17,
0, 1x1 + 8x2 + 4x3 ≥ 17.

(53)

v2
2(6x1 + 2x2 + 9x3) =

⎧⎪⎨⎪⎩
1, 6x1 + 2x2 + 9x3 ≤ 9,
1− 6x1+2x2+9x3−9

8 , 9 ≤ 6x1 + 2x2 + 9x3 ≤ 17,
0, 6x1 + 2x2 + 9x3 ≥ 17.

(54)

v2
3(7x1 + 3x2 + 3x3) =

⎧⎪⎨⎪⎩
1, 7x1 + 3x2 + 3x3 ≤ 9,
1− 7x1+3x2+3x3−9

8 , 9 ≤ 7x1 + 3x2 + 3x3 ≤ 17,
0, 7x1 + 3x2 + 3x3 ≥ 17.

(55)

v3
1(8x1 − 5x2 − 3x3) =

⎧⎪⎨⎪⎩
1, 8x1 − 5x2 − 3x3 ≤ 8,
1− 8x1−5x2−3x3−8

13 , 8 ≤ 8x1 − 5x2 − 3x3 ≤ 21,
0, 8x1 − 5x2 − 3x3 ≥ 21.

(56)

v3
2(2x1 + 6x2 + 1x3) =

⎧⎪⎨⎪⎩
1, 2x1 + 6x2 + 1x3 ≤ 8,
1− 2x1+6x2+1x3−8

13 , 8 ≤ 2x1 + 6x2 + 1x3 ≤ 21,
0, 2x1 + 6x2 + 1x3 ≥ 21.

(57)

v3
3(3x1 + 0x2 + 6x3) =

⎧⎪⎨⎪⎩
1, 3x1 + 0x2 + 6x3 ≤ 8,
1− 3x1+0x2+6x3−8

13 , 8 ≤ 3x1 + 0x2 + 6x3 ≤ 21,
0, 3x1 + 0x2 + 6x3 ≥ 21.

(58)

ug̃1
I
(xT A1y) =

⎧⎪⎨⎪⎩
1, xT A1y ≥ 8,

1− 8−xT A1y
5 , 8 ≥ xT A1y ≥ 3,

0, xT A1y ≤ 3,
(59)
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ug̃2
I
(xT A2y) =

⎧⎪⎨⎪⎩
1, xT A2y ≥ 9,

1− 9−xT A2y
7 , 9 ≥ xT A2y ≥ 2,

0, xT A2y ≤ 2,
(60)

ug̃3
I
(xT A3y) =

⎧⎪⎨⎪⎩
1, xT A3y ≥ 8,

1− 8−xT A3y
7 , 8 ≥ xT A3y ≥ 1,

0, xT A3y ≤ 1,
(61)

vg̃1
I I
(xT B1y) =

⎧⎪⎨⎪⎩
1, xT B1y ≥ 9,

1− 9−xT B1y
9 , 9 ≥ xT B1y ≥ 0,

0, xT B1y ≤ 0,
(62)

vg̃2
I I
(xT B2y) =

⎧⎪⎨⎪⎩
1, xT B2y ≥ 9,

1− 9−xT B2y
8 , 9 ≥ xT B2y ≥ 1,

0, xT B2y ≤ 1,
(63)

and

vg̃3
I I
(xT B3y) =

⎧⎪⎨⎪⎩
1, xT B3y ≥ 8,

1− 8−xT B3y
13 , 8 ≥ xT B3y ≥ −5,

0, xT B3y ≤ −5,
(64)

where

xT A1y = 6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3,

xT A2y = 9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3,

xT A3y = 5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3, (65)

xT B1y = 9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3,

xT B2y = 1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3,

xT B3y = 8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3.

Now using (21) and (22), we have the following multiple objective non-liner programming
problem (MONLP6).
(MONLP6) max λ

subject to 6y1 + 3y2 + 4y3 + (λ− 1)5 ≤ 8, 9x1 + 0x2 + 5x3 + (λ− 1)9 ≤ 9,
3y1 + 6y2 + 8y3 + (λ− 1)5 ≤ 8, 1x1 + 6x2 + 2x3 + (λ− 1)9 ≤ 9,
7y1 + 3y2 + 4y3 + (λ− 1)5 ≤ 8, 4x1 + 3x2 + 8x3 + (λ− 1)9 ≤ 9,
9y1 + 2y2 + 7y3 + (λ− 1)7 ≤ 9, 1x1 + 8x2 + 4x3 + (λ− 1)8 ≤ 9,
4y1 + 5y2 + 8y3 + (λ− 1)7 ≤ 9, 6x1 + 2x2 + 9x3 + (λ− 1)8 ≤ 9,
2y1 + 7y2 + 3y3 + (λ− 1)7 ≤ 9, 7x1 + 3x2 + 3x3 + (λ− 1)8 ≤ 9,
5y1 + 1y2 + 2y3 + (λ− 1)7 ≤ 8, 8x1 − 5x2 − 3x3 + (λ− 1)13 ≤ 8,
3y1 + 4y2 + 8y3 + (λ− 1)7 ≤ 8, 2x1 + 6x2 + 1x3 + (λ− 1)13 ≤ 8,
1y1 + 8y2 + 1y3 + (λ− 1)7 ≤ 8, 3x1 + 0x2 + 6x3 + (λ− 1)13 ≤ 8,

6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3 + (1− λ)5 ≥ 8,
9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3 + (1− λ)7 ≥ 9,
5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3 + (1− λ)7 ≥ 8,
9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3 + (1− λ)9 ≥ 9,
1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3 + (1− λ)8 ≥ 9,
8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3 + (1− λ)13 ≥ 8,

0 ≤ λ ≤ 1, x ∈ S3, y ∈ S3.

(66)
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For some sample values of λ, we obtain the optimal solutions of the problem (MONLP6) for
Player I and Player II in Table 1. Similarly, for other values of λ ∈ [0, 1], we can obtain the optimal
solutions of the problem (MONLP6) model through the same approach.

In particular, let λ̄ = 0.2885, then we can have that (x̄1 = 0.1, x̄2 = 0.1, x̄3 = 0.8) and
(ȳ1 = 0.6, ȳ2 = 0.3, ȳ3 = 0.1) are the mixed strategies of Player I and Player II, respectively.

Table 1. Strategies of Example 1.

Strategies λ̄ x̄1 x̄2 x̄3 ȳ1 ȳ2 ȳ3

1 0.2285 0.1 0.2 0.7 0.4 0.2 0.4
2 0.2685 0.2 0.3 0.5 0.7 0.1 0.2
3 0.2720 0.6 0.2 0.2 0.2 0.5 0.3
4 0.2885 0.1 0.1 0.8 0.6 0.3 0.1
5 0.2971 0.5 0.1 0.4 0.5 0.2 0.3
6 0.3000 0.4 0.1 0.5 0.3 0.4 0.3

6. Conclusions

In this paper, we have presented a multi-objective bi-matrix game with a fuzzy goals (MOBGFG)
model. The inspiration of the model is from [2,29,30,36] and we have solved the game (MOBGFG)
model via a multi-objective non-linear programming method. We will discuss a situation where the
elements of matrices Ak(l = 1, 2, · · · , r) and Bl(l = 1, 2, · · · , s) of the game (MOBGFG) model become
fuzzy numbers in our future research. We have also concluded that the game model with entropy is
becoming more and more significant and it is related to practical problems of our real life [13,14,37].
Inspired by [37], we will extend the some results of this paper to the game (MOBGFG) model in an
entropy or fuzzy entropy environment.
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Abstract: Zadeh’s fuzzy set theory for imprecise or vague data has been followed by other successful
models, inclusive of Molodtsov’s soft set theory and hybrid models like fuzzy soft sets. Their success
has been backed up by applications to many branches like engineering, medicine, or finance.
In continuation of this effort, the purpose of this paper is to put forward a versatile methodology
for the valuation of goods, particularly the assessment of real state properties. In order to reach this
target, we develop the concept of (partial) valuation fuzzy soft set and introduce the novel problem
of data filling in partial valuation fuzzy soft sets. The use of fuzzy soft sets allows us to quantify the
qualitative attributes involved in an assessment context. As a result, we illustrate the effectiveness
and validity of our valuation methodology with a real case study that uses data from the Spanish real
estate market. The main contribution of this paper is the implementation of a novel methodology,
which allows us to assess a large variety of assets where data are heterogeneous. Our technique
permits to avoid the appraiser’s subjectivity (exhibited by practitioners in housing valuation) and the
well-known disadvantages of some alternative methods (such as linear multiple regression).

Keywords: fuzzy soft set; linear regression; valuation of goods; data filling; decision making

1. Introduction

Zadeh’s [1] fuzzy set theory deals with impreciseness or vagueness of evaluations by associating
degrees to which objects belong to a set. Its appearance boosted the rise of many related theories that
attempt to model specific decision problems. In particular, the hybridization of fuzzy sets with soft sets
as proposed by Molodtsov [2] (see also Maji et al. [3,4]) yields the notion of fuzzy soft set (Alcantud [5],
Ali [6], Ali and Shabir [7], Maji et al. [8]). Decision-making methodologies and applications have
proliferated and are the subject of relevant analyses on a regular basis. Among the most recent
papers that exemplify noteworthy fuzzy decision-making trends, we can cite Alcantud et al. [9,10],
Faizi et al. [11,12] and Zhang and Xu [13] in hesitant fuzzy sets, Zhan and Zhu [14] in (fuzzy) soft sets
and rough soft sets, Alcantud [15] in fuzzy soft sets, Ma et al. [16] in hybrid soft set models, Chen and
Ye [17] and Ye [18] in neutrosophic sets, Peng et al. [19] and Peng and Yang [20] in interval-valued
fuzzy soft sets, and Fatimah et al. [21] in (dual) probabilistic soft sets. With respect to applications, in a
clinical environment, Chang [22] uses the fuzzy sets theory and the so-called VIKOR (VIsekriterijumska
optimizacija i KOmpromisno Resenje) method to evaluate the service quality of two public and three
private medical centres in Taiwan, in the same context of uncertainty, subjectivity and linguistic
variables as our study; Espinilla et al. [23] apply a decision analysis tool for the early detection of
preeclampsia in women at risk by using the data of a sample of pregnant women with high risk
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of this disease; and Alcantud et al. [24] give a methodology for glaucoma diagnosis. On the other
hand, in the field of management, Zhang and Xu [13] deal with the problem of choosing material
suppliers by a manufacturer to purchase key components in order to reach a competitive advantage
in the market of watches; Xu and Xia [25] provide a management case study by using the hesitant
fuzzy elements to estimate the degree to which an alternative satisfies a criterion in a decision-making
process; Taş et al. [26] present new applications of a soft set theory and a fuzzy soft set theory to the
effective management of stock-out situations. In the field of finance, Xu and Xiao [27] apply the soft
set theory to select financial ratios for business failure prediction by using real data sets from Chinese
listed firms; Kalaichelvi [28] and Özgür and Taş [29] apply fuzzy soft sets to solve the investment
decision making problem.

In this work, we introduce the notion of partial valuation fuzzy soft set as a tool to perform
valuations of assets. Then, we apply a suitable valuation methodology, based on fuzzy soft sets,
to a real case study. Fuzzy soft sets, with their ability to codify partial membership with respect to
a predefined list of attributes, seem to be a useful tool to make decisions in this context. Unlike the
standard approach, which selects one from a set of possible alternatives, our decision is the valuation
that should be rightfully attached with some of the assets. In passing, we introduce rating procedures
as well as the problem of data filling in partial valuation fuzzy soft sets.

Our application concerns the real estate market. There is ample variety of real
estate valuation methods. Following [30], we classify them into traditional and advanced.
Traditional methods are: comparison method, investment/income capitalization method,
profits method, development/residual method, contractors/cost method, multiple regression method,
and stepwise regression method. As advanced valuation methods, we can cite: artificial neural
networks (ANNs), hedonic pricing method, spatial analysis methods, fuzzy logic, and autoregressive
integrated moving average (ARIMA).

In Spain, real estate valuation is regulated by Orden ECO/805/2003 (Ministerio de Economía,
2003) [31], which recommends the use of four of the previously mentioned methods: comparison,
investment/income capitalization, residual, and cost methods. There are some interesting works
that compare certain methods used in real estate appraisal, e.g., [32] compare fuzzy logic to multiple
regression analysis, or [33] compare artificial-intelligence methods with non-traditional regression
methods. We also find new hybrid methodologies, e.g., [34], which relies on the introduction of fuzzy
mathematics in a spatial error model.

We contribute to this growing literature by proposing a flexible mechanism that can be specialized
in several ways. The input data is a partial valuation fuzzy soft set that characterizes the problem.
The practitioner can select one from a sample of rating procedures in order to start the algorithm.
Then, a suitable regression analysis permits filling the missing data in the original partial valuation
fuzzy soft set. The structure of the available data often allows the researcher to perform sophisticated
regression analysis beyond the standard, linear case.

This paper is organized as follows. Section 2 recalls some notation and definitions related to soft
sets and fuzzy soft sets. Section 3 presents the main new notions in this paper, namely, valuation and
partial valuation fuzzy soft sets. We also define rating procedures for fuzzy soft sets and prove some
useful fundamental properties of these concepts. Section 4 briefly introduces data filling for partial
valuation fuzzy soft sets, and a flexible methodology is proposed in order to implement that concept.
Then, in Section 5, we take advantage of such design in order to valuate goods through a fictitious
streamlined example. In Section 6, we present an application to a real case study on the Spanish
real estate market. We also examine its traits in comparison with other standard methodologies.
We conclude in Section 7.
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2. Notation and Definitions

Let X denote a set. Then, P(X) is the set of all subsets of X. A fuzzy subset (also, FS) A of X is
a function μA : X → [0, 1]. For each x ∈ X, μA(x) ∈ [0, 1] is the degree of membership of x in that
subset. The set of all fuzzy subsets on X will be denoted by FS(X).

Now, we are going to recall some basic concepts such as soft sets and fuzzy soft sets.

2.1. Soft Sets and Fuzzy Soft Sets

In soft set theory, we refer to a universe of objects U, and to a universal set of parameters E.

Definition 1 ([2]). Let A be a subset of E. The pair (F, A) is a soft set over U if F : A −→ P(U).

The pair (F, A) in Definition 1 is a parameterized family of subsets of U, and A represents the
parameters. Then, for every parameter e ∈ A, we interpret that F(e) is the subset of U approximated
by e, also called the set of e-approximate elements of the soft set.

Other interesting investigations expanded the knowledge about soft sets. The notions of soft
equalities, intersections and unions of soft sets and soft subsets and supersets are defined in [4]. Various
types of soft subsets and soft equal relations are studied in [35]. Soft set based decision-making was
initiated by [3]. Further applications of soft sets in decision-making contexts were given, for example,
in [24,36,37].

The concept of soft set can be expanded so as to include fuzzy subsets approximated
by parameters:

Definition 2 ([8]). Let A be a subset of E. The pair (F, A) is a fuzzy soft set over U if F : A −→ FS(U),
where FS(U) denotes the set of all fuzzy sets on U.

The set of all fuzzy soft sets over U will be denoted as FS(U). Due to the natural identification
of subsets of U with FSs of U, any soft set can be considered a fuzzy soft set (cf., [5]). If, for example,
our universe of options are films that are parameterized by attributes, then fuzzy soft sets permit to
deal with properties like “funny” or “scary” for which partial memberships are almost compulsory.
However, soft sets are suitable only when properties are categorical, e.g., “Oscar awarded”, “3D
version available”, or “silent movie”.

In real practice, both U and A use to be finite. Then, k and n will denote the respective number of
elements of U = {o1, . . . , ok} and A = {e1, . . . , en}. In such case, soft sets can be represented either by
k× n matrices or in their tabular form (cf., [38]). The k rows are associated with the objects, and the n
columns are associated with the parameters. Both practical representations are binary, that is to say,
all cells are either 0 or 1. One can proceed in a similar way in fuzzy soft sets, but now the possible
values in the cells lie in the interval [0, 1].

A matrix representation of a soft set is shown in the following Example 1:

Example 1. Let U = {h1, h2, h3} be a universe of houses. Let A = {e1, e2, e3, e4} be the set of parameters,
attributes or house characteristics (e.g., “centrally located” or “includes a garage”). Define a soft set (F, A)

as follows:

1. h1 ∈ F(e1) ∩ F(e4), h3 �∈ F(e2) ∪ F(e3).
2. h2 ∈ F(e1) ∩ F(e3), h1 �∈ F(e2) ∪ F(e4).
3. h3 ∈ F(e2), h2 �∈ F(e1) ∪ F(e3) ∪ F(e4).

Table 1 captures the information defining (F, A).
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Table 1. Tabular representation of the soft set (F, A) in Example 1.

e1 e2 e3 e4

h1 1 0 0 1
h2 1 0 1 0
h3 0 1 0 0

Suppose that a soft set (F, A) can be expressed by the k× n matrix (tij)i,j. Then, the choice value
of object oi ∈ U is defined as ci = ∑n

j=1 tij. According to Maji, Biswas and Roy [3], an optimal choice
can be made by selecting any object oi such that ci = maxj=1,...,k cj. Put differently, any choice-value
maximizer is an acceptable solution to the problem.

However, fuzzy soft set decision making is far more complex thus controversial. Approaches to
that problem are included in [15,39–41].

Anyhow, the example above shows that fuzzy soft sets are a suitable tool to capture the
characteristics of complex representations of assets. Section 6 below clarifies this argument with
a real example.

2.2. Basic Operations

Basic operations among soft sets were established in Ali et al. [42]:

Definition 3 ([42]). Let (F, A) and (G, B) be soft sets over U, such that A∩ B �= ∅. The restricted intersection
of (F, A) and (G, B) is denoted by (F, A) ∩R (G, B) and it is defined as (F, A) ∩R (G, B) = (H, A ∩ B),
where H(e) = F(e) ∩ G(e) for all e ∈ A ∩ B.

Definition 4 ([42]). The extended intersection of the soft sets (F, A) and (G, B) over U is the soft set (H, C),
where C = A ∪ B, and ∀e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A \ B,
G(e), if e ∈ B \ A,
F(e) ∩ G(e), if e ∈ A ∩ B.

It is denoted by (F, A) ∩E (G, B) = (H, C).

Definition 5 ([42]). Let (F, A) and (G, B) be soft sets over U, such that A ∩ B �= ∅. The restricted
union of (F, A) and (G, B) is denoted by (F, A) ∪R (G, B) and it is defined as (F, A) ∪R (G, B) = (H, C),
where C = A ∩ B and for all e ∈ C, H(e) = F(e) ∪ G(e).

Definition 6 ([42]). The extended union of two soft sets (F, A) and (G, B) over U is the soft set (H, C),
where C = A ∪ B, and ∀e ∈ C,

H(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A \ B,
G(e), if e ∈ B \ A,
F(e) ∪ G(e), if e ∈ A ∩ B.

It is denoted by (F, A) ∪E (G, B) = (H, C).

Maji et al. [8] defined some relations and similar operations for fuzzy soft sets as follows.

Definition 7 ([8]). Let (F, A) and (G, B) be fuzzy soft sets over U. We say that (F, A) is a fuzzy soft subset of
(G, B) if A ⊂ B and F(e) is a fuzzy subset of G(e) for all e ∈ A.

When (F, A) is a fuzzy soft subset of (G, B) and (G, B) is a fuzzy soft subset of (F, A) we say that (F, A)

and (G, B) are fuzzy soft equal.

Definition 8 ([8]). Let (F, A) and (G, B) be fuzzy soft sets over U.
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Their intersection is (H, C) where C = A ∩ B and H(e) = F(e) ∩ G(e) for all e ∈ C = A ∩ B.
Their union is (H′, C′), where C′ = A ∪ B, and ∀e ∈ C′,

H′(e) =

⎧⎪⎨⎪⎩
F(e), if e ∈ A \ B,
G(e), if e ∈ B \ A,
F(e) ∪ G(e), if e ∈ A ∩ B.

3. Some Novel Concepts Related to Valuation Fuzzy Soft Sets

In this section, we are going to introduce the main new notions in this paper, namely, valuation and
partial valuation fuzzy soft sets. We also prove some fundamental properties of them.

Valuation and Partial Valuation Fuzzy Soft Sets

In order to define our novel notions, we refer to a universe U of k objects, and to a universal set of
parameters E.

Definition 9. Let A be a subset of E. The triple (F, A, V) is a valuation fuzzy soft set over U when (F, A) is
a fuzzy soft set over U and V = (V1, . . . , Vk) ∈ Rk. Henceforth, we abbreviate a valuation fuzzy soft set by
VFSS. We denote by V(U) the set of all valuation fuzzy soft sets over U.

If we restrict Definition 9 to soft sets over U, a particular concept of valuation soft set is
naturally produced.

The motivation for valuation (fuzzy) soft sets is that, in many natural situations, option oi from U
is associated with a valuation, appraisal or assessment Vi, in addition to the standard parameterization
of U as a function of the attributes in A. For example, in the usual example where the options are
houses, this valuation may be the market price.

Such valuation can also be defined through elements from fuzzy soft set theory, or otherwise.
We proceed to formalize these ideas.

Definition 10. A rating procedure for fuzzy soft sets with attributes A on a universe U is a mapping

Π : FS(U) −→ V(U).

Every rating procedure associates each FSS over U with a VFSS over U. For example, one can
use scores associated with decision making mechanisms from the literature (e.g., fuzzy choice values,
the scores computed in [39], or the refined scores computed in [15]), in order to produce particularly
noteworthy rating procedures. We formalize them in the following definitions:

Definition 11. The fuzzy choice value rating procedure is defined by the expression Πc(F, A) = (F, A, VΠc =

(Π1
c , . . . , Πk

c)), where Πi
c = ci = ∑n

j=1 tij for each i = 1, . . . , c. Recall that ci is the fuzzy choice value of
option i.

Definition 12. Roy and Maji’s rating procedure is defined by the expression Πr(F, A) = (F, A, VΠr =

(Π1
r , . . . , Πk

r )), where Πi
r is the score Si associated with option i in the Algorithm in Section 3.1 of [39]

(or alternatively, si in Algorithm 1 in [15]).

Definition 13. Alcantud’s rating procedure is defined by the expression Πa(F, A) = (F, A, VΠa =

(Π1
a, . . . , Πk

a)), where Πi
a = Si is the score associated with option i in Algorithm 2 of [15].

In this paper, we are especially concerned with Definition 13. In order to make this paper
self-contained, we proceed to recall its construction.

We describe our fuzzy soft set (F, A) on k alternatives o1, . . . , ok in tabular form. Let tij denote its
cell (i, j) for each possible i, j. Now, for each parameter j = 1, ..., q, let Mj be the maximum membership
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value of any object (Mj = maxi=1,...,k tij). Then, we construct a k× k comparison matrix A = (aij)k×k,
where for each i, j, aij is the sum of the non-negative values in the finite sequence

ti1 − tj1

M1
,

ti2 − tj2

M2
, . . . ,

tiq − tjq

Mq
.

Of course, such matrix can also be expressed as a comparison table.
For each i = 1, . . . , k, let Ri be the sum of the elements in row i of A, and Ti be the sum of the

elements in column i of A. Finally, for each i = 1, . . . , k, the score of object i is Si = Ri − Ti.
The following toy example illustrates the notions above.

Example 2. Consider the fuzzy soft set (G, B) in Section 3.3 of [40]. Its tabular form is in Table 2.

Table 2. Tabular representation of the fuzzy soft set (G, B) in Example 2.

e1 e2 e3 e4 e5

o1 0.9 0.1 0.2 0.1 0.3
o2 0.19 0.3 0.4 0.3 0.4

The application of Definitions 11, 12 and 13 to (G, B) produces three respective VFSSs, namely,

(G, B, (Π1
c , Π2

c )) = (G, B, (1.60, 1.59)),

(G, B, (Π1
r , Π2

r )) = (G, B, (−3, 3)),

and
(G, B, (Π1

a, Π2
a)) = (G, B, (−1.29, 1.29)).

In order to obtain these results, we note that the fuzzy choice values ci in Definition 11, and the scores
si in Definition 12, are calculated in Table 6 of [40]. In addition, the scores Si associated with the options by
Definition 13 are computed in Figure 2 of [15].

These ci, si and Si scores produce the respective VFSSs above. Such VFSSs are summarized in Table 3.

Table 3. Summary of the tabular representations of the three VFSS in Example 2.

e1 e2 e3 e4 e5 Πi
c = ci Πi

r = si Πi
a = Si

o1 0.9 0.1 0.2 0.1 0.3 1.60 −3 −1.29
o2 0.19 0.3 0.4 0.3 0.4 1.59 3 1.29

In order to select a suitable rating procedure, Definition 13 is the natural choice that we
recommend for the valuation of fuzzy soft sets. Our advice is based on the following arguments.
Firstly, most authors agree that it seems untenable to use Definition 11, which is a simple adapted
version of choice values. Although choice values are widely acceptable in soft set theory, they cannot
capture the subtleties of the more general model by FSSs. Therefore, we discard Definition 11.
Secondly, Definition 12 does not capture whether an alternative beats another one by a narrow
or a large margin, while Definition 13 explicitly rewards more ample differences in the degree of
satisfaction of the characteristics. In applications like real estate valuation, the wide range of the
feasible assessments demands a method that incorporates these differences. Otherwise, the results will
be affected by the odd fact that alternatives with striking differences in their characteristics should be
equally valuated, which is clearly a blunt mistake. For these reasons, we must discard Definition 12
and recommend Definition 13.

For practical purposes, the following definition will be very useful. It concerns the cases where
some of the valuations are unknown.
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Definition 14. Let A be a subset of E. The triple (F, A, V∗) is a partial valuation fuzzy soft set over U when
(F, A) is a fuzzy soft set over U and V∗ ∈ (R∪ {∗})k. We abbreviate partial valuation fuzzy soft set by PVFSS.

The set of all partial valuation fuzzy soft sets over U will be denoted as V∗(U). If we restrict
Definition 14 to soft sets over U, then we define the particular concept of partial valuation soft set.
As in the case of VFSSs, each option from U is associated with a valuation in addition to the standard
parameterization of U as a function of the attributes in A. However, in PVFSSs, it may happen that
some of the valuations is unknown or missing. In such case we represent the unknown information or
missing valuation data by the ∗ symbol.

Now the motivation for PVFSSs goes as follows. Quite often some options oi from U have
an intrinsic valuation Vi ∈ R (for example, market price), whereas the valuation of other options oj are
unknown (for example, because it is our own house that we want to put up for sale). The model by
PVFSSs permits collecting all that information in a concise format.

4. Data Filling in Partial Valuation Fuzzy Soft Sets

Valuation is an abstract concept that can be specialized in many ways. We can take advantage
of this issue in order to fill missing data in PVFSSs through an adjustable approach. The motivation
for this novel problem is the following. If there are missing valuation data in a PVFSS, then the
assessments of the corresponding alternatives are unknown. Should we need them (for example,
because the valuation of our house means the market price that we might expect when we put it up
for sale), then we must fill the missing data.

Therefore the problem of data filling in PVFSSs is associated with solving an original decision
making problem for alternatives that are characterized by FSSs.

Remark 1. The idea of partial valuations should not be mistaken with the well-known notion of incomplete
(fuzzy) soft sets [36,43–46]. In the latter case, the parameterization has missing values. In our model, the
parameterization of the universe is complete, whereas the valuation is not necessarily complete. Thus, the
statement of our data filling problem is original with this paper.

We proceed to define our class of procedures for the valuation of goods when (a) these goods are
characterized by parameters, and (b) there are comparable goods that are characterized by the same
parameters. In other words, we have information about the goods in the form of PVFSSs.

Our methodology is very direct. It works as follows. Let us select a rating procedure
(cf., Definition 10).

1. Let us input our PVFSS, namely, (F, A, V∗).
2. We use the rating procedure in order to associate a unique number with each alternative. In this

way, we obtain a VFSS (F, A, W) associated with the same FSS (F, A) as the original PVFSS.
3. Now, as long as there are two values in V∗ that belong to R (i.e., two valuations that are not

missing in the input data), we calculate a regression equation to fill the missing valuation data.

In order to run the regression, the independent variables (or abscissas) are the values Wi given
by the rating procedure that has been singled out, and the dependent variables (their respective
ordinates) are the corresponding Vi ∈ R valuations.

4. Once the regression function has been calculated, we can estimate the real values of the missing
valuations Vi = ∗ by its evaluations in the corresponding Wi values.

This procedure solves our original data filling problem.

This methodology is flexible because we can use any rating procedure to produce the abscissas of
the data plots and also because we can use regression models other than linear regression in order to
fill the missing data (step 3). Observe that in such cases we need a larger set of non-missing data.

The flowchart in Figure 1 summarizes the steps in our solution to the problem of data filling
for PVFSSs.
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Figure 1. Flow diagram with the solution to the data filling problem in Section 4.

Section 5 below presents an illustrative example in the context of valuation of goods. Later on,
in Section 6, we apply the current proposal to a real case study on the Spanish real estate market.

5. Valuation of Goods: An Example

For a given a list of options characterized by a PVFSS, the information on the known values can
be used to fill the missing data. Observe that at the end of the process we are valuating the assets with
missing values. Therefore, we can use the data filling procedures described in Section 4 in order to
make decisions e.g., as to which prizes should be attached to properties that are put into the market.

In this section, we explain this possibility with the following fully developed example. Table 4
represents a PVFSS denoted (F, A, V∗). It uses the input data of Table 6 of [15], which we complement
with valuations of some of the six alternatives.

Table 4. Tabular representation of the partial valuation fuzzy soft set (F, A, V∗) in Section 5. All Vis are
expressed in thousands of euros.

p1 p2 p3 p4 p5 p6 p7 Vi

o1 0.036 0.015 0.064 0.216 0.048 0.054 0.405 137
o2 0.144 0.084 0.360 0.045 0.036 0.020 0.175 109
o3 0.120 0.084 0.180 0.030 0.096 0.021 0.294 97
o4 0.504 0.192 0.108 0.006 0.048 0.048 0.096 ∗
o5 0.084 0.245 0.036 0.096 0.270 0.200 0.140 192
o6 0.216 0.315 0.042 0.108 0.224 0.126 0.135 198

We can interpret Table 4 as follows. We are interested in selling property o4, whose market value
we want to assess ourselves. The options oi include our property and other real state properties for
sale, and they are all characterized by the pj attributes. An inspection of the market shows that recent
purchases in the same area or street amounted to the respective Vi’s. With this practical information,
we are ready to valuate our property.
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Let us select the rating procedure Πa. We are ready to apply the remaining steps in Section 4.
As explained above, Πa valuates the options by using Alcantud’s scores. Therefore,

W = VΠa = (−1.3,−3.2,−3.78,−2.24, 5.24, 5.26)

because these figures are computed in Table 8 of [15]. Hence, the VFSS that we obtain at step 2 of our
data filling solution in Section 4 is (F, A, W).

We now compute the linear regression equation from the bivariate data that combine the known
valuations (137, 109, 97, 192, 198) at (F, A, V∗) with the corresponding components of our rating
procedure in the abscissas, which yields

((−1.3, 137), (−3.2, 109), (−3.78, 97), (5.24, 192), (5.26, 198)).

Observe that the 4th values have been discarded because the valuation of the 4th alternative
is missing.

Some easy computations (see for example [47]) show that the regression line equation in step 3 is

y = 142.02204039129 + 10.310719839438x,

with a coefficient of determination R2 = 0.9854. Figure 2 displays these computations.

Figure 2. The regression line in Section 5. The black square shows the valuation of the missing option
o4, with score −2.24 at the horizontal axis.

Finally, in step 4, we evaluate such function at the score value x = −2.24 associated with o4,
which produces the evaluation value 118.92602795094888.

In conclusion, option o4 should be valuated by 118, 926.03 euros.
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6. A Real Case Study

In this section, we propose a method to appraise real estate based on fuzzy logic as we concur
with [48] on “the applicability of fuzzy logic for expressing the inherent imprecision in the way that
people think and make decisions about the pricing of real state”. As far as we know, no methodology
based on fuzzy soft sets has ever been applied to real estate valuation using real data from the
market. We here use the novel procedure that relies on the new notion of data filling in PVFSSs
(as applied in Section 5) in order to provide an assessment of a property based on real data from
Almería, in Southeast Spain. The data were obtained by one of the coauthors who acted as appraiser
in 2016. Lastly, we compare our existing methodologies.

To be precise, for such real application, we intend to assess an apartment (the subject property)
using the data of six apartments (the comparable properties), with known sale prices. We also know
the values of four selected attributes (cf., Table 5): surface, number of bathrooms, quality, and number
of bedrooms. The values for the attribute “surface” are expressed in square meters. Apartment 6 has
1.5 bathrooms, which means that it has a complete bathroom with a bathtub and another bathroom
without a bathtub. There are other attributes, like location and age that we did not include in the table
because the six comparable properties and the subject property had similar values (they were located
in the same area and were built approximately in the same year).

The property we have to assess has a surface of 114.44 square meters, one bathroom, two bedrooms
and a “good” quality.

To apply the method explained in Sections 4 and 5, we first adapt the data to fuzzy soft set format,
and, for this purpose, we perform the following adjustments:

1. The maximum surface in our sample of seven apartments is 114.44 square meters. We have
divided the surface of each apartment by this maximum figure.

2. We have divided the number of bathrooms of each apartment by two, the maximum number of
bathrooms per apartment in our sample.

3. In order to rank the attribute “quality”, we have considered four levels of quality: bad, normal,
good, and luxury. We assign the values 0, 1/3, 2/3 and 1 to each level, respectively.

4. For the attribute “number of bedrooms”, we have divided the actual number of bedrooms by the
maximum number of bedrooms, which, in our sample, is four.

Table 6 shows the PVFSS that captures the statement of our real valuation problem.

Table 5. Attributes of the comparable six apartments. Source: Real data from the Spanish real estate
market (Almería, Spain, 2016).

Item Surface (sq. m.) No. of Bathrooms Quality No. of Bedrooms

h1 75 1 Normal 3
h2 105 2 Normal 4
h3 75 1 Normal 2
h4 90 2 Normal 3
h5 90 1.5 Normal 3
h6 105 2 Normal 3
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Table 6. The PVFSS in the real case study in Section 6. Sale prices are given in thousands of euros.

Item Surface (sq. m.) No. of Bathrooms Quality No. of Bedrooms Price

h1 0.52 0.5 1/3 0.75 95
h2 0.73 1 1/3 1 157
h3 0.52 0.5 1/3 0.5 115
h4 0.62 1 1/3 0.75 132
h5 0.62 0.75 1/3 0.75 132
h6 0.73 1 1/3 0.75 157
h7 1 0.5 2/3 0.5 ∗

6.1. Evaluation of the Apartment

If we select the rating procedure Πa, then we first compute the comparison table associated with
Table 6. Such item is given in Table 7 (the values have been rounded off for the purpose of presentation).

Table 7. Comparison table and scores associated with Table 6. The values have been rounded off.

h1 h2 h3 h4 h5 h6 h7 Si

h1 0 0 0.2500 0 0 0 0.2500 −3.1038
h2 0.9577 0 1.2077 0.3538 0.6038 0.2500 1 3.6000
h3 0 0 0 0 0 0 0 −4.8538
h4 0.6038 0 0.8538 0 0.2500 0 0.7500 1.1231
h5 0.3538 0 0.6038 0 0 0 0.5000 −0.6269
h6 0.7077 0 0.9577 0.1038 0.3538 0 0.7500 1.8500
h7 0.9808 0.7731 0.9808 0.8769 0.8769 0.7731 0 2.0114

By Definition 13, we obtain:

W = VΠa = (−3.1038, 3.6000,−4.8538, 1.1231,−0.6269, 1.8500, 2.0114).

These values are given by Alcantud’s scores Si in Table 7.
We now need to calculate the linear regression equation from the bivariate data that combine the

known valuations with the corresponding components of our rating procedure, which are

((−3.1038, 95), (3.6, 157), (−4.8538, 115), (1.1231, 132), (−0.6269, 132), (1.85, 157)).

Some easy computations show that the regression line equation is

y = 133.54 + 6.5722x,

where y are prices, x represent the scores, and the coefficient of determination takes an acceptable
value (R2 = 0.7516). Hence, for x = 2.0114, the value of the y variable is 146.75948, and we conclude
that the property should be priced at 146, 759.48 euros because prices were given in thousands of euros.
Figure 3 displays these computations.
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Figure 3. The regression line in the case study. The black square shows the valuation of the missing
option h7, with score 2.0114 at the horizontal axis.

6.2. Sensitivity Analysis

Prices in the real estate market are subject to volatility. In addition, the appraiser can select the
small sample in accordance to the existing regulations. Therefore, we have to account for some degree
of uncertainty in the valuation of the subject property.

Sensitivity analysis studies how the uncertainty in the output of a mathematical model can be
associated with different sources of uncertainty in its inputs [49]. The techniques of sensitivity analysis
are sundry and the choice of a suitable methodology is often dictated by the structure of the model.
Since we work with given data, we can screen for submodels and check how much the selection of
a subsample affects the output. We proceed to check that under such variations the differences in the
outputs are small, which allows us to conclude that our valuation model is fairly robust.

1. When the first apartment is suppressed from the analysis, the remaining data
produce a new comparison table and scores. With such data, we obtain V =

(5.8693,−2.5846, 3.3923, 1.6423, 4.1193, 4.2807). The regression line equation for the observations

((5.8693, 157), (−2.5846, 115), (3.3923, 132), (1.6423, 132), (4.1193, 157))

is y = 125.87 + 5.1152x and substituting x = 4.2807 produces a figure of 147, 766.48 euros. Thus,
the difference with respect to the original valuation, in absolute value, is only 0.68%.

2. When the second apartment is suppressed from the analysis, the remaining data produce
V = (−2.1462,−3.6462, 1.4769,−0.0231, 2.100, 3.0114). The regression line equation for
the observations

((−2.1462, 95), (−3.6462, 115), (1.4769, 132), (−0.0231, 132), (2.100, 157))
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is y = 129.65 + 7.7015x and substituting x = 3.0114 produces a figure of 152, 842.48 euros.
Therefore, the difference with respect to the original valuation, in absolute value, is only 3.98%.

3. When the sixth apartment is suppressed from the analysis, the remaining data produce
V = (−2.3962, 3.6000,−3.8962, 1.2269,−0.2731, 2.7614). The regression line equation for
the observations

((−2.3962, 95), (3.6000, 157), (−3.8962, 115), (1.2269, 132), (−0.2731, 132))

is y = 128.54 + 6.7363x and substituting x = 2.7614 produces a figure of 147, 141.78 euros.
Therefore, the difference with respect to the original valuation, in absolute value, is only 0.26%.

6.3. A Description of Existing Methodologies

In this section, we briefly sketch the standard methodologies applied by practitioners. Then, in
Section 6.4 below, we compare them with the new methodology proposed in Section 6.1.

In order to estimate the price of a house, the comparison method and the multiple linear regression
method are most used in real estate practice in Spain. Both techniques are based on a list of variables
(either qualitative or quantitative) that describe the characteristics of the houses in the sample.
These attributes of the properties may be of different types:

1. Quantitative and continuous variables, such as the surface of a house.
2. Quantitative and discrete variables, such as:

• Number of complete bathrooms.
• Number of incomplete bathrooms.
• Age of the building.
• Number of rooms.
• Level in which is the apartment situated in the building (floor).
• Number of outward-facing rooms, etc.

3. Qualitative variables, such as quality of the construction.
4. Dummy variables, such as:

• The building has a garage.
• The house has a balcony.
• Repairing and renovation works were made in the house, etc.

The comparison method assigns a positive or a negative weight to each modality presented by every
attribute, depending on whether the variable must positively or negatively influence the housing price.
The values of these weights are, of course, in agreement with the level of the corresponding attribute.
Indeed, a given attribute k can be a discrete or a continuous quantitative variable, a qualitative variable,
or a “dummy” variable.

To each value, interval modality or “dummy” value of Table 8, we can assign a weight
ωk1, ωk2, ωk3, . . . , ωkmk

.

Table 8. Possible modalities depending on the type of attribute.

Quantitative
Qualitative “Dummy”

Discrete Continuous

xk1 [0, xk1] qk1 0
xk2 [xk1, xk2] qk2 1
xk3 [xk2, xk3] qk3 2

...
...

...
...

xkmk
[xkmk−1

, xkmk
] qkmk

mk
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If pi, i = 1, 2, . . . , n denotes the price of the i-th apartment, Si its surface, and ωik∗ , k = 1, 2, . . . , m,
represents the weight assigned to the k-th attribute of the i-th element in the sample, the normalized
average price of a square meter is:

m =
1
n

n

∑
i=1

pi
Si (1 + ∑m

k=1 ωik∗)
.

Therefore,

p0 = mS0

(
1 +

m

∑
k=1

ω0k∗

)
, (1)

where the subscript 0 corresponds to the house to be assessed.
The multiple linear regression method consists of regressing the variable P (price of the house) on

the rest of variables involved in the valuation process, e.g.:

• X1: “Surface”.
• X2: “Number of bathrooms”.
• X3: “Quality”.
• X4: “Number of bedrooms”.
• Etcetera.

Thus, we are able to obtain a regression hyperplane in the following form:

P = β0 + β1X1 + β2X2 + · · ·+ βnXn + ε.

The concrete values of variables X1, X2, . . . , Xn corresponding to the house to be appraised will
allow us to estimate P. Indeed, the main advantage of this method is the objectivity of the result.
Unfortunately, this procedure may present two noteworthy drawbacks. First, the goodness of fit in
the regression analysis can be very low, which means that the result that produces is not significant
at a certain level. Second, a concrete coefficient βk may exhibit a “wrong” sign in the way that the
estimated sign on a variable is the opposite of what we anticipated it should be. For example, it is
expected that the price of a house is ceteris paribus inversely related to its age, but the practical
implementation of this technique can lead to a positive coefficient for this variable. A possible solution
could be to restrict the coefficients to the set of positive or negative real numbers, but, unfortunately,
the coefficient of determination does not measure, in this case, the goodness of the fit.

When the linear relationship between the dependent variable (the price) and the regressors
(the rest of variables involved in the analysis) has been computed, the values of the attributes of the
house to be assessed are included in the equation, which produces an estimated market price. Indeed,
a drawback of this method is that the goodness of fit (given by the coefficient of determination) may
be very low. This is the reason why it seems convenient to find an appropriate sample (composed by,
at least, six houses) for which the fitting should be acceptable.

We return to these issues in the next section.

6.4. Evaluation with Alternative Procedures and Discussion

The routine application of the multiple regression technique to the data included in Table 5 leads
to the following three-dimensional hyperplane:

p = −22.4 + 2.013x1 + 1.6x2 − 10x4,

which leads to a price p = 189, 605.86 euros. Although the coefficient of determination is very high
(R2 = 0.9656), this outcome is rather disappointing for two main reasons. The coefficient of x4 has the
wrong sign because ceteris paribus the price of an apartment should increase both with the number of
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bedrooms. Moreover, observe that the coefficient of x3 vanishes. The reason is that all the apartments
with a valuation in the sample have a “normal” quality, even though there are other values for this
attribute in the sample. This is another important drawback of this method since, in our real case study,
such zero value implies the fact that the apartment being assessed has a “good” quality cannot be used
to increase its valuation.

Let us now approximate the price of the apartment according to the weights shown in Table 9.
According to the Orden ECO/805/2003 (Ministerio de Economía, 2003) [31], the coefficients to
standardize the value of the square meter of each element in the sample will be chosen by applying the
criteria suitable for the house to be assessed. Nevertheless, this procedure, called the homogenization
method, “has got some problems which should be solved and that are related, for example, with valuer’s
subjectivity” [50]. Therefore, in this paper, we have implemented the standard weights used by
practitioners, which are based on a proposal by González-Nebreda et al. [51].

Table 9. Attributes, modalities and assigned weights.

Surface Bathrooms Quality Bedrooms

Interval Weight Number Weight Level Weight Number Weight

[0, 10] 0.00 0 0.00 Bad 0.04 1 0.03
[10, 20] 0.06 1 0.04 Low 0.08 2 0.06
[20, 30] 0.08 2 0.08 Normal 0.12 3 0.09
[30, 40] 0.10 3 0.12 Good 0.16 4 0.12
[40, 50] 0.12 4 0.16 Luxury 0.20 5 0.14
[50, 60] 0.14 5 0.20 − − 6 0.16
[60, 70] 0.16 − − − − 7 0.17
[70, 80] 0.18 − − − − 8 0.18
[80, 90] 0.20 − − − − 9 0.19
[90, 100] 0.22 − − − − 10 0.20
[100, 110] 0.24 − − − − − −
[110, 120] 0.26 − − − − − −
[120, 130] 0.28 − − − − − −
[130, 140] 0.30 − − − − − −

The application of this information to the characteristics of the apartments in the sample and the
apartment to be assessed produces Table 10, where, for completeness, the price of each apartment is
shown too.

Table 10. Weights assigned to all apartments.

Item Price
Surface Bathrooms Quality Bedrooms

Value Weight Number Weight Level Weight Number Weight

h1 95,000 75 0.18 1 0.04 Normal 0.12 3 0.09
h2 157,000 105 0.24 2 0.04 Normal 0.12 4 0.12
h3 115,000 75 0.18 1 0.04 Normal 0.12 2 0.06
h4 132,000 90 0.20 2 0.08 Normal 0.12 3 0.09
h5 132,000 90 0.20 1.5 0.06 Normal 0.12 3 0.09
h6 157,000 105 0.24 2 0.08 Normal 0.12 3 0.09
h7 ∗ 114.44 0.26 1 0.04 Good 0.16 2 0.06

By applying Formula (1), we obtain a price of 171,747.78 euros.
All in all, along this paper, we have compared three methodologies to approximate the value

of an apartment from the information supplied by the housing market about the characteristics
(price, surface, number of bathrooms, number of bedrooms and quality) of a sample composed by six
other apartments.
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The first method uses the linear multiple regression where the dependent variable is the price and
the independent variables are the rest of the characteristics of the apartments. This technique is subject
to at least three noteworthy inconveniences, which dramatically reduce the validity of its results:

1. The possible existence of coefficients with the wrong sign (in our case, the coefficient of
variable x4).

2. The possibility that a coefficient vanishes (in this section, the coefficient of variable x3 is zero).
In such case, the characteristic associated with the corresponding variable is of no use for
evaluation purposes.

