
Edited by

In Silico Approaches 
in Drug Design

Osvaldo Santos-Filho
Printed Edition of the Special Issue Published in Pharmaceuticals

www.mdpi.com/journal/pharmaceuticals



In Silico Approaches in Drug Design





In Silico Approaches in Drug Design

Editor

Osvaldo Santos-Filho

MDPI ‚ Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Manchester ‚ Tokyo ‚ Cluj ‚ Tianjin



Editor

Osvaldo Santos-Filho

Instituto de Pesquisas de

Produtos Naturais Walter

Mors

Universidade Federal do Rio

de Janeiro

Rio de Janeiro

Brazil

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Pharmaceuticals (ISSN 1424-8247) (available at: www.mdpi.com/journal/pharmaceuticals/special

issues/Silico Approaches Drug).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-5384-9 (Hbk)

ISBN 978-3-0365-5383-2 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

www.mdpi.com/journal/pharmaceuticals/special_issues/Silico_Approaches_Drug
www.mdpi.com/journal/pharmaceuticals/special_issues/Silico_Approaches_Drug


Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”In Silico Approaches in Drug Design” . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vitor Martins de Almeida and Osvaldo Andrade Santos-Filho
Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants:
A Virtual and Molecular Dynamics Investigation
Reprinted from: Pharmaceuticals 2022, 15, 1099, doi:10.3390/ph15091099 . . . . . . . . . . . . . . 1

Diana Gomes, Samuel Silvestre, Ana Paula Duarte, Aldo Venuti, Christiane P. Soares and
Luı́s Passarinha et al.
In Silico Approaches: A Way to Unveil Novel Therapeutic Drugs for Cervical Cancer
Management
Reprinted from: Pharmaceuticals 2021, 14, 741, doi:10.3390/ph14080741 . . . . . . . . . . . . . . . 19

Yazan J. Meqbil and Richard M. van Rijn
Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors
Reprinted from: Pharmaceuticals 2022, 15, 873, doi:10.3390/ph15070873 . . . . . . . . . . . . . . . 39

Ziad Tareq Naman, Salim Kadhim, Zahraa J. K. Al-Isawi, Christopher J. Butch and Ziyad
Tariq Muhseen
Computational Investigations of Traditional Chinese Medicinal Compounds against the
Omicron Variant of SARS-CoV-2 to Rescue the Host Immune System
Reprinted from: Pharmaceuticals 2022, 15, 741, doi:10.3390/ph15060741 . . . . . . . . . . . . . . . 55

Lina S. Prieto Cárdenas, Karen A. Arias Soler, Diana L. Nossa González, Wilson E. Rozo
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Mainly due to the development of new hardware architectures and software technologies,

Computational Chemistry has achieved maturity and, nowadays is one of the central scientific fields

in the pharmaceutical industry. In particular, in silico approaches have been shown to be fundamental

for the development of drugs and the study of biological systems, not only at the molecular level, but

also at the cellular level.

Applications of in silico tools are crucial in the early stages of drug design, such as planning more

efficient and economic synthetic routes for chemical administration, screening of huge databases,

as well as proposing hypotheses for probable mechanisms of action of drugs in macromolecular

targets. Such endeavors are extremely complex and require the usage of modern and sophisticated

approaches, such as artificial intelligence, data mining, computational molecular simulations

through classical mechanics and quantum mechanics, molecular docking, chemoinformatics, applied

mathematics, and biostatistics.
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design and in silico investigation, I accepted the challenge of editing a Special Issue for the prestigious
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articles and four reviews, published from 2021 to 2022, focused on the application of a wide range of

computational tools in medicinal chemistry projects: from molecular docking to artificial intelligence
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I am grateful to Mr. Owen Shu from MDPI for his dedication and wonderful professional support

for organizing this work, and, of course, I cannot forget to thank my lovely wife, Claudia Valeria, for

encouraging me all the time.

I hope that this reprint makes for interesting reading and will be useful to fellow scientists and

graduate students interested in Computational Medicinal Chemistry.
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Prof. Dr. J. Daniel Figueroa-Villar
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Article

Identification of Potential Allosteric Site Binders of
Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and
Molecular Dynamics Investigation
Vitor Martins de Almeida and Osvaldo Andrade Santos-Filho *

Laboratório de Modelagem Molecular e Biologia Estrutural Computacional, Instituto de Pesquisas de Produtos
Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro,
Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, Rio de Janeiro 21941-599, RJ, Brazil
* Correspondence: osvaldo@ippn.ufrj.br

Abstract: Ligand and structure-based computational screenings were carried out to identify flavonoids
with potential anticancer activity. Kushenol E, a flavonoid with proven anticancer activity and, at the
same time, an allosteric site binder of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1), was used as
the reference compound. Molecular docking and molecular dynamics simulations were performed for
the screened flavonoids with known anticancer activity. The following two of these flavonoids were
identified as potential inhibitors of IDO1: dichamanetin and isochamanetin. Molecular dynamics
simulations were used to assess the conformational profile of IDO1-flavonoids complexes, as well as
for calculating the bind-free energies.

Keywords: cancer; immunology; flavonoids; IDO1; virtual screening; molecular docking; molecular
dynamics; free energy

1. Introduction
1.1. Tryptophan Metabolism and the Kynurenine Pathway

Studies show that tumor tissues within a chronic inflammatory context (presence of
pro-inflammatory cytokines for a long time) catabolize in large proportions the amino
acid L-tryptophan in the cell matrix and synthesize metabolites from one of the main
degradation pathways of tryptophan, the pathway of kynurenine [1,2].

Almost all metabolites of the kynurenine pathway affect immune activity through
various mechanisms. Figure 1 illustrates the effects of kynurenine pathway metabolites on
the immune system. The determining step of the kynurenine pathway is the formation of
N-formylkynurenine, regulated by the family of dioxygenase enzymes known as trypto-
phan 2,3-dioxygenase (TDO) and indolamine 2,3-dioxygenase (IDO), which may exist in
the following two isoforms: IDO1 and IDO2 [3].

TDO, IDO1, and IDO2 are heme-bearing enzymes and catalyze the rate-limiting step
of tryptophan catabolization. TDO is mainly expressed in the liver and oxidizes excess
tryptophan in the body, generating ATP and especially NAD+. The expression of TDO
is stimulated by the concentration of blood tryptophan as well as by the synthesis of the
heme cofactor [4].

IDO1 can be expressed by many different cells, including antigen-presenting cells
(APCs), such as monocyte-derived macrophages, dendritic cells (DCs), and fibroblasts. Its
expression is mainly induced by inflammatory cytokines, such as IFN-γ, TNF-α, IL-1, and
IL-2, secreted by Th1-type lymphocytes, as well as TGF-β, IL-10, and adenosine secreted by
regulatory T lymphocytes [5]. IDO1 expression is further stimulated by its own product,
kynurenine, via the aryl hydrocarbon receptor (AhR) [6,7].
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Figure 1. Catabolization of tryptophan via the kynurenine pathway and its interactions with the
immune system. Orange boxes indicate the effects of immune mediators on the kynurenine pathway
and yellow boxes indicate the effects of tryptophan metabolites on the immune system. Adapted
from Lanser et al. [4].
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IDO2 is significantly less active than IDO1 [8]. Similar to IDO1, its expression is
stimulated by the activation of AhR [9]. Although IDO2 is expressed by cancer cells,
when compared to IDO1, it contributes little to the accumulation of kynurenine pathway
metabolites [10,11].

In healthy patients, IDO1 expression is restricted to endothelial cells in the placenta,
lung, mature dendritic cells in secondary lymphoid organs, and in epithelial cells scattered
in the female genital tract [12]. Whereas, under inflammatory conditions, IDO1 expression
is strongly induced by INF-γ [13]. Furthermore, it is highly expressed at inflammatory sites,
where it may contribute to negative feedback against local immune response activity [12].
Inflamed tumors may also express IDO1 as an adaptive resistance mechanism, in which it
is induced by IFN-γ produced by dendritic cells and tumor-infiltrated macrophages [14].

Given the physiological importance of the IDO1 enzyme within the tumor microen-
vironment, the need for structural studies and the development of increasingly efficient
inhibitors has become an attractive approach to treating cancer patients.

1.2. IDO1: Structure

The human IDO1 is a monomeric α-helical dioxygenase enzyme containing an
N-terminal minor domain (residues 1–154) and a C-terminal major domain (residues
155–403), where the catalytic site and a cofactor heme are located (Figure 2).

γ

γ

α

α

β

α

Figure 2. Structure of indoleamine deoxygenase 1 (IDO1) with highlighted regions: minor domain
(green) and major domain (grey, magenta, red, blue, and cyan). Contained in the larger domain are:
the DE fragment, composed of the DE hairpin and the DE loop; JK loop; EF loop; the heme cofactor
(orange); the allosteric site.

The minor domain or N-terminal domain, shown in green in Figure 2, contains residues
Gly11 to Asp158, consisting of six α-helices (involving amino acids Tyr36 to His45, His45
to Ser52, Gln54 to Lys61, Asp72 to Gly93, Pro104 to Glu119 and Val125 to Val130 or helix A,
contributing to the active site), four 310-helices (Ser12 to His16, Pro33 to Phe35, Ser66 to
Leu70 and Thr144 to Glu146) and a small antiparallel β-sheet formed by residues Lys135 to
Lys136 and Met148 to Asp149. Such a domain makes up part of the upper region of the
catalytic site and acts as structural support for the enzyme [15].

The major domain or C-terminal domain, shown in grey in Figure 2, contains residues
Cys159 to Gly403, being constituted by 9 α-helices [15]. This domain performs functions
related to conversion, positioning, and displacement of substrates/products in the enzyme
and is where the catalytic site is located. There are also regions with specific functionalities
that are important for the enzymatic reaction to occur. Among them, there is the “access”
tunnel for the entrance of small molecules from the external environment (ligand delivery

3
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tunnel) and the JK loop (red), with the function of conducting and maintaining the substrate
(tryptophan) inside the catalytic site [16].

Finally, there is the DE fragment, consisting of the DE-hairpin (Ser235 to Tyr249) and
the DE loop (Glu250 to Gly262) (magenta), the EF loop (Gly278 to His287) (blue), and the
JK loop (Gln360 to Gly380) [17].

IDO1 has the following two non-competitive natural substrates: tryptophan and
molecular oxygen (O2). Moreover, the enzyme has the following four states:

• apo-IDO1: without the heme cofactor;
• holo-IDO1: containing the iron atom of the heme group in the ferric state (Fe3+);
• holo-IDO1 with the iron atom of the heme group in the ferrous state (Fe2+);
• O2-linked holo-IDO1 complex.

Despite not being the active form of the enzyme, apo-IDO1 is a promising macro-
molecular target since cellular studies have shown that this form is the most abundant in
the cell medium, about 85% [18]. Therefore, it is likely that there is a binding site where
potential inhibitors of the apo form can interact with this form of the enzyme. The main
objective of this project was to apply molecular modeling methods in order to investigate
this possibility.

1.3. IDO1: Inhibitors

Over the past decade, the scientific academy has been making efforts for the devel-
opment of IDO1 inhibitors [2]. Röhrig and collaborators classified existing test-phase
inhibitors into the following four categories: type I, II, III, and IV inhibitors [19].

Type I inhibitors are classified as competitive inhibitors of tryptophan. In general,
type I inhibitors target the molecular oxygen-bound holo-IDO1 form and do not form a
direct bond with heme iron [17]. The 1-LMT and 1-DMT are classified within this category
of inhibitors [20].

Type II inhibitors are classified as competitive inhibitors of molecular oxygen by
binding to the iron atom in its ferrous state of the heme group, acting in the ferrous holo-
IDO1 form. Inhibitors such as β-carboline [21], and Epacadostat [22] fall into this category.

Type III inhibitors are noncompetitive inhibitors of tryptophan. New inhibitors in this
class are being studied, such as 4PI, Navoximod, and MMG-0358 [19].

Type IV inhibitors are the most recently described class of inhibitors in the literature,
including inhibitors such as the clinical compound BMS-986205, which targets the apo-IDO1
form [23].

The structures of the mentioned inhibitors are shown in Figure 3.

 
 
 
 

β

 

Figure 3. IDO1 inhibitors.
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Kwon and collaborators [24] determined the amino acid residues that define an al-
losteric site for the action of apo-IDO1 inhibitors (Ser12, Tyr15, Ile17, Ile178, Lys179, Ile181,
Pro182, Phe185, Lys186, Phe306, Ser309, Leu310, Ser312, Asn313, and Pro314), and found
that the flavonoid obtained from plants of the species Sophora flavescens, known as Kushenol
E, acts as an inhibitor of this site (Figure 4). The authors described the amino acids Pro182
and Phe185, located in the larger domain of the enzyme, as the main components of the
allosteric site for inhibitory activity. Site-directed mutagenesis experiments were performed
on these residues, and in vitro enzyme inhibition assays were performed. The results
proved the contribution of these amino acids to enzymatic function and indicate this
allosteric site as a target for new inhibitors [24].

 

Figure 4. Allosteric site described by Kwon and colleagues [24]. The docked flavonoid Kushenol E,
as well as Pro182, and Phe185 are shown in detail.

Most IDO1 inhibitors are obtained from a natural source; however, as shown by
Kwon, flavonoids may inhibit IDO1 [24]. The diverse variety of natural products can
make the screening of these compounds a time-consuming and expensive task. Due to the
development of more powerful computers, virtual screening of chemical compounds and
pharmacodynamic validation of ligand-receptor interactions can accelerate the process of
discovering potential new drugs. In this context, we focused our work on the identification
of potential inhibitors of the naturally occurring apo-IDO1 allosteric site.

2. Results and Discussion
2.1. Ligand-Based Virtual Screening

In order to identify potential IDO1 inhibitors capable of interacting with its allosteric
site, the following two virtual screening tools were used: the Mcule platform [25] and
the ZINC 15 database [26]. At this stage of the work, the flavonoid Kushenol E (Figure 5)
was used as the reference compound, due to its proven effectiveness as a non-competitive
inhibitor that binds to the allosteric site of the enzyme [24]. Tanimoto’s coefficient was used
as the sampling criterium [27], and 172 compounds were sampled.

 

Figure 5. Kushenol E.
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2.2. Structure-Based Virtual Screening and Molecular Docking

Besides the ligand-based virtual screening mentioned above, a structure-based vir-
tual screening was also carried out (Figure 6). In this approach, the previously sampled
compounds, including Kushenol E, were docked into the allosteric site of the IDO1.

− −
−

−

−

Figure 6. Workflow of ligand-based and structure-based virtual approaches.

The calculated docking energies of each compound are shown in Supplementary Mate-
rial (Table S1). The range of calculated energies varied from −8.1 kcal/mol to −5.3 kcal/mol.
The docking energy for Kushenol E is equal to −6.6 kcal/mol. We realized that most of the
sampled compounds were not from natural sources. Since the focus of this research was
the identification of substances obtained from natural products with the potential ability
to inhibit the biological response of the enzyme IDO1 through interaction at the allosteric
site, a new virtual screening was carried out. The strategy was to use each compound
that presented interaction energies equal to or lower than −7.1 kcal/mol (19 compounds;
represented in red in Supplementary Materials, Table S1) as reference compounds in new
ligand-based virtual screenings. The ZINC 15 database was the chosen tool. In this context,
28 natural products were selected, which were later docked to the allosteric site of the
IDO1 enzyme. The result of this second-round structure-based virtual screening is shown
in Table 1. While, in this investigation, Kushenol E (shown in bold red) works as the
positive control, it is also important to consider a compound that would work as a negative
control. In this context, as in the paper by Kwon [24], steppogenin was chosen as such a
compound. As shown in the table, among all compounds, steppogenin shows the least
favorable docking energy (shown in light red).

In this second molecular docking calculation, two additional criteria were used for the
final screening as follows: (a) compounds that presented docking energies equal to or lower
than −7.1 kcal/mol; (b) compounds that showed some anticancer activity (as described in
the literature). Consequently, the following three flavonoids were selected: dichamanetin,
isochamanetin, and chamaejasmin B, shown in bold black.
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Table 1. Structure-based (second) virtual screening.

Compound
Docking

(kcal/mol)
Compound

Docking
(kcal/mol)

chamuvaritin −7.9 Kushenol C −6.5
chamaejasmin B −7.9 butin −6.5

dichamanetin −7.8 estrobopinin −6.4
chamaejasmin −7.7 rhamnocitrin −6.4

neochamaejasmin A −7.6 7-benziloxicumarin −6.3
obovatine −7.5 naringenin −6.3

isochamanetin −7.5 uvaretin −6.2
β-naftoflavone −6.9 pinocembrin −6.1
pinobanksine −6.9 genkwanin −6.1
tectocrisina −6.8 glabranin −6.0

soforaflavanone B −6.7 7-hidroxiflavanone −6.0
strobopinin-7-methyl-ether −6.7 apigenin-4’,7-dimethyl-ether −6.0

diuvaretin −6.6 2-hidroxiflavanone −6.0
izalpinin −6.6 asebogenine −5.9

Kushenol E −6.6 steppogenin −5.8

Dichamanetin is a C-benzylated flavanone that can be obtained from several Southeast
Asian plant species, such as the following: Uvaria alba, Uvaria chamae, Piper sarmentosum,
and Xylopia pierrei [28–30]. Isochamanetin, another C-benzylated flavanone, was obtained
from several plant species such as Sphaeranthus amaranthoides, Xylopia pierrei, and Ulvaria
chamae [28,31,32]. Chamaejasmin B is a dimeric biflavonoid formed by two isosacuranetin
subunits linked by C3-C3 carbons, and obtained from Southwest Asian plant species, such
as Stellera chamaejasme L. [33].

Table 2 and Figure 7 show the intermolecular interactions formed with specific residues
of the allosteric site of IDO1.

As shown in Table 2 and Figure 7, the flavonoids interact with amino acid residues
from the allosteric site, as defined by Kwon [24] (Ser12, Tyr15, Ile17, Ile178, Lys179, Ile181,
Pro182, Phe185, Lys186, Phe306, Ser309, Leu310, Ser312, Asn313, Pro314). Since flavonoids
are compounds that have several aromatic rings, the main interactions formed with the
enzyme are of the pi and van der Waals types. The screened flavonoids (Table 2) have a
significant number of oxygens; consequently, they can work as hydrogen bond donors and
acceptors. Furthermore, according to Kwon [24], residues Pro182 and Phe185 are essential
for the structural and functional integrity of the IDO1 enzyme system.

Dichamanetin and isochamanetin A rings interact via pi-sigma interaction with Pro182.
According to Kwon [24], this residue would be important for the structural and functional
integrity of the IDO1 system. In chamaejasmin B, which is a biflavonoid, one of the A rings
interacts with Pro182 (pi-alkyl) and Phe185 (pi-pi) with the assistance of van der Waals
interactions with neighboring residues; the second ring A interacts with Phe185 (hydrogen
bond) and with Pro314 (pi-alkyl), in addition to van der Waals interactions.

Focusing on substituents attached to the A ring of flavonoids, some structural fea-
tures must be considered. The hydroxyl group attached to carbon 7 of the A rings of
isochamanetin, dichamanetin, and Kushenol E forms strong hydrogen bond interactions
with Ser12. Phenyl groups linked to the A ring of dichamanetin and isochamanetin proba-
bly help in the stability of the interaction of these compounds with the allosteric site. As
shown in Table 2, dichamanetin interacts more strongly with IDO1 than with isochamanetin
(−7.8 kcal/mol and −7.5 kcal/mol, respectively), with the first compound forming two
pi-alkyl interactions with Pro182. It is also noted that the participation of a weak hydrogen
bond interaction with Gly11. Isochamanetin, on the other hand, forms only one interac-
tion. As will be shown in the next section, referring to molecular dynamics simulations,
both Ser12 and Pro182 residues contribute significantly to the energetic stabilization of the
formed complex.
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Figure 7. Intermolecular interactions formed with specific residues from the allosteric site of IDO1:
chamaejasmin B, dichamanetin, isochamanetin, Kushenol E, and steppogenin, respectively.
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Rings B of both dichamanetin and isochamanetin interact via pi-pi stacking with
Phe185. Ring B of chamaejasmin B interacts with Pro182 and Lys186 (pi-alkyl interaction).
The methoxyl group attached to the C4’ carbon of the ring B of chamaejasmin B forms an
alkyl interaction with Pro182. Of all the flavonoids, the only one that interacts with IDO1
from the C ring is chamaejasmin B. This occurs through a hydrogen bond with a carbonyl
group on carbon 4 of the C ring. It is worthy of note the fact that steppogenin is the only
compound that shows unfavorable bump and acceptor-acceptor interactions.

Pro182 interacts through pi interactions or with the A ring of flavanones or with
phenolic groups attached to the same ring. It is known that the proline ring faces are
partially positively charged [34]. As shown in Figure 8, hydrogens adjacent to the carbonyl
and nitrogen of the amide (Hα and Hδ, respectively) are the most partially positive. The
proline side chain is also conformationally restricted, allowing interaction with aromatic
residues with minimal entropic or steric penalty [34].

α δ

 

N
RC

H

RN

O

Figure 8. Hydrogens in proline.

Phe185, an aromatic residue (Figure 9), interacts with flavonoids through pi-pi and
pi-pi/T stacking, and van der Waals interactions [35], which are very important for the
stabilization of the structural energy of protein complexes with flavonoids.

α δ

N
RC

H

RN

O

 
Figure 9. Hydrogens in phenilalanine.
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Comparing our docking modeling of Kushenol E (Figure 7) with the docking modeling
proposed by Kwon [24] (Figure 10), we can see that our simulation shows this compound in
a different orientation in the cavity of the allosteric site, with a deviation of the longitudinal
axis towards the B direction for the prenyl group attached to the C6 carbon of the A ring.
According to Kwon, the B ring of the flavonoid is positioned inside the cavity formed
by the amino acids Leu178, Ile181, and Phe306 (Figure 10). Differently, we found the
same ring located next to residues Leu178, Ile181, and Phe306. Furthermore, according
to Kwon, A and C rings interact with Ser309 and Asn313. Instead, in our model, this
interaction takes place with the Pro182, and there is assistance from a few van der Waals
interactions. The Kwon model shows the prenyl group attached to carbon 6 of the ring
interacting with Pro314, whereas our model shows interaction with Pro182. Since the
structure of the IDO1-Kushenol E complex has not been experimentally determined to date,
a definitive answer about the correct orientation of Kushenol E will only be inferred after
the structural elucidation study by X-ray crystallography, nuclear magnetic resonance, or
cryo-electron microscopy.

Figure 10. Kwon’s docking model of Kushenol E—IDO1 complex [24].

2.3. Molecular Dynamics Simulations and Free Energy Calculation

To further refine and investigate the ability of molecular docking simulation to predict
the conformational profile of the IDO1-flavonoid complexes, and to calculate the respective
binding free energies, molecular dynamics simulations were carried out.

Three-dimensional structures of the IDO1-flavonoid complexes at 20 ns, 40 ns, 60 ns,
80 ns, and 100 ns are shown in Figure 11. With the exception of chamaejasmin B, which
detaches from the allosteric site cavity after 40 ns, all other flavonoids remained docked.
Interestingly, after detaching from the allosteric site, chamaejasmin B stabilizes next to the
JK loop. Furthermore, only one of the isosacuranetin subunits interacts with the allosteric
site, while the other subunit is exposed to the solvent. Moreover, Figure 11 also shows that
after 80 ns, steppogenin is almost completely detached from the allosteric site.

It is worthy of note that although the interactions of chamaejasmin B were not strong
enough to keep it docked in place during 100 ns, this flavonoid showed the “best” docking
energy. It is possible that its isosacuranetin subunit (Figure 12) be a good candidate for
future studies of docking and molecular dynamics.
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Figure 11. Conformational profile of the complexes formed by the interaction of IDO1 with chamae-
jasmin B, dichamanetin, isochamanetin, Kushenol E, and steppogenin, respectively, up to 100 ns
molecular dynamic simulations.

 
Figure 12. Isosacuranetin.

In order to verify how flavonoids could alter the conformational profile (packing/
folding) of IDO1, radii of gyration (Rg) plots were calculated not only for IDO1 in its
apo form but also for each IDO1-flavonoid complex. The corresponding plots are shown
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in Supplementary Material (Figure S1). In molecular dynamics, the radius of gyration
is a measure of the stability of a system consisting of several particles and describes the
variation in density as a function of the center of mass over time. According to Figure S1,
the IDO1-steppogenin complex is the one with the highest degree of energetic-structural
destabilization when compared to the other complexes. The IDO1-dichamanetin complex
was the most stable. These stability data are supported by the values of relative molecular
docking energies, shown in Table 1, and by the values of free energy of interaction between
the flavonoids and IDO1, shown in Table 3.

Table 3. Free energy of interaction of each flavonoid with IDO1.

Energy Component
Kushenol E

∆G (kcal/mol)
Steppogenin

∆G (kcal/mol)
Dichamanetin
∆G (kcal/mol)

Isochamanetin
∆G (kcal/mol)

van der Waals −33.4464 +/− 2.7222 −12.6589 +/− 5.4591 −38.7571 +/− 2.8011 −33.1692 +/− 2.6773
Electrostatic −0.4995 +/− 2.3494 −9.5176 +/− 5.6553 −8.1238 +/− 3.5253 −2.7772 +/− 2.1816

Polar Solvation 16.2786 +/− 3.5898 18.1821 +/− 8.5497 25.4326 +/− 4.2624 17.7325 +/− 2.3312
SASA −3.9866 +/− 0.2390 −1.7428 +/− 0.7148 −4.4861 +/− 0.2483 −3.8790 +/− 0.3585

Free energy of interaction −21.6563 +/− 3.1142 −5.7373 +/− 5.2005 −25.9345 +/− 3.1214 −22.0960 +/− 3.1859

Based on Figure S2, one can assess how each flavonoid changes the conformation
of IDO1 (its apo conformation). In this context, Kushenol E and isochamanetin distort
the IDO1 structure more significantly. Whereas dichamanetin is the flavonoid that less
intensely distorts IDO1.

In addition to the radius of gyration and RMSD plots, root means square fluctuation
(RMSF) for Cα of each enzyme residue was calculated (Figure S3). This measure is described
by means of a two-dimensional graph where the abscissa shows each Cα associated with a
given residue and the ordinate shows the average value of the fluctuations. It is verified that
helices B (residues Cys159 to Met190) and G (residues Pro300 to Asn313), important for the
formation of the allosteric site, do not undergo significant fluctuations due to the interaction
of flavonoids. The EF loop (residues Gly278 to His287), significatively fluctuates due to the
interaction of Kushenol E, steppogenin, and isochamanetin. Such an effect is less significant
when dichamanetin is the interacting flavonoid. As mentioned before, residues between 251
and 300 and the EF loop are part of the molecular oxygen access tunnel structure. Figure S3
indicates that, of the three flavonoids, only dichamanetin does not “stiffen” the tunnel. The
JK loop did not fluctuate significantly under the action of flavonoids.

RMSF plots were also constructed for each docked flavonoid into the allosteric site
of IDO1 along with the molecular dynamic simulations (Figure S4). As can be seen,
dichamanetin and isochamanetin showed lower atomic fluctuations than Kushenol E and
steppogenin do. These results reinforce, once again, the relative stability of the interactions
of each flavonoid with the allosteric site.

The complexes were also analyzed for the frequency of hydrogen bonds formed during
the molecular dynamics simulation (Figure S5). Dichamanetin has a higher frequency
of hydrogen bonds than isochamanetin and Kushenol E. These data demonstrate that
hydrogen bonds are important for the stabilization of the IDO1-flavonoid complexes,
mainly for dichamanetin and isochamanetin. However, steppogenin shows an “anomalous”
hydrogen bond frequency. Perhaps that should be due to the highest degree of freedom
(“pose fluctuations”), since, as shown in Figure 11, that compound seems to be slightly
bound to the allosteric site.

The MM-PBSA method evaluates conformational fluctuations as a function of the
simulation trajectory and, consequently, it is a useful approach for inferring the entropic
profile of the formed complexes, as well as for calculating the free energy of binding of
each flavonoid with the IDO1. The results are shown, respectively, in Tables 3 and 4.
According to Table 3, the affinity of each flavonoid with IDO1 increases in the follow-
ing order: steppogenin (−5.73 kcal/mol); Kushenol E (−21.65 kcal/mol); isochamanetin
(−22.09 kcal/mol); dichamanetin (−25.93 kcal/mol). It is worth noting the calculated affin-
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ity value for steppogenin (the negative control), testifying once again, and in accordance
with the experimental data [24], that steppogenin forms the least stable complex with IDO1.
The free energy contributions of each constituent residue of the allosteric site are shown in
Table 4.

Table 4. Distributed binding energies per amino acid for each modeled IDO1-flavonoid complex.

Alloesteric Site
Kushenol E

∆G (kcal/mol)
Steppogenin

∆G (kcal/mol)
Dichamanetin
∆G (kcal/mol)

Isochamanetin
∆G (kcal/mol)

Lys179 −5.6572 +/− 0.009 0.0522 +/− 0.0146 −10.2480 +/− 0.0138 −0.1242 +/− 0.0023
Ile181 −5.5043 +/− 0.003 −0.0478 +/− 0.0006 −7.1328 +/− 0.0045 −5.9646 +/− 0.0042
Pro182 −2.7174 +/− 0.009 −0.6856 +/− 0.0075 −2.9304 +/− 0.0094 −0.9383 +/− 0.0058
Phe185 −9.7036 +/− 0.0064 −0.1037 +/− 0.0017 −10.9729 +/− 0.0063 −2.6943 +/− 0.0152
Lys186 −0.0069 +/− 0.0271 −0.6023 +/− 0.0201 −12.8116 +/− 0.0194 −3.0506 +/− 0.0093
Met188 −0.1075 +/− 0.0007 −0.0451 +/− 0.0006 −0.1199 +/− 0.0006 −6.0922 +/− 0.0049
Gln189 −4.2292 +/− 0.0045 −0.0770 +/− 0.0020 −4.7260 +/− 0.0061 −7.7712 +/− 0.0108
Phe306 −13.3145 +/− 0.0084 −0.0055 +/− 0.0003 −14.2844 +/− 0.0076 −7.4103 +/− 0.0070
Ser309 0.0639 +/− 0.0090 0.0004 +/− 0.0012 0.1190 +/− 0.0077 2.6300 +/− 0.0092
Leu310 −6.0265 +/− 0.0047 −0.0027 +/− 0.0004 −6.1063 +/− 0.0043 −6.0442 +/− 0.0048
Asn313 3.2576 +/− 0.0086 −0.0099 +/− 0.0015 −0.0466 +/− 0.0065 −0.0041 +/− 0.0150
Pro314 −0.0440 +/− 0.0013 −0.0007 +/− 0.0007 −0.0231 +/− 0.0009 −5.5250 +/− 0.0143

3. Materials and Methods
3.1. IDO1

The crystallographic structure of IDO1 in its holo form, with a resolution of 2.44 Å (PDB
ID: 7A62) [15], was obtained from the Protein Data Bank [36]. The enzyme preparation steps
were carried out as follows: (1) non-essential water molecules were removed; (2) polar
hydrogens were added to the enzyme; (3) partial charges were calculated using both
Kollman and Gasteiger’s approaches [37,38].

3.2. Virtual Screening

For the virtual screening of compounds, Mcule platform [25], ZINC 15 database [26],
and AutoDock Vina 1.1.2 program [39] were used.

3.3. Molecular Docking

Molecular docking simulations were performed with the AutoDock Vina 1.1.2 pro-
gram [39]. This tool uses a hybrid scoring function, i.e., it is a combination of empirical and
knowledge-based functions [39]. The binding energy is predicted as the sum of distance-
dependent atom pair interactions as follows:

E = ∑ epair (d)

Here d is the surface distance calculated as follows, where r is the interatomic distance
and Ri and Rj are the radii of the atoms in the pairs:

d = r − Ri − Rj

Every atom pair interacts through a steric interaction given by the first three terms
of the equation shown below. Moreover, depending on the atom type, there could be
hydrophobic and non-directional H-bonding interactions, given by the last two terms.

epair(d) =























+ w1 ∗ Gauss1(d)
+ w2 ∗ Gauss2(d)
+ w3 ∗ Repulsion(d)
+ w4 ∗ Hydrophobic(d)
+ w5 ∗ HBond(d)
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The combination of an attractive Gaussian function with a repulsive parabolic function
reproduces the general shape of a typical Lennard-Jones interaction, provided the Gaussian
term is negative and the parabolic positive.

3.4. Molecular Dynamics Simulations and Free Energy Calculation

All molecular dynamics simulations were performed with the CHARMM36 force
field [40] implemented in the GROMACS 2018.1 program [41]. The parameterization of
flavonoids was performed using the CHARMM General Force Field (CGenFF) program [42].
Subsequently, a dodecahedral simulation box, including solvent inside (TIP3P water model)
was created. Sodium and chlorine ions were added to the system, aiming to electronically
neutralize it. Periodic boundary conditions were used.

Each complex was submitted to energy minimization using the steepest descent
algorithm, involving 50,000 steps and the convergence criterion of less than 2.39 kcal/mol.
Subsequently, two 100 ps molecular dynamics simulations were performed, aiming to
balance the IDO1-flavonoid complexes. In the first simulation, the NVT ensemble was
used, and in the second one, the NPT ensemble was used. In both cases, the simulation
temperature was kept constant at 300 K and, when performing the NPT ensemble, the
pressure was kept constant at 1 bar.

After the equilibration of the complexes, 100 ns molecular dynamics simulations
were performed, aiming to calculate the free energies of interaction of each flavonoid with
IDO1 (production stage). The running conditions were the following: ensemble NPT,
where temperature was maintained, using the V-rescale implementation of Berendsen’s
thermostat [43]. A molecular frame was sampled every 10 ps. To keep the pressure
constant, the Parrinello-Rahman pressure coupling method was used [44]; for the long-
range treatment, the PME method was used [45].

Free energy calculations were calculated with the g_mmpbsa tool [46]. The binding
energy can be individually decomposed as a function of the constituent residues of the
macromolecular target. Initially, the EMM, Gpolar, and Gnonpolar energy components of the
individual atoms of each residue are calculated in the bound, as well as the unbound form.
Subsequently, the contribution to the interaction energy ∆RBE

x of the residue x is calculated
as follows:

∆RBE
x = ∑

n

i=0

(

Abound
i − A

f ree
i

)

where, Abound
i and A

f ree
i are the energy of atom i of residue x in bonded and unbonded states,

respectively, and n is the total number of atoms in the residue. The energy contribution
added to all residues is equal to the interaction energy, that is, ∆Gbinding = ∑

m
x=0 ∆RBE

x ,
where m is the total number of residues that make up the ligand-protein complex [46].

3.5. Visualization Tools and Plots

Molecular Visualization Programs BIOVIA Discovery Studio 2021 [47], UCSF
Chimera [48], and AutoDock Tools [49] were used. Grace plotting tool was used for
graphical analysis [50].

4. Conclusions

IDO1, one of the enzymes that participate in the immune modulation process, is an
interesting macromolecular target for anticancer action. From a known drug (Kushenol
E), with proven anticancer activity, extensive virtual screening studies were carried out
in digital databases. Both ligand- and structure-based approaches were performed. In
this context, three natural products, isolated from plants, were identified as potential
allosteric site binders of IDO1. Two of which, dichamanetin and isochamanetin, were
shown to be promising IDO1 inhibitors and, in our opinion, should be considered in future
studies of biological activity, molecular optimization, organic synthesis, and enzymatic
assays. From the point of view of structural biology (conformational characteristics of
IDO1), it was found that helices constituting the allosteric site did not undergo significant
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modifications; the same happened for the JK loop (located at the entrance of the catalytic
site). In order to investigate, if the presence of the identified allosteric binders could weaken
the binding of orthosteric binders (O2, tryptophan), as well as weaken the binding of the
heme cofactor, further simulations, involving multiscale quantum mechanics/molecular
mechanics (QM/MM) are being performed in the laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15091099/s1, Figure S1: Radius of gyration plots of apo
IDO1 (black), IDO1-Kushenol E (red), IDO1-steppogenin (magenta), IDO1-dichamanetin (blue),
and IDO1-isochamanetin (yellow) systems.; Figure S2: RMSD plots. Apo IDO1 (black), IDO1-
Kushenol E (red), IDO1-steppogenin (magenta), IDO1-dichamanetin (blue), and IDO1-isochamanetin
(yellow); Figure S3: RMSF plots. Apo IDO1 (black), IDO1- Kushenol E (red), IDO1-steppogenin
(magenta), IDO1-dichamanetin (blue), and IDO1-isochamanetin (yellow); Figure S4: RMSF plots for
the flavonoids: Kushenol E (red), steppogenin (magenta), dichamanetin (blue), and isochamanetin
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Abstract: Cervical cancer (CC) is the fourth most common pathology in women worldwide and
presents a high impact in developing countries due to limited financial resources as well as difficulties
in monitoring and access to health services. Human papillomavirus (HPV) is the leading cause of CC,
and despite the approval of prophylactic vaccines, there is no effective treatment for patients with
pre-existing infections or HPV-induced carcinomas. High-risk (HR) HPV E6 and E7 oncoproteins
are considered biomarkers in CC progression. Since the E6 structure was resolved, it has been
one of the most studied targets to develop novel and specific therapeutics to treat/manage CC.
Therefore, several small molecules (plant-derived or synthetic compounds) have been reported as
blockers/inhibitors of E6 oncoprotein action, and computational-aided methods have been of high
relevance in their discovery and development. In silico approaches have become a powerful tool
for reducing the time and cost of the drug development process. Thus, this review will depict small
molecules that are already being explored as HR HPV E6 protein blockers and in silico approaches to
the design of novel therapeutics for managing CC. Besides, future perspectives in CC therapy will be
briefly discussed.

Keywords: cervical cancer management; computer-aided drug design; E6 inhibitors; in silico studies;
human papillomavirus

1. Introduction

Cancers are some of the deadliest pathologies, and according to Globocan, the global
cancer burden in 2020 increased to 19.3 million cases and 10 million cancer deaths. With
these new data, it is estimated that 1 in 5 people will develop cancer during their lifetime,
and 1 in 8 men and 1 in 11 women will die from the disease [1]. Thereby, as logical
consequence, novel pharmacotherapy approaches have increased in the recent years [2].
In particular, cervical cancer (CC) is considered the fourth cause of death among women
worldwide with its establishment being associated with human papillomavirus (HPV)
infection [3]. Considering the data available by Globocan regarding this pathology, there
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were 341,831 deaths in 2020 with a higher incidence in low-income countries (LIC). In
fact, in less developed regions such as Africa, Asia, and South America, CC is the primary
cancer found in women, which can be due to the lack of screening programs, limited
resources and access to health care, or even anti-vaccination movements [4,5]. In developed
countries, the incidence of CC cases is lower due to better health services and the high
availability of HPV prophylactic vaccines, which constitutes a great step in the prevention
of HPV-associated cancers. However, the prophylactic vaccines have only been effective
when administered in healthy patients, and they are not able to exert a therapeutic effect or
treat an established infection [6].

The current treatments for CC are based on excisional or ablative procedures, surgical
resection, radiotherapy, or chemotherapy, which do not specifically target the oncogenic
properties of HPV, and therefore lesion recurrence can occur [7]. In addition, most of
these procedures can affect normal tissues and can have potential side effects, including
bleeding, which cause patient discomfort and can reduce life quality [5]. These constraints
highlight the need to improve the current therapeutic approaches by combining strategies
or proposing new compounds to offer more specific and less invasive treatments, without
affecting healthy tissues. Hence, the scientific community has been focused on different
ways to combat CC. A strategy with great potential consists of finding new anticancer
agents by targeting the major oncoproteins responsible for HPV-driven carcinogenesis, E6
and E7. In fact, the discovery of the E6 protein X-ray crystal structure, available in protein
data bank (PDB ID: 4GIZ and 4XR8, accessed on 20th May 2021), led to an increase in the
use of in silico approaches to uncover potential E6 inhibitors [8].

Drug discovery and development is a very expensive and time-consuming process,
which can take 10 to 15 years until a drug reaches the market. In the last decades, the phar-
maceutical industry has been employing computer-aided drug design (CADD) techniques
to accelerate drug development, intending to reduce time, costs, and failures, namely in
the final stage [9,10]. This analysis is based on calculated properties and prediction models
for drug therapeutic targets and identification of safety liabilities. Typically, CADD can be
divided into three categories: structure-based, ligand-based, and hybrid methods [11,12].
The structure-based approaches, including docking and the application of molecular dy-
namics simulations, use the 3D structure of the target molecule to screen potential ligands.
These methods evaluate ligand recognition by the target molecule and the prediction and
characterization of binding sites as well as binding affinity [9,12]. For instance, molecular
docking is one of the most applied techniques to select promising molecules from large
libraries by predicting the orientation of a compound towards the target and characterizing
ligand–target interactions. Molecular dynamics techniques entail the motion principles
to molecules and are frequently used to perform binding mode studies and to predict the
stability of a ligand–target complex, giving a deeper understanding to the researchers on
the interaction of a ligand to a biomolecular target [9,11–13]. On the other hand, ligand-
based methods, including similarity searching, pharmacophore modeling, and quantitative
structure–activity relationship (QSAR) studies, use the information of groups of small
molecules with different structures capable of interacting with the target to identify new
and powerful compounds [12,14]. These methods are usually applied when the 3D struc-
ture of the target is not available and assume that analogous compounds show similar
biological activity and interaction with the target. QSAR modeling allows understanding
the effects of structural variables on biological activity to develop compounds with en-
hanced and optimal pharmacological profiles. Another ligand-based method is similarity
searching, which is mostly applied in filtering compounds from big libraries based on
the assumption that compounds with structural similarity can have similar bioactivity [9].
When the 3D structure of the target is available, as well as the ligands’ structure, it is
possible to use hybrid methods. This means combining structure-based and ligand-based
methods to perform some types of pharmacophore modeling or to predict the activity
considering the biological profile of tested compounds against several targets [12]. In
fact, combining CADD methods can be more effective once their advantages complement
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one another [11,12]. Given the importance of pharmacokinetics and toxicity properties of
selected compounds, in silico ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) filters can also be applied to eliminate compounds with potential undesirable
physiological qualities [9]. With the improvement of technology and bioinformatic tools,
the use of in silico approaches for drug development, mainly in preliminary studies, has
increased over the years.

Hence, in this review, we intend to summarize the current treatment used for CC
stages induced by HPV persistent infection, present the small molecules that are already
being explored as inhibitors/blockers for E6 protein, and retrospectively analyze the
studies published in the last years that applied in silico approaches to the design of novel
therapeutics for CC treatment. In addition, we will concisely discuss the future perspectives
for CC management.

2. HPV, CC Development, and Clinical Treatment

HPV is the etiological agent associated with CC. There are about 200 HPV genotypes
of high-risk (HR HPV) and low-risk (LR HPV) identified. HPV16 and 18 are responsible
for more than 70% of invasive CC. The HPV genome presents tropism for epithelial
cells, and the infections appear mainly in the anogenital tract [3,5,15] and head and neck
anatomic sites. While HPV is the hallmark of CC development [15], the classic major
risk factors to head and neck cancer are tobacco and alcohol, but in the past few decades,
human papillomavirus (HPV) has emerged as a novel risk factor [16,17]. The biology and
life cycle of human papillomavirus have been reviewed elsewhere [18]. However, we
considered it helpful to readers to give a brief insight into the HPV life cycle that may lead
to carcinogenesis.

The HPV genome encodes eight genes; the L1 and L2 structural proteins constitute
the capsid that protects the viral genome, and the E1, E2, E4, E5, E6, and E7 proteins are
involved in replication, transcription regulation, and oncogenesis. E6 and E7 oncoprotein
expression disrupt the cell repair mechanisms by degradation or inhibition of the tumor
suppressor proteins p53 and retinoblastoma protein (pRB), respectively, resulting in the im-
mortalization and cellular transformation of infected cells [19–21]. The viral life cycle begins
with viral particles arriving in the basal layer of the squamous epithelia via micro-abrasions.
After reaching the nucleus the viral DNA is replicated, and low quantities of E1, E2, E6, and
E7 proteins are produced early in the infection, halting normal keratinocyte development.
Then, E2 recruits E1 to increase the number of viral episome copies, which continue to rise
as the epithelium differentiates. E6 and E7 proteins are abundantly expressed in the top
differentiating epithelial layers, resulting in uncontrolled cell proliferation, and the viral
life cycle is completed when L1 and L2 proteins are expressed in the epithelium’s highest
layer. As a result, the viral genome is encapsulated, and mature virions are released [22,23].
Although many women contract HPV, most infections are eliminated or controlled by the
immune system after 1–2 years [24]. The establishment of persistent infection is associated
with the appearance of cervical lesions, since the accumulation of DNA damage caused by
HR HPV E6 and E7 interactions with tumor suppressors, p53 and pRb, causes apoptosis
suppression and uncontrolled proliferation. The chronically infected cells lead to the estab-
lishment of cervical intraepithelial neoplasia (CIN), as CIN grade I, which over time can
evolve to CIN grade II, III, or invasive carcinoma [23,24].

CC is staged according to different systems. The most widely used is the FIGO system
proposed by the International Federation of Gynecology and Obstetrics in collaboration
with the International Union Against Cancer (IUCC) [7]. Table 1 summarizes the different
stages of FIGO’s system with the current treatment for managing CC.
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Table 1. CC stages according to the FIGO system and the recommended treatment.

Stage Substage Description Recommended Treatment

I

IA1

The disease is only found in the cervix

Conization or cone biopsy; simple
hysterectomy

IA2 Conization; simple hysterectomy with pelvic
lymphadenectomy; radical hysterectomy

IB1 Radical hysterectomy or radical
trachelectomy with lymphadenectomyIB2

II

IIA1

Outside the cervix, cancer has progressed to the upper
vaginal wall or tissue next to the cervix (parametrium), but

not to the pelvic sidewall(s)

Radical hysterectomy or radical
trachelectomy with lymphadenectomy

IIA2 Radiotherapy (RT) with or without
chemotherapy

IIB Cisplatin-based chemotherapy and
concurrent radiation (CRT)

III
IIIA Cancer has advanced to the lower region of the vagina and

through the parametrium until the pelvic sidewall(s)
Cisplatin-based chemotherapy and

concurrent radiationIIIB

IV
IVA Cancer has advanced to adjacent organs or distant tissue,

such as lungs and distant lymph nodes
Palliative radiotherapy or palliative systemic

cytotoxic chemotherapyIVB

All surgical interventions can cause side effects or complications, including bleeding
and damage in the tissue nearby, and simple or radical hysterectomy results in infertility or
bladder/bowel dysfunction [25]. With the spread of cancer to other tissues (metastasis),
surgery is no longer a viable possibility. Radiation therapy (RT) uses radiation to destroy
cancer cells, and it is possible to affect mainly the zones with the tumor in the lower
abdomen in CC cases. Some side effects can be infertility, discomfort, and menopause.
Chemotherapy involves the administration of cytotoxic drugs to interfere with cell pro-
liferation, killing rapidly dividing cells. The currently approved drugs by the FDA for
CC treatment include, among others, bleomycin sulfate, topotecan, pembrolizumab, beva-
cizumab, cisplatin, paclitaxel, vinorelbine, ifosfamide, fluorouracil, and gemcitabine [26].
Nevertheless, these treatments are unable to effectively distinguish healthy from cancer
cells, affecting several types of dividing cells throughout the entire body. This effect can
result, namely, in a higher risk of anemia, bleeding, and infections [3,25]. Hence, the
design and development of therapeutic agents that are efficient, non-toxic, and capable
of distinguishing cancerous from healthy tissue are essential. In addition, for managing
early-stage CC, the employment of less invasive methods to improve quality of life and
decrease treatment-related sexual dysfunction is a necessity.

3. E6 Protein

As mentioned before, E6 and E7 proteins of HR HPV play a major role in CC de-
velopment once its growth is dependent on sustained E6/E7 expression. The interest in
HR HPV E6 protein as a potential therapeutic target has arisen in the past years. This
protein is essentially found in the cell nucleus and is constituted by 150–160 amino acids
and two zinc-binding motifs. In 2013, Zanier and co-workers published in PDB the 3D
structure of HPV16 E6 protein bound to the E6AP interaction domain (ID: 4GIZ) [27]. More
recently, the same research group also published the 3D structure of the E6-E6AP-p53
trimeric complex (ID: 4XR8) [28]. The wild-type (wt) HPV16 E6 protein forms intermolecu-
lar disulphide bonds, which makes it very difficult, if not impossible, to purify [29]. Thus,
Zanier and colleagues used an E6 nonfull-sequence structure (4C/4S mutant) to achieve its
crystallization, where four cysteines were replaced with four serine residues. The E6 4C/4S
mutant maintains the ability to degrade p53 in a very similar way to that of HPV16 wt
E6 [30]. These crystallographic findings determine the identification and design of novel
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compounds to block the HR HPV E6 oncoprotein action with higher efficiency. As the E7
protein 3D structure is still unknown/resolved, this explains why researchers are mainly
directing their efforts in developing strategies to block E6 to the detriment of E7.

The E6 protein binds to E6AP (E6-associated protein), a ubiquitin ligase required for
the interaction with p53 protein. The formation of the trimeric E6-E6AP-p53 complex is
responsible for the ubiquitination and degradation of p53, resulting in p53-dependent
apoptosis blockage. The crystallization data revealed that HPV16 E6 is composed of an
N-terminal and a C-terminal connected by an alpha helix, forming the hydrophobic binding
pocket for E6AP [27]. E6 targets other structures that are involved in several molecular
pathways, bringing down some cancer hallmarks. For example, HR HPV E6 protein is
able to activate telomerase by transcriptional up-regulation of TERT (reverse transcriptase
component of telomerase). There are two mechanisms proposed for this phenomenon, and
both require the E6-E6AP complex formation. Briefly, one of the models proposes that
the E6-E6AP complex can bind to NFX1-91 (repressor of TERT transcription) causing its
degradation and releasing the transcriptional repression at the TERT promoter. On the
other model, the E6-E6AP complex binds to c-myc, which may displace the inhibitory USF
transcriptional repressor from the E box in the TERT promoter. Other mechanisms are
possible once the telomerase activation is not well understood. Besides telomere elongation,
TERT can participate in apoptosis inhibition and allow cell proliferation, which increases
the probability of malignant conversion [31]. Besides E6AP binding, E6 only from high-risk
HPV can bind to the PDZ-domain family of proteins through its C-terminal, although this
region is not necessary for p53 interaction [28,32,33]. Thus, HR HPV E6 protein complexes,
along with the different proteins that bind to E6, affect several biological functions such
as cell survival, DNA damage, and cell cycle progression. Considering the problems
associated with current treatments for CC and the important role of E6 oncoprotein in the
progression of HR HPV infection towards cervical lesions, the inhibition/blockage of its
function could be a promising and specific therapeutic strategy. Indeed, several authors
have shown that decreased HR HPV E6 expression by RNA interference, flavonoids, and
intracellular antibodies could restore p53 levels and induce apoptosis in HPV-positive cell
lines [34,35]. Hence, a presentation of the advances made in anticancer drug design and
development for the HR HPV E6 protein using computational methods will be performed.
For that, three databases (PubMed, Web of Science, and ScienceDirect) were used to
search articles published after 2015 with the following keywords: E6 inhibitors AND in
silico; E6 inhibitors AND molecular docking; E6 protein AND in silico; E6 protein AND
molecular docking.

3.1. E6-E6AP Complex Inhibitors

The HR HPV E6 protein has different binding pockets, including the hydrophobic
pocket where the LxxLL motif of E6AP binds, the PDZ-binding domain, and the p53
binding site, Figure 1 [27,28]. Until recently, the most explored area to achieve inhibition
has been the hydrophobic pocket, to the detriment of the HR HPV E6PDZ domain.

Researchers have been taking advantage of the E6/E6AP complex 3D structure avail-
able on PDB (ID: 4GIZ) to understand the interactions involved between both proteins
and to apply in silico methods to design potential inhibitors. E6AP is required to induce
E6-mediated p53 degradation by inducing structural changes in the E6 protein, which allow
the formation of the trimeric complex E6/E6AP/p53 [28]. The hydrophobic pocket able
to recognize the LxxLL motif is mainly constituted by the following amino acid residues:
Leu100, Leu50, Cys51, Val53, Val62, Leu67, Tyr32, Tyr70, and Ile73 [27].
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Figure 1. A map of different binding sites of the HPV16 E6 protein using PDB ID 4XR8 and 2KPL on
Chimera software. Surface representation of E6 residues that participate in the binding with E6AP
(A), p53 (B), and the PDZ domain (C). A—Orange residues participate in E6AP binding; B—The
three interfaces of contact between E6 and p53 are colored in light, medium, and dark blue. C—The
C-terminal PDZ binding motif is represented in green. E6N: N-terminal; E6C: C-terminal.

3.1.1. Synthetic Compounds

Ricci-López and co-workers developed an in silico pipeline to propose potential in-
hibitors of E6/E6AP interaction [36]. For this, the HPV16 E6 sequence (UniProt ID: P03126)
and the template retrieved from the ternary complex E6/E6AP/p53 (PDB ID: 4XR8) were
used to obtain the full-length structure of the HPV-16 E6 protein by homology model-
ing once the E6 protein was crystallized by using a 4C/4S mutant, as mentioned earlier.
Twenty-six compounds described in the literature as capable of binding to E6 were used as
reference molecules and queries in the Zinc15 database to build a compound library with
almost 35,000 molecules using a structural similarity approach. ZINC15 is a public access
database provided by the Irwin and Schoichet Laboratories in the Department of Pharma-
ceutical Chemistry at the University of California, San Francisco (UCSF). It contains over
230 million purchasable compounds in ready-to-dock, 3D formats and over 750 million
purchasable compounds, and it is possible to search for analogues. It is widely used for vir-
tual screening, ligand discovery, and pharmacophore screens, among others. Compounds
were then filtered considering ADME properties, and those with the highest potential were
submitted to molecular docking studies considering the hydrophobic pocket as the binding
site. After the binding free energy calculations of the best-docked complexes, compound
1 (ZINC111606147), compound 2 (ZINC362643639), and compound 3 (ZINC96096545)
(Figure 2) were selected for further evaluation through molecular dynamics simulations.
When compared to luteolin (reference ligand), these three compounds had higher affinity
to the E6 protein, and all docked complexes were stable and capable of inhibiting E6/E6AP
interaction [36].
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Figure 2. Structures of studied synthetic compounds as E6/E6AP inhibitors. IUPAC name of
compounds—compound 1: (S)-N-((3-amino-1-(5-ethyl-7H-pyrrolo [2,3-d]pyrimidin-4-yl)pyrrolidin-3-
yl)methyl)-2,4-difluorobenzamide; compound 2: N-((6-methyl-1H-benzo[d]imidazol-2-yl)methyl)-
5-(thiophen-2-yl)-1H-pyrazole-3-carboxamide; compound 3: N1-(5-chloro-2-cyanophenyl)-N2-(2-
hydroxy-2-(1-methyl-1H-indol-3-yl)ethyl)oxalamide; compound 4: (E)-6-((2S,3S)-2-((E)-5-((tert-
butyldimethylsilyl)oxy)-2-methylpent-1-en-1-yl)-5-methoxytetrahydrofuran-3-yl)-4-methylhex-3-
en-1-ol; compound 5: tert-butyl(((E)-5-((2S,3S)-5-methoxy-3-((E)-3-methylhexa-3,5-dien-1-
yl)tetrahydrofuran-2-yl)-4-methylpent-4-en-1-yl)oxy)dimethylsilane; compound 6: 2-(3,4-
dihydroxyphenyl)-5,7-dihydroxy-8-methyl-4H-chromen-4-one; compound 7: (S)-(R)-2-((2-amino-
6-oxo-1H-purin-9(6H)-yl)methoxy)-3-hydroxypropyl 2-amino-3-methylbutanoate; compound
8: 4-amino-1-((2R,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-
2(1H)-one; compound 9: (R)-2-((2-amino-6-oxo-1H-purin-9(6H)-yl)methoxy)-3-hydroxypropyl
4-aminobenzoate.
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Senthilkumar and colleagues described ansiomelic acid (AA), a compound isolated
from the plant Anisomeles malabarica, as being able to inhibit E6 and E7 protein expres-
sion and induce apoptosis in HPV-positive cancer cells. Then, they decided to perform
a structure–activity relationship study with several AA analogues to identify potent in-
hibitors of HPV E6 and E7 oncoproteins [37]. Molecular docking was used to predict the
affinity of 26 AA-derived compounds towards the hydrophobic pocket of the E6 protein
(PDB ID: 4GIZ) using AA as control. Of these, compounds 4 and 5 (Figure 2) showed the
highest docking scores −65.74 Kcal/mol and −63.66 Kcal/mol, respectively, and lower
IC50 values (HPV-positive cell lines, SiHa and HeLa) were observed when compared to AA
and other compounds. In addition, they displayed less toxicity towards fibroblasts than
commercial drugs and were able to inhibit p53 degradation mediated by the E6 protein,
according to the in vitro studies performed [37].

Rietz and his team followed a different approach. For this, small-molecule probes,
which can modulate protein interactions, were used to evaluate the recognition features
of the E6 protein by means of binding and functional assays [38]. In this context, authors
intended to understand the contribution of the substituents in positions 2 and 6 on the
benzopyranone scaffold explored and to determine which E6 features are involved in
binding. Interestingly, it was observed that charged groups in position 6 and non-polar
substituents in position 2 displayed higher activity. Molecular dynamics simulations with
analogs of these small molecules and exploring a set of mutations in different amino acid
residues allowed the authors to conclude that a group of arginines (Arg10, Arg55, Arg102,
Arg129, and Arg131) play a major role in the shape of the E6 helical binding groove, as well
as in molecular recognition of the binding partners. Therefore, these last results can be of
relevance for structure-based targeting of HPV E6 [38].

Another strategy was developed by Kumar and colleagues using ligand-based and
structure-based methods [39]. They built an e-pharmacophore model for virtual screening
based on the amino acid residues involved in the interaction of E6 (ID: 4GIZ) and a peptide
reported by Zanier and co-workers [35]. The ligands were selected based on literature
information, and 2-aminobenzothiazole and the luteolin chromone moiety were used as
query molecules to found potential compounds on the ZINC 15 database. Then, 6000 com-
pounds were screened using the pharmacophore model developed, and molecular docking
studies predicted the best compounds based on dock scores and interactions with amino
acid residues of the binding site. In addition, ADME analysis and molecular dynamics
simulations were performed to find the best hit. The chromone derivative, compound
6, ZINC14761180 (Figure 2) showed the most relevant interactions, and molecular dy-
namics of the complex ZINC14761180-E6 protein evidenced good stability in the binding
pocket [39]. These findings can be a starting point for further design and synthesis of new
E6 inhibitors. Following this work, the authors decided to explore a different approach
but with the same objective [40]. For this, a drug repurposing approach based on the
FDA-approved drugs library was applied. This methodology consists of identifying a dif-
ferent therapeutic use for an available or approved drug. Approved drugs have acceptable
ADMET properties; therefore, this is an effective method as it involves less time, lower
costs, and reduces the probability of an undesirable ADMET profile in clinical trials [10].
After the compounds’ screening through a pharmacophore model, docking, molecular
dynamics simulations, and ADME analysis, the selected hits with the highest potential
were compound 7 (ZINC000001543916—valganciclovir; anti-viral drug) and compound
8 (ZINC000003795098—cytarabine; anticancer drug) (Figure 2). Both drugs are purine
or pyrimidine nucleoside analogues, which showed that these scaffolds can be applied
to design novel E6 inhibitors. Interestingly, compound 9, ASK4 (Figure 2), which is a
valganciclovir derivative, also showed promising results. Molecular dynamics simulations
indicated that these ligands could form a stable complex with E6 protein, and it was also
evidenced that they have an acceptable ADME profile [40].

The zinc-finger motif was proposed as strictly necessary for E6 protein function.
Therefore, mutations in zinc-fingers interfere with E6/E6AP complex formation and cellu-
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lar transformation. Concerning these data, Choudhury and co-workers selected specific
disulfide (C13, C14, C16, R2, R15, R19) and azoic (C4) compounds, as controls based on
their ability to eject zinc from the zinc finger motif of E6 protein and inhibit E6/E6AP
interaction, proved by in vitro studies. Then, derivatives of these compounds were gen-
erated, and their ADME properties were predicted to exclude undesired compounds.
Molecular docking, using the 3D structure of the C-terminal zinc-binding domain of the
E6 protein (PDB ID: 2FK4), was performed for the selected ligands. Afterward, ligands
with the highest binding score, such as compound 10, (E)-N-(2-amino-2-methylpropyl)-N-
(thiophen-2-yl)diazene-1,2-dicarboxamide, and compound 11, (E)-N-(2-amino-2-oxoethyl)-
N-(4-chlorophenyl)diazene-1,2-dicarboxamide, both azoic derivatives (Figure 3), were used
for pharmacophore modeling (ligand-based method). The predicted amino acid residues
involved in the interaction with the ligands are Tyr15, Trp55, Asn50, Leu23, Leu33, Ser5,
Ile24, Ile51, Arg47, Arg54, Arg25, Lys45, Lys38, Phe48, Cys26, and Ala1. Some of these
residues are found to be conserved among HPV6, HPV11, HPV16, and HPV18 zinc fingers.
This demonstrates the possibility of the zinc finger domain to be a drug target [41].
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Figure 3. Structures of studied synthetic compounds as E6/E6AP inhibitors acting by eject-
ing zinc ions. IUPAC name of compounds—compound 10: (E)-N1-(2-amino-2-methylpropyl)-
N1-(thiophen-2-yl)diazene-1,2-dicarboxamide; compound 11: (E)-N1-(2-amino-2-oxoethyl)-N1-(4-
chlorophenyl)diazene-1,2-dicarboxamide.

3.1.2. Natural Compounds

Plant-derived compounds have been used in the prevention and treatment of different
clinical conditions, and several of these natural products possess beneficial effects against
several types of cancers, including cervical, colon, skin, breast, and prostate cancers [42].
In addition, many natural products are abundantly available and therefore can constitute
a cost-effective way to obtain active pharmaceutical ingredients, including for cancer
treatment [43]. Therefore, some researchers have focused on investigating the potential
of natural compounds as E6 inhibitors. Clemente-Soto and his research team studied
the ability of quercetin, compound 12 (Figure 4), a flavonol belonging to the flavonoid
group, to inhibit p53 degradation mediated by E6 through in silico and in vitro studies [44].
According to molecular docking results, quercetin was able to bind in three different sites of
E6 (ID: 4GIZ). Interestingly, it was predicted that the lowest energy (−7.08 Kcal/mol) and
interactions with crucial amino acids for E6-E6AP formation (such as L50, L100, R102, R131)
occurred in site II (corresponds to the hydrophobic pocket). As reference ligands, CAF24,
C170, and luteolin were used because it was previously demonstrated that they were able
to bind the E6 protein and disrupt the E6AP association [34]. Additionally, in vitro studies
demonstrated that quercetin was capable to reactivate p53 and induce G2 phase cell cycle
arrest and apoptosis in HPV-positive cancer cell lines [44].
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Figure 4. Structures of the studied natural compounds as E6/E6AP inhibitors. IUPAC name
of compounds—compound 12: 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one;
compound 13: 1’,5-dihydroxy-3’,7-dimethyl-[2,2’-binaphthalene]-1,4,5’,8’-tetraone; compound 14:
(S)-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one; compound 15: (S)-5,7-dihydroxy-
2-(3-hydroxy-4-methoxyphenyl)chroman-4-one; compound 16: ((2R,3R,4S,5R,6S)-4-hydroxy-3-
(((2S,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-4-methyl-3-(sulfooxy)tetrahydro-2H-pyran-2-
yl)oxy)-6-methoxy-5-(sulfooxy)tetrahydro-2H-pyran-2-yl)methyl hydrogen sulfate.

Kumar’s research group took advantage of both 3D structures of the E6 protein
available on PDB (ID: 4GIZ and 4XR8) to perform a protein–protein alignment and identify
the amino acid residues that suffer conformational changes when the E6/E6AP complex
recruits p53 [45]. The residues Arg8, Tyr32, Cys51, Tyr70, Ser74, and Arg131 demonstrated
conformational changes when the E6/E6AP complex bound to the p53 protein. Then,
an e-pharmacophore model was built based on the amino acid residues present in the
predicted cavity and screened against 27,354 compounds. Molecular docking and molecular
dynamics approaches were used to study the hits previously selected, where compound 13,
diospyrin (Figure 4), was identified as the best hit. H-bond interactions with Tyr32, Cys51,
Ser74, and Arg131 amino acid residues were predicted, which might be important for an
inhibitor to interact with the E6 protein [45].
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Kolluru and his research team stated that E6 can inhibit the apoptotic pathway by
binding to adaptor molecule FADD (Fas-associated death domain); therefore, the inhibition
of this interaction could be a promising strategy for CC treatment [46]. As there is no infor-
mation about the FADD binding site on the E6 protein, the authors decided to identify the
flavonol binding pocket on HPV 16 E6 (ID: 4GIZ) protein by studying six flavonols reported
in the literature as E6 inhibitors. First, a blind docking was performed to identify different
pockets, followed by the determination of amino acid residues involved in interactions
with ligands. Amino acids Cys51, Leu50, Arg102, Arg131, Leu67, Val62, and Gln107 were
the most common among binding pockets that have scores correlated with the previously
described IC50 (determined by the interaction of GST-E6 and His-caspase 8), indicating their
importance in E6 inhibition. Compound 14, myricetin (Figure 4), demonstrated the highest
docking score in most of the binding pockets, which agrees with the IC50 reported in the
literature. The efficacy of these ligands may be increased by conjugation with multivalent
glycocalixarenes, which are known to interact with biological macromolecules [46].

Other researchers, such as Prakash and his team, studied the anticancer effect of
compound 15, hesperetin (Figure 4), a plant-isolated flavonoid, on CC via in vitro and
molecular docking studies [47]. First, a preliminary study of hesperetin’s effective cytotoxic-
ity towards HeLa cells was performed. Then, molecular docking with crystal structure PDB
ID: 4XR8 was applied to understand the binding mode and interaction of the hesperetin–E6
protein complex. The binding energy score was −5.58 Kcal/mol, and different bonds
were established with the active site of the E6 protein, specifically H-bonds with Trp132
and Asp98, carbon–hydrogen bond with Arg102 and Leu100, and hydrophobic pi-alkyl
interaction with Arg102, Arg131, and Leu100. These results demonstrated that hesperetin
can bind in the hydrophobic pocket of E6 and hinder the interaction of E6 with p53 [47].

Kamma and co-workers focused on ligands available on natural sources, including
carrageenan, curcumin, and papain, to target the E6 protein (PDB ID: 6SIV) [48]. Molecular
docking revealed minimal binding energy (−10.7 Kcal/mol) for compound 16, carrageenan,
being considered the best ligand of this group. However, this is a preliminary study, and it
is fundamental to perform in vitro studies to confirm the carrageenan behavior towards
CC and non-cancer cells.

Although plant-derived compounds present many advantages as anticancer agents,
their usual low availability on tumor sites could represent a drawback. Thus, their admin-
istration using adequate drug delivery systems or combination with approved drugs could
be a promising way to improve their bioavailability and allow their delivery to target cells,
including for CC management [43,49].

The activation of interferon regulatory factor 3 (IRF3) is dependent on the kinase
binding site within the autoinhibitory domain (AD), which is blocked by E6 protein [50].
The interaction of E6 with E6AP prevents apoptosis after p53 degradation causing cell
cycle disruption. Both IRF3 and E6AP E6 have specific leucine-rich motifs. In the IRF3
case, it is the N-terminal that participates in E6 binding, where for the E6AP it is the
C-terminal. Therefore, HPV escape from the antiviral response is suggested to be possible
through the interaction of E6 protein with IRF3 [50]. However, the mechanism of IRF3
inactivation by E6 is not completely understood. Thus, Shah and colleagues used in
silico approaches to explore this mechanism [51]. The N-terminal of IRF3 comprises two
leucine-rich clusters that are assumed as E6-specific binding motifs. The binding affinity of
these motifs towards the E6 protein was evaluated through protein–protein docking and
molecular dynamics simulations using the E6/E6AP complex structure (PDB ID:4GIZ), as
a control to corroborate the protocol described by the authors. After investigation of IRF3
stable residues and identification of E6 residues with high binding energy, the binding mode
of E6 inhibitors reported in the literature was explored. Molecular docking with 20 ligands
(natural and synthetic compounds) into the hydrophobic pocket of E6 was performed, and
their binding affinities and behaviors were evaluated through computational mutagenesis
and drug resistance scanning. Computational mutagenesis was applied to study the
stability of each ligand-bound E6 complex, where the polar arginine residues of the E6
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pocket were mutated into alanine residues. Then, the drug resistance of E6 was determined
considering the difference of binding affinities of using wild-type or mutant residues. It
was noticed that the stability was compromised when Arg131 was mutated into alanine,
whereas Arg102 Ala mutation reduced the ligand-binding affinities. The change in the
binding affinities suggests that E6 might become more resistant to drugs when Arg131 and
Arg102 are mutated into neutral amino acid residues. The data obtained indicated that
the LxxLL motifs of IRF3 bind within the hydrophobic pocket of E6 and the polar areas
(Arg55, Arg102, and Arg131), significantly affecting the stability of the LxxLL-E6 complex.
Despite the new findings where the E6 binding to IRF3 might inhibit the kinase-mediated
protein activation, the fact that the polar patches are inconsistent among HR HPV species
may compromise an unsuccessful treatment due to point mutation that could make drugs
ineffective [51].

3.2. E6-p53 Complex Inhibitors

CC satisfies the criteria of “oncogene addiction”, which means that tumor cell devel-
opment occurs due to the activity of one or some genes [52]. As E6 is the main protein
responsible for p53 degradation, several researchers recently focused their attention on
designing and developing potential inhibitors of E6/p53 binding by employing in silico
methods. In fact, the direct disruption of the p53 binding site to E6 can be useful in the de-
velopment and optimization of specific inhibitors, improving the likelihood of preventing
off-target effects.

3.2.1. Natural Compounds

Kumar and co-workers explored natural compounds described in the literature as
able to block HPV infection towards the E6 protein of HPV18 [53]. The 3D structure of
E6 HPV18 was obtained by homology modeling using the amino acid sequence available
in NCBI (GenBank ID: NP_040310.1), and the E6 HPV16 protein (PDB ID: 4GIZ) was
employed as a structure template. After structure validation, molecular docking with
12 ligands was performed to elucidate the interactions with E6 HPV18. The binding site
of p53 to E6 HPV18 was revealed by sequence comparison with E6 HPV16 and set on
the residues 108–117 (CQKPLNPAEK). All studied compounds interacted with the p53
binding site on the E6 protein. However, the lowest binding energy (−5.85 Kcal/mol) was
predicted for compound 17, withaferin A (Figure 5) interacting through H-bonds with four
amino acid residues of E6 (Glu116, Asn113, Asn122, and Ser140) [53]. Following this work,
Atabaki and colleagues performed in silico and in vitro studies to evaluate the behavior
of phytochemicals of Jurinea macrocephala subsp. Elbursensis in CC cell lines and their
interaction with E6 HPV18 [54]. From this plant, three compounds were isolated, namely,
4-hydroxypectorolide-14-O-acetate, 4-hydroxy pectorolide, and pinoresinol monomethyl
ether-β-D-glucoside (PMG), and their toxicity toward cancer cells was investigated. Of
these, compound 18, PMG (Figure 5), displayed significant toxicity on HeLa cells; therefore,
molecular docking was performed to understand if it could be a potential E6 inhibitor.
Using doxorubicin as control, the PMG showed higher binding energy (−4.75 Kcal/mol)
and interacted through H-bonds with three amino acid residues (Arg119, Leu112, and
Tyr99) [54].

Mamgmain and co-workers explored five natural compounds—colchicine, curcumin,
daphnoretin, ellipticine, and epigallocatechin-3-gallate—as potential E6 inhibitors [55]. The
3D structure of the E6 protein was built through homology modeling and the crystal struc-
ture PDB ID: 4GIZ as a template. The binding sites predicted were chosen for molecular
docking studies. The highest binding affinity, −8.3 Kcal/mol, was attributed to compound
19, daphnoretin (Figure 5), which interacts through H-bonds with E6 amino acid residues
Tyr39, Cys58, Ser78, Gln114, and Arg138 [55].
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Figure 5. Structures of the studied natural compounds as E6/p53 inhibitors. IUPAC name
of compounds—compound 17: (4S,4aR,5aR,6aS,6bS,9R,9aS,11aS,11bR)-4-hydroxy-9-((S)-1-
((R)-5-(hydroxymethyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl)ethyl)-9a,11b-dimethyl-
5a,6,6a,6b,7,8,9,9a,10,11,11a,11b-dodecahydrocyclopenta[1,2]phenanthro[8a,9-b]oxiren-1(4H)-one;
compound 18: (2S,3R,4S,5S,6R)-2-(4-((2S,6R)-6-(3,4-dimethoxyphenyl)hexahydrofuro[3,4-
b]furan-2-yl)-2-methoxyphenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; compound
19: 7-hydroxy-6-methoxy-3-((2-oxo-2H-chromen-7-yl)oxy)-2H-chromen-2-one; compound 20:
5,7-dihydroxy-8-(5-(5-hydroxy-7-methoxy-4-oxo-4H-chromen-2-yl)-2-methoxyphenyl)-2-(4-
hydroxyphenyl)-4H-chromen-4-one.

Considering the different molecules/proteins (E6AP, p53, and c-Myc) that bind to E6
protein and can interfere with normal cell function, Nabati and co-workers investigated
more than 100 already described plant-derived compounds with anticancer and antiviral
properties for the different protein binding sites [56]. These compounds were filtered based
on their ADMET properties, and twenty compounds were selected for molecular docking
studies. The crystal structure of the E6 protein PDB ID: 4GIZ was used. Compound 20,
ginkgetin (GK, Figure 5), extracted from Gingko biloba leaves, was the most effective in
binding to all sites (E6AP, p53, and Myc) on the E6 protein, and the lowest binding energy
was determined. In particular, it was predicted that GK forms five H-bonds with Arg55,
Cys51, Val53, and Tyr60 on the E6AP binding site; on the p53 binding site it should form
H-bonds with the same amino acid residues of the E6AP binding site; on Myc binding
site, it can interact with Pro5 and Arg8 by forming four H-bonds. Considering the GK
bioactivities described in the literature, including antitumor and antiviral properties, and
ability to induce apoptosis in cancer cells, this study could be a starting point for the
development of potential E6 inhibitor in vitro studies [56].

With the crystallization of the ternary complex E6/E6AP/p53 by Zanier and co-
workers in 2016, it was possible to achieve a better structural understanding of the amino
acid (aa) residues that participate in the binding interface of E6-p53. Actually, the aa
residues described in the literature before 2016, or used as the binding site of p53 to
E6 in some of the studies mentioned above, were predicted by computational methods
since there was no information about the real binding site [28,57,58]. Even now, some
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authors chose to use computational methods for this purpose, while other authors used
the information of the p53 binding site discovered in 2016. According to this study, the
E6AP C-terminal does not substantially contribute to contacts with p53, and the E6/p53
interface can be divided into three sub-interfaces. In sub-interface I the E6 residues Glu7
and Glu18 establish interaction with p53 residues, where mutations in Glu18 impair the
ternary complex formation and p53 degradation. Likewise, the hydrogen bond formed
through Gln104 and Gly105 of p53 to Arg8 and Gln6 of E6 alters the conformation of the E6
N-terminal. Mutagenesis in the amino acid residues Phe2, Pro5, Arg8, or Pro9 prevented
the ternary complex formation and p53 degradation. Sub-interface II has the aa residues
that mediate vital contacts to p53 and are important for p53 degradation. The residues
consist of Phe47, Asp44, and Asp49, which correspond to the most conserved positions
in HR HPV. In addition, Ile23, His24, and Tyr43 provide hydrophobic contacts with p53.
Finally, sub-interface III involves hydrophobic interactions between Leu114 and Trp146 of
p53 and Leu100 and Pro112 of the E6 C-terminal [28].

3.2.2. Synthetic Compounds

Celegato and colleagues used the crystal structure of the E6/E6AP/p53 complex (PDB
ID: 4XR8) to perform an in silico screening of small-molecule libraries against the central
region of the p53-binding cleft of E6 [58]. This region was chosen due to its significant
role in p53 binding and degradation as well as the high conservation among HR HPVs. A
structure-based screening of three databases of commercially compounds was performed
using chain F of the complex, and a filter step was applied considering the interactions with
the residues Asp49 and Phe47 of E6. Twenty-nine compounds were selected and tested
through their ability to rescue p53 by in vitro studies. This strategy allowed the selection
of three compounds, but only pyrimidinone 21 (Figure 6) affected the viability of CC cells
without affecting healthy cells. It was also found that this compound could re-establish
p53 intracellular levels and transcriptional activity, reduce the viability and proliferation of
HPV-positive cancer cells, and block 3D cervospheres formation [58]. Molecular dynamics
simulations with E6-compound 20 complex were performed to gain further insight into
the binding mode of compound 20. The complex showed stability by the formation of a
double H-bond with Asp49 and by hydrophobic interactions with Phe47 and established
other interactions with Leu12, Cys16, and Ile23. This study suggested that compound 21
can be a starting point for the development of specific anti-HPV drugs.
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Figure 6. Structures of the studied synthetic compounds as E6/p53 inhibitors. IUPAC
name of compounds—compound 21: 2-((4-fluorophenyl)amino)-6-(((1-phenyl-1H-tetrazol-5-
yl)thio)methyl)pyrimidin-4(3H)-one; compound 22: N-(4-(benzo[d]thiazol-2-yl)phenyl)-5-chloro-
2-methoxybenzamide.

Modi and co-workers explored the anticancer properties of 10 benzothiazole deriva-
tives in CC cell lines. Later, by in silico and in vitro studies, they aimed to identify the molec-
ular pathways involved in the apoptosis induced by N-(4-(benzo[d]thiazol-2-yl)phenyl)-5-
chloro-2-methoxybenzamide (compound 22 or A-07, Figure 6) [59]. To perform in silico
analysis in this context, the E6 and p53 crystal structures were obtained from PDB (ID:
4GIZ and 4XR8, respectively). Then, A-07 was evaluated by molecular docking against
each protein where the active site was identified by the metaPocket server. It was predicted
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that this benzothiazolyl derivative was able to interact with both proteins, specifically with
10 amino acids of E6 and 14 amino acids of p53. These results suggest that A-07 (Figure 6)
can hinder ternary complex formation and prevent p53-mediated intrinsic apoptosis in
SiHa cells, as demonstrated by in vitro studies [59].

The natural and synthetic compounds presented here as HR HPV E6 protein inhibitors
by either target E6/E6AP complex or the E6/E6AP/p53 complex formation are a valid
starting point for drug design and development in cervical cancer management. However,
strategies that combine both targets, the hydrophobic pocket and the p53-binding cleft
of E6 protein, could result in an effective way to disrupt the E6/E6AP/p53 complex to
specifically affect the viability of HPV-positive cancer cell lines and proposing specific
anti-HPV therapies.

4. Future Perspectives

CC management still needs improvements, as current therapies are mainly surgery,
chemotherapy, or radiotherapy. Several drugs have been proposed for treating patients with
CC, but most do not overcome clinical trials due to low efficacy [36]. Bearing in mind the
role of HR HPV E6 protein in the development and progression of HPV infection to cervical
lesion or even invasive carcinoma, the inhibition of E6 function could be useful for treating
CC. Results reported in this review support the idea that combining in silico approaches and
in vitro studies could lead to a rise in the number of molecules understudy to block/inhibit
E6 protein. According to Franconi and co-workers and Duenas-Gonzalez and co-workers,
there are no clinical studies using natural or synthetic compounds as E6 or E7 inhibitors
yet [43,60], due to low affinity and/or potency on in vitro and in vivo studies. Thus, the
employment of in silico methodologies in the drug development process can be a great
help to quickly find potential inhibitors and circumvent possible undesirable properties of
compounds. Therefore, identification and functional evaluation of proteins associated with
E6 could provide an insight into CC carcinogenesis and thus allow the design of specific
strategies towards tumor cells. Moreover, it is essential to search and find cost-effective
treatment options that could bring better outcomes for the patients. A strategy in this
context could explore the potential use of plant-derived compounds, usually associated
with lower toxicity and side effects when compared with classic anticancer agents. In
addition, considering that drug distribution to the tumor site is low, the use of suitable
drug delivery systems (DDS) compatible with the anticancer agents could be explored to
achieve better clinical response with lower toxicity, as DDS could be functionalized with
ligands that are specifically recognized by cancer cells [49]. Thinking about the fact that
HPV infection is localized in the anatomical regions that can be easily reached for topical
treatment, the possibility of locally delivering small molecules or natural compounds could
be a valid option. Indeed, in low-income countries where women only can reach health
facilities a few times in a lifetime, the combination of HR HPV test positivity and treatment
in a single visit could be fundamental. A “screen-and-treat” approach allows reducing
travel time, minimizing the number of visits, transport, childcare needs, and reducing the
cost [61]. In places where is difficult to reach people and a return visit is not an option,
self-sampling for HPV screening and mobile treatment for precancer could be applied [62].
Moreover, visual inspection with acetic acid (VIA) can be applied as a triage method for
LIC, once it is low-cost and offers the option of treatment immediately or shortly after
diagnostic testing. One of the biggest problems of cervical neoplasia is the resistance of
tumor cells to chemotherapy and radiotherapy. Thus, the combination of anticancer agents
in DDS with conventional chemotherapy or radiotherapy could also be a solution. This
represents another line of investigation that needs to be explored in the near future. In
terms of CC management, it would be interesting to explore a combinatory approach
targeting E6 and E7 oncoproteins. In this case, the aim consists of exploiting molecules able
to interact with E6 and E7 proteins, once both have a relevant role on CC progression. From
this point forward, the use of in silico methods would be the key to pursue this approach.
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Overall, our research group aims to propose a more specific, efficient, and non-
toxic/invasive therapeutic approach for cervical cancer management. Thus, in silico
approaches, such as those described in the present manuscript, will be used to select
promising compounds as E6 potential inhibitors. Additional studies will be conducted
with HPV E6 recombinant proteins and the selected compounds to characterize the ki-
netic magnitude and affinity constants of the compound–protein interaction. Then, the
most promising compounds will be applied in in vitro studies with HPV-positive and HPV-
negative cell lines to confirm the inhibitor/blocker effects of the E6 oncoprotein. In addition,
drug delivery systems can be developed to circumvent a possible high toxicity and low
availability of the compounds and, for instance, to combine this approach of E6 inhibitors
with gene therapy to supplement p53 content and induce the cancer cell apoptosis.

5. Conclusions

The high impact that CC has in developing countries is undeniable. This review has
briefly discussed the role of HPV in CC carcinogenesis as well as its different stages and cur-
rent treatments. Subsequently, the potential of natural and synthetic small molecules in HR
HPV E6 protein inhibition, mainly by targeting the E6/E6AP complex or the E6/E6AP/p53
complex, was discussed. The drug development process is a very expensive and time-
consuming process until achieving regulatory agency approval. In silico methods represent
a viable solution to these current problems by allowing a fast screening and identification
of potential drugs and effective predictions. In terms of impact, in silico methodologies
can help to increase the speed of acceptance of potential antiviral drugs with ADMET
acceptable profiles for CC management. Moreover, in silico methods have been applied
in the medical field, representing the therapeutic response of drugs on virtual organs and
body systems and predicting patients’ biological responses to the treatment, and this sig-
nificantly improves outcomes. Computational-based approaches hold a great promise for
improving drug development and revolutionizing clinical research by providing a specific
treatment for women diagnosed with cervical cancer. Considering the costs of screening
and treatment of CC, and knowing that the highest incidence occurs in developing coun-
tries, a more cost-effective treatment is needed. Thus, exploring natural compounds with
the ability to impair E6-p53 interaction could be a specific and promising strategy for CC
management in a more economical way.
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Abstract: The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression
pattern both in the central nervous system and the body. The receptor has been investigated as
a potential target for a multitude of significant diseases including migraine, alcohol use disorder,
ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective
molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid
receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be
optimized and selected for clinical trials. Here, we highlight recent developments involving the
delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area
of the GPCR drug discovery research. We focus on the validity and utility of the available delta
opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking
studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of
machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple
opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta
opioid modulators potentially with unique pharmacological properties, such as biased signaling.

Keywords: mutagenesis; artificial intelligence; computer-aided drug design; molecular dynamic
simulation; biased signaling; G protein-coupled receptor

1. Introduction

The δ opioid receptor (δOR) is a Gi-protein-coupled receptor with a broad expression
pattern both in the central nervous system and the periphery. The endogenous agonists for
the δOR are pentapeptide enkephalins, particularly Leu5-enkephalin, but other peptides
that originate from plants and other species, like frogs can also bind and activate the
δOR [1,2]. Similar to the µ opioid receptor (µOR), which is activated by small molecules
from natural products like opium and kratom and fully synthetic small molecules like
fentanyl, the δOR can be activated by a variety of naturally occurring and (semi-) synthetic
small molecules [3–6].

The δOR has been a potential candidate to treat a variety of diseases and disorders.
Front and center have been the ability of δOR selective agonists to reduce chronic pain,
be it inflammatory, neuropathic, or migraine [7]. δOR agonists have shown promise in
preventing cardiac and cerebral ischemia [8], as a potential treatment for neurodegenerative
diseases [9–13], and both δOR agonists and antagonists have been proposed as mechanisms
for the treatment of alcohol use disorder [5,14–16]. Outside the central nervous system, δOR
antagonism and positive allosteric modulation of δOR has been proposed as a treatment
for gastrointestinal motility disorders, such as irritable bowel syndrome [17,18].

Early attempts by SmithKline Beecham to synthesize δOR agonists to suppress cough
(SB 227122), or to treat inflammatory pain without causing seizure activity (SB 235863) [19–21]
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did not progress to clinical trials. While δOR-selective agonists, including ADL5859 and
AZD2327, have previously entered clinical trials for the treatment of pain and depres-
sion, no δOR selective drugs have ultimately been approved for human use. [22–24] Both
ADL5859 and AZD2327 failed to advance beyond phase II clinical trials, which are de-
signed to establish efficacy in patients within the therapeutic indication space. ADL5859
and AZD2327 are part of a class of diethylbenzamides that include the prototypical δOR-
selective agonist SNC80. However, SNC80 and multiple other δOR agonists have been
reported to reduce seizure threshold and induce convulsions [25–27], and this has reduced
enthusiasm for δOR agonists as a therapeutic area of research.

Around the same time that ADL5859 and AZD2327 were in clinical trials, John-
son and Johnson developed the anti-hyperalgesic δOR agonists, JNJ-20788560 and RWJ-
394674 [28,29], but they did not take these into clinical trials, potentially due to the failure
of the aforementioned clinical trial compounds. Prior to becoming insolvent, Ardent Phar-
maceuticals, also produced multiple δOR agonists, with mixed µOR activity in their DPI
series (DPI-221, DPI-125, DPI-289) in hopes of producing an analgesic drug with fewer
adverse effect liabilities relative to the clinically used µOR agonists [12,30,31].

Recent studies suggest that β-arrestins, multifunctional proteins that can promote
receptor desensitization and intracellular signaling, are involved in the mechanism of
seizure activity of SNC80 [26]. This insight has spurt efforts to develop G-protein-biased
δOR agonists to reduce adverse effects including seizures, paralleling similar efforts for
increasing the therapeutic window through G-protein-biased agonism at other GPCRs,
including the µOR. These endeavors have generated a multitude of peptides with reduced
β-arrestin recruitment potency/efficacy [3,32–35]. Similarly, small molecule biased agonists
have also been developed including TAN-67, KNT-127, TRV250, and most recently PN6047.
Indeed, these G-protein-biased δOR agonists appear to suffer less from detrimental side
effects including no seizure activity, no hyperlocomotion, and no rewarding effect [36–39].
Positive and negative allosteric modulators (PAM, NAM) and bitopic opioids that act
as ‘Ago-PAM’ or ‘Ago-NAM’ have been identified and modeled in the δOR binding
pocket. The benefit of pure allosteric modulators is that they are inert in the absence
of enkephalin and only amplify (PAM) or inhibit (NAM) δOR signaling and/or binding
when, for example, enkephalins are synaptically released. Allosteric modulators may
promote a particular signaling conformation and bias the endogenous peptide; such a
strategy could reduce the risk of tachyphylaxis, off-target effects, and even on-target side
effects. Less than ten years ago now, Bristol Meyers Squibb identified a number of µOR and
δOR Ago-PAMs [40–42] and more recently, novel δOR agonists lacking a basic nitrogen,
including a novel chemotype and bitopic ligand, were also identified [43,44]. As these
molecules are very recent their clinical utility has not been explored in much depth, but
δOR PAM activity may, for example, aid the treatment of irritable bowel syndrome [18].

Still, except for TRV250, which has undergone phase I clinical trials for migraine, no
real progress has occurred towards the production of δOR-based clinical candidates. Thus,
there both remains a need and a large opportunity for discovering and developing novel
δOR agonists as potential therapeutic agents. Here, we present a summary of current
structural data that has been generated for the δOR; we first will provide an overview
of available resolved structures and insights gained from mutagenesis studies and MD
simulations. We will then discuss the limitations of the current structural knowledge. We
conclude this review by presenting exciting opportunities for computer-aided drug design
at the δOR.

2. Current Structural Insight in δOR Binding Pocket and Activation Mechanism

Early mutagenesis studies following the cloning of the δOR [45,46] hypothesized
the involvement of certain amino acids in ligand recognition, selectivity, and overall
receptor activation. One of the earliest mutagenesis studies investigated the role of Asp2.50
(Ballesteros-Weinstein numbering, [47]) in regulating ligand binding at the δOR where
they demonstrated that Asp2.50Asn diminishes binding of peptide agonists with minimal
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effects on alkaloid agonists and antagonist [48]. Additionally, the authors hypothesized
that Asp2.50 is in close proximity to the Na+ binding site [48]. This was followed by
another study, where Asp3.32 was investigated due to its conservation across many GPCRs
that are activated via cationic neurotransmitters (protonated amines) [49]. The removal
or replacement of that residue affects the binding of several δOR modulators. Unlike
the alanine scanning mutations, the replacement of Asp3.32 with Asn3.32 resulted in
modifications to the receptor’s pharmacology and affected the binding potency of alkaloid
and peptide-agonists. The authors hypothesized that the main reason for such dramatic
change may be attributed to the increase in the size of the Asn3.32 side chain compared to
the WT residue. Asp3.32 acts as a proton donor only whereas Asn3.32 can act as a hydrogen
donor or acceptor. Additionally, the authors noted that the “Na+ -induced low-affinity
state” lowered the affinity of δOR peptide agonists such as DTLET and DADLE but did
not affect the binding affinity of SNC-80 or BW373U86 (SNC-86) in agreement with the
work by Kong et al. [48]. Interestingly, when the authors tested the δOR agonists DTLET,
DADLE, and SNC-86 in the presence of sodium chloride, the binding affinity was reduced
dramatically indicating a role for Asp2.50 in receptor activation to counteract the negative
allosteric effects of the Na+.

The same group later used single-point mutagenesis to investigate the involvement of
aromatic amino acid residues (Tyr, Trp, and Phe) in transmembrane helices III–VI in ligand
recognition [50]. To identify which aromatic residues to target, they used computational
modeling to construct a 3D homology model for the δOR based on the human rhodopsin
and hamster β2-adrenergic receptors. They showed that mutations Tyr mutations (Tyr3.33,
Tyr7.42) had the most impact on the binding of deltorphin II [50]. They concluded that each
ligand-receptor complex has unique binding and conformation where mutations do not
have the same effect equally across various δOR ligands [50].

Another research team created a chimeric protein, DMDD, by replacing the area
around the 1st extra-cellular loop 1 (ECL1) with the corresponding residues of µOR which
significantly enhanced DAMGO binding to δOR [51]. A subsequent study replaced seven
non-conserved residues in transmembrane domain (TM2) and TM3 with the corresponding
residues in µOR and found that one residue only, Lys2.63 (replaced by Asn2.63) showed
a high affinity for DAMGO. Replacement of Lys2.63 with nineteen different amino acid
residues resulted in fourteen mutant receptors that could bind to DAMGO with comparable
affinity to the DMDD chimera indicating a role for Lys2.63 to act as a recognition switch for
δOR agonists [52]. A similar approach of using chimeric constructs for δOR in a different
study demonstrated the importance of the ECL3 in the binding of selective peptide and
small molecule agonists to the δOR. In the same study, the authors showed that three
residues, Trp6.58, Val7.30, and Val7.31 are necessary for the binding of δOR agonists [53].

These mutagenesis studies have provided valuable insight into ligand recognition and
receptor selectivity of the δOR some of which have been verified in recent structural studies
(discussed below). However, these studies did not provide insight into the effect that the
investigated mutations have on downstream signaling cascades at δOR. More importantly,
there is a gap in knowledge with respect to the impact of most of these mutations on
biased agonism.

