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Diversity of Coral-Associated Fauna: An Urgent Call
for Research

Simone Montano 1,2
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2 MaRHE Center (Marine Research and High Education Center), Magoodhoo Island,
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Tropical coral reefs are considered the “rainforest of the sea” and are among the marine
ecosystems with the highest biodiversity [1]. These “rainforests” are typically composed
of assemblages of anthozoans, sponges, bryozoans, and ascidians, forming the three-
dimensional matrix which provides architectural complexity for a myriad of organisms [2].
A large proportion of this biodiversity is represented by tiny invertebrates, usually known
as cryptofauna, that are often overlooked because of their size, a lack of commercial interest,
charisma, and/or taxonomic expertise [3–5]. Despite the fact that nearly a thousand
invertebrates are known to depend to some extent on corals for habitat, food, shelter,
or settlement cues [6], it is still to be elucidated how many species exhibit obligatory
or facultative symbiotic relationships with all other coral reef framework-forming taxa,
keeping the coral reefs a mystery in terms of their diversity and functioning.

Unfortunately, increasing evidence suggests that most coral reefs will undergo compo-
sitional, structural, and functional changes in response to local stressors, such as overfishing,
eutrophication, and diseases [7], as well as in response to global stressors such as ocean
acidification and climate-induced coral bleaching, impacting the world’s coral reefs and
the communities that depend upon them [8]. Indeed, in the future different environmental
conditions not only will push some species towards and beyond their physiological limits,
but will also modify the network of interactions [9]. Since species are highly interconnected,
co-extinction events will have largely unknown ecological consequences as cryptic com-
munities, with largely understudied ecological functions, may disappear accordingly [9].
Thus, it is evident that only by understanding the highly multifaceted interactions amongst
the different coral reef organisms will we gain insights on how, where, and why coral reefs
are changing [10].

In this respect, this Special Issue aims to provide more testimonies of the extreme
diversity of coral-associated fauna, as well as to improve, through different perspectives
and new methodological approaches, the knowledge of marine invertebrate diversity
in general, and that of the coral reef-associated ones in particular. The contributions
published in this volume address specifically a variety of topics including (i) the integrative
taxonomy and genetic diversity of merulinid corals [11] and of crustaceans associated
with pocilloporid corals [12], (ii) the diversity of coral reef fishes in the Western Indian
Ocean [13], (iii) the spatial distribution, host range, and prevalence of associations involving
sponges [14], alcyonaceans [15], and corals [16], and (iv) the possible negative impacts that
some coral-associated invertebrates can have on the health of their hosts [17–21].

Coral reefs are globally recognized as a major ecosystem in need of conservation [22],
which might require the inclusion in future studies of the so far largely ignored hidden
or cryptic communities. These communities and their ecological functions are, in fact,
markedly different than the visible or exposed ones [23]. Monitoring of coral reef benthos
alone is, however, not enough to understand the effects of external drivers on the resilience
of coral reefs and their sensitivity to community changes.

Diversity 2022, 14, 765. https://doi.org/10.3390/d14090765 https://www.mdpi.com/journal/diversity1
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Nowadays, it seems appropriate to move forward in adopting new strategies, in
addition to multidisciplinary taxonomic studies, to study benthic communities, since this
cryptobenthic fauna appears to play a relevant role in the biodiversity and conditions of
coral communities. Thus, I advocate for the urgent development and use of emerging
new technologies to facilitate and increase the repeatability of coral reef monitoring efforts,
as well as to unravel the drivers and feedback mechanisms behind benthic community
changes [24]. The systematic collection of data on the coral-associated fauna during free-
living biodiversity surveys should strongly be encouraged to increase the knowledge about
the diversity of coral-associated fauna, to discover its ecological roles, and to depict its
functional traits within coral reefs ecosystems. This process may provide baselines of such
hidden biodiversity, identify rare symbiotic species, and it could be used to monitor future
changes in symbiotic assemblages. Furthermore, given the paucity of information on the
natural history of many symbiont taxa, this approach would also potentially allow us to
classify certain symbiont species and help raise awareness of their current endangerment
status [5]. Indeed, the easiest and most cost-effective way to protect coral-associated
invertebrates will usually be by conserving them alongside their hosts. This represents
a paradigm shift from preserving single taxa to protecting symbiont assemblages and
micro-ecosystems. However, without in-depth knowledge regarding their hosts range, rate
of hosts shift, and symbionts’ vulnerability, the level of endangerment of the symbionts
may not reflect their real risk of extinction. In addition, novel threats (e.g., diseases
and plastic pollution) and their interactions need to be taken into account as they might
also play a role in benthic community changes [25]. Thus, the assessment of the health
condition of coral-associated fauna should be considered a priority since it may help in
understanding the resilience capacity of their host. Moreover, more accurate data on host
specificity is strongly necessary for the transition to a new era of solution-oriented science
with the potential to prolong the survival of coral populations [26]. In the context of the
emerging field of restoration ecology, host translocation and active conservation efforts
may threaten the survival of coral-associated species, and of their hosts. Thus, explicit
actions to restore coral-associated fauna alongside hosts should be considered as a part of
coral restoration planning. Hence, coral reef restoration monitoring plans that allow us to
assess the effectiveness of the management approach for both hosts and coral-associated
fauna are also needed [27].

In conclusion, as the restructuring of tropical coral reef communities towards different
and, perhaps, emergent non-hard-coral-dominated communities becomes inevitable in
many locations [10], a more complete overview of host-symbiont associations, the degree
of specialization and codependence of these symbiotic relationships, as well as the diver-
sity, distribution, and functional roles of coral and non-coral associated invertebrates is
paramount to better understand the dynamics, ecological functions, and societal impacts of
these communities.
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Abstract: Coral reefs are known to be among the most biodiverse marine ecosystems and one of the
richest in terms of associations and species interactions, especially those involving invertebrates such
as corals and sponges. Despite that, our knowledge about cryptic fauna and their ecological role
remains remarkably scarce. This study aimed to address this gap by defining for the first time the
spatial ecology of the association between the epibiont hydrozoan Nemalecium lighti and the Porifera
community of shallow coral reef systems at Bonaire. In particular, the host range, prevalence, and
distribution of the association were examined in relation to different sites, depths, and dimensions of
the sponge hosts. We report Nemalecium lighti to be in association with 9 out of 16 genera of sponges
encountered and 15 out of 16 of the dive sites examined. The prevalence of the hydroid–sponge
association in Bonaire reef was 6.55%, with a maximum value of over 30%. This hydrozoan has been
found to be a generalist symbiont, displaying a strong preference for sponges of the genus Aplysina,
with no significant preference in relation to depth. On the contrary, the size of the host appeared to
influence the prevalence of association, with large tubular sponges found to be the preferred host.
Although further studies are needed to better understand the biological and ecological reason for
these results, this study improved our knowledge of Bonaire’s coral reef cryptofauna diversity and
its interspecific associations.

Keywords: coral reef; cryptofauna; sponges; hydrozoa; Aplysina; prevalence; symbiosis

1. Introduction

Coral reefs are recognized as one of the most important marine ecosystems on the
planet, since they host the highest biodiversity among marine environments [1]. The
complex topography created by the living organisms, such as cnidarians and sponges,
provides a three-dimensional structure that supports an incredible diversity of organisms,
well suited for species interactions and associations [2]. Unfortunately, this fundamental
environment is experiencing severe degradation due to the impacts directly related to
climate change and anthropogenic activities [3]. As these ecosystems disappear, scientists
find themselves racing against time to increase our knowledge of cryptofauna ecological
interactions and their potential role in the survival and resilience of the reef ecosystem [4].
For example, hermatypic corals have evolved crucial microbial symbiotic relationships in
order to maintain their health status, improve energy production, cope with environmental
changes, complete nutrient recycling, have a defense mechanism for predators, or as a

Diversity 2022, 14, 607. https://doi.org/10.3390/d14080607 https://www.mdpi.com/journal/diversity5



Diversity 2022, 14, 607

protection from potential pathogen agents and coral feeding organisms [5–8]. Addition-
ally, stony corals have also developed a symbiotic association with several distinct phyla
that are involved such as Cnidaria, Porifera, Echinodermata, Annelida, Arthropoda, and
Mollusca [9].

Hydrozoans are an example of a group of organisms that has been able to develop
a plethora of symbiotic relationships with several marine organisms [10,11], including
scleractinians and sponges [12–14]. Currently, there are records for a total of 20 hydrozoan
families and 50 genera involved in symbiotic associations with different animals world-
wide [15]. Sponges emerged as a suitable host due to the constant water filtration, which
results in the continuous presence of nutrients that are available to its symbionts [15,16].
In particular, there are six families of hydrozoans that are generally found in relation to
sponges (Cytaeididae, Corynidae, Cladonematidae, Tubulariidae, Sphaerocorynidae, and
Campanulariidae) [16]. Worldwide, a total of 26 species of hydrozoans have been iden-
tified as epibionts of sponges; however, little information is known about most of these
associations [16,17].

Bonaire coral reef systems have recently been recognized as one of the most biodiverse,
robust, resilient, and healthy ecosystems in the South Caribbean region [18]. In this context,
the island serves as an interesting hotspot to study hydrozoan–sponge associations, since
sponges are one of the dominant benthic groups on the reef, second only to corals [19].
Recently, several studies have been conducted identifying novel symbiotic relationships
between the reef organisms, such as the zoantharian Parazoanthus axinellae epibiotic on the
sponge of the genus Axinella [16], Pteroclava krempfi with alcyonaceans [20], the sponge
Agelas conifera and the agariciid corals Agaricia agaricites and Helioseris cucullata [21], the
coral-gall crab Opecarcinus hypostegus and the agariciid Agaricia undata [22], crabs of the
genus Platypodiella and zoantharians of the genus Palythoa with the sponge Niphates digitalis [23],
sponges, scleractinians, ascidians and zoantharians with polychaetes Spirobranchus [24,25],
and the Stylaster–Millepora association first reported in Bonaire [26]. Nevertheless, coral
reef-associated fauna remain strongly understudied, and the total number of species of
micro- and macro-invertebrates involved in association with other reef organisms in this
region remains largely unknown, despite the potential benefit that these cryptic associations
may have on the survival and resilience of the coral reef ecosystems [4,8]. One of these
understudied organisms is Nemalecium lighti (Hargitt, 1924), a common thecate hydroid
species belonging to the Haleciidae family that can be found all year round in all tropical
waters, constituting one of the most abundant hydroid species [27,28]. N. lighti can be
usually found on reef rock substrate, on corals, and on sponge surfaces, where it can
better exploit the presence of planktonic particles to feed in the water column [29,30]. Its
presence seems to have no influence on the functionality of the feeding strategy of the
sponge host, as already demonstrated for other hydrozoans species [16,30], but see [31].
Therefore the impact of these associations on the sponges appears negligible, or even
beneficial in some cases, as it may act as protection from predators thanks to the hydrozoan
nematocysts [30,32].

In light of this, there are few studies that have examined the spatial ecology of crypto
invertebrates associated with sponges [33,34]. Therefore, the goal of this study was to
investigate and characterize the association of Nemalecium lighti with sponges in the coral
reefs of Bonaire Island, with particular attention focused on determining the host range,
prevalence, and distribution of this association. The results obtained provide a foundation
for additional studies aimed at bridging the gap in our understanding concerning the
cryptofauna diversity and its fundamental ecological role in coral reef ecosystems.

2. Materials and Methods

Underwater surveys were conducted between May and August 2021 to investigate
the prevalence and distribution of Nemalecium lighti–sponge associations (Figure 1) in the
reef system around Bonaire Island (12◦12′ N, 68◦35′ W), an area which is entirely protected
since 1979 as part of the Bonaire National Marine Park (BNMP) [18].
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Figure 1. Two examples of the association between demosponges and Nemalecium lighti in Bonaire
reef system: N. lighti associated with (a) Scopalina ruetzleri and (b) Ircinia sp.

Along the west coast of the island, 16 different sites were chosen randomly based on
their SCUBA shore-diving accessibility (Figure 2 and Table 1).

12.3° N

12.2° N

12.1° N

 68.3° W 68.3° W

Figure 2. Map of Bonaire, Dutch Caribbean (12◦12′ N, 68◦35′ W) highlighting the dive sites investi-
gated for sponges–Nemalecium lighti association in this study. Map made from OpenStreetMap loaded
into QGIS.
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Table 1. Coordinates, maximum and mean value of prevalence of association between sponges and
Nemalecium lighti for each of the dive sites considered for the analyses in the study area.

N◦ Dive Sites Coordinates Maximum Prevalence (%) Mean Prevalence (% ± SE)

1 Tolo Reef (Tol) 12◦12′92” N; 068◦20′22” W 15.38 4.89 ± 2.68
2 Jeff Davies Memorial (JDM) 12◦12′18” N; 068◦18′50” W 8.33 2.67 ± 1.69
3 Oil Slick Leap (OSL) 12◦12′03” N; 068◦18′51” W 5.55 0.93 ± 0.93
4 Andrea I (AI) 12◦11′29” N; 068◦17′80” W 12.50 2.08 ± 2.08
5 Andrea II (AII) 12◦11′18” N; 068◦17′48” W 13.33 2.22 ± 2.22
6 La Machaca (LM) 12◦10′20” N; 068◦17′22” W 17.86 8.67 ± 2.73
7 Buddy’s Reef (BM) 12◦10′14” N; 068◦17′18” W 16.67 4.01 ± 2.81
8 Bari Reef (BF) 12◦10′04” N; 068◦17′10” W 33.33 20.82 ± 3.56
9 Something Special (SS) 12◦09′70” N; 068◦17′02” W 3.70 2.12 ± 0.70
10 Town Pier (TP) 12◦08′57” N; 068◦16′40” W 2.63 0.44 ± 0.44
11 Punt Viekant (PV) 12◦06′91” N; 068◦17′66” W 0.00 0.00 ± 0.00
12 Alice in Wonderland (AiW) 12◦05′99” N; 068◦17′12” W 22.22 17.59 ± 2.31
13 Salt Pier (SP) 12◦05′01” N; 068◦16′91” W 9.52 4.37 ± 2.01
14 Invisibles (I) 12◦04′65” N; 068◦16′80” W 17.65 2.94 ± 2.94
15 Tori Reef (Tor) 12◦04′25” N; 068◦16′84” W 10.00 1.67 ± 1.67
16 Pink Beach (PB) 12◦03′85” N; 068◦16′90” W 11.11 5.56 ± 1.87

Quantitative analyses were conducted by SCUBA diving, randomly placing three belt
transects of 25 m × 2 m at two different depths for each site (total = 96 transects), resulting in
16 “shallow” stations between a 5–9 m depth and 16 “deep” stations between a 10–15 m depth.

Every sponge individual encountered within our transects, including without the
presence of Nemalecium lighti, was counted. The prevalence was calculated as the number
of sponges associated with N. lighti divided by the total number of sponges counted at that
specific time and place. In addition, the taxon-specific prevalence for each sponge’s genus
was calculated as the number of sponge hosting associations for each genus, divided by
the total number of counted sponges belonging to the same genus, according to Montano
et al. 2016 [20]. All sponges were photographed in situ and were identified at the genus
level using the relevant literature [35]. Sponges were included in the dataset and counted
only when 50% of the individual or more lay within the belt transect area. Furthermore,
the potential relationship between the association and the host size was evaluated through
a comparison of the observed prevalence with that of five sponge size classes (C1: 5–10 cm;
C2: 10–20 cm; C3: 20–30 cm; C4: 40–50 cm; C5: > 50 cm). The size of the sponges was
estimated by placing a tape measure on the side of each specimen.

All the data obtained were tested for normality with Kolmogorov–Smirnov tests. In
case the normal distribution and homogeneity of variance was violated, Kruskal–Wallis
and Mann–Whitney U tests were performed to analyze the mean differences between the
sites, depths, and dimensions of the sponge host. Data are presented as the arithmetic
mean ± standard error unless stated otherwise. All the statistical analysis performed for
this study were conducted using IBM SPSS 27 Software (IBM SPSS 27, New York, NY, USA).

3. Results

In the area investigated, a total of 1755 sponges belonging to the class of Demospon-
giae were counted and classified in 14 families belonging to 16 different genera, with
Scopalina (26.67%), Aplysina (14.30%), Agelas (13.16%), and Aiolochroia (9.46%) emerging as
the more abundant, while the remaining genera only represented under 7% of the sponges
found in the area (Table 2).
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Table 2. Genera of sponges considered for the analyses in the study area with values of relative
abundance, maximum and mean prevalence of association with Nemalecium lighti.

Genus Relative Abundance (%) Maximum Prevalence (%) Mean Prevalence (% ± SE)

Agelas 13.16 7.27 2.70 ± 1.12
Aiolochroia 9.46 8.62 4.09 ± 1.69
Aplysina 14.30 36.17 26.06 ± 4.76

Callyspongia 3.13 0.00 0.00 ± 0.00
Clathria 0.23 0.00 0.00 ± 0.00
Cliona 0.40 25.00 5.00 ± 4.56

Desmapsamma 4.05 8.69 2.74 ± 1.62
Ectyoplasia 3.82 0.00 0.00 ± 0.00
Halisarca 0.17 0.00 0.00 ± 0.00
Iotrochota 4.73 4.00 0.80 ± 0.73

Ircinia 6.38 5.88 2.81 ± 1.01
Monanchora 0.46 0.00 0.00 ± 0.00

Niphates 6.84 0.00 0.00 ± 0.00
Phorbas 0.11 0.00 0.00 ± 0.00

Scopalina 26.67 4.11 1.78 ± 0.76
Verongula 6.09 15.38 6.98 ± 2.34

The genus Scopalina resulted as being the most abundant and prevalent group in
both the shallow and the deep, with values of, respectively, 27.82% and 26.51% (Table 2).
The genus Agelas showed a completely different distribution in relation to depth with a
relative abundance of 5.45% in the shallow stations and 19.34% in the deep ones (Table 2).
A similar trend was observed for Niphates, with an increase of the relative abundance
from 4.66% in the shallow stations to 8.92% in the deep stations. The genera Clathria,
Cliona, Halisarca, Monanchora, and Phorbas were extremely poorly represented in the study
area at both depths, with Halisarca resulting as being the only genus completely absent
in the shallow stations. Moreover, the spatial distribution of sponges between deep and
shallow stations showed different trends for Agelas, Desmapsamma, Ectyoplasia, and Niphates
at the two depths considered for the study, even if they were not statistically significant
(Kruskal–Wallis test, p > 0.05).

Regarding the sponge-hydroid interactions, Nemalecium lighti has been found in asso-
ciation with 9 out of 16 genera of sponges and in 15 out of 16 of the dive sites surveyed.
A total of 115 sponge individuals hosted at least one colony of N. lighti. The prevalence
of the occurrence of the hydroid–sponge association in the Bonaire reef was 6.55%, with a
maximum value of 33.33%. The mean prevalence of the association on the analyzed reef
sites was 5.06 ± 1.91%. Among them, “Bari Reef” (BR), “Alice in Wonderland” (AiW), and
“La Machaca” (LM) showed higher values with, respectively, 20.82 ± 3.56%, 17.59 ± 2.31%,
and 8.67 ± 2.72%, with the others showing less than 6% (Table 1). However, the differences
of prevalence among the tested sites were not statistically significant (Kruskal–Wallis test,
p > 0.05). With regards to the depths considered, the mean prevalence for the deep stations
resulted in being higher compared to the shallow stations with, respectively, 5.86 ± 2.77%
and 4.27 ± 1.91% (Figure 3a), even if the differences between the stations were not statisti-
cally significant both in relation to the site and genera (Mann–Whitney Test, p > 0.05).
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Figure 3. Prevalence of Nemalecium lighti–sponges association in the study area: (a) Mean association
prevalence for all the genera considered and (b) for the genus Aplysina in relation to depth.

Furthermore, the taxon-specific prevalence was calculated for each genus of sponge
that was found to be the host of the association (Table 2). Sponges belonging to the
genus Aplysina were the most involved in the association with N. lighti, with a prevalence
of 21.76 ± 4.72% in shallow stations and 27.22 ± 3.44% in the deep stations (Figure 3b).
Similarly, Verongula and Aiolochroia were the second most involved in association with
N. lighti, even if not notably in the shallow stations. By contrast, Cliona showed an elevated
prevalence in the shallow station and no association in the deep station. There were seven
genera (Callyspongia, Clathria, Ectyoplasia, Halisarca, Monanchora, Niphates, and Phorbas) that
did not show an association in either the shallow stations or the deep stations, whereas the
Iotrochota–Nemalecium lighti association was found only in deep stations. The differences in
the prevalences among the analyzed genera were tested as being statistically significant
(Kruskal–Wallis Test, p < 0.05).

When correlating the sponge dimension with the N. lighti association, most of the
sponges belonged to the smaller size classes of 5–30 cm (~70%), whereas only a minor part
of the sponges was comprised in the larger size classes of 40–50 cm (Figure 4a). Despite this,
a positive increase in prevalence was recorded, with values of 1.41 ± 0.66%, 5.75 ± 0.79%,
8.09 ± 1.62%, 13.78 ± 4.40%, and 15.04 ± 1.96% for C1 to C5 size classes, respectively
(Figure 4b). Furthermore, the sponges belonging to the genus Aplysina showed a particular
behavior in this regard, being the only genus with association cases in all the size classes,
in both shallow and deep stations.

Figure 4. Hosts’ size class distribution and prevalence analyses in the study area: (a) Number of
sponges for each class size; (b) Prevalence of Nemalecium lighti–sponges association in relation to the
host class size. The bold line in the middle of the boxes is the median value, the bottom part of the
boxes is the lower quartile, the top part of the boxes is the upper quartile, the lines departing from
the boxes are the lower and upper extremes, and the circle is an outlier value.
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4. Discussion

Over the years, multiple studies have addressed the role of coral reef biodiversity
and its overall impact on the health of these ecosystems [1,4,9]. More specifically, Bonaire
coral reef ecosystems emerged as an incredible source of rare or previously unreported
reef organism associations. In this perspective, this study assessed for the first time the
distribution, host range, and prevalence of the sponges–Nemalecium lighti association in
this region, aiming to partially fill the knowledge deficiency about cryptofauna associ-
ations involving sponges and hydrozoans. The surveys revealed associations between
host sponges and N. lighti at all the explored sites except one, suggesting a widespread
distribution for the association all along the west coast of Bonaire, with some sites showing
notably high values of prevalence (BR, AiW, and LM). The host range of this association
accounts for nine genera belonging to the class Demospongiae, suggesting that N. lighti
can be considered as a generalist, since it appears to not target a specific sponge species, at
least within the depth ranges we conducted our surveys in. The spatial distribution of the
hydroids along the reef zonation has been addressed in previous studies, revealing that
different environmental conditions and depths may have an impact on the development
of associations and the peculiar assemblage of hydroid species [36–38]. In particular, it
has been observed that the maximum diversity of hydrozoans and related associations
with sponges was reached on the reef slope, with a continued increase with the depth until
reaching 30 m [29]. Similarly, in the present study, the prevalence of associations is slightly
higher in the deep stations compared to the shallow ones. However, this result needs to be
confirmed in future studies by considering not only the shallower part of the coral reefs
but extending the surveys to mesophotic depths. In addition, considering that N. lighti
is a small cryptic hydroid species growing to a maximum 2 cm that settles on the surface
of sponges but sometimes also in protected and shaded parts of their structure, it cannot
be excluded that some of the interactions may have been overlooked during our surveys,
resulting in an underestimation of its actual prevalence.

The taxon-specific prevalence revealed that the highest prevalence of occurrence of the
N. lighti–sponge association was observed with the genus Aplysina (26%). This prevalence
value was almost four times higher than for the second genus involved in the association
(Verongula with 6.98 ± 2.34%) and extremely more significant than for all the other species,
which showed prevalence values lower than 5%. Sponges of the genus Aplysina represent
an abundant and important component of the marine coastal ecosystems in tropical and
subtropical waters [39], where they contribute to the three-dimensionality of the reef
structure, which is fundamental for hosting and sustaining several species of associated
fauna. The preference of N. lighti for this genus may be the result of the complex tubular
growth morphology that exposes the epibiont hydroid to a strong current and water flow,
characteristics usually exploited by this species [16,40].

In addition, sponges are known to produce an array of chemicals and metabolic
products that are ecologically important for different purposes (e.g., growth, protection,
competition) [41]. Among them, sponges belonging to the genus Aplysina are known to
produce high concentrations of brominated alkaloids metabolites (up to 13% of the dry
weight) related to antimicrobial activity and cytotoxic activity [42]. These sponges probably
produce them as a chemical defense, biofouling, and deterrent against fish predators, as
tested on Thalassoma bifasciatum and Blennius sphinx [43–49]. This peculiar characteristic of
the Aplysina sponges may be one of the factors that enhances the association with N. lighti,
as it may take advantage of this defense mechanism of the host to protect itself from
predators or microbial offense [50]. However, future investigations to test this hypothesis
and to elucidate the nature of this association in the reefs of Bonaire are needed.

Finally, the observed increase in prevalence related to the dimension of the sponges
suggests that other factors pertaining to the host also determine the ability of N. lighti
to settle on sponges. In particular, an increase in sponge (species-dependent) size may
correspond to an increase of the favorable surface on which the hydroids can establish the
association. In addition, the amount of time necessary for the sponge to grow may also be
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a contributing factor for the settlement of larvae, increasing the probability of growth on
the sponge surface. Further studies are needed to test both of the scenarios proposed and
to clearly understand the effect of host size on this particular association.

5. Conclusions

This study provides the first characterization and quantification of the association
between the cryptic hydrozoan Nemalecium lighti and the demosponge community within
the coral reef systems of Bonaire. This hydrozoan has been found to be a generalist
symbiont of different genera of sponge along the west coast of Bonaire. Even though
the differences in the prevalence of occurrence of the associations were not significantly
important with regards to the depth, future investigations extending into the deeper parts
of the reef, including mesophotic depths, may be important to better define the role of
depth in this association. However, the dimension of the host resulted in influencing the
prevalence of association, with a large tubular sponge found to be the preferred host for
N. lighti. Moreover, the taxon-specific prevalence revealed that the genus most involved
in the association with N. lighti was Aplysina, with an extremely higher prevalence value
compared to the other genera recorded. This may be associated with the production of
brominated alkaloid metabolites that serve as antimicrobial and biofouling as well as
chemical protection from predators. Additional studies are needed to better understand
the implications of this preference and what the main biological and ecological reasons
for these results are. Overall, this study improves our understanding of the cryptofauna
diversity of coral reef associations in Bonaire.
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Abstract: Among Mediterranean habitat-forming alcyonaceans, the sea fan Eunicella verrucosa is
known to form dense forests at circalittoral depths, providing seascape complexity and sustain-
ing a rich associated fauna. Its occurrence in the Tavolara–Punta Coda Cavallo Marine Protected
Area (NE Sardinia) has never been deeply investigated despite this area being well known from a
biocoenotic point of view. This study provides new information on the size of the colonies settled
between 35 and 59 m depth on granitic outcrops and represents a contribution to highlighting the
hotspot of megabenthic diversity enclosed in the protected area. The presence of 100 colonies was
assessed by photographic samplings performed between 2015 and 2020, in a small area characterized
by peculiar ecological conditions. The morphometric descriptions and age estimation showed a
persistently isolated population probably derived from a stochastic event of settling of larvae pre-
sumably coming from the Tuscany Archipelago. A richly associated epibiotic community, composed
of 18 species/OTUs, showed how branched bryozoans, particularly Turbicellepora avicularis, and
the parasitic octocoral Alcyonium coralloides, affected the colonies’ branches, suggesting a putative
anthropogenic impact related to fishing activity. This study indicates that proper protection and
management strategies are mandatory for the Marine Protected Area, in order to conserve this unique
population and the whole associated benthic assemblage.

Keywords: gorgonians; coralligenous assemblages; fishing impact; Mediterranean sea

1. Introduction

The sea fan Eunicella verrucosa (Pallas, 1766) is a large, erected gorgonian, profusely
branched, white to deep pink in color, with an Atlanto-Mediterranean distribution, ranging
from Angola to Ireland, in the East Atlantic Ocean [1,2]. The species settles directly
on bedrock, on large boulders and on artificial surfaces in areas with moderate water
movement [3]. The depth range for the Mediterranean Sea goes from 26 to 215 m depth
with most of the records located below 35 m depth [1,4–9]. The populations of this species
provide structural complexity sustaining rich, associated biodiversity and aesthetic value
to sublittoral communities [10,11]. The tridimensional morphology of E. verrucosa colonies
observed in previous studies is complex and variable: the typical architecture is planar,
but other growth forms, characterized by a high rate of branch overlapping, result from
different environmental conditions, such as spatial constraints, current intensity, feeding
ability and predation [12–18].

The growth rate of E. verrucosa was recorded as highly variable: demographic stud-
ies of different populations suggest values of 0.6–3.5 cm year−1 for Mediterranean areas
and of 1–4.5 cm year−1 for the English Channel [6,19–22]. The relatively slow growth
rate of E. verrucosa coupled with its sensitivity to abrasion, mechanical disturbance by

Diversity 2022, 14, 405. https://doi.org/10.3390/d14050405 https://www.mdpi.com/journal/diversity15
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anchors, fishing gear and fin-stroke damage by scuba divers [23–26], as well as substra-
tum loss [21,27], makes this species particularly sensitive to anthropogenic impacts and
environmental stressors.

Thanks to recent Remotely Operated Vehicle (ROV) surveys [8] and SCUBA dives
coupled with citizen science reports, the distribution of E. verrucosa on the Mediterranean
scale has been recently updated [28]. This large amount of data confirms the occurrence
of the species mainly along the coast of the western Mediterranean basin with a peak
of records in the Ligurian Sea. In particular, a structured community dominated by this
species was identified here in dozens of sites, mainly on sub-horizontal rocks characterized
by heavy silting between 30 and 215 m (maximum occurrences 60–90 m) [8]. A lower
number of records involve the North African coasts, the Sicily Channel, the North Adriatic
Sea and the Aegean Sea. In this scenario, the most impressive gap sees the almost complete
absence of the species from the central Tyrrhenian Sea, and in particular, from the Sardinian
coast [28].

Very few data are available in the literature regarding NE Sardinia. The oldest records
date back to 1990 when Bianchi et al. [29] recorded the species at a site in the Tavolara-Punta
Coda Cavallo Marine Protected Area (TPCCMPA). Later, in the same area, field campaigns
reported some colonies on the hull of the Klearchos wreck at 77 m depth [30], and another
specimen settled on a granitic shoal (Tavolara2) at 55 m depth [31]. Recent surveys assessed
the occurrence of this species, in association with large and erect sponge assemblages, on
granite reliefs in the Tavolara Channel under 40 m depth [32,33].

This study aims to quantify the presence of E. verrucosa in the TPCCMPA, improve the
knowledge of its Mediterranean distribution, and provide a morphometric description of
the population. In addition, a study of the opportunistic fauna living on the colonies, used
as an indicator of mechanical abrasion also of anthropic origin [34,35], was conducted to
evaluate the impact of anthropogenic activities within the MPA.