3. The coefficient of determination may be small (although, in the example in this section, R2 is
pretty high).

The second procedure uses the weights assigned by practitioners to highlight the “good”
characteristics of all apartments and to penalize their “bad” figures. This methodology presents
an important disadvantage, viz. the enormous subjectivity in choosing these weights.

The third technique is new with this paper. It produces a much more reasonable result, which is
partially due to the reduction of subjectivity in the weights.

Despite the disparities between prices, let us stress that the price finally agreed in the transaction
of this apartment was much closer to the value given by the proposed methodology.

7. Conclusions

In this work, we propose the new notion of partial valuation fuzzy soft sets and we briefly
introduce the problem of data filling in that setting (cf., Sections 3 and 4). The use of fuzzy soft sets
permits quantifying qualitative attributes, such as the finish of housing construction or the quality
of materials used in the construction of a house. Therefore, we can apply these ideas in real estate
valuations. By doing so, we depart from fuzzy soft sets and extend their scope with the target of real
applications. In our approach, we first use a rating procedure in order to associate a unique number
(score) with each alternative and then we apply regression for the purpose of data filling in partial
valuation fuzzy soft sets (cf., Section 4). We have explained our model both algorithmically and with
a flow diagram.

Then, we have shown how this new methodology works in a fictitious (cf., Section 5) and a real
case study (cf., Section 6). With these examples, we have proved the implementability and feasibility
of our methodology. We have also performed a sensitivity analysis in order to avail its robustness.
The real case study concerns apartments. Obviously, it can be also applied in the valuation of other
kind of assets, such as rural properties, cars, etc. We have obtained a very reasonable price for the
house under valuation, which proves the feasibility and implementability of our suggestion. On the
other hand, the two alternative methods (that were based on the linear multiple regression and used
by practitioners) exhibit serious troubles that restrict their ability to fit real situations.

To conclude, let us point out that our technique can be useful for practitioners using other models
of uncertain behavior. For example, the idea that scores can be used to perform a regression can
easily be exported to models based on hesitant fuzzy sets [11,12,52–55] for which scores are already
available [56–58]. It seems also feasible to export it to other hybrid soft set models (cf., Ali et al. [59],
Fatimah et al. [60], Ma et al. [16], Zhan and Zhu [14], and Zhan et al. [61]).
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26. Taş, N.; Yilmaz Özgür, N.; Demir, P. An application of soft set and fuzzy soft set theories to stock management.
J. Nat. Appl. Sci. 2017, doi:10.19113/sdufbed.82887.

27. Xu, W.; Xiao, Z.; Dang, X.; Yang, D.; Yang, X. Financial ratio selection for business failure prediction using
soft set theory. Knowl.-Based Syst. 2014, 63, 59–67. doi:10.1016/j.knosys.2014.03.007.

28. Kalaichelvi, A.; Haritha Malini, P. Application of fuzzy soft sets to investment decision making problem.
Int. J. Math. Sci. Appl. 2011, 1, 1583–1586.
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Abstract: Until the last few decades, maintenance has not been considered of special importance by
organisations. Thus, the number of studies that assess maintenance performance in a country
is still very small, despite the relevance this area has to the level of national competitiveness.
This article describes a multicriteria model integrating the fuzzy analytic hierarchy process (FAHP)
with Multi-Attribute Utility Theory (MAUT) to assess the maintenance performance of large, medium
and small enterprises in Spain, before and after the recession, as well as the asymmetries in the state
of maintenance between different activity sectors. The weightings are converted to utility functions
which allow the final utility of an alternative to be calculated via a Multi-Attribute Utility Function.
From the Spanish maintenance data for different industrial sectors in 2005 and 2010, 2400 discrete
probability distributions have been produced. Finally, a Monte Carlo simulation is applied for the
estimation of the uncertainty. The results show that the economic crisis experienced by Spain since
2008 has negatively affected the level of maintenance applied, rather than it being considered an area
that could deliver cost reductions and improvements in productivity and quality to organisations.

Keywords: maintenance performance; recession; fuzzy analytic hierarchy process (FAHP);
Multi-Attribute Utility Theory (MAUT)

1. Introduction

Maintenance is attaining a more important role in organisations because it can affect productivity
and profitability [1–3], the useful lifespan of the facilities, the quality of the processes [4] and the
fulfilment of safety and environmental standards. This has brought about increasing concern over the
performance maintenance measurement [5], as shown by the abundant literature that analyses the
matter (see [6–17]).

Different countries carry out surveys through their national maintenance associations. In the case
of Spain, the Spanish Maintenance Association (SMA) carries out surveys every five years; these suggest
how maintenance can contribute to improvement in the most immediate weaknesses of the Spanish
productive sector, such as the lack of competitiveness and innovation [18]. Other results from Spanish
companies can be consulted in Conde [19] and Álvarez [20] in the chemical industry, and in Paredes [21]
in manufacturing. Although these national surveys intended to promote continuous improvement via
benchmarking are applied extensively in the United States, Canada and New Zealand, in Spain its
application has hardly begun [22].

The literature analyses maintenance in a country mainly based on a set of KPIs, which are held
to be of equal importance; however, some KPIs influence the competitiveness of a company while
other only have slight implications for cost. A multicriteria model, then, allows for a more accurate
assessment of the real situation in applied maintenance. Via a multicriteria model it is possible to
obtain a grade for the overall state of maintenance, and for each criterion analysed. This shows the
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development over time of applied maintenance, the criteria with the highest valuation and those
where there are deficiencies. Also, as described in Komonen [23], the benchmarking procedure
generally applied is the comparison of mean values of different indicators for a specific company with
those of its industrial sector; however, in the area of maintenance this type of benchmarking is of
little use [23,24]. Although maintenance benchmarking is recognised as a key element in achieving
world-class maintenance performance levels [25] and for the continuous improvement process [26],
only 11% of the literature reviewed by Simões et al. [27] relates benchmarking to maintenance
performance measurement.

There are very few precedents that build a model or framework to analyse maintenance
performance or practices by means of indicators. Among these, Macchi and Fumagalli [28]
develop a scoring method for maturity assessment with five levels for evaluating maintenance
practices in organisations and to improve the maintenance management system. On the same lines,
Nachtmann et al. [29] describe using a balanced scorecard for flight line maintenance activities in the
U.S. Air Force. Van Horenbeek and Pintelon [30] set out a maintenance performance measurement
framework using the analytic network process (ANP) to assist maintenance managers in their choice
of the relevant maintenance performance indicators. The model has been applied to five companies
of different types. Muchiri et al. [31] propose a framework for assessing and ranking maintenance
practices. The framework comprises five-level evaluation criteria qua maintenance practices in any
company with a maintenance department to be ranked, and the results compared with others.

In the fuzzy environment, the number of contributions is even more restricted. Carnero [32]
describes a fuzzy multicriteria model by which maintenance benchmarking can be applied among small
businesses. Stefanovic et al. [33] use fuzzy sets and genetic algorithms to design a model for ranking
and optimisation of maintenance performance indicators in small and medium enterprises. There is,
however, no model that analyses, via a multicriteria model in a fuzzy environment, the evolution of
the state of maintenance before and after recession in a country.

Kubler et al. [34], in their literature review of FAHP applications, concluded that it was
predominantly applied in the areas of selection and evaluation and in the categories of manufacturing,
industry and government. It was also seen that a large number of studies combine FAHP with other
tools, mostly with Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Quality
Function Deployment (QFD) and Analytic Network Process (ANP). This can be justified by the natural
flexibility of FAHP that enables it to be combined with a wide range of techniques and for very different
purposes. However, this survey does not cover studies combining fuzzy analytic hierarchy process
(FAHP) and Multi-Attribute Utility Theory (MAUT). Similar results can be seen in other multicriteria
literature reviews carried out in the field of applications for solving energy management problems [35],
or aging-dam management [36]. There are, therefore, very few precedents in the literature combining
FAHP and MAUT. Among those that do exist are the following: Ashour and Okudan [37] developed a
triage algorithm that integrates FAHP and MAUT to rank the waiting emergency department patients
according to their characteristics: chief complaint, gender, age, pain level and vital signs (temperature,
breathing rate, pulse and blood pressure). The intuitive judgement and preferences of triage nurses
have to be considered in this decision and therefore there are uncertainties involved; this is the reason
that utility theory has been selected [38]. A single utility function has been constructed for each
criterion taking into account the risk attitude of the triage nurse for each attribute. The exponential
distribution has been used, as the best for this approach, and multiplicative forms are applied to
aggregate the single utility functions. In a latter study, Ashour and Okudan [39] compared two
triage systems using Discrete Event Simulation (DES): the typical Emergency Severity Index (ESI) and
the proposed algorithm integrating FAHP and MAUT. As a result, it is seen that the FAHP-MAUT
algorithm performs better in terms of minimizing the number of patients with longer than the allotted
upper limits of waiting times, but it also reduces potential bias and errors in decision making in
clinical settings. Johal and Sandhu [40] constructed utility functions associated with the attributes:
bandwidth, security, monetary cost and power consumption levels of the candidate network available
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for handover. The proposed algorithm uses FAHP to assign weights to the attributes and applies the
utility functions to rank the alternatives using a simple weighted sum of the parameters with the
objective of the level of satisfaction served by each network. With the same objective, Goyal et al. [41]
designed parameterised utility functions to model the different quality of service attributes, but in this
case the network selection process considers three different applications: voice, video, and best-effort
applications. Different attributes are considered depending on the application. To avoid the problems
in obtaining weights caused by Chang’s extent analysis method, a min-max optimisation problem is
presented to derive consistent weights. Final ranking is calculated with Simple Additive Weighting
(SAW), TOPSIS and Multiplicative Exponential Weighting (MEW) methods. The results show that the
utility-based MEW method gives more suitable final scores for each network than the utility based
SAW and TOPSIS methods.

In [42] a model is designed to apply benchmarking in large buildings integrating FAHP and
MAUT. The maintenance department of a hospital and a department store were compared, with the
results obtained from the building sector in the case of more than 500 workers for the years 2000,
2005 and 2010. This research used 50 subcriteria; however, some of them do not provide relevant
information about the state of a maintenance department because they are related to the maintenance
manager’s opinion about future trends in maintenance costs, outsourcing, collaboration of production
workers, etc. These opinions can be applied or not in the future, but they are not considered to be
relevant attributes in this model. Chang’s extent analysis method has been applied and the fuzzy scale
used to make judgements has six values of preference. This led to problems in the process of obtaining
judgements from the decision makers, since the preferences were very close. In the case of [38,39] only
five fuzzy number for linguistic variables have been used.

Kubler et al. [34] note in their survey that Chang’s extent analysis method is the most popular
methodology in spite of a number of criticisms in recent years. Criticisms relate to the appearance
of irrational zero weights and the fact that important criteria could not be considered in the
decision-making process [43]. Therefore, the relative importance of criteria or alternatives is not
calculated appropriately, which may lead to poor robustness, unreasonable priorities and information
loss in the models. The research presented in this paper applies the geometric-mean method suggested
by Buckley [44], because of its ease of application and comprehension in comparison with other
methods [45] and it provides a unique solution to the reciprocal comparison matrix [46], avoiding the
criticisms applicable to Chang’s extent analysis. It also uses a different means of obtaining the utility
functions from the previous literature. That is because the utility functions are associated to attributes
with constructed descriptors that have from two to ten qualitative scale levels, depending on the
attribute. The data available via surveys of maintenance questions allow a probability to be associated
with each scale level of a descriptor. MAUT [47] allows scores to be turned into utility functions if
the sum of the weighting is unity. Therefore, this research does not use a decision maker to find the
probability value such that there is no difference between two choices, as for example in [38] since the
probabilities are calculated from the surveys. In these cases, the utility function is constructed form the
mean value and in the current study the full data are used, without mean values.

Future trends in applying FAHP are related to [34]:

(a) Comparing existing fuzzy pairwise comparison matrix weighting derivation methods with regard
to efficiency and ease of use.

(b) Verifying mathematically that FAHP improves the results provided by AHP.
(c) FAHP could be combined with other pre-structure planning methods, such as Delphi, to identify

all the relevant decision criteria to solve complex problems. All in an easy-to-use framework.

There is also a clear trend towards a hybridisation process, combining two or more Multi-Criteria
Decision-Making methods, and, a fuzzification of these same models [36]. This study is framed within
both trends.
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This article describes a multicriteria model that applies the analytic hierarchy process (AHP),
fuzzy analytic hierarchy process (FAHP) and Multi-Attribute Utility Theory (MAUT) to assess the state
of maintenance in Spain. FAHP allows weightings for criteria and subcriteria, and a hierarchy, to be
obtained. The weightings are turned into utility functions that permit the final utility of an alternative
to be calculated by a Multi-Measure Utility Function. From the data on the state of maintenance in
Spain for different industrial sectors in the years 2005 and 2010, 2400 discrete probability distributions
were derived. These distributions determine the behaviour of a sector with respect to a subcriterion.
Finally, a Monte Carlo simulation is applied to estimate the uncertainty of a complex function resulting
from several probability distributions. In this way, the level of excellence in applied maintenance in
Spain has been determined, before and after the recession. Asymmetries in performance between
different activity sectors have been identified, all analysed by different company sizes: up to 200
workers, from 201 to 500 workers, and over 500 workers. This, then, is the first multicriteria model
used to assess the state of maintenance in a country.

The original contributions of this research are:

(1) An assessment of maintenance performance before and after the recession. There are no previous
research studies that analyse this question.

(2) The prior assessment is carried out in 10 activity sectors and in large, medium and small
enterprises in Spain. Therefore, the large number of scenarios used allows results and conclusions
to be obtained with great precision and in great detail.

(3) The model constructed integrates AHP, FAHP and MAUT multicriteria techniques, guaranteeing
that the criteria and subcriteria are relevant for maintenance assessment of companies.
The Buckley method has been used instead of Chang’s extent analysis method to guarantee
that priorities obtained are accurate and to avoid loss of information in the results.

(4) The model proposed uses the complete data from surveys about maintenance in Spain, rather than
using mean values by activity sector or size of enterprise, as in the remaining studies about
maintenance in other countries.

This article is structured as follows. Section 2 reviews the state of maintenance in different
countries. Section 3 presents the FAHP methodology applied in this study. Section 4 describes the
fuzzy multicriteria model to evaluate the maintenance performance in Spanish industries. Section 5
shows the results of the application of the model by company sizes in the years 2005 and 2010. Section 6
presents the discussion.

2. Related Work

There are studies that analyse the state of maintenance in different countries. These show the
deficiencies that exist in, for example, Saudi Arabia, where there is a lack of application of scientific
principles in using real management support for maintenance departments, optimizing spare part
provision, introducing computers into the maintenance systems and improving control of maintenance
tasks by applying working orders and report production [48]. Later, Assaf et al. [49] analyse the
efficiency of maintenance units in petrochemical companies in Saudi Arabia. They do this with three
indicators and data envelopment analysis (DEA) approach that has enabled low- and high-performance
maintenance units to be characterised. Jonsson [50] and Alsyouf [51], in their analysis of the state of
maintenance management in companies in Sweden show the limited recognition that the function of
maintenance receives. In Swedish companies, maintenance is seen as a source of expense, a third of
maintenance time is spent on unplanned tasks, and there are deficiencies in the application of Total
Productive Maintenance (TPM) or Reliability Centred Maintenance (RCM) and inefficiencies in the
planning and programming of maintenance, which makes it harder to reach the set goals and so obtain
a competitive advantage. Companies in Denmark, Norway, Sweden and Finland show deficiencies in
maintenance resources, with a tendency to operate in the short term as opposed to considering the
long-term planning of activity, and a lack of integration between corporate strategy and maintenance
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systems, and between production and maintenance departments [52]; while studies exclusively in
Norwegian organisations show that the percentage of applied maintenance time is still around 40%,
with functional maintenance at 62.3% and functional development (which includes development
of new systems and functional perfective maintenance) at 37.7% [53]. The maintenance culture in
a Nordic nuclear power plant has also been analysed, measuring perceived values, psychological
characteristics of the job, individual conceptions of work and the organisation and perceptions of
maintenance tasks [54]. In Belgian and Dutch companies, it is seen that companies with different
competitive priorities apply different maintenance strategies and that the most competitive apply
more preventive and predictive maintenance policies, better planning and control systems and
decentralised maintenance organisation structures when compared to the others [55]. The use of
Key Performance Indicators (KPI) in Belgian industries is analysed in Muchiri et al. [56], which shows
that equipment, maintenance cost and safety performance are the most commonly used indicators,
while those related to maintenance work are less widely used; also, there is no correlation between
the established maintenance objectives and the KPIs used, and in very few cases are the results of
the KPIs used in decision making. It is precisely the effective use of KPIs, the use of predictive
and proactive maintenance, TPM and RCM, with little corrective maintenance and applying high
operational involvement in autonomous maintenance for root cause analysis, which most significantly
determines an effective maintenance management programme among manufacturing companies in
the United Kingdom [57]. Forty percent of these companies apply good maintenance and are aware
of the benefits it brings; also, on average U.K. companies apply some good maintenance practices
and obtain advantages from them, but they still need to carry out improvements. In U.S. companies,
it was found that there was no correlation between the structure of an organisation and the application
of advanced maintenance methods, the wider application of technical methods such as vibration
analysis, lubricants, etc., as opposed to methods that require the use of personnel, such as RCM,
and deficiencies were also found in the planning and programming of maintenance [58]. Related to
RCM, Reliabilityweb [59] shows the results obtained for the application of RCM, among which
is that only 18.30% of the 601 companies surveyed completed a project to introduce this policy
and obtained the expected results. Wireman [60,61] shows in detail how maintenance in the USA
has evolved, giving performances of low range, high range and best practice in maintenance cost,
maintenance labour cost, work order coverage, preventive maintenance compliance, stores investment,
productivity rates, etc. The survey carried out by Tse [62] in 21 companies in Hong Kong shows
that corrective and preventive maintenance are most common, while there is a lack of advanced
maintenance practices; also, in general, investment in maintenance is much lower than the assets of the
company and the profits obtained. This situation is also found in medium-sized and large enterprises
in Brazil, among which there is a need to reduce corrective maintenance, increase well-planned
maintenance and introduce more predictive maintenance and RCM to gain competitive advantage [63].
The situation in the maquiladora industry in Mexico is even worse, with a tendency to reactive
maintenance, while preventive and predictive maintenance are not found in most of the companies
surveyed [64]. Modgil and Sharma [65] analyse the impact of TPM and total quality management
(TQM) on operational performance in Indian pharmaceutical plants. It is seen that TPM practices have
a significant impact on plant-level operational performance, R&D, product innovation and technology
management. TQM, on the other hand, gives significant support to a TPM programme. They show
TPM assists in reducing the cost of quality through reduced scrap and fewer defective products.
In Muchiri et al. [66] a global evaluation index is obtained for the level of maintenance practices carried
out by Kenyan companies. The results are that processes are partially planned, and performance
depends on the operators’ competence and experience.
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3. Fuzzy Analytic Hierarchy Process

Fuzzy numbers are usually used to capture the ambiguity, fuzziness or imprecision of the
parameters related to the topic [67] and, decision makers usually feel more confident in giving interval
judgements rather than fixed value judgements [68].

The model proposed in this research uses FAHP. Ã represents a fuzzified reciprocal n-by-n
judgment matrix con ãij the pairwise comparisons between the element i and j ãij∀ i, j ∈ {1, 2, . . . , n}.

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1, 1, 1) ã12 . . . ã1n
ã21 (1, 1, 1) . . . ã2n

.

.

.

.

.

.

. . . .
.
.

ãn1 ãn2 . . . (1, 1, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

A triangular fuzzy number ã = (l, m, u) is defined on � by the membership function
μã(x) : � → [0, 1] [69]

μã(x) =

⎧⎪⎪⎨⎪⎪⎩
x

m−l − l
m−l , x ∈ [l, m]

x
m−u − u

m−u , x ∈ [m, u]

0, otherwise

(2)

With l ≤ m ≤ u . l and u are the lower and upper bounds of the fuzzy number and m the modal
value. If l = m = u then it is considered a crisp number by convention.

The operational laws for two triangular fuzzy numbers ã1 = (l1, m1, u1) and ã2 = (l2, m2, u2) are
the following [69–71]:

ã1 ⊕ ã2 = (l1 + l2, m1 + m2, u1 + u2) (3)

ã1 & ã2 = (l1 − u2, m1 −m2, u1 − l2) (4)

ã1 ⊗ ã2 ≈ (l1l2, m1m2, u1u2) (5)

ã1 ' ã2 ≈ (l1/u2, m1/m2, u1/l2) (6)

ã1
−1 ≈ (1/u1, 1/m1, 1/l1) for l, m, u > 0 (7)

k⊗ ã1 ≈ (kl1, km1, ku1), k > 0, k ∈ R (8)

There are different fuzzy AHP methods, a description of which can be found in [46,72].
However, this paper will apply the geometric mean method suggested by Buckley [44], because of
its ease of application and comprehension in comparison with other methods [44] and it provides a
unique solution to the reciprocal comparison matrix [46].

To calculate the fuzzy weights of each criterion/subcriterion is applied [43,73]:

r̃i = [ãi1 ⊗ ãi2 ⊗ . . .⊗ ãin]
1
n ∀ i = 1, 2, . . . , n (9)

w̃i =
r̃i

[r̃1 ⊗ r̃2 ⊗ . . .⊗ r̃n]
(10)

Then the w̃i must be defuzzified. Defuzzification is an inverse transformation that maps the output
from the fuzzy domain back onto the crisp domain. This is done through a centroid method [74,75]:

wi = li +
(mi − li) + (ui − li)

3
i = 1, 2, . . . , n. (11)
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The Consistency Index (CI) is used as a measurement of the consistency of the judgements
expressed [76]:

CI = (λmax − n)/(n− 1). (12)

The consistency ratio (RC) is defined as the quotient of the consistency index and the random
consistency index (ICR) for a matrix of similar size [77]. The judgements given are considered
consistent if the RC is lower than 5% for a 3 × 3 matrix, 9% for a 4 × 4 matrix and 10% for larger
matrices. To calculate the CI with fuzzy numbers the central value of λmax will be used because in the
symmetry of a fuzzy number, the central value corresponds to the centroid of the triangular area [78].

The FAHP-derived model is now described.

4. The Proposed Model

4.1. Description

From surveys carried out by the Spanish Maintenance Association a model structuring process has
been developed in eight criteria: quality, environment and safety standards, maintenance organisation,
maintenance cost, outsourcing maintenance, control, maintenance computerisation, training and
maintenance management. Within each criterion there are a number of subcriteria. There is an
associated descriptor for each subcriterion.

The weighting process uses FAHP to get the weightings for the criteria and subcriteria, from the
judgements of two experts in maintenance. Fuzzy numbers were used to assign weightings to the
criteria and subcriteria. To get the fuzzy numbers, two experts in maintenance were used as decision
makers; these experts have approximately twenty years of experience in maintenance and knowledge
of different sectors. The decision makers were asked to assess the importance of the criteria and
subcriteria applying the triangular number scale set out in Table 1.

Table 1. Fuzzy scale.

Definition of Every Fuzzy Number Fuzzy Numbers Fuzzy Reciprocal Numbers

Equally important 1̃ = (1, 1, 1) (1, 1, 1)
Judgment values between equally and moderately 2̃ = (1, 2, 3) (1/3, 1/2, 1)

Moderately more important 3̃ = (2, 3, 4) (1/4, 1/3, 1/2)
Judgment values between moderately and strongly 4̃ = (3, 4, 5) (1/5, 1/4, 1/3)

Strongly more important 5̃ = (4, 5, 6) (1/6, 1/5, 1/4)
Judgment values between strongly and very strongly 6̃ = (5, 6, 7) (1/7, 1/6, 1/5)

Very strongly more important 7̃ = (6, 7, 8) (1/8, 1/7, 1/6)
Judgment values between very strongly and extremely 8̃ = (7, 8, 9) (1/9, 1/8, 1/7)

Extremely more important 9̃ = (8, 9, 9) (1/9, 1/9, 1/8)

AHP has been used to obtain the weightings between the levels of each descriptor.
These weightings have been transformed to convert measure levels to utilities because measure
levels are based on scales with different units, so before they can be combined they are converted to
common scales with a range from 0 to 1. The utility of the preferred alternative of a criterion is 1 and
the level for the least preferred alternative is 0.

To define the alternatives the probabilities of appearance of each of the scale measure levels is
calculated, for each descriptor and each industrial sector; this used answers given in the 2005 and
2010 SMA surveys for different activity sectors. Because of the economic recession the survey was not
carried out in 2015. The data used, therefore, are from 2005 to 2010. These probabilities are used to
build discrete probability distributions for each descriptor. A discrete distribution has probabilities
defined for several different levels so that the probabilities add up to 1.

Figure 1 shows a flow diagram with the detailed procedure followed in this research.
There follows an explanation of each stage of the building of the model.
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Figure 1. Flow diagram.

4.2. Structuring

There follows a description of the procedure used in the model to carry out the structuring stage:

Step 1. Analysis of the problem context.
Step 2. Analysis of the 2005 and 2010 SMA surveys.
Step 3. Selection, modification or linking of questions to get relevant and independent criteria

and subcriteria.
Step 4. Definition of a descriptor for each subcriterion.
Step 5. Definition of levels of scale by subcriterion.
Step 6. Construction of a hierarchy.

The first step for structuring the multicriteria model was to choose the decision criteria and
subcriteria for assessing the state of maintenance in Spain. To this end, the starting point was
64 questions from the survey carried out by the SMA [79]. These 64 questions have been modified and
turned into a form that may be considered decision criteria. These criteria are exhaustive, concise,
non-redundant and independent [80].

Within each criterion, a set of relevant subcriteria were grouped.
The final structure of the benchmarking model for maintenance evaluation has one goal,

eight criteria and 40 subcriteria. The criteria and subcriteria used are:
C1. Budget preparation and measurement of annual maintenance cost and distribution.

This comprises the subcriteria:

• C11. Total annual maintenance costs of the company.
• C12. Percentage of annual cost related to in-house staff.
• C13. Percentage of annual cost related to outsourcing jobs.
• C14. Percentage of annual cost related to spare parts and consumables.

283

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 166

C2. Certification of the company to international standards and compliance with Spanish
regulations on health and safety at work. It comprises these subcriteria:

• C21. Existence of a department in the company for compliance with Spanish regulations on health
and safety at work. The values are whether there exists a department within the company, it is
being set up, or it does not exist.

• C22. Company certified to standard ISO 9000. The values here are whether the company has been
audited by an external body to certify compliance with standard ISO 9000, it is in the process of
gaining the certificate, or it is not certified.

• C23. Company certified to standard ISO 14000. This assess whether the company has been audited
by an external body to certify compliance with standard ISO 14000 so as to have introduced
an effective environmental management system with the aim of reducing its impact on the
environment and complying with the relevant legislation.

C3. Control of maintenance activity and efficiency:

• C31. Organisation of work in work orders. Valuing of the use of work orders that include
assignment of priority to the activities, material and labour required for each fault or breakdown
and the time spent on each activity.

• C32. Control indices used in systematic monitoring of maintenance management.
• C33. Delay in receipt of information on costs. Time lag between spending on maintenance till

account data is obtained about these costs and the rest of the departmental budget.
• C34. Regularity of receipt of information on maintenance costs.
• C35. Percentage of maintenance work carried out internally compared to outsourced.
• C36. Percentage of urgent work received.
• C37. Pending work. Time that would be needed to finish the maintenance jobs in progress and

carry out the jobs pending.

C4. Characteristics of the head of maintenance and maintenance tasks carried out outside working
hours. This includes the following subcriteria:

• C41. Length of time as maintenance manager.
• C42. Academic qualifications of head of maintenance.
• C43. Length of time as member of a maintenance department.
• C44. Frequency with which the head of maintenance is required to attend outside working hours

to resolve maintenance incidents that cannot be sorted out by others, because they are not there or
because of the difficulty of the incident.

• C45. Remuneration for work in overtime or outside working hours. Existence and type
of remuneration giving for working overtime, holidays, or being on call outside normal
working hours.

• C46. Attendance at conferences, talks, seminars, etc. on maintenance.
• C47. Consulting Spanish technical journals on maintenance.
• C48. Use of the internet to search for information to solve maintenance problems.
• C49. Consulting international technical journals on maintenance.

C5. Organisational characteristics of the maintenance department. This comprises the
following subcriteria:

• C51. Existence of a maintenance department. This considers whether the company has a specific
department or section whose main purpose is to take care of maintenance.

• C52. Dependence on maintenance department manager. This considers who the maintenance
manager is directly accountable to, for example the General Manager, the Production Manager, etc.
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• C53. Responsibilities of the maintenance department.
• C54. Number of employees in the maintenance department.
• C55. Incidents outside working hours. This identifies how maintenance problems are dealt with

when they happen outside working hours.
• C56. Collaboration of the production staff in maintenance activities.

C6. Characteristics of computerisation of maintenance in the organisation and the efficiency level.
This includes the following subcriteria:

• C61. Assessment of satisfaction in the application of computerisation.
• C62. Number of activities in which computerisation is used.
• C63. Type of computerised maintenance management system used.
• C64. Hardware on which maintenance software runs.

C7. Importance and level of acceptance of outsourced maintenance carried out in the organisation.
This comprises the following subcriteria:

• C71. Percentage of corrective maintenance outsourced.
• C72. Percentage of preventive maintenance outsourced.
• C73. Percentage of work from programmed stoppages outsourced.
• C74. Quality of work outsourced. The quality of outsourced maintenance services is evaluated.
• C75. Percentage of outsourced personnel.

C8. Maintenance training given by the organisation and its results:

• C81. Training courses. There are specified, current training programs for the staff of the
maintenance department.

• C82. Versatility of personnel. Ability of maintenance operatives to regularly carry out activities
from two or more specialities.

The hierarchy is shown in Figure 2.

Figure 2. Hierarchy.
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To each subcriterion there is associated a descriptor. A descriptor is an ordered set of impact
levels that can measure quantitatively or qualitatively the level of fulfilment of a criterion [81].
Descriptor levels are used to describe plausible impacts of alternatives with respect to each criterion.
Descriptors may be direct (the levels of the descriptor directly measure the effects) or indirect
(the descriptor levels show causes rather than effects). When the criterion is intrinsically subjective or is
made up of a set of interrelated, interdependent, elementary areas, the previously described descriptors
are not suitable, and constructed descriptors are used. The levels of a constructed descriptor may
be qualitative, quantitative or mixed, and they may be created using verbal descriptions of expected
consequences, visual representations, indices, etc. [82].

The descriptors applied in this model are constructed and generally qualitative although in
some cases they are quantitative. Table 2 shows the descriptors and measurement levels used in the
criterion C4 Characteristics of the head of maintenance and maintenance tasks carried out outside
working hours.

Table 2. Descriptors and scale levels of criterion C4 (characteristics of head of maintenance and
maintenance tasks performed outside working hours).

Code/Level of Performance Descriptor/Scale Levels

C41 Length of time as maintenance manager.

L1 (highest level of performance) More than 20 years
L2 From 13 to 20 years
L3 From 8 to 12 years
L4 From 4 to 7 years
L5 From 1 to 3 years

L6 (lowest level of performance) Less than 1 year

C42 Academic qualification of maintenance manager.

L1 (highest level of performance) Industrial engineer
L2 Aeronautical, mining, naval, telecommunications etc. engineer
L3 Architect
L4 Technical industrial engineer
L5 Technical architect
L6 Naval technician
L7 Industrial technician

L8 (lowest level of performance) No further education

C43 Experience in maintenance positions.

L1 (highest level of performance) More than 25 years
L2 From 21 to 25 years
L3 From 16 to 20 years
L4 From 11 to 15 years
L5 From 6 to 10 years

L6 (lowest level of performance) Up to 5 years

C44 Frequency of attendance outside working hours.

L1 (highest level of performance) Never
L2 Rarely (1 to 3 times a year)
L3 Irregularly (4 to 10 times a year)
L4 Occasionally (1 time a month)
L5 Frequently (2 to 3 times a month)

L6 (lowest level of performance) Continually (1 or more times a week)

C45 Remuneration for work in overtime or outside working hours.

L1 (highest level of performance) Yes
L2 Made up for with rest or holiday time

L3 (lowest level of performance) No

C46 Attendance at conferences, talks, seminars, etc. on maintenance.

L1 (highest level of performance) Regularly (1 or more a year)
L2 Occasionally (less than 1 a year)
L3 Attendance rare due to lack of time

L4 (lowest level of performance) Attendance rare due to not considering them important

C47 Consults Spanish technical journals on maintenance.

L1 (highest level of performance) Yes
L2 (lowest level of performance) No

C48 Use of internet to search for information to solve maintenance problems

L1 (highest level of performance) Yes
L2 (lowest level of performance) No

C49 Consults international technical journals on maintenance.

L1 (highest level of performance) Yes
L2 (lowest level of performance) No
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4.3. Weighting Process

The steps used for the weighting phase are the following:

Step 1. Select the fuzzy scale.
Step 2. Select maintenance experts to provide the judgements in the decision-making process.
Step 3. Explain to the maintenance experts the process required to obtain crisp judgements

(between the levels of scale of each subcriterion) and fuzzy judgements (between criteria and
subcriteria) and provide support during the process.

Step 4. Check the consistency ratios.
Step 5. Aggregate the crisp and fuzzy judgements by geometric mean.
Step 6. Construct a program in Excel to calculate the fuzzy weights by criteria and subcriteria

following the Buckley technique.
Step 7. Apply AHP to get weights associated with the levels of scale of each descriptor.
Step 8. Transform the crisp weights in utility functions.
Step 9. Obtain fuzzy weights by criteria and subcriteria. Defuzzify the weights and

apply normalisation.

The scale of Table 1 was chosen because it fits better with the original preference scale of the crisp
AHP [83].

The pairwise comparison matrices of the criteria provided by the decision makers are as follows:

To aggregate the judgements the geometric mean was applied to lijk, mijk and uijk
(see Equation (13)) [84]; where (lijk, mijk, uijk) is a fuzzy number associated with each decision maker
k (k = 1, 2, . . . , K).

lij =

(
K

∏
k=1

lijk

)1/K

, mij =

(
K

∏
k=1

mijk

)1/K

, uij =

(
K

∏
k=1

uijk

)1/K

(13)

The resulting matrix can be seen in Table 3.
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As shown in Buckley [44], if the pairwise comparison matrices given for each decision maker are
consistent, then the matrix resulting from the aggregation of the judgements is consistent. The matrices
given for each decision maker have consistency ratios of 0.017 and 0.031. Therefore, the aggregated
judgement matrix is consistent.

Applying Equations (9) and (10) to the pairwise comparison matrix of the experts’ aggregated
judgements gives the fuzzy weights of the criteria: w̃1 = (0.177, 0.313, 0.520),
w̃2 = (0.093, 0.162, 0.283), w̃3 = (0.089, 0.147, 0.244), w̃4 = (0.092, 0.168, 0.312),
w̃5 = (0.048, 0.087, 0.161), w̃6 = (0.032, 0.053, 0.097), w̃7 = (0.021, 0.034, 0.059) and
w̃8 = (0.022, 0.036, 0.066).

To get the weightings as a crisp number Equation (11) is applied, giving, after normalisation,
the results: w1 = 0.305, w2 = 0.162, w3 = 0.145, w4 = 0.173, w5 = 0.089, w6 = 0.055, w7 = 0.035,
w8 = 0.037.

A similar process is followed for the subcriteria associated with each criterion, giving the results
shown in Table 4.

Table 4. Final non-fuzzy weights of subcriteria.

Subcriterion r̃i Weights after Defuzzification and Normalisation CR

C11 r̃11 = (2.213, 2.800, 3.281) w11 = 0.530
0.044
0.074

C12 r̃12 = (0.972, 1.286, 1.622) w12 = 0.250
C13 r̃13 = (0.518, 0.678, 0.885) w13 = 0.134
C14 r̃14 = (0.337, 0.410, 0.565) w14 = 0.085

C21 r̃21 = (3.166, 3.538, 3.888) w21 = 0.741
0.014
0.034

C22 r̃22 = (0.794, 0.911, 1.038) w22 = 0.192
C23 r̃23 = (0.278, 0.310, 0.354) w23 = 0.066

C31 r̃31 = (3.830, 4.563, 5.255) w31 = 0.422

0.012
0.082

C32 r̃32 = (2.266, 2.805, 3.390) w32 = 0.263
C33 r̃33 = (0.999, 1.272, 1.592) w33 = 0.120
C34 r̃34 = (0.679, 0.766, 0.866) w34 = 0.071
C35 r̃35 = (0.453, 0.539, 0.645) w35 = 0.051
C36 r̃36 = (0.359, 0.423, 0.510) w36 = 0.040
C37 r̃37 = (0.310, 0.352, 0.416) w37 = 0.033

C41 r̃41 = (4.239, 5.038, 5.764) w41 = 0.359

0.021
0.048

C42 r̃42 = (2.353, 2.984, 3.648) w42 = 0.216
C43 r̃43 = (1.758, 2.207, 2.748) w43 = 0.162
C44 r̃44 = (0.831, 1.074, 1.352) w44 = 0.079
C45 r̃45 = (0.506, 0.637, 0.784) w45 = 0.046
C46 r̃46 = (0.476, 0.593, 0.715) w46 = 0.043
C47 r̃47 = (0.381, 0.448, 0.550) w47 = 0.033
C48 r̃48 = (0.381, 0.448, 0.550) w48 = 0.033
C49 r̃49 = (0.286, 0.370, 0.519) w49 = 0.029

C51 r̃51 = (2.932, 3.674, 4.349) w51 = 0.429

0.024
0.029

C52 r̃52 = (1.335, 1.884, 2.495) w52 = 0.228
C53 r̃53 = (0.874, 1.140, 1.495) w53 = 0.139
C54 r̃54 = (0.677, 0.888, 1.183) w54 = 0.109
C55 r̃55 = (0.341, 0.448, 0.598) w55 = 0.055
C56 r̃56 = (0.261, 0.318, 0.423) w56 = 0.040

C61 r̃61 = (2.276, 2.847, 3.374) w61 = 0.560
0.089
0.026

C62 r̃62 = (0.539, 0.654, 0.799) w62 = 0.131
C63 r̃63 = (0.785, 0.965, 1.178) w63 = 0.193
C64 r̃64 = (0.446, 0.557, 0.733) w64 = 0.115

C71 r̃71 = (1.335, 1.578, 1.769) w71 = 0.293

0
0.053

C72 r̃72 = (1.196, 1.374, 1.585) w72 = 0.260
C73 r̃73 = (0.758, 0.922, 1.084) w73 = 0.174
C74 r̃74 = (0.696, 0.789, 0.922) w74 = 0.151
C75 r̃75 = (0.565, 0.634, 0.749) w75 = 0.122

C81 r̃81 = (1.682, 1.968, 2.213) w81 = 0.790 0
0C82 r̃82 = (0.452, 0.508, 0.595) w82 = 0.210
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Finally, a pairwise comparison matrix was produced between the scale levels of each descriptor.
In this case crisp numbers have been used, obtaining the weightings of each scale level for each
descriptor; these were turned into utility vectors, of which some examples can be seen in Table 5;
each component of the utility vector is associated with a level of the descriptor as shown in Table 1.

Table 5. Utility vectors for the scale levels of the descriptors of the criterion C4 (characteristics of the
head of maintenance and maintenance tasks performed outside working hours).

Descriptor Utility Vector

C41: Length of time as maintenance manager (1, 0.583, 0.379, 0.173, 0.059, 0)

C42: Academic qualifications of maintenance manager (1, 0.682, 0.390, 0.219, 0.219, 0.095, 0.036, 0)

C43: Experience in maintenance positions (1, 0.583, 0.358, 0.176, 0.065, 0)

C44: Frequency of attendance outside working hours (1, 0.652, 0.418, 0.174, 0.056, 0)

C45: Remuneration for work in overtime or outside working hours (1, 0.219, 0)

C46: Attendance at conferences, talks, seminars, etc. on maintenance (1, 0.387, 0.121, 0)

C47: Consults Spanish technical journals on maintenance (1, 0)

C48: Use of internet to search for information to help solve
maintenance problems (1, 0)

C49: Consults international technical journals on maintenance (1, 0)

All the pairwise comparison matrices used in the multicriteria model have consistency ratios
below 10%.

4.4. Definition of Alternatives

The alternatives are the industrial sectors assessed in the questionnaire [79]: Automobiles and
auxiliary industry, Buildings, Building materials, Chemical industry, Diverse firms, Electromechanical
constructions, Energy, Food, Iron and steel and Mining and Transport. In addition, in each sector,
the companies were classified by size into: companies with up to 200 workers, from 201 to 500 workers,
and over 500 workers.

The model uses the data collected by the SMA in the 2005 and 2010 surveys to construct the
discrete probability distributions. In the 2005 survey, 2343 questionnaires were sent out, and 254 were
completed and returned. If these, 113 were from companies with up to 200 workers, 85 from companies
with from 201 to 500 workers, and 56 from companies with over 500 workers. In the 2010 survey
1648 questionnaires were sent out, of which 152 were completed and returned. Of these, 74 were from
companies with up to 200 workers, 36 were from companies with from 201 to 500 workers, and 42
were from large companies with over 500 workers. The questionnaires were filled out by the heads of
the maintenance department in each company.

The information obtained from the survey was turned into probabilities, and so each measurement
level of a subcriterion is associated with the probability of appearance of each answer in the sector
analysed. Since there are 40 subcriteria, 10 activity sectors and three company sizes, 1200 discrete
probability distributions were calculated for each year evaluated (2400 discrete probability distributions
in all). Figure 3 shows the discrete probability distribution for the subcriterion length of time as
maintenance manager (C41) in companies with from 201 to 500 workers for the year 2010.

Next the steps for developing the definition of alternatives are set out:

Step 1. Review the 2005 and 2010 SMA surveys.
Step 2. Check the data sample.
Step 3. Define the alternatives (10 activity sectors and three company sizes by sector, in total

30 alternatives).
Step 4. Calculate the probabilities by level of scale of each descriptor by alternative.
Step 5. Construct discrete probabilities distributions by alternative.
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Figure 3. Cont.
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Figure 3. Discrete probability distributions for the subcriterion Length of time as maintenance manager
(C41) in companies with from 201 to 500 workers in 2010. (a) Automobile and auxiliary industry;
(b) Buildings; (c) Building materials; (d) Chemical industry; (e) Diverse forms; (f) Electromechanical
constructions; (g) Energy; (h) Food; (i) Iron and steel and mining; (j) Transport.

4.5. Multi-Attribute Utility Model

Multi-Attribute Utility Theory (MAUT) [47] allows scores to be turned into utility functions. If wi
is the weighting associated with the criterion i and ∑n

i wi = 1 is satisfied, an alternative has an additive
utility function U:

U =
n

∑
i

wiui(xi) (14)

where xi is typically normalised to a range from the worst to best possible values of an descriptor,
and ui ranging from 0 to 1 reflects the decision maker's attitude to risk within criterion i.

If p(x) is the probability associated with each scale level of an descriptor in an alternative and,
U(x) is the utility associated with that scale level, the value of equivalent certainty for each alternative
is obtained from the expected utility summing p(x) × U(x) for all levels x with non-zero probability
for the probability distribution. The equivalent certainty is the level estimated in which the utility
function of the result U(y), is equal to the expected utility of the random utility. The final utility of a
criterion in an alternative is calculated by a Multi-Measure Utility Function. The Multi-Measure Utility
Function is obtained by multiplying the weights of each subcriterion by the U(y) previously obtained
for each subcriterion.

The procedure followed in this stage, to obtain the final results is:

Step 1. Calculate the utility function by subcriterion.
Step 2. Calculate the Multi-Measure Utility Function by criterion.
Step 3. Construct a model with the intermediate results obtained in Logical Decisions.
Step 4. Apply a Monte Carlos simulation to get the final by alternative.
Step 5. Perform sensitivity analysis.
Step 6. Analyse the results.

The utility function of the subcriterion length of time as maintenance manager (C41), UC41(y),
is calculated:

UC41(y) = utility (best scale level) × probability (appearance of best scale level in sector) + . . . +
utility (worst scale level) × probability (appearance of worst scale level in sector).

The best scale level of the subcriterion C41 (see Table 1) consists in the years of experience of the
head of maintenance being more than 20; the worst level is less than one year of experience. Figure 3
shows that a company with between 201 and 500 employees belonging to the Automobile and auxiliary
industry in 2010 has a probability of 0.167 that the experience of the head of maintenance in that
post is less than one year; a similar probability is found for experience between one and three years,
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between four and seven years, and between 13 and 20 years. The probability of having a head of
maintenance with between eight and 12 years of experience is 0.333. The utility associated with each
measurement level for each descriptor is shown in Table 5. Thus, the resulting UC41(y) is:

UC41(y) = 1 ∗ 0 + 0.583 ∗ 0.167 + 0.379 ∗ 0.333 + 0.173 ∗ 0.167

+0.059 ∗ 0.167 + 0 ∗ 0.167 = 0.262

A similar process is followed with the subcriteria C42, C43, C44, C45, C46, C47, C48 and C49 giving
(see utilities in Table 5):

UC42(y) = 1 ∗ 0.333 + 0.682 ∗ 0 + 0.390 ∗ 0 + 0.219 ∗ 0.5 + 0.219 ∗ 0 + 0.095 ∗ 0 + 0.036 ∗ 0.167

+0 ∗ 0 = 0.449

UC43(y) = 1 ∗ 0.333 + 0.583 ∗ 0 + 0.358 ∗ 0.5 + 0.176 ∗ 0 + 0.065 ∗ 0 + 0 ∗ 0.167 = 0.512

UC44(y) = 1 ∗ 0 + 0.652 ∗ 0.167 + 0.418 ∗ 0.667 + 0.174 ∗ 0 + 0.056 ∗ 0.167 + 0 ∗ 0 = 0.397

UC45(y) = 1 ∗ 1 + 0.219 ∗ 0 + 0 ∗ 0 = 1

UC46(y) = 1 ∗ 0.5 + 0.387 ∗ 0.333 + 0.121 ∗ 0 + 0 ∗ 0.167 = 0.629

UC47(y) = 1 ∗ 0.5 + 0 ∗ 0.5 = 0.5

UC48(y) = 1 ∗ 1 + 0 ∗ 0 = 1

UC49(y) = 1 ∗ 0.167 + 0 ∗ 0.833 = 0.167

The weightings of the subcriteria included in criterion C4 (Characteristics of the head
of maintenance and maintenance tasks performed outside working hours) are (see Table 4):
w41 = 0.359, w42 = 0.216, w43 = 0.162, w44 = 0.079, w45 = 0.046, w46 = 0.043, w47 = 0.033,
w48 = 0.033 and w49 = 0.029, respectively. The utility in the criterion characteristics of the head of
maintenance and maintenance tasks performed outside working hours is calculated as follows:

Utility (Characteristics of the head of maintenance . . .) = w41 ∗UC41(y) + w42 ∗ UC42(y)

+w43 ∗ UC43(y) + w44 ∗UC44(y) + w45 ∗UC45(y) + w46 ∗UC46(y) + w47 ∗UC47(y) + w48 ∗UC48(y)

+w49 ∗UC49(y) = 0.359 ∗ 0.262 + 0.216 ∗ 0.449 + 0.162 ∗ 0.512 + 0.079 ∗ 0.397

+0.046 ∗ 1 + 0.043 ∗ 0.629 + 0.033 ∗ 0.5 + 0.033 ∗ 1 + 0.029 ∗ 0.167 = 0.433

A similar process is used for the other criteria.
The calculations related to the application of FAHP and the obtaining of the discrete probability

distributions have been carried out using a program in Excel. The results obtained in both cases have
been included in a model constructed by means of Logical Decision software. In this way it was possible
to apply the Monte Carlo simulation to calculate the global results and the uncertainty associated.