Over the past decade, several moderate to high-resolution structures of the δOR have
been produced and have confirmed older evaluations of the δOR binding pocket performed
by mutagenesis and computational modeling (Figure 1, Table 1) [49,54,55]. In the first
such structure (3.4Å, PDB:4EJ4), δOR was bound to the antagonist naltrindole [56]. The
structure confirmed the important interaction between Asp3.32 with the protonated amine
of naltrindole, which mimics the amine of Tyr1 in endogenous OR peptides. As mentioned,
this Asp3.32 was already known to be crucial for opioid affinity from mutagenesis stud-
ies [49]. In this structure, anchors are provided by hydrogen bonds (potentially including
water molecules) with His6.52 and Tyr3.33 [56]. Additional amino acids surrounding the
binding pocket were Met3.36, Trp6.48, Ile6.51, Val6.55, Trp6.58, Leu7.35, and Tyr7.43 [56].
A higher resolution structure (1.8Å, PDB:4N6H) of naltrindole-bound δOR was able to
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resolve an allosteric binding site for a sodium ion (Figure 2B) [57]. The sodium site consists
of Asp2.50, Asn3.35, Asn7.45, and Asn7.49 and sits below the conserved ‘message’ site
[‘message’ = part of the molecule that recognizes ORs, ‘address’ = part that renders the drug
subtype selective] of the opioid receptor binding pocket [58]. In 2015, a third δOR struc-
ture (2.7Å, PDB:4RWD) was resolved, but this time bound to the δOR peptide antagonist
Dmt1-Tic2-Phe3-Phe4 (DIPP-NH2, Dmt = 2,6,-dimethyl-l-tyrosine) (Figure 2D) [59].
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Figure 1. Resolved structures of the δOR in complex with small molecules and peptides. Schematic
depiction of the small molecule agonist DPI-287 and antagonist naltrindole and the peptide agonist
KGCHM07 and antagonist DIPP-NH2 bound to the δOR (Top panels; active-like structures in yellow
and inactive structures in sea green). The difference in TM domain positions between the antagonist-
and agonist-bound structures (Lower panels; antagonist-bound in grey and agonist bound in hot
pink). TM domain positions produced using the structure comparison tool from GPCRdb.

Table 1. Overview of resolved x-ray crystal structures of the δOR. Table produced using the GPCRdb.

Structure
Auxiliary
Protein

Structure Ligand

Method PDB Resolution State
Degree

Active (%)
% of Seq Fusion Name Type Function

X-ray 6PT2 2.8 Active 76 78 BRIL KGCHM07 peptide Agonist

X-ray 6PT3 3.3 Active 76 78 BRIL DPI-287 small-
molecule Agonist

X-ray * 4RWD 2.7 Inactive 7 79 BRIL DIPP-
NH2 peptide Antagonist

X-ray 4RWA 3.3 Inactive 7 77 BRIL DIPP-
NH2 peptide Antagonist

X-ray 4N6H 1.8 Inactive 7 81 BRIL Naltrindole small-
molecule Antagonist

X-ray 4EJ4 3.4 Inactive 7 76 T4-
Lysozyme Naltrindole small-

molecule Antagonist

* 4RWD structure was obtained using the XFEL method.
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Figure 2. Receptor-ligand interactions at δOR deduced by X-ray crystallography. (A) δOR-DPI287
(PDB: 6PT3) (B) δOR-NTI (PDB: 4N6H (C) δOR-KGCHM07 (PDB: 6PT2) (D) δOR-DIPP-NH2 (PDB:
4RWD). Figures made in ChimeraX 1.1.

The DIPP-NH2 binding pocket utilized the same ‘message’ binding pocket residues as
naltrindole with slight movements of Val6.55 and Trp6.58. As expected, the Dmt1 residue
interacted with Tyr3.33, Ile6.51, and Val6.55 with the N-terminal amine forming a salt
bridge with Asp3.32 [57]. The Tic2 side group resided in a hydrophobic pocket made up of
Ile6.51, Val6.55, Trp6.58, Leu7.35, and Ile7.39. Importantly, the larger surface of DIPP-NH2
extended further into the ‘address’ portion of the δOR binding pocket, with Phe3 interacting
with Leu3.29, Asp3.32, and Tyr3.33. Phe4 interacted with a Met and Leu in ECL2. In the
µOR, the corresponding amino acids are charged/polar, making this a possible region
important for selectivity [59,60] (Table 2).

In 2019, two agonist-bound X-ray crystal structures produced novel insight into δOR
in the active-like state: the δOR bound to the peptide KGCHM07 (PDB:6PT2) and bound
to the SNC80-like small molecule DPI-287 (PDB:6PT3) [61] (Figure 2A,C). Relative to the
naltrindole-bound structure, the agonist structure shows the movement of TM6 (Figures 1
and 2), particularly, Phe6.44, Cys6.47, and Trp6.58, all of which had been previously linked
to δOR activation [55,61]. Arg291 in ECL3 changes location in the KGCHM07 structure and
forms a lid on the binding pocket and is part of a hydrophobic pocket that also includes,
Ile6.51, Phe6.54, Val6.55, Trp6.58, and Leu7.35, which fits the benzyl moiety of KGCHM07
(Figure 2). Three water molecules interacted with Dmt1 of KGCHM07 through Tyr3.33,
Lys5.39 and His6.52. Water molecules also aid in forming a water-mediated salt-bridge
between D-Arg2 and Asp5.35. Slight differences were observed between the peptide and
small molecule structures particularly in relation to the polar network, involving Thr2.56,
Glu2.60, and Tyr7.43 the latter being part of a hydrophobic pocket that fits Phe3 in the
peptide-bound structure. Tyr7.43 stabilizes the primary amine of KGCHM07 but does not
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interact with DPI-287. On the other hand, Thr2.56 stabilizes the polar network for DPI-287
but not KGCHM07 [61]. Overall, the antagonist structures confirmed many predicted and
experimentally established key amino acids within the δOR binding pocket. Paired with
the addition of the agonist-bound structures this provides new avenues and opportunities
for in silico drug discovery at the δOR.

Table 2. Receptor-ligand interactions of the δOR in complex with peptide and small-molecule agonists
and antagonists. Table produced in part using the GPCRdb. [62,63]. This table does not reflect the
full extent of receptor-ligand interactions, especially with regards to the involvement of the amino
acid residues forming hydrophobic sub-pockets of the orthosteric site that are necessary for ligand
binding. Additional amino acid residues such as Asp2.50, Asn3.35, and Ser3.39 which form the
sodium binding site are also not included in this table.

Agonist Antagonist

6PT2 6PT3 4RWD 4RWA 4N6H 4EJ4

Amino
Acid

Sequence
Number

Generic
Number

Segment KGCHM07 DPI-287 DIPP-NH2 Naltrindole

A 98 2.53 TM2
1-10 L 125 3.29 TM3
1-10 D 128 3.32 TM3
1-10 Y 129 3.33 TM3
1-10 M 132 3.36 TM3
1-10 M 199 ECL2 ECL2
1-10 L 200 ECL2 ECL2

D 210 5.35 TM5
1-10 K 214 5.39 TM5
1-10 V 217 5.42 TM5
1-10 W 274 6.48 TM6
1-10 I 277 6.51 TM6
1-10 H 278 6.52 TM6
1-10 V 281 6.55 TM6
1-10 W 284 6.58 TM6
1-10 R 291 ECL3 ECL3
1-10 L 300 7.35 TM7
1-10 I 304 7.39 TM7
1-10 Y 308 7.43 TM7

Color legend: Hydrophobic Aromatic (face to edge) Aromatic (face to face) Accessible
polar (charge-assisted hydrogen

bond) polar (charge-charge) polar (hydrogen bond) polar (hydrogen bond with
backbone)

3. Limitations of Current δOR Structures

All the current δOR structures have been resolved using X-ray crystallography (Table 1).
The nature of X-ray crystallography relies heavily on producing a receptor that is stable and
does not show a lot of movement. On the other hand, cryo-electron microscopy (cryo-EM)
is more forgiving in this regard, and thereby provides more opportunities to generate a
structure of a wild-type/non-thermostabilized receptor to overcome the current hurdle
that the available δOR agonist structures are mutated. Importantly, the Sexton group at
Monash University has made significant improvements in the workflow for generating
cryo-EM structures, such that structures with resolutions below 3Å can now be routinely
resolved [64].

Another limitation for in silico drug discovery at the δOR is that none of the δOR
structures were co-crystallized with an effector protein. The ability of cryo-EM to determine
the structures of large complexes of macromolecules gained attraction over the past decade
following advancements in electron detectors and data software used to reconstruct the 3D
structures from the 2D images [64]. For GPCRs in complex with downstream effector pro-
teins, such as G-protein, β-arrestin, or GRKs, cryo-EM is increasingly becoming the method
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of choice for structure determination. This is in part because protein structures obtained
using cryo-EM overcome some of the limitations such as thermostabilizing mutations and
fusion proteins which are commonly introduced in X-ray crystallography structures [65].
The increasing number of cryo-EM structures that are being obtained in complex with
downstream effector proteins can provide valuable insight into the molecular basis of
GPCR signaling, potentially biased signaling, which then informs the structure-based drug
discovery process.

Thus far, three cryo-EM structures of the µOR and one structure for the κ-opioid recep-
tor (κOR) have been resolved [66–68]. Nonetheless, with respect to the δOR, the absence
of X-ray crystal structures or cryo-EM structure of the δOR in complex with downstream
effector proteins represents a challenge for structure-based drug discovery. Overcoming
this hurdle requires careful and extensive molecular modeling that integrates the avail-
able crystal structures of the δOR in their inactive- and active-like states (Table 1) with
the structures of other opioid receptors that are in complex with Gi-proteins, β-arrestins,
nanobodies. This is especially crucial when using the active-like crystal structures of δOR
due to the presence of thermostabilizing mutations. This method of computational structure
determination was applied at the κOR where molecular dynamics (MD) simulations and an
enhanced sampling method called meta-dynamics simulations were used to determine the
structure of the κOR in complex with the Gi-protein. To obtain the optimized active struc-
ture, the authors started with optimizing the nb39 stabilized crystal structure of the κOR
in complex with the agonist MP1104 (PDB: 6B73) then used the µOR-DAMGO-nucleotide
free Gi-protein cryo-EM structure to couple the Gi-protein to the κOR [66,67,69]. Then,
they used meta-dynamics simulations to optimize the κOR-Gi complex interactions before
examining its stability using MD simulations. Their approach was applicable to the crystal
structure of the µOR (5C1M) which they used to construct µOR-BU72-Gi and confirm the
structural determinants of G-protein coupling.

To obtain the active-like δOR x-ray crystal structures bound to a peptide agonist
and to a small molecule agonist, the δOR was thermostabilized by nine point mutations
that negatively impacted the native pharmacology [61]. This was unsurprising, as the
impact of mutations on receptor function can compound with increasing numbers [55].
Particularly, the mutations impacted the allosteric sodium binding pocket that has been
implicated in β-arrestin signaling [57,61]. Thus, the crystallized conformation may not be
optimal to identify signal-biased agonists reducing the utility of the current agonist-bound
δOR structures.

4. Opportunities for Computer-Aided Drug Discovery at the δOR

Over the last ten years, an increasing number of opioid receptors structures have been
elucidated in unbound (apo-state), antagonist bound, or agonist bound states, either stabi-
lized with thermostabilizing mutations, Gi-protein, or nanobodies. These structures, even
the antagonist-bound ones, have proven useful for performing docking studies on large
virtual libraries. For example, a screen of 3M molecules on the inactive µOR (4DKL) led to
the identification of a hit that was optimized in three steps to the novel G-biased agonist
PZM21 [70]. Recent advances in docking have enabled the screening of libraries of nearly
two magnitudes larger in size; thus far, this approach has been successfully employed to
screen 138 million compounds using an antagonist-bound dopamine D4 receptor [71], and
150 million compounds at a thermostabilized agonist-bound melatonin MT1 receptor [72].
These screens relied on the ZINC database [73] to provide decoys and screening molecules.
The ZINC database is an ever-increasing repository for accessible molecules, currently
holding about one billion compounds [74,75]. The increase in the size of the ZINC database
is largely supported by the increase in catalog size of commercially available compounds
from Enamine (https://enamine.net/news-events/press-releases/807-enamine-expands-
collaboration-with-ucsf, accessed on 12 July 2022). Indeed, commercially available make-on
demand chemical libraries such as Enamine’s REAL Space collection which comprises
22.7 billion compounds as of the time of writing this review, make it feasible to identify
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novel chemotypes that could induce novel pharmacology. It comes as no surprise that high
throughput virtual screening campaigns are expected to further expand the utilized ligand
chemical space which will result in the identification of an increasing number of novel hit
compounds. This expansion in the utilized chemical space can be effectively leveraged for
structure-based drug discovery using currently available, and future, structures of δOR to
virtually dock and screen more compounds than ever before.

Efforts in virtual screening of chemical libraries have used structure-based drug dis-
covery to expand the available chemical space for various GPCR targets [72,76]. This
approach has yielded many novel chemotypes across several targets that could provide
useful starting points for medicinal chemists to modify and improve selectivity among
other properties. However, in screening campaigns that aim to identify biased agonists
in-silico, this approach represents a potential bottleneck to the discovery process and might
not be sufficient to identify functionally selective ligands. Thus far, the method of choice
in identifying biased agonists at the δOR and other GPCRs has relied on the functional
characterization of known and novel binders using cell-based assays to establish pharma-
cological and SAR profiles for future hit identification and lead optimization campaigns.
However, the recent advances in computational tools and enhanced sampling methods
such as molecular dynamics simulations which enable the dynamic modeling of the δOR
and other GPCRs should be leveraged to unravel the structural determinants of biased
signaling. In other words, the structural and conformational changes induced by agonist
binding at δOR that appear in an MD simulation could be correlated with pharmacological
data and mutagenesis analyses. Such an approach could be used to generate structural
models or snapshots of the δOR in different conformational states which would increase
the ability of docking campaigns to identify novel and biased agonists (Figure 3).

Until recently, GPCRs’ structures in general, including those of the opioid receptors,
still do not appear to provide a clear picture of the underlying signaling mechanisms
given the complexity of the involved signaling network, the limited number of available
structures bound to G-proteins, β-arrestins, or GRKs, and the diversity of the chemical
space interacting with these receptors [77]. The tremendous success of cryo-EM structure
determination and the increasing number of high-resolution structures when coupled
with MD simulations could provide insights into GPCRs in action. Hence, developing
and utilizing computational methods and workflows to model ensembles of structural
conformations and then combining such methods with resolving GPCR structures in
complex with G-proteins, β-arrestins, and GRKs should provide a strong approach to
alleviate current limitations. This could also minimize the misinterpretations that stem
from comparisons and analyses that are based on static GPCR structures that suffer from
the limitations mentioned above.

A similar approach was applied recently at the µOR, where Wang et al. highlighted
how the implementation of molecular dynamics could be helpful in lead optimization
campaigns [68]. The authors implemented a structure-based lead optimization approach
to generate PZM21 analogs with improved CNS penetration and higher G-protein bias
with lower β-arrestin recruitment compared to fentanyl. In the study, the authors resolved
a high-resolution cryo-EM structure of PZM21 bound to the µOR in a complex with the
trimeric Gi-protein (PDB: 7SBF). The resolved cryo-EM structure showed that PZM21 forms
a salt bridge between its basic amine and Asp3.32 of µOR which confirmed previous find-
ings [67,78]. To confirm the stability of the PZM21′s binding pose, and characterize the
water-mediated interactions with µOR, the authors performed all-atom MD simulations
which showed that PZM21 formed water-mediated interactions with His6.52 and Lys5.39.
Intriguingly, the authors used insights from structural and dynamic analyses for lead opti-
mization, guided by MD simulations and the cryo-EM structure of µOR in complex with
Gi-protein. The resulting PZM21 analogs were µOR-selective with improved functional se-
lectivity. Translating such an approach at the δOR will allow for more successful hit-to-lead
and lead-optimization campaigns. Recently resolved cryo-EM structures of mitragynine
pseudoindoxyl, which has very low arrestin recruitment, and lofentanil, a potent arrestin
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recruiter demonstrate the involvement of distinct orthosteric sub-pockets in determining
arrestin recruitment at the µOR. The authors demonstrated that each agonist has distinct
moieties that bind in two distinct sub-pockets while sharing a central binding pocket with
DAMGO [79]. Such findings support previous predictions and lead optimization strategies
that have been applied to modulate biased agonism at the µOR and κOR [80,81].

Another promising area that has been on the rise recently is using machine learning
and artificial intelligence in protein structure prediction and drug discovery. These ad-
vances present an exciting avenue for the discovery of novel and potential therapeutic
agents at the δOR. Undeniably, the integration of machine learning and deep learning with
current computational and pharmacological approaches presents a valuable opportunity to
accelerate drug discovery campaigns at δOR. Machine learning models could be trained
using high-quality datasets to predict drug properties, toxicity, target selectivity, and poten-
tially ligand-receptor interactions. This has been made possible in part due to the GPCR
community’s efforts to provide access to curated datasets such as GPCRdb.org [62,82] and
open-source machine learning packages such as DeepChem and AMPL, which allows
researchers to build, train and deploy machine learning models for drug discovery [83].
Additionally, the rapid increase in high-performance cloud computing, improved Graphics
Processing Units (i.e., GPUs), and increasingly efficient machine learning algorithms pro-
vide an opportunity to expand the screening of ultra-large chemical libraries or the de-novo
drug design in a more efficient manner.

The significant improvement in structure prediction provided by AlphaFold 2 [84],
may provide avenues for obtaining a wild-type thermostable δOR structure, that could
be used for docking studies. There are significant limitations, in particular the current
lack of Alphafold to predict how a protein will change conformation upon binding of a
specific ligand [85]. Future machine learning algorithms may learn how to do this and
further reduce the initial requirement of wet-lab science to obtain potent and selective novel
molecules for a receptor target including the δOR.

MD simulations are another area that is expected to benefit from recent advances in
machine learning and artificial intelligence. In fact, work is already underway to develop
machine learning force fields that could increase the accuracy of MD simulations while
reducing the computational cost [86]. Deep learning frameworks such as TorchMD [87] and
neural networks such as graph convolutional neural networks (GCNNs) have been used
for geometry optimization [88], acceleration of MD simulations, or even in improving force
fields [89]. Such advances should be carefully utilized and expanded to complement the
available structural and experimental data and accelerate the identification of therapeutic
agents at the δOR.

To accelerate future large-scale drug discovery efforts at the δOR, well-trained and val-
idated machine learning models should be combined with physics-based scoring functions
to reduce the computational cost of docking and screening ultra-large chemical libraries. In
this instance, a machine learning model could serve as a filter that could be incorporated
into a docking workflow to prioritize which molecules move on to the next phase and
ultimately which molecules are to be tested pharmacologically. Moreover, this approach
allows the incorporation of structural and pharmacological parameters to build, train, and
deploy multi-task learning models that could increase the selectivity and novelty of the
identified compounds.

Despite the optimistic outlook and promising advances in computer-aided drug de-
sign, it is important to know the limits of the utilized tools. Furthermore, it is worth noting
that there are numerous challenges and potential pitfalls associated with the incorporation
of machine learning or deep learning models, especially with respect to the availability of
large and high-quality datasets for the drug target [90,91]. For the δOR and other GPCRs,
the diversity of cell-based assays that are used to characterize their pharmacology and
the inconsistent practices between different research labs, or in some instances within
the same lab, are two major limitations that need to be addressed before we can reliably
use machine learning in GPCR drug discovery. Hence, future efforts should also focus
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on the standardization of experimental data collection and computational data curation
and modeling.

                   
 

 

 
                      ‐     ‐
     δ                         ‐   β‐
‐           ‐       ‐        

            ‐                    
                               

                                ‐
          ‐             ‐
              ‐        
                 

               μ            
                       

            ‐        

Figure 3. Proposed workflow for screening large chemical libraries to identify G-protein biased
agonists at the δOR and other GPCRs. A similar workflow could be applied to identify GRK- or β-
arrestin-biased small molecules given that high-quality crystal or cryo-EM structures are available. In
cases where distinct interactions or sub-pockets specific to biased agonists or in cases where we know
that an allosteric site/pocket could lead to biased effects, we could restrict ligand docking to that
specific site to screen a given chemical library. The most accurate way to confirm such interactions
would be to resolve high-quality structures and/or perform mutagenesis studies. Alternatively,
enhanced sampling computational modeling to model receptor-effector complexes could be useful if
computational cost is not a limiting factor.
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5. Conclusions

For the identification of novel, functionally selective, and potentially therapeutic
agonists at δOR, future efforts should aim to expand our understanding of the effect of
various mutations on the structure and function of δOR utilizing the constantly improving
in-vitro and in-silico approach. Additionally, producing multiple wild-type agonist-bound
high-resolution structures of δOR will allow for a more efficient expansion of its chemical
space in virtual screening campaigns or in computer-aided lead optimization. Consequently,
these efforts will provide high-quality datasets that could allow for the incorporation of ML
and DL tools in opioid drug discovery. Overall, we think there are more opportunities than
that there are challenges to carry out a high yield in silico screen at the δOR to generate
novel chemical matter that hopefully can be translated into meaningful therapeutics.
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Abstract: Macrodomain-I of the NSP3 (non-structural protein 3) is responsible for immune response
hijacking in the SARS-CoV-2 infection known as COVID-19. In the omicron variant (B.1.1.529), this do-
main harbors a new mutation, V1069I, which may increase the binding of ADPr and consequently the
infection severity. This macrodomain-I, due to its significant role in infection, is deemed to be an im-
portant drug target. Hence, using structural bioinformatics and molecular simulation approaches, we
performed a virtual screening of the traditional Chinese medicines (TCM) database for potential anti-
viral drugs. The screening of 57,000 compounds yielded the 10 best compounds with docking scores
better than the control ADPr. Among the top ten, the best three hits—TCM42798, with a docking
score of −13.70 kcal/mol, TCM47007 of −13.25 kcal/mol, and TCM30675 of −12.49 kcal/mol—were
chosen as the best hits. Structural dynamic features were explored including stability, compactness,
flexibility, and hydrogen bonding, further demonstrating the anti-viral potential of these hits. Us-
ing the MM/GBSA approach, the total binding free energy for each complex was reported to be
−69.78 kcal/mol, −50.11 kcal/mol, and −47.64 kcal/mol, respectively, which consequently reflect
the stronger binding and inhibitory potential of these compounds. These agents might suppress NSP3
directly, allowing the host immune system to recuperate. The current study lays the groundwork for
the development of new drugs to combat SARS-CoV-2 and its variants.

Keywords: SARS-CoV-2; COVID-19; NSP3; TCM; MD simulations

1. Introduction

Coronavirus disease-2019 (COVID-19) is defined as a disease caused by a novel coro-
navirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. SARS
CoV-2 rapidly spread from person to person, and serious human disease was in recent
times described in the city of Wuhan, Hubei Province, China. Coronavirus causes headache,
fever, and respiratory disease, e.g., cough and shortness of breathing. SARS-CoV-2 infects
humans through direct binding to host cell entry proteins (spike). The six functional open
reading frames (ORFs) are well-arranged in order from 5′ to 3′ replicas (ORF1a/ORF1b),
membrane (M), envelope (E), spike (S), and nucleocapsid (N), whereas nonstructural pro-
tein include3-chymotrypsin-like protease, papain-like protease, and RNA-dependent RNA
polymerase, is encoded by the ORF region [2,3].
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A SARS-CoV-2-associated global pandemic, with unceasing chaos, has now reported
many variants of the virus [4]. Among the reported variants, many are particularly asso-
ciated with immune response evasion, higher transmissibility, increased morbidity, and
re-infection. Until now, these variants have been deemed either as variants of interest
(VOIs) or variants of concern (VOCs) based on the threat they pose to public health. For
instance, the alpha variant, also known as B.1.1.7, with 40–80% increased transmission,
includes 69–70 del, N501Y, and P681H mutations, while beta, also called B.1.1.351, gamma,
delta, and B.1.1.529 variants are classified as VOCs [5,6]. Moreover, a new version of B.1.1.7
supplemented with the E484K mutation was reported to be associated with 39 confirmed
patients [7]. Moreover, B.1.351, which was reported in South Africa and harbors K417N,
E484K, and N501Y variations, which were reported to increase the transmission and de-
crease the T cell-triggered immune response against COVID-19 infection, was recorded. In
early 2021, P.1 variant was discovered in Brazil with K417T, E484K, and N501Y mutations
in the RBD with transmission increased by 38% and mortality by 50% [8]. A molecular
modelling study based on protein coupling deciphered the mechanism of higher infection
associated with these variants of SARS-CoV-2 [9]. The binding variations were deeply
discovered by demonstrating the interaction pattern and dynamic features of the complexes.
In October 2020, India detected a more lethal strain of SARS-CoV-2, officially known as
B.1.617.2. This variation has L452R, T478K, and P681R in the RBD, resulting in an 87 percent
increase in transmissibility, an 85 percent increase in hospitalizations, and a 137 percent rise
in death. Later, in India and the United Kingdom, a novel variant known as “Delta plus”
was discovered with an additional mutation, K417N [10]. Similarly, a novel variant termed
as Mu or B.1.621 was discovered to have spike protein alterations, some of which are shared
with other VOCs. R346K, Y144T, Y145S, and insertion at position 146N are among the new
mutations in this variant [11]. L452Q and F490S mutations in RBD are found in a unique
VOI known as C.37 or its variant, which lowers antibody-mediated neutralization [12].
The B.1.617.1 strain with the L452R mutation in the (RBD) receptor-binding domain, on
the other hand, has been attributed to decreased antibody neutralization by altering the
corresponding conformational epitopes. Furthermore, the VOI Iota (lineage B.1.526) carries
the mutation E484K, which confers resistance to therapeutic monoclonal antibodies and
makes it more resistant to neutralization [13].

The most recent omicron strain, formally known as B.1.1.529, was discovered in
November 2019 in South Africa and has 30 mutations in the spike protein including A67V,
∆69–70, T95I, G142D, ∆143–145, ∆211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y,
N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F, among which 15 mutations
lie in the RBD [14]. Other proteins also reported mutations, such as NSP3 (K38R, V1069I,
∆1265, L1266I, A1892T), NSP4 (T492I), NSP5 (P132H), NSP6 (∆105–107, A189V), and NSP12
(P323L), while I42V was reported in NSP14. Furthermore, sub-lineages, i.e., BA.1/B.1.1.529.1,
BA.2/B.1.1.529.2, and BA.3/B.1.1.529.3, were reported by WHO (World Health Organiza-
tion) as a threat to public health [15]. The variant is a major health concern all around the
globe, and the therapeutic effectiveness of existing vaccines against it is yet unknown [16,17].
More research is needed to determine the molecular basis of pathogenicity in the omicron
variant. Furthermore, new therapies against the recently emerging SARS-CoV-2 strains
would require the use of advanced techniques.

The novel coronavirus-2019 genome encodes four structural proteins (S, M, E, and N),
in which the S-protein gives the virus its corona-like shape, which is mainly responsible
for the attachment to host cell receptors (ACE2s) or surface proteins, and 16 non-structural
proteins (NSP1 to NSP16). The binding of spike protein to ACE2 (Angiotensin-Converting
Enzyme 2) of the host initiates the infection in cells. The ACE2 is mainly expressed in the
lungs, kidney, and small intestine, leading to serious illness [18]. During infection, the
host cell protease cleaves the S-protein at the S1/S2 cleavage site. This priming (cleavage
of S-protein) results in the division of protein into the S1 ectodomain at the N-terminal
and the S2 membrane-anchored domain at the C-terminal. The S1 subunit recognizes the
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associated cell surface receptor, while the latter assists viral entry [19]. The SARS-CoV S1
subunit of the spike protein has conserved 14 aa in the RBD, which functions to recognize
ACE2 and can infect both humans and bats. Among this conserved 14 aa in SARS-CoV,
eight residues are highly conserved in 2019-nCoV, supporting the assumption that ACE2 is
also the receptor of this new virus [20]. Among these proteins, the main proteins, PLpro,
spike, and RdRp, are deemed to be direct drug and vaccine targets, but other proteins are
also essential for drug design [21]. For instance, the Mac-I of the largest protein, NSP3, has
also been deemed as an attractive drug target because of its role in disrupting the innate
immune reaction and increasing of virulent properties of the virus [22]. NSP3 is comprised
of three macrodomains and two adjacent SUD-M-like domains that have been reported
to be associated with NSP3 functional modulation. Mac-I has a significant role in viral
pathogenesis and increases interferons’ responses for viral neutralization [23]. Further
reports have also disclosed the hijacking of the host immune response by Mac, which is
carried out through interference with the IFN (Interferons) pathway and malfunctioning
of STAT1 (signal transducer and activator of transcription 1) [24,25]. This hijacking of the
IFN and STAT1 pathways has been reported to be possibly linked with the cytokines storm
phenomena [26,27].

More research is needed to cope with this alarming pandemic situation in order to
create safe and effective treatments swiftly. In this context, the macrodomain is thought to
be the most druggable target for the development of COVID-19 therapy [28,29]. As a result,
we used computational molecular screening to investigate the binding affinity of drugs
against the macrodomain-I of the omicron (B.1.1.529) variant. The current study employs
molecular docking and simulation-based methods [30–32] to identify potential anti-viral
compounds from the TCM database against SARS-CoV-2. The findings provide crucial
information on the antiviral effectiveness of the evaluated drugs against SARS-CoV-2. The
findings will aid in the development and identification of potential medicinal solutions for
the treatment of COVID-19.

2. Results and Discussion
2.1. Macrodomain of Omicron (B.1.1.529) and Structural Modelling

The continuously emerging variants of SARS-CoV-2 are a greater threat to public
health [33]. These variants are associated with high infection, transmission, and re-infection.
Moreover, some of the previous variants such as B.1.1.7, B.1.617, P.1, and A.30 have also been
reported to escape the immune response. Recently, B.1.1.529, or the omicron variant, first
identified in South Africa with the highest number of mutations ever, has been reported to
be associated with higher transmissibility than other variants. All the proteins encoded by
the genome of SARS-CoV-2 are responsible for essential roles in virulence and replication
in different stages of infection [34–36]. Among these proteins, the largest and multi-
domain protein called non-structural protein 3 or NSP3 is an essential factor for efficient
translational and replication processes. NSP3 has eight functional domains that also include
macrodomains, which play significant roles in viral escaping when attacked by the innate
immune response. Among the macrodomains, macrodomain-I (X-domain) in particular
also shares high sequence and structural conservation. Mac-I binds ADPr, and the strength
of binding is directly associated with the pathogenicity level [37]. For instance, binding
strength reduction or the complete loss of ADPr binding has been reported to be related
to less or no infection in the IBV model [38]. Any mutation in the structure is associated
with functional variations induced by conformation changes in the protein structures. For
instance, K38R, V1069I, L1266I, and A1892T, as well as a deletion (∆1266I) have recently
been reported in the NSP3 protein of the omicron variant, as shown in Figure 1A. The Mac-I
in the NSP3 starts from 1025–1194, and a single V1096I has been reported in this region,
which may increase the binding of ADPr and consequently increase the pathogenesis
by hijacking the innate immune response given in Figure 1A. Mac-I is also a potential
therapeutic target; therefore, finding small molecule inhibitors for this domain might aid in
the restoration of the host immunological innate response. For instance, a carbazole-based
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drug known as GeA-69 has been previously tested to target the human macrodomain to
treat various types of cancers [39]. Similarly, structure-based approaches are being used
to find drugs that target viral macrodomains [40]. New powerful therapies are needed
to block Mac-I involvement in SARS-CoV-2 pathogenesis. Hence, our research combines
structure-based drug discovery with molecular modelling to find new compounds that
effectively target the Mac-I and salvage the innate response. The wild-type structure was
used to construct a V1069I mutant of the Mac-I from the omicron variant (Figure 1B). The
modelled V1069I-Mac-I, as shown in Figure 1C, demonstrated an RMSD (root mean square
deviation) difference of 0.132 Å. The minimal RMSD difference demonstrated the accurate
folding and distribution of secondary structural elements.
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Mac-I in complex with ADPr. (C) Superimposed wild type a V1069I mutation in Mac-I.

2.2. Virtual Screening and Re-Docking of TCM

Using EasyVS, an online web tool, the entire TCM database was screened against the Mac-I
of the omicron variant. Prior to screening, the RO5 filter was applied, which reported 20,124 drugs
that violated Lipinski’s rule of five. Among the total of 57,000 compounds, 36,876 compounds
were screened against the binding site of ADPr. Among these, 14,255 compounds reported a
docking score less than −4.0 kcal/mol, and 16,453 compounds reported a docking score
less than −8.0 kcal/mol. Among the remaining compounds, 5221 compounds reported
a docking score of less than −9.0 kcal/mol. Among the remaining 947 compounds, only
356 were reported to have docking scores greater than −9.5 kcal/mol. Compounds with
docking scores greater than −9.50 kcal/mol were considered as the threshold, because for
ADPr the docking score was previously reported to be −9.46 kcal/mol. The top scoring
50 compounds were selected for re-docking using AutoDock Vina. Among these 50 com-
pounds, 10 compounds reported the best docking score and are given in Table 1. Among
the top 10 compounds, TCM42798 had a docking score of −13.70 kcal/mol, TCM47007 of
−13.25 kcal/mol, TCM30675 of −12.49 kcal/mol, TCM27763 of −11.93 kcal/mol, TCM33425
of −11.72 kcal/mol, TCM28788 of −11.46 kcal/mol, TCM42159 of −11.45 kcal/mol, TCM47184
of −11.36 kcal/mol, TCM31603 of −11.04 kcal/mol, and TCM31784 of −11.02 kcal/mol. Among
the top 10 compounds reported to have higher docking scores than ADPr, only the top three
were selected for further analysis, such as interactions, simulation, and post-simulation
analysis. In addition to the top three compounds, TCM27763 and apigenin-bioside have
been previously reported to have anti-adenovirus activity, which confirms the anti-viral
activity of these compounds [41]. It was reported that apigenin reduces adenovirus repli-
cation and associated cellular toxicity. For instance, TCM28788 and TCM42159 have been
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reported to have anti-dengue viral properties, which demonstrate the anti-viral potential
of these molecules [42]. The anti-herpes simplex virus type 2 infection activity of tibeti-
canol and the other compounds are well documented, and it has been reported that these
compounds halt viral replication [43].

Table 1. List of top 11 scoring compounds with their TCM IDs, compounds names, 3D structures,
and docking scores.

TCM Database ID Compound Names 2D Structures Docking Scores

TCM42798 Mucic_acid_1-methyl_ester_2-O-gallate

 

 

−1

’ ’
−1

−1

−1

−1

−1

−13.70

TCM47007 (2S)-5,7,2’,5’-Tetrahydroxyflavanone_7-O-
-D-glucuronopyranoside

−1

’ ’

 

−1

−1

−1

−1

−1

−13.25

TCM30675
(5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-
hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-
tetrahydro-4H-chromen-4-one

−1

’ ’
−1

 

−1

−1

−1

−1

−12.49

TCM27763 30389

−1

’ ’
−1

−1

−1

−1

−1

−11.93

TCM33425 Apigenin-bioside

−1

’ ’
−1

−1

−1

−1

−1

−11.72

TCM28788 31943

 

’

 

−1

−1

−1

−1

−1

−9

−11.46

TCM42159 (-)-5’-Methoxyisolariciresinol-2-O-D-
xylopyranoside_(D2)

’

 

−1

−1

−1

−1

−1

−9

−11.45
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Table 1. Cont.

TCM Database ID Compound Names 2D Structures Docking Scores

TCM47184 Tibeticanol

’
−1

 

−1

−1

−1

−1

−9

−11.36

TCM31603 36132

’
−1

−1

 

−1

−1

−1

−9

−11.04

TCM31784 36381

’
−1

−1

−1

 

  

−1

−1

−9

−11.02

TCM42798, or mucic acid 1-methyl ester 2-O-gallate, was reported to have the best
docking score of −13.70 kcal/mol. Mucic acid 1-methyl ester 2-O-gallate established a
total of nine hydrogen bonds with Ala1060, Asn1062, Gly1068, Val1071, Ala1072, Leu1148,
Ala1176, and Phe1178. For instance, these residues were previously reported to have an
important role in the binding of ADPr. Comparatively, the docking score for ADPr has been
reported to be −9.46 kcal/mol [22]. This shows the strongest binding of TCM42798 and
consequently produces an inhibitory effect on Mac-I. The binding pattern of TCM42798 is
given in Figure 2.
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On the other hand, TCM47007, or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucurono-
pyranoside, also demonstrated a good interaction profile by predicting the docking score of
−13.25 kcal/mol. Unlike TCM42798, this complex reported only seven hydrogen bonds
with the key residues required for interaction with ADPr. As shown in Figure 3, Ala1043,
Ala1060, Gly1068, Val1071, Ala1072, and Ala1176 are involved in hydrogen bonding in-
teractions. This shows the strongest binding of TCM47007 and consequently produces an
inhibitory effect on Mac-I. Moreover, the interaction pattern for TCM30675, or (5S,6S,7S,8R)-
5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1,
was also analyzed to demonstrate the binding mode of TCM30675. Residues such as
Ala1060, Val1176, Phe1178, and Asp1179 are involved in direct interactions with the Mac-I.
This shows the strongest binding of TCM30675 and consequently produces an inhibitory
effect on Mac-I. The binding pattern of TCM42798 is given in Figure 4.
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Figure 3. Binding of TCM47007 in the cavity of Mac-I. The right surface representation shows the
binding mode of TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside (orange
sticks) inside the binding cavity. The right panel represents the 3D interaction pattern, where the
TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside is shown as orange sticks,
while the interacting residues are given in green sticks. The interactions (hydrogen bonds) are shown
in blue color.

2.3. Dynamic Stability Analysis of the Top Compounds

Analysis of the drug-bound protein complexes to decipher the structural stability is
a key process in determining the inhibitory potential of the interacting compound. To
foresee the dynamic stability of each top-scoring compound, we calculated the root mean
square deviation (RMSD) for all of the simulation trajectories. As given in Figure 5A–C,
all the complexes attained equilibrium at the earlier simulation and reached stability
at 1.0 Å. In the case of mucic acid 1-methyl ester 2-O-gallate, the complex demonstrated
overall stable dynamics with no significant deviation, except at the start of the simulation
(1–10 ns) when the structure reported minor acceptable deviation and then reached the
equilibrium point with a uniform RMSD graph. The average RMSD reported for the mucic
acid 1-methyl ester 2-O-gallate complex was reported to be 1.0 Å. The RMSD for mucic acid
1-methyl ester 2-O-gallate is given in Figure 5A. The RMSD for TCM47007 or (2S)-5,7,2’,5’-
Tetrahydroxyflavanone 7-O–D-glucuronopyranoside reported comparatively small unstable
dynamics until 15 ns, but then RMSD stabilized and attained equilibrium. As given in
Figure 5B, after 15 ns the structure attained stability and demonstrated an average RMSD
of 1.1 Å. Furthermore, the RMSD of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-
[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 demonstrated more
similar behavior to the mucic acid 1-methyl ester 2-O-gallate complex. The RMSD initially
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increased until 10 ns and then attained equilibrium. The complex reported no significant
deviation except a small deviation between 10 and 20 ns, and then it stabilized again. An
average RMSD of 1.2 Å was reported for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-
[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1, as given in Figure 5C.
Consequently, this shows the stronger binding and inhibitory potential of these compounds
to rescue the host immune response against the COVID-19 infection.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Binding of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxy-
phenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 in the cavity of Mac-I. The right surface representa-
tion shows the binding mode of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-
methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 (blue sticks) inside the binding cavity. The 
right panel represent the 3D interaction pattern, where the TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetra-
hydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 is shown as orange 
sticks, while the interacting residues are given in green sticks. The interactions (hydrogen bonds) 
are shown in blue color. 

2.3. Dynamic Stability Analysis of the Top Compounds 
Analysis of the drug-bound protein complexes to decipher the structural stability is 

a key process in determining the inhibitory potential of the interacting compound. To 
foresee the dynamic stability of each top-scoring compound, we calculated the root mean 
square deviation (RMSD) for all of the simulation trajectories. As given in Figure 5A–C, 
all the complexes attained equilibrium at the earlier simulation and reached stability at 
1.0 Å. In the case of mucic acid 1-methyl ester 2-O-gallate, the complex demonstrated overall 
stable dynamics with no significant deviation, except at the start of the simulation (1–10 
ns) when the structure reported minor acceptable deviation and then reached the equilib-
rium point with a uniform RMSD graph. The average RMSD reported for the mucic acid 
1-methyl ester 2-O-gallate complex was reported to be 1.0 Å. The RMSD for mucic acid 1-
methyl ester 2-O-gallate is given in Figure 5A. The RMSD for TCM47007 or (2S)-5,7,2’,5’-
Tetrahydroxyflavanone 7-O--D-glucuronopyranoside reported comparatively small unstable 
dynamics until 15 ns, but then RMSD stabilized and attained equilibrium. As given in 
Figure 5B, after 15 ns the structure attained stability and demonstrated an average RMSD 
of 1.1 Å. Furthermore, the RMSD of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-
(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 demonstrated more 
similar behavior to the mucic acid 1-methyl ester 2-O-gallate complex. The RMSD initially 
increased until 10 ns and then attained equilibrium. The complex reported no significant 
deviation except a small deviation between 10 and 20 ns, and then it stabilized again. An 
average RMSD of 1.2 Å was reported for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-
2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1, as given in Fig-
ure 5C. Consequently, this shows the stronger binding and inhibitory potential of these 
compounds to rescue the host immune response against the COVID-19 infection. 

Figure 4. Binding of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-

methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 in the cavity of Mac-I. The right surface
representation shows the binding mode of TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-

hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 (blue sticks) inside the binding cavity.
The right panel represent the 3D interaction pattern, where the TCM30675 or (5S,6S,7S,8R)-5,6,7,8-

Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 is shown as
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Figure 5. Dynamic stability analysis of the TCM42798, TCM47007, and TCM30675 complexes. (A) The
RMSD graph for mucic acid 1-methyl ester 2-O-gallate. (B) The RMSD graph for TCM47007 or (2S)-
5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside. (C) The RMSD graph for TCM30675
or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-
chromen-4-1 complex.
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2.4. Structural Compactness Analysis

Analysis of structural compactness in a dynamic environment is essential to under-
stand the binding and unbinding events that happened during the simulation. These
events demonstrated significant information regarding the binding stability and could
be used to select the best compounds for the inhibition potential determination in the
experimental setup. Thus, to determine the structural compactness, we calculated radius of
gyration (Rg) over the simulation time as a function of time for each complex. As given
in Figure 6A–C, all the complexes followed a similar pattern as RMSD. The TCM42798
complex demonstrated a uniform pattern of Rg with no increase or decrease over the
simulation time. The structure reported no significant deviation, and the average Rg was
reported to be 14.90 Å. The Rg for TCM42798 is shown in Figure 6A. On the other hand,
TCM47007 demonstrated a small deviation between 23 and 28 ns and then reported a
stable straight graph, which showed the stable binding steered by different kinds of bonds
between TCM47007 and Mac-I. The TCM47007-Mac-I complex reported an average Rg
of 14.96 Å. The Rg for TCM47007 is shown in Figure 6B. Furthermore, TCM30675 also
reported a similar pattern of Rg as RMSD with no major significant deviation. A straight
uniform Rg graph can be seen in Figure 6C, where a small fluctuation between 20 and 22 ns
can be observed, while the Rg then stabilized and no significant deviation was reported.
An average Rg of 15.90 Å was also reported for TCM30675. The Rg for TCM30675 is shown
in Figure 6C.
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hydroxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 complex.

2.5. Residues Flexibility Profiling

Residue flexibility is strongly correlated with the functional relevance of a protein, as
it confers strength to the binding between the interacting molecules. Assessment of residue
flexibility for the key residues demonstrates the impact of the small molecule binding.
Thus, to determine how the residue flexibility is affected by the binding of these drugs, we
calculated the root mean square fluctuation (RMSF) for each complex. As given in Figure 7,
all the complexes demonstrated a similar pattern of residue flexibility. All the residues in
each complex displayed minimal fluctuation, which showed the stronger binding of these
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compounds. The regions between 40 and 50, 90 and 100, and 120 and 140 demonstrated
comparatively higher fluctuations due to the loop distribution.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Structural compactness analysis in a dynamic environment of the TCM42798, TCM47007, 
and TCM30675 complexes calculated as Rg. (A) The Rg graph for mucic acid 1-methyl ester 2-O-
gallate. (B) The Rg graph for TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O--D-glucuro-
nopyranoside. (C) The Rg graph for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hy-
droxy-4-methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 complex. 

2.5. Residues Flexibility Profiling 
Residue flexibility is strongly correlated with the functional relevance of a protein, as 

it confers strength to the binding between the interacting molecules. Assessment of resi-
due flexibility for the key residues demonstrates the impact of the small molecule binding. 
Thus, to determine how the residue flexibility is affected by the binding of these drugs, 
we calculated the root mean square fluctuation (RMSF) for each complex. As given in 
Figure 7, all the complexes demonstrated a similar pattern of residue flexibility. All the 
residues in each complex displayed minimal fluctuation, which showed the stronger bind-
ing of these compounds. The regions between 40 and 50, 90 and 100, and 120 and 140 
demonstrated comparatively higher fluctuations due to the loop distribution. 

 
Figure 7. Residual flexibility analysis of the TCM42798, TCM47007, and TCM30675 complexes. 

2.6. Hydrogen Bonding Analysis 
Hydrogen bonds confer strength to the binding of small molecules. The binding of 

small molecules is steered by hydrogen and many other bonds, which consequently show 
the inhibitory features. To determine the binding strength, we calculated the total number 
of hydrogen bonds and the population, and the simulation trajectories were analyzed. In 
TCM42798 or mucic acid 1-methyl ester 2-O-gallate, the average number of hydrogen 
bonds was reported to be 82, while in the case of TCM47007 or (2S)-5,7,2’,5’-Tetrahy-
droxyflavanone 7-O--D-glucuronopyranoside, the average number of hydrogen bonds 

Figure 7. Residual flexibility analysis of the TCM42798, TCM47007, and TCM30675 complexes.

2.6. Hydrogen Bonding Analysis

Hydrogen bonds confer strength to the binding of small molecules. The binding of
small molecules is steered by hydrogen and many other bonds, which consequently show
the inhibitory features. To determine the binding strength, we calculated the total number
of hydrogen bonds and the population, and the simulation trajectories were analyzed. In
TCM42798 or mucic acid 1-methyl ester 2-O-gallate, the average number of hydrogen bonds
was reported to be 82, while in the case of TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone
7-O–D-glucuronopyranoside, the average number of hydrogen bonds was also reported
to be 79, while TCM30675 or the (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-
methoxyphenyl)ethyl]-5,6,7,8-tetrahydro-4H-chromen-4-1 complex reported 78 average
hydrogen bonds. The total number of hydrogen bonds in each complex is shown in
Figure 8A–C. Moreover, the hydrogen bonding population for the key interacting residues
was estimated and revealed in each complex, namely Ala1060 (63%, 74%, 58%), Asn1062
(66%, 53%, 61%), Gly1068 (51%, 43%, 34%) Val1071 (32%, 24%, 23%), Ala1072 (4%, 17%,
13%), Leu1148 (1%, 6%, 12%), Ala1176 (0%, 0%, 7%), and Phe1178 (0.36%, 2%, 11%) in
TCM42798, TCM47007, and TCM30675 complexes, respectively. Together these results
show that these compounds bind more strongly to the Mac-I and thus produce inhibitory
properties that could help to rescue the host immune response against COVID-19 infection.
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(A) The H-bonds graph for mucic acid 1-methyl ester 2-O-gallate. (B) The H-bonds graph for
TCM47007 or (2S)-5,7,2’,5’-Tetrahydroxyflavanone 7-O–D-glucuronopyranoside. (C) The H-bonds
graph for TCM30675 or (5S,6S,7S,8R)-5,6,7,8-Tetrahydroxy-2-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-
5,6,7,8-tetrahydro-4H-chromen-4-1 complex.
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2.7. Binding Free Energy Estimation

The binding strength of small molecules using the binding free energy method, MM-
GBSA, is a widely used method for re-demonstrating docking stability and correct binding.
The above-mentioned MM-GBSA technique is more computationally economical than
the more expensive alchemical free energy method. When compared to rational scoring
functions, it is one of the most accurate techniques. Keeping in mind the implementation
of this approach, we also employed the same method to compute the binding free energy
for TCM42798, TCM47007, and TCM30675 complexes. The vdWs for these complexes
were reported to be −84.26 kcal/mol, −59.79 kcal/mol, and −53.24 kcal/mol, respectively,
while the electrostatic energies were reported to be −12.22 kcal/mol, −13.22 kcal/mol,
and −15.66 kcal/mol, respectively. Moreover, the ESURF values were reported to be
17.45 kcal/mol, 14.68 kcal/mol, and 12.25 kcal/mol, respectively. The total binding free
energy for these complexes was reported to be −69.78 kcal/mol, −50.11 kcal/mol, and
−47.64 kcal/mol, respectively, which consequently reflected the stronger binding and
inhibitory potential of these compounds. The MM/GBSA results are given in Table 2.

Table 2. Binding free energy calculated as MM/GBSA. All the values are given in kcal/mol.

MM/GBSA TCM42798 TCM47007 TCM30675

vdW −84.26 −59.79 −53.24

electrostatic −12.22 −13.22 −15.66

ESURF 17.45 14.68 12.25

EGB 9.25 8.22 9.01

∆G Bind −69.78 −50.11 −47.64

3. Material and Methods
3.1. Modelling of the Macrodomain-I (Mac-I) of B.1.1.529 Variant

The experimentally reported structure in the protein database was collected through
accession number 6W02 to model the V1069I mutations reported in the Mac-I of NSP3
of the omicron variant [44]. For this purpose, the amino acid sequence using P0DTD1
accession number was obtained from UniProt, European union [45]. For modelling of the
variant structure, AlphaFold 2.0 Seoul National University, Seoul, South Korea, was used,
which is currently the best and most accurate approach for 3D structural modelling [46].

3.2. Virtual Screening of Traditional Chinese Medicine Database

The Traditional Chinese Medicine Database (TCM) currently holds 57,000 entries
of different medicinal compounds isolated from Chinese herbs. It is considered as an
important medicinal repository for discovering novel treatments that are safe and effective.
Thus, we screened the complete TCM database against Mac-I of the B.1.1.529 variant.
For screening, we used the EasyVS (http://biosig.unimelb.edu.au/easyvs, accessed on
10 April 2022) webserver [47]. Custom parameters were used and defined, such as the
active site, and the RO5 filter was enabled for the filtration and removal of molecules that
violated Lipinski’s rules. Furthermore, for the top 100 hits, a second round of screening was
performed using the Auto Dock Vina algorithm [48]. Finally, the top-selected compounds
were used for the Induced-Fit docking (IFD) approach to remove the false-positive results.
The top hits were identified based on the docking score for ADPr, taken as a control, as
previously reported [22].

3.3. Molecular Dynamics Simulation (MDS)

Characterization of dynamic features to accurately portray the inhibitory potential
of the top hits was studied by performing molecular dynamics simulation [49]. The top
three hits were investigated by using AMBER20 simulation software by adding an optimal
point charge water model and sodium ions for neutralizing the effect of any charge. Protein
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and drug parameterization was achieved by recruiting FF19SB and GAFF forcefields. Each
system after gentle minimization was subjected to heating followed by equilibration. The
production runs for 50 ns each were completed. For any long-range electrostatic interactions
(10.0 Å cutoff), the PME (particle mesh Ewald algorithm) was used, while covalent bonds
were treated with the SHAKE algorithm.

3.4. Trajectories Analysis Using CPPTRAJ and PTRAJ

Evaluation of the simulation trajectories to forecast the dynamic stability, flexibility
index, hydrogen bonding, structural compactness, and other parameters was completed
by using CPPTRAJ and PTRAJ modules [50]. Root mean square deviation (RMSD) was
estimated for stability, root mean square fluctuation (RMSF) to index the flexibility of each
residue, radius of gyration (Rg) to foresee the compactness, and hydrogen bonding analysis
to estimate the bonding population.

3.5. Estimation of Post-Simulation Binding Energy

The most generally utilized strategy in many related studies is to evaluate the strength
of small molecule binding by employing the binding free energy (BFE) approach [51–54].
We also adopted the MMPBSA.py script to compute the binding free energy of the protein–
ligand complexes by evaluating 2500 snapshots, keeping in mind the relevance of this
strategy in re-ranking the binding conformations. For this purpose, the following equation
was used to estimate the BFE:

“∆Gbind = ∆Gcomplex − [∆Greceptor + ∆Gligand]”

The ∆Gbind represents the total binding energy, while ∆Greceptor, ∆Gligand, and ∆Gcomplex

represent the binding energy of protein, drug, and complex, respectively. The following
equation was used to estimate individual binding energies such as bonded (Gbond), electro-
static (Gele), polar (Gpol), and non-polar (Gnpol), which contribute to the total binding free
energy.

“G = GbondGelectrostatic − Gvan der Waal − GpolarGnon − polar”

4. Conclusions

The present study employs molecular modelling and MD simulation approaches to
target the macrodomain-I of the B.1.1.529 variant of SARS-CoV-2. Three novel compounds,
namely TCM42798, TCM47007, and TCM30675, were identified as potential inhibitors of
Mac-I. These agents may suppress NSP3 directly, allowing the host immune system to
recuperate. The current study lays the groundwork for the development of new drugs to
combat SARS-CoV-2 and its variants.
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Abstract: Chagas and leishmaniasis are two neglected diseases considered as public health prob-
lems worldwide, for which there is no effective, low-cost, and low-toxicity treatment for the host.
Naphthoquinones are ligands with redox properties involved in oxidative biological processes with
a wide variety of activities, including antiparasitic. In this work, in silico methods of quantitative
structure–activity relationship (QSAR), molecular docking, and calculation of ADME (absorption,
distribution, metabolism, and excretion) properties were used to evaluate naphthoquinone deriva-
tives with unknown antiprotozoal activity. QSAR models were developed for predicting antiparasitic
activity against Trypanosoma cruzi, Leishmania amazonensis, and Leishmania infatum, as well as the
QSAR model for toxicity activity. Most of the evaluated ligands presented high antiparasitic activity.
According to the docking results, the family of triazole derivatives presented the best affinity with the
different macromolecular targets. The ADME results showed that most of the evaluated compounds
present adequate conditions to be administered orally. Naphthoquinone derivatives show good
biological activity results, depending on the substituents attached to the quinone ring, and perhaps
the potential to be converted into drugs or starting molecules.

Keywords: chagas; leishmaniasis; naphthoquinones; antiprotozoal evaluation; QSAR; molecular
docking; ADME

1. Introduction

Chagas and leishmaniasis are two parasitic infectious diseases endemic to Latin
America, considered by the World Health Organization (WHO) as neglected tropical
diseases, for which there is currently no effective, safe, and economical chemotherapy
treatment. For chagas, the WHO estimates that between 7 and 8 million people are infected,
with 12,000 deaths and 70 million people at risk of contracting it per year [1,2], while for
leishmaniasis, there is an estimated figure of 12 million infected people, 1.6 million new
cases each year, and 350 million people at risk of acquiring it [3–5]. In response to this
problem, a growing number of investigations, mainly in Latin America, are being carried
out to find new powerful anti-chagas and anti-leishmaniasis agents with low toxicity.

Chagas disease is a zoonosis caused by the protozoan Trypanosoma cruzi, which af-
fects around 150 species of mammals, including humans, and is mainly vector-borne by
hematophagous insects of the Tritominidae subfamily (popularly known as kissing bugs, bed
bugs, and whistles, among other names). Since 1970, the treatment against this pathology
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has been based mainly on the antiparasitic drugs Nifurtimox (NFX) and Benznidazole
(BNZ). These medicines have an effectiveness of 70% during the acute phase, where the pre-
vailing parasitic form is blood trypomastigotes, and decreases to 20% in the chronic phase,
where the predominant form corresponds to the intracellular phase of amastigotes [6,7]. It
has been proven that NFX and BNZ have a high toxicity for mammalian cells, with serious
side effects, such as peripheral neuropathies, anorexia, nausea, and vomiting, as well as
neurological reactions such as anxiety and disorientation, among others [8]. On the other
hand, leishmaniasis encompasses a group of infectious diseases caused by at least 20 species
of the Leishmania genus, including L. braziliensis, L. amazonensis, L. infantum, L. guyanensis,
L. panamensis, and L. mexicana, which are the species that affect humans. Its transmission
is mainly through vectors via insect bites of the Psychodidae family. This disease presents
three different clinical forms in humans, canines, and several wild vertebrates: cutaneous,
mucocutaneous, and visceral [3]. Current treatment against leishmaniasis is based on the
use of pentavalent antimonials, such as Miltefosine, Amphotericin B (AmB), Paromomycin,
and Pentamidine; however, there are restrictions on the use of these drugs due to their side
effects, which include hepatic, cardiac, and renal toxicity [5]. Additionally, they present
limitations, such as high production cost and increased resistance by the parasite [9].

Naphthoquinones stand out among the most studied natural compounds and syn-
thetic derivatives for their anti-chagas and anti-leishmaniasis (mainly against L. infantum
and L. amazonensis) activity. β-lapachone derivatives have exhibited potential anticancer,
antiviral, antiparasitic (including anti-chagas and anti-leishmanial activity), antimicrobial,
anti-inflammatory, anti-obesity, antioxidant, and neuroprotective activity, while showing
low levels of toxicity to normal cells [10]. Naphthoimidazoles derived from β-lapachone
have been prepared, and their trypanocidal activity has been evaluated using electron
microscopy, flow cytometry, and biochemical techniques, indicating that some compounds
lead to an oxidative imbalance, which generates the production of ROS and the death of
the parasite [10–13]. De Silva et al. carried out molecular docking studies on two cysteine
proteases: cruzin and rhodesain, which are fundamental in the metabolism of the T. cruzi
parasite [14]. This allowed for the identification of 14 naphthoquinone derivatives with
potential antiprotozoal activity, which were synthesized and tested in vitro. On the other
hand, 2,3-diphenyl-1,4-naphthoquinone (DPNQ) is considered a potential chemotherapeu-
tic agent against T. cruzi due to its high trypanocidal activity in phenotypic screening and
experimental murine infection by T. cruzi. Treatment with DPNQ in infected female mice
promoted a halving of the parasite load, and ensured a 60% survival rate of the animal [15].
In 2021, Becerra et al. used pharmacophoric models based on different studies to design
and subsequently synthesize nine phenolic derivatives, which were tested against T. cruzi
strains, most of which showed good activity compared to BNZ, and the best prospects
showed low toxicity [16]. Plumbagin is a plant-derived naphthoquinone metabolite
(5-hydroxy-2-methyl-1,4-naphthaquinone) that inhibits trypanothione reductase, and has
been validated as a drug which is responsible for promoting oxidative stress in Leishmania [9].
Similarly, naphtherocarpanquinone (LQB-118), which has been evaluated against cuta-
neous leishmaniasis, showed activity against intracellular amastigotes of L. amazonensis. It
is proposed, through an anti-leishmanial model, that a good level of administration could
counteract this clinical form of leishmaniasis [17]. The leishmanicidal activity of a series
of substituted bis-2-hydroxy-1,4-naphthoquinones prepared from lawsone with aliphatic
and aromatic aldehydes has also been evaluated [18]. Overall, four of the bis-lawsone
analogs showed results similar to Pentamidine, but without cytotoxicity to host cells. Other
studies demonstrated the high activity and low toxicity for host cells of derivatives of
nor-α-lapachone and α-lapachone fused with triazole; despite them, however, resistance
similar to that presented by the reference drug (Pentamidine) was observed [19]. Likewise,
α-lapachone has shown a similar inhibition to sodium stibogluconate (Pentostam) [20].
Acetylisolapachol showed greater activity against L. amazonensis and does not exhibit a risk
to the host [21].
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Continuing with our search for novel structures with high antiparasitic activity and
low toxicity [22], in this work, we have carried out an extensive in silico study of substituted
derivatives of 1,4-naphthoquinone as potential anti-chagas and anti-leishmanial candidates.
QSAR modeling of anti-T. cruzi in trypomastigotes, anti-L. amazonensis, anti-L. infantum,
and toxicity has been carried out, based on the antiparasitic derivatives of naphthoquinone
and other related structures reported in the literature. The best QSAR models were used
to evaluate the predictive antiparasitic and toxicity activity of 68 1,4-naphthoquinone
derivatives with hitherto unknown biological activity. This study was complemented
by the evaluation of the 68 candidates against 5 macromolecular targets related to vital
processes for the survival of these protozoa. In the case of T. cruzi, trypanothione reductase
(TcTR) and lanosterol α-demethylase (TcLαD) proteins were selected. For the Leishmania
genus in general, trypanothione reductase (LTR) protein was selected, while for the L.
amazonensis and L. infantum strains, arginase (LaA) and tyrosine aminotransferase (LiTA)
were selected, respectively. Additionally, the ADME (absorption, distribution, metabolism,
and excretion) properties of the 68 naphthoquinone derivatives were evaluated. The best
anti-chagas and anti-leishmanial candidates derived from this in silico study are currently
in the organic synthesis stage at our lab for their subsequent in vitro evaluation.

2. Results and Discussion
2.1. QSAR Modeling

In total, four QSAR models were performed based on in vitro reports of naphthoquinone
derivatives and related structures with anti-T. cruzi (in trypomastigotes) [23–31], anti-L. ama-
zonensis [18,32–39], and anti-L. infantum [40–45] activities, as well as toxicity [30,46–51]
evaluation. For each QSAR study, the top seven models were generated, which are shown
in Tables S1 and S2 in the Supplementary Materials. In turn, the best model (in bold) among
the seven was selected, which was performed considering high homogeneity (fitting, R2)
between the calibration and validation groups with the lowest root mean square error
(RMSE), thereby avoiding over-adjusted models. For selecting the best model, the Ock-
ham’s principle of parsimony was also considered, which states that if there are models
with statistical parameters of equal quality, the simplest one should be selected [52].

2.1.1. QSAR Model for Anti-chagas Activity

Equation (1) shows the best QSAR model for the anti-chagas activity predicted as
LogIC50, which was developed based on 153 derivatives of 1,2-naphthoquinone and 1,4-
naphthoquinone (Figure A1) evaluating in vitro blood trypomastigotes of strain Y of T.
cruzi. A description of the molecular descriptors that define this model is listed in Table 1.

LogIC50 = 4.5112 + 0.3637a1 + 1.1416a2 − 0.1003a3 + 0.9440a4 + 0.1929a5 − 1.8425 × 10−4a6 (1)

Table 1. Molecular descriptors of the best anti-chagas QSAR model as defined by Equation (1).

Descriptor Name Short Description Type

a1 frag16𝑎ଵ
𝑎ଶ
𝑎ଷ𝑎ସ𝑎ହ𝑎 𝑎ଵ 𝑎ଶ

𝑎ଷ 𝑎ସ 𝑎ହ𝑎 𝑎ଷ𝑎ସ 𝑎ହ 𝑎 𝑎ଷ

𝑎ସ 𝑎ହ 𝑎ସ 𝑎ହ
𝑎

𝐿𝑜𝑔𝐼𝐶ହ = 0.26 − 1.00𝑏ଵ + 0.24𝑏ଶ + 0.42𝑏ଷ − 0.05𝑏ସ

Fingerprint

a2 MACCSFP72

𝑎ଵ
𝑎ଶ
𝑎ଷ𝑎ସ𝑎ହ𝑎 𝑎ଵ 𝑎ଶ

𝑎ଷ 𝑎ସ 𝑎ହ𝑎 𝑎ଷ𝑎ସ 𝑎ହ 𝑎 𝑎ଷ

𝑎ସ 𝑎ହ 𝑎ସ 𝑎ହ
𝑎

𝐿𝑜𝑔𝐼𝐶ହ = 0.26 − 1.00𝑏ଵ + 0.24𝑏ଶ + 0.42𝑏ଷ − 0.05𝑏ସ

(Any bond; Red:
Oxygen; Gray:Any

atom)
Fingerprint

a3 K_Q_AB_nCi_2_SS10_T_KA_r_MAS Refractivity 2D

a4 K_B_AB_nCi_2_DS7_C_KA_e-p_MAS Electronegativity/Polarizability 2D

a5 K_B_AB_nCi_2_DS2_X_KA_r-c_MAS Refractivity/Charge 2D

a6 N2_F_AB_nCi_2_NS7_P_KA_m_MAS Mass 2D
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The descriptors a1 and a2 are fingerprints calculated in Fragmentor [53], and refer to
the presence of oxygen followed by an unsaturation; while the second was calculated in
PaDeL [54], and belongs to the MACCS keys, a group of 166 free access fragments [55],
which involves an oxygen–oxygen arrangement at a distance equal to three bonds and
two intermediate atoms of any type. According to this QSAR model (Equation (1)), these
molecular descriptors contribute negatively to the evaluated activity (i.e., they decrease
the activity). The other descriptors of the model were calculated in the program QUBILS-
MAS [56]. The descriptors a3, a4, and a5 are calculated from the Kurtosis, which is a
statistical invariant, while a6 belongs to the Minkowski indicators. a3 is a quadratic index,
a4 and a5 are bilinear, and a6 is linear. The descriptor a3 is a global index that contributes
to the biological activity. This is related to molar refractivity, which can sometimes be
used to model London dispersion forces or attractive van der Waals interactions; these are
factors related to the presence of strong interactions between a ligand and the active sites
of a given macromolecular receptor. However, refractivity is the consequence of repulsive
nonbonding interactions, and is highly dependent on the flexibility of the ligand [57]. The
descriptor a4 describes the electronegativity and polarizability of the fragment of carbon
atoms in aliphatic chains, while a5 is associated with the refractivity and charge of the
subset of heteroatoms in the molecule [4]. Both descriptors contribute negatively to the anti-
chagas activity. Considering the nature of descriptors a4 and a5, it is hypothesized that the
anti-chagas activity could be related to the ability of the ligands to dock and inhibit essential
macromolecules in the metabolism of T. cruzi. For its part, the descriptor a6 provides a
positive contribution to the biological activity, and is a function of the mass of aromatic
carbon atoms, which suggests that the presence of aromatic systems improves activity.

Table S3 in the Supplementary Materials shows the intercorrelation relationship be-
tween each pair of descriptors included in the anti-chagas QSAR model, while Table S4 lists
the values of each descriptor for each molecule. Table S5 shows the experimental values
together with those predicted by the anti-chagas activity model as log IC50.

2.1.2. QSAR Model for Anti-L. amazonensis Activity

For the anti-L. amazonensis (cutaneous and mucocutaneous leishmaniasis) activity (ex-
pressed as LogIC50), the QSAR model with four descriptors was selected (Table S1), which
is described according to Equation (2). This model was developed based on 60 ligands
(Figure A2), with in vitro anti-leishmanial activity reported as IC50:

LogIC50 = 0.26 − 1.00b1 + 0.24b2 + 0.42b3 − 0.05b4, (2)

where b1, b2, b3, and b4 are described as shown in Table 2.

Table 2. Molecular descriptors in the anti-L. amazonensis QSAR model, as described by Equation (2).

Descriptor Name Short Description Type

b1 KRFP2

𝑏ଵ  𝑏ଶ 𝑏ଷ 𝑏ସ

𝑏ଵ
 𝑏ଶ𝑏ଷ𝑏ସ 𝑏ଵ

𝑏ଶ 𝑏ଷ 𝑏ସ𝑏ଶ

𝑏ଷ 𝑏ସ𝑏ସ

𝐿𝑜𝑔𝐼𝐶ହ = −1.51 + 6.83𝑐ଵ + 0.29𝑐ଶ − 3.88 ×  10ି𝑐ଷ + 0.04𝑐ସ − 3.72𝑐ହ − 3.68 × 10ି𝑐𝑐(𝑛 = 1 to 6)
𝑐ଵ𝑐ଶ𝑐ଷ𝑐ସ𝑐ହ𝑐

(Klekota–Roth fingerprint,
presence of chemical

substructures)
Fingerprint

b2 minHBint9 Electro-topological state atom type descriptor (minimal strength
E-state type descriptor for potential hydrogen bonds of path length 9) 2D

b3 IC3 Information content index (3-order neighborhood symmetry) 2D

b4 MDEC-23 Molecular edge distance 2D
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The b1 descriptor refers to the Klekota–Roth fingerprint KRFP2, and it comprises part
of six of the seven anti-L. amazonensis QSAR models considered (Table S1). This descriptor
provides a measure of chemical similarity related to a bond between two carbon atoms,
where each carbon atom has, as its substituents, a hydrogen atom and two nonhydrogen
atoms [54,58]. On the other hand, b2, b3, and b4 refer to 2D type descriptors. The minHBint9
(b2) descriptor describes the topological state of the atom’s environment, such as the
electronic interactions present in the atoms of the molecule at a topological distance of nine
with each atom. According to Equation (2), this characteristic decreases the IC50, that is,
the less topological distance there is between the atoms that make up the structure, the
better its antiprotozoal activity [59]. The IC3 descriptor (b3) is based on the three-order
neighborhood symmetry. This means that molecules with lower symmetry will have a
better predictive activity [60]. Finally, the descriptor MDEC-23 (b4) refers to the information
regarding the edge of the molecular distance among all secondary and tertiary carbons. The
presence and value of b4 enhance the anti-leishmaniasis activity predicted by the model,
indicating that the presence of secondary and tertiary carbon atoms in these molecules is
related to their biological activity [61–63].

2.1.3. QSAR Model for anti-L. infantum Activity

For predicting anti-L. infantum (visceral leishmaniasis) activity such as LogIC50, the
model with six descriptors was selected (Table S1), which is represented according to
Equation (3). The molecules used for constructing this QSAR model are shown in Figure A3:

LogIC50 = −1.51+ 6.83c1 + 0.29c2 − 3.88× 10−6c3 + 0.04c4 − 3.72c5 − 3.68× 10−6c6 (3)

where cn(n = 1 to 6) are 2D descriptors described as shown in Table 3.

Table 3. Molecular descriptors in the anti-L. infantum QSAR model, as described by Equation (3).

Descriptor Name Short Description Type

c1 MATS3c Moran Correlation—lag
3/load-weighted 2D

c2 nHBint7 Atom-like electro-topological state 2D

c3 AM_F_AB_nCi_2_NS12_T_KA_a_MAS Alog P (partition) 2D

c4 AM_B_AB_nCi_2_NS2_C_KA_psa-v_MAS
C atoms in aliphatic chain

Topological area of the polar
surface/Vdw volume

2D

c5 AM_B_AB_nCi_2_SS1_C_KA_v-c_MAS Volume of Vdw/Charge 2D

c6 AM_Q_AB_nCi_2_NS15_X_KA_a_MAS Heteroatom–Partitioning Algorithm
(Alog P) 2D

The MATS3c (c1) descriptor refers to Moran’s autocorrelation, which expresses the
partial charge values of atoms separated by three distances, that is, it estimates the cor-
relation of charges divided into three bonds [64,65]. The descriptor nHBint7 (c2) counts
resistance E-state descriptors for hydrogen bonds with a path length of seven. The c3–c6
descriptors are part of the QuBiLS-MAS program [66]. The c3 descriptor refers to the parti-
tion algorithm, which is used to calculate estimates of most neutral organic compounds
that have C, H, O, N, S, Se, P, B, Si, and halogen atoms. This descriptor is based on AlogP,
which can also estimate local hydrophobicity, visualize molecular hydrophobicity maps,
and evaluate hydrophobic interactions when protein–ligand complexes are formed [67,68].
The c4 descriptor considers bilinear indices and aliphatic chain carbon atoms, and correlates
the topological area of the polar surface and the van der Waals volume. The polar surface
area (PSA) is a molecular descriptor widely used in the study of drug transport properties,
related to the penetration of the blood–brain barrier and its intestinal absorption. Addition-
ally, the descriptor c4 alludes to the sum of the contributions of polar atoms such as oxygen,
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nitrogen, and hydrogen to the molecular surface area [69,70]. The descriptor c5 correlates
the carbon atoms of aliphatic chains with the van der Waals volume and charge. Molecular
volume is defined as a measure of the space around electron-filled atomic nuclei, and is
geometrically interpreted as the combined volume of the superimposed spheres centered
on the nuclei, similar to a space-filling molecular model [71,72]. Finally, the descriptor
c6 presents a nonstochastic matrix of order 15; in this case, the descriptor considers the
heteroatoms different from C and H, correlating them with the partition algorithm and esti-
mating the different atoms. This descriptor includes most of the zwitterionic compounds
that have amine, carboxylic acids, and ammonium halide salts. The c6 descriptor is also
based on an intrinsically atomistic model, which is useful for drug design, since it makes
estimates of the local or general hydrophobicity of a molecule [66,68].

Table S7 in the Supporting Materials shows the intercorrelation relationship between
each pair of descriptors included in the anti-leishmanial QSAR models (Equations (2) and (3)),
while Table S8 (L. amazonensis) and Table S7 (L. infantum) show the values of each de-
scriptor calculated for each molecule used in the development of these QSAR models.
Tables S10 and S11 list the experimental and model-predicted values of anti-leishmanial
activity as log IC50.

2.1.4. QSAR Model for Toxicity

From the QSAR study for toxicity (expressed as LogIC50), a model with five descriptors
was selected (Table S2), which is represented in Equation (4). This model was developed
based on 76 naphthoquinone derivatives, as shown in Figure A4.

LogIC50 = 0.37 + 0.11d1 − 0.21d2 + 0.36d3 − 0.05d4 − 0.17d5, (4)

where dn(n = 1 to 5) are 2D descriptors described as shown in Table 4.

Table 4. Molecular descriptors in the QSAR model of toxicity as described by Equation (4).

Descriptor Name Short Description Type

d1 K_B_AB_nCi_2_NS3_T_KA_psa-r_MAS Topological polar surface area; refractivity 2D

d2 K_B_AB_nCi_2_DS7_P_KA_c-p_MAS Aromatic C atoms. Charge; polarization 2D

d3 N2_B_AB_nCi_2_MP4_P_KA_psa-p_MAS Aromatic C atoms. Topological polar surface
area; polarization 2D

d4 K_B_AB_nCi_2_DS3_X_KA_a-e_MAS Heteroatoms. Partition algorithm (Log P);
electronegativity 2D

d5 K_Q_AB_nCi_2_SS14_C_KA_c_MAS C atoms in aliphatic chain. Charge. 2D

The toxicity model descriptors were calculated using the QUBILS-MAS program [66].
The descriptors d1, d2, d4, and d5 are calculated from the Kurtosis, which is a statistical
invariant of distribution. The d1 descriptor correlates with physicochemical properties,
polarized topological surface area, and refractivity. As indicated above, the topological
polar surface area of a molecule depends on the sum of the surface area of polar atoms, such
as oxygen, nitrogen, and hydrogen, and facilitates the ability of a molecule to penetrate
cells. According to this, the greater the value of the polar topological surface in a molecule,
the greater its probability of being transported [73]. Meanwhile, refractivity is a measure of
the volume occupied by an atom or a group of atoms [69]. These last two properties allow
for a theoretical prediction of the pharmacological potential of a molecule in a biological
environment [74]. The descriptor d2 correlates the polarization with the charge of aromatic
carbon atoms because it facilitates the distortion of the atomic or molecular charge in
electromagnetic fields. This descriptor refers to an electronic parameter, which impacts
chemical–biological interactions [75]. The descriptor d3 correlates the polar surface area
with the polarization of the carbon atoms of the aromatic moiety and the heteroatoms
attached to this moiety. The d4 descriptor is associated with the partition algorithm,
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heteroatoms, and electronegativity. This descriptor is based on the tendency of a heteroatom
or functional group to attract electrons and estimate the local or general hydrophobicity
of a molecule [67–74,76,77]. Finally, the descriptor d5 refers to the charge and the carbon
atoms in the aliphatic chains.

Table S13 in Supporting Materials shows the intercorrelation relationship between
each pair of descriptors included in the QSAR model of toxicity, while Table S15 shows the
experimental and predicted values in log IC50 used for constructing of the QSAR model of
toxicity.

2.1.5. Validation of QSAR Models

Table 5 contains a compilation of the statistical parameters used for the internal and
external validation of the four QSAR models developed. From Y-randomization, it was
found that RMSEcal < RMSErand, thus indicating that all QSAR models are robust due to
the absence of random correlation [78] Internal validation by the Leave-One-Out (LOO)
method yielded a value of the squared correlation coefficient (R2

loo) ≥ 0.5 [78,79], which
ensures the statistical stability of each model. In addition to presenting good internal
validation parameters, all of the QSAR models are predictive, since they meet the following
requirements: the slopes k and k’ of the plots of observed and predicted values are in the
range 0.85–1.15 (with k corresponding to the case when the predicted values are plotted on
the x-axis and the experimental values on the y-axis, while k’ is the inverse graph). The
CCC statistically evaluates the models, this parameter verifies the difference between the
experimental and predicted values. The squared correlation coefficients have values greater
than 0.5, which validate the models [80].

Table 5. Internal and external validation parameters for each best QSAR model.

Parameter

QSAR Models

Anti-Chagas
(Ec. 1)

anti-L. amazonensis
(Ec. 2)

Anti-L. infantum
(Ec. 3)

Toxicity (Ec. 4)

98% 100%

Ntrain 107 48 72 60 60
Nval 23 6 9 8 8
Ntest 23 6 9 7 8
R2

test 0.83 0.78 0.66 0.91 0.70
RMStest 0.48 0.38 0.35 0.22 0.32
R2

ijmax 0.40 0.19 0.79 0.44 0.44
R2

loo 0.71 0.70 0.66 0.92 0.92
RMSloo 0.54 0.35 0.46 0.18 0.18
R2

Rand 0.06 0.09 0.08 0.08 0.09
RMSRand 0.10 0.59 0.74 0.74 0.95

k 1.12 1.03 1.03 0.96 0,97
k’ 0.86 0.88 0.92 1.03 1.00

Q2
F1 0.80 0.80 0.71 0.89 0.75

Q2
F2 0.76 0.77 0.65 0.82 0.63

Q2
F3 0.77 0.65 0.80 0.88 0.75

CCC 0.86 0.86 0.79 0.89 0.83
O3 0 0 0 0 1

Figure 1 shows the dispersion diagram of the experimental values of anti-chagas and
anti-Leishmania (L. amazonensis and L. infantum) activity and toxicity expressed as Log(IC50)
as a function of the values predicted by each model. In all cases, it is observed how points
adopt a linear trend around the line of perfect fit (in green), which confirms a multivariate
linear relationship.
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Figure 1. Linear correlation plots between the experimental and the predicted values obtained using
the QSAR Equations (1) (a), (2) (b), (3) (c) and (4) (d).

Figure 2 shows the plots of the residuals for the four QSAR models developed. It
was observed that for anti-chagas (Figure 2a) and anti-leishmaniasis (Figure 2b,c) activity,
no residual is greater than three times the standard deviation (3S) of the model (outliers),
while the toxicity model (Figure 2d) presented one outlier of the test group. In all QSAR
models, the points follow a random distribution around the line at y = 0, which suggests
that these properties are modeled using of multiple linear regression.

Due to the low diversity of molecules considered in the development of the QSAR
models, the acceptable predictions are restricted to structural analogs derived from naph-
thoquinone, whose influence value is less than the critical influence value (h*) in each
model (Figure 3). As shown in Figure 3a,c, for anti-chagas and anti-L. infantum activity, all
molecules of the validation group and of the test group are within the domain of applica-
bility, and molecules of the calibration group are considered outside the value of h*, a fact
that reinforces the predictive capacity of these models. For the anti-L. amazonensis activity
model, Figure 3b shows how a molecule of the test group is rejected, thus demonstrating
its ability to reject molecules with large differences. For its part, the toxicity model shows
that all molecules considered for its development and validation are within the domain of
applicability.

2.1.6. Molecular Design and Applicability of QSAR Models

Both ortho-naphthoquinone (1,2-substituted) and para-naphthoquinone (1,4-substituted)
are recognized as highly active cores due to the synergy between its acid base and oxidation
reduction properties [81], whose derivatives have exhibited several tunable antiparasitic
effects according to the substitutions made in their fused rings [82]. As can be verified
from the structural compilation used for constructing our QSAR antiprotozoal models
(Figures A1–A3 in Appendix A), a high in vitro anti-chagas or anti-leishmanial effect is
achieved when substitutions with heterocyclic, aromatic, or aliphatic groups are made at
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the 2 and 3 positions, for the case of the para-naphthoquinone, or at the 3 and 4 positions,
for the case of the ortho-naphthoquinone nucleus.

The molecular design of our selection group was based on the following principles:
(i) restriction to only derivatives of the 1,4-naphthoquinone nucleus at positions 2 and 3;
(ii) use of open-chain and heterocyclic substituents at these positions; (iii) use of nitrogenous
derivatives in position 2; (iv) variation in position 3 with electro-withdrawing and electro-
donor groups; and (v) substitution in the amino nitrogen, located in position 2, with both
highly functionalized aromatic and heterocycle rings. Due to this strategy, four families of
1,4-naphthoquinone derivatives (Figure 4) were selected for in silico evaluation: (a) 2-chloro-
3-arylamino family (NQ–Chlorine); (b) 2-amino-3-arylamino family (NQ–Amine); (c) 2-
amino-3-triazolamino family (NQ–Triazole); and (d) phenazine family (NQ–Phenazine). In
particular, the use of triazoles and phenazines as substituents was established based on the
high intrinsic activity of these groups, as well as their enhancing effect when incorporated
into other active nucleus [23,82–84].

Figure 2. Dispersion of residues according to QSAR Equations (1) (a), (2) (b), (3) (c), and (4) (d).

QSAR models established according to Equations (1)–(4) were used to predict anti-
chagas (IC50 in trypomastigotes), anti-L. amazonensis (cutaneous and mucocutaneous leish-
maniasis), and anti-L. infantum (visceral leishmaniasis) activity, as well as toxicity, of the
68 derivatives of 1,4-naphthoquinone shown in Figure 4, which are structures that do not
present experimental anti-chagas or anti-leishmanial activity (in vitro or in vivo) reported
so far.

Figure 5a shows the prediction values of anti-chagas activity (IC50) for the 68 1,4-
naphthoquinone derivatives evaluated using QSAR Equation (1). As a result, 47 (69%) of
the 68 evaluated molecules had a better predicted IC50 than the experimental value of the
reference drug BNZ. Overall, 10 of these derivatives (structures 17, 43, 53–60) were not
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within the applicability domain of the model, so their predicted activity should be consid-
ered unreliable. High anti-chagasic activity was found for the NQ–Phenazine derivatives
substituted with the isopropyl group (structures 61 and 62), as well as for the NQ–Chlorine
and NQ–Amine derivatives containing the same substituent (structures 24–26 and 51–52,
respectively). Additionally, the derivatives coupled to the triazole ring (NQ–Triazole fam-
ily) show a slightly better predicted activity than BNZ. According to this QSAR model,
those amino derivatives with electron-withdrawing substituents (nitro and fluorine, struc-
tures 34–36 and 40–42, respectively) present the less parasitic activity toward T. cruzi
trypomastigotes.

The predicted IC50 values of anti-Leishmania activity (L. amazonensis and L. infantum)
for the 68 naphthoquinone derivatives evaluated with QSAR Equations (2) and (3) are
presented in Figure 5b,c respectively. According to the influence value (h*), 63 (93%)
of the 68 naphthoquinone derivatives showed reliable anti-Leishmania activity, and five
molecules (42, 43, 64, 67 and 68) did not show reliable activity. It was found that all
molecules belonging to NQ–Phenazine family, as well as some derivatives of the NQ–
Chloro (structures 1, 20, 24, and 26), and NQ–Amine families (structures 27, 36, 39, 44–47,
50–51), presented a better anti-L. amazonensis effect than the reference drugs Miltefosine
and Glucantime (see Figure 5b), unlike the all of NQ–Triazole derivatives that had lower
results than the reference drugs. According to Equation (3), 51 derivatives presented a
reliable predictive anti-L. infantum activity, while the other 17 molecules were not found
within the influence parameter (0.24). Among the molecules that presented a reliable
activity, the best activity was that of molecule 6 together with several other NQ–Chloro
derivatives (structures 1, 3, 6–7, 9–10, 12, 14–17, and 19–26), one NQ–Phenazine derivative
(structure 56), and four of the NQ–Triazole derivatives (structures 63–65 and 67), all of
which presented better activity than the reference drug. All of the NQ–Amine derivatives
presented lower anti-L. infantum activity than the two reference drugs.

 

Figure 3. hlim values for (a) anti-chagas (Table S5); (b) anti-L. amazonensis (Table S10); (c) anti-L.

infantum (Table S11) activity, and (d) toxicity (Table S15).
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Figure 4. Molecular design of 1,4-naphthoquinone derivatives with potential antiparasitic activity
(chagas and leishmaniasis). (top-left) (NQ–Chlorine family), (top-right) (NQ–Amine family), (bottom-
left) (NQ–Phenazine), and (bottom-right) (NQ–Triazole family).

 

Figure 5. Prediction of anti-chagas (IC50) (Table S6) (a), anti-L. amazonensis (IC50) (b), and anti-L.

infantum (LogIC50) (Table S12) (c) activity, as well as toxicity (LogIC50) (Table S16) (d), for the 68
1,4-naphthoquinone derivatives (x-axis) evaluated using QSAR Equations (1)–(4), respectively. Only
structures with reliable activity, as determined by the influence value (h*), are presented. The predicted
values for anti-L. infantum and toxicity are presented in LogIC50 because of the wide dispersion of
the data.
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The toxicity values (LogIC50) predicted by QSAR Equation (4) for the 68 naphtho-
quinone derivatives are shown in Figure 5d. A total of 64 molecules presented a reliable
predicted activity, while 4 of them (structures 41–42, 53 and 54) were outside of the influence
parameter (h*). Among the 68 molecules evaluated, all of the structures belonging to the
NQ–Phenazine family presented the lowest toxicity values.

2.2. Molecular Docking

Ligand–protein docking simulations were carried out to determine the most effective
binding mode of each of the 68 1,4-naphthoquinone derivatives within the catalytic sites of
the 5 chosen molecular targets (TcTR, TcLαD, LTR, LaR, and LiTA). These macromolecular
receptors were selected due to their relevance in the processes of survival, metabolism,
reproduction, and proliferation of the parasites T. cruzi, L. amazonensis, and L. infantum.
Conformational flexibility was allowed in all rotational bonds of the ligand, while the
protein was used as a rigid structure. The best poses were selected according to the MVD
scoring function, which helped to elucidate the electronic and structural aspects of the
binding mode of the ligands in the active site of each protein.

2.2.1. Docking in Trypanothione Reductase and Lanosterol α-Demethylase Proteins of T. Cruzi

For the TcTR protein a 496 Å3 cavity was used, while for the TcLαD protein, a 481 Å3

cavity was used (Figure S1). The results of the ligand–protein coupling are shown in
Figure 6a,b, where the 68 1,4-naphthoquinone derivatives show a good interaction (from
−128.75 to −79.68 kcal/mol) with the two selected molecular targets. In this study, as the
interaction energy decreases, the affinity of the compounds with the enzyme improves.

α

α

α

− −

 

α

− −

α

Figure 6. Ligand–protein docking energies of 1,4-naphthoquinone derivatives against (a) TcTR and
(b) TcLαD receptors.

As shown in Figure 6a, the triazole-fused naphthoquinone derivatives had better
interaction energy (from −128.75 to −120.03 kcal/mol) with the active site of the TcTR.
Among these, NQ–Triazole structure 64 had the best affinity, presenting 4 hydrogen bonds:
1 with the Asn 340 A residue, another with the Arg 355 A residue, and 1 with the Gly
459 B residue (Figure 7a), with the latter 2 not present in its triazole analogs; as well as
steric interactions with the amino acids His 461, Thr 335, Ile 339, Glu 466, Glu 19, Pro
336, and Ser 470. Chacón et al. [85] also reported that the hydrogen bond interaction
with the Gly 459 residue provided the best affinity energy to the quinoxaline derivative
of the group they evaluated; and reported for this compound the same hydrophobic
interactions. Similarly, the natural substrate co-crystallized in the active site of the TcTR
protein presented interactions with residues Glu 19 A, Gly 459 B, Pro 336 A, Ile 339 A, and
His 461 B [86]. NQ–Triazole 66 presented an energy close to that of molecule 64, and in
addition to the same hydrophobic interactions, it presented unions with the amino acids
Leu 18 A, Tyr 111 A, and Val 54, which are also part of the TcTR-trypanothione union
(Figure 7b). The only hydrogen bond that this derivative presents together with the other
NQ–triazole molecules is with the Ser 15 A residue, which is a solvent-mediated hydrogen
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bond interaction [86]. Note that this interaction occurs only in this series of compounds.
Table S17 in the Supporting Materials shows the interaction energy of each ligand, as well
as the hydrogen bonds with the different amino acid residues of the active site of the TcTR
and TcLαD proteins.

 

(a) (b) 

 

(c) (d) 
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Figure 7. Best poses of derivatives 64 (a) and 66 (b) in the active site of the TcTR protein. Best poses
of derivatives 66 (c) and 68 (d) in the active site of the TcLαD protein.

NQ–Chlorine derivatives 6 (−108.09 kcal/mol), and 17 (−111.59 kcal/mol), as well
as NQ–Amine derivative 43 (−110.87 kcal/mol), also presented high ligand–protein in-
teraction energies. Although these compounds have hydrogen bonds in the TcTR active
site (Figure 7c), the strength of these hydrogen bonds is comparable to those in com-
pounds that have the least favored interaction energies, i.e., NQ–Phenazine structures 57
(−79.68 kcal/mol) and 58 (−81.93 kcal/mol). From the above, it follows that the com-
pounds 6, 17, and 43 achieve their highest affinity and stability through other types of
interactions.

The molecular docking evaluation against the TcLαD protein showed that molecule
66 was again the ligand with the best affinity (−121.60 kcal/mol), followed by molecule
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68 (−121.18 kcal/mol). Both structures belong to the family of triazoles substituted with
fluorine atoms in the terminal aromatic ring, in this case, in the meta and ortho-para positions,
respectively. Derivative 66 presents three hydrogen bonds between the three nitrogen atoms
of the triazole ring with the donor oxygen atom of the Tyr 103 (B) residue; this type of
interaction was also found in the binding site of Fluconazole and Posaconazole with a single
hydrogen bond [87]. Ligand 66 also exhibits hydrophobic interactions with residues Tyr 116
(B), Ala 291 (B), Ala 287 (B), Met 460 (B), Phe 290 (B), Met 106 (B), and Met 40 (B). A capture
the pose of compound 66 at the active site of the TcLαD target is presented in Figure 7c.
Structure 68 presents two hydrogen bonds, the strongest with the iron protoporphyrin IX
enzymatic cofactor (HEM_1450 or Heme) co-crystallized in the amino acid chain B, and
the other with the Tyr 103 residue (B) (Figure 7d), which is consistent with the interactions
reported for this receptor with Fluconazole and Posaconazole [87]. The steric interactions
that stabilize ligand 68, also present in the two azoles mentioned [87], occur with residues
Ala 291 (B), Ala 287 (B), Tyr 116 (B), and Phe 110 (B). Cardoso et al. reported a hydrogen
bond between their furan–naphthoquinones with the Tyr 116 residue in the binding site of
this protein [88]; however, for molecules 66 and 68, the interactions with this residue are of
the steric type. These same authors report cation-π interactions with the Fe of the Heme
group, which were not observed in any 1,4-naphthoquinone derivative tested here.

Other structures that presented favorable interaction energies with the active site of the
TcLαD protein were the NQ–Amine derivatives 32 (−107.97 kcal/mol), 41 (−105.71 kcal/mol),
and 46 (−106.12 kcal/mol), and the NQ–Chlorine derivatives 6 (−113.43 kcal/mol), 14
(−108.92 kcal/mol), 15 (−109.63 kcal/mol), 24 (−107.88 kcal/mol), and 25 (−108.50 kcal/mol).
Among these, the lowest energy was found for the derivative substituted with an ethoxide
group in the meta position of the phenylamino aromatic ring (structure 6), which did not
present hydrogen bond interactions. The other 30 molecules did not present formation of
hydrogen bonds with any amino acid residue of the active site.

2.2.2. Docking in Trypanothione Reductase, Arginase, and Aminotransferase Proteins of
Leismania Genus

The docking evaluation of the 68 1,4-naphptoquinone derivatives in the catalytic sites
of the proteins trypanothione reductase (LTr), arginase (LaA), and aminotransfera (LiAT)
was carried out using cavities of 705, 305, and 1171 Å3, respectively (Figure S2).

The ligand–protein interaction energies for the best pose of each of the 68 derivatives
evaluated are shown in Figure 8. In all cases, the most effective interactions against the
three macromolecular receptors of the Leishmania genus were obtained for derivatives
belonging to the NQ–triazoles. Molecules 65, 66, and 67 showed the best interaction
energies (−158,024, −121,516, and −121,426 kcal/mol) against LTr, LaA, and LiAt active
sites, respectively, while derivative 64 showed the second-best interaction energy (−155,221,
−116,708, and −119,504 kcal/mol) in all three docking studies. Only in the case of the
docking evaluation against the LaA site (Figure 8b) did derivative 17, belonging to the
NQ–Chlorine family, and derivatives 32, 33, 40, 41, and 43 of the NQ–amino family, show a
better affinity interaction than member 63 of the NQ–triazole family.

These results conform with some studies of drugs used to combat parasitic diseases
based on triazoles or azoles. These compounds lead to alterations in the mitochondria
and accumulation of lipid bodies, thus interfering with the biosynthesis of the cell mem-
brane [89], and leading to cell death of the parasite [90,91]. Thus, triazole-substituted
naphthoquinone derivatives have potential antiparasitic activity against Leishmania, since
they have also been shown to be a type of compound tolerable by patients [89].
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Figure 8. Ligand–protein docking energies of 1,4-naphthoquinone derivatives against (a) LTr
(Table S18), (b) LaA (Table S19), and (c) LiAT (Table S20) receptors.