2. Materials and Methods

Between 2015 and 2020, 110 scuba dives were carried out on 77 granite outcrops
within the Tavolara Channel at depths between 12 m and 59 m (Figure 1). Each outcrop
was georeferenced on a Geographic Information System (GIS) and the coordinates of the
sites investigated were registered on the MPA web platform. All the sites where Eunicella
verrucosa was recorded are listed in Table 1.

Table 1. Investigated sites with the occurrence of Eunicella verrucosa within the Tavolara–Punta Coda
Cavallo Marine Protected Area and number of specimens in each one. Coordinates of the sites can be
consulted upon request to the Marine Protected Area repository.

Site
Depth Range

(m)
Outcrop Area

(m2)
N Colony N Dives

N1 37–44 428 6 3
N2 39–45 1336 1 1
N24 38–44 1408 1 1
N25 43–54 677 6 2
N27 38–47 1024 14 6
N28 38–47 3343 4 3
N29 42–49 410 2 1
N30 46–50 435 4 1
N32 47–52 371 3 1
N33 50–56 574 2 1
N34 38–45 421 3 1
N37 35–41 736 3 2
N73 36–40 100 1 1
N74 40–45 345 1 1
N75 40–45 595 1 1
N83 48–52 1022 2 1
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Table 1. Cont.

Site
Depth Range

(m)
Outcrop Area

(m2)
N Colony N Dives

N95 41 221 2 1
N99 45–50 1253 1 2
N100 38–45 498 1 1
N101 46–52 820 1 1
N102 47–53 264 1 1
N118 47–52 580 3 2
N119 39–44 286 1 1
N120 40–45 331 1 1
N140 42–48 900 4 1
N148 48–54 471 3 1
N150 43–49 165 4 1
N151 38–46 198 3 3
N159 48–59 272 12 1
N160 44–49 760 3 1
N165 44–48 197 3 1
N171 40–44 141 1 1
N180 40–45 92 1 1
N182 40–45 280 1 1

Figure 1. Location of the Tavolara–Punta Coda Cavallo Marine Protected Area and investigated sites
(black polygons) with the indication of the number of Eunicella verrucosa colonies per site. Stars refer
to ANDROMEDE [30,31] reports.
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All the recorded colonies of E. verrucosa were photographed. The multi-zoom pho-
tographic approach [36] was used to characterize the site geomorphologies, the benthic
assemblages, and in particular, the presence of E. verrucosa, and the occurrence of epibionts
and damages on the sea fans (Figure 2).

Figure 2. Operative workflow for the characterization of the investigated sites by a multi-zoom
approach. Preliminary Side Scan Sonar survey (A) graphic reconstruction and(B) final panoramic
photographic rendering (C) of the site. Examples of the ecological context in which Eunicella verrucosa
settles, mainly composed of large and erect sponges such as Axinella spp., A. polypoides, Spongia lamella
(D), Sarcotragus foetidus (E) and other encrusting and massive species. Details of damages, (F) as
entangled lines (b) and epibionts, (G,H) such as Turbicellepora avicularis, (c) Crella elegans and (e) other
acrophilic species associated to the gorgonian (H) as Astrospartus mediterraneus (d).

Images were taken using a Sony A6000 camera (24 megapixels, two Inon S2000 strobes,
color temperature 5000 K) with Sony 16–50 lens (focal length 19 mm), Nauticam WW1 wet
wide lens (130◦ rectilinear field angle) and a Sea & Sea MDX-A6000 underwater case with a
flat porthole. Panoramic renderings of the sites to localize the colonies were obtained with
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multiple shots subsequently joined and optimized in postproduction using the Photoshop
CS6 Merge tool.

Using a laser gauge as a reference (wheelbase 25 cm), the height was measured in
each colony whereas the fan surface was evaluated for only 63 specimens with a suitable
perspective. Photographic processing for measurements was carried out using ImageJ
Software (Wayne Rasband and contributors, National Institutes of Health, Bethesda, MD,
USA) [37].

As gorgonian colony height is considered a robust parameter leveraged for age esti-
mation in this species [38], this datum was calculated according to the function proposed
by Chimienti [39] for Mediterranean populations (Table 2):

Age = e
H + 18.39

17.94
(1)

Table 2. Morphometric parameters, percent portion of surface covered by epibionts, naked skeleton
and damage of the specimens of Eunicella verrucosa investigated in the present study.

Site
Height

(cm)
Surface
(cm2)

Age
(years)

Epiosis
%

Naked
Skeleton%

Damage
%

Site
Height

(cm)
Surface
(cm2)

Age
(years)

Epiosis
%

Naked
Skeleton

%

Damage
%

N1 41.03 688.07 30.5 5 0 5 N74 22.56 10.5 0 0 0
N1 39.21 823.51 27.4 15 0 15 N75 59.06 85.9 0 0 0
N1 43.27 1028.3 34.7 0 0 0 N83 40.04 610.01 28.8 0 0 0
N1 35.02 21.57 0 0 0 N83 18.17 291.49 8.2 0 0 0
N1 19.49 183.14 8.8 0 0 0 N95 48.59 1873.8 47.1 0 0 0
N1 36.14 23 0 0 0 N95 34.2 588.98 20.6 0 0 0
N2 27.31 490.01 13.8 30 0 30 N99 25.37 397.06 12.4 40 0 40
N24 10.73 26.92 5.3 0 0 0 N100 35.7 713.1 22.5 0 0 0
N25 26.68 13.4 0 0 0 N101 35.72 22.5 0 0 0
N25 29.12 15.4 5 0 5 N102 27.73 230.85 14.2 0 0 0
N25 27.4 13.9 0 0 0 N118 51.03 2344.6 54.2 25 0 25
N25 46.34 41.4 20 0 20 N118 45.04 38.4 0 0 0
N25 48.64 47.2 0 100 100 N118 12.355 5.9 80 0 80
N25 52.3 58.3 40 0 40 N119 18.9 159.4 8.5 0 0 0
N27 20.5 176.32 9.4 0 0 0 N120 10 0 0 0
N27 31.43 423.55 17.5 0 0 0 N140 63.55 111.3 0 0 0
N27 24.04 11.5 65 0 65 N140 55.9 1754.9 71.7 5 0 5
N27 48.3 46.3 10 0 10 N140 36.22 23.1 0 0 0
N27 37.27 24.5 0 0 0 N140 48.7 1222.9 47.4 5 0 5
N27 34.45 1985.9 20.9 15 0 15 N148 33.31 722.6 19.5 0 0 0
N27 24.93 490.38 12.1 10 0 10 N148 46.43 1302.1 41.6 5 0 5
N27 39.55 823.07 28.0 5 0 5 N148 36.8 821.99 23.9 5 0 5
N27 34.5 595.65 20.9 0 0 0 N150 39.02 492.64 27.1 5 0 5
N27 20 9.1 30 5 35 N150 26.4 13.1 0 0 0
N27 55.64 70.6 15 0 15 N150 28.2 14.6 20 0 20
N27 16.86 7.6 0 0 0 N150 19.95 9.1 0 0 0
N27 40.7 29.9 20 0 20 N151 41.16 1318.0 30.7 0 0 0
N27 40.7 267.05 29.9 15 0 15 N151 49.86 982.98 50.6 10 10 20
N28 41.53 220.39 31.4 0 0 0 N151 36.59 691.24 23.6 0 0 0
N28 48.32 382.91 46.3 0 0 0 N159 29.67 539.54 15.9 5 0 5
N28 40.65 1219.6 29.8 0 0 0 N159 43.78 668.55 35.7 0 0 0
N28 34.67 811.27 21.1 0 0 0 N159 38.33 492.06 26.1 0 0 0
N29 36.14 23.0 0 0 0 N159 37.72 733.66 25.2 0 0 0
N29 34.46 20.9 5 0 5 N159 18.24 169.71 8.2 0 0 0
N30 66.32 1375.7 130.5 0 0 0 N159 32.6 765.03 18.8 0 0 0
N30 53.49 1688.0 62.4 20 5 25 N159 34.21 693.07 20.6 0 0 0
N30 19.32 8.7 85 0 85 N159 46.09 1832.4 40.8 30 0 30
N30 36.13 932.27 23.0 0 0 0 N159 37.02 49.97 24.2 0 0 0
N32 15.11 6.9 50 0 50 N159 23.59 11.2 0 0 0
N32 55.13 1261.8 68.6 20 5 25 N159 37.58 1325.2 25.0 10 0 10
N32 50.98 1085.5 54.0 0 0 0 N159 48.11 1326.8 45.8 5 0 5
N33 25.76 12.7 0 0 0 N160 35.54 720.5 22.2 0 0 0
N33 26.31 233.29 13.1 0 0 0 N160 43.31 495.95 34.7 0 0 0
N34 32.34 528.52 18.5 50 40 90 N160 43.42 863.23 35.0 0 0 0
N34 32.04 338.25 18.2 5 0 5 N165 56.75 1796.2 75.3 5 0 5
N34 55.65 1892.9 70.6 15 0 15 N165 40.96 703.3 30.4 0 0 0
N37 16.85 7.6 5 0 5 N165 35.5 22 0 0 0
N37 18.22 8.2 0 0 0 N171 43.93 36.0 5 5 10
N37 14.61 6.7 0 50 50 N180 26.42 385.42 13.2 5 0 5
N73 19.8 299.26 9.0 50 0 50 N182 31.48 599.32 17.6 5 0 5

19



Diversity 2022, 14, 405

The size and age structure of the population were analysed in terms of size–frequency
and distribution parameters (skewness and kurtosis) using Past 4.10 statistic (Øyvind
Hammer, Natural History Museum, University of Oslo, Oslo, Norway).

Finally, photographs were analyzed to identify associated epibiont species to the
lowest possible taxonomic level: when the identification was not possible, Operational
Taxonomic Units (OTUs) were adopted. Species/OTUs were grouped into sessile oppor-
tunistic epibionts, predators/mucous feeders and vagile acrophilic species. The occurrence
of each epibiont species and the percentage of colony surface covered were calculated
(Table 2). Moreover, recent mechanical damages were also recorded as a percentage of the
colony’s naked skeleton portion. The total damage was estimated as the sum of the percent
of naked portion and epibionted ones (Table 2).

3. Results

3.1. Distribution and Occurrence

The population of Eunicella verrucosa of Tavolara MPA is composed of light pinkish-
colonies settled on granitic outcrops arising from the detritic bottom and surroundings in
the centre of the Tavolara Channel (Figure 1). These outcrops (Figure 2A–C) were charac-
terised by a high level of sedimentation, scarce development of the crustose coralline algae
and by the widespread presence of the brown algae Carpomitra costata, and to a lesser extent,
Ericaria zosteroides. The animal community was mainly composed of large, erect sponges,
particularly Axinella spp. and several species of Keratosa (Dysidea spp., Sarcotragus foetidus,
Spongia lamella and S. officinalis) (Figure 2D–E). Together with E. verrucosa, Paramuricea
clavata was also relatively abundant.

Colonies (Figure 2F–H) were recorded in 34 of the 77 investigated sites, in an area of
approximately 30 ha (Table 1, Figure 1). All the colonies (100) were found between a depth
of 35 and 59 m; about one-third of the colonies were settled near the areas where the detritic
sediment borders the rocks, whereas the remaining specimens were mainly observed on
the sloping flanks of the outcrops and less frequently on their top.

Generally, the colonies were isolated or spread, without the formation of a true for-
est (sensu Chimienti [28]). The highest number of colonies were found at sites N159
(12 colonies) and N27 (14 colonies), exactly in the middle of the channel (Figure 1).

The colony size of the 100 recorded specimens ranged from 10 to 66.3 cm in height,
with the size class 30–40 cm being dominant. Size–frequency distribution was simmetric
and leptokurtic (Figure 3A). The fan surface measured for 63 colonies ranged from 27 to
2350 cm2 and was linearly related to height (n = 63; r = 0.73; p < 0.001) (Figure 3B).

According to the equation proposed by [39], the age estimation ranges were from 3 to
130 years, with a distribution showing a mode in the 30–50-year-old class, showing a highly
skewed and leptokurtic distribution, with a long tail toward large age classes (Figure 3C).

3.2. Epibiosis and Damages

A total of 55% of the observed colonies did not show epibionts or direct damages,
whereas the remaining was affected at different levels and in different portions of the
colony (base, fan surface, apexes) (Table 2, Figure 4A); no relationship between damages
and colony height was observed (on average, healthy colonies were 33.99 ± 1.74 cm height,
whereas damaged ones measured 37.22 ± 1.93 cm). Damaged specimens were randomly
located across the investigated sites.
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Figure 3. Morphometric description of Eunicella verrucosa colonies at the Tavolara MPA. (A) size–
frequency distribution of the colony heights; (B) correlation between height and fan area; (C) age–
frequency distribution, inferred from height of colonies according to [39].

Only one colony was observed as dead, at site N25 (Figure 5A). Seven colonies showed
parts of branches deprived of coenenchyme with an exposed naked skeleton without
epibiosis (Figure 5B). In total, 43 colonies hosted epibionts; 29% of these were covered
for less than 25% of the total surface, 8% were affected between 25–50%, 4% showed
50–75% of the surface covered and 3% for more than 75% (Figure 4A). Two colonies were
recorded entangled by an abandoned nylon line (N151-2 and N159-7) (Figure 5C) and one
colony was enveloped by plastic debris (N27-12). This colony was also found spawning on
10 November 2019 (Figure 5D).

In total, 18 species/OTUs were found associated with the colonies (Figure 4B). The
most common taxon was the parasitic octocoral Alcyonium coralloides, recorded on 39.5% of
the damaged colonies (Figure 5E). Overall, branched bryozoans were settled on 67% of the
suffering colonies: the most common one was Turbicellepora avicularis, present on 37.2% of
the colonies (Figure 5F), followed by Adeonella calveti and Pentapora fascialis (32.6 and 14%,
respectively) (Figure 5G). Sponges, particularly Crella elegans (25.6%) (Figure 5G), were
responsible for the epibiosis on 30% of the colonies. The serpulids of the Salmacina/Filograna
complex (Figure 5H) and the bivalve Pteria hirundo (Figure 5I) were found on 11.6% and 5%
of the colonies, respectively.

Three predators, the nudibranch Duvaucelia odhneri, the ovulid Simnia spelta and the
decapod Balssia gasti were observed (Figure 6A–C). The most represented was D. odhneri,
recorded on eleven colonies, in four cases together with their eggs (Figure 6A,A’). Three
specimens of S. spelta were recorded on two colonies (Figure 6B). One colony (N182-1)
hosted ten specimens of B. gasti (Figure 6C,C’). Moreover, two specimens of the decapod
Periclimenes scriptus were recorded on two colonies at site N27 (Figure 6D). Five colonies
hosted the large acrophilic ophiuroid, Astrospartus mediterraneus (Figure 6E).
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Figure 4. Health state of the studied Eunicella verrucosa population. (A) percentage of healthy and
damaged colonies, according to the percentage of affected surface. White bars, percentage of colonies
characterized by naked skeleton; grey bars, percentage of surface covered by epibionts. (B) percentage
of colonies hosting associated species/OTUs.
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Figure 5. Examples of mechanical damages and epibiosis affecting E. verrucosa. (A) dead colony
(white arrow); (B) a colony with a huge portion deprived by coenenchyme; (C) colonies entangled
with an abandoned line and plastic debris (D) Red circle refers to spawning polyps; (E–H) main
epibionts affecting E. verrucosa: the parasitic octocoral Alcyonium coralloides (E) the bryozoans Turbi-
cellepora avicualaris, (F) Adeonella calveti, with the sponge Crella elegans, (G) the Salmacina/Filograna
complex (H) and (I) the bivalve Pteria hirundo.
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Figure 6. Associated vagile fauna with Eunicella verrucosa. The three predators, the nudibranch
Duvaucelia odhneri (red circles) (A) together with its eggs (white circles) and damaged zones (blue
arrows), (A’) the ovulid Simnia spelta (red arrow), (B) and the decapod Balssia gasti, (C,C’) the decapod
Periclimenes scriptus, (D) the large acrophilic ophiuroid and (E) Astrospartus mediterraneous.

4. Discussion

4.1. Distribution of Eunicella verrucosa and Population Singularity

Although recently the Sardinian coasts have been widely explored through a series of
ROV surveys [40–44], no colonies of Eunicella verrucosa have been recorded. This evidence
agrees with the recent map of the species distribution at the Mediterranean basin scale
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published by Chimienti [28], which includes data from original investigations, scientific
literature and citizen observations validated by photographs.

The record of a persistent population settled in the Tavolara area for at least several
decades, is, in this light, a peculiar feature of this zone. Its occurrence in the TPCCMPA
was already observed in some previous investigations [29–33].

Here, the E. verrucosa colonies settle within sponge-dominated assemblages present
on granitic outcrops under a high sedimentation rate in the Tavolara Channel, where
the development of crustose coralline algae is limited. A similar assemblage including
E. verrucosa together with Axinella polypoides and massive sponges was described on silted
rocks of various lithology at 40–70 m depth in many sites along all Ligurian Sea [8,28].

Our observations indicate that the E. verrucosa population is composed of scattered
colonies without formation of true forests; in fact, the recorded 100 colonies were grouped
on 34 rocky outcrops reaching a total area of about 2 ha. Nevertheless, the size structure of
the population seems equilibrated, with a symmetric size–frequency distribution and the
modal class of the distribution, 30–40 cm, completely overlapped with that recorded by
Chimienti [28] for the denser forests of Sanremo (Ligurian Sea). The estimated age structure
reflects previous data obtained in the Marseille region. The data recorded for Sanremo
population was younger (11–15 years), with a modal class in the range of 26–30 cm and
a tail of old colonies reaching a maximal estimated age of about 71–75 years [28]. It is
probable that sexual reproduction is only possible in a cluster of outcrops very close to
the central of the channel. The maximal settling distance for this center was about 1.2 km
for colonies recorded during this study and about 2 km for the colonies settled on the
Klearchos wreck [30]. These data agree with the behavior of the lecithotrophic larvae of
E. verrucosa showing a dispersion ability around the parent colonies <1 km [5,19,21,45].

The occurrence of several, well-developed colonies on the hull of the Klearchos wreck,
sunk on 20 July 1979 [30], is a useful opportunity to validate the age estimation of the
population. Although no reference scale is present in the available images, recorded in
September 2011, the age of the wreck is in accordance with the modal class of the age
distribution recorded during our survey.

The overall rarity of this species in Sardinia is difficult to argue, in the light of the wide
occurrence of all the other shallow-water and mesophotic species of alcyonaceans [40–44].

The map of distribution proposed by Chimienti [28] suggests that the predominant
Mediterranean water circulation explains the gradual colonization of the western Mediter-
ranean Sea by E. verrucosa from the Atlantic Ocean. The presence of this coral in both the
Balearic Sea and the Strait of Sicily may be explained by some common environmental and
oceanographic features of these two areas. Both are characterized by an intense geostrophic
circulation of water masses and a complex seafloor topography, that, due to the presence of
islands and seamounts, generates mesoscale eddies and convergent fronts [46–51]. In the
Balearic Sea, the colonisation is driven by the ascending Atlantic Water (AW, surface water
of Atlantic origin), which, bordering the western coast of Corse, where populations were
recorded, see [28], enters the Ligurian Sea, reaching the Tuscany Archipelago. In this area,
coral larvae can be spread by the Lyon Gyre [52].

On the other hand, from the Sicily Channel, the species has colonised the Tyrrhenian
coast without going beyond the Gulf of Naples. Therefore, the species appears absent
in the central Tyrrhenian Sea and the population of Tavolara MPA could be the unique
description for the entire sub-basin. In this situation, it is plausible that the occurrence of
this species at Tavolara could result from a stochastic event of settling of larvae presumably
coming from the Tuscany Archipelago. Genetic studies on this isolated population might
help to clarify its origin and connectivity with other coastal forests.

4.2. Predators and Acrophilic Epibionts

The study of the associated community provides some data about the specialized
predators of E. verrucosa. The tritoniid nudibranch Duvaucelia odhneri lives its entire life
cycle on the same host colony, exploiting seven different gorgonian species [53], including
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E. verrucosa, as also confirmed in this investigation with the discovery of individuals and
eggs on the same colony.

The ovulid Simnia spelta shows a similar life strategy, being associated with at least
four gorgonian species, Eunicella cavolini, E. singularis, L. sarmentosa, and, in our case,
E. verrucosa. S. spelta feeds on the coenenchyme and polyps of the host and also lays ovarian
capsules on the branches, causing necrosis of the underlying tissue [54].

During this study, we observed one colony of E. verrucosa hosting a group of the
palaemonid shrimp Balssia gasti. The species has always been observed associated with
octocorals, although the nature of the association is still to be elucidated. However, a
predatory strategy was hypothesized due to the homocromic camouflage of this species
in agreement with the color of the coenenchyme of the hosts [55–58]. In the Tavolara
area, B. gasti was already observed on Paramuricea clavata and E. cavolini [59]. Finally, two
specimens of the decapod Periclimenes scriptus, known as mucus-feeder of octocorals [56],
were recorded. In the Tavolara area, this species was observed mainly associated with
P. clavata, living on the granitic outcrops of the Tavolara Channel [60].

Regarding acrophilic species, the frequent occurrence of the basket star Astrospartus
mediterraneus is remarkable. This species, generally recorded as colonizing deep habi-
tats, [61] is becoming more and more abundant in relatively shallow waters in recent
years [62]. A. mediterraneus is one of the few species that have changed its bathymetric
distribution moving towards the surface. This is unusual; in fact, in relation to water temper-
ature increasing, numerous shallow-water species changed their bathymetric distribution,
reaching deeper levels [63].

4.3. Epibiosis and Health Status of the Population

Out of 100 colonies, 45 showed damages of various entities, from small portions of
naked skeleton to completely dead colonies (Figures 5 and 6). The main stressors able
to influence the coenenchyme integrity of structuring anthozoans are thermal stress and
mechanical injuries, mainly due to fishing activity [34,35,64–66].

Diseases due to heating phenomena with consequent necrosis of coenenchyme are
widely documented in the TPCCAMPA for Paramuricea clavata and Eunicella cavolini, but not
at depths exceeding 35–40 m, where the process of necrosis starts from the apical portions
of the colonies [67]. Based on this evidence, thermal stress has a negligible influence on the
damages described in this study. In fact, the population of E. verrucosa mainly lives below
the depth where these phenomena are usually documented. Moreover, the degenerative
processes due to thermal anomalies are evident as a naked portion of the apical branches.
This kind of damage was only sporadically recorded in our study. The direct observation
of lost lines entangled in the colonies suggests, at least partially, an anthropic involvement.
Physical contact with fishing gear scrapes the gorgonian coenenchyme, favoring the devel-
opment of epibionts. Epibionts substantially modify the host–environment interactions
(e.g., transference of energy or matter), eventually reducing their fitness [68]. Large masses
of epibionts lead to a burdening of the colonies and greater mechanical stress, increasing
their resistance to water movement [26,34,35,69–71].

The most common epibionts observed in this study were Alcyonium coralloides, bry-
ozoans (Turbicellepora avicularis, Adeonella calveti and Pentapora fascialis) and the demosponge
Crella elegans (Figures 4B and 5).

A. coralloides is one of the first colonizers of the skeletal portions deprived of co-
enenchyme and can subsequently continue its expansion to the detriment of the coral
to fully occupy its skeleton. On the Tavolara specimens, A. coralloides always settled in
the basal or central portions of the fan and never on the apical parts. It is generally ac-
cepted that the high occurrence of this epibiont may be correlated, in frequented sites, to
anthropogenic damages [72], supporting its use as a bioindicator of stress in coralligenous
assemblages [26,34,73,74]. Similar considerations are also true for erect bryozoans, such as
T. avicularis [75].
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Many Mediterranean localities endure impacts by anthropogenic pressure due to
demersal fishing activities that pauperize three-dimensional benthic ecosystems, such as
coral forests [10,26,35,40,69,76–81]. In the Medes Islands (Catalan Sea), between 10% and
33% of the colonies in unprotected populations were partially colonized by epibionts, most
likely following tissue injury, whereas only from 4% to 10% of the populations in a marine
protected area was affected [76], suggesting that fishing activities directly cause severe
damage expressed as epibiosis coverage. Our data indicate an epibiosis at least four times
higher for the Tavolara’s E. verrucosa population.

The communities occurring on the granite outcrops have traditionally been considered
of low quality due to the absence of the typical coralligenous features such as the thick
coralline algal concretion [82]. This underestimation serves to classify the Tavolara Channel
in the C-zone of MPA (Partial Reserve), allowing artisanal and recreational fishing activities,
which, in turn, probably increased the pressure on the benthic communities. Recently,
however, it was stated that the communities settled in this particular habitat are not
impoverished facies of the coralligenous assemblage, but a peculiar community composed
of erect sponge and habitat-forming anthozoans [33]. An adjustment of the management
guidelines of the MPA is required in light of the re-evaluation of this habitat.
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Abstract: Some coral-associated invertebrates are known for the negative impact they have on the
health of their hosts. During biodiversity surveys on the coral reefs of Curaçao and a study of photo
archives of Curaçao, Bonaire, and St. Eustatius, the Caribbean split-crown feather duster worm
Anamobaea sp. (Sabellidae) was discovered as an associate of 27 stony coral species (Scleractinia
spp. and Millepora spp.). The worm was also found in association with an encrusting octocoral
(Erythropodium caribaeorum), a colonial tunicate (Trididemnum solidum), various sponge species, and
thallose algae (mainly Lobophora sp.), each hypothesized to be secondary hosts. The worms were
also common on dead coral. Sabellids of the genera Bispira and Sabellastarte were all found on dead
coral. Some of them appeared to have settled next to live corals or on patches of dead coral skeleton
surrounded by living coral tissue, forming pseudo-associations. Associated Anamobaea worms can
cause distinct injuries in most host coral species and morphological deformities in a few of them.
Since Anamobaea worms can form high densities, they have the potential to become a pest species on
Caribbean coral reefs when environmental conditions become more favorable for them.

Keywords: Anamobaea; Bispira; coral damage; host generalist; Polychaeta; pseudo-association;
Sabellastarte

1. Introduction

As foundation species, reef corals provide a habitat to a large diversity of marine
invertebrates, which represent a variety of phyla [1–4]. A large proportion of these in-
vertebrate taxa use these corals as living hosts, whereas others only need dead coral as
a rocky substrate for settlement and growth. The first category mostly contains species
that live in strict symbiotic relations with their host corals (be it commensalistic, mutual-
istic, or parasitic) and are generally known as coral-associated fauna [5,6]. Due to their
vulnerability to disturbance, their presence is supposed to be indicative of reef health [7,8].
These relations may vary because, in some studies, coral-associated species are reported
as beneficial to their host by offering protection against predators and diseases [9–13] or
cleaning services [14]. In other hosts, associated species are shown to be harmful by causing
coral injuries or by obstructing the host’s growth [15–20].

It is not precisely known if some reef-dwelling invertebrates, such as feather duster
worms (fan worms) of the family Sabellidae, live in symbiosis with corals. Sabellids are
tube-forming, solitary, or colonial sedentary polychaetes occurring in benthic environments.
The protective tube is usually flexible and predominantly buried in sediment or attached to
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a hard substrate [21]. The animals have two sets of colorful radiolar tentacles (radioles),
which normally extend from their tube and are used for feeding and respiration [22–24].

Although various sabellid species have been reported to live in coral reefs or more
specifically on dead coral [25–32], they have received little or no attention in the literature
about coral-associated fauna [8,33–45] and symbiotic polychaetes [46–48], in contrast with
serpulid worms. Only a few publications mention the identity of sabellid worms and their
host coral species, such as the sabellids Amphicorina schlenzae Nogueira & Amaral, 2000
and Pseudobranchiomma minima Nogueira & Knight-Jones, 2002 in living colonies of the
Brazilian endemic scleractinian Mussimilia hispida (Verrill, 1901) [49,50]. Furthermore, there
are records from Indonesia of Perkinsiana anodina Capa, 2007 in an encrusting mushroom
coral Cycloseris explanulata (van der Horst, 1922), misidentified as C. wellsi (Veron & Pichon,
1980) [51,52], and Notaulax montiporicola Tovar-Hernández & ten Hove, 2020, associated with
the foliaceous coral Montipora nodosa (Dana, 1846) [24,32,51]. Finally, the fan worm Notaulax
yamasui Nishi et al., 2017 was recorded from dead and living Porites sp. in Okinawa
Island, southern Japan [53]. None of these association records are from the Caribbean.
However, there is a published photograph of a colonial feather duster worm Bispira brunnea
(Treadwell, 1917) on top of a coral wound of an unidentified scleractinian in the Mexican
Caribbean [54].

During a recent biodiversity survey of coral reefs of Curaçao (southern Caribbean),
associations of split-crown feather duster worms (Anamobaea sp.) [22,27,29] with corals
were observed to be abundant. Because these associations were not reported before and
the presence of these worms appeared to cause aberrant growth forms and injuries in host
corals, we investigated which host coral species were affected. The present report serves to
create awareness of these associations and of the potential damage the worms may cause to
Caribbean coral reefs. Several sabellids of the genera Bispira Krøyer, 1856 and Sabellastarte
Krøyer, 1856 [22,27,29] were found in close proximity to corals, but appeared to have settled
next to their hosts or on patches of dead coral skeleton surrounded by living coral tissue.

2. Materials and Methods

The surveys took place during October–December 2021 and April 2022 along the
leeward side of the island of Curaçao at depths down to 20 m. To investigate the pre-
ferred habitats of symbiotic feather duster worms, all observed host coral species were
recorded and photographed, as well as other host species that were encountered. Because
coral-dwelling feather duster worms were not recorded before in the Caribbean, coral
photographs taken by the first author during earlier surveys were also checked for the
presence of symbiotic feather duster worms: Curaçao (in 2017, 2015, and 2014), Bonaire
(in 2019), and St. Eustatius (in 2015). Curaçao and Bonaire are located in the Southern
Caribbean, and St. Eustatius is in the Eastern Caribbean (Figure 1). All association records
were listed per island and year (Table 1).

3. Results

Twenty-seven host-coral species, consisting of 25 scleractinians (Anthozoa) and two
milleporids (Hydrozoa), were recorded for the coral-associated feather duster worm, di-
vided over 10 families and 16 genera (Table 1; Figures 2–7). In addition, the species was
found in association with the encrusting octocoral Erythropodium caribaeorum (Figure 8A,B),
the colonial tunicate Trididemnum solidum (Figure 8C,D), phaeophyceaen algae, in particular
Lobophora sp. (Figure 8E,F), and various sponge species (Figure 9). The records were from
the southern Caribbean islands of Bonaire and Curaçao and the Eastern Caribbean island
of St. Eustatius (Table 1).
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Figure 1. Map of the eastern part of the Caribbean showing the position of Curaçao, Bonaire, and St.
Eustatius, where the presence of coral-associated feather duster worms was investigated.