The Monte Carlo simulation allows the estimation of the uncertainty of a number that is a complex
function of one or more probability distributions. The Monte Carlo simulation uses random numbers
to provide an estimation of the distribution. A generator of random numbers is used to produce
random samples of the probability levels. Each set of samples is used to calculate the utility of a
possible result of the uncertainties of each scale of the descriptor. The execution of a certain number of
trials is used as an estimation of the accumulated probability distribution of the desired utility.

To apply the Monte Carlo simulation a different number of trials have been considered.
After 5000 trials the results no longer change.

A sensitivity analysis was performed, increasing and decreasing the weightings of the decision
criteria used in the model by 5%. The sensitivity analysis shows that there is only a change in
the classification of alternatives in companies of up to 200 workers. The change appears when the
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weighting associated with the criteria Maintenance costs and Certification to international standards
and compliance with the law on health and safety at work is reduced by 5%; in this case the alternatives
Automobile and auxiliary industry and Building materials change positions, taking the fourth and
fifth positions, respectively. In the case of increasing the weighting of the criterion Maintenance
management by 5% a similar exchange is observed between the alternatives Automobile and auxiliary
industry and Building materials. Companies with from 201 to 500 workers and companies with more
than 500 workers see no change in the full classification of alternatives.

There are only eight modifications in the classification of alternatives (in all sizes of company)
when the variation in the weightings of the criteria is 10%. In all cases the variation in the classification
is simply a permutation of alternatives occupying adjacent positions. It can therefore be stated that the
model is robust.

There follows an analysis of the development of maintenance in each size of company, the sectors
with the best and worst performance before and after the economic crisis, and the results will be
compared with those of the same sector in companies of different sizes.

5. Results

5.1. Companies with up to 200 Employees

Figure 4 shows the results for all sectors for companies with up to 200 workers in 2005 and 2010.
In the results for 2005 it can be seen that the Automobile and auxiliary industry sector is in first place
with a utility of 0.6896, followed by Electromechanical constructions (0.6683) and the Food sector
(0.6630). The Iron and Steel and mining, Chemical industry and Food sectors are those that best apply
maintenance in 2010, with utilities of 0.6701, 0.6350 and 0.6214, respectively.

Figure 4. Classification of the state of maintenance by industrial sectors: (a) Description of companies
with up to 200 workers in 2005; (b) Description of companies with up to 200 workers in 2010.

It can be seen that there is a decrease in most sectors in the level of maintenance applied in Spain
in 2010 with respect to 2005; Building Materials has an increase in utility of 6.54%, Iron and steel
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and mining have 5.72% and Diverse firms have 0.85%. The sectors Electromechanical constructions,
Automobile and auxiliary industry and Buildings have had the greatest decrease in maintenance
(−14.14%, −10.86% and −6.75%, respectively).

The sector Building Materials (cement, building steel, facilities, furniture, carpentry and medical
apparatus), has an average number of workers of 25, that is, small businesses [85]. This sector has
been seriously affected by the economic recession, as it is directly related to the building industry.
For example, consumption of cement has dropped by 50% in Spain since the second quarter of 2007.
The improvement in maintenance undergone by the sector could be due to the essential optimisation
carried out by companies which are still operating, which includes the area of maintenance.

Total maintenance costs is a criterion that clearly differentiates sectors. Building materials shows
a rise in utility (reduction in total maintenance costs) in 2010 of 239.96%. In 2005, 75% of the companies
surveyed in this sector had maintenance costs between €2,001,000 and €4,500,000; in 2010, however,
60% of companies in the sector were not above €900,000. The Iron and steel and Mining, Buildings,
Transport, Diverse firms and Electromechanical constructions sectors had an increase in utility in this
criterion of 87.57%, 38.93%, 31.58%, 24.73% and 13.29%. The most significant decrease in utility in
total maintenance costs was in the Chemical industry with −22.72%, followed by the Automobile and
auxiliary industry with −21%. In the Chemical industry, in 2005, 82.61% of companies had less than
two million euros a year in maintenance costs; in 2010, however, only 58.82% of companies were below
this figure.

The Building materials, Automobile and auxiliary industry, Electromechanical construction,
Iron and Steel and mining sectors had a utility of 1.000 in 2005 and 2010 with respect to certification
to standard ISO 9000. The Energy sector, on the other hand, had the worst results for 2005 as 50% of
those surveyed were not certified, and in 2010 transport was worst with 66.67% of those surveyed
not certified. In this last case, it may be due to the fact that companies are more concerned with the
standard EN13816, which is specific to the sector.

Planned maintenance work is four to 12 times more efficient than unplanned work [86];
therefore, the percentage of hours spent on corrective maintenance gives an idea of the efficiency of a
sector in maintenance activity. From these results, it can be seen that the mode of all sectors in 2010
has levels of corrective maintenance higher than 15%; this the highest level permitted by the best
practice benchmark [87]. Diverse firms are the sector with the largest increase in utility (decrease in
corrective action) in the percentage of corrective maintenance (127.01%), followed by Energy (95.03%)
and Building materials (45.85%). Transport, Automobile and auxiliary industry and Electromechanical
constructions, on the other hand, have seen the largest decrease in utility, with −91.73%, −84.76 and
−74.58%, respectively. For example, in 2005 in the Automobile and auxiliary industry 100% of those
surveyed applied 50% corrective maintenance, while in 2010, 100% of those surveyed applied more
than 75%. This increase in corrective action means more and more serious breakdowns, higher spare
part and labour costs, as well as having a negative effect on the availability, safety and quality of
the plant.

The experience of the head of maintenance is vital to improvements in the state of maintenance.
Building materials experienced an increase in utility from 2005 to 2010 of 800.68%. This is because,
while in 2005 100% of those surveyed in the sector had less than three years of experience, in 2010, 60%
of those surveyed had more than eight years of experience. Other sectors with a noteworthy increase
in utility are Transport (198.62%), Automobile and auxiliary industry (56.72%), Buildings (41.61%),
Electromechanical constructions (39.64%) and Chemical industry (28.24%). The Food sector,
however, had a variation in utility of −56.51%.

It is seen that the level of qualification of heads of maintenance was, in general, higher in 2005
than in 2010. In 2005 in the Transport sector all those surveyed were industrial engineers, while in
2010 33.33% of the heads of maintenance had no qualifications. It should be noted that the Automobile
and auxiliary industry has a much lower utility than the other sectors in this criterion in 2005 and
2010 (0.0362 and 0.0241) as, surprisingly, the heads of maintenance have no university qualifications;
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rather, they are industrial technicians and in some cases they have no qualifications at all. These results
are much worse than those in Carnero [88] for small businesses in Spain where only 20% of heads of
maintenance has a university qualification.

A key aspect in maintenance is the level of satisfaction with a CMMS. In this matter, the Energy
sector is the one with the biggest improvement, with an increase in utility in this criterion (C61) of
105.65%. This is clear because only 9.09% of those surveyed were very satisfied with the CMMS in
2005, while in 2010 40% of them were. Other sectors with an increase in utility in this criterion are the
Automobile and auxiliary industry and Food with 43.19% and 20.13%, respectively. Buildings, on the
other hand, was the sector with the biggest drop in utility in this criterion (−25.9%).

In the criterion outsourcing, there are small increases in utility in the Food and Transport sectors,
while the other sectors show decreases in utility with Buildings having the highest value of −34.56%.
Thus, companies in general have not worked on improving the outsourcing of maintenance.

5.2. Companies with 201 to 500 Employees

Figure 5 shows the results for companies with between 201 and 500 employees in 2005 and 2010.
The 2005 results show that the Building sector was in first place with a utility of 0.6476, followed by
Iron and steel and mining (0.6354) and the Chemical industry (0.6316).

Figure 5. Classification of the state of maintenance by industrial sectors: (a) Companies with
201–500 workers in 2005; (b) Companies with 201–500 workers in 2010.

The Transport sector was in first place in 2010, followed by Energy and Diverse firms.
The Chemical industry and Building sectors considerably reduce the level of maintenance, taking 6th
and 7th place, respectively. Building materials, which was in last place in 2005 with a utility of 0.5425,
retained that position in 2010, although the utility fell to 0.4678.

The Transport, Diverse firms and Energy sectors underwent improvements in maintenance
(increased utility) from 2005 to 2010, which can be quantified as 21.13%, 9.73% and 6.82%, respectively.
The remaining sectors see a drop in the level of maintenance, which is largest in Electromechanical
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constructions with −18.28%, Buildings with −15.49% and Automobile and auxiliary industry
with −14.50%.

Despite the economic crisis in Spain that began in 2008, not all sectors have worked to reduce their
total maintenance costs. The Energy sector had an improvement in utility in 2010 with respect to 2005 of
400.93%; despite this improvement, it is the sector with the lowest utility, that is, the worst behaviour in
costs both in 2005 and 2010. Also, 80% of those surveyed had total maintenance costs above €9,000,000
in 2005, whereas 100% had costs between €4,501,000 and €9,000,000 in 2010. Nevertheless, the results
would appear to show that they are aware of the need to continue working on this criterion.
Other sectors that have improved in overall maintenance costs are Diverse firms (105.85%), Iron and
steel and mining (43.72%), Building materials (40.54%) and Food (33.64%). Transport has seen no
changes in costs. Buildings, on the contrary, has seen a decrease in utility of costs of 41.76%; this may
be due to the changes in the laws on sustainable buildings in Spain, which state the minimum
requirements for energy efficiency, but whose facilities may require more sophisticated and therefore
more expensive maintenance. Despite this, it is one of the sectors with the lowest maintenance
costs. Other sectors that have worsened with respect to costs are the Automobile and auxiliary
industry, Chemical industry and Electromechanical constructions. Change in the behaviour of the
Chemical industry in small companies is very similar to companies with from 201 to 500 employees,
with decreases in the utility of total maintenance costs of approximately 20%; this could be because
the Chemical industry sector is made up of increasingly complex plants, with an ever higher
level of automation operating in extreme conditions, requiring high availabilities and where the
regulations on safety and the environment require very precise and delicate maintenance activities.
The results for this sector in Spain, however, are very varied; while most sectors are concentrated in
relatively few measurement levels of the descriptor, the Chemical industry has companies with all the
measurement levels.

The Buildings, Iron and Steel and mining and Transport sectors had a utility of 1.000 in 2005
and 2010 with respect to certification to standard ISO 9000. The Energy sector, on the other hand
(the same as in companies with fewer than 200 workers), had the lowest utility in 2005 since 40% of
those surveyed were not certified; in 2010, the utility was still low (0.5), with only 50% of companies
certified to ISO 9000. Building materials, with excellent results in 2005 (utility 1.0) since 100% of those
surveyed were certified, had none of them certified to ISO 9000 in 2010.

The experience of the head of maintenance is vital to improvement in the state of maintenance.
Building materials shows a decrease in utility from 2005 to 2010 of 477.03% (similar results are found
in companies with up to 200 workers). This is because, while in 2005 100% of those surveyed in this
sector had from four to seven years of experience as head of maintenance, in 2010, 100% of those
surveyed had more than 20 years of experience. Other sectors with significant improvement in utility
in 2010 were Buildings (78.02%) and Food (15.81%). The other sectors saw a drop in utility, which was
highest in Energy and Diverse firms with values of −60%.

It can be seen that the level of training of heads of maintenance was higher, in general, in 2010
than in 2005 (the opposite of the situation in companies with up to 200 workers). The highest utility
(1.000) in 2005 and 2010 was in the Energy sector, as 100% of those surveyed had industrial engineers
as heads of maintenance. Transport saw substantial improvement in utility from 2005 (0.0000) to 2010
(0.6095); this was because in 2005 the heads of maintenance surveyed had no qualifications, while in
2010 50% of them were industrial engineers and the other 50% were technical industrial engineers.

With respect to the criterion of satisfaction with a CMMS, the Energy sector had the highest
improvement (the same was the case with companies of up to 200 workers), giving an increase
in utility of 299.62% in 2010 over 2005. This is because in 2005, 40% of those surveyed were not
satisfied with the CMMS, while in 2010 there were no dissatisfied companies. Other sectors with
increased utility are Transport, Diverse Firms, Building materials, Iron and Steel and mining and
Automobile and auxiliary industry with 139.77%, 144.79%, 49.97%, 23.90% and 16.68%, respectively.
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Buildings, on the other hand, was the sector with the highest drop in utility for this criterion (−75.09%),
the same as in companies with up to 200 workers.

With regard to outsourcing of maintenance, the sector with the highest utility was Transport
in 2005 and Iron and steel and mining in 2010. There was an increase in outsourcing in most
sectors (Buildings, Electromechanical constructions, Transport, Automobile and auxiliary industry,
Diverse firms and Food). The Iron and Steel and mining, Energy, and Chemical industry sectors had
the highest increases in utility, with 29.03%, 16.97% and 5.53%, respectively.

With respect to the criterion of training; the Energy sector had excellent utilities (0.8905 in 2005
and 0.8310 in 2010). Electromechanical constructions, Building materials, and Transport, on the
other hand, had very low utility in both 2005 and in 2010. There were, however, improvements in
utility in the Transport sector (34.35%), and in the Automobile and auxiliary industry, Diverse firms,
Chemical industry and Electromechanical constructions. Iron and steel and mining had the largest
decrease in utility (−10.10%).

5.3. Companies with over 500 Employees

Figure 6 shows the results for companies with over 500 employees in 2005 and 2010. In 2005,
Building materials had better maintenance, with a utility of 0.6359, followed by the Automobile and
auxiliary industry (0.6021) and Transport (0.5960). The Energy sector had the worst results with a
utility of 0.4482, but it can be seen that the uncertainty in the results is very high; this is due to the
fact that no company from this sector filled out the questionnaire, so the results were obtained using
constant probability distributions. However, in 2010, five companies filled out the survey, giving as a
result the best level of maintenance with a utility of 0.6272.

Figure 6. Classification of the state of maintenance by industrial sectors: (a) Companies with more
than 500 workers in 2005; (b) companies with more than 500 workers in 2010.

Like in companies with up to 200 workers and with from 201 to 500 employees, the level
of maintenance improved in a few sectors. Energy improved 39.94%. The Chemical industry
had an improvement in maintenance of 3.03%, Buildings of 3.00% and Diverse Firms of 0.74%.
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However, the Electromechanical constructions, Iron and steel and mining and Transport sectors
showed variations in the level of maintenance of −22.44%, −20.06% and −10.20%, respectively.

In general, the results are slightly poorer, as these companies have their own organisational
structure for overseeing compliance with Spanish law on Health and Safety at work. This significantly
affects maintenance since maintenance workers are more exposed to noise, vibrations, different kinds
of radiation, dangerous substances, vapours and gases, heat in summer, cold in winter and high
humidity than those in other occupations [89]. In fact, 14–17% of accidents in Spain are related to
maintenance activities (the only EU countries with a higher percentage are Belgium with 20% and
Finland with 18–19%) [90]. It should also be remembered that bad maintenance can cause accidents
in the workplace. The sectors with the highest utility (1.000) in 2005 and 2010 were the Automobile
and auxiliary industry, Building materials, Chemical industry, Diverse firms and Food. Energy also
had the highest utility in 2010 (in 2005 there were no companies surveyed). The Electromechanical
constructions sector had bad results in both 2005 and 2010, with a variation in utility of −14.92%.

In general, the utilities of the criterion total maintenance costs are worse in large companies
than in other sizes of company; these results do not agree with Komonen (2002) [23], who says that
maintenance costs may triple as the size of a plant decreases; this could be caused by the fact that
maintenance in Spain is considered a necessary evil instead of an area that can be optimised and
can provide competitive advantage, and so by applying economies of scale, costs may be reduced.
Energy was the sector with worst utility in 2010, a result that was repeated in companies with up to
200 workers. Food saw the most important reduction in maintenance costs, as 100% of those surveyed
in 2005 had maintenance costs above nine million euros, while in 2010 50% had maintenance costs
below 4.5 million euros. Other sectors that reduced their maintenance costs were Electromechanical
constructions, Building materials, Chemical industry and Buildings with utility increases of 127.28%,
100%, 75.17% and 32.31%, respectively.

With regard to the percentage of corrective maintenance performed, the Building materials sector
had the highest increase in utility (reduction in corrective maintenance) with 2444.53%, followed by
Electromechanical constructions (248.71%) and Building (154.86%). Automobile and auxiliary industry,
Transport (the same as in companies with up to 200 employees) and Diverse firms, on the other hand,
are the sectors that had the biggest drop in this criterion (increase in corrective actions) with −88.13%,
−42.62 and −25.61%, respectively.

In experience of heads of maintenance, Building materials had a significant increase in utility in
the other company sizes, but did not show the same trend in large companies, where it decreased by
−78.09%. It appears that this sector, one of those that has suffered the most in Spain in the recession,
has replaced its heads of maintenance with more qualified professionals, as shown by the fact that
100% of heads of maintenance in 2010 were industrial engineers. The same applies to the Automobile
and auxiliary industry. The sectors with significant increases in utility in 2010 were Transport,
Diverse firms, Food, Energy, Chemical industry and Buildings.

As with companies with from 201 to 500 workers, in general a slight increase in utility can be
seen in 2010 with respect to 2005 in the level of training of the heads of maintenance. As well as the
Building materials and Automobile and auxiliary industry sectors, already referred to, the Energy
(202.94%), Electromechanical constructions (108.92%), Diverse firms (67.65%) and Buildings (19.69%)
sectors also underwent improvements in utility. The Food sector, however, showed a decrease in utility
of 82.67%, as 25% of those surveyed do not have a university qualification.

Outsourcing has increased in utility in the Chemical industry (25.97%), Iron and steel and mining
(11.30%), Food (10.17%) and Diverse firms (2.04%); as with other company sizes, the increase in
utility is small compared with other criteria. Building materials had the largest drop in utility in this
criterion (−63.61%), probably because of the serious recession in the sector, leading to a reduction in
subcontracted services.

Satisfaction in the introduction of a CMMS saw an increase in utility of 279.51% in Building
materials, 239.61% in Iron and steel and mining and 46.60% in the Food sector. The Automobile and
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auxiliary industry had the greatest decrease in utility (−100%) as 100% of those surveyed in 2010 state
that the introduction has not achieved the expected results.

With respect to the criterion of qualifications, the Energy sector had the greatest increase in
utility (119.49%) in 2010 with respect to 2005. The Automobile and auxiliary industry, Buildings,
Transport and Chemical industry sectors also showed improvements with increases in utility of 46.67%,
31.52%, 17.20% and 6.31%, respectively. Electromechanical constructions, on the other hand, had the
largest decrease in utility (−56.67%).

6. Discussion

The model presented in this article integrates fuzzy AHP and a Multi-Attribute Utility Theory
to assess the state of maintenance in a country by industrial sectors and study its development both
overall and by criteria and subcriteria. Furthermore, this model will facilitate the application of
benchmarking by comparing the practice of the best sector for a criterion with other sectors. All of this
could contribute to the application of tools like benchmarking in the area of maintenance, where the
quality of contributions is lower than other areas, and especially in Spain, where the application of
benchmarking is much poorer than in other countries.

It should also be noted that the multicriteria model described uses all the results obtained on
maintenance in each sector of activity, instead of the mean values generally applied, favouring a more
accurate assessment. The use of fuzzy AHP allows weightings to be obtained for the most suitable
criteria and subcriteria, as the decision makers have doubts and uncertainties in their judgements,
because the importance of the criteria can change slightly over time or by sector analysed.

In general, the level of maintenance is higher in small businesses than in medium and large
businesses, where the utility values are lower; this was true both in 2005 and 2010. In large companies,
Energy, Chemical industry, Buildings and Diverse Firms had improvements in utility, while this
improvement is seen in the Building materials, Iron and Steel and mining and Diverse firms sectors
in small enterprises and in Transport, Diverse firms and Energy in companies with from 201 to
500 employees.

Instead of improving maintenance in 2010 with respect to 2005, there is a reversal in some sizes
of company. The economic crisis suffered in Spain since 2008 has, then, negatively affected the
level of maintenance applied, instead of being considered an area that could provide cost reduction
and improvements in productivity and quality to organisations. In general, behaviour with respect
to maintenance is seen to be more similar in companies with up to 200 workers and with 201 to
500 workers than in large companies. As the size of a company increases, higher utility values are seen
in both the 2005 and 2010 results.

By sectors, in the case of large companies it should be noted that Building materials had the
highest utility in 2005 and the second highest in 2010. It should also be noted that the Energy sector
had the highest utility in 2010.

Unlike the situation with large companies, in companies with from 201 to 500 employees,
Building materials was the sector with the worst utility in 2005 and 2010, a position it also occupied in
the case of small businesses in 2005. Thus, it seems that this sector, for small and medium enterprises,
is where maintenance has suffered most as a result of the recession. Transport also has a very poor level
of maintenance in small businesses and a variable situation in medium enterprises, where it occupied
the penultimate position in 2005 and the top position in 2010. In large companies, it was in third place
in 2005 and in last place in 2010. All this is worrying since maintenance applied in this sector can have
an important influence on equipment anomalies that might affect a large number of users.

Electromechanical constructions is a sector where utility decreases as the size of the company
increases. In 2010, in companies with up to 200 workers and large companies, it had the smallest utility
and in companies with from 201 to 500 workers, only Building materials had lower utility.

The Automobile and auxiliary industry, a sector that has pioneered the application of maintenance
policies like TPM, showed a worsening of behaviour in 2010. Thus, while in companies with up to
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200 workers it had the highest utility in 2005 and the fourth place in 2010, in companies with from
201 and 500 employees it went from fifth place in 2005 to eighth place in 2010. In large companies it
went from second place in 2005 to sixth place in 2010. So, although it is a sector with high dedication
to maintenance, it suffered a significant decrease with respect to the pre-2005 levels.

In future work the intention is to update the model with the behaviour recorded in 2015 or 2020,
if new national surveys are carried out. There is also an intention to ascertain whether other countries,
particularly EU countries, have suffered the same decline in maintenance as Spain as a result of the
economic crisis. There is a further idea of applying the Fuzzy TOPSIS technique instead of FAHP to
the model to test the results obtained.
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Abstract: In this study, a recourse-based type-2 fuzzy programming (RTFP) method is developed
for supporting water pollution control of basin systems under uncertainty. The RTFP method
incorporates type-2 fuzzy programming (TFP) within a two-stage stochastic programming with
recourse (TSP) framework to handle uncertainties expressed as type-2 fuzzy sets (i.e., a fuzzy set in
which the membership function is also fuzzy) and probability distributions, as well as to reflect the
trade-offs between conflicting economic benefits and penalties due to violated policies. The RTFP
method is then applied to a real case of water pollution control in the Heshui River Basin (a rural area
of China), where chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and soil
loss are selected as major indicators to identify the water pollution control strategies. Solutions
of optimal production plans of economic activities under each probabilistic pollutant discharge
allowance level and membership grades are obtained. The results are helpful for the authorities in
exploring the trade-off between economic objective and pollutant discharge decision-making based
on river water pollution control.

Keywords: recourse; River Basin; stochastic; type-2 fuzzy; uncertainty; water pollution control

1. Introduction

The trade-off between water pollution control and economic development is of great concern in
many basins since it is essential to local sustainable development [1,2]. It is difficult to keep the economy
growing under the utilization of water resources and the deterioration of environmental conditions [3,4].
Meanwhile, it is hard to promote human society improvement if the authorities excessively restrict
economic development. Under such a contradictory situation, optimization techniques are proper to
detect the economic and environmental impacts of alternative pollution control actions from a system
point of view, and thus aid the authorities in formulating and adopting cost-effective water pollution
plans and policies. However, water pollution control planning is governed by significant sources of
uncertainty associated with different variables, and uncertainty is a non-negligible constituent of such
a procedure [5]. There are significant uncertainties in not only how the system might develop, but also
in how the system is expected to adjust when many system components are altered (e.g., pollutant
discharge amount, cost/benefit coefficient and economic activity scale).

In water pollution control problems, values of associated parameters (e.g., cost/benefit
coefficients) are usually determined via tests, experiences and expertises, while these methods
may fail in determining accurate values, resulting in the parameters being described by fuzzy
membership functions. Such deviations in subjective estimations can lead to fuzziness being inherent
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in the real-world decision problems (e.g., vagueness and/or impreciseness in the outcomes of a
water pollution control sample), neglect of which can cause the solutions of problems deviating
greatly from their true values. Fuzzy mathematic programming (FMP), based on fuzzy sets theory,
can facilitate the analysis of system associated with uncertainties being derived from vagueness and
imprecision [6,7]. FMP is capable of handling decision problems under fuzzy goal and constraints and
tackling ambiguous coefficients in the objective function and constraints. Previously, a wide range
of FMP methods were developed for water pollution control [8–15]. For example, Liu et al. [16]
improved a two-stage fuzzy robust programming model for water pollution control to address
fuzzy parameters, which were represented by possibility distributions on the left- and right-hand
sides of the constraints. Tavakoli et al. [17] developed an interactive two-stage stochastic fuzzy
programming method to handle uncertainties expressed as fuzzy boundary intervals (i.e., the lower-
and upper-bounds of intervals are presented as possibility distributions). Ji et al. [18] enhanced an
inexact left-hand-side chance-constrained fuzzy multi-objective programming approach to cope with
fuzziness in the constraints and objectives. Generally, the conventional fuzzy programming methods
could only tackle fuzzy uncertainty with precise membership grades, which may encounter difficulty
when the membership grades are also obtained as fuzzy sets.

In many real-world situations, related data such as unit net benefits of economic activities
and pollutant discharge allowances are often highly uncertain, which could not be handled by the
conventional fuzzy programming methods. When it is challenging to identify the membership grade
of a fuzzy set as crisp values (e.g., unit benefit), type-2 fuzzy sets (T2FS) can effectively determine the
membership function through defying membership grades of T2FS are fuzzy sets within [0,1] [19–22].
In addition, membership functions cannot express uncertainties featured with randomness. Two-stage
stochastic programming with recourse is effective for handling decision-making problems in which
an examination of policy levels is desired and the system data is characterized by uncertainty [23].
Therefore, as an extension to the existing approaches, a recourse-based type-2 fuzzy programming
(RTFP) method incorporating the concepts of type-2 fuzzy programming (TFP) within a two-stage
stochastic programming with recourse (TSP) framework will be developed to address the above
deficiencies. Then, the RTFP method will be applied to water pollution control in the Heshui River
Basin in China. Results of optimal agriculture, industry, forestry, fishery, and livestock husbandry
activities will be generated, which will be used for providing insight into the trade-off among system
benefit, water pollution control, and sustainability.

2. Methodology

In water pollution control decision making problems, uncertainties may arise due to subjective
estimation. For instance, decision makers may estimate the unit benefit from planting fruit/vegetable
being [424.1, 575.6] × 103 $/km2 with additional information as the possibility of “the most possible
unit benefit of 499.8 × 103 $/km2” is 0.8, and the possibilities of “there is no possibility that the unit
benefit is lower than 424.1 × 103 $/km2 or higher than 575.6 × 103 $/km2” are 0.2 and 0.3, respectively.
Under such a situation, unit benefit from planting fruit/vegetable should be described as type-2
fuzzy sets (T2FS). Thus, type-2 fuzzy programming (TFP) can be adopted to tackle such uncertainties,
which can be presented as [24]:

Max f = C̃X, (1)

subject to:
ÃX ≤ B, (2)

X ≥ 0, (3)
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where C̃ ∈ {R}1×n and Ã ∈ {R}m×n are vectors of T2FS. A type-2 fuzzy set C̃ in X is a fuzzy set in
which the membership function is also fuzzy (i.e., type-2 membership function). The C̃ defined on the
universe of discourse X is represented as [25]:

C̃ = {((x, u), μC̃(x, u)) : ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]}, (4)

where 0 ≤ μC̃(x, u) ≤ 1 is the type-2 membership function, Jx ⊆ [0, 1] is the primary membership
of x ∈ X, which is the domain of the secondary membership function μC̃(x) so that all u ∈ Jx are
the primary membership grades of the point x. The secondary membership function of a triangular
C̃ = (c1, c2, c3, θ1, θr) can be defined as:

μC̃(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( x−c1

c2−c1
− θ1

x−c1
c2−c1

, x−c1
c2−c1

, x−c1
c2−c1

+ θr
x−c1
c2−c1

), if x ∈ [c1, c1+c2
2 ]

( x−c1
c2−c1

− θ1
c2−x
c2−c1

, x−c1
c2−c1

, x−c1
c2−c1

+ θr
c2−x
c2−c1

), if x ∈ [ c1+c2
2 , c2]

( c3−x
c3−c2

− θ1
x−c2
c3−c2

, c3−x
c3−c2

, c3−x
c3−c2

+ θr
x−c2
c3−c2

), if x ∈ [c1, c2+c3
2 ]

( c3−x
c3−c2

− θ1
c3−x
c3−c2

, c3−x
c3−c2

, c3−x
c3−c2

+ θr
c3−x
c3−c2

), if x ∈ [ c2+c3
2 , c2]

, (5)

where c1, c2, c3 are real numbers and θ1; θr ∈ [0, 1] are two parameters representing the spreads of
primary membership grades of C̃.

One of the main limitations of the TFP method remains in its difficulty in coping with uncertainties
described as probability distributions when the available historical data is sufficient (e.g., pollutant
discharge allowances) [26–28]. Such a problem can be formulated as a two-stage stochastic programming
with a recourse (TSP) model [23]. Through incorporating the TFP method within the TSP framework,
a recourse-based type-2 fuzzy programming (RTFP) method can be formulated as follows:

Max f =
n1

∑
j=1

c̃jxj −
n2

∑
j=1

S

∑
s=1

psẽjyjs, (6)

subject to:
n1

∑
j=1

ãrjxj ≤ b̃r, r = 1, 2, . . . , m1, (7)

n1

∑
j=1

atjxj +
n2

∑
j=1

a′tjyjts ≤ ωs, t = 1, 2, . . . , m2; s = 1, 2, . . . , v, (8)

xj ≥ 0, j = 1, 2, . . . , n2, (9)

yjs ≥ 0, j = 1, 2, . . . , n2; s = 1, 2, . . . , v. (10)

Decision variables are divided into two subsets: those that must be determined before the
realizations of random variables are known, and those (recourse variables) that are determined after
the realized random variables are disclosed. xj is the first-stage decision made before the random
variable is observed, ωs is the random variable with a probability level ps (i.e., the probability of
realization of ωs, with ps > 0 and ∑S

s=1 ps = 1) [29], and yjs is the second-stage adaptive decision,

which depends on the realization of the random variable.
n2
∑

j=1
ẽjyjs denotes the second-stage cost

function (ẽj is cost coefficient of yjs). Inequality (4e) presents the relationship among xj, yjs, and ωs.
An extra type reduction is needed to convert the output of T2FS into conventional fuzzy sets

so that they can be defuzzified to give crisp outputs. Suppose that h1, h2, . . . , hi are the value
of c̃ij (for at least one pair of i �= j, define hi �= hj) evaluated by t different experts. The relative
distances of hi are used to approximate the center. Values lying closer to the center are considered
more important. Generally, the fuzzification of c̃ij can be represented as: (1) calculate the relative
distance matrix D =

∣∣dij
∣∣
t×t, where dij =

∣∣hi − hj
∣∣; (2) calculate the average of relative distances
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di = ∑t
i=1 dij/(t− 1); (3) introduce a pair-wise comparison pij (pij = dj/di), and the pair-wise matrix

P =
∣∣pij
∣∣
t×t; (4) obtain the true-importance degree wi of hi (wj = 1/∑t

j=1 pij); (5) assess the mode of
m (m = ∑t

i=1 wihi) of the fuzzy number; (6) choose s = ∑t
i=1 wi|hi −m| to approximate the unknown

mean deviation σ; (7) acquire the ratio of left spread to the right spread η = (m− hl)/(h′ − m),
with hl = ∑i∈A wihi/∑i∈A wi, h′ = ∑i∈B wihi/∑i∈B wi, A = {i|hi < m, i ∈ I}, B = {i|hi > m, i ∈ I}
and I = {1, 2, . . . , t}; (8) obtain a = m − 3(1 + η)ησ/(1+η2) and b = m + 3(1 + η)σ/(1+η2).
The conventional fuzzy number F = (a, m, b) of c̃ij can thus be acquired. Then, the defuzzification of
T2FS can be conducted according to the critical value (CV)-based reduction method [30].

Suppose that c̃ is a triangular type-2 fuzzy variable with secondary possibility distribution
function μc̃(x) (which represents a regular fuzzy variable). The method is introducing the CVs as
representing values of the regular fuzzy variable μc̃(x), i.e., CV∗[μc̃(x)] (optimistic CV), CV∗[μc̃(x)]
(pessimistic CV) and CV[μc̃(x)]. Then, the corresponding fuzzy variables are derived using these CVs
of the secondary possibilities:

c̃ =

(
α1 α2 α3

m 1 n

)
, (11)

where α1, α2, and α3 are primary membership grade of c̃, and m, 1, and n are corresponding secondary
membership grades.

Pos(c̃ ≥ α) = sup
r≥α

μc̃(r) =

⎧⎪⎨⎪⎩
1 if 0 ≤ α ≤ α2

n if α2 ≤ α ≤ α3

0 if α3 ≤ α ≤ 1
, (12)

Nec(c̃ ≥ α) = 1− sup
r<α

μc̃(r) =

⎧⎪⎨⎪⎩
1 if 0 ≤ α ≤ α1

m if α1 ≤ α ≤ α2

0 if α2 ≤ α ≤ 1
, (13)

Cr{c̃ ≥ α} = 1
2
(Pos(c̃ ≥ α) + Nec(c̃ ≥ α)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 0 ≤ α ≤ α1

1+m
2 if α1 ≤ α ≤ α2
n
2 if α2 ≤ α ≤ α3

0 if α3 ≤ α ≤ 1

. (14)

Then, CV∗[μc̃(x)], CV∗[μc̃(x)] and CV[μc̃(x)] are defined as follows:

CV∗(c̃) = sup
α∈[0, 1]

(α ∧ Pos{c̃ ≥ α}), (15)

CV∗(c̃) = sup
α∈[0, 1]

(α ∧ Nes{c̃ ≥ α}), (16)

CV(c̃) = sup
α∈[0, 1]

(α ∧ Cr{c̃ ≥ α}). (17)

Finally, to obtain crisp values, centroid method (∑x xμc̃(x)/∑x μc̃(x)) is used for these reduced
conventional fuzzy variables. Generally, the detailed computational processes for solving the RTFP
method can be summarized as follows:

Step 1. Formulate the RTFP model.
Step 2. Discrete probability distribution into several values with each corresponds to one probability.
Step 3. Convert the output of T2FS into conventional fuzzy sets.
Step 4. Conduct defuzzification of T2FS according to the critical value (CV)-based reduction method.
Step 5. Run the RTFP model.
Step 6. Obtain the optimal solutions of the objective function ( f ), first-stage decision variable (xj),

and second-stage decision variable (yjs).
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3. Case Study

Yongxin, a county of Jiangxi Province, is located in the southeast part of China (as shown in
Figure 1). It ranges in longitude from 113.83◦ E to 114.31◦ E, and in latitude from 26.78◦ N to 27.23◦ N.
It occupies a total area of around 2194.57 km2, and the majority of the county (i.e., approximately
1800 km2) lies within the middle reaches of the Heshui River Basin [31]. The basin features subtropical
monsoon humid climatic conditions (abundant rainfall and sunlight, and long frost-free periods)
with an average annual precipitation of 1530.7 mm and an average annual temperature of 18.2 ◦C.
The Heshui River has a total length of 225 km, with 77 km flowing within the borders of Yongxin
County from west to east. The county mainly relies on the Heshui River to support its agriculture,
industry, livestock husbandry, forestry, and fishery [32].

In the county, farmland, orchard, and woodland occupy15.2%, 0.6%, and 70.1% of the total land,
receptively. Grassland accounts for 6.1% of the total area, most of which is in good condition and
suitable for feeding a large number of livestock. Land for urban construction, traffic, and water
conservancy facilities cover 3.4%, 0.4%, and 0.6% of the total land, respectively. Agriculture is
traditionally the primary sector of the County. Paddy soil is the main cultivation soil type, and it is not
only suitable for rice planting but can also be used for rapeseeds and other cash crops. Fruit orchards
produce a variety of fruits such as pear, peach, orange and plum. Agriculture includes paddy,
dry and vegetable/fruit farms. The main types of livestock raised in the County are hogs, cattle and
poultry. Pork and beef account for around 75.5 and 13.2% of the total meat production, respectively.
The second industrial sector in the county is mainly comprised of mining, manufacturing, construction,
transportation and other industries. The area possesses more than 20 types of mineral deposits, and the
mineral production was 315.0 thousand tonnes [32,33].

Figure 1. The study area.

In the past twenty years, driven by poverty, authorities have given top priority to the booming
economy in the local strategic plans [33]. According to the report of local government in 2016,
the total population was approximately 53,139, and the net income per capita was 8520 Chinese
yuan (approximately $1290). One major environmental issue in the study area is water pollution,
which is mainly caused by excessive pollutant loadings from agriculture, forestry, fishery, and livestock
husbandry, and industry. Water pollution problems pose great obstacles to sustainable development
in the county; thus, it is essential to optimize economic structure from a systematic point of view.
Based on field investigations and related literature, chemical oxygen demand (COD), total nitrogen
(TN), total phosphorus (TP), and soil loss have been selected as the pollutant types to control water
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pollution. Five zones (zones 1 to 5) are chosen to control water pollution. After the first-stage decisions
(i.e., planning targets of economic activities) are made, associated pollution, the amount of which is in
proportion to the economic production, is discharged into the water body. Based on the calculation
of discharged wastewater and the measurement of incoming water quality, the mitigation schemes
can be determined as the second-stage decisions in order to meet the environmental standards. If the
production targets of them are made too high, the additionally generated pollutants will have to
be mitigated in a more expensive way or discharged/drained into the stream (leading to penalties
from the government). Conversely, if the production targets are made too low, the system will
encounter opportunity losses of economic income, leading to a reduced system benefit. The pollutant
discharge allowances are highly uncertain, which are presented as probability distributions. Seven
pollutant-discharge allowance levels are generated in association with different probabilities, which are
identified as very-low, low, low-medium, medium, medium-high, high, and very-high, respectively.
More uncertainties associated with cost/benefit coefficients may come from measurement errors
and/or subjective judgment, and they can be expressed as T2FS. Therefore, the developed RTFP
method can be adopted to plan water pollution control in the study area. The formulation of the RTFP
model is presented as follows:

Max f± =
Ia
∑

i=1

J
∑

j=1
B̃Aij · TAij(+ΔTAijuij)−

Ia
∑

i=1

J
∑

j=1

H
∑

h=1

K
∑

k=2
ph · PEAik · D̃PAijk · XAijhk

+
I f

∑
i=1

J
∑

j=1
B̃Fij · TFij −

I f

∑
i=1

J
∑

j=1

H
∑

h=1

K−1
∑

k=1
ph · PEFik · D̃PFijk · XFijhk

+
Il
∑

i=1

J
∑

j=1
B̃Lij · TLij −

Il
∑

i=1

J
∑

j=1

H
∑

h=1
ph · PELi · D̃PLij · XLijh

Ii
∑

i=1

J
∑

j=1
TIij −

Ii
∑

i=1

J
∑

j=1

H
∑

h=1
ph · PEI±i · D̃PIij · XIijh

+
Iw
∑

i=1

J
∑

j=1
B̃Wij · TWij −

Ii
∑

i=1

J
∑

j=1

H
∑

h=1
ph · PEWi · D̃PWij · XWijh

(18)

(1) COD discharge constraints:

I f

∑
i=1

(TFij − XFijh) · CCOij ≤ PCFjh, ∀j, h, (19)

Ii

∑
i=1

(TLij − XLijh) · DPL±ij ≤ PCLjh, ∀j, h, (20)

Ii

∑
i=1

(TIij − XIijh) · DPI±ij ≤ PCIjh, ∀j, h, (21)

J
∑

j=1
[

I f

∑
i=1

(TFij − XFijh) · CCOij +
Ii
∑

i=1
(TLij − XLijh) · DPLij

+
Ii
∑

i=1
(TIij − XIijh) · DPIij] ≤ MCLh, ∀h

, (22)

(2) Phosphorus discharge constraints:

Ia

∑
i=1

(TAij − XAijh) · (SLij · APij + RAij · RPij) ≤ PAPjh, ∀j, h, (23)
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I f

∑
i=1

(TFij − XFijh) · FP±ij ≤ PFPjh, ∀j, h, (24)

J
∑

j=1
[

Ia
∑

i=1
(TAij − XAijh) · (SLij · APij + RAij · RPij)

+
I f

∑
i=1

(TFij − XFijh) · FPij] ≤ MPLh, ∀h
, (25)

(3) Nitrogen discharge constraints:

I

∑
i=1

(TAij − XAijh) · (SLij · ANij + RAijRNij) ≤ PANjh, ∀j, h, (26)

I f

∑
i=1

(TFij − XFijh) · FNij ≤ PFNjh, ∀j, h, (27)

Ia
∑

i=1
(TAij − XAijh) · (SLij · ANij + RAij · RNij)

+
I f

∑
i=1

(TFij − XFijh) · FNij ≤ MNLh, ∀h
, (28)

(4) Soil loss constraints:
Ii

∑
i=1

(TAij − XAijh) · SLij ≤ PSLjh, ∀j, h, (29)

Iw

∑
i=1

(TWij − XWijh) · DPWij ≤ PWSjh, ∀j, h, (30)

J
∑

j=1
[

Ii
∑

i=1
(TAij − XAijh) · SL±ij

+
Iw
∑

i=1
(TWij − XWijh) · DPWij] ≤ MSLh, ∀h

, (31)

(5) Water supply balance constraint:

H
∑

h=1
(

Ii
∑

i=1
(TAij − XAijh) ·WAi +

I f

∑
i=1

(TFij − XFijh) ·WFi

+
Il
∑

i=1
(TLij − XLijh) ·WLi +

Ii
∑

i=1
(TIij − XIijh) ·WIi

+
Iw
∑

i=1
(TWij − XWijh) ·WWi] ≤ MAXWj, ∀j

, (32)

(6) Product demand constraints:

TAi min ≤
J

∑
j=1

TAij ≤ TAi max, ∀i, (33)

TFi min ≤
J

∑
j=1

TFij ≤ TFi max, ∀i, (34)

TLi min ≤
J

∑
j=1

TL−ij ≤ TLi max, ∀i, (35)
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TIi min ≤
J

∑
j=1

TI−ij ≤ TIi max, ∀i, (36)

TWi min ≤
J

∑
j=1

TW−
ij ≤ TWi max, ∀i, (37)

(7) Technical constraints:

XAijh, XFijh, XLijh, XIijh, XWijh ≥ 0, ∀i, j, h. (38)

The nomenclature of variables and parameters is provided at the end of this ariticle. The imprecise
input parameters are investigated according to field surveys, statistical data [31], government
reports [34], and related literature [32,33]. Table 1 presents unit benefit of agriculture and livestock
husbandry, which are expressed as type-2 fuzzy sets. Table 2 provides pollutant allowances and the
associated probabilities of occurrence.

Table 1. Unit benefits of agriculture and livestock husbandry.

Zone
Agriculture

Paddy Farm Dry Farm Fruit/Vegetable

Unit Net Benefit (103 $/km2)

Zone 1 (201.4, 272.6, 292.3; 0.2, 0.6) (104.5, 148.4, 163.5; 0.2, 0.6) (345.3, 457.4, 486.2; 0.2, 0.6)
Zone 2 (174.2, 219.6, 269.6; 0.3, 0.5) (96.9, 130.3, 140.9; 0.3, 0.5) (152.9, 205.9, 215.1; 0.3, 0.5)
Zone 3 (169.6, 231.7, 254.4; 0.4, 0.7) (87.8, 112.1, 127.2; 0.4, 0.7) (337.7, 472.6, 569.4; 0.4, 0.7)
Zone 4 (187.8, 265.1, 290.8; 0.4, 0.7) (92.4, 118.1, 124.2; 0.4, 0.7) (254.5, 343.4, 384.7; 0.4, 0.7)
Zone 5 (184.8, 245.4, 275.7; 0.5, 0.7) (92.4, 122.7, 133.3; 0.5, 0.7) (289.3, 390.8, 402.9; 0.5, 0.7)

Zone
Livestock Husbandry

Pig Cattle Poultry

Unit Net Benefit ($/head)

Zone 1 (152.5, 166.3, 170.1; 0.4, 0.7) (785.4, 892.4, 998.4; 0.4, 0.7) (5.3, 6.2, 7.1; 0.4, 0.7)
Zone 2 (139.6, 151.2, 156.6; 0.5, 0.8) (833.9, 933.6, 974.2; 0.5, 0.8) (6.2, 6.8, 7.4; 0.5, 0.8)
Zone 3 (139.6, 159.6, 161.2, 0.4, 0.7) (732.9, 831.1, 868.1; 0.4, 0.7) (4.7, 6.9, 7.1; 0.4, 0.7)
Zone 4 (154.7, 172.2, 175.4; 0.3, 0.8) (662.1, 734.9, 760.7; 0.3, 0.8) (4.9, 6.7, 7.2; 0.3, 0.8)
Zone 5 (158.5, 168.7, 185.2; 0.4, 0.8) (904.8, 984.2, 999.2; 0.4, 0.8) (6.2, 7.1, 7.8; 0.4, 0.8)

Table 2. Pollutant allowances under different levels.