The two best poses adopted within the active site for each docking evaluation are
presented in Figure 9. In the case of the poses of derivatives 64 and 65 against the LTr protein
(Figure 9a,b), both present interactions by hydrogen bonds with the amino acid residues Ser
14, Thr 335, Cys 52, and Lys 60 of LTr. The two cysteine residues (Cys52 and Cys57) present
in the active site form the disulfide bond in the oxidized form of the protein [92], which is a
bond critical in the parasite’s defense mechanism, while the interactions with the residues
Thr 335 and Lys 60 are destined exclusively to the binding domain of FAD [93]. In this
way, the binding of the ligands to these last residues prevents the binding of FAD and its
orientation toward the active site during the reduction, which inhibits the LTr enzyme [93].

The best positions of structures 64 and 66 in the active site of the LaA protein (Fig-
ure 9c,d) presented both interactions by hydrogen bonds with residues Ser 150, Thr 148,
and Val 149. Structure 64 presented hydrogen bonds with residues Gly151 and Asn 152,
while structure 66 formed an interaction with residue Asn 143. In similar studies [94,95],
some flavonoid ligands showed interactions with amino acid residues Ser150, Asn 152,
and Asn153 within the active site, exhibited high in vitro activity against L. amazonensis
cultures, and low toxicity in mammalian cells. Residues Ser150 and Asn143 are involved in
the Mn(II) metal bridge in coordination with the active site of arginase, which is required
to conduct its catalytic activity [95,96]. According to this, molecules 64 and 66 inhibit the
coupling of the metallic bridge, and would be good inhibitors of the arginase protein.
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Figure 9. Best poses of derivatives: 64 (a) and 65 (b) in the active site of the LTr protein; 64 (c) and 66
(d) in the active site of the LaA protein; and 64 (e) and 67 (f) in the active site of the LiAt protein.
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The poses of structures 64 and 67 facing the LiAt receptor are presented in Figure 9e,f.
Both structures present interaction by hydrogen bonds with the residue Tyr 256. It has
been shown that this residue prevents the rotation of the pyridine ring of the pyridoxal
phosphate cofactor until the entrance of the amino acid, avoiding its stability [97].

2.3. ADME Analysis

Theoretical early estimation of ADME properties for the series of 68 1,4-naphthoquinone
derivatives was performed in the free SwissADME web tool [98]. The data of lipophilicity,
solubility, pharmacokinetic properties, and skin permeability parameters are collected in
Table S21.

Figure 10 shows the estimated lipophilicity values of the 68 ligands, expressed as the
logarithm of the octanol–water partition coefficient (Log Po/w). This parameter makes
it possible to determine hydrophobicity, which is a parameter considered in the initial
phases of drug development, and which allows inferring how the compound will behave
in biological fluids and its possible diffusion through biological membranes [77,99]. The
lipophilic results show that the 68 derivatives have a Log p < 5 [100], so according to the
Lipinski Rules, they can be administered orally [101]. NQ–Amine derivative 43 presented
the lowest value (log Po/w = 0.49), that is, it is more hydrophilic than the rest.

 

− − − −
− − − −

− −

Figure 10. Lipophilicity values of the 68 naphthoquinone derivatives.

Figure 11 shows the SWISSADME solubility values (expressed as log S) of the 68
derivatives according to the ESOL (Estimated SOLubility), solubility adapted by Ali et.al.,
and SILICO-IT [102] methods. The ESOL method estimates the solubility in water directly
from the molecular structure, followed by its weight [103]; the Ali method incorporates the
effect of the topological polar surface area [104]; and the SILICO-IT method is calculated
using a fragmented procedure [102]. The solubility (Log S) scales used are insoluble < −10,
poor < −6, moderate < −4, soluble < −2, and high < 0. The calculated solubility data
presented ESOL values of −5.42 < Log S < −3.57, Ali values of −7.04 < Log S < −3.9
and SILICO-IT values of −8.33 < Log S < −4.28, indicating that all 68 compounds have
moderate to poor water solubility.
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Figure 11. Solubility data (in Log S) calculated for the 68 1,4-naphthoquinone derivatives using the
ESOL (blue), Ali-adapted (orange), and SILICO-IT (magenta) methods.

The evaluation of pharmacokinetic parameters of gastrointestinal (GI) absorption,
P-gp substrate, and cytochrome P450 (CYP) inhibition or interaction for all 68 derivatives is
presented in Figure 12.

 

Figure 12. Pharmacokinetic properties calculated for the 68 naphthoquinone derivatives.

The GI barrier has a complex structure given the characteristics of a semi-permeable
membrane, which allows fat-soluble molecules to penetrate it through a diffusion process,
as is the case with most drugs [105]. As Figure 13 shows, passive human gastrointestinal
(GI) absorption data estimate that 97% of the 68 compounds present high absorption in
the digestive tract, while the remaining 3%, corresponding to structures 17 and 43, would
present low intestinal absorption. For its part, P-glycoprotein (PGP) is a permeability
protein that pumps substances out of the body and prevents their absorption, which causes
drug resistance to form [105,106]. It was found that none of the compounds behaved as a
substrate for P-gp; therefore, they could conduct the function without any resistance [107].
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Figure 13. BOILED-Egg (adapted with permission from Ref. [108]) evaluation of gastrointestinal
absorption for the 68 1,4-naphthoquinone derivatives. Molecules inside the oval indicate that they
have GI permeability.

Another form of drug administration is through the skin (transdermal distribution),
which allows the transport of substances through the epidermis. This parameter is related
to the skin permeability coefficient (Kp), whose values indicate that the more negative the
log Kp (with Kp in cm/s), the less permeant the molecule is [109,110]. Figure 14 shows
the skin permeability of the 68 evaluated compounds, where it is evident that the best
candidates to be administered transdermally are NQ–Chloro derivatives; among them, the
best are 25, 26, and 27, while the ligand with the lowest permeability is 43.

 

≤ ≤

− ≤
≤

Figure 14. Skin permeability values in Log Kp (Kp in cm/s) of the 68 derivatives.
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The main enzyme isoforms CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 [98]
are involved in drug metabolism, and inhibitors block their metabolic activity in a dose-
dependent manner. Structure 43 was found to be the only derivative unable to inhibit
CYP1A2, while 13 derivatives (36–38, 40–43, and 54–58), 4 derivatives (35–37, and 57),
and 31 derivatives (11–16, 24–30, 40–43, 55–68) projected a negative inhibitory response of
CYP2C19, CYP2C9, and CYP2D6, respectively. In each of these cases, the activity of the
remaining molecules would be affected by their metabolism, due to their ability to bind to
these enzymes, which may generate adverse effects such as high toxicity [111–113]. None
of the 68 molecules reported the inhibition of CYP3A4.

Based on a similarity to drugs, filters based on Lipinski (Pfizer) [101], Ghose (Am-
gen) [114], Veber (GSK) [115], Egan (Pharmacia) [116], and Muegge (Bayer) [117] rules were
also evaluated, as well as the bioavailability score. These filters qualitatively define the
feasibility of a compound to become an oral drug candidate. The results show that 100% of
the 1,4-naphthoquinone derivatives comply with the Lipinski and Ghose rules, and 98.5%
comply with the Veber and Egan rules. For these last two cases, molecule 43 presented a
violation, caused by a value of TPSA = 163.83 Å2 that is above the established ranges (TPSA
≤ 140 and TPSA ≤ 131.6, respectively). Finally, the Muegge filter indicated that 90% of the
derivatives present valid conditions to become oral drugs. The remaining 10% presented
a violation since their XLOGP value is outside of the allowed range (−2 ≤ XLOGP ≤ 5)
(structures 21–26), while the TPSA value of structure 43 is again above the range settled
down. All compounds had a bioavailability value of 0.55, indicating oral bioavailability
based on Lipinski’s rules. Additionally, it was established that an AB score of 0.55 is
required to be considered a sufficiently absorbable molecule orally [118].

3. Materials and Methods
3.1. QSAR Modelling

3.1.1. In Vitro Anti-Chagas and Anti-Leishmaniasis Data

All of the in vitro data used for constructing of the antiparasitic and toxicity QSAR
models were taken from the literature. For constructing the anti-chagasic activity model,
153 structures derived from naphthoquinone were used, some of which were fused with
triazoles and oxanes, among other heterocycles (Figure A1). All of these derivatives showed
anti-T. cruzi activity, evaluated in vitro under the following experimental conditions. The
stock solutions of the compounds were prepared in DMSO. Strain Y trypomastigotes were
obtained at the peak of parasitemia from albino mice, then isolated through differential
centrifugation, and resuspended in Dulbecco’s Modified Eagle Medium (DME), with a
concentration of 107 parasite cells/mL in the presence of 10% mouse blood. A total of
100 µL of this solution was added to 100 µL of the compound solutions. The cell count was
determined in a Neubauer chamber, and the trypanocidal activity was expressed as IC50,
which corresponds to a concentration that allows the lysis of 50% of the parasites [23–31].

For the QSAR modeling of cutaneous anti-leishmaniasis (L. amazonensis) activity,
60 molecules (Figure A2) containing functional groups such as quinone, triazole, indole,
and amine with high trypanocidal activity reported as IC50 were used. The anti-leishmanial
activity of these structures was evaluated by tests with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium (MTT) bromide. In these bioassays, promastigotes were seeded
in RPMI medium supplemented with 10% FBS, and cultured in a 96-well plate with a
concentration of 10 5 cells/plate at 37 ◦C. After the seeding period, the MTT solution was
added, the formed complex was dissolved in DMSO, the supernatant was removed, and
the cells were incubated under the same seeding conditions in the presence of various
concentrations of the compounds. The concentration that inhibited 50% of parasite growth
was determined as IC50 by linear regression [18,32–39].

For constructing the QSAR model of anti-visceral leishmaniasis (L. infantum) activ-
ity, 90 molecules (Figure A3) derived from quinone, triazole, and indole with activity
reported as IC50 were used. The anti-leishmanial activity evaluation for these molecules
was conducted using incubation in RPMI medium with 12% fetal calf serum (FBS), at a
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concentration of 105 cells/mL, for 48 h at 25 ◦C. After the incubation process, promastigote
growth was estimated by counting the parasites with a Neubauer hemocytometer. The 50%
inhibitory concentration (IC50) was defined as the drug concentration required to inhibit
50% of the parasite growth [40–45].

The QSAR model of toxicity was built from 76 structures (Figure A4) derived from
naphthoquinone, some fused with triazoles, pyrazoles, imidazoles, and aromatic rings,
with experimental data measured according to the following parameters. Mouse fibrob-
lasts (L929) were used and determined by the reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-
diphenyl-2H-tetrazolium bromide (MTT), expressed as IC50 [30,46–51].

3.1.2. Development of Antiprotozoal QSAR Models

All molecules were processed in MDL mol (V2000) format using the ACD/I-Lab
software version 11.0 13 [119]. The calculation of 83,180 fingerprint-type, one-dimensional,
and two-dimensional molecular descriptors was performed in the programs PaDEL-
Descriptor [54], Mold2 [120], QuBiLS-MAS [56], and Fragmentor [121] (all free access).
By using the balanced subsets method, the data sets were divided into calibration, vali-
dation, and test groups, using 70, 15, and 15%, for the anti-chagas activity model, 80%,
10%, and 10% for the anti-leishmanial activity models, and 70, 15, and 15% for toxicity,
respectively. Subsequently, the Replacement Method (RM) [122], which is available in the
MatLab programming language, was applied to explore the set of descriptors. RM is an
unequivocal algorithm based on multivariable linear regression (MLR), which searches for
the best subsets of descriptors in large databases. By using the RM algorithm, multivariable
regression models of up to seven descriptors were generated for each model, which was
carried out in the MATLAB software version 7.12.0 [123].

3.1.3. Validation of the QSAR Models

Validation of all QSAR models was performed through both internal and external
validation processes. Internal validation was performed using the LOO (Leave-One-Out)
validation method. For the internal validation of each QSAR model, the statistical param-
eters R2 LOO (square correlation coefficient of LOO) and SLOO (standard deviation of
LOO) were determined. Additionally, the statistical robustness of the models was deter-
mined using randomization Y [124,125]. For its part, the external validation verified the
predictive capacity, applying the methodology proposed by Golbraikh and Tropsha [78],
where the correlation coefficients between the predicted and experimental properties of the
compounds in the test set are estimated.

3.2. Molecular Docking

The structures of the macromolecular targets used for molecular docking were ex-
tracted from the Protein Data Bank (PDB). In the case of T. cruzi, trypanothione reductase
(TcTR) [86] and lanosterol α-demethylase (TcLαD) [87] proteins were selected, with 1BZL
and 2WUZ coding and a resolution of 2.40 Å and 2.45 Å, respectively. For the Leishmania
genus in general, the protein trypanothione reductase (LTR) [126,127] with code 2JK6 and
a resolution of 2.95 Å was selected, while for the strains L. amazonensis and L. infantum
arginase (LaA) [128] and tyrosine aminotransferase (LiTA) [129] were selected, with codes
4IU0 and 4IX8 and resolutions of 1.77 Å and 2.35 Å, respectively.

Before the molecular docking simulations, the proteins were prepared in the Molegro
Virtual Docker (MVD) program [130], where bond assignment, bond order, hybridization,
missing hydrogens, charge assignment, and atom tripos were performed. To validate the
software and optimize the molecular docking parameters, a re-docking procedure of the
co-crystallized ligands was carried out. For each protein, a cavity was created by delimiting
the coupling space of the co-crystallized ligand, and the best pose (Figure 15) was selected
based on the lowest RMSD value (<2) [131].
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α α

 

α
Figure 15. Re-coupling, white: co-crystallized substrate. Red: Substrate coupled using MVD. (a) TcTR;
(b) TcLαD, (c) LiTA, (d) LaA, and (e) LTR.

For the preparation of the ligands, the structures of the naphthoquinone derivatives
(68) were built in the ACD-Labs program, and saved as .mol files. These structures were
then optimized in the Gaussian 09W program [132] by simultaneously relaxing all geometric
parameters to the theoretical level B3LYP/6–31 + G(d).

For the molecular docking simulations, 5 poses (conformation and orientation) were
generated for each of the 68 ligands evaluated, using the search algorithm MolDock Op-
timizer, which was executed with 10 repetitions. The data analysis was performed in
the Molegro Virtual Modeller (MVM) program, where the best pose in each case was se-
lected, and the data were plotted based on the energy calculated using the scoring function
(Equation (5)).

Escore = Einter + Eintra (5)

where Einter is the intermolecular interaction energy of the ligand–protein, and the Eintra is
the internal energy of the ligand. The Einter is shown in Equation (6):

Einter = ∑i∈ligand ∑i∈ligand

[

EPLP

(

rij

)]

+ 332.0
qiqj

4r2
ij

(6)

where the EPLP term represents the PLP (piecewise linear potential) energy, which consists
of the use of two different parameter sets, described as follows: one for approximation of
the steric term (van der Waals) among atoms, and the other potential for the hydrogen
binding. The second term (332.0

qiqj

4r2
ij

) is related to the electrostatic interactions among

overloaded atoms. It is a Coulomb potential with a dielectric constant dependent on the
distance (D(r) = 4r). The numerical value of 332.0 is responsible for the electrostatic energy
unit to be given in kilocalories per mol. The qi and qj terms represent the charges of the
atoms i and j, respectively. The rij term indicates the interatomic distance between the
atoms i and j [133].

The Eintra is shown in Equation (7).

Einter = ∑i∈ligand ∑i∈ligand

[

EPLP

(

rij

)]

+ ∑ f lexible bonds
A[1 − cos(m.θ − θ0)] + EClash (7)

The first part of the equation (double summation) is among all pairs of atoms in the
ligand, taking off those which are connected by two bonds. The second term characterizes
the torsional energy, where θ is the torsional angle of the bond and θ0 is its corresponding
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value in the equilibrium. The average of the torsional energy bond contribution is used
if several torsions could be determined. The last term, Eclash, assigns a penalty of 1.000 if
the distance between two heavy atoms (more than two bonds apart) is shorter than 2.0
Å, not considering infeasible ligand conformations [134]. The docking search algorithm
that is applied in the MVD program considers an evolutionary algorithm, the interactive
optimization techniques which are inspired by Darwinian evolution theory, and a new
hybrid search algorithm called guided differential evolution. This hybrid combines the
differential evolution optimization technique with a cavity prediction algorithm during the
search process, thereby allowing for fast and accurate identification of potential binding
modes (poses) [133–135].

3.3. ADME Analysis

The ADME study was conducted using the SWISSADME web tool of the Swiss
Institute of Bioinformatics [98]. This free web tool allows you to calculate properties,
such as lipophilicity, water solubility, pharmacokinetics, and drug similarity, based on the
structure or SMILE of the molecule.

4. Conclusions

A total of four QSAR models based on naphthoquinone derivative structures were
developed and validated, three of them for antiprotozoal activity against T. cruzi, L. amazo-
nensis, and L. infantum, and one for toxicity prediction. All QSAR models were built using
in vitro inhibitory concentrations (IC50) which were previously reported. The anti-T. cruzi
model was developed based on 153 molecules, the anti-L. amazonensis used 60 molecules,
the anti-L. infantum model used 90 structures, and the toxicity model was built with 76.
According to the anti-T. cruzi QSAR model, the anti-chagasic activity is favored by the
refractivity, electronegativity, and polarizability of the molecules. These characteristics
possibly give them a better binding capacity and inhibition of essential macromolecules
in the metabolism of the parasite. Additionally, it was found that the presence of aro-
matic fragments in these structures increases their antiparasitic activity. Of the proposed
molecules, structures 61 and 62, belonging to the derivatives fused with phenazine, and
24, 25, and 54, which are phenylamino derivatives, presented a better activity against T.
cruzi predicted by the QSAR model compared to that of the reference drug. The QSAR
anti-L. amazonensis predicts that molecules with less symmetry and with the presence of
secondary and tertiary carbons will be more active. Thus, phenazines 62, 60, 59, 61, 58,
and 57 showed a predicted potential activity against L. amazonensis, as well as derivatives
56, 27, and 26 of the phenylamine family. A total of 22 structures showed better predicted
activity than Miltefosine, and 37 demonstrated better results than Glucantime. According
to the anti-L. infantum QSAR model, the activity is a function of LogP, which is an essential
characteristic for ligands to be considered drugs, since it gives them the ability to permeate
biological membranes. Similarly, the activity increases with PSA, which is related to the
penetration of the blood–brain barrier and its intestinal absorption. The derivatives with
the best predicted anti-L. infantum activity were 6, 15, 7, 14, and 16, which belong to the
phenylamino family. Additionally, it is highlighted that 23 molecules were more active
than the reference drugs (Miltefosine and Glucantime).

According to the results of molecular docking, all the evaluated compounds present
very favorable interaction energies with the selected receptors, which are essential in the
metabolism of both T. cruzi and Leishmania. In the TcTR protein, the derivatives fused with
triazole stand out. The best of these was structure 64, which, unlike its analogs, features two
hydrogen bonds between the triazole ring and the Gly 459 residue. Similarly, the triazole
derivatives presented the best interaction energies for the TcLαD protein. The best of them
was structure 66. This derivative presents three interactions of hydrogen bonds between
the triazole ring and the Tyr 103 residue, which is a fundamental residue in the active
site of said receptor. The triazole derivatives 65, 66, and 67 presented the best interaction
affinities against the catalytic sites of all leishmania proteins evaluated (Trypanothione
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reductase, Arginase, and Tyrosine Aminotransferase). These types of derivatives have
a wide variety of biological activities, and according to our results, they are considered
potent inhibitors of macromolecular targets. Ligands belonging to this type of molecules
are currently used as active principles of antiparasitic drugs because they generate cell
deformation and alterations in the mitochondria, thus interfering with the biosynthesis of
the parasite’s cell membrane, causing cell death.

The results of ADME showed that the 68 evaluated compounds met the requirements
to be administered orally. ADME calculations included lipophilicity, solubility, pharma-
cokinetics, and drug-likeness.
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Appendix A

(69) R1= OH, R2= -CH2CH=C(CH3)2; (137) R2= Cl, 

R1= H; (138) R1= OH, R2= -CH2NH-C5H10; (139) 

R1=O H, R2= -CH2-pirrolidina; (140) R1=OH, 

R2=-CH2NHC(CH3)2CHOH; (141) R1=OH, R2= 

-CH2N(CH2CH2CH3); (142) R1= N3,  R2= H; (158) 

R1= OH,  R2= -CH=C(CH3)2; (175) R1= H,  R2= H; 

(176) R1= CH3,  R2= H; (177) R1= OH,  R2= H; 

(178) R1= -OCOCH3,  R2= H; (179) R1= Br,  R2= H; 

(180)R1=Cl, R2=Cl; (210)R1=OH, R2=-CH2CH=CH2; 

(219)R1=OCH3,R2=-CH2CH=C(CH3)2;(220)R1=OCH3

R2= -CH2CH=C(CH3)2; (221) R1= -OCH2CH=CH2,  

R2=H;

O

O

R2

R1

(100) R1=I,Rn= H;(101) R1=I, R4=I,Rn= H; (102) R3= I, 

R4= OH, Rn= H; (103) R2=I, R3=I, Rn= H; (104) R3=I, 

R4=OH, R5=CH3, Rn= H; (105) R1=I, R4= OCH3, Rn=H; 

(106)R1=I, R4= OCH3, Rn=H; (107) R3=I, R4= OCH3, 

Rn=H; (108) R3=I, R4= OCH3; R5=CH3, Rn=H, (109) 

R1=I, R2= OCH3,  Rn= H; (110) R3=I, R2= OCH3; R3= 

OCH3, Rn= H; (111) R1=I, R3=CH3, Rn=H; (112) R3=I, 

R4=NH2, Rn=H; (113) R1=I ,R4= -COOCH3, Rn= H; 

(114) R1=I, R6=Br, Rn=H; (115) R1=I, R5=Br, R6=Br, 

Rn=H; (116) R1=I, R5= Cl, R6=Cl, Rn= H; (117) R5=I,  

Rn= H, (118) R1=Ph, Rn= H; (119) R1= 

-CH=CH-COOCH2CH3, Rn=H; (120) R1= -CH=CH-Ph, 

Rn=H;(121) R1= -CC-Ph,Rn= H;(181) R1= H,Rn=H; 

(182) R1=OCOCH3, Rn= H; (183) R1= OCH3,Rn= 

H;(184) R1= OH, R6= Br, Rn= H; (185) R1= OCOCH3, 

R6=Br, Rn=H; (186) R1=OCH3, R6=Br, Rn=H; (187) 

R1=OH, R5= Br, Rn= H; (188) R1= 

-OCOCH3,R5=Br,Rn= H; (189) R1=-OCH3,R5=Br, 

Rn=H; (190) R1=OH, R6= CH3, Rn= H.

R1 O

O

R2

R3

R4

R6

R5

(122)R1=Ph, R2=H; (123) R1=4-Cl-Ph,R2=H; (124) 

R1=4-CH3-Ph, R2=H; (125) R1=4-OCH3-Ph, R2=H; 

(126) R1=4-F-Ph, R2=H;(127) R1=4-OCH3, R2=H; 

(128) R1=4-CH3, R2=H; (129) R1=(2-CH3- 4-CH3)-Ph, 

R2=H;(130)R1=4-CH3-Ph,R2=Ph;(131)R1= ciclopentil, 

R2=H;(132)R1=ciclopentil-2-eno,R2=H;(133)R1=oxano

,R2=H;(134)R1=1-OCH2CH3-oxano,R2=H; (135) R1= 

-OCH3-oxano; R2=H; (136) R1= CH3, R2=H.

R1O

O

O R2

(191) 2CH3; (193) 4-Br-Ph-; (195) 4-Cl-Ph-, 

(196)4-CH3-Ph-, (198) 4-OCH3-Ph-, (199) H, 

(201) CH3, Ph-

O

OH

O

O

R

(153) F; (154) Br; (155) NO2; (156) OCH3; 

(157) CH3

O

O

O

CH3
CH3

N

N
N

R

(194) 4-Br-Ph, (197) 4-CH3-Ph, (200) Ph.

O

O

O

CH3CH3

Br

N

N
N

I

(218)

(211)

O

O

O

N

N
N

R

(212) C6H12; (213) OH, C6H12; (214) 1-oxano;

(215) ciclohexeno; (216) (CH2)5CH3; (217) Ph

O

O

O

I

(70) R1=H, R2=N3; (192) R1=OH, R2=H;(106) 

R1=H, R2=Ph-NH-; (202) R1=H,R2=3-Cl-Ph-NH-;

(203)R1=H,R2=4-I-Ph-NH-;(204)R1=H,R2=NH-4-

F-Ph;(205) R1=H, R2=3-Br-Ph-NH-: (206) R1=H, 

R2=4-Br-Ph-NH-; (207) R1=H, R2=3-F-Ph-NH- .

O

O

O

R2

R1

CH3

CH3

O

O

O

O
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(99) R=-CH2CH=C(CH3)2

O

N3

O

O

(71)

N

O

N

N

O

O
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Br

(95) H, (96) Br, (97) F, (98) -OCH3

O

O

O

NH

R

R=(83)(2,4-diBr)-Ph-,(84)(3,4-diCl)-Ph-,(85)(2-NO2-4-O

CH3)-Ph-,(86)(2-CH3-5-NO2)-Ph-, (87) (3-NO2-4-F)-Ph-, 

(88)2-NO2-Ph-,(165)(2-CH3-5-CH3)-Ph-,(166) 3-Cl-Ph-, 

(167)3-Br-Ph-, (168)3-NO2-Ph-,(169) 4-Cl-Ph, (170) 

4-Br- Ph-,(171) 4-NO2-Ph-, (171) 4-OCH3-Ph-, (173) 

4-F-Ph-, (174) 4-F-Ph-,

O

O

O
R

(74) N3; (89) (2-CH3-4-NO2)NH-; (90) -O-CH(CH3)2; 

(91) -O-CH2CH(CH3)2, (92) -O-C6H11; (164) OH; 

(72) H, (73) OCH3, (143) H; (144) OCH3; (145) Br;  

(146) NO2; (147) CH3

(81) 4-NO2-Ph-; (82) 4-CH3-Ph-; (75) CH2NH-NQ-, 
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Figure A1. Molecules with reported biological activity (IC50) used for the development of the QSAR
anti-T. cruzi.
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Figure A2. Molecules with reported biological activity used for the development of the anti-L.
amazonensis QSAR model.
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Figure A3. Molecules with reported biological activity used for the development of the anti-L.
infantum QSAR model.
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Figure A4. Molecules with reported toxicity in mouse fibroblasts (L929) used for the development of
the QSAR model of toxicity.
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Abstract: Forty-four bicyclo ((aryl) methyl) benzamides, acting as glycine transporter type 1 (GlyT1)
inhibitors, are developed using molecular modeling techniques. QSAR models generated by multiple
linear and non-linear regressions affirm that the biological inhibitory activity against the schizophrenia
disease is strongly and significantly correlated with physicochemical, geometrical and topological
descriptors, in particular: Hydrogen bond donor, polarizability, surface tension, stretch and torsion
energies and topological diameter. According to in silico ADMET properties, the most active ligands
(L6, L9, L30, L31 and L37) are the molecules having the highest probability of penetrating the central
nervous system (CNS), but the molecule 32 has the highest probability of being absorbed by the
gastrointestinal tract. Molecular docking results indicate that Tyr124, Phe43, Phe325, Asp46, Phe319
and Val120 amino acids are the active sites of the dopamine transporter (DAT) membrane protein,
in which the most active ligands can inhibit the glycine transporter type 1 (GlyT1). The results of
molecular dynamics (MD) simulation revealed that all five inhibitors remained stable in the active
sites of the DAT protein during 100 ns, demonstrating their promising role as candidate drugs for the
treatment of schizophrenia.

Keywords: GlyT1; QSAR; schizophrenia; ADMET; molecular docking; DAT; MD

1. Introduction

About 1% of the worldwide population is affected by schizophrenia as a serious neu-
ropsychiatric disease [1]. Despite the current regimens with favorable levels of efficacy and
the great advancement in the treatment of schizophrenia, no antipsychotic medication can
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completely treat the cognitive dysfunction associated with this disorder, because its present
treatments are accompanied by undesirable secondary effects. Therefore, the discovery of
more clinically effective antipsychotic drugs are still necessary [2]. For this goal, the glycine
transporter type 1 (GlyT1) inhibitors approved by the Food and Drug Administration (FDA)
are a key therapeutic development strategy to treat a variety of central nervous system
(CNS) disorders, in particular schizophrenia and cognitive disorders [3,4]. In this regard,
type 1 glycine transporters regulate N-methyl-D-Aspartate (NMDA) receptor function via
modulation of glycine concentration at the glutamatergic synapses, but their deficiency
may affect the higher central nervous system functions [5,6]. In this paper, a systematic
in silico study was performed on 44 GlyT1 inhibitors, which were tested in a locomotor
activity assay (LMA) of the MK801 mouse to model the treatment of positive and negative
symptoms of schizophrenia [4], by means of the following molecular modeling techniques:
first of all, the quantitative structure activity relationships (QSAR) as a technology widely
used in drug discovery, indicating ligands with a high affinity for a given macromolecular
target and optimizing the quantitative linear and non-linear relationship established be-
tween structure and inhibitory activity [7,8]; secondly, in silico ADMET prediction of newly
engineered drugs [9]; and third, the molecular docking study as an approach designed
in computational chemistry to accelerate drug discovery at the early stages through the
detection of typical intermolecular interactions, established between the potent ligands and
the responsible protein target [10]. The last step concerns the molecular dynamics (MD)
simulation as an efficient technique to investigate the dynamic conformational changes of
the selected complexes (active ligands-protein target) [11,12]. In this context, we started our
study with a molecular descriptors calculation for each GlyT1 inhibitor, using a quantum
chemistry computation with the assistance of the molecular modeling method of MM2
type and the density functional theory (DFT) based on B3LYP/6-31 + G(d,p) level, in
order to optimize the molecular configurations of all inhibitors [13]. Then, we reduced the
dimension of the molecular descriptors using a principal component analysis (PCA) based
on the correlation matrix. Next, two QSAR models were developed using multiple linear
regression (MLR) and multiple nonlinear regression (MNLR). The robustness and reliability
of the established QSAR models were examined using the external validation technique,
followed by Y-randomization test, an applicability domain and a cross-validation technique
with the Leave-One-Out process, as one of the decisive steps to assess the confidence of
the developed model’s predictions for a new data set [14,15]. Moreover, we predicted the
molecules having the highest inhibitory activity, based on their adsorption, distribution,
metabolism, excretion and toxicity (ADMET) properties and the conditions mentioned
in the rules of Lipinski, Ghose, Veber and Egan [16]. Additionally, we studied the inter-
molecular interactions established between the more active ligands and the dopamine
transporter (DAT) membrane protein, encoded 4M48 as a crucial target for schizophrenia,
with the assistance of the molecular docking approach [2,17], which was validated using
docking validation protocol [18]. Lastly, we performed the molecular dynamics simulations
to analyze and elaborate the details of interaction and stability of the potent ligands in the
protein targets [19].

2. Results and Discussion
2.1. Pricipal Component Analysis

Principal component analysis (PCA) is one of the most widely applied multivariate
techniques. It is used to reduce the size of the variables into a limited number of principal
components (linear combinations of the original variables) [20]. In this paper, we calculated
40 different descriptors, which were later reduced to 27 descriptors based on the correlation
matrix, since descriptors that are strongly correlated with each other (r pearson > 0.9)
were removed. From this reduced number of variables, we were able to visualize the
projection of the new database on the first two principal components (factorial axes), as
shown in Figure 1, which clearly indicates that molecules 1 and 32 are poorly explained.
Consequently, they are considered as outliers.
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Figure 1. Data visualization on the first two principal components.

2.2. Statistical Database

Although observations 1 and 32 are considered as outliers, the new database will be
represented by a matrix of 27 descriptors and 42 molecules. Using the k-means method, we
randomly divided the database into training and test sets. The first one includes 80% of the
total data (35 molecules) and was taken to develop the QSAR models, while the second
one contains 20% of the total data (7 molecules) and was used to assess the validity of the
developed models [21].

2.3. Multiple Linear Regression

The Quantitative structure-activity relationships (QSAR) have the potential to reduce
the time and effort of molecular screening using mathematical predictive models [22].
One of these models is obtained by the multiple linear regression (MLR) technique, as
a statistical tool for estimating the linear relationship between more than two variables
which have cause-effect relations [23]. Thus, the first QSAR model was applied using
the MLR technique with stepwise selection, on a training set of thirty-five molecules
(N = 35), where the process was repeated more than a thousand times based on statistical
criteria: in particular, the determination and correlation coefficients, provided that they
will be validated in the next stage. Accordingly, the best QSAR model is given by the
following equation:

Log10IC50 = −10,407−0.279 × αe + 0.069 × γ + 0.156 × TE + 1.83 × HBD + 1.716 × SE + 1.029 × TD. (1)

This constructed model shows that the biological activity at the log scale is a quantita-
tive variable affected by the following six descriptors: polarizability (αe), surface tension
(γ), torsion energy (TE), Hydrogen bond donor (HBD), stretch energy (SE) and topolog-
ical diameter (TD), which have been calculated and presented in Table 1. Moreover, the
significance test demonstrates that the slope of each variable has a probability inferior to
5% as shown in Table 2, and so the selected descriptors have a significant weight on the
biological inhibitory activity at a 95% confidence interval. Except the polarizability, all five
molecular descriptors affect positively the biological activity as shown in Figure 2, where
a molecule can be more active if it is less polar and has higher values of surface tension,
torsion and stretch energies, hydrogen bond donor and topological diameter.
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Table 1. The values of selected descriptors for 44 molecules.

N◦ ae γ TE HBD SE TD Log10IC50

2 41.05 40.3 12.9136 1 2.609 11 0.47712126
3 43.9 43.9 12.833 1 3.43 11 1.61278386
4 43.9 43.9 12.2837 1 3.7251 11 0.77815125
5 41.96 44.6 10.5041 1 3.3398 11 1.96378783
6 43.87 50.9 5.8562 1 3.5148 10 0
7 43.11 54.3 10.9678 1 3.5012 10 0.77815125
8 44.29 57.7 10.6827 1 3.31 10 0.47712126
10 43.05 49.2 13.6092 1 3.581 10 2.69372695
11 43.82 51.6 16.8366 1 3.7574 10 2.67577834
12 42.28 53.7 12.0135 1 3.2349 10 1.87506126
13 43.11 54.3 15.9864 1 3.5181 10 2.90794852
14 43.87 50.9 12.0765 1 3.6081 10 1.36172784
15 43.11 54.3 15.211 1 3.5393 10 1.65321251
17 45.28 46.3 11.4242 1 4.1245 10 0.77815125
18 46.55 43.3 11.1295 1 4.5556 11 2.53147892
19 45.81 43.2 11.5098 1 4.5198 11 2.71096312
20 46.95 45.7 12.3354 1 3.7527 11 0.95424251
21 45.81 43.2 11.5767 1 3.7965 11 1.462398
22 46.55 43.3 12.3649 1 4.0183 12 2.24797327
23 45.81 43.2 11.5647 1 3.7752 12 3.23121465
24 46.55 43.3 12.3272 1 3.9781 13 3.24526584
25 41.5 38.4 18.5378 1 3.5883 11 3.52659771
26 40.85 43.8 14.1068 1 3.3294 11 1.8920946
29 43.14 46.6 17.5352 1 3.5318 11 2.95616843
30 42.67 45.3 11.6496 1 3.2701 10 0
31 43.05 49.2 15.9695 1 3.5677 10 0
33 52.92 45 13.4879 1 3.9397 14 2.97589114
34 41.86 48.5 7.3285 2 2.3774 10 0.47712126
37 45.11 46 10.9824 1 3.3677 10 0
38 44.35 48.9 16.6401 1 3.3293 10 1
40 39.53 51.1 7.6774 2 2.2337 10 1.76342799
41 38.77 54.5 13.3491 2 2.2124 10 1.65321251
42 40.15 49.3 8.3209 1 3.3316 10 0.84509804
43 41.98 47.7 10.8208 1 3.622 10 0.47712126
44 38.2 52.2 5.2114 2 2.8062 10 2.22530928
1 * 45.25 41.3 39.2347 1 2.6809 13 1.56820172
9 * 43.81 46.2 10.3084 1 3.6309 10 0

16 * 43.6 55.2 8.802 2 3.3159 10 0.90308999
27 * 43.14 46.6 18.0072 1 3.6639 11 1.25527251
28 * 43.14 46.6 18.0105 1 3.682 11 2.32428246
32 * 53.84 50.1 58.0893 1 5.1759 14 0
35 * 41.48 47.3 9.0526 1 2.9116 10 0.47712126
36 * 43.31 45.9 9.4978 1 3.0768 10 0.60205999
39 * 44.32 54.8 9.9783 1 2.9 10 0.30103

* indicates test set molecules.

Table 2. Significance test of the slopes.

Source Value Standard Deviation t Pr > |t| Lower Terminal (95%) Higher Terminal (95%)

Constante −10.408 3.172 −3.281 0.003 −16.905 −3.910
αe −0.279 0.079 −3.550 0.001 −0.441 −0.118
γ 0.070 0.033 2.101 0.045 0.002 0.138

TE 0.156 0.042 3.731 0.001 0.071 0.242
HBD 1.830 0.571 3.208 0.003 0.661 2.999

SE 1.716 0.387 4.429 0.000 0.922 2.510
TD 1.030 0.208 4.956 <0.0001 0.604 1.455
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Figure 2. Influence degree of the descriptors on the biological activity.

Additionally, the null hypothesis (H0) postulated by the Fisher statistical test is re-
jected, because the calculated Fisher value (F = 10.325) is so much higher than its critical
value: [F (35,6) = 2.37, p < 0.0001], as presented in the one Anova test (Table 3). Therefore,
the variance between the response (Log10IC50) and the six predictor variables is homoge-
neous. Moreover, the correlation and determination coefficients of R = 0.83 and R2 = 0.69,
respectively, confirm that there is a strong relationship between the descriptors and the
inhibitory activity. Thus, the first QSAR model generated via MLR technique has a good
predictive performance, with a low standard error (RMSE = 0.66).

Table 3. Variance analysis.

Source DDL Total Square Mean Square F Pr > F

Model 6 26.753 4.459 10.325 <0.0001
Error 28 12.092 0.432

Adjusted
total 34 38.846

2.4. Multiple Non-Linear Regression

The multiple non-linear regression (MNLR) technique is applied using a set of adapted
algorithms to generate the quantitative predictive models [24]. In the present study, we
relied on the programmed function of the type:

Y = a0 + ∑
n

i=1

(

ai × Xi + bi × Xi2
)

(2)

As:
Y: is the predicted biological activity (Log10IC50)
Xi: is the explicative variable
a0: is the constant of the QSAR model
ai and bi: are the slopes of each descriptor to one and two degrees, respectively.
Finally, we arrived at the second QSAR model given by the following equation:

Log10IC50 = −19.699 - 0.009 × αe - 0.056 × γ − 0.161 × TE + 1.466 × HBD + 0.5 × SE + 2.693 × TD
−0.002 × αeˆ2 + 0.001 × γˆ2 + 0.013 × TEˆ2 + 0.148 × SEˆ2 - 0.07 × TDˆ2.

(3)
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This mathematical model has a good predictive capacity, justified by a strong non-
linear relationship between the biological activity and the six descriptors, as it is defined by
a good correlation coefficient (R = 0.84) and a good coefficient of determination (R2 = 0.71),
in addition to its minimal mean square error (RMSE = 0.72).

2.5. QSAR Model Validation

2.5.1. Applicability Domain

The applicability domain (AD) of a quantitative structure-activity relationship (QSAR)
model is necessary to verify its reliability on new compounds (test set) that were not
considered during its development [25]. This technique has been evaluated by an analysis
expressed as a Williams diagram (Figure 3), which confirms that the molecules (1 and
32) belonging to the test set are really outliers, because they exceed the warning leverage
(h* = 0.6), where: h* = 3 × K/n and K = p + 1, (p = 6, K = 7, n = 35) as, n: is the number of
training set, and p: is the number of predictor descriptors [26,27]. Next, we noted that the
compound 33 from training test is not an outlier because it does not exceed the critical
leverage (h*). Therefore, except for molecules (1 and 32), all the others are well explained
because they have in addition a normalized residual included in the 3 times standard
deviation interval. Consequently, the 42 remaining molecules are tested in the applicability
domain and the QSAR model was predicted correctly.

Y = a0 +  (ai × Xi + bi × Xiଶ) ୀଵ

− α ɣ −
− α ɣ

33
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-20

-15

-10

-5

0

5

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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h*

Figure 3. William’s diagram of the MLR model established by Equation (1). 1 and 32 are outliers in
the test set and 33 is a non-aberrant molecule in the training test.

2.5.2. External Validation

To assess the accuracy of the QSAR predictive model and guarantee its generalizability,
it is absolutely needed to validate it on new molecules included in the test set, before its
application in clinical practice [28]. Based on a training test (35 molecules), we tested the
seven new molecules from the test set and got the results presented in Table 4.

Table 4. External validation results of the MLR and MNLR models.

Molecule Number Observed Log10IC50 Predicted Log10IC50(MLR) Predicted Log10IC50(MNLR)

9 * 0.000 0.545 0.380
16 * 0.903 2.285 2.134
27 * 1.255 3.051 3.342
28 * 2.324 3.083 3.372
35 * 0.477 −0.158 −0.164
36 * 0.602 −0.414 −0.429
39 * 0.301 −0.304 −0.046

* Indicates test set molecules.
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The results mentioned in Figure 4 indicate that the MLR QSAR model is given by an
external validation correlation coefficient (R2ext = 0.63), and the results noted in Figure 5
indicate that the MNLR QSAR model is characterized by an external validation correlation
coefficient of R2ext = 0.68. According to the Alexander Golbraikh and Alexander Tropsha
theory, a QSAR model is externally validated if the correlation coefficient of its external
validation is greater than 0.6. Therefore, the mathematical models developed with the help
of MLR and MNLR techniques are externally validated.

− −
− −
− −

 

Figure 4. Correlation between the observed and predicted activities using MLR technique.

− −
− −
− −

 

Figure 5. Correlation between the observed and predicted activities using MNLR technique.

2.5.3. Internal Validation

To validate internally the QSAR model, we applied the cross-validation technique
with the leave-one-out procedure (CVLOO), so that each observation is tested exactly once,
by executing a new model each run on thirty-four compounds (N-1 = 34) and predicting the
biological activity of the removed sample, as shown in Table 5. This technique is based on
the calculation of the quadratic coefficient of cross validation (Q2cv), which is expressed in

the following equation [29,30]: Q2cv = 1 − ∑
n
i (Ypred−Yobs) 2

∑
n
i (Yobs−Ymean) 2 (4) AS: Ypred: is the predicted

activity value, Yobs: is the observed activity value, Ymean: is the mean of the observed
activity values. A high value of Q2cv = 0.57 (superior than 0.5) signifies that the established
model is reliable, robust and has better internal predictivity.
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Table 5. Observed and predicted activity values from the QSAR models.

Molecules Number Observed Log10IC50 Predicted Log10IC50 (MLR) Predicted Log10IC50 (MNLR) Predicted Log10IC50 (CV)

2 0.47712126 0.588 0.679 0.664
3 1.61278386 1.439 1.415 1.428
4 0.77815125 1.860 1.790 1.922
5 1.96378783 1.511 1.464 1.441
6 0 −0.040 0.405 −0.053
7 0.77815125 1.186 1.157 1.245
8 0.47712126 0.721 0.933 0.801
10 2.69372695 1.397 1.195 1.321
11 2.67577834 2.157 2.240 2.057
12 1.87506126 1.083 1.018 0.970
13 2.90794852 2.000 2.081 1.827
14 1.36172784 1.093 0.954 1.075
15 1.65321251 1.915 1.933 1.959
17 0.77815125 1.163 0.982 1.247
18 2.53147892 2.322 2.392 2.250
19 2.71096312 2.520 2.548 2.458
20 0.95424251 1.189 1.245 1.217
21 1.462398 1.289 1.302 1.272
22 2.24797327 2.623 2.680 2.667
23 3.23121465 2.281 2.338 2.174
24 3.24526584 3.578 3.538 3.710
25 3.52659771 2.891 3.183 2.562
26 1.8920946 2.311 2.171 2.396
29 2.95616843 2.751 3.000 2.717
30 0 0.391 0.176 0.443
31 0 1.744 1.675 1.934
33 2.97589114 3.062 2.907 3.204
34 0.47712126 0.463 0.555 0.454
37 0 −0.178 −0.276 −0.228
38 1 1.056 1.151 1.068
40 1.76342799 1.104 1.136 0.867
41 1.65321251 2.404 2.199 2.852
42 0.84509804 0.959 0.855 0.993
43 0.47712126 1.226 0.961 1.294

2.5.4. Validation Using Y-Randomisation Test

The statistical study of Alexander Golbraikh and Alexander Tropsha confirms that
the cross-validation technique is necessary but not sufficient, as the internal predictive
accuracy of the cross-validation procedure tends to be overestimated and the high value
of the quadratic coefficient may be the result of chance correlation. For this reason, the
Y-randomisation test is necessary [31]. Using java Platform SE binary, we tested the QSAR
model quality by running one hundred randomizations, as presented in Table 6. The results
of the Y-randomisation test demonstrate that the (cR2p = 0.602) criteria is superior than 0.5;
moreover, the R, R2 and R2cv values of the original model are much better than the values
obtained by 100 randomizations. Consequently, the biological activity values predicted by
the original model are not due to chance.

Table 6. Y-randomization test results.

Model R Rˆ2 Qˆ2 Model R Rˆ2 Qˆ2

Original 0.829884 0.688707 0.572045 Random 51 0.206983 0.042842 −0.46272
Random 1 0.252331 0.063671 −0.50878 Random 52 0.537396 0.288794 −0.15592
Random 2 0.457615 0.209411 −0.17702 Random 53 0.379861 0.144294 −0.43774
Random 3 0.47795 0.228436 −0.41001 Random 54 0.367538 0.135084 −0.29876
Random 4 0.375518 0.141014 −0.34708 Random 55 0.179251 0.032131 −0.54121
Random 5 0.422447 0.178462 −0.39625 Random 56 0.663141 0.439756 0.029755
Random 6 0.480602 0.230979 −0.17775 Random 57 0.36146 0.130653 −0.41471
Random 7 0.306791 0.09412 −0.47744 Random 58 0.445943 0.198865 −0.22915
Random 8 0.354955 0.125993 −0.40713 Random 59 0.417956 0.174687 −0.19669
Random 9 0.209847 0.044036 −0.71484 Random 60 0.204369 0.041767 −0.88175
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Table 6. Cont.

Model R Rˆ2 Qˆ2 Model R Rˆ2 Qˆ2

Random 10 0.395267 0.156236 −0.36218 Random 61 0.557804 0.311145 0.016035
Random 11 0.520928 0.271366 −0.1806 Random 62 0.50639 0.256431 −0.3063
Random 12 0.510412 0.260521 −0.21009 Random 63 0.37293 0.139077 −0.46899
Random 13 0.427634 0.182871 −0.23082 Random 64 0.383643 0.147182 −0.41262
Random 14 0.445148 0.198156 −0.41414 Random 65 0.414428 0.171751 −0.30301
Random 15 0.21278 0.045275 −0.4451 Random 66 0.292763 0.08571 −0.36258
Random 16 0.516892 0.267178 −0.45198 Random 67 0.526141 0.276824 −0.1287
Random 17 0.37686 0.142024 −0.55449 Random 68 0.284657 0.08103 −0.54548
Random 18 0.154692 0.023929 −0.85659 Random 69 0.456042 0.207974 −0.2171
Random 19 0.491084 0.241163 −0.24676 Random 70 0.451139 0.203526 −0.15451
Random 20 0.424795 0.180451 −0.30099 Random 71 0.402163 0.161735 −0.15347
Random 21 0.513699 0.263886 −0.1961 Random 72 0.480122 0.230517 −0.17729
Random 22 0.316251 0.100015 −0.30938 Random 73 0.426294 0.181727 −0.22948
Random 23 0.301949 0.091173 −0.63655 Random 74 0.475859 0.226442 −0.23411
Random 24 0.332628 0.110641 −0.8224 Random 75 0.462608 0.214006 −0.12839
Random 25 0.633727 0.401609 0.166923 Random 76 0.53816 0.289616 −0.33075
Random 26 0.328704 0.108046 −0.48201 Random 77 0.383709 0.147233 −0.30145
Random 27 0.46585 0.217016 −0.16011 Random 78 0.38822 0.150715 −0.41903
Random 28 0.441731 0.195126 −0.25279 Random 79 0.528782 0.279611 −0.29561
Random 29 0.355019 0.126039 −0.31878 Random 80 0.330001 0.1089 −0.41611
Random 30 0.329982 0.108888 −0.42698 Random 81 0.413654 0.171109 −0.22613
Random 31 0.378435 0.143213 −0.25482 Random 82 0.493491 0.243533 −0.12853
Random 32 0.462326 0.213746 −0.13151 Random 83 0.381202 0.145315 −0.49761
Random 33 0.343488 0.117984 −0.53921 Random 84 0.323593 0.104712 −0.30559
Random 34 0.462673 0.214066 −0.27221 Random 85 0.32106 0.103079 −0.33856
Random 35 0.35063 0.122941 −0.3394 Random 86 0.30071 0.090427 −0.55488
Random 36 0.522964 0.273491 −0.09258 Random 87 0.518334 0.26867 −0.1494
Random 37 0.222631 0.049564 −0.75169 Random 88 0.387695 0.150307 −0.45639
Random 38 0.241784 0.058459 −0.47485 Random 89 0.36652 0.134337 −0.30196
Random 39 0.339537 0.115286 −0.4132 Random 90 0.279562 0.078155 −0.47573
Random 40 0.448316 0.200987 −0.47037 Random 91 0.575806 0.331552 −0.03852
Random 41 0.487561 0.237716 −0.34662 Random 92 0.5706 0.325585 0.021398
Random 42 0.369003 0.136164 −0.33599 Random 93 0.381837 0.1458 −0.44739
Random 43 0.400756 0.160605 −0.30621 Random 94 0.385236 0.148406 −0.6547
Random 44 0.343595 0.118058 −0.42487 Random 95 0.251773 0.06339 −0.49809
Random 45 0.390289 0.152325 −0.27962 Random 96 0.446548 0.199405 −0.47359
Random 46 0.350185 0.12263 −0.22911 Random 97 0.316743 0.100326 −0.95316
Random 47 0.463947 0.215247 −0.27397 Random 98 0.367366 0.134958 −0.3352
Random 48 0.37435 0.140138 −0.27999 Random 99 0.631342 0.398592 0.090509
Random 49 0.452168 0.204456 −0.40118 Random 100 0.56162 0.315417 0.016006
Random 50 0.266881 0.071225 −0.47945

2.5.5. Golbreikh and Tropsha Criteria

The quantitative structure-activity relationship (QSAR) model, defined by the first
Equation (1), satisfies the threshold criteria postulated by Golbraikh and Tropsha theory, as
shown in Table 7.

Table 7. Golbraikh and Tropsha statistical criteria to validate the designed QSAR model.

Parameter Equation Model Score Threshold Comment

R2
R2 = 1 − ∑ (Yobs−Y cal ) 2

∑ (Yobs−Yobs) 2
0.69 >0.6 Accepted

R2adj R2adj = (N−1)R 2−p
N−p−1

0.62 >0.6 Accepted

R2test R2test = 1 − ∑ (Ycal(test)−Y obs(test) ) 2

∑ (Yobs(test)−Yobs(train)) 2
0.63 >0.6 Accepted

Q2cv Q2cv = 1 − ∑ (Ycal−Y obs ) 2

∑ (Yobs−Yobs) 2
0.57 >0.5 Accepted
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Table 7. Cont.

Parameter Equation Model Score Threshold Comment

R2 rand Average of the 100 R2 rand (i) 0.17 <R2 Accepted
Q2cv ‘LOO’ rand Average of the 100 Q2cv ‘LOO‘ rand (i) −0.34 <Q2cv Accepted

cR2p cR2p = R* 2
√

(R2 − ( Average Rrand ) 2) 0.60 >0.5 Accepted

Yobs and Ycalc: refer to the observed and calculated/predicted response values. Yobs and Ycal refer to the mean of
the observed and calculated/predicted response values. N and p refer to the number of data points (compounds)
and descriptors.

2.6. In Silico Pharmacokinetics ADMET Prediction

The most active ligands (L6, L9, L30, L31, L32 and L37), acting as inhibitors of type 1
glycine transporters, were tested based on the rules of Lipinski, Veber, Egan, and Ghose,
and the pharmacokinetic properties (ADMET) [32], which were compared to the obtained
results for nortriptyline as a co-crystallized ligand bound to the dopamine transporter
(DAT) membrane protein encoded 4M48. The results presented in Table 8 indicate that
all molecules respect the rules of Lipinski, Veber, Egan and Ghose except the ligand 32,
because its molar refractivity index exceeds 130 and its Ghose violation number is equal
to 2 (exceed 1). Additionally, the exact predictive model (BOILED-Egg), highly practical
in the context of drug discovery and medicinal chemistry, and based on the calculation of
lipophilicity given by the logarithm of the partition coefficient between n-octanol and water
(Log PO/W) and polarity signaled by the topological polar surface area (TPSA) of small
molecules, clearly shows that the molecule (L32) is the only one that does not belong to the
yellow Egan-egg, as presented in Figure 6. Therefore, the five ligands (L6, L9, L30, L31 and
L37) are the molecules having the highest probability to penetrate the brain. In comparison,
the molecule 32 belonging to the white region of the egg has the highest probability of being
absorbed by the gastrointestinal tract [33], which is why it was an outlier in the previous
QSAR study.

Table 8. Prediction of the physicochemical properties of nortriptyline and more active ligands, based
on Lipinski, Veber, Egan and Ghose violations.

Ligands Number

Physico-Chemical Propities
Lipinski

Violations
Veber

Violations
Egan

Violations
Ghose

Violations
Synthetic

Accessiblity

Molecular Weight
(g/mol)

Molar Refractive
Index

Rotatable
Bonds

Log p
(Octanol/Water)

H-BA H-BD

Rule ≤500 40 ≤ MR ≤ 130 <10 <5 ≤10 <5 ≤1 Yes/No Yes/No Yes/No 0 < S.A < 10

(1) L6 403.34 115.02 5 3.60 2 1 1 Yes Yes Yes 4.24
(2) L9 362.51 114.93 5 3.58 2 1 0 Yes Yes Yes 4.21

(3) L30 366.50 112.17 5 3.75 3 1 0 Yes Yes Yes 4.97
(4) L31 363.50 112.73 5 3.15 3 1 0 Yes Yes Yes 4.28
(5) L32 480.66 140.34 8 3.61 4 1 0 Yes Yes No 5.19
(6) L37 377.52 121.65 6 3.23 3 2 0 Yes Yes Yes 4.47

(7) nortriptyline 265.39 85.74 4 3.24 1 1 1 Yes Yes Yes 3.28

The pharmacokinetic parameters of adsorption, distribution, metabolism, excretion
and toxicity (ADMET) of the most active ligands as presented in Table 9 indicate that the
ligands have a good absorption in the human intestine (IAH so higher than 70%), and a
good distribution, since their human distribution volumes are estimated to be greater than
−0.44 Log L/kg. Their permeability to the blood-brain barrier (BBB) is greater than −1
Log BB, and their permeability to the central nervous system (CNS) outside the interval
(of −2 to −3) Log PS. Thus, they all penetrate the central nervous system (CNS) with the
exception of ligands L32 and L30. In addition, the molecules are all predicted as inhibitors
of cytochrome 2D6 except ligand 32. Consequently, the ligands (L6, L9, L30, L31 and L37)
are designed to be agents of the central nervous system due to the highest probability of
penetrating the blood-brain barrier (BBB).
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Figure 6. BOILED-egg predictive model of the most active ligands.

Table 9. Prediction of ADMET pharmacokinetic properties of nortriptyline and more active ligands.

Ligands Number

Absorption Distribution Metabolism Excretion Toxicity

Intestinal Absorption
(Human) VDss (Human) BBB Permeability CNS Permeability

Substrate Inhibitor

Total Clearance AMES ToxicityCYP

2D6 3A4 1A2 2C19 2C9 2D6 3A4

Numeric (%
Absorbed)

Numeric (Log
L/kg) Numeric (Log BB) Numeric (Log PS) Categorical (Yes/No) Numeric (Log

ml/min/kg)
Categorical
(Yes/No)

(1) L6 91.194 1.431 0.199 −1.06 Yes Yes Yes Yes No Yes Yes 1.058 Not toxic
(2) L9 93.373 1.477 0.223 −1.072 Yes Yes Yes No No Yes No 0.978 Not toxic
(3) L30 93.344 1.242 0.176 −2.055 Yes Yes No No No Yes No 0.883 Not toxic
(4) L31 95.105 1.187 0.048 −1.976 Yes Yes No No No Yes Yes 0.948 Not toxic
(5) L32 94.331 1.038 −0.378 −2.005 No Yes Yes No No No Yes 0.85 Not toxic
(6) L37 92.765 1.814 0.044 −0.657 Yes Yes No No No Yes No 0.905 Not toxic

(7) nortriptyline 98.519 1.688 0.854 −1.287 No Yes Yes No No Yes No 1.077 Not toxic

2.7. Molecular Docking

Molecular docking results are focused on the dopamine transporter (DAT) bound
to the tricyclic antidepressant nortriptyline, as a transmembrane protein that removes
the neurotransmitter dopamine from the synaptic cleft and transports it into the cytosol
of surrounding cells. The crystal structure of this receptor is extracted using the X-ray
diffraction method at a resolution of 2.96 Å taken from the protein data base (PDB) [34–36].
In this part of the research, the molecular docking process is started for the following most
active molecules (L6, L9, L30, L31 and L37) to predict the type of Intermolecular interactions
established with the protein encoded 4M48, compared to the established interactions with
the co-crystallized ligand (nortriptyline) pictured in Figure 7, which indicate that Phe43A,
Phe325A and Tyr124A amino acids, are the active sites of the target protein, as sourced
using the ProteinsPlus online server [37].

The results of molecular docking applied on the more active ligands, presented in
Figure 8, show that the ligands L6 and L9 share common molecular interactions as the
chemical bonds of type pi-sigma and Pi-Pi T-shaped established between the benzenic cycle
and (Val120 and Tyr124) amino acids respectively, in addition to two bonds of alkyl type
with Phe325 and Phe43 amino acids. L30 and L31 ligands also form common bonds, like
the hydrogen bond linked to the nitrogen atom, with the amino acid Asp46 at the same
nuclear distance (5.5 Å), in addition to the alkyl bond with bicyclo group and Tyr124 amino
acid. The same type of bond was established between the methyl group and the amino
acid Phe325 at a nuclear distance of 5.5 Å, more than Pi-Pi bonds with Phe43 and Phe319
amino acids. Even the ligand L37 formed an alkyl bond with Tyr124 amino acid, and two
Pi-Pi chemical bonds with Phe325 and Phe319 amino acids. Therefore, we can conclude
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that Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120 amino acids are the active sites of
the dopamine transporter (DAT) membrane protein, in which the most active ligands can
inhibit the glycine transporter type 1 (GlyT1).

 

Figure 7. Experimental pose view of Nortriptyline with the protein’s active sites.

 

Figure 8. Cont.
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Figure 8. Cont.
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              L37

Figure 8. 2D and 3D visualization of intermolecular interactions between DAT (PDB code: 4M48)
and the more active ligands (L6, L9, L30, L31 and L37), with binding energies of −10.74 kcal/mol,
−10.22 kcal/mol, −8.46 kcal/mol, −8.78 kcal/mol and −8.59 kcal/mol, respectively.

2.8. Docking Validation Protocol

The efficiency of the molecular docking algorithms was tested using the re-docking
methodology, which is based on the superposition of the docked ligand on the protein-
bound ligand, as shown in Figure 9. The superposition result indicates a root mean square
deviation smaller than 2 (RMSD = 0.022 Å), which explains an exact pose prediction.
Additionally, 2D and 3D visualization (Figure 10) of the intermolecular interaction between
the docked nortriptyline and the protein target indicates that the chemical bonds formed
with Phe43A and Tyr124A amino acids are the same as those observed experimentally.
Thus, the molecular docking protocol is successfully validated [18].
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−

Figure 9. Re-docking pose with RMSD equal to 0.022 Å (original nortriptyline of cyan color, and
docked nortriptyline of green color).

 

−Figure 10. 2D (a) and 3D (b) visualization of intermolecular interaction between the docked nor-
triptyline and the protein target (binding energy of −9.11 kcal/mol).

2.9. Molecular Dynamics Simulations

The most active ligands (L6, L9, L30, L31 and L37) were chosen for the molecular
dynamic’s simulation during 100 ns, to examine their stability toward DAT protein, where
the conformational changes of one of these ligands are presented in Figure 11, and the
others were presented in Figure S1.

The dynamic changes of conformation for (L9-protein) complex shown in Figure 11,
indicate that the simulation is well-equilibrated, as the fluctuations of the root mean
square deviation (RMSD) of the protein (left Y-axis) are around the thermal mean structure
throughout the simulation time (100 ns), because the changes of the order of 1–3 Å are
perfectly acceptable for small globular proteins. Moreover, the RMSD evolution of the
heavy atoms of the ligand (right Y-axis) shows its stability with respect to the protein,
when the protein-ligand complex is first aligned on the protein backbone of the reference,
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because the observed values are significantly smaller than the RMSD of the protein, and so
the ligand did not diffuse away from its initial binding site.

 

− −

Figure 11. RMSD and RMSF graphs for the ligand 9 complexed with the dopamine transporter
membrane protein during 100 ns.

The root mean square fluctuation (RMSF) values are also computed to examine the
impact of the ligand binding on the internal dynamics of the target protein during 100 ns,
where the tails (N- and C-terminal) fluctuate more than any other part of the protein and
the secondary structure elements like alpha helices and beta strands are usually more rigid
than the unstructured part of the protein; for this reason, they fluctuate less than the loop
regions. Except for a single fluctuation of 3.2 Å, detected in the loop region of residue 390,
all fluctuations were less than 3 Å, indicating the binding strength between the ligand 9
and the DAT protein, and no significant change in the protein conformation resulting from
ligand binding.

Additionally, the radius of gyration (r Gyr) values fluctuated in a small interval from
3.45 to 3.76 Å until the end of the simulation, as shown in Figure 12, indicating that there
are just some changes in the compactness of the ligand; thus, the protein has a good
flexibility after its binding with the ligand 9. Moreover, the solvent accessibility of the
protein-ligand 9 complex was evaluated by the solvent accessible surface area (SASA)
analysis, which fluctuated between 0 and 15 Å2 for 100 ns; this graph revealed that the
structure of compound 9 was relatively stable during the simulation time. The polar surface
area (PSA) is a solvent accessible surface area in a molecule contributed only by oxygen and
nitrogen atoms; this parameter varies between 8 and 32 Å2, accompanied by some maximal
and minimal fluctuations during the simulation time. The contributions of this type of
atoms make the ligand relatively unstable. However, the molecular surface area (MolSA)
illustrates the molecular surface calculation with a probe radius of 1.4 Å, equivalent to a
Van der Waals surface, showing only minimal fluctuations.

Lastly, the graph of the total energy presented in Figure 12 shows a minimal variation
about the average −53.8682 kcal.mol−1, which means that the energy of the L9- DAT
protein complex remained in equilibrium throughout the MD simulation.

The dynamic changes of conformation for other complexes are available in the sup-
plementary material (Figure S1). The protein-ligands interactions fluctuate with a root
mean square deviation (RMSD) of 1 to 3 Å along the simulation time (100 ns), except for
the L31-protein complex, which oscillates for the first 20 nanoseconds from 1 to 3 Å, then
destabilizes until 50 ns, and stabilizes again with a deviation 4 Å of about until the end of
the simulation time.
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Figure 12. Rg, MolSA, SASA and PSA during 100 ns of MD simulation, and the variation of total free
energy for the ligand 9 complexed with DAT protein.

Minimal fluctuations have been observed during the established interactions between
the protein and the ligand 6, such as the observed root mean square fluctuations (RMSF) of
3.4 Å, 4.4 Å and 3.9 Å detected in the loop region of 10, 240 and 480 residues, respectively,
in addition to a maximal fluctuation of 5.5 Å recorded in the loop area of residue 380. No
fluctuation was noticed greater than 3 Å for L30-protein and L37-protein complexes. Three
fluctuations have been recorded for L31-protein complex of 3.6 Å, 3.5 Å and 7 Å reported
in the loop zone of 10, 480 and 520 residues, respectively.

Overall, we note that the protein has a good flexibility of binding with L6, L30, L31
and L37 inhibitors, as there are just a few changes in the compactness of the ligand, since
the r Gyr, SASA, MolSA and PSA parameters are varied with minimal fluctuations about
the mean along 100 ns.

Finally, the total energy plots presented in Figure S2 show a minimal variance around
the average energy of the total system, which was in Kcal/mol of −47.7003, −48.8821
−49.5236 and −62.5749 for L30, L31, L37 and L6 inhibitors, respectively, indicating that the
energies of the ligands-protein complexes have remained in equilibrium over the course of
the MD simulation.

We conclude that the molecular dynamics simulations reinforce the previous results
obtained by QSAR and docking studies, since the ligands L6, L9, L30, L31 and L37 are the
most active inhibitors, forming typical static interactions with some amino acids of the
target protein. These interactions form dynamically stable complexes during the 100 ns
of the simulation time, as there is no change in their properties, except for the minimal
fluctuations that were observed.

3. Materials and Methods
3.1. Database

The present study is performed on 44 bicyclo ((aryl) methyl) benzamides as glycine
transporter type 1 (GlyT1) inhibitors, whose biological activities are expressed on a loga-
rithmic decimal scale (log10IC50), as illustrated in Table S1.

3.2. Molecular Descriptors Calculation

To build the quantitative structure-activity relationship (QSAR) models that provide
information on the correlation between activities and structure-based molecular descrip-
tors, we calculated various types of molecular descriptors [38], as shown in Table S2.
Initially, the constitutional descriptors were calculated using the ACD/chemsketch soft-
ware [39]. Subsequently, the thermodynamic and physicochemical descriptors were ex-
tracted using the MM2 technique via the ChemBio3D software [40]. Lastly, the quantum
descriptors are calculated through Gaussian 09 software [41], using the density function
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theory (DFT)/B3LYP [42], combined with the 6-31 + G(d,p) basis set, in order to ensure the
molecules stability and optimize their three-dimensional geometries.

3.3. Statistical Methods

The Quantitative structure-activity relationships (QSARs) are developed with the help
of XLSTAT 2014 software [43], using different statistical methods such as: the principal
component analysis (PCA), multiple linear regression (MLR) and multiple non-linear
regression (MNLR). The principal component analysis method is a very important step that
serves to minimize the molecular descriptor dimension so as to identify the most predictive
variables [44]. This limited number of descriptors is mathematically modeled by the
multiple linear regression (MLR) and multiple non-linear regression (MNLR) techniques.
Therefore, the two obtained QSAR models were generated to predict the linear and non-
linear relationships established between the biological activity of glycine transporter type 1
(GlyT1) inhibitors and their relevant descriptors. For their applicability, these two models
have been evaluated by external and internal validation, as well as the molecules, which
have been tested in the applicability domain [45]. Additionally, the Golbreikh and Tropsha
criteria and the Y-randomization test were used to verify the robustness and predictive
potential of the established QSAR model [31,46].

3.4. Drug Likeness and In Silico Pharmacokinetics ADMET Prediction

To make the drugs applicable in clinical trials, it is necessary to study their absorption,
distribution, metabolism, excretion and toxicity (ADMET) in the human body before
starting the investigation protocols [21,47], respecting some important rules such as those
of Lipinski [48], Veber [49], Ghose [50] and Egan [51,52]. This technique is also applied to
eliminate the compounds with potentially undesirable physiological qualities, taking into
account toxicity and pharmacokinetic properties [53]. For this task, we estimated the drug
similarity and in silico pharmacokinetic properties of the newly selected molecules as GluT1
inhibitory agents, using the online SwissADMET [54] and pkCSM [55] servers, respectively.

3.5. Molecular Docking Modeling

The computational technique of molecular docking is an efficient, fast and powerful
tool for drug discovery [56]. For this project, we uploaded the three-dimensional coordi-
nates of the target protein from the protein data bank (pdb) using the Discovery Studio
2021 (BIOVIA) software package [57]. To improve the performance of the cavity method,
water molecules and suspended ligands bound to the protein were removed and polar
hydrogens were added. Accordingly, the prepared protein was docked with the most
active ligands, previously optimized by the density functional theory (DFT), with the
assistance of AutoDock 4.2 [58]. Moreover, the grid box was centralized on (−42.562 Å,
−0.46 Å, −55.066 Å) with the help of AUTOGRID algorithm, by putting the sizes (80, 80,
80) in their three-dimensional structure, and running 10 genetic algorithms with a total of
25 million trials. Finally, the molecular interactions of the protein-ligand were visualized
using discovery studio 2021 [59].

3.6. Molecular Dynamics

Based on QSAR and molecular docking results, the five best-docked ligands, having
the highest activity, were chosen for the molecular dynamics simulations in order to identify
the molecular recognition between the ligand and the dopamine transporter (DAT) mem-
brane protein. The MD simulations were performed for 100 nanoseconds using Desmond
software, a package of Schrödinger LLC [60]. The first stage in the molecular dynamic’s
simulation of protein-ligand complexes was obtained by docking studies, and preprocessed
using Protein Preparation Maestro, which performs optimization and minimization of
complexes that have been prepared by the System Builder tool using a solvent model with
an orthorhombic box that was chosen as TIP3P (transferable intermolecular interaction
potential 3 points), using the OPLS force field [61]. At 300 K temperature and 1 atm pres-
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sure, the models were made neutral with the addition of water molecules, and counter ions,
such as 0.15 M salt (Na+, Cl−) were added to mimic the physiological conditions. Finally,
the trajectories were saved after every 10 ps for analysis, and the stability of simulations
was evaluated by calculating the root mean square deviation (RMSD) of the protein and
ligand over time. In addition, the root-mean-square fluctuation (RMSF), gyration radius
(Rg), solvent accessible surface area (SASA), molecular surface area (MolSA) and polar
surface area (PSA) were recorded for 100 ns, and the free energies of the inhibitors-protein
interactions were evaluated using MM-GBSA approach [62].

4. Conclusions

A systematic in silico study was applied on 44 bicyclo((aryl)methyl)benzamide deriva-
tives as glycine transporter type 1 (GlyT1) inhibitors to discover effective antipsychotic
candidates for the treatment of schizophrenia. Initially, two QSAR models were devel-
oped using MLR and MNLR techniques and were examined through external and internal
validation, applicability domain (AD), Y-randomization test and Golbreikh and tropsha cri-
teria, indicating a significant effect of hydrogen bond donor, polarizability, surface tension,
stretch and torsion energies and topological diameter on the locomotor activity (LMA).
Subsequently, ADMET in silico pharmacokinetics prediction revealed a favorable profile
of the most active ligands, where L6, L9, L30, L31 and L37 were predicted as non-toxic
inhibitors for 2D6 cytochrome, which respect the rules of Lipinski, Veber, Egan and Ghose,
with an excellent absorption exceeded 91% and highest probability to penetrate the central
nervous system (CNS). In contrast, the ligand L32 as an outlier in the QSAR study has
an unfavorable ADMET profile with the highest probability of being absorbed by the
gastrointestinal tract. Lastly, the obtained results were further strengthened and qualified
using molecular docking and molecular dynamics studies, which confirm that L6, L9,
L30, L31 and L37 react specifically with Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120
amino acids of the dopamine transporter (DAT) membrane protein in a way that blocks
glycine transporter type 1 (GlyT1) forming dynamically stable complexes during 100 ns
of MD simulation time. Therefore, they could be used as therapeutics in medicine to treat
schizophrenia. However, they must be subjected to in vitro and in vivo investigations to
evaluate their efficacy and safety as anti-schizophrenia drugs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15060670/s1, Table S1: The 44 molecules and their biological activities. Figure S1: RMSD
and RMSF graphs for L6, L30, L31, L37 ligands complexed with the dopamine transporter membrane
protein during 100 ns. Figure S2: Rg, MolSA, SASA and PSA during 100 ns of MD simulation, and
the variation of total free energy for L6, L30, L31 and L37 ligands complexed with DAT protein.
Table S2: The calculated molecular descriptors.
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Abstract: Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a
significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in
livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans.
The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral
replication and is thus an appealing drug target because no effective and specific vaccine against
this virus is available. The current study reported the structural elucidation of the RVFV-L protein
by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding
modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular
docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds)
was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption,
Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also per-
formed. Besides, the binding mechanism and stability of identified compounds were confirmed by a
50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations.
Homology modeling determined a stable multi-domain structure of L protein. An analysis of known
L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into
the binding mechanism and reveals key residues of the L protein binding pocket. The screening
results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a
high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and
pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy
analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the
present study determined potential compounds that may aid in the rational design of novel inhibitors
of the RVFV L protein as anti-RVFV drugs.

Keywords: RVFV; RdRp; structural modeling; virtual screening; docking; MD simulation
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1. Introduction

Rift Valley fever is a hemorrhagic ailment caused by the Rift Valley Viral Infection
(RVVI), affecting humans and livestock. Mosquitos are the vectors for this disease. The first
case of RVVI was reported in East Africa’s Rift Valley in Kenya, which made it known as
RVF. In its first instance, a significant population of farmed sheep was killed from 1930 to
1931. Aedex and cules are the two common vectors (mosquitoes) transmitting this virus [1].
Post RVVI, flu-like common symptoms have lasted up to seven days. Although most
human infections are mild, approximately four percent of the cases have been severe and
show symptoms such as Hemorrhagic fever, meningoencephalitis, and ocular type [2].

The virus responsible for this disease is Rift Valley Fever Virus (RVFV), a single-
stranded RNA virus belonging to the Phenuviridae Family and the genus Phlebovirus.
Rift Valley fever (RVF) is caused by RVFV and has a wide range of clinical symptoms. A
mild febrile illness is common in humans and can lead to more severe illnesses such as
encephalitis, hemorrhagic fever, and liver disease. Neurological issues including dizziness,
paralysis, headaches, hallucinations, vertigo, and delirium are also observed [3]. Up to
10% of RVFV-infected humans experience ophthalmologic complications, including retinal
hemorrhaging and photophobia. Sheep, cattle, and goats are more susceptible to RVFV,
with a 20–30% mortality rate in adult ruminants and 70% in young animals. Spontaneous
abortion in infected pregnant animals is alarmingly high, ranging from 40–100 percent [4].

RVF outbreaks are sporadic and linked to meteorological, hydrological, and socioe-
conomic factors. RVF outbreaks have been reported to produce considerable numbers
of infected human cases, which have substantially impacted the healthcare system [5].
According to an analysis by the Center for Disease Control and Prevention (CDC), several
RVF outbreaks have occurred in various countries, resulting in hundreds of thousands
of human illnesses and human casualties [6]. This disease has spread from the African
region to the Arabian to the USA, making it a grave concern to affected regions and the
whole world [7]. Epizootics that occur in livestock frequently precede human epidemics. In
other words, reducing RVVI in animals is expected to break the transmission cycle and help
avoid human sickness [8]. The CDC and the U.S Department of Agriculture (USDA) both
classify RVFV as a select agent because of its ability to cause morbidity and mortality and
its potential use as a bioterrorism agent [4,9]. Unfortunately, there are no FDA-approved
vaccines for humans, but some approved vaccines are available for veterinary use. Similarly,
there are no therapeutics available to treat RVFV, requiring additional research in this area.

As per the structure of RVF, it is a high-molecular-weight, single-stranded, linear
virion (2–2.5 nm in diameter, 200–300 nm in length, and displaying helical symmetry)
enclosed within the ribonucleo-capsid [10]. Three segments of the RVFV genome (S, M, and
L-segments) have previously been described as having three separate open reading frames
(ORFs) coding for three distinct proteins (viral polymerase, L-protein, and S-protein) [11,12].
The L segment, which encodes only one protein, RNA-dependent RNA polymerase (RdRp),
commonly referred to as L protein, is particularly important to our research. The L protein
is involved in genomic replication and viral mRNA transcription. The middle region of
the L protein contains an RdRp domain, which is found in all RNA viral polymerases
and is required for viral RNA production. The RdRp domain retains the six characteris-
tic conserved structural motifs, including PreA/F, A, B, C, D, and E in the central core
region [12–15]. Most of these motifs are located in the palm subdomain and characterize
the active site chamber formation [14]. These host mRNAs are employed as primers for
viral transcription and suppress viral-RNA-induced immune responses [16]. L protein has
an endonuclease domain at its N-terminus that is necessary for cap-snatching, in which
it cleaves 50 m7G caps from host mRNAs [17,18]. Viruses translate and reproduce their
genome in the cell cytoplasm for survival and growth. During the replication, the virus
uses a technique termed cap-snatching, which means taking advantage of two known viral
L protein functions: the capability to bind cap structures and cut off the cellular mRNA
attached to [19].
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The rational drug design process is greatly accelerated by using different computer-
aided drug designing applications for in silico drug screening [20–27]. A virtual screening-
based drug discovery strategy has been identified as one of the most effective ways to
discover and develop new drugs [28]. RVFV L protein was selected for the current study
as a potential target for which no drug has been reported so far. Besides evolutionarily
conserved motifs in the core region, RdRp has channels/tunnels that link the active site
chamber with the exterior and therefore emerge as a potential target for developing anti-
viral inhibitors [29–32], which is evident from the inhibitor design against many deadly
viruses such as Zika virus (ZIKV) [33–36], Japanese encephalitis virus (JEV) [37], West Nile virus
(WNV) [38], Dengue virus (DENV) [39–41], HCV [24,42–44], HIV [45], SARS-CoV-2 [25],
and most of the drugs have been reported against Ebola polymerase L (EBOV) [26]. The
current study aimed to use the virtual screening approach to identify potential RVFV L
protein inhibitors and inhibitory binding modes of known potent inhibitors, followed by
molecular docking analysis to discover novel inhibitors that could be used as potential
leads for RVVI treatment.

2. Results and Discussion
2.1. Protein Structural Analysis

Homology modeling is a well-established technique in modern drug discovery, and
with more advancement in machine learning approaches, it is now possible to build a
homology model with high accuracy even from a template with a low identity. Recent ad-
vances in homology modeling have proven their effectiveness as an alternative [46,47] and
retrospective analysis, and validate the usefulness of homology modeling in SBVS. [48–51].
In the current study, the 3D structure of RVFV L protein was predicted by using the ho-
mology modeling approach via Modeller.v9.11. It was observed that the crystal structure
and cryo-EM structure of severe fever with thrombocytopenia syndrome virus L (SFTSV
L) protein (PDB IDs: 6L42 and 6Y6K) were the best hits based on query coverage and
percentage identity. 6L42 showed a 34.41% sequence identity and a 91% query coverage
during the sequence to structure alignment, while 6Y6K showed a 34.28% sequence identity
and a 91% query coverage against the target sequence (Figure S1). Hence, these models
were considered the best templates for homology modeling. Chain “A” of both templates
were used for downstream structure prediction steps. Studies have suggested that more
than 90% confidence indicates that the core model is precise and correct, deviating 2–4 Å
in RMSD from the native protein structure [52]. Moreover, a good percentage of identity
with maximum coverage between the template and the query sequence indicates a high
level of accuracy in the model. The structural superposition/RMSD of the model with the
templates is depicted in (Figure S2).

Overall, the newly predicted structure showed a pretty stable arrangement of amino-
acid residues; apparently, no structural distortion was observed, and a total of 82 helices,
40 sheets, and 118 coils were detected (Figure 1A). Deep structural analysis suggested that
the computational model of RVFV protein contains seven domains, i.e., the endoN domain
(amino acids 25–205), separated by a linker of span 206–295; the PA-C-like domain from 296
to 762 amino acid; the RdRp core from 763 to 1345 amino acid; the PB2-N-like domain with
residues 1346–1571 span; the arm domain contains two spans 1615–1696 and 1811–1932
that are separated by a blocker motif of 1811–1852 residues; the next domain was CBD with
the residues 1697–1810, and on the C-terminal, a lariat domain (1933–2049 amino acid) was
observed as previously reported [53] (Figure 1B). Some of the RVFV protein model domains
were reported as structurally similar to SFTSV-L (severe fever with thrombocytopaenia
syndrome virus –L protein) [54], which seems evident because these proteins shared the
same values as the Phenuiviridae protein family. The orientation of each domain determines
the functional specificity of protein and facilitates inter-molecular interactions for domain
organization [19,53].
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Figure 1. RVFV L protein structural analysis: (A) Two-dimensional representation of RVFV L
protein showing the helices (blue), sheets (red), and coils (green) information (top to bottom). The
horizontal black bar is representing the length of a protein. (B) Ribbon representation of 3D-model
of RVFV L Protein (residues from 291–1583 are highlighted) with divalent cation, presumed to be
a magnesium ion (circle Mg2+). Each structural component is highlighted with a different color.
(C) Ramachandran plot contains four quadrants. The 1st and 3rd quadrant indicate the allowed
region, while 2nd and 4th show the disallowed region. Blue dots are showing the density of amino
acid residues. (D) Model energy calculation graph showing the local energy estimation of a model.
The X-axis indicates the sequence length, while Y-axis shows the energy values. (E) RMSD of Cα
atoms of the RVFV L protein over a period of 50 ns.

Multiple methods were employed for the validation of the 3D model. The Ramachan-
dran plot indicates that 82.8% of residues were present in the favored region, 15.4%
were present in additional allowed regions, and 0.7% were present in disallowed regions
(Figure 1C). The presence of 82% of residues in the favored region indicates the high
quality of the model. The functional properties of a protein depend mainly on its 3D
structure and these properties were analyzed based on secondary structures. It is beneficial
to identify secondary structure elements and structural motifs when studying the protein
3D structure [55]. Structural components of L protein were analyzed by PDBsum [56];
results showed the presence of multiple structural components such as 18 Beta-hairpins,
84 helices, 1Psi-loops, 40 strands, 155 Beta-turns, 44 Gamma-turns, 1 Beta-alpha-beta-unit,
and 111 helix–helix interactions. Since we detected the 84 helices and 111 helix–helix
interactions, such a high number of helices content determines the high chirality of proteins
and thus provides structural compactness [57]. The distribution of structural components
suggested the potential stability of the newly designed model, which was cross-validated
by MD-simulations in subsequent steps. The lowest energy of a model also determines
its quality, here we have applied the ProsaWeb server [58] to determine the overall local
energy of the RVFV protein model at the amino acid level, results showed that most of the
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amino acids were showing the lowest energy below the threshold (Figure 1D). A 50 ns MD
simulation further evaluated the generated model, and less than a 1.5 Å average RMSD
was found that endorsed the reliability of the predicted RVFV-L protein model. An RMSD
trajectory plot depicted the overall backbone structure stability of RVFV’s core L protein
subdomains (Figure 1E). The backbone Cα-RMSD of RVFV-L fluctuated in the start and
converged afterwards. Protein expansion during the start of the simulation probably led
to a somewhat larger RMSD of model structure to achieve a more stable conformation.
Additionally, the RVFV-L protein homology model was compared with the corresponding
template using TM align [59] to identify the likelihood of a similar structural fold (RdRp
polymerase chamber) as categorized in SCP/CATH. The TM-algin is the protein structural
alignment program for comparing proteins. The TM-align ranked the RVFV-RdRp with
up to an 88% similar fold. Reverse template selection by the profunc server [60] (which
scans auto-generated templates from the query structure against the most representative
structures in PDB using Jess, a fast and accurate 3D-structure search algorithm) also deter-
mined SFTSV L (6L42) as the best hits with an E-value of 0.00E+00 and structural similarity
of 99.9% (Table S1).

2.2. Binding Site Determination

The identification and characterization of binding sites of target proteins using various
in silico methods are of main consideration for structure-based drug design. For binding
site analysis, careful consideration was given to the biological suggestive templates. As
RdRps are encoded by a wide range of viruses and play an important role in the replication
and transcription of viral RNA [61] and have a conserved RdRp core region including the
characteristic conserved finger, palm, and thumb subdomains with conserved 6 structural
motifs (motifs A–F), which are essential for polymerase function [31]. Therefore, more
in-depth information was extracted from other templates (with low identity) that showed
sequence identity in the core region. The overall predicted binding site is diagrammatically
illustrated in Figure 2.

Despite the low sequence identity (<35% identity), the RVFV-L RdRp core (residues
769–1358) displayed characteristic features of the polymerase core domain, which included
the RNA synthesis chamber configured by representative RdRp conserved structural
motifs connected to the exterior by four channels (for template entry and exit, NTP en-
try, and product exit) (Figure 2). The active site chamber of the RVFV-L RdRp core is
formed by conserved RdRp motifs A-F located in the palm domain as reported in other
RNA polymerases, notably in orthobunyavirus polymerases [14,62]. For molecular dock-
ing, the active site residues were further predicted using COACH and 3DLigandSite,
and both servers predicted Arg926, Ile928, Asp991, Lys994, Trp995, Asn996, Gln1084,
Ser1132, Asp1133, Asp1134 and Ser1175, and Phe1191 and Phe1194 as common binding
site residues. Interestingly, the structural superimposition of RdRp core regions of RVFV-L
and SFTSV-L demonstrated these residues to be entirely inside the functionally conserved
structural motifs A-F. These include premotif A (motif F) (919-QQHGGLREI-928), motif
A (991-DARKWN-996) with a conserved divalent cation binding residue Asp991, motif
B (1084-QGILHYTSSLLH-1095), catalytic signature motif C (1132-SDD-1134) located be-
tween two β-strands, motif D (1173-YPSEKST-1179), and motif E (1186-MEYNSEFYF-1194).
To further evaluate the binding site for docking simulations, poliovirus elongation complex
structure (PDB ID: 3OL8) [63] and foot-and-mouth disease virus in complex with RTP
(PDB ID: 2E9R) [64] were superimposed and positions of catalytic divalent cations and
conformation of RTP were analyzed. The superimposition revealed that the position of
divalent cations was in close connection with functionally conserved aspartates of motif C
(Asp1133) and motif A (Asp991) [65,66]. The importance of these aspartates is apparent
from a number of mutational studies that uncovered altered polymerase activity in several
RdRp viruses [63,67–73]. The conservation of core residues in these motifs suggests a con-
served evolutionary link between RNA polymerase viruses and pinpoints the potential of
exploiting the core architecture with other related segmented (−) ssRNA viruses in order to
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predict their structural/functional features even with a low sequence homology [32,74–76].
The docking grid was generated to cover these structural motifs for molecular docking.

 

–

–

–

tween two β

Figure 2. The predicted RVFV-L RdRp active site. (A) The RVFV-L RdRp core (residues 769–1358) is
highlighted in green with conserved RNA synthesis chamber (active site), organized by conserved
structural motifs in distinct colors. The four predicted tunnels are marked with arrows as an entrance
(template and NTP entry) into the active site chamber and exit tunnels (template and product exit).
The arrangement of structurally conserved RdRp motifs are colored magenta, red, golden, khaki,
brown, purple, and cyan for motifs A–F, respectively, and superimposed on SFTSV-L RdRp core
(light orange). (B) The predicted binding site residues are aligned and highlighted through multiple
structure alignment (MSA) in representative motifs. These conserved residues are highlighted
in stick representation accordingly. Superposition of the poliovirus elongation complex structure
(PDB ID: 3OL8) and foot-and-mouth disease virus in complex with RTP (PDB ID: 2E9R) displays
the conformation of RTP (yellow) and positions of the catalytic divalent cations (black spheres).
Viral names in MSA are abbreviated as follows: Influenza A (FluA), B (FluB), and C (FluC) virus
polymerase, Rift valley fever virus (RVFV), and Severe fever with thrombocytopenia syndrome
virus (SFTSV).

2.3. Molecular Docking

Molecular docking is a modeling technique that examines how ligands and receptors
fit together and how enzymes interact with ligands [77,78]. The docking computations
were done three times, and the compound conformations were sorted by binding energy
in kcal/mol. Initially, three known potent inhibitors with distinct chemical structures,
namely, Monensin, Mycophenolic acid, and Ribavirin were docked [79]. Monensin inhibits
host cell entry by blocking endocytic organelles’ acidification [80]. Mycophenolic acid and
Ribavirin act directly by inhibiting the RdRp enzyme or indirectly via the inhibition of
cellular enzymes necessary for the biosynthesis of guanine-nucleotide [81,82]. The docking
grid-box in Autodock Vina was set up to cover the predicted active site residues within the
conserved structural RdRp motifs. As shown in Figure 3, the docked complexes obtained a
similar binding orientation within the active chamber RdRp core. For Monensin, it forms
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hydrogen bonds with the side chains of Arg 672, Asp 990, Asp 1133 (belong to motif C),
and Ala 992 (belong to motif A) residues with a binding energy score of −8.5 kcal/mol
(Figure 3B). Mycophenolic acid forms hydrogen bonds with residues Arg 1197 and Asn
984 having a binding score of −7.0 kcal/mol (Figure 3D), while Ribavirin forms hydrogen
bonds with residues Asp 1134 (belong to motif C), Tyr 757, Ser 1190 (belong to motif E),
Arg 672, Asp 991 (a conserved divalent cation binding residue), and Asp 1133 (functionally
conserved aspartates of motif C) having a binding score of −6.7 kcal/mol (Figure 3F).
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Figure 3. Binding modes and interaction mechanisms of known L protein inhibitors. Close-up
view into 3D binding mode of (A) Monensin, (C) Mycophenolic acid, and (E) Ribavirin. The main
residues that involve in the formation of the active site within the structurally conserved RdRp motifs
that are show in in stickes. 2D interaction analysis of (B) Monensin, (D) Mycophenolic acid, and
(F) Ribavirin.

Subsequently, the structure-based virtual screening of the Selleckchem Nucleoside
Analogue Library containing 156 diverse compounds against the L protein was performed.
Nucleoside or nucleotide analogue is an important class of antiviral therapeutics [83]. It
is a powerful tool for dissecting the mechanisms and functions of viral DNA and RNA
polymerases [84,85]. This screening selected top-ranking compounds with better binding
scores than control compounds for further analysis. The virtual screening results for the
top compounds with a binding affinity > −1.5 kcal/mol are shown in Table S2. Table 1
depicts a general overview of the binding energies and residues of control drugs. The
docking analysis revealed that A-317491, followed by VER155008, and Khasianine were the
best binders among the docked compounds used in this study. The selected compounds
exhibited their binding energies in −8.7 kcal/mol to −6.7 kcal/mol.

Figure 4 shows the binding modes and 2D interaction mechanisms of top docked
compounds. The 2D plot shows that A-317491 is involved in hydrogen bonding with
several residues, such as His1090 and Gln1086 within motif E, Asp991, Ala992, Trp995,
and Asn996 within motif A, and Lys 1177 within motif D, with a binding energy score
of −8.7 kcal/mol (Figure 4B). Khasianine formed hydrogen bonding with a Gln997 side
chain with a binding score of −7.1 kcal/mol (Figure 4C), while VER155008 was involved
in making hydrogen bonds with residues Arg672, Lys779, Asp991, Lys1177, Tyr1188, and
Ser1190 with a binding score of −7.8 kcal/mol (Figure 4D).
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Table 1. Binding energy and binding residues of docked complexes.

Docked Complex Chemical Structure Binding Energy kcal/mol
Binding Residues
(Amino Acid ID)

Van der Waals Hydrogen Bonds

A-317491

−

−8 −6

 

−

−

−

−

−

−

−8

−7

−8.7 673, 1132, 1133

1090, 995, 1134, 925,
1086, 924, 996, 779, 992,
1177, 993, 991, 676, 672,

1188, 1189

Monensin

−

−8 −6

−

 

−

−

−

−

−

−8

−7

−8.5
676, 1187, 989, 1179,

1135, 991, 673, 995, 694,
1134, 1189

672, 990, 1133, 992

VER155008

−

−8 −6

−

−

 

−

−

−

−

−8

−7

−7.8
925, 1189, 1187, 676,
989, 1179, 1178, 673,

1133, 1086

779, 1190, 1188, 672,
991, 1177

Khasianine

−

−8 −6

−

−

 

−

 

−

−

−

−8

−7

−7.1

1189, 1204, 924, 1133,
925, 993, 995, 996, 994,
779, 694, 1177, 670, 669,

673, 1134

997

Mycophenolic acid

−

−8 −6

−

−

−

−

 

−

−

−8

−7

−7.0
1181, 1180, 1127, 1126,

1183, 751, 667, 985,
1171, 1128, 668, 1170

1197, 984

Ribavirin

−

−8 −6

−

−

−

−

 

−

 

−

−8

−7

−6.7 1135, 1188, 990, 989,
1178, 1177, 676, 1189

1134, 757, 1190, 672,
991, 1133

Notably, both known inhibitors and the identified compounds occupied the binding
site pockets within the RdRp core with a similar interaction pattern (Figure 5). Both control
drugs and selected compounds formed hydrogen bonds with functionally conserved
aspartates of motif C, namely, Asp 1133 and the conserved divalent cation binding residue,
Asp991 [24]. Our screened nucleoside compounds displayed higher binding energies and
interacting profiles than Monensin, mycophenolic acid, and Ribavirin. Most ligands tended
to bind the residues belonging to the PA-C-Like domain and the RdRp core domain. Since
both these domains are actively involved in forming active site chamber and vRNA binding.
Previously published data have proposed that RdRp and PA-C-Like domains facilitate
the template-directed RNA synthesis in SFTSV-L protein by providing the NTP entry into
the catalytic chamber [62]. Overall, both these domains and endo N domain are critical
for product synthesis and the safest release in the cell [53]. These findings suggested that
the compounds identified in our study could be more useful candidates for RVFV drug
therapy. Previously, a number of studies on RdRp have identified several leads using
various computational and experimental techniques. The compounds revealed to interact
with RdRp binding pocket residues reported herein [86,87]. However, RVFV RdRp has not
been explored much, and the current study is a pioneer work in this regard.
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Figure 4. Binding modes and interaction mechanisms of novel L protein inhibitors. (A) Close-up
view into binding mode of (A) A-317491, (C) Khasianine, and (E) VER155008. The main residues
involved in the formation of the active site within the structurally conserved RdRp motifs shown in
stickes. 2D interaction analysis of (B) A-317491, (D) Khasianine, and (F) VER155008.
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Figure 5. Binding modes of compounds. (A) Molecular surface representation for the inhibitory
binding pattern of all ligands. (B) Close-up view into the binding mode of all compounds within the
active site of RdRp core. The main residues involved in the formation of the active site within the
structurally conserved RdRp motifs that are shown in stickes.