The symbiotic worms, identified as split-crown feather duster worms of the genus
Anamobaea Krøyer, 1856 [22,27,29], showed some variation in coloration, ranging from
white to dark red and various combination patterns of these colors (Figures 2, 3 and 9A).
Two species from the Caribbean have been described, which can be distinguished by
two morphological characters [27,29,32] that are not clearly visible in the photographs:
Anamobaea phyllisae Tovar-Hernández & Salazar-Vallejo, 2006 has two dorsal kidney-shaped
shields over the anterior margin of the base of its crown and smooth flanges (without
papillae) and Anamobaea orstedi Krøyer, 1856 does not have such shields, and its flanges are
wrinkled (with papillae). The former species has so far only been reported from the type
locality in the British Virgin Islands, whereas the latter has a wider geographic range [29,32].
Because we are not sure about the identity of the associated worms, we refer to them as
Anamobaea sp.

Most observed worms were withdrawn in their tubes; only a few of them were
observed with extended radioles protruding from the tube (Figures 2 and 3). Some extended
worms appeared to be shy and quickly retracted into the tube when their pictures were
taken (Figure 3). On some occasions, the worms showed high densities, either inside a
living host (Figures 2A,B,D, 4E and 6A) or on dead coral (Figure 3C,D).

Some host coral species showed peak-shaped deformities around the worm tubes
(Figure 4). In the foliaceous coral Agaricia lamarcki, the deformity resembles a sleeve that
continues to grow upward and in thickness around the worm’s tube, allowing the top to
remain free (Figure 4A,B). Peak-shaped deformities in various sizes were most abundantly
found in Pseudodiploria strigosa (Figure 4C–E) and less commonly in Orbicella annularis
and O. franksi (Figure 4F,G). When the largest peak found in P. strigosa (Figure 4C) was
removed, the worm tube appeared to be at least 8 cm long and deeply embedded inside
the remaining part of the host coral (Figure 5).

Coral injuries were abundant around worm tubes in various coral species (Figures 6
and 7). The wounds, visible as dead lesions, were either at the periphery of live coral tissue
(Figure 6A,B) or more toward the middle and surrounded by live coral tissue (Figures 6C,D
and 7). Some dead patches were used as substrates by algae and sponges (Figures 6 and 7).
In some coral species, the live tissue around the gash showed a discoloration, suggesting
that it was spreading from the wound centered around the worm (Figure 7C,D,F).
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Table 1. Records of stony corals and other sessile invertebrates as host species (by family) for sabellid
worms (Anamobaea sp.) based on photographs taken at Curaçao (a: 2021 and 2022; b: 2017; c: 2015;
and d: 2014), Bonaire (e: 2019), and St. Eustatius (f: 2015).

Host Species Curaçao Bonaire St. Eustatius

Cnidaria: Anthozoa: Scleractinia
Agariciidae

Agaricia agaricites (Linnaeus, 1758) a e -
Agaricia fragilis Dana, 1846 a - f

Agaricia humilis (Verrill, 1901) a - -
Agaricia lamarcki Milne Edwards & Haime, 1851 a,b,d - f

Helioseris cucullata (Ellis and Solander, 1786) a - f
Astrocoeniidae

Stephanocoenia intersepta (Esper, 1795) a,b - f
Faviidae: Faviinae

Colpophyllia natans (Houttuyn, 1772) a,b - -
Diploria labyrinthiformis (Linnaeus, 1758) a - f

Pseudodiploria strigosa (Dana, 1846) a,d - -
Faviidae: Mussiinae

Mycetophyllia aliciae Wells, 1973 - - f
Meandrinidae

Eusmilia fastigiata (Pallas, 1766) b - -
Meandrina jacksoni Weil & Pinzón, 2011 - - f
Meandrina meandrites (Linnaeus, 1758) a,c e f

Merulinidae
Dendrogyra cylindrus (Ehrenberg, 1834) a - -

Orbicella annularis (Ellis & Solander, 1786) a - f
Orbicella faveolata (Ellis & Solander, 1786) a e -

Orbicella franksi (Gregory, 1895) a,b,d e f
Montastraeidae

Montastraea cavernosa (Linnaeus, 1767) a,b - -
Pocilloporidae

Madracis auretenra Locke, Weil & Coates, 2007 a,b - -
Madracis decactis (Lyman, 1859) a - -
Madracis pharensis (Heller, 1868) a,b e f

Madracis senaria Wells, 1973 a,b e -
Poritidae

Porites astreoides Lamarck, 1816 a,d e f
Porites porites (Pallas, 1766) - - f

Rhizangiidae
Siderastrea siderea (Ellis & Solander, 1768) a,b - f

Cnidaria: Hydrozoa
Milleporidae

Millepora alcicornis Linnaeus, 1758 a e -
Millepora complanata Lamarck, 1816 a - -
Cnidaria: Anthozoa: Alcyonacea

Anthothelidae
Erythropodium caribaeorum

(Duchassaing & Michelotti, 1860) a - -

Chordata: Tunicata: Ascidiacea
Didemnidae

Trididemnum solidum (Van Name, 1902) a,b - -
Porifera spp. a - -

Unidentified dead coral with/without algae a - -

34



Diversity 2022, 14, 332

 

Figure 2. Split-crown feather dusters (Anamobaea sp.) hosted by scleractinian corals in the Dutch
Caribbean. (A) Diploria labyrinthiformis at St. Eustatius (2015) hosting five extended worms (one next
to the coral colony) and three contracted ones (arrows). (B) Siderastrea siderea at St. Eustatius (2015)
with four extended worms (two next to the coral colony). (C) Porites astreoides at St. Eustatius (2015)
showing two extended worms. (D) Meandrina jacksoni at St. Eustatius (2015) hosting seven extended
worms. (E) Madracis decactis at Bonaire (2019) with two extended worms. (F) Helioseris cucullata at St.
Eustatius (2015) with one extended worm.
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Figure 3. Split-crown feather dusters (Anamobaea sp.) at Curaçao (2021). (A) A single worm on dead
coral in the extended condition, showing its radioles. (B) The same worm withdrawn inside its tube,
overgrown by filamentous algae. (C) Four worms on dead coral, one extended. (D) The same worms,
all withdrawn. (E) Two extended worms in association with a Millepora alcicornis coral. (F) Both
worms retracted. Arrows indicate worms that had just retracted. The maximum width of the worm
tubes is ca. 5 mm.

36



Diversity 2022, 14, 332

 

Figure 4. Coral deformations caused by the presence of split-crown feather dusters (Anamobaea sp.)
in various host coral species. (A,B) The host coral Agaricia lamarcki at Curaçao (2021) with two peaks
in their initial phase (A: arrows) and a large peak (B: arrow). (C) Close-up of the coral Pseudodiploria
strigosa at Curaçao (2021) showing a large peak. (D,E) Corals of P. strigosa at St. Eustatius (2015), one
showing a peak with an extended worm inside (D: arrow) and another one with five worm peaks
(E: arrows). (F) Orbicella annularis at Curaçao (2021) with one worm peak (arrow). (G) Orbicella franksi
at St. Eustatius (2015) with a small worm peak (arrow), next to a serpulid Christmas tree worm
(S. giganteus). The maximum width of each sabellid tube is ca. 5 mm.
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Figure 5. Tube of a split-crown feather duster (Anamobaea sp.) after removal of the peak-shaped
deformation in a Pseudodiploria strigosa coral (see Figure 4C). The visible part of the tube is 8 cm long.

Feather duster worms of two other species were not observed inside living corals
but in dead skeleton directly next to a living coral or in a patch of dead coral surrounded
by healthy coral tissue. They are the magnificent feather duster Sabellastarte magnifica
(Shaw, 1800) (Figure 10) and the social feather duster Bispira brunnea (Treadwell, 1917)
(Figure 11). Sabellastarte magnifica was found in or next to live coral colonies of the corals
Diploria labyrinthiformis, Madracis auretenra, Meandrina meandrites, Millepora alcicornis, Or-
bicella annularis, Pseudodiploria strigosa, and Stephanocoenia intersepta. Their tubes reached
diameters of nearly 2 cm and could therefore be distinguished from the tubes of Anamobaea
sp., which reached up to 0.5 cm in width. Bispira brunnea was only found on dead patches
of Montastraea cavernosa and Orbicella annularis (Figure 11). A published photograph from
the Mexican Caribbean shows B. brunnea in a coral injury on top of a colony of Siderastrea
siderea [54]. This worm species can be distinguished from the other two because it occurs as
colonies instead of single individuals and because its tubes and radioles are much smaller
than those of the others. Because all Bispira and Sabellastarte worms appeared to live on dead
coral skeleton, near live coral, or at a distance, it is unclear whether they were symbionts or
part of pseudo-associations.

4. Discussion

This report presents, for the first time, extensive evidence for the association of feather
duster worms with corals, other sessile invertebrates, and algae in the Caribbean. This
discovery is remarkable because of the strikingly large wounds and deformities inflicted by
them on their host corals. Photographs of the worms indicate that these associations have
been present at least since 2014 on the coral reefs of Curaçao (Southern Caribbean) and since
2015 at St. Eustatius (Eastern Caribbean). Prior to that, they may have remained unnoticed
because of the worm’s withdrawal behavior, because it was perhaps less abundant in the
past, or because scientists studying the worms did not pay much attention to the hosts.
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Figure 6. Overview (A) and close-up images (B–F) of coral damage caused by split-crown feather
dusters (Anamobaea sp.) on a large Colpophyllia natans colony at Curaçao (2021). The images show
various developmental stages of coral injuries (dead skeleton covered by turf algae) forming coves at
the coral margin (A,B) and circular patches over the colony surface (C–F). The maximum width of
each tube is ca. 5 mm.
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Figure 7. Close-up images of coral injuries around tubes made by split-crown feather dusters
(Anamobaea sp.) shown in retracted condition at Curaçao (2021). The coral injuries are observed
in various host species, such as (A) Agaricia lamarcki, (B) Diploria labyrinthiformis, (C) Montastraea
cavernosa, (D) Orbicella annularis, (E) Pseudodiploria strigosa, and (F) Stephanocoenia intersepta. In some
species, the live tissue around the wound shows a discoloration (C,D,F). The maximum width of
each tube is ca. 5 mm.
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Figure 8. Split-crown feather dusters (Anamobaea sp.) hosted by noncoral invertebrates and algae that
have overgrown corals: (A,B) The encrusting soft coral Erythropodium caribaeorum acting as a host on
dead coral at Curaçao (2021), with tentacles extended (A) and retracted (B). (C,D) The encrusting
colonial ascidian Trididemnum solidum at Curaçao overgrowing scleractinian host corals and worm
tubes (except for the tube opening): on a scleractinian coral Eusmilia fastigiata in 2017 (C) and on dead
coral in 2021 (D). (E,F) The phaeophyceaen alga Lobophora sp. at Curaçao (2021). Arrows indicate
worm tubes. The maximum width of each tube is ca. 5 mm.
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Figure 9. Split-crown feather dusters (Anamobaea sp.) at Curaçao (2021 and 2022) hosted by sponges
that probably act as secondary hosts: (A) An unidentified black sponge partly overgrowing a worm
tube and its host coral, Siderastrea siderea. (B) A zoantharian-infested sponge, Niphates sp., with an
expanded worm. (C) A dark-red sponge, Plakortis sp., with a worm tube (arrow) next to the original
host coral, Orbicella franksi. (D) An orange-red sponge, Scopalina ruetzleri (Wiedenmayer, 1977) with
one worm tube (arrow). The maximum width of each tube is ca. 5 mm.

Coral deformities around sabellid worms embedded in the host’s skeleton appear
to be limited to a few scleractinian species of which Pseudodiploria strigosa appears to be
the most common. Because coral-dwelling sabellids have been observed deep inside the
coral skeleton, and the life span of sabellids may be over 10 years [55], these deformations
have taken several years to develop. Morphological anomalies are not exceptional among
corals inhabited by associated fauna. For example, the sabellid Perkinsiana anodina lives
in short tube-shaped protuberances on the surface of an encrusting mushroom coral,
which are part of the host’s coral skeleton [32,51]. Coral gall crabs have received much
attention because of the crescent-, canopy, slit-, and basket-shaped pits inside various
coral species [44,56–59]. Coral cysts and pits made by other crabs and by shrimps in stony
corals have also been described [60,61], which should not be confused with gall-shaped
excavations made by shrimps [62,63], bivalves [64–67], and gastropods [34,68]. Copepods
are also known to induce the forming of dwellings in corals, either as galls [69,70] or as
tubular outgrowths [71,72]. Ascothoracidan crustaceans of the genus Petrarca Fowler, 1889
are known to form conspicuous galls in shallow-water and deep-sea corals [73–75].
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Figure 10. Magnificent feather dusters (Sabellastarte magnifica) at Curaçao (2022) in close proximity
to corals. (A) An extended worm on a dead coral patch of Orbicella annularis. (B) Same individual
retracted inside its tube. (C) A worm in a colony of Madracis auretenra surrounded by healthy branch
tips but attached to their dead base. (D) A worm surrounded by colonies of Millepora alcicornis and
Pseudodiploria strigosa. (E) A worm underneath a colony of Diploria labyrinthiformis. (F) A worm on a
dead patch of Orbicella annularis surrounded by healthy coral tissue. The width of each worm tube is
ca. 2 cm.
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Figure 11. Social feather dusters (Sabellastarte magnifa) at Curaçao (2022) in close proximity to live
coral. (A) A worm colony on a dead patch of Orbicella annularis. (B) Another worm colony on dead
coral underneath a Montastraea cavernosa.

Tube-dwelling gammarid amphipods and chaetopterid polychaete worms have been
reported to induce the forming of densely distributed finger-like structures in Montipora
corals [76,77]. Coral barnacles usually become embedded in the coral skeleton and become
partly overgrown by coral tissue [44,60]. Some alterations in the coral skeleton morphology
are microscopic and hardly visible, such as those caused by coral-dwelling hydroids of the
genus Zanclea [78–80]. In contrast, vermetid snails that live inside branching Stylophora
and massive Porites corals are known to modify the host’s morphology on a larger scale by
flattening its surface relief, which is attributed to growth inhibition caused by the snail’s
toxic mucus webs [81–83]. In contrast, large growth alterations in massive, branching, and
encrusting corals consisting of deep fissures can be formed by Pedum scallops embedded in
corals [34,66,67]. Some aggressive coral-dwelling sponges are not considered long-term
associated fauna because they usually tend to overgrow and kill their hosts, but in some
foliose corals, they evoke a morphological response, which is visible as the growth of
flap-like protrusions that overlap the approaching sponges [84]. A modified morphology is
also seen in other foliose corals that overgrow sponges as if the coral shape is molded by
that of the sponge [85]. All these examples indicate that some corals may adapt their shape
to resist the presence of potentially harmful associated fauna or competitors for space.

Coral injuries caused by feather duster worms have not been reported before. These ap-
pear to be much larger than those caused by coral-dwelling Spirobranchus worms [18,19,86].
On the other hand, large densities of serpulid worms overgrowing live coral may eventually
cause partial coral mortality [87]. Many feather duster worms in the present study were
found on dead coral (Figure 3A,B), and some of them formed clusters (Figure 3C,D). In
some cases, the worm-infested dead-coral area was next to live coral, suggesting that the
worms contributed to partial coral mortality (Figures 3E,F and 5A). A few patches of dead
coral were surrounded by discolored live-coral tissue (Figure 6C,D,F). This may represent a
reaction to stress as seen in some massive Porites corals in which polyps in contact with
algae or epifauna show pink or purple pigmentation [18,66,88–90]. The difference is that
there may not be extra pigmentation in the examples of the present study.

Some split-crown feather dusters at Curaçao were not hosted by stony corals but by
other invertebrates. These invertebrates may have either colonized dead coral or overgrown
living corals and became secondary hosts when the worms were able to resist becoming
overgrown as well. The last scenario has been shown by serpulid Christmas tree worms of
the genus Spirobranchus. The encrusting octocoral Erythropodium caribaeorum is recognized
as an aggressive competitor for space in the Caribbean [91], which is able to overgrow
corals but apparently not their symbiotic Spirobranchus worms [92], similar to some feather
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duster worms at Curaçao in the present study (Figure 8A,B). Similarly, the colonial tunicate
Trididemnum solidum is notorious for overgrowing Caribbean corals [93,94], except for their
associated Spirobranchus [95] and seemingly also individuals of symbiotic Anamobaea sp.
(Figure 8C,D). Sponges are also able to overgrow corals with the exception of symbiotic
Spirobranchus [96,97] and apparently also Anamobaea sp. (Figure 9). The feather duster
worm was also observed in association with algae, in particular the brown algae Lobophora
sp. (Figure 8E,F). Lobophora has increased in abundance over the last decades at Curaçao
and is able to overgrow live coral [98,99]. It is likely that it is able to overgrow dead and
live coral containing Anamobaea sp., but apparently the worm tubes protrude too far to
become outcompeted.

The cause of the injurious effect of the feather duster worms is unclear. The size of
the wounds suggests that the worms produce toxins, but there is limited information on
toxicity as a defense mechanism in Sabellidae [100]. The use of toxins can perhaps prevent
worms from becoming overgrown by their hosts, as seen in Pedum scallops [66]. The
mucus secreted by some sabellid species proves to have antibacterial properties [101–103].
According to a recent review paper on polychaete toxins, no relevant information appears
to be available on the negative effect of sabellid mucus on other organisms [104]. In contrast,
coral-dwelling worm snails, which occupy the same ecological niche as the feather duster
worms of the present study [20], are well known for their venomous mucus and the damage
this may inflict on the host corals [105,106].

Unlike Anamobaea sp., the relation of Sabellastarte magnifica and Bispira brunnea to corals
is unclear because they were never found in living coral tissue (Figures 10 and 11). A close
proximity to live corals shown by these two species may be unusual since they were also
commonly found at a distance from live corals. Therefore, it may be more appropriate to
use the term “pseudo-association” for this kind of unclear relation. On the other hand,
it is also possible that these worms cause damage to corals and are responsible for coral
mortality in their proximity.

The present study shows that the Caribbean feather duster worm Anamobaea sp. is
more common and harmful to corals than previously known. The species has a symbiotic
relation with a large range of corals and other invertebrates, which was also unknown
before. It is unclear if the species has increased in abundance recently. Because this
worm has the potential to become a pest species, future research should focus on its
population dynamics, its settling behavior on live corals (as done with larvae of symbiotic
barnacles [107,108]), and the cause, growth, and extension of coral wounds around its tubes.
The larval settlement behavior of S. magnifica and B. brunnea also needs to be investigated
in order to find out whether these species prefer to live in close proximity to corals or not.
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Abstract: Waminoa spp. are acoel flatworms mainly found as ectosymbionts on scleractinian corals.
Although Waminoa could potentially represent a threat to their hosts, not enough information is
available yet regarding their ecology and effect on the coral. Here, the Waminoa sp.–coral association
was analyzed in Singapore reefs to determine the prevalence, host range, and preference, as well as the
flatworm abundance on the coral surface. Moreover, the impact of Waminoa sp. on the expression of
putative immune- and stress-response genes (C-type lectin, C3, Hsp70 and Actin) was examined in the
coral Lobophyllia radians. The association prevalence was high (10.4%), especially in sites with lower
sedimentation and turbidity. Waminoa sp. showed a wide host range, being found on 17 coral genera,
many of which are new association records. However, only few coral genera, mostly characterized by
massive or laminar morphologies appeared to be preferred hosts. Waminoa sp. individuals displayed
variable patterns of coral surface coverage and an unequal distribution among different host taxa,
possibly related to the different coral growth forms. A down-regulation of the expression of all the
analyzed genes was recorded in L. radians portions colonized by Waminoa individuals compared
to those without. This indicated that Waminoa sp. could affect components of the immune system
and the cellular homeostasis of the coral, also inhibiting its growth. Therefore, Waminoa sp. could
represent a potential further threat for coral communities already subjected to multiple stressors.

Keywords: Waminoa sp.; association prevalence; Singapore; gene expression; complement pathway;
cellular homeostasis

1. Introduction

Scleractinian corals are known to host a variety of organisms belonging to different
phyla [1–6]. Among coral ectosymbionts, the acoel flatworms of the genus Waminoa (Order
Acoela, Family Convolutidae) have been studied only recently. Formerly included in the
Platyhelminthes and now placed within the Acoelomorpha [7], Waminoa is considered
an enigmatic group since much about its ecology and diversity remains unknown [8].
Waminoa spp. are found mainly on scleractinian corals, but also on octocorals, sea anemones,
corallimorpharians, zoantharians, and echinoderms [8–15], and they show a circumtropical
distribution, with the exception of the Caribbean [16]. Waminoa flatworms are characterized
by the presence of intracellular dinoflagellate symbionts, which have also been found in
the worm oocytes, suggesting that these symbionts are inherited via a vertical transmission
and not obtained from the host coral [8–10].
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These flatworms subsist via different ways, by ingesting the host coral mucus [11,17]
and/or by “standing” on the polyps of host anthozoans to obtain floating zooplankton [18].
For these reasons, Waminoa spp. could represent a threat to corals, although the worms do
not appear to consume coral tissue directly [9]. In fact, acoelomorph flatworms may limit
the host feeding on zooplankton by competing for the prey and by physically blocking the
coral oral disc, possibly resulting in kleptoparasitism [18]. In this regard, Galaxea fascicularis
polyps infested by worms showed a significant decrease of prey ingestion rates compared to
polyps without worms and between 5 to 50% of total prey captured by the polyps was stolen
by Waminoa individuals [18]. Since the coral mucus layer aids in heterotrophic feeding and
represents a protective physiochemical barrier [19], the removal of the mucus by Waminoa
spp. may reduce the coral’s resistance to pathogens and environmental stressors [11,17]. In
addition, being able to reach high densities and cover a significant portion of the coral [20],
Waminoa spp. may also cause light shading affecting the coral’s photophysiology, reducing
the productivity of the coral holobiont [11,13]. Despite the possible negative effects of
Waminoa worms on their hosts, specific studies to diagnose the health of the infested corals
have never been performed so far.

As sessile organisms, corals rely on the modulation of their cellular and molecu-
lar mechanisms as the first defensive line against environmental stresses and invading
pathogens, and these mechanisms represent useful biomarkers of corals’ health
status [21–24]. In this context, corals possess an innate immune system consisting of differ-
ent self/non-self-recognition receptors, which activate specialized cellular and humoral
signaling pathways leading to diverse downstream effector responses [25,26]. Among the
complex network of immune processes, the complement pathway is a proteolytic cascade,
by which pattern recognition receptors (PPRs), such as lectins, initiate intracellular sig-
naling to enact complement component factors, such as C3-like proteins [27]. Lectins are
recognition receptors that bind to glycans and play a role in non-self-recognition, cell-cell
adhesion, bacterial cell wall recognition, and phagocytosis [28]. In particular, C-type lectins
are a superfamily of Ca2+-dependent carbohydrate-recognition proteins involved in the
activation of several innate immune responses [29–31]. Complement C3-like proteins,
whose activation relies on lectins, are important in allorecognition and involved in the
opsonization of the pathogens, chemotaxis, and activation of leukocytes [25,27]. Although
complement-encoding genes, such as those of C-type lectins and C3, have been identified
and characterized in corals [32–36], their involvement and modulation in response to biotic
stressors remain poorly tested.

In addition to the immune response components, other diagnostic tools in corals
able to reflect changes in cellular integrity and functionality caused by stress exposure
are cellular proteins, such as Actin and Heat shock proteins. Indeed, Actin, which is a
major cytoskeletal protein involved in cell motility, growth, and division, is thought to
be a proxy of the growth rate in corals [37,38]. Heat shock proteins (Hsps) are molecular
chaperones involved in cytoprotection and maintenance of protein homeostasis, and their
expression is usually up-regulated when organisms face conditions that may affect their
cellular protein structure [39]. For this reason, Hsps have been frequently adopted as
cellular stress biomarkers in corals subjected to different environmental stressors [40–45].
In addition, Hsps may play a role in the coral immune system, since they can be activated
in response to epizootic diseases or other biotic stresses [46–49].

The coral reefs of Singapore, an island megacity that has been experiencing intense
urban development over the past 60 years, represent highly disturbed and urbanized
coastal environments [50,51]. Coral communities here have been affected for decades
by multiple chronic anthropogenic pressures, resulting in high levels of sedimentation
and turbidity [52–55], and multiple bleaching events caused by climate change [56–58].
However, no work has examined the presence and the impact of Waminoa worms on
Singapore’s coral communities.

In this study, the association between Waminoa and scleractinian hosts was studied
for the first time in Singapore reefs through an ecological survey and a molecular analysis.
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In particular, we determined the prevalence of the association, the host range, the host
preference of Waminoa, and the flatworm abundance on the coral surface. In addition, we
tested a possible effect of Waminoa on components of the coral immune system and cellular
stress response. For this purpose, the coral Lobophyllia radians was selected being a species
highly colonized by the Waminoa in Singapore, and the gene expression of C-type lectin, C3,
Hsp70 and Actin were examined and used as biomarkers to provide new insights on the
nature of the association.

2. Materials and Methods

2.1. Ecological Analysis
2.1.1. Study Area and Sampling Design

Fringing reefs of two islands south of mainland Singapore, Pulau Hantu (1◦22′74′′ N,
103◦74′65′′ E) and Kusu Island (1◦22′55′′ N, 103◦85′85′′ E), were selected as study sites
(Figure 1). Both reefs are characterized by a shore-adjacent reef flat leading seaward to the
reef crest and down the reef slope to ~8–10 m maximum depth because of high levels of
suspended sediments that cause extreme light attenuation [55,59].

 

Figure 1. Map of the study area showing the two investigated sites. Pulau Hantu is a sheltered site
situated 8 km south of mainland Singapore, while Kusu Island is located 6.4 km south of Singapore’s
city center and 13.4 km east of Pulau Hantu.

In both sites, extensive surveys were conducted by SCUBA diving between August
and October 2019 to detect the occurrence of Waminoa individuals on different coral genera
(Figure 2). Images of Waminoa specimens were taken by a digital camera and analyzed. We
distinguished a single morphotype of Waminoa in the surveyed area (as described in [8,15],
Figure 2) and we treated it as Waminoa sp.
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Figure 2. Waminoa sp. individuals in association with different coral genera in Singapore reefs.
(A) Close up of a single Waminoa sp. individual characterized by an obcordate general shape, body
with brown coloration, white peripheral outer edge, white random dots, and white comparatively
larger one white internal spot. Flatworms colonizing corals belonging to the genera Pachyseris (B),
Fungia (C), Lobophyllia (D,E), Goniastrea (F), Pectinia (G), Merulina (H), and Favites (I). Scale bars: 1 mm
for (A) ~1 cm for (C,E,F,G) ~2 cm for (B,D,H,I).

Six 50 × 2 m belt transects (100 m2 each), spaced 10 to 20 m apart and placed parallel
to the coast at a constant depth between 5 and 8 m (depending on the tides) along the reef
slope, were randomly laid at each site. Within belt transects all the coral colonies were
identified to genus level, according to Huang et al. [60] and Wong et al. [61], and the number
of colonies of each genus found colonized by Waminoa sp. was recorded. Moreover, in coral
colonies hosting Waminoa individuals, their abundance was estimated by determining the
percentage of coral surface covered by flatworms and was indicated with four coverage
categories, as suggested in [62]: low (coral surface covered 1–10% by worms), moderate
(11–25%), severe (26–50%), and extreme (>50%).

In each belt transect, the point intercept transect (PIT) method was also performed (by
recording data every 10 cm [63]) to determine the composition and structure of the benthic
community, as well as the cover percentage of each coral genus. Data were collected using
the following benthic categories: algae, dead coral, coral, coral rubble, rock, sand, and
other (sponges, soft corals, tunicates, zoantharians, and unknown). Furthermore, for the
macro-category “coral”, the genus was also recorded.
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2.1.2. Data Analysis

For each transect, the prevalence of the association was calculated as the ratio between
the number of corals colonized by Waminoa sp. and the total number of colonies. By
averaging the corresponding prevalence values measured on the six random belt transects
for each site, both an overall and a series of taxon (coral genus)-specific prevalence values
were determined. Data normality was verified using the Shapiro–Wilk test. A one-way
ANOVA was used to test significant differences in the overall association prevalence
between the two sites analyzed. The same analysis, followed by Tukey’s honestly significant
difference (HSD) post hoc tests for multiple pairwise comparisons of means, was performed
to assess significant differences in the prevalence of the Waminoa sp.–coral association
among the different host genera. Coral genera showing a prevalence < 5% were not
included in the analysis.

The host preference of Waminoa sp. in terms of coral genus was tested through the Van
der Ploeg and Scavia Selectivity coefficient (Ei), following [64]. This coefficient is defined
for a group i as:

Ei =

[
Wi −

(
1
n

)]
[
Wi +

(
1
n

)]
where Wi represents the value of Chesson’s α and n represents the number of habitat
types [63], here represented by the coral genera found in the study area. Chesson’s α value
(Wi) is defined as:

Wi =
ri
Pi

/ ∑
i

ri/Pi

where ri represents the frequency of a habitat category (coral genus) in the environment,
and Pi represents the frequency of the same habitat category in which the organism of
interest (Waminoa sp.) is found [65]. Values of selectivity coefficient range between −1 and
1, with −1 meaning complete avoidance of a host coral genus, and 1 meaning exclusive
preference for a specific coral genus [66].

A one-way ANOVA followed by a Tukey’s HSD post hoc test was performed to assess
differences in the coverage percentages of the flatworms on the surface of the host corals,
between the four coverage categories.

2.2. Molecular Analysis
2.2.1. Coral Collection

To assess the effect of Waminoa sp. on coral’s gene expression, five colonies of Lobo-
phyllia radians showing patches of Waminoa sp. individuals in a fixed position on their
surface were selected, monitored for several days and sampled on Kusu Island. All five
colonies were moderately (11–25%) covered by the worms. For each colony, fragments of
approximately 2 cm2 were collected using a hollow-point stainless steel spike [67]. Two
coral fragments were sampled from each colony: one fragment located just underneath a
patch of Waminoa sp. individuals (marked as “W”), and the other from a colony portion
without worms, at least 5 cm away from the Waminoa individuals (marked as “W/0”). In
addition, three healthy colonies of L. radians not colonized by the flatworms were randomly
sampled as controls to test primer efficiencies.

All coral samples were taken at the same hour (around 9:00 a.m.), at the same shal-
low depth, and during high tide, to minimize any possible effects of abiotic variables,
such as water temperature and light intensity, on the gene expression. During the sam-
pling period, the sea surface temperature was continuously logged and its mean was
30.36 ± 0.39 ◦C, with very slight oscillation between 29.66 and 30.42 ◦C. In “W” fragments,
Waminoa individuals were removed from their hosts by using the pipettes as previously
described [8] and the morphological condition of the coral tissues, as well as the presence of
any physical damages or lesions, were evaluated. All the coral portions were immediately
placed in pre-labeled tubes and, at the end of the underwater sampling, the seawater
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was decanted and replaced with RNAlater (Thermo Fisher Scientific, Singapore) with a
tissue:RNAlater ratio of 1:10. The maximum time between collection and placement in
RNAlater was about 30 min. The sample tubes were inverted to mix for 30 s and kept at
4 ◦C overnight to allow complete penetration of RNAlater into the coral tissues. The tubes
were subsequently stored at −80 ◦C until RNA extraction.