Pollutant Level Probability
Zone

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

COD
(103 kg)

Very-low 0.05 2453.5 496.4 3768.4 3284.2 2307.5
Low 0.10 2469.8 499.3 3780.8 3298.5 2213.3

Low-medium 0.20 2498.3 500.3 3792.4 3390.7 2309.8
Medium 0.30 2523.5 502.5 3897.9 3469.3 2468.3

Medium-high 0.20 2760.7 515.6 4506.2 3607.8 2647.8
High 0.10 2984.4 535.5 4512.5 3812.9 2851.2

Very-high 0.05 3286.2 578.7 4714.7 4214.2 3154.9

TN
(103 kg)

Very-low 0.05 166.5 193.2 235.7 286.3 223.6
Low 0.10 216.4 297.3 307.3 369.4 374.3

Low-medium 0.20 266.5 401.4 379.5 451.8 526.8
Medium 0.30 324.3 506.7 458.8 561.2 679.2

Medium-high 0.20 381.4 614.4 544.3 683.3 836.2
High 0.10 457.2 747.5 653.9 815.5 994.1

Very-high 0.05 545.5 883.9 756.3 935.8 1168.7
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Table 2. Cont.

Pollutant Level Probability
Zone

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

TP (103 kg)

Very-low 0.05 24.2 31.1 35.6 43.2 39.9
Low 0.10 34.4 52.0 50.0 59.5 70.5

Low-medium 0.20 44.5 73.5 64.5 76.6 101.7
Medium 0.30 55.0 94.6 81.0 93.6 132.2

Medium-high 0.20 65.1 118.1 100.2 113.9 165.4
High 0.10 79.5 142.6 114.8 134.3 200.3

Very-high 0.05 93.2 166.1 130.4 152.6 231.6

Soil loss
(103 t)

Very-low 0.05 97.3 92.5 133.4 168.5 61.7
Low 0.10 92.4 93.6 134.2 169.5 63.0

Low-medium 0.20 99.6 94.7 135.3 170.7 64.2
Medium 0.30 100.3 98.9 140.6 176.0 71.5

Medium-high 0.20 118.0 133.1 155.7 186.1 82.7
High 0.10 133.1 140.4 165.9 201.3 89.9

Very-high 0.05 133.2 140.5 171.6 274.4 91.9

Note: COD, Carbon oxygen demand; TN, Total nitrogen; TP, Total phosphorus.

4. Results Analysis and Discussion

Figure 2 represents the benefits under various pollutant discharge allowances and the system
benefit, indicating that a higher allowance would correspond to a higher benefit. For instance, when the
allowable pollutant discharge changes from very low to very high, the total benefit (i.e., sum of
benefit of each activity) would be raise from $172.1 × 106 to $195.7 × 106. Decisions at a higher
allowable pollutant discharge would lead to a higher system benefit, but the reliability in fulfilling
the environmental requirements would decrease; on the contrary, decisions at a lower allowable
pollutant discharge would lead to a decreasing of risk for violating the pollutant discharge constraints,
but with a lower system benefit. It demonstrates a trade-off between environmental requirement
violation risk and benefit due to the uncertainties existing in various system components. In practice,
when the plan aims to a higher system benefit, the environmental requirements may not be adequately
satisfied; contrarily, planning with a lower system benefit may guarantee that the requirements be met.
Additionally, the benefit of agriculture activity would take the largest proportion in total benefit and
would increase slightly with the raising of pollutant discharge allowances. Moreover, the benefit of
fishery would be stable at a low level, approximately occupying 2.1% of the total benefit.

Figure 2. Benefit of each activity under each pollutant discharge allowance.

The water pollution control problem can simplified as a recourse-based fuzzy programming (RFP)
problem by transforming the membership grades of T2FS into deterministic values. System benefit
obtained from RFP ($180.8× 106) would be lower than that from RTFP ($191.1× 106). This is due to the
fact that cost/benefit coefficients are handled by RFP, resulting in higher loss of uncertain information
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than that handled by RTFP. Figure 3 presents the optimal target and standard production scale of each
activity under RFP and RTFP. Target of each activity discharge pollutant exceeds standards can be
calculated through multiplying excess scale of economic activity (i.e., target—standard) by pollutant
discharge rate. Results indicate that the excess planning scale of agricultural activity would be high.
This may be attributed to their high crop yields and great selling prices. It is also depicted that the
excess feeding size of livestock husbandry activity would also maintain high levels due to its high
annual incomes. The excess outputs of industrial activity would also be significant since industry is
promoted by the authority to push up the local income. Excess fishery and forestry activities would be
low due to their limited planning lands. Furthermore, excess economic activities corresponding to RFP
would be higher than that corresponding to RTFP. For instance, target of agricultural activity would
be 180 ha in zone 1, while the standard production scale under RTFP and RFP would, respectively,
be 156.4 ha and 148.5 ha corresponding to very-low level. Thus, excess agricultural activity would be
23.6 ha and 31.5 ha, respectively. It is revealed that the varied uncertain information would affect the
water pollution control plans. Any simplifications may result in unreliable or misleading plans.

(a)

Figure 3. Cont.
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(b)

Figure 3. Optimal target and standard production scale of each activity. (a) Agriculture; (b) Livestock
husbandry; (c) Industry; (d) Forestry; (e) Fishery.

Figure 4 displays the excess pollutant discharges under different pollutant discharge allowance
levels corresponding to RFP and RTFP. It is indicated that amounts of excess pollutant discharges would
reduce with the increased levels. For instance, under RTFP, the amounts of excess soil loss, COD, TP,
and TN discharges would be 52.3× 103, 152.1, 22.4, and 99.2 t under low pollutant discharge allowance
level; in comparison, under high pollutant discharge allowance level, they would respectively decrease
to 1.3 × 103, 8.2, 7.2, 5.4 t. In general, results discover that a more restrictive pollution control would
result in a higher excess pollutant discharge while a looser pollution control would bring on a lower
excess pollutant discharge.

Figure 4. Excess pollutant discharge under different pollutant allowances (unit: t). (a) soil loss; (b) COD
discharge; (c) TP discharge; (d) TN discharge.

Figure 5 displays proportion of excess pollutant discharges under medium-high level. It is
indicated that the excess soil loss, TN, and TP discharges of agriculture would account for about 97%,
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88%, and 87% of the of the total discharge amounts, respectively. The high excess pollutants discharges
are mainly related to its high targeted planning scale and discharge rates. The excess COD discharged
from fishery would be high (accounting for 58% of the total excess discharge) due to its high COD
discharge rate. In summary, the trade-off between agricultural income and pollution control (i.e., soil
loss, TP, and TN discharges) would be of great concern for the local authority; fishery would be ceased
due to its low benefit and high pollutant discharges.

Figure 5. Proportion of pollutant discharges under medium-high level. (a) soil loss; (b) TN discharge;
(c) TP discharge; (d) COD discharge.

Generally, compared with RTFP, RFP that tackles uncertainty in a single fuzzy set is not
satisfactory to sufficiently reflect enough uncertain information in the decision-making process. Such a
simplification may lead to unreliable or even misleading solutions. For instance, due to loss of the
additional design degree of freedom, which is useful in water pollution control systems where input
data are highly uncertain, economic coefficients (unit cost and unit benefit) treated by RFP are higher
than that treated by RTFP. The higher economic coefficients lead to a lower system benefit, which may
present unreliable decision support for local authorities. RTFP can tackle more complex uncertainty
in terms of T2FS due to the extra degree of freedom. Moreover, solutions of economic activities
scale and excess pollutant discharge also display that RTFP is more capable of balancing economic
development and pollutant discharge control in the study area. Thus, RTFP is more enhanced in
uncertainty reflection, as well as water pollution control.

5. Conclusions

In this study, a recourse-based type-2 fuzzy programming (RTFP) approach is developed for water
pollution control planning. RTFP has incorporated the techniques of type-2 fuzzy programming and
two-stage stochastic programming with recourse (TSP) within a general framework. RTFP can handle
uncertainties presented as type-2 fuzzy sets (i.e., a fuzzy set in which the membership function is also
fuzzy) and probability distributions. RTFP could provide benefit assessment for random pollutant
discharge allowance levels through the two-stage framework. The results are helpful for the authorities
in exploring the trade-off between economic objective and pollutant discharge decision-making based
on river water pollution control.
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The developed RTFP method has been demonstrated through its application to water pollution
control of Heshui River Basin. Different levels that pollutant discharge allowances are assumed to
be random and benefit/cost coefficients are specified as type-2 fuzzy sets have been investigated.
Solutions for production scale of agriculture, livestock husbandry, industry, forestry, and fishery are
generated. Several findings can be concluded: (i) results reveal that uncertainties in pollutant discharge
allowance level have significant effects on the city’s future economic structure; (ii) constrained with
low pollutant discharge allowance, the excess pollutant discharge would be high; (iii) the increased
restriction of discharge would stimulate the basin taming the pace of economic growth; (iv) results
also disclose that the benefit of agriculture activity would take the largest proportion in total benefit
and would increase slightly with the raising of pollutant discharge allowances; and (v) system benefit
is powerfully impressed by the pollutant discharge allowance level.

It is the first attempt to apply the RTFP method to water pollution control planning, and results
indicate that (1) RTFP cannot only handle uncertainty expressed as T2FS, but also effectively cope with
uncertainty described as probability distribution; (2) TFCP can help authorities to make trade-offs
among environmental violation risk and system benefit. Nevertheless, there are also potential
extensions of the proposed method. For example, RTFP has difficulty in addressing uncertainties
that cannot be expressed as type-2 fuzzy sets or probability distributions; interval is a proper type
to present such a kind of uncertainty. Furthermore, construction of T2FS membership function is
usually based on experts’ subjective evaluation, which may also lead to high uncertainty. At present,
there is no appropriate evaluation method except experts’ decisions. It is worthwhile to search for
more effective methods to improve the method of constructing membership functions for T2FS, which
can be helpful to reduce uncertainty.
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Nomenclatures

i

index for economic activities; for agricultural activities, i = 1, 2, . . . , Ia; for fishery activities
i = 1, 2, . . . , If (e.g., fish and prawn farming); for livestock husbandry activities i = 1, 2, . . . , Il;
for industrial activities i = 1, 2, . . . , Ii (e.g., manufacturing, mining, architecture, transportation
and others); for forestry activities i = 1, 2, . . . , Iw

j index for zones; j = 1, 2, . . . , J
k index for pollutants; k = 1, 2, . . . , K (e.g., COD discharge, TN loss, TP loss, and soil loss)
h allowable pollutant discharge level; h = 1, 2, . . . , H
ph probability of occurrence allowable pollutant discharge level h (%)
B̃Aij unit benefit from agricultural activity i in zone j (RMB¥/km2)
TAij land area target for agricultural activity i in zone j (km2)

PEAik
reduction of net benefit from agricultural activity i for excess discharge of pollutant k
(RMB¥/kg when k = 2, 3; RMB¥/tonne when k = 4)

DPAijk
discharge rate of pollutant k from agricultural activity i in zone j (kg/km2 when k = 2, 3;
tonne /km2 when k = 4)

XAijhk
decision variables representing amount by which the target of agricultural activity i discharge
pollutant k exceeds standards in zone j when level is h (km2)

B̃Fij unit benefit from fishery activity i in zone j (RMB¥/km2)
TFij land area target for fishery farming activity i in zone j (km2)
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PEFik reduction of net benefit from fishery activity i for excess discharge of pollutant k (RMB¥/kg)
DPFijk discharge rate of pollutant k from fishery activity i in zone j (kg/km2)

XFijhk
decision variables representing amount by which target of fishery activity i discharge pollutant
k exceeds standards in zone j when level is h (km2)

B̃L±ij unit benefit from livestock husbandry activity i in zone j (RMB¥/head)
TLij target for livestock husbandry activity i in zone j (head)

PELi
reduction of net benefit from livestock husbandry activity i for excess discharge of pollutant
(i.e., COD) (RMB¥/kg)

DPLij discharge rate of pollutant (i.e., COD) from livestock husbandry activity i in zone j (kg/head)

XLijh
decision variables representing amount by which target of livestock husbandry activity i
discharge pollutant (i.e., COD) exceeds standards in zone j when level is h (head)

TIij output target for industrial activity i in zone j (RMB¥)

PEIi
reduction of net benefit from industrial activity i for excess discharge of pollutant (i.e., COD)
(RMB¥/kg)

DPIij discharge rate of pollutant (i.e., COD) from industrial activity i in zone j (kg/RMB¥)

XIijh
decision variables representing amount by which target of industrial activity i discharge
pollutant (i.e., COD) exceeds standards in zone j when level is h (RMB¥)

B̃Wij unit benefit from forestry activity i in zone j (RMB¥/head)
TWij land area target for forestry activity i in zone j (unit)

PEWi
reduction of net benefit from forestry activity i for excess discharge of pollutant (i.e., soil loss)
(RMB¥/tonne)

DPWij discharge rate of pollutant (i.e., soil loss) from forestry activity i in zone j (tonne/km2)

XWijh
decision variables representing amount by which target of forestry activity i discharge
pollutant (i.e., soil loss) exceeds standards in zone j when level is h (unit)

COFij COD discharge from fishery farming activity i in zone j (kg/km2)

PCFjh
maximum allowable COD discharge for fishery farming activities in zone j with probability ph
of occurrence under level h (kg)

PCLjh
maximum allowable COD discharge for livestock husbandry activities in zone j with
probability ph of occurrence under level h (kg)

PCIjh
maximum allowable COD discharge for industrial activity i in zone j with probability ph of
occurrence under level h (kg)

MCLh
maximum allowable COD discharge from economic activities with probability ph of
occurrence under level h (kg)

SLij soil loss from agricultural activity i in zone j (tonne/km2)
APij phosphorous content of soil corresponding to agricultural activity i in zone j (kg/tonne)
RAij runoff from agricultural activity i in zone j (kg/km2)
RPij dissolved phosphorous content of runoff corresponding to agricultural activity i in zone j (%)

PAPjh
maximum allowable phosphorous loss from agricultural activities in zone j with probability ph
of occurrence under level h (kg)

FPij dissolved phosphorous loss from fishery farming activity i in zone j (kg/km2)

PFPjh
maximum allowable phosphorous loss from fishery farming activities in zone j with
probability ph of occurrence under level h (kg)

MPLh
maximum allowable phosphorous loss from economic activities with probability ph of
occurrence under level h (kg)

ANij nitrogen content of soil corresponding to agricultural activity i in zone j (kg/tonne)
RNij dissolved nitrogen content of runoff corresponding to agricultural activity i in zone j (%)

PANjh
maximum allowable nitrogen loss from agricultural activities in zone j with probability ph of
occurrence under level h (kg)

FNij dissolved nitrogen loss from fishery activity i in zone j (kg/km2)

PFNjh
maximum allowable nitrogen loss from fishery farming activities in zone j with probability ph
of occurrence under level h (kg)
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MSLjh
maximum allowable soil loss from economic activities with probability ph of occurrence under
level h (tonne)

MNLh
maximum allowable nitrogen loss from economic activities with probability ph of occurrence
under level h (kg)

B̃Fij unit benefit from fishery activity i in zone j (RMB¥/km2)

PSLjh
maximum allowable soil loss from agricultural activities in zone j with probability ph of
occurrence under level h (tonne)

PWSjh
maximum allowable soil loss from forestry activities in zone j with probability ph of
occurrence under level h (tonne)

WAi water demand for agricultural activity i (m3/km2)
WFi water demand for fishery activity i (m3/km2)
WLi water demand for livestock husbandry activity i (m3/head)
WIi water demand for industrial activity i (m3/RMB¥)
WWi water demand for forestry activity i (m3/km2)
MAXWj maximum allowable water resources supply amount in zone j (m3)
TAi min minimum demand for agricultural activity i (km2)
TAi max maximum demand for agricultural activity i (km2)
TFi min minimum demand for fishery activity i (km2)
TFi max maximum demand for fishery activity i (km2)
TLi min minimum demand for livestock husbandry activity i (head)
TLi max maximum demand for livestock husbandry activity i (head)
TWi min minimum demand for industrial activity i (RMB¥)
TWi max maximum demand for industrial activity i (RMB¥)
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Abstract: Project delivery system selection is an essential part of project management. In the
process of choosing appropriate transaction model, many factors should be under consideration,
such as the capability and experience of proprietors, project implementation risk, and so on. How
to make their comprehensive evaluations and select the optimal delivery system? This paper
proposes a decision-making approach based on an extended linguistic preference structure: simplified
neutrosophic linguistic preference relations (SNLPRs). The basic elements in SNLPRs are simplified
neutrosophic linguistic numbers (SNLNs). First, several distance measures of SNLNs are introduced.
A distance-based consistency index is provided to measure the consistency degree of a simplified
neutrosophic linguistic preference relation (SNLPR). When the SNLPR is not acceptably consistent,
a consistency-improving automatic iterative algorithm may be used. Afterwards, a decision-making
method with SNLPRs is developed. The example of its application in project delivery systems’
selection is offered, and a comparison analysis is given in the end as well.

Keywords: project delivery system selection; preference relations; simplified neutrosophic linguistic
number; distance-based consistency index; improving consistency

1. Introduction

Construction is not only a carrier of fixed asset investment in a country, but also a channel to
adjust products and industrial structures [1,2]. The choice of a project delivery system may be one
of the most crucial elements of a project. There are multiple trading models that can be chosen.
According to the complexity of projects and the relationships of owners with contractors, the delivery
systems can be divided into four categories [3]. The general contract mode, which is the fixed price
contract, mainly includes the Design Build (DB), Engineer Procure Construct Tumkey, and Design
Build Operate (DBO). The management contract mode, namely the cost plus contract, principally
contains the Construction-Management (CM) and Project-Management Contracting. The traditional
trading model, called Design Bid Build (DBB), carries out the unit price contract. Others comprise
Private Participating Infrastructure, Build Operate Transfer, Private Finance Initiative, and so on.

A lot of aspects, such as projects’ characteristics, construction environment, owners’ capacity, and
market conditions, need to be decided in the system selection process [4]. Nevertheless, the choice
of transaction modes is usually based on the subjective consciousness of the decision makers (DMs)
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in engineering practice. Only a few scientific and rational decision-making methods related to the
selection of project delivery systems have been established. For instance, a fuzzy approach to pick
out appropriate transaction systems was presented by Mostafavi and Karamouz [5]. Wang et al. [6]
constructed a project delivery system model based on fuzzy sets. After that, the analytical hierarchy
process (AHP) for choosing the trade model was provided as well [7,8].

Neutrosophic sets (NSs), as a generalization of intuitionistic fuzzy sets, were originally proposed
by Smarandache [9]. They can deal with consistent, hesitant, and inconsistent information at the same
time. Figure 1 in Chen and Ye [10] shows the flow chart extended from fuzzy sets to neutrosophic sets
(as well as simplified neutrosophic sets, single-valued neutrosophic sets, and interval neutrosophic sets).
There are many extensions of NSs [11–15]. Numerous multi-criteria decision-making methods based on
NSs and their extensions have been studied. For example, the ELECTRE approaches of NSs and interval
neutrosophic sets (INSs) were presented by Peng et al. [16] and Zhang et al. [17], respectively. The
extended TODIM [18] and MULTIMOORA [19] methods with NSs were also offered. Peng et al. [20] put
forward a likelihood-based QUALIFLEX method of multi-valued neutrosophic numbers. Besides, the
VIKOR method in line with INSs was developed by Bausys and Zavadskas [21]. Pouresmaeil et al. [22]
proposed an extended TOPSIS and VIKOR approaches based on NSs. Furthermore, other approaches,
such as the heronian mean operators [23], correlation coefficients [24,25], the WASPAS method [26–29],
and the COPRAS [30,31] method were discussed and applied in diverse areas.

However, no matter which of the methods mentioned above is used, DMs are asked to give their
evaluation values directly. It may be not easy for them in some cases. Sometimes, people may be
accustomed to make a judgment through comparing each pair of delivery systems, especially when
they cannot make direct evaluations for each single model [32]. Hence, the decision-making methods
based on a judgment matrix (preference relations) with NSs or other extensions may be valuable
and necessary.

In general, there are two main types of preference relations. One expresses quantitative data,
such as reciprocal preference relations [33,34], interval fuzzy preference relations [35–37], intuitionistic
fuzzy preference relations [38,39] triangular fuzzy preference relations [40,41], hesitant fuzzy preference
relations [42,43], and some extensions [44–46]. Another contains qualitative information, like linguistic
preference relations (LPRs) [47–51], hesitant fuzzy linguistic preference relations (HFLPRs) [52–54],
intuitionistic linguistic preference relations (ILPRs) [55], and so on [56–58].

This paper introduces a new type of preference relations, simplified neutrosophic linguistic
preference relations (SNLPRs). The basic element in SNLPRs is a simplified neutrosophic linguistic
number (SNLN). The aims of the paper are as follows. On the one hand, a matrix with qualitative
information may be more suitable for selecting project delivery systems as many qualitative factors are
considered such as owners’ ability, the technical difficulty of the project, the uncertainty of the external
environment, and so on. On the other hand, the aforementioned preference relations cannot describe
DMs’ degrees of certainty, hesitation, and negation of their qualitative judgment simultaneously. There
is a hypothesis that the membership degree of linguistic values is 1 in LPRs and HFLPRs. ILPRs only
express the consistency and inconsistency of linguistic values.

On the basis of linguistic term sets and simplified neutrosophic numbers [59], simplified
neutrosophic linguistic numbers (SNLNs) may be one of the most widely used extensions [60–62].
The former stands for the qualitative evaluation values of project systems [63–65], and the latter are the
truth-membership, indeterminacy-membership, and false-membership of the qualitative assessment.
Most importantly, these degrees are independent of each other. Consequently, considering the fuzziness
of human thought and the complexity of reality, expressing preference in terms of SNLNs may be
more suitable.

This paper studies a decision-making method with preference relations under simplified
neutrosophic linguistic environment. The following are our innovations:

(1) Propose the Hamming distance, Euclidean distance, and Hausdorff distance of two SNLNs.
In addition, several relevant properties are discussed.
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(2) Present a new concept, SNLPRs. Subsequently, a distance-based consistency index is introduced
to measure the consistency degree of SNLPRs.

(3) Develop a consistency-improving algorithm and a ranking method based on aggregation
operators. A decision-making approach based on SNLPRs is described as well.

(4) Apply the proposed method to the project transaction model selection process. The practicability
and effectiveness are demonstrated in a comparison analysis.

The remains of this paper are arranged as follows. Basic theories about SNLNs and LPRs
are introduced in Section 2. Section 3 proposed some distance measures of SNLNs. In Section 4,
the consistency-checking and consistency-improving issues of SNLPRs are discussed. Afterwards,
there is an example and some analysis in Section 5. At last, some conclusions are drawn.

2. Preliminaries

In this section, some basic concepts and operations of linguistic term sets, SNLNs and LPRs,
are reviewed.

A linguistic tem set is a collection of multiple linguistic values, like

S = {si|i = −u, . . . ,−1, 0, 1, . . . , u},

where si is a possible linguistic value, and the negation operator is neg(si) = s−i. Furthermore, if and
only if i > j, then si > sj [66].

Note that the linguistic term set above is discrete. In some cases, the aggregated results may be
used, which are not contained in this set. Hence, Xu [66] further defined a continuous term set, like

S = {si|i ∈ [−g, g]}(g > u)

to extend the old one.
The following are some operations of two linguistic terms si, sj ∈ S.

si ⊕Xu sj = si+j (1)

si ⊕Xu sj = sj ⊕Xu si (2)

λsi = sλi, 0 ≤ λ ≤ 1 (3)

Definition 1. In Reference [67], let S = {si|i ∈ [−g, g]} be a linguistic term set. The subscript of any element
si can be obtained by the function N(si) = i. The inverse function is N−1(i) = si.

Definition 2. In Reference [68], suppose a crisp number ϑi ∈ [0, 1]. If there is a mapping from si to
ϑi, then the linguistic scale function f ∗ is denoted as f ∗ : si → ϑi (i = −g,−g + 1, · · · , g− 1, g), where
0 ≤ ϑ−g < ϑ−g+1 < · · · < ϑg−1 < ϑg. And f ∗−1 is the inverse function of f ∗.

The linguistic scale function f ∗(si) =
1
2 + i

2g (i ∈ [−g, g]) is used in this paper.

Definition 3. In References [69,70], let S = {si|i ∈ [−g, g]} be a linguistic term set. η =< hη , (Tη , Iη , Fη) >

is a SNLN, where hη(x) ∈ S, the truth-membership degree Tη(x) ∈ [0, 1], indeterminacy-membership degree
Iη(x) ∈ [0, 1], and falsity-membership degree Fη(x) ∈ [0, 1], and 0 ≤ Tη(x) + Iη(x) + Fη(x) ≤ 3.

Definition 4. In Reference [71], A =< hA, (TA, IA, FA) > and B =< hB, (TB, IB, FB) > are two arbitrary
SNLNs, and their operations can be defined as follows:

(1) If S(a) > S(b), then a > b;
(2) If S(a) = S(b) and A(a) > A(b), then a > b;
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(3) If S(a) = S(b), A(a) = A(b) and C(a) > C(b), then a > b;
(4) If S(a) = S(b), A(a) = A(b) and C(a) = C(b), then a = b.

Definition 5. In Reference [71], assume ai = (sθ(ai)
,< Ti, Ii, Fi >) (i = 1, 2, . . . , n) are a sequence of SNLNs.

Then the simplified neutrosophic linguistic arithmetic mean (SNLAM) operator is

SNLAM(a1, a2, . . . , an) =
n
⊕

i=1

1
n ai

=

〈
f ∗−1
(

1
n

n
∑

i=1

(
f ∗(sθ(ai)

)
))

,

⎛⎝ n
∑

i=1

(
f ∗(sθ(ai)

)Ti

)
n
∑

i=1
f ∗(sθ(ai)

)
,

n
∑

i=1

(
f ∗(sθ(ai)

)Ii

)
n
∑

i=1
f ∗(sθ(ai)

)
,

n
∑

i=1

(
f ∗(sθ(ai)

)Fi

)
n
∑

i=1
f ∗(sθ(ai)

)

⎞⎠〉 . (4)

Definition 6. In Reference [71], suppose ai = (sθ(ai)
,< Ti, Ii, Fi >) (i = 1, 2, . . . , n) are a sequence of SNLNs.

Then the simplified neutrosophic linguistic geometric mean (SNLGM) operator is

SNLGM(a1, a2, . . . , an) =
n
⊗

i=1
a

1
n
i =

〈
f ∗−1
(

n
∏
i=1

(
f ∗(sθ(ai)

)
) 1

n
)

,
(

n
∏
i=1

T
1
n

i , 1−
n
∏
i=1

(1− Ii)
1
n , 1−

n
∏
i=1

(1− Fi)
1
n

)〉
. (5)

Definition 7. In Reference [71], let a =< ha, (Ta, Ia, Fa) > be a SNLN. Then the score function is
SF(a) = 1

3 f ∗(ha)(Ta + 1− Ia + 1− Fa), the accuracy function is AF(a) = f ∗(ha)(Ta − Fa), and the
certainty function is CF(a) = f ∗(ha)Ta.

Definition 8. In Reference [71], for two SNLNs a =< ha, (Ta, Ia, Fa) > and b =< hb, (Tb, Ib, Fb) >,
the comparison method is:

(1) If S(a) > S(b), then a > b;
(2) If S(a) = S(b) and A(a) > A(b), then a > b;
(3) If S(a) = S(b), A(a) = A(b) and C(a) > C(b), then a > b;
(4) If S(a) = S(b), A(a) = A(b) and C(a) = C(b), then a = b.

Definition 9. In Reference [72], let X = {x1, x2, . . . , xn} be a collection of n alternatives and B = (bij)n×n ⊂
X× X be a judgment matrix. If for all i, j = 1, 2, . . . , n, there are

bij ⊕ bji = s0 and bii = s0, (6)

then B = (bij)n×n is a LPR, where bij is the preference degree of the alternative xi over xj. In particular,
if bij < s0, xi is non-preferred to xj; xi is preferred to xj if bij > s0; if not, xj is equivalent to xi.

Definition 10. In References [72,73], if B = (bij)n×n ⊂ X× X is a LPR, and

bij = bik ⊕ bkj,(i, k, j = 1, 2, . . . , n) (7)

then B is a perfectly consistent LPR.

3. Distance Measures of SNLNs

Ye [70] defined the distance measure between two SNLNs, but this method has some drawbacks.
Thus, some distance measures of SNLNs are redefined in this section.

Distance measure is a universal and effective way to calculate the difference between two elements.
There are several common distance measures, such as Hamming distance, Euclidean distance, and
Hausdorff distance.
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Definition 11. In Reference [70], suppose α = (Tα, Iα, Fα) and β = (Tβ, Iβ, Fβ) are two optional SNLNs, and
the subscript function is N(si) = i. λ ≥ 0. The distance between α and β can be defined as below:

dY(α, β) = (
∣∣Tα · N(hα)− Tβ · N(hβ)

∣∣
λ+
∣∣Iα · N(hα)− Iβ · N(hβ)

∣∣
λ+
∣∣Fα · N(hα)− Fβ · N(hβ)

∣∣
λ)

1
λ . (8)

Specially, when λ = 1, Equation (8) can be reduced to Hamming distance; when λ = 2, Equation (8) can
be reduced to Euclidean distance.

The limitations of this definition are noticeable. Firstly, the calculation depends on linguistic subscripts
directly, and different semantics cannot be distinguished. Secondly, this distance does not satisfy 0 ≤ dY(α, β) ≤ 1
and the property of triangle inequality. Thirdly, the truth-membership, indeterminacy-membership, and
false-membership are put on an equal footing in the calculation process. This is intuitively irrational.

To overcome these shortcomings, the following distance measures between two SNLNs are defined.

Definition 12. For two arbitrary SNLNs a =< ha, (Ta, Ia, Fa) > and b =< hb, (Tb, Ib, Fb) >, assume the
linguistic term set is S = {si|i ∈ [−g, g]} and the subscript function is N(si) = i. Then the Hamming distance
dH(a, b), Euclidean distance dE(a, b), and Hausdorff distance dHa(a, b) can be defined as follows:

dH(a, b) = 1
6g [N(|Ta · ha − Tb · hb|) + N(|(1− Ia) · ha − (1− Ib) · hb|) + N(|(1− Fa) · ha − (1− Fb) · hb|)], (9)

dE(a, b) =
√

1
12g2 [N(|Ta · ha − Tb · hb|)2 + N(|(1− Ia) · ha − (1− Ib) · hb|)2 + N(|(1− Fa) · ha − (1− Fb) · hb|)2], (10)

dHa(a, b) = 1
2g max{N(|Ta · ha − Tb · hb|), (|(1− Ia) · ha − (1− Ib) · hb|), N(|(1− Fa) · ha − (1− Fb) · hb|)}. (11)

Property 1. Assume Ω is the set of all SNLNs, a =< ha, (Ta, Ia, Fa) >, b =< hb, (Tb, Ib, Fb) > and
c =< hc, (Tc, Ic, Fc) >, S = {si|i ∈ [−g, g]}, and then the following properties are satisfied:

(1) 0 ≤ dH(a, b) ≤ 1, 0 ≤ dE(a, b) ≤ 1, and 0 ≤ dHa(a, b) ≤ 1, for ∀a, b ∈ Ω;
(2) dH(a, b) = dH(b, a), dE(a, b) = dE(b, a), and dHa(a, b) = dHa(b, a), for ∀a, b ∈ Ω;
(3) If a = b, then dH(a, b) = 0, dE(a, b) = 0, and dHa(a, b) = 0, for ∀a, b ∈ Ω;
(4) If s0 ≤ ha ≤ hb ≤ hc, Ta ≤ Tb ≤ Tc, Ia ≥ Ib ≥ Ic and Fa ≥ Fb ≥ Fc, then dH(a, b) ≤ dH(a, c),

dH(b, c) ≤ dH(a, c), dE(a, b) ≤ dE(a, c), dE(b, c) ≤ dE(a, c), dHa(a, b) ≤ dHa(a, c) and dHa(b, c) ≤
dHa(a, c).

Proof 1.

(1) Because i ∈ [−g, g] and 0 ≤ Ta, Tb ≤ 1, N(|Ta · ha − Tb · hb|) ∈ [0, 2g] ; Similarly,
0 ≤ (1 − Ia) ≤ 1, 0 ≤ (1 − Ib) ≤ 1⇒N(|(1− Ia) · ha − (1− Ib) · hb|) ∈ [0, 2g] , and
0 ≤ (1 − Fa) ≤ 1, 0 ≤ (1 − Fb) ≤ 1⇒N(|(1− Fa) · ha − (1− Fb) · hb|) ∈ [0, 2g] ; thus
0 ≤ [N(|Ta · ha − Tb · hb|) + N(|(1− Ia) · ha − (1− Ib) · hb|) + N(|(1− Fa) · ha − (1− Fb) · hb|)]
≤ 6g⇒0 ≤ dH(a, b) ≤ 1. Likewise, 0 ≤ dE(a, b) ≤ 1 and 0 ≤ dHa(a, b) ≤ 1.

(2) N(|Ta · ha − Tb · hb|) = N(|Tb · hb − Ta · ha|), N(|(1− Ia) · ha − (1− Ib) · hb|) = N(|(1− Ib) · hb −
(1− Ia) · ha|), and N(|(1− Fa) · ha − (1− Fb) · hb|) = N(|(1− Fb) · hb − (1− Fa) · ha|), therefore
dH(a, b) = dH(b, a). Likewise, dE(a, b) = dE(b, a) and dHa(a, b) = dHa(b, a).

(3) a = b⇒N(|Ta · ha − Tb · hb|) = 0, N(|(1− Ia) · ha − (1− Ib) · hb|) = 0 and N(|(1− Fa) · ha − (1−
Fb) · hb|) = 0, therefore dH(a, b) = 0. Similarly, dE(a, b) = 0 and dHa(a, b) = 0.

(4) Because s0 ≤ saij ≤ sbij ≤ scij, Ta
ij ≤ Tb

ij ≤ Tc
ij, and N(si) = i is a monotone increasing

function,Ta
ij · (saij) ≤ Tb

ij · (sbij) ≤ Tc
ij · (scij)⇒|Ta

ij · (saij)− Tb
ij · (sbij)| ≤ |Ta

ij · (saij)− Tc
ij · (scij)|

and N(|Ta
ij · (saij)− Tb

ij · (sbij)|) ≤ N(|Ta
ij · (saij)− Tc

ij · (scij)|); Likewise, N(|(1− Ia
ij) · (saij)− (1−

Ib
ij) · (sbij)|) ≤ N(|(1− Ia

ij) · (saij)− (1− Ic
ij) · (scij)|) and N(|(1− Fa

ij) · (saij)− (1− Fb
ij) · (sbij)|) ≤

N(|(1 − Fa
ij) · (saij) − (1 − Fc

ij) · (scij)|), so dH(a, b) ≤ dH(a, c). Similarly, dH(b, c) ≤ dH(a, c),
dE(a, b) ≤ dE(a, c), dE(b, c) ≤ dE(a, c), dHa(a, b) ≤ dHa(a, c) and dHa(b, c) ≤ dHa(a, c).
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Then, the proof is completed. �

Example 1. a =< s1, (0.2, 0.3, 0.6) > and b =< s2, (0.5, 0.1, 0.4) > are two SNLNs, and g = 4. Then
dH(a, b) ≈ 0.1125, dE(a, b) ≈ 0.1139 and dHa(a, b) ≈ 0.1375.

4. Decision-Making Method Based on SNLPRs

In this section, the concept of SNLPRs is presented. A decision-making method is proposed after
discussing the checking and improving of consistency.

4.1. The Concept of SNLPRs

Definition 13. Given a group of n alternatives X = {x1, x2, . . . , xn} and a matrix K = (kij)n×n ⊂ X × X.
If all the elements are presented with SNLNs, kij = (sij,< Tij, Iij, Fij >), and satisfy these conditions in
the following:

sij ⊕Xu sji = s0 (12)

Tij = Tji, Iij = Iji, Fij = Fji (13)

(sii,< Tii, Iii, Fii >) = (s0,< 1, 0, 0 >), (i, j = 1, 2, . . . , n), (14)

then the matrix K on X can be regarded as a SNLPR, where sij is the degree of xi preferred to xj, and Tij, Iij and
Fij represent the truth-membership degree, the indeterminacy-membership degree, and the falsity-membership
degree of sij, respectively.

Specifically, when Tij = 1 and Iij = Fij = 0 for all i, j = 1, 2, . . . , n, then the SNLPR is reduced to a LPR.
Compared to LPRs, SNLPRs contain not only the linguistic values, but also the degrees of accuracy, hesitation,
and mistake. The discrete linguistic term set can be extended to be a continuous one and DMs can express their
qualitative preference information more flexibly.

From Definition 13, it can be seen that kij = (sij,< Tij, Iij, Fij >) is the preferred value of the
scheme xi to xj, and it could be the same as kij = (< sij, Tij >,< sij, Iij >,< sij, Fij >), where
< sij, Tij > shows xi is sij to xj with the true possibility Tij; < sij, Iij > shows xi is sij to xj with the
hesitant possibility Iij; < sij, Fij > shows xi is sij to xj with the false possibility Fij.

As well as LPR, the preference degree of xj to xi can be denoted as < s−ij, Tij >, < s−ij, Iij >

and < s−ij, Fij >, individually. That is to say, kji = (< s−ij, Tij >,< s−ij, Iij >,< s−ij, Fij >) or
kji = (s−ij,< Tij, Iij, Fij >).

Example 2. There are three alternatives X = {x1, x2, x3}, and the linguistic term set S = {si|i ∈ [−4, 4]} is
used, where s = {s−4 = tremendously poorer, s−3 = much poorer, s−2 = poorer, s−1 = a little poorer,
s0 = f air, s1 = a little better, s2 = better, s3 = much better, s4 = tremendously better}. If a decision
maker believes the degree of x1 preferred to x2 is s2, but he is not sure that he is absolutely right. According to his
professional knowledge and experience in the past, he deems that he is correct with a probability of 40%, but the
probability of error is 50%, and the uncertainty is 10%. In that case, his preference can be described using a
SNLN, that is, (s2,< 0.4, 0.1, 0.5 >). In this way, a SNLPR can be obtained as all the alternatives above are
compared with each other in a proper sequence. An example is given as follows:

K1 =

⎡⎢⎣ (s0,< 1, 0, 0 >) (s−1,< 0.4, 0.2, 0.1 >) (s2,< 0.3, 0.1, 0.2 >)

(s1,< 0.4, 0.2, 0.1 >) (s0,< 1, 0, 0 >) (s−3,< 0.2, 0.5, 0.3 >)

(s−2,< 0.3, 0.1, 0.2 >) (s3,< 0.2, 0.5, 0.3 >) (s0,< 1, 0, 0 >)

⎤⎥⎦.

Definition 14. Let X = {x1, x2, . . . , xn} be a cluster of n alternatives and a SNLPR be K = (kij)n×n ⊂ X×X,
where kij = (sij,< Tij, Iij, Fij >). Then the matrix T = (< sij, Tij >)n×n ⊂ X × X is regarded as the true
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linguistic judgment matrix of K, I = (< sij, Iij >)n×n ⊂ X× X is the hesitant linguistic judgment matrix of
K, and F = (< sij, Fij >)n×n ⊂ X× X is the false linguistic judgment matrix of K, respectively.

From Definition 14, it can be known that for an arbitrary SNLPR, it is easy to derive its
corresponding true linguistic judgment matrix, hesitant linguistic judgment matrix, and false linguistic
judgment matrix. Furthermore, these linguistic judgment matrices are all defined based on the
continuous linguistic terms.

Example 3. Suppose a SNLPR is the same as in Example 2. Then, according to Definition
14, its corresponding true linguistic judgment matrix, hesitant linguistic judgment matrix, and

false linguistic judgment matrix are T1 =

⎡⎢⎣ (< s0, 1 >) (< s−1, 0.4 >) (< s2, 0.3 >)

(< s1, 0.4 >) (< s0, 1 >) (< s−3, 0.2 >)

(< s−2, 0.3 >) (< s3, 0.2 >) (< s0, 1 >)

⎤⎥⎦,

I1 =

⎡⎢⎣ (< s0, 0 >) (< s−1, 0.2 >) (< s2, 0.1 >)

(< s1, 0.2 >) (< s0, 0 >) (< s−3, 0.5 >)

(< s−2, 0.1 >) (< s3, 0.5 >) (< s0, 0 >)

⎤⎥⎦ and F1 =

⎡⎢⎣ (< s0, 0 >) (< s−1, 0.1 >) (< s2, 0.2 >)

(< s1, 0.1 >) (< s0, 0 >) (< s−3, 0.3 >)

(< s−2, 0.2 >) (< s3, 0.3 >) (< s0, 0 >)

⎤⎥⎦.

4.2. Consistency Checking of SNLPRs

The deviation between two SNLPRs is calculated in this subsection, and then a distance-based
consistency index is presented as well.

Definition 15. Assume there are several alternatives X = {x1, x2, . . . , xn}. For an arbitrary SLNLPR, if for all
i, j, k = 1, 2, . . . , n, there is (Tik · sik)⊕ (Tkj · skj) = (Tij · sij), then it can be regarded that T = (Tij · sij)n×n ⊂
X × X is consistent; if for all i, j, k = 1, 2, . . . , n, ((1− Iik) · sik)⊕ ((1− Ikj) · skj) = ((1− Iij) · sij), I =

(Iij · sij)n×n ⊂ X×X is consistent; Similarly, if for all i, j, k = 1, 2, . . . , n, ((1− Fik) · sik)⊕ ((1− Fkj) · skj) =

((1− Fij) · sij), F = (< Fij · sij >)n×n ⊂ X× X is consistent.

Definition 16. Let K = (kij)n×n = (sij,< Tij, Iij, Fij >)n×n ⊂ X×X be a SNLPR. If the following equations
are true for all i, j, k = 1, 2, . . . , n:

(Tik · sik)⊕ (Tkj · skj) = (Tij · sij) (15)

((1− Iik) · sik)⊕ ((1− Ikj) · skj) = ((1− Iij) · sij) (16)

((1− Fik) · sik)⊕ ((1− Fkj) · skj) = ((1− Fij) · sij), (17)

then K is regarded as a consistent SNLPR.

Example 4. Suppose a SNLPR is the same one as Example 2. Because (T12 · s12)⊕ (T23 · s23) = 0.4s−1 ⊕
0.2s−3 = s−1 �= T13 · s13, based on Definition 16, K1 is not considered a consistent SNLPR.

Theorem 1. Given some alternatives X = {x1, x2, . . . , xn}, and the related SNLPR is K = (kij)n×n =

(sij,< Tij, Iij, Fij >)n×n ⊂ X × X. If T = (Tij · sij)n×n ⊂ X × X, I = (Iij · sij)n×n ⊂ X × X and F =

(Fij · sij)n×n ⊂ X × X all have perfect consistency, then the SNLPR K is consistent, too. On the contrary,
when a SNLPR K has complete consistency, then T = (Tij · sij)n×n ⊂ X× X, I = (Iij · sij)n×n ⊂ X× X and
F = (Fij · sij)n×n ⊂ X× X are all absolutely consistent.
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Proof 2.

(1) Because T = (Tij · sij)n×n ⊂ X × X is consistent, for all i, j, k = 1, 2, . . . , n, there is (Tik · sik)⊕
(Tkj · skj) = (Tij · sij) based on Definition 15. In the same way, ((1− Iik) · sik)⊕ ((1− Ikj) · skj) =

((1− Iij) · sij) and ((1− Fik) · sik)⊕ ((1− Fkj) · skj) = ((1− Fij) · sij), as I = (Iij · sij)n×n ⊂ X× X
and F = (Fij · sij)n×n ⊂ X × X are consistent. That is to say, (Tik · sik)⊕ (Tkj · skj) = (Tij · sij),
((1− Iik) · sik)⊕ ((1− Ikj) · skj) = ((1− Iij) · sij) and ((1− Fik) · sik)⊕ ((1− Fkj) · skj) = ((1−
Fij) · sij) for all i, j, k = 1, 2, . . . , n. On the basis of Definition 16, it can be seen that K is consistent.

(2) Since K has complete consistency, then these equations hold based on Definition 16: (Tik · sik)⊕
(Tkj · skj) = (Tij · sij), ((1 − Iik) · sik) ⊕ ((1 − Ikj) · skj) = ((1 − Iij) · sij) and ((1 − Fik) · sik) ⊕
((1 − Fkj) · skj) = ((1 − Fij) · sij). In the light of Definition 15, T = (Tij · sij)n×n ⊂ X × X,
I = (Iij · sij)n×n ⊂ X× X and F = (Fij · sij)n×n ⊂ X× X are all consistent as well.

The proof is done now. �

Theorem 2. Given an arbitrary SNLPR K = (kij)n×n = (sij,< Tij, Iij, Fij >)n×n ⊂ X × X, i, j, k =

1, 2, . . . n, if

T∗ij · s∗ij =
1
n
{⊕n

k=1[(Tik · sik)⊕ (Tkj · skj)]} (18)

(1− I∗ij) · s∗ij =
1
n
{⊕n

k=1[((1− Iik) · sik)⊕ ((1− Ikj) · skj)]} (19)

(1− F∗ij) · s∗ij =
1
n
{⊕n

k=1[((1− Fik) · sik)⊕ ((1− Fkj) · skj)]}, (20)

then a consistent SNLPR K∗ = (k∗ij)n×n
= (s∗ij,< T∗ij , I∗ij, F∗ij >)

n×n
is obtained.