2.4. ADME and Toxicity Prediction Analysis

Predicting ADME profiles using an in silico approach has long been proven to be a
reliable method of determining a compound’s pharmacokinetic properties. Evaluating lead
compounds’ ADME properties is a major challenge in the drug development [88]. Because
of poor toxicity and pharmacokinetic properties, most drugs fail to pass the drug devel-
opment process. The development of high-throughput and fast ADMET profiling assays
has aided the detection of active lead compounds during early drug discovery [89]. Swiss
ADMET and ADMETlab 2.0 were used to predict the absorption, distribution, metabolism,
excretion, and toxicity (ADME) studies of the top three compounds, and their results are
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presented in Table 2. Gastro-intestinal absorption (GI) and blood-brain barrier (BBB) perme-
ation indicate drug absorption and distribution of drug molecules [71]. One of the primary
factors optimising drug discovery is information about drug distribution via BBB [90].
According to Table 2 results, all compounds show low gastro-intestinal absorption and no
BBB permeation. The compounds cannot cross the blood-brain barrier (blood-brain barrier
negative), so their consumption is not linked to the onset of neurological disorders. The
absorption of the compounds was further revealed by caco-2 permeability values ranging
from –6.019 to –5.727 log unit. A permeability of >−5.15 log unit in the ADMETlab 2.0
server indicates optimal caco-2 absorption. Oral bioavailability is frequently viewed as
crucial in determining the drug-likeness of active compounds as therapeutic agents [91].
Furthermore, a variety of cytochromes (CYPs) regulate drug metabolism, with CYP2C19,
CYP1A2, CYP2C9, CYP3A4, and CYP2D6 being critical for the biotransformation of drug
molecules. The ability of a drug to inhibit or act as a substrate of the cytochrome P450
(CYP450) subfamily determines its therapeutic action [92]. A-317491 is an inhibitor of
CYP2C9 while being a non-inhibitor and a non-substrate of other isoforms, while Khasian-
ine is a non-inhibitor and a non-substrate of all isoforms, and VER155008 is an inhibitor of
CYP3A4 and a non-inhibitor and non-substrates of other isoforms. Besides, p-glycoprotein
inhibitors reduce the bioavailability of drugs that are known to be transported by it [93].
Except for Khasianine, all of the compounds in our analysis are inhibitors and negative
substrates of p-glycoprotein, which explains the good absorption profile of the compounds.
All of the compounds studied were nontoxic in terms of AMES toxicity. Following that,
the safety profile of the three compounds was assessed by conducting toxicity prediction
studies with an online tool: ProTox-II. This server classified substances into six toxicity
classes (1–6), with class one being the most lethal and toxic, with an estimated lethal dose
(LD50) of ≤5, and class six designating non-toxicity of the compound with an LD50 > 5000.
A-317491 falls in class five with an LD50 value of 2500 mg/kg, while Khasianine falls in
class four with an LD50 value of 500 mg/kg, and VER155008 falls in class six with an LD50
value of 7000 mg/kg. The findings strongly support the ability of the compounds studied
to act as drugs against RVFV.

Table 2. Predicted ADME and Toxicity properties of identified nucleoside analogs. The probability of
each parameter is depicted. BBB: blood–brain barrier; CYP450: cytochrome P450.

Parameters
Compounds

A-317491 Khasianine VER155008

Absorption

BBB No No No
GI absorption Low Low Low

Caco-2 permeability −6.019 −5.356 −5.727
Human oral bioavailability 0.56 0.17 0.17

Log P 5.296 2.723 2.136
TPSA (Å2) 141.44 179.56 166.21

Metabolism

P-glycoprotein substrate No Yes No
P-glycoprotein inhibitor No No No
CYP450 2C9 substrate No No No
CYP450 2D6 substrate No No No
CYP450 3A4 substrate No No No
CYP450 1A2 inhibitor No No No
CYP450 2C9 inhibitor Yes No No
CYP450 2D6 inhibitor No No No
CYP450 2C19 inhibitor No No No
CYP450 3A4 inhibitor No No Yes
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Table 2. Cont.

Parameters
Compounds

A-317491 Khasianine VER155008

Toxicity

AMES Toxicity Non-toxic Non-toxic Non-toxic
Carcinogens Non-carcinogenic Non-carcinogenic Non-carcinogenic

Acute oral toxicity 2500 mg/kg 500 mg/kg 7000 mg/kg

2.5. MD Simulation

To understand the structural–functionality relationship of the target protein, MD
simulations are essential in computer-aided drug design (CADD) [21]. MD simulations
provide detailed biomolecule dynamical structural information and surface wealth of
protein-ligand interactions and energetic data. MD simulations have been very successful in
recent years for optimizing the docked hits [24,25,45,94,95] and related studies [23,52,95–97].
This data set can guide novel drug design, making MD simulation a valuable tool in modern
drug discovery.

2.5.1. Root Mean Square Deviation (RMSD)

MD simulations of 50 ns were performed for the top three complexes and controls
to elucidate compound binding stability and extract receptors/compound structural in-
formation that is important in the binding, and that may be altered to improve binding
conformation and, ultimately, a compound affinity for the target biomolecule [95]. The
RMSD is a frequently applied analysis to measure the structural similarity between su-
perimposed proteins; smaller RMSD corresponds to similar structures and vice versa.
The RMSD of each complex was calculated as carbon alpha deviations by superimposing
50,000 snapshots over the initial reference structure versus time. The RMSDs of the top
three compounds were: A-317491-L (maximum, 6.76 Å; mean, 5.64 Å), VER155008-L (maxi-
mum, 7.82 Å; mean, 6.20 Å), and Khasianine-L (maximum, 7.67 Å; mean, 6.20 Å), while the
RMSDs of the control drugs were: Monensin-L (maximum, 7.02 Å; mean, 5.95 Å), Mycophe-
nolic acid-L (maximum, 7.24 Å; mean, 5.80 Å), and Ribavirin-L (maximum, 6.92 Å; mean,
6.0 Å) (Figure 6A). All the systems depicted uniform RMSD patterns, and no prominent
peak was observed throughout the length of simulation time. The RMSD from the initial
simulation time can be seen continuously for all complexes and converged at 10–15 ns.
This is rightly possible because of the sudden exposure of the systems to a dynamic en-
vironment. This forces the receptor enzyme loops to acquire a more stable conformation.
After 10 ns the systems can be witnessed in a more stable behavior until the end of the
simulation time. The RdRp has been explored in SARS-CoV-2 for dynamics in the presence
of a variety of drug molecules. The studies have found several leads that experience stable
conformational dynamics and showed significant intermolecular stability with enzyme’s
active pockets [98–100]. However, RdRp from RVFV is not investigated so far, making the
findings of the current study interesting for experimentalists to test them in in vivo and
in vitro validation.

137



Pharmaceuticals 2022, 15, 659

–

ity with enzyme’s active pocket –

– –
– – –

– –

Figure 6. MD-Simulation studies of ligand bounded complexes. (A) Root mean square deviation.
(B) Root mean square fluctuations (endoN domain 25–205 aa; PA-C-like domain 296–762 aa; RdRp
core 763–1345 aa; PB2-N-like domain 1346–1571 aa; arm domain two spans 1615–1696 and 1811 aa;
CBD domain 1697–1810 aa; and C-terminal domain 1933–2049 aa). (C) Radius of Gyrations. (D) Beta-
factor analysis, each ligand is represented with different color such as A-1317491 (blue), Khasianane
(pink), Monensin (Red), Mycophenolic acid (dark green), Ribavirin (Yellow), and Ver155008 (Cyan).

2.5.2. Root Mean Square Fluctuation (RMSF) Analysis

The residual flexibility and stability of complexes were further computed. The mean
RMSF for A-317491-L is 2.38 Å, VER155008-L is 2.37 Å, Khasianine-L is 2.23 Å, Monensin-L
is 2.31 Å, mycophenolic acid-L is 2.16 Å, and Ribavirin-L is 1.98 Å. These values indicate
a high level of agreement on intermolecular stability. Overall, a high rate of fluctuations
was observed starting from residue 1250 to onward, and Khasianine-L and A-317491-L
were among the ligands showing a high tendency to fluctuate (Figure 6B). It was observed
that part of the RdRp core, PB2-N-like domain, CBD domain, and the C-terminal domain
comprise a large percentage of flexible loops, forcing these segments to behave more
dynamically. This may be a natural mechanism of the protein to confer some flexibility for
mediating the proper accommodation of the substrate/ligand molecule inside the pocket
and accomplish the catalytic mechanism. Moreover, the predicted binding site residues and
their corresponding structural motifs were stable within a ~2 Å fluctuation in the presence
of ligands. The less flexibility in the RdRp core region indicated that the ligands adopted
a more stable conformation and established consistent interactions with the important
surrounding residues.

2.5.3. Radius of Gyration (Rg)

Furthermore, Rg analysis was used to assess structural equilibrium and protein com-
pactness over the simulation time. Rg is employed to investigate whether the binding
of the compounds affects the overall structural stability of the receptor enzyme. Lower
Rg indicates the tight packing of the enzyme atoms and less effect of the compounds
on the enzyme structure upon binding, thus presenting the stable nature of the subject
complex. The Rg of the complexes follows; A-317491-L (maximum, 82.41 Å; mean, 76.76 Å),
Khasianine-L (maximum, 76.76 Å; mean,70.16 Å), VER155008-L (maximum, 83.67 Å; mean,
75.05 Å), Monensin-L (maximum, 83.64 Å; mean, 76.43 Å), Mycophenolic acid-L (maximum,
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85.40 Å; mean, 77.29 Å), and Ribavirin-L (maximum, 83.76 Å; mean, 74.09 Å) (Figure 6C).
All six complexes are quite stable and remain compact. These Rg results complement the
RMSD result in interpreting the docked complex stability.

2.5.4. B-Factor Analysis

B-factors were also derived from simulation trajectories to probe highly mobile regions
of the complexes. The B-factor monitors the thermal motion of protein atoms, side chains,
and whole regions. The B-factor is commonly used to identify internal protein motions,
probing rigid and flexible regions important in proteins/enzyme functionality. The average
values of the B-factor for the top three complexes A-317491-L, VER155008-L Khasianine-L,
and control drugs Monensin-L, Mycophenolic acid-L, and Ribavirin-L were: 201.68 Å2,
210.62 Å2,187.20 Å2, 183.67 Å2, 155.86 Å2, and 139.35 Å2, respectively (Figure 6D). It
demonstrates that these complexes have good stability throughout the 50 ns simulation
period. From the simulation results, it can be concluded that all the studied systems are
structurally stable, and the intermolecular interactions remained strong throughout the
simulation time.

2.6. MMGBA/PBSA Analysis

Binding free energies were estimated using MMPBSA and MMGBSA techniques to
understand better the compounds’ binding potential with the L protein. Table 3 shows
the detailed binding energies of the complexes [101,102]. As all binding interactions are
energetically favorable, stable complexes are formed. Gas-phase energy dominates the
system energy in all complexes, with van der Waals playing a significant role, while elec-
trostatic energy plays a minor role. This reflects that both van der Waals and electrostatic
interactions are key in intermolecular stability. The polar solvation energy is unfavorable in
binding, whereas the nonpolar energy appears to be favourable in complex equilibration.
The complexes’ MMGBSA net binding-energy rankings were as follows: A-317491-L >
VER155008-L > Khasianine-L > Mycophenolic acid-L > Monensin-L > Ribavirin-L. The com-
plexes’ MMPBSA net binding-energy rankings were as follows: A-317491-L > Khasianine-L
> VER155008-L > Monensin-L > Mycophenolic acid-L > Ribavirin-L. These results indicate
that our compounds have high binding free energies than control drugs.

Table 3. Binding free energy of docked complexes. The energy values are given in kcal/mol units.

Energy
Compo-

nent

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

A-1317491 Khasianine Monensin Mycophenolic
Acid Ribavirin VER155008

MM-GBSA

∆Evdw −65.37 2.72 −54.45 4.89 −53.83 3.23 −48.81 5.00 −26.20 3.57 −51.64 3.87

∆Eele −56.86 6.92 −257.10 17.11 −80.72 5.55 −30.21 4.83 −155.72 7.14 −87.45 11.03

∆Gp 74.46 6.80 275.40 16.39 100.29 4.76 42.30 4.30 158.69 5.83 98.08 8.68

∆Gnp −7.10 0.19 −6.51 0.31 −6.92 0.39 −5.04 0.18 −3.75 0.26 −5.72 0.29

∆EMM −122.23 7.68 −311.55 18.54 −134.56 6.12 −79.03 8.37 −181.93 7.33 −139.09 9.68

∆Gsol 67.36 6.68 268.88 16.23 93.36 4.68 37.26 4.21 154.93 5.86 92.35 8.74

∆Gtotal −54.87 2.75 −42.66 4.16 −41.19 2.89 −41.76 4.96 −26.99 4.216 −46.73 3.41

MM-PBSA

∆Evdw −65.37 2.72 −54.45 4.89 −53.83 3.23 −48.81 5.00 −26.20 3.57 −51.64 3.87

∆Eele −56.86 6.92 −257.10 17.1 −80.72 5.55 −30.21 4.83 −155.72 7.14 −87.45 11.03
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Table 3. Cont.

Energy
Compo-

nent

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

Average
Standard
Error of
Mean

A-1317491 Khasianine Monensin Mycophenolic
Acid Ribavirin VER155008

∆Gp 95.85 7.89 288.12 16.80 114.98 8.24 57.57 5.53 166.11 6.22 118.11 7.49

∆Gnp −4.73 0.10 −4.99 0.13 −5.52 0.16 −3.18 0.08 −2.34 0.07 −4.44 0.12

∆EMM −122.2 7.68 −311.55 18.54 −134.56 6.12 −79.03 8.37 −181.93 7.33 −139.09 9.68

∆Gsol 91.12 7.84 283.12 16.76 109.45 8.19 54.39 5.53 163.77 6.20 113.66 7.49

∆Gtotal −31.11 4.89 −28.42 4.30 −25.10 5.39 −24.64 6.16 −18.16 5.23 −25.42 5.87

3. Materials and Methods
3.1. Homology Modeling

Drug discovery relies heavily on homology modeling, with current efforts resulting in
unprecedented accuracy models, even with low sequence identity [32,103–107]. Because L
protein lacked a crystal structure, homology modeling was required to determine target
structure elucidation. The L protein sequence was obtained from the UniProt database
(P27316 (L_RVFVZ)) to perform homology modeling [108]. Sequence to Structure align-
ment was performed using PSI-BLAST against Protein Data Bank (PDB) to find suitable
templates for the three-dimensional (3D) structure prediction [109,110]. The initial align-
ment between the target and the template was generated using the ALIGN2D module.
The final model was built using a restrained-based approach in Modeller.v9.11 with the
most-fitted template and secondary structural information obtained by manual curation
after superimposition between all generated models and the template [111]. Modeller’s
secondary structure module was used to model the final structure using the extracted
spatial secondary structure restraints.

3.2. Structure Validation

Accurate evaluation of the 3D model is considered one of the core elements of com-
putational structure prediction. The emergence of rapidly endorsed and highly efficient
approaches for structure evaluation has paved new ways to assess the quality of newly
designed models [112,113]. Ramachandran plots are a quick and easy way to evaluate
the quality of a 3D structure. The Ramachandran plot was used to determine the ener-
getically permissible and prohibited phi (φ) and psi (ψ) dihedral angles of amino acid
residues [114]. The 3D structure was further analyzed by PDBsum [56]. PDBsum is a
database that summarises the contents of 3D macromolecular structures. In addition, the
predicted 3D structure was refined and validated by using 50 ns MD simulations.

3.3. Target Protein Preparation

3D structure of L protein predicted from Modeller and validated with 50 ns MD
simulations were prepared using the AMBER 18 program [115]. The ff14SB force field [116]
was utilized to parameterize amino acids. AMBER18’s tleap module was used to add
complementary hydrogen atoms missed by crystallography. Energy minimization of the
target protein was performed first for 1000 steepest descent steps and then for 500 conjugate
gradient steps, allowing the step size to be 0.02 Å. After MD clustering, the most stable
conformation was selected from the cluster (with RMSD < 1 Å) for further processing.

3.4. Compound Preparation

The Selleckchem Nucleoside Analogue Library (https://www.selleckchem.com/screening/
Nucleoside-Analogue-Library.html, accessed on 15 February 2021) was used to identify
molecules with the highest binding affinity to the L-protein. The library composed of
156 natural compounds was downloaded in 3D SDF format. A recent study reported
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Monensin, Mycophenolic acid, and Ribavirin as potent inhibitors of RVFV-L protein [79].
To get an insight into the mechanism of the binding of known inhibitors, these three potent
inhibitors were docked as controls in the present study. These drugs were retrieved from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov, accessed on 15 February 2021)
in 3D SDF format [117].

3.5. Structure-Based Virtual Screening

The AutoDock Vina implicated in the PyRx (version 0.8) was used to perform the
virtual screening of the compounds against the target protein [118,119]. The control drugs
and chemical library of 156 compounds in SDF format were imported in the Open-babel
program of PyRx for further energy minimization, followed by conversion of all the ligands
into AutoDock PDBQT format. Further, the top three ligands were subjected to docking
against the L protein of RVFV using AutoDock Vina. The grid box was set to cover the entire
binding site within the core chamber of RdRp with box_size of (x = 20, y = 20, z = 20 Å) and
dimensions of (x = 122.005, y = 105.326, and z = 137.824). Dockings were run in triplicates
to ensure absolute consistency of the results. The docked solutions were clustered using an
RMSD of 1 Å. The 3D structural alignment, visualization and analysis, and docking figures
production were carried out using Discovery Studio 2019 software [120], PyMOL [121], and
UCSF Chimera 1.14 [122].

3.6. ADME and Toxicity Prediction Analysis

The analysis of the pharmacological activity of drug candidates is a critical step
in drug discovery [93]. Therefore, in silico prediction of pharmacophore properties of
active compounds is critical for accelerating the drug development process. Absorption,
distribution, metabolism, excretion, and toxicity (ADMET) are the most plausible drug-like
properties to evaluate virtual hits. ADME analysis was carried out by submitting the
compounds’ canonical simplified molecular-input line-entry system (SMILES) to online
servers; ADMETlab 2.0 [123] and Swiss ADME [124]. Acute oral toxicity was predicted by
the Protox II web server [125].

3.7. MD Simulations

AMBER18 was used to perform MD simulations of the docked solutions [115]. The
same MD simulation protocol was adopted in the current study as described in previ-
ous studies [22,94,126–128]. The Antechamber package of AmberTools was employed
to generate the general AMBER force field (GAFF) parameters for the studied ligands
using AM1–BCC charge definitions. Each top complex was explicitly solvated with wa-
ter molecules, and then counter ions were added to create a neutral system. A water
box with a thickness of 12 Å was created using the TIP3P solvent model to encircle the
complex [129,130]. The complex was simulated using periodic boundary conditions, with
electrostatic interactions modeled using the particle mesh Ewald procedure [131]. For
nonbounded interactions, a threshold value of 8 Å was defined during the procedure.
Water molecules were minimized for 500 cycles, and then the entire system was minimized
for 1000 rounds. The temperature of each system was then steadily increased to 300 K.
Solutes in the first phase were restrained for 50 ps during equilibration of counterions and
water molecules, while protein side chains were relaxed afterwards. At 300 K and 1 atm,
a 50 ns MD simulation was performed, and coordinate trajectories were collected every
2 ps during the simulation under the NPT ensemble. While the SHAKE algorithm [132]
constrained covalent and hydrogen bonds, Langevin dynamics [133] was used to control
the system temperature. The original structure was used as a reference, and AMBER’s CPP-
TRAJ [134,135] was used to generate an RMSD (root mean square deviation) plot to assess
the system’s MD simulation convergence [136]. The structural flexibility of ligands was
calculated using ligand RMSD. The radius of gyration (RoG) was analyzed to determine the
complex’s compactness and three-dimensional packing. RMSF reflects the root mean square
averaged distance between an atom and its average geometric position [137]. The Term
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β–factor, which is closely related to the RMSF, measures the spatial displacement of atoms
around their mean positions, as well as a thermal and local vibrational movement [138].

3.8. MMGBA/PBSA Analysis

AMBER18 MM/PBSA and MM/PBSA methods were used to estimate the binding free
energy (G binding) of the complexes [101,139]. The method has been well-documented in
our previous studies, implemented in AMBER 18. The free energy difference was calculated
using 100 snapshots from simulated trajectories at regular intervals. The total binding
free energy is calculated as a sum of the molecular mechanics binding energy (∆EMM) and
solvation free energy (∆Gsol) as follows:

∆EMM = ∆Eint + ∆Eele + ∆Evdw

∆Gsol = ∆Gp + ∆Gnp

∆Gtotal = ∆EMM + ∆Gsol

∆Gbind = ∆EMM + ∆Gsol − T∆S

In these equations, ∆EMM is further divided into internal energy (∆Eint), electro-
static energy (∆Eele), and van der Waals energy (∆Evdw), and the total solvation free
energy (∆Gsol) is contributed by the sum of polar (∆Gp) and non-polar (∆Gnp) components.
∆Gbind is the free energy of binding of the ligand evaluated after entropic calculations
(T∆S). We excluded entropic term, T∆S, from the calculation due to its intensive computa-
tional cost [101,102,140,141]. These methods have been well documented [101,128,140] and
considered reliable end-point binding free energy estimations [102,141].

4. Conclusions

A combination of virtual screening and molecular docking analysis was used to iden-
tify inhibitors of RVFV L protein in the present study. The 3D structure of the RVFV-L
enzyme was predicted, and the findings could aid researchers working on RVFV drug de-
velopment. The Selleckchem Nucleoside Analogue Library (156 compounds) was screened,
and the top three compounds, A-317491, VER155008, and Khasianine exhibit a high binding
affinity compared to the control drugs chosen that may inhibit RVFV-L enzyme activity and
hence virus replication. Compounds also show good pharmacodynamic and pharmacoki-
netic profiles based on toxicity and ADME studies. Overall, the results reveal that all of the
compounds fit into the same binding pocket of the protein, suggesting that they could be
good therapeutic candidates for RVFV. However, further in-vivo and in-vitro experiments
are required to convert these potential inhibitors into clinical drugs. We anticipate that
the findings of this study will be useful in the future for developing and exploring novel
natural anti-RVFV therapeutic agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15060659/s1, Figure S1. Sequence alignment of RVFV L
protein with the templates (Structure of the alpha-Synuclein (PDB ID: 6I42 and severe fever with
thrombocytopenia syndrome virus L protein (PDB ID: 6Y6K). Figure S2. Structural superposition of
the RVFV L protein model with the templates. The RMSD values between the model and 6I42 and
6Y6K are 0.179 and 1.165 Å, respectively. Table S1. Reverse template comparison of RVFV L protein
model with the representative structures in PDB using ProFunc reverse template search program.
Table S2. Virtual Screening result of Selleckchem Nucleoside Analogue Library (compounds with
binding affinity > −1.5 kcal/mol) against model of RVFV-L RdRp core.
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Abstract: Computer-aided drug discovery techniques reduce the time and the costs needed to
develop novel drugs. Their relevance becomes more and more evident with the needs due to
health emergencies as well as to the diffusion of personalized medicine. Pharmacophore approaches
represent one of the most interesting tools developed, by defining the molecular functional features
needed for the binding of a molecule to a given receptor, and then directing the virtual screening
of large collections of compounds for the selection of optimal candidates. Computational tools
to create the pharmacophore model and to perform virtual screening are available and generated
successful studies. This article describes the procedure of pharmacophore modelling followed by
virtual screening, the most used software, possible limitations of the approach, and some applications
reported in the literature.

Keywords: structure-based pharmacophore modeling; ligand-based pharmacophore modeling;
virtual screening; drug discovery; bioinformatics; computational biology

1. Introduction

Computer-Aided Drug Discovery (CADD) investigates molecular properties to de-
velop novel therapeutic solutions by way of computational tools and data resources. In
its broadest meaning, it includes computational approaches for designing or selecting
compounds as potential candidates before they are synthesized and tested for their bio-
logical activity [1]. Bioinformatics and computational tools offer an in silico approach to
reducing costs and times, i.e., the factors that influence the progress of the research and, in
the specific field of drug development, limit the possibilities of fighting more pathologies.
To date, in vitro screening is expensive and time-consuming, and alternatives are highly
desirable. Virtual Screening (VS) is a CADD method that involves in silico screening of a
library of chemical compounds, to identify those that are most likely to bind to a specific
target [2]. In this way, it is possible to reduce the impact of these limiting factors on drug
discovery, meeting the needs due to health emergencies, as well as the spread of person-
alized medicine. This process can be speeded up using pharmacophore models used as
the query with which compound libraries can be searched to pull out molecules of interest
with desired properties. Indeed, pharmacophore-based methods are widely used tools in
CADD and are of great interest in the chemo-informatics field [2], since they find many
applications in drug discovery projects including not only the virtual screening but also
scaffold hopping, lead optimization, ligand profiling, target identification, multi-target
drug or de novo drug design.

The concept of a pharmacophore was coined in the 19th century when Langley first
suggested that certain drug molecules might act on particular receptors. Only later, with
the discovery of Salvarsan by Paul Elrich, the selectivity of drug–target interactions was
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recognized. Several years of experimentation confirmed its therapeutic effect. This discov-
ery had found support in the statement of Emil Fisher who, following his research, had
defined the concept "Lock & Key" in 1894, according to which a ligand and its receptor fits
like a key with its lock to interact with the on top of each other through a chemical bond [3].

Hence, historically the term “pharmacophore” was used to indicate the functional
or structural capacity of a compound with specific characteristics towards a biological
target [4].

Schueler provided the basis for our modern understanding of a pharmacophore, de-
fined by the International Union of Pure and Applied Chemistry (IUPAC) as "the ensemble
of steric and electronic features that is necessary to ensure the optimal supra-molecular in-
teractions with a specific biological target structure and to trigger (or to block) its biological
response" [3,5,6].

Pharmacophoric modelling is based on the theory that having common chemical
functionalities, and maintaining a similar spatial arrangement, leads to biological activity on
the same target. The chemical characteristics of a molecule capable of creating interactions
with its ligand are represented in the pharmacophoric model as geometric entities such
as spheres, planes and vectors. The most important pharmacophoric feature types are:
hydrogen bond acceptors (HBAs); hydrogen bond donors (HBDs); hydrophobic areas
(H); positively and negatively ionizable groups (PI/NI); aromatic groups (AR); and metal
coordinating areas (Figure 1). Additional size restrictions in the form of a shape or exclusion
volumes (XVOL)—forbidden areas—can be added to represent the size and the shape of
the binding pocket [7].

Figure 1. Pharmacophoric features. Main pharmacophoric feature types are represented by geo-
metric entities and include: 1—hydrogen bond acceptor (HBA), 2—hydrogen bond donor (HBD),
3—negative ionizable (NI), 4—positive ionizable (PI), 5—hydrophobic (H), 6—aromatic (AR),
7—exclusion volume (XVOL).

Since the models themselves do not focus on actual atoms, but on chemical functional-
ities, they are good tools in recognizing similarities between molecules. Pharmacophore
activity is independent of the scaffold, and this explains why similar biological events
can be triggered by chemically divergent molecules. The use of these models as a query
allows performing searches in the large libraries of compounds made available on the
computational platform in order to select molecules of interest for the next vs. or in the
chemo-informatics field [7].
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Pharmacophore models can be generated using two different approaches depending
on the input data employed for model construction, which are, namely, “structure-based”
and “ligand-based” pharmacophore modelling. The structure-based approach uses the
structural information of the target proteins like enzymes or receptors, to identify com-
pounds that can potentially be used as a drug. On the other hand, the ligand-based
approach consists of the development of 3D pharmacophore models and modelling quanti-
tative structure-activity relationship (QSAR) or quantitative structure-property relationship
(QSPR), using only the physicochemical properties of known ligand molecules for drug
development. The choice of the best approach to use depends on several factors such
as data availability, data quality, computational resources and also the intended use of
the generated pharmacophore models. In the following paragraphs, we describe both
strategies and their implementation in virtual screening is provided below to guide the non-
experts on this topic in their application by explaining the basic concepts these methods
are based on.

2. Structure-Based Pharmacophore Modelling

The structure-based approach owns its name to the fact that the three-dimensional
structure of a macromolecule target is the essential prerequisite to obtaining a structure-
based pharmacophore. The 3D structure of a protein provides significant details at the
atomic level that can be very useful for the design or discovery of new drugs. As pre-
viously outlined, a pharmacophore is an abstract picture showing the stereo-electronic
features, which make a ligand bioactive toward a specific target, and this type of informa-
tion can be extracted from the 3D structure of the protein target in its holo or apo form.
Typically, the workflow of the structure-based approach (Figure 2, left side of the flow)
consists of different steps: protein preparation, identification or prediction of ligand binding
site, pharmacophore features generation, and the selection of relevant features for ligand
activity [8,9].

The 3D structure of the target or the ligand–target complex is the required starting
point of this methodology. The RCSB Protein Data Bank (PDB) [www.rcsb.org] (accessed
on 20 May 2022) includes thousands of protein structures at high resolution alone or in
the presence of a bound ligand, mainly solved by X-ray crystallography or NMR spec-
troscopy. In case experimental structural data are lacking, computational techniques such
as homology modelling [10] may be an alternative strategy to retrieve a 3D model and
machine learning-based methods are successfully applied to retrieve protein structures, a
powerful example is ALPHAFOLD2 [11]. Molecular docking is another method to study in
silico the interaction of a known active compound towards a specific receptor and derive
protein-ligand complexes from the most favorable binding poses [12].

A practical tip for those who want to use this approach is to perform a deep analysis
of the quality of input data before using the target structure since it directly influences the
quality of the pharmacophore model. For this reason, the protein structure preparation is
the first step to carry out by evaluating, for instance, the residues’ protonation states, the
position of hydrogen atoms (that are absent in X-ray solved structures), the presence of
non-protein groups which may have or not some functional roles, eventual missing residues
or atoms, the stereochemical and energetic parameters accounting for the general quality
and biological-chemical sense of the investigated target, also in the case of experimentally
solved structures that may contain errors [8].
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Figure 2. Pharmacophore modeling workflow. A pharmacophore model can be generated using
two approaches. In the structure-based approach (on the left side), the structural information of the
macromolecular target, alone or bounded to a ligand, is evaluated for its correctness and used to
analyze the ligand binding sites in order to derive and select ligand complementary characteristics
composing the pharmacophore models. In the ligand-based approach (on the right side), the first
step is the construction of a training set made up of known active ligands structures. From each of
them, conformers are generated and then used to extrapolate common features that are combined
in different pharmacophore models. The resultant models undergo a validation and refinement
procedure to obtain the final models exploitable for practical applications.

Once the target structure is identified and critically evaluated, ligand-binding site
detection is the next crucial step. This can be manually inferred by analyzing the area
including residues suggested to have a key role from experimental data such as site-
directed mutagenesis or X-ray structures of the protein co-crystallized with ligands, but it
also requires time and expert knowledge of the target and ligands. Nowadays this purpose
can be easily and quickly achieved using bioinformatics tools based on different methods
which inspect the protein surface to search for potential ligand-binding sites according to
various properties (evolutionary, geometric, energetic, statistical, or a combination of them),
and which are particularly useful if the ligand information is not available [13]. Examples
of computer programs developed for this purpose are GRID [14] and LUDI [15]. The first
one, as suggested by the name, is a grid-based method that uses different molecules or
functional groups to sample a specific protein region defined with a regular grid to identify
grid points with which they make energetically favorable interactions, thus generating
molecular interaction fields [14]. The second one predicts potential interaction sites using
the knowledge from distributions of non-bonded contacts in experimental structures or
geometric rules [15].
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Since the goal of the structure-based method is to generate a pharmacophore model
from the interactions between an active molecule (the ligand) and its protein target (enzyme
or receptor), the characterization of the ligand-binding site can be used to derive a map of
interaction and to build accordingly one or more pharmacophore hypotheses describing
the type and the spatial arrangement of the chemical features required for a ligand to
interact with the residues of the binding region. Initially, many features are detected with
this approach and therefore only those that are essential for ligand bioactivity should be
selected and incorporated into the final model to have a more reliable and selective phar-
macophore hypothesis [9,16]. This operation can be accomplished in different ways, such
as removing features that do not strongly contribute to the energy binding, identifying the
most conserved interaction if multiple protein–ligands structures exist, preserving residue
with key functions from sequence alignments or variation analysis, and incorporating
spatial constraints from the receptor information [8].

If the structure of a protein–ligand complex is available, the pharmacophore features
generation and selection can be achieved more accurately. The 3D information of the ligand
in its bioactive conformation directs the identification and the spatial disposition of the
pharmacophore features in correspondence with its functional groups directly involved in
the interactions with the target. Moreover, the presence of the receptor allows accounting
for spatial restrictions from the binding site shape through the addition of the exclusion
volumes. In this ideal situation, pharmacophore models of high quality can be obtained.
In case the available structural data do not include a bound ligand, the pharmacophore
modelling depends only on the target structure which can be analyzed to detect all possible
ligands interaction points in the binding sites and, therefore, to compute the complementary
features that a ligand should match to potentially bind the receptor. However, in the absence
of a ligand counterpart, several pharmacophoric features are calculated and approximately
positioned resulting in less accurate models that should be manually refined [3,16,17].

3. Ligand-Based Pharmacophore Modelling

So far, we have mentioned the importance of the availability of the structure for
modelling pharmacophores suitable to accommodate the best interaction features. However,
even if this still represents one of the best strategies for modelling a pharmacophore, often
the target molecule is not available. To overcome this problem, an alternative approach to
structural-based modelling is represented by ligand-based pharmacophore modelling.

The starting point of this strategy is the knowledge of active compounds, which bind
the same protein target with a similar orientation [4] that could allow the extraction of
chemical features in common and, therefore, the pharmacophore construction. Due to
the unknown bioactive conformations of the input compounds, a critical step, before the
extraction of the shared features, is the generation of ligand conformers, so that, from
each set of conformers, at list one should correspond to the bioactive conformation of the
ligand [3].

In more detail, two datasets are necessary to generate a ligand-based pharmacophore,
i.e., a training set and a test set. The training set composition differs according to the
algorithm employed and the data availability, varying from the simplest, composed of
at least two active compounds, to the most complex, for which it is possible to set mul-
tiple compounds with a different activity. The test set, instead, should contain as many
active and inactive structurally different compounds as possible, preferring the inclusion of
experimentally confirmed inactive compounds and compounds judged as active by experi-
mentally proven direct interaction and with suitable activity cutoffs (i.e., low EC50/IC50
and high binding affinity values). In the case of unknown inactive ligands, decoy molecules
could be used [6], which are available from a specific repository such as DUD (Directory of
Useful Decoys) [18] or by generating them by service as DUD-E [19]. In addition to what
could be extrapolated from pertinent literature, the source of molecules to be employed
in the construction of the dataset could be chemical databases such as OpenPHACTS [20],
ChEMBL [21] or Drugbank [22], for compounds with a target-based activity, ChEMBL,

153



Pharmaceuticals 2022, 15, 646

PubChem Bioassay [23] and Tox21 [24] for research on the inactive molecules. In principle,
all the algorithms appointed to the ligand-based pharmacophore modelling, starting from
the active compounds of the training set, extrapolate from them common chemical func-
tionalities, related for instance to the presence of hydrogen bond donors or acceptors, of a
positively or negatively charged ionizable group, of aromatic ring systems or hydrophobic
areas, and use these features for model design. This step is followed by an improvement
of the pharmacophore model including shape features and spatial constrains which take
care of specific regions occupied by inactive molecules [25]. The pharmacophore models
obtained are ranked by the best ability to fit the active molecules but not the inactive ones.
The best models obtained from this first phase are chosen for the validation and refinement
using the test set. The purpose of this second phase is to evaluate if the generated models
can fit most of the active molecules rejecting the inactive ones, to select only models which
show the major sensitivity and specificity. A summary of the described process is described
in Figure 2 (right side of the flow).

Despite the accuracy of the pharmacophore construction being highly dependent
on the quality of the training set, its final composition is conditioned by the algorithm
used for modelling [7]. In general, ligand-based pharmacophore modelling could be
performed following two main strategies: the common feature pharmacophore and the
QSAR based pharmacophore.

In the common feature approach, generally, an algorithm of alignment is involved, its
purpose is basically to extrapolate and align specific and common features: starting from a
defined feature for each active element the algorithm combines it with the corresponding
features of the other molecules, from this alignment a novel feature, combination of the
previous, is generated; reiterating this procedure for each set of overlapping features a
pharmacophore of shared feature is built. This is for example the case of the espresso
algorithm implemented in LigandScout [26,27], which achieved the pharmacophore mod-
elling by dividing the procedure previously described into six steps exploiting various
algorithms and two alignment methods: the first, based on a combination of shared phar-
macophore feature and the second, based on a merged pharmacophore feature. Finally, the
common features present in all training compounds are included in the common features
models and all features of the aligned compounds are summated in a merged feature
pharmacophore [28]. Another example of similar functionality is given by the HipHop
algorithm provided by DiscoveryStudio [29], which builds several pharmacophore models
starting from identifying the common chemical features arrangement of the training set
structures. Beginning with a few groups of features, which are extended until no more
shared configuration features are found, several models are obtained and ranked based
on the fitness of the training compounds. Models are refined by the HipHop Refinement
algorithm, which adds space restrains imposed by the structures of inactive compounds.

QSAR (Quantitative structure-activity relationships) based pharmacophore is a mathe-
matical model that tries to find statistical correlations between structures and functions,
quantifying the impacts in a biological activity of specific structural modifications in existing
or predicted molecules [30]. Based on the idea that molecules with similar physico-chemical
properties show a similar binding affinity for a protein target, nowadays the QSAR ap-
proach is used in drug discovery to build statistical models derived from these correlations
exploiting for the prediction of the bioavailability, the ADMET profile (toxicity), adsorption,
distribution, metabolism, binding affinity, biological activity and elimination of novel
compounds [31].

There are six classifications of the QSAR approaches, from the 1D to the 6D-QSAR,
according to the different dimensions of the method (Figure 3).
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Figure 3. QSAR classifications. The QSAR approaches are classified from the 1D to the 6D-QSAR
according to the different dimensions of the descriptors implemented in the method.

1D-QSAR takes into account a single physico-chemical property of the ligand, for an
example the pKa value. In the 2D-QSAR, instead, affinity is correlated with structural
patterns, while in the 3D-QSAR with the 3D structure of the ligand and its interactions.
The concept extends as dimension rises: 4D-QSAR incorporates an ensemble of ligand
configurations in 3D-QSAR, 5D-QSAR adds to 4D-QSAR various induced-fit models, 6D-
QSAR implements 5D-QSAR with different solvation models [25].

Pharmacophore Models Validation

Once one or more pharmacophore models have been computed, a validation step
is crucial before their implementation for practical purposes. Pharmacophore validation
could be performed by exploiting several methods, such as the goodness of hit list (GH),
receiver operating characteristic (ROC) curves construction, Fischer’s method, or other
statistical analysis, which relies on screening a test set and decoy set (if needed) to evaluate
the model ability to distinguish active and inactive molecules and provide an estimation of
its quality [9].

Mainly, the quality of a model can be described by four parameters: the sensitivity
(capacity to detect active compounds), the specificity (capacity to exclude the inactive
molecules), the yield of actives (the ratio between true positives and the number of hits)
and the enrichment factor (which relates the yield of actives to the composition of the
screening dataset) [7].

The GH scoring method consists of calculating the percentage of sensitivity, the
percentage of the yield of actives the enrichment factor and the Güner–Henry score, which
gives an evaluation of the efficiency of the screening dataset search and can vary from 0
to 1 where 1 is the value for the ideal model [32]. The ROC curve shows the enrichment
power of a model plotting the sensitivity against 1—specificity (the false positive rate). The
area under this curve (AUC) gives a measure of the pharmacophore’s performance and it
is useful for multiple models evaluation. AUC can vary from 0 to 1, where 1 corresponds
to an ideal case in which all the active compounds are detected at first, 0 to the collection
of the inactive ones at first and 0.5 to random results [33]. Fisher’s randomization test
validation method is instead used to analyze the significance of the statistical correlation
between structure and biological activity [34]. Regression analysis can also be applied to
check for the correlation between the compounds predicted as active and those whose
bioactivity is experimentally confirmed.

In case the validation process reveals low-quality results, manual refinement could be
a way to improve its performance by applying some changes in chemical features’ selection
or definition settings, training or test sets composition or in the pharmacophore building
procedure, but a new model generation with a different approach and algorithm should
not be excluded.

4. Pharmacophore-Based Virtual Screening

Among the strategies for the identification of new bioactive substances, VS techniques
play a prominent role. VS tools are important in drug discovery as they increase the speed
of the bioactive molecule discovery process through computational simulations by selecting
from large libraries the compounds that are most likely to interact with the identified target.
In addition, VS identifies compounds that may be toxic or have unfavorable pharmaco-
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dynamic (for example, potency, affinity, selectivity) and pharmacokinetic (for example,
absorption, metabolism, bioavailability) properties [35].

In this context, pharmacophore models can be successfully applied to filter large
collections of compounds to find the so-called hits, i.e., novel molecules matching the
pharmacophoric features required to be potentially active against a specific target. Since
a pharmacophore does not represent exact chemical groups but chemical functionalities
and their spatial relationships, the retrieved hits usually include structurally different
compounds, making pharmacophores useful tools for scaffold hopping [7].

The pharmacophore-based screening can be performed directly using some of the
software already mentioned for the pharmacophore generation, which allows doing this
on a manually created dataset. Other useful open-access platforms for virtual screening
are Pharmit (http://pharmit.csb.pitt.edu) (accessed on 20 May 2022) and ZINCPharmer
(http://zincpharmer.csb.pitt.edu/) (accessed on 20 May 2022). The first one allows the
user to import a predefined pharmacophore query or elucidate pharmacophore and shape
queries from the receptor and/or ligand structures, and to use it to screen a desired dataset
among a set of provided compounds libraries or a personal one. The results are quickly
computed and classified according to different criteria such as energy minimization [36].
ZINCPharmer is a user-friendly online web server, which, exploiting the Pharmer re-
search technology, allows screening of the purchasable molecules present only in the ZINC
database using a pharmacophore model imported from other tools or directly derived from
ligands or structures [37].

In general, once the model to use has been defined, the first step in virtual screening is
to consult a database that contains a large number of compounds annotated with informa-
tion about the 3D structure, known target, and in some cases the purchasability. Some of
the free databases include the Protein Data Bank (PDB) [38], PubChem [39], ChEMBL [21],
Zinc [40], and Drugbank [22]. Moreover, there are some commercially available databases
such as the MDL Drug Data Report. Usually, due to the presence of a multitude of com-
pounds in these repositories, the strategy adopted by many researchers is to filter the data
by applying different parameters to reduce the computational cost of the pharmacophore
searching. This may be obtained through the exclusion of compounds that are too big for the
ligand pocket, the use of Lipinski’s Rule of Five or standard metrics for lead-likeness, and
removing compounds deemed to be pan-assay interference compounds (PAINS) [35,41].
In addition, a combination of filtering for desired pharmacological and adsorption, dis-
tribution, metabolism, excretion, and toxicological (ADMET) properties is advisable to
be applied early in the virtual screening process [42]. These filters should be considered
suggestions, not mandatory, and they can be applied depending on the specific case. As an
example, the Rule of Five is not an absolute rule, as many drugs go under the “beyond the
rule of five” [43]. To efficiently filter a library of compounds against such criteria, several
online tools have been developed. For example, the commercial software ACD/LogD
Suite (https://www.acdlabs.com/products/percepta-platform/physchem-suite/logd/)
(accessed on 20 May 2022) by Advanced Chemistry Development (ACD/Labs) can be
used to predict ADME-related properties including hydrophobicity, lipophilicity and pKa,
while Pharma Algorithms provided a suite of products via ADME Boxes (the company
joined ACD/Labs and the ADME Suite is now available at https://www.acdlabs.com/
products/percepta-platform/adme-suite/) (accessed on 20 May 2022) that addresses issues
such as solubility, oral bioavailability, absorption and distribution [1]. It is necessary to
underline that in some protocols reported in the literature, the evaluation of toxicity and of
the ADME profile is made only after molecular docking. Therefore, it is in the choice of the
researcher the use of a protocol that adds a preliminary filter, thus reducing the number of
molecules on which to apply further analysis or proceed on a larger number of molecules
to identify potential ligands that, if not usable directly because of their toxicity, could serve
as the basis for the synthesis of new molecules. If the structure information of the target is
available, the retrieved pool of compounds can be further selected by molecular docking
with programs such as DOCK [44] or Autodock (http://autodock.scripps.edu/) (accessed
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on 20 May 2022) [45], to have a preliminary evaluation of binding affinities and exclude
molecules with very low values, as well as to obtain preliminary protein-ligand complexes.
Molecular docking is a computational process where ligands are moved in 3D space to
find a configuration of the target and ligand that maximizes the scoring function [1]. With
docking, therefore, ligand–target complexes are obtained and can be evaluated more in
depth, by specific methods, to verify if these compounds can be used subsequently for
in vitro experimentation. One of these evaluation methods is the molecular dynamics (MD)
approach. It is the pivotal theoretical approach, which can be utilized to gain molecular
insight into the stability of the binding pose of the screened molecules in the active site [46],
giving a more accurate evaluation of their binding affinity. At the end of the virtual screen-
ing, the selected compounds matching the desired properties and giving the best results
must undergo an in vitro validation process to verify if indeed the results obtained in silico
are reliable. Everything said up to now represents a typical workflow followed in a virtual
screening analysis and it is graphically depicted in Figure 4.

Figure 4. Virtual screening workflow. Basic filters and methods applicable for a virtual screening
process. Scheme of the multistage vs. approach. The application of vs. follows a typical sequence
of processes with a cascade of filters able to narrow down and choose a set of hits with potential
biological activities.

Recently, MD simulations have been used to perform a thorough conformational
search without any help of traditional docking procedures, with accurate all-atom force
field and enhanced sampling techniques, obtaining accurate results for both binding modes
and binding affinities [47,48].

Finally, it is necessary to also mention the free energy calculations used to obtain
protein–ligand binding affinity by MD simulations in conjunction with molecular dock-
ing [49–52].

5. Limitations and Possible Solutions

As shown, pharmacophore modelling is a very useful tool for many applications in
drug discovery or drug design. However, despite its strength, this method is not free of
limitations that have implications in virtual screening increasing the rate of false positives
and/or false negatives, and that should be in mind to find proper solutions, when possible,
and to have a critical view of the results.

As explained in the previous paragraphs the quality of a pharmacophore model
is strictly related to that of the input dataset and the algorithm used for the modelling.
Indeed, the quality of the structures used for pharmacophore building, refinement, and
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validation greatly affect its reliability, and to overcome this limit many authors suggest a
manual inspection of the structures used and of the annotations regarding the biological
data associated with them. For what concerns the choice of the algorithm, it is important
to underline that different algorithms can give different results with no overlap starting
from the same macromolecular target. This could be attributed to the different screening
methodology of the algorithm, but also to the specific screening dataset used among the
several publicly available screening platforms [7]. Therefore, an integration of different
tools is recommended to cover a larger chemical space and obtain different chemotypes.

Moreover, whether the structure-based or the ligand-based approach is used, both
present some intrinsic limitations. In particular, flexibility is the main drawback of the
structure-based strategy. As already explained, a structure-based pharmacophore derives
from the 3D structure of a macromolecule target, ideally complexed with an active com-
pound. A single structure represents a static image reproducing a single binding mode of
a ligand towards its target without taking into account the dynamic nature of the system
due to receptor and ligand conformational flexibility [53]. This lacking information results
in pharmacophore models that may be defective in some features that could be relevant
for the binding of different ligands and, therefore, in retrieving new potential hits. If
experimental structures of the same protein target complexed with different ligands exist, it
is possible to reduce this limit by using them to extract and merge features responsible for
ligands interactions into a more refined model. However, this does not often happen and
an alternative way to handle the flexibility consists in employing computational techniques
such as flexible docking and/or MD simulations of the investigated system. Dynamic
pharmacophores can be computed from protein-ligand MD trajectories and have been
successfully applied in recent studies showing a better performance in the virtual screening
of bioactive compounds compared to the classic rigid approach [54–56]. Nevertheless, this
methodology needs higher computational resources (a problem that is less relevant due to
the increasing availability of computing resources, and in case of application to a small set
of selected ligands) and expert knowledge since it produces many models that should be
averaged or clustered to derive more representative pharmacophores [57].

Another common problem affecting the structure-based approach is the detection of a
high number of unprioritized pharmacophoric features, especially when apo-structures
are the only available starting point. In this case, the derived pharmacophore model
is too restrictive for virtual screening making the identification of structurally different
compounds with similar characteristics difficult [17]. Given this, the reduction of chemical
features is crucial to obtaining a reasonable and usable model. Some strategies to apply for
this purpose have already been discussed, but they depend on available data and an expert
manual intervention is often required.

Regarding the ligand-based method, the major limitation is the absence of receptor
complementary information related to the interaction pattern with the binding pocket
or even just about its shape. By its nature, the ligand-based approach is founded on all
possible chemical features and geometric information inferable from the input compounds
and their flexible alignment. However, more are the chemical features to be taken into
account by the algorithm, more is the time cost of it. Therefore, this approach is limited to
small compounds and simple chemical features by computational/time costs, generating a
less tailored pharmacophore model [27].

A further complication for the ligand-based modelling is the low availability of inactive
compounds, due to the lack in the literature of negative results. The use of a not enough
number of molecules known as inactive for a specific protein target has an impact on the
selectivity and sensitivity of the pharmacophore model obtained [6].

Above the individual deficiencies, another key point to place is that the pharma-
cophore represents a model of the chemical features but other variables that can influence
the binding of active compounds to a specific target, such as chemical solubility, cell
metabolism, membrane permeability, the particular toxicologic effect could not be consid-
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ered or well-integrated on it; this could have a strong impact on the real capacity of the
selected compounds to have a suitable biological effect on the target [7].

In general, even if some of these issues could be addressed by the use of accurate
structures, training and test sets, the validity of the model obtained should be always
compared to the statistical robustness of the input dataset, because no matter how complete
the dataset employed could be, no model can be judged as universal [58].

Because of the things reviewed above, the simultaneous use of both strategies, when it
is allowed, is advantageous since the weaknesses of one can be balanced by the strengths of
the other. Moreover, their combination with multiple approaches at different stages, such
as MD simulation, docking studies and machine learning approaches, could be a valuable
resource to overcome the inherent limitations of the pharmacophore modelling, improving
the chance to have more complete and reliable results.

6. Software for Pharmacophore Modelling

Several articles reported lists of software, databases and online tools for CADD appli-
cations [1,25,59]. Moreover, online services and catalogues provide links to many resources
(see https://www.click2drug.org/ or https://bio.tools/) (accessed on 20 May 2022). In
this paragraph, we report the most used and reliable, in our opinion, and findable at the
time of the writing of this review. Several programs have been developed to perform
the pharmacophore modeling in an automated way using different algorithms, such as
LigandScout, Schrodinger-Maestro, MOE, and Discovery Studio. Among them, Ligand-
Scout [60] is widely used for pharmacophores generation from a protein–ligand complex
and performs a step-by-step ligand topology interpretation including aromatic ring de-
tection, the assignment of functional group patterns, the determination of hybridization
state and bond types, followed by ligand and binding site analysis to automatically de-
tect and classify protein–ligand interactions into hydrogen bonding, ionic, aromatic and
lipophilic contacts according to geometric constraints. The ligand features composing this
set of paired interactions define a pharmacophore model which can be also modified by
removing specific features [60]. The Schrodinger–Maestro suite allows the generation of
e-pharmacophores, energetically-optimized pharmacophores using the Glide XP scoring
function to prioritize protein-ligands interaction sites and shows good speed and perfor-
mance in virtual screening [61]. MOE is an integrated computer-aided molecular design
platform that offers many different services, from drug design to virtual screening and
molecular simulations. Drug design by MOE allows exploiting different methods such
as the structure-based design, the ligand-based design and the fragment-based discov-
ery (www.chemcomp.com/MOE-Molecular_Operating_Environment.htm/) (accessed on
20 May 2022). Another commonly used software is Discovery Studio (BIOVIA, Dassault
Systèmes), which allows deriving structure-based and/or ligand-based pharmacophores.
In the first case, it offers three methods to build pharmacophores: structure-based, fragment-
based or receptor-ligand pharmacophores according to the available structural data. In
absence of a bound ligand, this program implements the Interaction Generation protocol to
create LUDI interaction maps for hydrogen and hydrophobic contacts with the binding
site that can be manually selected or computationally computed. The interaction map
is then converted into pharmacophore models consisting of different combinations of at
least three features complementary to those of residue in the binding pocket in terms of
chemical nature and location, and the resultant models are scored and ranked according
to their target selectivity [62]. For ligand-based pharmacophore generation, besides the
use of the HipHop algorithm, DiscoveryStudio gives also the opportunity to explore the
QSAR approach by the HypoGen algorithm [63]. The purpose of this algorithm is to find
a spatial 3D arrangement of the features shared by the training molecules whose activity
on a specific target has been measured. To do so, it needs as input at least 16 compounds
covering four orders of magnitudes: H-bond donors, H-bond acceptor, aromatic ring,
hydrophobicity. The algorithm works in three phases: the constructive, the subtractive
and the optimization. In the first phase, all the pharmacophoric conformations, which pre-
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serve at most five default features, are collected and pharmacophores preserving features
shared by all the bioactive training compounds are generated; only pharmacophores fitting
other active molecules are kept. In the second phase, pharmacophores fitting inactive
molecules are removed; in the last, pharmacophore collection is optimized by simulating
annealing algorithm. Only the pharmacophore models showing the highest score are given
as output [7]. Other examples of 3D QSAR programs, which generate predictive models
include PHASE [64], comparative molecular field analysis (CoMFA) [65] and comparative
similarity indices analysis (CoMSIA) [66]. For a more exhaustive list, we remand to Gurung
et colleagues’ review of 2021 [26].

The software tools mentioned above are commercial but there are also academic
programs freely accessible. For instance, Pocket v.2 is a structure-based pharmacophore
program available either on the web (http://www.pkumdl.cn:8080/pocketv2.html) (ac-
cessed on 20 May 2022) or a stand-alone version that uses the Pocket module of LigBuilder
(for de novo structure-based ligand design) to analyze the binding site of the target receptor
by scored grids. The basic required input is the protein 3D structure in PDB format that is
employed to generate pharmacophore models from receptor structures with or without a
bound compound [67].

A user-friendly and freely-available web server, which exploited the common fea-
ture approach for ligand-based modelling, is represented by PharmaGist [68]. The main
window of PharmaGist requires only the uploading of up to 32 input molecules in mol2
format (uploadable in single or in a unique zip file), with bonds angles and length already
corrected and hydrogens atoms explicitly specified, the selection of the number of output
of pharmacophores that will be showed, and an e-mail address where the link to the re-
sults, stored at least for a month, will be sent. Besides this standard research PharmaGist
gives also the possibility to choose some advanced options as: i. the selection of a key
molecule, by this option all the other molecules will be aligned to the compound selected,
otherwise all compounds are selected as key compounds; ii. the minimum number of
features in pharmacophore iii. the feature weighting options, by which it is possible to
modify the weight of some features (aromatic ring, hydrogen bond donor/acceptor, an-
ion/cation and hydrophobic properties) in the scoring function; iv. User-defined features,
by which additional feature types can be defined by a supported feature file format created
by the user. The output consists of several tables: the first gives a summary of the input
molecules’ features and the following summarized the results starting always with the
highest scoring pharmacophore.

For those who are researching an easy to use and free available tool which exploits
the QSAR method without requiring particular informatics skills, or who simply want to
start learning about pharmacophore construction, the web portal 3d-qsar.com (accessed on
20 May 2022) represents a valid opportunity, being a platform hosting several applications
which guide the user along the correct workflow necessary to build a pharmacophore
model. The first is represented by Py-MolEdit which allows the correct compilation and
uploading of the training and the test dataset in any format, giving also the possibility to
draw your molecules. After using that tool, the platform gives the discretionary option
to align your dataset by exploiting the Py-Align tool. At this point is possible to perform
the building of a pharmacophore model with Py-CoMFA, obtained which, can be easily
analyzed by Py-ConfSearch tool that performs a conformational analysis. Py-CoMFA
allows the building and validation of the 3-D QSAR model with the same style as the
original CoMFA software, which seems to reproduce published results with a very good
agreement. The platform also provides the opportunity to make docking simulations (by
Py-Docking), or to use a different QSAR algorithm (Py-ComBinE). An interface to the
Protein Data Bank is also provided (by Py-PDB) [69].

7. Examples and Case Studies

Many examples in the literature present pharmacophore models obtained by QSAR
and common feature pharmacophore approaches. In addition to articles and reviews

160



Pharmaceuticals 2022, 15, 646

published in the past that report on successful applications in pharmacophore modeling
and virtual screening [70–74], we highlight some specific example of studies.

Schuster and colleagues performed the ligand-based pharmacophore modelling for
selective and nonselective 11β-HSD1 inhibitors. Their pharmacophore models, after a
virtual screening procedure, led to the in vitro validation of 30 compounds among which
seven were found to inhibit more than 70% of the activity of 11β -HSD1 when measured in
cell lysates with IC50 values below 10 µM and without cytotoxicity at concentrations up to
40 µM [75]. Pal and colleagues exploited the 3D-QSAR pharmacophore hypothesis and
found relevant binding features of novel topoisomerase inhibitors [46].

In a recent study, a pharmacophore model based on the experimental structure of
AKT1 protein complexed with an inhibitor has been used for virtual screening on a database
of natural compounds. The most promising compounds obtained by the screening have
been further investigated by toxicity profile and ADMET analyses, together with molecular
docking for better prediction of the potential binding [76]. Experimental studies confirmed
the potential inhibitory role of at least one of the selected compounds [76] and, in addition,
its synergic effect with quercetin to inhibition of cell growth and induce apoptosis [77].

Due to the pandemic, many research teams explored the opportunity to find novel
drugs through time-saving CADD approaches. This is the case of a study oriented to
finding novel inhibitors of TMPRSS2, or type II transmembrane serine protease, a human
protein involved in the activating processes of SARS-CoV-2 [78]. TMPRSS2 is of partic-
ular interest for its involvement also in cancer pathologies. The in silico screening has
been performed by a pharmacophore-based approach, starting from camostat mesylate,
a known inhibitor of serine protease 2, also approved for drug. The authors selected 10
pharmacophoric features of camostat mesylate and selected 2140 compounds from a public
database containing more than 30,000 natural compounds. After a molecular docking
analysis, the 2140 compounds were filtered to 85 candidates with docking scores similar to
or better than the known inhibitor. The computational study has been further extended
to analyze the list of filtered compounds for matching with Lipinski’s rule of five and for
ADMET properties. The study has been cited many times in literature, due to the interest in
the results and the need to verify by experimental approaches the real potential inhibitory
activity of filtered compounds.

8. Future Perspectives

CADD approaches have been successfully developed to improve the ability to discover
new drugs. The increasing computational power of hardware opens the perspective of
many more applications, also by increasing the availability of protein target structures
through deep learning and AI-based prediction tools [79]. The deep learning approaches
have been also recently applied to drug-target interaction [80]. However, the experimental
steps needed to validate the compound activity and safety remain time-consuming and will
always slow down the whole drug discovery process. From this point of view, the pharma-
cophore modelling followed by the virtual screening of databases of approved drugs, in
the drug repurposing perspective, represents the most advanced rational approach, and
the most promising way to find novel therapies.
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Abstract: Mangrove secondary metabolites have many unique biological activities. We identified
lead compounds among them that might target KRASG12C. KRAS is considered to be closely related
to various cancers. A variety of novel small molecules that directly target KRAS are being developed,
including covalent allosteric inhibitors for KRASG12C mutant, protein–protein interaction inhibitors
that bind in the switch I/II pocket or the A59 site, and GTP-competitive inhibitors targeting the
nucleotide-binding site. To identify a candidate pool of mangrove secondary metabolic natural
products, we tested various machine learning algorithms and selected random forest as a model
for predicting the targeting activity of compounds. Lead compounds were then subjected to virtual
screening and covalent docking, integrated absorption, distribution, metabolism and excretion
(ADME) testing, and structure-based pharmacophore model validation to select the most suitable
compounds. Finally, we performed molecular dynamics simulations to verify the binding mode
of the lead compound to KRASG12C. The lazypredict function package was initially used, and the
Accuracy score and F1 score of the random forest algorithm exceeded 60%, which can be considered
to carry a strong ability to distinguish the data. Four marine natural products were obtained through
machine learning identification and covalent docking screening. Compound 44 and compound 14
were selected for further validation after ADME and toxicity studies, and pharmacophore analysis
indicated that they had a favorable pharmacodynamic profile. Comparison with the positive control
showed that they stabilized switch I and switch II, and like MRTX849, retained a novel binding
mechanism at the molecular level. Molecular dynamics analysis showed that they maintained a
stable conformation with the target protein, so compound 44 and compound 14 may be effective
inhibitors of the G12C mutant. These findings reveal that the mangrove-derived secondary metabolite
compound 44 and compound 14 might be potential therapeutic agents for KRASG12C.

Keywords: mangrove natural products; KRASG12C; machine learning; molecular docking; drug
discovery; virtual screening; molecular dynamics

1. Introduction

Plants are an important source of drugs and many compounds extracted from plants
have been shown to have excellent medicinal properties [1]. In China and India, drugs
extracted from plants have been widely put into use. For example, ethyl acetate compounds
obtained from the flowers of Cassia fistula [2]. Mangroves are widely distributed in tropical
and subtropical beach areas and grow a variety of plants with rich medicinal value, such
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as Scyphiphora and Clerodendruminerme [3]. Additionally, mangroves have unique
biochemical properties that produce a large number of novel natural products and complex
skeletons, and various extracts of mangrove plants have been used to treat tumors and
bacterial infections [4]. Mangrove secondary metabolite extracts contain a large number
of medicinal compounds similar to tannins, steroids, triterpenes, saponins, etc. [5]. These
medicinal compounds play a unique role in the fight against human and animal pathogens.

KRAS targets have long been considered typically non-targetable targets in drug
discovery, circulating in active and inactive GTPase [6–8]. RAS is a GTPase that cycles
between GTP-bound (active) state and GDP-bound (inactive) forms through the actions
of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs).
In the active state, KRAS can maintain affinity with many proteins, among which RAF
and PI3K pathways may be the most typical [9–11]. Although the KRAS protein is closely
associated with cancer, recent studies have shown that the KRAS protein can cause onco-
genic mutations around activation sites (e.g., G12C, G12D, etc.), leading to downstream
RAFs and overexpression of PI3K proteins. This leads to a range of cancerous lesions
and over-proliferation of cancer cells [12]. In KRAS mutations, mutations in Cys12 cause
the KRASG12C protein to lose its inherent catalytic activity and at the same time to lose
the GTPase-activated protein (GAP). The enhanced catalytic effect leads to the activation
of its structure and disrupts the inactive state of KRAS, causing cancer cells to promote
proliferation. Lung cancer is the leading cause of cancer deaths in Western countries. In
the course of the current study, although we have made substantial progress in treating
genetic subtypes (e.g., patients with EGFR mutations or ALK-translocated lung cancer),
the most common (30% genetically defined subtypes) and effective treatment strategies
are still lacking. Cys12 mutations caused by codon 12 mutations account for nearly 50%
of patients with KRAS mutations [13–15]. Therefore, drugs that target KRASG12C may
have important therapeutic effects. Although KRAS is one of the first oncogenes to be
discovered, it has two features that make it nearly impossible to be suppressed. 1. KRAS
binds to GTP and GDP with a dermo maline affinity, which makes it difficult to develop
nucleotide-based inhibitors [16]. 2. The hydrophobic pocket of KRAS is shallow, resulting
in the insufficient affinity of the compound with the KRAS protein, resulting in off-target
effects and increasing the difficulty of finding high-affinity allosteric inhibitors [17].

In 2013, Shokat and his colleagues used a new strategy for Cys12 for KRASG12C [18].
They suggested that covalent bonds formed with Cys12 residue could interfere with the
activity of KRASG12C, thereby locking it into an inactive state bound to GTP, thereby
downregulating the downstream signaling pathway. After that, the researchers developed
a series of covalent inhibitors (ARS1620, AMG510, MRTX849) [19–22], that passed with
Cys12 and switch II (amino acids 60–68) binds and occupies an allogeneic pocket on KRAS,
and in these findings, the hydrophobic fraction of the new inhibitor penetrates switch II. In
the allogeneic pockets below the ring area (residue His95, Tyr96, Gln99), these inhibitors
are highly selective for the state in which KRASG12C binds to GTP and can maintain the
inactivity of the KRASG12C protein in the formation of its covalent complex.

To begin with, we performed preliminary virtual filtering based on ligand structures.
Then, we constructed training and test sets based on a selection of KRASG12C inhibitors from
the ChEMBL library and trained a random forest classifier to prospectively predict a library
of candidate compounds that were then predicted to be active by covalent screening. More
effective chemical structures than positive compounds were screened by comprehensive
evaluation of docking score and MM-GBSA score, and lead compounds were selected by
ADME toxicity analysis. A compound adapted to KRASG12C was selected and it can be
considered that it may be an inhibitor of KRASG12C. Under this process, we can predict the
lead components that may target KRASG12C in the mangrove natural product library under
the algorithm that is most suitable for the training set and then select the compounds with
better docking effects than the positive control for ADME property analysis to reduce false
positives in ADME screening as much as possible. Pharmacophore validation demonstrated
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that the lead compound and the positive control had more common features, and kinetics
further validated the binding activity of the selected compounds (Figure 1).

Figure 1. A virtual screening workflow (VSW) was used to identify molecules that hit KRASG12C.
A workflow overview of machine learning, covalent screening, elimination, and toxicity (ADMET)
approaches for pharmacophore validation and MD simulations.

2. Result
2.1. Candidate Compound Library Data

The dataset for external use was from the ChEMBL database, and all data excluded
compounds that did not have semi-concentration inhibition activity. To obtain the distribu-
tion of compound species in the mangrove secondary metabolite library, we calculated the
structural similarity score (volume score) between each compound in the dataset. The vol-
ume score is between 0 and 1, and a higher value indicates higher structural similarity. The
following figure reports the volume score between the two compounds. The two-volume
score was obtained by fractional normalization based on the backbone of the first or second
compound. Additionally, the result demonstrates the cluster analysis of the corresponding
volume score sizes for different compounds in the mangrove natural product library, where
most compounds have a similarity score of less than 0.4. Figure 2A reveals three sets,
compounds 0–50, compounds 50–100, the high similarity of compounds 125–200 may be
due to the presence of co-backbone structures in the mangrove secondary metabolite pool
(Figure 2B–D).

2.2. Machine Learning Models

To screen the mangroves in the laboratory to find inhibitors that can better target
KRASG12C, we used machine learning technology to better predict the activity of these com-
pounds on the target protein. Machine learning models were developed using the random
forest model and the various algorithms included in the lazypredict package. All data were
cross-validated by 10x, and from our result, it is clear that different predictive statistics
for all machine learning algorithms were implemented using training data alone. At a
threshold of 6.5um, the random forest algorithm performed best among all candidate clas-
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sification algorithms, with the highest Accuracy and F1 score, indicating that the random
forest algorithm had the best-fit value. (Figure 3) Therefore, we chose the random forest
classification algorithm in Weka (version 3.8) to train the pubchem molecular fingerprint
and analyze its 882 features. However, in real-world analysis, many features are complex
and have noise implications for the analysis. Therefore, with the Rank and CfsSubsetEval
modules, we removed features that were not related to structure–activity effects and finally
analyzed the remaining 404 features, improving the performance of the random forest
algorithm. Consequently, from a variety of classifiers, we screened and applied the random
forest classifier that best fit the dataset, showing its good discriminative power.

 

Figure 2. Clustering and typical frameworks of clusters in mangrove secondary metabolite library.
(A) Clustering of clusters in the mangrove secondary metabolite library; (B–D) typical frameworks in
the candidate compound library.

2.3. Random Forest Classification Model

After identifying the machine learning classifier likely to best fit the ChEMBL dataset,
we performed a new round of parameter tuning for the random forest algorithm, which
helped to better identify new molecules with similar properties that bind to the target
protein. The descriptor set obtained by the feature selection method was used to establish a
classification model, and the machine learning algorithm of random forest classification
was used to evaluate the molecular descriptor set to be selected in detail. Confusion
matrices are visualization tools used in machine learning to show accuracy assessments in
supervised learning. The records in the dataset were summarized in matrix form based
on the two criteria for the actual category and the classification judgments made by the
classification model. The random forest model was suitable for both true positives and true
negatives (Figure 4A,B), with a false positive number of 9 and a false negative number of
24 in the training set. The number of false positives in the test set is 3 and the number of
false negatives is 8. Compared with true positives and true negatives in the matrix, good
classification effects can be shown. A good binary classification model usually has good
sensitivity and resolution, accuracy, and a larger area under ROC. If both sensitivity and
resolution are high, the accuracy will be biased towards the highest value. Figure 4D shows
the area under the ROC curve of the machine learning algorithm. It can be seen that it
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has a high ROC value (ROC = 0.965), which partly indicates that it has a strong ability
to distinguish between molecular descriptors. Additionally, it is sufficient for the activity
differentiation of mangrove natural product libraries. In Tables 1 and 2, the predicted values,
recall values, F-scores, and MCC scores of the active and inactive compound classifiers
are given, and the values of the average model after the mixture of the two are given. The
predicted, recall values, and F-scores of the active and inactive compounds in the training
set were all close to 1, showing excellent sensitivity, with an average model MCC value of
0.825. While the average model in the test set has better overall statistics, a better balance is
achieved between recall and specificity.

Figure 3. The accuracy of each machine learning algorithm trained using the lazypredict package.
(A) Balanced Accuracy value of each machine learning classifier; (B) Accuracy value of each machine
learning classifier; (C) F1 score value of each machine learning classifier.

Table 1. Prediction values for the training set for the random forest classifier.

Class Precision Recall F-Measure MCC

Active 0.946 0.993 0.969 0.825
Inactive 0.962 0.758 0.847 0.825

Weighted Avg 0.949 0.949 0.946 0.825

Table 2. Predicted values for the test set of a random forest classifier.

Class Precision Recall F-Measure MCC

Active 0.795 0.939 0.861 0.289
Inactive 0.600 0.273 0.375 0.289

Weighted Avg 0.746 0.773 0.740 0.289

2.4. Chemical Space

The chemical space of the mangrove secondary metabolite library is highly diverse,
consisting of aldehydes, alcohols, and esters. The data set for this study was established
using compounds extracted from secondary metabolites of mangroves collected in pub-
lished papers. The data set was constructed with Schrodinger software, and a total of 281
molecules from different bacterial groups were collected. Principal component analysis
was performed on secondary metabolic natural products in mangrove forests (Figure 4C).
When analyzed using molecular fingerprint descriptors, it can be seen that KRASG12C is
spatially well-arranged, active and inactive molecules are well-arranged and are located
in large clusters with wider distributions. Splitting the test data in the compound library
into the 80% training dataset and 20% test dataset shows the considerable overlap between
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the two sets (Figure 4C), which shows that the classifier is validated based on COM with
similar intervals.

 

Figure 4. Chaos matrix and roc curve of the constructed random forest classifier and the chemical
space of the candidate mangrove compound library. (A) Confusion matrix of random forest classifier
to distinguish the training set; (B) confusion matrix of random forest classifier to distinguish the
test set; (C) chemical space of the candidate compound library; (D) ROC curve of the random
forest classifier.

2.5. Prediction of Prospects

Candidate compounds were scored by a random forest model and compounds labeled
as active were selected for subsequent docking experiments. From this point of view,
compounds are docked based on reliability, which may provide a degree of confidence for
these predictions.

2.6. Docking

Molecular docking can better reveal how compounds bind to targets. The selected
lead compounds were covalently docked in the Schrödinger Suite 18.4. After the ligand
minimization step, the interaction energy of each compound at each docking position was
calculated. The compounds with better performance than the positive control MRTX849
score were selected to show the most favorable conformation. It can be seen that the final
selected compound is better combined in the preset binding pocket and wrapped tightly, so
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it is judged that its off-target possibility is not high. Figure 5 shows 2D and 3D interaction
patterns of compounds 44 and 14 docking. Among them, the 2D interaction diagram of
compound 44 can be seen in Figure 5A and the 3D docking mode diagram in Figure 5C.
For compound 14, its two-dimensional interaction diagram and three-dimensional docking
model diagram are shown in Figure 5B,D. It can be seen that both compounds are linked
to the H95 cryptocodon of KRASG12C and form an irreversible covalent bond with Cys12.
Both compounds are connected to the switch II region, where the KRASG12C protein can be
inactivated by regulation. Compound 14 had a solid docking conformation by interacting
with Gly60 to form a hydrogen bond, forming a hydrogen bond with Gly10. Compound
44 is firmly present by forming the ΠΠ interaction with Arg68 and a hydrogen bond
interaction and forming hydrogen bonds with Peo34, surrounded by hydrophobic bonds
in the pocket. The results of validation and docking are consistent, which is qualitatively
expected for an inhibitor of KRASG12C. The RMSD values of compound 44 and compound
14 with the best docking effect are 7.9196 and 9.1083, respectively, which are in line with
the docking agreement among all the compounds with better docking effects, showing that
the overlap with MRTX849 fluctuates less (Table 3).

 

ΠΠ cation interactions

−

−

−

Figure 5. The most pharmaceutically available compound 44 with compound 14 and the KRASG12C

docking structure diagram. (A) Two-dimensional binding mode of compound 44 and protein complex;
(B) two-dimensional binding mode of compound 14 and protein complex; (C) three-dimensional
binding mode of compound 44 and protein complex; (D) three-dimensional binding modes of
compound and protein complexes. The purple sticks are hydrogen bonds and the red sticks are ΠΠ

cation interactions.
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Table 3. Docking RMSD between ligand pose and crystal coordinates for compounds with better
docking results than positive controls.

Name 2D Structure RMSD Docking Score
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2.7. MM-GBSA

Binding free energies calculated by molecular mechanics generalized born surface area
(MM-GBSA) indicate that the compensation between binding enthalpy and entropy plays
a crucial role in drug–protein binding. For the alternative lead compound, calculations
were also performed in the MM-GBSA module in the Schrödinger Suite 18.4. The values of
MM-GBSA for each compound were obtained, and the compound superior to the positive
control MRTX849 was selected (Figure 6). We describe the surrounding kinetic environment
by analyzing the conformation of protein ligands, but the calculations are too complex to
be easily controlled. We selected conformation by analyzing intermolecular MM-GBSA
scores and binding fractions, which not only focus on binding but also visualize it by a
fraction. The MRTX849 compound has an MM-GBSA score of −3.58, and compound 127
(score = −55.97), compound 44 (score = −6.35), compound 14 (score = −32.68), compound
31 (score = −25.13), and compound 15 (score = −4.43) are higher than the MRTX849,
indicating that these compounds may have a better conformation than the positive control.

 

uble molecules are −4 to −6 and −2~−4, respectively. Based on the results, all molecules are 

− −
35 −   −  h −
53 −   h −

− −

Figure 6. Compounds that were identified as active by random forest classifiers and were superior to
positive controls in covalent screening with KRASG12C protein docking results and MM-GBSA results.

2.8. ADME

ADME (Absorption, Distribution, Metabolism, and Excretion) is a key aspect for
predicting the pharmacodynamics of the molecule under study which could be used
as a future lead molecule for drug development. Swiss-ADME is a website (https://
www.swissadme.ch, accessed on 17 December 2021) that allows users to draw individual
ligands or drug molecules or contains molecules from pubchem smiles data and provides
information such as fat solubility (iLOGP, XLOGP3, WLOGP, MLOGP, SILICOS-IT, Log
Po/w), Water Soluble Log S (ESOL, ALI, SILICOS-IT), drug-like rules (Lipinski, Ghose,
Veber), and other parameters. ADME prediction studies for design compounds are shown
in Table 4. Swiss-ADME is based in part on Lipinski, Ghose, Veber, Egan, and the five
different rules identified by Muegge give the physicochemical properties of a possible
oral drug candidate [23–26]. The logarithmic S reference values for medium soluble and
highly soluble molecules are −4 to −6 and −2~−4, respectively. Based on the results, all
molecules are classified as medium soluble and highly soluble. ADME drug capability
assessment was performed on four selected compounds, where compounds 127 and 31
violated Lipinsky’s rule of five, but compound 44 and compound 14 exhibited good ADME
properties (Figure 7) and were reserved for the next evaluation and submitted for bone
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toxicity analysis, where the benzene backbone of compound 31 showed stronger toxicity
(Figure 8) (https://mcule.com/apps/toxicity-checker/, accessed on 19 January 2022). The
next evaluation was skipped. All of these parameters infer that compounds 44 and 14 are
close to a drug-like molecule.

Table 4. ADME properties of ligands selected from the Marine Natural Products Library.

Molecule MW
Rotatable

Bonds
H-Bond

Acceptors
H-Bond
Donors

ESOL
Log S

TPSA WLOGP
GI Ab-

sorption
log Kp
(cm/s)

14 241.28 5 5 2 −1.93 71.7 0.95 High −7.02
31 323.35 2 4 3 −2.69 85.16 −0.38 High −7.58
44 437.53 4 5 4 −4.66 99.02 3.01 High −6.6

127 315.25 3 7 2 −3.04 120.03 1.54 High −7.11

Figure 7. ADME properties of compounds obtained after the covalent screening. (A) ADME proper-
ties of compound 14; (B) ADME properties of compound 31; (C) ADME properties of compound 44;
(D) ADME properties of compound 127.

 
Figure 8. Toxicity alerts for compounds 44 and 31 are displayed in red font. Toxicity alerts for
compounds 44 and 31 are displayed in red font. (A) Toxicity alert for compound 44; (B) toxicity alert
for compound 31.

2.9. Pharmacophore Analysis

During the process of virtual screening, the pharmacophore model can be used to
characterize the active conformation of the ligand molecule by conformational search and
molecular superposition, and the possible mode of action between the receptor and the
ligand molecule can be deduced and explained accordingly. Based on the ranking and
scoring results of the pharmacophores given by the platform (Table 5), the best pharma-
cophores we selected (rank score = 52.937) have four hydrophobic characteristics and three
hydrogen bond receptors. The results confirm that both drug candidates match the selected
model, with compound 44 being the best match to the pharmacophore, matching the three
hydrophobic interaction features and one hydrogen bond acceptor feature (green) of the
model (Figure 9). It can be assumed that both compounds are more similar to the known
inhibitors in terms of distribution of spatial pharmacodynamic curves.
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Table 5. Feature composition and ranking score of 10 pharmacophore hypothesis models generated
based on common features of positive compounds.

ID Features Rank Direct Hit Partial Hit Max Fit

1 HHHHAAA 52.937 111 000 7
2 HHHHAAA 52.338 111 000 7
3 HHHHAAA 51.858 111 000 7
4 HHHHHAA 51.669 111 000 7
5 HHHHHAA 51.530 111 000 7
6 HHHHAAA 51.409 111 000 7
7 HHHHHAA 51.359 111 000 7
8 HHHHHAA 51.352 111 000 7
9 HHHHAAA 51.242 111 000 7
10 HHHHAAA 51.236 111 000 7

 

Figure 9. The pharmacophore model was generated based on the common features of the positive
compounds and the matching status of the two candidate molecules with the model. (A) The
common feature pharmacophore model; (B) the matching status of compound 44 and the model;
(C) the matching status of compound 14 with the model.

2.10. Root Mean Square Deviation (RMSD) Analysis

To obtain the equilibration time for each simulated protein–ligand complex during the
MD simulation, the RMSD of the skeleton was calculated. RMSD plots are typically used
to evaluate the time it takes for a system to reach structural balance and to estimate the
duration of running a simulation. RMSD is an important parameter for estimating changes
or changes in molecular conformation. Due to sudden changes in structural conditions,
the RMSD value of analog complexes, including references, increases suddenly, which is
related to protein crystallization. The latter effect is to be expected since, in the crystal
structure, the protein is rigid, and when it dissolves in the tank it resumes its dynamic
movement.

A complex system with a time frame x should have an RMSD that can be calculated
from the following equation [27,28].

RMSDx =

√

1
N ∑

N

i=1(r
′
i(tx))− ri

(

tre f

)

)2 (1)

Here, the RMSDx is the calculation of RMSD for the specific number of frames, N is
the number of selected atoms; tre f is the reference or mentioned time, r′ is the selected atom
in the frame x after super imposing on the reference frame, and tx is the recording intervals.

2.11. Root Mean Square Volatility (RMSF) Analysis

As shown in Figure 10A, the entire KRASG12C system is in equilibrium in the first
62 ns of the simulated 100 ns (RMSD value is 0.52 nm), and then fluctuates to the RMSD
of 0.50 nm after 62 ns and in equilibrium in the remaining 38 ns; the entire system can
eventually be in equilibrium in this 100 ns without much fluctuation in the process. For the
system of compound 14, the RMSD of the system is finally stable at 0.23 nm and the RMSD
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of its ligand is stable at around 0.16 nm. However, in the 100 ns simulation process, it can
be seen that there are four relatively long-term fluctuations. Interestingly, the system finally
stabilizes and is 0.27 nm lower than the RMSD value of compound 44 (Figure 11A). To
determine the deviation of the ligand from the initial posture and the degree of movement
of the protein residues, the RMSF values of all sampled conformations during the 30 ns
simulation were also calculated. RMSF fluctuates greatly, indicating that the residue is
unstable; otherwise, the residue is stable. The RMSF of the residue is i ccalculated from the
following equation [29].

 

Figure 10. Dynamic simulation results. (A) RMSD values extracted from protein fit ligand of the
protein-ligand docked complexes and ligand. RMSD plot of KRASG12C complex (red) and ligand 44
(black). (B) The RMSF graph of all complexes along with the protein during 100 ns MD simulation.
RMSF plot of the KRASG12C complex (black). (C) Residue-wise decomposition of binding free
energies obtained from the MM-PBSA analyses. Red bars indicate CYS-12, ARG-68, and TYR-96.
(D) Binding energy of binding for the protein complexed with ligand 44.

As shown in Figure 10B, the RMSF range of the entire system is between 0.05 and
0.3 nm. From this numerical range, the flexibility of the entire complex system is relatively
low, and each residue does not fluctuate too much. The RMSF value of the residue ranged
from 0.05 to 0.15 nm, indicating that the binding site of compound 44 with the target
fluctuated significantly and the binding was stable. The RMSF of another system is basically
consistent with the overall surface line of RMSF of compound 44. After visualization, the
RMSF of compound 14 is significantly larger on the key residues Cys12, Arg68, and Tyr96.
The flexibility of these residues shows that compound 14 is not as effective as compound
44 (Figure 11B).
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Figure 11. Dynamic simulation results. (A) RMSD values extracted from protein fit ligand of the
protein-ligand docked complexes and ligand. RMSD plot of the KRASG12C complex (red) and ligand
14 (black). (B) The RMSF graph of all complexes along with protein during 100 ns MD simulation.
RMSF plot of the KRASG12C complex (black). (C) Residue-wise decomposition of binding free
energies obtained from the MM-PBSA analyses. (D) Binding energy of binding for the protein
complexed with ligand 14.

2.12. MM/PBSA Analysis

For molecular mechanics, Poisson–Boltzmann surface area (MM/PBSA) is an efficient
and reliable method for calculating the free energy of small inhibitors bound to their pro-
tein targets. In general, low binding energy values indicate that the binding between the
ligand and the target is good, and the results of the g_mmpbsa are shown in Figure 10C,D.
In Figure 10C we can see that for the key residues Cys12, Arg68, and Tyr96, the energy
contribution of Cys12, Arg68, and Tyr96 is −15.05, −15.21, and −18.02 kj/mol, which also
corresponds to the interaction forces shown in the molecular docking section results. It is
shown that the interaction force acts in this system. In terms of the specific energy contri-
bution of key residues Cys12, Arg68, and Tyr96, the energy value of compound 14 is not
very good. These values are −10.03, −11.21, and −12.02 kj/mol, respectively (Figure 11C).
In addition, in the energy decomposition of compound 44 and the target (Figure 10B), the
total binding energy is −181.601 kj/mol, the energy of van der Waals is −290.5 kj/mol, the
energy of electrostatic energy is 12.155 kj/mol, the energy of polarization is 115.96 kj/mol,
and the final energy of SASA is −19.209 kj/mol. Overall, compound 44 binds very well
to KRASG12C. The total combined energy of compound 14 is −162.601 kj/mol, van der
Waals energy is −290.5 kj/mol, electrostatic energy is 22.155 kj/mol, polarization energy is
105.96kj/mol, and the final energy of Sasa is −19.209 kj/mol (Figure 11D).

3. Discussion

KRAS is the cancer gene with the most mutations in a single place and is the first to be
identified to have a causal relationship with human cancer [30]. Mutations in KRAS are
common among the three deadliest cancers: pancreatic, colorectal, and lung cancers [31].
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Frequent mutations in the KRAS gene lead to increased demand for drug development, but
due to its strong affinity with GTP and lack of deep hydrophobic pockets, the hydrogen
bond formed by molecular docking has difficultly accurately anchoring its active pocket,
which makes the development of corresponding small molecule inhibitors very difficult.
However, recently, after the single mutation KRASG12C was identified as an inhibitor
that could be used in clinical trials. There have been an increasing number of studies on
KRASG12C, the most common KRAS mutation in lung cancer individuals.

In recent years, due to the low affinity of the binding form formed by the hydrogen
bond and the limited binding efficiency of the active pocket, people have gradually begun
to focus on covalent docking. Covalent bonds are directly connected to the target residues;
thus, providing a more stable and higher affinity than hydrogen bonds. Therefore, in this
paper, due to the special form of KRASG12C protein, we chose covalent screening as a way
to find lead compounds, hoping to find new inhibitors from the mangrove natural product
library through machine learning high-throughput screening.

In this study, 281 published small molecules targeting KRASG12C were selected from
the ChEMBL database and all of them were converted into pubchem molecular fingerprints.
Molecular descriptors were evaluated with the lazypredict package in Python. The random
forest classifier had higher AUC values among all the classifiers used. This means that
compared to other machine learning methods, random forest outperforms all methods on
the KRASG12C dataset, so the random forest classifier chosen in this study seems suitable
for prospective prediction. Therefore, we characterized the data in Weka (version 3.8) to
make the algorithm fit the data better, the AUC area under the ROC curve of the random
forest classifier indicates that the model has a good degree of discrimination, and the
real number of filters in the confusion matrix with positive numbers for the training and
test sets also indicate that the model has moderate to high reliability for forward-looking
predictions. The mangrove secondary metabolite library in the laboratory contained a
large number of molecules with different frames, which showed the diversity of candidate
compounds. PCA results showed that the mangrove natural product library had a broader
space of chemical properties. After the compounds screened by the random forest classifier
were introduced into the covalent screening module of Schrödinger Suite 18.4, the control
compounds with higher scores were selected for further analysis by comparison with the
positive control MRTX849. From the docking results, it seems that the carbon–carbon
double bond and the imine group can form a covalent bond with the Csy12 group of
KRASG12C through Michael addition reaction, and these warheads were proved to be
feasible in this study. Binding modes and molecular interactions reveal the mode of action
of the selected ligands for KRASG12C. The comparison with the positive control showed
that the warhead of compound 14 covalently bound to the receptor was similar, which
may instruct us to modify it for better effect in the following experiments. Interestingly,
the skeleton of compound 44 is similar to that of the positive control MRTX849, which
allows compound 44 to have more favorable interactions and better probe itself into the
shallow hydrophobic pocket of KRASG12C to interact with the better receptor combination.
Toxicity testing shows that the structure of compound 14 has no components that are toxic
to humans, but compound 44 has groups that may be harmful to humans, which is very
important for future research. We may be able to optimize the functional groups of the
lead compounds to provide them with better performance when targeting KRASG12C. In
addition, quantum/molecular mechanics (QM/MM) calculations can be performed on the
complexes, and finally, the conformation is selected from the docking simulations [32].

After years of development and calibration, the QM/MM hybrid method has be-
come an indispensable tool for studying the kinetics of various chemical and biochemical
processes. QM/MM is mainly used to characterize and study the transition states and
activation energies of enzymatic reactions. Conformations computed in this way describe
the surrounding environment in more detail. However, the calculations become more
complex and not easy to control. We chose the conformation by analyzing the interaction
between the molecule and the binding moiety, which focuses not only on the binding
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mode but also the moiety to be referenced. However, some compounds change mating
conformations due to changes in the environment, regardless of environmental influences.
Machine learning to resolve inhibitors is an emerging technology that is an important
branch of artificial intelligence to extract useful and thematically relevant data when ana-
lyzing large samples. In this study, we focused on the classification analysis and principal
component analysis of machine learning, allowing the compounds in the data set to pass
activity prediction, so that the virtual screening can obtain more drug-like results. At
the same time, in the machine learning analysis, if the docking score is more balanced by
improving the docking score, it can also accurately filter out potential lead compounds
from the virtual screening [33]. Compared with the QSAR analysis under the traditional
algorithm [34], the active structure–activity relationship model constructed by machine
learning can better fit the data and can have better performance in terms of robustness and
prediction accuracy [35]. We, therefore, identified compounds in the mangrove secondary
metabolite pool that might target KRASG12C, which exhibited favorable pharmacokinetic
properties and docking effects and also received high scores in machine learning models.
In the following research, its inhibitory activity can be verified experimentally to better
obtain its inhibitory effect in animals and humans.

All in all, in terms of statistical machine learning methods, docking scores, and in silico
ADMET studies, the results are satisfactory, indicating that virtual screening strategies
combined with machine learning as well as structure-based molecular docking can improve
the efficiency and accuracy of screening of target compounds.

4. Materials and Methods
4.1. Protein Pretreatment

We used the PDB website (https://www.rcsb.org/, accessed on 1 May 2021) to select
and download KRASG12C’s structure (PDB id:5F2E) [36], and then imported it into the
Schrödinger Suite 18.4 to perform protein processing preparation. Pre-processing took
place in the prepwizard module (Schrödinger Inc., New York, NY, USA), flipping pairs of
Asn, Gln, and His by 180◦. The terminal X angle of the residue was sampled to optimize
the hydrogen bond network, and the hydrogen on the hydroxyl and thiols was sampled
to optimize the hydrogen bond network. After hydrogen bond optimization, we used
impact’s imperf module and OPLS-2005. It also minimizes the structure of the protein; thus
allowing the entire structural system to relax. In a protein minimization protocol, including
all atoms and pure hydrogen atoms, the conditional criterion for termination was based on
the root mean square deviation of the heavy atoms from their initial positions. At the same
time, all water molecules were removed under the premise of optimizing hydrogen bonds
and retaining the necessary water molecules at the minimum stage.

4.2. Machine Learning

4.2.1. Data

The dataset constructed to train the machine learning classifier was extracted and
queried separately in the ChEMBL database, and the reference protein we chose was
ChEMBL2189121. The activity set was defined as compounds with a molecular weight < 1000,
and the activity type (Standard type = “IC50”) that detected inhibition had a STAN-
DARD_UNITS value of “NM”. After removal of duplicate structures and no experimentally
determined definitive IC50 values, the active set included 98 structures. Standard Relation
=“>” for the inactive compound set, which means that the construct did not show any
activity at the concentrations used for screening. The inhibitory activity type of the resulting
structure was also IC50, and its STANDARD_UNITS was also “NM”. After deduplication,
the inactive set contained 72 structures. The electrical properties of the compounds were
restored to electrical neutrality for both test and training sets. All machine learning classi-
fiers use L1 regularization to weed out unimportant descriptors. The area under the curve
(AUC) of the receiver operator characteristic (ROC) and the number of true positives (TP),
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true negatives (TN), false positives (FP), and false negatives (FN) were used as metrics for
the classification model.