2.2.2. RNA Extraction and REVERSE Transcription (RT)

Total RNA was extracted from all the coral samples without homogenization to reduce
RNA fragmentation using TRIzol Reagent (Life Technologies, Sigma-Aldrich, Singapore)
following the manufacturer’s protocol. RNA quality was checked by examining with gel
electrophoresis for presence of clear bands of ribosomal RNAs and RNA concentration
was estimated using Qubit (RNA Broad Range Assay Kit, Thermo Fisher Scientific). Com-
plementary DNA (cDNA) was immediately prepared from 1 μg of total RNA for each
sample, using a one-tube format of iScript RT Supermix (Bio-Rad, Hercules, CA, USA)
for a reverse transcription quantitative polymerase chain reaction (RT-qPCR). Reaction
setup was composed of iScript RT Supermix (4 μL), RNA template (varied depending on
RNA sample concentration; 14.6–200 ng/μL), and nuclease-free water (variable), with a
final volume of 20 μL as previously described [68]. Incubation of the reaction mix was
performed in a Labcycler (Sensoquest, Göttingen, Germany) following the manufacturer’s
protocol: priming for 5 min at 25 ◦C, RT for 20 min at 45 ◦C, and RT inactivation for 1 min
at 95 ◦C.

2.2.3. Primer Design and Validation

A local search in the L. radians transcriptome previously sequenced (raw sequencing
data available at NCBI Sequence Read Archive under accession number PRJNA512601)
and assembled by [69] using BLASTn against the GenBank database was performed. Coral
transcripts matching genes from the genomes of Acropora digitifera, Orbicella faveolata, or
Stylophora pistillata were identified and orthologous genes on the L. radians transcriptome
selected. The accuracy of the sequence of each gene of interest (GOI) was checked using
the NCBI Nucleotide BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
15 November 2019). A megablast search was performed to ensure that the sequences
producing significant alignments with the query sequence were corresponding to the
GOIs. A BLASTn search was performed in an open-access coral genomic database at
http://reefgenomics.org/blast/ [70,71] with Goniastrea aspera genome as subject and the
sequence of each GOI as query. A suitable region within exons was selected and the
query corresponding to the longer hit with the highest identities value was selected to
design primers. Primers for each gene were designed using the online tool by NCBI that
incorporated Primer3 and BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast).
The set of primers given as output by the NCBI tool were analyzed and used in http://
reefgenomics.org/blast/to perform a BLASTn search against Symbiodiniaceae nucleotide
databases (Supplementary materials Table S1) to verify primer specificity for coral DNA.
The selected set of primer was then used for a megablast search using the NCBI Nucleotide
BLAST tool to verify the absence of significant alignment with marine species found in the
same environment as L. radians. The designed primers are shown in Table 1. The specificity
of the selected primers for L. radians was tested by performing PCR using the GoTaq Green
Master Mix in a LifeECO Thermal Cycler (Bioer Technology, Hangzhou, China). PCR
reaction steps were (1) denaturation: 95 ◦C for 45 s, (2) annealing: 50–55 ◦C for 45 s, and
(3) extension: 72 ◦C for 3 min, repeated for 35 cycles.
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Table 1. List of genes of interest (GOIs) with primer designs. The melting temperature (Tm), the %
of guanine and cytosine (GC), and the length of PCR product (bp) are also reported for each gene.
Additional information of these sequences can be found in Supplementary Materials.

Gene Sequence Tm (◦C) GC % PCR Product

C- type lectin F: 5′–GTT CTA CTG GGT AGA CGA CA–3′ 53.2 50.00 155 bp
R: 5′–GAA CAT CAT TCC ATG GTC CC–3′ 53.4 50.00

C3
F: 5′–GTT GAG TTC CCT GAT GCA AT–3′ 50.9 40.00 159 bp
R: 5′–CAA CAG GTA AAC GCT TTG G–3′ 52.0 47.37

Hsp70 F: 5′–ACA ACT CCC AGC TAT GTC GC–3′ 57.3 55.00 226 bp
R: 5′–TCC ACT CTC CCT TGG TCT GT–3′ 57.6 55.00

Actin
F: 5′–ATG GTT GGT ATG GGT CAG AAA G–3′ 54.8 45.45 219 bp
R: 5′–TCT GTT AGC TTT TGG GTT GAG T–3′ 54.3 40.91

To test primer efficiencies, a series of twofold dilutions of L. radians cDNA starting
from 5 ng/μL were performed for the samples collected from the control colonies [38]. Each
dilution was used in triplicate for each primer to assess the primer efficiency through an
RT-qPCR using the CFX96 Real-Time PCR System (Bio-Rad). Calculations of efficiencies (E,
the amplification factor per PCR cycle) needed to correct for amplification efficiencies per
primer were undertaken using an MCMC.qpcr package in R developed by Matz et al. [72].
The function, PrimEff( ), calculates E and plots the regression slopes and E based on
dilution series. GOIs with E values outside the 1.85–2.16 range had primers redesigned and
re-validated. GOIs that failed amplification were excluded from downstream analyses [68].

2.2.4. Gene Expression Quantification

RT-qPCRs were performed in a CFX96TM Real-Time PCR System (Bio-Rad) using
SsoAdvanced inhibitor-tolerant SYBR Green Supermix following the manufacturer’s proto-
col (polymerase activation and DNA denaturation: 3 min at 98 ◦C, denaturation: 15 s at
95 ◦C, and annealing/extension: 30 s at 60 ◦C) repeated for 40 cycles. The reaction mix was
prepared as in Table S2. Each sample was tested in duplicates for each of the four genes. To
control for variations in expressions of genes caused by differences in RNA concentration
of each sample, the amount of cDNA template was standardized to ~10 ng of cDNA for
every reaction mix.

2.2.5. Data Analysis

Data obtained from RT-qPCRs expressed as “cycle of quantification values” (i.e., Cq
values) were collated and sorted for subsequent analysis. RT-qPCR data were analyzed
using generalized linear mixed models based on lognormal-Poisson error distribution,
fitted using the MCMC.qpcr package Version 1.2.3 in R Studio Version 1.1.463 as previously
reported [72]. Molecule count data with corrections for primer efficiencies were derived
with amplification efficiencies (E) per gene and Cq for a single target molecule using the
formula: Count = E(Cq1 − Cq). The Cq-to-counts conversion is the key transformation
in this method, in which higher variation at the low gene expression values is properly
accounted for by the relative quantification model. The transformation makes it possible to
fit the resulting data to generalized linear mixed models to account for Poisson-distributed
fluctuations when the number of the molecule count is low. Similar Bayesian approaches
for analyzing qPCR data have been used in several other reports [68]. Results of the
mcmc.qpcr() function were then plotted with HPDsummary() to visualize fold changes
in gene expression in response to the presence of Waminoa worms. HPDsummary() also
calculates all the pairwise differences between treatments and their statistical significance
for each gene. Each gene profile was examined to determine the differential expression
level between coral samples underneath the surface of the coral colonized by Waminoa sp.
and samples of the same colonies at least 5 cm apart from the flatworms.
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A multivariate analysis was performed using the statistical package PRIMER-E v.7
with the PERMANOVA+ add on [73,74] to investigate together the modulation of all
biomarkers in response to Waminoa sp. colonization. In particular, data related to the
levels of all the biomarkers were square root transformed to calculate a matrix based on
the Bray–Curtis similarity. To test for differences in biomarker levels between corals with
and without worms, a non-parametric permutational multivariate analysis of variance
(PERMANOVA) was performed using 999 permutations with partial sum of squares and
unrestricted permutation of raw data. Values were considered statistically significant at
p < 0.05.

3. Results

3.1. Ecological Analysis

On the surveyed reefs, benthic coverage was dominated by hard corals (36 ± 8.6%),
followed by dead corals (23.3 ± 16.1%) and coral rubble (20 ± 6.4%), and the same trend
was observed in both sites (Figure S1). A total of 39 scleractinian genera were recorded
(Table S3) and among them the genus Pectinia showed the highest cover percentage (~11%),
followed by Dipsastraea and Merulina (~9% and 8%, respectively). All the other coral genera
displayed a cover percentage close to or less than 5% (Table S3). However, the two sites at
Pulau Hantu and Kusu Island showed a distinct abundance and diversity of the various
coral genera (Table S3). Indeed, in Pulau Hantu 33 genera were observed, while Kusu Island
showed a higher coral diversity with 38 genera recorded (Table S3). In addition, Pulau
Hantu reef was dominated by corals belonging to the genera Pectinia (~13%), Merulina
(~10%), Goniopora, and Dipsastraea (both ~8%), while Kusu Island displayed a greater
heterogeneity in terms of coral genera coverage, with Dipsastraea (~10%), Heliopora and
Pectinia (all ~8%), Favites (~7%), and Pachyseris, Montipora and Platygyra (all ~6%) showing
the highest abundance (Table S3).

Overall, 1044 coral colonies were observed, and the overall prevalence of the coral–
Waminoa sp. association was 10.4 ± 2.3%, with the site on Kusu Island showing a sig-
nificantly higher prevalence compared to Pulau Hantu (ANOVA, F(1,34) = 3.1, p = 0.012;
Figure 3). In total, 17 out of the 39 scleractinian genera recorded in the study area were
found in association with Waminoa sp. and significant differences in the association preva-
lence were detected among the host coral genera (ANOVA, F(12,143) = 2.39, p = 0.008;
Figure 4A). In particular, Lobophyllia clearly displayed the highest prevalence, followed
by Goniastrea and Favites, and later by Mycedium, Platygyra, Oxypora, and Pachyseris, while
for the five other host genera the prevalence recorded was lower than 10% but higher
than 5% (Pectinia, Echinopora, Fungia, Ctenactis, and Podabacia, Figure 4A). However, sig-
nificant differences in the association prevalence were observed only between Lobophyllia
and Echinopora, and Fungia, Ctenactis and Podabacia (Figure 4A). In addition, the five other
scleractinian genera, namely Merulina, Porites, Dipsastraea, Hydnophora, and Montipora, were
found associated with Waminoa sp. but with prevalence < 5% (4.2, 3.7, 3.5, 2.5, and 1.9%,
respectively). The prevalence patterns recorded in both sites were not uniform and did not
fully reflect those recorded in the whole study, with Goniastrea, Pachyseris and Lobophyllia
showing the higher prevalence in Pulau Hantu, and Lobophyllia, Favites, Mycedium, and
Oxypora in Kusu Island (Figure S2). The selectivity coefficient Ei allowed the comparison
of the relative abundance of coral genera colonized by Waminoa sp. with the relative
abundance of the same coral genera recorded in the whole study area (Figure 4B). The
analysis was performed only for coral genera showing an association prevalence > 5%. It
revealed that Mycedium was the preferred host for Waminoa sp., followed by Lobophyllia,
Oxypora, and, surprisingly, Ctenactis, which was among the coral genera that showed the
lowest prevalence of the association (Figure 4B). Moreover, Waminoa sp. showed a marked
avoidance for high/medium-prevalence genera, such as Platygyra, Pachyseris and Pectinia
(Figure 4B).
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Figure 3. Prevalence (%) of Waminoa sp.–corals associations in Pulau Hantu and Kusu Island.
Numbers above each bar indicate the total number of coral colonies (both with and without Waminoa)
analyzed per site. Data are expressed as the mean ± SEM. One-way ANOVA was performed between
sites. Letters on the bars denote significant difference among sites. Different letters indicate significant
difference (p < 0.05), while same letter indicates no significant difference (p ≥ 0.05).

Most of the coral colonies were moderately (from 11 to 25% of the coral surface) or
severely (26–50%) covered by Waminoa sp., while a few colonies showed an extreme colo-
nization of worms (>50%) on their surface (Figure 5A). However, no significant differences
in the abundance percentages were recorded among the Waminoa sp. coverage categories
(ANOVA, F(3, 44) = 1.83, p = 0.158, Figure 5A). Therefore, the distribution of the flatworms
on the coral colonies was heterogeneous, although Waminoa sp. mostly occupied less than
50% of the coral’s surface (Figure 5A). This pattern was also found in the coral genera
showing the highest prevalence of the association, such as Lobophyllia, Goniastrea, and
Favites, as well as in the preferred genus Mycedium (Figure 5B). In particular, in Lobophyllia
corals the flatworms mostly colonized from 26 to 50% of the colony surface, while in both
Goniastrea and Favites about 40% of the colonies had less than 10% of their area occupied by
Waminoa sp. individuals. Almost all the colonies of Mycedium hosting the worms had less
than 10% of their surface covered, while the Waminoa sp. infestation on the coral surface
was mostly severe in Pachyseris and extreme in Fungia (Figure 5B).
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Figure 4. (A) Prevalence (%) of Waminoa sp.–corals associations by genus in the whole study area.
Data are expressed as mean ± SEM. Letters denote Tukey’s significant differences among the different
groups (p < 0.05); the same letter indicates no significant difference (p ≥ 0.05). (B) Host preferences
of Waminoa sp. according to the Van der Ploeg and Scavia selectivity coefficient Ei (−1 = complete
avoidance; 0 = random choice; +1 = exclusive preference) for each coral genus. In both graphs, only
the coral genera with an association prevalence > 5% are reported.

Figure 5. (A) Abundance (%; mean ± SE) of the coral colonies in association with Waminoa individuals
based on the surface coverage (categories are explained in the Materials and Method section) by the
flatworms. (B) Relative abundance (%) of coral colonies per genus showing a low, moderate, severe,
or extreme distribution of Waminoa sp. individuals on their surface.
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3.2. Molecular Analysis

All the sampled coral portions occupied by worms showed no visible surface damage
or lesions. All the candidate genes showed reliable amplification, since the efficiency of
amplification was within the range of acceptable values of 1.49–2.2 (Table S4, [38]).

Significant differences in biomarker levels among portions of coral tissue colonized
or not by Waminoa sp. were recorded (PERMANOVA: df = 1, F = 3.372, p = 0.007). All
the genes showed a lower expression level in samples collected underneath Waminoa sp.
compared to samples of the same coral colony taken at least 5 cm apart from the flatworms
(Figure 6A). Therefore, the presence of Waminoa sp. on coral caused a down-regulation of
the expression of all the investigated genes in the portion of coral tissue directly in contact
with the flatworms. The effect of the presence of Waminoa sp. on the gene expression was
significant for C3 (pMCMC = 0.03), Hsp70 (pMCMC = 0.01), and Actin (pMCMC = 0.005),
but not for C-type lectin (pMCMC = 0.13), (Figure 6A). The highest fold change in expression
levels was observed for Actin, followed by Hsp70, while the lowest change was observed
for C-type lectin, which showed a non-significant down-regulation (Figure 6B).

Figure 6. (A) Changes in expression levels of the analyzed genes (log2-transformed) between coral
fragments not infested (W/0) and infested with Waminoa sp. (W). Significant differences in the gene
expression abundance are indicated with asterisks. (B) Modulation of each gene as fold change. Fold
changes were calculated with respect to levels detected in “W” fragments and were log2-transformed.
In both graphs, data are expressed as means (n = 5).

4. Discussion

4.1. Ecology of the Waminoa-Coral Association in Singapore Reef

Our data contributed to extend the geographic distribution of the Waminoa–coral
association. In fact, to date it has been recorded only in the reefs of the Red Sea [9,11,12,17],
Indonesia [13,20,75], Micronesia [76], Australia [77,78], Japan [8,14], and Taiwan [79]. In
addition, our results indicate that the association appeared to be abundant in the study area,
with a prevalence greater than 10%. In areas close to Singapore, such as Taiwan, less than
1% of the corals analyzed were found colonized by Waminoa sp. [79], while in Wakatobi
(Sulawesi, Indonesia) a total of 4.8% of all observed hard corals were associated with the
acoel worm in 2006 and 2.6% of hard and soft corals in 2007 [13]. However, a comparison
between the prevalence obtained in these studies may not be completely reliable, since
the investigated geographic areas were characterized by diverse habitat structure and
ecological traits, and the survey methods and approaches used were not entirely the same.

Although the presence of the flatworms was reported in both the investigated sites, a
significantly higher prevalence of the association was observed on Kusu Island compared
to Pulau Hantu. This difference could be explained by the greater diversity of coral genera,
rugosity, and reef complexity on Kusu Island [59], which may have contributed to available
niches for Waminoa sp., as well as by the different environmental and physical characteristics
of the sites. Pulau Hantu is sheltered by adjacent and heavily developed islands in an area
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of intense industrialization and ship traffic, while Kusu Island experiences comparatively
lower anthropogenic impacts and higher exposure to wave action [80,81]. This generates a
significantly higher average turbidity, sedimentation, and light attenuation rate in Palau
Hantu, resulting in an overall lower light intensity and shallower euphotic depth than Kusu
Island [81]. These conditions potentially affect the presence of photosynthetic dinoflagellate-
hosting organisms such as Waminoa flatworms, which may also have more difficulty in
colonizing sediment-covered surfaces and may themselves be vulnerable to environmental
disturbances.

The Waminoa sp. host range was updated with additional scleractinian genera, many
of which are new records. Indeed, in Singapore, Waminoa sp. was in association with
17 coral genera belonging to six families, namely Lobophylliidae, Merulinidae, Agariciidae,
Poritidae, Fungiidae, and Acroporidae. Among them, the family Merulinidae was largely
the most represented, as also recorded in Taiwan, despite only six coral genera in total
being found infested by Waminoa sp. [79]. In Sulawesi (Indonesia), the association with
Waminoa was confirmed for 21 coral taxa (Wakatobi [13]), but in Bangka Island it was
recorded for only 4 coral genera (Gardineroseris, Platygyra, Porites, Turbinaria [75]). In
the Red Sea, 13 coral genera were found infected [11]. In Japan, Waminoa individuals
were found on 4 coral genera only, namely Cycloseris, Echinomorpha, Echinophyllia, and
Pachyseris [14], and 13 scleractinian hosts all belonging to Lobophylliidae [8]. Therefore,
Waminoa sp. in Singapore coral reefs showed a wide host range. However, only few
coral genera such as Lobophyllia, Mycedium, Oxypora, and to a lesser extent Goniastrea and
Ctenactis, appeared to be preferred hosts. These coral genera are characterized mainly by
massive/submassive or laminar/encrusting colony morphologies, while corals without
Waminoa sp. are typically branching or columnar. On the contrary, in previous studies
Waminoa sp. was predominantly observed on branching Acropora and Stylophora corals, as
well as in the columnar Tubastrea [11,13]. The question of why Waminoa sp. colonizes and/or
prefers only specific coral taxa remains largely unanswered. We hypothesize that the coral
skeleton morphology could represent a factor driving the choice of the flatworms, given that
some structures could favor protection from predators, allowing the worm to hide. Since
coral mucus represents a possible food source for Waminoa spp. [17], the different mucus
production among different coral taxa could also represent an additional host selection
factor. This is even more relevant in Singapore’s turbid reefs, as some corals can increase
or decrease mucus production as a defense mechanism in response to persistent sediment
stress [82–85]. In this regard, it would be interesting to analyze the mucus production and
composition of the different coral taxa to explore possible correlations with the Waminoa
presence. Finally, since Waminoa also feed on zooplankton caught by corals [18], the ability
of a coral species to capture zooplankton, which is determined by its morphology, coral
polyp size, and the type of tentacles and nematocysts (reviewed in [86]), may play an
important role in the Waminoa host selection. However, in addition to these hypotheses,
we cannot exclude that the Waminoa individuals analyzed here, albeit being of a single
morphotype, did not belong to a single species but represented a complex of cryptic species,
each of which specialized in a different host.

Corals of Singapore showed variable patterns of flatworm density, ranging from
colonies that were densely and extremely infested to others that were only moderately and
sparsely populated, as previously observed [11]. However, as also occurred in Okinawa [14],
Waminoa sp. individuals were not equally distributed among different host taxa. In
particular, in Singapore we detected that different Waminoa infestation rates could be
related to the coral growth form. Indeed, in corals with massive growth forms (such as
Lobophyllia, Goniastrea, Favites, and Platygyra), Waminoa sp. showed a heterogeneous pattern
of distribution (but in general < 50% of the coral surface was occupied). Corals with a
foliose and/or encrusting growth form (Mycedium, Podabacia, Oxypora, and Echinopora)
were sparsely or moderately covered by flatworms, while Fungidae corals (Ctenactis and
Fungia) appeared extremely colonized by Waminoa sp., as also previously observed [20].
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4.2. Effect of Waminoa sp. on Coral Putative Immune- and Stress-Response Genes

Waminoa spp. can cause physiological damage to corals by inhibiting photosynthesis,
reducing the coral tolerance to environmental stress, and impairing coral respiration and
feeding [11,17,20]. Our analysis on coral gene expression produced a detailed description
of the early response to stress at cell/tissue level, since changes at the molecular level occur
before morphological and physiological impairment appear evident [87,88].

Our results show that Waminoa sp. affected the analyzed host molecular pathways
associated with the coral’s stress tolerance and immunity response, causing a uniform
down-regulation of the expression of all the investigated genes. Moreover, this modulation
was only observed in the physically undamaged coral tissue portions colonized by Waminoa
individuals and not in those free from flatworms. This might suggest that, as previously
observed in corals infected by bacteria or protozoans [24,46,67], the stress response was
confined in a restricted area just below the flatworm, even though polyps are linked together
by common tissue in the coral colony.

The complement pathway of the immune system is triggered by lectins binding a
pathogen-associated molecule and results in the activation of the complement component
factor C3 and C4 [89]. Indeed, in corals, C-type lectin and C3 protein were usually up-regulated
and activated in response to epizootic diseases [47,48,90,91]. However, their down-regulation
may reflect suppression of host immunity, as previously observed for the association be-
tween corals and the microalga Chromera [92]. Mohamed et al. [92] also suggested that the
down-regulation of some PRRs could reflect the host attempting to limit interactions with
non-beneficial organisms, since both complement C3 and the C-type lectin have been im-
plicated in symbiont recognition and in host-symbiont communication [34]. In addition,
the down-regulation of C-type lectin and C3 has been observed in corals subjected to tem-
perature/light stress, suggesting that these stresses might compromise the coral’s immune
defenses and therefore increase the coral’s susceptibility to diseases [38,93–95]. Likewise, the
decreased expression of the C-type lectin and C3 here suggests that the presence of Waminoa
sp. individuals on coral tissue might interfere with the ability of the whole host coral
to respond to the attack of various pathogens and at the same time could make it more
vulnerable to environmental stressors. However, while the C3 appeared to be significantly
down-regulated by the flatworm presence, the decrease in expression of the lectin was
not significant. Considering that C-type lectins have been shown to respond immediately
following an immune challenge [34,90] but may not show any significant response at
later times [47], we hypothesize that the observed modulation could be influenced by the
sampling times.

The cytoplasmic chaperonin Hsp70 is involved in assembly of newly synthesized
proteins and in the refolding of misfolded or aggregated proteins, contributing to the
protein transfer to different cellular compartments or to the proteolytic machinery and
acting as cellular defensive mechanism [96]. Up-regulation of the Hsp70 has been pro-
posed as an activator of other components of the coral effector immune systems, such
as the prophenoloxidase cascade, in corals infected by pathogens [47]. On the contrary,
the down-regulation of Hsp70 in corals reflected the impairment of the cellular defense
mechanisms that is due to severe and intolerable stress [97–99], and may indicate a reduced
activity of the immune system because of diseases [24]. In addition, since Hsps are ATP-
dependent chaperones, the decrease of Hsp70 expression may be related to the high-energy
expenditure necessary to reduce the deleterious effects of Waminoa sp. and restore cellular
damage. However, it is important to underline that, since the roles of Hsp70 in organismal
function are broad, changes in expression of this gene could also reflect changes in other
physiological processes.

Actin was the most responsive gene, showing the greatest down-regulation. In ad-
dition to being fundamental for cell motility, contractibility, mitosis, and intracellular
transport, Actin is also an important part of the nuclear complex, being required for the
transcription of RNA polymerases and in the export of RNAs and proteins from the nu-
cleus [100]. Down-regulation of Actin has previously been observed in corals subjected
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to thermal stress and acidification [38,68,101,102]. Since Actin is a major cytoskeletal com-
ponent involved in growth, down-regulation of this gene could be indicative of growth
inhibition caused by the presence of Waminoa sp. Moreover, the reduced expression of
Actin may reflect a change in the regulation of gene transcription of proteins involved
in cytoskeletal interactions and may imply changes in intracellular transport and cell
shape/integrity, as previously suggested [102]. The overall down-regulation of all the
analyzed genes may reflect a negative effect of the acoelomate ectosymbiont Waminoa sp.
on the host coral L. radians. However, alternative scenarios should also be considered. For
example, it could be possible that Waminoa did not cause detectable cellular stress to hosts,
preferentially colonizing polyps with reduced defense responses, or interfering with polyp
feeding and causing the observed gene down-regulation, as reduced resources would lead
to reduced investment in defense.

In conclusion, our study demonstrated that Waminoa sp. showed a high prevalence
and wide host range in Singapore coral reefs and its distribution patterns were specific to
certain scleractinian host genera. Moreover, Waminoa sp. could impair both the cellular
homeostasis and components of the immune system of the host, thus representing a
potential further threat for coral communities living in an area already subjected to multiple
stresses, such as sedimentation and light limitation. However, further studies analyzing
more genes and biomarkers in different hosts are necessary to have a more complete picture
of the association.
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Abstract: The presence of associated endofauna can have an impact on the health of corals. During
fieldwork on the southern Caribbean island of Curaçao in 2021, the presence of an unknown coral-
dwelling worm snail was discovered, which appeared to cause damage to its hosts. A study of photo
archives revealed that the species was already present during earlier surveys at Curaçao since 2014
and also in the southern Caribbean island of Bonaire in 2019. It was not found in St. Eustatius, an
island in the eastern Caribbean, during an expedition in 2015. The vermetid snail was preliminarily
identified as Petaloconchus sp. Its habitat choice resembles that of P. keenae, a West Pacific coral
symbiont. The Caribbean species was observed in 21 host coral species, more than reported for any
other vermetid. Because Petaloconchus sp. is a habitat generalist, it is possible that it was introduced
from an area with another host-coral fauna. The unknown vermetid is considered to be cryptogenic
until future studies reveal its actual identity and its native range.

Keywords: coral damage; coral reef; host generalist; Millepora; scleractinia

1. Introduction

Worm snails of the family Vermetidae are common inhabitants of coral reefs and rocky
shores in tropical to warm–temperate marine coastal waters, where they live embedded
in dead or live corals or attached to other hard substrata [1]. They have tube-shaped
shells, mostly without the regular shell coiling [2,3], which in some species form dense,
reef-building aggregations [4–6]. Because of their reef-building capacity in the intertidal
or immediate subtidal zone, they play an important role as sea-level and sea-surface
temperature indicators in the fossil record [6–8]. The history of Vermetidae systematics is
complex, which is partly due to the confusion of their calcareous tubes with those of other
organisms, such as serpulid worms [9].

Although there is much literature on coral-associated fauna in the Caribbean, ver-
metid snails are usually not included [10–13]. Apparently, all host-related information on
coral-associated vermetids is from the Indo-Pacific, predominantly involving Ceraesignum
maximum (G.B. Sowerby I, 1825), previously known as Dendropoma maxima, which dwells
on scleractinians, blue corals, and fire corals [14–16]. This species is notorious because of its
harmful effect on the growth, survival, and photophysiology of host corals [17–20]. There
are only a few other coral-vermetid records from the Indo-Pacific, including Petaloconchus
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keenae Hadfield & Kay, 1972 near Hawaii [21], Thylacodes hadfieldi (W.C. Kelly, 2007) near
Guam [22], and Thylacodes spp. off the west coast of India [23].

During a recent survey of the coral-associated fauna of Curaçao, coral-dwelling worm
snails were discovered for the first time in the Caribbean. In order to investigate their
preferred habitats, all observed host coral species were recorded. Because the species
appears to be cryptogenic, we discuss why no earlier records are known for the Caribbean.
The present report serves to create awareness for this cryptogenic species for future research
on its origin and its possible effect on the health of Caribbean coral reefs.

2. Materials and Methods

The survey of coral-associated fauna took place during October–December 2021 along
the leeward side of the island of Curaçao. Because the coral-dwelling vermetid was not
recorded before in the Caribbean and was overlooked by the first author during earlier
surveys, his photo archive was checked for the presence of this snail during fieldwork at
Curaçao in 2017, 2015, and 2014, Bonaire in 2019, and St. Eustatius in 2015. Curaçao and
Bonaire are located in the southern Caribbean and St. Eustatius in the eastern Caribbean
(Figure 1). All association records were listed per island and year (Table 1). Photographic
evidence (showing a shell with the operculum present) is presented for each host (Supple-
mentary Materials).

 
Figure 1. Map of the eastern part of the Caribbean showing the position of Curaçao, Bonaire and St.
Eustatius, where the occurrence of coral-dwelling vermetids was investigated.

3. Results

A total of 21 host-coral species—19 scleractinians (Anthozoa) and two milleporids
(Hydrozoa)—were recorded, divided over 11 families and 14 genera (Table 1). A few
worm snail specimens were found on dead unidentified coral. All records were from the
southern Caribbean islands Bonaire and Curaçao, with none from St. Eustatius in the
eastern Caribbean. The worm snails with a clearly visible operculum were identified as
Petaloconchus sp. (Figures 2 and 3; Supplementary Materials Figures S1–S23). Its operculum
has upward-folded margins, giving it a tapering appearance, and its diameter was smaller
than that of the shells’ aperture, which prevented a total shutting of the tube (Figure 3). A
small, concave operculum is characteristic for the genus Petaloconchus H.C. Lea, 1843 [24].
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Table 1. Records of stony corals as host species (by family) for the vermetid gastropod Petaloconchus
sp. based on photographs made at Curaçao (a: 2021; b: 2017; c: 2015; d: 2014), Bonaire (e: 2019), and
St. Eustatius (2015).