Proof 3. Since (T∗ik · s∗ik) ⊕ (T∗kj · s∗kj) = 1
n{⊕n

e=1[(Tie · sie) ⊕ (Tek · sek)]} ⊕
1
n{⊕n

e=1[(Tke · ske) ⊕ (Tej · sej)]} = 1
n
{
⊕n

e=1[(Tie · sie)⊕ (Tek · sek)⊕ (Tke · ske)⊕ (Tej · sej)]
}

= 1
n
{
⊕n

e=1[(Tie · sie)⊕ (Tej · sej)⊕ (Tek · s0)]
}

= 1
n{⊕n

e=1[(Tie · sie) ⊕ (Tej · sej)]} = T∗ij · s∗ij;
then (T∗ik · s∗ik) ⊕ (T∗kj · s∗kj) = T∗ij · s∗ij; Similarly, ((1 − I∗ik) · s∗ik) ⊕ ((1 − I∗kj) · s∗kj) =
1
n{⊕n

e=1[((1 − Iie) · sie) ⊕ ((1 − Iek) · sek)]} ⊕ 1
n
{
⊕n

e=1[((1− Ike) · ske)⊕ ((1− Iej) · sej)]
}

=
1
n
{
⊕n

e=1[((1− Iie) · sie)⊕ ((1− Iek) · sek)⊕ ((1− Ike) · ske)⊕ ((1− Iej) · sej)]
}
= 1

n{⊕n
e=1[((1− Iie) · sie)

⊕((1 − Iej) · sej) ⊕ ((1 − Iek) · s0)]} = 1
n{⊕n

e=1[((1 − Iie) · sie) ⊕ ((1 − Iej) · sej)]}
= (1− I∗ij) · s∗ij and ((1− F∗ik) · s∗ik)⊕ ((1− F∗kj) · s∗kj) =

1
n
{
⊕n

e=1[((1− Fie) · sie)⊕ ((1− Fek) · sek)]
}
⊕

1
n{⊕n

e=1[((1− Fke) · ske)⊕((1− Fej) · sej)]} = 1
n{⊕n

e=1[((1− Fie) · sie)⊕ ((1− Fek) · sek)⊕ ((1− Fke) · ske)

⊕((1 − Fej) · sej)]} = 1
n
{
⊕n

e=1[((1− Fie) · sie)⊕ ((1− Fej) · sej)⊕ ((1− Fek) · s0)]
}

= 1
n{⊕n

e=1[((1 −
Fie) · sie)⊕ ((1− Fej) · sej)]} = (1− F∗ij) · s∗ij.

According to Equations (15)–(17), it can be seen that K∗ = (k∗ij)n×n
= (s∗ij,< T∗ij , I∗ij, F∗ij >)

n×n
is a

consistent SNLPR.
This is the end of Proof 3. �

Note that there are only three equations above, but four variables s∗ij, T∗ij , I∗ij and F∗ij are contained.
Thus, there may be many possible answers. In order to get a unique solution, the following method
is used:

(1) In a general way, assume s∗ij ≥ so, and then so ≤ T∗ij · s∗ij ≤ s∗ij, so ≤ (1− I∗ij) · s∗ij ≤ s∗ij, and
so ≤ (1− F∗ij) · s∗ij ≤ s∗ij; suppose max{N(T∗ij · s∗ij), N((1− I∗ij) · s∗ij), N((1− F∗ij) · s∗ij)} ∈ [a− 1, a], a ≤

N(s∗ij), and then a unique SNLN (s∗ij,< T∗ij , I∗ij, F∗ij >) = (sa,
N(T∗ij ·s∗ij)

a , 1− N((1−I∗ij)·s∗ij)
a , 1− N((1−F∗ij )·s∗ij)

a )

can be gained.
For instance, if T∗ij · s∗ij = 0.3, (1 − I∗ij) · s∗ij = 1.2, and (1 − F∗ij) · s∗ij = 2.7, there is

max{N(T∗ij · s∗ij), N((1− I∗ij) · s∗ij), N((1− F∗ij) · s∗ij)} = max(0.3, 1.2, 2.7) = 2.7 ∈ [2, 3], so a = 3 and
(s∗ij,< T∗ij , I∗ij, F∗ij >) = (s3,< 0.1, 0.6, 0.1 >).
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(2) For s∗ij ≤ so, s∗ij ≤ T∗ij · s∗ij ≤ so, s∗ij ≤ (1− I∗ij) · s∗ij ≤ so and s∗ij ≤ (1− F∗ij) · s∗ij ≤ so; if min{N(T∗ij ·
s∗ij), N((1− I∗ij) · s∗ij), N((1− F∗ij) · s∗ij)} ∈ [a, a+ 1], a ≥ N(s∗ij), then a solitary SNLN is (s∗ij,< T∗ij , I∗ij, F∗ij >

) = (sa,
N(T∗ij ·s∗ij)

a , 1− N((1−I∗ij)·s∗ij)
a , 1− N((1−F∗ij )·s∗ij)

a ).
For example, T∗ij · s∗ij = −0.3, (1− I∗ij) · s∗ij = −1.2 and (1− F∗ij) · s∗ij = −2.7. Because min{N(T∗ij ·

s∗ij), N((1− I∗ij) · s∗ij), N((1− F∗ij) · s∗ij)} = min(−0.3,−1.2,−2.7) = 2.7 ∈ [−3,−2], then a = −3 and
(s∗ij,< T∗ij , I∗ij, F∗ij >) = (s−3,< 0.1, 0.6, 0.1 >).

(3) Besides, there are two other situations: one is that the value of N(T∗ij · s∗ij), N((1− I∗ij) · s∗ij)
and N((1− F∗ij) · s∗ij) are a positive number and two negative numbers; the other one is that there are
two negative numbers and a positive number among N(T∗ij · s∗ij), N((1− I∗ij) · s∗ij) and N((1− F∗ij) · s∗ij).
In these conditions, the final answers may not meet the requirements of 0 ≤ T∗ij ≤ 1, 0 ≤ 1− I∗ij ≤ 1 or
0 ≤ 1− F∗ij ≤ 1. In other words, the consistent matrix being obtained may not be a SNLPR. But it still
does not affect us to measure the consistency degree of the SNLPR, for the reason that the values of
T∗ij · s∗ij, (1− I∗ij) · s∗ij and (1− F∗ij) · s∗ij can be calculated. Thus, the consistency index of the SNLPR can
be acquired (more details see Definition 12, Definition 17 and Definition 18).

Example 5. Suppose the same SNLPR in Example 2 is given. A consistent SNLPR K∗1 =⎡⎢⎣ (s0,< 1, 0, 0 >) (s1,< 0.133, 0.433, 0.167 >) (s1,< 0.067, 0.567, 0.934 >)

(s−1,< 0.133, 0.433, 0.167 >) (s0,< 1, 0, 0 >) (s−1,< 0.067, 0.867, 0.433 >)

(s−1,< 0.067, 0.567, 0.934 >) (s1,< 0.067, 0.867, 0.433 >) (s0,< 1, 0, 0 >)

⎤⎥⎦ can be

obtained in the abovementioned way.

According to those distance measures of SNLNs in Section 3, several distance measures of SNLPRs
are further defined.

Definition 17. There are two facultative SNLPRs A = (aij)n×n and B = (bij)n×n, the linguistic term set
is S = {si|i ∈ [−g, g]}. Then Hamming distance DH(A, B), Euclidean distance DE(A, B) and Hausdorff
distance DHa(A, B) between A and B are defined as:

DH(A, B) =
1

n(n− 1)

n

∑
i �=j

dH(aij, bij) (21)

DE(A, B) =
1

n(n− 1)

n

∑
i �=j

dE(aij, bij) (22)

DHa(A, B) =
1

n(n− 1)

n

∑
i �=j

dHa(aij, bij). (23)

Example 6. Assume g = 4, and two SNLPR A =

⎡⎢⎣ (s0,< 1,0,0>) (s1,< 0.2,0.3,0.6>) (s3,< 0.5,0.4,0.2>)
(s−1,< 0.2,0.3,0.6>) (s0,< 1,0,0>) (s−2,< 0.7,0.1,0.6>)
(s−3,< 0.5,0.4,0.2>) (s2,< 0.7,0.1,0.6>) (s0,< 1,0,0>)

⎤⎥⎦,

B =

⎡⎢⎣ (s0,< 1, 0, 0 >) (s2,< 0.5, 0.1, 0.4 >) (s3,< 0.3, 0.6, 0.1 >)

(s−2,< 0.5, 0.1, 0.4 >) (s0,< 1, 0, 0 >) (s−1,< 0.2, 0.8, 0.5 >)

(s−3,< 0.3, 0.6, 0.1 >) (s1,< 0.2, 0.8, 0.5 >) (s0,< 1, 0, 0 >)

⎤⎥⎦. Then Hamming distance

DH(A, B) ≈ 0.1014, Euclidean distance DE(A, B) ≈ 0.1083 and Hausdorff distance DHa(A, B) ≈ 0.1375.

Theorem 3. Given two SNLPRs A = (aij)n×n and B = (bij)n×n, if DH(A, B), DE(A, B) and DHa(A, B)
can satisfy the following properties:

(1) 0 ≤ DH(A, B) ≤ 1, 0 ≤ DE(A, B) ≤ 1, and 0 ≤ DHa(A, B) ≤ 1;
(2) DH(A, B) = DH(B, A), DE(A, B) = DE(B, A), and DHa(A, B) = DHa(B, A);
(3) If A = B, then DH(A, B) = 0, DE(A, B) = 0, and DHa(A, B) = 0;
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(4) Let A = (aij)n×n = (saij,< Ta
ij, Ia

ij, Fa
ij >)

n×n
, B = (bij)n×n = (sbij,< Tb

ij, Ib
ij, Fb

ij >)
n×n

and

C = (cij)n×n = (scij,< Tc
ij, Ic

ij, Fc
ij >)

n×n
be three SNLPRs, if s0 ≤ saij ≤ sbij ≤ scij, Ta

ij ≤ Tb
ij ≤ Tc

ij,

Ia
ij ≥ Ib

ij ≥ Ic
ij and Fa

ij ≥ Fb
ij ≥ Fc

ij for all i, j = 1, 2, · · · n, then DH(A, B) ≤ DH(A, C),
DH(B, C) ≤ DH(A, C), DE(A, B) ≤ DE(A, C), DE(B, C) ≤ DE(A, C), DHa(A, B) ≤ DHa(A, C)
and DHa(B, C) ≤ DHa(A, C).

Proof 4.

(1) Since 0 ≤ dH(aij, bij) ≤ 1⇒ 0 ≤ 1
n(n−1)∑n

i �=j dH(aij, bij) ≤ 1, then 0 ≤ DH(A, B) ≤ 1.

Likewise, 0 ≤ DE(A, B) ≤ 1 and 0 ≤ DHa(A, B) ≤ 1.
(2) As dH(aij, bij) = dH(bij, aij)⇒ 1

n(n−1)∑n
i �=j dH(aij, bij) =

1
n(n−1)∑n

i �=j dH(bij, aij), then DH(A, B) =
DH(B, A). Similarly, DE(A, B) = DE(B, A) and DHa(A, B) = DHa(B, A).

(3) Because A = B, for all i, j = 1, 2, · · · n, then aij = bij ⇒ dH(aij, bij) = 0 ⇒ DH(A, B) =
1

n(n−1)∑n
i �=j dH(aij, bij) = 0. In the same way, DE(A, B) = 0 and DHa(A, B) = 0.

(4) As dH(aij, bij) ≤ dH(aij, cij)⇒ 1
n(n−1)∑n

i �=j dH(aij, bij) ≤ 1
n(n−1)∑n

i �=j dH(aij, cij) ⇒ DH(aij, bij) ≤
DH(aij, cij). Similarly, DH(bij, cij) ≤ DH(aij, cij), DE(aij, bij) ≤ DE(aij, cij), DE(bij, cij) ≤
DE(aij, cij), DHa(aij, bij) ≤ DHa(aij, cij) and DHa(bij, cij) ≤ DHa(aij, cij).

This is the end of Proof 4. �

Definition 18. Let K = (kij)n×n be a SNLPR, and K∗ = (k∗ij)n×n
be the corresponding consistent SNLPR,

the deviation between K and K∗ can be expressed by a consistency index C(K) as follows:

CX(K) = 1− D(K, K∗), (24)

where D(K, K∗) can be replaced by DH(K, K∗), DE(K, K∗), or DHa(K, K∗).

Example 7. Assume a SNLPR K1 =

⎡⎢⎣ (s0,< 1,0,0 >) (s−1,< 0.4,0.2,0.1 >) (s2,< 0.3,0.1,0.2 >)
(s1,< 0.4,0.2,0.1 >) (s0,< 1,0,0 >) (s−3,< 0.2,0.5,0.3 >)
(s−2,< 0.3,0.1,0.2 >) (s3,< 0.2,0.5,0.3 >) (s0,< 1,0,0 >)

⎤⎥⎦
is the same with Example 2, and its consistent SNLPR is K∗1 =⎡⎢⎣ (s0,< 1, 0, 0 >) (s1,< 0.133, 0.433, 0.167 >) (s1,< 0.067, 0.567, 0.934 >)

(s−1,< 0.133, 0.433, 0.167 >) (s0,< 1, 0, 0 >) (s−1,< 0.067, 0.867, 0.433 >)

(s−1,< 0.067, 0.567, 0.934 >) (s1,< 0.067, 0.867, 0.433 >) (s0,< 1, 0, 0 >)

⎤⎥⎦ from

Example 5. If DH(K, K∗) is used, then CX(K) ≈ 0.8569; if DE(K, K∗) is used, then CX(K) ≈ 0.9936; if
DHa(K, K∗) is used, then CX(K) ≈ 0.8083.

Note that since 0 ≤ D(K, K∗) ≤ 1, then 0 ≤ CX(K) ≤ 1. Moreover, the greater the value of
CX(K), the more consistent K will be according to Definition 18.

4.3. Improving the Consistency of SNLPRs

Normally, it is difficult for DMs to provide a fully consistent SNLPR. There will be a lot of
uncertainty in the decision-making process. For this reason, it is appropriate and necessary to allow
the SNLPR presented by DMs satisfy the consistency in some extent. Then, the following is the concept
of acceptable consistency.

Definition 19. Let CX be a consistency threshold value. For an arbitrary SNLPR K, if the corresponding
consistency index is CX(K), and

CX(K) > CX, (25)

then K is consistent in some extent. In other words, it has acceptable consistency.
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Zhu and Xu [74] indicated that the consistency index CX(K) obeys a normal distribution, thus
providing a method to determine the consistency threshold value CX. This method is used here. When
the significance level α = 0.1 and the standard deviation σ = 0.2, the consistency index threshold is
shown in Table 1.

Table 1. The consistency threshold value CX.

CX n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9

g = 2 0.8235 0.7576 0.7210 0.6981 0.6824 0.6710 0.6624
g = 3 0.8739 0.8269 0.8007 0.7844 0.7731 0.7650 0.7589
g = 4 0.9020 0.8653 0.8450 0.8323 0.8235 0.8172 0.8124

Of course, the numbers in Table 1 can be used for reference. DMs can determine the value of
thresholds based on their previous experience, preferences, or actual situations as well.

Example 8. Suppose a SNLPR K1 is the same as Example 2, and the consistency index CX(K1) ≈ 0.8569
from Example 7. If DH(K1, K∗1) is used, for g = 4 and n = 3, the consistency threshold value can be assigned
with CX = 0.9020 based on Table 1. CX(K1) < CX, and it demonstrates that K1 does not have acceptable
consistency.

When the initial SNLPR presented by DMs is not acceptably consistent, a way to improve this
SNLPR should be provided. Then, an iterative algorithm (Algorithm 1) is given to achieve acceptable
consistency as follows:

Algorithm 1. Consistency-improving process with automatic iteration

Input: The initial SNLPR K(s) = (k(s)ij )
n×n

= (s(s)ij ,< T(s)
ij , I(s)ij , F(s)

ij >)
n×n

, and the value of the consistency
threshold CX.
Output: The modified SNLPR Ka, and its consistency index CX(Ka).

Step 1: Let s = 0 and ie = 0. According to Theorem 2, acquire the consistent SNLPR K∗(s) = (k∗(s)ij )
n×n

of K(s),

where k∗(s)ij = (s∗(s)ij ,< T∗(s)ij , I∗(s)ij , F∗(s)ij >).

Step 2: Choose an applicable distance, and calculate CX(K(s)) on the basis of Definition 18.
Step 3: Determine the maximum value of iterative times iemax ≥ 1. If CX(K(s)) > CX or ie > iemax, then go to
Step 6; otherwise, go to the next step.

Step 4: Confirm the adjusted parameter δ ∈ (0, 1). Let T(s+1)
ij · s(s+1)

ij = δ(T(s)
ij · s(s)ij )⊕ (1− δ)(T∗(s)ij · s∗(s)ij ),

(1− I(s+1)
ij ) · s(s+1)

ij = δ((1− I(s)ij ) · s(s)ij )⊕ (1− δ)((1− I∗(s)ij ) · s∗(s)ij )

and (1− F(s+1)
ij ) · s(s+1)

ij = δ((1− F(s)
ij ) · s(s)ij )⊕ (1− δ)((1− F∗(s)ij ) · s∗(s)ij ).

Step 5: Let ie = ie + 1 and s = s + 1, then K(s) is the adjusted SNFLPR. Return to Step 2.
Step 6: Let Ka = K(s), Output Ka and CX(Ka).

This algorithm above improves the consistency through the iterative process automatically, which
is convenient and efficient.

Theorem 4. Given a SNLPR K, if K does not have acceptable consistency, it will be more consistent using
Algorithm 1. That is to say, C(K(s+1)) < C(K(s)) is true. Moreover, lim

s→∞
C(K(s)) = 0.

Proof 5.

(1) From Equation (18), T∗(s)ij · s∗(s)ij = 1
n{⊕n

k=1[(T
(s)
ik · s(s)ik ) ⊕ (T(s)

kj · s(s)kj )]}, and then

|T(s+1)
ij s(s+1)

ij −T∗(s+1)
ij s∗(s+1)

ij | = |T(s+1)
ij s(s+1)

ij − 1
n{⊕n

k=1[(T
(s+1)
ik · s(s+1)

ik ) ⊕ (T(s+1)
kj · s(s+1)

kj )]}| =
|δ(T(s)

ij · s(s)ij ) ⊕ (1 − δ)(T∗(s)ij · s∗(s)ij ) − 1
n{⊕n

k=1[(δ(T
(s)
ik · s(s)ik ) ⊕ (1 − δ)(T∗(s)ik · s∗(s)ik ))⊕(δ(T(s)

kj ·
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s(s)kj )⊕ (1− δ)(T∗(s)kj · s∗(s)kj ))]}|≤ |δ(T(s)
ij · s

(s)
ij )⊕− 1

n{⊕n
k=1[(δ(T

(s)
ik · s

(s)
ik )⊕ (δ(T(s)

kj · s
(s)
kj ))]}|+|(1−

δ)(T∗(s)ij · s∗(s)ij )− 1
n{⊕n

k=1[(1− δ)(T∗(s)ik · s∗(s)ik ))⊕ (1− δ)(T∗(s)kj · s∗(s)kj ))]}|

= δ|(T(s)
ij · s(s)ij ) ⊕ − 1

n{⊕n
k=1[(T

(s)
ik · s(s)ik ) ⊕ (T(s)

kj · s(s)kj )]}| + (1 − δ)|(T∗(s)ij · s∗(s)ij ) −
1
n{⊕n

k=1[(T
∗(s)
ik · s∗(s)ik ) ⊕ (T∗(s)kj · s∗(s)kj )]}| = δ|(T(s)

ij · s(s)ij ) ⊕ −T∗(s)ij · s∗(s)ij | + |(1 − δ)|(T∗(s)ij ·
s∗(s)ij )− 1

n{⊕n
k=1[(

1
n{⊕n

p=1[(T
(s)
ip · s

(s)
ip )⊕ (T(s)

pk · s
(s)
pk )]})⊕ ( 1

n{⊕n
p=1[(T

(s)
kp · s

(s)
kp )⊕ (T(s)

pj · s
(s)
pj )]})]}|

= δ|(T(s)
ij · s(s)ij )⊕ −T∗(s)ij · s∗(s)ij | + (1− δ)|(T∗(s)ij · s∗(s)ij ) − ( 1

n{⊕n
p=1[(T

(s)
ip · s(s)ip )⊕ (T(s)

pj · s(s)pj )]})|
= δ|(T(s)

ij · s
(s)
ij )⊕−T∗(s)ij · s∗(s)ij |+ (1− δ)|(T∗(s)ij · s∗(s)ij )− (T∗(s)ij · s∗(s)ij )|= δ|(T(s)

ij · s
(s)
ij )⊕−T∗(s)ij ·

s∗(s)ij |, so N(|T(s+1)
ij s(s+1)

ij − T∗(s+1)
ij s∗(s+1)

ij |) ≤ δ · N(|(T(s)
ij · s

(s)
ij )⊕−T∗(s)ij · s∗(s)ij |);

(2) From Equation (19), (1− I∗ij) · s∗ij =
1
n{⊕n

k=1[((1− Iik) · sik)⊕ ((1− Ikj) · skj)]}, and then |(1−
I(s+1)
ij ) · s(s+1)

ij − (1− I∗(s+1)
ij ) · s∗(s+1)

ij | = |(1− I(s+1)
ij ) · s(s+1)

ij − 1
n{⊕n

k=1[((1− I(s+1)
ik ) · s(s+1)

ik )⊕
((1− I(s+1)

kj ) · s(s+1)
kj )]}| = |δ((1− I(s)ij ) · s(s)ij )⊕ (1− δ)((1− I∗(s)ij ) · s∗(s)ij )− 1

n{⊕n
k=1[(δ((1− I(s)ik ) ·

s(s)ik )⊕ (1− δ)((1− I∗(s)ik ) · s∗(s)ik )) ⊕(δ((1− I(s)ij ) · s(s)kj )⊕ (1− δ)((1− I∗(s)kj ) · s∗(s)kj ))]}|

≤ |δ((1− I(s)ij ) · s(s)ij )− 1
n{⊕n

k=1[(δ((1− I(s)ik ) · s(s)ik )⊕ (δ((1− I(s)kj ) · s(s)kj ))]}|+

|(1 − δ)((1 − I∗(s)ij ) · s∗(s)ij ) − 1
n{⊕n

k=1[(1 − δ)((1 − I∗(s)ik ) · s∗(s)ik )) ⊕n
k=1 (1 − δ)((1 − I∗(s)kj ) ·

s∗(s)kj ))]}|= δ|((1− I(s)ij ) · s(s)ij )− 1
n{⊕n

k=1[((1− I(s)ik ) · s(s)ik )⊕ ((1− I(s)kj ) · s(s)kj ))]}|+ (1− δ)|((1−
I∗(s)ij ) · s∗(s)ij )− 1

n{⊕n
k=1[((1− I∗(s)ik ) · s∗(s)ik ))⊕n

k=1 ((1− I∗(s)kj ) · s∗(s)kj ))]}|

= δ|((1− I(s)ij ) · s(s)ij )− (1− I∗(s)ij ) · s∗(s)ij |+ (1− δ)|((1− I∗(s)ij ) · s∗(s)ij )− 1
n{⊕n

k=1[(
1
n{⊕n

p=1[((1−
I(s)ip ) · s(s)ip )⊕

((1− I(s)pk ) · s
(s)
pk )]})⊕n

k=1 (
1
n{⊕n

p=1[((1− I(s)kp ) · s
(s)
kp )⊕ ((1− I(s)pj ) · s

(s)
pj )]})]}|

= δ|((1− I(s)ij ) · s(s)ij )− (1− I∗(s)ij ) · s∗(s)ij |+(1− δ)|((1− I∗(s)ij ) · s∗(s)ij )− 1
n{⊕n

p=1[((1− I(s)ip ) · s(s)ip )⊕
((1− I(s)pj ) · s

(s)
pj )]}|= δ|(1− I(s)ij ) · s(s)ij )− (1− I∗(s)ij ) · s∗(s)ij |+ (1− δ)|(1− I∗(s)ij ) · s∗(s)ij − (1− I∗(s)ij ) ·

s∗(s)ij | = δ|(1− I(s)ij ) · s(s)ij − (1− I∗(s)ij ) · s∗(s)ij |, so N((1− I(s+1)
ij ) · s(s+1)

ij − (1− I∗(s+1)
ij ) · s∗(s+1)

ij |) ≤
δ · N(|(1− I(s)ij ) · s(s)ij − (1− I∗(s)ij ) · s∗(s)ij |);

(3) From Equation (20), (1− F∗ij) · s∗ij =
1
n{⊕n

k=1[((1− Fik) · sik)⊕ ((1− Fkj) · skj)]}, and then |(1−
F(s+1)

ij ) · s(s+1)
ij − (1− F∗(s+1)

ij ) · s∗(s+1)
ij | = |(1− F(s+1)

ij ) · s(s+1)
ij − 1

n{⊕n
k=1[((1− F(s+1)

ik ) · s(s+1)
ik )⊕

((1− F(s+1)
kj ) · s(s+1)

kj )]}|= |δ((1− F(s)
ij ) · s(s)ij )⊕ (1− δ)((1− F∗(s)ij ) · s∗(s)ij )− 1

n{⊕n
k=1[(δ((1− F(s)

ik ) ·
s(s)ik )⊕ (1− δ)((1− F∗(s)ik ) · s∗(s)ik )) ⊕(δ((1− F(s)

ij ) · s(s)kj )⊕ (1− δ)((1− F∗(s)kj ) · s∗(s)kj ))]}|

≤ |δ((1− F(s)
ij ) · s(s)ij )− 1

n{⊕n
k=1[(δ((1− F(s)

ik ) · s(s)ik )⊕ (δ((1− F(s)
kj ) · s(s)kj ))]}|+

|(1− δ)((1− F∗(s)ij ) · s∗(s)ij )− 1
n{⊕n

k=1[(1− δ)((1− F∗(s)ik ) · s∗(s)ik ))⊕n
k=1 (1− δ)((1− F∗(s)kj ) · s∗(s)kj ))]}|

= δ|((1− F(s)
ij ) · s(s)ij ) − 1

n{⊕n
k=1[((1− F(s)

ik ) · s(s)ik ) ⊕ ((1− F(s)
kj ) · s(s)kj ))]}|+(1− δ)|((1− F∗(s)ij ) ·

s∗(s)ij )− 1
n{⊕n

k=1[((1− F∗(s)ik ) · s∗(s)ik ))⊕n
k=1 ((1− F∗(s)kj ) · s∗(s)kj ))]}|

= δ|((1− F(s)
ij ) · s(s)ij )− (1− F∗(s)ij ) · s∗(s)ij |+ (1− δ)|((1− F∗(s)ij ) · s∗(s)ij )− 1

n{⊕n
k=1[(

1
n{⊕n

p=1[((1−
F(s)

ip ) · s(s)ip )⊕

((1− F(s)
pk ) · s

(s)
pk )]})⊕n

k=1 (
1
n{⊕n

p=1[((1− F(s)
kp ) · s(s)kp )⊕ ((1− F(s)

pj ) · s
(s)
pj )]})]}|
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= δ|((1 − F(s)
ij ) · s(s)ij ) − (1 − F∗(s)ij ) · s∗(s)ij | + (1 − δ)|((1 − F∗(s)ij ) · s∗(s)ij ) − 1

n{⊕n
p=1[((1 −

F(s)
ip ) · s(s)ip ) ⊕ ((1 − F(s)

pj ) · s(s)pj )]}|= δ|(1 − F(s)
ij ) · s(s)ij ) − (1 − F∗(s)ij ) · s∗(s)ij | + (1 − δ)|(1 −

F∗(s)ij ) · s∗(s)ij − (1 − F∗(s)ij ) · s∗(s)ij | = δ|(1 − F(s)
ij ) · s(s)ij − (1 − F∗(s)ij ) · s∗(s)ij |, so N((1 − F(s+1)

ij ) ·
s(s+1)

ij − (1 − F∗(s+1)
ij ) · s∗(s+1)

ij |) ≤ δ · N(|(1 − F(s)
ij ) · s(s)ij − (1 − F∗(s)ij ) · s∗(s)ij |); According

to (1)–(3), there is N(|T(s+1)
ij s(s+1)

ij − T∗(s+1)
ij s∗(s+1)

ij |) + N((1 − I(s+1)
ij ) · s(s+1)

ij − (1 − I∗(s+1)
ij ) ·

s∗(s+1)
ij |) + N((1 − F(s+1)

ij ) · s(s+1)
ij − (1 − F∗(s+1)

ij ) · s∗(s+1)
ij |)≤ δ · [N(|(T(s)

ij · s(s)ij ) ⊕ −T∗(s)ij ·
s∗(s)ij |) + N(|(1− I(s)ij ) · s(s)ij − (1− I∗(s)ij ) · s∗(s)ij |) + N(|(1− F(s)

ij ) · s(s)ij − (1− F∗(s)ij ) · s∗(s)ij |)], then

dH(k
(s+1)
ij , k∗(s+1)

ij ) ≤ δdH(k
(s)
ij , k∗(s)ij ), dE(k

(s+1)
ij , k∗(s+1)

ij ) ≤ δdE(k
(s)
ij , k∗(s)ij ), dHa(k

(s+1)
ij , k∗(s+1)

ij ) ≤
δdHa(k

(s)
ij , k∗(s)ij ), so CI(K(s+1)) = 1 − D(K(s+1), K∗(s+1)) = 1

n(n−1)∑n
i �=j d(k(s+1)

ij , k∗(s+1)
ij )≥

1
n(n−1)∑n

i �=j δ · d(k(s)ij , k∗(s)ij ) ≥ CI(K(s)). In addition, lim
s→∞

CI(K(s)) = 1.

This is the end of Proof 5. �

It can be seen from Theorem 4 that an arbitrary SNLPR that does not have a satisfactory consistency
can be adjusted by the above algorithm to an acceptable matrix. The value of the adjustment parameter
will have an effect on the process speed and times. DMs or other experts can determine the value of
δ based on the actual situation. In general, δ = 0.5 is advised. If the predetermined threshold is not
satisfied, the algorithm will be repeated until the maximum number of iterations is reached.

Example 9. Let a SNLPR K1 be the same as Example 2. It can be seen that CX(K1) ≈ 0.8569, and K1 does not
have acceptable consistency from Example 8. Then Algorithm 1 can be used to improve it.

Algorithm 1. Consistency-improving process with automatic iteration

Input: The initial SNLPR

K(0) = K1 =

⎡⎢⎣ (s0,< 1, 0, 0 >) (s−1,< 0.4, 0.2, 0.1 >) (s2,< 0.3, 0.1, 0.2 >)

(s1,< 0.4, 0.2, 0.1 >) (s0,< 1, 0, 0 >) (s−3,< 0.2, 0.5, 0.3 >)

(s−2,< 0.3, 0.1, 0.2 >) (s3,< 0.2, 0.5, 0.3 >) (s0,< 1, 0, 0 >)

⎤⎥⎦, the

consistency threshold value CX = 0.9020, and the maximum value of iterative times iemax = 3.
Output: The modified SNLPR Ka, and its consistency index CX(Ka).
Step 1: As CX(K(0)) < CX, go to the next step.

Step 2: Let T(1)
ij · s(1)ij = 1

2 (T
(0)
ij · s(0)ij )⊕ 1

2 (T
∗(0)
ij · s∗(0)ij ),

(1− I(1)ij ) · s(1)ij = 1
2 ((1− I(0)ij ) · s(0)ij )⊕ 1

2 ((1− I∗(0)ij ) · s∗(0)ij )

and (1− F(1)
ij ) · s(1)ij = 1

2 ((1− F(0)
ij ) · s(0)ij )⊕ 1

2 ((1− F∗(0)ij ) · s∗(0)ij ).
Step 3: Let ie = 1,

K(1) = (k(1)ij )
n×n

=⎡⎢⎣ (s0,< 1, 0, 0 >) (s−1,< 0.133, 0.883, 0.867 >) (s2,< 0.167, 0.442, 0.584 >)

(s1,< 0.133, 0.883, 0.867 >) (s0,< 1, 0, 0 >) (s−2,< 0.167, 0.592, 0.334 >)

(s−2,< 0.167, 0.442, 0.584 >) (s2,< 0.167, 0.592, 0.334 >) (s0,< 1, 0, 0 >)

⎤⎥⎦
Step 4: The consistent SNLPR

K∗(1) =

⎡⎢⎣ (s0,< 1, 0, 0 >) (s1,< 0.134, 0.434, 0.367 >) (s1,< 0.067, 0.609, 0.934 >)

(s−1,< 0.134, 0.434, 0.367 >) (s0,< 1, 0, 0 >) (s−1,< 0.067, 0.783, 0.434 >)

(s−1,< 0.067, 0.609, 0.934 >) (s1,< 0.067, 0.783, 0.434 >) (s0,< 1, 0, 0 >)

⎤⎥⎦.

Step 5: DH(K(1), K∗(1)) is used, and CX(K(1)) ≈ 0.9276 on the basis of Definition 18.
Step 6: As CX(K(1)) > CX, go to the next step.
Step 7: Let Ka = K(1), Output

Ka =

⎡⎢⎣ (s0,< 1, 0, 0 >) (s−1,< 0.133, 0.883, 0.867 >) (s2,< 0.167, 0.442, 0.584 >)

(s1,< 0.133, 0.883, 0.867 >) (s0,< 1, 0, 0 >) (s−2,< 0.167, 0.592, 0.334 >)

(s−2,< 0.167, 0.442, 0.584 >) (s2,< 0.167, 0.592, 0.334 >) (s0,< 1, 0, 0 >)

⎤⎥⎦,

and CX(Ka) ≈ 0.9276.
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4.4. A Decision-Making Approach with SNLPRs

In this section, a decision-making method based on SNLPRs is presented.
Take a decision-making problem under simplified neutrosophic linguistic environment into

consideration. Suppose there are a group of alternatives X = {x1, x2, . . . , xn}. The DMs want to get
the ranking or select the eligible alternative from them. Then a preference matrix is formed after the
linguistic term set S = {si|i ∈ [−g, g]} is given. The basic elements in this matrix are SNLNs. Then the
method based on SNLPRs is provided as Algorithm 2:

Algorithm 2. Decision-making approach with SNLPRs

Input: The initial SNLPR K = (kij)n×n = (sij,< Tij, Iij, Fij >)n×n.
Output: The ranking result and the best alternative x∗.
Step 1: Choose a distance measure and calculate the value of CX(K) according to Equation (24)
Step 2: Determine the threshold value CX. If CX(K) < CX, then improve it by Algorithm 1 until it is
acceptably consistent.
Step 3: Aggregate each row of preference values in K using the SNLAM or SNLGM operator.
Step 4: Calculate the score function S(xi) of overall preference degree of each xi(i = 1, 2, . . . , n) by Definition 7.
Step 5: Rank the alternatives xi(i = 1, 2, . . . , n) on the basis of comparison method in Definition 8, and then
output the ranking and the optimal alternative(s) x∗.

Note that it is a common and useful way to use aggregation operators to aggregate preference
information, and then get the ranking result according to some comparison rules. However, Hou [75]
pointed out that using arithmetic mean aggregation may get a reverse ranking. Therefore, the SNLGM
operator to aggregate preference values is better.

5. Application and Comparison

The proposed decision-making method is applied to selecting project delivery models in this
section. Some related comparison analyses are presented in the end.

YG Construction Co., Ltd. planned to select two suitable delivery models for a road construction
project. The first one is chosen at once, and second one is reserved and accepted if necessary in the
future. After a preliminary selection, four satisfactory options, DB, DBB, DBO, and CM, denoted by
{x1, x2, x3, x4}, respectively, are considered. In order to pick out the right model, the project manager
invites two experts to make evaluations together.

According to the properties of this project, the actual environment and the capability of owners,
the project manager evaluates four alternatives. He presents his preference information with linguistic
values. The linguistic term set used is S = {si|i ∈ [−4, 4]}, where s = {s−4 = much poorer, s−3 =

a lot poorer, s−2 = poorer, s−1 = slightly poorer, s0 = f air, s1 = slightly better, s2 = better, s3 =

a lot better, s4 = much better}. Simultaneously, he gives the corresponding hesitant degrees of each
preference value. Then two experts are asked to judge the possibility that the evaluation is inaccurate.
In this way, SNLNs may be a good indication of their preference. As an example, the manager holds
the view that x1 is s−1 to x2, but he is not sure of his assessment. He thinks the degree of hesitation is
0.3. Afterwards, there is a probability of 0.9 that s−1 is right, and a 0.2 probability of error given by two
specialists. Therefore, they can be expressed by a SNLN k12 = (s−1,< 0.9, 0.3, 0.2 >).

In the end, all the preference information yields an SNLPR as follows:

K =

⎡⎢⎢⎢⎣
(s0,< 1, 0, 0 >) (s−1,< 0.9, 0.3, 0.2 >) (s1,< 0.7, 0.5, 0.4 >) (s3,< 0.8, 0.3, 0.1 >)

(s1,< 0.9, 0.3, 0.2 >) (s0,< 1, 0, 0 >) (s1,< 0.5, 0.2, 0.5 >) (s−2,< 0.9, 0.2, 0.3 >)

(s−1,< 0.7, 0.5, 0.4 >) (s−1,< 0.5, 0.2, 0.5 >) (s0,< 1, 0, 0 >) (s−3,< 0.6, 0.7, 0.1 >)

(s−3,< 0.8, 0.3, 0.1 >) (s2,< 0.9, 0.2, 0.3 >) (s3,< 0.6, 0.7, 0.1 >) (s0,< 1, 0, 0 >)

⎤⎥⎥⎥⎦.
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5.1. Illustration

The decision-making method proposed in Section 4.4 is used to rank four options and select two
models among them. The following are the specific steps:

Step 1: After discussion, DMs choose DH(K, K∗), and then calculate CX(K) ≈ 0.8628 according to
Equation (24).

Step 2: Because g = 4 and n = 4, DMs suggest the threshold value CX = 0.8653 from Table 1.
And they find CX(K) < CX, then use Algorithm 1 to improve it as follows:

Let K(0) = K = (k(0)ij )
n×n

= (s(0)ij ,< T(0)
ij , I(0)ij , F(0)

ij >)
n×n

and ie = 0. According to

Theorem 2, the consistent SNLPR K∗(0) = (k∗(0)ij )
n×n

= (s∗(0)ij ,< T∗(0)ij , I∗(0)ij , F∗(0)ij >)
n×n

=⎡⎢⎢⎢⎣
(s0,< 1,0,0 >) (s1,< 0.65,0.5,0.35 >) (s2,< 0.65,0.4875,0.2125 >) (s1,< 0.25,0.625,0.725 >)

(s−1,< 0.65,0.5,0.35 >) (s0,< 1,0,0 >) (s1,< 0.65,0.475,0.075 >) (s−1,< 0.4,0.875,0.625 >)

(s−2,< 0.65,0.4875,0.2125 >) (s−1,< 0.65,0.475,0.075 >) (s0,< 1,0,0 >) (s−2,< 0.525,0.675,0.35 >)

(s−1,< 0.25,0.625,0.725 >) (s1,< 0.4,0.875,0.625 >) (s2,< 0.525,0.675,0.35 >) (s0,< 1,0,0 >)

⎤⎥⎥⎥⎦.

Since CX(K(0)) = CX(K) ≈ 0.8649 < CX, determine δ = 1
2 and

iemax = 3. Let K(1) = K = (k(1)ij )
n×n

= (s(1)ij ,< T(1)
ij , I(1)ij , F(1)

ij >)
n×n

=⎡⎢⎢⎢⎣
(s0,< 1,0,0 >) (s−1,< 0.125,0.9,0.925 >) (s2,< 0.5,0.6188,0.4563 >) (s2,< 0.6625,0.3813,0.2563 >)

(s1,< 0.125,0.9,0.925 >) (s0,< 1,0,0 >) (s1,< 0.575,0.3375,0.2875 >) (s−2,< 0.55,0.5688,0.5563 >)
(s−2,< 0.5,0.6188,0.4563 >) (s−1,< 0.575,0.3375,0.2875 >) (s0,< 1,0,0 >) (s−2,< 0.7125,0.6125,0 >)

(s−2,< 0.6625,0.3813,0.2563 >) (s2,< 0.55,0.5688,0.5563 >) (s2,< 0.7125,0.6125,0 >) (s0,< 1,0,0 >)

⎤⎥⎥⎥⎦,

where T(1)
ij · s(1)ij = 1

2 (T
(0)
ij · s(0)ij )⊕ 1

2 (T
∗(0)
ij · s∗(0)ij ), (1− I(1)ij ) · s(1)ij = 1

2 ((1− I(0)ij ) · s(0)ij )⊕ 1
2 ((1− I∗(0)ij ) ·

s∗(0)ij ) and (1− F(1)
ij ) · s(1)ij = 1

2 ((1− F(0)
ij ) · s(0)ij )⊕ 1

2 ((1− F∗(0)ij ) · s∗(0)ij ). As CX(K(1)) ≈ 0.9314 > CX,

output K(1).
Step 3: Aggregate each row of preference values in K(1)(i �= j) using SNLGM operator.

Then the overall preferences are px1 ≈ (s0.7622,< 0.5966, 0.7132, 0.6882 >), px2 ≈ (s−0.3160,<
0.5570, 0.6943, 0.7127 >), px3 ≈ (s−1.7106,< 0.5039, 0.5392, 0.2710 >) and px4 ≈ (s0.1602,<
0.5102, 0.5307, 0.3090 >).

Step 4: Calculate the score function S(pxi)(i = 1, 2, . . . , n) by Definition 7: S(px1) ≈ 0.2372,
S(px2) ≈ 0.1765, S(px3) ≈ 0.1616 and S(px4) ≈ 0.2896.

Step 5: Because S(px4) > S(px1) > S(px2) > S(px3)⇒x4 > x1 > x2 > x3, and the optimal
alternative is x∗ = x4, the second alternative is x1.

5.2. Comparison Analysis

Considering the concept of SNLPRs is newly proposed, several approaches related to other kinds
of preference relations are chosen to make a comparison in this subsection.

As the expressions of basic elements in different preference relations are diverse, the first task is to
transform the SNLNs in SNLPRs into the corresponding expression. Then, the same problem will be
solved. The following are the information conversion process and major steps of the related methods:

(1) Single-valued trapezoidal neutrosophic preference relations (SVTNPRs) [44]

First, SNLNs in SNLPRs can be transformed into single-valued trapezoidal neutrosophic
numbers (SVTNNs). A suitable way is changing the linguistic values of SNLNs into trapezoidal
fuzzy numbers in SVTNNs and keeping membership degrees. The converted values can be
denoted by Ai = (ai, bi, ci, di) = (max{ 2i+2g−1

4g+3 , 0}, 2i+2g
4g+3 , 2i+2g+1

4g+3 , min{ 2i+2g+2
4g+3 , 1}) according

to [76]. As an illustration, (s1,< 0.7, 0.5, 0.4 >) can be regarded as ([0.474, 0.526, 0.579, 0.632],<
0.7, 0.5, 0.4 >). Then, the corresponding single-valued trapezoidal neutrosophic matrix is
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KTN =

⎡⎢⎢⎢⎣
([0.368, 0.421, 0.474, 0.526],< 1, 0, 0 >) ([0.263, 0.316, 0.368, 0.421],< 0.9, 0.3, 0.2 >)

([0.474, 0.526, 0.579, 0.632],< 0.9, 0.3, 0.2 >) ([0.368, 0.421, 0.474, 0.526],< 1, 0, 0 >)

([0.263, 0.316, 0.368, 0.421],< 0.7, 0.5, 0.4 >) ([0.263, 0.316, 0.368, 0.421],< 0.5, 0.2, 0.5 >)

([0.053, 0.105, 0.158, 0.211],< 0.8, 0.3, 0.1 >) ([0.579, 0.632, 0.684, 0.737],< 0.9, 0.2, 0.3 >)

([0.474, 0.526, 0.579, 0.632],< 0.7, 0.5, 0.4 >) ([0.684, 0.737, 0.790, 0.842],< 0.8, 0.3, 0.1 >)

([0.474, 0.526, 0.579, 0.632],< 0.5, 0.2, 0.5 >) ([0.158, 0.211, 0.263, 0.316],< 0.9, 0.2, 0.3 >)

([0.368, 0.421, 0.474, 0.526],< 1, 0, 0 >) ([0.053, 0.105, 0.158, 0.211],< 0.6, 0.7, 0.1 >)

([0.684, 0.737, 0.790, 0.842],< 0.6, 0.7, 0.1 >) ([0.368, 0.421, 0.474, 0.526],< 1, 0, 0 >)

⎤⎥⎥⎥⎦.

Subsequently, using the method in [44] to get the consistent preference matrix, and the ranking is
x4 > x1 > x2 > x3.

(2) ILPRs [55]

In the beginning, SNLNs should be converted into intuitionistic linguistic numbers.
The linguistic values can remain, 1

3 (Tij + 1 − Iij + 1 − Fij) may be equivalent to u,
and v = 1 − u. As an example, (s−1,< 0.9, 0.3, 0.2 >) can be converted into
< s−1, (0.8, 0.2) >. Then, an intuitionistic linguistic preference relation (ILPR)KI =⎡⎢⎢⎢⎣

< s0, (1, 0) > < s−1, (0.8, 0.2) > < s1, (0.6, 0.4) > < s3, (0.8, 0.2) >
< s1, (0.8, 0.2) > < s0, (1, 0) > < s1, (0.6, 0.4) > < s−2, (0.8, 0.2) >
< s−1, (0.6, 0.4) > < s−1, (0.6, 0.4) > < s0, (1, 0) > < s−3, (0.6, 0.4) >
< s−3, (0.8, 0.2) > < s2, (0.8, 0.2) > < s3, (0.6, 0.4) > < s0, (1, 0) >

⎤⎥⎥⎥⎦ is got. As

CI(KI) ≈ 0.8819 < θ(0.9016), let β = 0.8, and then the consistency index of the adjusted ILPR
is CI(KI(1)) ≈ 0.9069 > θ(0.9016). Thus, using the method in [55], the preferred degree matrix

U =

⎛⎜⎜⎜⎝
1/2 1 1 6/7

0 1/2 1 0
0 0 1/2 0

1/7 1 1 1/2

⎞⎟⎟⎟⎠. Since the preferred degrees r1(
47
14 ) > r4(

37
14 ) > r2(

3
2 ) > r3(

1
2 ), then

x1 � x4 � x2 � x3.

(3) HFLPRs [54]

Firstly, SNLNs can be converted to hesitant fuzzy linguistic term sets. For example,
(s−0.9, s−0.3, s−0.2) can take the place of (s−1,< 0.9, 0.3, 0.2 >). Hence, the corresponding

HFLPR is KH =

⎡⎢⎢⎢⎣
(s0) (s−0.9, s−0.3, s−0.2) (s0.4, s0.5, s0.7) (s0.3, s0.9, s2.4)

(s0.9, s0.3, s0.2) (s0) (s0.2, s0.5, s0.5) (s−1.8, s−0.6, s−0.4)

(s−0.4, s−0.5, s−0.7) (s−0.2, s−0.5, s−0.5) (s0) (s−2.1, s−1.8, s−0.3)

(s−0.3, s−0.9, s−2.4) (s1.8, s0.6, s0.4) (s2.1, s1.8, s0.3) (s0)

⎤⎥⎥⎥⎦.