4.2.2. Machine Learning Models

Some of the molecular descriptors in the sample were noisy and irrelevant. We
needed to remove them without missing too much information to reduce the likelihood
of overfitting. From here, a condition was introduced to remove the unwanted descriptor,
which measures the correlation between the descriptor and the sample output by the
classifier [37]. For this purpose, we used a feature selection project, which selected the
appropriate descriptor in a sample that contains a small amount of information without
losing a lot of information. This study used the Rank method in the Select Attributes
module in Weka [38] to rank each feature in descending order and then delete the lower-
ranked feature. At the same time, the CfsSubsetEval method was used to predict the degree
of complexity between each feature and the predicted feature for classification.

4.2.3. QSAR Modeling

The QSAR classification model can reflect the molecular descriptor as a correspondence
between the independent and dependent variables, each representing the category of
the corresponding sample (KRASG12C inhibitory activity). Machine learning algorithms
can group observations or instances into classes. In structure–activity relationships, it
tended to be complex and nonlinear, in which case QSAR modeling had shown excellent
performance [39]. Lazypredict Pack (https://github.com/shankarpandala/lazypredict/
tree/master, accessed on 12 January 2022) uses a variety of machine learning algorithms
to verify which algorithm is better suited for a dataset in Python. The machine learning
software Weka (Waikato Knowledge Analysis Environment) [38] version 3.8 was used to
perform a random forest algorithm selected by lazy prediction. Weka implemented 10
cross-validations to get the best fit on the training set.

4.2.4. Principal Component Analysis

Principal component analysis (PCA) was performed on the mangrove secondary
metabolite library data set to assess its chemical space. We used the Scikit-Learn 40
(0.22.2) for the PCA algorithm. The pubchem fingerprint reduces the feature dimension to
3. Molecular descriptors and fingerprints were from the Cheminformatics Library Rdkit (1
March 2020).

4.3. Covalent Docking

To further screen candidate compounds, the resulting candidate compounds were
subjected to covalent docking virtual screening (CovDock-VS) based on the KRASG12C

structure (PDB ID:5F2E). Molecular docking studies were conducted using the Maestro
program. The ray structure of the KRASG12C protein (PDB ID:5F2E) with a resolution of
1.40 Å was selected for covalent docking. The ligands were prepared in Schrödinger’s
LigPrep module (Schrödinger Inc., New York, NY, USA). Protonation and ionization
states of various stereoisomers, tautomers, and ligands were generated at pH 7.4 using
an ionizer. Finally, the energy of the ligand was minimized using the OPLS2005 force
field. The LigPrep-generated ligands were docked into the receptor grid in a covalent
docking manner and the Michael addition reaction was selected as the reaction equation.
The active functional group of the ligand was limited to 5 Å of the active amino acid
residue, according to the previously obtained binding sites. A receptor grid with X = 14.9,
Y = 10.5, and Z = 14.3 was prepared. The energy was minimized after docking, and each
ligand outputs up to three optimal poses. Unless otherwise noted, all docking results were
visually screened and conformations with the best docking scores were retained. CovDock
used Cys12 as a covalently mated nucleophilic residue that conjugates to CovDock’s preset
alkyne hydrocarbons (carbonyl activation). Ligands with reactive functional groups in the
range of 5 Å form covalent bonds specified by the reaction. Ligands were selected and
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ranked based on the Glide score of the reaction complex binding pattern [40]. To ensure
the accuracy of the docking protocol, we chose the superposition module in maestro to
calculate the docking RMSD between the ligand’s pose and crystal coordinates, while using
MRTX849 as a control.

4.4. ADME

ADME’s analysis of the pharmacodynamics of this pharmaceutically acceptable small
molecule was of great significance. The Swiss ADME Server (http://www.swissadme.ch/,
accessed on 17 December 2021) evaluates lead compounds retained after machine learning
and covalent docking screening. This was described based on the specification SMILES [41].
The ADME properties of the selected compound were calculated by the website. The main
relevant parameters such as pharmacokinetic properties and drug solubility were taken
into account. The observed attribute values are shown in Table 3.

4.5. Pharmacophore Modeling and Matching Validation

By using the Discovery Studio platform (Discovery Studio 4.5, Accelrys, Co., Ltd., 175
Wyman Street, 02451 WALTHAM, MA, USA), we spatially aligned three known positive
compounds and generated 10 hypothetical pharmacophore models based on molecular
common characteristics. We selected hydrogen bond receptors, hydrogen bond donors,
and hydrophobicity features as model pharmacodynamic features. The minimum distance
was set between pharmacodynamic features within the model to 2.97 Å and the best
conformation method was applied to generate the potential conformation of the positive
compound. According to the pharmacophore ranking score given by the platform, the
optimal pharmacophore was selected to match the two candidate molecules to assess
whether the candidate molecules were consistent with the common pharmacodynamic
characteristics of known inhibitor molecules.

4.6. Molecular Dynamics (MD) Simulation

After docking, an MD simulation of the compounds 14 and 44 with KRASG12C was
used to check the stability of the compound in the binding bag. Then, the GROMACS 2019.1
package [42], amber 99sb-ildn force field (https://www.gromcs.org/About_Gromacs, ac-
cessed on 26 December 2021), and single point charge (SPC216) model were used for
molecular dynamics simulations of 100 ns. To guarantee the total charge neutrality of
the simulated system, a corresponding number of sodium ions are added to replace the
water molecules in the system to produce a solvent cartridge of appropriate size. Then, the
periodic boundary condition (PBC) was applied in the three directions of the system [43].
Using the amber99sb-ildn force field, the force field parameters obtained for the entire atom
can be found on the Acpype website [44] (https://www.bio2byte.be/acpype/, accessed
on 29 December 2021). The first pass (EM) minimizes the energy of the entire system
at 50,000 steps below 300 K. Then, through MD simulations with position constraints,
collected by NVT (constant particle count, volume, and temperature), and finally by NPT
(constant particle number, pressure, and temperature) [45]. In addition, we balanced en-
zymes, ligand molecules, and solvents. Among them, we carried out non-standardized
residual treatment of covalent bonds in the system.

4.7. MM-PBSA

Poisson Boltzmann Surface Area is open-source software, and g_mmpbsa was primar-
ily used to calculate the free energy of binding between the receptor and the inhibitor after
MD [46]. As a scoring function, MM-PBSA has been used in computational methods for
drug design. In this study, MM-PBSA was used to determine the binding free energy of
KRASG12C with molecules 44 and 14, respectively.

The following Equation (2) describes the binding free energy:

Gbinding = Gcomplex −
(

Gprotein + Gligand

)

(2)
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The free energy of the protein–inhibitor complex was represented by the G_complex, the
free energy of the protein in the solvent is represented by the G_protein, and the free energy
of the inhibitor in the solvent is represented by the G_ligand.

5. Conclusions

In summary, marine natural products are an important source of lead compounds,
especially mangroves and their secondary metabolites have many potential antitumor lead
compounds. In the present study, we constructed a random forest classifier with excellent
discriminatory power and sensitivity and used it to predict mangrove-derived compounds
with potential KRASG12C inhibitory activity. Subsequently, further covalent docking and
MM-GBSA analysis results confirmed the stable binding ability of two mangrove-derived
compounds 14 and 44. To investigate the commonalities in the potency of our two selected
mangrove compounds and previously reported KRASG12C inhibitors, a pharmacophore
model based on molecular common features was also used to further extend our study
and corroborate the potential of both compounds to inhibit KRASG12C. Next, our work is
focused on improving the biochemical and pharmacological profiles of mangrove secondary
metabolite compounds 14 and 44 through further medicinal chemistry work and structural
studies. Although the development of KRASG12C inhibitors is still considered a challenging
task in the field of drug discovery and development, our work expands new horizons for
this field.
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Abstract: In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA,
known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid
secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved
in telomere length and translation regulation, it could provide valuable insight into fundamental
biological processes, such as cancer growth, and TERRA G4 binders could represent an innovative
strategy for cancer treatment. In this work, the three best candidates identified in our previous virtual
screening campaign on bimolecular DNA/RNA G4s were investigated on the monomolecular Tel
DNA and TERRA G4s by means of molecular modelling simulations and in vitro and in cell analysis.
The results obtained in this work highlighted the stabilizing power of all the three candidates on
TERRA G4. In particular, the two compounds characterized by a chromene scaffold were selective
TERRA G4 binders, while the compound with a naphthyridine core acted as a dual Tel/TERRA
G4-binder. A biophysical investigation by circular dichroism confirmed the relative stabilization
efficiency of the compounds towards TERRA and Tel G4s. The TERRA G4 stabilizing hits showed good
antiproliferative activity against colorectal and lung adenocarcinoma cell lines. Lead optimization to
increase TERRA G4 stabilization may provide new powerful tools against cancer.

Keywords: G-quadruplex DNA; TERRA; docking; circular dichroism; mass spectrometry;
biological assays

1. Introduction

The dynamic nucleoprotein telomerase plays a central role in cellular senescence by
maintaining chromosomal integrity. In particular, it adds TTAGGG sequences to the end of
the chromosomes, known as telomeres, preventing chromosomal degradation or end-to-end
fusion events that may cause genomic instability [1]. Telomeres are guanine-rich (G-rich)
sequences, characterized by non-canonical higher-order structures called G-quadruplexes
(G4s). These are characterized by two or more stacked G-tetrads that are constituted by
four guanines held in a planar arrangement through a network of Hoogsteen hydrogen
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bonds. Moreover, further stabilization is provided by a monovalent cation coordinating the
O6-lone pairs of each guanine [2]. Based on the environmental conditions, G4 can assume
multiple folding topologies influenced by the number and orientation of the strands (paral-
lel, antiparallel, and hybrid 1 and 2 types), the loop size, the groove width, and the syn/anti
glycosidic bond orientation of the guanines [2,3]. For the human telomeric sequence (HTS),
several G4 DNA topologies have been observed in the presence of K+ ions. Specifically, the
parallel-stranded conformation is the only one found for the wild-type Tel22 AG3[T2AG3]3
crystallographic structure [4], while hybrid 1 and hybrid 2 topologies are prevalent in
NMR solutions [5,6]. Conversely, antiparallel folding was revealed by NMR studies in the
presence of Na+ [7]. Furthermore, several bimolecular and tetramolecular G4 structures can
be obtained in vitro by nucleic acid sequences that include groups of contiguous guanine
residues [8–10]. At first, telomeres were considered as transcriptionally silent regions of
mammalian chromosomes, but Azzalin et al. pointed out their transcription by detect-
ing non-coding telomeric repeat-containing RNAs (TERRA) into mammalian cells [11].
TERRA can play significant a significant role in different biological processes, such as
end protection, telomeric replication, and telomerase recruitment [12,13]. Interestingly,
Xu et al. demonstrated that human TERRA molecules folded in G4s similarly to the
telomeric DNA and provided direct evidence about the presence of the parallel-stranded
TERRA G4s in living cells, through a light-switching pyrene probe [14]. Moreover, several
TERRA-binding proteins have been discovered, including telomeric duplex DNA binding
proteins TRF1 and TRF2, which are Shelterin key components able to protect telomeres [15].
Balasubramanian and co-workers also demonstrated that TRF2 interacts with the G4 con-
formation of TERRA for binding more tightly to telomeric DNA (Tel) [16]. TRF2 promotes
telomere folding by hiding the 3′-end overhang, which is not recognized as damaged DNA,
thus preventing DNA damage response (DDR) activation [17]. Because the maintenance of
telomeres is a key tract of cancer cells, compounds that target telomeres and their transcripts
have been investigated as anticancer strategies. The therapeutic evaluation of TERRA-
mediated telomerase regulation in cancer cells showed promising results. Indeed, previous
studies demonstrated TERRA downregulation in advanced stages of various human can-
cers compared to normal tissues, suggesting that telomeric transcription is downregulated
in advanced tumors [18]. Moreover, recent studies demonstrated that the identification
of TERRA G4-targeting drugs induced a cytotoxic effect on high TERRA-expressing cells,
where they induce a DDR at telomeres, probably by displacing TERRA from telomeres [19].
In light of this, TERRA provides a promising antitumor target as it is necessary for the
formation of telomeric heterochromatin in all tumor cells, even those not expressing telom-
erase (ALT-positive tumors) [20]. The availability of TERRA experimental (NMR or X-ray)
structures, together with a deep understanding of their topologies, is extremely help-
ful for the rational design of their selective ligands. Interestingly, CD, NMR, and X-ray
crystallographic studies pointed out the parallel “propeller” topology as the most predomi-
nant for TERRA [21], if compared to the wide variety of G4 conformations observed for
Tel [4–6,22,23]. Unfortunately, only the bimolecular sequence of TERRA was solved [21,24],
while its unimolecular counterpart is still unavailable. While several Tel ligands have been
identified and studied [25–30], few compounds have yet been proposed as TERRA binders.
Among them, Collie et al. described a naphthalene diimide able to bind bimolecular TERRA
with higher selectivity than BRACO-19, a ligand more selective towards Tel. This obser-
vation is suggested to be related to the presence of the 2′-OH groups in the RNA sugars,
which reduce groove and loop widths, making important changes in the portion interacting
with the ligand sidechains as well [31]. Therefore, the hydrogen bonds (H-bonds) network,
involving the O2′ hydroxyl groups of the ribonucleotide sugars in TERRA, can be consid-
ered an important structural feature for the drug-design of selective TERRA-ligands [32]. In
particular, this H-bond network tunes down the negative electrostatic surface of the target,
partially explaining the observed selectivity of carboxypyridostatin (cPDS) [33]. A previous
computational study by us pointed out that the cPDS high electrostatic surface, coupled to a
conformational profile able to maximize the solvation contribution, is an important feature

186



Pharmaceuticals 2022, 15, 548

to make it selective against TERRA [34]. Starting from our previous virtual screening
(VS) campaign on bimolecular telomeric DNA and RNA G4 structures (named Tel2 and
TERRA2 G4, respectively) [35], in this work, the three best candidates (Figure 1) were
submitted to molecular recognition studies on the 3D coordinates of monomolecular Tel
and TERRA. A computational approach, based on molecular dynamics (MD) and docking
simulations, was applied to target the monomolecular Tel of the 22-nt telomeric sequence
5′-AGGGTTAGGGTTAGGGTTAGGG-3′ (PDB code: 1KF1) [31] and its TERRA counterpart
sequence 22-nt 5′-AGGGUUAGGGUUAGGGUUAGGG-3′. In particular, we investigated
the binding affinity of the three best candidates 7, 15, and 17 previously discovered as dual
Tel2 and TERRA2 binders [35], towards their Tel and TERRA monomolecular counterparts.
With this aim, the homology model of the monomolecular TERRA was built and submitted
to MD simulations to assess its geometric stability with respect to the corresponding Tel
conformation. Subsequently, our docking simulations allowed us to predict the putative
binding mode of all three candidates on TERRA. Furthermore, biophysical assays confirmed
their stabilizing power.

5′ 3′ (PDB code: 1KF1) 
′ 3′. In particular, we investi-

 

template to build the corresponding TERRA G4 structure through the “
”

Figure 1. The 2D chemical structures of the three best hits found in our previous VS campaign
on bimolecular Tel2/TERRA2 G4s: (A) hit 7, characterized by a naphthyridine scaffold with a
((dimethylamino)propyl)acetamide side chain; (B) hit 15, exhibiting a furo-chromene structure; and
(C) hit 17, distinguished by a benzofuran ring [35].

2. Results and Discussion
2.1. Computational Studies

The binding capability of the three best hits, discovered in a previous VS on bi-
molecular Tel2/TERRA2 G4s [35], was computationally investigated on the corresponding
monomolecular structures. The G4 crystallographic model of Tel (PDB ID: 1KF1) was
used as template to build the corresponding TERRA G4 structure through the “homology
modelling” approach and was submitted to MD simulations to verify the geometrical stabil-
ity. MD simulations agree with the experimental data [36,37], showing higher structural
stability for TERRA with respect to Tel (Supplementary Figure S1), as demonstrated by
the average of the Root Mean Square deviation (RMSd) on all the heavy atoms, which
is equal to 0.26 nm and 0.34 nm, respectively, for TERRA and Tel. This observation is
further confirmed by the RMSd matrix (Supplementary Figure S2) calculated on the heavy
atoms among all MDs conformations, from which it turns out that Tel exhibited a more
significant heterogeneity than TERRA, as highlighted by the wider orange and red areas
(Supplementary Figure S2A), associated with the higher RMSd values. A cluster analysis
performed on all the nucleic acid heavy atoms allowed us to select the most representa-
tive conformations of both G4 targets. Specifically, to perform the subsequent docking
studies, four and three conformations for Tel and TERRA, respectively, were selected, thus
considering the flexibility of both targets. A visual inspection analysis of all the most
representative conformations (cluster 1, 2, 3, and 4 of Tel and cluster 1, 2, and 3 of TERRA)
(Supplementary Figure S3) retrieved a well-structured G-core with partial coverage of the
G-tetrad at the top of the residue DA1 (Deoxyribonucleotide Adenine 1) and RA1 (Ribonu-
cleotide Adenine 1) in Tel and TERRA, respectively. Moreover, the structure of the Tel
cluster 4 was exhibited in the top position in the presence of an additional residue, DA7
(Supplementary Figure S3B). Interestingly, TERRA and Tel showed two different behaviors
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in the bottom position. While all TERRA representative conformations showed that the
G-tetrad at the bottom position is free to interact with any end-stacking ligands, in three
Tel structures (cluster 1, cluster 3, and cluster 4), we observed residue DT17 (Deoxyribonu-
cleotide Thymine 17) interacting through stacking interactions with DG16 (Deoxyribonu-
cleotide Guanine 16), partially preventing ligands access (Supplementary Figure S3B). The
greatest structural difference between the target-selected conformations of both Tel and
TERRA was instead found in the loops, where the highest heterogeneity was observed. In
order to investigate the differences in the recognition of the unimolecular telomeric G4s for
the three ligands, we clusterized all generated docking poses obtained against all clusters
by using the angle descriptor defined by three dummy atoms, as reported in a previous
work [38]. As shown in Supplementary Figure S4, hits 15 and 17 bound to loop in both tar-
gets, while hit 7 exhibited a greater number of poses positioned at the bottom of the TERRA
molecule. The second favorite binding site for all compounds was the bottom position. The
top position was not a favorite binding site for these compounds: we hypothesize that the
presence of DA1 and RA1 in Tel and TERRA, respectively, blocks the access to the G-tetrad.
In Supplementary Figure S5, we report a deeper analysis for the distribution of the binding
poses to the most representative conformations of both targets. Regarding TERRA clusters,
we observed heterogeneous behaviour. In fact, although all 3D structures showed that the
G-tetrad in the bottom position is free to interact with the three studied compounds, as
previously described, only cluster 1 and cluster 2 for hit 7, and cluster 2 and cluster 1 for
hits 15 and 17, respectively, seem to favour this binding mode. Conversely, the lateral
position appeared to be preferred in the rest of the clusters, with a higher prevalence for
hits 15 and 17, suggesting the conformation of the loops more favourable to accommodate
a ligand. Interestingly, for cluster 4 of the Tel target, a single binding mode could be
observed for all generated docking poses since all compounds bind the nucleic acid in
a lateral position. In addition, Tel cluster 2 showed a preference to bind the ligands in a
lateral position, especially for hits 7 and 17. Finally, despite the presence at the bottom
of residue DT17 that partially covers the G-tetrad, clusters 1 and 3 of all hits seemed to
slightly prefer this binding site. Then, for each compound, we selected and deeply analyzed
the energetically most stable complex with both targets (Supplementary Table S1). All
three compounds showed better binding free energies when they were docked against
TERRA, with ∆Gbind values ranging from −58.86 to −88.77 kcal/mol. Conversely, Tel
complexes were characterized by ∆Gbind values higher than −57.96 kcal/mol. Thus, hit 7
potentially maintained its dual Tel/TERRA ligand profile, as previously also observed on
the respective bimolecular Tel2/TERRA2 G4s [35]. Surprisingly, hit 15 and hit 17, previously
characterized as selective Tel2 ligands [35], turned out to have a better theoretical affinity
towards the monomolecular TERRA G4. An analysis of the related single contributions
of ∆Gbind highlighted the better contribution of Van der Waals (∆Gbind_vdW), lipophilic
(∆Gbind_Lipo), and packing energy (∆Gbind_Packing), that is, the π–π packing correction, in
TERRA complexes compared to Tel ones [39]. We next analyzed the interaction pattern of
the best thermodynamic complexes (Figure 2). Specifically, hit 7 recognized the bottom of
TERRA, confirming this binding site as the most geometrically and energetically favored
(Figure 2A). The complex was stabilized by four π–π interactions, established between
the naphthyridine moiety of the ligand and the nitrogenous base of the nucleobase RG10
(Ribonucleotide Guanine 10), and a π–cation between hit 7 pyridine ring and the potassium
coordinating the last G-tetrad. This ligand also engaged three H-bonds with nucleobases
RG10, RG4, and RA7 by means of the carbonyl group on the naphtyridine ring, the linear
amide, and the quaternary ammonium, respectively. Its positive charge was also involved
in three salt bridges with nucleobases RU5 (Ribonucleotide Uracil 5), RA7, and RG9. Con-
versely, in the Tel complex, hit 7 behaved as a loop binder by preventing the formation
of the stacking interactions that stabilize its bond with TERRA (Figure 2D). This ligand
interacted with Tel through three H-bonds with nucleobases DA14 and DA19 by employing
its quaternary ammonium, its amide group, and its pyridinium ring, respectively. Two salt
bridges were also engaged between the quaternary ammonium and the pyridinium ring
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of the ligand and nucleobases DA19 and DA14, respectively. Hit 15 (Figure 2B) appeared
to form the most energetically stable complex for both G4 structures by acting as a loop
binder, in agreement with the geometrical analysis of the docking binding sites. In the com-
plex between hit 15 and TERRA, electrostatic contributions were the driving interactions
(Supplementary Table S1). Specifically, a salt bridge, involving the quaternary ammonium
of the ligand and the phosphoric group of the RG16 nucleobase, and four H-bonds were
established. These latter interactions were engaged between the 1,3-dioxole portion; the
furan ring; and the quaternary ammonium of the ligand and nucleobases RU17, RA19,
and RG15, respectively. Conversely, in the Tel complex (Figure 2E), hit 15 engaged only
two H-bonds between the carbonyl group of the chromene moiety and the quaternary
ammonium of the ligand with nucleobases DT11 and DG10, respectively. In the complex
between hit 15 and Tel, we observed four π–π interactions between the chromene ring and
the furopyridine moiety with the nucleobases DG8 and DA13, respectively. Although only
two π–π interactions were observed in the TERRA complex between the 1,3 dioxole portion
and the pyridine ring of hit 15 with nucleobases RA19 and RU18, respectively, the ligand
was able to establish several hydrophobic interactions, as highlighted by the lipophilic
energetic terms in Supplementary Table S1 (∆Gbind_Lipo and ∆Gbind_Packing). Finally, the
energetic analysis confirmed the behavior of loop binders for hit 17 when complexed to
TERRA (Figure 2C). At the same time, the bottom position was disclosed as the best binding
site on Tel G4 for the same compound (Figure 2F). Moreover, the best energy evaluation
for the complex between hit 17 and TERRA G4 was related to the higher number of estab-
lished favorable interactions compared to Tel. Specifically, hit 17 was involved in three
π–π interactions and two H-bonds with TERRA G4, while in the Tel complex only one π–π
interaction and one H-bond were observed. In detail, the TERRA complex showed the
phenyl ring and the chromene moiety of the ligand interacting with nucleobases RG8 and
RG14, respectively, through π–π interactions. Instead, the amide moiety and the quater-
nary ammonium engaged two H-bonds with nucleobases RA13 and RU12, respectively.
Regarding the Tel complex, we observed π–π interactions between the ligand furan ring
and DT17 nucleobase, while the amide portion interacted through an H-bond with DG22.
Both complexes of hit 17 shared a salt bridge, involving its quaternary ammonium and
nucleobases RU12 and DG22 for TERRA and Tel, respectively.

In a second step, we evaluated the ability of the three compounds to stabilize both
TERRA and Tel. We performed 200 ns long MDs starting with thermodynamically best
complexes and compared the results with respect to the stability of the related cluster
conformation for each target. As shown in Supplementary Figure S6, the analysis of
the RMSd trend, calculated on the heavy atoms of both targets, showed a better abil-
ity to stabilize TERRA for all compounds, compared to Tel complexes. Interestingly,
hit 7 exhibited the best stabilizing profile on TERRA, with an average RMSd value of
0.17 nm. Moreover, it is the only compound able to form a complex with Tel showing
an RMSd trend (with an average RMSd value of 0.26 nm) similar to that of the related
unbound target structure (with an average RMSd value of 0.24 nm). Conversely, hit 17
exhibited the worst trend of RMSd on Tel (with an average RMSd value of 0.35 nm) since
we observed for the entire duration of the MDs higher RMSd values compared to the
unbound target, with a further increase in the last 50 ns. Regarding hit 15, although in
the first 100 ns of MDs it seemed to stabilize both G4 structures, in the last part of the
simulation it showed a gradual increase in the RMSd trend of Tel. Finally, for each com-
plex, the most populated structure during the MDs was selected and deeply analyzed
(Supplementary Table S2 and Supplementary Figure S6). As observed in docking simula-
tion, all the three compounds confirmed a better binding free energy if complexed with
TERRA, with ∆Gbind values ranging from −38.36 to −85.93 kcal/mol. Conversely, Tel
complexes were characterized by ∆Gbind values higher than −35.01 kcal/mol, except
for the complex of hit 7, which exhibited ∆Gbind value of −45.85 kcal/mol. Regarding
the binding mode and the interaction pattern of the most populated structure during
MDs, we observed the maintenance of the binding site only in the TERRA complexes
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(Supplementary Figure S7A–C). In particular, hit 7 always bonded the bottom portion of
TERRA, as in the docking pose, and it established excellent π–π interactions between its
naphthyridine moiety and nucleobases RG10 and RG16, as well as a π–cation interaction
and an H-bond with RG22 and RG16, respectively. On the other hand, when comparing this
structure with the initial docking pose (Figure 2A), we observed the rotation of the ligand
with good interactions between its lateral chain and the first loop of TERRA. Specifically,
two salt bridges were established between the quaternary ammonium of hit 7 and the
phosphoric groups of nucleobases RA7 and RU5, while two H-bonds were observed with
the sugar and the base of the RG4 (Supplementary Figure S7A). As noted in the dock-
ing pose (Figure 2B), hit 15 kept its lateral binding mode by establishing two π–π and a
π–cation interaction with the RA19 nucleobase (Supplementary Figure S7B). Regarding
hit 17, the comparison of the most populated structure during MDs with the docking pose
(Figure 2C) highlighted the absence of interactions between the ligand side-chain and the
TERRA loop. Conversely, hit 17 strengthened π–π interactions between its psoralen portion
and nucleobases RG8 and RG14, and it also established an additional H-bond between
its carbonyl amide and RA (Supplementary Figure S7C). Interestingly, the most popu-
lated structures of MDs for Tel complexes showed a complete change in the binding site
(Supplementary Figure S7D–E), except for hit 17. During MDs, hits 7 and 15 changed their
binding sites, moving from the lateral (Figure 2D–E) to the top position. The new binding
mode of hit 7 was characterized by a strong interaction between the ligand naphthyridine
moiety and nucleobase DG8, thanks to formation of six π–π, two π–cations, and one H-bond
(Supplementary Figure S7D). Moreover, we also observed a π–π interaction with nucleobase
DA1 and an H-bond between the ammonium group of the ligand and the sugar portion of
DG14. Additionally, for hit 15, we beheld several π–π interactions between its furo-chromen
ring and nucleobases DG14 and DG8, but, as shown in Supplementary Figure S7E, these
events caused the alteration and destabilization of the G-tetrad formed by nucleobases
DG2, DG8, DG14, and DG20. Moreover, the ammonium group of the ligand was in-
volved in two H-bonds with nucleobase DG8. Finally, the most populated structure of
MDs for hit 17 exhibited two salt bridges between its ammonium group and the DG21
and DG22 nucleobases, an H-bond between the amide group and the DT17 and four π–π
interactions with DG16 and DG10 (Supplementary Figure S7F). As noted for hit 15, in
this case the ligand also appeared able to induce the alteration and destabilization of the
interacting G-tetrad.

2.2. In Vitro Analysis

Hits 7, 15, and 17 were tested for their ability to stabilize the target Tel and TERRA
G4s by means of circular dichroism (CD) melting experiments. This technique is used to
obtain information about the G4 topology and stability (melting temperature, Tm) of the
G4 structured oligonucleotides. Tel G4 displayed the well-known hybrid 3 + 1 topology
and a Tm of 67.2 ± 0.2 ◦C: when incubated with hit 7, we observed a topological change
with the appearance of a peak around 260 nm that could be ascribed to the contribution
of the parallel structure, and stabilization by 5.8 ◦C. No significant topological changes
and stabilization were observed when the target Tel G4 was incubated with hits 15 and 17
(Figures 3 and S8).

TERRA G4 showed a prevalently parallel topology, with a maximum peak of around
260 nm and a shoulder of around 300 nm, and Tm of 75.2 ± 0.7 ◦C. Incubation with hits
7, 15, and 17 did not alter its topology but led to great stabilization of the structure, with
hit 7 being the best stabilizer (∆Tm 11.2 ◦C), followed by hit 15 (∆Tm 9.5 ◦C) and hit 17
(∆Tm 7.7 ◦C) (Figures 4 and S9). These in vitro data are in perfect agreement with our MD
simulations.

190



Pharmaceuticals 2022, 15, 548

 

π–π and π–

Figure 2. A docking pose analysis of the best thermodynamic complexes of hits 7 (panels (A,D)),
15 (panels (B,E)), and 17 (panels(C,F)) in complex with TERRA and Tel, respectively. For hits 7, 15,
and 17, the ligand is depicted as orange, green, and cyan carbon sticks, respectively. The nucleic
acids are shown as faded blue and grey surfaces for TERRA and Tel, respectively, while the guanine
residues, forming the G-tetrads, are shown as lines. Moreover, the residues interacting with the
ligands are depicted as faded blue and grey carbon sticks for TERRA and Tel, respectively. K+ ions
are represented as pink spheres. Hydrogen bonds, salt bridges, and π–π and π–cation interactions
are shown as dashed violet, red, cyan, and green lines, respectively.
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Figure 3. The CD thermal unfolding spectra of the nucleic acid Tel G4 4 µM in 100 mM K+ alone (A)
and in the presence of the hit 7 16 µM (B), hit 15 16 µM (C), and hit 17 16 µM (D).
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Figure 4. The CD thermal unfolding spectra of the nucleic acid TERRA G4 4 µM in 100 mM K+ alone
(A) and in the presence of hit 7 16 µM (B), hit 15 16 µM (C), and hit 17 16 µM (D).

To measure the binding affinity of the hits to the G4-folded oligonucleotides with
unmodified 5′- and 3′-ends (i.e., lacking fluorophores or biotin), we employed ESI-MS
analysis, as previously described [40,41]. All hits displayed both a 1:1 and 1:2 binding ratio,
albeit adducts with 2 bound hit molecules were 2–3 times less abundant than those with 1
bound hit molecule. For each hit, the binding affinity (KD) of the 1:1 complex with Tel and
TERRA G4s was measured at three compound concentrations, corresponding to 1:1, 1:2,
and 1:4 G4:compound ratios. KD values were 3.4 ± 0.2 µM, 7.1 ± 1.2 µM, and 6.1 ± 0.2 µM
for binding of hits 7, 15, and 17, respectively, to TERRA G4 (Figures 5 and S11). Binding
affinity to Tel G4 was in general lower, with KD values of 11.0 ± 0.7 µM, 18.0 ± 4.2 µM, and
22.9 ± 6.4 µM for binding of hits 7, 15, and 17, respectively (Figure S10).
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Figure 5. The MS spectra of TERRA (blue squares) incubated with the indicated hits. Samples
containing TERRA oligonucleotide (5 µM) and hit molecule (10 µM) were incubated in MS buffer
(HFIP 120 mM/TEA pH 7.4, KCl 0.8 mM, isopropanol 20%) overnight before MS analysis. A zoom
on the most significant m/z range is shown. The larger m/z range is provided in Figure S11.

2.3. In Cell Assays

The cytotoxic activity of the tested compounds was evaluated on a panel of cultured
human tumor cell lines: MCF7 (mammary gland adenocarcinoma), HT-29 (colorectal
adenocarcinoma), and A549 (lung adenocarcinoma) cells. After 48 h treatment with the
compounds, cytotoxicity was assessed by the MTT test and indicated as the concentration
able to kill 50% of the cell population (CC50). As reported in Table 1, the colorectal ade-
nocarcinoma HT-29 cell line was the most sensitive to compound treatment, with CC50 in
the low micromolar range for hits 7 and 17 and in the nanomolar range for hit 15. A549
cells had intermediate sensitivity to the hits, while MCF7 cells were the least affected by
compounds’ treatment. In these cells, it was not possible to obtain a discrete CC50 value
for of hit 7 as it exceeded the compound limit of solubility. Hit 15 was the most effective
compound against HT-29 and A549 cells.

Table 1. Cytotoxicity CC50 (µM) in human tumor cell lines measured 48 h post administration of
hits 7, 15, and 17.

MCF7 HT-29 A549

hit 7 >50 1.9 ± 0.2 20.3 ± 0.4
hit 15 62.0 ± 4.1 0.3 ± 0.1 1.1 ± 0.2
hit 17 28.9 ± 2.0 1.0 ± 0.1 7.9 ± 0.3

The sensitivity of a particular cell line to a given compound is influenced not only by
the intrinsic nature of the drug but also by the characteristics of cancer, including mutations,
gene expression, and copy number variation. Thus, the different response of the three
cell lines observed in this study is probably due to that distinct oncogenic drivers and
drug resistance mechanisms that operate in each cell line and create perturbations of the
downstream pathways triggered by the compounds.

3. Materials and Methods
3.1. Target Preparation for In Silico Analysis

The crystal structure with PDB code 1KF1 and 2.1 Å resolution was selected as a
tridimensional model of the parallel stranded Tel G4, featured by the 22-nt human telomeric
sequence d[AG3(T2AG3)3] [7]. The same structure was used as a template to generate
TERRA homology modeling by adding hydroxyl groups to the sugar ring. The TERRA G4
is known to be characterized by a monomorphic nature since only the parallel topology
was experimentally observed [36]. K+ ions, coordinating the G-tetrad O6 atoms and
vertically aligned in the internal G-delimited channel, were retained at their respective
crystallographic positions, while all the crystallized water molecules were removed. Both
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Tel and TERRA structures were submitted to MD simulations, using GROMACS code
ver. 4.5.1 [42]. Both nucleic acids were treated with standard parm99 Amber force field
with modified parmbsc0 [43,44] and combined with corrections ε/ζOL1 and χOL4, to
improve the description of ε/ζ and χ G4 torsions, respectively [45–47]. For each system,
the tleap module of the AmberTools program was employed to generate a topology file,
which was converted into a suitable GROMACS file format using the Acpype script [48].
A truncated dodecahedron box with the TIP3P water solvent model [49] was built using
periodic boundary conditions, and the global negative charge was neutralized by adding
K+ counter-ions. To resolve bad steric contacts, both systems were energy-minimized, using
5000 steps with the steepest descent algorithm; equilibrated at 300 K through 5 ns MD
under NVT conditions; and then equilibrated in the isothermal–isobaric (NPT) ensemble at
1 atm. An MD production run (200 ns) was performed in NPT, using a time step of 2 fs.
The V-rescale algorithm [50] and Parrinello–Rahman barostat [51] were used to control and
monitor temperature and pressure, respectively. Finally, for both targets, all conformations
found during MD runs were submitted to cluster analysis with the GROMOS algorithm [52],
by the g-cluster tool implemented in the GROMACS package [42]. A cut-off of 2.5 Å was
used in the cluster process, with the aim to select different representative structures for the
two G4 targets.

3.2. Molecular Docking Protocol

The most representative structures of the two G4 targets, obtained during MD runs,
were used to generate grids by applying default parameters. Each energy grid was built
centering the docking box on the G-tetrads centroid and setting its outer box size to
48 × 48 × 48 Å. For each docking run, 10 poses per ligand were generated and the
scaling factor for the target Van der Waals radii was set to 1.0. We used the Standard
Precision (SP) scoring function of Glide ver. 7.8 software of the Schrödinger suite [53]
to perform docking calculations of the most promising compounds found in our previ-
ous screening on the bimolecular target [35]. The molecular structures of hits 7, 15, and
17 were previously built using the Maestro graphical user interface (Schrödinger Release
2019: Maestro, Schrödinger, LLC., New York, NY, 2019) [54], while their most probable pro-
tonation state at physiological pH 7.4 was computed using LigPrep (LigPrep version 2.5,
Schrödinger, LLC., New York, NY, 2012) tool [55]. All complexes generated with the docking
procedure were further submitted to the Molecular Mechanics Generalized Born/Surface
Area (MM-GBSA) method [56], applying molecular mechanics and continuum solvation
models, to compute their binding free energies (∆Gbind) [57]. The docking pose of each
compound with the best ∆Gbind was selected and further analyzed.

3.3. Molecular Dynamics of the Thermodynamically Best Complexes

For each compound, the best thermodynamics complex was submitted to MD simu-
lations, using the same MD protocol applied for both targets. To consider a comparable
starting point, also the TERRA and Tel clusters that provided the best complex thermody-
namics were submitted to MDs to investigate the stabilizing power of each compound. For
each ligand, we calculated the electrostatic potential (ESP) by Jaguar ver. 9.3 software [58],
using the 6-31G* basis set at the Hartree–Fock theory level. The restrained electrostatic
potential (RESP) [59] was computed using Antechamber [60] and parameterized with
General Amber Force Field (GAFF) [61]. Finally, all conformations found during MD runs
were submitted to cluster analysis with the GROMOS algorithm [52], by the g-cluster tool
implemented in the GROMACS package [42]. MD frames were aligned on the nucleic acid
targets, and RMSd values were computed on the heavy atoms of both the target and ligand.
In this case, 1.5 Å cut-off was used in the cluster process to select different representative
structures of the complex for all ligands.
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3.4. Circular Dichroism

Circular dichroism spectra were recorded on a Chirascan-Plus (Applied Photophysics,
Leatherhead, UK) equipped with a Peltier temperature controller using a quartz cell of
5-mm optical path length and a scanning speed of 50 nm/min, with a response time of
4 sec over a wavelength range of 230–320 nm. The reported spectrum of each sample
represents the average of 2 scans. Observed ellipticities were converted to the mean residue
ellipticity (θ) = deg × cm2 × dmol−1 (molar ellipticity). Oligonucleotides were diluted
from stock to the final concentration (4 µM) in the Li cacodylate buffer (10 mM, pH 7.4)
with 100 mM KCl, annealed by heating at 95 ◦C for 5 min, and gradually cooled to room
temperature. Compounds were added at 4 × G4 final concentration (16 µM). CD spectra
were recorded after 24 h from 20 ◦C to 95 ◦C, with a temperature increase of 5 ◦C. Tm values
were calculated according to the van’t Hoff equation, applied for a two-state transition from
a folded to an unfolded state, assuming that the heat capacity of the folded and unfolded
states are equal [62].

3.5. Binding Affinity

To determine the KD of hit ligands to Tel and TERRA G4s, mass spectrometry (MS)
analysis was performed on mixtures of oligonucleotide (5 µM) + hit compound (5, 10, and
20 µM). A mixture of 2 µM reference dT6 + 5 µM oligonucleotide + 5 or 10 µM hits was also
used to check for unspecific hit binding. Oligonucleotides were heat denatured on MS buffer
(HFIP 120 mM/TEA pH 7.4, KCl 0.8 mM, isopropanol 20%) for 5 min at 95 ◦C and gradually
cooled to room temperature to allow the correct folding. After 4 h, hits were added, and
samples were incubated over night at room temperature. Samples were analyzed by
direct infusion electrospray ionization (ESI)-MS on a Xevo G2-XS QTOF mass spectrometer
(Waters, Manchester, UK). This is a high-resolution instrument that allowed us to visualize
the isotopic pattern, identify the charge state, and therefore unambiguously calculate the
neutral mass of the detected species. The injection was automatically performed by an
Agilent 1290 Infinity HPLC (Agilent Technologies, Santa Clara, CA, USA) equipped with an
autosampler; the carrying buffer was HFIP 120 mM/TEA pH 7.4 with 20% isopropanol. A
volume of 5 µL of each sample was typically injected. In all experiments, ESI source settings
were electrospray capillary voltage, 1.8 kV; source and desolvation temperatures, 45 ◦C and
65 ◦C, respectively; and sampling cone voltage, 65 V. All these parameters ensured minimal
DNA complex fragmentation. The instrument was calibrated using a 2 mg/mL solution of
sodium iodide in 50% isopropanol. The additional use of the LockSpray during analysis
provided typical <5 ppm mass accuracy. The internal standard LockSpray consisted of a
solution of leu-enkephalin (1 µg/mL) in acetonitrile/water (50:50, v/v) containing 0.1%
formic acid. Peak areas were used to calculate the concentration ratios, as previously
reported [40,41], using the formulas:

[oligo]free = C0 × A(oligo)n−/(A(oligo)n− + A(oligo + hit)n−)

[oligo + hit] = C0 × A(oligo + hit)n−/(A(oligo)n− + A(oligo + hit)n−)

[hit]free = [hit]tot − [oligo + hit]

Kd = [hit]free × [oligo]free/[oligo + hit]

where [oligo]free and [hit]free are the concentrations of the unbound oligonucleotide and
hit, respectively; [hit]tot is the total concentration of hit; [oligo + hit] is the concentration
of hit bound to oligonucleotide; C0 is the starting oligo (Tel or TERRA G4) concentra-
tion; A(oligo)n− is the peak area of the oligonucleotide alone at charge state n−; and
A(oligo + hit)n− is the peak area of hit bound to oligo at charge state n−. Peak areas
were calculated using MassLynx 4.1 software (Waters), after processing steps consisting of
smoothing, background subtraction, and conversion to centroid.
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3.6. Compounds’ Cytotoxicity

Cytotoxic effects were determined by MTT assay. Compounds were dissolved and
diluted into working concentrations with DMSO. All cell lines were obtained from ATCC
(MCF7, human breast adenocarcinoma, cat. # HTB-22, HT-29, human colorectal adenocarci-
noma, cat # HTB-38, A549, human lung carcinoma, cat # CCL-185), grown and maintained
according to the manufacturer’s instructions (https://www.lgcstandards-atcc.org (accessed
on 8 June 2020)). Cells were plated into 96-microwell plates to a final volume of 100 µL
and allowed to attach overnight. The following day, the tested compounds were added
to each well with a 0.5% final concentration of DMSO per well; each concentration was
tested in triplicate. Compounds were incubated for 48 h, and control cells (without any
compound but with 0.5% DMSO) were treated in the exact same conditions. Cell survival
was evaluated by MTT assay: 10 µL of freshly dissolved solution of MTT (5 mg/mL in
PBS) was added to each well, and after 4 h of incubation, MTT crystals were solubilized
in solubilization solution (10% sodium dodecyl sulphate (SDS) and 0.01 M HCl). After
overnight incubation at 37 ◦C, absorbance was read at 540 nm. Data were expressed as
mean values of at least three experiments conducted in triplicate. The percentage of cell sur-
vival was calculated as follows: cell survival = (Awell − Ablank)/(Acontrol − Ablank) × 100,
where blank denotes the medium without cells. Each experiment was repeated at least
three times.

4. Conclusions

In this study, three compounds (hit 7, hit 15, and hit 17), previously identified by means
of a virtual screening campaign on bimolecular DNA/RNA G4s, were investigated on the
monomolecular Tel DNA and TERRA G4s. Molecular docking calculations indicated all
ligands were able to better recognize TERRA with respect to Tel. As previously observed
on the bimolecular Tel2/TERRA2 G4s, hit 7 maintained its behavior as a dual Tel/TERRA
ligand. Conversely, hit 15 and hit 17, previously characterized as selective Tel2 ligands [35],
showed better theoretical affinity towards the monomolecular TERRA G4. Moreover,
MDs results highlighted that all the analyzed hits better stabilized TERRA G4 folding if
compared to Tel, while the naphthyridine hit 7 confirmed its dual profile. The in vitro
data corroborated our MDs since the relative hit stabilization efficiency on TERRA and Tel
corresponded to that calculated by MDs. Analysis in cells showed that these compounds
have anticancer activity. Hit 15, i.e., the compound that displayed the highest selective
stabilization towards TERRA, was the most active compound. Our data indicate that
the tested hits have enhanced activity towards HT-29 cell, a model line for colorectal
adenocarcinoma [63]. In particular, hit 15, being over 200 times more efficient on HT-29
cell that MCF7 cells, could be a promising compound to be further optimized against
colorectal cancer.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph15050548/s1, Figure S1: the plot of the RMSd values
calculated on all heavy atoms during 200 ns of MDs, performed on both the parallel telomeric (Tel)
DNA (black line) and TERRA (red line) G-quadruplex (G4) structures; Figure S2: the RMSd matrices
calculated on the heavy atoms of all the saved structures throughout all the MDs of the parallel telom-
eric Tel (A) and TERRA (B) G4 structures; Figure S3: the 3D structure of all the most representative
conformations of (A) TERRA and (B) Tel G4. All clusters have been superimposed, while the single
cluster and the most interesting residues are shown as surface and carbon sticks, respectively. Cluster
1, cluster 2, cluster 3, and cluster 4 are reported as red, faded-blue, green, and faded-plum surface,
respectively; Figure S4: a pie chart showing the distribution of all the generated docking poses of
hits 7, 15, and 17, obtained against all clusters, by considering the site analysis towards both TERRA
and Tel G4 targets; Figure S5: an analysis of the binding modes of hits 7, 15, and 17 on each single
cluster of both G4 targets, according to the geometrical descriptors reported in a previous work [38];
Figure S6: a plot of the RMSd values calculated on all heavy atoms during 200 ns of MDs, performed
on the best thermodynamic complexes of the three hits with both Tel and TERRA G4 and on the
related cluster structures of both receptors. (A) An RMSd plot of TERRA cluster 2 (red line) and its
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related complex with hit 7 (orange line). (B) An RMSd plot of TERRA cluster 3 (red line) and its
related complexes with hit 15 and hit 17 (green and cyan lines, respectively). (C) An RMSd plot of Tel
cluster 4 (black line) and its related complexes with hit 7 and hit 17 (orange and cyan lines, respec-
tively). (D) An RMSd plot of Tel cluster 1 (black line) and its related complex with hit 15 (green line);
Figure S7: a binding pose analysis of the MD-generated, most populated structure of hit 7 (panels
(A,D)), hit 15 (panels (B,E)), and hit 17 (panels (C,F)) in complex with TERRA and Tel, respectively.
Hit 7, hit 15, and hit 17 are depicted as orange, green, and cyan carbon sticks, respectively. The nucleic
acids are shown as faded blue and grey surface for TERRA and Tel, respectively, while the guanine
residues, forming the G-tetrads, are shown as lines. Moreover, the residues interacting with the
ligands are depicted as faded blue and grey carbon sticks for TERRA and Tel, respectively. K+ ions
are represented as pink spheres. Hydrogen bonds, salt bridges, and π–π and π–cation interactions are
shown as dashed violet, red, cyan, and green lines, respectively; Figure S8: the CD thermal unfolding
analysis of Tel DNA G4 in complex with hits 7, 15, and 17. The melting curves of Tel G4 (4 µM)
in the absence and presence of each hit (16 µM), plotted at the wavelength corresponding to the
maximum CD signal; Figure S9: the CD thermal unfolding analysis of TERRA G4 in complex with
hits 7, 15, and 17. The melting curves of TERRA G4 (4 µM) in the absence and presence of each hit (16
µM), plotted at the wavelength corresponding to the maximum CD signal; and Figure S10: the MS
spectra of Tel (grey squares) incubated with the indicated hits. Samples containing Tel DNA oligonu-
cleotide (5 µM) and hit molecule (10 µM) were incubated in MS buffer (HFIP 120 mM/TEA pH 7.4,
KCl 0.8 mM, isopropanol 20%) overnight before MS analysis. The relevant m/z range is shown,
Figure S11: the MS spectra of TERRA (blue squares) were incubated with the indicated hits. Samples
containing TERRA oligonucleotide (5 µM) and hit molecule (10 µM) were incubated in MS buffer
(HFIP 120 mM/TEA pH 7.4, KCl 0.8 mM, isopropanol 20%) overnight before MS analysis. The
relevant m/z range is shown; Table S1: ∆Gbind and related single contributions of the binding free
energy for the best thermodynamic complex of hits 7, 15, and 17 with both Tel and TERRA G4. All
thermodynamic values are reported in kcal/mol. In Table S1, we also reported the related cluster for
each hit-target most stable complex, Table S2: ∆Gbind and related single contributions of the binding
free energy of the most populated cluster structure of hits 7, 15, and 17 complexed with both Tel and
TERRA G4. All thermodynamic values are reported in kcal/mol.
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Abstract: The rapid mutations of viruses such as SARS-CoV-2 require vaccine updates and the
development of novel antiviral drugs. This article presents an improved database filtering technology
for a more effective design of novel antiviral agents. Different from the previous approach, where
the most probable parameters were obtained stepwise from the antimicrobial peptide database, we
found it possible to accelerate the design process by deriving multiple parameters in a single step
during the peptide amino acid analysis. The resulting peptide DFTavP1 displays the ability to inhibit
Ebola virus. A deviation from the most probable peptide parameters reduces antiviral activity. The
designed peptides appear to block viral entry. In addition, the amino acid signature provides a clue
to peptide engineering to gain cell selectivity. Like human cathelicidin LL-37, our engineered peptide
DDIP1 inhibits both Ebola and SARS-CoV-2 viruses. These peptides, with broad antiviral activity,
may selectively disrupt viral envelopes and offer the lasting efficacy required to treat various RNA
viruses, including their emerging mutants.

Keywords: antimicrobial peptide database; antiviral peptides; database filtering technology; SARS-CoV-2;
Ebola virus; peptide design

1. Introduction

Emerging viral infections can cause harm to our society. This was made crystal clear
in the previous Spanish flu and the current severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) pandemic. According to the World Health Organization, COVID-19 has
caused 464 million infections and 6.06 million cumulative deaths globally as of March 21,
2022 [1]. SARS-CoV-2 has also added a burden to our economic, educational, and health
care systems around the world. Similarly, Ebola viruses have a major impact on our society,
causing a significant number of mortalities. Ebola viruses are highly lethal and have an
average mortality rate of 50% [2,3]. Fortunately, vaccines have proven to be effective to
protect humans from SARS-CoV-2 and Ebola virus (EBOV) infections [4–6]. However,
viruses mutate rapidly and have evolved into numerous mutants that could compromise
vaccine protection and cause breakthrough coronavirus infections [7]. Hence, there is a
need to develop alternatives such as antiviral drugs to better manage viral infections.

Antimicrobial peptides (AMPs) are an important factor of the innate immune defense
for both invertebrates and vertebrates, including humans [8–14]. Recently, human defensins
have been shown to inhibit SARS-CoV-2 infection [15]. Likewise, human cathelicidin
LL-37, another key AMP, also demonstrated antiviral activity against SARS-CoV-2 [16].
These antiviral peptides can work through different mechanisms, ranging from immune
regulation to direct inactivation via membrane disruption [17–20]. Hence, natural AMPs
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may be engineered into new therapeutics to help control these viruses [11,12,21–23]. As a
proof of concept, we previously demonstrated that LL-37 could be engineered to inhibit
Ebola virus entry [24].

As an alternative approach, we found it useful to discover novel antimicrobials based
on the antimicrobial peptide database (APD) [25]. This was made possible due to our
systematic classification of AMPs based on the sequence length, net charge, hydrophobic
ratio, post-translational modification, structure, activity, and source organism. In the APD,
most of the AMPs had a peptide length of less than 60 amino acids. The net charge of a
peptide was calculated at pH 7 and chemical modification was considered. The majority of
the peptides in the APD have a net charge in the range of +1 to +7. The hydrophobic amino
acids were defined based on the Kyte–Doolittle hydrophobic scale [26], where residues
of leucine (L), isoleucine (I), valine (V), alanine (A), methionine (M), cysteine (C), and
phenylalanine (F) are hydrophobic. In addition, the APD included tryptophan (W) in
the hydrophobic group. The hydrophobic ratio of a peptide was calculated based on the
sum of all the hydrophobic amino acids mentioned above divided by the peptide length.
The dominant hydrophobic ratios for AMPs are located between 20 and 70%. Peptide
structures are separated into four classes based on the presence or absence of the α-helix
and β-sheet (i.e., α, β, αβ, and non-αβ). In the current APD, 478 peptides are found to have
an α-helical structure based on nuclear magnetic resonance (NMR) spectroscopy and/or
circular dichroism (CD). Only 88 peptides are determined to have a β-sheet structure,
while 116 entries are known to adopt an αβ fold. Finally, the structures of 22 peptides
are found to belong to the non-αβ class (i.e., no α-helix nor β-sheet). Both the peptide
sequence and post-translational modification play an important role in determining 3D
structure and biological activity (e.g., antibacterial, antiviral, antiparasitic, antifungal, and
anticancer) [27].

This study reports the design of novel antiviral peptides by developing an improved
version of the database filtering technology [28], making peptide design more efficient.
Following up on our initial observation of Ebola virus entry inhibition, we validate the
utility of the database filtering approach in designing new antiviral peptides using an Ebola
virus pseudo-type system. In addition, we also evaluate the antiviral effects of DDIP1, a
database-designed inhibitory peptide 1 [27], using both Ebola virus and SARS-CoV-2.

2. Results and Discussion
2.1. Peptide Design via an Improved Database Filtering Technology

The APD, originally established in 2003, was expanded and described in 2009 and
2016 [25,27]. To learn the wisdom of nature, the APD currently focuses on natural peptides
with determined antimicrobial activity, known amino acid sequences, and less than 100
amino acids, leading to a widely used core data set. Our careful annotation of peptide activ-
ity data (e.g., antibacterial, antiviral, antifungal, antiparasitic, spermicidal, and anticancer)
laid a solid foundation for designing peptides with the desired activity. In addition, peptide
properties, such as the length, net charge, hydrophobicity, and structure, can be searched
for in a systematic manner. Each parameter can be arrayed to identify the optimum. These
database features enabled the development of database technology for peptide design. The
database filtering technology (DFT) is one such approach that designs new peptides based
on the most probable parameters within a set of peptides with common activity [28]. The
DFT is an ab initio approach to designing peptides because, unlike de novo approaches, it
makes no prior assumptions. The first proposed version of the DFT designed a peptide
with activity against methicillin-resistant Staphylococcus aureus (MRSA), but did not inhibit
Gram-negative bacteria. To design antiviral peptides, the first database filter selected
all 190 antiviral peptides in the database (Summer 2021) as templates. These peptides
were analyzed to determine the AMP length with the highest abundance. The search was
conducted in 10 amino acid increments. The 21–30 residue range had the highest peptide
count (Figure 1). This range would be the most probable length for our peptide design.
Considering the cost of making longer peptides, however, we selected a peptide length
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of 20, which was closest to the lower optimal boundary. We then derived the rest of the
peptide parameters based on the antiviral peptides with 11–20 amino acids. To study the
impact of the AMP length on antiviral activity, we also designed two shorter peptides
with 12 and 16 amino acids. In the original DFT design method, a series of filtering steps
were involved in deriving numerous parameters. For example, three separate filters were
used to determine the frequency of amino acids, net charge, and the hydrophobicity of the
anti-MRSA peptide. Here, we found it possible to derive these three parameters in one step
by analyzing the amino acid frequency plot for the 11–20-peptide length group. In this plot
(Figure 2A), the 20 standard amino acids were separated into four groups based on their
common features: (1) hydrophobic (I, V, L, F, C, M, A, and W), (2) special glycine/proline
(G and P), (3) polar and hydrophilic (T, S, Y, Q, and N), and (4) charged (E, D, H, K, and
R) [25]. We then selected the most abundant amino acid in each group as a representative.
In this manner, 20 amino acids were reduced to four for our peptide design (solid columns
in Figure 2A, top panel). In this plot, the four representative amino acids were leucine
(L), glycine (G), serine (S), and arginine (R). Interestingly, we were not alone in utilizing
this reductionist approach, since nature also uses a small set of amino acids to design
peptides such as θ-defensins. While the hydrophobic group contained I, V, F, L, and C,
the other three groups consisted of a single amino acid (glycine, threonine, and arginine,
respectively) (Figure 2B) [29]. This plot indicated that other amino acids in the special
GP, polar, and charged groups were not preferred in the known θ-defensins. Next, in our
improved design, the amino acid percentages within each amino acid group were summed
(Figure 2A bottom panel) to represent the percentage for each of the four selected amino
acids (L, G, S, or R) in the designed peptides. To design a 20-mer peptide, we calculated
the numbers of the four amino acids L, G, S, and R for this peptide by multiplying the
percentage for each amino acid with the targeted peptide length. Thus, this procedure
enabled us to determine the types and contents of the four representative amino acids
(including hydrophobic and cationic) in one step, increasing the efficiency of this ab initio
method. Next, the most probable structure of the peptide was determined to be α-helical,
because this structure had the highest occurrence in the 11–20 residue range (Figure 3).
This allowed us to place charged and hydrophobic amino acids in a classic amphipathic
pattern, where every two leucines were dispersed with two hydrophilic amino acids. To
determine the potential combinations of these amino acids in the sequence, a statistical
analysis was performed on the possible sequence motifs (four amino acids) that could be
formed. The motifs with the highest abundance in the database were selected to connect the
leucine pairs. The amino acid sequence of the first peptide (DFTavP1) designed to inhibit
viral replication is given in Table 1. For antiviral assays, we utilized a pseudotyped Ebola
virus as described previously [24]. In this study, the designed peptides displayed different
degrees of inhibitory effects on pseudo-EBOV VSV-eGP (vesicular stomatitis virus-Ebola
glycoprotein) infection. DFTavP1, the 20mer, showed an 18% higher inhibition than LL-37
at 2.5 µM (Figure 4). Also, the inhibition increased as the peptide dosage increased.

–

–

ɵ
ɵ

–

Figure 1. Antiviral peptide count in the antimicrobial peptide database at various peptide length
ranges [25]. Peptides in the range of 21–30 amino acids were dominant. This length range would be
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the most probable length based on our previous design idea [28]. To reduce peptide cost, we selected
a peptide length of 20 in this study and two even shorter peptides were also designed based on the
peptide parameters with 11–20 amino acids.

–

–

ɵ
ɵ

–

Figure 2. A single-step amino acid analysis of antiviral peptides with 11–20 amino acids to derive
multiple most probable parameters for peptide design. (A) Four frequent amino acids (L, G, S, and R,
solid column) were identified from the four groups of amino acids. The percentages of amino acids
for each group were then merged into L, G, S, and R. (B) The amino acid analysis of 19 θ-defensins
registered in the APD. It is remarkable that in nature, θ-defensins are designed in a similar way by
mainly using C, G, T, and R dotted with a few other hydrophobic amino acids.

–

–

ɵ
ɵ

 

–
Figure 3. Count of antiviral peptides with different structures. Data were obtained from the an-
timicrobial peptide database [25] for antiviral peptides with 11–20 amino acids. Antiviral peptides
with an α-helical structure were dominant with 13 counts. In addition, there were eight antiviral
peptides in the selected length group with β-sheet structures. No antiviral peptides in this length
group had a determined αβ structure (packed or unpacked). Only one antiviral peptide in this
group had a non-αβ structure. In addition, six antiviral peptides in this group were disulfide-linked
(S-S), although their 3D structures are unknown. Note that a similar plot was obtained for antiviral
peptides with 21–30 amino acids (not shown). Therefore, α-helical structure was decided as the most
probable structure for this design.
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Table 1. Database-designed antiviral peptides and their properties.

Peptide Amino Acid Sequence a Length Net Charge Pho b Boman Index c GRAVY

DFTavP1 RWLRGLLSGLLRRLLSGLLL 20 +5 55 0.6 0.815
DFTavP2 RWLRGLLSGLLRRLLS 16 +5 50 1.73 0.331
DFTavP3 RWLRGLLSGLLR 12 +4 50 1.61 0.25
DFTavP4 RWVRGVVSGVVRRVVS 16 +5 50 2.12 0.506
DDIP1 d GLRCRLGRLLRRLGRCLLR 19 +7 47 3.4 −0.0579

a All the peptides were C-terminally amidated except for DDIP1. A tryptophan was introduced into the DFT peptides
to facilitate peptide quantification (see Methods section). b Hydrophobic content. c Boman index (originally called
protein binding potential in kcal/mol) [8] was renamed by the APD in 2003 [25]. d All were D-amino acids. In
addition, a disulfide bond exists between the two cysteines C4 and C16 of DDIP1.

an α
in the selected length group with β
a determined αβ structure (packed or unpacked). Only one antiviral peptide in this group had a 

αβ structure. In addition, six antiviral peptides in this group were disulfide

–30 amino acids (not shown). Therefore, α

ual AMPs at 10 μM for 2 h before VSV

10 μM) for 2 h before VSV

treated with individual AMPs (at 2.5, 5, or 10 μM) for 2 h before VSV

−

Figure 4. Designed AMPs inhibited the infection of pseudo-EBOV virion in Vero cells. (A) AMPs
inhibited pseudo-EBOV (VSV-eGP) infection in Vero cells. Vero cells were pretreated with individual
AMPs at 10 µM for 2 h before VSV-eGP viruses were added. After 24 h of culture, Vero cells were
harvested for flow cytometry analysis to measure viral infection. Percentages of GFP-positive cells
represent percentages of cells infected with VSV-eGP. (B) DFTavP1 and its derivatives inhibited pseudo-
EBOV (VSV-eGP) infection in Vero cells in a dose-dependent manner. Since AMPs usually inhibit
microbes at micromolar, Vero cells were pretreated with individual AMPs (at 2.5, 5, or 10 µM) for 2 h
before VSV-eGP viruses were added. After 24 h of culture, Vero cells were harvested for flow cytometry
analysis to measure viral infection. (C) DFTavP1, DDIP1, and LL37 inhibited pseudo-EBOV (VSV-eGP)
infection in Vero cells in a dose-dependent manner. Vero cells were pretreated with individual AMPs
(at 2.5, 5, or 10 µM) for 2 h before VSV-eGP viruses were added. After 24 h of culture, Vero cells were
harvested for flow cytometry analysis to measure viral infection.

2.2. Validation of the Most Probable Parameters

Next, we validated the improved methodology by designing additional peptides with
parameters deviated from the optima. A 16 mer (DFTavP2) was designed in the same
manner as DFTavP1 (sequence in Table 1). This peptide length decrease caused a 33%
decrease in the viral inhibition of DFTavP2 at 5 µM compared to DFTavP1. A further
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deviation from the most probable length led to DFTavP3 (a 12 mer in Table 1), which did
not inhibit the VSV–eGP (Figure 4B). Hence, the peptide close to the most probable peptide
length range was more potent than the sequence-shortened counterparts.

To further validate the most probable amino acids, leucine in DFTavP2 was converted
to valine, leading to DFTavP4 (sequence in Table 1). The flow cytometry results suggested
that DFTavP4 entirely lost the ability to inhibit the Ebola pseudo-virus (Figure 4B). This
observation indicated the significance of the most probable hydrophobic leucine in confer-
ring antiviral activity to the peptide. The reason for this might be twofold. First, leucine is
more hydrophobic than valine, enabling a better binding to viruses. Second, leucine has a
higher potential than valine in forming the helical structure required for target binding [25].
To fully validate this, leucine may be converted to other hydrophobic amino acids (I, F, A,
M, C, and W) as well. A previous study revealed the peptide became less soluble when
substituted by isoleucine [28]. Thus, we did not make the same change. As alanine is even
less hydrophobic than valine, we predicted that alanine substitution would also lead to an
inactive peptide. We did not test methionine, since this residue is not favorable for peptide
design due to its readiness of being oxidized. While phenylalanine and tryptophan substi-
tutions may be of interest for future studies, we included one, W, here for UV quantification.
In a different design below, two leucines were transformed to cysteines.

Additional proof of the most probable principle in peptide design came from our
previous database-guided design. The GLK-19 peptide (a 19-residue peptide containing G,
L, and K) designed based on the frequently occurring amino acids from amphibian pep-
tides [25] became active to human immunodeficiency virus type 1 (HIV-1) when all lysines
were replaced with arginines. These changes were determined based on the arginine/lysine
ratios in antibacterial, antifungal, antiviral, and anticancer peptides in the APD, where only
in the antiviral peptides was the arginine/lysine ratio greater than one [30]. Since cysteine
is also abundant in the hydrophobic group of the antiviral peptide amino acid signature
(e.g., see Figure 2A), we changed two leucines in GLR-19 to two cysteines at positions 4
and 16. These changes led to DDIP1 with a disulfide bond. For this study, we created a
new version of DDIP1, where all L-amino acids were converted to D-amino acids to gain
stability to proteases. Our previous study suggested the importance of peptide stability for
inhibiting Ebola viruses [24]. In the inhibition experiment, DDIP1 displayed 7% inhibition
at 2.5 µM and 14% inhibition at 5 µM against the virus. Human LL-37, a known antiviral
peptide [16,24,30], showed a higher viral inhibition than DDIP1 (Figure 4C).

2.3. Antiviral Efficacy of Peptides Treated before or after Viral Infection

We then compared the treatment efficacy of DDIP1 and DFTavP1 postinfection. Human
LL-37 was included as a positive control. At 0, 2, and 4 h postinfection, a dose-responsive
viral inhibition was observed for all the peptides, indicating the effect results from the
peptide treatment (Figure 5A). When treated immediately after infection (delay 0 h), DDIP1,
DFTavP1, and LL-37 displayed ~15%, 69%, and 9% inhibitions at 2.5 µM, respectively.
Hence, DDIP1 and DFTavP1 demonstrated a higher inhibition than LL-37. DFTavP1, in
the 4 h postinfection treatment study, showed a major decrease of 54% inhibition at 5 µM.
The inhibition of the Ebola pseudovirus was reduced with a longer delay after infection for
both DDIP1 and DFTavP1, implying an action on viral entry. The decrease in inhibition
was caused by the decrease in viral load in the extracellular fluid because the intracellular
viral load was increasing. Interestingly, the effect of human LL-37 was relatively constant.
More experiments are required to determine the precise mechanism of DFTavP1 or DDIP1.

We also tested the antiviral activity of DDIP1 against SARS-CoV-2. Like LL-37, DDIP1
showed an inhibitory effect on SARS-CoV-2 in a dose-dependent manner (Figure 5B). At
5 µM, LL-37 inhibited 18% of the virus, while DDIP1 suppressed 42%. At 10 µM, DDIP1
(~55% inhibition) was more potent than LL-37 (~27% inhibition) as well. These results
reinforced the antiviral potency of the database-designed antiviral peptides.
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AMPs (at 2.5, 5, or 10 μM) at the

μM) for 2 h before SARS

–

–

Figure 5. Designed AMPs inhibited EBOV cell entry and SARS-CoV-2 infection. (A) AMPs targeted
pseudo-EBOV (VSV-eGP) at the early stage of infection. Vero cells were treated with individual
AMPs (at 2.5, 5, or 10 µM) at the same time with VSV-eGP (0 h), or at 2 or 4 h after VSV-eGP infection.
Vero cells were harvested for flow cytometry analysis of GFP levels at 24 h post infection. (B) DDIP1
inhibited SARS-CoV-2 infection. Vero cells were pretreated with individual AMPs (at 2.5, 5, or 10 µM)
for 2 h before SARS-CoV-2 viruses were added. After 24 h of culture, Vero cells were harvested for
immunofluorescence staining to access infection activity.

2.4. Different Requirements for Antiviral and Antibacterial Properties

As our antiviral peptides were designed based on the antimicrobial peptide database [25],
one may wonder whether they are active against bacteria. To obtain a more complete picture,
we used two Gram-positive and four Gram-negative bacterial strains and the minimum
inhibitory concentrations (MIC) of the peptides are provided in Table 2. In contrast to the
antiviral case, DFTavP1 was less active against bacteria than the two shortened peptides
DFTavP2 and DFTavP3 (low MIC values). Interestingly, DDIP1 displayed excellent MIC values
against all the tested antibiotic-resistant pathogens (e.g., MRSA, Escherichia coli, Pseudomonas
aeruginosa, and Klebsiella pneumoniae) in the range of 2–8 µM, comparable to the two shorter
DFT peptides (Table 2). These results unveiled different parameter requirements for designing
antibacterial and antiviral peptides. We speculate that such a difference primarily resulted
from the potential differences in pathogenic targets. It is likely that our designed peptides
(e.g., DDIP1) targeted the viral envelope since many AMPs act on bacterial membranes [8–10].
Another in silico study screened antiviral peptides by docking known antiviral peptides to the
major protease (MPro) of SARS-CoV-2 without experimental validation [31]. Future studies
on both viruses and bacteria could validate such mechanisms of action. Our speculation
was supported by our previous knowledge on human cathelicidin LL-37 peptides (e.g., GF-
17 and GI-20), which inhibit both bacteria and viruses [32]. However, the peptide lost its
antiviral effects when the helical structure was disrupted by partially incorporating D-amino
acids. In terms of the mechanism, the helical structure of LL-37 peptides was not a must for
targeting bacterial membranes, but essential to inhibit HIV-1 reverse transcriptase [33]. In
the case of Ebola viruses, only the engineered peptides such as 17BIPHE2 were effective at
the endosomal cell entry step by impairing the cathepsin-B-mediated processing of the Ebola
viral glycoprotein [34].

Table 2. Minimum inhibitory concentration (µM) of database-designed antiviral peptides.

Peptide S. aureus
USA300

Staphylococcus
epidermidis 1457

Escherichia coli
E416-7

Pseudomonas
aeruginosa #2

Klebsiella pneumoniae
E406-17

Acinetobacter
baumannii B28-16

DFTavP1 8–16 8–16 16 32 16–32 8
DFTavP2 4 2 4 8 4 2
DFTavP3 4 8 2–4 4–8 8 4
DFTavP4 >64 NA 16 NA NA NA

DDIP1 4 4–8 2 4 4 2–4
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2.5. Cytotoxicity of Antiviral Peptides

For therapeutic use, it is important that the designed peptides had minimal toxic effects
on mammalian cells. To evaluate the cytotoxicity of the new peptides, we utilized several
cell lines. Vero cells are a model cell for viral infection, derived from the kidney epithelia
of the African green monkey. It appeared that Vero cells were highly sensitive to DFTavP1
(TC50 2.4 µM), but became less sensitive to DDIP1 (TC50 13.0 µM in Table 3). Because SARS-
CoV-2 infects lung cells, we also tested their cytotoxicity to Calu3 cells. Both DFTavP1 and
DDIP1 showed a TC50 in the range of 12–14 µM, comparable to the human host defense
cathelicidin peptide LL-37 (TC50 19.1 µM). These results indicated a direct antiviral effect of
our peptides at a low peptide concentration (e.g., 2.5 µM), where its secondary toxic effect
on host cells might play a role. The toxic effect of the designed peptides depended on cell
types. The 50% hemolytic concentration (HC50) for DDIP1 was greater than 160 µM, the
highest concentration we tested (Table 3). However, both DFTavP1 and DFTavP2 were highly
hemolytic, with an HC50 below 12.5 µM, while DFTavP3, the shortest 12-mer peptide, had
an HC50 of 50 µM. Likewise, DDIP1 was poorly hemolytic to murine red blood cells as well
(HC50 > 160 µM), while DFTavP1 was highly hemolytic (Table 3). In the case of skin HaCaT
cells, the HC50 was 25 µM for DFTavP1, but greater than 100 µM for DDIP1. These results
confirmed the toxicity of DFT peptides. However, the engineered peptide DDIP1 was much
more selective and showed cell-dependent toxicity (Table 3).

Table 3. Cytotoxicity comparison of antiviral peptides to different cells.

Peptide hRBC HC50
a mRBC HC50

b HaCaT TC50
c Vero Cell TC50 Calu3 Cell TC50

DFTavP1 <12.5 µM <10 µM 25 µM 2.39 11.88
DDIP1 >160 µM >160 µM >100 µM 13 14.25

a hRBC, human red blood cells; b mRBC, BALB/c mouse red blood cells; c TC50, the peptide concentration that
killed 50% of human keratinocytes.

3. Materials and Methods
3.1. The Antimicrobial Peptide Database

The APD was originally established in 2003. Since then, it has been updated regularly
and expanded substantially [25,27]. For scientific rigor, the APD applied a set of criteria
for peptide registration (natural peptides, known sequences, known activity, and a size
of less than 100 amino acids). Thus, this database currently focuses on natural peptides
from six life kingdoms, including bacteria, archaea, protists, fungi, plants, and animals [25].
After over 18 years, 26 types of peptide activities (e.g., antibacterial, antiviral, antifungal,
antiparasitic, spermicidal, and anticancer) have been annotated. Such a well-annotated
peptide sequence–activity database provides a unique platform for peptide prediction and
design. The APD enables a thorough statistical analysis of natural AMPs through a variety
of search functions and database filters. Such an analysis identifies key parameters for
peptide design [27].

3.2. Database Filtering Technology (DFT) vs. Improved DFT

The rigorous registration of the data in the APD set the stage for us to develop database-
guided approaches for peptide discovery, ranging from database screening to database filtering
technology [27]. The original database filtering technology [28] consisted of multiple database
filters that allowed us to derive a family of peptides with desired biological activity, followed
by deriving key peptide parameters step by step. In the original DFT, the first filter selected
a set of peptides with activity against Gram-positive bacteria, whereas the improved DFT
used here selected a group of peptides annotated with antiviral activity. The second filter
is common and was used to identify the most probable peptide length. This was achieved
by statistically analyzing the peptides in the APD in bins (every 10 s), so that the peptide
length with the highest count was found. Subsequently, the original DFT identified the most
probable amino acid frequency, net charge, and hydrophobic amino acid in three steps. In
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contrast, the improved DFT derived frequency, net charge, and hydrophobic content in one
step. The rest of the steps in identifying the most probable structure and motifs are shared by
both methods and were detailed elsewhere [28].

3.3. Chemicals and Peptides

All the chemicals were purchased from established vendors such as Fisher and Sigma.
Peptides were created by Genemed Synthesis, Inc. (San Antonio, TX, USA). All the peptides
were highly purified and reached over 95% purity based on HPLC. The correct mass of
each peptide was validated by mass spectrometry (Shimadzu MALDI-8020, Kyoto, Japan
or Thermo Fisher Scientific SALDI-TOF-MS, Waltham, MA, USA). The incorporation of
a tryptophan (W) for each peptide at position 2 (in replacement of a leucine in Table 1)
facilitated peptide quantification on a UV spectrometer (Ultraspec 1100 pro, Amersham
Biosciences) at 280 nm.

3.4. SARS-CoV-2 Safety Statement

All experiments involving SARS-CoV-2 were conducted in an approved BSL-3 facility
of the University of Nebraska Medical Center (UNMC) by dedicated trained personnel.

3.5. Antiviral Assays

Peptide activity against Ebola pseudo-virus was tested using established lab protocols
as described [24]. Inhibitory effects on SARS-CoV-2 were tested as below. Live virus
experiments were performed in the BSL3 laboratory at the UNMC (Omaha, NE, USA).
Briefly, Vero cells (~10,000 cells/well) were seeded in a 96-well plate and cultured in
complete medium overnight. In the prevention experiments, cells were pretreated with
compounds for 2 h at 37 ◦C. Treatments were washed off and cells were infected with SARS-
CoV-2 WI at a multiplicity of infection (MOI) of 0.1 in complete media. After 24 h, cells were
fixed with 4% buffered paraformaldehyde for 30 min at room temperature. The fixed cells
were washed with phosphate-buffered saline (PBS), permeabilized with 0.1% (v/v) Triton
X-100 solution for 10 min, then blocked with 3% bovine serum albumin–PBS solution. The
cells were incubated with anti-SARS-CoV-2 spike protein rabbit monoclonal antibody (Sino
Biological, Beijing, China) at 1:1000 overnight at 4 ◦C, followed by incubation with 1:2000
diluted Alexa Fluor 488 conjugated secondary antibody (Jackson ImmunoResearch) for 1 h
at room temperature. Cell nuclei were counterstained using Hoechst 33,342 (Invitrogen,
#H3570), and cytoplasmic membranes were stained with CellMask (Invitrogen, #C10046).
Noninfected cells and untreated virus-infected cells were included as internal controls.
Cells were imaged using a high-content analysis system, Operetta CLS (PerkinElmer Inc.,
Waltham, MA, USA). Percentage inhibition of viral infection was calculated using Harmony
4.9 software (PerkinElmer Inc.).

3.6. Antibacterial Assays

Peptide activity against bacteria was tested using established lab protocols as de-
scribed previously [28]. In brief, a peptide concentration gradient with two-fold dilution
was created in the 96-well polystyrene microplates at 10 µL per well. From overnight
cultures, six bacteria (Table 2) were grown to the logarithmic phase (i.e., optical density at
600 nm ≈ 0.5), diluted to ~105 CFU/mL, and partitioned into the 96-well microplates at
90 µL per well. The microplates were incubated at 37 ◦C overnight and read on a ChroMate
4300 Microplate Reader at 600 nm (GMI, Ramsey, MN, USA).

3.7. Cytotoxicity

Peptide toxicity was evaluated by using human red blood cells (hRBCs) and other host
cells. Hemolysis was conducted as described elsewhere [28]. Briefly, hRBCs, obtained from
the UNMC Blood Bank, were washed three times with phosphate-buffered saline (PBS) and
diluted to a 2% solution (v/v). After peptide treatment, incubation at 37 ◦C for one hour,
and centrifugation at 13,000 rpm, aliquots of the supernatant were carefully transferred to
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a fresh 96-well microplate. The amount of hemoglobin released was measured at 545 nm.
The percent lysis was calculated by assuming 100% release when human blood cells were
treated with 2% Triton X-100, and 0% release when incubated with PBS buffer. The peptide
concentration that caused 50% lysis of hRBCs was defined as HC50.

Vero cells (ATCC, CCL-81) or Calu-3 (ATCC, HTB-55) cells were seeded into 96-well
tissue culture plates (Greiner Bio-One, Monroe, NC) and treated with different concen-
trations of peptides for 24/48 h at 37 ◦C. Cell viability was examined by Vybrant® MTT
Cell Proliferation Assay Kit (Thermo Fisher Scientific, Grand Island, NY) following the
manufacturer’s instructions. Toxicity assays using HaCaT cells were conducted similarly
as described elsewhere [34].

4. Conclusions

It is useful to identify antiviral peptides that can eliminate all kinds of SARS-CoV-2
variants: alpha, beta, delta, omicron, etc. Based on the antimicrobial peptide database [25],
we previously developed a database filtering technology [28], which was recently proved
to be useful for us in the design of anti-MRSA peptides with systemic efficacy in mice [34].
Here, we improved the original stepwise database filtering method by deriving multiple
most probable parameters in a single amino acid composition analysis for designing antivi-
ral peptides, thereby accelerating this peptide design process based on the antimicrobial
peptide database. Our designed peptides were indeed inhibitory to the Ebola pseudo-virus.
In addition, both human cathelicidin LL-37 and DDIP1 could inhibit SARS-CoV-2. The
decrease in or loss of activity of peptides created with deviated most probable parame-
ters further validated the improved method. Our study demonstrated that the designed
peptides were inhibitory to the Ebola pseudo-virus in either prevention or treatment ex-
periments. The reduced antiviral effect of the designed peptides after additional delay
postinfection implied the blockage of viral entry. Our engineered disulfide-containing
peptide DDIP1 with numerous desired properties could be further optimized to remove
toxicity and developed into a novel treatment for viral infections such as COVID-19. This
should require the study of pharmacokinetics and pharmacodynamics of the optimized
peptide in animal models. It is predicted that DDIP1 is effective against a variety of mutated
viral strains, since it may damage viral envelopes to prevent infection in a similar manner
to disrupt bacterial membranes. Our discovery of novel antiviral peptides may be further
accelerated by applying the machine learning/artificial intelligence algorithms [35–43]
that enable the prediction of both the antiviral activity and toxicity of peptides with the
accumulation of experimental data of AMPs.
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Abstract: Merkel cell carcinoma (MCC) is a rare form of aggressive skin cancer mainly caused by
Merkel cell polyomavirus (MCPyV). Most MCC tumors express MCPyV large T (LT) antigens and
play an important role in the growth-promoting activities of oncoproteins. Truncated LT promotes
tumorigenicity as well as host cell proliferation by activating the viral replication machinery, and
inhibition of this protein in humans drastically lowers cellular growth linked to the corresponding
cancer. Our study was designed with the aim of identifying small molecular-like natural antiviral
candidates that are able to inhibit the proliferation of malignant tumors, especially those that are
aggressive, by blocking the activity of viral LT protein. To identify potential compounds against
the target protein, a computational drug design including molecular docking, ADME (absorption,
distribution, metabolism, and excretion), toxicity, molecular dynamics (MD) simulation, and molec-
ular mechanics generalized Born surface area (MM-GBSA) approaches were applied in this study.
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Initially, a total of 2190 phytochemicals isolated from 104 medicinal plants were screened using the
molecular docking simulation method, resulting in the identification of the top five compounds
having the highest binding energy, ranging between −6.5 and −7.6 kcal/mol. The effectiveness
and safety of the selected compounds were evaluated based on ADME and toxicity features. A
250 ns MD simulation confirmed the stability of the selected compounds bind to the active site (AS)
of the target protein. Additionally, MM-GBSA analysis was used to determine the high values of
binding free energy (∆G bind) of the compounds binding to the target protein. The five compounds
identified by computational approaches, Paulownin (CID: 3084131), Actaealactone (CID: 11537736),
Epigallocatechin 3-O-cinnamate (CID: 21629801), Cirsilineol (CID: 162464), and Lycoricidine (CID:
73065), can be used in therapy as lead compounds to combat MCPyV-related cancer. However, further
wet laboratory investigations are required to evaluate the activity of the drugs against the virus.

Keywords: Merkel cell polyomavirus; Merkel cell carcinomas; drug design; molecular docking;
ADMET; MD simulation

1. Introduction

Human polyomaviruses are a broad community of human pathogens that normally
induce asymptomatic infection in healthy people [1]. The polyomavirus family, which
includes the Trichodysplasia spinulosa polyomavirus (TSPyV), John cunningham poly-
omavirus (JCPyV), BK polyomavirus (BKPyV), and MCPyV, are linked to the growth of
various malignant tumors. However, of these, current research only supports the involve-
ment of MCPyV in human carcinogenicity [2,3]. MCPyV is a tiny, non-enveloped, circular
double-strand DNA virus that has gained the most attention due to its link with a rare
human cancer [4]. The virus is a member of the Polyomaviridae family that was first isolated
from MCC in 2008 by a group of researchers from the University of Pittsburgh [4–6]. Re-
search from diverse geographic regions indicates that approximately 80% of MCC cases
occur through MCPyV [6]. MCC is an aggressive neuroendocrine skin cancer linked with
immunosuppression induced by MCPyV DNA [6], which has a five-year average survival
rate of 40% [7]. The disease is more prevalent in those suffering from leukemia [8] or
HIV infection [9] as well as in immunocompromised persons that have undergone organ
transplantation [10]. The disease has a mortality rate of 30%, making it more lethal than
other cancers, and the incidence of MCC has increased almost four-fold over the past
20 years in the USA [2]. To date, there are no specific therapeutics or vaccines available
against the disease.

MCPyV can replicate its own DNA by using the host cell replication machinery [11].
The 5000 base pairs (bp) of the MCPyV closed-circular viral genome can be split up into
three regions, namely the viral regulatory, early coding, and late coding regions [6]. The
early coding region expresses four unique gene products known as the large T (LT), small
T (ST), and 57kT antigens as well as the overprinting gene known as the Alternate frame
of the Large T Open reading frame (ALTO), shown in Figure 1 [4,12]. These genes are
transcribed before viral DNA replication and express the tumor (T) antigen in the host
cell [6]. MCPyV LT antigen is a multifunctional protein that contains several common
motifs and domains important for facilitating the viral life cycle [4]. The N-terminal end
of MCPyV LT (1–70) amino acids (AA) contains a DnaJ domain comprising conserved
region 1 (CR1) followed by the HPDKGG hexapeptide sequence responsible for Hsc70
binding. LT encodes a MCPyV unique region (MUR) binding motif that interacts with
vacuolar sorting protein Vam6p in regulating LT stability via multiple E3 ligase interactions
(Figure 1). It also contains a LXCXE motif between the first exon and the OBD (~100–300 aa),
a stretch of sequences that interferes with retinoblastoma protein (RB) and promotes host
cell proliferation [13]. The LT C-terminal region includes an Ori-binding domain (OBD),
required for LT to bind to viral Ori, and a helicase domain that stimulates viral genome
replication [4]. The majority of MCPyV LT is truncated at 258 aa and thus loses its C-
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terminal domain responsible for viral replication, whereas the N-terminal contains the
RB-interacting domain and promotes cancer development [4,11]. Thus, the integrated virus
LT amino terminus plays an important role in virus replication and cancer progression.
Therefore, inhibition of the virus LT protein will hinder the replication process as well as
the development of MCC.

Figure 1. Representing the early region of MCPyV that contains the T (tumor) antigen genome
structure. (A) The four unique gene products known as the large T (LT), small T (ST), 57kT, and
ALTO expressed in the early coding region. (B) The large T antigens (left) and small T antigens (right).
(C) Asymmetric assembly of MCPyV LT antigen origin-binding domains in complex with viral origin
DNA retrieved from PDB ID: 3QFQ, adapted from ref. [14].

Plant secondary metabolites and derivatives have gained an abundance of new thera-
peutic applications in the last century, particularly when applied against cancer [15–17]. For
instance, plants have aided in the discovery or development of over 60% of anticancer prod-
ucts, either directly or indirectly [18,19]. Previously, numerous plant species and their active
components functioning against different diseases have been assessed and shown enhanced
activity against different viral and cancer-related diseases [20–22]. Natural compounds
and their derivatives account for more than half of all FDA-approved medications [18].
However, the identification of molecules that could be promising candidates for drug devel-
opment is not an easy task because various screening paradigms are required to identify hit
molecules [23,24]. For example, high-throughput screening (HTS) involves the screening
of an entire compound library directly against the drug target or in a more complex assay
system, which is costly and time consuming. In this regard, in silico approaches can be
beneficial for discovering new plant-based drugs since they allow the faster completion of
a variety of complex tasks, including library screening, drug target prediction, and binding
site prediction [21,25]. Computer-aided drug design (CADD) approaches increase the
probabilities of recognizing molecules with desirable properties and hastened hit-to-lead
development [26,27]. Moreover, new methodology incorporating structure-based drug
design with the assistance of informatics tools and analytical approaches has significantly
accelerated the drug development process [28,29]. Regarding traditional drug discovery,
large-scale in vitro and in vivo trials are needed to calculate a compound’s binding efficacy
and toxicity [30]. In this regard, CADD approaches comprise a molecular docking method
that can initially screen many compounds with higher binding efficacy. The approaches
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can also be used to evaluate pharmacokinetic (PK) properties, bioavailability, toxicity, and
efficacy of a compound within short periods [31,32]. Additionally, CADD approaches can
predict the binding stability of a ligand to its receptor through molecular dynamics (MD)
simulation approaches, which is more appropriate [33,34]. Therefore, the goal of this re-
search was to utilize CADD approaches, including molecular docking, pharmacoinformatic,
MD simulation, and MM-GBSA methods, to identify bioactive natural compounds that can
be used against MCPyV and thereby help in the fight against MCC.

2. Results
2.1. Protein Preparation

The structure determined for the large T-antigen protein (PDB ID: 3QFQ) with a
resolution of 2.90 Å consists of 440 amino acids with a standardized weight of 62.91 kDa,
represented in Figure 1C [14]. The asymmetric assembly of MCPyV LT antigen origin-
binding domains have three (A, B, and E) identical LT antigen chain in complex with
viral origin DNA (C and W) (Figure S1). As the A, B, and E chain are functionally similar
proteins that have a similar and identical amino acid (AA) sequence, therefore the B, C,
E, and W chains were removed, and A chain was kept for molecular docking simulation.
The structure was further modified through two steps in the protein preparation process.
In the first step, the metal ions, cofactors, and water beyond 5 Å from the groups were
removed, nonpolar hydrogen (H) was merged, and polar H atoms were assigned and saved
in PDB file format for further use (Figure S1A). In the second step, the protein was prepared
without removing the water and metal ion because water and metal ions sometimes play
an important role in the accuracy of ligand–protein docking predictions. As the selected
protein crystal structures (3QFQ) contain metal ions and water molecules in their binding
sites, the protein was therefore saved with water molecules to determine their role in
protein–ligand binding activity (Figure S1B).

2.2. Phytochemical Retrieval and Preparation

The IMPPAT database was used to select the readily accessible compounds of the de-
sired medicinal plants [24]. A total of 2190 phytochemicals were identified from 104 medic-
inal plants. The medicinal plants and their corresponding compounds used in this study
are listed in Supplementary Tables S1 and S7 (Excel), respectively. The compounds were
retrieved from the IMPPAT database and saved in 3D SDF format. Medicinal plants were
selected based on a literature review, and their corresponding compounds were retrieved
to observe their binding activity toward the MCPyV LT proteins.

2.3. Active Site Identification and Receptor Grid Generation

The CASTp server was used to predict the location of the active pocket as well as
the binding sites of the MCPyV LT protein [35]. The CASTp web-based tool identified
19 different surface pockets while the probe radius was set to 1.4 Å (Figure S2 and Table S2).
Predicted surface pockets were sorted according to area and volume. Among the 19 active
pockets, the first 4 active pockets and their corresponding aa residues were chosen based on
the surface area and volume listed in Table S3. The first four pockets have a significant area
coverage ranging from 103.342 to 4.777 A2, where volumes of ≥1 (SA) are shown in Figure 2.
The AS residues identified through this evaluation process were utilized for molecular
docking purposes. Maximization of receptor active pocket was confirmed through receptor
grid box selection process. The prepared protein was imported in PyRx to assign a grid box
that generated a box having a center of X = 38.74, Y = −56.48, and Z = −35.11 along with
dimensions of X = 30.90, Y = 26.5, and Z = 26.46 Å.
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Figure 2. The four selected active pockets of MCPyV LT (PDB: 3QFQ) with the surface area calculated
by the CASTp server, adapted from ref. [14]. The first active site (AS1) and its corresponding aa are
represented in red, AS2 in orange, AS3 in purple, and AS4 in yellow.

2.4. Molecular Docking Analysis

PyRx tools, specifically the AutoDock Vina wizard, were used to perform molecular
docking between 2190 phytochemicals and the target protein [36]. Initially, the compounds
were docked with protein that does not contain any water molecules in its structure. The
docking study found that the binding affinity of compounds ranged between −3.1 and
−7.6 kcal/mol. Based on the binding affinity of the five compounds with the highest values,
as listed in Table 1, a threshold energy value of ≥−6.50 kcal/mol was chosen for further
evaluation. The five selected compounds were subsequently docked with the same protein
chain now containing water molecules in the crystal structure. The docking was performed
to see how water affected the compound’s binding affinity. Analysis of the docking results
show that the presence of water molecules did not substantially alter the binding affinities
of the compounds (Table S4).
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Table 1. List of compounds, CAS ID, PubChem CID, chemical formula, and two-dimensional (2D)
structure of the five selected compounds with the highest binding affinity.

No. CAS ID PubChem CID Chemical Name Chemical Formula 2D Structure Docking Score
(kcal/mol)

1 13040-46-5 CID: 3084131 Paulownin C20H18O7

 

−

−

−

−

−

–
–

–

–

−7.6

2 108907-46-6 CID: 21629801 Epigallocatechin
3-O-cinnamate C24H20O8

 

−

 

−

−

−

−

–
–

–

–

−7.1

3 874359-26-9 CID: 11537736 Actaealactone C18H14O8

−

−

−

−

−

–
–

–

–

−6.7

4 19622-83-4 CID: 73065 Lycoricidine C14H13NO6

−

−

 

−

 

−

−

–
–

–

–

−6.6

5 41365-32-6 CID: 162464 Cirsilineol C18H16O7

−

−

−

−

 

−

–
–

–

–

−6.5

2.5. Interpretations of Protein–Ligand Interactions

Protein–ligand interaction studies are important for understanding the mechanisms of
biological regulation, and they provide a theoretical basis for the design and discovery of
new drug. They can be categorized into four types: hydrogen bonds, hydrophobic, ionic,
and water Bridges. Each interaction type contains more specific subtypes. The interactions
are essential to developing novel drug leads, predicting side-effects of approved drugs
and candidates, and de-orphaning phenotypic hits [37]. Therefore, the interaction between
the five ligands and the target protein was visualized using the BIOVIA Discovery Studio
Visualizer software [30]. Interactions between the selected compounds and target protein
(with and without water) were also analyzed to observe the different interactions formed
in the presence and absence of water and represented in Figure S3.

It has been observed that the compound CID: 162464 forms numerous conventional
and carbon–hydrogen bonds with the target MCPyV LT protein. It was also found that
three conventional hydrogen bonds form at the residue positions SER329 (1.95 Å), LYS400
(2.74 Å), and CYS399 (2.47 Å). Two carbon–hydrogen bonds with LYS331 (3.37 Å) and
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LEU397 (3.55 Å) were also observed during the interaction of the compound CID: 162464
with the protein. Alkyl and pi-Alkyl bonds were found to form at positions LYS385 (3.72 Å)
and VAL381 (4.08 Å) and positions LYS385 (4.72 Å) and VAL381 (5.28 Å), respectively, as
shown in Figure 3A and Table S5.