Host Species Curaçao Bonaire St. Eustatius

Anthozoa: Scleractinia
Agariciidae

Agaricia agaricites (Linnaeus, 1758) a e –
Agaricia humilis (Verrill, 1901) a – –

Agaricia lamarcki Milne Edwards & Haime,
1851 a – –

Astrocoeniidae
Stephanocoenia intersepta (Esper, 1795) a – –

Dendrophylliidae
Cladopsammia manuelensis (Chevalier, 1966) b – –

Faviidae
Colpophyllia natans (Houttuyn, 1772) a – –

Diploria labyrinthiformis (Linnaeus, 1758) a – –
Pseudodiploria strigosa (Dana, 1846) a,d – –

Meandrinidae
Eusmilia fastigiata (Pallas, 1766) d – –

Meandrina meandrites (Linnaeus, 1758) a – –
Merulinidae

Orbicella annularis (Ellis & Solander, 1786) a e –
Orbicella faveolata (Ellis & Solander, 1786) a – –

Orbicella franksi (Gregory, 1895) a e –
Montastraeidae

Montastraea cavernosa (Linnaeus, 1767) a e –
Pocilloporidae

Madracis auretenra Locke, Weil & Coates,
2007 a – –

Madracis decactis (Lyman, 1859) d e –
Madracis senaria Wells, 1973 a e –

Poritidae
Porites astreoides Lamarck, 1816 a,b e –

Rhizangiidae
Siderastrea siderea (Ellis & Solander, 1768) a – –

Hydrozoa
Milleporidae

Millepora alcicornis Linnaeus, 1758 a – –
Millepora complanata Lamarck, 1816 a,c – –

Unidentified dead coral a – –

Owing to its symbiotic nature, the coral-dwelling worm snail of the present study
cannot be confused with previously reported Caribbean species, such as the reef-building
Petaloconchus varians (d’Orbigny, 1839) in Venezuela [5] and Brazil [25]. The invasive
vermetid Eualetes tulipa (Chenu, 1843) has also been recorded in the West Atlantic and the
Caribbean, but its operculum is much darker than that of our specimens and it has not
been reported as a coral symbiont but as colonies on rock and artificial substrate [26,27].
Dendropoma corrodens (d’Orbigny, 1841) is a small worm snail species (ca. 1 cm long),
known from the Caribbean and the mid-Atlantic, which forms aggregations on dead coral
substrate [26].

Several snail tubes were covered by algae and surrounded by faecal pellets (Figure 3).
Many were surrounded by dead coral tissue (Figure 3B,C,E) or attached to dead coral next
to the host’s margin (Figure 3A). A few snails showed remnants of mucus webs (Figures
2A and 3D,F). In some corals, the snail tube was killing the polyps underneath and did not
become overgrown by coral tissue (Figure 2C,D; Supplementary Materials Figures S17 and
S19). In other ones no damage was observed, such as in Cladopsammia manuelensis, Eusmilia
fastigiata, Madracis auretenra, M. decactis and Millepora alcicornis (Figure 2A,B; Supplementary
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Materials Figures S4 and S7–S9). Cladopsammia manuelensis has recently been discovered as
a shallow-water coral in the Caribbean [28,29].

 

Figure 2. Worm snails (Petaloconchus sp.) hosted by the branching corals Madracis auretenra (A) and
Millepora alcicornis (B), and the massive corals Porites astreoides (C) and Siderastrea siderea (D). The
snail tube in M. alcicornis is entirely overgrown by the coral (B), whereas the snails in both massive
corals have caused considerable damage to their hosts (C,D). Tube diameter: ca. 4 mm.

4. Discussion

Since Caribbean coral-dwelling vermetids previously were not recognized in the
scientific literature, they may have become introduced recently or they may have been
overlooked. The tubes of the snails can be confused with those of polychaete worms of
the serpulid genus Spirobranchus Blainville, 1818, which are common in the Caribbean,
where they have a wide host range [30]. Both groups, coral-dwelling worm snails and
serpulid worms, have their tubes partially embedded in the coral skeleton and both
possess an operculum that is used to close the tube for the protection of soft body-
parts [2,31]. Spirobranchus worms are eye-catching because of their high densities and
colorful, twin-conispiral branchiae [31,32]. Vermetid snails, on the other hand, use trans-
parent mucus nets to catch food (Figure 3D,F) [33–35], which makes them less remarkable
(Supplementary Materials Figure S19).
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Figure 3. Close-up images of worm snails (Petaloconchus sp.) and their hosts: Siderastrea siderea (A),
Porites astreoides (B,D–F), and Madracis auretenra (C). The tubes are partly or entirely overgrown or
surrounded by green and red algae (a). The operculum (o) appears to be tapering towards one side
because of the margins being turned upwards next to the tentacles. Some worms show remnants of
mucus nets (m). Faecal pellets are common around the tubes (fp). Tube diameter: ca. 4 mm.

The habitat of Petaloconchus sp. resembles that of P. keenae, which has been reported as
an associate of the Indo-Pacific coral genera Porites, Montipora, and Pavona at the Hawaiian
islands [21], and possibly as Petaloconchus cf. keenae living in corals at Kwajalein Atoll in
the Marshall Islands [36]. It is therefore reasonable to speculate that the coral-associated
Petaloconchus sp. in the southern Caribbean is the same species and that it has been
introduced from the tropical Indo-Pacific. As long as its identity cannot be confirmed by
molecular analyses and morphological studies of the radula, protoconch, egg capsules,
and coloration of shell and body [21,22], we consider the present species to be cryptogenic
in the southern Caribbean. An earlier presence of such Caribbean worm snails could be
verified with the help of coral collections in natural history museums [37]. Most museum
collections of stony corals consist of dry specimens, but remnants of vermetid shells may
still be present and recognizable.

Considering the poor knowledge of Petaloconchus sp. in the Caribbean, it is relevant to
know of possible natural enemies that may be able to remove evidence of coral-dwelling
vermetids. The carpiliid crab Carpilius convexus (Forskål, 1775) has been reported to prey
on the vermetid Ceraesignum maximum in the Red Sea by breaking its shell and the coral in
which it lives [38]. A possible predator of Petaloconchus sp. would therefore be Carpilius
corallinus Herbst, 1783, which has been observed to crush large tubes of serpulid worms
and also parts of the host coral [39].

The host-coral range in the present study (21 species) is more extensive than recorded
for any other coral-associated vermetid. The host ranges of the Indo-Pacific vermetids C.
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maximum and P. keenae (mentioned above) are based on miscellaneous records and might be
much larger in reality. Previous field surveys specifically targeting host-coral ranges (and
prey preferences) of gastropod families and genera also yielded various additional host
records and showed that some species are very host-specific, e.g., Leptoconchus [40] and
Epitoniidae [41], and that others are generalists, such as some species of Coralliophila [42]
and Drupella [43,44]. Research on coral-dwelling nudibranchs, such as the well-camouflaged
Phestilla spp., also demonstrates that an ongoing search for possible hosts results in new
association records and species discoveries [45–47].

The occurrence of coral injuries (dead coral surface and shells overgrowing coral
polyps) suggests that the snails are harmful to their hosts, which is relevant for coral reef
conservation [48,49]. It is possible that coral polyps are killed by the snail’s mucus webs
(Figures 2A and 3D,F), which may smother and even poison them if the mucus is toxic,
as reported for Ceraesignum maximum [50]. The occurrence of turf algae on the shells is
expected to increase damage to the hosts, as observed in Spirobranchus tubes overgrowing
coral polyps [31,32]. Future field research with a focus on reef-dwelling vermetids will
likely result in more information on their densities and additional host records. Molecular
analyses may reveal the actual identity of the present species and its native range, and also
whether cryptic speciation has taken place across the various host corals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14030196/s1, Supplementary S1: photographic host records
of Petaloconchus sp.: Figure S1: Agaricia agaricites at Bonaire (2019); Figure S2: Agaricia humilis at
Curaçao (2021); Figure S3: Agaricia lamarcki at Curaçao (2021); Figure S4: Cladopsammia manuelensis at
Curaçao (2017); Figure S5: Colpophyllia natans at Curaçao (2021); Figure S6: Diploria labyrinthiformis
at Curaçao (2021); Figure S7: Eusmilia fastigiata at Curaçao (2014); Figure S8: Madracis auretenra at
Curaçao (2021); Figure S9: Madracis decactis at Bonaire (2019); Figure S10: Madracis senaria at Curaçao
(2021); Figure S11: Madracis senaria at Bonaire (2019); Figure S12: Meandrina meandrites at Curaçao
(2021); Figure S13: Millepora alcicornis at Curaçao (2021); Figure S14: Millepora complanata at Curaçao
(2015); Figure S15: Montastraea cavernosa at Bonaire (2019); Figure S16: Orbicella annularis at Bonaire
(2019); Figure S17: Orbicella faveolata at Curaçao (2021); Figure S18: Orbicella franksi at Bonaire (2019);
Figure S19: Porites astreoides at Curaçao (2021); Figure S20: Pseudodiploria strigosa at Curaçao (2021);
Figure S21: Siderastrea siderea at Curaçao (2021); Figure S22: Stephanocoenia intersepta at Curaçao (2021);
Figure S23: Unidentified dead coral at Curaçao (2021).
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Abstract: Species identification for spawning corals relies heavily on morphology. Recent molecular
phylogenetic approaches have demonstrated the limits of traditional coral taxonomy based solely
on skeletal morphology. Merulinidae is considered a complex taxonomic group, containing 24 gen-
era and 149 species. This family is one of the most taxonomically challenging and its taxonomy
has largely improved in recent studies. However, studies of the phylogeny of Merulinidae are
constrained by limited geographic scales. In Taiwan, merulinid corals are dominant in non-reefal
communities on northeast coasts and they consistently spawn between summer and fall. This study
is a first attempt to establish a molecular database of merulinid corals in this new area, includ-
ing a volcanic island (Kueishan Island), and provide information about sexual reproduction. We
analyzed 65 specimens, including 9 genera and 28 species collected from Taiwan using one mitochon-
drial marker (COI: cytochrome c oxidase subunit 1 gene) and three nuclear markers (ITS: nuclear
ribosomal internal transcribed spacer, 28S rDNA D1 and D2, and histone H3) to re-examine phyloge-
netic relationships and search for new species. Overall, 58 COI sequences, 59 for ITS, 63 for 28S, and
62 histone sequences were newly obtained from the collected specimens. The reconstructed molecular
tree demonstrates that all the specimens and reference sequences we examined are clustered within
Merulinidae. Subclades A, B, C, D/E, F, G, H, and I are congruent with previous studies. However,
Astrea curta is separated from the other congeneric species, Astrea annuligera (XVII-B), which is a sister
to Favites and defined as a new subclade K. In addition, two new species (Paragoniastrea deformis and
Paragoniastrea australensis) were discovered for the first time in Taiwan, and we defined them as a
new subclade J. In addition, A. curta, P. auastralensis, and P. deformis are all hermaphroditic spawners
and released bundles in July. This study greatly improves the accuracy of biodiversity estimates,
systematic taxonomy, and reproduction for Taiwan’s coral ecosystem.

Keywords: taxonomy; Taiwanese corals; molecular phylogeny; scleractinian corals; reproduction

1. Introduction

1.1. Uncovering Taxonomic Progress

The identification of scleractinian corals based solely on morphology is challenging
because some scleractinian species can exhibit environment-correlated variations in mor-
phology, i.e., Ecomorphs [1]. In addition, species display phenotypic plasticity across
their distribution, making it difficult to rely on shared morphological features to identify
them [2,3]. Therefore, it is important to combine morphological and molecular characteris-
tics to improve the accuracy of the determination of evolutionary relationships.

The traditional classification of scleractinia into seven suborders was out of date [4–7].
Given the comprehensive study of the entire taxon with morphological and molecular
approaches, the scleractinian corals can be generally divided into three major groups: basal,
robust and complex [8]. Furthermore, they are separated into 21 clades (I-XXI) [8,9]. Many
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scleractinian corals at family and genus were revised or remained unclear taxonomic posi-
tion (Scleractinia incertae sedis). For example, Diploastrea helipora and Montastraea carvernosa
were separated into Diploastraeidae Chevalier & Beauvais, 1987, and Montastraeaidae Yabe
& Sugiyama, 1941, respectively [10]. Euphylliidae Milne Edward & Haime, 1857, contains
six genera: Ctenella Matthai, 1982; Euphyllia Dana, 1846; Galaxea Oken, 1815; Gyrosmilia
Milne Edwards & Haime, 1851; Montigyra Matthai, 1928; Simplastrea Umbgrove, 1939; and
Frimbriaphyllia Veron & Pichon, 1980, the last of which was redefined from the conventional
Euphyllia ancora, E. yaeyamaensis, and E. divisa [11]. In addition, the genera Nemenzophyllia,
Physogyra, and Plerogyra were removed from Euphylliidae because they formed a separate
clade with Blastomussa (clade XIV) [9,12].

1.2. Revision of Merulinidae (Clade XVII)

The species identification of Faviidae, Gregory, 1900 and Wells, 1956 was based on their
budding patterns and macromorphological characteristics They were traditionally subdi-
vided into two subfamilies based on whether their budding was primarily intracalicular
(Caulastraea, Favia, Diploria, Favites, Oulophyllia, Goniastrea, Platygyra, Leptoria, Hydnophora,
Manicina, and Colpophyllia) or extracalicular (Montastraea, Diploastrea, Cyphastrea, and Echino-
pora). A third, smaller, subfamily displays intracalicular budding and very well-developed
septal lobes (trabecular versus lamellar, continuous versus discontinuous). Genera within
the Faviinae are distinguished by having a colony form (ceroid versus plocoid, mendroid
versus phaceloid) and the columella structure (trabecular versus lamellar versus continuous
versus discontinuous).

Based on the molecular results, the genera of Faviidae not only displayed a poly-
phyletic pattern, but were also clustered together with species from four conventional coral
families: Faviidae Milne Edwards & Haime, 1857; Merulinidae Verrill, 1995; Pectinidae
Rafinesque, 1815; and Trachyphylliidae Well, 1956, which had previously been recovered
as Merulinidae (XVII) [10,13–17]. The faviid corals outside of clade XVII were assigned
to other families. For example: Plesiastrea versipora, Diploastrea helipora, and Montastraea
cavernosa were reclassified as Plesiastreidae Dai & Horng, 2009, Diploastraeidae Chevalier
& Beauvais, 1987, and Montastraeidae Yabe & Sugiyama, 1941, respectively. Faviidae is
limited to Atlantic corals such as Favia, Diploria, and Manicina because they are evolution-
arily divergent to the Pacific corals [18,19]. Furthermore, phylogenies based on multiple
genetic markers and morphological characteristics demonstrated that the species/genera
Merulinidae are divided into nine subclades (A, B, C, D/E, F, G, H, and I) [10,14,16].
Paramontastraea, Orbicella, and Astrea are new genera in the Merulinidae, revised from
Montastraea. Given these results, Merulinidae contains the most genera (with 24) and the
second-most species (with 149) among the scleractinians [20] (Supplementary Table S1). Its
species are commonly distributed in the Indo-Pacific [2,21].

1.3. Taiwan Taxonomy and Species Diversity

Taiwan is located at the center of the Philippine–Japan Island arc at a latitude of
21.90◦ N to 25.3◦ N, crossing from the Tropic of Cancer close to the northern tip of the Coral
Triangle [22]. To date, 317 scleractinian coral species have been reported in Taiwan and
display a latitudinal gradient of decreasing species diversity from south to north [23,24].
In addition, coral assemblages contain 21 genera covering 87% of the total number of
genera of merulinid corals and 89 species covering 60% of the total number of merulinid
species [25]. Taxonomic phylogenetic studies of scleractinian corals collected from Taiwan
are very limited [9,11,26–29]. In addition, biogeographical integration is needed on a
larger scale. For example, Polycyathus chaishanensis (Caryophyllidae) was proposed to be
endemic to Taiwan [27]. Later, this species was also found to inhabit Indonesia, based
on molecular evidence [30]. Euphyllia ancora has been a model species for studies on
sexual reproduction [31] and its genus was recently revised to Fimbraphyllia [11]. This
revision created an important foundation on the convergent and divergent functionalities
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of genes and compared functional genes among the cnidarians underlaying precisely the
phylogenetic position of the studied species.

1.4. Purpose of This Research

The phylogeny of Merulinidae reconstructed in Huang et al. [16] was based on sam-
ples/taxa from Australia, Singapore, Japan, and the Philipines in the Pacific Ocean and the
Atlantic Ocean. Taiwan is located in the Pacific Ocean; it is an important stepping stone
between the Philippines and Japan. Merulinid corals are major spawning members and
consistently spawn between summer and fall in non-reefal coral communities in north-
ern Taiwan [32]. These spawning corals are important for maintaining local recruitment,
providing heterogenetic materials to the local population and connecting across different
populations. However, some convergent macro-morphological characteristics make it
challenging to identify some genera in the field, such as Goniastrea (ceroid form), Favites
(ceroid and plocoid forms), and Diploastraea (plocoid form) [24,33]. In addition, species
identification for spawning corals based on morphological criteria in the fields and under-
water photographs is difficult because the polyps are deformed when “the mature sperm
and eggs move to the mouths of polys” (i.e., bundle setting).

As mentioned above, these challenges can be resolved by molecular approaches, as
was demonstrated by Huang et al. [10]. For example, ceroid forms of Goniastrea, Diploas-
traea, and Favites are clearly separated in subclades A, B, and F based on phylogenetic
reconstruction using multiple loci [10]. Therefore, Chen et al. [32] identified the species
to the genus level of each specimen using molecular approaches and the BLAST tool [34].
Subsequently, specimens were identified to species level using the morphology of their
skeletons. The established molecular database of merulinid corals can provide further
insight into the phylogenetic relationships among the subclades of Merulinidae. The
objectives in this present study were to: (1) establish a molecular database of spawning
corals of Merulinidae from Taiwan, which have not been studied before; (2) re-examine the
phylogenetic relationship between the specimens collected from northern Taiwan and the
merulinid corals in previous studies, using phylogeny reconstructions based on multiple
loci; and (3) record any new species or subclades we might find in this region.

2. Materials and Methods

2.1. Sample Collection

Chen et al. [32] demonstrated that the spawning season for merulinid corals is July
to August, from 2014 to 2016, in northeast Taiwan. Merulinid corals with bundle-setting
behavior and released bundles still attached outside of the mouths of polyps were collected
at night by scuba diving. Some corals were collected at two offshore islands and their
sexual reproductive behavior was observed using histological approaches [32]. A total
of 65 specimens from four sites were chosen for this study: 26 specimens from Pitouji-
iao (25◦07′34′′ N, 121◦54′55′′ E), 21 from Longdong (25◦05′02′′ N, 121◦55′09′′ E), 3 from
Keelung Island (25◦07′34′′ N, 121◦54′55′′ E), and 12 from Kueishan Island (24◦84′19′′ N,
121◦57′06′′ E) (Figure 1). Coral fragments were collected by using chisels and hammers
and separated into two parts. One was fixed in 90% ethanol for molecular analysis. The
other was bleached in sodium hypochlorite until the tissue was entirely removed, rinsed in
freshwater, and air-dried for the morphological analysis.

2.2. Species Identification

Chen et al. [32] identified 54 coral species in 23 genera and 8 families (Acroporidae,
Agariciidae, Fungiidae, Lobophylliidae, Merulinidae, Poritidae, Pocilloporidae, and Psam-
mocoridae), which were sexually reproductive between July and October. For Merulinidae,
nine genera and 26 species collected from northeast Taiwan were chosen for the molec-
ular phylogenetic study: Astrea curta (n = 5), Astrea annuligera (n = 1), Coelastrea aspera
(n = 2), Coelastrea palauensis (n = 1), Cyphastrea chalcidicum (n = 2), Dipsastraea favus (n = 4),
Dipsastraea lizardensis (n = 1), Dipsastraea matthaii (n = 1), Dipsastraea rotumana (n = 1),
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Favites flexuosa (n = 1), Favites pentagona (n = 7), Favites stylifera (n = 2), Favites magnistellata
(n = 2), Favites valenciennesi (n = 2), Mycedium elephantotus (n = 1), Mycedium robokaki (n = 1),
Mycedium mancaoi (n = 1), Paragoniastraea australensis (n = 5), Paragoniastrea deformis (n = 6),
Pectinia paeonia (n = 1), Pectinia lactuca (n = 1), Platygyra daedalea (n = 1), Platygyra lamellina
(n = 2), Platygyra ryukyuensis (n = 5), Platygyra pini (n = 2), Platygyra sinensis (n = 1), and
Platygyra verweyi (n = 3). Those specimens were identified to the genus level using molec-
ular sequences and BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST/, accessed
on 2 April 2020) [34]. Subsequently, individuals were identified to the species level using
morphological keys, notably Dai and Cheng [25]. Specimens that could not be identified
morphologically (cerioid corals: Goniastrea and Favites, plocoid corals: Favites and Dipsas-
traea, unknown species, etc.) were preliminarily identified to the genus level and then
re-evaluated after molecular analyses. DNA extraction, PCR amplification, and sequencing

Figure 1. Map showing sampling sites at Pitoujiiao, Longdong, Keelung Island, and Kueishan Island
in northeastern Taiwan.

Genomic DNA was extracted from 90% ethanol-preserved tissue specimens using
the automated LabTurbo Nucleic Acid Mini Kit LGD480-220 (Taigen Bioscience Corpora-
tion), following the manufacturer’s protocols. A total of four genes were amplified from
the collected specimens, including one mitochondrial marker and three nuclear mark-
ers, following Huang et al. [16]: (1) cytochrome c oxidase subunit I segment (MCOIF: 5′-
TCTACAAATCATAAAGACATAGG-3′, MCOIR:5′-GAGAAATTATACCAAAACCAGG-3′);
(2) nuclear ribosomal internal transcribed spacer segment (ITS, A18S: 5′-GATCGAACGGTTT
AGTGAGG-3′, ITS-4: 5′-TCCTCCGCTTATTGATATGC-3′); (3) two variable domain (D1
and D2) at 5′end of 28S ribosomal RNA segment (C1′: 5′-ACCCGCTGAATTTAAGCAT-
3′, D2MAD: 5′-GACGATCGATTTGCACGTCA-3′); and (4) histone H3 segment (H3F: 5′-
ATGGCTCGTACCAAGCAGACVGC-3′, H3R: 5′-ATATCCTTR GGCATRATRGTGAC-3′).
PCR was carried out using 12.5 μL of Fast-RunTM Advanced Taq Master Mix (Protech, Taipei,
Taiwan), 10 mM each of forward and reverse ITS primer, 10–100 ng/μL DNA template, and
deionized water to a final volume of 25 μL. The PCR profiles were as follows: an initial
denaturation stage (95 ◦C, 5 min); 35 cycles of a denaturation step (95 ◦C, 30 s, an annealing
step (54 ◦C, 40 s); an elongation step (72 ◦C, 7 min); and a final extension at 72 ◦C, for 5 min.
The PCR products were confirmed by electrophoresis and subcloned into a pGEM-T easy
vector (Promega, Madison, WI, USA). Three inserted cDNA fragments were sequenced
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with the pUC/M13 forward and reverse primers using an ABI Prism 310 Genetic Analyzer
(Applied Biosystems, Forster City, CA, USA).

2.3. Sequence Management, Alignment, and Matrix

The raw forward and reverse sequences were edited and assembled into consensus
sequences by the CodonCode Aligner V6.0.2 program (CodonCode Corporation Dedham,
MA, USA). To exclude sequences amplified from zooxanthellae, the consensus sequences ob-
tained were used to perform the BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST/,
accessed on 2 April 2020) [34]. The sequences obtained from the collected specimens of
spawning corals in northern Taiwan were deposited into the NCBI GenBank (accession
numbers in Supplementary Table S1). Newly obtained sequences for COI (n = 58), ITS
(n = 59), 28S (n = 63), and histone (n = 62) were combined with sequences retrieved from
public sources (Table S1).

All sequences for each gene were automatically aligned with the accurate alignment
option (E-INS-i) in MAFFT v.7 ([35]; http://mafft.cbrc.jp/alighment/server/, accessed on
10 January 2021) under default parameters. The resulting multiple sequence alignments
were translated into inferred amino acid sequences as a guide for inferred gap placement
between coding regions using Se-Al v.2.0a11 [36]. The amino acid residue and nucleotide
were manually adjusted to minimize the gaps. PAUPRat software v.3.1 [37] on the CIPRES
Science Gateway (http://www.phylo.org, accessed on 10 January 2021) [38] was used to
calculate descriptive statistics (sequence variations and informative sites) for the compared
sequences of each gene.

2.4. Molecular Datasets

Some sequences were not obtained because the gene failed to amplify during PCR.
Operational taxonomic units (OTUs) were created for each gene for the phylogeny recon-
struction. The phylogeny reconstructions were conducted based on the combined gene
matrix (COI, 28S, ITS, and histone); IGR (noncoding intergenic region between COI and the
formylmethionine transfer RNA gene) was ignored because the overall alignment was not
similar enough.

The sequences of merulinid corals published in Huang et al. [16] were retrieved
from GenBank. They included 19 genera in Merulinidae: Merulina (2 species), Caulastraea
(3 species), Cyphastrea (3 species), Dipsastraea (13 species), Echinopora (5 species), Favites
(13 species), Goniastrea (5 species), Hydnophora (2 species), Leptoria (2 species), Mycedium
(2 species), Orbicella (1 species), Oulophyllia (2 species), Pectinia (3 species), Platygyra
(8 species), Scapophyllia (1 species), and Trachyphyllia (1 species); two resurrected genera
(Astrea (2 species), Coelastrea (2 species)); and one new genus (Paramontastraea (1 species)).
In total, we retrieved 124 sequences for 28S rDNA, 121 sequences for histone H3, 91 for ITS
rDNA, and 112 for COI from the GenBank.

The clades distant from the merulinid corals (XVIII-XXI) were included for the phy-
logenetic inference following Huang et al. [10]. These sequences were comprised of three
species of Lobophylliidae (Moseleya latistellata, Acanthastrea echinata, and Lobophyllia corym-
bosa), three species of Faviidae (Montastraea multipunctata, Favia fragum, and Mussa angulosa),
and one species of Plesiastreidae (Plesiastrea versipora). Phylogeny reconstructions were
created for each gene, along with four combined datasets based on maximum likelihood
and Bayesian analyses.

2.5. Molecular Phylogenetic Analysis

The maximum likelihood (ML) trees of each partition were reconstructed with raxml-
GUI v.2.0 [39] using the best model (GTR+I+G). The five datasets, including three nuclear
genes (ITS, 28S, and histone H3), one mitochondrial gene (COI), and a combined gene
dataset, were partitioned based on coding position. The combined gene datasets were
conducted with five independent runs, and the tree with the best ML scores was selected
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as the final tree. Nodal support was assessed by bootstrapping, and only the nodes with
≥70 [40] based on 1000 pseudo-replicates were shown.

Bayesian inference (BI) was carried out in MrBayes v.3.2.6 [41]. PartitionFinder was
used to select the best partition scheme and accompanying substitution model, according
to the Bayesian information criterion [42]. The best-fit substitution model was determined
by ProtTest3. Two Monte Carlo Markov chains (MCMCs) were run for 4 × 106 million
generations in two simultaneous runs, each with four different chains. The convergence
of the estimates was checked by the standard deviation of split frequencies and by mon-
itoring the likelihood score over time using Tracer v.1.6 [43]. Trees were sampled every
1000 generations, with the first 2500 (25%) discarded as “burn-in.” The remaining sampled
trees were collected to construct a 50% majority-rule BI consensus tree. Nodal support from
BI was assessed, and only nodes with ≥0.90 posterior probabilities (PPs) were shown.

The output trees were further edited by FigTree v1.3.1 [44]. Plesiastrea versipora (clade
XIV, Plesiastreidae) was set as a distant outgroup to root the inferred trees. The subclades
within Merulinidae (XVII) were divided into subclades A-I, following Huang et al. [10,16].

3. Results

3.1. Characteristics of the Gene Data

In the 65 specimens collected from Taiwan, 58 newly obtained COI sequences,
59 newly ITS sequences, 63 for 28S, and 62 for histone H3 sequences were obtained for the
first time (Table S1). Examining the individual gene dataset, the aligned COI sequence was
744 base pairs (bp) long, with 180 variable and 81 parsimony informative sites. That of 28S
was 865 bp, with 316 variable and 147 parsimony informative sites. That of ITS was 1249
bp, with 662 variable and 459 parsimony informative sites. That of histone H3 was 344 bp,
with 109 variable and 82 parsimony informative sites.

3.2. Results of the Analysis Matrix

The dataset comprised a total of 3202 bp and 186 OTUs (123 OTUs from references
and 65 OTUs from the present study). ML and BI methods (using raxmlGUI and MrBayes,
respectively) were used to reconstruct the phylogenies for the combined dataset. The
results from the partitioned ML analysis and BI conducted with the combined dataset were
congruent (Figure 2). The ML analysis yielded a log-likelihood value of −28,909.928401
and the BI analysis yielded (−3.069135 × 104, −3.083239 × 104).

3.3. Phylogenetic Relationship

The clades XV (Diploastreidae), XVI (Montasraeidae), and XVII (Merulinidae) were
monophyletic, with high ML and BI support (100/1 and 100/0.99), whereas clades XVIII-XX
(Lobophylliidae) and XXI (Mussidae) formed clusters but with weak support (63/0.8 and
58/0.84) (Figure 2). Within Merulinidae, eight major subclades (A, C, D/E, F, H, and I)
formed with high ML (83–100) and BI (100) support. Subclades B and G, on the other hand,
did not have high support (84/− and −/0.99). Subclade A is composed of Paragoniastrea
australensis, Scapophyllia cylindrica, as well as species of Goniastrea and Merulina. Subclade B
is composed of Astrea annuligera, Favites valenciennesi, and Trachyphyllia geoffroyi, as well
as species of Coelastrea and Dipsastraea. Subclade C is composed of Orbicella annularis
and species of Cyphastrea. Subclade D/E is composed of species of Caulastrea, Oulophyllia,
Mycedium, and Pectinia. Subclade F is composed of species of Favites. Subclade G is
composed of Favites stylifera and species of Platygyra and Leptoria. Subclade H is composed
of species of Hydnophora. Finally, subclade I is composed of species of Echinopora and
Paramontastraea salebrosa.
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Figure 2. Phylogenetic tree of merulinid corals and their allies based on the combined gene dataset
inferred with the maximum likelihood method using the GTR+G model. Molecular subclades within
Merulinidae (XVII) are defined as being A to I following Huang et al. [10]. The other two novel clades
(J and K) are defined in this study. Branch lengths are proportional to inferred nucleotide substitutions.
Numbers at the nodes represent bootstrap values (only ≥70 shown) from the maximum likelihood
method and posterior probability (only ≥0.9 shown) from the Bayesian inference. Bold branches on
the tree indicate statistically robust nodes. The spawning month of specimens in Chen et al. [32] are
in brackets.
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Favites russilli and Astrea curta formed a distinct cluster (BP:100, PP:1), defined as a new
subclade K, separated from Astrea annuligera, Paragoniastrea australensis, and P. deformis were
monophyletic (BP:96, PP:0.97), so we defined the genus as a new subclade J. Paragoniastrea
australensis, not monophyletic, was placed in subclade A and new subclade J. F. valenciennesi,
not monophyletic, was placed in subclades B and F.