The expected 2-tuple linguistic preference relation is EH(1) =⎡⎢⎢⎢⎣
(s0, 0) (s0,−7/15) (s1,−7/15) (s1, 1/5)

(s0, 7/15) (s0, 0) (s0, 2/5) (s−1, 1/15)
(s−1, 7/15) (s0,−2/5) (s0, 0) (s−1,−2/5)
(s−1,−1/5) (s1,−1/15) (s1, 2/5) (s0, 0)

⎤⎥⎥⎥⎦. Because CI(EH(1)) ≈ 0.0860 <

−−
CI (0.1347), the matrix is acceptably consistent. Then use the aggregation operators and comparison
method, and the ranking is x1 � x4 � x2 � x3.

(4) LPRs [77]

At first, the conversion function kL
ij =

1
3 (Tij + 1− Iij + 1− Fij)kij will be used to convert SNLNs in

SNLPR K into linguistic variables in a LPR KL. For instance, (s−1,< 0.9, 0.3, 0.2 >) can be replaced by

s−0.8. Then KL =

⎡⎢⎢⎢⎣
s0 s−0.8 s0.6 s2.4

s0.8 s0 s0.6 s−1.6

s−0.6 s−0.6 s0 s−1.8

s−2.4 s1.6 s1.8 s0

⎤⎥⎥⎥⎦. Since CI(KL) ≈ 0.2667 > δ0(0.1347), the automatic
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iterative Algorithm 1 in [77] is used. The consistency index of the adjusted LPR is CI(KL(1)) ≈ 0.1334 <

δ0(0.1347), and then the final ranking is x4 > x1 > x2 > x3.
Subsequently, comparisons with each method in terms of backgrounds, consistency-improving

processes, ranking methods, and ranking results are made in Table 2.

Table 2. Comparison of different methods.

Approaches Backgrounds Improving Consistency Ranking Methods Ranking Orders

Liang et al. [44] SVTNPRs Interactive feedback Arithmetic operator x4 > x1 > x2 > x3
Meng et al. [55] ILPRs Automatic iteration Preferred degrees x1 � x4 � x2 � x3
Wu and Xu [54] HFLPRs Interactive feedback Expected values x1 � x4 � x2 � x3

Jin et al. [77] LPRs Automatic iteration Arithmetic operator x4 > x1 > x2 > x3
The proposed method SNLPRs Automatic iteration Geometric operator x4 > x1 > x2 > x3

In the ranking results of Table 2 only the order of x1 and x4 varies, which demonstrates the
effectiveness of the proposed method. The in-depth comparison analyses are shown as follows:

(1) Comparison with References [44] and [77]: the same ranking results are obtained using the
methods in [44,77] and our approach. An interactive feedback is used to improve the consistency
in [44]. It may be a little difficult for DMs to do this work, especially when the alternatives are
numerous. In addition, the arithmetic operator used may cause a reversal of ranking in some
cases. Jin et al. described information with linguistic term sets in Reference [77]. However, all of
the membership degrees are missing in LPRs. And the arithmetic operator used in Reference [77]
also has the limitation of sorting reversal.

(2) Comparison with Reference [55]: both [55] and our method choose the automatic iteration to
improve consistency. The reason for the different ranking results may be that there are only
membership and non-membership degrees in ILPRs. The conversion function possibly led to a
loss of the original information.

(3) Comparison with Reference [54]: the difference between [54] and our approach is that there
is no process of consistency improvement in HFLPRs. Moreover, the truth-membership,
indeterminacy-membership, and false-membership of the linguistic values in SNLPRs have
identical roles in HFLPRs. This may be another explanation of the different rankings.

According to the analysis above, the strengths of the presented approach are obvious. First of all,
the basic elements in SNLPRs, SNLNs, contain three independent membership degrees to describe
the consistent, hesitant, and inconsistent information, respectively. It means that the problem of
evaluation information being missing is avoided to a greater extent. Thus, the proposed method is
more suitable for solving problems in a simplified neutrosophic linguistic environment. Secondly,
the consistency-improving process is an automatic iteration algorithm. It saves time and increases
convenience for DMs. In addition, as mentioned in Section 4.4, the geometric operator being used
may avoid the problem of ranking reversal. It is easy for us to understand and operate. Finally, the
flexibility is increased as the linguistic scale function can be changed in different semantic situations.

6. Discussion and Conclusions

Appropriate project delivery systems play an irreplaceable role in promoting the development of
the construction industry. The paper provided a decision-making approach with SNLPRs to solve the
problem of selecting an optimal system under simplified neutrosophic linguistic circumstances. Several
distance measures of SNLNs, which are the basic elements of SNLPRs, were redefined. They can
overcome the drawbacks of the definition of Ye [70], so that the differences between two SNLNs can
be well distinguished. Moreover, the paper created a distance-based consistency index to check the
consistency of SNLPRs. A consistency-improving algorithm was also suggested. The effectiveness and
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advantages of this method were displayed by an illustration of selecting project delivery systems and
the corresponding comparison analysis.

Nevertheless, the proposed method still has some limitations, such as a case of SNLPRs with
incomplete assessment information. In order to make the method based on SNLPRs more effectively
and widely used in engineering projects, several future works can be planned as follow: (1) Other
kinds of consistency, such as the multiplicative consistency of SNLPRs may be presented; (2) a situation
where the linguistic term sets are unbalanced [78] may be under consideration; (3) decision-making
methods based on incomplete SNLPRs are worth studying.
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28. Baušys, R.; Juodagalvienė, B. Garage location selection for residential house by WASPAS-SVNS method.
J. Civ. Eng. Manag. 2017, 23, 421–429. [CrossRef]

29. Nie, R.; Wang, J.; Zhang, H. Solving solar-wind power station location problem using an extended weighted
aggregated sum product assessment (WASPAS) technique with interval neutrosophic sets. Symmetry 2017, 9,
106. [CrossRef]

30. Bausys, R.; Zavadskas, E.K.; KAKLAUSKAS, A. Application of neutrosophic set to multi-criteria decision
making by COPRAS. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 91–105.
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Abstract: After an emergency event (EE) happens, emergency decision making (EDM) is a common
and effective way to deal with the emergency situation, which plays an important role in mitigating
its level of harm. In the real world, it is a big challenge for an individual emergency manager (EM) to
make a proper and comprehensive decision for coping with an EE. Consequently, many practical
EDM problems drive group emergency decision making (GEDM) problems whose main limitations
are related to the lack of flexibility in knowledge elicitation, disagreements in the group and the
consideration of experts’ psychological behavior in the decision process. Hence, this paper proposes
a novel GEDM approach that allows more flexibility for preference elicitation under uncertainty,
provides a consensus process to avoid disagreements and considers experts’ psychological behavior
by using the fuzzy TODIM method based on prospect theory. Eventually, a group decision support
system (GDSS) is developed to support the whole GEDM process defined in the proposed method
demonstrating its novelty, validity and feasibility.

Keywords: group emergency decision making; non-homogeneous information; psychological
behavior; group decision support system

1. Introduction

Emergencies are defined as events that suddenly take place, causing or having the possibility
of provoking intense death and injury, property loss, ecological damage and social hazards.
In recent years, various emergency events, such as earthquakes, floods, hurricanes, terrorist attacks,
etc., have exerted severely negative impacts on human life and socio-economic development.
When an emergency event (EE) occurs, Emergency Decision Making (EDM) is typically characterized
by at least uncertainty, time pressure, and lack of information, resulting in potentially serious
consequences [1]. Since EDM plays a crucial role in alleviating the losses of properties and lives
caused by EEs, it has received increasing attention from both government and academia because of the
frequent occurrence of EEs, becoming a very active and important research field in recent years [1–5].

When an EE occurs, it is hard to collect the information related to the event and predict
its evolution particularly in the early stage because of the inadequate and uncertain information.
Consequently, it is too complex for just one emergency manager (EM) to make comprehensive
judgments under emergency situations. Therefore, EDM requires multiple experts from diverse
professional backgrounds (such as hydrological, geological, meteorological, sociological, demographic,
etc.) to help the EM make a decision. This leads to Group EDM (GEDM) problems. Figure 1 shows
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a graphical general scheme for GEDM problems, in which experts play a role of think tank in supporting
the EM who is in charge of the EE.

Figure 1. The general scheme of GEDM process.

In the real world, it is common that experts with different background and knowledge
might have different attitudes or opinions over different alternatives concerning different criteria.
Moreover, criteria defined in a GEDM problem might have different nature, qualitative or quantitative.
Therefore, experts might hesitate and express their opinions or assessments by using different types of
information according to their knowledge and criteria nature. The complexity of GEDM problems
could imply not only the use of a non-homogeneous context in which multiple information types
can be utilized by experts to elicit their knowledge and expertise, but also the modeling of uncertain
assessments including hesitancy. However, current EDM approaches deal with the information using
only one expression domain: numerical values [4], interval values [3] or linguistic information [6].

Traditionally, group decision making (GDM) approaches have shown that a solution can be
obtained under disagreement among experts [7,8], however several experts may not accept the decision
made because they might consider that their individual opinions have not been taken into account
sufficiently [9,10]. Such a situation could be very serious in GEDM driving either to deadlock in the
decision or in a harmful decision. Hence, it seems necessary and reasonable to achieve a consensus
among all experts involved in the GEDM problem before making the decision. The Consensus Reaching
Process (CRP) is a way to integrate group wisdom into one and then reach an agreement among all
experts in the GEDM problem. There are already different approaches [1,4,11] focused on how to reach
as much agreement as possible among all experts participating in the problem. However, they have
strict expression domains [1,11]; or time cost [4,5]. However, time is extremely valuable, because it
means lives and chances, thus emergency responses cannot afford a time-consuming consensus model.

Different behavioral experiments [12–14] show that human beings are usually bounded rationally
in decision-making processes under risk and uncertainty. Therefore, psychological behavior plays
a crucial role in the decision processes. Nevertheless, as far as we know, experts’ psychological behavior
is neglected in current GEDM [1,4,5,11,15] approaches.

According to the previous limitations presented in current GEDM methods, the aim of this paper
is to propose a new GEDM method that overcomes them. Such a method is able:

1. To allow more flexibility for eliciting information by dealing with non-homogeneous information
including hesitancy.

2. To include a consensus model with low time cost to achieve an agreement among experts involved
in the GEDM problem.

3. To take into account experts’ psychological behavior by means of the fuzzy TODIM
method [16–18] based on prospect theory [14].
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Furthermore, the proposed method is implemented into a Group Decision Support System (GDSS)
named GENESIS (Group EmergeNcy dEcision SupportIng System) based on FLINTSTONES (Fuzzy
LINguisTic DeciSion Tools eNhacemEnt Suite) [19,20] that supports the whole GEDM process
effectively and in a timely way, as shown in an illustrative example.

The remainder of this paper is organized as follows: Section 2 revises briefly different concepts
about non-homogeneous information, CRPs and the fuzzy TODIM, which will be used in our proposal
together with some related works. Section 3 presents the new GEDM method that integrates the
novelties pointed out previously. Section 4 introduces the structure and components of the GDSS,
GENESIS, and shows an example to illustrate the feasibility and validity of the proposed method.
A sensitive analysis is also presented to study the robustness of the proposal. Section 5 presents some
conclusions and future works.

2. Preliminaries

In this section, some basic concepts about non-homogeneous information and CRPs are revised
in short in order that readers can understand easily the proposed GEDM model. It also reviews the
fuzzy TODIM method that is used in the selection process of the proposal to obtain the ranking of
alternatives considering experts’ psychological behavior. Eventually, some related works to illustrate
the importance of this research are reviewed.

2.1. Non-Homogeneous Information in Decision Making

Nowadays, real-world decision-making problems are more diversified and complex because
of rapid socio-economic development, such as EDM problems [2,3], GEDM problems [1,15], and
Intelligent GEDM problems [11]. Those problems are usually defined under uncertainty because of
inadequate and uncertain information. The complexity of these problems implies multiple experts
with different backgrounds and knowledge participating in the decision process.

To model the uncertainty and non-homogeneous information, such as numerical values, interval
values and linguistic terms elicited by experts, several approaches have been discussed in current
GDM approaches. Some of them [21–25] make the computations using directly the non-homogeneous
information [26] and others unify the information into one domain [24,27], being the most common
one the linguistic information. Recently, the inclusion of hesitancy is becoming more important [28,29].

The concept of hesitant fuzzy linguistic term sets (HFLTS) [30] has been introduced to model
experts’ hesitation in qualitative settings and it has been applied in decision making problems obtaining
successful results. It is defined as follows.

Definition 1 [30]. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set, a HFLTS HS, is defined as an ordered finite
subset of consecutive linguistic terms of S:

HS =
{

si, si+1, . . . , sj
}

, sk ∈ S, k ∈ {i, . . . , j}

Nevertheless, when experts provide their opinions and they feel hesitation among several
linguistic terms, they do not use multiple linguistic terms, but linguistic expressions close to the
natural language used by human beings. Hence, Rodríguez et al. [30] proposed the use of context-free
grammars GH to build complex linguistic expressions more flexible and richer than single linguistic
terms [29,30]. The expressions produced by the context-free grammar GH , may be either a single
linguistic term si ∈ S, or comparative linguistic expressions Sll (see [29,30] for further detail).

In our proposal, the non-homogeneous information including experts’ hesitancy will be
transformed into a unified fuzzy domain to facilitate the computations (see Section 3.3).
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2.2. Consensus Reaching Processes

GDM problems are usually solved by a selection process that obtains the best alternative as
a solution to the problem. However, sometimes the goal of the problem is not to obtain the best
solution, but an accepted one for all involved experts in the problem. In such a situation, it seems
necessary to apply a CRP. Consensus can be defined as [9] “a state of mutual agreement among
members of a group in which the decision made satisfies all of them”. Therefore, a consensus process
requires that experts modify their opinions making them closer to each other and this way to obtain
a collective opinion that is satisfactory for all of them [10,31–34].

In GEDM process, experts play a role of think tank in supporting EM to make a decision, recently
several proposals [1,4,5,11,15,34] integrate CRP into GEDM to deal with experts’ opinions in order
to achieve an agreement among all experts involved and make a right decision. However, these
approaches deal just with numerical values [1,5,25] and are not suitable for other types of information,
additionally, they have a high time cost [4,5] because of the supervised feedback mechanism that
should be avoided in GEDM problems.

Due to these reasons and the type of information used in our proposal, a fuzzy linear
programming-based consensus model [34] with low time cost will be utilized to achieve consensus in
our proposal. Before introducing the fuzzy linear programming model, it is necessary to revise the
definition of the distance between fuzzy numbers, which will be used.

Definition 2 [34]. Let A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4) be two trapezoidal fuzzy numbers.
The distance between A and B can be obtained as follows, the measure of dp can also be called as lp metric:

dp(A, B) =

(
4

∑
i=1

(|ai − bi|)p

)1/p

(1)

where p is an integer ≥ 1. Let U be the universe of discourse and u = max(U)−min(U). The similarity
between A and B can be defined as [34,35]:

Sp(A, B) = 1− 1
4up
(
dp(A, B)

)p (2)

The dissimilarity is defined as c − Sp(A, B), where c is a constant >1. The selection of c will
influence in the final result of the aggregation.

Let Ãh = (ah1, ah2, ah3, ah4) be the h-th expert’s individual opinion and Õ be the overall opinion
obtained by aggregating experts’ individual opinions.

The fuzzy linear programming model is [34]:⎧⎪⎨⎪⎩ min
K
∑

h=1
(wh)

α
(c− Sp(Ãh, Õ))

s.t. dp(Ãh, Õ) ≤ εh, h = 1, 2, ..., K
(3)

where α is an integer ≥ 1, wh denotes the h-th experts’ importance. εh denotes a threshold that means
the maximum change that the h-th expert can make. dp(Ãh, Õ) denotes the distance between Ãh and
Õ, which can be obtained according to Equation (1).

2.3. Fuzzy TODIM Method

Some studies [12–14] have shown that human beings are bounded rationally especially in risk
and uncertain decision processes and their psychological behavior is very important in the decision
process. Therefore, it seems necessary to consider experts’ psychological behavior in GEDM problem.
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TODIM method was proposed by Gomes and Lima [36,37]; it is a popular multi-criteria decision
making (MCDM) method based on prospect theory [13] considering humans psychological behavior.
It has been widely applied to solve different decision problems [38,39]. To cope with complex problems
and uncertain information in the real world, the TODIM method has been extended to deal with fuzzy
MCDM problems [16,17].

In our proposal, we will use fuzzy TODIM method [16–18] based on prospect theory [14]
because of its advantage and capability of capturing the experts’ psychological behavior under
fuzzy environment.

The fuzzy TODIM was introduced in [18] and briefly summarized below:
Let P = {p1, p2, . . . , pm} be a set of alternatives, C = {c1, c2, . . . , cn} be a set of criteria and

wc = (wc1 , wc2 , . . . , wcn) be a weighting vector for criteria, where wcj denotes the weight of criterion
cj. Let A = (aij)m×n be a fuzzy decision matrix, where aij = (a1

ij, a2
ij, a3

ij, a4
ij) denotes the rating of the

alternative pi with respect to criterion cj.
Step 1: To normalize the fuzzy decision matrix A = (aij)m×n into the correspondent normalized

fuzzy decision matrix G = (gij)m×n, according to the cost and benefit criteria.
Step 2: To determine the reference criterion cr and calculate the relative weight wjr of criterion

cj (j = 1, 2, . . . , n), i.e.,
wjr = wcj /wr (4)

where wr = max
{

wcj

∣∣∣j = 1, 2, . . . , n
}

.
Step 3: To calculate the dominance degree, Φj(pi, pk), of alternative pi, (i = 1, 2, . . . , m) over the

remaining alternatives pk (k = 1, 2, . . . , m) concerning criterion cj (j = 1, 2, . . . , n), i.e.,

Φj(pi, pk) =

⎧⎪⎪⎨⎪⎪⎩
√

wjr/(∑n
j=1 wjr)d(gij, gkj), F(gij)− F(gkj) ≥ 0

− 1
θ

√
(∑n

j=1 wjr)/wjrd(gij, gkj), F(gij)− F(gkj) < 0

(5)

where θ is the attenuation factor of the losses, θ > 0. d(gij, gkj) denotes the distance between two fuzzy
numbers gij and gkj and F(∗) is a defuzzification function [18].

Step 4: To calculate the dominance degree, δ(pi, pk), of alternative pi, (i = 1, 2, . . . , m) over the
remaining alternatives pk (k = 1, 2, . . . , m), i.e.,

δ(pi, pk) =
n

∑
j=1

Φj(pi, pk) (6)

Step 5: To calculate the overall dominance degree, η(pi), of alternative pi, (i = 1, 2, . . . , m), i.e.,

η(pi) =
∑m

k=1 δ(pi, pk)−mini{∑m
k=1 δ(pi, pk)}

maxi{∑m
k=1 δ(pi, pk)} −mini{∑m

k=1 δ(pi, pk)}
(7)

Step 6: According to the overall dominance degrees of each alternative, the corresponding ranking
can be determined such that the bigger η(pi), the better alternative pi.

2.4. Related Works

In order to show the importance of GEDM in the real world, this subsection reviews several
important studies in the literature that are related to our research [1,4–6,40].

These studies have approached GEDM problems from different aspects. For example,
Wang et al. [40] proposed a group emergency decision method based on prospect theory by using
interval values. Xu et al. [4] proposed a consensus model for multi-criteria large group emergency
decision making considering non-cooperative behaviors and minority opinions, wherein numerical
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value is employed to represent experts’ assessments. Ju et al. [6] presented a model to evaluate
emergency response capacity by using 2-tuple fuzzy linguistic information. Xu et al. [5] proposed
a conflict-eliminating approach for GEDM problem. Levy and Taji [1] utilized a group analytic network
process to construct a group decision support system to support hazard planning and emergency
management under incomplete information.

So far, there is not any proposal in previous GEDM approaches [1,4,5,11,40] that considers the
non-homogeneous information together with the experts’ hesitation due to uncertain information.
In addition, those GEDM approaches [1,4,5,11] dealing with the consensus process; just make use
of it with strict expression domains or high time cost. However, time is extremely valuable in EDM
process, which means life and opportunity. Furthermore, experts’ psychological behavior is neglected
in current GEDM approaches [1,4,5] that plays an important role in the GEDM process under risk
and uncertainty.

As pointed out in Introduction, our proposed method aims to overcome such limitations and
shows the relevance of this research.

3. Managing Non-Homogeneous Information and Experts’ Psychological Behavior in GEDM

This section introduces a new GEDM method to overcome the limitations pointed out in
the Introduction regarding the current GEDM methods. This proposal is able: (i) to manage
non-homogeneous information, including hesitant information (ii) to achieve consensus with low time
cost, (iii) to take into account the experts’ psychological behavior in the GEDM process.

Our proposal extends the general scheme of a GEDM process shown in Figure 1 by adding
two new phases to deal with non-homogeneous information and calculate the criteria weights, and
modifying another two phases (CRP and selection process), they are highlighted in Figure 2 by using
dashed lines.

KX

=h h1 h2 h3 h4
ij ij ij ij ij( , , , )r r r r r
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1X
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1 2
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Figure 2. Scheme of proposed GEDM method.

It consists of six main phases:

1. Definition framework. The main features, terminology and expression domains utilized in the
proposed GEDM problem are defined.

2. Information gathering process. Opinions or assessments over different alternatives concerning
different criteria and importance of criteria provided by experts using multiple types of
information are gathered.
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3. Managing non-homogeneous information. The non-homogeneous information gathered is
unified into a fuzzy domain to deal with the decision computations.

4. Consensus reaching process. A fuzzy linear programming-based consensus model [34] is utilized
to deal with fuzzy information and achieve an agreement among all the experts involved in the
GEDM problem.

5. Calculation of criteria weights. Criteria weights are calculated by using experts’ opinions.
6. Selection process-fuzzy TODIM method. Fuzzy TODIM method is applied to manage experts’

psychological behavior in GEDM processes and obtain the ranking of alternatives.

According to the ranking of alternatives, the EM can select the best or more suitable alternative to
cope with the EE. These phases are further detailed in the following subsections.

3.1. Definition Framework

The framework for GEDM problem is established by defining its main features and terminology.

• P = {p1, p2, . . . , pm}: the set of emergency alternatives, where pi is the i-th emergency alternative,
i = 1, 2, . . . , m.

• C = {c1, c2, . . . , cn}: the set of criteria/attributes, where cj denotes the j-th criterion/attribute,
j = 1, 2, . . . , n.

• wc = (wc1 , wc2 . . . , wcn): the weighting vector for the criteria, where wcj denotes the criterion

weight of the j-th criterion/attribute, satisfying
n
∑

j=1
wcj = 1, wcj ∈ [0, 1] j = 1, 2, . . . , n.

• E =
{

e1, . . . , eK
}

: the set of experts, where eh denotes the h-th expert, h = 1, 2, . . . , K.
• Xh = (xh

ij
)

m×n
: the information matrix provided by the h-th expert, where xh

ij represents the
assessments/opinions provided by the h-th expert over the i-th alternative concerning the j-th
criterion, h = 1, 2, . . . , K, i = 1, 2, . . . , m, j = 1, 2, . . . , n (see Remark 1).

• wh = (wh
1, wh

2 . . . , wh
n): the assessment vector of criteria importance provided by the expert eh,

where wh
j represents the importance provided by the h-th expert on the importance of criterion cj,

h = 1, 2, . . . , K, j = 1, 2, . . . , n (see Remark 2).
• rh

ij: denotes the experts’ assessments, xh
ij, unified in a fuzzy domain, h = 1, 2, . . . , K, i = 1, 2, . . . , m,

j = 1, 2, . . . , n.
• γh

j : denotes the experts’ opinions regarding the criteria importance, wh
j , unified in a fuzzy domain,

h = 1, 2, . . . , K, j = 1, 2, . . . , n.

Remark 1. In our method, experts can provide their opinions/assessments by utilizing multiple expression
domains (numerical values (N), interval values (I), linguistic terms (S) and comparative linguistic expressions
(Sll)) according to their background, degree of knowledge, hesitancy and criteria nature.

xh
ij ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N ∈ R
I ∈ [ξL, ξU ]

S =
{

s0, s1, . . . , sg
}

Sll

(8)

Remark 2. In GEDM problems, the criteria need to be weighted. However, due to the complexity of EEs, it is
not easy to collect the related information about the criteria, especially at the early stage of EE. In such situation,
a possible way is to calculate the criteria weights from experts’ knowledge and experience. In this proposal,
experts can express their opinions about the criteria importance by utilizing either Sll or S, because Sll and S are
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more flexible and similar to the natural language utilized by human beings in real-world EE situations, and they
are suitable for GEDM problems defined in uncertain contexts.

wh
j ∈
{

S =
{

s0, s1, . . . , sg
}

Sll
(9)

3.2. Information Gathering Process

Once the framework of GEDM problem is defined, experts can provide their judgments over
the emergency alternatives pi concerning each criterion cj and the importance over different criteria
(see Tables 1 and 2) by using the expression domains defined previously.

Table 1. Assessments over alternative pi concerning criterion cj.

Experts Assessments

e1
{x1

ij, . . . , x1
mn}

e2 {x2
ij, . . . , x2

mn}
. . . . . . . . . . . .

eK {xK
ij , . . . , xK

mn}

Table 2. Importance over criteria cj.

Experts Assessments

e1 {w1
1, . . . , w1

n}

e2 {w2
1, . . . , w2

n}
. . . . . . . . . . . .

eK {wK
1 , . . . , wK

n }

For example, the information on alternatives with respect to criteria provided by expert e1 can be
expressed as:

X1 =

p1

p2
...

pm

c1 c2 . . . cn⎡⎢⎢⎢⎢⎣
x1

11
x1

21
...

x1
m1

x1
12

x1
22
...

x1
m2

· · ·
· · ·
· · ·
· · ·

x1
1n

x1
2n
...

x1
mn

⎤⎥⎥⎥⎥⎦

where x1
ij ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N ∈ R
I ∈ [ξL, ξU ]

S =
{

s0, s1, . . . , sg
}

Sll

, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

The information on the importance of criterion cj provided by expert e1 can be expressed as:

w1 =

c1 c2 . . . cn[
w1

1 w1
2 · · · w1

n
]

where w1
j ∈
{

S =
{

s0, s1, . . . , sg
}

Sll
, j = 1, 2, . . . , n.
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3.3. Managing Non-Homogeneous Information

As it was stated in Section 2.1, our proposal deals with non-homogeneous information including
hesitant information. Therefore, the expression domains used by experts to provide their assessments
in this proposal are the following ones:

• Numerical value. Assessments represented as numerical values N belonging to a specific numerical
scale R, i.e., N ∈ R.

• Interval value. Assessments represented as interval values I, belonging to a specific domain
[ξL, ξU ], i.e., I ∈ [ξL, ξU ].

• Linguistic terms. Assessments represented as linguistic terms sk ∈ S =
{

s0, s1, . . . , sg
}

,
k ∈ {0, . . . , g}, with granularity g + 1.

• Comparative linguistic expressions. Assessments represented as comparative linguistic expressions
Sll generated by a context-free grammar GH [29,30].

In order to make computations with non-homogeneous information elicited by experts, it
is necessary to conduct the different types of information into a unique expression domain.
Most approaches unify the non-homogeneous information into linguistic information [23,24].
Nevertheless, in order to keep the uncertainty provided by experts involved in a GEDM problem,
we unify the information into a fuzzy domain rh

ij, by introducing some transformation functions
(see Figure 3).

I

N

S

llS

:[0,1] h
ijr→NT

:[ , ]IT
h
ijrβ β →

⋅ =( ( )) ( , , , )h

ijHF Genv E T a b c d

ϑ ϑ ϑ ϑ= ( , , , )h
ijr

β β β β= ( , , , )h
ijr

= 1 2 3 4( , , , )h h h h h
ij ij ij ij ijr r r r r

= 1 2 3 4( , , , )h h h h h
ij ij ij ij ijr r r r r

h
ijx

h
ijr

( , , , )h

ijT a b c d

Figure 3. Unification process for non-homogeneous information.

The following transformation functions are defined to unify the information into a fuzzy domain.

1. For numerical values N, they are first normalized into the interval [0, 1] and then a transformation
function TN is utilized to transform them into trapezoidal fuzzy numbers. Let R be the domain
of the numerical values, Nh

ij be the numerical value provided by the h-th expert over the i-th

alternative concerning the j-th criterion, Nh
ij is normalized into the interval [0, 1], as follows:

ϑ =
Nh

ij

N∗

where ϑ ∈ [0, 1], N∗ = max
h=1,2,...,K

{Nh
ij}, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Definition 3. A numerical value is transformed into a trapezoidal fuzzy number by utilizing
a transformation function TN :

TN : [0, 1]→ rh
ij (10)
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TN(ϑ) = rh
ij = (ϑ, ϑ, ϑ, ϑ)

2. The interval values I are first normalized into [0, 1] and then a transformation function TI is
utilized to transform them into trapezoidal fuzzy numbers. Let [ξL, ξU ] be the domain of the
interval values, let [dL, dU ]

h
ij be the interval values provided by the h-th expert over the i-th

alternative concerning the j-th criterion, where [dL, dU ]
h
ij ∈ [ξL, ξU ]. The interval values [dL, dU ]

h
ij

are normalized into [ β, β ] as follows:

β =
dL − ξL

ξU − ξL and β =
dU − ξL

ξU − ξL (11)

The transformation function TI is defined as follows.

Definition 4. An interval value is transformed into a trapezoidal fuzzy number by utilizing
a transformation function TI :

TI : [ β, β]→ rh
ij (12)

TI( β, β) = rh
ij = (β, β, β, β)

where β, β ∈ [0, 1] and β ≤ β.

3. The linguistic terms sk ∈ S =
{

s0, s1, . . . , sg
}

, are represented by trapezoidal fuzzy numbers.
Therefore, the expert eh provides his/her opinions over the i-th alternative concerning the
j-th criterion as a linguistic term sk that is represented by a trapezoidal fuzzy number
rh

ij = (rh1
ij , rh2

ij , rh3
ij , rh4

ij ).

4. The comparative linguistic expressions, xh
ij ∈ Sll , are transformed into HFLTS by EGH (·) and its

fuzzy envelop envF(·) obtained by [41],

envF(EGH (xh
ij)) = Th

ij(a, b, c, d) = rh
ij (13)

EGH is a function that transforms the linguistic expressions obtained by using GH , into HFLTS [30].
Th

ij(a, b, c, d) is a trapezoidal fuzzy membership function corresponding to the trapezoidal fuzzy

number rh
ij = (rh1

ij , rh2
ij , rh3

ij , rh4
ij ).

3.4. Consensus Reaching Process

As stated in Section 2.2, a fuzzy linear programming-based consensus model [34] is used in our
proposal to achieve an agreement among all the experts involved in the problem. This model is able to
deal with fuzzy information and update experts’ opinions automatically without a supervised feedback
mechanism [33], which is adequate for GEDM problems defined in fuzzy environment (see Figure 4).
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Figure 4. The process of fuzzy linear programming-based consensus model.

The fuzzy linear programming-based consensus model is given by,⎧⎪⎨⎪⎩ min
K
∑

h=1
(wh)

α
(c− Sp(Oij, rh

ij))

s.t. dp(Oij, rh
ij) ≤ εh

j , h = 1, 2, ..., K; j = 1, 2, . . . , n, i = 1, 2, . . . , m.
(14)

According to Figure 4, the input information is represented in a fuzzy domain, which is obtained
from the previous phase. It consists of three steps that are further detailed as follows:

1. Computing overall opinion. As introduced in Section 2.2, before applying fuzzy linear programming
model, the overall opinions, Oij, are obtained by aggregating the individual expert opinions, rh

ij.
Let Oij be the overall opinion over the i-th alternative concerning the j-th criterion. It can be
obtained as follows:

Oij =
K

∑
h=1

rh
ij ( wh, h = 1, 2, . . . , K, j = 1, 2, . . . , n, i = 1, 2, . . . , m. (15)

where ( is an aggregation operator. For example, suppose that r1
12 = (0.17, 0.34, 0.5, 0.67),

r2
12 = (0, 0.17, 0.34, 0.5) and (w1, w2) = (0.6, 0.4), then O12 could be computed by a weighted

average operator:

O12 = 0.6 ( (0.17, 0.34, 0.5, 0.67) + 0.4 ( (0, 0.17, 0.34, 0.5)
= (0.102, 0.272, 0.436, 0.602)

2. Computing agreement level. In this step, there are two processes:

(i) Computing the distance and similarity. The distance, dp(Oij, rh
ij), between the overall

opinion, Oij, and the individual opinion, rh
ij, and its similarity, Sp(Oij, rh

ij), can be computed
according to Equations (1) and (2) respectively.

(ii) Determining the threshold values. The threshold value, εh
j , is an important factor in the fuzzy

linear programming model, which means the maximum change that the expert eh can
make concerning the j-th criterion. There are different ways to determine the threshold
value εh

j [34,35]. In this paper, εh
j will be calculated by the h-th experts’ familiarity degree

concerning the j-th criterion using a linguistic term set S =
{

s0, s1, . . . , sg
}

, because
the linguistic terms are flexible and able to deal with uncertain and vague information.
The more familiar the expert is with the criterion, the less change he/she will make.
Therefore, a negative operator is applied to the familiarity degree to obtain the threshold,
which is defined as follows:
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Definition 5. Let S =
{

s0, s1, . . . , sg
}

be a linguistic term set, a negative operator:

Neg(sk) = s̃q, such that q = g− k, k = {0, . . . , g}. (16)

where g + 1 is the cardinality of S.

Thus, the εh
j can be computed by using the center of gravity (COG) method [42], i.e.,

εh
j = COG(s̃q) (see Equation (18)).

3. Control consensus. When all constraints meet the conditions in Equation (14), it means that the
consensus has been reached, and the final overall opinion, Oij, is the aggregated collective opinion
denoted as CO = (COij)m×n Which will be used as input in the selection process.

3.5. Calculation of Criteria Weights

In this phase, the weights of criteria, wcj , are calculated by utilizing the experts’ assessments
provided over the criteria importance which were unified into a fuzzy domain. Figure 5 shows the
process of computing criteria weights.

1 2

1 2

1 2
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Figure 5. Computing criteria weights.

Three steps are comprised:

1. Global fuzzy weights. The fuzzy weights obtained for the criterion cj are aggregated by using
a max-min composition [43,44]:

μT̃h
j
(σ) = sup

σ=max (t1,t2,...,tK)

min (μT̃1
j
(t1), μT̃2

j
(t2), . . . , μT̃K

j
(tK)),th ∈ Γ, h ∈

{
1, 2, . . . , K

}
(17)

where T̃h
j is the fuzzy membership function of wh

j , j = 1, 2, . . . , n, and Γ is the universe
of discourse.
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Suppose that three experts provide their opinions w1
1, w2

1 and w3
1 concerning the criterion c1,

the corresponding fuzzy membership functions are T̃1
1 , T̃2

1 and T̃3
1 respectively. According to

Equation (17), μT̃h
j
(σ) is the area under the bold black line shown in Figure 5a.

2. Defuzzification. The COG method [42] is utilized to calculate the weighting value of the global
fuzzy weights:

COGj =

∫
t ∗ μT̃h

j
(t)dt∫

μT̃h
j
(t)dt

, t ∈ Γ (18)

where Γ is the universe of discourse.

For criterion c1, Equation (18) means that the center of gravity for each small trapezoid
(see Figure 5b) is computed and the COG1 can be obtained by the arithmetic mean of the sum of
center of gravity of all small trapezoids.

3. Normalization. When COGj of all criteria are obtained, the criteria weights wcj are calculated by
using the following equation:

wcj =
COGj

∑n
j=1 COGj

(19)

where
n
∑

j=1
wcj = 1, wcj ∈ [0, 1] j = 1, 2, . . . , n.

3.6. Selection Process—Fuzzy TODIM Method

As it was pointed out in Introduction, the experts’ psychological behavior are neglected in
current GEDM approaches. However, our proposal takes into account experts’ psychological
behavior by means of fuzzy TODIM based on prospect theory dealing with the problem defined
in a fuzzy environment.

Once the criteria weights wcj and the aggregated collective opinions CO = (COij)m×n are obtained,
the fuzzy TODIM method is applied to obtain a ranking of alternatives and select the best one. To do
so, the fuzzy TODIM method introduced in Section 2.3 is used. The step 1 is not necessary to do it,
because the collective opinion matrix CO = (COij)m×n, is already normalized and the step 3 has been
modified to adapted it to GEDM problem as it is shown below:

Step 3: To calculate the dominance degree, Φj(pi, pk), of alternative pi (i = 1, 2, . . . , m) over the
remaining alternatives pk (k = 1, 2, . . . , m) concerning criterion cj (j = 1, 2, . . . , n), i.e.,

Φj(pi, pk) =

⎧⎪⎪⎨⎪⎪⎩
√

d(COij, COkj)wjr/(∑n
j=1 wjr), m̃(COij)− m̃(COkj) ≥ 0

− 1
θ

√
d(COij, COkj)(∑

n
j=1 wjr)/wjr, m̃(COij)− m̃(COkj) < 0

(20)

COij denotes the trapezoidal fuzzy number COij = (CO1
ij, CO2

ij, CO3
ij, CO4

ij) that represents
the information about the i-th alternative concerning the j-th criterion. m̃(COij) and m̃(COkj)

denotes the defuzzified value of the fuzzy number COij and COkj, respectively, where

m̃(COij) =
CO1

ij+2CO2
ij+2CO3

ij+CO4
ij

6 [42]. d(COij, COkj) denotes the gains or losses of the alternative pi

over pk concerning the criterion cj, where d(COij, COkj) =
√

∑4
�=1 (CO�

ij − CO�
kj)

2 [45].
For benefit criteria, d(COij, COkj) denotes the gains with m̃(COij)− m̃(COkj) ≥ 0 or losses with

m̃(COij)− m̃(COkj) < 0, respectively. Φj(pi, pk) can be expressed as:

Φj(pi, pk) =

⎧⎪⎪⎨⎪⎪⎩
√

d(COij, COkj)wjr/(∑n
j=1 wjr), m̃(COij)− m̃(COkj) ≥ 0

− 1
θ

√
d(COij, COkj)(∑

n
j=1 wjr)/wjr, m̃(COij)− m̃(COkj) < 0

(21)
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For cost criteria, d(COij, COkj) denotes the gains with m̃(COij) − m̃(COkj) ≤ 0 or losses with
m̃(COij)− m̃(COkj) > 0, respectively, Φj(pi, pk) can be expressed as:

Φj(pi, pk) =

⎧⎪⎪⎨⎪⎪⎩
√

d(COij, COkj)wjr/(∑n
j=1 wjr), m̃(COij)− m̃(COkj) ≤ 0

− 1
θ

√
d(COij, COkj)(∑

n
j=1 wjr)/wjr, m̃(COij)− m̃(COkj) > 0

(22)

Finally, the ranking of alternatives can be determined according to their overall dominance degree.

4. Group Decision Support System for GEDM Based on GENESIS: Case Study

EEs are always characterized by complexity, risk and uncertainty, and a delayed or wrong decision
may result in extremely serious consequences. Thus, it is necessary to make a decision in short time,
taking into account the opinions of multiple experts involved in the problem.

In order to deal properly with real-world GEDM problems and make timely and effective
decisions, we have implemented a GDSS named GENESIS to support the proposed GEDM method.
This section introduces the structure and components of GENESIS (see Figure 6); and shows a case
study to illustrate the applicability and robustness of the proposed method by using GENESIS.

 

Figure 6. Structure of GENESIS.
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4.1. GENESIS: (Group EmergeNcy dEcision SupportIng System)

Since our proposal deals with non-homogeneous and fuzzy information, in order to facilitate the
transformation of non-homogeneous information and the decision process of the proposed method
in a simple and fast manner, GENESIS has been implemented to use different components and
specific functions based on FLINTSTONES [19,20] developed by using Eclipse Rich Client Platform
(Eclipse RCP), which is a component-based application [46], a platform that builds and deploys rich
client applications.

GENESIS consists of six components (see Figure 6):

(1) Two components taken from FLINTSTONES are adapted to define different transformation
functions to unify non-homogeneous information into a fuzzy domain and show its user
interface respectively.

(2) Two new components are defined for the resolution processes and show their interface to compute
the criteria weights and obtain the consensus opinion based on fuzzy linear programming-based
consensus model.

(3) Two new components are introduced to carry out the steps defined in the fuzzy TODIM
method such as the computation of the relative weights, dominance degree etc., and show
its user interface.

4.2. Case Study

In order to demonstrate the applicability of the proposed GEDM method, this section presents
an example adapted from a big explosion of Tianjin Port that occurred in the north of China
(Background Information Source. http://www.safehoo.com/Case/Case/Blow/201602/428723.shtml).

The blasts took place at a warehouse at the port that contained hazardous and flammable
chemicals, including calcium carbide, sodium cyanide, potassium nitrate, ammonium nitrate and
sodium nitrate, etc.

In this problem, we assume that six experts are invited to participate in the EDM process to
support the EM to make the final decision. In order to solve this GEDM problem, we have used the
proposed method by means of GENESIS.

4.2.1. Framework Definition

When the explosion occurred, the local government organized people located within
two kilometers of the explosion area, evacuated them to safety areas and sent short messages to
inform people in potentially dangerous areas to prepare for evacuation and keep distances from the
dangerous area. Five emergency alternatives {p1, p2, . . . , p5} were put forward taking into account
five criteria {c1, c2, . . . , c5}, which are described in Tables 3 and 4, respectively.

For the criteria importance, the linguistic term set is S1 = {absolutely low importance (ali), very low
importance (vli), low importance (li), medium importance (mi), high importance (hi), very high importance (vhi),
absolutely high importance (ahi)}. (see Figure 7 “syntax for S1”)

For criteria C2 and C3, the experts provide their opinions using linguistic term sets S2 = {none (n),
very low seriously (vls), low seriously (ls), medium (m), high seriously (hs), very high seriously (vhs), absolutely
seriously (as)} and S3 = {none (n), very low (vl), low (l), medium (m), high (h), very high (vh), absolutely high
(ah)} (see Figure 7 “syntax for C2” and “syntax for C3”), respectively.
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Table 3. Description of alternatives.

Alternative Description

Evacuate people (p1) Evacuate and inform people, and at same time, assign 9 fire squadrons
and 35 fire engines to deal with the emergency event.

Increase help and report (p2)

Increase to 23 fire squadrons, 93 fire engines and more than 600 fire
fighters for participating in dealing with the emergency event; at the
same time, the local government report the latest news to the masses
in order to avoid causing panic and riot.

Rescue military (p3)
Local government asks the Chinese professional emergency rescue
military for emergency rescue. More than 300 soldiers with
professional equipment join the rescue action.

Joint rescue (p4)
Fire squadrons and the military work together dealing with the
problems, at the same time, local government asks neighbor cities for
fire police to provide support.

Block boundary of explosion areas (p5) Block the boundary of the explosion areas; let the material in the
explosion areas burn down.

Table 4. Description of criteria.

Criteria Expression Domain Description

People affected (C1) Interval values It means that alternative pi can protect the number
of people from the effects caused by EE in [0,1000].

Negative effect on the environment (C2) Linguistic It is evaluated by experts on linguistic expressions.

Social impacts (C3) Linguistic
It means the impacts on social development or
people’s daily life etc. that are evaluated by experts
on linguistic expressions.

Property loss (C4) Interval values
It means that the alternative pi can protect the
direct and indirect property losses that are caused
by the EE in [0,10]. (in billion RMB).

Cost of alternative (C5) Numerical values
The numerical values are 0 and 1. 0 means that
expert eh does not care about the cost; 1 means that
he/she cares about it.

Note: assume that above criteria are independent.

miali vli li hi vhi ahi

mn vl l h vh ah
mn vls ls hs vhs as

1S
2C
3C

Figure 7. Linguistic term set for S1, C2 and C3.

4.2.2. Information Gathering Process

The assessments provided by experts over the alternatives concerning criteria, and their
opinions regarding the criteria importance and the familiarity degree for each criterion are shown
in Tables 5–7 respectively. This phase is supported by GENESIS to facilitate the information gathering
process (see Figure 8).
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Table 5. Assessments provided by all experts on different alternatives concerning each criterion.

Expert Alternative
Criteria

C1 C2 C3 C4 C5

Interval Values
[0,1000]

Linguistic Linguistic
Interval

Values [0,10]
Numerical
Values (0,1)

e1

P1 [20,25] ls l [0.2,0.3] 1
P2 [30,35] ls m [0.2,0.35] 1
P3 [50,80] m h [0.5,0.8] 1
P4 [100,150] hs bt m and h [1.0,2.0] 1
P5 [60,70] vhs vh [0.1,0.2] 1

e2

P1 [30,50] vls At most vl [0.25,0.4] 1
P2 [40,50] vls vl [0.3,0.5] 1
P3 [100,150] ls m [0.6,1.5] 1
P4 [150,250] m l [2.0,2.5] 1
P5 [80,100] hs vh [0.1,0.25] 1

e3

P1 [20,30] vls l [0.1,0.15] 1
P2 [30,60] ls l [0.15,0.25] 1
P3 [60,100] bt ls and m h [0.2,0.3] 1
P4 [200,300] ls m [1.5,2.5] 1
P5 [50,80] hs bt h and vh [0.2,0.25] 1

e4

P1 [25,40] vls vl [0.2,0.25] 1
P2 [30,45] vls At most l [0.4,0.5] 1
P3 [80,150] ls m [0.6,1.0] 1
P4 [200,250] bt ls and m l [1.5,3.0] 1
P5 [50,70] vhs vh [0.3,0.6] 1

e5

P1 [20,30] vls l [0.25,0.3] 1
P2 [30,40] ls vl [0.3,0.4] 1
P3 [50,80] At most m m [0.5,1.0] 1
P4 [150,300] vls l [2.0,2.5] 1
P5 [40,70] bt hs and vhs vh [0.35,0.5] 1

e6

P1 [30,40] ls vl [0.2,0.3] 1
P2 [20,50] vls vl [0.5,0.6] 1
P3 [40,70] ls l [0.4,0.6] 1
P4 [200,300] m bt vl and l [2.5,3.5] 1
P5 [50,60] hs h [0.3,0.5] 1

Table 6. The importance of each criterion provided by each expert.