In the case of compound CID: 73065, it was discovered that five conventional hydro-
gen bonds form at residue positions VAL327 (1.87 Å), SER329 (2.21 Å), SER329 (2.93 Å),
SER382 (2.27 Å), and VAL381 (2.67 Å). One pi-alkyl bond was found to form at position
VAL381 (4.96 Å) shown in Figure 3B and Table S5. The compound CID: 3084131 generated
two conventional hydrogen bonds and one pi-donor hydrogen bond. Two conventional
hydrogen bonds were formed at residue positions SER329 (2.15 Å) and SER324 (2.97Å),
whereas one pi-donor hydrogen bond was observed at VAL381 (3.81 Å). One pi-sigma
bond formed at VAL381 (3.52 Å), and two pi-alkyl bonds formed at ALA326 (4.93 Å) and
ARG380 (5.17 Å), as shown in Figure 3C and Table S5. The compound CID: 11537736 was
found to form six conventional hydrogen bonds with the target molecule, at positions
SER324 (1.82 Å), ALA326 (2.43 Å), SER329 (2.44 Å), ARG380 (2.74 Å), SER382 (2.04 Å),
and CYS399 (2.48 Å). One pi-sigma bond formed at VAL381 (3.53 Å), and two pi-alkyl
bonds were generated at ALA326 (4.11 Å) and VAL381 (5.10 Å), as shown in Figure 3D
and Table S5. For the compound CID: 21629801, five conventional hydrogen bonds and
two carbon–hydrogen bonds, and a pi-donor hydrogen bond with the target protein were
identified. Five conventional hydrogen bonds at the positions of ARG380 (2.35 Å), VAL381
(2.95 Å), SER382 (2.07 Å), ASN330 (2.05 Å), and CYS399 (2.84 Å) were observed, while two
carbon–hydrogen bonds formed at the positions of SER382 (3.21 Å) and SER382 (3.22 Å).
One pi-donor hydrogen bond was established at SER324 (2.94 Å), as shown in Figure 3E
and Table S5.

2.6. Pharmacokinetics (PK) Properties Analysis

PK is a field of pharmacology that employs statistical models to explain and forecast
the time course of drug concentrations in body fluids [38]. PK analysis in drug development
helps to optimize the absorption, distribution, metabolism, and excretion (ADME) proper-
ties of lead compounds. Early PK analysis also helps to develop a therapeutic candidate
with an appropriate concentration–time profile in the body for the optimal effectiveness
and protection profile [39]. The SwissADME server generates a set of parameters that
characterize the drug’s kinetic activity in the body after administration [40]. The tool allows
researchers to save time when making informed decisions about the nature and course of
studying a molecule’s PK [38]. Therefore, the tool was used to predict the PK properties of
the selected molecular candidates. Pharmacological, physicochemical, and PK properties
including lipophilicity, solubility, gastrointestinal (GI) absorption, blood–brain barrier (BBB)
penetration, and synthesis accessibility of the selected molecules were evaluated and are
listed in Table 2 and depicted in Figures S4 and S5.
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Figure 3. The interactions between the MCPyV large T antigen and five selected natural compounds.
The protein–ligand interactions are represented in 3D on the left side of the figure and in 2D on the
right side of the figure. The represented interactions are between the MCPyV LT protein and the com-
pounds (A) CID: 162464, (B) CID: 73065, (C) CID: 3084131, (D) CID: 11537736, and (E) CID: 21629801.
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Table 2. List of pharmacokinetic properties, including ADME properties, of the five selected natural
compounds. The list also includes the different physicochemical properties of the compounds.

Properties CID: 73065 CID: 11537736 CID: 3084131 CID: 21629801 CID: 162464

Physicochemical
Properties

Formula C14H13NO6 C18H14O8 C20H18O7 C24H20O8 C18H16O7

MW (g/mol) 291.26 358.30 370.35 436.41 344.32

Heavy atoms 21 26 27 32 25

Arom. atoms 6 12 12 18 16

Rotatable bonds 0 3 2 5 4

H-bond acceptors 6 8 7 8 7

H-bond donors 4 5 1 5 2

Lipophilicity C Log Po/w −0.42 0.78 2.10 2.45 2.53

Water Solubility Log S (ESOL) −1.01 −2.9 −3.35 −4.31 −4.33

Pharmacokinetics
GI absorption High Moderate High Moderate High

BBB permeant No No No No No

Drug Likeness RO5 Violation 0 0 0 0 0

Medi. Chemistry Synth. ability 4.01 3.61 4.22 4.38 3.43

2.7. Toxicity Prediction

An in silico toxicity analysis was performed using the pkCSM web portal to identify
the toxic effects of the selected compounds [32]. Oral rat chronic toxicity (LOAEL), oral
rat acute toxicity (LD50), AMES toxicity, hepatotoxicity, and skin sensitization of drug
candidates were evaluated by the pkCSM server and are listed in Table 3.

Table 3. A list of the drug-induced toxicity profile for the five selected natural compounds.

Target CID: 73065 CID: 11537736 CID: 3084131 CID: 21629801 CID: 162464

AMES toxicity No No No No No

LD50 1.981 2.154 2.241 2.769 2.258

LOAEL 2.907 3.172 1.684 3.834 0.953

Hepatotoxicity No No No No No

Skin Sensitization No No No No No

2.8. MD Simulation Analysis

The binding stability of protein–ligand complexes was investigated and validated by
using molecular dynamics (MD) simulations. Data focusing on intermolecular interaction
were recorded by the MD simulation throughout the orientation time. The study utilized
a 250 ns MD simulation to determine the stability of the protein–ligand complexes. The
MD simulation findings are reported based on the root mean square deviation (RMSD),
root mean square fluctuation (RMSF), intramolecular hydrogen bonding (Intra HB), and
protein–ligand contact analysis (P–L contact).

2.8.1. RMSD Analysis

The RMSD is used to quantify the average change in position of a chosen set of
atoms relative to a reference atom [41]. The RMSD analysis is used to describe the system
equilibration in terms of stability and reliability.

The smaller range of RMSD and constant fluctuation throughout the simulation imply
that the protein backbone is stable. On the other hand, a larger RMSD and/or significant
variation from the native structure suggest that the protein–ligand combination is more
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unstable [42]. The mean or average value change between a specific frame and a reference
frame with a range order of 1–3 Å is entirely permissible, where a value larger than the
required range indicates that the protein has undergone a significant conformational shift.
The MD simulation with a time step of 250 ns was used to provide the RMSD that was
calculated from Equation (1) and described below.

Initially, the MCPyV LT protein frames were aligned on the reference frame backbone
(blue), and the RMSD of the selected compounds CID: 73065 (red), CID: 3084131 (yellow),
and CID: 11537736 (light blue), CID: 21629801 (green), and CID: 162464 (purple) were
calculated and are depicted in Figure 4 and Figure S6. The RMSD was computed for
the Cα atoms of apoprotein, and the selected compounds increase somewhat but then
re-equilibrate toward the conclusion of the 250 ns MD simulation. The RMSD values for
the ligand–protein complex was computed and compared with the apoprotein, and the
optimal variation was seen for all five molecules. The compound CID: 73065 showed a
slight fluctuation between 125 and 175 ns and showed a state of equilibration with the apo
structure the rest of the time (Figure 4A). The fluctuations increased for the compound
CID: 11537736 from the start of the 25–125 ns MD simulation time and then stabilized
with a slight fluctuation between the 166 and 187 ns intervals (Figure 4B). The average
RMSD of the compound was 2.067, indicating good stability of the compound with the
target protein. The compound CID: 3084131 demonstrates confirmational stability most
of the time, having an average RMSD value of 1.25 Å, indicating good stability of the
compound with the AS of the protein (Figure 4C). The compound CID: 21629801 exhibits
the optimum conformational stability of around 1.2 Å between 200 and 250 ns of the MDS.
The highest fluctuation (<2.0 Å) found for the compound is from 50 to 125 ns simulation
time, followed by gradual stabilization, indicating that the compound has undergone minor
conformational change during the simulation (Figure 4D). In the case of the compound CID:
162464, very low fluctuation was observed during the 250 ns simulation time, although
some variations were seen between 25 and 75 ns simulation time, with an average RMSD
of 2.5 Å (Figure 4E). Conformational stability was achieved later, from 100 ns and toward
the conclusion of the simulation. The measured values for the ligands were less than for
the apoprotein RMSD, indicating that the ligand would not dissociate from its original
binding site.

2.8.2. RMSF Analysis

The root mean square fluctuation (RMSF) can be used to predict the occurrence of
local variations in protein chain residues as well as changes in the location of ligand atoms
at a given temperature and pressure [43]. Additionally, the RMSF assists in evaluating
the flexibility of each atom to get a better understanding of how ligand binding impacts
protein flexibility [44]. Low RMSF values of the AA residues suggest that the complex
has achieved more stability, while higher values indicate that the complex has achieved
less stability [42]. Thus, the RMSF values of the chosen natural compounds CID: 73065
(red), CID: 3084131 (yellow), CID: 11537736 (light blue), (D) CID: 21629801 (green), and
CID: 162464 (purple) in combination with the MCPyV LT protein have been analyzed using
Equation (2) and are illustrated in Figure 5. In Figure 5, peaks represent the areas of the aa
residues that fluctuate the most during the 250 simulations. There was higher fluctuation
from the starting to endpoint aa residues of the complex systems than for any other part of
the protein due to the location of the N- and C-terminal domains.
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Figure 4. The RMSD values extracted for the Cα atoms of the five selected compounds in complex
with the MCPyV LT protein (blue) for the compounds (A) CID: 73065 (red), (B) CID: 3084131 (yellow),
(C) CID: 11537736 (light blue), (D) CID: 21629801 (green), and (E) CID: 162464 (purple), and (F) shows
all the RMSD for all compounds and the protein together.

In the case of the apoprotein, the maximum fluctuation was observed between residue
positions 325 and 330 aa, with a fluctuation of 2.35 Å at VAL327. The apo structure also
showed a low level of fluctuation at residue positions LEU367 and THR 393. The apo
structure was then compared with the compound CID: 73065 in complex with the protein,
in which low fluctuation at residue positions VAL327, LEU367, and THR393 was found
(Figure 5A). CID:3084131 seems to have the lowest average RMSF range between 1.0 and
1.3 Å, and the fluctuation of VAL327, LEU367, and THR393 was also low compared to that
of the apoprotein structure (Figure 5B). However, the RMSF graph demonstrated average
low and significant values of the MCPyV LT protein in complex with CID: 11537736 (0.98
to 1.01 Å), CID: 21629801 (1–1.3 Å), and CID: 162464 (1–1.4 Å) compared to the reference
apo structure, as shown in Figure 5C–F. As previously stated, a low RMSF value indicates
higher protein stability, whereas the RMSF values found for each protein–ligand system in
this study were lower than those for apoprotein. Therefore, the compounds are expected to
retain stable contact with the protein without altering its structure.
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Figure 5. The RMSF values extracted for the Cα atoms of the five selected compounds in complex
with the MCPyV LT protein (blue) in complex with the compounds (A) CID: 73065 (red), (B) CID:
3084131 (yellow), (C) CID: 11537736 (light blue), (D) CID: 21629801 (green), and (E) CID: 162464
(purple), and (F) shows the RMSF for all compounds and the protein together.

2.8.3. Protein–Ligand Contacts

The bonding interaction between the molecules and the target protein plays an impor-
tant role in the stability as well as PK properties. For example, hydrogen bonds of molecules
affect drug selectivity, adsorption, and metabolism. Therefore, the protein complex with
the selected ligands and their intermolecular interactions were studied using a simulation
interactions diagram (SID). The interactions that occur for more than 30.0% of the simula-
tion time between the natural compound (CID: 73065, CID: 3084131, CID: 11537736, CID:
21629801, and CID: 162464) atoms and the MCPyV LT protein residues were characterized
based on hydrogen, hydrophobic, ionic, and water bridge bonds and are represented in
Figure 6. Additionally, a stacked bar chart representation of the protein–ligand interactions
found during the 250 ns simulation run is also provided in Figure S7. The interaction
between the protein and ligands can be described based on an interaction fraction value
(IFV), such as that an IFV value of 0.7 suggests that the specific interaction is maintained for
70% of the simulation time. Values over 1.0 (>100%) are possible, as some protein residues
may make multiple contacts of the same subtype with the ligand. For example, the ARG
side chain has four H-bond donors that can produce four hydrogen bond interactions with
a single H-bond acceptor.
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Figure 6. Schematic representation of interactions of selected ligand atoms with MCPyV LT protein
residues shown for interactions that occur more than 30.0% of the simulation time between the protein
and the compounds (A) P CID: 73065, (B) CID: 3084131, (C) CID: 11537736, (D) CID: 21629801, and
(E) CID: 162464 in the selected trajectory (0.00 through 250.00 ns).

In this study, atoms of the compound CID: 73065 formed interactions at ASP314 and
TYR339 protein residues for more than 30.0% of the simulation time with an IFV of 1.4 and
0.6, respectively, indicating that the specific interaction was maintained for 140% and 60%

227



Pharmaceuticals 2022, 15, 501

of simulation time via multiple contacts of the same subtype in the ligand (Figure 6A and
Figure S6A). The compound CID: 3084131 produced multiple contacts at LYS385, ASN386,
and CYS399 aa residues with 2.0, 0.75, and 1.2 IFV, respectively (Figure 6B and Figure S6B),
where the compound CID: 11537736 formed multiple contacts with ASP358 residue with an
IFV of 1.2 (Figure 6C and Figure S6C). In the case of the compound CID: 21629801, contact
occurred at SER329 and VAL381 residues for more than 30.0% of the simulation time with
IFVs of 0.78 and 0.65, respectively (Figure 6D and Figure S6D). Finally, the compound
CID: 162464 was found to form multiple interactions for more than 30.0% of the simulation
time at the residue positions LYS400 and GLY401 with an IFV of 0.88 and 0.8, respectively,
suggesting that the specific interaction will be maintained by multiple contacts for 88% and
80% of the simulation time, respectively, and help to ensure stable binding with the target
protein (Figure 6E and Figure S6E).

2.9. MM-GBSA Analysis

The MM-GBSA approach helps to determine the binding free energy of a molecule to
the target protein. The binding free energy of the selected molecules to the target protein
were evaluated based on the MD simulation trajectory and are represented in Figure 7. The
MM-GBSA of the complex structure was computed for every single frame generated for
the 250 ns MD simulation trajectory. The analysis of the complex structure identified higher
net negative binding free energy values of −47.91 ± 3.92, −29.67 ± 9.53, −39.98 ± 7.20,
−28.34 ± 10.05, and −36.67 ± 11.0 kcal/mol for the five selected molecules CID: 162464,
CID: 73065, CID: 3084131, CID: 11537736, and CID: 21629801, respectively, with the target
protein (Figure 7).

Figure 7. Different energy components and net MM-GBSA binding free energy (kcal/mol) along
with the standard deviation values calculated from 250 ns MD simulation trajectory of MCPyV LT
protein in complex with the selected compounds (A) CID: 162464, (B) CID: 73065, (C) CID: 3084131,
(D) CID: 11537736, and (E) CID: 21629801.

In addition, the physicochemical contributions to total energy from the analysis of
different components found a significant contribution of coulomb, covalent, van der Waals,
lipophilic, and generalized Born electrostatic solvation energy shown in Figure 7 and listed
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in Table S6. Therefore, it can be said that the five selected molecules will maintain a stable
interaction with the target protein.

3. Discussion

MCC is a very rare disease in which malignant (cancer) cells form on the top layer
of the skin. MCPyV is responsible for at least 80% of all cases of MCC, which has a high
risk of returning (recurring) and spreading (metastasizing) [4,45–47]. MCC has a mortality
rate of 30%, and to date, no specific drugs are available against the disease [11]. Therefore,
the study aimed to identify effective drug candidates against the disease using CADD
approaches. CADD approaches have proven efficient and successful in the field of drug
design and development, as they enable researchers to rapidly identify the most successful
drug candidates. It has been found that CADD approaches can reduce the cost of the
drug development process by up to 50% [48]. These approaches can be used to search
for new compounds based on specific targets and, in the screening process, increase the
possible number of compounds evaluated in a short time. CADD approaches include
virtual scanning, molecular docking, ADMET, and MD simulation and are commonly used
to find, produce, and study drugs and related bioactive molecules [30].

Molecular docking is a popular method used in the rational design of a drug that
involves the analysis and prediction of binding behaviors and interaction affinities between
ligands and receptors [49,50]. To identify the interaction between the desired target with
different natural compounds in this study, a molecular docking-based screening process
was initially applied. This study conducted the simulated screening of a vast library of
natural phytochemicals that could target the MCPyV LT protein. The docking technique
efficiently screened and ranked 2190 phytochemicals based on a scoring function, whereby
the top five phytochemicals were selected based on having the highest binding affinity.
The five selected compounds CID: 73065, CID: 11537736, CID: 21629801, CID: 162464, and
CID: 3084131 had the highest binding scores of −6.6, −6.7, −7.1, −6.5, and −7.6 kcal/mol,
respectively. The selected compounds were further evaluated based on their PK properties.

PK is the study of how small drug-like molecules are absorbed, distributed, metabo-
lized, and excreted (ADME) by the body [39]. Since ADME processes influence the intensity
and duration of a drug’s operation, their interpretation is critical for supervising the drug
development phase and clinical decision-making. Understanding a drug’s absorption and
distribution properties helps us to estimate how much of an administered dosage can
penetrate the bloodstream and hit the target site of action. Furthermore, knowledge of
drug metabolism and elimination accounts for the prediction of concentrations for drugs
that are provided regularly [51]. Therefore, the study also evaluated a drug’s effectiveness
by determining its ADME properties [52]. As a result of pharmacokinetic analysis, the
optimal GI absorption of the selected compounds with no BBB permeation was identified.
The consensus log Po/w value of candidate molecule <5 indicates that it is lipophilic and,
therefore, capable of crossing lipid membranes found within the body. Lipinski’s rule of
five (LR5) assesses the drug-like properties of chosen compounds to determine if they are
orally bioavailable for humans, and the selected compounds were found to have good
drug-likeness properties.

In the human body system, biological regulators control a variety of cellular processes,
including biosynthesis, signal transduction, transport, storage, and metabolism. The unde-
sired activity of a drug candidate with a bioregulator, excluding the primary target, can
show toxic effects [53]. One of the most prominent causes of late-stage drug development
failure is drug toxicity [54]. It has been found that 20% of late-stage drug discovery fail-
ures are due to molecule toxicity [32]. Recently, high toxicity estimation approaches for
the early stages of drug production have evolved, which maximize the success ratio of
corresponding drug development phases [54]. Early-stage toxicity of drug candidates can
be evaluated through in silico toxicology techniques that utilize both quantitative and
qualitative methods. In silico methods have many advantages, including the potential to
analyze hypothetical substances, their low expense, and the fact that such simulated studies
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are usually focused on human results, which eliminate the issue of interspecies transfer-
ability [53]. Therefore, the study evaluated the toxicity of the selected drug candidates
through computational approaches. The top five phytochemicals were evaluated based on
mutagenicity, organ toxicity, and animal-based toxicity analysis. The Ames analysis is a
bacterial mutation assay that was used in this study to determine whether the medications
may trigger such gene mutations that cause genetic disruptions to a cell that can eventually
lead to cancer [55], and showed that all tested compounds were negative. Besides this, they
were not found to chemically alter the skin, which may result in a prolonged T-cell-induced
allergic reaction [56], nor to trigger hepatic dysfunction [57]. LD50 estimates the short-
term toxicity efficiency of compounds over a specific time [54], and all compounds were
found to have optimum acute toxicity. Moreover, the chosen phytochemicals exhibited
favorable results in chronic toxicity tests that were repeated over a longer duration on the
living organism.

The compounds that have been chosen based on docking, PK, and toxicity properties
were further evaluated through MD simulation methods. MD simulation was used to
identify the binding stability of the selected compounds to the AS of the target protein.
MD simulations help to determine the physical motions of molecules inside a desirable
macromolecule and have become an integral part of the CADD process [58]. MD simula-
tions enable analyzing an intended drug candidate’s stability in the presence of a certain
macromolecule. Therefore, the LT protein in complex with the five selected small molecules
was evaluated based on the RMSD, RMSF, and ligand–protein interactions generated from
the 250 ns simulation trajectories. Optimal RMSD and RMSF values for all five compounds
were obtained, and the protein–ligand interactions indicated the stability of the five selected
molecules to the AS of the protein. Additionally, in the MM-GBSA calculated from the
simulation trajectory, a high ∆Gbind value was found, as well as coulomb, covalent, vdw,
lipophilic, and solv gb energy, indicating the stability of the selected compounds to the
target protein for long-term simulation.

The comprehensive CADD approaches successfully identified five compounds, namely
Lycoricidine (CID: 73065), Actaealactone (CID: 11537736), Epigallocatechin 3-O-cinnamate
(CID: 21629801), Cirsilineol (CID: 162464), and Paulownin (CID: 3084131), which have
previously shown activity against different diseases. For example, Lycoricidine, a type of
amaryllidaceae alkaloid and constituent of the medicinal plant Lycoris radiata, which has
shown anti-HCV activity by downregulating the expression of host heat-stress cognate 70
(Hsc70) [59]. Paulownin, found in Gmelina arborea, has recently been reported to have a
potential inhibitory effect against key receptors of estrogen-positive breast cancer, including
FGFR2, ESR1, PIK3CA, PIK3CB, and PIK3CD [60]. The compound has also been reported
to have anti-inflammatory and analgesic properties and boost immunity as well as lower
blood glucose levels [61]. Actaealactone, a type of neolignan found in the extracts of Actaea
racemose, is reported to have antioxidant activity [62]. On the other hand, Cirsilineol, a
flavone from Artemisia capillaris, has many medicinal properties such as anti-neoplastic
activity [63], induction of ROS-mediated apoptosis [64], and inhibition of IFN-g signaling
in a murine model [65]. The role of the compound Epigallocatechin 3-O-cinnamatein in
different diseases, however, has not yet been studied. The study here identified potential
inhibitory compounds that may act against the MCPyV LT protein. Previously, most
studies were designed to find a potential lead compound by analyzing a plethora of similar
compounds. In this study, however, we have analyzed various compounds that cover a
wide array of natural compounds, enhancing the chance of discovering a promising drug
candidate against MCPyV LT antigen.

4. Materials and Methods
4.1. Protein Preparation

The three-dimensional (3D) structure of the MCPyV large T antigen protein was
obtained from the Protein Data Bank (www.rcsb.org//pdb, accessed on 9 December 2021)
and has previously been generated via X-ray diffraction. PyMOL v2.4.1 was chosen to
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view the PDB configuration of the receptor, which was prepared for further analysis using
Schrödinger’s Protein Preparation Wizard [66].

4.2. Compound Retrieval and Preparation

Indian Medicinal Plants, Phytochemistry, And Therapeutics (IMPPAT) (https://cb.
imsc.res.in/imppat/home) (accessed on 9 December 2021) is a manually compiled database
of 1742 Indian Medicinal Plants and 9596 stereochemically diverse bioactive compounds [24].
Phytochemicals from a variety of medicinal plants were retrieved from the database and
prepared by applying OPLS_2005 as a force field. The Epik ionization tool of Schrödinger
Suite was utilized to obtain the ionization state of the compound, where the pH was set
within the range of 7 ± 2 [67]. All possible deprotonated and ionization states along
with their tautomers, stereochemistry, and ring conformations of the compound were also
determined during the ligand preparation process.

4.3. Active Site Identification and Receptor Grid Generation

The active site (AS) of a protein or enzyme is a complex structure of different aa
residues in a particular region that aid in the formation of a temporary attachment with
the substrate [68]. The active sites forming aa residues are also known as the binding
site, which enable the enzyme to bind to a chemical substrate and catalyze the reaction.
Additionally, it aids in the stabilization of reaction intermediates and helps recognizing
the ligand and forming a tight binding relationship with the protein [32]. Identification of
the AS position in a protein can help to generate enough contact points with the ligands
and significantly increase the docking efficiency. Therefore, the Computed Atlas of Pro-
tein Surface Topography (CASTp) 3.0, a web-based tool (http://sts.bioe.uic.edu/castp/)
(accessed on 9 December 2021) was used to classify all surface pockets, internal cavities,
and cross-channels in our refined protein structured model [35]. The refined 3D protein
structure was uploaded to the website to analyze the binding pocket of the MCPyV LT
protein. Additionally, the area and volume of the binding pocket as well as the aa residues
required for binding interaction were estimated.

4.4. Molecular Docking

PyRx software was used to upload the refined 3D structure of target proteins and
small phytochemical molecules for structure-based virtual screening [36]. Before beginning
the simulated screening process, the referenced 3D protein was transformed into a macro-
molecule, and all phytochemicals were subjected to an energy minimization phase [69].
PyRx virtual scanning tools convert the PDB format of a macromolecule and SDF format of
small molecules to Autodock’s Pdbqt format using the Open Babel widget according to
default configuration parameters. Afterward, all aa residues were selected for the following
process using the CASTp server. The grid box was adjusted using Vina Wizard to guarantee
that all chosen amino acid residues are contained inside the grid box for running Vina
Wizard. Finally, it analyzes the protein binding free energy, which is associated with the
scoring mechanism for deciding which phytochemicals are more likely to attach to the
target [49], and the phytochemicals containing the highest binding energy (kcal/mol) with
a negative sign were selected for further analysis. Finally, the binding interaction between
the protein and ligand complex was visualized using BIOVIA Discovery Studio Visualizer
v 20.1.0.19295 (BIOVIA) [70].

4.5. Pharmacokinetic (PK) Properties Analysis

Pharmacokinetics is the analysis of how drug concentrations change with time in
various body fluids in consideration of the drug absorption, distribution, metabolism,
and excretion (ADME) properties. Lipinski’s rule specifies the following criteria for an
orally active drug: MW (200~500), HBAs (0~10), HBDs (0~5), ClogP ≤ 5, and ROTBs
(0~10) [71]. The PK properties of the compounds were evaluated using the SwissADME
(http://www.swissadme.ch/index.php) server (accessed on 12 December 2021) [40]. The
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SwissADME tool predicts the pharmacokinetic, pharmacological, and physicochemical
properties, including gastrointestinal (GI) absorption, lipophilicity (consensus Log Po/w),
blood–brain barrier (BBB) penetration, solubility (ESOL), drug likeness, and medicinal
chemistry friendliness [72].

4.6. Toxicity Prediction

The pkCSM (http://biosig.unimelb.edu.au/pkcsm/) server (accessed on 13 December
2021) is a freely available web server for developing statistical models of drug discovery
using a graph-based signature that assesses the toxicity of a variety of substances to
guarantee the clinical effectiveness of drug candidates [73]. The pkCSM web server was
used here to predict the toxicity parameters, including AMES toxicity, oral rat acute toxicity,
oral rat chronic toxicity, hepatotoxicity, and skin sensitization of the compounds.

4.7. MD Simulations

MD simulations were conducted using the Desmond v3.6 program in Schrödinger to
determine the stable interactions of the ligands to the binding pockets of the receptors [67].
The stability of the selected compounds in binding the target protein was determined
through 250 ns MD simulations. For the prediction of the equation of state (EOS), this
software allowed automated simulation and free energy perturbation (FEP) computation,
which was combined with various temperatures. The system was solvated using a prede-
fined TIP3P water model, in which an orthorhombic periodic boundary box shape with
10 Å was employed to assign both sides to retain a certain volume. The system was elec-
tronically neutralized using suitable ions such as Na+ and Cl− with salt concentration of
0.15 M. After creating the solvated system that included the protein in complex with the
ligand, the system was optimized by employing the OPLS-2005 force field. Ensembles of
NPT (constant number of particles, pressure, and temperature) particles were maintained
at 300 K and 1.0 atmospheric (1.01325 bar) pressure, followed by 250 PS recording intervals
with an energy of 1.2, in which the solvent and ions were evenly distributed around the
protein–ligand complex.

4.8. Simulation Trajectory Analysis

The quality of the MD simulation was verified, and the simulation event was analyzed
using simulation interaction diagram (SID) available in the Schrödinger package [68]. The
stability of the complex structure was assessed based on the RMSD, RMSF, protein–ligand
interactions (P–L contacts), and hydrogen bond interactions found from the trajectory.

4.8.1. RMSD Analysis

The RMSD of a protein–ligand complex system enables the average distance produced
by the dislocation of a chosen atom over a certain period to be determined and indicates
the stability of a protein [45,74]. When initializing the simulation, the protein structures
and the reference frame backbone were aligned, and after that, the RMSD of the whole
system was computed for about the duration that the MD simulations ran (in our instance,
250 ns). The RMSD of a complicated system with a time of x may be computed using the
below equation.

RMSDx =

√

1
N ∑

N
i=1(r

′
i(tx))− ri(tref))

2 (1)

where N is the atom selection number, tref is the reference time (usually the first frame is a
reference and time t = 0), and x is the location of the chosen atoms when superimposed
with the reference frame. Every simulation frame undergoes the process.

4.8.2. RMSF Analysis

The generated RMSF information plays an important role in identifying the local con-
formational change of a protein coupled with ligands by calculating the average observed
atomic changes compared to the number of atoms [30,32]. The following equation may be
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used to determine the RMSF value of a protein, where the number of residues is denoted
by i.

RMSFi =

√

1
T ∑

T
t=1 < (r′i(t))− ri(tref))

2
> (2)

where T denotes the trajectory time interval used to calculate the RMSF, tref denotes the
reference time interval, ri denotes the location of residue i, r′i denotes the location of the
atoms in residue i after their overlap upon that reference, and the angle brackets (< >)
denote that the square distance is averaged across the residue’s atoms.

4.9. MM-GBSA Analysis

MM-GBSA is a popular method to calculate the binding free energy of a complex
of molecules with a protein or a free ligand [70]. The MM-GBSA of a complex system
can be calculated based on MD simulation trajectory, which is more accurate than most
scoring functions. Therefore, to determine the binding free energy (∆Gbind) of the selected
molecules in complex with MCPyV LT protein, the MM-GBSA methods were utilized
through the Prime MM-GBSA module in the Schrödinger Maestro package [67].

5. Conclusions

Premature stop codon mutations in the truncated MCPyV LT protein are primarily
responsible for the proliferation of cutaneous malignant cells that lead to MCC through
Merkel cell transformation [7,11]. However, no effective drugs have been identified that
target the protein and may thus help to combat against MCC-related human cancers. There-
fore, this study aimed to finding natural and effective chemicals that might restrict the
function of protein and, hence, impede cancer growth. To achieve this, the research applied
a broad range of computational methods, including molecular docking, ADMET, MD
simulation, and MM-GBSA approaches, and identified five promising therapeutic candi-
dates, namely Lycoricidine (CID:73065), Actaealactone (CID:11537736), Epigallocatechin
3-O-cinnamate (CID:21629801), Cirsilineol (CID:162464), and Paulownin (CID:3084131),
which can inhibit the MCPyV LT protein activity and subsequently block cancer formation.
However, these phytochemicals must be subjected to in vitro and in vivo investigations to
evaluate their effectiveness and safety as anti-MCPyV medicines in humans. Developing
the selected phytochemicals as drug candidates against MCPyV is both therapeutically and
commercially feasible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15050501/s1. Figure S1: Representing the MCPyV LT protein retrieved from the protein
data bank (PDB ID: 3QFQ-A). Herein, (A). Asymmetric assembly of MCPyV LT antigen origin-
binding domains in complex with viral origin DNA. (B) The prepared protein chain without the
water molecules, and (C) the prepared protein chain with the water molecules. Figure S2: The active
pocket of MCPYV LT (PDB: 3QFQ) with surface area and volume calculated by the CASTp server
indicated in the red circle. The server generated a total of 19 pockets, but one was excluded from
the figure due to the active pocket being nonvisible due to low surface area and volume. Figure S3:
The interaction between the MCPyV LT protein and five selected natural compounds. Interaction of
the ligands and protein with water are represented in the left side of the figure, and the interaction
of ligands and protein without water are depicted in right side of the figure. The interaction is
shown between MCPyV LT protein and the compounds (A) CID: 162464, (B) CID: 73065, (C) CID:
3084131, (D) CID: 11537736, and (E) CID: 21629801. Figure S4: Data visualization of amino acid
interaction for (A) comparative bond length, (B) bond category, and (C) bond distance. Figure S5:
Data visualization of (A) molecular weight, (B) number of heavy atoms, (C) aromatic heavy atoms,
(D) rotatable bonds, (E) hydrogen bond acceptors, (F) hydrogen bond donors, (G) lipophilicity, and
(H) water solubility of selected molecules. Figure S6: Representing multiple repetition of RMSD
value for each 50 ns interval obtained from 250 ns Simulation time. Herein, A. 1–50 ns, B. 50–100
ns, C. 100–150 ns, D. 150–200 ns, and E. 200–250 ns RMSD of the selected protein–ligand’s complex
structure. Figure S7: Stacked bar charts representing the protein–ligand interactions found during
the 250 ns simulation run for (A) CID: 73065, (B) CID: 3084131, (C) CID: 11537736, (D) CID: 21629801,
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and (E) CID: 162464 compounds in complex with the MCPyV LT protein. Table S1: List of plants and
their antiviral activity against different viruses, and the compounds derived from them are retrieved
from the IMPPAT database for this study. Table S2: Active pocket of the MCPyV LT protein (PDB
ID: 3QFQ; Chain: A) with surface area and volume. Table S3: First four active pockets and their
corresponding aa residues retrieved from the MCPyV LT protein (PDB ID: 3QFQ; Chain: A). Table
S4: Comparative docking score of compounds for docking of the protein with water and without
water. Table S5: List of bonding interactions between five selected phytochemicals with MCPyV large
T antigen. Table S6: The contributions to the total energy from the analysis of different components
through MM-GBSA energy calculation method. Analysis of MM-GBSA for five selected compounds
found a significant contribution in the binding, coulomb, covalent, van der Waals, lipophilic, and
generalized Born electrostatic solvation energy. Table S7: Corresponding compounds of medicinal
plants used in this study.
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Abstract: Protein therapeutics play an important role in controlling the functions and activities of
disease-causing proteins in modern medicine. Despite protein therapeutics having several advan-
tages over traditional small-molecule therapeutics, further development has been hindered by drug
complexity and delivery issues. However, recent progress in deep learning-based protein structure
prediction approaches, such as AlphaFold2, opens new opportunities to exploit the complexity
of these macro-biomolecules for highly specialised design to inhibit, regulate or even manipulate
specific disease-causing proteins. Anti-CRISPR proteins are small proteins from bacteriophages that
counter-defend against the prokaryotic adaptive immunity of CRISPR-Cas systems. They are unique
examples of natural protein therapeutics that have been optimized by the host-parasite evolutionary
arms race to inhibit a wide variety of host proteins. Here, we show that these anti-CRISPR proteins
display diverse inhibition mechanisms through accurate structural prediction and functional analysis.
We find that these phage-derived proteins are extremely distinct in structure, some of which have
no homologues in the current protein structure domain. Furthermore, we find a novel family of
anti-CRISPR proteins which are structurally similar to the recently discovered mechanism of ma-
nipulating host proteins through enzymatic activity, rather than through direct inference. Using
highly accurate structure prediction, we present a wide variety of protein-manipulating strategies of
anti-CRISPR proteins for future protein drug design.

Keywords: in-silico drug design; AlphaFold; anti-CRISPR proteins; prokaryotic defence mechanisms;
bacteriophages; structural biology; protein drug

1. Introduction

Proteins are macromolecules composed of amino-acid residues that perform diverse
roles in biological entities, including catalysing biochemical reactions, providing cell/capsid
structure, transporting molecules, replicating genetic material, and responding to stimuli.
It is estimated there are over 25,000 functionally distinct proteins in the human body [1,2],
and mutations or abnormalities in these proteins may result in diseases. Thus, modern
medicine has focused on targeting such proteins to alleviate diseases, mostly through
small-molecule therapeutic agents acting as competitive or non-competitive inhibitors [3].
However, it is estimated that only ~10% of the human proteome can be targeted with
small-molecule drugs [3]. Since the introduction of human insulin as the first recombinant
protein therapeutic in the 1980s [4,5], protein-based therapeutics have expanded the scope
of “druggable proteins”. Compared to small-molecule drugs, the major advantage of
protein therapeutics is improved target specificity and reduced immunogenicity due to
their proteinaceous nature [5]. Protein therapeutics can also serve complex functions
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that simple chemical compounds cannot achieve, such as replacing a deficient protein or
providing a protein of novel function (Figure 1a). Furthermore, protein therapeutics can
inhibit disease-related proteins that small-molecule drugs cannot target due to the lack of a
cavity to bind. Currently, there are over 130 protein therapeutics commercially available
and intense research efforts are ongoing to better design protein therapeutics [5].

 

Figure 1. Mechanisms of protein therapeutics and anti-CRISPR proteins. (a) Mechanism of protein 

1031

Figure 1. Mechanisms of protein therapeutics and anti-CRISPR proteins. (a) Mechanism of protein
therapeutics. The first group consists of prophylactic or therapeutic vaccines that induce immunity
against foreign or cancer cells. A highly successful protein vaccine against human papillomavirus
(HPV) combining the capsids from four pathogenic HPV strains is given as an example (PDB:
2R5K [6]). The second group consists of protein therapeutics that provide novel functions, replace
deficient or abnormal proteins, or augment existing activities. The approval of recombinant insulin
in the 1980s to treat diabetes as the first abundant, inexpensive and low immunogenic therapeutic
protein is given as an example (PDB: 4F8F [7]). The third group consists of proteins that interfere with
target proteins through high binding specificity. Some monoclonal antibodies use antigen recognition
sites or receptor-binding domains like Trastuzumab against breast cancer cells (PDB: 6MH2 [8,9]).
Some fusion proteins inhibit target proteins by blocking interaction sites like Abatacept against
rheumatoid arthritis (PDB: 1DQT [8,9]). (b) Mechanisms of anti-CRISPR proteins. Upon successful
infection, phage genomes express anti-CRISPR proteins that neutralize host CRISPR-Cas immunity.
Anti-CRISPR proteins target various types of both Class I and Class II CRISPR-Cas systems and the
inhibitory mechanisms are highly diverse, including direct interference of DNA/RNA binding and
cleavage of Cas complexes, enzymatic inhibition of the active site by acetylation, and nuclease activity
of degrading the signalling molecule (cyclic nucleotide cA4).

In this study, we present a group of naturally-occurring protein therapeutics, called
anti-CRISPR (Acr) proteins, as a good example of how small proteins are used by invading
bacteriophages (phages) in nature to control host proteins. Phages are the most abundant
and diverse biological entities in the biosphere (estimated 1031 existing phages) that infect
and replicate within host prokaryotes (such as bacteria or archaea) [10]. High selective
pressures between these parasites and hosts drive dynamic coevolution of genomic and
proteomic mechanisms and systems [11–13]. In particular, the evolutionary arms race
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between phages and prokaryotes has resulted in a vast arsenal of immune systems, includ-
ing the prokaryotic adaptive immune system known as CRISPR-Cas [14,15]. CRISPR-Cas
systems are defence mechanisms against phages (and other mobilomes) through a com-
plex of RNA-guided Cas proteins (Figure 1b). Remarkably, prokaryotic genomes with
CRISPR-Cas systems can acquire short fragments of foreign genetic sequences in their
CRISPR arrays, which serve as RNA templates to recognize and cleave invading phages
through the nuclease complex of Cas proteins [16]. Since the successful application of
CRISPR-Cas systems as genome-editing tools [17,18], there has been a burst in the discov-
ery of diverse CRISPR-Cas systems [19], followed by the discovery of Acr proteins that
neutralize the activity of this prokaryotic adaptive immune system [20] (Figure 1b). A
family of Acr proteins was first identified in the CRISPR-Cas-inactivating prophages of
Pseudomonas genomes that disable Type I-F and Type I-E CRISPR-Cas systems [20,21]. A
number of Acr proteins inhibiting type II CRISPR-Cas systems have since been applied
as regulators of gene-editing activities [22]. The Acr protein families are known to have
short sequences (<100 amino acids) with no common genetic features, and interact directly
with Cas proteins to inhibit target DNA binding, DNA cleavage, CRISPR RNA loading and
protein-complex formation [22,23]. A recent study reveals that AcrVA5 proteins inactivate
Cas12a of Type V CRISPR-Cas systems enzymatically by acetylation of the active site, with
structural similarity to an acetyltransferase protein [24].

In this study, we conducted a comprehensive analysis on the key characteristics of
Acr proteins viewed from the perspective of naturally-occurring protein therapeutics that
effectively inhibit host protein functions. Motivated by the observation that these Acr
proteins are genetically diverse, we examined the protein structure of these diverse proteins
using AlphaFold2 [25]. AlphaFold is a state-of-the-art deep learning-based approach that
performs protein structure prediction, which takes a protein sequence as an input to predict
its 3-D protein structure through an iterative exchange of information between its genetic
representation and its structural representation. The recent release of AlphaFold2, the
winner of CASP14, which achieves highly accurate protein structure predictions [25,26], is
revolutionary for the field of life sciences and medicine, and is expected to accelerate critical
research in a large number of fields ranging from structural biology to drug discovery. In
this study, we first assessed the performance of AlphaFold2 in predicting the 3-D structures
of Acr proteins based on similarity metrics against their experimentally reconstructed 3-D
macromolecular structures. Using this performance as a basis, we further examined the
Acr proteins without experimental structures with AlphaFold2, to predict the structural
diversity of these genetically distinct proteins that are natural inhibitory proteins against
prokaryotic CRISPR-Cas systems. We used AlphaFold-predicted structures of Acr proteins
to infer a range of inhibition mechanisms through homology search and functional analysis,
to demonstrate how bacteriophages exploit diverse strategies to manipulate host immune
systems, with the long-term goal of providing a unique opportunity to learn from the
evolution-optimized inhibitor proteins for future protein drug design.

2. Results
2.1. AlphaFold2 Prediction of Anti-CRISPR Protein Structures

The Acr protein datasets were acquired from various viral and prokaryotic genomes,
including Pseudomonas phage, Pseudomonas aeruginosa and Escherichia coli [27], which were
categorised into three sets: verified Acr proteins with experimental structure (Set A),
verified Acr proteins without experimental structure (Set B), and putative Acr proteins with
experimental structure (Set C) (Supplementary Table S1). From the AlphaFold-predicted
structures of each set (Figure 2a), we compared the prediction performance between
CASP14 (52 AlphaFold2 evaluation results from the CASP14 competition), Set A and Set
C (Figure 2b,c), based on TM-scores, relative Z-errors (see Section 4 for details) and root
mean square deviation (RMSD) (Supplementary Figure S1) against the true experimental
structures (Supplementary Table S2), where Set B without experimental structures was
excluded. According to the TM-score, CASP14 had a higher median than Set A and Set C
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(0.925 vs. 0.895; 0.843, respectively), but Set A had the highest mean as compared to Set
C and CASP14 (0.896 vs. 0.868; 0.882, respectively). Furthermore, Set A and Set C had
significantly smaller standard deviations than CASP14 (0.095; 0.092, respectively, vs. 0.120),
indicating that, according to the TM-score, their predictions are more accurate. According
to the relative Z-error, CASP14 recorded a lower median than Set A and Set C (0.201 vs.
0.217; 0.230, respectively), but Set A recorded the lowest mean as compared to CASP14 and
Set C (0.211 vs. 0.237; 0.259, respectively). Like the TM-score, Set A and Set C recorded
smaller standard deviations than CASP14 (0.128; 0.129 vs. 0.141, respectively). For RMSD,
Set A and Set C have more outliers and higher mean values than CASP 14 (2.206; 2.271 vs.
1.106, respectively). As can be seen in the boxplots (Figure 2b,c and Figure S1), there was
no significant difference in prediction performance, validating that AlphaFold2 predicts
3-D structures of Acr proteins as accurately as the CASP14 dataset. Previous studies
demonstrated that structures of identical proteins obtained from different experimental
techniques had RMSD values of around 2.3 Å [28]. Thus, the average result of 2.271 Å in
the RMSD distribution in Set C further validates the prediction performance of AlphaFold2
on Acr proteins.

Figure 2. Performance analysis of AlphaFold2 on anti-CRISPR proteins in comparison to the CASP14
dataset. (a) Overall workflow to analyse the 3-D macromolecular structures of Acr protein sequences
predicted with AlphaFold2. (b) The performance of AlphaFold2 on the Acr protein datasets in
comparison to the CASP14 dataset using TM-scores. The closer the TM-score is to 1, the more similar
the predicted structure is to its true experimental structure. (c) The performance of AlphaFold2 on
the Acr protein datasets in comparison to the CASP14 dataset using relative Z-errors. The closer the
relative Z-error is to 0, the more similar the predicted structure is to its true experimental structure.
(d) The performance of AlphaFold2 on the Acr protein datasets using plDDT. The closer the plDDT is
to 100, the higher the confidence level of prediction by AlphaFold2. (Set A: Verified Acr proteins with
experimental structures, Set B: Verified Acr proteins without experimental structures, Set C: Putative
Acr proteins with experimental structures).
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For Set B without experimental structures, we calculated the predicted local distance
difference test (plDDT) to check the confidence level of AlphaFold2 (Figure 2d). The
median plDDT of Set B was almost identical to that of Set A and Set C (89.4 vs. 89.2;
89.1, respectively), but Set B had a slightly higher standard deviation (13.48 vs. 8.4; 7.84,
respectively). However, as all the plDDT values of Set A, Set B and Set C (excluding a few
outliers) were above the lower cut-off value of AlphaFold2 given as 70 [29], we concluded
that the prediction quality of Set B was not significantly different from that of Set A and
Set C.

2.2. Evolutionary Trees of Anti-CRISPR Proteins

The Acr proteins are known to be genetically diverse; this raises an intriguing question
about the origin and evolution of Acr proteins. We reconstructed evolutionary trees of the
verified Acr proteins (Set A + Set B; n = 207), using sequence-based and structure-based
methods (see Section 4 for details). As expected, the phylogenetic tree built using genetic
sequences (Figure 3a) shows high levels of variation, while forming consistent clades with
the high bootstrap support. Analysis of the clades reveals some degree of clustering by
the Acr family at the shallower nodes; however, this clustering is mostly due to the near-
identical protein sequences. For instance, many of the AcrIIA proteins were derived from
AcrIIA1 and AcrIIA2, driven by the technological interest to regulate CRISPR-Cas gene-
editing activities in different cell types [22]. Otherwise, the phylogenetic tree shows absence
of clustering by other biological features such as taxonomy and inhibition mechanism.

Figure 3. Evolutionary trees of anti-CRISPR proteins (numbered according to Anti-CRISPRdb [27]).
(a) The phylogenetic tree of anti-CRISPR proteins reconstructed using sequence-based methods (Set A
+ Set B; n = 207). (b) The structural tree of anti-CRISPR proteins reconstructed using structure-based
methods (Set A + Set B; n = 207). The clades of the two evolutionary trees were coloured by the Acr
Family. The inner to outer rings display the Acr verification status, structural verification status,
inhibition mechanism and source organism taxonomy. The outer magenta bars represent the genetic
sequence length of each protein.

Given the low sequence similarity among the Acr proteins, we built a structure-
based tree using AlphaFold-predicted structures, which included 98 Acr proteins without
experimental structures (Figure 3b). The structural tree showed an even higher level of
diversity in the Acr proteins than the phylogenetic tree. In the structural tree, the Acr
proteins share no common ancestor and display deep branches, consistent with earlier
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observations of how evolutionary pressure drives immunity-related mechanisms of hosts
and parasites to coevolve rapidly [12,13]. The structural tree also shows some degrees
of clustering by the Acr family, but the clusters do not always coincide between the two
evolutionary trees. The visual analysis of the protein structures show that the branches of
the structural tree are placed randomly in terms of representative structural forms and the
functions are only related at the clade level (Supplementary Figure S2).

It is evident that the sequence-based and structure-based trees capture different evolu-
tionary relationships between the Acr proteins. The 3-D structures of homologous proteins
were previously shown to be better conserved than their corresponding genetic sequences,
particularly when the sequence similarity was below 30% [30]. From the multiple sequence
alignment, no site of the Acr proteins was conserved at 30% and only very few sites were
conserved at 15% (Supplementary Figures S3 and S4). We calculated the congruence among
distance matrices of the sequence-based and structure-based trees to be very low according
to the measure of congruence (Kendall’s coefficient of concordance, W = 6.58 × 10−1),
confirming the correlation between these two types of evolutionary trees is poor among
highly divergent proteins [30].

2.3. Structural Homology to Predicted Anti-CRISPR Structures

The characterised Acr proteins use diverse strategies to interfere directly with CRISPR-
Cas systems, including inhibiting DNA binding, DNA cleavage, guide loading and ribonu-
clease activity [22]. To investigate the relation between the 3-D protein structures and their
inhibitory functions, we identified homologous structures to the AlphaFold-predicted Acr
proteins using structure-based distance measures [31] (see Section 4 for details).

First, we used a subset of the Acr dataset with experimental structures (Set A) to
successfully validate the closest structural homologue to each AlphaFold-predicted Acr
protein matched with its true experimental structure (Supplementary Table S3).

Second, we analysed the Acr proteins without experimental structures (Set B) by
matching the AlphaFold-predicted structures to the closest homologues from the Protein
Data Bank archive [31] (Supplementary Table S4). We first validated that Acr proteins
retrieved their neighbours in the same clade as the closest homologue, for those cases
where their neighbouring proteins had experimental structures in the Protein Data Bank.
For example, the Acr proteins labelled ‘0434’ and ‘0435’ are in the same clade, and the closest
homologue of the Acr protein ‘0435’ matched with the experimental structure of the Acr
protein ‘0434’. Functional analysis of the closest homologue to each Acr protein revealed
a wide variety of protein functions, including polymerase, ligase, nuclease, regulation,
and transport (Figure 4c). We acknowledge that some of the closest homologues have low
structural similarity (Z-score below 4); however, it is intriguing that these Acr proteins
have no close structural homologues in the Protein Data Bank. Some Acr proteins from the
families AcrIC6, AcrVIA2, AcrIIA19, and AcrIF8 (Figure 4a) have no structural homologues
(significance threshold for similarity: Z-score = 2).

Third, we cross-examined the Acr proteins whose inhibitory mechanism was experi-
mentally characterised to verify that the homologues retrieved were functionally related
(indicated as the middle ring in Figure 3b). The homologue functions of this subset were
related to a wide variety of functional domains (Supplementary Table S4). For instance, the
two Acr proteins in the same clade (labelled ‘3628’ and ‘3642’) were characterised to inhibit
the DNA-binding of Cas proteins [32] and their structural homologues have functional
domains of ligase. A few closest homologues with functions related to acetyltransferase
drew particular attention, as a recent biochemical study revealed an unprecedented mecha-
nism of inhibiting CRISPR-Cas systems through enzymatic activity rather than through
direct interaction [24]. According to this study, the closest structural homologue to this
Acr protein (labelled ‘3625’) was found to be N-Alpha-Acetyltransferase from Homo sapiens
(4U9W-C) (Figure 4b), despite their low sequence similarity. We found another homologue
(1Y9W-A) with a better similarity score to the AlphaFold-predicted structure of this Acr
protein, that had the functional annotation of acetyltransferase from Bacillus cereus (Table 1).
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In addition, we found several uncharacterised Acr proteins in the same clade of the struc-
tural tree (between ‘0430’ and ‘3681’) related to Acetylglucosaminidase from various Acr
families, including AcrIC, AcrIE, AcrIF, AcrIIA, and AcrVIB. Intriguingly, several proteins
have homologues with the functional annotations of nuclease activity, which is reminiscent
of the newly-discovered mechanism of nuclease activity against crRNAs and CRISPR-Cas
signalling molecules [33,34].

clade of the structural tree (between ‘ ’ and ‘368 ’

 

–

transferase. The homologue to the Acr protein labelled ‘ ’

Figure 4. AlphaFold-predicted 3-D structures of outlier anti-CRISPR proteins. (a) The AlphaFold-
predicted structures of the Acr proteins without homologues in the Protein Data Bank archive (Dali
Z-score < 2). The 3-D protein structures are coloured according to the b-factor spectrum in PyMol,
with a per-residue estimate of the AlphaFold2 confidence on a scale from 0–100 (high pLDDT accuracy
in blue, low pLDDT accuracy in red). (b) Superimposition of the AlphaFold-predicted structures of
Acr proteins and their closest structural homologues retrieved from the Protein Data Bank archive.
All the closest structural homologues in grey have functional annotations related to acetyltransferase.
The homologue to the Acr protein labelled ‘3625’ has a cofactor (acetyl-CoA) bound, revealing
the functionally critical site of the enzyme. (c) Functional analysis of the closest homologues to
the AlphaFold-predicted Acr proteins without experimental structures (Set B). Only the functional
annotations above the significance threshold of Dali Z-score (>4) were included.

Table 1. Closest homologue to the AlphaFold-predicted structure of Acr proteins with acetyltrans-
ferase annotations.

Acr ID Family Type Length Homologue
Dali

Z-Score
Annotation

%ID
Structure

%ID
Sequence

3625 AcrVA5 V-A 92 4U9W-C 10.3 N-Alpha-Acetyltransferase 14 6.8

3625 AcrVA5 V-A 92 1Y9W-A 11.3 Acetyltransferase 22 16.8

3666 AcrIB I-B 193 7AK8-B 16.8 Acetyltransferase 21 17.6

%ID structure: percentage identity in structure. %ID sequence: percentage identity in sequence.
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2.4. New Anti-CRISPR Family of Acetylation Inhibition

Previously described Acr proteins of the Acr family VA5 disable Type V Cas12a by
acetylation, which leads to a complete loss of the DNA-cleavage activity [24]. We found that
this AcrVA5 protein (labelled ‘3625’) structurally aligned closer to Bacillus cereus acetyltrans-
ferase than the previous structural homology of Homo sapiens acetyltransferase (Figure 4b).
We further identified other Acr proteins that are related to this AcrVA5 protein on the
evolutionary trees of the Acr proteins (Figure 3b). Notably, there are two Acr proteins
in the same clade as the AcrVA5 protein on the structural tree, one of which was lacking
experimentally validated structure or function. Analysis of its function using the structural
homologues reveals that this Acr protein (labelled ‘3666’) is related to acetyltransferase.
Interestingly, this Acr protein belongs to a different Acr family (AcrIB) than the previously
identified AcrVA5. Its superimposition with the closest structural homologue reveals a
similar structural alignment at the functionally critical site of the acetyltransferase where
acetyl-CoA binds (Figure 4b). The sequence identity of the AcrIB protein to its closest
homologue was found to be 17.6% (Supplementary Table S4), while the structural identity
between these two proteins in 3-D was found to be higher at 21% (Table 1 and Supplemen-
tary Figure S5). On the phylogenetic tree, this AcrIB protein was not placed close to the
other two Acr proteins of acetyltransferase function (labelled ‘3625’ and ‘0557’) (Figure 3a),
demonstrating that these two types of Acr proteins have close structural similarity but
not genetic similarity. This finding suggests that for proteins with low sequence similarity,
structure-based trees cluster proteins with most similar biochemical functional properties
perform better than sequence-based trees [30]. Using the structural tree, we discovered a
new family of Acr proteins belonging to AcrIB that was structurally similar to acetyltrans-
ferase from a different organism (gram-negative bacteria Salmonella enterica), whereas the
previously characterised AcrVA5 matched to acetyltransferase from gram-positive bacteria
Bacillus cereus.

3. Discussion

We show that the 3-D structures of Acr proteins predicted with AlphaFold2 achieve
high accuracy. The structural tree reconstructed from these AlphaFold-predicted structures
display more diversity of Acr proteins with no common evolutionary origin as compared
to the phylogenetic tree. On the structural tree, the Acr proteins form small clades by
their unique structural similarity, which are also related by the inhibition mechanism.
The functional annotations of the Acr protein homologues are extremely diverse, relating
to a wide range of enzymatic and regulatory activities from different organisms. Most
characterised Acr proteins inhibit host CRISPR-Cas systems by direct interference; we
show that this category of Acr proteins displays various functional annotations and unique
structural forms in the multiple branches of the structural tree.

Specifically, we found a number of Acr proteins with homologue annotations related
to acetylation. A recent discovery of Acr proteins that manipulate CRISPR-Cas systems
through enzymatic activities demonstrates extensive phage defence mechanisms driven
by the intense host-parasite arms race [24,33]. Through the AlphaFold-predicted struc-
tural analysis, we found a novel family of Acr proteins (AcrIB) from the genome of a
human pathogen (Leptotrichia buccalis C-1013-b) that shows more structural similarity to
acetyltransferase than the previously characterised AcrVA protein. Intriguingly, other
Acr proteins on the multiple branches of the structural tree have homologues related to
different types of acetyltransferase enzymes from heterologous species. As Acr proteins
with acetyltransferase activities permanently disable Cas proteins by covalent modifica-
tion [24], other Acr proteins with enzymatic activities such as acetylglucosaminidase are
expected to have similar inactivation functions of biochemically modifying CRISPR-Cas
systems. The Acr proteins could evolve independently from various host genomes and
mobile genetic elements, exploiting a vast inventory of protein structures as the basis for
their counter-defence advantage [10,13,35].
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More broadly, Acr proteins are exceptional examples of coevolution dynamics op-
timizing the phage genomes to manipulate host systems and maximize survival. As
phages can only replicate within host cells and are void of metabolic capacity to syn-
thesize small molecules, their counter-defence machinery against the sophisticated and
extensive prokaryotic anti-phage systems is protein-based. Nonetheless, phages are the
most abundant biological entities in the biosphere [36], and their successful protein-based
viral arsenals such as Acr proteins provide an important insight on how to expand the
potential of protein therapeutics. Specifically, we could get inspiration from these phage-
derived protein structures that resemble segments of related target proteins, to design
highly-specialised protein inhibitors with diverse protein-manipulating strategies [37]. In
future, utilizing the ability of small proteins to engage in indirect interference through
enzymatic activities is to be explored against disease-causing proteins (such as in cancer)
and disease-causing organisms (such as drug-resistant bacteria) [36].

4. Materials and Methods
4.1. Curation of Anti-CRISPR Datasets

The anti-CRISPR dataset contained 443 Acr proteins (207 verified, 236 putative) that
inhibit a wide range of CRISPR-Cas systems including I, II, III and VI from the Anti-
CRISPRdb [27]. The term ‘verified’ indicates that the protein was validated as CRISPR-
Cas-inactivating Acr (either by the database or other published papers), while ‘putative’
indicates the protein was predicted to be Acr without sufficient experimental support.
The anti-CRISPR dataset was further curated into Set A, Set B, and Set C for AlphaFold2,
according to the availability of experimentally reconstructed 3-D macromolecular structures
(hereby referred to as “experimental structures”) (Supplementary Table S1). Each protein
was annotated with the Acr family, type of inhibited CRISPR-Cas systems, NCBI accession,
genetic sequence, source organism, taxonomy, and inhibitory mechanism when available
(Supplementary Tables S3 and S4).

4.2. Prediction of Anti-CRISPR Protein Structure with AlphaFold2

We predicted the 3-D protein structures of each set with AlphaFold2, using the Acr
protein sequence as the input to AlphaFold2 (Figure 2a). AlphaFold2 creates genetic and
structural representations by comparing the protein sequence with several pre-installed
databases. Those representations are used as input to five prediction models to generate
five candidate 3-D structures. The result with the highest per-residue confidence score
(pLDDT: per residue estimate of confidence on a scale from 0 to 100 [29]) among the five
results was determined as the final structure and saved in a protein data bank (PDB)
format (Supplementary Figure S6). For the Acr datasets, we used the PDB archive until
31 December 2012 as templates in AlphaFold2 to exclude the true experimental structures
of the Acr proteins. The details of the experiments related to the hardware specification
and to the processor performance are given in the Supplementary Material (Supplementary
Table S5 and Supplementary Table S6, respectively).

4.3. Comparison of AlphaFold2 Performance on Anti-CRISPR against CASP14

To validate the performance of AlphaFold2 for predicting Acr structures, we bench-
marked the CASP14 dataset against Set A and Set C of Acr proteins with the corresponding
true experimental structures available. We excluded predicted structure and experimental
structure pairs for which the TM-score and/or the Z-score were too low. Finally, 52 pairs
of CASP14, 99 pairs of Set A, and 207 pairs of Set C were used for the comparison study.
We used the TM-score [38,39] and Dali Z-score [40] as similarity measures between the pre-
dicted and the experimental structures. Unlike traditional metrics (e.g., root-mean-square
deviation), the TM-score is length-independent and more sensitive to the global similarity
than to the local variation. The Dali Z-score is the sum of the equivalent residue-wise
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intermolecular distances among two proteins, and does not have a fixed upper bound [40].
We then used the following relative Z-error to calculate the relative difference:

Zerror =
Zgt − Zpd

Zgt
(1)

where Zgt is the self Dali Z-score between experimental structure and itself, and Zpd is
the Dali Z-score between experimental structure and predicted structure. We obtained
the Zpd and TM-score for the CASP14 set of AlphaFold2 from the CASP14 assessment
scores [41], whereas Zgt of CASP14 and Zgt and Zpd of Set A and Set C were calculated
using DaliLite.v5 [40]. Finally, a protein structure comparison and clustering tool called
MaxCluster [42] was used to calculate the TM-scores of Set A and Set C. Both distance
metrics have values between 0 and 1, with 1 as the best score for TM-scores and 0 as the
best score for relative Z-errors.

4.4. Reconstruction of Evolutionary Trees of Anti-CRISPR Proteins

We reconstructed the evolutionary trees of the anti-CRISPR dataset (Set A and Set
B) using sequence-based and structure-based inference. Set C was excluded from the
evolutionary analysis due to the absence of functional verification and due to sequence
variation (Supplementary Figure S3). The sequence-based tree of the Acr proteins was
built by aligning the amino acid sequences using a multiple alignment program, MAFFT
(version 7.471, -auto option) [43]. The multiple sequence alignment of the Acr proteins
was then visualized using Jalview (version 2.11.1.3) with a conservation visibility of 15%
(Supplementary Figure S2) [44]. Subsequently, a phylogenetic tree of the Acr proteins was
built with IQ-Tree using ModelFinder (-auto option) to find the best-fit model among the
supported range of protein substitution models [45,46] (Supplementary Table S7). Using the
best-fit substitution model, 1000 ultrafast bootstrap replicates were run to check bootstrap
support of the reconstructed tree topology [47].

The structure-based tree of the Acr proteins was built by calculating the similarity ma-
trix between the Dali Z-scores of the AlphaFold-predicted structures and its corresponding
experimental structures. We used the Dali server [40] for generating structural trees from
hierarchical clustering of the similarity matrix. The structural tree of the Acr proteins was
generated from distance matrices, where the pseudo-distance between two structures Q
and T was defined as [48]:

DQT = ZQQ + ZTT − 2ZQT (2)

The hierarchical clustering of the similarity matrix was outputted as a Newick format-
ted dendrogram. The phylogenetic tree and the structural tree of the Acr proteins were
visualized with iTOL (version 4) and iTOL annotation editor [49,50] with the following
labels: Acr Family, Taxonomy, and Inhibition Mechanism.

4.5. Congruence among Distance Matrices of Sequence-Based and Structure-Based Trees

We measured the congruence among distance matrices of the reconstructed trees from
the sequence-based and structure-based methods using Kendall’s coefficient of concor-
dance, W, which ranges from 0 (no congruence) to 1 (complete congruence) [51]. First, we
computed the cophenetic value of pairwise distances between the terminals from a phylo-
genetic tree using its branch lengths with the function cophenetic.phylo from ape-package
(version 5.0) [52]. Then, we used the function CADM.global to calculate the coefficient of
concordance among the distance matrices of the sequence-based and structure-based trees
of the Acr proteins through a permutation test.

4.6. Visualization of Protein Structure Superimposition

For functional analysis, the AlphaFold-predicted structures with functional anno-
tations of interest were superimposed with their structural homologues using PyMol
(version 2.5.2) to visualize the overlap in structure of the functionally active sites. The
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inhibitory mechanism of the Acr proteins without experimental structure was inferred
through examining functional annotations of the structural homologues to the AlphaFold-
predicted structure, with the significance threshold of Z-score > 4.

4.7. Code Availability

Protein structures were predicted with AlphaFold2, available under an open-source
license at https://github.com/deepmind/alphafold, accessed on 27 September 2021. For
protein structure similarity metrics, we used MaxCluster (http://www.sbg.bio.ic.ac.uk/
~maxcluster/index.html, accessed on 13 October 2021) for TM-score and DaliLite.v5
(http://ekhidna2.biocenter.helsinki.fi/dali/README.v5.html, accessed on 24 October
2021) for the Dali Z-score. For MSA, we used MAFFT.v7 (https://mafft.cbrc.jp/alignment/
server, accessed on 29 October 2021) and Jalview.v2 (https://www.jalview.org, accessed on
29 October 2021) for visualization. For phylogenetic tree reconstruction, we used IQ-Tree
(http://www.iqtree.org, accessed on 14 November 2021) with ModelFinder and UFBoot
options. For structural tree reconstruction, we used the Dali server (http://ekhidna2
.biocenter.helsinki.fi/dali, accessed on 16 November 2021) for building dendrograms. The
3-D Structure visualizations were created in Pymol v.2.5.2 (https://pymol.org, accessed on
4 November 2021) and Py3DMol v.1.7.0 (https://pypi.org/project/py3Dmol, accessed on
26 October 2021) with Jupyter v.1.0.0 (https://jupyter.org, accessed on 26 October 2021).
For data analysis, Python v.3.6.4 (https://www.python.org, accessed on 27 November
2021), NumPy v.1.17.5 (https://github.com/numpy/numpy, accessed on 27 November
2021), SciPy v.1.1.0 (https://www.scipy.org, accessed on 27 November 2021), seaborn
v.0.9.0 (https://github.com/mwaskom/seaborn, accessed on 25 November 2021), Mat-
plotlib v.3.3.4 (https://github.com/matplotlib/matplotlib, accessed on 24 November 2021),
pandas v.0.22.0 (https://github.com/pandas-dev/pandas, accessed on 24 November 2021)
were used.

5. Conclusions

The high biodegradability issue of protein therapeutics has partially been solved by
the recent success of mRNA vaccine delivery using lipid nanoparticles [53], making low risk
protein therapeutics ever more attractive to the industry. From the AlphaFold-predicted
structures, we accelerated the structural and functional analysis of the Acr proteins whose
experimental 3-D structures remain to be resolved. In conclusion, we wonder whether there
is a vast repertoire of unexplored protein structural configurations that can be exploited for
protein drug design, given the number of Acr proteins without homologues in the current
protein structure domain.
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www.mdpi.com/article/10.3390/ph15030310/s1. Figure S1. The performance of AlphaFold2 on the
Acr protein datasets in comparison to the CASP14 dataset using RMSD; Figure S2. The structural tree
of anti-CRISPR proteins reconstructed using structure-based methods; Figure S3. Multiple sequence
alignment of anti-CRISPR proteins using MAFFT, visualized with Jalview; Figure S4. The structural
tree of anti-CRISPR proteins reconstructed using structure-based methods; Figure S5. A scatter plot
of percentage identity in structure against percentage identity in sequence of the closest homologue
to each protein; Figure S6. Outlier AlphaFold structures with bad scores; Table S1. Acr protein types
in Anti-CRISPRdb; Table S2. Detailed statistics and scores on AlphaFold prediction performance;
Table S3. Closest homologue (highest TM score) to the AlphaFold-predicted structure of Acr proteins
with experimentally reconstructed 3-D macromolecular structures (Set A) from the Protein Data Bank
archive; Table S4. Closest homologue (highest DALI Z-score) to the AlphaFold-predicted structure of
Acr proteins without experimentally reconstructed 3-D macromolecular structures (Set B) from the
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the phylogenetic tree of each Acr set using IQ-TREE ModelFinder.
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Abstract: Cancer is a major life-threatening disease with a high mortality rate in many countries.
Even though different therapies and options are available, patients generally prefer chemotherapy.
However, serious side effects of anti-cancer drugs compel us to search for a safer drug. To achieve
this target, Hsp90 (heat shock protein 90), which is responsible for stabilization of many oncoproteins
in cancer cells, is a promising target for developing an anti-cancer drug. The QSAR (Quantitative
Structure–Activity Relationship) could be useful to identify crucial pharmacophoric features to
develop a Hsp90 inhibitor. Therefore, in the present work, a larger dataset encompassing 1141 diverse
compounds was used to develop a multi-linear QSAR model with a balance of acceptable predictive
ability (Predictive QSAR) and mechanistic interpretation (Mechanistic QSAR). The new developed
six-parameter model satisfies the recommended values for a good number of validation parameters
such as R2tr = 0.78, Q2LMO = 0.77, R2ex = 0.78, and CCCex = 0.88. The present analysis reveals that
the Hsp90 inhibitory activity is correlated with different types of nitrogen atoms and other hidden
structural features such as the presence of hydrophobic ring/aromatic carbon atoms within a specific
distance from the center of mass of the molecule, etc. Thus, the model successfully identified a variety
of reported as well as novel pharmacophoric features. The results of QSAR analysis are further
vindicated by reported crystal structures of compounds with Hsp90.

Keywords: Hsp90; cancer; QSAR; machine learning; pharmacophores

1. Introduction

Cancer kills; therefore, medicinal chemists are continuously trying to develop thera-
peutic agents that could retard the growth of cancer cells. In cancer cells, a protein Hsp90
(heat shock protein 90, also known as HSPC) is overexpressed [1]. It is a highly conserved,
non-fibrous, and chaperone protein with a key role in many cellular processes like proper
folding of other proteins, apoptosis, cell cycle control, cell viability, and degradation and
signaling events [1–6]. As the name indicates, Hsp (heat shock proteins) shield cells when
stressed by higher temperatures. The number “90” comes from the fact that it weighs about
90 kDa. There are two isoforms of Hsp90: Hsp90α (the inducible form) and Hsp90β (the
constitutive form), which are found in cytoplasm and share 85% sequence identity [1–6].
These two isoforms are like flexible biological catalysts and interact with a good number
of newly synthesized proteins, such as Akt2, CDKs, PKC, MAP kinases, steroid receptors,
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BCL-6, CAR, p53, Oct4, etc., to avoid their aggregation or mistakes in their folding [6].
Despite a crucial role, in cancer cells, these are responsible for the stabilization of a number
of oncoproteins required for tumor growth, leading to their overexpression [1–6]. Conse-
quently, Hsp90 is an attractive target for developing a drug for cancer.

The majority of Hsp90 inhibitors occupy the ATP (adenosine tri-phosphate) pocket
in the N-terminal domain of Hsp90, leading to limited ATPase activity [1–6]. At present,
several natural and semi-synthetic Hsp90 inhibitors (see Figure 1) are in different stages of
clinical trials for a variety of cancers [2,3,7–9].

Figure 1. Different clinical trial candidates as inhibitors of Hsp90.

Unfortunately, several inhibitors have shown hepatotoxicity and ocular toxicity [2,10];
consequently, there is a need to modify them with retention of activity against Hsp90,
which could be achieved on knowing the structural features responsible for their Hsp90
inhibitory activity. A simple, cost-effective, and faster yet effective strategy to know
crucial pharmacophoric features is to use QSAR (Quantitative Structure–Activity Relation-
ships), a successful, contemporary, and widely used branch of computer assisted-drug
designing [11–16].

In QSAR analysis, generally, a good number of inhibitors are analyzed using a suitable
technique like machine learning, deep learning, etc. There are two main advantages of
using the QSAR approach [11,17,18]: (a) the analysis helps to identify the prominent struc-
tural features or patterns that influence the bioactivity profile of molecules (Mechanistic
interpretation or Qualitative QSAR), and (b) the analysis could be used to predict the
desired bioactivity of a molecule prior to its synthesis and lab testing (Predictive ability
or Predictive QSAR). Therefore, many researchers prefer QSAR as a method of choice
for drug/lead optimization. Nowadays, a QSAR analysis with a balance of mechanistic
interpretation with predictive ability is highly preferred.

The literature survey reveals that QSAR analyses have been reported for Hsp90,
but they are either based on a small dataset, lack general applicability, have poor predictive
ability, are deficient of a mechanistic interpretation, or a combination of these factors,
which limit their use [9,19–22]. Therefore, in the present work, we accomplished QSAR
analysis for a larger and diverse dataset of Hsp90 inhibitors, and followed the OECD
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(Organization for Economic Cooperation and Development) guidelines while developing
a QSAR model to have a balance of mechanistic interpretation with predictive ability.

2. Results

The exhaustive and heuristic search resulted in the development of a six-descriptor-
based QSAR model (see model-A), which was subjected to thorough statistical validation
for internal and external validations.

Model-A: pIC50 (M) = 3.903 (± 0.134) + 0.101 (± 0.013) × com_ringChyd_4A + 0.433
(± 0.058) × faroCN2B + 0.714 (± 0.214)× aroCminus_sumpc + 0.065 (± 0.005)× aroC_aroN_5B
+ 0.266 (± 0.048) × fringNsp3C5B + 0.59 (± 0.082) × da_amdN_6B

Statistical validation of model-A:
Ntr = 915, Next = 226, R2

tr = 0.779, R2
adj. = 0.777, R2

tr − R2
adj. = 0.002, LOF = 0.244,

Kxx = 0.219, ∆K = 0.122, RMSEtr = 0.487, MAEtr = 0.404, RSStr = 217.321, CCCtr = 0.876,
s = 0.489, F = 533.134, R2

cv (Q2loo) = 0.775, R2-R2
cv = 0.004, RMSEcv = 0.491, MAEcv = 0.407,

PRESScv = 220.839, CCCcv = 0.874, Q2
LMO = 0.775, R2

Yscr = 0.007, Q2
Yscr = −0.009,

RMSEex = 0.474, MAEex = 0.383, PRESSext = 50.675, R2
ex = 0.779, Q2-F1 = 0.778,

Q2-F2 = 0.778, Q2-F3 = 0.791, CCCex = 0.876, R2-ExPy = 0.779, R’o2 = 0.727, k’ = 0.989,
1−(R2/R’o2) = 0.066, r’2m = 0.602, Ro

2 = 0.779, k = 1.005, 1 − (R2 − ExPy/Ro
2) = 0,

r2m = 0.766
Different researchers have recommended the above statistical parameters to judge the

robustness and external predictive ability of a QSAR model [11–16,23–31]. The formula to
calculate them is available in the Supplementary Materials. It is clear that model-A fulfils the
recommended threshold for many validation parameters and other criteria. A high value
of different parameters like R2

tr (coefficient of determination), R2
adj. (adjusted coefficient

of determination), and R2
cv (Q2loo, cross-validated coefficient of determination for leave-

one-out), R2
ex (external coefficient of determination), Q2−Fn, and CCCex (Concordance

Correlation Coefficient), etc., and a low value of LOF (lack-of-fit), RMSEtr (root mean
square error), MAEtr (mean absolute error), R2

Yscr (R2 for Y-scrambling), etc. along with the
different graphs (see Figure 2) associated with the model indicate that the model possesses
statistical robustness with excellent internal and external predictive ability as well as
free from chance correlations. Additionally, the Williams plot specifies that the model is
statistically acceptable (see Figure 2d). Therefore, it fulfils all the OECD recommended
guidelines for creating a useful QSAR model.

Figure 2. Cont.
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Figure 2. Different graphs associated with model-A: (a) experimental vs. predicted pIC50 (the solid
line represents the regression line), (b) experimental vs. residuals, (c) Williams plot for applicability
domain (the vertical solid line represents h* = 0.023 and horizontal dashed lines represent the upper
and lower boundaries for applicability domain), and (d) Y-randomization.

3. Discussion
Mechanistic Interpretation of QSAR Model

A very crucial aspect of a useful QSAR analysis is to gain deep insight into the
pharmacophore or structure-oriented linking of molecular descriptors [17,32]. This not
only helps throughout the drug discovery process, but also expands the information and
understanding of mechanistic aspects of different types of molecules. Though, in the present
work, a specific molecular descriptor was used to equate the pIC50 values of different
molecules, but an extending or reverse influence of unknown factors or other molecular
descriptors, having a dominant effect in deciding the final pIC50 value of a molecule, cannot
be ignored. To simplify, a single molecular descriptor (in turn structure feature) cannot
decide the overall experimental pIC50 value of a molecule. In other words, the effective use
of an appropriately validated QSAR model depends on the synchronous consideration of all
constituent molecular descriptors. Interestingly, in model-A, all the molecular descriptors
have positive coefficients, which indicates that increasing their value could result in a better
Hsp90 inhibitory activity.

The descriptor com_ringChyd_4A represents the total number of hydrophobic ring
carbons, having partial charge in the range ±0.2, within 4Å from the com (center of mass) of
the molecule. From this, it appears that mere total number of ring carbons is very important,
but replacing com_ringChyd_4A with nringC (number of ring carbon atoms) or naroC
(number of aromatic carbon atoms) significantly reduced the statistical performance of
the model (R2 = 0.72). To add further, com_ringChyd_4A has a positive correlation of
R = 0.488 with pIC50, whereas nringC and naroC have a correlation of R = 0.461 and 0.405,
respectively. com_ringChyd_3A and com_ringChyd_5A represent the total number of
ring carbons, having partial charge in the range ±0.2, within 3Å and 5Å from the com
(center of mass) of the molecule, respectively. Replacement of com_ringChyd_4A with
com_ringChyd_3A or com_ringChyd_5A resulted in slightly reduced performance of the
model with R2 = 0.75 and 0.76, respectively. This indicates that the optimum distance is 4Å.

The importance of hydrophobic ring carbon atoms is supported by the X-ray-resolved
structure of a good number of Hsp90 inhibitors because the active site of Hsp90 consists
of lipophilic side chains of Leu48, Ile91, Val186, Leu315, Ile388, and Val391 [33,34], which
favors the presence of hydrophobic moiety in the inhibitors. For example, a compari-
son of molecule 988 (pIC50 = 6.009, com_ringChyd_4A = 10) with 1007 (pIC50 = 6.481,
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com_ringChyd_4A = 15) highlights the importance of com_ringChyd_4A. Another pair
of molecules, viz. 794 and 814, also supports this observation. The molecular descriptor
com_ringChyd_4A is depicted in Figure 3 for different molecules.

Figure 3. Depiction of com_ringChyd_4A using different molecules: (a) molecules 988, 1007
(MMFF94 optimized), and 1007 (X-ray resolved dock pose from pdb 6EY8); (b) molecules 794
and 814 (both X-ray-resolved poses from pdb 5XR9 and 4LWE, respectively). The small black sphere
represents the com (center of mass) and the bigger transparent sphere represents the distance of 4Å
from the center of mass. The dotted yellow line represents the distance (Å) of com from the centers of
the different nearest rings.

From Figure 3, it is clear that the lowest energy conformer of molecule 988 has
com_ringChyd_4A = 10 due to the closer presence of com (distance 1.206 Å) to the benzene
ring of indazole ring. In case of molecule 1007 (MMFF94-optimized and X-ray-resolved
pose from pdb 6EY8), the com is located slightly away from the benzene ring of Indazole
ring at a distance > 2.40 due to specific conformation, thereby increasing the value of
com_ringChyd_4A to 15. This could be a plausible reason for the difference in the bioactiv-
ity of these two compounds. Similarly, a better Hsp90 inhibitory activity of molecule 794
than 814 could be attributed to difference in their com_ringChyd_4A values.

Another molecular descriptor that has a positive effect on Hsp90 activity is faroCN2B,
which signifies the presence of nitrogen exactly at two bonds from aromatic carbon atoms.
If the same nitrogen atom is also present at two or less bonds from any other aromatic carbon
atom, then it was excluded while calculating faroCN2B. This descriptor highlights the
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importance of nitrogen atoms separated from aromatic ring (Benzene, etc.) by two bonds.
As the majority of nitrogen atoms act as either an H-bond donor or acceptor; therefore, the
presence of nitrogen atoms in the vicinity of aromatic rings could be useful in enhancing
interactions with the polar residues of receptor (Hsp90). Additionally, the descriptor further
points out the crucial role played by the aromatic rings undoubtedly due to their lipophilic
nature. Taken together, the descriptor faroCN2B signifies the importance of two important
structural features: aromatic rings and their vicinal nitrogen atoms.

This observation is confirmed when we compare the X-ray-resolved structures of
molecule 727 (pIC50 = 6.654, faroCN2B = 1, pdb = 4O09) with 725 (pIC50 = 7.137, faroCN2B
= 2, pdb = 4O05) depicted in Figure 4. The nitrogen atoms responsible for faroCN2B are
highlighted by blue dotted circles. From Figure 4, it is clear that the aromatic ring B of both
the molecules is responsible for hydrophobic interactions with the residue Met98. The ni-
trogen atom of ring A present in both the molecules is not only a constituent of faroCN2B,
but also responsible for H-bonding with the residue Asp93. Thus, such a combination of
aromatic carbons and nitrogen is highly beneficial to enhance the interactions with the
receptor. In case of molecule 733, an additional nitrogen atom is present in ring F, which
is a constituent of faroCN2B, and responsible for the H-bond interaction with the nearby
water molecule. Thus, the present QSAR analysis revealed an important structural feature,
which is also visible in X-ray-resolved structures of the same inhibitors with the same target
enzyme Hsp90.

Figure 4. Depiction of faroCN2B using representative examples only.

A comparison of the following pairs of molecules further vindicates the importance
of faroCN2B in determining the bioactivity: 213 (pIC50 = 6.523, faroCN2B = 2) with
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212 (pIC50 = 6.469, faroCN2B = 1) and 758 (pIC50 = 7.444, faroCN2B = 2) with 759
(pIC50 = 7.569, faroCN2B = 3).

The importance of aromatic carbon atoms is further emphasized with the presence of
aroCminus_sumpc as a constituent variable of model-A. The molecular descriptor aroCmi-
nus_sumpc represents the sum of partial charges on negatively charged aromatic carbon
atoms. The positive coefficient for aroCminus_sumpc indicates that the higher the value
of this descriptor, the better the activity profile. The sum of partial charges on negatively
charged aromatic carbon atoms will always be negative; therefore, in reality, this descriptor
actually decreases the pIC50 value. Further, the replacement of aroCminus_sumpc by
aroCplus_sumpc (sum of partial charges on positively charged aromatic carbon atoms) led
to a model with almost identical statistical performance (R2

tr = 0.772, Q2
LMO = 0.767, R2

ex
= 0.78, CCCex = 0.876). In fact, aroCplus_sumpc has a better correlation (R = 0.33) with
pIC50 than aroCminus_sumpc (R = 0.10). From this it is clear that, if aromatic carbons are
positively charged than the molecule possesses better Hsp90 inhibitory activity. Therefore,
the best strategy is to attach atoms or groups that enhance lipophilic and mild polar in-
teractions with the receptor (for example -Cl, etc.) to the aromatic carbon atoms. In short,
substituted aromatic rings are preferable for better activity. This observation is supported
by comparing following pairs of molecules: 2 with 3, 1054 with 1059, and 214 with 212.

aroC_aroN_5B, which represents the total number of aromatic carbon atoms within
five bonds from aromatic nitrogen atoms, again points out the key role played by aromatic
carbon atoms in deciding Hsp90 inhibitory activity. It also underlines the usefulness
of aromatic nitrogen atoms. This descriptor has a positive correlation with pIC50 with
R = 0.63. Therefore, an increase in number of aromatic carbon atoms within five bonds
from aromatic nitrogen atoms leads to better Hsp90 inhibitory activity. The following pairs
of the molecules support this observation: 888 (pIC50 = 7.523, aroC_aroN_5B = 22) with
887 (pIC50 = 6.046, aroC_aroN_5B = 20) and 107 (pIC50 = 5.953, aroC_aroN_5B = 13) with
108 (pIC50 = 4.874, aroC_aroN_5B = 10), to mention a few. Further, the 50 most active
molecules possess relatively higher value of aroC_aroN_5B (range 8–17) than the 50 least
active molecules (range 0–8).

fringNsp3C5B stands for the number of sp3-hybridized carbon atoms exactly at five
bonds from the ring nitrogen atom. If the same sp3-hybridized carbon atom is also present at
four or less bonds from any other ring nitrogen atom, then it was excluded while calculating
fringNsp3C5B. It is interesting to note that the 50 most active molecules, except molecule
618, possess at least one or more of such a combination of carbon and ring nitrogen, whereas
the 50 least active molecules either lack it or have fringNsp3C5B = 1. In the majority of com-
pounds, the sp3-hybridized carbon atoms are present either as a linker between two rings
or as a substituent, which therefore enhances conformational flexibility of the molecule
to adopt a bioactive conformer or lipophilic characters of the molecule. A comparison
of 895 (pIC50 = 7.071, fringNsp3C5B = 2) with 896 (pIC50 = 6.777, fringNsp3C5B = 1),
859 (pIC50 = 7.237, fringNsp3C5B = 2) with 896 (pIC50 = 7.071, fringNsp3C5B = 1),
326 (pIC50 = 6.921, fringNsp3C5B = 1) with 328 (pIC50 = 7.046, fringNsp3C5B = 2),
and 412 (pIC50 = 7.155, fringNsp3C5B = 1) with 411 (pIC50 = 6.959, fringNsp3C5B = 0)
and 410 (pIC50 = 6.854, fringNsp3C5B = 0) confirms the importance of fringNsp3C5B in
deciding the activity.

A molecular descriptor that identifies the relation of total number amide nitrogen
atoms within six bonds from the H-bond donor and acceptor atoms is da_amdN_6B. In the
majority of compounds in the present dataset, the amide group is present as a substituent
on aromatic ring or as a linker between two rings. The descriptor da_amdN_6B suggests
the significance of amide group and its correlation with the H-bond donor and acceptor
atoms. This observation is confirmed on comparing molecule A with molecules B and C
(see Figure 5).
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Figure 5. Pictorial representation of da_amdN_6B using representative examples only.

A good number of researchers have also pointed out that the amide group is crucial
for Hsp90 inhibitors to establish H-bonding with residues of the active site (see pdb 4AWO).
For example, Zhao et al. [4] pointed out that the distance between the nitrogen atoms on
the piperidine ring and the amide are important for Hsp90 inhibition. Similarly, Baruchello
and co-workers [35] studied a library of 3,4-isoxazole diamides for Hsp90 binding and
found that a substantial reduction in Hsp90 binding affinity when the amide was replaced
with substituted amines. In addition, a H-bond donor at the C-4 position on the isoxazole
is vital for retaining the activity. Davies et al. [36] observed that S-acetamide derivatives
of compounds have better bioactivity profile than the S-alkylamines. The importance
of da_amdN_6B was further confirmed by comparing following pair of the molecules:
856 (pIC50 = 6.848, da_amdN_6B = 0) with 861 (pIC50 = 7.114, da_amdN_6B = 1). The earlier
work identified the role of amide group, and in the present work, we successfully identified
that a combination of amide group with H-bond donor/acceptor within six bonds is a better
strategy to have better Hsp90 inhibitory activity. Therefore, such a combination of the amide
nitrogen atom and H-bond donor/acceptor should be retained in future optimizations.

In short, three molecular descriptors emphasize the importance of ring carbon atoms,
especially aromatic carbon atoms. This could be attributed to the lipophilic character of
the active site of Hsp90. Likewise, four molecular descriptors underline the significance of
different types of nitrogen atoms, which are responsible for the establishment of the polar
or H-bond interactions with polar residues and water molecules present inside the active
site of Hsp90. Hence, the present work is successful in identifying reported as well as novel
pharmacophoric features of Hsp90 inhibitors.

4. Materials and Methods

The OECD (Organization for Economic Cooperation and Development) guidelines and
a standard protocol recommended by different researchers [11–13,16,18,25,26,29,30,37] in-
volve the sequential execution of (1) data collection and its curation, (2) structure generation
and calculation of molecular descriptors, (3) objective feature selection (OFS), (4) splitting
the dataset into training and external validation sets, (5) subjective feature selection involv-
ing building a regression model and validation of the developed model, which have all
been followed to build a widely applicable QSAR model for Hsp-90 inhibitory activity.
This also ensures thorough validation and successful application of the model.

4.1. Data Collection and Its Curation

The dataset of Hsp-90 inhibitory activity used for building, training, and validating
the QSAR model in the present work was downloaded from BindingDB (https://www.
bindingdb.org/bind/index.jsp, accessed on 24 December 2021), which is a free and publicly
accessible database. Initially, the dataset comprised 1839 molecules. Then, as a part of data
curation, entries with ambiguous IC50 values, duplicates, salts, metal-based inhibitors, etc.
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were omitted [11–13,16,18,25,26,29,30,37]. The final dataset comprises 1141 structurally di-
verse molecules with remarkable variation in structural scaffolds, which were tested exper-
imentally for potency in terms of IC50 (nM) (see the MS Excel file ‘SupplementaryMaterial-
Final’ in the Supplementary Materials). The dataset includes N-terminal inhibitors of Hsp90.
The experimental IC50 values have a sufficient variation ranging from 5 to 350,000 nM.
After that, IC50 values were converted to their negative logarithmic value (pIC50 = −log10IC50)
so that a comparison of their values became easier. In Table 1 and Figure 6, some of the
most and least active molecules are included as examples only.

Table 1. SMILES notation, IC50 (nM) and pIC50 (M) of the five most and least active molecules of the
selected dataset.

S.N. Ligand SMILES IC50 (nM) pIC50 (M)

308 COc1cccc(n1)-
c1cc(F)ccc1[C@H]1Cc2nc(N)nc(C)c2C(NOC2C[C@H](O)[C@H](O)C2)=N1 5 8.301

908 CCNC(=O)c1noc(c1NC(=O)[C@H]1CC[C@H](CNS(=O)(=O)c2ccc(F)cc2)CC1)-
c1cc(C(C)C)c(O)cc1O 5.4 8.268

770 CCNC(=O)c1nnn(c1-c1ccc(CNC2CCCCC2)cc1)-c1cc(C(C)C)c(O)cc1O 6.8 8.167

767 CCNC(=O)c1nnn(c1-c1ccc(CN2CCCCC2CCO)cc1)-c1cc(C(C)C)c(O)cc1O 10 8

749 CCNC(=O)c1nnn(c1-c1ccc(CNCCCN(CC)CC)cc1)-c1cc(C(C)C)c(O)cc1O 12 7.921

775 Oc1cc(O)c2C[C@@H](OC(=O)[C@H]3CC[C@H](F)CC3)[C@H](Oc2c1)c1ccc(O)c(O)c1 69,000 4.161

1073 COC(COCCOc1ccc(Br)cc1)CN1CCN(CC1)c1ccccc1C(C)(C)C 70,430 4.152

1141 CO[C@H]1C[C@H](C)Cc2c(OC)c(O)cc3NC(=O)\C(C)=C\[C@H](O)C[C@H](OC)
[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@H]1Oc23 96,000 4.018

778 Oc1cc(O)c2C[C@H](OC(=O)c3ccccc3)[C@H](Oc2c1)c1ccccc1 120,000 3.921

207 CSc1nc(C)nc(N)n1 350,000 3.456

Figure 6. Representative examples from the selected dataset (the five most active and five least
active molecules).
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4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

A crucial step before the calculation of molecular descriptors is to convert the SMILES
notations to 3D-optimized structures and partial charge assignment, which was accom-
plished using OpenBabel 3.1 [38] using MMFF94 force field. In the present work, the X-ray-
resolved structure of molecule 1007 (pdb 6YE8) was used to identify the parameter tuning
in OpenBabel, required to get a better optimized structure, until there was a high similarity
between the MMFF94-optimized structure and X-ray-resolved structure. This enhances
the chances of getting a bioactive conformer, which in turn is highly beneficial for fur-
ther optimization of Hsp90 inhibitors in the drug discovery pipeline. A comparison of
the X-ray-resolved structures of molecules 1007 and 33 (pdb 2VCJ) and their respective
MMFF94-optimized structures are represented in Figure 7.

Figure 7. A comparison of X-ray-resolved and MMFF94-optimized structures of molecules 1007 and 33.

From Figure 7, it is clear that there is a high similarity between the X-ray-resolved and
MMFF94-optimized structure of molecules 1007 and 33, which indicates that appropriate
parameter tuning was achieved to optimize the rest of the molecules. That is, the same
parameter tuning in OpenBabel was used to optimize the other molecules of the selected
dataset. The parameters are as follows: geometry optimization, steepest descent, number
of steps: 1500; cut off: 0.01.

In the next step, the 3D-optimized structures of all molecules in the dataset were used
to calculate a good number of molecular descriptors. It is important to note that calculation
of diverse molecular descriptors enhances the chances of a successful QSAR analysis and
significantly helps in mechanistic interpretation. However, descriptor pruning is very useful
as it further strengthens the diminished risk of overfitting from noisy redundant descriptors.
To fulfil these objectives, more than 40,000 molecular descriptors were generated using
PyDescriptor [39]. After that, OFS involved elimination of the near constant (90% molecules)
and highly intercorrelated (|R| > 0.90) molecular descriptors. For this, QSARINS-2.2.4
was used. The final set of molecular descriptors comprises 1228 molecular descriptors,
which still comprise manifold descriptors (1D- to 3D-), leading to coverage of a broad
descriptor space.