3.4. The Phylogenetic Tree

The spawning specimens we examined were all nested within Merulinidae (taxa in
bold font in Figure 2). These specimens were placed in five subclades B, C, E, F, and G but
not in the subclades A, D, H, or I. The following were nested in subclade B: one specimen
each of Astrea annuligera, Coelastrea palauensis, Dipsastraea rotumana, Dipsastraea mathaii, and
Favites valenciennesi and two specimens of Coelastrea aspera collected from Kueishan Island;
one specimen of Dipsastraea favus collected from Pitoujiiao and two from Kueishan Island;
one specimen of Dipsastraea lizardensis collected from Longdong. Two Cyphastrea chalcidicum
specimens, collected from Longdong, were nested in subclade C. One specimen each of
Mycedium mancaoi, Mycedium robokaki, and Pectinia paeonia, collected from Longdong, and
one Mycedium elephantotus, collected from Pitoujiiao, were nested in subclade E. Subclade
F consisted of one specimen each of Favites valenciennesi and Favites flexuosa, collected
from Pitoujiiao, and two Favites magnistellata, collected from Pitoujiiao and Kueishan
Island. All the Favites pentagona specimens collected from Kueishan Island, Pitoujiiao, and
Longdong were clustered with F. pentagona from Singapore and the Philippines. Subclade
G consisted of two Platygyra pini, five Platygyra ryukyuensis, three Platygyra verweyi, and
one Platygyra sinensis, collected from Longdong; one species each of Platygyra lamellina
and Platygyra daedalea, collected from Pitoujiiao; and two Favites stylifera from Pitoujiiao
and Longdong. Six Paragoniastrea deformis, collected from Pitoujiiao, four Paragoniastrea
australensis specimens from Pitoujiiao, and one from Longdong were clustered into subclade
J. Subclade K was a monophyletic clade, consisting of three specimens of Astrea curta,
collected from Keelung Island, and two from Pitoujiiao, which were clustered with those
from the Great Barrier Reef and the Philippines (BP:98, PP:1).

4. Discussion

This is the first study to establish a molecular database for spawning corals, an im-
portant contribution to our understanding of genetic diversity in coral communities. We
sequenced 1 species from Keelung Island, 9 from Kueishan Island, 13 from Longdong, and
12 from Pitoujiiao. In total, we sequenced 9 genera and 28 species, and most subclades
were consistent with those of previous studies.

4.1. Phylogentic Relationship of Merulinid Subclades

The Merulinidae are defined as monophyletic in this study, confirming previous
findings [10,16]. Of four Atlantic species, Favia fragum, Mussa angulosa, Orbicella annularis,
and Montastraea cavernosa, only O. annularis is nested within the subclade C and a sister to
Cyphastrea spp. The genus Paramontastraea Huang et al. 2014 [10] examined in this study
was also a sister to Echinopora Lamarck, 1816, and nested within subclade I.

Increasing the sequence lengths, taxon sampling, and sampling locations may improve
the phylogenetic relationship among taxa. Adding new sequences of merulinid corals
from Taiwan generated longer aligned sequences with which to examine the phylogenetic
relationships among the subclades of Merulinidae; as a result, most subclades changed
their phylogenetic positions (Figure S1). For example, the tree topology reconstructed in
Huang et al. [10] showed that Hydnophora (subclade H) is closer to Favites (subclade F).
However, our reconstructed phylogenetic tree showed that the Hydnophora lineages only
closer to Favites pentagona and the rest of Favites spp. are close to novel subclade K, which
comprises Astrea curta and Favites russelli. In addition, subclade B shifted its position from
D/E clades to subclade H and Favites pentagona.
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As mentioned in Huang et al. [10,15,16], Favites pentagona and Paragoniastrea autralensis
displayed polyphyletic patterns that require further investigation [10]. Paragoniastrea aus-
tralensis was far from subclade A (Goniastrea spp.) and was clustered together with Astrea
curta, Astrea annuligera, Astrea devatieri, and Favites russelli as a novel clade. Favites pentag-
ona renders Favites polyphyletic in the molecular phylogeny and sister to the Favites spp.
(subclade F) and subclade D/E [10]. Therefore, Huang et al. [10,16] suggested that these
two species require further study with increasing sample collection from other locations.
According to our new analysis, the molecular phylogenetic tree implied that P. australensis
displayed a polyphyletic pattern, which is consistent with Huang et al. [10,16]. However,
they were close to subclade A (Goniastrea spp.) and formed a novel subclade J (Parago-
niastrea spp.). Favites pentagona formed a monophyletic pattern, which is different from
Huang et al. [10,16]. They are separate from the major Favites spp. (subclade F) and are
close to subclade H (Hydnophora).

4.2. Application of Molecular Phylogentic Approaches

Merulinidae corals with plocoid and ceroid forms are difficult to accurately identify to
the genus level in the field because of their macro-morphological homoplasies [24,33]. In
our phylogenetic analysis, all of the corals in the plocoid form were placed into subclades
B, C, F, I, and/or K, including 18 Dipsastraea spp. (subclade B), 2 Favites spp. (B and F),
5 Cyphastrea spp. (C), and 2 Astrea spp. (B and K). Merulinidae corals in the ceroid form
included 6 Goniastrea spp. (subclade A), 14 Favites spp. (F), 2 Coelastrea spp. (B), and
9 Platygyra spp. (G). Most of the samples we examined were either Coelastrea spp., Favites
pentagona, Platygyra spp., Paragoniastrea australensis, or Paragoniastrea deformis. The genetic
divergence between these four groups (subclades B, F, G, and J) may be driven by the
differences in their sexually reproductive timing. Favites pentagona and P. deformis spawn in
July, while Platygyra spp. and P. australensis spawn in August [32].

4.3. Sexual Reproduction in Merulinidae

Scleractinian corals have a complex sexual reproduction system, with the same
species displaying different sexual reproduction patterns based on their geographic dis-
tribution [45]. The systematic pattern in the reproductive biology of Merulinidae, a
hermaphroditic spawner, is highly conserved [45–47]. In this study, Coelastrea aspera col-
lected from northern Taiwan was identified as a hermaphroditic spawner and placed in
subclade B with the Singapore Coelastrea aspera [32,48]. Coelastrea aspera, from the Great
Barrier Reef, is a spawner [49–52], whereas the nonspecific populations distributed in Palau
are brooders [53,54]. The hermaphroditic Coelastrea aspera, from Okinawa, performs as a
spawner [55] and a brooder [56–58]. A similar example, Pocillopora damicornis, is a brooder
in most locations, but a spawner in western Australia [59–62].

5. Conclusions

This study integrates reproduction information, morphological characteristics, and
molecular phylogenetic analysis to increase our understanding of the genetic diversity of
Merulinidae. Ten major subclades (A, B, C, D/E, F, G, H, I, J, and K) were reconstructed.
Our study identified Paragoniastrea deformis and Paragoniastrea australensis in Taiwan for the
first time. Together, the two species form the new subclade J. Astrea curta were separated
from another congeneric species, Astrea annuligera (XVII-B), clustered with Favites russelli
into the new subclade K. Finally, we contributed information on the species diversity of
coral communities in Taiwan and fill gaps involving merulinid corals between Japan and
the Philippines in the Western Pacific.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14020144/s1, Table S1: Species and DNA sequences examined
in this study. The species name in Huang et al. 2011 was updated according to World Register of
Marine Species (WoRMs). GenBank accession numbers are displayed for each molecular marker (28S
rDNA, histone H3, ITS rDNA and mt COI). N.D.: sequences were failed from PCR. Accession dates
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of 28S rDNA sequences: 21-FEB-2011 [16], 26-OCT-2021 (this study); histone H3: 25-JUL-2016 [16],
23-NOV-2021 (this study); ITS rDNA: 21-FEB-2011 [16], 04-DEC-2021 (this study). Figure S1. Phy-
logeny of Merulinidae reconstructed from Huang et al. [10] and this study.
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Abstract: Communities of coral reef fishes are changing due to global warming and overfishing. To
understand these changes and inform conservation, knowledge of species diversity and distributions
is needed. The western Indian Ocean (WIO) contains the second highest coral reef biodiversity
hotspot globally, yet a detailed analysis of the diversity of coral reef fishes is lacking. This study
developed a timed visual census method and recorded 356 species from 19 families across four
countries in the WIO to examine patterns in species diversity. Species richness and composition
differed most between the island countries of Madagascar and Comoros and both these locations
differed from locations in Tanzania and Mozambique which were similar. These three regional
groupings helped define WIO ecoregions for conservation planning. The highest species richness
was found in Tanzania and Mozambique, and the lowest and most different species composition was
found in Comoros. Biogeography explains these differences with naturally lower species diversity
expected from the small, oceanic, and isolated islands of Comoros. Present day ocean currents
maintain these diversity patterns and help explain the species composition in northeast Madagascar.
Species distributions were driven by 46 of the 356 species; these provide guidance on important
species for ongoing monitoring. The results provide a benchmark for testing future changes in reef
fish species richness.

Keywords: coral reef fishes; species diversity; Indian Ocean; conservation; climate change

1. Introduction

Species are the fundamental units of ecosystems and thus species inventories and their
distributions provide a foundation for understanding coral reef communities and their
conservation [1,2]. Communities of reef-associated fish species reflect their biogeography,
and this includes evolutionary history, sea surface temperature, and larval recruitment
patterns driven by ocean currents [1,3–5]. But these reef fish communities are changing due
to global warming and overfishing, which are rapidly degrading coral reefs globally [6–8],
driving declines in abundance and local extirpations of some species [9,10]. Understanding
these changes and informing conservation knowledge about patterns in species diversity
is needed.

Marine provinces, first defined over 150 years ago [11,12], along with barriers to
species dispersal [13,14], provide a framework for understanding present day biogeo-
graphic patterns. The western Indian Ocean (WIO), is considered a distinct province of
the Indo–Pacific region [15,16] and comprises 10 countries, all with coral reefs [17,18]. This
province contains the second highest biodiversity hotspot in the Indo–Pacific, second to
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the Coral Triangle in the western Pacific [19–21]. Ten biogeographic subregions within
the WIO Province were defined using hermatypic corals [22], with the diversity hotspot
centered in the northern Mozambique Channel on the coasts of northern Madagascar, the
Comoros Archipelago, northern Mozambique, and southern Tanzania (Figure 1), an area
considered likely to host the highest diversity and abundance of other marine fauna [23].
Veron and coauthors [24], based on zooxanthellate coral distributions, confirmed similar
coral ecoregions in the WIO but delineated 12 subregions by separating Comoros from
Mozambique and Madagascar. These ecoregions provide important conservation planning
units [25].

Figure 1. Map of study area showing countries and location of survey sites.

There are over 3000 tropical reef fish species found in the Indian Ocean, of which
74% range widely through the Indo–Pacific, thus giving ~850 species restricted to the
Indian Ocean [5]. The WIO Province supports just over 2400 fish species, representing a
second peak in fish diversity in the Indo–Pacific after the Coral Triangle [19]. The highest
fish species richness is found to the west on the eastern African continental coastline,
with ~600 to 960 species. The highest level of endemism in the WIO is found to the
east in the Mascarene Islands of Reunion and Mauritius. High endemism is typical of
peripheral biogeographic regions [15,26]. Reef fish species’ inventories in the WIO remain
scattered and largely at a national level ranging from Madagascar [27,28], Comoros [29], Iles
Eparses [30,31], to Reunion Island [32]. Therefore, data on species ranges are incomplete,
though considerable early work established a sound base of identification sources [33,34].
However, a detailed regional analysis of the diversity of coral reef fishes in the WIO
is lacking.

The present study developed a rapid underwater visual census method to compile
reef fish species inventories across shallow reefs to examine biogeographic patterns in
species assemblages across four countries. The study used the most diverse and/or most
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numeric families that occur on coral reefs in the Indo–Pacific [35], representing poten-
tially around 460 coral reef species from the WIO [3,27,34]. Families selected represented
those reported as indicators of biogeographical patterns and coral reef health, such as
Chaetodontidae [36,37]; of fishery importance [38]; of both wide-ranging and restricted
range species; and of Tetradontiformes, to expand the taxonomic diversity at the suborder
level [3,39,40]. Two highly diverse families notably absent from this list are the Gobiidae
and Blennidae, which are known to be excellent biodiversity indicators [41], however, they
are too cryptic in their behavior and difficult to identify underwater while surveying a
broad suite of species that range up to ~1 m in length. The final 19 families rank highly in
importance as indicators on coral reefs (Table 1) and comprises a potential species list that
represents ~50% of the putative total number of shallow coral reef species in the WIO [5].
This was therefore considered sufficiently broad and diverse to capture biogeographic
patterns in the diversity of fishes within the region.

Table 1. Nineteen families surveyed for coral reef fish diversity analyses based on: (a) most speciose;
(b) known indicators of aspects of fish communities; (c) fishery importance; (d) taxonomic diversity.
Other rankings of coral reef fish families as indicators of diversity or importance on coral reefs are
shown for comparison: Coral Reef Fish Diversity Index, CFDI A (Allen and Werner 2002); numerical
abundance C and B (Choat and Bellwood 1991); consensus list of 10 characteristic coral reef families,
B (Bellwood 1996); global comparison of most speciose families B and W (Bellwood and Wainright
2002). These families are characteristic of coral reefs though not necessarily restricted to them and are
among first 28 most speciose families of reef fish worldwide out of a possible 76 families (Bellwood
and Wainright 2002).

Order Suborder Families CFDI A Abundance C and B 10 Coral Reef B Most Speciose B and W

Perciformes
(a)

Labroidei Labridae (wrasse) X X X 1
Percoidei Epinephelidae (groupers) 3
Labroidei Pomacentridae (damsel fishes) X X X 2

Perciformes
(b)

Percoidei Chaetodontidae (butterfly fishes) X X X 6
Labroidei Scarinae (parrot fishes) 1 X X 8

Acanthuroidei Acanthuridae (surgeon fishes) X X X 7
Percoidei Lutjanidae (snappers) 10
Percoidei Pomacanthidae (angel fishes) X 11

Perciformes
(c)

Percoidei Lethrinidae (emperors) 13
Percoidei Haemulidae (grunts) 23
Percoidei Mullidae (goat fishes) X 19

Acanthuroidei Siganidae (rabbit fishes) 21
Percoidei Nemipteridae (bream) 24
Percoidei Carangidae (trevally) X N/A

Perciformes (d) Percoidei Caesionidae (fusiliers) 28

Tetraodontiformes Tetraodontiformes Balistidae (trigger fishes) 16

Tetraodontiformes Tetraodontiformes Monacanthidae (file fishes) 14

Tetraodontiformes Tetraodontiformes Ostraciidae (box fishes) 25

Tetraodontiformes Tetraodontiformes Tetraodontidae (puffer fishes) 18

1 Scarinae are a subfamily within the Labridae (Bellwood et al. 2019) but for functional purposes are treated
separately.

The current study aimed to examine patterns in species richness of reef fishes to
contribute to our understanding of the biogeography of the less studied WIO province.
It also aimed to assess how reef fish diversity patterns conform to known biodiversity
hotspots and to delineate ecoregions in the WIO for coral reef conservation planning and
threat assessments.

2. Materials and Methods

2.1. Study Sites

Coral reef fish species were recorded in 2009–2011 at 76 dive stations aligned to 45 sites
which ranged from 1–33 m in depth (in the supplementary Table S1), spread across locations
in four countries in the WIO: Madagascar, Comoros, Mozambique, and Tanzania (Figure 1)
spanning latitude −5.84◦ (Zanzibar) to −14.47◦ (Nacala) and longitude 39.17 (Chumbe)
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to 50.01 (Vohemar). Sites surveyed in Comoros were in Ngazidja (Grand Comore) and
Mwali (Moheli), two of the three islands in the Union of Comoros, which are referred
to hereafter as Comoros. The fourth southeastern island in the Comoros Archipelago,
Mayotte, an overseas department of France, is a larger island with considerably more reef
habitat, but was not surveyed here. Each country’s dataset is a sample and cannot claim to
be representative of the country as a whole. Sites were selected haphazardly and ranged
from shallow, protected fringing reefs to deep, exposed forereefs (Table S1). Each location
encompassed sites across a large depth range and were therefore broadly comparable,
though this negated any analysis for habitat effects (Table S1). Forereefs and deep and
shallow terraces were prioritized as these reef types tend to have higher coral cover and
rugosity, and hence, higher fish species diversity.

2.2. Survey Method

Coral reef fish diversity was measured by recording presence/absence of species on
a SCUBA based underwater visual census (UVC) survey, which involved a timed swim
by one observer throughout (MS), recording all species within visibility (mean 14.1 m),
supplemented with a few snorkel dives in shallow waters. The method was designed to
provide sufficient breadth of species sampling, while remaining practically feasible for
relatively rapid dive surveys across a large number of locations. The 19 families were
selected based on those that are most speciose, are amenable to UVC (diurnal and not
cryptic), have fishery importance, and included four Tetraodontiform families to extend
the taxonomic diversity of the dataset (Table 1).

A complete species inventory of 19 families (Table 1) was recorded at each dive. Dive
time and species richness were significantly correlated (R2 = 0.19, slope = 0.27x + 91,
p < 0.01) though taxonomic diversity was not (R2 < 0.01, slope = −0.001x + 63, p < 0.86). The
species richness curve showed a species plateau at ≥75 min dive duration. Consequently,
data from the two replicate dive stations at each site were combined to ensure that each
reef site was represented by 75–85 min of underwater observations. This conforms to
recommended dive times of 60–90 min [27].

Species identifications were checked using photographs, taxonomic references, and
photographic guides (see Table S2 for species list and references). Species names were
verified from the online Catalog of Fishes [42].

2.3. Data Analyses

To assess overall patterns of species diversity, the species presence/absence data per
reef site was used to calculate the total number of species and the average taxonomic
distinctness (D+). The average taxonomic distinctness is a measurement of the average
taxonomic path length between two randomly chosen species in the assemblage [43] and
was increasingly applied because it is considered a good proxy of biodiversity and it is
relatively independent of sampling effort [44]. Species richness and taxonomic distinctness
were tested for differences between areas within countries and dive time. Species accu-
mulation curves derived from the Michaelis–Menten index using 9999 permutations [43]
were utilized to predict maximum species richness for each country. The Michaelis–Menten
equation was chosen because it is independent of the rarity of a species, being based solely
on presence. Furthermore, on empirical considerations it was also found to be the least
biased by the number of samples and the most stable statistic to use for estimated maximum
species richness on previous biogeographic studies in the Indian Ocean [22]. Differences
between the predicted maximum species richness from the Michaelis–Menten equation
and actual number of species observed in each country were compared using Chi-Square.

To detect similarity patterns in the species assemblages on reefs across the region
the Bray–Curtis similarity index was calculated among pairs of sites, and the similarity
coefficients used to run two ordination techniques to detect similarity patterns between
sites [43]: a cluster analysis and a nonmetric multidimensional scaling (MDS). Both methods
were applied as they offer complementary information. The significance of the differences
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between the geographical areas revealed in the cluster dendrogram and MDS plots was
tested with an analysis of similarity (ANOSIM) based on randomization of the similarity
matrix [43]. To investigate the main species that account for the observed patterns in species
richness across the region, a similarity of percentage analysis (SIMPER) was used to detect
the representative species of each geographical zone. Since the ANOSIM results showed
significant country differences between Comoros and Madagascar, between these island
countries and the mainland countries of Tanzania and Mozambique, and a marginal differ-
ence between the two mainland countries, the latter were combined as one, “mainland”,
for the SIMPER analysis.

3. Results

A total of 356 species from the 19 families (Table S2) were recorded from 45 sites across
the four countries. Of these, 15 could not be identified to species but were either recorded
to genus (10) or to a species it closely resembled from the Pacific Ocean (5). In all cases
these uncertain species could be reidentified on subsequent surveys at different sites by the
same observer (MS), and therefore, all were used in the analyses of species diversity.

Overall, the predicted number of species did not differ statistically from the observed
number (Figure 2; Chi-square = 0.602; df = 3; p = 0.89). However, on a country-by-country
basis, there was a marginally significant difference for Comoros (Chi-square = 3.9; df = 1;
p = 0.049). This suggests that surveys from all locations in all four countries were adequate
in providing representative values of total species richness, but there was some indication
that an increase in the number of surveys in Comoros would improve the data. The
results show, based on the 19 families, a predicted mean total number of species of 321 for
Mozambique and 319 species for Tanzania, both higher than Comoros (267) and Madagascar
(294) (Figure 2). Note that these numbers refer to locations surveyed in each country, and
not the country as a whole (see Methods). Mean species diversity per site was highest in
Mozambique followed closely by Tanzania, and lowest from sites in Comoros (Figure 3a). In
contrast, taxonomic distinctness was highest in Comoros (Figure 3b). However, variability
within countries was very high, for example, the highest species richness was recorded
at Vamizi lagoon (152) and the lowest at Neptunes (82), both in northern Quirimbas,
Mozambique (Supplementary Material Figure S1).

Figure 2. Total number of species observed (black) and predicted maximum species richness (grey)
per country based on Michaelis–Menton permutations. Observed and predicted number did not
differ significantly (Chi-square = 0.602; p = 0.89). Number of sites: Comoros: 7; Madagascar: 10;
Mozambique: 16; Tanzania:12; 76 dives in total, as detailed in Table S1.
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Figure 3. Mean fish species diversity: (a) mean total number of species observed per site (>75 min) in
each country; (b) mean fish species diversity based on taxonomic distinctness (D+). Error bars are
standard errors of mean. Sample sizes as in Figure 2.

Similarity in species’ presence/absence between sites revealed four groupings at 54%
similarity with all the Madagascar sites separate; the Comoros sites clustered separately;
most of the sites from the African mainland, Tanzania, and Mozambique, clustered together
in a complex set of smaller groups; and three extreme outliers of two sites from Mozam-
bique and one from Tanzania (Figure 4). The same four groupings were confirmed in an
MDS ordination though the stress level of 0.2 suggests country differences were not signif-
icant (Figure S2). The overall differences in species presence between the four countries
were statistically different, with differences between sites in the two island countries, and
between sites in island countries and mainland countries all highly significant, whereas
differences between Tanzania and Mozambique were only marginally significant (Table 2).

Figure 4. Bray Curtis cluster analysis showing similarity in species presence/absence between pairs
of sites in western Indian Ocean (WIO).
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Table 2. Results of ANOSIM based on 999 permutations for differences in species richness between
(a) countries and (b) between areas within mainland countries, Tanzania, and Mozambique (based on
999 permutations). Areas within mainland countries that differed significantly are bolded. Pemba is
in Cabo Delgado, Mozambique.

(a) Between Countries
Global R = 0.405, p = 0.001

Pairwise Tests—Groups R Statistic p

Madagascar, Comoros 0.864 0.001

Madagascar, Tanzania 0.592 0.001

Madagascar, Mozambique 0.483 0.001

Comoros, Tanzania 0.397 0.001

Comoros, Mozambique 0.354 0.007

Tanzania, Mozambique 0.103 0.048

(b) Between Areas within Mainland Countries
Global R = 0.21; p = 0.011

Pairwise Tests—Groups R Statistic p

Chumbe, Mafia 0.617 0.056

Chumbe, Nacala 0.321 0.200

Chumbe, Pemba 0.857 0.067

Chumbe, Vamizi 0.3 0.156

Chumbe, Mnazi 0.583 0.100

Mafia, Nacala 0.418 0.012

Mafia, Pemba 0.489 0.009

Mafia, Vamizi 0.131 0.061

Mafia, Mnazi 0.173 0.225

Nacala, Pemba −0.01 0.571

Nacala, Vamizi 0.21 0.113

Nacala, Mnazi 0.148 0.229

Pemba, Vamizi 0.104 0.240

Pemba, Mnazi 0.5 0.029

Vamizi, Mnazi −0.113 0.636

Fish species assemblages within the sites of the mainland countries, which ranged
from −5◦ (Zanzibar—Mnemba) to −14◦ (Nacala sites with Fernau Vloso the southern-
most), were different but similarity levels were relatively high, and there was no clear
latitudinal or geographic pattern, though two outlier sites in Mozambique were apparent
(Figures 4 and 5). None of these areas were statistically different from each other in terms
of species presence except between two areas in Mozambique (Pemba, Nacala) and two
areas in Tanzania (Mafia, Mnazi) (Table 2b). Though not statistically dissimilar (Figure 5),
local scale differences in species richness suggested the following groupings (see Table S1
for reef types): (i) exposed forereefs at Mafia Island (Dindini, Yuyuni and Kifinge), similar
to Makunga North, which had an exposed reef terrace, and a steeply sloping forereef in
northern Mozambique; (ii) inner seas protected forereefs and lagoonal sites at Vamizi and
Metundo islands in Mozambique; (iii) the largest group of similar reef sites ranging across
the entire east African mainland with well-developed forereefs at ocean-exposed sites;
(iv) outliers seen in Zanzibar: Chumbe, which is a narrow and relatively shallow (3–13 m)
protected forereef with much sand and low rugosity; Mnemba, which is a relatively deep (to
18 m) exposed forereef; and Nyamlile, a large patch reef off Mafia island. The significantly
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dissimilar extreme outliers in the whole plot (Figure 5) were two sites in Mozambique: Fer-
nau Vlos in Nacala, a diffuse fringing forereef within the port channel with a few scattered
corals on a sandy slope with some seagrass and little hard substrate, and Neptunes, which
is an offshore deep terrace between Metundo and Vamizi islands with 90-degree walls
dropping to around 500 m. The walls are broken in places with canyons, and the upper
terrace ranges from ~7–12 m in depth.

Figure 5. Multidimensional scaling (MDS) plot of mainland sites only, color coded with blues for
northern sites (Tanzania) and reds for southern sites (Mozambique). Plot shows all sites are similar at
50%, but within this large group three groups were apparent, though with similarity at 60% these
groups were not strongly dissimilar.

Fish species composition and homogeneity were most dissimilar between sites in
NE Madagascar and Comoros: of the first 14 high ranking species that contributed to the
dissimilarity between all three geographical zone comparisons, 11 contributed most to
the differences between Madagascar and Comoros, while the other three high ranking
species, Pygoplites diacanthus, Heniochus acuminatus, and Cephalopholis argus, were significant
in the other geographic zone comparisons (Table 3). Thus, the SIMPER results of species’
average dissimilarity values are ranked according to the top 30 species that most explain the
differences between Madagascar and Comoros (Table 3). These cumulatively explain 19.74%
of the dissimilarity in the species assemblages between these two geographic zones, and
these species contributed between 56% (Cheilinus trilobatus) to 85% (Plectropomus punctatus)
of the dissimilarity in this pairwise comparison (Table S3). The 10 most significant species
in each of the three comparisons when combined gives 22 species in total. The average
abundance shows that the species that ranked mostly highly had either, very high (0.9–1)
relative abundance at sites (they were at most or all sites), or low or zero abundance (they
were rare or absent at all sites) (Table 3).

The Madagascar—mainland pairwise comparison yielded many of the same species
in explaining differences between assemblages as those seen in the Comoros–Madagascar
comparison, but with three notable additions: Chaetodon falcula, Cephalopholis argus, and
Amphiprion allardi (the latter two also significant in the Comoros–mainland comparison),
as well as an additional eight species specific to Madagascar-mainland (Acanthurus xan-
thopterus to Calotomus carolinus, Table 3). In contrast, the Comoros-mainland comparison
yielded several different species that did not rank highly in the other two SIMPER compar-
isons, notably Heniochus acuminatus, Aprion viriscens and Ostracion meleagris. Complete sets
of all three pair-wise SIMPER geographic zone comparisons are provided in Table S3.
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The mean Dissimilarity/SD across all three pairwise comparisons provides a metric to
rank species as most significant in all three SIMPER comparisons, with one representing
the most highly ranked, Plectropomus punctatus (Table 3). The first 27 species (Variola louti is
27th) that ranked most highly out of the 356 observed species all appear in the Madagascar–
Comoros comparisons, except for Cephalopholis argus and Chaetodon falcula, which explain
differences between Madagascar and mainland countries, and Heniochus acuminatus, which
explains differences between Comoros and mainland countries (Table 3).

Taking the top 20 species that most contributed to explaining differences (average
cumulative dissimilarity of 12–14%) in species assemblages between the three geographic
zones, the following broad patterns can be seen (Table 3):

• the five most significant species in explaining differences between Comoros and Mada-
gascar were very common in Madagascar but not sighted in Comoros: Plectropomus
punctatus, Plectorhinchus gaterinus, Hipposcarus harid, Epibulis insidiator and Chaetodon
vagabundus. All were moderately common in mainland countries except C. vagabundus,
which was rare;

• other species explained differences between Comoros and Madagascar but did not
appear in the top 20 species in other paired geographic zone comparisons, such as
Pomacentrus baenschi and P. caeruleopunctatus, or were species common in Madagascar
(in 80% of sites) but either rare or absent in mainland;

• high ranking species in Comoros were not sighted in Madagascar, e.g., Anampses
twistii and Pygoplites diacanthus. Abudefduf vaigiensis, though less significant, was
also common in Comoros and not sighted in Madagascar. Other species common
in Comoros but rare/absent in Madagascar included Coris formosa, Mulloidichthys
flavolineatus, and Parupeneus trifasciatus;

• other species that contributed to both Madagascar—Comoros and Madagascar—
mainland comparisons were common or relatively common across sites in Madagascar
and mainland but were rare or absent in Comoros, such as Neoglyphidodon melas,
Scarus ghobban, Cheilinus fasciatus and Cheilinus oxycephalus, and Chaetodon melannotus.
With a similar distribution pattern though less significant was Lutjanus fulviflamma
which was rare in Comoros. Scarus ghobban, (ranked 10th overall), was a key species
distinguishing Comoros, where it was rare, from both Madagascar (8th rank) and
mainland (20th rank, Table S3);

• species that were top ranking species contributing to the Comoros—mainland differ-
ences were not highly ranked in the other SIMPER results such as Aprion virescens,
Ostracion meleagris and Heniochus acuminatus. The first two were more common in
Comoros compared with mainland or Madagascar, whereas H. acuminatus was not
sighted in Comoros. Chaetodon interruptus and Anampses lineatus were also common
in Comoros and less common in mainland though were less significant in explaining
differences;

• Amphiprion allardi and Cephalopholis argus were the only species significant in both
island—mainland comparisons: A. allardi was only observed in mainland sites and
C. argus was much more common in mainland sites.

In summary, the top 22 species that contributed most significantly to the differences
in species occurrence and assemblage homogeneity between the three geographic zones
(Table 3) were from 10 of the 19 families surveyed (where Scarinae are separated from
Labridae): Labridae (six species), Chaetodontidae (4) Pomacentridae (3), Scarinae and
Epinephelidae (two species of each), and one species in each of Acanthuridae, Lutjanidae,
Haemulidae, Pomacanthidae, and Ostraciidae. Notably, very few larger bodied fish-
ery species ranked highly in the dissimilarity rankings except Pletropomus punctatus and
Plectorhinchus gaterinus. Five of the ten families ranked in the present study correspond to
those most recommended as good indicators of reef fish diversity in other studies (Table 1).
Notably absent from most of these other studies’ recommendations are the Epinephelidae,
Haemulidae and Ostraciidae.
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4. Discussion

4.1. Biogeographic Patterns in Species Diversity

The designation of the WIO as one biogeographic marine Province [3,15,16] is sup-
ported by the species richness of coral reef fishes which was similar across the central
WIO region surveyed, at ~55% similarity. However, within the study area, significant
differences in species presence were found which separated locations in Comoros from
northeast Madagascar and these both differed from mainland eastern Africa. The highest
species richness was found in locations in Tanzania and northern Mozambique, with the
lowest species richness and most different species composition in Comoros. A lower species
richness of corals from Comoros is also reported [21]. These findings, based on a sample of
356 species, provide evidence for three ecoregions within this central region of the WIO:
eastern Africa (Tanzania, including Zanzibar, and northern Mozambique); Comoros; and
north-eastern Madagascar. These ecoregions can represent conservation planning units for
Marine Spatial Planning [45] or the Red Listing of Ecosystems [46].