Experts
Criteria

C1 C2 C3 C4 C5

e1 vhi hi hi li mi
e2 bt hi and vhi hi hi mi li
e3 hi mi hi li vli
e4 vhi mi mi li vli
e5 hi mi hi mi li
e6 At least hi hi hi mi li

Note: “bt” means between in Tables 5 and 6.

Table 7. The familiarity degree provided by all experts for each criterion.

Experts
Criteria

C1 C2 C3 C4 C5

e1 vs s vs m m
e2 s m s vs m
e3 m vs vs m s
e4 vs m s s m
e5 m vs vs s u
e6 s s s m m
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Figure 8. Gathered information in GENESIS.

4.2.3. Managing Non-Homogeneous Information

All experts’ assessments are transformed into trapezoidal fuzzy numbers by utilizing the
transformation functions defined in Section 3.2. Therefore, GENESIS makes all the necessary
computations to unify the non-homogeneous information into a fuzzy domain in a simple and fast
way. Figure 9 shows the interface of such a process.

 

Figure 9. Unification results of non-homogeneous information.
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4.2.4. Consensus Reaching Process

The fuzzy linear programming-based consensus model is utilized to achieve the consensus among
all experts involved in the GEDM problem and obtain the collective opinion that will be used in the
selection process. Before applying the CRP, the threshold values in Equation (14) should be determined.

Let S4 = {s0: none (n), s1: very unsure (vu), s2: unsure (u), s3: medium (m), s4: sure (s), s5: very sure
(vs), s6: absolutely sure (as)} be the linguistic term set (see Figure 10) used by experts to express their
familiarity degree for each criterion.

mn vu u s vs as

Figure 10. Linguistic term set S4.

Expert eh provides his/her familiarity degree for the criterion cj by using a linguistic term sk ∈ S4.
According to Equation (16), s̃q = s6−k, then, the COG of s̃q is regarded as the threshold value for the
expert eh about the criterion cj, shown in Table 8. Table 7 is the familiarity degree provided by all
experts for each criterion.

Table 8. Threshold values for s̃q transformed by negative operator.

s̃q Threshold Value

s̃0 0
s̃1 0.17
s̃2 0.33
s̃3 0.5
s̃4 0.67
s̃5 0.83
s̃6 1

For example, expert e1 provides his/her familiarity degree for the criterion c1, s5 = vs, then
according to Equation (16), s̃1 = vu, and, the COG of s̃1 is 0.17, i.e., ε1

1 = COG(vu) = 0.17, it means
that the maximum change that expert e1 can make is 0.17 for the criterion c1.

In this GEDM problem, experts’ weights wh have the same importance. The parameters p, α and c
used in Equation (13) are set, p = 2, α = 2 and c = 1.5 respectively [36].

When all constraints meet the conditions in Equation (14), the aggregated collective opinion,
CO = (COij)5×5, is obtained.

CO =

⎡⎢⎢⎢⎢⎢⎣
(0.02, 0.02, 0.04, 0.04) (0.11, 0.22, 0.22, 0.41) (0.11, 0.22, 0.22, 0.49) (0.02, 0.02, 0.03, 0.03) (1, 1, 1, 1)
(0.03, 0.03, 0.08, 0.08) (0.14, 0.19, 0.19, 0.60) (0.11, 0.17, 0.17, 0.44) (0.04, 0.04, 0.06, 0.06) (1, 1, 1, 1)
(0.07, 0.07, 0.28, 0.28) (0.18, 0.30, 0.32, 0.53) (0.21, 0.37, 0.37, 0.79) (0.06, 0.06, 0.25, 0.25) (1, 1, 1, 1)
(0.17, 0.17, 0.50, 0.50) (0.20, 0.38, 0.38, 0.69) (0.15, 0.30, 0.33, 0.62) (0.23, 0.23, 0.40, 0.40) (1, 1, 1, 1)
(0.05, 0.05, 0.09, 0.09) (0.53, 0.70, 0.70, 0.90) (0.58, 0.73, 0.73, 0.95) (0.02, 0.02, 0.05, 0.05) (1, 1, 1, 1)

⎤⎥⎥⎥⎥⎥⎦
4.2.5. Calculation of Criteria Weights

Using Table 6, the criteria weights are calculated by GENESIS (see Figure 11).
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Figure 11. Criteria weights wcj obtained by GENESIS.

4.2.6. Selection Process-Fuzzy TODIM Method

Once the criteria weights wcj and the aggregated collective opinion CO = (COij)m×n are obtained,
fuzzy TODIM method is applied to calculate the overall dominance degree for each alternative and
then the ranking of the alternative is obtained. Figure 12 shows the results obtained for each step of
the fuzzy TODIM method.

 

Figure 12. The results of different steps based on fuzzy TODIM by using GENESIS.
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The ranking of alternatives is obtained according to the overall dominance degree for
each alternative:

p4 � p2 � p3 � p1 � p5

Finally, the EM can select p4, “joint rescue” as the best alternative for the emergency response.

4.2.7. Sensitivity Analysis

To illustrate the feasibility and validity of the proposed method, sensitivity analysis is carried out
in a similar way to other TODIM-based proposals in literature [38].

In this case, two aspects of sensitivity analysis are conducted: (i) the analysis about the weight
evolution of the most important criterion and (ii) the evolution of attenuation factor θ.

For the weight evolution of the most important criterion, in this case study, it is C1. First, let the
weight of criterion C1 be equal to the second most important criterion, i.e., C1 = 0.236, then changing
the weight of C1 from 0.236 to 1. The reason for doing this is that the most important criterion is always
the same and never changes, hence the relative weights are always calculated according to the same
criterion. Applying these changes, the ranking of alternatives does not change.

The attenuation factor θ evolution, is changed from 1 to 15. When these alterations are carried
out, there is no any change in the ranking of alternatives.

From the sensitivity analysis, it is easy to see that the ranking of alternatives is consistent with
each other. It shows the feasibility, validity and the robustness of the proposed method.

5. Conclusions and Future Works

The non-homogeneous information including experts’ hesitancy is not available in current GEDM
approaches. To fill such a gap, this paper has taken into account the non-homogeneous information
including experts’ hesitancy, which extends the scope of non-homogeneous information defined in
previous approaches. In order to make computations with non-homogeneous information defined in
our proposal, different transformation functions have been presented to unify it into fuzzy numbers.
A fuzzy linear programming-based consensus model with a new way for determining the threshold
values has been applied to obtain the collective opinion, which is suitable for dealing with the fuzzy
information. Experts’ psychological behavior is very important in decision processes under risk and
uncertainty; however, it is neglected in current GEDM approaches. To address such an important issue,
fuzzy TODIM method has been utilized in our proposal due to its advantage of capturing human
beings psychological behavior. Furthermore, a case study has been provided to illustrate the feasibility
and validity of the proposed method by using GENESIS supporting the whole decision process.

Future research could be the use of computer science and Internet technology for supporting the
EDM based on big data, which will lead to more reliable decisions. Furthermore, game theory [47,48]
can be applied to deal with the emergency problems under uncertainty.
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Abstract: In the aquaculture industry, feed that is of poor quality or nutritionally imbalanced can
cause problems including low weight, poor growth, poor palatability, and increased mortality, all of
which can induce a decrease in aquaculture production. Fishmeal is considered a better source of
protein and its addition as an ingredient in the aquafeed makes aquatic animals grow fast and healthy.
This means that fishmeal is the most important feed ingredient in aquafeed for the aquaculture
industry. For the aquaculture industry in Taiwan, about 144,000 ton/USD $203,245,000 of fishmeal
was imported, mostly from Peru, in 2016. Therefore, the evaluation and selection of fishmeal suppliers
is a very important part of the decision-making process for a Taiwanese aquaculture enterprise. This
study constructed a multiple criteria decision-making evaluation model for the selection of fishmeal
suppliers using the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) approach based
on the weights obtained with the entropy method in a fuzzy decision-making environment. This
hybrid approach could effectively and conveniently measure the comprehensive performance of the
main Peruvian fishmeal suppliers for practical applications. In addition, the results and processes
described herein function as a good reference for an aquaculture enterprise in making decisions when
purchasing fishmeal.

Keywords: aquaculture; fishmeal supplier selection; entropy; VlseKriterijumska Optimizacija I
Kompromisno Resenje (VIKOR); fuzzy logic

1. Introduction

On 17 September 2014, the Member States of the United Nations announced the Sustainable
Development Goals (SDGs) as part of the 2030 Agenda for sustainable development. The 2030 Agenda
set aims for the contribution and conduct of fisheries and aquaculture towards food security and
nutrition, and the use of natural resources to ensure sustainable development in economic, social, and
environmental terms. According to statistics from the Food and Agriculture Organization (FAO) of the
United Nations, aquaculture provided only 7% of fish for human consumption in 1974, but this share
has since increased to 26% in 1994, and 44% in 2014. Aquaculture has seen an impressive growth in the
supply of farmed fish, which overtook that of wild-caught fish for human consumption in 2014 [1].
This makes the aquaculture industry an important source of aquatic food. Taiwan is one of the top
25 countries in this industry with a total production of 340,600 tons and ranked 19th in 2014 [1].

Aquafeed is a very significant factor for production in the aquaculture industry and it accounts
for about 40–60% of the cultivation cost. In addition, the feed quality and its nutrient content greatly
affects the growth of aquatic animals as poor-quality feed or nutrient imbalances can cause low weight,
poor growth, feed inefficiency, and increase the mortality rate. Therefore, it is very important to choose
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the best source of feed for sustainable development in aquaculture production. Fishmeal is considered
the most nutritious, digestible source of protein for farmed-fish feed. Fishmeal is added to the aquafeed
to ensure that the aquatic animals grow fast and healthy, and can improve the quality of the related
aquaculture products. Effective screening of the source of this important raw material is necessary to
maintain the quality of related products and establish inherent goodwill in the industry. Therefore,
an aquaculture enterprise cannot consider price alone as the major consideration for procurement.
Meeting the required quality, supplying the appropriate quantity, timely delivery, and long-term
partnerships are all factors that should be considered for the evaluation and selection of fishmeal
vendors. Taiwan’s aquaculture industry imported about 144,000 ton/USD $203,245,000 of fishmeal
from Peru, India, Thailand, and Vietnam in 2016. Peru is not only the world’s leading exporter of
fishmeal, but also the largest supplier for Taiwan’s aquaculture industry. However, there are many
suppliers of fishmeal in Peru and their supply capacity, product quality, delivery term, and cooperative
attitude all vary. Therefore, setting up practical evaluation criteria and a method for the evaluation
and selection of fishmeal suppliers from Peru would be helpful for Taiwan’s aquaculture enterprises.
An example of raw material supplier selection is also given to demonstrate the proposed solution to
this kind of problem.

The problems of supplier evaluation and selection have received considerable attention in
academic study and in practice. Numerous multiple criteria decision making (MCDM) approaches
have been proposed to tackle the problem such as the analytic hierarchy process (AHP), analytic
network process (ANP), mathematical programming, technique for order preference by similarity
to ideal solution (TOPSIS), preference ranking organization method for enrichment of evaluations
(PROMETHEE), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and hybrid or
extended fuzzy approaches (see Table 1) [2–32]. Amongst these methodologies, many approaches
have used criteria weightings that have been determined by subjective evaluations by decision makers
or experts for pairwise comparison or direct rating methods. Furthermore, for the VIKOR method,
Opricovic and Tzeng [33] have described the advantages of its theory, and Opricovic and Tzeng [34]
have compared it with other outranking methods, both of which illustrate the benefits of VIKOR.
Therefore, to reduce uncertainties arising from subjective factors, this work adopted the entropy
method to objectively determine the criteria weights. Then, based on the entropy weightings, the
VIKOR approach was applied to process the performance rating of the alternatives. In addition, to
capture and handle the human appraisal of ambiguity, uncertainty, and subjectivity, linguistic variables
in the fuzzy sets were integrated into the supplier evaluation and selection process. This hybrid
fuzzy MCDM technique was applied to evaluate and select fishmeal suppliers from Peru for Taiwan’s
aquaculture enterprise. The VIKOR approach was used based on weightings obtained with the entropy
method in a fuzzy decision-making environment. The advantage of this approach was that we only
needed to evaluate the merits of the alternatives based on linguistic variables under each criterion.
These linguistic variables were converted into scores, which were then utilized to calculate the fuzzy
entropy weights to help clarify the importance of the criteria. These weights were then applied with the
fuzzy VIKOR approach to derive a comprehensive performance evaluation for the complex supplier
selection problem. Thus, the overall scores for each supplier in each criterion can be obtained, and
the selection decision made accordingly. This method is more effective and convenient in practical
applications and provides better decision-making quality. This paper also discusses an empirical case
study to demonstrate how an aquaculture enterprise can implement this solution. The results and
processes provide a good reference to assist an aquaculture enterprise in Taiwan in the making of
fishmeal purchasing decisions.

The remainder of this paper is organized as follows. In Section 2, the criteria for raw material
supplier selection are identified. In Section 3, the research methodology including fuzzy entropy and
fuzzy VIKOR is introduced. Section 4 includes the numerical case study that uses a Taiwan aquaculture
enterprise as an example, thus demonstrating the process of fishmeal supplier evaluation and selection
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from the proposed model, the procedure, and method. The results of the empirical research are also
analyzed. In Section 5, some conclusions are offered.

Table 1. Related research for supplier selection.

Authors Approaches Field of Empirical Study

Tam and Tummala, 2001 AHP Telecommunications company
Dulmin and Mininno, 2003 PROMETHEE-GAIA Public road and rail transportation
Kumar et al., 2004 Fuzzy integer goal programming Auto-parts company
Chen et al., 2006 Fuzzy TOPSIS High-tech company
Kumar et al., 2006 Fuzzy programming Auto-parts company
Gencer and Gürpinar, 2007 ANP Electronic firm
Xia and Wu, 2007 AHP CPU supplier
Sanayei et al., 2008 MAUT and LP Automobile manufacturer
Yang et al., 2008 Fuzzy AHP High-tech industries
Amin and Razmi, 2009 Fuzzy set theory Internet service provider
Boran et al., 2009 Fuzzy TOPSIS Automotive company
Wang et al., 2009 Fuzzy AHP and TOPSIS Lithium-ion battery protection IC
Lin et al., 2010 ANP Semiconductor industry
Chamodrakas et al., 2010 Fuzzy AHP and programming Electronic marketplaces
Sanayei et al., 2010 Fuzzy VIKOR Automobile part manufacturing
Shemshadi, et al., 2011 Fuzzy VKOR and Entropy Petrochemical factory
Jahan et al., 2011 VIKOR Health care
Amin et al., 2011 fuzzy SWOT and LP Auto parts company
Kilincci and Onal, 2011 Fuzzy AHP Washing machine company
Feng et al., 2011, Multi-objective 0–1 programming CSA company
Zhao and Yu, 2011 Information entropy Petroleum enterprises
Vahdani et al., 2012 Locally linear neuro-fuzzy Cosmetics industry
Chatterjee and Chakraborty, 2012 PROMETHEE II and Gray relation Rotating machine part
Hsua et al., 2012 DANP with VIKOR Decoration corporation
Chen and Chao, 2012 AHP and CFPR Electronic company
Peng and Xiao, 2013 PROMETHEE and ANP Bush materials
Zhao and Guo, 2014 fuzzy-entropy and fuzzy-TOPSIS Thermal power equipment
Kuo et al., 2015 DANP with VIKOR Green Electronics Company
Chung et al., 2016 ANP and IPA Bicycle manufacturer
Yazdani et al., 2017 DEMATEL Food-based production company
Wan et al., 2017 ANP and ELECTRE II Auto manufacture company

2. Criteria for Fishmeal Supplier Selection

Supplier selection is the process of finding appropriate suppliers who are able to provide the
buyer with the right quality products and/or services at an acceptable price and delivery time, and in
the required quantities. This is one of the most critical activities in establishing an effective supply
chain. Obviously, supplier selection is a multiple criteria decision making (MCDM) problem affected
by several conflicting factors such as price, quality, delivery, and so on.

Historically, several methodologies have been developed for evaluating, selecting, and monitoring
potential suppliers that take into account factors such as quality, logistics, and cost. Dickson [35],
in one of the well-known studies on supplier selection, identified 23 important evaluation criteria
for supplier selection. Barbarosoglu and Yazgac [36] helped a company find the proper supplier by
adopting Dickson’s criteria to evaluate supplier performance. In recent years, a number of researchers
have begun to identify some of the relevant criteria. Ng [37] constructed a simple and effective
supplier evaluation model to deal with problems of supplier selection with supply variety, quality,
delivery, and price as the evaluation criteria. Shemshadi et al. [17], Chen et al. [5], Boran et al. [12], and
Yang et al. [10] identified product quality, effort to establish cooperation, the supplier’s technical level,
delay on delivery, price/cost, profitability of supplier, relationship closeness, technological capability,
conformance quality, conflict resolution, delivery performance, supplier profile, and risk as factors for
determining the best supplier. Chen and Kumar [38] established an evaluation model to obtain the best
supplier with the result to be given to a company as a strategy reference. They proposed the following
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five criteria: overall cost of the product, quality of the product, service performance of supplier,
supplier’s profile, and risk factor. By consolidating several studies, Sanayei et al. [16] proposed five
categories: product quality, on-time delivery, price/cost, supplier’s technological level, and flexibility.
Shyur and Shih [39] introduced evaluation indictors including on-time delivery, product quality,
price/cost, facility and technology, responsiveness to customer needs, professionalism of salespeople,
and quality of relationship into the supplier evaluation process. Ávila et al. [40] defined product cost,
financial stability, synergy potential, logistics cost, payment flexibility, after sales service cost, and
production capacity as supplier evaluation criteria. There have been a significant number of studies
discussing supplier selection and a wide range of mathematical methods have been used to provide
solutions for supplier selection, as shown in Table 1.

In this study, based on the principles espoused in [35] and in consultation with the management
team of a typical aquaculture company in Taiwan, we listed 22 factors that are often used for
evaluating fishmeal suppliers in Taiwan’s aquaculture enterprise. To evaluate the importance of
the factors from an expert viewpoint, questionnaires with responses given in the seven-point Likert
scale (from one to seven) were used collect expert opinions, with preferences of very unimportant,
essentially unimportant, weakly unimportant, fair, weakly important, essentially important, and very
important. Seventeen experts with many years of work experience in Taiwan’s aquaculture industry
were invited to evaluate the importance of these 22 factors. The demographic information of these
17 respondents is summarized in Table 2. The Cronbach’s α was 0.918, which represents excellent
internal consistency reliability. The Kaiser-Meyer-Olkin (KMO) measuring sampling adequacy
provides an index (between 0 and 1) of the proportion of variance among the variables that might
be common variance. A high KMO indicates that sampling is adequate, indicating the existence of a
statistically acceptable factor solution representing relationships between the parameters. In our study,
the Kaiser-Meyer-Olkin (KMO) value was found to be 0.689, which was better than the suggested
value of 0.6 [41]. The factors, as well as the importance of the factors, are summarized in Table 3.
The importance values of the 22 factors fell in a range between 5.000 and 6.647. When the importance of
factors was identified, it was unrealistic to consider all of the factors simultaneously given the limited
time and resources. To improve the evaluation and selection process, 10 major factors were determined
as the evaluation criteria given higher priority after discussion with the management team: “Stability
of product quality”; “Stability of supply capability”; “Reasonableness of quoted price”; “Financial
capability and condition”; “Flexibility in changing shipment schedule”; “Potential cooperation in the
future”; “Operating control of pre-delivery”; “Satisfaction with claims for damages”; “Exactness for
presenting documents to the bank”; and “Control capability of on-time delivery”, as shown in Table 4.

Table 2. Demographic information of the experts who evaluated the criteria.

Demographic Information Frequency

Gender
Male 3

Female 14

Age
30–35 10
35–40 3
40–55 4

Working experience
Under 5 4

5–10 6
Above 10 7

Education level
College 3
Bachelor 10
Master 4

Occupation Purchasing manager 2
Purchasing specialist 15
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Table 3. Importance of the 22 factors.

Factors Importance Ranking

1. The ratio of supply quantity to total purchase quantity 5.118 18
2. Stability of supply capability 6.235 2
3. Stability of product quality 6.647 1
4. Completeness of product packaging 5.294 15
5. Operating control of products before delivery 5.529 7
6. Control capability for on-time delivery 5.824 4
7. Records of claim for damages or complaints 5.000 22
8. Satisfaction with handling claims for damages 5.471 8
9. Efficiency of handling claims for damages 5.059 19
10. Facilities and equipment of production plant 5.059 19
11. Financial capability and condition 5.471 8
12. Efficiency of communication 5.176 17
13. Exactness in presenting documents to the bank 5.471 8
14. Operating control of shipping documents 5.353 13
15. Brand awareness 5.235 16
16. Reasonableness of quoted price 5.882 3
17. Reasonableness of shipping freight quotes 5.412 11
18. Flexibility and coordination of order modification 5.412 11
19. Flexibility for changing shipment schedule 5.706 5
20. Service attitudes of operational staff 5.353 13
21. Closeness of previous business relationship 5.059 19
22. Possibility of establishing long-term cooperation 5.588 6

Table 4. Fishmeal supplier selection evaluation criteria.

Evaluation Criteria Importance

C1 Stability of product quality 6.647
C2 Stability of supply capability 6.235
C3 Reasonableness of quoted price 5.882
C4 Control capability of on-time delivery 5.824
C5 Flexibility for changing shipment schedule 5.706
C6 Possibility of establishing long-term cooperation 5.588
C7 Operating control of product before delivery 5.529
C8 Satisfaction with handling claims for damages 5.471
C9 Exactness for presenting documents to the bank 5.471
C10 Financial capability and conditions 5.471

3. The Proposed Method

In the process of decision-making, decision-makers often make subjective judgments based on
their own knowledge and experience in ambiguous or vague statements, such as good, poor, important,
not important, and so on, given in linguistic terms. To deal with the ambiguity and subjectivity of
human judgment, linguistic variables have been introduced with these judgments expressed by a
membership function within a closed interval of [0, 1] as in fuzzy set theory [42]. Bellman and
Zadeh [43] proposed a methodology for decision-making in a fuzzy environment to resolve the lack of
precision in assigning the degree of importance of evaluation criteria and the ratings of alternatives
based on the evaluation criteria. In this section, we introduce the concepts and processes used to define
the linguistic variables, to calculate the entropy weights, and the VIKOR procedure.

3.1. Linguistic Variables and Fuzzy Numbers

A linguistic term or linguistic variable is one whose value is given by words or sentences expressed
in a natural language. In this study, we used these kinds of expression in linguistic terms to evaluate
the performance of selected alternatives regarding each criterion: “Very poor”, “Poor”, “Medium
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poor”, “Fair”, “Medium good”, “Good”, and “Very good”, with respect to a trapezoidal fuzzy number
(TFN) as proposed by [16,44]. A TFN is a fuzzy set Ã on X if its membership function is a mapping
μÃ(x) : X → [0, 1] . The membership function of a fuzzy number Ã can be described as follows:

μÃ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≤ a1 or x ≥ a4

(x− a1)/(a2 − a1) , a1 ≤ x ≤ a2

(a4 − x)/(a4 − a3) , a3 ≤ x ≤ a4

1, a2 ≤ x ≤ a3

(1)

The trapezoidal fuzzy number can be denoted by Ã = (a1, a2, a3, a4), where
{(a1, a2, a3, a4)|a1, a2, a3, a4 ∈ R; a1 ≤ a2 ≤ a3 ≤ a4} which denotes the smallest possible, the
most promising, and the largest possible values, respectively, as shown in Figure 1. Table 5 and
Figure 2 show the corresponding TFN for each linguistic variable.

Figure 1. Trapezoidal fuzzy number Ã.

Figure 2. Linguistic variables for the fuzzy rates of alternatives.

The algebraic operations for the two TFNs (addition, subtraction, multiplication, division and
reciprocity) applied in this study were based on the arithmetic of special fuzzy numbers as introduced
by [44].

After the evaluation process in the fuzzy environment, the results are still in the fuzzy number
format. Therefore, it is necessary to further conduct defuzzification to transform the fuzzy numbers to
crisp numbers. Based on the center of area (COA) method, TFN Ã = (a1, a2, a3, a4) was defuzzified to
a crisp value (CÃ) as the centroid value of TFN Ã, as follows:

370

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 286

CÃ =

∫ a4
a1

xμÃ(x)dx∫ a4
a1

μÃ(x)dx

=

∫ a2
a1

x( x−a1
a2−a1

)dx+
∫ a3

a2
xdx+

∫ a4
a3

x( a4−x
a4−a3

)dx∫ a2
a1

x−a1
a2−a1

dx+
∫ a3

a2
1dx+

∫ a4
a3

a4−x
a4−a3

dx
=

a2
3+a2

4+a3a4−a2
1−a2

2−a1a2
3(a3+a4−a1−a2)

(2)

Table 5. Fuzzy linguistic assessment variables.

Linguistic Variables Trapezoidal Fuzzy Number (TFN)

Very poor, VP (0.0, 0.0, 0.1, 0.2)
Poor, P (0.1, 0.2, 0.2, 0.3)

Medium poor, MP (0.2, 0.3, 0.4, 0.5)
Fair, F (0.4, 0.5, 0.5, 0.6)

Medium good, MG (0.5, 0.6, 0.7, 0.8)
Good, G (0.7, 0.8, 0.8, 0.9)

Very good, VG (0.8, 0.9, 1.0, 1.0)

3.2. Group Decision Making

A good decision-making process is not only comprised of arbitrary decisions made by individuals,
but also requires a combination of professional judgments. In this study, for the sustainable
management of an enterprise, we developed a method for the evaluation and selection process
of fishmeal suppliers to obtain the appropriate and correct results. The group multiple criteria
decision making (GMCDM) method includes the following elements: (1) m possible suppliers,
A = {A1, A2, · · · , Am}; (2) n evaluation criteria, C = {C1, C2, · · · , Cn}; and (3) k decision-makers,
D = {D1, D2, · · · , Dk}. The performance evaluation matrix of the supplier Ai(i = 1, 2, · · · , m) with
respect to criteria Cj(j = 1, 2, · · · , n) by decision-maker Dk using the fuzzy linguistic assessment
variables can be constructed as follows:

Ẽ
k
=
[
ẽk

ij

]
m×n

=

C1 · · · Cn

A1
...

Am

⎛⎜⎝ ẽk
11 . . . ẽk

1n
...

. . .
...

ẽk
m1 · · · ẽk

mn

⎞⎟⎠
m×n

i = 1, 2, · · · , m; j = 1, 2, · · · , n; k = 1, 2, · · · r (3)

where ẽk
ij = (ek

1ij, ek
2ij, ek

3ij, ek
4ij).

Therefore, for the k decision makers conducting the group evaluation process, the aggregated
fuzzy performance rating of alternatives with respect to each criterion as an integrated fuzzy decision
matrix Ẽ can be calculated as:

Ẽ = [ẽij]m×n =

⎡⎢⎢⎢⎢⎣
ẽ11 ẽ12 · · · ẽ1n
ẽ21 ẽ22 · · · ẽ2n
...

...
. . .

...
ẽm1 ẽm2 · · · ẽmn

⎤⎥⎥⎥⎥⎦ = [(e1ij, e2ij, e3ij, e4ij)]m×n

=

⎡⎢⎢⎢⎢⎣
(e111, e211, e311, e411) (e112, e212, e312, e412) · · · (e11n, e21n, e31n, e41n)

(e121, e221, e321, e421) (e122, e222, e322, e422) · · · (e12n, e22n, e32n, e42n)
...

...
. . .

...
(e1m1, e2m1, e3m1, e4m1) (e1m2, e2m2, e3m2, e4m2) · · · (e1mn, e2mn, e3mn, e4mn)

⎤⎥⎥⎥⎥⎦,

where

e1ij = min
k
{ek

1ij}; e2ij =
1
r

r

∑
k=1

ek
2ij; e3ij =

1
r

r

∑
k=1

ek
3ij; e4ij = max

k
{ek

4ij} (4)
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3.3. Determination of Criteria Weightings

Shannon [45] introduced the concept of entropy into information theory, which is used to measure
information and uncertainty, and to characterize and signal uncertainty for the information sources.
If the entropy of an evaluation criterion is smaller, the amount of information provided by the
criterion is greater, and the greater the role in the comprehensive evaluation process, the higher the
weight. The entropy weight method mainly uses the uncertainty represented by the entropy value
as determined by information theory to calculate the decision information that can be transmitted by
each evaluation criterion, then obtains the relative weights between the criteria. The relative weight
calculated by the entropy weight method is obtained by using the evaluation information for each
alternative under each evaluation criterion where there are no subjective factors. In other words, this
is an objective weight. For this study, the processes of computing entropy weights were as follows:

(1) According to the established fuzzy decision evaluation matrix Ẽ, the fuzzy decision evaluation
matrix was defuzzified to a crisp value matrix by

Ẽ =
[
ẽij
]

m×n → F =
[

fij
]

m×n (5)

where
[

fij
]

m×n =

C1 · · · Cn

A1
...

Am

⎛⎜⎝ f11 . . . f1n
...

. . .
...

fm1 · · · fmn

⎞⎟⎠
m×n

i = 1, 2, · · · , m; j = 1, 2, · · · , n.

(2) Normalize the evaluation matrix:

R =
[
rij
]

n×m =

C1 · · · Cn

A1
...

Am

⎛⎜⎝ r11 . . . r1n
...

. . .
...

rm1 · · · rmn

⎞⎟⎠
m×n

rij =
fij

m
∑

i=1
fij

, i = 1, 2, · · · , m; j = 1, 2, · · · , n (6)

(3) Calculate the Shannon entropy value of each evaluation criterion:

Hj =

(
− 1

ln m

) m

∑
i=1

rij ln rij, i = 1, 2, . . . , m ; j = 1, 2, . . . n (7)

(4) The entropy weights of each evaluation criterion wj were found as follows:

wj =
1− Hj

n
∑

j=1
(1− Hj)

, i = 1, 2, . . . , m ; j = 1, 2, . . . n; W = (w1, w2, . . . , wn),
n

∑
j=1

wj = 1 (8)

3.4. Evaluation and Selection of Alternatives

The VIKOR method proposed by [46] is one of the optimal compromise solution methods used in
multiple criteria decision making. The basic concept is to define the positive ideal solution and
the negative ideal solution. The so-called positive ideal solution refers to the best alternatives
with respect to each evaluation criterion, while the negative ideal solution consists of the worst
alternatives for each evaluation criterion. The alternatives are then prioritized by comparing the
evaluation values of each alternative with their closeness to the positive ideal solution. To calculate
the closeness of the alternatives to the positive ideal solution, the values of the evaluation criteria
must be aggregated. In VIKOR, the aggregating function was developed from the Lp-metric through a
compromise programming method [47] that focuses on ranking and selecting from a set of alternatives
to determine a compromise solution that provides the maximum group utility for the majority, and
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a minimum of individual regret for the opponent, which can help the decision makers reach a final
decision. The processes of applying VIKOR for alternative selections are as follows:

(1) Determine the evaluation values of the best and the worst alternatives/suppliers for each criterion
j: f+j and f−j

f+j = max
i

fij; f−j = min
i

fij i = 1, 2, · · · , m; j = 1, 2, · · · , n (9)

(2) Compute the weighted distance ratio to the best value for every alternative/supplier with respect
to each criterion: Si and Ri

Si =
n

∑
j

wj

(
f+j − fij

f+j − f−j

)
, (10)

Ri = max
j

(
wj

(
f+j − fij

f+j − f−j

))
. (11)

(3) Compute the values Qi as follows:

Si is the weighted summation of the distance to the best evaluation value of alternative i with
respect to all criteria; Ri is calculated by the maximum weighted distance to the best evaluation
value of alternative i with respect to the jth criterion; and Si refers to the overall benefits of the
ith alternative where the smaller the value, the larger the benefits. That is, S+ = minSi, and
S− = maxSi. Ri refers to the individual regret of the ith alternative where the smaller the value,
the smaller the individual regret of the opponent. That is, R+ = minRi, and R− = maxRi. Thus,
the index Qi is based on the consideration of both the group utility and individual regret of
the opponent

Qi = v
(

Si − S+

S− − S+

)
+ (1− v)

(
Ri − R+

R− − R+

)
(12)

where v is introduced as a weight for the strategy of maximum group utility, whereas 1 − v is the
weight of the individual regret of the opponent.

(4) Rank the alternatives by sorting the values Si, Ri and Qi in ascending order.

(5) Propose as a comprise solution, alternative A(1), which is best ranked by the measure Q
(minimum), if the following two conditions are satisfied:

C1 Acceptable advantage:

Q
(

A(2)
)
−Q
(

A(1)
)
≥ DQ =

1
m− 1

(13)

where A(2) is the alternative in the second position in the ranking list bounded by Q
and DQ.

C2 Acceptable stability in decision-making:

The alternative A(1) must also be the best ranked by S and/or R. This compromise solution
is stable within a decision-making process, which could be the strategy of maximum group
utility (when v > 0.5 is needed), or “by consensus” v ≈ 0.5, or “with veto” (v < 0.5). Here,
v is the weight of the decision-making strategy of the maximum group utility. If one of
the conditions is not satisfied, then a set of compromise solutions is proposed, which
consists of

(a) Alternatives A(1) and A(2) only if condition C2 is not satisfied;
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(b) Alternatives A(1), A(2), · · · , A(m), if condition C1 is not satisfied. A(m) is
determined by the relation Q(A(m)) − Q(A(1)) < DQ for maximum m
(the positions of these alternatives are “in closeness”).

4. Case Study

For aquaculture enterprises, the most important ingredient in the aquafeed is fishmeal. There
was a slight decline in global fishmeal production and trade in 2017, but global production is still
concentrated among a few top producers. Peru accounts for one-fifth of global production and remains
the world’s largest producer and exporter of fishmeal, accounting for nearly one-third of the global
trade. There are two periods of time where fishing is allowed in the northern and central oceanic
areas near Peru. The first period begins around April and runs to July, and the second fishing period
starts from November and goes to January of the following year. The government of Peru realizes the
importance of protecting its natural oceanic resources and has decided to reduce their fishing quota;
therefore, fishermen must fish on the basis of published quotas, which has directly contributed to
competitive tension in the supply side of the fisheries, causing a sharp fall in fishmeal production.
Due to a decrease in supply due to the fishing quota, the fishmeal market is becoming more competitive.
As a result, many small fishmeal factories in Peru have merged into larger main suppliers. About 80%
of fishmeal production is now centralized.

To illustrate the proposed method, we considered an example where the managerial board of an
aquaculture enterprise in Taiwan has to procure fishmeal for their aquatic stock. There are four main
fishmeal companies in Peru considered as possible suppliers (see Table 6), and 10 important factors
(as identified in Section 2) for evaluating these companies. To hedge risks, a committee of thirteen
experts (decision-makers) with many years of work experience in the aquaculture industry of Taiwan
was formed to select the most suitable fishmeal companies. Profiles of these experts are shown in
Table 7.

Table 6. Profiles of candidate fishmeal suppliers.

Condition A1 A2 A3 A4

Status Listed Non-Listed Non-Listed Non-Listed
Incorporation Date 25 July 1994 1 August 1945 13 January 1986 5 February 2006

Total Employees 2073 3502 7444 1495
Plants 5 16 9 7

Products Fishmeal
Fish oil

Fishmeal
Fish oil

Fishmeal
Fish oil

Canned food
Frozen food

Fishmeal
Fish oil

Frozen fish

Table 7. Profiles of experts evaluating the alternatives.

Demographic Information Frequency

Gender
Male 3

Female 10

Age
30–35 6
35–40 3
40–55 4

Working experience
Under 5 4

5–10 6
Above 10 3

Education level
College 3
Bachelor 8
Master 2

Occupation Purchasing manager 2
Purchasing specialist 11
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The proposed model applied for fishmeal supplier selection for a firm operating in the field of
aquaculture was comprised of the following steps:

Step 1: Using linguistic variable, thirteen decision makers were asked to rate the candidates with
respect to each criterion (see Table 5). The ratings of the four suppliers by the decision makers
under the various criteria are shown in Table 8.

Step 2: The linguistic evaluations shown in Table 9 was converted into trapezoidal fuzzy numbers.
Then, the aggregated fuzzy rating of alternatives as calculated by Equation (4) to construct the
fuzzy decision matrix, as shown in Table 10. Then, the data in Table 11 were defuzzified by
Equation (2) and normalized by Equation (6). Table 11 shows these processes for calculating
the weight of each criterion.

Step 3: With the normalized values in Table 11, the entropy method was applied to determine the
weight of each criterion by Equations (7) and (8). The crisp values for the decision matrix and
the weight of each criterion were computed as shown in the bottom part of Table 11.

Step 4: Equation (9) was used to determine the best and the worst values of each criterion for the
rating of all suppliers from upper part of Table 11, and the results are shown in the upper part
of Table 12.

Step 5: The values of Si, Ri, and Qi were calculated by Equations (10)–(12) for the four candidate
suppliers, as shown in Table 13.

Step 6: The suppliers were ranked by S, R, and Q in decreasing order as shown in Table 9.
Step 7: As seen in Table 9, supplier A2 was ranked as the best by Q, but condition C1 was not satisfied

Q(A(2))−Q(A(1)) < 1
4−1 . Therefore, A2 and A1 were both appropriate choices.

Table 8. Linguistic evaluation of suppliers with respect to criteria by the decision-makers.

Expert/Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 A1 G MG G G G G F F MG G
A2 G G G G G VG MG MG MG MG
A3 VG MG MG MG MG MG F MG MG MG
A4 G G MG MG MG VG G MG MG G

D2 A1 G VG G G G VG G G G G
A2 MG G G G G VG MG MG MG MG
A3 G G G G G G MG MG MG MG
A4 G G MG MG MG G MG F F G

D3 A1 G G VG G MG VG F MG MG MG
A2 MG VG VG G G VG F MG MG MG
A3 VG MG MG MG MG G F MG MG MG
A4 VG VG G G G VG G MG MG VG

D4 A1 G G VG MG MG VG F MG MG MG
A2 MG VG VG G G VG F MG MG MG
A3 VG MG MG MG MG G F MG MG MG
A4 VG VG G G G VG G MG MG VG

D5 A1 G G VG MG MG VG F MG MG MG
A2 G VG VG G G VG F MG MG MG
A3 VG MG MG MG MG G F MG MG MG
A4 G G G G G VG G MG MG G

D6 A1 G G VG G MG VG F MG F MG
A2 MG VG VG G G VG MG MG MG MG
A3 VG MG MG MG MG G F F MG MG
A4 VG VG G G G VG G MG MG G
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Table 8. Cont.

Expert/Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D7 A1 G G VG G MG VG F MG MG MG
A2 G VG VG G G VG MG MG MG G
A3 VG MG MG MG MG G F F F MG
A4 VG VG G G G VG G MG MG G

D8 A1 G G VG G MG VG F MG MG G
A2 MG VG VG G G VG MG MG MG VG
A3 VG MG MG MG MG G F F F MG
A4 VG VG G MG G VG G MG MG G

D9 A1 MG G MG MG G G MG F MG MG
A2 MG G MG MG G G G F MG MG
A3 MG MG MG F MG G F MP F MG
A4 MG G MG MG G G MG F MG MG

D10 A1 MG G MG MG MG G MG MG MG G
A2 MG G MG MG G G MG F MG MG
A3 VG VG MG MG MG G MG F F MG
A4 MG MG MG F F F F F F F

D11 A1 G G G G MG VG F MG MG MG
A2 MG VG VG G G G F MG MG MG
A3 G G MG MG MG G MG F F MG
A4 F F F F F F F F F F

D12 A1 MG G MG MG G G MG F MG MG
A2 MG G MG MG G G MG F MG MG
A3 MG G MG MG G G MG F MG MG
A4 MG G MG MG G G MG F MG MG

D13 A1 G G VG G MG VG F MG MG MG
A2 MG VG VG G G VG MG MG MG MG
A3 VG MG MG MG MG G F MG MG MG
A4 VG G G G G VG G MG MG G

Table 9. Fuzzy numbers of supplier evaluations with respect to the criteria.

Expert C1 C2 C3 C4 C5

D1 A1 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A2 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)

D2 A1 (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A2 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A4 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)

D3 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)

D4 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)

D5 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
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Table 9. Cont.

Expert C1 C2 C3 C4 C5

D6 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)

D7 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)

D8 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D9 A1 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A2 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A3 (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D10 A1 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6)

D11 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6)

D12 A1 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A2 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A3 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A4 (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D13 A1 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8)
A2 (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0) (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A3 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)

Expert C6 C7 C8 C9 C10

D1 A1 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D2 A1 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.7, 0.8, 0.8, 0.9)

D3 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0)

D4 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0)

D5 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
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Table 9. Cont.

Expert C6 C7 C8 C9 C10

D6 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D7 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D8 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.8, 0.9, 1.0, 1.0)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

D9 A1 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.7, 0.8, 0.8, 0.9) (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.2, 0.3, 0.4, 0.5) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)

D10 A1 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)
A2 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6)

D11 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8)
A4 (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6) (0.4, 0.5, 0.5, 0.6)

D12 A1 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)

D13 A1 (0.8, 0.9, 1.0, 1.0) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A2 (0.8, 0.9, 1.0, 1.0) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A3 (0.7, 0.8, 0.8, 0.9) (0.4, 0.5, 0.5, 0.6) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8)
A4 (0.8, 0.9, 1.0, 1.0) (0.7, 0.8, 0.8, 0.9) (0.5, 0.6, 0.7, 0.8) (0.5, 0.6, 0.7, 0.8) (0.7, 0.8, 0.8, 0.9)

Table 10. Aggregated Fuzzy numbers of supplier evaluations with respect to the criteria.

C1 C2 C3 C4 C5

A1 (0.5, 0.754, 0.777, 0.9) (0.5, 0.792, 0.808, 1.0) (0.5, 0.808, 0.885, 1.0) (0.5, 0.723, 0.762, 0.9) (0.5, 0.662, 0.731, 0.9)
A2 (0.5,0.646,0.723,0.9) (0.7, 0.862, 0.923, 1.0) (0.5, 0.815, 0.900, 1.0) (0.5, 0.754, 0.777, 0.9) (0.7, 0.800, 0.800, 0.9)
A3 (0.5,0.838,0.923,1.0) (0.5, 0.669, 0.746, 1.0) (0.5, 0.615, 0.708, 0.9) (0.4, 0.608, 0.692, 0.9) (0.5, 0.631, 0.715, 0.9)
A4 (0.4,0.777,0.846,1.0) (0.4, 0.800, 0.846, 1.0) (0.4, 0.700, 0.738, 0.9) (0.4, 0.677, 0.715, 0.9) (0.4, 0.723, 0.738, 0.9)

C6 C7 C8 C9 C10

A1 (0.7, 0.869, 0.938, 1.0) (0.4, 0.546, 0.569, 0.9) (0.4, 0.592, 0.662, 0.9) (0.4, 0.608, 0.692, 0.9) (0.5, 0.662, 0.731, 0.9)
A2 (0.7, 0.869, 0.938, 1.0) (0.4, 0.585, 0.646, 0.9) (0.4, 0.577, 0.654, 0.8) (0.5, 0.600, 0.700, 0.8) (0.5, 0.638, 0.731, 1.0)
A3 (0.5, 0.785, 0.792, 0.9) (0.4, 0.531, 0.562, 0.8) (0.2, 0.531, 0.585, 0.8) (0.4, 0.562, 0.623, 0.8) (0.5, 0.600, 0.700, 0.8)
A4 (0.4, 0.815, 0.877, 1.0) (0.4, 0.708, 0.731, 0.9) (0.4, 0.562, 0.623, 0.8) (0.4, 0.577, 0.654, 0.8) (0.4, 0.738, 0.769, 1.0)
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Table 11. Aggregated values and weights of supplier evaluations.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Defuzzified

A1 0.723 0.767 0.786 0.715 0.699 0.871 0.618 0.641 0.650 0.699
A2 0.694 0.867 0.791 0.723 0.800 0.871 0.637 0.606 0.650 0.725
A3 0.800 0.734 0.685 0.650 0.689 0.730 0.581 0.521 0.597 0.650
A4 0.741 0.744 0.675 0.666 0.678 0.753 0.674 0.597 0.606 0.719

Normalized

A1 0.244 0.247 0.268 0.260 0.244 0.270 0.246 0.271 0.260 0.250
A2 0.235 0.278 0.269 0.262 0.279 0.270 0.254 0.256 0.260 0.260
A3 0.270 0.236 0.233 0.236 0.241 0.226 0.231 0.220 0.239 0.233
A4 0.251 0.239 0.230 0.242 0.236 0.233 0.269 0.252 0.242 0.257

Entropy weights

Hj 0.9990 0.9984 0.9980 0.9993 0.9984 0.9976 0.9990 0.9980 0.9994 0.9994
1−Hj 0.0010 0.0016 0.0020 0.0007 0.0016 0.0024 0.0010 0.0020 0.0006 0.0006

wj 7.2% 11.8% 14.7% 5.4% 12.0% 17.5% 7.7% 14.9% 4.0% 4.8%

Table 12. The best and the worst values for each criterion and the S value of the suppliers.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

f + 0.800 0.867 0.791 0.723 0.800 0.871 0.674 0.641 0.650 0.725
f− 0.694 0.734 0.675 0.650 0.678 0.730 0.581 0.521 0.597 0.650

S value

A1 0.052 0.089 0.006 0.006 0.100 0.000 0.046 0.000 0.000 0.017
A2 0.072 0.000 0.000 0.000 0.000 0.000 0.030 0.044 0.000 0.000
A3 0.000 0.118 0.134 0.054 0.109 0.175 0.077 0.149 0.040 0.048
A4 0.040 0.110 0.147 0.042 0.120 0.146 0.000 0.055 0.034 0.004

Table 13. The values and rankings of S, R, and Q of each fishmeal supplier.