4.3. Splitting the Dataset into Training and External Sets and SFS (Subjective Feature Selection)

Subjective feature selection involves selection of appropriate number and set of molec-
ular descriptors to build a model using suitable algorithm. Prior to SFS, it is essential to
divide the dataset into training and test (also known as external or prediction set) sets with
a proper composition and proportions to circumvent information leakage and to verify the
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predictive ability of a model [11–13,16,18,25,26,29,30,37]. Hence, the dataset was randomly
split into training (80% = 915 molecules) and prediction or external (20% = 226 molecules)
sets. It is to be noted that the training set was used for the selection of optimum number
of molecular descriptors, and the sole purpose of prediction/external set was to validate
the external predictive ability of the model (Predictive QSAR). A GA-MLR-based QSAR
model is free from over-fitting if it comprises an optimum number of molecular descriptors.
Therefore, in the present work, a simple yet effective method of identifying the breaking
point was used. Generally, the continuous inclusion of molecular descriptors in the GA-
MLR model significantly increases the value of Q2

LOO, but after the breaking point, the
value of Q2

LOO does not increase significantly [24]. The number of molecular descriptors
corresponding to the breaking point was considered optimum for model building. A graph
(see Figure 8) was plotted between the number of molecular descriptors involved in the
model and Q2

LOO values, which indicated that the breaking point agreed with the six
molecular descriptors. Consequently, QSAR models comprising more than six descrip-
tors were not considered. For SFS, the set of molecular descriptors was selected using
the genetic algorithm integrated with multilinear regression (GA-MLR) method available
in QSARINS-2.2.4 (generations per size: 10,000; population size: 50; mutation rate: 60;
significance level: 0.05; fitness parameter: Q2

LOO).

Figure 8. Plot of number of descriptors against leave-one-out coefficient of determination Q2
LOO to

identify the optimum number of descriptors.

4.4. Building Regression Model and Its Validation

The GA-MLR approach resulted in the generation of a good number of models
having good to excellent statistical performance. Therefore, the following stringent pa-
rameters and criteria suggested by different researchers were used to select the best
model [11–13,16,18,25,26,29,30,37,40]: R2

tr ≥ 0.6, Q2
loo ≥ 0.5, Q2

LMO ≥ 0.6, R2 > Q2,
R2

ex ≥ 0.6, RMSEtr < RMSEcv, ∆K≥ 0.05, CCC≥ 0.80, Q2-Fn ≥ 0.60, r2
m ≥ 0.5, (1-r2/ro

2) < 0.1,
0.9 ≤ k ≤ 1.1 or (1-r2/r’o2) < 0.1, 0.9 ≤ k’ ≤ 1.1,| ro

2− r’o2| < 0.3, RMSEex, MAEex,
R2

ex, Q2
F1, Q2

F2, and Q2
F3, and low R2

Yscr, RMSE, and MAE. The details of these sta-
tistical parameters are available in the Supplementary Materials. An important aspect
of validation of a QSAR model is to identify the applicability domain. In the present
work, the William’s plot was plotted to assess the applicability domain of the QSAR
model [11–13,16,18,25,26,29,30,37,41,42].
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5. Conclusions

In the present work, a relatively large and structurally diverse dataset of 1141 Hsp90 in-
hibitors was used for developing a six-descriptor-based and extensively validated GA–MLR
QSAR model with R2

tr = 0.78, Q2
LMO = 0.77, R2

ex = 0.78, and CCCex = 0.88. The inclusion of
easily understandable descriptors resulted in identification of important pharmacophoric
features that are correlated with Hsp90 inhibitory activity. The present QSAR analysis
effectively captured a mixture of reported as well as novel significant structural features.
The analysis vindicates that ring and aromatic carbons are important in deciding the ac-
tivity. In addition, different types of nitrogen atoms in correlation with different types of
carbon atoms influence the Hsp90 inhibitory activity. A good balance of external predictive
ability and mechanistic interpretations, which are further supported by the reported crystal
structures of Hsp90 inhibitors, make the QSAR model useful for the future optimization of
molecules in the pipeline as a better Hsp90 inhibitor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15030303/s1.
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Abstract: The goal of achieving anti-inflammatory efficacy with the fewest possible adverse effects
through selective COX-2 inhibition is still being investigated in order to develop drugs with safe
profiles. This work shows the efficacy and safety profile of two novel benzimidazole piperidine and
phenoxy pyridine derivatives in reaching this goal, which would be considered a major achieve-
ment in inflammatory therapy. The compounds were evaluated by virtual screening campaign,
in vitro cyclooxygenase 1 and 2 (COX-1 and COX-2) inhibition, in vivo carrageenan-induced rat paw
edema assay, cytotoxicity against Raw264.7 cells, and histopathological examination of rat paw and
stomach. Two new compounds, compound 1 ([(2-{[3-(4-methyl-1H-benzimidazol-2-yl)piperidin-1-
yl]carbonyl}phenyl)amino]acetic acid) and compound 2 (ethyl 1-(5-cyano-2-hydroxyphenyl)-4-oxo-
5-phenoxy-1,4-dihydropyridine-3-carboxylate) showed high selectivity against COX-2, favourable
drug-likeness and ADME descriptors, a lack of cytotoxicity, relived paw edema, and inflammation
without noticeable side effects on the stomach. These two compounds are promising new NSAIDs.

Keywords: docking; non-steroidal anti-inflammatory drugs; drug discovery; lipoxygenase;
cyclooxygenase

1. Introduction

Inflammation is a chain of physiological responses involving a wide range of different
molecules and cellular responses [1]. The mediators that emerge from two routes are
particularly interesting from the perspective of drug research. Leukotrienes (LTs) are
the first class of mediators that contribute to the inflammatory process, and they play a
significant part in the inflammatory process overall. LTs are produced by the enzyme
Arachidonate 5-lipoxygenase (5-LOX) [2,3]. The second set is more diverse and comes in
effect after the activity of COXs that convert arachidonic acid to prostaglandin. PGE2 and
PGI2 increase blood flow in inflamed areas by their potent vasodilator action. Prostacyclin
(PGI2) is responsible for platelet aggregation and vascular endothelium inhibition. The
vasodilation effect of Prostacyclin E2 and Prostacyclin I2 contributes to the protection of
the gastric mucosa by boosting mucus secretion and preventing an increase in acidity and
pepsin content in the stomach. In kidneys, PGE and PGI play roles in increasing the flow of
the blood and regulation of the glomerular filtration rate [4,5].

Nonsteroidal anti-inflammatory drugs (NSAIDs) are a type of prescription that, when
taken in sufficient amounts, can reduce pain, inflammation, blood clotting, and fever.
NSAIDs may cause several side effects in patients, however, the most dangerous side effects
include gastrointestinal ulcers, kidney problems, heart attacks, and bleeding [6]. Despite a
few side effects, the drug’s benefits outweigh the risks, making it a viable therapeutic option.
NSAIDs are the gold standard in the treatment of inflammatory episodes due to their ability
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to block the arachidonic acid pathways [7]. NSAIDs act by selective or non-selective
inhibition of both enzymes COX-1and COX-2 [8,9]. In addition to lowering inflammation,
non-selective medicines work by inhibiting the aggregation of platelets. Additionally, the
medication raises the risk of stomach ulcers and bleeding. Gastrointestinal side effects
are a prominent concern associated with the use of NSAIDs. These medications cause
both direct and indirect irritation of the digestive tract. The acidic components of NSAIDs
produce direct irritation of the stomach mucosa as well as inhibit COX-1, resulting in a
decrease in prostaglandin levels. Prostaglandin secretion is suppressed throughout the
gastrointestinal tract, which increases the formation of stomach acid and decreases the
synthesis of mucus, bicarbonates, and the tropical effects of mucosa and epithelial cells [10].
To some extent, all NSAIDs can impair neutrophil activity, but indomethacin, piroxicam,
ibuprofen, and all salicylates have the most dramatic effect [11]. There are fewer side
effects with selective COX-2 inhibitors, and their gastrointestinal ulcerogenic properties are
decreased as well [12]. The pursuit for a less toxic NSAID resulted in the release of two
selective COX-2 inhibitors in 1999, celecoxib and rofecoxib [11]. No NSAID is a complete
COX-1 or COX-2 inhibitor; rather, each enzyme is inhibited to varying degrees. Given the
tremendous load posed by NSAIDs, COX-2 inhibitors appear to be a viable alternative for
reducing the risk of major GI bleeding [11].

Therapeutic development will continue to rely extensively on computational tools
to aid in the identification and validation of potential drug targets, which will help to
accelerate the process [13–16]. The field of bioinformatics is at the forefront of our efforts to
better comprehend the workings of the cell. In order to produce hypotheses for testing, it
is necessary to integrate enormous volumes of knowledge from numerous subdisciplines
within molecular and cell biology into a cellular model that can be tested. We used such a
compilation of methods to deliver new NSAIDs. The selection of such novel compounds
was based on their general high selectivity on COX-2, ability to pass drug-likeness and
ADME evaluations, strong anti-inflammatory activity, no stomach side effects, and safety
when tested in human cell culture.

2. Results
2.1. Molecular Docking of Compounds

The rationale behind this study was to discover new selective COX-2 inhibitors uti-
lizing virtual screening of a library of chemical compounds that consisted of 1.2 million
compounds from the Chembridge Inc core library. Following a two-step, virtual screening
procedure that included standard precision docking (SP) followed by extreme precision
docking (XP), the compounds with the highest docking scores were obtained from the
database (Figure 1). The compound docking scores and ligand efficiency are displayed in
Table 1. The compounds are accompanied by favourable hydrogen bonds and lipophilic
scores as indicated by the negative values of Glide lipo and Hbond.
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Figure 1. Compounds’ chemical names, structures, and IDs. The compounds were purchased from
Chembridge (San Diego, CA, USA).

Table 1. The obtained compounds with the highest docking score after virtual screening using PDB
ID 5IKQ.

Compound #
Docking Score

(kcal/mol)
Glide H Bond Glide Lipo

Glide Ligand
Efficiency

1 −13.645 −0.908 −3.705 −0.471
2 −12.442 −0.172 −5.079 −0.444
3 −12.523 −0.73 −3.433 −0.482
4 −12.41 0 −5.106 −0.477
5 −13.14 −0.87 −5.373 −0.453
6 −13.408 0 −3.123 −0.583
7 −13.222 −0.813 −4.053 −0.509

By analyzing the ligand interactions of the docked compounds with COX-2 structure,
several interaction forces maintained the complexes binding with COX-2, comprising salt
bridges, stacking interactions, and hydrogen bonds (Figure 2). Compound 1 formed a
hydrogen bond and salt bridge with ARG120. Compounds 2, 3, and 6 formed salt bridges
with ARG120. Compound 4 formed a stacking interaction with TYR355 and a hydrogen
bond with SER530. Compound 5 formed a stacking interaction with TYR385 and salt bridge
with SER530. Compound 6 formed a hydrogen bond with ARG120. Compound 7 formed a
hydrogen bond with SER530. Collectively, salt bridges with ARG120, hydrogen bonds with
TYR335 and SER530, or stacking interactions with TRY385 were the major interaction of the
compounds with COX-2. ARG120 and TYR355 are two major residues at the construction
site of COX-2. The projected selectivity of compounds against COX-2 can be concluded
from the interaction with the side pocket of COX-2 composed of ARG513, ALA516, ILE517,
PHE518, VAL523, and LEU531.
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Figure 2. The docking site and ligand interactions of compounds 1–7. The ligand interaction of every
compound is provided. Positively charged residues are in blue, while hydrophobic residues are in
green. Salt bridges are depicted as double-colored lines in blue and red. Stacking interactions are
represented by green lines.

2.2. ADME Pharmacokinetic Properties and Drug-Likeness Descriptors

Table 2 shows the predicted ADME parameters for the top seven compounds. With
no infractions, all compounds passed Lipinski’s rule of five. All compounds showed
favourable mw, donor hydrogen bonds, acceptor hydrogen bonds, human oral absorption %
(>30%), predicted IC50 value for blockage of HERG K+ channels (<5), absorption from skin
(QPlogKp), intestinal absorption, crossing the blood–brain barrier, water accessible surface
area, as well as its hydrophilic components. A few minor violations of the prediction
parameters were also observed.

Table 2. Drug-likeness and ADME properties of compounds.

Acceptable
Range Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 Compound 6 Compound 7

Mol-Mw 130–725 392.457 376.372 357.368 371.779 387.483 359.44 312.368
Donor HB 0–6 2 2 3 3 1 1 1
Accept HB 2–20 6.5 6.45 9.5 6.25 5.25 6.15 6.7

Human oral
absorption %

>80 high<30
low 91.392 63.711 41.441 60.987 100 100 61.58

Rule of five Maximum 4 0 0 0 0 0 0 0
Qplog P o/w Maximum 3 3.886 1.274 0.168 2.367 4.446 3.65 0.623

QPlogHERG Concern
below −5 −3.629 −4.202 −1.498 −3.234 −7.581 −6.219 −4.404

QPlogKp −8.0–−0.1 −2.236 −4.012 −5.679 −4.871 −2.982 −2.777 −4.137

QPPCaco <25 poor>500
great 213.531 43.389 5.69 13.419 442.32 926.454 53.849

QPlogBB −3.0–1.2 −0.742 −0.713 −2.218 −1.663 −0.232 0.089 −0.395

QPPMDCK <25 poor>500
great 118.581 23.433 3.263 14.645 226.628 912.502 29.595

QPlogKhsa −1.5–1.5 0.21 −0.056 −0.83 −0.067 0.77 0.211 −0.253
SASA 300–1000 640.252 624.75 609.578 586.73 712.49 655.337 584.481
FISA 7.0–330.0 112.838 122.221 265.073 239.562 78.779 44.92 112.33

Carcinogenicity
in mouse Negative Negative Negative Negative Negative Negative Negative Negative

Carcinogenicity
in rat Negative Negative Negative Negative Negative Negative Negative Negative
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2.3. Inhibition of COXs

Within the examined seven compounds, compounds 1–3 showed the highest selec-
tivity index. Compounds 1–3 inhibited the enzymes with compound 1 IC50 values of
11.68 ± 1.2 µM and 0.068 ± 0.008 for COX-1 and COX-2, respectively (Table 3). The IC50
for compound 2 was 12.22 ± 1.1 and 0.048 ± 0.002 µM for COX-1 and COX-2, respectively.
The IC50 for compound 3 was 11.11 ± 1.1 and 0.06 ± 0.003 µM for COX-1 and COX-2,
respectively. The selectivity index for compound 1 was 124.5 and 68.7-fold higher than
indomethacin and diclofenac, respectively. In contrast, it was 1.9-fold lower than celecoxib.
Compound 2 has a selectivity index of 254.5, which is higher than compound 1 and makes
it the most selective COX-2 inhibitor. Compound 3 was placed second on the selectivity
index, with an SI value of 194.9.

Table 3. The estimated IC50 values (µM) for Compounds 1–3 against COX-1 and COX-2. Celecoxib,
rofecoxib, indomethacin, and diclofenac were used as control drugs.

COX-1 COX-2 SI

Celecoxib 14.7 ± 1.045 0.045 ± 0.005 326.6
Rofecoxib 14.5 ± 1.125 0.025 ± 0.005 580

Indomethacin 0.1 ± 0.015 0.0725 ± 0.01 1.38
Diclofenac 0.05 ± 0.006 0.02 ± 0.001 2.5

Compound 1 11.68 ± 1.2 0.068 ± 0.008 171.8
Compound 2 12.22 ± 1.1 0.048 ± 0.002 254.5
Compound 3 11.11 ± 1.1 0.06 ± 0.003 194.91
Compound 4 7.62 ± 0.05 0.21 ± 0.01 36.3
Compound 5 10.57 ± 0.33 0.08 ± 0.009 132.64
Compound 6 11.52 ± 0.13 0.06 ± 0.075 190.88
Compound 7 9.19 ± 0.046 0.097 ± 0.015 95.068

2.4. The Anti-Inflammatory Assay (Carrageenan-Induced Paw Edema in Rats)

The carrageenan-induced paw edema model was used to evaluate the compounds’
anti-inflammatory activity. Only carrageenan was given to the control animals. The
treatment effect was tracked by observing the improvement of rat paw edema in response
to drug administration. Carrageenan injections caused rat paws to grow from 0.3 cm to
0.8 cm in size. After 1 h of dosing, diclofenac and indomethacin dramatically reduced
rat paw edema (Figure 3). Compounds 1, 2, and 3 significantly reduced rat paw size,
comparable to diclofenac and indomethacin. The size of the rat paw edema (Figure 4)
decreased significantly 30 min after the compounds and drugs were administered. The
growth of the rat paw progressed in a substantially comparable manner 3–4 h after injection
across all chemicals and medications examined.
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Figure 3. Average rats paw edema size (cm). The control group was treated with 0.2 mL of 1%
carrageenan. Compounds 1, 2, and 3 were given orally at a dose rate of 10 mg/kg. The control
nontreated group received NaCMC. The rat paw size was evaluated for 5 h after treatment. Each
column represents the mean ± SD. Mean values in each plot followed by a different lowercase letter
(a, b, c, d, e and f) are significantly different at p ≤ 0.05.

Figure 4. The progress of rat paw edema (cm) for 5 h after compounds administration. The control
group was treated with 0.2 mL of 1% carrageenan. Compounds 1, 2, and 3 were given orally at a dose
rate of 10 mg/kg. The control nontreated group received NaCMC. The measurement was performed
at 0, 30 min, 1, 2, 3, 4 and 5 h after administration of the drugs.

2.5. Cytotoxicity on Mouse Macrophage-Like Cell Line (Raw264.7 Cells)

Raw264.7 cells were used to test the effects of compounds 1, 2, and 3 on cell viability
and proliferation. Raw264.7 cells were treated for 24 h in a 96-well plate with compounds
(1 µM) in the presence or absence of LPS (1 ug/mL). WST1 reagent was added to each well
after treatment and incubated for an additional 2 h. Following that, the OD450/620 ratio
was determined. LPS treatment had a significant impact on cell morphology and prolif-
eration. However, all compounds had no effect on WST1 values or cell morphology in
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Raw264.7 cells. Raw264.7 cells in a 96-well plate were treated with our compounds (1 uM)
in the presence or absence of LPS (1 ug/mL) for 24 h. After treatment, the WST1 reagent
was added into each well and incubated for an additional 2 h. After that, OD450/620
was measured.

2.6. Histopathological Examination of Rat Paw

The control group sections of rat paw displayed a healthy paw tissue structure, ex-
hibiting a typical intact epidermal layer of stratified squamous epithelium and dermal
layer with ample capillaries and connective tissue cells (Figure 5A,B). Conversely, the
carrageenan-injected paw tissue section examination showed substantial histopathological
changes. There was increased dermis thickness attributable to edema with a marked in-
flammatory cell invasion of the deep dermis compared to the control group (Figure 5C,D).
However, the compound 1-treated group exhibited marked improvement in the degree
of edema and the inflammatory cell infiltration (Figure 5E,F). Interestingly, compound 2
exerted a marked anti-inflammatory effect and a pronounced decline in edema and inflam-
matory cell invasion (Figure 5G,H), which is almost similar to the impact of indomethacin;
nevertheless, enhanced improvement in the degree of edema could be seen in the presence
of compound 2. Compound 3 showed weaker action than compounds 1 and 2 manifested
by a moderate increase in cell infiltration and edema (Figure 5I,J).

Figure 5. Histopathologic examination of rat paw stained by H&E. (A) Photomicrograph of control
rat paw at 10× magnification showing normal epidermal layers (E), dermis (D), and muscle
layer (M); notice the absence of any signs of an inflammatory reaction. (B) Photomicrograph
of control rat paw at 40× magnification showing normal SC, stratum corneum; SGr, stratum
granulosum; SS, stratum spinosum; and SG, stratum germinativum. (C) Photomicrograph of rat
paw at 10× magnification of carrageenan-treated group showing marked thickening of the dermal
layer, inflammatory reaction in the deep dermis, and wide separation between fibers due to edema
(Od). (D) Photomicrograph of rat paw at 40× magnification of carrageenan-treated group showing
edema (Od). (E) Photomicrograph of rat paw at 10× magnification of carrageenan-treated group
followed by treatment with compound 1 showing a significant decrease in the dermal thickness,
inflammatory reaction in the deep dermis (black star), and moderate improvements in edema (Od).
(F) Photomicrograph of rat paw at 40× magnification of carrageenan-treated group followed by
treatment with compound 1 showing slight inflammatory reaction (black star) and edema (Od).
(G) Photomicrograph of rat paw at 10× magnification of carrageenan-treated group followed by
treatment with compound 2 showing a substantial decrease in both the inflammatory reaction (black
star) and edema (Od). (H) Photomicrograph of rat paw at 40× magnification of carrageenan-treated
group followed by treatment with compound 2 showing slight inflammatory reaction (black star) and
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edema (Od). (I) Photomicrograph of rat paw at 10× magnification of carrageenan-treated group
followed by treatment with compound 3 showing a significant decrease in the degree of inflammatory
reaction (black star) and a moderate decrease in edema (Od). (J) Photomicrograph of rat paw at
40× magnification of carrageenan-treated group followed by treatment with compound 3 showing
moderate inflammatory reaction (black star) and edema (Od). (K) Photomicrograph of rat paw at
10× magnification of carrageenan-treated group followed by treatment with indomethacin showing
a significant decrease in the degree of inflammatory reaction (black star) and a moderate decrease
in edema (Od). (L) Photomicrograph of rat paw at 40× magnification of carrageenan-treated group
followed by treatment with indomethacin showing slight inflammatory reaction (black star) and
edema (Od).

The degree of collagen deposition was investigated by Masson’s stain as a qualitative
indicator. Blue-green stained collagen was used for the purpose of assessing collagen
deposition progression; the cytoplasm, red blood cells, and muscle were stained red. The
density of the blue-green collagen is consistent with the relative amount of deposited total
collagen fiber, which represents collagen synthesis, degradation, and remodeling. As shown
by Masson’s stain, there were more collagen fibers in the carrageenan group compared with
the normal group (Figure 6A). Besides, among the treated groups, the collagen deposition
was almost similar to the control nontreated group, except for compound 3. The quantity
of collagen formation was the lowest in the compound 2-treated group and was better than
indomethacin (Figure 6B–E).

Figure 6. Histopathologic examination of rat paw stained by Masson’s Trichrome stain. Collagen
fibrils are stained blue-green. The double-headed arrow represents collagen fibrils thickness between
epidermis and dermis. (A) Photomicrograph of control rat paw at 10× magnification showing normal
collagen deposition. (B) Photomicrograph of rat paw at 10× magnification of carrageenan-treated
group showing intense collagen deposition. (C) Photomicrograph of rat paw at 10× magnification of
carrageenan-treated group followed by treatment with compound 1 showing slight collagen deposi-
tion (D). Photomicrograph of rat paw at 10× magnification of carrageenan-treated group followed by
treatment with compound 2 showing slight collagen deposition. (E) Photomicrograph of rat paw at
10× magnification of carrageenan-treated group followed by treatment with compound 3 showing
significant collagen deposition. (F) Photomicrograph of rat paw at 10× magnification of carrageenan-
treated group followed by treatment with indomethacin showing slight collagen deposition.
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2.7. Histopathological Examination of Rat Stomach

The control group stomach sections displayed a healthy gastric tissue structure, ex-
hibiting typical intact villi of gastric mucosa with no signs of hemorrhages or congestion;
also there is no exfoliation in the mucosal epithelium or inflammatory cell infiltration
(Figure 7A,B). Interestingly, compound 1, compound 2, compound 3, and indomethacin-
treated groups did not show apparent histopathological changes (Figure 7C–J). The col-
lagen deposition was almost similar to control nontreated animals in compounds 1 and
2 (Figure 8A–F). Conversely, compound 3 and indomethacin exerted a mild increase in
collagen deposition (Figure 8G–J).

Figure 7. Histopathologic examination of rat stomach stained by H&E. (A) Photomicrograph of
control rat stomach at 10× magnification showing normal gastric layers. Blue arrow shows intact
appearance of histological structure of the epithelium and mucosa layer; GM, Gastric Mucosa; GS,
Gastric Submucosa. (B) Photomicrograph of control rat stomach at 40× magnification showing
absence of any signs of an inflammatory reaction. (C) Photomicrograph of rat stomach at 10× mag-
nification of treatment with compound 1 showing normal gastric layers. Blue arrow shows intact
appearance of histological structure of the epithelium and mucosa layer; GM, Gastric Mucosa; GS,
Gastric Submucosa. (D) Photomicrograph of rat stomach at 40× magnification of treatment with
compound 1 showing absence of any signs of an inflammatory reaction. (E) Photomicrograph of
rat stomach at 10× magnification of treatment with compound 2 showing normal gastric layers.
Blue arrow shows intact appearance of histological structure of the epithelium and mucosa layer;
GM, Gastric Mucosa; GS, Gastric Submucosa. (F) Photomicrograph of rat paw at 40× magnifi-
cation of treatment with compound 2 showing absence of any signs of an inflammatory reaction.
(G) Photomicrograph of rat stomach at 10× magnification of treatment with compound 3 show-
ing slight degeneration of gastric layers. (H) Photomicrograph of rat paw at 40× magnification of
treatment with compound 3 showing absence of any signs of an inflammatory reaction. (I) Pho-
tomicrograph of rat stomach at 10× magnification of treatment with indomethacin, showing slight
degeneration of gastric layers. (J) Photomicrograph of rat paw at 40× magnification of treatment
with indomethacin showing absence of any signs of an inflammatory reaction.
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Figure 8. Histopathologic examination of rat stomach stained by Masson’s Trichrome. Collagen
fibrils are stained blue-green. The double-headed arrow represents collagen fibrils thickness in the
submucosa. (A) Photomicrograph of control rat stomach at 10× magnification showing normal
collagen deposition. (B) Photomicrograph of rat stomach at 40× magnification of control group
showing normal collagen deposition. (C) Photomicrograph of rat stomach at 10× magnification
of treatment with compound 1 showing normal collagen deposition. (D) Photomicrograph of rat
stomach at 40× magnification of treatment with compound 1 showing normal collagen deposi-
tion. (E) Photomicrograph of rat stomach at 10× magnification of treatment with compound 2
showing slight collagen deposition. (F) Photomicrograph of rat stomach at 40× magnification of
treatment with compound 2 showing slight collagen deposition. (G) Photomicrograph of rat stom-
ach at 10× magnification of treatment with compound 3 showing significant collagen deposition.
(H) Photomicrograph of rat stomach at 40× magnification of treatment with compound 3 showing
significant collagen deposition. (I) Photomicrograph of rat stomach at 10× magnification of treatment
with indomethacin showing significant collagen deposition. (J) Photomicrograph of rat stomach at
40× magnification of treatment with indomethacin showing collagen deposition.

3. Discussion

Despite the presence of several NSAIDs, the development of new NSAIDs is attractive,
owing to the diverse inflammatory conditions and the need for optimized application in
relation to disease and patient conditions. The recent development of NSAIDs comprises
modified methyl sulphonyl [17]; pyrimidine-5-carbonitrile hybrids [18], pyrazole deriva-
tives [19], indanone containing spiroisoxazoline derivatives [20], triazole, and oxadiazole
compounds [21,22]. Despite the growing repository of newly synthesized NSAIDs, the
development of new compounds is strictly required due to the side effects of the currently
approved NSAIDs. For instance, even in short-term applications, a high dose of ibupro-
fen resulted in jejunal perforations [23]; naproxen affects bowel and jejunal integrity [24].
Within days of intake, diclofenac has been proven to raise the risk of heart attacks and
strokes by 50% [25].

The intricate interplay between injured tissues and inflammatory cells, which results
in the release of inflammatory mediators such as interleukins, necrotic factors, and enzymes
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such as cyclooxygenases and lipoxygenases, is a crucial aspect of inflammation [26]. The
overexpression of COX-1 and COX-2 during inflammatory processes is crucial for the
inflammatory signaling system [27]. Controlling inflammation can prevent excessive injury
from an aggressive immune response or the development of chronic illness [28].

Drug molecules meet several membrane barriers on their kinetic voyage through
the body, including the blood–brain barrier, gastrointestinal epithelial cells, and the mem-
brane target cell. Predicting permeability behind barriers will aid in the prediction of
pharmacokinetic parameters and the knowledge of chemical behavior within the body.
QikProp estimates and predicts molecular characteristics and provides results for ADME
(absorption, distribution, metabolism, and excretion) [29]. Lipinski’s “Rule of Five” and the
“Jorgensen Rule-of-Three” were used to determine drug-likeness. The “Jorgensen Rule-of-
Three” is based on the qualities of over 90% of 1700 oral medications and meets the “rule of
five”, indicating that these molecules can be utilized as potent drugs/inhibitors [30]. The
basic drug-likeness and ADME qualities of compounds 1–3 indicated generally acceptable
parameters, particularly the absence of breaches of Lipinski’s rule of five, good oral absorp-
tion, and lack of carcinogenic potential. This was further demonstrated experimentally by
the absence of any harmful effect on Raw264.7 cells.

Compounds 1–3 were compared to selective and nonselective COX inhibitors for
cyclooxygenases inhibition. Compounds 1–3 inhibited COX-1 less well than indomethacin
and diclofenac but were comparable to the selective medicines celecoxib and rofecoxib.
When compared to the nonselective medication indomethacin, compounds 1–3 had at
least a 100-fold lower impact on COX-1. Furthermore, all compounds inhibited COX-
2 at lower concentrations than indomethacin and diclofenac, particularly compound 2,
which was comparable to the selective drug celecoxib. The overall selectivity index was
in the following order: rofecoxib < celecoxib < compound 2 <compound 3 < compound 1
< diclofenac < indomethacin. This discovery lends credence to the usage of chemicals 1 and
2 as anti-inflammatory medicines. They have no adverse effects on the gastric mucosa and
may have no negative effects on the body due to their high selectivity for COX-2 inhibition.
Because of their anti-inflammatory efficacy and low gastrointestinal toxicity, COX-2 selec-
tive medications have become the most common anti-inflammatory therapy [31]. However,
it was quickly discovered that long-term use of COXIBs in arthritic patients was linked
to cardiac adverse effects [32]. This has resulted in the withdrawal of some COXIBs, such
as rofecoxib, and a warning label for usage in patients with cardiovascular difficulties for
other COXIBs, like celecoxib [33]. In this context, the strong selectivity for COX-2 could be
linked to such results. In our investigation, compounds 1–3 showed medium selectivity
between highly selective COXIBs and nonselective COX inhibitors. Because of their lower
selectivity index than celecoxib and rofecoxib, these compounds may have an advantage
because they have been proven to be kinder on the gastric mucosa and are anticipated to
have a lower impact on the cardiovascular system.

In this work, the anti-inflammatory properties of the compounds were evaluated using
the carrageenan-induced rat paw swelling test. Carrageenan stimulates exudate release
and edema by increasing COX-2 expression, making this model excellent for testing COX-2
inhibitors [28]. The acute carrageenan-induced inflammation in the rat paw corresponds
to the findings of in vitro enzymatic tests. Rat paw edema was significantly reduced after
treatment with compounds 1–3, indomethacin, and celecoxib. Edema in the paws of rats
has two stages. The first stage lasts 2 h and includes histamine and serotonin release.
During the second stage, inflammatory exudate and enzymes such as cyclooxygenases are
released, and cells are invaded [34]. As a result, the action of compounds 1–3 after 1–4 h of
inflammation is consistent with cyclooxygenase inhibitory function. Compounds 1 and 2
had a better gastrointestinal safety profile than indomethacin because they did not promote
degenerative alterations and exhibited normal collagen deposition in treated rats after a
single high dosage. This is consistent with the in vitro COX-1/COX-2 assay’s finding of
COX-2 selectivity rather than COX-1. Compounds 1 and 2 appear to be potential NSAIDs
based on the entire analysis. Compound 3 was found to be less effective in alleviating
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inflammatory cells and rat paw edema, as well as increased collagen deposition in the
rat stomach.

4. Materials and Methods
4.1. Software, Chemicals and Kits

The Schrodinger Maestro molecular modeling package (Schrodinger LLC, New York,
NY, USA) was used in all virtual screening modeling steps. QikProp tools are an accurate,
rapid, and simple-to-use method for predicting molecular properties. GraphPad Prism 7
software was purchased from (GraphPad Software, Inc., San Diego, CA, USA). COX-1 and
COX-2 inhibitor screening assay kits were obtained from Cayman Chemical (Ann Arbor,
MI, USA). Indomethacin, celecoxib, carboxymethyl cellulose (NaCMC), λ-carrageenan,
tris(hydroxymethyl) aminomethane, diclofenac sodium, EDTA, hematin, phenol, and
hydrochloric acid were purchased from Sigma-Aldrich (St. Louis, MO, USA). Vernier
calipers were manufactured by SMIEC (Shanghai, China). All compounds tested in this
work were purchased from ChemBridge Inc. (La Jolla, CA, USA).

4.2. Preparation of COX-2 Structure

The protein data bank website was searched for the COX-2 structural PDB ID 5IKQ.
The structure was optimized for virtual screening and docking using the protein prepara-
tion module of the Schrodinger Maestro molecular modeling tool. The solution’s crystallo-
graphic compounds and water molecules were eliminated. The protein was protonated by
adding polar hydrogens, and the structures were optimized and energy was decreased by
employing the OPLS2005 force field. The docking grids were created using the Maestro
grid-generating module, with the defined ligand-binding cavities in the studied struc-
tures serving as a starting point. A 20-nanometer grid was built around the active site of
the enzyme.

4.3. Virtual Screening

To obtain the best candidates, a two-step docking run using SP followed by XP
was performed. An integer value of 0.8 was chosen for Van der Waals radius scaling.
Extra precision docking is intended to reduce the possibility of a false-positive outcome.
Compounds with high docking scores (−12) were chosen for interaction studies with
pocket residues, and their binding characteristics and pocket-filling pattern were visually
examined. The docking accuracy was confirmed by the low RMSD after redocking of the
co-crystallized ligand.

4.4. Drug-Likeness and ADME Pharmacokinetic Properties and Descriptors

Pharmacokinetic parameters such as absorption, distribution, metabolism, and excre-
tion were predicted using Qikprop v4.2 tools. The molecular weight, hydrogen bond donor
and acceptor, percent oral absorption in humans, an explanation for the violation of Lipin-
ski’s rule of five, and the variety of rotable bonds were among the descriptions. Expected
blood/brain partition coefficient, binding to human serum, aqueous solubility (QPlogS)
and octanol/water partition constant (QPlogP o/w), apparent MDCK cell permeability and
skin permeability (QPlogKp), the SASA element, expected inhibitory concentration (IC50)
for blocking HERG K+ Channels, and colorectal adenocarcinoma (Ca) permeability were
estimated. To estimate the carcinogenicity and toxicity risk of chemicals, the preADMET
web-based application was used.

4.5. Enzyme (COXs) Inhibition Assay

Following virtual screening, in vitro experiments for COX enzyme inhibition were
performed on compounds with the highest docking scores (seven compounds). The in-
hibitory effects of compounds on COX-1 and COX-2 were determined using COX inhibitor
screening test kits. The test chemicals’ capacity to inhibit the conversion of arachidonic
acid to prostaglandin was determined. In test tubes, 25 mM Tris–HCl, pH 8.0, containing
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5 mM EDTA, phenol, and 1 mM hematin, was added. The test compounds were dissolved
in dimethyl sulfoxide and added in concentrations ranging from 0.005–200 µM. Dimethyl
sulfoxide alone was applied to control test containers. COX-1 or COX-2 enzymes were
added to test tubes and preincubated for 10 min at 37 ◦C. The arachidonic acid substrate
was added, and the tubes were incubated at 37 ◦C for 2 min. The compound immunochem-
ical assay was used to calculate the amount of prostaglandin produced. Three separate
experiments were used to calculate the IC50 values. The selectivity index was calculated
as follows:

Selectivity index =
IC50COX − 1
IC50COX − 2

(1)

4.6. Evaluation of Anti-Inflammatory Actions by Carrageenan Induced Paw Edema in Rats

Following in vitro testing, three compounds with the highest selectivity against COX-2
were chosen for in vivo investigations utilizing the rat paw edema assay. After subcuta-
neous carrageenan injection into the rodent’s paw, plasma extravasation, tissue prolifer-
ation, plasma protein release, and neutrophilic extravasation, all of which are caused by
arachidonic acid digestion, produced inflammation. Following the carrageenan infusion,
the main phase lasted 2 h. The following process is remodeling, which takes 5 h and begins
at the 3rd h. The main stage is distinguished by the appearance of histamine and serotonin.
The development of prostaglandins, proteases, and lysosomes causes the second stage of
edema. Adult male albino rats weighing 120–150 g were divided into seven groups, each
with seven rats, and kept at 25 ◦C with a 12-h light/dark cycle. Subplantar injection of
0.2 mL of 1% carrageenan solution in 0.9 percent saline into the right hind paw of rats was
used to induce swelling and inflammation. To determine the inflammation generated by
carrageenan, the Vernier Caliper was used to measure the thickness of rat paws before
and after injection. Compounds 1–3, as well as indomethacin and diclofenac sodium, were
suspended in 1% NaCMC in normal saline and given orally at 10 mg/kg in a total volume
of 1 mL per rat, with the negative control getting 1 mL of 1% NaCMC-saline solution. Paw
edema was measured at 0, 0.5, 1, 2, 3, 4, and 5 h after the drug was administered. The
edema inhibition was calculated by calculating the difference in thicknesses between the
treated and control groups [35,36].

4.7. Histopathological Examination

4.7.1. Rat Paw

The rats’ paws were collected and washed in a saline solution after the end of rat paw
experiment. Specimens were fixed in 10% natural formalin for 2 days before being washed
overnight with running water. The cleaned samples were dehydrated in ethyl alcohol at
increasing percentages, starting with 70% and ending with absolute alcohol. The samples
were cleaned by immersing them in xylol for 2 h. For 3 h at 37 ◦C, the cleared samples
were placed in a sealed jar containing 50% paraffin in xylol. The samples were then soaked
in melting paraffin for 2 h at 48 ◦C before being blocked in hard paraffin and sliced into
5-micron slices. The sections were stained with hematoxylin and eosin (H&E) and Masson’s
trichrome. Sections were mounted with Canada balsam and covered with a coverslip in
preparation for histological examination.

4.7.2. Rat Stomach and Evaluation of the Ulcerogenic Effect of Test Compounds

Compounds 1–3 were examined for ulcerogenic effects in the rat stomach after showing
anti-inflammatory advantages in a rat paw test. Rats were deprived for 24 h at 25 ◦C with
a 12 h light/dark cycle. Indomethacin was used as a control. All compounds were given
in a single dose of 20 mg/kg orally. After 24 h, the rats were slaughtered, and their
stomachs were removed and washed with normal saline. Binocular magnification was
used to inspect each group’s stomachs for the existence of a gastric lesion on the mucosa.
Following that, the stomachs were kept in 10% w/v formalin for histological investigation,
as previously described.
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4.8. In Vitro Cytotoxicity Using Mouse Macrophage-Like Cell Line (Raw264.7 Cells)

Dulbecco’s modified Eagle’s minimum essential medium containing 5% heat-inactivated
fetal bovine serum was used to maintain Raw264.7 cells (ATCC). Raw264.7 cells
(0.8104 cells/100 µL) in a 96-well plate were treated for 24 h with the indicated com-
pounds at 1 µM or vehicle (DMSO) in the presence or absence of LPS (1 µg/mL) to detect
cell viability based on mitochondrial activity. WST-1 solution (Dojindo) was then added
to each well and incubated at 37 ◦C for an additional 2 h. According to a previous study,
cell viability was determined using the difference in absorbance at 450 and 620 nm as an
indicator [37].

4.9. Statistical Analysis

All results were presented as means standard deviations (SD). Statistical analysis was
performed as previously described [38]. When appropriate, statistical analysis was carried
out using two-way analysis of variance (ANOVA) followed by the Bonferroni’s test, or
one-way ANOVA followed by the Tukey’s test. p values of less than 0.05 were regarded as
statistically significant. GraphPad Prism version 5.00 for Windows (San Diego, CA, USA)
was used for all statistical analyses.

5. Conclusions

A virtual screening effort of 1.2 million compounds was launched in a study to uncover
novel COX-2 selective NSAIDs. A docking score filtration of the compounds offered a hint
for future investigation using experimental techniques. Compound 1 ([(2-{[3-(4-methyl-
1H-benzimidazol-2-yl)piperidin-1-yl]carbonyl}phenyl)amino]acetic acid) and compound 2
(ethyl 1-(5-cyano-2-hydroxyphenyl)-4-oxo-5-phenoxy-1,4-dihydropyridine-3-carboxylate)
showed promising anti-inflammatory activity. Compounds 1 and 2 were highly selective
for COX-2, reduced rat paw edema, were non-cytotoxic on cells, decreased inflammatory
cells infiltration and edema, and did not display adverse responses on rat stomach. These
two compounds are recommended as new promising NSAIDs.

6. Patents

Compounds 1 and 2 in this manuscript are subject to patent application at the US
patent office. USPTO application no. 17665553 (methods of treating inflammation) and
attorney docket no. 32087.20.
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Abstract: In the latest few decades, molecular docking has imposed itself as one of the most used
approaches for computational drug discovery. Several docking benchmarks have been published,
comparing the performance of different algorithms in respect to a molecular target of interest, usually
evaluating their ability in reproducing the experimental data, which, in most cases, comes from
X-ray structures. In this study, we elucidated the variation of the performance of three docking
algorithms, namely GOLD, Glide, and PLANTS, in replicating the coordinates of the crystallographic
ligands of SARS-CoV-2 main protease (Mpro). Through the comparison of the data coming from
docking experiments and the values derived from the calculation of the solvent exposure of the
crystallographic ligands, we highlighted the importance of this last variable for docking performance.
Indeed, we underlined how an increase in the percentage of the ligand surface exposed to the
solvent in a crystallographic complex makes it harder for the docking algorithms to reproduce
its conformation. We further validated our hypothesis through molecular dynamics simulations,
showing that the less stable protein–ligand complexes (in terms of root-mean-square deviation and
root-mean-square fluctuation) tend to be derived from the cases in which the solvent exposure of the
ligand in the starting system is higher.

Keywords: molecular docking; molecular dynamics; SARS-CoV-2; main protease, Mpro; docking
benchmark

1. Introduction

In the 1980s, with the first study provided by Kuntz et. al [1], the computational
technique of molecular docking had its birth. The efficiency, speed, and robustness of this
method make its presence a constant in every structure-based drug-discovery pipeline [2].
To give a brief explanation, molecular docking consists of a multistep computational process
that aims to find the best conformation of a molecule to bind to another to form a stable
complex [3]. In the field of medicinal chemistry, as is deductible, its main application is
finding the best molecules to bind in a firm way to the desired target (a protein, a nucleic
acid, etc.). The algorithm starts with the exploration of the conformations space of the
ligands (exploiting the so-called “search algorithm”). The conformations (called “poses”)
are then classified by a “scoring function”, which attributes a numeric value to the goodness
of the interaction according to energetical and/or geometrical function.

After a series of iterations, the final conformations are presented from the program to
the user and ranked by the internal scoring function [4].

In the last 30 years, many docking programs have been developed. Among them,
GOLD [5] (a genetic docking algorithm developed by the Cambridge Crystallographic
Data Center—CCDC), Glide [6] (a systematic docking program released under license
by Schrödinger), AutoDock [7] (a non-commercial genetic algorithm from The Scripps
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Research Institute), AutoDock VINA [8] (created by the same organization and released for
non-commercial use), and PLANTS [9] (an algorithm based on an “Ant Colony Optimiza-
tion” method) have gained popularity.

The performance of molecular docking programs can be measured by evaluating
their ability to reproduce the experimental structural data, such as the crystallographic
coordinates of a ligand into its binding site [10]. This ability has been evaluated in several
benchmarks [11,12] to rank the performance of different algorithms regarding a specific
target, usually using as the key parameter the root-mean-square deviation (RMSD) between
the coordinates of the different poses given by the program and the crystallographic ones.

The ability to reproduce a crystallographic conformation strongly relies on different
factors. First, the geometrical characteristics of the binding site, such as extension and
shape, play a very important role; it is known that the performance of the algorithms
has been improved to dock molecules in “cavities” or “pockets”, rather than surfaces of
proteins [13]. Second, the nature and the dimensions of the ligand are also crucial. Indeed,
very small ligands may explore different places in a binding site, and the interactions that
they can establish are usually few in number, reducing the “synergism” which could induce
a molecule to keep a peculiar shape in a pocket [14]. On the other hand, even if drug-like
molecules generally have higher conformational freedom, their dimensions force them to be
oriented into a site in a more conserved way, so they have less roto-translational freedom.

In this study, we examined the ability of three docking programs characterized by
diverse conformational sampling algorithms to efficiently reproduce the crystallographic
pose of different ligands bound in different sites of a protein. To accomplish this task, a
target in which several crystal structures were solved with the ligands located in different
sites of the macromolecule itself was needed. To this scope, we considered a very recent
and relevant target in the current pharmaceutical scenario, namely the SARS-CoV-2 main
protease (Mpro).

In the last couple of years, with the pandemic spreading of the SARS-CoV-2 virus, the
world of medical sciences had found itself fighting a new and dangerous adversary [15,16].
This biological entity, which is part of the coronavirus family, has been demonstrated to
cause a pulmonary infection which eventually leads to serious complications, as witnessed
by the high number of deaths that have already been linked to it (more than 5 million, at
the present day [17]). The replication cycle of this virus strongly relies on the activity of its
main protease (known as Mpro or 3CLpro, a crystallographic structure example is reported
in Figure 1) [18]. Indeed, this protein is responsible for the cleavage of the propeptide
transcribed by the viral genome. In this way, the formation of all the functional proteins
for the building of new virions takes place, and so the viral infection can proceed. Even
if many molecules have been shown to bind to Mpro [19] and inhibit its activity, and even
if a molecule is currently in phase III clinical trial for this purpose (PF-07321332, from
Pfizer [20,21]), no drug has already been approved by the European Medicinal Agency
for the treatment of SARS-CoV-2 (also called “COVID-19”). Computational methods have
already proven to be beneficial in the research for new potential inhibitors for Mpro, as the
literature witnesses [22,23]. In this work, we decided to implement a molecular-docking-
based approach relying on the programs GOLD, Glide, and PLANTS. These algorithms are
considered “orthogonal” because they are characterized by diverse placing and scoring
algorithms to obtain the best solution to the “protein–ligand posing problem”. Each of
these programs was used to dock each of the different non-covalent ligands of the various
crystal structures of Mpro, and this allowed us to evaluate the factors which influence the
variability in reproducing the crystallographic poses. A self-docking protocol similar to
the one herein reported had already been developed by our laboratory, with the name
“DockBench”. This program was implemented with success in several workflows, as the
literature assesses [24,25]. In this study, a slightly modified version of that tool was used,
which exploits only three docking programs at the present moment but can expand the
analysis of the results obtained.
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Figure 1. Representation of the crystal structure of Mpro (PDB:7L10). The two monomers composing
the protein are colored differently, while the residues of the catalytic dyad, Cys145, and His41 are
labeled in each of the monomers.

Looking at the docking benchmarking protocols on Mpro, we see that a remarkable
study has already been conducted and published by Zev et al. [26]. In that specific work,
six different docking programs were evaluated in their performance in reproducing the
Mpro non-covalent ligands’ crystallographic poses, and three of those algorithms have also
been compared in their ability to correctly place Mpro covalent ligands into their proper
binding site. In our work, we decided to expand the considerations brought by that study,
evaluating specifically how docking performance changes in respect of the crystallographic
data that have to be reproduced.

Indeed, we considered in our calculations parameters such as the solvent exposure of
the ligand and the influence of the crystallographic water molecules in docking calculations,
focusing our evaluations just on non-covalent Mpro ligands. We executed the experiment in
two different scenarios, one which excluded the crystallographic waters from the calculation
(which we will name “Scenario 1”), and one which induced the docking programs to
consider them (called “Scenario 2”). After that, we compared the docking results with
the percentage of solvent exposure of the crystallographic pose of the ligand, successfully
confirming that a higher solvent exposure tendentially reflects a worsening in the ability
to reproduce the crystallographic pose by the algorithms (that, as already mentioned, are
better trained for “cavities” rather than “surfaces”). To further investigate this aspect,
we expanded our computational analysis by performing a molecular dynamics (MD)
experiment, in which each crystallographic ligand was left free to move for 5ns (three
replicas per system). This approach (known as “MD post-docking”) has already become
part of our computational protocol [27,28] and is based on the fact that the conformations
of the ligands, which are less prone to be displaced from their initial position during the
simulation, are related to higher stability and binding strength with the target. In the case
presented, this principle was applied directly to the crystallographic conformations of the
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ligands rather than to docking poses. This was performed because the goal was not to
select the most promising molecules in binding to a specific region of the protein; instead,
the objective was to elucidate which are the features of the crystallographic ligands that
tend to guarantee a tighter binding with the receptor. Our evaluation demonstrated that the
molecules bound to the orthosteric pocket of Mpro keep their position much stronger than
the molecules crystallized on other sites, further validating our solvent exposure-based
theory. A representation of the Mpro ligands crystallized in the various sites of the protein
is given in Figure 2.

Figure 2. Representation of all the crystallographic ligands of Mpro superposed. To give a better
view, just one protein structure is represented (the one coming from PDB:7L10). The ligands which
are crystallized inside the catalytic pocket are colored in magenta, while all the small molecules
crystallized outside the orthosteric binding site are colored in cyan.

2. Results and Discussion
2.1. Scenario 1—Docking Calculations without Considering the Crystallographic Water Molecules

The results of our docking protocol for this section (which are numerically reported in
the Supplementary Materials File “Selfdocking_scenario1.csv”) are graphically represented
with colormaps. All the colormaps present in this study are based on a colorimetric scale
delineating the RMSD values, starting from 0 Å, which corresponds to a molecular docking
pose exactly super posable to the crystallographic one (maximum docking performance,
represented by the dark blue color), and reaching values of 5 Å or higher (minimum docking
performance, all represented by the dark red color), corresponding to a very low level of
overlap between the coordinates of the pose produced and the ones of the crystallographic
conformation. The colormaps in Figure 3 show the self-docking results obtained on the
different Mpro crystal structures in the case in which water molecules are not considered in
the calculation. As is depicted, the RMSD values were far lower for all the complexes in
which the crystallographic ligand is located in the orthosteric pocket.
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Figure 3. Colormaps represent the results of the self-docking experiments in the case in which the
crystallographic water molecules are not considered during the docking runs. (A) Results coming
from the average of the RMSDs of all the poses for each docking run. (B) Results derived just from
the RMSD between the crystallographic ligand coordinates and the pose classified as the best from
the scoring function. (C) Results of the self-docking experiments if just the pose showing the best
RMSD value between its coordinates and the crystallographic ones are retained. The x-axis lists
all the different protein–ligand complexes, which are plotted against the different pairs docking
program-scoring function used for this study, reported in the y-axis.

To give a better resolution of this, we separated each map into two different colormaps,
one grouping all the 78 proteins in which the ligand is located into the catalytic pocket, and
one including all other cases (41 complexes).

We analyzed the data coming from the calculations, and we determined that, looking
at all the complexes with all the different couples docking program-scoring functions,
we see that the average values of all the RMSDs obtained was 5.76Å (“RMSD_average”).
Looking at the average of the RMSDs coming from the poses which were scored as the best
ones from the algorithms’ scoring functions (“RMSD_scor_func”), we see that the value
was 5.10Å. If the lowest RMSD values only are taken into account for each docking run
(“RMSD_sorted”), the mean of the values was 3.70Å.

The average values were also calculated separately for all the complexes in which
the crystallographic ligand is located in the catalytic pocket, and for all other cases. The
colormaps for these different conditions are reported in Figures 4 and 5.

First, the analysis focused on the complexes having the crystallographic ligand located
within the orthosteric pocket. For this set of systems, we calculated the average RMSD value
of all the poses (“RMSD_average”), which was revealed to be 4.54Å. Then we computed
the average of the RMSD values coming from the poses which were ranked with the best
score from the scoring functions (“RMSD_scor_func”), and its value was 3.43Å. Finally,
the average RMSD value of the poses with the lowest RMSD in each run was calculated
(“RMSD_sorted”), and its measure was 2.45Å.

Second, the same steps were performed for the rest of the protein–ligand complexes,
which are the ones in which the crystallographic ligand is located outside the orthosteric
binding site. Moreover, in this case, the first passage involved the calculation of the average
RMSD value of all the poses generated for these systems (“RMSD_average”), and its
measure was 8.08Å. Then, the mean of the RMSD values coming from the poses which
received the highest rank from the scoring functions was calculated (“RMSD_scor_func”)
and was revealed to be 8.29Å. In the end, the average value of the lowest RMSDs of each
run was computed (“RMSD_sorted”), and its measure was shown to be 6.08Å.
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Figure 4. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized inside the orthosteric pocket in the situation in which the crystallographic water molecules
are not considered during the docking runs. (A) Results coming from the average of the RMSDs of all
the poses for each docking run. (B) Results derived just from the RMSD between the crystallographic
ligand coordinates and the pose classified as the best from the scoring function. (C) Results of the
self-docking experiments if just the pose showing the best RMSD value between its coordinates and
the crystallographic ones is retained. The x-axis lists all the different protein–ligand complexes, which
are plotted against the different pairs docking program-scoring function used for this study, reported
in the y-axis.

Figure 5. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized outside the orthosteric pocket in the case in which the crystallographic water molecules
are not considered during the docking runs. (A) Results coming from the average of the RMSDs of all
the poses for each docking run. (B) Results derived just from the RMSD between the crystallographic
ligand coordinates and the pose classified as the best from the scoring function. (C) Results of the
self-docking experiments if just the pose showing the best RMSD value between its coordinates and
the crystallographic ones is retained. The x-axis lists all the different protein–ligand complexes, which
are plotted against the different pairs docking program-scoring function used for this study, reported
in the y-axis.

The results obtained for Scenario 1 are summarized in Table 1.
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Table 1. Table representing the self-docking results obtained for Scenario 1.

Results for Scenario 1—Docking Calculations Executed without Considering the Water Molecules

RMSD_Average (Å) RMSD_Scor_Func (Å) RMSD_Sorted (Å)

All the 119 protein–ligand complexes 5.76 5.10 3.70

The 78 complexes with the ligand inside
the catalytic pocket 4.54 3.43 2.45

The 41 complexes with the ligand outside
the catalytic pocket 8.08 8.29 6.08

2.2. Scenario 2—Docking Calculations Considering the Crystallographic Water Molecules

The outcomes of our molecular docking experiment for this section (which are re-
ported in the Supplementary Materials File “Selfdocking_scenario2.csv”) are graphically
represented with colormaps, which were created with the same criteria listed in the previ-
ous paragraph. The results reported in the colormaps in Figures 6–8 reveal the self-docking
performance obtained on the different Mpro crystal structures in the case in which the
crystallographic water molecules within 5 Å from the ligand were retained during the
calculation. Moreover, in this case, it is easy to notice that the values result in being
far better for the complexes in which the small molecule of interest is in the orthosteric
binding site.

Figure 6. Colormaps represent the results of the self-docking experiments in the case in which the
crystallographic water molecules at 5 Å or nearer to the ligand itself are taken into account during the
docking runs. (A) Results coming from the average of the RMSDs of all the poses for each docking
run. (B) Results derived just from the RMSD between the crystallographic ligand coordinates and
the pose classified as the best from the scoring function.(C)Results of the self-docking experiments if
just the pose showing the best RMSD value between its coordinates and the crystallographic ones is
retained. The x-axis lists all the different protein–ligand complexes, which are plotted against the
different pairs docking program-scoring function used for this study, reported in the y-axis.
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Figure 7. Colormaps represent the results of the self-docking experiments just for the ligands
crystallized inside the orthosteric pocket in the situation in which the crystallographic water molecules
at 5 Å or nearer to the ligand itself are taken into account during the docking runs. (A) Results coming
from the average of the RMSDs of all the poses for each docking run. (B) Results derived just from
the RMSD between the crystallographic ligand coordinates and the once of the pose classified as the
best from the scoring function. (C) Results of the self-docking experiments if just the pose showing
the best RMSD value between its coordinates and the crystallographic ones are retained. The x-axis
lists all the different protein–ligand complexes, which are plotted against the different pairs docking
program-scoring function used for this study, reported in the y-axis.

Figure 8. Colormaps represent the results of the self-docking experiments only for the ligands
crystallized outside the orthosteric pocket in the situation in which the crystallographic water
molecules at 5 Å or nearer to the ligand itself are taken into account during the docking runs.
(A) Results coming from the average of the RMSDs of all the poses for each docking run. (B) Results
derived just from the RMSD between the crystallographic ligand coordinates and the once of the
pose classified as the best from the scoring function. (C) Results of the self-docking experiments if
just the pose showing the best RMSD value between its coordinates and the crystallographic ones are
retained. The x-axis lists all the different protein–ligand complexes, which are plotted against the
different pairs docking program-scoring function used for this study, reported in the y-axis.

Similar to the first scenario, we divided each colormap into two sets, one with the
78 proteins having the ligand located into the catalytic pocket, and the other including all the
remaining cases (41 proteins). Considering all the protein–ligand complexes with all the dif-
ferent pairs docking program-scoring function, the mean values of all the RMSDs obtained
(“RMSD_average”) was 5.64Å, but focusing only on the mean of the RMSDs derived from
the poses which were given the highest rank from the algorithms (“RMSD_scor_func”),
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the value resulted to be 4.83Å. Looking only at the best RMSDs for each docking run
(“RMSD_sorted”), we see that the average of the values was 3.68 Å.

As already performed for Scenario 1, also in Scenario 2, the analysis was divided
between the complexes in having the crystallographic ligand crystallized into the catalytic
pocket, and for all other situations.

We reported the colormaps which resulted from this evaluation, and those are repre-
sented in Figures 7 and 8.

We started from the complexes in which the ligand is located inside the catalytic
pocket in the crystal. For those systems, the mean of the RMSD values coming from all the
poses(“RMSD_average”) resulted in being 4.22Å. Then, the average of the RMSDs derived
from the scoring function highest-ranked poses in all the docking runs (“RMSD_scor_func”)
was computed, and its value was 3.11Å. In the end, also the average value between the
lowest of the RMSDs in each docking run was calculated (“RMSD_sorted”) and was
revealed to be 2.26Å.

Second, we repeated the analysis for all the complexes in which the crystallographic
ligand is located outside the orthosteric pocket. For these systems, the average of the RMSD
coming from all the poses collected in the docking runs (“RMSD_average”) was calculated
to be 8.32Å. Next, we computed the mean of the RMSD values derived from the poses which
received the highest score (from the scoring functions) in each run (“RMSD_scor_func”),
and this value was 8.11Å. Last, also the average value between the lowest of the RMSDs in
each docking run was calculated (“RMSD_sorted”), giving 6.36 Å.

The results obtained for Scenario 1 are summarized in Table 2.

Table 2. Table representing the self-docking results obtained for Scenario 2.

Results for Scenario 2—Water Molecules 5 Å or Nearer to the Ligand Considered in Docking Calculations

RMSD_Average (Å) RMSD_Scor_Func (Å) RMSD_Sorted (Å)

All the 119 protein–ligandcomplexes 5.64 4.83 3.68

The 78 complexes with the ligand inside
the catalytic pocket 4.22 3.11 2.26

The 41 complexes with the ligand outside
the catalytic pocket 8.32 8.11 6.36

Just analyzing the numbers coming from the average values allows us to see how the
performance of the docking programs dramatically increases when the ligand is docked
inside the catalytic pocket rather than on the surface of the protein, in line with the fact that
the molecules have a limitation in the conformation that they can explore into a binding
site. Together with this, the ligands can exploit their accessible surface area to interact with
the protein more efficiently, following the principle of “complementarity” [29,30].

2.3. Solvent Exposure Analysis

The results of the docking calculations were then analyzed in light of the data coming
from the solvent exposure analysis. For each docking program-scoring function pair, the
best RMSDs given by the docking calculation were evaluated against the solvent exposure
of the ligand in its crystallographic pose. The results were reported in different plots, one
for each couple docking program-scoring function, also in this case dividing the graphs in
respect to the “scenario” from which the docking result was coming. To give an example,
we reported in this article the plots for the pair GOLD-goldscore for each of these cases
(Figures 9 and 10).
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Figure 9. Scatter plots showing the different distribution of the RMSD values between the coordinates
of the best pose from the GOLD-goldscore docking experiment in respect to the solvent exposure
of the corresponding crystallographic ligands. The red dots represent the values having the ligand
crystallized inside the catalytic pocket while the blue dots represent the ligands crystallized on
the other sites of Mpro. As can be noticed, the molecules showing the best values of RMSD are, in
most cases, located inside the orthosteric pocket and characterized by low solvent exposure. This
plot depicts part of the results of Scenario 1, and so the crystallographic water molecules are not
considered in the docking runs of which the outcomes are here represented.

Figure 10. Scatter plots showing the different distribution of the RMSD values between the coor-
dinates of the best pose from the GOLD-goldscore docking experiment in respect to the solvent
exposure of the corresponding crystallographic ligands. The red dots represent the ligands that are
originally crystallized inside the catalytic pocket, while the blue dots represent the ligands crystallized
in the other parts of Mpro. As can be noticed, the molecules showing the best values of RMSD are
in most cases located inside the orthosteric pocket and characterized by low solvent exposure. This
plot depicts part of the results of Scenario 2, meaning that the crystallographic water molecules at
5 Å or nearer to the ligand are also considered in the docking runs of which the outcomes are here
represented.
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The plots arising from all other docking program-scoring function pairs, both in
Scenario 1 and Scenario 2, are reported in Supplementary Materials Figure S1. From these
graphs, we can easily see how the best RMSDs values tended to be derived from protein–
ligand complexes in which the solvent exposure of the ligand is low, and, most of the
time, this means that the small molecule is crystallized in the binding pocket (indicated
with the red dots in the plots). There are some cases in which the mean RMSD values
were suboptimal also for this kind of ligands, and this can be due to several reasons. In
some situations, of which the complexes 5REH, 5RE9, 5RGK (represented in Figure 11),
and 7AVD are an example, the solvent exposure was tendentially higher in respect to the
other orthosteric ligands, while, in other cases, the increase in RMSD can be attributable to
the small dimensions of the ligand itself, making it harder for the docking algorithms to
reproduce the reference pose in a pocket of such considerable volume (the complexes 5R82
and 5RG0 are an example for this) [31].

Figure 11. Representation of the crystallographic complex conformation of 5RGK, one of the protein–
ligand complexes in which the crystallographic ligand is located inside the orthosteric binding site,
but the docking calculation results in high RMSD values. This is mainly due to the high level of
solvent exposure that characterizes this ligand, which locates just a small portion of its structure
inside the pocket, leaving the rest in an outer zone. The ligand is represented with stick representation
(C-atom are colored in magenta), and the catalytic dyad (Cys145 and His41) is highlighted, as well as
the His163 and the binding site residue interacting with the ligand. To give a better representation,
the surface of the protein in a 5 Å radius from the ligand is represented and colored in blue.

On the other hand, there are also some cases in which the best RMSD given by the
protocol was pretty low, even if the crystallographic ligand was not placed inside the
orthosteric pocket. This is the case, for example, of 7LFP (the crystallographic pose is
reported in Figure 12); the ligand was placed at the interface between the monomers, and
so its solvent exposure and RMSDs values were low, even if was marked to be “outside the
catalytic pocket”. A similar situation is observed on 5RF0, where the ligand, even if not
located into the orthosteric pocket, is not situated in the peripheral part of the protease.
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Figure 12. Representation of the crystallographic pose of 7LFP, which is one of the protein–ligand
complexes in which, even if the crystallographic ligand is located outside the orthosteric binding site,
the RMSD values between the original coordinates and the ones given from the docking runs are
considerably low. The reason for this can be found in the very low solvent exposure of this ligand,
which is located in the interface between the monomers, and so is shielded by them. The ligand is
represented in orange, and the catalytic dyad (Cys145 and His41) of both monomers is highlighted.
To give a better representation, the surface of the protein in a 5 Å radius from the ligand is represented
and colored in blue.

2.4. Molecular Dynamics Simulations

For each of the 119 crystallographic complexes, three different molecular dynamics
simulations (MD) of 5 ns each were collected to examine the behavior of the ligands in
a dynamic environment. The trajectories were wrapped, aligned to the first frame and
the root-mean-square fluctuation (RMSF) of the ligand, as well as the RMSD between
its crystallographic and final coordinates (“RMSD_final”), and were calculated for every
single experiment. For each protein, the values coming from the average of the RMSFs and
“RMSD_final” derived from the replicas were considered. Considering all the simulations
collected, the average of all the ligand RMSF values was calculated to be 5.28 Å, while the
average of the RMSD values between the coordinates of the crystallographic conformation
of the ligand and the ones coming from the last frame of the trajectory (“RMSD_final”) was
of 8.89 Å.

As already performed for the docking results analysis, we first focused on the com-
plexes in which the crystallographic ligand is originally located inside the orthosteric
pocket. For these systems, the average of all the RMSFs coming from the simulations was
2.19 Å. The mean value of the RMSDs of the ligands in the last frame of each trajectory
(“RMSD_final”) was instead calculated to be 4.43 Å.

Second, we concentrated on the systems in which the crystallographic position of the
ligand (and so its initial location) is outside the catalytic pocket. For these systems, the
average value of all the ligand RMSFs during the trajectories was calculated to be 11.15Å.
Then the RMSD value between the final coordinates of the ligands and their crystallographic
ones (“RMSD_final”) were considered. The average of these values, for all the trajectories
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collected for these complexes, was 17.66Å. The output files of the molecular dynamics
simulation geometric analysis are available in Supplementary Materials “MD_data.csv”.

As already performed for the docking experiments, also for MD results, the average
values of RMSF and “RMSD_final” were plotted against the percentage of solvent exposure
of the crystallographic conformation of the ligand, and the plots that were obtained are
reported in Figures 13 and 14.

As expected, the complexes in which the ligand is crystallized in the orthosteric site
(marked with the red dots in the scatter plot) tended to fluctuate much less than the ligands
which are complexed in the external parts of the protease (represented with the blue dots
in the graphs). As depicted, MD analysis confirms that the best values in terms of RMSF
and “RMSD_final”, which are correlated to a more energetically stable situation for the
protein–ligand complex, come from the systems in which the crystallographic ligand is
localized inside the catalytic pocket and are characterized by a low percentage of solvent
exposure. These outcomes further support the already-mentioned hypothesis about the
correlation between the improvement of the docking performances in the case in which the
binding site is a pocket rather than a surface.

The overall results obtained with molecular dynamics simulations are summarized in
Table 3. A graphical representation of the molecular dynamics simulations is reported in
Supplementary Materials “Video_S1.mp4”. In this video, the ligands crystallized into the
catalytic pocket are colored in magenta, while the other ligands are colored in cyan.

Figure 13. Scatter plots showing the different distribution of the mean RMSF values between the
coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics
simulations in respect to the solvent exposure of the corresponding crystallographic ligands. The red
dots represent the ligands thatwere originally crystallized inside the catalytic pocket, while the blue
dots represent the ligands crystallized in the other parts of Mpro. As can be noticed, the molecules
showing the best values of RMSF after the analysis of the trajectories are mainly located inside the
catalytic pocket and characterized by a low solvent exposure of the original crystallographic pose.
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Figure 14. Scatter plots showing the different distribution of the mean RMSD values between the
final coordinates of the Mpro ligands compared to crystallographic ones after the molecular dynamics
simulations in respect to the solvent exposure of the corresponding crystallographic ligands. The red
dots represent the ligands thatwere originally crystallized inside the catalytic pocket, while the blue
dots represent the ligands crystallized in the other parts of Mpro. As can be noticed, the molecules
showing the best values of RMSF after the analysis of the trajectories are mainly located inside the
catalytic pocket and characterized by a low solvent exposure of the original crystallographic pose.

Table 3. Results of the molecular dynamics experiments.

Results of the Molecular Dynamics Simulations

RMSD_Final (Å) RMSF_Average (Å)

All the 119 protein–ligandcomplexes 8.98 5.28

The 78 complexes with the ligand inside
the catalytic pocket 4.43 2.19

The 41 complexes with the ligand outside
the catalytic pocket 17.66 11.15

3. Materials and Methods
3.1. Software Overview

The molecular modeling operations were executed with the Molecular Operating
Environment (MOE) suite (version 2019.01) [32]. The molecular docking calculations were
carried out with CCDC GOLD (version 2020), Schrodinger Glide (from the Schrödinger
suite 2021.3), and PLANTS. The solvent exposure calculation was performed with a series
of SVL commands (exploiting “moebatch” of the MOE suite) implemented into a python
script. The systems for molecular dynamics simulations were prepared by using tleap [33]
and VMD [34]. The simulations were then carried out with ACEMD3 [35](version 3.3.0), a
licensed program based upon OpenMM [36] (version 7.4.0). The modeling and docking
calculations were performed on a 12 CPU (Intel Xeon E5-1620 3.50 GHz) Linux Worksta-
tion, while the MD simulations were carried out on a GPUs-cluster based composed of
20 NVIDIA GPUs.
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3.2. Structure Preparation for Docking Calculations

The different crystal structures of Mpro were collected from the Protein Data Bank [37].
Among these, the proteins which did not present any ligand, or which were complexed
with a covalent ligand, were excluded. This way, only the non-covalent protein–ligand
complexes were retained, and the complete list of all the 119 complexes used is available in
Supplementary Material Table S1. The structures were grouped into a database and were
prepared with MOE “QuickPrep” tool. With this tool, each complex was properly prepared
to recreate the small missing loops in the structure, assigning the proper conformation to
the residues with alternate orientation (based on occupancy) and adding the hydrogens
to the system (this last passage was performed with the MOE “Protonate 3D” tool). The
hydrogens added this way were then minimized by using the AMBER10:EHT force field
implemented in MOE [38].

After these preliminary but crucial steps, each complex was manually examined and
treated to eliminate every molecule, except for the crystallographic waters and the main
ligand. Each complex was then independently saved.

3.3. Docking Calculations

For each of the complexes prepared, the crystallographic ligand was separated from
the protein and self-docked into its binding site. For each docking program, all the scoring
functions available were used for separate runs, and in each run, 5 poses were collected
for the ligand. GOLD supports 4 different scoring functions: goldscore, chemscore, asp,
and plp; Glide supports two main functions for docking, which are Glide-SP and Glide-XP,
while PLANTS implements plp and chemplp.

For each docking-program-scoring function couple, the docking calculation was car-
ried out in two different scenarios: one in which the crystallographic water molecules were
not considered (which we refer to as Scenario 1) and one in which also the water molecules
5 Å or nearer from the ligand atoms were taken into account into the computation (which
we refer to as Scenario 2).

When all the docking calculations were executed, the ligand root-mean-square devi-
ation (RMSD) between the coordinates of each one of the poses and the crystallographic
conformations were computed. The data of major interest were the RMSD in respect to
the pose which is marked with the highest score by the program (RMSD_scor_func), the
lowest RMSD of the docking run (RMSD_sorted), and the average of the RMSDs of all
the poses generated (RMSD_average). The output files of the self-docking experiments
executed are available in the Supplementary Materials (“Selfdocking_scenario1.csv” and
“Selfdocking_scenario2.csv”).

3.4. Solvent Exposure Calculation

For each Mpro complex, the solvent exposure of the main crystallographic ligand
was calculated with an SVL script based on MOE “moebatch”. The output of such cal-
culation was the percentage of the ligand surface which is exposed to the solvent in the
protein–ligand crystallographic complex. All the percentages obtained are presented in
Supplementary Materials Table S2.

3.5. Molecular Dynamics Simulations Setup and Execution

All the protein–ligand Mpro systems were independently prepared for molecular
dynamics simulations. The program tleap was used for the creation of the simulation box,
which was set to be cubic and characterized by a 15 Å padding. The solvation model used
was the explicit TIP3P, and the neutralization of the system was performed by adding Na+

and Cl− ions until the salt concentration inside the box reached the value of 0.154 M.
The systems then underwent a two-passage equilibration. In the first one, both protein

and ligand atoms were subjected to a harmonic position restrain of 5 kcal/mol. The length
of this step was set to 0.1 ns, and the ensemble used was the canonical one (NVT). During
the second equilibration step, the ensemble was set to NPT (isothermal–isobaric), the length
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was 0.5 ns, and the harmonic restrains (always 5 kcal/mol) were applied both on the ligand
and on the alpha-carbons of the protein backbone.

After these preliminary steps, 3 replicas of 5 ns each were collected for each system;
the ensemble was again the NVT one, and no restraints were applied. At the end of the
simulations, the average root-mean-square fluctuation (RMSF) of the ligand during the
trajectory, as well as the RMSD betweencrystallographic coordinates of the ligand and the
ones coming from the last frame of the trajectory, were collected.

4. Conclusions

In this study, we evaluated the performance of three orthogonal docking algorithms
in reproducing the crystallographic pose of several ligands located in different parts of
the same target, which, in our case, was the SARS-CoV-2 main protease (Mpro). Our
analysis revealed how, even if the docking programs used operate in different ways to
give the final conformations to the user, all of them perform much better in the case in
which the ligands are located in a binding pocket rather than crystallized outside of it.
Specifically, we reported that their performance tends to decrease with the increment of
the exposure of the crystallographic pose to the solvent. This was confirmed both from
the experiments executed without considering the crystallographic water molecules in the
docking calculations and from the ones taking into account the waters 5 Å or nearer to the
ligand. Molecular dynamics simulations further give credit to our study, demonstrating
how the less-fluctuating ligands (and so the most stable) through the trajectories were the
ones crystallized inside the orthosteric binding site of Mpro.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15020180/s1: “Supplementary_material.docx” (containing Table S1, Table S2, and Figure
S1), the CSV files “Selfdocking_scenario1.csv”, “Selfdocking_scenario2.csv” and “MD_data.csv”,
“Video_S1.mp4”.
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Abstract: DNA is a molecular target for the treatment of several diseases, including cancer, but
there are few docking methodologies exploring the interactions between nucleic acids with DNA
intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and
Consensus, implemented into Molecular Architect (MolAr), were evaluated for their ability to
analyze those interactions, considering visual inspection, redocking, and ROC curve. Ligands were
refined by Parametric Method 7 (PM7), and ligands and decoys were docked into the minor DNA
groove (PDB code: 1VZK). As a result, the area under the ROC curve (AUC-ROC) was 0.98, 0.88,
and 0.99 for AutoDock Vina, DOCK 6, and Consensus methodologies, respectively. In addition,
we proposed a machine learning model to determine the experimental ∆Tm value, which found a
0.84 R2 score. Finally, the selected ligands mono imidazole lexitropsin (42), netropsin (45), and N,N′-
(1H-pyrrole-2,5-diyldi-4,1-phenylene)dibenzenecarboximidamide (51) were submitted to Molecular
Dynamic Simulations (MD) through NAMD software to evaluate their equilibrium binding pose
into the groove. In conclusion, the use of MolAr improves the docking results obtained with other
methodologies, is a suitable methodology to use in the DNA system and was proven to be a valuable
tool to estimate the ∆Tm experimental values of DNA intercalating agents.

Keywords: computer drug design; molecular docking; molecular dynamic simulation; virtual screening;
MolAr; DNA intercalating agents

1. Introduction

Drugs interacting with DNA are among the most effective anticancer agents [1], but
their low selectivity makes them highly toxic, a major drawback that calls for new studies
and strategies to develop drugs selective towards DNA in cancerous cells [2].

One of the strategies for the development of new drugs is to identify small molecules
through a systematic analysis of large groups of compounds with drug-like properties.
An experimental approach commonly used is the high throughput screening (HTS), an
automated process using robots for a systematic search. It is a costly technique due to
the number of compounds to be acquired, the cost of purchase and operation of sophis-
ticated robots [3], and experimental considerations such as stability and solubility of
the compounds.

An alternative to HTS is the virtual high-throughput screening (vHTS or VS), an in
silico method to test large groups of compounds, including databases available online

301



Pharmaceuticals 2022, 15, 132

containing millions of molecules. This technique also allows the design and virtual testing
of theoretical compounds prior to synthesis or acquisition, reducing the cost and time
required to find compounds with a high potential for further development [3,4]. VS
methods use molecular docking to study the interaction between small molecules and
their receptors [5], a method that has been evaluated for protein-ligand systems, and more
recently have been used to model DNA-ligand complexes [6–8]. However, most docking
programs use algorithms that are not suitable for modeling DNA due to its high charge
density [1], prompting the need for a more adequate in silico model for nucleic acids.

Several studies have been done trying to develop a molecular docking software
appropriate for DNA modeling. Ricci and Netz [9] developed a method to predict the
binding mode of small molecules to DNA using AutoDock 4.0 [10], which used distinct
DNA receptors in the most common conformations related to the most common binding
poses to suppress the importance of the receptor’s flexibility in the algorithm.

Srivastava et al. [11] described a systematic computational analysis of 57 DNA ligands
through four docking protocols, with the following root-mean-square deviation (RMSD)
for the best ligands: GOLD [12] (1.24 Å), Glide [13] (1.23 Å), CDOCKER [14] (1.44 Å), and
AutoDock [10] (1.57 Å). GOLD and GLIDE, with similar values, were shown to have a
better performance and being the most suitable for modeling nucleic acid-ligand complexes.
Molecular dynamics simulations showed that the DNA duplex skeleton underwent minor
deviations in the complex, supporting docking protocols even though the receptor is kept
rigid. However, the area under the ROC curve (AUC) of these methodologies was not
evaluated. ROC curve is an important metric to check the capacity of methodology to
distinguish false positive results. Fong and Wong [15] evaluated four scoring functions
(AutoDock [10], ASP@GOLD [16], ChemScore@GOLD [17], and GoldScore@GOLD [12])
for DNA-ligand complexes, and the scoring functions reproduced the experimental crystal-
lographic structure complexes. It is noteworthy that these previous studies improved their
results by combining more than one scoring function.

Good RMSD results were obtained in previous studies, but the ranking capacity of
these docking methods was not evaluated. Our study used Molecular Architecture (Mo-
lAr) [18] software to predict DNA-ligand poses. MolAr is a docking workflow that allows
an integrated and automated virtual screening (VS) process, from protein preparation
(homology modeling and protonation state) to virtual screening with different methods.
MolAr is open access and free of charge (available at http://www.drugdiscovery.com.br,
accessed on 20 May 2020), allowing users to perform all the docking steps in a unique
interface with a simple and intuitive operation. It uses AutoDock Vina [19], DOCK 6 [20],
and Consensus Virtual Screening (CVS) docking protocols. AutoDock Vina uses a hybrid
scoring function that combines knowledge-based and empiric scoring function features.
DOCK 6 offers physics-based energy score functions based on force fields and score func-
tions (GRID and AMBER scores). CVS is a ranking normalized combination of the results
of AutoDock Vina and DOCK 6, reducing the chance of false positive results [18]. Our
results were evaluated for DNA-ligand model systems [11] through visual inspection of
the RMSD and ROC curves. In addition, docking binding energy and descriptor values
of ligands were used as a predictor to calculate the ∆Tm experimental values of 11 DNA
ligands previously reported. Dynamic molecular simulations were also used to clarify their
intermolecular interactions with DNA.

2. Results

A visual inspection was performed on the 1VZK structure to identify the principal
forces for molecular recognition. Figure 1 shows the 3D structure of the target 1VZK and a
2D diagram with its crystallographic ligand (D1B). The ligand is complexed into the minor
groove of DNA (Figure 1a) through hydrogen bonds between amidinic moieties and the
carbonyl oxygen of nitrogenous bases. Hydrophobic interactions can also be observed
between the benzimidazole and aromatic and with nitrogenous bases (Figure 1b).
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(a) 

 
(b) 

Figure 1. (a) The crystallographic structure of molecular target under PDB code 1VZK; (b) a close
view of the intermolecular interactions between ligand (D1B) in the minor DNA groove of the 1VZK.
The red circles and ellipses in each plot indicate protein residues. Hydrogen bonds are shown as
green dotted lines, while the spoked arcs represent residues making van der Waals interactions with
the ligand generated with LigPlot+.
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In general, redocking is the first evaluation method to be used in the docking process.
This process shows (i) the correct elaboration of grid box parameters; (ii) the capacity of
the docking method of reproducing the crystallographic binding pose; (iii) the acquisition
of binding energies that can be used to rank the compounds. Usually, the redocking is
evaluated by the RMSD value between the crystallographic binding pose and redocking
results. The RMSD value between 1VZK and D1B ligand was 0.65 Å by AutoDock Vina,
while the threshold value is 2.0 Å [20]. This result was better than previous docking
methodologies, GOLD, GLIDE, CDOCKER, and AUTODOCK, which had values ranging
from 1.23 Å to 1.57 Å [11].

2.1. Molecular Docking

The docking performance was evaluated by calculating the AUC-ROC, EF values, and
BedROC. AUC-ROC has been used to check if the docking method can distinguish false
positives from true positives [21]. The AUC-ROC values for our test compounds were 0.98,
0.88, and 0.99 for AutoDock Vina, DOCK 6 (Amber Score), and CVS, respectively. Moreover,
the enrichment factor (EF) value [22] reflects the ability of the docking calculations to find
true positives throughout the background database compared to random selection. Thus, it
indicates how good the set formed by the top x% ranked compounds is compared to a set
of equal size selected randomly from the entire collection of compounds. EFs values are
calculated utilizing a percentage of the data set. For example, EF5% represents the value
obtained when 5% of the database was screened. The EF value is defined by:

EF % =
actives %

compounds %
×

total compounds
total actives

(1)

Previous reports show CVS having the best EF values, compared to DOCK 6 and
AutoDock Vina, which can be explained by the use of AutoDock Vina output as the input
for DOCK 6. Consequently, AUC-ROC had values corroborated by the EF values; in other
words, the EF validates AUC-ROC results, especially with the performance at EF 1%,
showing the CVS method could distinguish 100% of molecules [18].

The BedROC [23] value was calculated to confirm these AUC-ROC and EF results.
BedROC uses exponential weighting to give early rankings more weight than the latest
rankings of active compounds. The BedROC values were 0.60, 0.52, and 0.83 for AutoDock
Vina, DOCK 6 (Amber Score), and CVS, respectively. As in AUC-ROC and EF the values of
CVS are better than AutoDock Vina and DOCK6 (Amber Score).

Finally, Machine Learning was used to develop a model to predict ∆Tm experimental
values. ∆Tm represents the change in the melting temperature of DNA upon drug binding,
being directly correlated with the binding energy, and is a valuable tool to evaluate the
docking results. Six algorithms of linear regression were implemented as follows: (i) Gradi-
ent Boosting Regressor [24]; (ii) Random Forest Regressor [25]; (iii) Linear Regressor [26];
(iv) Voting Regressor [27] between algorithms (i), (ii) and (iii), (v) Lasso [28] and (vi) Elastic
Net [29]. The results are summarized in Table 1, with Mean Squared Error (MSE) and R2

score information. The Gradient Boosting Regressor shows the best result, with an R2 score
of 0.84, and the worst is the Random Forest Regressor with an R2 score of 0.33.

Table 1. Regression Linear values calculated for the Prediction of ∆Tm values.

Algorithm MSE R2 Score

Gradient Boosting Regressor 3.06 0.84
Random Forest Regressor 13.05 0.33

Linear Regressor 6.18 0.68
Voting Regressor 4.48 0.77

Lasso 7.88 0.59
Elastic Net 7.18 0.63

304



Pharmaceuticals 2022, 15, 132

2.2. Molecular Dynamics

The five best CVS results and the original ligand were chosen for simulation and
presented in Figure 2, where the conformation changes of each of these ligands during the
MD simulation were analyzed.

 

− −
− − − −

Figure 2. Ligands chosen for MD simulations after docking simulation.

The average energy for the total system, in Kcal/mol was −55,067.1, −55,473.3,
−55,507.2, −55,137.1, −54,524.8, and −54,988.1 to ligands 51, 42, 45, 15, 43, and 44, re-
spectively. The total energy graph shown in Figure 3 demonstrates an example of how
the energy has a minimal variation. All energy graphs (available in the Supplementary
Material, Figure S3) remained in equilibrium throughout the entire MD simulation.

− −
− − − −

Figure 3. Example of Total Energy (Kcal/mol) calculated in Dynamic Molecular Simulation for
interactions with DNA and ligand 51.

The simulations were carried out in 50 ns to observe if there were significant confor-
mational changes during the trajectory, with the results summarized in Figure 4. As can be
observed, the ligands 42, 45, and 51 have the best results with an RMSD variation below
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1Å. The original ligand and ligands 43 and 44 showed a major variation of approximately
2, 5, and 4 Å, respectively.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. RMSD graphs for: (a) 45; (b) 51; (c) 42; (d) 15; (e) 44; (f) 43 ligands complexed with DNA
during 50 ns.

The intermolecular interactions of structures in equilibrium can be observed in Figure 5.
As can be observed, the ligands 45 (5a), 51 (5b), 42 (5c), 15 (5d) were able to form hydrogen
bonds and van der Waals interactions; whereas the ligands 44 (5e) and 43 (5f) carried out
van der Waals interactions with nucleic acids.
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(a) 

 

 
 

(b) 

Figure 5. Cont.
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(d) 

 

Figure 5. Cont.
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(e) (

2D interaction diagram obtained by LigPlot+ in Dyn

 

 
) (f) 

 

 in Dynamic Molecular Simulation for interactions

Figure 5. 2D interaction diagram obtained by LigPlot+ in Dynamic Molecular Simulation for inter-
actions with DNA and ligand: (a) 45; (b) 51; (c) 42; (d) 15; (e) 44; (f) 43. The red circles and ellipses
in each plot indicate protein residues. Hydrogen bonds are shown as green dotted lines, while the
spoked arcs represent residues making van der Waals interactions with the ligand.

Finally, to improve the analysis of RMSD values fluctuation, the heat map was plotted
with the best ligands using VMD software. Figure 6 shows the heat map for ligands 45, 51,
45, and 15, Figure 6a–d, respectively. In general, the DNA structure is kept rigid during the
MD trajectory with low variation. However, the highest fluctuation can be observed for all
ligands reaching values ranging from 1.2 to 8.27.

 
(a) 

 
(b) 

 

Figure 6. Cont.
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(c) 

 
(d) 

Figure 6. Heat Map for MD simulations generated with HeatMap plugin in VMD with ligand: (a) 45;
(b) 51; (c) 42; (d) 15.

3. Discussion
3.1. The Best Docking Methodologies to Study the DNA System

In this study, we use AUC-ROC, EF, and BedROC to evaluate the best docking
methodology for DNA intercalating agents, comparing AutoDock Vina, DOCK6, and
CVS. AutoDock Vina is an important tool to find the correct pose of ligand into the binding
site [19]; however, the ranking among the ligands has not been carried out properly. In
addition, the score function of AutoDock Vina does not consider the charges. On the other
hand, the score function of DOCK 6 [20], Amber score, includes the AM1-BCC charges of
the system. Consequently, the AM1-BCC charges have been determined for a start pose
obtained from AutoDock Vina output, improving the accuracy of charge calculations.

AUC-ROC was used to check if the docking method can distinguish false positives
from true positives. AUC values close to 1 suggest good discrimination between false and
true positives, whereas values closer to 0.5 show a random process, and values higher than
0.7 represent a good distinguishing power [21].

EF indicates how good the set formed by the top x% ranked compounds is when com-
pared to a set of equal size selected randomly from the entire collection of compounds. EF
corroborates AUC-ROC [18], yielding even better results with CVS methodology. BedROC
calculated values were 0.60, 0.52, and 0.83 for AutoDock Vina, DOCK 6 (Amber Score), and
CVS, respectively, confirming that CVS is the best methodology.

The model of linear regression summarized in Table 1 shows the results of the imple-
mentation of six linear regressors. The Gradient Boosting Regressor shows the best result,
with an R2 score of 0.84, and the worst is the Random Forest Regressor with an R2 score
of 0.33. Gradient Boosting Regressor (GBR) is a generalization of boosting to arbitrary
differentiable loss functions. GBR is an accurate and effective off-the-shelf procedure that
can be used for both regression and classification problems in a variety of areas. Our GBR’s
result is better than Srivastava’s studies [11], which used docking information from GOLD,
GLIDE, CDOCKER, AUTODOCK 4, Average Information Content level 2, and chemical
hardness. Thus, our Machine Learning model was able to estimate ∆Tm value with more
accuracy than previous reports.

3.2. Molecular Dynamics Simulations

MD simulations were performed to obtain information about the ligands’ interaction
and stability into the DNA groove. According to the results of total energy, ligand 51
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obtained the lower energy; whereas ligand 44 obtained the highest energy value. Figure 3
demonstrates the lower variation of the system in simulation.

Figure 4 shows the RMSD results of MS simulations. Ligands 15, 42, 45, and 51 showed
a RMSD average variation below 1 Å. Both ligands 42 and 45 achieved the equilibrium
state in the beginning of the process (Figure 4a,c). Noteworthy that ligand 51 (Figure 4b)
showed a RMSD average value of 0.5 Å, indicating an absence of conformational changes
for this inhibitor, suggesting a better molecular recognition between DNA and ligand in
the DNA groove. In addition, 15 showed an RMSD average variation of 1 Å and stabilized
in the DNA groove after 20 ns of simulation, as shown in Figure 4d. Visual inspection of
the MD simulation path of 15 showed a decrease in the intermolecular interaction forces
until 20 ns, followed by complete filling of the binding site during the rest of the process.
43 and 44 showed RMSD values higher than 2 Å, and it was observed that the 2-thienyl-1H-
benzimidazole portion of 43 was more exposed to the solvent, resulting in a higher degree
of freedom and consequent adoption of various conformations. 43 presented an RMSD
value of 5.0 Å (Figure 4f), but reached equilibrium after 20 ns. 44 behaved similarly to 43,
reaching equilibrium at 35 ns (Figure 4e). 44 had the quinolinium group outside the major
DNA groove, obtaining an RMSD value of 3.5 Å.

Summarizing, all ligands achieved equilibrium within 50 ns of simulation, charac-
terizing molecular recognition. Although compounds ligand 43 and ligand 44 presented
good docking results at 15 and 28 nanoseconds of dynamic simulation, respectively, the
structures presented conformational changes, resulting from parts of the ligands leaving
the DNA groove suggesting hydrogen bonding with the solvent.

MD results corroborate the molecular docking results, with compounds 42, 45, and 51
interacting and accommodating themselves better in the smaller groove of DNA, presenting
themselves as promising compounds for further studies as anticancer drugs. Compounds
43 and 44 can be considered weak DNA intercalators because, despite good docking results,
they had a higher variation of RMSD values during MD.

The molecular interactions are depicted on Figure 5. 45, 51, 42, and 15 have hy-
drogen bonding acceptors and donors and were recognized by DNA through hydrogen
bonds and van der Waals interactions (Figure 5a–d). For instance, Figure 4a shows the
intermolecular interactions between compound 45 with DNA. This compound carried
out hydrogen bonding with CytA:7, ThyA:9, AdeB:22 and hydrophobic interactions with
ThyA:8, AdeA:10, and ThyB:20. Compound 51 (Figure 5b) was better recognized by the
DNA minor groove by performing a higher number of intermolecular interactions, such as
hydrogen bonding with AdeA:10, GuaA:11, and ThyB:20; and van der Waals interactions
with ThyA:8, ThyA:9, AdeA:12, GuaB:17, CytB:19, and AdeB:22. Compound 42 (Figure 5c)
is able to perform hydrogen bonding with CytA:6, CytA:7, ThyA:9, and AdeB:22; and
hydrophobic interactions with ThyA:8, AdeA:10, CytB:19, and ThyB:20. It is noteworthy
that the guanidinium groups of the 15 performed hydrogen bonds with CytA:6, CytA:7,
CytB:18, AdeB:22, GuaB:23, beyond several hydrophobic interactions, such as GuaA:11,
ThyB:20, and ThyB:21 (Figure 5d). These interactions with these nitrogenous bases are
essential components for intercalation within the minor DNA groove, which indicates that
this inhibitor remained well accommodated in the DNA during the dynamic’s simulation.

In contrast, both compounds 44 and 43 were not able to perform hydrogen bond-
ing with DNA. 44 (Figure 5e) carried out hydrophobic interactions, for instance, with
ThyA:9, AdeA:10, GuaA:11, AdeA:12, GuaA:13, GuaB:17, CytB:18, CytB:19, ThyB:20
and ThyB:21. Similarly, 43 performed hydrophobic interactions with ThyA:9, AdeA:10,
GuaA:11, AdeA:12, GuaB:17, CytB:18, CytB:19 and ThyB:20, as shown in Figure 4f. These
missing hydrogen bonding interactions can explain the higher RMSD fluctuations value
during MD simulations, once this interaction has an important hole in the molecular
recognition and stabilization of the ligand within the DNA groove. These findings high-
light the structure-activity relationship of guanidinium groups in the development of
antineoplastic compounds.
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Through the analysis of RMSD plots using heat map graphs (Figure 6) it is possible to
confirm the results generated by RMSD and interactions maps. 51 presented the smallest
RMSD variation (max of 2.22 Å), best RMSD graphics and total energy. 42, 45, and 15
demonstrated RMSD variation of 2.52 Å, 3.31 Å, and 8.27 Å, respectively.

4. Materials and Methods
4.1. Molecular Docking

The three-dimensional structures of 57 ligands were constructed using Marvin Sketch [30]
and 150 decoys were generated by the DUD-E platform [31]. The DNA molecular target was
obtained from the Protein Data Bank (PDB-1VZK). These ligands and targets were described
in a previous report [11] and are available in the Supplementary Material, Figure S1 [31]. The
ligands were refined by Run_Mopac [32] software using Parametric Method 7 (PM7) [33] and
Eigenvector Following routine [34].