Biogeography is a primary driver of patterns in species richness of reef fishes [1,3,15,47].
Factors such as the island effect, reef area, coast length and sea surface temperature are
significant elements of this biogeography [5,19,48,49]. The three islands of the Union
of Comoros are small, oceanic and recent volcanic islands [50] isolated from other large
coral reef systems: ~250 km from Mozambique and ~450 km from Madagascar. The total
coastline length and reef area in Comoros are ~70–90% smaller than mainland east Africa or
Madagascar [51]. These biogeographic factors therefore likely explain the naturally lower
species richness and different assemblages in Comoros. Less diversity of habitats may
also be a contributing factor, but this could not be tested with the current sampling design.
However, taxonomic diversity was highest in Comoros, driven by the Tetradontiformes.
Likely reasons can only be speculative currently, but they may relate to the unique steep
bathymetry of these volcanic islands.

Present day ocean currents [19] that drive the dispersal of pelagic larvae also help
maintain biogeographic patterns. Further evidence for the ecoregions of Comoros, northern
Madagascar and mainland east Africa comes from modelling pelagic larval duration (PLD)
which separated eastern Africa from Comoros and Northern Madagascar using a short
PLD of 10 days [52], generally shorter than most reef fishes. However, at 50 PLD this area
became one homogeneous region, a finding verified by the genetics of two species common
in the present study, Epinephelus merra and Lutjanus kasmira [53,54]. This finding lends
further weight to the delineation of the WIO as one biogeographic province.

4.2. Anthropogenic Influences

Reefs of the WIO are intensely fished in many locations [38,55,56], climate induced
coral bleaching continues to degrade reefs [57] and both these impacts threaten some reef
fish species [9] which could undermine studies examining patterns in species richness.
However, fishing effects are largely seen in declines in biomass and fish size data [51,58,59],
so with the species presence/absence data in the current study fishing effects will only
manifest in zero values. Five species completely absent from Comoros and in the top
12 ranking species in the SIMPER analyses are species typically taken in WIO artisanal
fisheries [38,60]. Two of these species, the grouper Plectropomus punctatus and the sweet-
lip Plectorhinchus gaterinus, are reported historically in Comoros [61] and at neighboring
Mayotte the easternmost island in the Comoros Archipelago [62]. Both are widespread
western Indian Ocean species and would be vulnerable to the coastal handline fisheries in
Comoros [29] so their lack of sightings may indicate fishing effects. No confirmed sightings
of Plectropomus punctatus in subsequent surveys in Moheli island in 2016 (B. Cowburn
pers. comm.) and 2018 (M. Samoilys pers. obs.) further confirm this species is now very
rare or locally extinct in these islands. Plectorhinchus gaterinus was also not sighted in
surveys in Comoros in 2016 or 2018 and is reported as locally extinct in Reunion [32]. These
two fishery species are therefore likely to have regional distribution patterns skewed by
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fishing. The other fishery species absent in Comoros are more easily explained through
range restrictions or habitat requirements (see below).

4.3. Species Level Differences

Knowledge of the diversity and distribution of coral reef fishes is important for
conservation planning under future climate change scenarios [63], yet species level data are
still lacking over large spatial scales [1]. The present study fills this gap revealing regional
species distribution patterns with assemblages in Comoros less speciose compared with the
other three countries. Several species not sighted in Comoros included wide ranging Indo–
Pacific species, those widely reported in the WIO, as well as WIO endemics. For example,
widely distributed Indo–Pacific species were Epibulus insidiator, Chaetodon vagabundus, and
Cheilinus fasciatus. However, they were sighted in Comoros in subsequent surveys in 2016
(B. Cowburn pers. comm.) and C. vagabundus was also sighted in 2018 (M. Samoilys pers.
obs.), suggesting the zero sightings in the current study reflect rarity not absence. The WIO
endemic anemone fish Amphiprion allardi ranked highly in the SIMPER analysis because it
is restricted to the mainland east African coast and is replaced by A. latifasciatus in Comoros
and Madagascar [64]. Therefore, earlier records of A. allardi from Mayotte, Glorieuses and
the Mascarene Islands [62,65,66] need updating. Other species not sighted in Comoros,
Hipposcarus harid and Lutjanus fulviflamma, may be explained by restricted larval supply
due to currents or habitat requirements. For example H. harid is reported from East Africa,
western Madagascar [27], Mayotte island [62], and the French territories of Glorieuses
and Geyser reef [67], but there are no records for Comoros in the Catalog of Fishes [42].
The reasons for this apparent disjunct distribution in the Comoros Archipelago require
further study. Lutjanus fulviflamma is widely distributed in the WIO including Mayotte
island [62]. Its absence in Comoros may be due to the juveniles’ strong dependence on
mangroves, which are uncommon in the islands of the Union of Comoros [51]. Only two
species were common to Comoros but uncommon in the mainland countries and only
moderately common in Madagascar: the snapper Aprion virescens and the boxfish Ostracion
meleagris. This is possibly related to the predominantly steep narrow forereefs of these
volcanic islands.

Principle species with restricted ranges that were driving regional differences include
two Pomacentridae, Pomacentrus baenschi and Pomacentrus caeruleopuntatus, both reported
as restricted to Madagascar and the Mascarene Plateau [65,68]. In the present study they
were common in northeast Madagascar but sighted, though uncommon, in mainland (both
species) and Comoros (P. caeruleopuntatus). These sightings require further investigation. In
contrast, other species were ubiquitous in some locations and not in others, for example the
parrotfish Scarus ghobban, with a wide Red Sea—Indo–West Pacific range [33], was sighted
at every site in Madagascar, at just over half the mainland sites, but only 14% of the sites
in Comoros. This pattern may reflect the small, isolated island effect (see above) and less
diversity of habitats in Comoros.

Species missing from the northeast Madagascar sites are possibly explained by range
restrictions due to ocean currents. Pygoplites diacanthus and Anampses twistii were not
seen and Cephalopholis argus and Chaetodon falcula were rare, yet all are reported as widely
distributed in the Indo–West Pacific [42] and in northwest Madagascar [27]. The South
Equatorial Current (SEC) bifurcates east of Madagascar with the northern current flowing
over the northern tip of Madagascar to continue to the Comoros and then the African
continent, while the southern flow travels down the east coast of Madagascar to join the
Algulhas current off South Africa [69]. The northeastern location of the present study
may therefore represent Madagascan reefs where larval supply is weak because the SEC
bifurcates further east, so self-recruitment is more prevalent [52]. Larval connectivity
between the SEC, the west coast of Madagascar and the Comoros is likely to be strong due
to the gyres in the north of the Mozambique Channel around the Comoros Archipelago [70].
Thus, species absent in northeast Madagascar are more likely explained by ocean currents
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restricting larval supply rather than “near threatened” as reported for Reunion where there
are greater human pressures [65].

The ranges of the 46 species that contributed most to the patterns in diversity of
species across this central WIO region were largely (65%) highly wide ranging (Indo–
Pacific, Red Sea—Indo–West Pacific) [42]. A further 30% were wide ranging within the
Indian Ocean, including the WIO, or Red Sea—Indian Ocean [15]. Only 4.3% of species
were highly restricted, to the Mascarene Plateau [27]. Of conservation interest are the
two nominally Mascarene species (Pomacentrus caeruleopuntatus and P. baenschi) and the
six species restricted to the WIO Province, two of which (Plectropomus punctatus and
Plectorhinchus gaterinus) are in severe decline [51]. Species that are endemic to the WIO [71],
yet not seen during these surveys, provide a list of species of potential concern that may
be disappearing due to loss of habitats through coral mortality. Additional surveys are
recommended for these species, to be considered for Red Listing by the Species Survival
Commission [72]. One example is Chaetodon blackburni, last assessed in 2010 as Least
Concern [72], only know to occur in East and southern Africa, from Kenya to 33◦ S, and
Madagascar & Mauritius [42], but not sighted once in this study. The functional roles of reef
fish species, their contributions to ecosystem processes, are never equal, and it is postulated
that in tropical systems each species contributes relatively little compared with temperate
systems, due to high diversity in the tropics [73]. Further study on the ecological role of the
46 most significant species driving the regional patterns in the current study may reveal
functional attributes important in ecosystem processes on coral reefs.

4.4. Methods for Species Richness Surveys

The presence/absence of species from 19 families surveyed by the timed UVC method
in this study recorded ~45% of the total putative number of reef species in the WIO [19]
and was effective in detecting biogeographical patterns in assemblages and significant
differences in species richness between locations. Further, total number of species per
location were not different from predicted values, giving validity to the method and the
total numbers of species observed. The biogeographical patterns span the central WIO
across a latitudinal and longitudinal range of around eight and eleven degrees, respectively.
Taxonomic distinctness also differed across this region suggesting it was valuable adding
the Tetradontiformes order (Trigger, Box, Puffer and File fish families) to the check list, in
addition to the more commonly monitored Perciform families. These values and diversity
patterns provide a benchmark for species assemblages prior to the 2016 mass coral bleaching
event, which was widespread in the WIO causing significant coral mortality [74].

Ten of the nineteen families contributed the top 22 species that showed significant dif-
ferences in species occurrence and assemblage homogeneity between the three geographic
zones. Of these, the highest number of species were in the Labridae, Chaetodontidae,
Pomacentridae, Scarinae and Epinephelidae. These match four of the six families in the
widely used Coral Fish Diversity Index (CFDI) [75]. The other five significant families
in the present study were Acanthuridae, Lutjanidae, Pomacanthidae, Haemulidae and
Ostraciidae. Notably, many of the families important in local fisheries, such as Lethrinidae,
Siganidae, Carangidae, did not rank, even in the top 46 species significant in explaining loca-
tion differences. For rapid assessment surveys that have to address multiple issues and also
need to collect density and fish size estimates, a reduced list of eight families would suffice,
such as: Chaetodontidae, Scarinae, Epinephelidae, Acanthuridae, Lutjanidae, Pomacan-
thidae, Haemulidae and Ostraciidae. These families were significant in the present study
and are either speciose, good reef fish indicators, or have fishery importance [37,39,76–78].
Pomacentridae and Labridae are important highly speciose families, but being small and
often difficult to identify are often not counted to species level in standard monitoring
programs, such as GCRMN [79]. However, they added valuable diversity data here and are
recommended if species identifications are possible. For detailed conservation planning,
species level data are preferable.
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5. Conclusions

This study highlights that timed SCUBA surveys of reef fish species presence provide
diversity metrics that are sensitive to change and can be used for conservation planning
and to detect future impacts of conservation or reef degradation. For example, results
indicate that conservation action in Comoros should prioritize protection of Plectropomus
punctatus and Plectorhynchus gaterinus. The 22 most significant species that revealed patterns
in diversity across the region came from the Scarinae, Chaetodontidae, Pomacentridae,
Epinephelidae, Acanthuridae, Lutjanidae, Pomacanthidae, Haemulidae, and Ostraciidae
suggesting these families should be considered for UVC surveys of reef fishes aiming to
examine management, fishing effects and climate change on coral reefs. The current study
provides a useful reference point for testing predictions of changes in reef fish species
richness due to warming seas [63,80].

The study documents the occurrence of 356 species of reef associated fishes for loca-
tions in four countries in the WIO that lie across the northern Mozambique Channel area
where the highest coral diversity in the WIO is found [21]. Testing that this region is a di-
versity hotspot for reef fish species will require comparable data from more peripheral sites
such as in Kenya, Seychelles, Mauritius and Reunion. Our findings provide evidence that
the WIO biogeographic province contains distinguished ecoregions: Comoros Archipelago;
northeastern Madagascar; and northern Mozambique and Tanzania, including Zanzibar.
This separation of Comoros from eastern Africa differs from the ecoregions based on her-
matypic corals [22,24]. These intraregional differences are relevant in coral reef threat
assessments and informed the recent IUCN Red Listing of Ecosystems process for the
WIO’s coral reefs [81].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/d14020102/s1, Figure S1: Total number of species per survey site (n = 45) in >75 min of
observations, Figure S2: MDS plot showing four distinct groupings of the sites in terms of their species
richness with Comoros and Madagascar separated and different from each other and the two main-
land countries, Tanzania and Mozambique grouped together, with two outlier sites; Table S1: Final list
of 45 survey sites used in analyses, showing countries, locations, reef geomorphology and reef type;
Table S2: Full species inventory from all sites with taxonomic authority and taxonomic references.
Table S3: Full SIMPER for all 356 species showing average Abundance, Dissimilarity, Cumulative
contributions to Dissimilarity, and rankings.
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Abstract: Many crustacean species are obligate associates of pocilloporid corals, where they feed,
reproduce, and find shelter. However, these coral-associated crustaceans have been poorly studied in
the eastern tropical Pacific. Determining the crustacean richness and taxonomic distinctness could
help in comparing different coral reefs and the potential effects of degradation. This study evalu-
ated the spatio–temporal variation of the taxonomic diversity and distinctness of coral-associated
crustaceans in four ecosystems of the Central Mexican Pacific (CMP) with different conditions and
coral cover. In all ecosystems, 48 quadrants were sampled during the summer and winter for two
years. A total of 12,647 individuals belonging to 88 species, 43 genera, and 21 families were recorded.
The sampling effort yielded 79.6% of the expected species richness in the study area. Species rarity
had 19% singletons, 4% doubletons, 22% unique, and 9% duplicate species; two species represented
new records for the Mexican Pacific, and six were new to the CMP. This study recorded most of the
symbiotic crustacean species in pocilloporid corals previously reported in the CMP. The taxonomic
diversity and distinctness differed significantly between coral ecosystems and seasons, which was
also visualized by nMDS ordination, showing an evident spatio–temporal variation in the taxonomic
beta diversity.

Keywords: crustacean; coral-associated; western Mexico; Pocillopora; diversity

1. Introduction

Invertebrates are frequently associated with scleractinian corals of the genus Pocil-
lopora [1]. Macrocrustaceans are the most representative coral-associated fauna. Among
these, diverse assemblages find shelter among the Pocillopora branches [2,3]. Different
taxa, including shrimps, crabs, isopods, and copepods, have been described as coral sym-
bionts [4], presenting different degrees of specialization in form and function [5]. Several
of these species are obligate symbionts, always and permanently associated with specific
hosts, while other species are facultative symbionts that can also survive outside their
host, usually on non-living substrates [1,5]. As a general trend, the coral-associated fauna
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depends on the host for feeding and refuge [6,7]. In addition, coral-associated crustaceans
help to maintain coral health by performing cleaning activities, such as removing sedi-
ment and parasites [8,9]. Some species also have an active role in their defense against
predators. For example, species of Trapezia defend the coral from predators, such as the
crown star (Acanthaster planci) [10,11], and the shrimp Alpheus lottini protects the coral
from coralivorous mollusks of the genus Drupella [12]. Crustaceans represent up to 80%
of the coral-associated fauna [1,13], playing multiple ecological roles. They are part of
different trophic relationships: acting as predators, parasites, herbivores, scavengers, and
detritivores. Most obligate symbionts are mucus, suspension, or deposit feeders [1,5]. Thus,
they link primary producers with high-level consumers [14–16]. This strong relationship
between corals and crustaceans can be affected by the changes induced by anthropogenic
activities or climate change [1,7].

The coral ecosystems of the Central Mexican Pacific (CMP) are dominated by sev-
eral species of Pocillopora [17,18]. The most common is P. verrucosa, but other species,
such as P. damicornis, P. capitata, P. eydouxi, P. effusus, P. inflata, and P. meandrina, have
also been recorded [18]. Pocilloporid corals are structurally complex, generating many
microhabitats for crustaceans [1]. However, few studies have focused on the crustacean
diversity associated with pocilloporid corals in this area. Earlier studies in the Mexican
Pacific by Pereyra-Ortega [19] and Hernández [20] described the decapods associated
with Pocillopora corals in Isla Espíritu Santo and the southern area of the Baja California
peninsula. Ramírez-Luna et al. [21] studied the temporal variation of the xanthid crabs
in Huatulco Bay, Oaxaca, and found the largest diversity and abundance during the dry
season. Hernández et al. [22,23] analyzed the impact of coral bleaching and hurricanes
on the diversity and abundance of decapods from La Paz and Loreto Bay, Baja California
Sur. They concluded that these phenomena changed the species richness considerably,
decreasing the abundance of coral-associated decapod species. Two studies have evaluated
the diversity of coral-associated crustaceans in the CMP, including the coastal region from
Nayarit to Michoacan. Hernández et al. [24] performed a visual census of the decapods
in coral ecosystems and found 36 species, with most individuals in or near corals. Ayón-
Parente et al. [25] formulated an inventory of 19 species of caridean shrimps associated
with the Pocillopora from Chamela Bay, Jalisco. Although both studies contributed to the
inventories of the crustaceans associated with pocilloporid corals of the CMP, they did not
offer evidence of possible spatio–temporal changes in their species richness and abundance,
nor did they evaluate the contribution of the different taxonomic categories to diversity.

The average taxonomic distinctness (Δ+) index has been used to assess biodiversity [26].
Environmental variability, sampling effort, and sampling size can affect most classical
indices based on species richness and evenness [27]. However, the Δ+ and its variation (Λ+)
are good ecological indicators, because they reflect the taxonomic relatedness of species
within assemblages [28,29]. These indices allow for comparing different studies because
they are independent of sample size and effort and provide a test for the significance of
departure from expectation by chance if no other studies are available for comparison [30].
This analysis determines how certain taxa contribute to the total taxonomic diversity [26].
The taxonomic distinctness and its variation have mainly been used to evaluate biodiversity
in time and space scales in different assemblages such as freshwater fishes [31,32], marine
invertebrates [29,33,34], and insects [35,36].

In this study, the main objective was to use the species richness and taxonomic distinct-
ness to assess the spatio–temporal variation of the decapods and stomatopods associated
with the coral Pocillopora in the CMP. Knowing this information could help us understand
the potential effects of coral reef degradation [7]. This area harbors the highest richness
and coral coverage of the Mexican Pacific [17,18]; its coral ecosystems are dominated by
the Pocillopora genus, which includes up to 80% of coral-associated fauna [1,13]. The CMP
has suffered from a significant human impact and, although some areas are protected,
most of the coral ecosystems are not [18]. Corals are very susceptible to environmental
changes and natural and anthropogenic impacts. These changes affect associated fauna,
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especially symbiotic species. Evidence has shown that the Pocillopora-associated fauna has
a spatio–temporal variation due to environmental drivers [3,6,21,37]. We hypothesized
that the sites with the most discontinuous coral cover and highest human intervention
(local tourism, fishing, etc.) would have the lowest richness and taxonomic distinctness,
along with a high abundance of coral-associated fauna due to the low coverage and greater
isolation of the host coral colonies.

2. Materials and Methods

2.1. Study Area

The study area included four coral ecosystems in the Central Mexican Pacific (CMP):
(i) Chamela and (ii) Cuastecomate-Punta Melaque in southern Jalisco, and (iii) Carrizales
and (iv) Punto B in Colima (Figure 1). The CMP is part of the eastern tropical Pacific
ecoregion spanning from Baja California to northern Peru and the Galapagos Islands,
Ecuador [38]. In the summer, the CMP is influenced by the California Current, the Cabo
Corrientes Upwelling, the Mexican Warm Pool, and the Costa Rica Coastal Current. How-
ever, these currents have a weaker effect during the winter and spring due to the cold
water from the California Current and the warm water from the Cortés Current [39]. Fur-
thermore, the Mexican Warm Pool is part of the Western Hemisphere Warm Pool, which
induces an important annual climatic variation in the water temperature to develop the El
Niño-Southern Oscillation (ENSO) [40,41]. These currents provide the CMP with species
from different biogeographic provinces [38]. Hurricanes, tropical storms, and upwellings
also significantly impact the coral colony structure and associated fauna [18].

Figure 1. Study area in the CMP. Site codes: (a) CH, Chamela; (b) CT, Cuastecomate-Punta Melaque,
Jalisco; (c) CA, Carrizales; and (d) PB, Punto B, Colima.

Some of the general characteristics of the sampled sites are as follows: (1) Chamela
(CH) is formed by different small islands and islets; its coral ecosystems are patchy and
isolated, and the benthos has a high coverage of rubble, sand, and dead coral. This site
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is important for fishing and local tourism. (2) Cuastecomate-Punta Melaque (CT) has a
discontinuously distributed high coral cover, characterized by small reef patches with
fleshy macroalgae stands, sand, and rocks. (3) Carrizales (CA) is located in Ceniceros Bay;
it is a short beach defined by two small and fringing coral reefs on each side of the shore
with ~100% live coral cover. (4) Punto B (PB) is located in Santiago Bay near the Julualpan
Lagoon’s mouth and is considered a highly touristic area. Its coral community has scarce,
isolated coral colonies but great coverage of sponges, calcareous algae, and sandy and
rocky substrates.

Three samples of live Pocillopora corals were collected in each coral ecosystem using
randomly placed 0.25 m2 quadrants. Each sample position was marked using a global
positioning system (GPS). A total of 48 samples were collected during September 2017,
January and September 2018, and January 2019. All samplings were obtained by scuba
diving at a 10 m depth. Each coral sample was covered with a plastic bag to avoid losing
organisms and detached using a hammer and chisel. Subsequently, the coral was carefully
fragmented to collect all the organisms between and within the Pocillopora branches. All live
decapods and stomatopods were fixed with 70% ethylic alcohol. Samples were identified
to the most precise taxonomic level possible in the Molecular Ecology, Microbiology, and
Taxonomy Laboratory (LEMITAX), Universidad de Guadalajara. The specialized litera-
ture for identification included Rathbun [42], Haig [43], Abele and Kim [44], Castro [45],
Anker et al. [46], Hendrickx et al. [47], Ayón-Parente [48], García-Madrigal and Andréu-
Sánchez [49], Hermoso-Salazar [50], Salgado-Barragán and Hendrickx [51], and Hiller and
Lessios [52]. A presence/absence matrix was constructed to perform the ecological analysis.

2.2. Data Analysis

The spatial and temporal variation of the taxonomic diversity was evaluated with a
three-way experimental design with crossed factors expressed as:

Y = μ+ Yei + Sej + Sik + YeixSej + YeixSik + SejxSik + YeixSejxSik + εijk (1)

where Y is the variable under analysis (taxonomic diversity), and μ is the mean of the
analyzed variable. The year factor (Yei) had two levels (years), and each year was composed
of two seasons (dry and wet seasons), so the first year included September 2017 and January
2018, and the second included September 2018 and January 2019. The season factor (Sej)
had two levels: wet (September 2017 and 2018) and dry (January 2018 and 2019). The
site factor (Sik) had four levels corresponding to the studied coral ecosystems. Finally, εijk
represented the accumulated error. All factors were considered as fixed effects (model
type I).

The sampling effort was evaluated using sample-based rarefactions at three levels
(i.e., site, season, and year) with the observed species richness and the expected richness
estimated using non-parametric estimators Chao 1, Chao 2, Jackknife 1, Jackknife 2, ICE, and
ACE. These estimators were based on rare species; they estimated the number of potential
species considering the incidence and abundance data recorded in the samplings [53]. The
total observed richness (SObs) was calculated for each ecosystem with the Mao Tao function.
Then, the coral ecosystems were compared in pairs with individual-based rarefactions and
95% confidence intervals. All rarefaction curves were built with 10,000 randomizations
without replacement. Species rarity was also calculated (singletons, doubletons, unique,
and duplicate species), and the species were identified. These analyses were performed in
the software EstimateS 9.1 [54]. The absolute density of each species (represented as the
number of individuals per m2) and their absolute frequency were also estimated.

The taxonomic diversity analysis considered each site’s taxonomic differences and
singularities regarding the seasonal variation and the years analyzed. Thus, the average tax-
onomic distinctness (Δ+) analysis was performed to evaluate the species’ distribution and in-
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cidence as well as their taxonomic relations [28]. This analysis also measured the taxonomic
distance between two species and its variation (Λ+), according to the following equations:

Δ+ =

[
∑ ∑

i<j
ωij

]
/[S(S − 1)/2] (2)

Λ+ =

[
∑ ∑

i �=j
ωij−� 2

]
/[S(S − 1)/] (3)

where S represents the number of species, and ωij denotes the assigned weight of each
supraspecific taxonomic level. An eight-level taxonomic aggregation matrix was built,
including species, genus, family, subfamily, suborder, order, subclass, and class. According
to Warwick and Clarke [55], the taxa were weighted as follows: ω = 1, species within the
same genus; ω = 2, species within the same family but different genus; ω = 3, species within
the same subfamily but in a different family; and so on. The Δ+ and Λ+ were estimated for
each site, season, and year. The models were created with a 95% confidence interval, and
the statistical significance was tested with 10,000 permutations.

The Δ+ analysis was followed by a taxonomic dissimilarity analysis (Γ+), which is
described as:

Γ + =

(
∑S1

i=1 minj
{
ωij

}
+ ∑S2

j=1 mini
{
ωij

} )
(S1 + S2)

(4)

where Γ+ denotes the gamma+ taxonomic dissimilarity, S1 represents the number of species
in the first sample, S2 is the number of species in the second sample, and ωij denotes the
path length between species i and j.

A non-parametric multidimensional scaling (nMDS) and a cluster analysis were per-
formed using the taxonomic dissimilarity (Γ+) matrix to explore the crustacean taxonomic
differentiation patterns across the spatio–temporal experimental design (site, season, and
year). The cluster analysis was built with the average group linking method and similarity
profile analysis (SIMPROF) to assess group formation using 10,000 permutations. Therefore,
nMDS ordination was coupled with the cluster analysis outputs. All analyses (i.e., Δ+, Λ+,
Γ+, nMDS, and cluster analysis) were performed in PRIMER 7.0.21 and PERMANOVA
+1 [56].

3. Results

A total of 12,647 specimens were collected, representing 21 families, 43 genera, and
88 species (Supplementary Material, Table S1). For each quadrant, the number of species
collected ranged from 13 to 38, and the number of individuals ranged from 36 to 705.
The most diverse families were Alpheidae (21 species) and Porcellanidae (20 species). Ten
families (47%) were represented by a single species (Supplementary Material, Table S1). The
sample-based rarefaction showed that the sampling effort had an adequate representativity
(79.6%) of the species richness expected by chance (Supplementary Material, Figure S1).
The sampling effort ranged between 77.9% and 91.6% of representativity for all sites. The
seasons showed 84.6% of representativity during the dry season and 85.7% in the wet
season (Supplementary Material, Table S2). The representativity for year one was 79.5%,
and for year two it was 88% (Supplementary Material, Table S2).

The most abundant species were Trapezia corallina, with 1720 individuals (13.6% of
total abundance); Trapezia bidentata, with 1489; Pachychelles biocellatus, with 1028; Petrolisthes
haigae, with 955; Alpheus lottini, with 820; Petrolisthes hians, with 619; and Trapezia formosa,
with 579. Together, these species represented more than half of the collected specimens
(Supplementary Material, Table S1). Of the total, 38 species (43% of the total) were repre-
sented by less than 10 individuals. Of these, 17 species had only 1 individual (singletons),
and 4 had only 2 individuals (doubletons). Consequently, the contribution of singletons and
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doubletons to the species richness was 23.8%. In addition, 14 species were collected in only
1 sample (uniques) and 7 in 2 samples (duplicates) (Supplementary Material, Table S1).

Individual-based rarefactions in pairwise comparisons showed that the species rich-
ness between sites was similar because their confidence intervals (95%) overlapped
(Supplementary Material, Figure S2). An exception was Chamela and Carrizales, which had
the highest and lowest number of species, respectively (Supplementary Material, Figure
S2). The highest total species richness and abundance recorded over the sampling period
were as follows: for Chamela, 69 species and 2371 individuals; for Cuastecomate-Punta
Melaque, 64 species and 3266 individuals; for Carrizales, 58 species and 2752 individuals;
and for Punto B, 68 species and 4258 individuals (Supplementary Material, Table S1). The
total species richness was similar between years and between seasons (Supplementary Ma-
terial, Figure S3). Year one showed 78 species and 5957 individuals, and year two showed
76 species and 6690 individuals. The wet season showed 79 species and 5276 individuals,
and the dry season showed 73 species and 7361 individuals (Supplementary Material,
Table S1). Synalpheus arostris and Neogonodactylus pumilus were recorded for the first time
in the Mexican Pacific and showed a geographic extension of 3950 km to the north. Six
other species were recorded for the first time in the Central Mexican Pacific: Lophopanopeus
frontalis, Daldorfia trigona, Pilumnus gonzalensis, Pilumnus reticulatus, Tumidotheres margarita,
and Megalobrachium tuberculipes. In Chamela, 50% of the species were collected for the first
time, in Cuastecomate-Punta Melaque, 76%, and in Carrizales and Punto B, 63%.

The average taxonomic distinctness (Δ+) analysis at the site level showed that the
Δ+ values for all the sites fell inside the probability funnel or within the 95% confidence
intervals (p > 0.05). Chamela had the lowest Δ+ values despite having the greatest number
of species (Figure 2). Punto B had the highest Δ+ values above the global Δ+ of the model.
However, the Λ+ values for all sites fell within the probability funnel, indicating that the
sampled sites were representative of the taxonomic diversity of the area. The seasons had
different Δ+ values because the wet season fell within the probability funnel, but the dry
season was outside the funnel (p < 0.05). The Λ+ values for the dry season were outside the
funnel, so the taxonomic representativity during the dry season was lower than expected
by chance (Figure 2). The Δ+ and Λ+ values between years were similar and fell inside the
probability funnel (Figure 2).

The nMDS ordination showed that the taxonomic dissimilarity (Γ+) differed among
the sites (Figure 3). The cluster analysis based on the SIMPROF procedure confirmed a
group constituted by the southern sites (i.e., Carrizales and Punto B) and two separate
entities (i.e., Chamela and Cuastecomate-Punta Melaque). This was also observed in the
nMDS ordination. Carrizales and Punto B shared several species (e.g., Pseudosquillisma
adiastalta, Pomagnathus corallinus, and Synalpheus arostris) and genera (e.g., Trapezia, Liomera,
and Pomaghnathus), and they had almost the same families, except for the Pinnotheridae,
which was only present in Punto B (and Cuastecomate-Punta Melaque). Conversely,
Cuastecomate-Punta Melaque had a different crustacean fauna compared to the other sites
and showed a mixture of taxa shared with Chamela and Punto B. Cuastecomate-Punta
Melaque presented 34 genera and 17 families; these families were the same as Punto B,
except for Panopeidae, which was found exclusively in this site, and Pseudosquillidae,
which was absent. Chamela is the northernmost site and the most distant from the others.
It was different because it had one superfamily (Parthenopoidea) not found elsewhere and
two absent superfamilies (Eriphioidea and Pinnotheroidea). In Chamela, two families that
were not found in other sites were collected (Parthenopidae and Lysmatidae), and four
families (Panopeidae, Oziidae, Pseudosquillidae, and Pinnotheridae) were absent.
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Figure 2. Average taxonomic distinctness analysis (Δ+) by site (a), season (c), and year (e); and its
variation Λ+ for (b) site, (d) season, and (f) year. Codes: CH, Chamela; CT, Cuastecomate-Punta
Melaque; CA, Carrizales; PB, Punto B.