Si Ranking Ri Ranking Qi Ranking

A1 0.3154 2 0.0998 2 0.247 2
A2 0.1460 1 0.0720 1 0.000 1
A3 0.9038 4 0.1745 4 1.000 4
A4 0.6968 3 0.1469 3 0.729 3

These results showed that the difference between the Q value of A2 and A1 was not satisfied
with Equation (13), therefore, two candidate suppliers, A2 and A1, are both appropriate choices. A1

represents the largest fishmeal supplier in Peru, and A2 is the second largest, and they both owned and
operated 16 and 5 fishmeal plants, respectively, in 2011. About 80% of fishmeal production is produced
by main 7 suppliers in Peru. In 2011, the largest fishmeal supplier (A1) produced approximately
350,000 tons of fishmeal (27% of the total exported production), while A2 produced approximately
200,000 tons (15.4% of total exported production). Obviously, plant size and capacity are of concern.

Regarding the criteria weights, an entropy method was applied to obtain objective weights from
the supplier evaluation results. This was different from other methods like AHP, where weights are
based on the subjective opinions given by experts. The entropy method results showed that the top
three most important criteria were: (1) the possibility of establishing long-term cooperation, C6 (0.17);
(2) reasonableness of the quoted price, C3 (0.15); and (3) satisfaction with claims for damages C8 (0.15).
The implication of these results is that aquaculture enterprises are concerned about a reduction in the
quantities of fishmeal they can purchase due to a decrease in natural ocean resources. Therefore, their
desire is to maintain long-term relationships with their supplier to ensure the quantity of supply. This
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not only affects the amount of aquaculture production, but also the sustainability of those operations.
In addition, the reasonableness of the quoted price is also of concern. If the quoted price is too high,
it will not attract purchasers to make procurement decisions and will hurt the profits of aquaculture.
As seen from the weighting priorities, the related quality criterion C1 (Stability in product quality)
ranked 7th with a weighting of only 7.2%. This showed that controlling the supply of fishmeal
resources was more important to the aquaculture industry than the quality requirements. Fishmeal
is a special raw material and market demand is greater than supply, therefore making the selection
requirements different than usual.

5. Conclusions

In this study, four Peruvian main fishmeal suppliers were evaluated by thirteen experts, which is
a typical supplier selection problem often encountered in practice. Fuzzy set theory was an appropriate
tool for dealing with this kind of problem. In real decision-making processes, the decision-maker is
often unwilling or unable to express their preferences precisely in numerical values, so evaluations
are very often expressed in linguistic terms. In this paper, an extension of the VIKOR method with
entropy weighting measures in a fuzzy environment was proposed to deal with the qualitative criteria
for suitable supplier selections.

From a management perspective, this study dealt with a very practical issue for the aquaculture
industry in the selection of fishmeal suppliers, given that fishmeal is a very important raw material.
According to the description of the interviewers, the supplier selection processes in this industry
are based on personal experience or interpersonal relationships, and lack a scientific or systematic
model on which to base these decisions. Given this situation, the management of important raw
material suppliers has become less systematic, and does not effectively assess changes in the existing
supplier’s performance, which results in those suppliers with poor performance being more difficult
to manage. Therefore, this study provides a management or evaluation tool for the industry in the
event that a supplier is required to improve their performance. At the same time, to implement a
concise and efficient questionnaire survey for these practitioners, a suitable research approach must be
provided. The proposed method used in this study is expected to be able to obtain relevant information
to effectively measure the weights of the evaluation criteria and the performance of the candidate
suppliers through a simple questionnaire survey. That is, this study adopted the VIKOR approach
based on entropy weights in a fuzzy decision-making environment. Not only can the entropy method
reduce uncertainties arising from subjective factors, but also the advantage of this hybrid approach is
that the merits of the alternatives can be evaluated with one questionnaire. This can greatly reduce
the number of interviews with these fairly busy practitioners, which makes the application of this
approach in the practical industry more effective and convenient. Thus, this framework for supplier
selection in aquaculture should be helpful in making some progress in the management of the industry.

In addition, the use of fuzzy theory in this study to represent the fuzziness of human
decision-making provides judgment linguistic variables that correspond to trapezoidal fuzzy numbers.
For future work, if considering the dynamic and interactive group decision-making process, reference
can be made to the model proposed by [48]. Alternatively, if future studies wish to consider the
interactive consensus analysis of group decision making, it can refer to the integrated linguistic
operator weighted average (ILOWA) approach introduced by [49] to obtain more detailed observations
and discussion.

It is also worth considering, however, that, when selecting the best supplier, an awareness that all
raw materials come from marine resources that can only be provided sustainably under sustainable
fishing should be considered. The problem discussed here was based on how aquaculture enterprises
make decisions to select the appropriate suppliers. However, if marine resources decrease, aquaculture
enterprises will face a lack of raw materials to produce the relevant products, so income might not
be enough to operate sustainably. In 2014, the contribution of the aquaculture sector to the supply
of fish for human consumption overtook that of wild-caught fish for the first time. The importance
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of aquaculture in the future is clearly evident, and the best source of protein in the feed is provided
by fishmeal. The question of how to provide high quality protein substitutes without relying on
wild-caught fish is another topic worthy of discussion.
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Abstract: Most models designed to simulate pedestrian dynamical behavior are based on the
assumption that human decision-making can be described using precise values. This study proposes
a new pedestrian model that incorporates fuzzy logic theory into a multi-agent system to address
cognitive behavior that introduces uncertainty and imprecision during decision-making. We present a
concept of decision preferences to represent the intrinsic control factors of decision-making. To realize
the different decision preferences of heterogeneous pedestrians, the Five-Factor (OCEAN) personality
model is introduced to model the psychological characteristics of individuals. Then, a fuzzy
logic-based approach is adopted for mapping the relationships between the personality traits and
the decision preferences. Finally, we have developed an application using our model to simulate
pedestrian dynamical behavior in several normal or non-panic scenarios, including a single-exit
room, a hallway with obstacles, and a narrowing passage. The effectiveness of the proposed model is
validated with a user study. The results show that the proposed model can generate more reasonable
and heterogeneous behavior in the simulation and indicate that individual personality has a noticeable
effect on pedestrian dynamical behavior.

Keywords: pedestrian dynamical behavior; crowd simulation; fuzzy logic; personality trait; multi-agent

1. Introduction

Simulating crowd behavior as an interdisciplinary research field has attracted the keen interest of
researchers and managers from various domains, including safety engineering, robotics, computer
animation, and social psychology, and in recent years, it has been extensively studied and applied
in these fields. For example, crowd simulation technology can be used to predict pedestrian
flow [1–3] and recognize abnormal or normal behavior in safety engineering applications [4–6],
and it has been implemented for autonomous navigation in robotics [7,8] and enhancing the reality
of computer animation [9–11]. The modelling of pedestrian dynamics is a common key issue among
these applications.

Over the past three decades, various pedestrian models have been proposed to simulate realistic
pedestrian dynamical behavior and understand the potential laws underlying complex crowd
phenomena. In general, most of these models can be classified into two main types: macroscopic
and microscopic. The former considers pedestrians as a fluid, and it usually uses Navier–Stokes or
Boltzmann equations to represent the movement variations in density and speed [1,12]. The latter,
which can analyse individual behavior and interactions among members of a crowd, describes a
pedestrian as an object driven by rule [13] or force [2]. Compared with macroscopic models that focus
on the trend of crowd movement, microscopic models can generate fine-grain simulation results to

Symmetry 2017, 9, 239 384 www.mdpi.com/journal/symmetry

Bo
ok
s

M
DP
I



Symmetry 2017, 9, 239

reflect individual issues and diversities. As a result, over the past few years, many researchers have
paid more attention to microscopic modelling, such as the social force model [4], cellular automata
model [3], and multi-agent model [14]. However, most microscopic models have been developed based
on the assumption that human perception and decision-making in real time can be described using
precise values, and they consider that the information obtained from environments can be accurately
quantified in a pedestrian perception process and assume that the corresponding behavior can be
predicted with certainty in the next decision process. In fact, this assumption does not conform with
the nature of human behavior because imprecise concepts are attributes of human cognitive abilities.
Therefore, a mathematic formulation with precise values cannot easily describe and predict realistic
pedestrian dynamical behavior.

Inspired by soft computing theory, we attempt to incorporate a fuzzy logic system into a
multi-agent simulation model to solve the above problem. The theory of fuzzy sets proposed by
Zadeh [15] provides a useful modelling tool for many applications when ambiguity is present.
For example, the traffic signal alternatives at a midblock crosswalk are controlled using fuzzy logic
methods in [16,17], and a collision avoidance system for autonomous vehicles using a fuzzy steering
controller is proposed in [8]. The perceptions and decisions of a pedestrian are usually represented by
natural language, such as when the pedestrian attempts to pass through the exit at a fast speed rather
than at 2 m/s. These processes can be formulated by a set of verbal variables and linguistic rules using
a fuzzy logic system. Because of the advantages of accessible input perception-based information and
easily steerable output, fuzzy logic-based methods have achieved great progress in the modelling of
pedestrian dynamics. To the best of our knowledge, most studies using fuzzy logic have focused on
the human ability to perceive their surrounding environments [18–24] and ignored decision-making
processes that are vague and imprecise. Compared with previous works, we propose an approach to
emulate pedestrian cognitive ability from a new perspective that uses the fuzzy logic system to model
subjective decisions. Moreover, a concept of decision preferences is presented to represent the intrinsic
control factors underlying decision-making.

Pedestrian dynamical behavior varies from one individual to another when they are confronted
with similar situations in the real world. Thus, the modelling of heterogeneous behavior plays an
important role in the simulation of a natural and realistic crowd. Among the many factors that
promote variations in pedestrian behavior, such as physiological and psychological characteristics,
personality has a significant impact on the subjective decision of the pedestrian. Personality is a pattern
of behavioral, temperamental, emotional, and mental traits for an individual. People with various
personalities have salient behavior characteristics. To generate the heterogeneity of the pedestrian
cognitive ability, we introduce the well-known OCEAN (Openness, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism) personality model [25] to realize the different decision preferences of
heterogeneous pedestrians in this paper.

The main contribution of this study is the proposal of a novel pedestrian model that incorporates
fuzzy logic theory into a multi-agent system to address cognitive behavior that introduces uncertainty
and imprecision in decision-making. For simulating the heterogeneous subjective decisions of
pedestrians, the OCEAN personality model is introduced to generate the different decision preferences
that represent the intrinsic control factors of decision-making. The experiments show that the
application developed using our model can simulate more reasonable and heterogeneous pedestrian
dynamical behavior in several normal or non-panic situations, including a single-exit room, a hallway
with obstacles, and a narrowing passage. Furthermore, the results reveal the impact of personality
traits on pedestrian dynamical behavior.

The remainder of this paper is organized as follows: Section 2 provides an overview of the related
work. Section 3 describes the details of our model that incorporates fuzzy logic into a multi-agent
system and uses personality traits for heterogeneous pedestrians. Section 4 presents the simulations
and validation of the proposed model. Finally, Section 5 concludes the paper with a summary
and outlook.
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2. Related Work

Over the years, various microscopic models have been presented to simulate pedestrian dynamical
behavior under abnormal and normal situations. These models are usually classified into three types:
cellular automata, social force, and multi-agent. The cellular automata model [3,26,27] describes
pedestrian flow through a discrete arrangement of space into grids of equal cells that have two
states: occupied or unoccupied. According to a set of simple transition rules, the state of cells can
be updated to indicate the movement of pedestrians at each time step. However, the pedestrians in
this model move in discrete time and space; therefore, the simulation result is highly dependent on
the discretization level of time and space, and it is difficult to ignore pedestrian body size and step
time to accurately simulate pedestrian dynamical behaviors. The social force model [2,4] inspired
by Newton’s second law describes the pedestrians’ behavior with a mathematical equation of the
interaction forces that consist of socio-psychological and physical forces. This model can easily
reproduce certain self-organization phenomena in a real evacuation, such as arching, clogging, and the
“faster-is-slower effect”. However, the computational complexity of the model rapidly increases with
the crowd number, and heterogeneous pedestrian behavior is difficult to replicate. The multi-agent
model [6,14,28] proposes a computational methodology in which all individuals are modelled
as autonomous agents that are capable of interacting with each other. Agents are autonomous
software entities with the perception and social ability to perform goal-directed knowledge processing.
The key advantage of a multi-agent system is that it can model the dynamics of real-life complex
systems. Therefore, these systems are particularly suitable for simulating the cognitive process and
behavior of pedestrians. Based on the above discussion, we focus on the multi-agent model for
pedestrian modelling.

To improve the believability of crowd simulations, simulating the uncertainty and imprecision of
human behavior is an important aspect in many scenarios, such as pedestrian steering and emergency
evacuation. A fuzzy logic approach has certain advantages over other approaches, such as its ability to
use perceptual information and human experience and knowledge, and to emulate human thought
processes. Therefore, this approach represents a natural and suitable tool for modelling pedestrian
dynamic behavior. Nasir et al. [18] introduced a fuzzy logic framework to predict the impact of
perceived attractive and repulsive stimuli, within the pedestrian’s field of view, on movement
direction during normal situations. Zhu et al. [19] integrated fuzzy logic with the social force model
and reproduced the dynamical features of pedestrian evacuation. Li et al. [20] presented a fuzzy
logic-based approach for crowd simulation that extracts fuzzy rules from the realistic videos that can
be considered a parameterized behavior model. Dell’Orco et al. [21] proposed a microscopic model of
crowd evacuation defined on a continuous space and used a fuzzy logic technique to reproduce human
reasoning. Nasir et al. [22] proposed a genetic fuzzy system to model and simulate a pedestrian’s
steering behavior in a built environment. Fu et al. [23] proposed a fuzzy theory-based behavioral
model to investigate evacuation dynamics in a cellular space. Zhou et al. [24] proposed a fuzzy logic
approach for simulating pedestrian dynamical behavior, and it integrates the intermediate results of
local obstacle-avoiding behavior, regional path-searching behavior and global goal-seek behavior with
mutable weighting factors. Although the above studies have achieved positive results for pedestrian
dynamics using a fuzzy logic-based approach, the human ability to perceive external information is
considered fuzzy, and the subjective differences among crowds is ignored because all individuals are
treated as homogeneous. Therefore, the differences in decision-making for heterogeneous individuals
are difficult to simulate in these studies.

In order to simulate the different decision-making of heterogeneous pedestrians, researchers have
also proposed some approaches using fuzzy logic theory. Akasaka et al. [29] presented a pedestrian
navigation system using fuzzy measures and integrals for selecting a route based on users’ own
preference for routes. Teknomo et al. [30] integrated multi-states of pedestrian situation and pedestrian
group behavior into the multi-agent pedestrian simulation through the concept of fuzzy inter-personal
spacing. These studies directly simulated pedestrian navigation under some certain conditions from the
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perspective of subjective selection, but neglected the intrinsic factors influencing pedestrian behavior.
In this paper, we attempt to model individual intrinsic characteristics for realizing the different decision
preferences of heterogeneous pedestrians. The behavior of a pedestrian can be mainly influenced by
physiological and psychological characteristics. For the aspect of physiology, Zheng et al. [9] chose four
basic physiological characteristics—gender, age, health, and body shape—to generate heterogeneous
crowd behavior. In terms of psychological characteristics, Durupinar et al. [10] integrated the OCEAN
personality model into HiDAC (High-Density Autonomous) [31] to simulate crowd behavior by
mapping between personality traits and observed behavior types. Guy et al. [11] presented an approach
to simulating a heterogeneous crowd using the PEN (Psychoticism, Extraversion, and Neuroticism)
personality model based on the RVO (Reciprocal Velocity Obstacle) library [7]. These studies showed
that the modelling of pedestrian characteristics plays an important role in simulating realistic and
heterogeneous pedestrian dynamical behavior. However, they are based on the assumption that
human decision-making can be described using precise values. To solve the problem of uncertainty and
imprecision during decision-making, we adopt a fuzzy logic-based approach to map the relationships
between the personality traits and the decision preferences.

In this paper, we propose a new pedestrian model that incorporates fuzzy logic theory into a
multi-agent system. Our model can emulate pedestrian cognitive ability that introduces uncertainty
and imprecision during decision-making. Inspired by previous works, we choose the OCEAN
personality model to simulate the individual characteristics for generating the different decision
preferences of heterogeneous pedestrians. To describe the fuzzy attributes, a fuzzy inference system is
adopted for mapping the relationships between the personality traits and the decision preferences.

3. Model Description

In this section, we first introduce an overview of our proposed model for simulating microscopic
pedestrian behavior based on multi-agent systems. Next, we describe the well-known Five-Factor
personality model, which is also known as the OCEAN model and used in this study to drive
the heterogeneous behavior of individuals within a crowd. Then, we present a concept of decision
preferences and define the meanings of these parameters. Finally, a fuzzy logic-based approach is
presented to represent the relationship between the personality traits and the decision preferences of
agents for addressing uncertainty and imprecision during decision-making.

3.1. Overview of the Proposed Model

Human behavior is a complex phenomenon that is difficult to capture via computers performing
mathematical equations. In addition, crowd behavior is not a simple collection of individual behaviors
in the crowd but also includes the interactions between people. To generate heterogeneous crowd
behavior and understand the complicated motion features of pedestrians, we adopt a framework
based on a multi-agent system to model and simulate pedestrian movement. A multi-agent system is
an extension of agent technology where a group of loosely connected autonomous agents act in an
environment to achieve a common goal [32]. In this framework, each human individual is modelled
as an autonomous agent who interacts with a virtual environment and other agents. We believe that
such a framework is particularly suitable for simulating individual cognitive processes and behavior
in pedestrian dynamics.

In our proposed simulation framework, the virtual environment mainly includes agents,
obstacles, and open spaces. The agent consists of three basic components: perception module,
decision-making module, and action module.

• Perception module: This module of an autonomous agent is included to perceive the surrounding
information from the virtual environment, and it has an important role as the information portal
of the agent that interacts with the external environment. The perceived information of an agent
mainly includes (1) the location of other agents and obstacles; (2) the distance from itself to other
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agents and obstacles; (3) the speed of other agents; and (4) the range of obstacles. Because of the
limited range of the visual field, each agent has a limited sensing capability.

• Decision-making module: This module is designed to represent the cognitive and reasoning
processes associated with the movement of a pedestrian. The perceived information is used as
input in this module for an agent making decisions on steering behavior. The publicly available
RVO2 library is used to implement the reasoning process, and the decision preferences are
defined using the following five parameters: (1) NeighborDist; (2) MaxNeighbors; (3) TimeHorizon;
(4) Radius; and (5) PrefVelocity. A detailed description of these parameters is presented in
Section 3.3. The multi-agent system consists of heterogeneous agents, or agents with different
decision-making capabilities.

• Action module: In this module, the actions of an agent include the agent’s ability to walk,
run, turn, and stop, which are the basic locomotion capacities of a pedestrian in a real-life
environment. In this article, we use two main variables—the speed and direction of movement—to
express the basic actions in the steering activity. Actions driven by decision-making can vary
considerably among agents presented with the same perceived information.

To simulate the uncertainty and imprecision of pedestrian dynamical behavior, we incorporate a
fuzzy logic system into a multi-agent simulation framework to model the decision-making process
of an agent. Compared with previous works, we focus on the different decision-making abilities of
heterogeneous agents in this paper. For the sake of simplicity, we use the decision preferences as fuzzy
variables to describe qualitative cognitive behaviors in pedestrian decision-making. According to the
fuzzy relationship between personality traits and human behavior [33], we introduce the OCEAN
personality model to represent heterogeneous pedestrians with various characteristics, such as
openness, conscientiousness, extraversion, agreeableness, and neuroticism. In addition, the mapping
between personality factors and decision preferences is determined by a fuzzy inference system.

The overall framework of our proposed model is shown in Figure 1. In the following sections,
we describe the personality model, decision parameters, and a fuzzy logic-based approach in
more detail.

 

Figure 1. Framework of the proposed model based on a multi-agent system.

3.2. Modelling of Personality

Research in social science and human psychology defines personality as representing the pattern
of a person’s thoughts, feelings, and behaviors, which distinguish one person from another and persist
over time and situations [34]. To exhibit a natural and realistic simulation effect, personalities should be
considered an important aspect of modelling heterogeneous pedestrian behavior because pedestrians
with different personalities may react differently to the same situation. In addition, understanding
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how varying personality factors affect the walking behaviors of pedestrians is important for
many applications.

Many mature models have been proposed by psychologists to describe the spectrum of
personalities, such as Eysenck’s three-factor model [35] and the Five-Factor model [25]. In this paper,
we choose the famous Five-Factor personality model, which is also known as the OCEAN model,
to characterize the personality traits of autonomous agents. This model categorizes personality into
five orthogonal factors based on a factor analysis of user studies in which participants use common
language adjectives to describe the behavior of people. The five factors have been defined as Openness,
Conscientiousness, Extraversion, Agreeableness, and Neuroticism [36]. These factors are explained
as follows:

• Openness reflects the degree of curiosity and creativity and preferences for novelty and variety.
• Conscientiousness describes the level of organization and care exhibited in collective activities.
• Extraversion is related to the degree of energy, sociability, and outgoingness.
• Agreeableness is a tendency to exhibit compassion and cooperation rather than suspicion and

antagonism towards others.
• Neuroticism is the tendency to experience unpleasant emotions easily, such as anger,

anxiety, depression, or vulnerability, and is the opposite of emotional stability.

To satisfy the goal of generating realistic and heterogeneous crowd behavior, we must model all
agents with either salient characteristics or non-characteristics. Each factor of the OCEAN model is
bipolar and consists of several traits [37]. We divide each factor into three types, namely, negative,
neutral, and positive types, and describe them via descriptive adjectives. The details of the personality
factors in our study are given in Table 1, where −, =, and + mean negative, neutral and positive.

Table 1. Personality factors—Hierarchical types—Descriptions of characteristic.

Factor Type Characteristic

Openness
− cautious, narrow, conservative
= occasional curiosity, moderate creativity
+ curious, inventive, explorer

Conscientiousness
− careless, rude, changeable
= spontaneous, reasonable order
+ persistent, organized, dependable

Extraversion
− shy, withdrawn, introvert
= neutral, self-conscious
+ social, energetic, outgoing

Agreeableness
− competitive, negative, harsh
= somewhat gentle, moderately tolerant
+ cooperative, compassionate, friendly

Neuroticism
− calm, secure, confident
= occasional anxiety, basically stable
+ sensitive, fearful, nervous

This model describes the personality characteristics using a set of five factors rather than separate
factors. Therefore, we use a five-dimension vector to model an agent’s personality P:

P = (V(O), V(C), V(E), V(A), V(N)) (1)

V(i) ∈ [−100, 100], i ∈ {O, C, E, A, N}

where O, C, E, A, and N represent Openness, Conscientiousness, Extroversion, Agreeableness,
and Neuroticism, respectively. The default personality of agents is configured with P = (0, 0, 0, 0, 0).
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3.3. Decision Preferences

Our main goal is to generate realistic and natural pedestrian dynamic behavior by simulating
human cognitive ability with uncertainty and imprecision in movement, and the critical step is
determining the method of describing the subjective decision-making of pedestrians. We consider
that the parameters representing the influence factors of the decision must satisfy the following
requirements:

• The content of these parameters can be associated with the perceptual information obtained from
the environment;

• The personality of an individual has a significant impact on the range of these parameters;
• These parameters can directly reflect the differences in decision-making between pedestrians.

To meet the above requirements, we present the concept of decision preferences to represent the
intrinsic control factors of decision-making. In this paper, we choose five parameters—NeighborDist,
MaxNeighbors, TimeHorizon, Radius, and PrefVelocity—as the decision preferences based on the RVO2
library. The RVO2 library provides an easy-to-use implementation of the optimal reciprocal collision
avoidance (ORCA) formulation [38] for multi-agent simulations. Recently, many multi-agent-based
approaches have used these or similar parameters to calculate the locomotion of agents in pedestrian
simulation scenarios. These parameters are described below.

• NeighborDist is the maximal distance of other agents that the agent considers during
path-planning. Here, we use this parameter to represent the spatial scope that the agent must
consider when making decisions.

• MaxNeighbors is the maximum number of neighbours affecting the steering behavior of an agent.
These neighbours are selected by the rule of nearest in spatial distance. The mutual interactions
between agents are an important aspect of the simulation in this study. We use MaxNeighbors to
describe whether the movement of an agent is susceptible to other agents.

• TimeHorizon is the minimal amount of time for which the simulated agent velocities are safe with
respect to other agents and obstacles. This parameter is used to describe the planning horizon in
the path-planning process. Larger TimeHorizon values correspond to greater foresight of the agent.

• Radius is the personal space maintained by the agent to avoid collisions in motion. Agents attempt
to preserve this space when other agents are around. In normal circumstances, the agent also
tends to wait for available personal space before moving.

• PrefVelocity is the preferred velocity of the agent that is used if no other agents or obstacles are
present. We use this parameter to express the expectation of the pedestrian to achieve the goal.
Different individuals may have different velocities when faced with the same situation.

Guy et al. [11] studied the mapping from simulation parameters to the perceived behavior of agents,
and they obtained a range of effective parameter values via a data analysis. In this paper, we use their
results as empirical data to define the range of the decision preferences. The range and default values
of these parameters are shown in Table 2.

Table 2. Range of the decision preferences and their default values.

Parameters
Value

Unit
Min Max Default

NeighborDist 3 30 15 m
MaxNeighbors 1 100 10 (n/a)
TimeHorizon 1 30 10 s

Radius 0.3 2.0 1.0 m
PrefVelocity 1.2 2.2 1.45 m/s
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3.4. Fuzzy Inference System

In most decision-making processes, the capacity for addressing uncertainty and imprecision is
a key issue and influences the quality of the decisions. The decision preferences reflect the cognitive
ability of an individual with subjective differences. Precisely determining the values of these parameters
is difficult because imprecise concepts are attributes of human cognitive abilities. For example,
pedestrians are frequently described as attempting to move at a ‘fast’ speed rather than at ‘2 m/s’.
In addition, the OCEAN personality model introduced in Section 3.2 is defined based on linguistic
variables. Compared with the traditional methods [10,11], the mapping relationships with uncertainty
and imprecision between the personality traits and the decision preferences can be easily determined.

In this paper, we incorporate a fuzzy logic system into the multi-agent simulation framework to
handle the imprecise and uncertain issues of cognitive abilities on pedestrian dynamics. The fuzzy
inference process includes four parts as follows:

• Under fuzzification, a crisp value of input variables can be transformed into a fuzzy value with
membership degree by their membership functions;

• A rule base is the collection of the domain expert knowledge, and it is usually expressed as a set
of ‘IF-THEN’ rules that are used to capture the relationship between inputs and outputs;

• During fuzzy inference, various fuzzy logic operations are used, and all fuzzy rules are triggered
and combined to acquire a fuzzy consequence for each output variable;

• Under defuzzification, each fuzzy consequence must be transformed into a crisp value before the
results can be used in simulation.

The structure of the proposed fuzzy logic system is shown in Figure 2, and more details are
presented in the following section.

 

Figure 2. Structure of the proposed fuzzy logic system.

3.4.1. Fuzzy Membership Functions

In a fuzzy logic system, fuzzy sets and their membership functions should be defined for each
input and output. Let U represent the universe of discourse, with elements of U denoted by x. A set
A is a fuzzy subset of U. The degree to which an element x belongs to set A, which is a real number
between 0 and 1, is called the membership value A(x) in the fuzzy set A. The meaning of a fuzzy set
A is characterized by a membership function μA that maps elements of a universe of discourse U to
their corresponding membership values A(x):

A(x) = μA(x) ∈ [0, 1], x ∈ U. (2)

The fuzzy membership function μ can be represented by a variety of shapes, such as triangles
and trapezoids, depending on how the expert relates different domain values to belief values.

In our proposed fuzzy logic-based approach, we consider each of the personality factors and
decision preferences as linguistic variables. The inputs are the OCEAN personality factors Openness,
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Conscientiousness, Extraversion, Agreeableness, and Neuroticism. The outputs are the decision preferences
NeighborDist, MaxNeighbors, TimeHorizon, Radius, and PrefVelocity. According to the description of the
personality factors in Section 3.2 and the decision preferences in Section 3.3, we determine fuzzy sets
of inputs and outputs as shown in Table 3, and their corresponding fuzzy membership functions are
shown in Figure 3.

Table 3. Fuzzy attributes of inputs and outputs.

Name Universe of Discourse Fuzzy Sets Membership Function

Inputs Each factor of OCEAN [−100, 100] Negative Trapezoidal
Neutral Trapezoidal
Positive Trapezoidal

Outputs NeighborDist [3, 30] Near Trapezoidal
Moderate Trapezoidal

Far Trapezoidal
MaxNeighbors [1, 100] Small Trapezoidal

Medium Trapezoidal
Large Trapezoidal

TimeHorizon [1, 30] Short Trapezoidal
Moderate Triangular

Long Trapezoidal
Radius [0.3, 2.0] Small Trapezoidal

Medium Triangular
Large Trapezoidal

PrefVelocity [1.2, 2.2] Slow Triangular
Moderate Triangular

Fast Trapezoidal

Figure 3. Membership function definition for the input and output variables: (a) each factor of
the OCEAN personality model; (b) NeighborDist; (c) MaxNeighbors; (d) TimeHorizon; (e) Radius;
(f) PrefVelocity.
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3.4.2. Fuzzy Rules

As the most widely applied reasoning pattern, a set of ‘IF-THEN’ rules are used by the fuzzy
rule-based method to obtain the relationship between inputs and outputs. The antecedent of a
fuzzy rule is a logical combination of fuzzy propositions, which is usually in the form of ‘x is A’.
The consequence of a fuzzy rule is calculated by the degree to which the antecedent is satisfied.
In general, fuzzy rules are formulated by the domain expert based on empirical knowledge, and they
can be gradually improved with further use. An example of the ‘IF-THEN’ fuzzy rule is as follows:

IF (Extraversion is Positive) AND (Agreeableness is Positive) THEN Radius is small.
The accuracy of a fuzzy inference system is affected by the number of linguistic fuzzy sets that

cover the universe of discourse. However, the size of fuzzy rules grows exponentially with the number
of input fuzzy sets of the antecedent. To obtain a trade-off between the computational complexity and
accuracy, we select two personality factors as the major impact factors for each decision parameter.
In this study, we construct a rule base containing fuzzy rules on the relationship between the OCEAN
personality factors and the decision preferences based on previous studies [10,11]. The details are
summarized as follows:

• NeighborDist is related to Openness and Conscientiousness. Pedestrians with positive Openness are
more curious about their surroundings; therefore, they explore a larger scope in the path-planning
process. Pedestrians who have a positive Conscientiousness trait notice individuals in the distance
because they are predictable and self-disciplined.

• MaxNeighbors is related to Openness and Neuroticism. Pedestrians with positive Openness are likely
to observe the behavior of more people around them. An important facet of the Neuroticism factor
is sensitivity, with sensitive individuals more easily affected by others.

• TimeHorizon is related to Conscientiousness and Agreeableness. To maintain the orderly pedestrian
flow, individuals with positive Conscientiousness tend to be prepared for upcoming events in
advance. The Agreeableness factor describes the cooperative tendency of people. Pedestrians with
a stronger cooperative tendency will respond earlier to avoid a collision during path-planning.

• Radius is related to Extraversion and Agreeableness. Individuals with positive Extraversion
are outgoing and sociable and maintain a small territory in which they feel comfortable.
Friendly individuals who have a positive Agreeableness trait usually do not react harshly when
others are too close.

• PrefVelocity is related to Extraversion and Neuroticism. An individual’s energy level is the key factor
that determines their preferred velocity. In generally, extroverts tend to be more energetic and thus
have a fast PrefVelocity, whereas introverts are more lethargic and present opposite characteristics
to that of extroverts. Pedestrians with positive Neuroticism are prone to be anxious and tense
when congestion occurs; therefore, they try to pass at a fast speed.

Because the antecedent has two input variables and each personality factor has three fuzzy sets,
a total of 45 (or 5× 32) ‘IF-THEN’ rules are established to deduce the decision preferences of pedestrian
dynamical behavior. In Table 4, we report several sample fuzzy rules.
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Table 4. ‘IF-THEN’ fuzzy rules for the decision preferences.

Rule Number
IF-THEN Statements

Antecedent Consequence

R1 IF (O is Negative) AND (C is Negative) THEN NeighborDist is Near
R2 IF (O is Negative) AND (C is Neutral) THEN NeighborDist is Near
R3 IF (O is Negative) AND (C is Positive) THEN NeighborDist is Moderate
R4 IF (O is Neutral) AND (C is Negative) THEN NeighborDist is Moderate
R5 IF (O is Neutral) AND (C is Neutral) THEN NeighborDist is Moderate
R6 IF (O is Neutral) AND (C is Positive) THEN NeighborDist is Far
R7 IF (O is Positive) AND (C is Negative) THEN NeighborDist is Moderate
R8 IF (O is Positive) AND (C is Neutral) THEN NeighborDist is Far
R9 IF (O is Positive) AND (C is Positive) THEN NeighborDist is Far
. . . . . . . . .
R44 IF (E is Positive) AND (N is Neutral) THEN PrefVelocity is Fast
R45 IF (E is Positive) AND (N is Positive) THEN PrefVelocity is Fast

3.4.3. Inference Method

Three types of fuzzy inference methods are available: Mamdani, Larsen, and Takagi–Sugeno. In this
paper, the Mamdani inference method [39], which includes aggregation, activation, and accumulation steps,
is selected to calculate the fuzzy output of each decision parameter based on the Sup-Min composition.

The fuzzy rules proposed in Section 3.4.2 are a multidimensional multiple fuzzy reasoning model.
The general format is as follows:

A11, A12, · · · , A1n → B1

A21, A22, · · · , A2n → B2
...

... · · ·
...

...
Am1, Am2, · · · , Amn → Bm

A∗1, A∗2, · · · , A∗n
B∗

(3)

where Aij and A∗j are the fuzzy subsets of Uj; Aij represents the jth input of the ith fuzzy rule in a
fuzzy inference model; A∗j represents the jth input of an actual antecedent; Bi and B∗ are the fuzzy
subsets of V; Bi represents the output of the ith rule; B∗ represents the composite output of an actual
antecedent (i = 1, 2, · · · , m; j = 1, 2, · · · , n); m is the number of fuzzy rules for a fuzzy inference model;
and n is the number of antecedent inputs of an ‘IF-THEN’ fuzzy rule. In this study, V and Uj are the
universe of discourse of one decision preference and its corresponding personality factor, respectively.

The inference process is written as follows:

A1(x) = min{A11(x1), A12(x2), · · · , A1n(xn)}
A2(x) = min{A21(x1), A22(x2), · · · , A2n(xn)}

...
Am(x) = min{Am1(x1), Am2(x2), · · · , Amn(xn)}

A∗(x) = min
{

A∗1(x1), A∗2(x2), · · · , A∗n(xn)
}

B∗1 (y) = ∨
x∈U

[A∗(x) ∧ A1(x) ∧ B1(y)]

B∗2 (y) = ∨
x∈U

[A∗(x) ∧ A2(x) ∧ B2(y)]
...

B∗m(y) = ∨
x∈U

[A∗(x) ∧ Am(x) ∧ Bm(y)]

B∗(y) = B∗1 (y) ∨ B∗2 (y) ∨ · · · ∨ B∗m(y)

(4)
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where xj (j = 1, 2, · · · , n) is the input value of the personality factor, and B∗i (y) (i = 1, 2, · · · , m) is
the intermediate result of each ‘IF-THEN’ rule, with m = 9 and n = 2. The operators ∧ and ∨ take
the minimum and maximum values of the membership functions, respectively; B∗(y) represents a
composite fuzzy set of output decision preferences.

3.4.4. Defuzzification Method

Because the consequences of the fuzzy rule set are also fuzzy subsets, these subsets must be
transformed into crisp values through the defuzzification process. For defuzzification, several methods
are available, including the mean of the maxima, average of the maxima, and centroid. Because of the
accuracy of these methods, the most frequently used centroid method is adopted in this paper. The
formula is given as follows:

y f inal =

∫
V

B∗(y)ydy∫
V

B∗(y)dy
(5)

where y f inal is a final output of the fuzzy inference system, i.e., each one of the decision preferences.
In order to depict the relationship between inputs of personality factors toward the output of

decision preferences, we show the surface plots of input and output of the fuzzy simulation in Figure 4
generated in Matlab.

 

Figure 4. Surface plots of input and output of the fuzzy simulation (a) NeighborDist, (b) MaxNeighbors,
(c) TimeHorizon, (d) Radius, and (e) PrefVelocity.
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4. Simulation and Validation

To test the proposed pedestrian model, we have developed a Visual C++ application based on
publicly available Open GL and RVO2 [40] libraries to perform a variety of pedestrian simulation
scenarios. All experiments are executed in real time by a PC (Dell OptiPlex 9020) with an Intel Core 3.6
GHz i7-4790 processor, an 8 GB memory and an AMD Radeon R5 240 graphics card with 1 GB memory.
In this paper, we focus on the modelling and prediction of heterogeneous pedestrian dynamical
behavior under normal or non-panic situations. Therefore, we simulated pedestrians with various
personalities in several typical scenarios, including a single-exit room, a hallway with obstacles, and a
narrowing passage. Furthermore, the effectiveness of our proposed model is validated by a user study.
Although the distribution of personality traits in the population is closer to the normal distribution,
we artificially set the distributions in our experiments, in order to obviously demonstrate different
behaviors between heterogeneous pedestrians with various personalities.

4.1. Simulation of Heterogeneous Pedestrians

Figure 5 shows the motion trajectories taken by the highlighted agents in a single-exit
room scenario. From left to right, the highlighted agents represent the pedestrians with positive
(i.e., V(i) = 80) Openness (blue), Conscientiousness (green), Extraversion (red), Agreeableness (orange),
and Neuroticism (black) traits. The non-highlighted agents (grey) are given the default personality.
The blue agent tends to choose more daring routes and takes a wavy trajectory. The green agent takes
a fairly direct trajectory and moves in an orderly way behind the other agents. The red agent moves
quickly and often tries to weave through others in the crowd. The orange agent can slightly adjust the
direction of movement to avoid collision with the grey agents and thus takes a less direct trajectory.
The black agent also moves quickly but takes a tortuous route when congestion occurs near the exit.

 

Figure 5. Motion trajectories of agents with default personality factors, although only one factor
is positive. From left to right, the traits are (a) Openness, (b) Conscientiousness, (c) Extraversion,
(d) Agreeableness, and (e) Neuroticism. All trajectories are displayed for an equal length of time.

With the same configuration above, Figure 6 demonstrates the different trajectories of five
agents with distinct personality traits in the hallway with obstacles scenario. The agent with a
positive Extraversion or Neuroticism trait can clearly be distinguished from the crowd. The agent
with a positive Extraversion trait can pass through the crowd at a faster speed than others. The agent
with a positive Neuroticism trait is easily deflected by the movement of the other agents. As for the
remaining types, they take relatively straight trajectories and have no obvious differences under a
non-congested situation.
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Figure 6. Comparison of motion trajectories among five agents with different personality types
in the hallway with obstacles scenario. The agents with positive Openness (blue), Conscientiousness
(green), Extraversion (red), Agreeableness (orange), and Neuroticism (black) traits are highlighted.
The non-highlighted agents (grey) have the default personality traits.

In addition to comparing motion trajectories among agents with five personality traits, we have
simulated the behavior of agents with a different level of each personality trait. Here, agents are
simulated with a positive (i.e., V(i) = 80) or negative (i.e., V(i) = −80) Extraversion trait in the
narrowing passage scenario as an example. Figure 7 shows the results at the same time from two
simulations in which the red agents are assigned a positive Extraversion trait on the left and a negative
Extraversion trait on the right. Agents with a positive Extraversion trait tend to move quicker and closer
to others than those with the negative trait. Furthermore, more agents simultaneously pass through
the exit on the left. Agents with a positive Extraversion trait exit more efficiently in the narrowing
passage than those with the negative trait.

 

Figure 7. Comparison between (a) red agents with positive Extraversion and (b) red agents with
negative Extraversion in the narrowing passage scenario for an equal length of time.

Figure 8 shows a comparison between homogeneous and heterogeneous pedestrian simulations
in a single-exit room scenario. In the left simulation, all agents have the default personality. In the right
simulation, the agents have a variety of personalities that are randomly generated. At the beginning
of the two simulations, the agents are randomly distributed and have no significant differences as
shown in Figure 8a. When the congestion phenomenon begins to occur (Figure 8b), the heterogeneous
agents display various behaviors because of their different personality traits. For example, most of the
agents with a positive Extraversion trait (red) walk at the front of the crowd and try to quickly exit by
weaving through others. We can see from Figure 8c that the results of the homogeneous simulation
are symmetrical and artificial when the congestion becomes serious. In contrast, the heterogeneous
simulation is more reasonable and natural. In the final stage of the heterogeneous simulation as
shown in Figure 8d, the agents with a positive Conscientiousness trait (green) are the majority of
individuals who have not yet left the room. This result is consistent with the characteristics of
self-disciplined pedestrians.
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Figure 8. Comparison between homogeneous and heterogeneous pedestrians grouped by
200 individuals in a single-exit room scenario. The left panels show homogeneous pedestrians, and the
right panels show heterogeneous pedestrians.

4.2. Effect of Different Personalities During Evacuation

To reveal how holistic crowd behavior is influenced by different personalities, we have simulated
a pedestrian evacuation in a single-exit room by changing the percentage of pedestrians with a
certain personality trait. Similar to the scenario described above, the scenario is a square room sized
20 m × 20 m with a 1.5 m wide exit in the middle of the wall. The total number of agents is 200, and their
initial locations and directions are given at random in the room. Here, we choose the following five
types as an illustrative example: including agents with positive Openness (O+), Conscientiousness (C+),
Extraversion (E+), Agreeableness (A+), and Neuroticism (N+). Except for these agent types, the other
agents all have the default personality.

In Figure 9, we plot the evacuation time versus the percentage of a certain type of agent in the
crowd. The blue line indicates that the proportion of O+ agents in the crowd has little effect on the total
time of evacuation, and the green and orange lines show that with more C+ or A+ agents in the crowd,
the evacuation can be more effective. The evacuation time decreases with an increasing proportion
of E+ agents in the crowd when the proportion is not very large. Nevertheless, the evacuation time
increases if the proportion is larger than approximately 60%. This result is related to the limitation
of exit width and the occurrence of congestion, thus reflecting the well-known ‘faster-is-slower’
phenomenon. The black line shows that a greater proportion of N+ agents leads to a significant
increase in evacuation time.
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Figure 9. Evacuation time versus the percentage of certain types of agents in the crowd.

4.3. Validation of the Proposed Model

Evaluating the simulation results for pedestrian dynamical behavior influenced by human
personality is a challenge. Here, the user study method is used to validate the proposed model
because the real data are difficult to obtain and identify. This method has been proven feasible and
effective by previous works [5,10,11]. A user study was completed by 72 participants (33 females and
39 males, ages 16 to 51) who had no previous knowledge of the experiment. Moreover, we repeated
the same test three times to all participants, using new video examples for each time, to avoid testing
them on best-case simulation scenarios only. Before the evaluation, participants were given a brief
explanation of each factor of the OCEAN personality model. We designed a user study consisting of
two sections (the first contains 5 questions and the second contains 10 questions).

The first section was designed to evaluate how well the different levels of each trait of the OCEAN
model could be reproduced by our model. For each question, we created a pair of videos that simulate
the movement of agents with a certain trait in the narrowing passage scenario. In each pair of videos,
the simulations are generated by the highlighted agents with the positive and negative types of the
trait. After watching the videos, the participants were asked to choose which simulation displayed
the positive type trait in question. Figure 10 shows that the success rate for distinguishing between
different levels of personality traits is high, especially for Neuroticism and Extraversion, which are
95.8% and 94.4% respectively, and the rates for Agreeableness, Conscientiousness and Openness are
81.9%, 79.2% and 73.6%, respectively. To test the statistical significance of these results, we use a
two-tailed binomial test to calculate the statistical p-values. The results indicate that the participants
could correctly distinguish the positive and negative traits at a statistically significant rate (p < 0.05).

Figure 10. Success rate of distinguishing between the different levels of personality traits.
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The second section was intended to reflect the degree to which the five personality traits could be
distinguished in the simulation by our model. All five positive traits have been compared with
each other; thus, 10 videos presenting evacuation behavior in a single-exit room scenario were
created. In each video, two highlighted groups of agents were assigned different personality traits
(e.g., O+ and C+). In a corresponding question, the participants were asked to select which group was
O+ and which was C+. The results are summarized in Table 5, which shows that most of the OCEAN
personality traits could be correctly distinguished by the participants at a statistically significant rate
(p < 0.05). Among these traits, the E+ and N+ traits were easily distinguished from the other traits.
However, the participants had difficulty distinguishing between the C+ and A+ traits because of their
similar characteristics in movement.

Table 5. Accuracy and p-values for distinguishing traits.

Distinguishing Traits Accuracy p-Value

O+ and C+ 72.2% 2× 10−4

O+ and E+ 78.8% 2× 10−6

O+ and A+ 76.4% 8× 10−6

O+ and N+ 87.5% 4× 10−11

C+ and E+ 91.7% 8× 10−14

C+ and A+ 66.7% 6× 10−3

C+ and N+ 95.8% 2× 10−15

E+ and A+ 79.2% 7× 10−7

E+ and N+ 84.7% 2× 10−9

A+ and N+ 95.8% 2× 10−15

5. Conclusions

In this paper, we propose a new pedestrian model that incorporates fuzzy logic theory into a
multi-agent system to address cognitive behavior that introduces uncertainty and imprecision during
decision-making. This model can describe the imprecise subjective decisions of a pedestrian while
steering. Subjective decisions vary for pedestrians confronted with similar situations. To simulate
heterogeneous pedestrians, the OCEAN personality model is introduced to model the psychological
characteristics of a pedestrian, and it can generate the different decision preferences that represent
the intrinsic control factors of decision-making. The fuzzy relationships between personality traits
and decision preferences are determined by a fuzzy inference system. Finally, a variety of simulations
and validation experiments are implemented in our developed application. The experimental results
show that the proposed model can exhibit more reasonable and heterogeneous behavior in various
scenarios and improve the credibility of the simulation; thus, it can be used to analyse how different
personalities influence the crowd phenomena.

In the future, we intend to consider the aspect of physiological characteristics when simulating the
heterogeneous pedestrian behaviors because pedestrian decision-making in movement is always
subject to physiological conditions. Accordingly, the simulation effect of pedestrian dynamical
behavior can be improved by combining psychological characteristics with physiological characteristics.
Moreover, we intend to study pedestrian behavior in abnormal or unusual situations by adding
an emotion model for the agents because emergent behavior can be profoundly influenced by
instantaneous emotions.
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