 

Figure 3. Non-metric multidimensional scaling (nMDS) ordination shows the taxonomic dissimilarity
of the crustacean diversity associated with Pocillopora corals among the studied sites in the CMP.
Groups were separated as a function of the cluster analysis with an average group linking method and
the similarity profile analysis (SIMPROF). Codes: CH, Chamela; CT, Cuastecomate-Punta Melaque;
CA, Carrizales; PB, Punto B.
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4. Discussion

This study recorded most of the Pocillopora obligate symbiotic crustacean species
reported by previous studies, including Trapezia bidentata, T. corallina, T. digitalis, T. formosa,
Alpheus lottini, Hapalocarcinus marsupialis, and some species of Synalpheus. However, we did
not find some species known to be associated with Pocillopora, such as Fennera chacei, Alpheus
sulcatus, Palaemonella holmesi, Stenorhynchus debilis, Thor algicola, and Petrolisthes galathinus,
which had been previously reported in the study area [24,25]. Nonetheless, we obtained
two new records for the Mexican Pacific and six new records for the CMP (Supplementary
Material, Table S1), increasing the known information regarding regional crustaceans.

Several species collected during this study, i.e., Tumidotheres margarita, Typton sp.,
and Pontonia sp., have been reported as endosymbionts of sponges, ascidians, or bivalves.
These hosts are frequently associated with pocilloporid corals, and these decapods might
be recognized as having a secondary association with pocilloporid corals. Tumidotheres
margarita is an endosymbiont of the bivalves Barbatia reevaena, Limaria pacifica, and Pinc-
tada mazatlanica [57], which are known as Pocillopora-associated mollusks in the Mexican
Pacific [58]. Typton tortugae and T. serratus have been recorded as being associated with
sponges living on corals [59]. In this study, some sponges were found to be associated with
corals, and a similar association could exist in the cases of T. hephaestus and T. granulosus.
Shrimps of the genus Pontonia are reported as obligate symbionts of the bivalves Pinna
spp. and P. mazatlanica [60]. We assumed that the Pontonia specimens collected during this
study were dislodged from their host during the collecting process or after the samples
were preserved.

Our study increased the inventory of crustaceans associated with Pocillopora coral in
the Mexican Pacific from 59 [20–24] to 88 species. Comparatively, in Huatulco, Oaxaca, a
method similar to the one used here (0.25 m2 quadrants) recorded 47 species of brachyuran
crabs in pocilloporid corals [21]. In La Paz and Loreto Bay, Baja California Sur, 44 species of
decapods were recorded [22]. Furthermore, a study covering almost the entire Mexican
Pacific, from the Gulf of California to Oaxaca, recorded 36 crustacean species associated
with pocilloporids [24]. The difference between the number of species reported herein and
by Hernández et al. [24] may be a consequence of the visual census they performed. With
this method, some close species are easily confused (e.g., Synalpheus spp., Trapezia spp., and
Alpheus spp.) or overlooked (e.g., Hapalocarcinus marsupialis). The expected species richness
estimated by the sample-based rarefaction was 20% higher than the observed richness due
to the large number of rare species collected. Expected species richness is a good indicator
of the potential species expected in the area. The sample-based rarefaction confirmed that
the sampling effort was sufficient to elucidate the actual number of crustacean species
associated with the Pocillopora coral in the CMP.

Decapod crustacean fauna associated with Pocillopora coral has been studied in many
tropical and subtropical regions of the world’s oceans. The species diversity recorded in this
study is superior to the 36 species associated with Pocillopora off the Arabian coast in the
Red Sea [61]. However, it is lower than the diversity reported from Oahu (Hawaii), where
127 species were found associated with Pocillopora damicornis [62], and then the 91 species
reported more recently in 751 colonies of P. meandrina, also in Oahu [3]. For the northern
Great Barrier Reef, Australia, 102 species were found in 50 colonies of P. damicornis [63]. It
is important to mention that the obligate symbiotic composition observed in our study is
similar to what has been reported for the Red Sea and the Great Barrier Reef, i.e., all three
studies share the same brachyuran crabs (Trapezia bidentata, T. digitalis, and Domecia hispida)
and caridean shrimps (Alpheus lottini, Synalpheus charon, and Harpiliopsis depressa).

A previous study indicated that the number of species present in coral ecosystems
depends on the size of the coral colony [64]. The authors reported species richness ranging
from 3 to 22 per colony (1500 cm3 size) in the Gulf of Panama; in Costa Rica, 20 cm diameter
colonies had 18 species [65]. Despite using quadrants of the same size, this study collected
13–18 species and 36–711 individuals per 0.25 m2 of coral sample. These differences
in abundance and richness are substantial and cannot only be attributed to colony size.
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To predict the species richness or abundance in colonies with stable conditions, some
authors considered coral complexity (e.g., inter-branch space, penetration depth, and size
of living space) [9], but in some cases, this factor was unable to explain the changes between
different colonies [63]. For example, species such as the symbiotic Trapezia are not limited
by coral complexity; they only need a healthy coral fragment for their survival [66]. Other
characteristics, such as the percentage of live tissue and habitat degradation, could also
influence the richness and abundance shifting. The species richness and abundance increase
when the proportion of live coral tissue cover decreases [7,63]; this might happen because
coral loss allows other species to move to new colonies. Moreover, coral mortality increases
the abundance in single colonies [15], which may occur for two reasons: (1) the death of
symbionts allows for other opportunistic species to move to more stable colonies, or (2) coral
loss induces migrations of individuals looking for new space to live [7,9]. This situation
could be happening in Punto B, where the coral colonies are isolated, fewer colonies are
available, and the ecosystem is subject to anthropogenic pressure [18]. Symbiont loss does
not seem to be a problem in Punto B because of the abundant obligate symbionts found in
all samples.

The average taxonomic distinctness (Δ+) varied between sites and seasons. The Δ+

values fell inside the 95% probability funnel, meaning they were a good representation
of the taxonomic diversity of decapods and stomatopods associated with pocilloporid
corals. However, Chamela had a lower Δ+ value despite having the greatest species
richness among the four sites. This contrast occurred because Chamela featured the fewest
supraspecific taxonomic hierarchies since many species belonged to the same families, i.e.,
Alpheidae (17 species) and Porcellanidae (18 species). In contrast, Punto B had the highest
Δ+ value above the global Δ+ of the model and sustained almost the same species richness
as Chamela. Punto B shared the taxonomic hierarchies with other sites and did not present
any exclusive hierarchy.

Regarding the temporal variation of the taxonomic diversity, the Δ+ values fell outside
the probability funnel in the dry season, meaning a relatively low taxonomic diversity
change during this season; six genera (Areopaguristes, Aniculus, Daldorfia, Bottoxanthodes,
Pontonia, and Pseudosquillisma), two families (Parthenopidae and Pseudosquillidae), and
one superfamily (Parthenopoidea) were not recorded in this season. In contrast, the taxo-
nomic diversity was better represented during the wet season, when the Parthenopoidea
superfamily was present, portrayed by Daldorfia trigona, a species not collected in the dry
season. Moreover, 15 species and 6 genera were exclusively collected during the wet season
(Supplementary Material, Table S1). Years one and two had similar species richness and
taxonomic structure. Likewise, both Δ+ values fell into the probability funnel close to the
global Δ+ level, demonstrating that the studied years adequately represented the taxonomic
diversity estimated by the global Δ+ model.

The nMDS ordination coupled with cluster analysis showed that Chamela had the
highest taxonomic dissimilarities (Γ+) among the studied sites. Chamela—the northernmost
site—was the most different with the highest taxonomic dissimilarity, the lowest Δ+, and
the highest species richness. The Chamela samples contained one superfamily, two families,
and four genera exclusive to this site, but several superfamilies, families, and genera present
in the other sites were absent. It has been suggested that a low taxonomic distinctness can
indicate a loss in the taxonomic diversity due to anthropogenic stress [30]. However, in this
study, Punto B was the most anthropogenically affected site and displayed the highest Δ+

values. Despite moderate disturbances, symbiotic species tend to stay in their host for a
long time [9,63]. Nevertheless, some symbionts (e.g., Trapezia) can migrate to other coral
colonies in search of more suitable habitat [66,67]. Limited habitat availability makes them
pile up in the colony, increasing species richness and abundance. This phenomenon could
affect the Δ+ values in Punto B, increasing the values higher than the global Δ+ of the model.
The low levels of taxonomic diversity in Chamela might be attributed to other variables,
including the spatial process [68], benthic heterogeneity, habitat availability [69], or habitat
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type [70]. In addition, it is important to remember that the variety of microhabitats is one
of the main factors driving the diversity and abundance of coral-associated crustaceans [7].

In conclusion, the sampling effort in this study allowed for obtaining more than 70%
of the expected species, indicating a good taxonomic representativity. The species richness
and the taxonomic distinctness were within the expected values, despite being lower
during the dry season. Most of the expected coral-obligated symbionts were collected,
except for Fennera chacei, a small species frequently living in the coral base, which probably
escaped during the collecting process. In contrast with the initial hypothesis, the sites with
the most discontinuous coral cover and the largest human intervention did not have the
lowest taxonomic distinctness (Punto B). However, as expected, the greatest abundance
was observed in Punto B; this can be explained by the low coral availability, environmental
variables, or anthropogenic stress. The present study should be complemented with α, γ,
and β diversity analysis to assess the spatio–temporal differences in this particular species
assemblage. It is also important to consider the influence of environmental variables,
reef structural complexity, and human impact on the richness and abundance of these
crustacean species, particularly in the obligate coral-symbiotic species. This study helped us
to understand the crustacean assemblage associated with corals in the CMP and the spatio–
temporal variations in their taxonomic diversity. Furthermore, it increased the taxonomic
inventory of the coral-associated species in the studied region and the Mexican Pacific.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14020072/s1, Table S1: Crustacean species list organized by
families, Table S2: Sample-based rarefaction results, Figure S1: Sample-based rarefaction curves for
the study area, Figure S2: Individual-based rarefaction curves between sites, Figure S3: Individual-
based rarefaction curves between climatic seasons and sampling years.
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Abstract: Bioerosion caused by boring mussels (Mytilidae: Lithophaginae) can negatively impact coral
reef health. During biodiversity surveys of coral-associated fauna in Curaçao (southern Caribbean),
morphological variation in mussel boreholes was studied. Borings were found in 22 coral species, 12 of
which represented new host records. Dead corals usually showed twin siphon openings, for each mussel
shaped like a figure of eight, which were lined with a calcareous sheath and protruded as tubes from
the substrate surface. Most openings surrounded by live coral tissue were deeper and funnel-shaped,
with outlines resembling dumbbells, keyholes, ovals or irregular ink blotches. The boreholes appeared
to contain black siphon and mantle tissue of the mussel. Because of the black color and the hidden
borehole opening in live host corals, the mantle tissue appeared to mimic dark, empty holes, while they
were actually cloaking live coral tissue around the hole, which is a new discovery. By illustrating the
morphological range of borehole orifices, we aim to facilitate the easy detection of boring mussels for
future research.

Keywords: bioerosion; boring; coral health; Curaçao; host records; Lithophaginae; Mytilidae

Boring mussels (Mytilidae: Lithophaginae) are notorious for their bioerosion of lime-
stone rock, bivalve shells, reef corals and various manmade calcareous substrates [1–9].
Most of these boring mussels (also called date mussels) belong to the genera Leiosolenus
Carpenter, 1857 and Lithophaga Röding, 1798 [10]. In addition to causing damage to the
structure of reef corals [11–15], these animals are suspected to make host corals more
susceptible to diseases [16].

In order to detect the presence of boring mussels inside corals, it is important to
recognize the orifices of their boreholes. For their feeding and respiration, boring mussels
inhale and exhale seawater through a pair of siphons at the posterior edge of their mantle
tissue [17–19]. The siphons use openings in the substrate surface for contact with the
surrounding seawater [20]. The outline of such openings is described as “figure-of-eight”
or “dumbbell” [3–5,8,20–23] shape, not to be confused with the twin openings of U-shaped
excavations of Polydora worms (Polychaeta) [24–28] and the perforations made by boring
clionaid sponges (Porifera) [25,29].

In mussels of the genus Leiosolenus, the borehole and its openings are lined with an
aragonite (calcareous) sheath that is excreted by the bivalve [16,20,30,31]. At the substrate
surface, such sheaths may appear as chimney-like tubes that provide protection to the
siphons [21,22,32,33]. However, these sheaths are not always visible, and the openings of
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some borings are described as being oval in shape, which may perhaps be influenced by
the host coral or by overgrowing algae [20,32,33]. Oval orifices of mussel borings can be
irregular in shape [32,34] and should not be confused with the crescent-shaped openings of
some coral-dwelling gall-crab species [35–37]. Owing to their morphological variability, the
openings of mussel holes may not always be recognized; it is possible that they therefore
become classified as “unknown holes” [38]. Because boring mussels can have a negative
impact on the health of reef corals [12,16], it is important that their presence can be detected
through the easy recognition of their orifices. In this study, we provide information on how
these openings can be spotted in the field.

During biodiversity surveys of coral-associated fauna along the leeward side of Cu-
raçao (southern Caribbean) in October–December 2021 and April 2022 [39,40] a number
of live and dead corals were checked for boreholes of lithophagine mussels. To verify the
presence of mussels underneath openings, two corals were broken to reveal the position of
the mussels (Figure 1).

 

Figure 1. Coral colonies of Siderastrea siderea at Curaçao, showing the position of borehole open-
ings (A,C: arrows) and Leiosolenus mussels underneath them (B,D). One coral contains three mus-
sels (A,B: I–III) and the other only one (C,D). Each exposed mussel has the posterior side upward,
showing either a lateral side (B) or the dorsal side (D). The dark color of each hole (A,C) indicates the
presence of the mussel’s mantle tissue; in some individuals approaching dark Bordeaux red (A: insert
2× enlargement). The mantle tissue may be covered by some detritus particles (B,D). In exposed
mussels, the mantle tissue is retracted inside the shell (B,D). Scale bars: 1 cm.
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The morphological variety in the orifices appeared to be more extensive than previ-
ously reported. Many corals, mostly dead but also live ones, showed two calcareous tubes
(sheaths), protruding from the substrate surface, described as aragonite chimney-like struc-
tures [21,32]. In addition to showing a figure-of-eight shape consisting of two connected tubes
(Figure 2A–E), some twin openings appeared to be separate (Figure 2F). A slit was seen in the
calcareous margin where twin tubes were merged, varying in width (Figure 2A–E). The tubes
did not protrude as high as those made by boring bivalves of the family Gastrochaenidae,
which excavate in dead coral [22,32]. Most orifices in live corals showed a so-called “dumb-
bell shape”, although “keyhole shape” appears to be more appropriate (Figure 2G–I). Other
openings surrounded by live coral tissue appeared to have an oval outline (Figure 2J–L) or
one resembling an irregular ink blotch (Figure 2M,N). A few boreholes showed an empty
Leiosolenus shell inside (Figure 2O).

 

Figure 2. Morphological variation of orifices in corals containing Leiosolenus mussels at Curaçao.
(A–E) Figure-of-eight shape with two calcareous tubes showing black siphon tissue inside; the tubes
are connected apart from a slit (inserts: 2.5× enlargement). (F) The siphon tubes are separated by the
host coral. Black mantle tissue is cloaking holes that are shaped like a dumbbell or keyhole (G–I), an
oval (J–L), or an irregular ink blotch (M,N). (O) A hole containing valves of a dead mussel. Substrate:
dead coral (A,C,D); live corals of Orbicella franksi (B,I), Montastraea cavernosa (E,J), Madracis senaria (F),
Agaricia humilis (G,O), Siderastrea siderea (H), Favia fragum (K), Porites astreoides (L), Pseudodiploria
strigosa (M), Millepora alcicornis (N). Scale bars: 1 cm.
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The inner surface of the tubes was lined with black siphon tissue (Figure 2A–F). The tubes
were not visible in the larger holes (Figure 2G–N), which appeared to be pitch black, making
them appear to be empty. Closer inspection showed that they were filled with the mussel’s
black mantle and siphon tissue. Disturbance evoked the retraction of the tissue, revealing that
the orifice was funnel-shaped (Figure 3) and that the mantle originally covered live polyps
around the hole, masking its true outline. Since the boring activity of the mussels is in posterior
and lateral directions [22,41] and the host coral expands, the mussels are forced to move their
holes upward in order to remain close to the host’s surface [22], as illustrated by Gohar and
Soliman (1983: Figure 11B) [23] and by Yahel et al. (2009: Figure 1B) [42]. It is notable that
boring mussels of some genera have anterior boring glands [20], suggesting that they can
indeed bore in an upward direction. When the calcareous tubes fail in keeping track of the
expanding coral and stop reaching the host’s surface, the mussel’s mantle sustains an open
orifice surrounded by growing coral tissue, forcing the host to form a funnel-shaped entrance
(Figures 1C, 2H,I, and 3). Such openings may resemble crevices formed by Pedum clams that
live inside massive corals [11,43,44] or incavations formed by some coral-gall crabs [35].

 

Figure 3. Leiosolenus boring in a colony of Siderastrea siderea in Curaçao with a funnel-shaped entrance.
(A) The mussel’s black mantle tissue expanded with a keyhole-shaped outline. (B) The same borehole
(from a slightly different angle) with part of the mantle tissue withdrawn (arrow and contour line
showing the previous position as depicted in (A)). Retraction of the mantle tissue reveals even more
that the opening is funnel shaped. Scale bar: 0.5 cm.

Close up, the color of the mantle tissue appeared to be dark red (Bordeaux) in some
mussel individuals, which is slightly visible in Figure 1A. An examination of black holes in
corals for the presence of mantle tissue inside makes it easier to see whether boring mussels
are present, distinguishing them from dark empty holes without mussels. Previous studies
on boring mussels did not pay attention to how mantle coloration may cause lithophagine
holes to become less discernible. This finding may help to study whether coral-dwelling
date mussels are more abundant than previously thought.

Mussel boreholes were found in 20 scleractinian species and two milleporids (Table 1).
Twenty species had large holes (oval and other shapes), and only nine showed figure-of-
eight twin openings (Table 1). There were twelve new Caribbean host records, including
those of the two Millepora species. Three extant Leiosolenus species have been described
from Caribbean corals [45–49]: L. aristatus (Dillwyn, 1817), L. bisulcatus (d’Orbigny, 1853)
and L. dixonae (Scott, 1986). The latter has only been recorded from three Madracis species:
M. auretenra (misidentified as M. mirabilis), M. decactis (Lyman, 1859) and M. formosa
Wells, 1973 [45].
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Table 1. Coral species at Curaçao observed as hosts for Leiosolenus; * = new host record. Shape of
orifices observed: T = figure of eight; O = other (oval, dumbbell, keyhole and ink blotch).

Host Taxon Orifice Shape

Cnidaria: Anthozoa: Scleractinia
Agariciidae

Agaricia agaricites (Linnaeus, 1758) O
Agaricia humilis (Verrill, 1901) * T O

Agaricia lamarcki Milne Edwards & Haime, 1851 * O
Astrocoeniidae

Stephanocoenia intersepta (Esper, 1795) O
Faviidae: Faviinae

Colpophyllia natans (Houttuyn, 1772) * T O
Diploria labyrinthiformis (Linnaeus, 1758) *

Favia fragum (Esper, 1793) O
Pseudodiploria strigosa (Dana, 1846) T O

Meandrinidae
Eusmilia fastigiata (Pallas, 1766) * O

Meandrina meandrites (Linnaeus, 1758) * O
Merulinidae

Orbicella annularis (Ellis & Solander, 1786) O
Orbicella faveolata (Ellis & Solander, 1786) * T O

Orbicella franksi (Gregory, 1895) * T O
Montastraeidae

Montastraea cavernosa (Linnaeus, 1767) O
Pocilloporidae

Madracis auretenra Locke, Weil & Coates, 2007 O
Madracis decactis (Lyman, 1859) T O

Madracis pharensis (Heller, 1868) * T
Madracis senaria Wells, 1973 * T O

Poritidae
Porites astreoides Lamarck, 1816 O

Siderastreidae
Siderastrea siderea (Ellis & Solander, 1768) O

Cnidaria: Hydrozoa: Anthoathecata
Milleporidae

Millepora alcicornis Linnaeus, 1758 * O
Millepora complanata Lamarck, 1816 * T O

Dead coral T

Leiosolenus aristatus has been recorded from Brazil as an introduced species in inva-
sive Tubastraea corals [50] and also from Southeast Florida but without a host record [51].
Leiosolenus bisulcatus was previously recorded from Agaricia agaricites, Favia fragum, Pseu-
dodiploria strigosa, Siderastrea radians, Siderastrea siderea and Stephanocoenia intersepta (as
S. michelini) [45,47,52]. Leiosolenus bisulcatus has also been recorded from Oculina arbuscula
Agassiz, 1880 in North Carolina, USA [53] and from Mussismilia hispida (Verrill, 1902) and
Siderastrea stellata Verrill, 1868 in Brazil [54]. In the present study, the mussels were not
identified at the species level, but considering previous host records, L. bisulcatus is the most
likely an associate for most host coral species, with the exception of L. aristatus for Madracis.

By presenting the host range of boring mussels and by showing the morphological
range of their borehole orifices, we aim to facilitate the easy detection of these bioeroding
organisms in future research. Our findings may also help in the interpretation of fossil
holes of boring mussels, recognized as trace fossils of the ichnogenus Gastrochaenolites, and
may tell us more about the condition and habitat of their host corals or other substrates
when these were still alive [4,55–59].

For a better understanding of the host specificity of coral-associated boring mussels,
more research is needed on the host selection during settlement of their larvae, like in
earlier studies on Indo-Pacific Lithophaginae [31,60,61], some coral barnacles [62,63], and
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Christmas tree worms [64,65]. The present findings may stimulate future studies on
borehole orifices in the Indo-Pacific, where more species of coral-dwelling Lithophaginae
and host-coral species occur than in the Atlantic [32,66–75]. Molecular techniques are
available [2,18,73,76] to study the host specificity of coral-dwelling Lithophaginae on coral
reefs in both the Atlantic and the Indo-Pacific.

Coral-dwelling mussels are not the only invertebrates participating in the coral-
associated biodiversity of reef corals [77–81]. It is noteworthy that Lithophaginae may also
contribute to this fauna indirectly by acting as hosts for symbiotic species themselves, such
as pea crabs [82,83]. It is evident that more research is needed on the ecology and evolution
of coral-dwelling mussels.
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Abstract: Coral reefs in the Caribbean are known to be affected by many coral diseases, yet the
ecology and etiology of most diseases remain understudied. The Caribbean ciliate infection (CCI)
caused by ciliates belonging to the genus Halofolliculina is a common disease on Caribbean reefs,
with direct contact considered the most likely way through which the ciliates can be transmitted
between infected and healthy colonies. Here we report an observation regarding a Coralliophila sp.
snail feeding in proximity to a cluster of ciliates forming the typical disease band of CCI. The result
of this observation is twofold. The feeding behavior of the snail may allow the passive attachment of
ciliates on the body or shell of the snail resulting in indirect transport of the ciliates among colonies,
which makes it eligible as a possible disease vector. Alternatively, the lesions created from snail
feeding may enhance the progression of the ciliates already present on the coral as well as promoting
additional infections allowing pathogens to enter through the feeding scar.

Keywords: coral disease; Halofolliculina; transmission mechanism; Bonaire; Acropora

Coral diseases represent a serious threat for coral reefs worldwide, with the Caribbean
considered a “hotspot” of disease outbreaks [1]. Currently, the coral reefs of the Caribbean
are experiencing an outbreak of stony coral tissue loss disease (SCTLD) that originated on
the reefs of Florida in 2014 [2] and is spreading across the Caribbean resulting in extensive
colony mortality [3–6]. Despite the devastating effect this disease has had on coral reefs,
our understanding of its ecology, pathogenesis, and etiologies is limited, making it difficult
for resource managers to make decisions on how best to maintain these critical resources.
As example, understanding disease spread among individual colonies or coral populations
would be a critical factor in developing management actions to slow down or stop disease
and the resultant mortality, yet disease transmission dynamics are still understudied [7].

Many studies have suggested that coral-feeding animals can promote disease trans-
mission among colonies on a reef. Several families of coral reef fishes have been observed
in the field feeding on coral disease lesions including black band disease (BBD) [8,9], brown
band disease (BrB) [10] and stony coral tissue loss disease [11]. Corallivores feeding on
disease lesions could transmit the pathogen by subsequently feeding or defaecating on a
non-diseased colony and this has been suggested as a mechanism of black band disease
transfer by butterflyfishes [9,12] as well as spreading the trematode parasite that causes
Porites trematodiasis in Hawaii [13]. Numerous types of invertebrate corallivores (snails,
nudibranchs, fireworm, crown-of-thorns seastars) have also been implicated in disease
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transmission, either directly [1,14,15] or indirectly via feeding scars which subsequently
develop disease [16–21].

Halofolliculinid ciliates can cause progressive tissue loss on corals; this disease is
termed skeletal eroding band in the Indo-Pacific and Caribbean ciliate infection in the
Caribbean [22]. Caribbean ciliate infection (CCI) was first reported in 2006 [23], and it can
affect ~4 to 8 % of corals as observed in Venezuela and Curaçao [22]. It manifests as a
dark-grey band 1–10 cm thick, located at the interface between recently exposed skeleton
and apparently healthy coral tissue showing the characteristic spotted appearance of the
clustering ciliates [24,25] (Figure 1a,b). Halofolliculina ciliates have a life cycle represented
by two distinct phases: a sessile ciliate (encased within a lorica), and a motile larval phase.
During replication, the de-differentiation of the sessile feeding trophont results into a simple
motile phase, which then divides asexually into two motile swarmers that may move using
ciliary locomotion and disperse [26]. Transmission of ciliate infection among coral colonies
occurs on direct contact between a healthy and infected colony [26] and through the water
column if the health colony has a prior injury of any origin [27,28]. Ciliates at the sessile
stage have also been found embedded in the shells of a number of corallivorous gastropods
which may serve as passive vectors of the disease [22].

Figure 1. It shows the typical appearance of corals affected by CCI. The arrows indicate the cluster of
ciliates forming CCI dark-grey bands located at the interface between recently exposed skeleton and
apparently healthy coral tissue on (a) Acropora cervicornis and (b) Diploria labyrinthiformis.

Here we report on an observation made in Bonaire in 2019, in which a Coralliophila sp.
snail was observed feeding on coral tissue at the edge of the cluster of ciliates forming
typical disease bands of CCI (Figure 2a,b). The snail species in question is probably C. galea
(Dillwyn, 1823), previously misidentified as C. abbreviata (Lamarck, 1816), which is so far the
only Coralliophila species reported from Caribbean Acropora spp. [29–31]. This observation
creates the possibility that transmission of CCI may also be facilitated by snail activities.
Lesions created by snail predation may open-up wounds in the coral which can then be
colonized by the ciliates at the swarmer stage. Alternatively, snails are attracted to injured
coral tissue [32] so coral lesions created by CCI could attract snails and allow passive
attachment of ciliates on the body, or shell, of the snail resulting in indirect transport of
the ciliates among colonies. Coralliophila species have been implicated as a potential vector
of white band disease [15,33], white pox disease [1], and white plague disease [34] in the
Caribbean, as well as to disease development in Porites cylindrica in the Indo-Pacific [20].
Our observation adds to the growing body of evidence on the role that snails play in
disease transmission, however, the extent to which Coralliophila may be involved in the
pathogenesis of halofolliculinid ciliate infection in Bonaire needs further investigation.
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Figure 2. (a) Coralliophila sp. snail feeding in proximity of cluster of ciliates forming the typical
disease band of CCI; (b) close-up of the snail’s feeding behavior.
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Abstract: In this study, coral disease was first reported in the coral hatchery in Thailand. Disease
were usually found on corals aged two to five years old during the months of November to December
of each year. To identify bacterial strains, culture-based methods for strain isolation and molecular
techniques of the 16S rRNA gene analysis were used. The resuts showed that the dominant genera of
bacteria in diseased corals were Vibrio spp. (comprising 41.01% of the isolates). The occurrence of the
disease in the coral hatchery can have a significant effect on the health and survival of juvenile corals
before being transplanted to natural reefs for restoration.

Keywords: coral; culture; disease; Thailand; temperature

Coral restoration has long been implemented in Thailand. However, most programs
use asexual reproduction methods to produce new corals. In 2008, the first coral hatchery
was established at Samea San Island, upper Gulf of Thailand to culture several coral species
using a sexual reproduction technique, and to raise corals to an age of five years old
before being transplanted to natural reefs. In this study, we report for the first time on the
incidence of coral disease found in the hatchery. During the months of November and
December, annually since 2015, coral disease has been found on cultured Platygyra corals.
Diseases were usually found on corals aged two to five years old (Figure 1). More than
100 coral colonies infected by disease (approximately 25% of total corals in the hatchery)
were recorded each year.

To identify bacterial strains, culture-based methods for strain isolation and molecular
techniques of the 16S rRNA gene analysis were used. Partial sequences of the 16S rRNA
gene revealed that the dominant genera of bacteria in diseased corals were Vibrio spp. (com-
prising 41.01% of the isolates, followed by Bacillus megaterium 25.28%, Pseudoalteromonas
spp. 21.35%, Promicromonospora citrea 6.74%, and unidentified bacterium 2D804 5.62%).
In comparison, healthy corals possessed a small quantity of Vibrio spp. (7.76%). These
findings indicate that certain bacteria were able to become dominant in coral hosts (e.g.,
Vibrio) while others were drastically reduced or lost (e.g., Alteromonas and Nocardiopsis)
during the low water temperatures when disease was most prevalent. In addition, analysis
of the culture-independent bacterial ribosomal intergenic spacer showed the differences
in bacterial communities between diseased and healthy corals, which was similar to the
findings of Bourne et al. of which Vibrio was dominant in the diseased community [1]. The
occurrence of dominant Vibrio spp. suggested that these bacteria species may be oppor-
tunistic pathogens on healthy corals during winter seasons when coral immunity may be
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reduced due to lower water temperatures [2,3]. In addition to corals, the winter disease
scenarios were also found in shrimp and crab species [2,4,5]. In Thailand, coral disease can
be found throughout both the Gulf of Thailand and the Andaman Sea, particularly after
bleaching events [6,7].

Figure 1. Potential coral disease in the coral hatchery (a,b). The red arrows indicate where the coral
disease was found.

Our findings are the first to demonstrate the dominance of Vibrio and the changing
bacterial assemblages in diseased corals in the hatchery during winter or low temperature
seasons. The occurrence of the disease in the coral hatchery can have a significant effect
on the health and survival of juvenile corals before being transplanted to natural reefs for
restoration.
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