The target was prepared by Chimera [35] by:

• removing water molecules and magnesium ions;
• adjusting the protonation state at pH 7.4;
• assigning charges using AMBERff14SB and AM1-BBC;
• minimizing the structure using 100 steps for steepest descent and 10 steps for conjugate

gradient, each step measuring 0.02 Å.

Finally, all compounds were docked against the 1VZK molecular target at the minor
groove position using a grid box with 20 × 20 × 26 Å and atomic coordinates centered
to 14.44 Å, 20.57 Å, and 8.64 Å, for x, y, and z, respectively. In order to evaluate the
best docking methods for DNA docking, three virtual screening simulations using MolAr
were performed through AutoDock Vina, DOCK 6 (Amber Score), and CSV. All method-
ologies were double-checked by redocking, measurement of the area under the Receiver
Characteristic Operator (ROC) curve (AUC-ROC), Enrichment Factor (EF), and Boltzmann-
Enhanced Discrimination (BedROC). The redocking process consisted of removing the
crystallographic ligand, with subsequent docking of the ligands into the same binding site.

In addition, we developed a machine learning model with the docking binding energy
results and molecular descriptors of the molecules hereby tested to calculate the ∆Tm
experimental values. The data frame was elaborated using the 57 compounds described
previously, from which only 11 had their ∆Tm values calculated [11]. The descriptors were
obtained using the Mordred library [36], a molecular descriptor calculator. Afterward, six
Linear Regression algorithms were performed with the following descriptors: Molecular
Weight, cLogP, cLogS, Total Surface Area, Relative Polar Surface Area, Polar Surface Area,
AutoDock Vina with major groove, AutoDock Vina with minor groove, Ehomo, E−1

homo, Elumo,
E+1

homo, DOCK 6 with Amber Score, Consensus with Grid and Amber Score, Structural
Information Content level 1, Bond Information Content level 1, and chemical hardness
[η = (Elumo − Ehomo)/2)].

4.2. Molecular Dynamics

The five best-docked ligands (according to MolAr Consensus with Amber score) were
chosen for MD simulations among the crystallographic reference ligands (PDB-ID 1VZK)
to characterize the molecular recognition between ligands and DNA. The ligands (PDB-IDs
1VZK, 1LEY, 1ZPH, 1ZPI, 261D, and 2GYX) are shown in the Supplementary Material,
Figure S2. All ligands and the energy values for all configurations are presented in the
Supplementary Material, respectively, in Figure S1 and Table S1.

The ligand-DNA complexes were inserted into a 74.15 × 52.33 × 55.58 Å simulation
box and solvated with TIP3P model water molecules [37]. Sodium chloride ions were
added to neutralize the system charge. Each system was energetically minimized with
5000 cycles using the Conjugate Gradient algorithm [38]. The nucleic acid atoms had
position restraints with an exponent of energy function of 2 and scaling of 1.0 applied
to them during the first 4000 cycles and no restraints during the last 1000 cycles. After
the energy minimization, the systems were heated to 310 K during a 30 ps equilibration
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conducted under an isothermal-isochoric ensemble (NVT), followed by a 500 ps simulation
under an isothermal-isobaric ensemble (NPT) using the Langevin piston method [39] to
maintain the total pressure to an average of 1 bar. The final production had a total of 50 ns.
Water stretching and bending motions were constrained by the SETTLE algorithm [40].
Electrostatic interactions were treated via the Particle-Mesh Ewald method [41,42] with a
12 Å cutoff radius. All simulations were performed using the CHARMM36 [41,43,44] force
field implemented into NAMD software [33], version 2.13. Analysis was performed using
VMD, version 1.9.3 [45].

5. Conclusions

Even though DOCK 6 and AutoDock Vina showed different results, the overall result
was improved when they were combined and subjected to the MolAr CVS approach. AUC-
ROC, BedROC, and EF values showed the combination was able to generate more reliable
results and a better prediction of the ligand conformation. MD is a critical methodology
to confirm the interactions between ligands and nucleic acids, showing that MolAr CVS
virtual screening can rank ligands in the DNA intercalating compounds. It is noteworthy
that CVS has a low computational cost when compared with MD simulations.

In this study, two different approaches were carried out to predict the activity of
compounds capable of binding to the minor groove of DNA. The first approach, structure-
based drug design, was carried out to rank compounds for their ability to dock with the
1VZK molecular target at the minor groove position using docking and MD simulations.
The second approach, ligand-based drug design through Machine Learning methods,
ranked the six selected structures based on their binding energy. These methods were able
to properly describe the intermolecular interactions between intercalating agents and DNA
and build a machine learning model able to predict the ∆Tm experimental values. The
application of docking machine learning and molecular dynamics methodologies suggests
compounds 51, 42, and 45 as leads for the development of improved anticancer compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15020132/s1, Figure S1: Structure of all ligands with their PDB
code and docking results values, Table S1: Docking Results with all configurations with energy values
in Kcal/mol, Figure S2: Ligands chosen for MD simulations after docking. Figure S3. Total Energy
(Kcal/mol) calculated in Dynamic Molecular Simulation for interactions with DNA and ligands:
(a) 45; (b) 51; (c) 42; (d) 15; (e) 44; (f) 43.
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Abstract: Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible
role in tumor progression. Several studies have evidenced telomerase as a promising target for
developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer
cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a
structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE
(Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house

library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical
and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562
cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI
~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active
site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C
was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553.
Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further
investigation in terms of optimization of its structure to obtain more active telomerase inhibitors

Keywords: sulfonamides; arylsulfonamide; anticancer compounds; telomerase inhibitors; structure-
based drug design; pharmacophore modeling; docking; molecular dynamics

1. Introduction

The nuclear protein complex, Telomere, defends the terminal ends of chromosomes
from degradation, end-to-end fusion, and recombination [1–3]. The telomere structure is
subject to several changes. After each cell division cycle, the telomere gradually shortens
until the chromosomal DNA is exposed, inducing a DNA damage response [4,5]. This event
helps to maintain the stability of genetic information and protects the genome in a “time-
bomb” manner [6]. When the length of telomeres reaches a critical point, cells reach the
cycle of termination, aging, and death [5,6]. Normal cells cannot survive this progressive
shortening. Sometimes, cells can extend telomeres by reactivating telomerase activity or
through a telomere replacement elongation mechanism (ALT) to help cells survive the
crisis [7]. The reactivation of telomerase is observed in 85–90% of human tumor cells [8].
Telomerase is a reverse transcriptase that contains an RNA template (TER) with its binding
domain (TRBD) and reverse transcriptase unit (TERT). Telomerase is a challenging but
appealing target, because the inhibition of its activity can be achieved by acting at different
stages and using various mechanisms [9–11]. A first but now less popular used approach
is based on inhibiting telomerase access to DNA by stabilizing G-quadruplexes formed
by a 3’ DNA overhang, which has the task to block telomere elongation [11–15]. Another
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approach includes the use of inhibitors of the enzymatic active site of telomerase including
antisense compounds to TER [16,17]. But the most promising approach is possibly the use
of compounds that are able to block the active center of the enzyme in the catalytic subunit,
directly. BIBR1532, which selectively inhibits telomerase activity, was first proposed in
2001 and has been patented as a potential anticancer drug [18,19]. As reported in a recent
review, structure-based drug design strategies can be used to design potential inhibitors
of the telomerase active site [20]. The first structure showing a co-crystallized inhibitor
was published in 2015, revealing the Tribolium castaneum full-length catalytic subunit of
telomerase in complex with the compound BIBR1532 (PDB 5CQG), which showed that the
studied ligand interacts outside of the active center [21]. This experimental crystal structure
changed the understanding of the expected mechanism of activity of this compound
and possibly other active site-directed molecules. BIBR1532 binds to a highly conserved
hydrophobic pocket (FVYL) motif on the outer surface of the thumb domain of telomerase.

Several other compounds designed using in silico approaches have been tested as potential
inhibitors of the catalytic subunit of telomerase such as benzylidene–hydrazone analogs [22],
dihydropyrazole [23–29], dibenzopyrroles [30], flavone pyridines [31], 1,3,4-oxadiazole deriva-
tives [32–36], pyrazole-5-carboxamides and pyrazole-pyrimidines [37], spiroketals [37], celastrol
derivatives [38], myricetin derivatives [39], indolyl-2’-deoxynucleotide analogs [40], flavonoid
derivatives [41], and chrolactomycin derivatives [42]. Other classes of compounds developed as
telomerase inhibitors are reported in two recent reviews [43,44]. Thus, considering the direct
inhibition of TERT as the most promising approach for blocking the action of telomerase and
the lack of an approved drug (Imetelstat is the only one to reach clinical trials [20])makes the
search for new and effective inhibitors a hot topic of the pharmaceutical sciences. To the best of
our knowledge, there is just one piece of evidence of arylsulfonamide derivatives (SEW05920)
as an inhibitor of the TERT [45]. Exploiting our previous experience and outcomes in the use of
computational approaches [46–50], we developed a structure-based computational approach
to performing a virtual screening of an in-house arylsulfonamides library. Some arylsulfon-
amides have been identified as hits, also synthesized using green chemistry approaches and
tested against three cancer cell lines K-562, HCT-116, and MCF-7. The results determined
compound 2C as more active than the reference compound BIBR1532. The identification of this
novel scaffold, which will undergo optimization, could help to identify new potent telomerase
inhibitors.

2. Results
2.1. In Silico Modeling and Virtual Screening

In this study, we performed a structure-based virtual screening by using MD pharma-
cophore modeling and docking studies to identify potential telomerase inhibitors in our
in-house library of arylsulfonamide compounds. Firstly, the Tribolium castaneum full-length
catalytic subunit of telomerase in complex with the compound BIBR1532 (PDB 5CQG)
was selected. The crystal structure was optimized by completing and refining the entire
structure and optimizing amide groups of asparagine (Asn) and glutamine (Gln) as well as
the imidazole ring in histidine (His); then, we predicted the protonation states of histidine,
(His), aspartic acid (Asp), glutamic acid (Glu), and the tautomeric states of histidine. Start-
ing from the PDB coordinates set of BIBR1532, a static pharmacophore model was created
by using LigandScout containing six features (Figure 1A):

• Four hydrophobic features;
• One H-bond acceptor;
• One anionic feature.
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At the same time as the pharmacophore modeling, standard precision (SP) molecu-
lar docking studies were performed using Glide [53], considering the conserved hydro-
phobic pocket (FVYL motif) where BIBR1532 binds. The docking studies were per-
formed centering the docking boxes on the 3D coordinates of BIBR1532. The RMSD of 
BIBR1532 was calculated showing a value of 0.2 Å. The residues that characterized the 

Figure 1. Pharmacophore models derived from the X-ray pose of BIBR1532 (PDB ID: 5CQG): (A) static
pharmacophore model from the PDB with six features—4 hydrophobic features (yellow spheres),
1 H-bond acceptor (red sphere), and one anionic feature (red star); (B) static pharmacophore model
after fusing with 5 features—3 hydrophobic features (yellow spheres), 1 H-bond acceptor (red sphere),
and 1 anionic feature (red star); (C) MYSHAPE pharmacophore model—3 hydrophobic features
(yellow spheres), 2 H-bond acceptors (red spheres), and 1 anionic feature (red star).

The pharmacophore features were decreased to five, the two hydrophobic features
on the naphthyl ring of BIBR1532 were fused into one, and the tolerance radius for the
new pharmacophore feature was increased by 0.15 Å to compensate for small deviations
(Figure 1B). To improve the performance of the virtual screening (VS) process, the recent
MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach was used [51,52].
According to this approach, the exploration of the protein conformations by molecular
dynamics coupled with the pharmacophore modeling improved the result of the VS con-
cerning the corresponding model generated from the PDB coordinates set. To build the
MYSHAPE model, 20 ns of molecular dynamics simulation of the BIBR1532–protein com-
plex was run. A new interaction was retrieved such as a hydrogen bond interaction of
the carbonyl group of BIBR1532 with the Met482 by a water bridge. The new MYSHAPE
pharmacophore feature was added to the original pharmacophore model. In addition, in
this case, the tolerance radius for the added pharmacophore feature was increased by 0.15 Å
to compensate for small deviations in the 3D coordinates of the different conformations.

The MYSHAPE pharmacophore model had six features (Figure 1C):

• Three hydrophobic features;
• Two H-bond acceptors;
• One anionic feature.

This model was used to screen the in-house library of arylsulfonamide derivatives.
At the same time as the pharmacophore modeling, standard precision (SP) molecular

docking studies were performed using Glide [53], considering the conserved hydrophobic
pocket (FVYL motif) where BIBR1532 binds. The docking studies were performed centering
the docking boxes on the 3D coordinates of BIBR1532. The RMSD of BIBR1532 was
calculated showing a value of 0.2 Å. The residues that characterized the binding site were
Phe478, Met482, Met483, Arg486, Phe494, Gly495, Ile497, Trp498, Ile550, Tyr551, Gly553,
Lys552, Leu554, and Arg557. BIBR1532 established an H-bond interaction and a salt bridge
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between the oxygen of the amide group and Arg486 and aromatic H-bond interactions
between the naphthyl ring and Phe494 and Ile550 (Figure 2).
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Figure 2. Binding mode after re-docking of BIBR1532: the yellow, dashed lines represent the H-bond
interaction and, the purple, dashed lines represent the salt bridge between the O of the carboxyl group
and Arg486, and the light blue dashed lines represent the aromatic H-bond interactions between the
naphthyl ring and Phe494 and Ile550.

The in-house library was used to perform the VS by docking. MM–GBSA-binding free
energy calculations were performed for the molecules obtained from the VS and compared
with BIBR1532. Hit compounds that exhibited ∆G binding values (1A, 1B, 1C, 1E, 1G, 2B,
and 2C, −70.75/−62.97 kcal/mol) lower than that obtained for BIBR1532 (−62.76 kcal/mol)
were selected for synthesis and in vitro tests together with hit compounds retrieved using
the MYSHAPE approach (1D, 1F, and 2A) (Figure 3).

2.2. Synthesis

For the preparation of sulfonamide compounds of type 1 and 2 (Figure 3), several proce-
dures are present in the literature [54–61], and a few of them were also proposed recently in
light of using more environmentally friendly green chemistry approaches [62–66].

Our approach to targeting derivatives of type 1 and 2 involved reactions of the sulfonyl
chloride 3 and suitable benzylamines 4 or amine 5, according to Schemes 1 and 2. The benzy-
lamines were commercially available, whereas the 1-(4-aminophenyl)-3,5-dimethylpyrazole
(5) was prepared in two steps from acetylacetone and 4-nitrophenylhydrazine and the
subsequent reduction of the nitro group with H2 and Pd/C, using standard literature
methodology (see Section 4).
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tions, according to Methods X or Y (see Section 4) affording derivatives 1 in good to high 
isolated yields (64–97%) and slightly lower (49%) only in the case of 1E, probably be-
cause of the solubility problem of the starting material (Scheme 1).  

The aminophenyl-3,5-dimethylpyrazole 5 also reacted with sulfonylchloride 3 in 
anhydrous THF in the presence of an equimolar amount of triethylamine, affording sul-
fonamides 2A,B (Scheme 2). 

The possibility of avoiding the use of dangerous/dry solvents was also considered. 
The pilot reaction of benzylamine and para-toluensulfonyl chloride, in Schot-

Scheme 1. The general method for the synthesis of benzyl-sulfonamides of type 1.

In all cases, initially, the reactions were carried out under classical literature conditions,
according to Methods X or Y (see Section 4) affording derivatives 1 in good to high isolated
yields (64–97%) and slightly lower (49%) only in the case of 1E, probably because of the
solubility problem of the starting material (Scheme 1).
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The aminophenyl-3,5-dimethylpyrazole 5 also reacted with sulfonylchloride 3 in anhydrous
THF in the presence of an equimolar amount of triethylamine, affording sulfonamides 2A,B
(Scheme 2).

The possibility of avoiding the use of dangerous/dry solvents was also considered. The pi-
lot reaction of benzylamine and para-toluensulfonyl chloride, in Schotten–Baumann conditions
under pH control with Na2CO3, as discussed in [67], was explored, but the result was the incom-
plete conversion to the desired sulfonamide. Recently, a new environmentally safe methodology
was reported for the preparation of a wide range of aliphatic- and aryl-sulfonamides [68], and
although the methodology was not extended to investigate the reactivity of benzylamines,
we decided to explore whether this kind of amine resulted in a suitable substrate to prepare
sulfonamides via this route. The green method afforded yields from good to quantitative, giving
in some cases a similar efficient conversion of the reactants into products, if compared to Method
X (Table 1). The major concern of this methodology is the competitive reactions leading to
bis-sulfonylation which, however, in the case benzylamines were not observed, suggesting that
this procedure has preferable results, especially when electron-withdrawing groups are present
in both the reactants (as in the case of entry 1C).

Table 1. Comparison of the yields obtained using classical and green chemistry methods.

1 R R’ Method X No Solvent *

C NO2 4-Cl 78 100
D Me 4-OMe 100 60
E NHAc 4-OMe 80 70

* According to [68], the amine (2 mmol) and anhydrous NaHCO3 (approximately 1 g) were ground together into a
fine powder, and arylsulfonyl chloride (2 mmol) was added under vigorous stirring at room temperature. The
progress of the reaction was monitored by TLC until the conversion of the amine was completed.

Compound 2C was prepared by reduction of the corresponding nitro compound with
H2/Pd in ethanol a quantitative yield.

2.3. Cytotoxic Activity and Selectivity Index

To select the most promising cytotoxic agents, the newly synthesized compounds
were initially evaluated on human colorectal carcinoma (HCsT-116) [69,70], human breast
adenocarcinoma (MCF-7) [70,71], and human chronic myeloid leukemia (K-562) [71,72] cell
lines that express the active telomerase.

As shown in Table 2, except for compound 2C, the antiproliferative efficacy of the com-
pounds was modest and only evident at the highest micro-submillimolar concentrations.
Moreover, compounds 1B, 1D, 1E, 1F, 1G, and 2B exhibited solubility issues that prevented
the evaluation of their cytotoxicity.
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On the other hand, compound 2C revealed an interesting activity, and it was possible
to calculate its IC50 (Table 3). Interestingly, this value on K-562 cells appeared 3.6-fold lower
than that on HCT-116 and 4.2-fold lower than that on MCF-7 cells. Moreover, in the K-562
cell line tested, compound 2C showed an IC50 6.8-fold lower than the reference compound
BIBR1532, and an IC50 comparable to BIBR1532 in the MCF-7 cell line.

Table 3. IC50 of 2C against HCT-116, MCF-7, K-562, and BALB/3-T3 cell lines. Values were calculated
by plotting the percentage viability versus concentration on a logarithmic graph and are expressed as
the mean ± SD of three separate experiments conducted in triplicate.

Compound
IC50 (µm)

HCT-116 MCF-7 K-562 BALB/3-T3

BIBR-1532 70 ± 4 120 ± 8 208 ± 11 N/A

2C 109 ± 8 127 ± 9 33 ± 4 324 ± 15

Selective cytotoxicity is a pivotal requirement for anticancer drugs. To determine the
selectivity of compound 2C, its cytotoxicity against the cancer cell lines employed (i.e.,
HCT-116, MCF-7, and K-562) was compared with that against the non-cancerous, murine,
embryonic, fibroblast cell line BALB/3-T3. As shown in Table 3, the IC50 of compound
2C on BALB/3-T3 cells was remarkably higher than those on the tumoral cell lines tested.
Moreover, the calculated selectivity indexes (SIs) of compound 2C for HCT-116, MCF-7,
and K-562 cells were 2.9, 2.5, and 9.8, respectively. Relevantly, these values are above the
accepted threshold for antitumor drugs (SI = 2.0) [72,73].

Although selectivity for cancer cells cannot be easily derived from the comparison
of toxicity parameters in different cell cultures, these data indicate that compound 2C
shows preferential toxicity towards cancer cells. Along these lines, the potential use of
compound 2C as a novel lead molecule for the development of more potent and selective
antiproliferative agents can, therefore, be envisaged.

2.4. Docking of Compound 2C

Analysis of the best docking pose of compound 2C showed a pi–pi stacking inter-
action between Phe494 and the central aromatic ring as observed in BIBR1532, where
the same residue is involved in two H-aromatic bonds with the naphthyl ring (Figure 2).
The same residues Phe494, Asp493, and Gly495 establish positive van der Waals (vdW)
contacts with the aniline group of 2C. Other positive vdW contacts are formed by the
sulfonamide moiety of 2C and Ile550, Gly553, and Leu554. The major part of positive
vdW contacts are established by the dimethylpyrazolyl moiety with Met482, Met483,
Arg486, Phe494, and Ile550 (Figure 4).
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Figure 4. Binding mode of the best docking pose of 2C after the docking study. The light blue, dashed lines
represent the pi–pi stacking. The displayed residues establish positive vdW contacts with the compound.

2.5. Molecular Dynamics Simulation

The running of dynamics simulations of protein–ligand complexes over time could
be considered a major step toward accuracy in computer-assisted drug design. In this
study, an unbiased molecular dynamics simulation was performed to investigate the
conformational stability and the time-dependent binding capability of 2C in the active site
of the telomerase. Additionally, we tried to understand if the protein target undergoes
conformational alteration after interacting with 2C. Therefore, starting from the previous
docking, 100 ns of MD simulation was carried out. Various analyses, such root mean square
deviation (RMSD), root mean square fluctuation (RMSF), and determination of the number
and types of protein–ligand contacts, were performed to obtain a more detailed analysis of
the 2C–target complex.

2.5.1. Stability Analysis

The RMSD was selected as a criterion to evaluate the dynamic stability of the ligand-bound
system [73]. The RMSD values of the protein’s atoms and ligand are reported in Figure 5. The
system reached equilibrium quickly and fluctuated around the average RMSD value of <3 Å.
The average value of ligand vs. protein RMSD of ~6.4 Å indicated a strong stability of 2C in the
binding pocket compared to the ligand vs. ligand RMSD of ~1.81 Å.
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2.5.2. Residue Mobility and Protein–Ligand Contact Analyses

To examine the structural flexibility effect of 2C upon TERT per residue, the main
chain average of the root mean square fluctuation (RMSF) of the complex was calculated
for the entire 100 ns of simulation. The residue-wise fluctuation of the complexes was
plotted and is presented in Figure 6. As reported, the RMSF plot was low for the identified
residues involved in the interactions with 2C in the docking analysis.

Pharmaceuticals 2022, 15, 82 10 of 22 
 

 

in Figure 5. The system reached equilibrium quickly and fluctuated around the average 
RMSD value of <3 Å. The average value of ligand vs. protein RMSD of ~6.4 Å indicated a 
strong stability of 2C in the binding pocket compared to the ligand vs. ligand RMSD of 
~1.81 Å 

 
Figure 5. Compound 2C and protein RMSD during MD simulation (100 ns). The x-axis is ex-
pressed by the number of snapshots extracted, and 1 snapshot = 100 ps; the y-axis is expressed in 
Å. 

2.5.2. Residue Mobility and Protein–Ligand Contact Analyses 
To examine the structural flexibility effect of 2C upon TERT per residue, the main 

chain average of the root mean square fluctuation (RMSF) of the complex was calculated 
for the entire 100 ns of simulation. The residue-wise fluctuation of the complexes was 
plotted and is presented in Figure 6. As reported, the RMSF plot was low for the identi-
fied residues involved in the interactions with 2C in the docking analysis. 

 
Figure 6. Protein RMSF during MD simulation (100 ns). The x-axis reports the number of the resi-
dues of TERT, and the y-axis is expressed in Å. 

Evaluation of the protein interactions provides a measure of the interaction power 
between the ligands and the protein and can be categorized by type and summarized as 
represented in Figure 7. In Figure 7A, the interactions that occurred for more than 10% 
of the simulation time are reported. In Figure 7B, a timeline representation of the inter-
actions and contacts (H-bonds, hydrophobic, ionic, and water bridges) summarize the 
total number of specific contacts the protein makes with the ligand throughout the sim-
ulation. The bottom panel of Figure 7B shows which residues interact with the ligand in 
each trajectory frame. Some residues make more than one specific contact with the lig-
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Evaluation of the protein interactions provides a measure of the interaction power
between the ligands and the protein and can be categorized by type and summarized
as represented in Figure 7. In Figure 7A, the interactions that occurred for more than
10% of the simulation time are reported. In Figure 7B, a timeline representation of the
interactions and contacts (H-bonds, hydrophobic, ionic, and water bridges) summarize
the total number of specific contacts the protein makes with the ligand throughout the
simulation. The bottom panel of Figure 7B shows which residues interact with the ligand
in each trajectory frame. Some residues make more than one specific contact with the
ligand, and they are represented by a darker shade of orange, according to the scale to
the right of the plot. Protein–ligand contacts are categorized into four types: hydrogen
bonds, hydrophobic, ionic, and water bridges. The stacked bar charts are normalized
throughout the trajectory: a value of 1.0 suggests that 100% of the simulation time, the
specific interaction is maintained.
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2C interactions fractions: hydrogen bonds (green), hydrophobic (purple), ionic (red), and water
bridges (blue).

The analysis of the trajectory evidenced that the pi-stacking interaction between the
aniline ring of 2C and Phe494 occurred at 57%. This output evidences a shifting in the
pi-stacking interaction with respect to the docking where the central phenyl ring was
involved, but it clearly defines Phe494 as a key residue in the inhibition pattern. As also
reported in Figure 7B,C, Phe494 established at least one contact for the entire duration of
the simulation and, for a major part of the time, 2–3 contacts with the phenyl ring of 2C.
Gly553 showed for 57% and 17% of the time two H-bonds interactions with the oxygen of
the sulfonamide group emerging after ~18 ns of simulation. Interestingly, after 22 ns of the
simulation a new in pi–cation interaction appeared for 14% of the time between Arg557
and the pyrazole ring, even though it was in a spotted fashion. During the first 20 ns (16%
of the total time), the protein–ligand interaction stabilized with an H-bond between Ile550
and the NH of the sulfonamide group. It is interesting evidence of the role of a water
molecule as a water bridge between Trp498 and the pyrazole ring. Other residues involved
in the protein–ligand interaction but with a minor role were Arg486, Ile497, Trp498, Tyr551,
Lys552, and Leu554.

2.5.3. ADME Calculation for Compound 2C

ADME calculation for compound 2C was performed using the SwissADME web
tool [74]. In the hexagon drug-likeness graph (Figure 8), each vertex represents a parameter
that defines a bioavailable drug. The pink regions represent the optimum range of the
following six properties: lipophilicity = 2.53 (XLOGP3 between −0.7 and +5.0), size =
342.42 g/mol (MW between 150 and 500 g/mol), polarity = 98.39 Å2 (TPSA between 20
and 130 Å2), solubility (log S not higher than 6), saturation = 0.12 (fraction of carbons
in the sp3 hybridization not less than 0.25), and flexibility (no more than nine rotatable
bonds). It was found that compound 2C was slightly outside the pink area on one side
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due to the inconformity of its insaturation. The pharmacokinetics analysis showed that
compound 2C is probably not a P-glycoprotein (P-gp) substrate and not BBB permeant. It
has potentially good gastrointestinal (GI) absorption and ABS, up to nearly 70%. The %ABS,
a very functional physiochemical variable, defines a drug’s transport properties. It was
calculated according to the equation %ABS = 109 − (0.345 × TPSA) [75,76]. TPSA values
below 98.39 Å2 characterize a significant permeability in the cellular plasma membrane. It
has a bioavailability score of 0.55, which means good pharmacokinetic properties according
to the Rule of 5 by Lipinski [77].
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3. Discussion

In the past decade, there has been tangible progress in the definition of the role of
telomerase in tumor progression. Several studies evidenced telomerase as a promising
target for developing cancer therapeutics. The main reason is due to the overexpression
of telomerase in cancer cells (85–90%) compared with normal cells where it is almost
unexpressed. Despite the fact that efforts have allowed for the identification of several small
molecules, oligonucleotides, natural products, and immunotherapeutics, no telomerase-
based cancer drugs have yet been approved by the FDA due to the long lag time between
administration of the drug and clinical response. For these reasons, the identification and
then the optimization of new small molecules, such as telomerase inhibitors, remain a
crucial point that deserves to be further explored. A structure-based drug design approach
could be used to design potential inhibitors of the telomerase active site. Exploiting the
experimental structure of TERT showing a known inhibitor co-crystallized, we developed
a combined structure-based strategy to screen an in-house library of 126 arylsulfonamide
derivatives. The combined computational strategy was performed using the MYSHAPE
approach, first, to identify hit compounds. Successively, docking and calculation of the
binding free energy using the MM-GBSA method identified other hits. These approaches
guided the selection of the most promising compounds for synthesis and in vitro tests.
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As described in Section 2.2., the compounds were initially prepared using classical
methodologies. To explore the possibility of avoiding using dangerous and/or dry solvents,
a reported green procedure was successfully utilized in the case of derivatives listed in
Table 1, affording yields from good to quantitative for a major part of the compounds.

With the aim of identifying the most promising cytotoxic agents, the selected hits,
newly synthesized, were evaluated on three cancer lines: human colorectal carcinoma
(HCT-116), human breast adenocarcinoma (MCF-7), and human chronic myeloid leukemia
(K-562) cell lines, considering the known telomerase inhibitor BIBR1532 as the reference
compound. One of the major problems faced during the in vitro test was the poor solubility
for some of the tested compounds, which prevented the evaluation of the cytotoxicity and
gave results in micro-submillimolar concentrations. In general, the pyrazole derivatives
(2A, 2B, and 2C) seems to show a higher activity on the tested cell lines, probably even due
to the major solubility

One of the selected hits (2C) revealed an interesting IC50 in all three cell lines. In
particular, the IC50 results were comparable with BIBR1532 for the HCT-116 cell line and
the MCF7 cell line, but several times lower in the K-562 cell lines. These findings were
confirmed by the evidence of the selective cytotoxicity against the non-cancerous, murine,
embryonic, fibroblast cell line BALB/3-T3. The IC50 of compound 2C on BALB/3-T3 cells
was remarkably higher than those on the tumoral cell lines tested. Another interesting
concern regarding the data was the absence of the solubility issue encountered during
the in vitro test for the compound 2C in addition to the calculated ADME values that
seemed to exclude a binding with the P-gp, an important parameter for the insurgence of
resistance issues. In the end, compound 2C showed a good calculated pharmacokinetic
profile. Further, the MD simulation of compound 2C at the telomerase active site showed
good stability and evidenced Phe494 as the key residue also in BIBR1532. But the more
interesting evidence of the simulation regarded that each moiety of compound 2C was
involved in key interactions with some residues of the active site: the pyrazole moiety
in a cation–pi-stacking interaction with Arg557, the two phenyl rings in the pi-stacking
interaction with Phe494, and the sulfonamide moiety in the H-bond interaction with Ile550
and Gly553. Compound 2C as arylsulfonamide derivative is an interesting hit compound
that deserves, for the reasons stated above, further investigation in terms of the optimization
of its structure to obtain more active telomerase inhibitors.

4. Materials and Methods
4.1. Library and Protein Preparation

The library used for this experimental work comprised a series of 126 sulfonamide
derivates. The sulfonamide and BIBR1532 structures were built using the builder panel in
Maestro, and ligand preparation was carried out by LigPrep (Schrödinger, LLC, New York,
NY, USA, 2021). The force field adopted was OPLS4 [78] and Epik 5.5 (Schrödinger, 2021-1)
was selected as an ionization tool at pH 7.2 ± 0.2. Tautomer generation was unflagged, and
the maximum number of conformers generated was set at 32. For the purpose of this study,
the 2.30 Å resolution crystal structure of Tribolium castaneum telomerase in complex with
the highly specific inhibitor BIBR1532 (PDB ID: 5CQG) [21] was used. The structure was
optimized using the Protein Preparation Wizard in Maestro (Schrödinger, 2021-1) adding
bond orders and hydrogen atoms to the crystal structure using the OPLS4 force field. The
remaining settings are reported in [79].

4.2. Docking Studies

The library was submitted to a docking study using Glide v9.0 [80] in standard
precision (SP) with the OPLS4 force field. The grid box was built considering the BIBR1532
as the centroid of the grid. The study was performed using no constraints. Van der Waals
radii were set at 0.8, and the partial cutoff was 0.15 with flexible ligand sampling. Bias
sampling torsion penalization for amides with non-planar conformation and Epik state
penalties were added to the docking score.
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4.3. MYSHAPE Approach

MYSHAPE [51] is an approach in which the pharmacophore model is built using
only the common pharmacophore feature patterns that the ligands exhibit during MD
simulations. The evaluation of the ligand–protein interaction patterns during the MD
simulation was investigated using the data recorded employing the MD simulation (exactly
1001 frames for each simulation). The MYSHAPE model was used to distinguish this type
of model from the “default” pharmacophore models that were generated using the crystal
structure of the ligand–protein complex. For the newly added pharmacophore features,
the tolerance radius was increased by 0.15 Å to compensate for small deviations in the 3D
coordinates. The computational details are reported in previously published papers [51,52]

4.4. MM-GBSA Free Energy Calculations

The output of docking was used to calculate the ∆G values of the BIBR1532 and
molecules using MM-GBSA (molecular mechanics generalized-born surface area) (Prime,
Schrödinger, LLC, New York, NY, USA, 2021). Protein–ligand binding free energy using
MM-GBSA was calculated as the difference between the energy of the bound complex and
the energy of the unbound protein and ligand. The entropy term −T∆S was not calculated
to reduce computational time as previously reported [79,81–83]. The VSGB solvation model
was chosen using OPLS4 force field with the minimized sampling method.

4.5. Molecular Dynamic Simulations

A 100 ns MD simulation was carried out using a Desmond 6.5 (Desmond Molecular
Dynamics System, D. E. Shaw Research, New York, NY, USA, 2021) using the OPLS4 force
field for the complex TERT/2C. The complex was solvated in a cubic box using the TIP3P.
Ions were added to neutralize charges. The systems were minimized and equilibrated at a
temperature of 303.15 K and a pressure of 1.013 bar. The system was simulated as an NPT
ensemble; a Nose–Hover thermostat and Martyna–Tobia–Klein barostat were used. The
integration time step was chosen to be 2 fs. To keep the hydrogen-heavy atom bonds rigid,
the SHAKE algorithm was used. A 9 Å cutoff radius was set for the short-range Coulomb
interactions, and smooth particle mesh Ewald was used for the long-range interactions.
The detection ranges for energy were 1.2 ps, and 5.0 ps for the trajectory.

4.6. ADME Prediction

Drug-likeness, physicochemical properties, lipophilicity, solubility, and pharmacoki-
netics properties were analyzed by the SwissADME web tool (http://www.swissadme.ch/
index.php (accessed on 30 November 2021)). SwissADME is a new comprehensive tool run
by the Swiss Institute of Bioinformatics (SIB) enabling estimation of ADME (absorption,
distribution, metabolism, and excretion) parameters of drug candidates. 2D structural
models of the compound were drawn in the molecular sketcher into the ChemAxon’s
Marvin JS window and transferred to the SMILES (simplified molecular-input line-entry
system) format to predict suitable properties [74].

4.7. Chemistry

All melting points were taken on a Büchi melting point M-560 apparatus and were
uncorrected. IR spectra were recorded in Bromoform with a JASCO FT-IR spectropho-
tometer. 1H and 13C NMR spectra were measured at 200 and 50.0 MHz, respectively,
in DMSO-d6 solution and TMS as an internal standard, using a Bruker Avance II Series
200 MHz spectrometer or at 300 and 75 MHz (APT) with a Bruker AC-E spectrometer.
Column chromatography was performed with Merck silica gel (230–400 mesh ASTM).
Elemental analyses (C, H, and N) were within ±0.4% of theoretical values. The substituted
benzylamine derivatives were commercially available and were used without further pu-
rification. For all the compounds already cited in the literature, the IR and NMR spectra
results were identical to those reported (1A–E). The 1H and 13C NMR spectra of new
synthesized compounds (1F,G and 2A–C) are reported in the Supplementary Materials.
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4.7.1. General Methods for the Preparation of N-(R’-Benzyl)-4-R-benzenesulfonamides of
Type 1

Method X: To a stirred solution of amino derivative (1.5 mmol) in anhydrous THF
(20 mL), an equimolar amount of triethylamine (0.21 mL) and the suitable sulfonylchloride
were added. The reaction mixture was stirred for the appropriate time-lapse until the
disappearance of the starting amine (TLC monitoring). The ammonium salt was collected
and taken up with 20 mL H2O. The aqueous solution was extracted using DCM. The
organic layers were combined with the organic mother liquor, dried over Na2SO4, and
concentrated under reduced pressure to yield the desired sulfonamide of type 1.

Method Y: The amino derivative (5 mmol) was dissolved in dry pyridine, and the
suitable sulfonylchloride (5 mmol) was added. The reaction mixture was stirred for the
appropriate time-lapse until the disappearance of starting amine (TLC monitoring). The
mixture was poured onto ice/water and the solid precipitate was collected by filtration,
air-dried, and recrystallized from ethanol.

N-(4-Chlorobenzyl)-4-methylbenzenesulfonamide (1A)

This compound was prepared according to Method X. The reaction mixture was stirred
for 24 h at room temperature. Yield 70%. Mp 98 ◦C ([84] 107–108 ◦C; [85] 106.1 ◦C). 1H
NMR ppm: 2.43 (s, 3H, Me), 4.06 (d, J = 6.4 Hz, 2H, CH2), 5.18 (t, J = 6.0 Hz, 1H, NH), 7.11
(d, J = 8.4 Hz, 2H, Ar-H), 7.20 (d, J = 8.4 Hz, 2H, Ar-H), 7.27 (d, J = 8.0 Hz, 2H, Ar-H), 7.70
(d, J = 8.4 Hz, 2H, Ar-H). 13C NMR ppm: 21.6, 46.6, 127.2, 128.8, 129.3, 129.9, 133.7, 135.1,
136.9, and 143.8.

N-(4-Chlorobenzyl)-4-acetylaminobenzenesulfonamide (1B)

This compound was prepared according to Method X. The reaction mixture was
stirred for 24 h at room temperature and under reflux for an additional 4 h. Yield 64%.
Mp 152◦C [56] 172–174 ◦C). 1H NMR ppm: 2.10 (s, 3H, Me), 3.08 (bs, 1H, NH), 3.96 (s, 2H,
CH2), 7.30–8.11 (m, 8H, Ar-H), 10.42 (bs, 1H, NH). 13C NMR ppm: 24.1, 45.5, 118.6, 127.6,
128.5, 129.4, 131.6, 134.1, 136.9, 142.5, and 169.0.

N-(4-Chlorobenzyl)-4-nitrobenzenesulfonamide (1C)

This compound was prepared according to Method X. The reaction mixture was stirred
under reflux for 4.5 h. Yield 78%. Mp 174–176 ◦C ([86] 168–170 ◦C). 1H NMR ppm: 3.80
(d, J = 6.0 Hz, 2H, CH2), 6.61 (d, J = 8.0 Hz, 2H, Ar-H), 6.85 (d, J = 8.0 Hz, 2H, Ar-H), 7.15
(d, J = 8.0 Hz, 2H, Ar-H), 7.45 (d, J = 8.0 Hz, 2H, Ar-H), 7.56 (t, J = 6.0 Hz, 1H, NH). 13C
NMR ppm: 45.5, 112.6, 113.5, 125.5, 128.4, 128.9, 129.8, 152.4, and 158.3.

N-(4-Methoxybenzyl)-4-methylbenzenesulfonamide (1D)

This compound was prepared according to Method X. The reaction mixture was stirred
for 3 h at room temperature. Yield 71%. Mp 122–123 ◦C ([87] 114–117 ◦C; [88] 122–123 ◦C
from EtOAc). 1H NMR (300 MHz, DMSO) ppm: 2.38 (s, 3H, Me), 3.72 (s, 3H, Me), 3.89 (s,
2H, CH2), 6.85 (d, J = 8.4 Hz, 2H, Ar-H), 7.17 (d, J = 8.4 Hz, 2H, Ar-H), 7.38 (d, J = 8.0 Hz,
2H, Ar-H), 7.71 (d, J = 8.4 Hz, 2H, Ar-H), 8.03 (bs, 1H, NH). 13C NMR ppm: 20.9, 45.8, 55.0,
113.6, 126.5, 128.9, 129.4, 129.5, 137.8, 142.5, and 158.4.

N-(4-Methoxybenzyl)-4-acetylaminobenzenesulfonamide (1E)

This compound was prepared according to Method Y. The reaction mixture was stirred
for 1 h at room temperature and under reflux for an additional 2 h. Yield 49%. Mp 192–
193 ◦C ([87] 164–167 ◦C). 1H NMR ppm: 1.84 (s, 2H, CH2), 2.12 (s, 3H, Me), 4.46 (sa, 1H,
NH), 7.74 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H), 9.41 (sa, 1H, NH). 13C NMR ppm:
24.2, 45.6, 55.2, 113.6, 118.6, 127.6, 129.1, 129.5, 134.0, 142.9, 158.5, and 169.4
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N-(2,5-Dimethoxybenzyl)-4-methylbenzenesulfonamide (1F)

This compound was prepared according to Method Y. The reaction mixture was stirred
for 10 h at room temperature. Yield 80%. Mp 110–111 ◦C. IR ν: 3268 (NH) cm−1. 1H-NMR
ppm: 2.37 (3H, s, Me), 3.65 (6H, s, Me), 3.91 (2H, t, J = 3.9 Hz, CH2), 6.77–6.83 (3H, m, ArH),
7.10 (2H, d, J = 8.5 Hz), 7.36 (2H, d, J = 7.6 Hz), 7.68 (2H, d, J = 7.6 Hz), 7.89 (1H, t, J = 3.9 Hz,
NH). 13C NMR ppm: 21.4, 41.3, 55.8, 56.1, 111.8, 113.0, 115.0, 126.7, 127.0, 130.0, 138.2, 143.0,
150.9, and 153.4.

N-(2,5-Dimethoxybenzyl)-4-nitrobenzenesulfonamide (1G)

This compound was prepared according to Method X. The reaction mixture was stirred
for 24 h at room temperature. Yield 97%. Mp 129–132◦C. ir ν: 3268 (NH), 1523 and 1348
(NO2) cm−1. 1H NMR ppm: 3.35 (s, 3H, Me), 3.63 (s, 3H, Me), 4.03 (s, 2H, CH2), 6.65–6.86
(m, 3H, Ar), 7.96 (2H, d, J = 8.8 Hz), 8.34 (2H, d, J = 8.8 Hz). 13C NMR ppm: 46.0, 55.7, 56.1,
111.8, 113.2, 115.5, 124.7, 125.9, 128.4, 147.0, 149.8, 151.0, and 153.2.

4.7.2. Preparation of 1-(4-Aminophenyl)-3,5-dimethylpyrazole

A solution of acetylacetone (10 mmol) and 4-nitrophenylhydrazine (10 mmol) in
acetic acid was heated under reflux for 9 h. The reaction mixture was cooled to room
temperature and poured onto ice/water to give a solid precipitate. Purification by col-
umn chromatography (eluant DCM/EtOAc 4:1) gave the nitro compound. Yield 80%,
mp 100 ◦C ([89] 102 ◦C from EtOH). 1-(4-Nitrophenyl)-3,5-dimethylpyrazole (0.56 mg) dis-
solved in EtOH (20 mL) Pd/C was added, and the mixture was reduced overnight at room
temperature in an H2 atmosphere (50 psi) in a Parr apparatus. The catalyst was filtered
off, and the solution was evaporated under reduced pressure. The amino derivatives were
isolated as white crystals. Yield 100%. Mp 84 ◦C ([90] 82–84 ◦C from benzene).

4.7.3. General Method for the Preparation of N-[4-(3,5-Dimethyl-1H-pyrazol-1-yl)phenyl]-
4- R-benzenesulfonamide of Type 2

To a stirred solution of 1-(4-aminophenyl)-3,5-dimethylpyrazole (1.5 mmol) in an-
hydrous THF (20 mL), an equimolar amount of triethylamine (0.21 mL) and the suitable
sulfonylchloride were added. The reaction mixture was stirred for the appropriate time-
lapse until the disappearance of the starting amine (TLC monitoring). The ammonium
salt was collected and taken up with 20 mL H2O. The aqueous solution was extracted
using DCM. The organic layers were combined with the organic mother liquor, dried over
Na2SO4, and concentrated under reduced pressure to yield the desired sulfonamide.

N-[4-(3,5-Dimethylpyrazol-1-yl)phenyl]-4-methylbenzenesulfonamide (2A)

The reaction mixture was stirred for 30 h at room temperature. Yield 96%. Mp 167 ◦C.
ir ν: 3392 (NH) cm−1. 1H NMR ppm: 2.09 (s, 3H, Me), 2.13 (s, 3H, Me), 2.28 (s, 3H, Me),
6.00 (s, 1H, pyrazole-CH), 7.20 (dd, 4H, ArH), 7.27 (d, 2H, ArH), 7.64 (d, 2H, ArH), 10.41
(s, 1H, NH). 13C NMR ppm: 12.3, 13.4, 21.3, 107.5, 120.7, 125.5, 125.8, 127.2, 128.8, 130.3,
136.7, 134.0, 144.2, and 148.6.

N-[4-(3,5-Dimethylpyrazol-1-yl)phenyl]-4-nitrobenzenesulfonamide (2B)

The reaction mixture was stirred for 3 h at room temperature. The solid residue was
recrystallized from ethanol. Yield 57%. Mp 219 ◦C. ir ν: 3392 (NH), 1532, and 1348 (NO2) cm−1.
1H NMR ppm: 2.12 (s, 3H, Me), 2.21 (s, 3H, Me), 6.02 (s, 1H, pyrazole-CH), 7.27 (dd, 4H, ArH),
8.19 (dd, 4H, ArH), 10.81 (s, 1H, NH). 13C NMR ppm: 12.0, 13.2, 107.0, 120.9, 124.7, 125.0, 128.3,
132.2, 135.5, 136.2, 139.0, 147.7, and 149.9.

Preparation of N-[4-(3,5-Dimethylpyrazol-1-yl)phenyl]-4-aminobenzenesulfonamide (2C)

To the nitro derivative, 2B dissolved was in EtOH (20 mL), Pd/C was added, and the
mixture was reduced overnight at room temperature in an H2 atmosphere (50 psi) in a Parr
apparatus. The catalyst was filtered off, and the solution was evaporated under reduced
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pressure. The amino derivative was isolated as white crystals. Yield 100%. Mp 106–110 ◦C.
ir ν: 3482 and 3380 (NH2), 3234 (NH) cm−1. 1H NMR ppm: 1.92 (s, 3H, Me), 2.33 (s, 3H,
Me), 6.00 (s, 1H, pyrazole-CH), 7.30–7.35 (m, 4H, Ar-H), 7.42–7.46 (m, 4H, Ar-H), 13C NMR
ppm: 12.0, 13.2, 112.6, 119.5, 122.6, 124.8, 125.0, 128.3, 130.3, and 152.9.

4.8. Cell Proliferation Assay

Cell Culturing and MTT Assay

Unless stated otherwise, all reagents were from Merck (Milan, Italy) and of the high-
est purity grade commercially available. All synthesized compounds were dissolved in
dimethyl sulfoxide (DMSO) and then diluted in a culture medium so that the effective
DMSO concentration did not exceed 0.1% (v/v). HCT-116, MCF-7, K-562, and BALB/3-T3
cell lines were purchased from the American Type Culture Collection, Rockville, MD,
USA. Except for BALB/3-T3 cells, which were grown in DMEM, all other cells were cul-
tured in the RPMI-1640 medium. Both DMEM and RPMI-1640 were supplemented with
L-glutamine (2 mM), 10% fetal bovine serum (FBS), penicillin (100 U/mL), streptomycin
(100 µg/mL), and gentamicin (5 µg/mL). Cells were maintained in the log phase by seeding
them twice a week at a density of 3 × 105 cells/mL, in humidified 5% CO2 atmosphere
at 37 ◦C.

The cytotoxic activity of the synthesized compounds against all the cell lines em-
ployed was determined by the MTT colorimetric assay as previously reported [91]. The
assay is based on the reduction of 3-(4,5-dimethyl-2-thiazolyl)bromide-2,5-diphenyl-2-H-
tetrazolium to purple formazan by the mitochondrial dehydrogenases of living cells. Briefly,
cells at the passage that did not exceed the number 20, were seeded into 96-well plates
(Corning, New York, NY, USA) at a density of 2.0 × 104 cells/cm2, incubated overnight,
and then treated with either the compounds or the vehicle (control) for 24 h. Afterward,
the medium was carefully removed, and 200 µL of 5 mg/mL MTT was added. The su-
pernatant was discarded after a 2 h of incubation at 37 ◦C, and the formazan blue formed
dissolved in DMSO. The absorbance at 565 nm of the formazan product was measured
using a microplate reader (LTek, INNO, Seongnam, South Korea), and the value of control
cells was taken as 100% of viability. Each experiment was repeated three times in triplicate
to obtain the mean values. No differences were found between cells treated with DMSO
0.1% and untreated cells in terms of cell number and viability.

The growth inhibition activity of the tested compounds was defined as the IC50 value
that represents the concentration of the compound that inhibits 50% of cell viability. IC50
values were calculated using the dose–response inhibition model in Prism 8 (GraphPad
Software, San Diego, CA, USA). The SI, a measure of the therapeutic potential of the tested
compound, was calculated by dividing the IC50 for normal BALB/3-T3 cells by the IC50 for
HCT-116, MCF-7, and K-562 cancer cells.

Two hundred milliliters (6.0 × 104 cells/cm2) of a K-562 cell suspension were plated
in each well of a 96-well plate and treated with different concentrations of compounds. An
equal volume of DMSO was added to the control well, and the cells were cultured for an
additional 24 h; then, 20 µL MTT (5 mg/mL) in the growth medium was added per well,
and the plates were incubated at 37 ◦C for 4 h as reported in [91] with some modifications.
Plates were then centrifuged at 400× g for 10 min. Supernatants were removed from the
wells, and the reduced MTT dye in each well was solubilized in 200 µL DMSO. Absorbance
was measured in a microplate reader (LTek, INNO, Seongnam, Korea), and the value of the
control cells was taken as 100% of viability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15010082/s1, 1H and 13C NMR spectra of new derivatives
synthetized and tested in this work.
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Abstract: Drug discovery is the most expensive, time-demanding, and challenging project in biophar-
maceutical companies which aims at the identification and optimization of lead compounds from
large-sized chemical libraries. The lead compounds should have high-affinity binding and specificity
for a target associated with a disease, and, in addition, they should have favorable pharmacody-
namic and pharmacokinetic properties (grouped as ADMET properties). Overall, drug discovery
is a multivariable optimization and can be carried out in supercomputers using a reliable scoring
function which is a measure of binding affinity or inhibition potential of the drug-like compound.
The major problem is that the number of compounds in the chemical spaces is huge, making the
computational drug discovery very demanding. However, it is cheaper and less time-consuming
when compared to experimental high-throughput screening. As the problem is to find the most stable
(global) minima for numerous protein–ligand complexes (on the order of 106 to 1012), the parallel
implementation of in silico virtual screening can be exploited to ensure drug discovery in afford-
able time. In this review, we discuss such implementations of parallelization algorithms in virtual
screening programs. The nature of different scoring functions and search algorithms are discussed,
together with a performance analysis of several docking softwares ported on high-performance
computing architectures.

Keywords: computational drug discovery; virtual screening; molecular docking; chemical space;
parallelization; high-performance computers and accelerators

1. Introduction

Drug discovery is one of the most highly challenging, time-consuming and expensive
projects in the healthcare sector. The usual time involved in bringing a drug from basic
research to market is 12–16 years, and the cost associated is about 2.5 billion dollars [1–4].
To meet one of the EU Sustainable Development Goals [5] aimed at the good health and
wellbeing for everyone, drugs should be made available to common people at an affordable
price, and the current protocols in drug development need to be redesigned to make the
discovery process economically sustainable. One of the most promising techniques to
accelerate the drug discovery process, and to make it more cost-effective, is to perform in
silico virtual screening, and to exploit the computational power of large high-performance
computing (HPC) systems.

One of the major contributing factors to the cost and time associated with the discovery
is that it has been reported [6,7] that only one in 10,000 compounds subjected to research
and development (R&D) turns out to be successful. The drug discovery involves various
steps such as target discovery, lead identification, lead optimization, ADMET (absorption,
distribution, metabolism, excretion, toxicity) properties optimization, and clinical trials [8].
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Once a valid target is known for a disease, compounds from different chemical libraries are
subjected to high-throughput screening against this target. If the number of compounds
used for screening can be narrowed down to a few hundred, the cost and time associated
with a drug discovery process can be drastically reduced. Using computational approaches,
many of the steps involved in the drug discovery projects can be made to be cost-effective
and less time-consuming. For example, in the case of protein tyrosine phosphatase-1B [9],
the experimental high-throughput screening of a chemical library with 400,000 compounds
yielded a success rate of 0.021% in identifying the ligands that can inhibit the enzyme with
IC50 values less than 100 µM. However, with the use of a preliminary screening phase using
a computational approach, the success rate turned out to be 34.8% starting from a chemical
library of 235,000 compounds.

To summarize, the experimental high-throughput screening is not suitable to deal with
modern chemical spaces as they are composed of up to billions of molecules. To solve this
problem, it is common to use computational approaches on HPC systems. In this review,
we highlight various currently available implementations of virtual screening softwares
suitable for high-performance computers. Below, we provide general introduction to virtual
screening (VS) problems and discuss the possibilities for the parallelization so that it can be
effectively implemented for computing facilities offered by HPCs.

The paper is organized as follows. Section 2 introduces the computational VS with
details on scoring functions and search algorithms. Section 2.2 presents details on the major
breakthroughs obtained in VS and Section 3 presents the main parallelization techniques
used in VS and why they target HP systems. In Section 4, we provide an overview about
the implementations of different VS softwares. Finally, we discuss the opportunities offered
by reconfigurable architectures such as FPGAs.

2. The In Silico Virtual Screening Problem

In general, the computational approaches for molecular docking have two main
components: sampling and scoring. Sampling refers to generation of various conformations
and orientations for the ligand within a target binding site (defined usually by a grid box).
Scoring refers to evaluating the binding/docking energies for various configurations of the
ligand within the binding site. The most stable configuration of the ligand is referred to as
binding pose. The VS protocol where molecular dockings are carried out for all the ligands
from a chemical library includes a third component referred to as ranking, where different
ligands are ranked with respect to their binding potential. Overall, the VS identifies the
ligand with the topmost binding affinity (which is based on the docking energies of different
ligands) for a given biomolecular target. In addition, the most stable binding mode/pose
for each of the ligands within the binding site is found (which is based on the relative
docking energies of different configurations of the same ligand). Figure 1 shows the general
workflow of computer-aided drug discovery where the VS approach is used to identify
lead compounds. It shows the steps involved in the binding pose identification of ligands
within the binding site, and the ranking of different ligands is subsequently carried out to
identify the lead compounds. Most of the VS schemes do not include the flexibility for the
target protein, and only the sampling over translational, rotational, and torsional degrees
of freedom of ligand is accounted for.
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Figure 1. Workflow for computer-aided drug discovery where the lead compounds are identified
using VS. It shows that the various configurations of the ligands within binding sites are generated us-
ing sampling, which is scored using a scoring function to identify the most stable binding mode/pose.
The docking energies of the most stable configurations of all the ligands are used in ranking them
to identify a list of lead compounds which are taken for further experimental validation. As the
sampling and scoring need to be performed for all the ligands in the chemical library, these steps are
shown within a loop.

2.1. Scoring Functions

The reliability and accuracy of the scoring functions used for screening compounds
are the most important parameters that dictate the success rate of the computational
screening approaches. The scoring functions are mostly defined to be proportional to the
binding affinity of the ligand towards a target. The scoring functions are often classified as
physics-based, knowledge-based, and empirical.

(i) Physics-based (also referred to as force-field based) scoring functions are based on
the binding free energies which are the sum of various interactions between protein–
ligand subsystems such as van der Waals, electrostatic, hydrogen bonding, solvation
energy, and entropic contributions.

(ii) The knowledge-based scoring functions are based on the available protein–ligand com-
plex structural data from which the distributions of different atom–atom pairwise
contacts are estimated. The frequency of appearance of different pairwise contacts
are used to compute potential mean force which is used for ranking protein–ligand
complexes.

(iii) Finally, the empirical scoring functions, as the name implies, are based on empirical fit-
ting of binding affinity data to potential functions whose weights are computed using
a reference test system. Modern scoring functions mainly fall into this class, including
the machine learning-based approaches built based on the available information on
the protein–ligand 3D structures and inhibition/dissociation constants [10].

As discussed above, there are different scoring functions developed, and this section
mainly focuses on implementations available in open-source softwares such as Dock [11],
Autodock4.0 [12,13], Autodock Vina [14,15], and Gnina [16]. The docking energy defined
to rank protein–ligand complexes (s f ) in Autodock4.0 is classified as physics-based and
is defined as the sum of van der Waals, electrostatic, hydrogen bonding, and desolvation
energy, as shown in Equation (1).
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r12
ij
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In addition, the entropic contribution which is proportional to number of rotatable
bonds is also added to the docking energy. In the equation, rij refers to the distance between
the two atoms, i and j, centered on protein and ligand subsystems. Similarly, qi and qj

refer to charges on these atoms. Aij and Bij are the coefficients of the potential energy
functions describing van der Waals interaction. Cij and Dij are the coefficients of the
potential energy functions describing hydrogen bonding interaction. The terms Si and Vi

refer to the solvation parameter and fragmental volume of atom i, respectively.
Because the protein–ligand complexes are considered to be in an aqueous environment,

the binding free energies need to account for this, and solvation energy adds the binding
free energy differences due to vacuum to aqueous-like environments. In particular, the last
term in the equation accounts for this solvation effect (refer to Equation (1)).

In general, the entropic contributions can be due to translational, rotational, and
torsional degrees of freedom. However, the docking energies implemented in the afore-
mentioned molecular docking softwares only account for the contributions due to torsional
degrees of freedom. The contributions due to other degrees of freedom are assumed to be
negligible in ranking different ligands. It is worth noting that certain free energy calculation
tools such as MMPBSA.py estimate the entropic contributions due to all degrees of freedom
based on normal mode analysis [17]. The entropic contributions due to torsional degrees
of freedoms in molecular docking softwares are oversimplified and they are estimated
from the number of rotatable bonds (each bond contributes with 0.2–0.5 kcal/mol) [18]. In
the case of Autodock Vina, the scoring function can be majorly classified as empirical in
nature and it is a sum of various distance-dependent pairwise interactions [14]. It includes
terms for describing steric, hydrophobic, and hydrogen bond interactions. The values for
different parameters and weights for different terms of potential functions were obtained
from nonlinear regression of the PDBbind 2007 dataset. In other words, the empirical
scoring functions can have the same mathematical expression as in Equation (1), but the
weights/coefficients for different types of interactions are obtained from fitting to exper-
imental binding potentials. The knowledge-based scoring functions [19] (s f kb) have the
following form:

s fkb =
L

∑
i

R

∑
j

−kBTln[g(rij)] (2)

Here, the summation runs over the ligand and receptor atoms, and g(rij) refers to the rel-
ative probability distribution of distances of a specific types of protein–ligand atom pairs in
the docked complex structure when compared to reference experimental complex structure.

Recently, deep learning networks have been proposed to provide scoring functions.
For instance, Gnina uses convolutional neural network (CNN)-based scoring function to
rank the protein–ligand complexes [16]. The neural networks were trained using three-
dimensional protein–ligand complex structures from the PDBbind database. In particular,
the dataset contained two sets of poses for the ligands within the binding site. The group of
positive poses had root mean square deviation (RMSD) value below 2 Å, when compared
to the crystallographic poses, while the rest were considered as a group of negative poses.
Here, RMSD is the root mean square deviation in atomic positions in the predicted pose
when compared to reference pose, as in the crystal structure. The positive and negative
poses were generated using the experimental protein–ligand three-dimensional structures
by adopting a random conformation generation algorithm. The CNN model was trained
using the 4D grid (which was constructed using the protein–ligand coordinates within the
grid box and atom types) to classify the poses.
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2.2. Search Algorithms

The search algorithms aim at finding the protein–ligand structure corresponding to the
global minimum in a potential energy surface. However, this is a very challenging problem
and many search algorithms end up in a local minima. Therefore, molecular docking
software uses several techniques, such as deterministic search [20], genetic algorithm,
Monte Carlo with simulated annealing [21], particle swarm optimization [22], or Broyden–
Fletcher–Goldfarb–Shanno (BFGS) [14]. Deterministic approaches apply techniques such
as gradient descent, and they focus on a reproducible sequence of pose evaluations. Monte
Carlo algorithms generate numerous poses by using random values for translational,
rotational, and torsional degrees of freedom of the ligand. In Monte Carlo-simulated
annealing, the heating step allows the system to escape from the local minimum (during
which it can sample high-energy regions of the potential energy surface). In genetic
algorithms, each pose is defined by a vector of genes that correspond to translational,
rotational, and torsional degrees of freedom. By varying these values in the genes, new
poses can be generated. The fitness function aims at finding the minimum energy of
the pose.

2.3. Validation of Molecular Docking Approaches

As discussed above, molecular docking approaches employ different types of scoring
functions, and before implementation they were validated rigorously against available
experimental data. In particular, two properties obtained from molecular docking can be
considered in general for benchmarking:

(i) RMSD computed for the predicted binding pose against the crystallographic pose
obtained experimentally.

(ii) Binding free energies/docking energies which are proportional to experimental inhi-
bition/dissociation constants.

The RMSD in the above list is computed from the experimental and predicted protein–
ligand complex structures and provides an estimate of how well the molecular docking
software is capable of producing the most stable binding mode and binding pose of the
ligand within the target biomolecule. An RMSD value of <2 Å is considered as a threshold
value for the correct prediction of complex structures [23].

A benchmark study using Autodock4.0 and Autodock Vina on the complex structures
(190 in number) from PDBbind showed that the latter could predict structures within
the threshold value (i.e., <2 Å) for about 78% complexes while the former one achieved
42% [14]. A recent study compared the performance of Autodock4.0 and Autodock Vina
in discriminating the active compounds and decoys using a dataset of 102 protein tar-
gets, 22,432 active compounds, and 1,380,513 decoy molecules [24], The study showed
that Autodock4.0 was better in discriminating actives and decoys in the targets having
hydrophobic binding sites, while the Autodock Vina’s performance was better for those
targets having binding sites with polar and charged residues [24]. There are other studies
reported in the literature which compared the performance of various molecular docking
softwares such as AutoDock, DOCK, FlexX, GOLD, and ICM, and the ICM turned out to be
the superior performer, with structures predicted for 93% complexes within the acceptable
accuracy [23].

The other set of quantities used for benchmarking the molecular docking approaches
are the inhibition constants, dissociation constants, IC50 and pIC50, which are available from
experimental binding assay studies. All these quantities refer to the binding potential or
inhibiting potential of ligands to a specific biomolecular target. The dissociation constants
and binding free energies are related to each other through the following equation:

∆G = RTlnKd (3)
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where R is the gas constant (equal to 1.987 cal K−1 mol−1) and T refers to temperature
(set to 298.15 K). Thanks to this equation, the computed docking energies can be directly
validated using the experimental binding assay results.

2.4. Computational Cost Associated with Virtual Screening

In a computational drug discovery project, high-affinity lead compounds against
a target biomolecule (can be an enzyme, membrane protein, DNA, RNA, Quadruplex,
membrane, or fibril aggregates) are identified using a reliable scoring function. One can
identify lead compounds for a target from various chemical spaces. The popular chemical
spaces are ZINC, Cambridge, Chemspider, ChEMBL, Pubchem, Pubmed, DrugBank, TCM,
IMPPAT, and GDB13-17. Refer to Table 1 for a list of different chemical libraries with their
properties [25]. The estimate for the size of chemical space for carbon-based compounds
with molecular mass <500 daltons is 1060, which clearly indicates that there are limitless
possibilities for designing a therapeutic compound. As can be seen, even the use of the top
supercomputers with exascale computing speed (which can perform 1018 floating point
operations per second running the high-performance Linpack benchmark) for screening
these compounds will take a universal lifetime. Therefore, it is reasonable to use certain
filters to reduce the number of compounds before subjecting to screening. Recently, a
filtering procedure based on Bayesian optimization algorithm, referred to as MolPAL, was
used to identify the top 50% compounds by developing a model with data of explicit
screening of less than 5% compounds of the chemical space [26].

Otherwise, it is reasonable to use other chemical libraries having compounds that
are easy to synthesize and having favourable pharmacokinetic (ADMET) properties. The
chemical library with the largest number of compounds is GDB17, which contains 166 bil-
lion organic molecules made of just 17 atoms of C, O, N, S and halogens [27]. Most of the
drug discovery applications use the DrugBank database, Enamine database, ZINC15, [28],
and Cambridge, and the number of compounds in these chemical libraries are listed in
Table 1. As can be seen, the compounds range from tens of thousands to billions, and the
computational cost associated with screening is enormous, which requires use of the HPCs
and accelerators.

To demonstrate the computational demand associated with virtual screening, we
describe an application below. In the case of the AmpC target, Lyu et al. docked 99 million
molecules. For each compound, 4000 orientations on average were generated. Further,
for each orientation, about 280 conformations were generated [29]. Therefore, for each
ligand, 1.1 M docking energy calculations were carried out, and given that the number
of compounds considered were 99 M, a total of 1013 of such calculations were carried out.
This will be further increased in the flexible receptor docking where the sampling over
side-chain conformations of residues needs to be accounted for [29]. As can be seen, the
computational demand is really huge with such virtual screening applications, and so it is
inevitable to develop parallel algorithms and to use HPCs to accomplish such screenings
within affordable time.

Table 1. Top chemical spaces available for VS.

Chemical Library NO of Compounds Features

Virtual compounds 1060 Molecular mass ≤ 500 daltons
GDB17 [25] 166 B 17 heavy atoms of type C, O, N, S and halogens
REAL DB (Enamine) [30] 1.95 B Synthesizeable compounds M ≤ 500, Slogd ≤ 5, HB ≤ 10, HB ≤ 5

rotatable bond ≤ 10, and TPS ≤ 140
ZINC15 [28] 980 M Synthesizable, available in ready-to-dock format
Pubchem [31] 90 M Literature-derived bioactive compounds
Chemspider [32] 63 M Curated database with chemical structure and physicochemical properties
ChEMBL [33] 2 M Manually-curated drug-like bioactive molecules
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3. Milestones in Virtual Screening

The first virtual screening using 3D structures of chemical compounds was carried out
in 1990 against the target, dopamine D2 agonists based on which agonist with pKi 6.8 was
successfully found [34]. A similar search against other targets, such as alpha-amylase, ther-
molysin, and HIV-I protease, yielded inhibitors with significant inhibition potential [34,35].
The top compounds obtained from screening were found to be potential inhibitors, and with
further optimization of the lead compounds, the inhibition potential increased considerably.
With the use of more accurate scoring functions and large-sized chemical libraries and
powerful computers, the computer-aided drug discovery can become a potential route to
narrow down the search space before subjecting to experimental high-throughput screening.
Thanks to the currently available Petaflop/s computing facilities, one can screen a billion
compounds in a day. The latest record on the high-speed virtual screening is reported by
Jens Claser et al. [36], where the authors screened a billion compounds within 21 h.

The number of compounds screened against various targets keeps increasing with
time. As the chance for a compound with better binding affinity increases with size of the
chemical library, such screening procedures result in identifying highly potent compounds.
We here list a few example cases (refer to Table 2): The screening study by J. Lyu et al. [29]
yielded an active compound (339204163), which had 20 times more potency than the known
inhibitors for AmpC target. The most potent inhibitor for the same target was designed
by the same research group by optimizing the lead compound (the end compound was
referred to as 549719643). Similarly, 10-fold more potent agonists (465129598, 270269326,
and 464771011) were identified for the D4 receptor [29]. The most potent compound
with 180 pM binding affinity, 621433144, for the same target has been identified by the
same group. Using the multistage docking workflow, referred to as Virtual Flow for
Virtual Screening (VFVS) (where different docking softwares such as Quickvina2, Smina
vinardo, and Autodock Vina were used in sequence), the inhibitors for KEAP1 target were
recently identified from the chemical space of 1.4 billion compounds (made of Enamine Real
database and ZINC15) [37]. The first round of scoring was carried out using Quickvina2,
while the rescoring was carried out for the top 3 million compounds using Smina vinardo
and Autodock Vina. An inhibitor, iKEAP1 with dissociation constant 114 nM, was identified
which is shown to interrupt the interaction between the KEAP1 and transcription factor
NRF2 [37].

Thanks to parallel implementations of molecular docking software, not only has the
number of compounds used for screening increased drastically, but the time required to
accomplish the high-throughput screening has also reduced considerably. The inhibitors
for the targets Purine Nucleoside Phosphorylase and Heat Shock Protein 90 were iden-
tified from the REAL enamine database (1.4 B compounds) using CPU-enabled Orion
software [38]. The recent screening of compounds from Enamine database against the
enzyme targets from SARS-CoV-2 was carried out in 21 h instead of 43 days with the use
of parallel implementation of Autodock4.0 (referred to as Autodock-GPU) on the Summit
supercomputer [39,40]. Currently, the largest experiment ever run was achieved using the
EXSCALATE platform based on LIGEN software. It virtual-screened a library of 71.6 B
compounds against 15 docking sites of 12 viral proteins of SARS-CoV-2. The experiment
was carried out on the CINECA-Marconi100 and ENI-HPC5 supercomputers, and it lasted
60 h [41], performing more than 1 trillion docking evaluations overall. A list of megadock-
ing and gigadocking screening calculations on large-sized chemical libraries is presented in
Table 2.
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Table 2. Topmost mega or gigadocking applications reported in the literature.

NO Year Target No of Compounds Docking Tool

1 2019 enzyme AmpC 99 M Dock3.7
2 2019 D4 dopamine receptor 138 M Dock3.7
3 2019 Purine Nucleoside Phosphorylase 1.43 B Orion
4 2019 Heat Shock Protein 90 1.43 B Orion
5 2020 KEAP1 1.4 B Quickvina2
6 2021 Mpro 1.37 B Autodock-GPU
7 2021 12 SARS-CoV-2 Proteins 71.6 B LiGen

4. High-Performance Computing

Molecular docking for a single chemical compound involves sampling and scoring.
This refers to sampling over the configurational phase space for the compound in the target
binding site and computing the scoring functions for each of these configurations generated.
In the case of virtual screening, compounds from a chemical library are ranked against
a single target with respect to their binding affinities, and this additional component
is referred to as ranking (refer to Figure 1). As discussed in the previous section, this
is computationally very demanding and can highly benefit from the use of the parallel
algorithms which can run on high-performance computers with different (shared memory
and/or distributed) architectures [42,43]. Nowadays, the massively parallel computing
units, referred as graphical processing units (GPUs) and field programmable gate arrays
(FPGAs), are accessible to research groups or even individuals, and with the development
of parallel virtual screening software, drug discovery projects can be offloaded to such
groups, making the drug discovery economically sustainable. Below, we highlight the
opportunities for the parallelization of VS protocol.

4.1. Parallelization Strategies of Virtual Screening for High-Performance Computers

As we discussed above, the virtual screening involves three key steps:

(i) Sampling over configurational phase space of ligands within the binding site.
(ii) Estimating the scoring function for each of the configurations of the chemical com-

pound within the target binding site to identify the most stable binding mode/pose.
(iii) Ranking of compounds with respect to their relative binding potentials.

Each of these key steps can be parallelized, as the computations can be carried
out independently.

The estimate of scoring function for each binding mode/pose within the protein
binding site involves the computation of docking energies or binding free energies or any
other empirical potentials. We need to find the most stable binding mode for each of the
ligands in the target binding site (which corresponds to a global minimum in the protein–
ligand potential energy surface). Therefore, for each ligand, millions of configurations (each
configuration is a point in the ligand configurational phase space) are generated and the
scoring functions are estimated for these structures. As discussed above, the configurations
can be generated by changing the translational, rotational, or torsional degrees of freedom.
These changes can be performed with a deterministic methodology or by using random-
driven approaches such as Monte Carlo simulations or genetic algorithms. The estimate of
energies for each of these configurations can be carried out independently; these can be
distributed to different computing units.

In the virtual screening, the aforementioned procedure is repeated for all the ligands
in the chemical library, and even this can be carried out independently, and so can be
distributed to different computing units. Finally, even the calculation of the energy of a
single conformation can be parallelized, as it needs to estimate the interactions of all the
ligand–protein atoms couples. Overall, the parallelization of the virtual screening approach
can be implemented in the following three steps, as we also show in Figure 2.

(i) Low-level parallelization (LLP): Parallelizing the energy calculation.
(ii) Mid-level parallelization (MLP): Parallelizing the conformer evaluations and scoring.
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(iii) High-level parallelization (HLP): Parallelizing the ligands evaluations on different
computing units.

These three different levels have different efficiencies, as the amount of data transfer
between the computing units is very different and may become a strong overhead. More-
over, it is also possible to combine more of these strategies in a single application to address
different level of parallelism available (such as, for example, HLP for multi-node and MLP
for multi-core architectures). The low-level parallelism approach is, however, usually not
appealing, since the computed docking energies for different docking poses need to be
compared, and this involves frequent data transfer between different computing units. The
docking energy calculation involves summation over the pairwise interactions of the atoms
centered on protein and ligand subsystems. In case of flexible targets, the intramolecular
energies also need to be computed, which is obtained from a double summation over the
number of atoms in the target. The non-bonded interaction calculation (sum of electrostatic
and van der Waals) is the most time-consuming part of the energy calculation (by 80%) [42].
Stone et al. showed a 100-times speed-up for the non-bonded energy calculation using
GPUs, while Harvey et al. showed 200-times increased performance [44,45]. A more sophis-
ticated algorithm which effectively distributed the tasks to CPUs and GPUs for computing
non-bonded interactions was developed by Gine’s D. Guerrero et al. [46]. In this case, each
atom of the receptor was assigned to a single thread in GPUs, which handle computing its
interaction with all the ligand atoms [46]. Each thread was provided with necessary ligand
and receptor atom coordinates and charges. The speed-up due to this algorithm was up to
280 times.

The parallelization of scoring function calculation is the most problematic approach,
as it requires to sum all the atom contributions that are evaluated by different compute
units (see Figure 2). This introduces frequent small data transfers that may be limiting the
scaling behavior For this reason, the other two techniques are the most used in parallelizing
VS software. Indeed, computing the energy for different configurations of the ligand can
be carried out independently. Similarly, finding the global minimum structure for each of
the ligands as well can be carried out independently. Each molecular docking step involves
generation of millions of configurations, and the scoring functions for all the conformers
can be calculated independently by assigning the tasks to different computing units. The
energies for conformers can be gathered and checked for the least energy configuration
corresponding to global minimum in the protein–ligand free energy surface.

Figure 2. Various parallelization opportunities in virtual screening. The terms nlig, nconf, nlig_atoms,
and nprot_atoms refer to number of ligands in a chemical library, number of configurations (specific
to each ligand and dictated by number of rotatable bonds), number of ligand atoms, and number of
protein atoms, respectively.

4.2. HPCs and Accelerator Technology as Problem Solvers

Parallel computing architectures can be classified based on the memory availability to
computing units:

(i) In the shared memory architectures, a set of processors use the same memory segment.
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(ii) In the case of distributed memory architectures, each computing unit has its own memory.

In general, a high-performance computing environment is usually made of both
architectures where the shared-memory multi-core CPUs are connected through high-
performance network connections. The memory in different nodes are local and are
available to those cores within the specific node. The parallel execution of tasks in a shared
memory architecture can be achieved by compiler directives such as OpenMP pragmas or
libraries such as pthreads.

On the other hand, the parallel implementation of tasks in distributed memory archi-
tectures requires to handle the communication manually, using libraries such as Message
Passing Interface (MPI) between different nodes of the machine.

As most of the supercomputers have both shared memory behavior (on a single node)
and distributed memory behavior, as they are multi-node machines, it is easy to see the
usage of both programming libraries for parallelizing the VS. In addition to multiple CPUs,
recent HPCs also are integrated with accelerators such as graphical processing units, which
have their own memory unit. The programming languages for CPU+GPU supercomputers
are CUDA, OpenACC, and OpenCL. To use the accelerators, it is mandatory to move the
data between the host and the device memory, which means that the developer needs to
copy the data on the device before performing the computation and the result from the
device after the computation is done. In addition, the tasks distribution to GPU cores and
synchronization of the task execution in CPU and GPUs are achieved.

In virtual screening, the docking of different ligands can be carried out independently
from each other. The procedure can be effectively parallelized on supercomputers with
thousands of multiprocessor nodes, as well as in multi-CPU+GPU computers. As discussed
above, there are different possibilities for running the virtual screening in HPCs. The
molecular docking procedure for each ligand can be parallelized by distributing the docking
energy calculations for different conformers of the ligand in a target binding site. In this case,
the receptor coordinates and ligand coordinates and their charges need to be provided to
all computing units (i.e., server nodes or GPU cards). In the second scenario, the molecular
docking workload for different ligands is distributed to different computing units. In this
case, the receptor coordinates and charges should be made available to all the computing
units, while the ligand coordinates can be made available to the specific computing unit
handling this specific ligand. The main disadvantage in this way of distributing tasks is
that the ligands can have different sizes and so a rank assigned with the smaller sized
ligand completes the task and waits until the molecular docking procedure is completed
for all the ligands in different ranks to accept the tasks of second-round screening. This
way, the computing time in this specific node is wasted. Thus, it is usually recommended
to sort the ligands in terms of their size, and then the distribution of ligands can be carried
out from the list. In this way, all the ranks will have more-or-less equivalent-sized tasks,
and the wall time in different ranks is efficiently used. The next section provides an
overview of the different software targeting HPC systems, also highlighting the type of
parallelization employed.

5. Current Implementation of VS Available for Workstations, Accelerators, and HPCs

Currently, there are many parallel implementations for performing virtual screening
in multicore machines, clusters, and accelerators. As discussed above, different strategies
were adopted for parallel virtual screening. Only a few virtual screening softwares, such as
Flexscreen, use the parallel implementation of docking energy calculation. The remaining
perform the parallelization by distributing the conformational sampling/scoring or the
ligands ranking segments over different computing units.

Table 3 shows a comparison of the analyzed software under some key features. As we
can notice, most of the available softwares have the possibility to scale on multiple nodes,
thus are able to exploit the whole HPC machine. All of them are able to fully utilize a
node, while only a few have the support for the GPU acceleration. Moreover, as we already
anticipated, all of them use an MLP (parallel conformational search) or HLP (parallel ligand
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evaluations) or both strategies to parallelize the computation, while none of them uses a
low-level parallelism (parallel energy evaluations).

We now analyze, one by one, more in detail, these softwares: we focus on their per-
formance in massively parallel architectures and accelerators when compared to CPU
implementation. Wherever possible, the accuracy of the docking results (in terms of re-
producing the experimental protein–ligand complex structure and experimental inhibition
constants) will be discussed.

Table 3. Different parallel virtual screening softwares and important features.

Software Parallelization Segment Programming Language Scoring Function Minimization Multi Thread Multi Node GPU

Dock 5,6 Conformational search C++, C, Fortran77, MPI Physics-based and hybrid Monte Carlo Yes Yes No

DOVIS2.0 Ligand screening C++, Perl, Python Physics-based Monte Carlo&GA Yes Yes No

Autodock Vina Conformational search C++, OpenMP Hybrid Monte Carlo Yes No No
VSDocker Ligand screening C++, Perl, Python Physics-based Monte Carlo&GA Yes Yes No

MPAD4 Ligand screening, Conformational search C++, MPI, OpenMP Physics-based Lamarckian GA Yes Yes No
VinaLC Ligand screening, Conformational search C++, MPI, OpenMP Hybrid Monte Carlo Yes Yes No
VinaMPI Ligand screening, Conformational search C++, MPI, OpenMP Hybrid Monte Carlo Yes Yes No
Ligen Docker-HT Ligand screening, Conformational search C++, MPI, CUDA Empirical Deterministic Yes Yes Yes
GeauxDock Ligand screening, Conformational search C++, OpenMP, CUDA Physics- and knowledge-based Monte Carlo Yes Yes Yes
POAP Ligand screening bash Same as parent docking software Same as parent Docking software Yes Yes No
GNINA Conformational search C++ Empirical and CNN ML Monte Carlo Yes Yes Yes
Autodock-GPU Ligand screening C++ and OpenCL Physics-based MC/ LGA Yes No Yes

5.1. Dock5,6

Dock5 and 6 [47,48] are the parallel implementations of virtual screening program
written in C++ with MPI libraries. They are based on the original version referred to as
Dock1, which was developed by Kuntz and coworkers [11]. The Dock1 used a geometric
shape-matching approach for identifying the lead compounds for a given protein target.
The subsequent versions adopted physics-based scoring functions for ranking and had
improvement over the thoroughness of sampling and accounted for the ligand flexibility.
The recent version allowed using multiple scoring functions where the solvation ener-
gies are computed using different implicit models, such as Zou GB/SA [49], Hawkins
GB/SA [50], PB/SA [51], and generalized solvent models as implemented in Amber16.
The benchmarking study to evaluate the performance of recent Dock6 (V6.7) used SB2012
dataset [52] which is a collection of crystallographic structures for about 1043 receptor–
ligand complexes. It was able to reproduce the crystallographic poses in this dataset to an
extent of 73.3% (i.e., RMSD between the experimental and predicted binding poses was
<2 Å), which is due to reduction in the sampling failure of previous Dock versions. There
is also a report in the literature on the offloading of Dock6 to CPU+GPU architectures using
CUDA [53]. Only the ranking using amber scoring was offloaded to GPU architectures. In
this offloading, the coordinates, gradients, and velocities are copied to host (CPU) memory
to device (GPU) memory and the results are copied back from GPU to CPU memory. As
the GPU could only handle single-precision numbers, the original data in double-precision
were converted to single-precision numbers before transfer. Overall, the study reported
about a 6.5-speedup for the amber scoring in Dock6 in GPU (NVIDIA GeForce 9800 GT)
when compared to AMD dual-core CPU [53].

5.2. DOVIS2.0 VSDocker2.0

Both these parallel VS softwares use Autodock4.0 as docking engine. The former one
has been developed for the multi-CPU systems with Linux operating system (OS), while
the latter one is for parallel computer system running with MS Windows OS. DOVIS2.0 [54]
uses multithreading, SSH, and batch system for parallelization, while C++ library, Perl, and
Python are used for ligand format conversion, virtual screening workflow, and receptor
grid files preparation, respectively. Instead of preparing the receptor grid files for each
ligand, the program reuses them, and so the I/O file operation is reduced drastically. As
the program employs dynamic job controlling, the load balancing due to different size
of the ligands is effectively handled. Once the docking of block of ligands assigned to
a CPU is completed, the results are written to project directory. Subsequently, the CPU
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requests for newer assignment for screening. This way, the CPUs are continuously in action
until all the ligands are ranked and the results are written to shared directory. During
a virtual screening for 2.3 M ligands from ZINC database on 256 CPUs, the DOVIS2.0
achieved a ranking speed of 670 ligands/CPU/day. The VSDocker program is developed
to carry parallel virtual screening in both multiprocessor computing clusters and work
stations running MS windows OS. The program is written in C++ and parallel library
mpi.h [55]. In this VS implementation, the receptor map file generation and analysis of
docking results for different ligands are carried out sequentially while the docking of
different ligands are carried out in parallel. The performance of VSDocker has been tested
using a chemical library of 86,775 ligands from ZINC database against a target made of
145 amino acids. The speed-up was comparable to that of DOVIS2.0, which is similar to
VSDocker in implementation, but is suited for Linux running computer clusters.

5.3. Autodock Vina

Autodock4.0 is the most widely used molecular docking software based on physics-
based scored function, but the original version is sequential in nature. However, the
Autodock Vina, which is also from the same developers at Scripps Institute, can use multiple
cores simultaneously for carrying out the docking. The calculations can be executed with
single-threaded or multithreading options. The implementation uses C++ with Boost thread
libraries. In the multithreading version, mutiple Monte Carlo simulations are initiated
with different random number seed to explore different areas of conformational space
of the ligand within the binding site. In a benchmarking study, for the same protein–
ligand complex, the Autodock Vina [14] with single thread ran 62 times faster than the
Autodock4.0. Further, running Autodock Vina with multithreading option in eight CPU
machines yielded a 7.3-times-faster (when compared to single-threaded option) completion
of molecular docking. The performance of single-threaded Autodock Vina compared
to Autodock should be attributed to the difference in the computational cost of scoring
functions. The more than 7-times speed-up with multithreading option in an eight-core
machine shows that the molecular docking calculation scales well with the number of
cores. Autodock Vina relies on OpenMP for distributing tasks to different threads and so
is suitable for workstations with multiple cores. However, for the supercomputers with
distributed memory, this version of Autodock Vina is not suitable, and rather more robust
programs that allow the data transfer and communication between different nodes need
to be used. It is also worth mentioning that there are updated versions of Autodock Vina,
namely, Qvina 1 and Qvina 2, which showed some speedup due to the improvement in
local search algorithm. SMINA [56] is a fork of Autodock Vina with a number of additional
features such as user-specified scoring function, creating grid box for docking based on
the coordinates of ligand bound to target, improved minimization, feasibility to include
residues for flexible docking, and possibility to print more than 20 poses. In terms of
speed-up in HPCs, this did not contribute to any improvement.

5.4. MPAD4

MPAD4 [57] is a parallel implementation of Autodock4.0, and the important features
when compared to parent code are listed as follows: (i) It uses MPI to distribute docking jobs
across the cluster; (ii) The grid maps generated for receptor are reused for all the docking
calculations while in the default version, and these files are generated for each ligand
docking with the target receptor and loaded into memory and released at the completion
of docking. In MPAD4, The maps are loaded into memory of the node at the beginning of
tasks and are used for all remaining docking calculations. This greatly reduces I/O usage,
contributing to speed-up in the performance; (iii) The OpenMP is used for the node-level
parallelization in executing the LGA for finding the global minimum. Overall, it allows
system-level and node-level parallelization. The performance analysis of MPI version
and MPI+OpenMP version can be studied by setting OMP to 1 and 4, respectively. The
computers used for the initial performance analysis were IBM Blue gene/P and shared-
memory 32-core POWER7 p755 server. The dataset used for performance analysis was
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HIV protease target and 9000 compounds from a druglike subset of ZINC8 database
(which has 34,481 ligands in total). The performance analysis in Blue gene/P with 2048
(8192) node (core) showed that grid map reuse has reduced single-threaded execution
time by 17.5%. Multithreaded execution of the code yielded 25% improvement in the
overall performance. The execution of the code on nodes ranging from 512–4096 showed
near-linear scaling behavior for symmetric multiprocessing (SMP) mode (OMP = 4). In
particular, for 16,384 core system, the speed gained was 92% compared to that of the ideal
case. The virtual node (VN) mode (OMP = 1) with the grid map “reuse” option showed,
however, 72% speed-up when compared to the ideal case. The gain in the performance
of SMP mode should be attributed to multithreading. The node utilization can be further
improved with the use of preordering ligands with decreasing number of torsional angles.

5.5. VinaLC

VinaLC [58] is an Autodock Vina extension to use MPI library for parallelization in
large supercomputers. This implementation is very similar to VinaMPI (which is described
below) and uses MPI and multithreading hybrid scheme for parallelization across nodes
and within node, respectively. The computational cost of each docking calculation depends
on the size of the ligand, receptors, and the grid box. If the calculations are distributed
on all MPI processes due to this uneven size of the input systems, there can be MPI load
imbalance where the processes are waiting for other processes to complete the task. This
load imbalance is tackled effectively by the master–slave MPI scheme where the master
process handles the inputs, and outputs job allocation to the slave processes. The tasks in
the master slaves are handled by three loops: (i) the first loop is over each combination
of receptor–target ligand which assigns docking task to a free slave; (ii) The second loop
collects the docking results from slave processes and the new tasks are assigned in case of
unfinished calculations; (iii) The third loop frees the slave processes. In the slave processes,
an infinite whole loop is initiated which ends when the “job finished” signal is received
from the master. The ideal slave processes are identified from the MPI_ANY_source tag
and docking tasks are assigned upon the completion of previous task. In this way, the
computing resources available in different processes are utilized efficiently. To make the
communication effective, all the inputs needed for a single docking calculation are sent by
single MPI_Send call. Therefore, coordinates of the receptor and ligand and grids (which
are computed on the fly in the master process) are sent to the slave process. The outputs
from the slave processes are collected by the master process into a few files instead of
generating file for each ligands (which will generate a million or billion files depending
upon the size of the chemical library). The benchmarking study was carried out using the
two datasets, namely ZINC and DUD (directory of useful decoys). The target was chosen
as Thermus thermophilus gyrase B ATP-binding domain. The benchmarking calculations
were carried out on HPC machines at Lawrence Livermore National Laboratory, and the
number of cores used were in the range 600–15,408. The study showed that the average
CPU time per docking was closer to ideal average CPU time. The VinaLC was shown to
scale well up to 15 K cores. The percentage of I/O activity was reported to be negligible
when compared to the total computing time. For aforementioned target using 15 K cores,
VinaLC could screen about one million compounds from Zinc15 database in 1.4 h. This can
be extrapolated to 17 million compounds per day which suggests the suitability of VinaLC
for the most time-taking mega- or gigadocking screening applications.

5.6. VINAMPI

VinaMPI is another implementation of Autodock Vina for distributed computing
architectures [59]. It is written in C and for communication between the nodes, it uses
MPI libraries. In order to avoid poor scaling behavior of the parent-child (or master-
slave) distribution scheme in massively parallel supercomputers, this implementation uses
all-worker scheme. It is worth recalling that rather VinaLC used Master-slave scheme
for distributing tasks. In this code, each worker (or each MPI rank) deals with its own
protein-ligand complex and within each rank the computation (related to search of global
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minimum) is carried out using multithreading. Due to this reason it is also suitable for
the virtual screening for more than one targets. Further the computations are sorted
out in terms of complexity so that the work loads at a given round of screening can
be distributed equivalently. The computational complexity is measured based on the
number of rotatable bonds and size of the ligands which is used to sort the tasks in the
beginning of the screening. As a benchmark, the dockings were carried out for targets
namely ACE (angiotensin-converting enzyme), ER AGONIST (estrogen receptor agonist),
VEGFR2 (vascular endothelial growth factor receptor kinase), and PARP (poly(ADP-ribose)
polymerase) with a chemical library of 98,164 compounds (comprised of ligands and
decoys). Running this screening in a 516 cores supercomputer costed about 103 s [59]. It is
expected that the same implementation in a supercomputer with 0.3 M cores can be used
to screen 250 M compounds in 24 h.

5.7. LiGen Docker-HT

LiGen [60] is a VS software that leverages CPU and GPU to perform the required
computation. Several versions of the tool have been developed, starting from a CPU-only
application [20,60,61], then the main kernels have been ported to the GPU by [62] using
OpenACC. Finally, it has been optimized using CUDA for the GPU kernels and this last
version has been used to perform a large VS experiment in the search of a therapeutic
cure for COVID-19 screening 71.6 B compounds against 15 binding sites from 12 Sars-
Cov2 viral proteins on two supercomputers, accounting for 81PFlops [41]. LiGen uses
deterministic algorithms to generate the different conformers of a ligand, and an empirical
scoring function to select the best molecule. The Docker-HT application is the version of
LiGen that is designed targeting a large VS campaign, and it is able to leverage multi-node,
multi-core, and heterogeneous systems. In particular, it uses MPI to perform the multi-node
communication, which is limited as much as possible by the algorithm to avoid large
communication overheads [63]. Indeed, the amount of data that needs to be processed by
every node is divided beforehand, and it may create load-balancing issues as there is no
mechanism to rebalance it during the execution of the application. On the single node,
it leverages the C++ thread library. Finally, it uses CUDA to support GPU acceleration.
Within each node, the program uses pipeline parallelism and work-stealing to process
the ligands.

5.8. Geauxdock

This is a parallel implementation of virtual screening available for multicore CPU, GPU,
and Xeon Phi-computers. The software uses a common code for front-end computations
in all these computers [64]. However, the back-end codes have one version for CPU and
Xeon Phi architectures, and another for GPU. The code for CPU and Xeon Phi architectures
written in C++, OpenMP and IntelSIMD pragmas. The GPU version is written in C++
and CUDA. The program uses the Monte Carlo approach for conformational search and
for identifying the global minimum of the protein–ligand complex. The scoring function
is based on physics-based energy terms combined with statistical and knowledge-based
potentials. The performance of the code has been tested in multi-core CPUs and massively
parallel architectures, namely Xeon Phi and NVIDIA GPUs. The testing using CCDC/Astex
dataset showed a 1.9-times increase in performance for Xeon Phi when compared to 10-core
Xeon CPU. Further, on the GeForce GTX 980 GPU accelerator, the performance was 3.5 times
higher when compared to the CPU version.

5.9. POAP

Poap is a GNU parallel-based multithreaded pipeline for preprocessing ligands, for
virtual screening, and for postprocessing the docking results [65]. It also allows the mini-
mal use of memory through optimized dynamic file-handling protocol. It has also been
optimized in a way that erroneous ligand input does not affect the workflow. It can be
integrated with any of other sequential or multithreaded molecular docking softwares, such
as Autodock4.0, Autodock Vina, or AutodockZn. In the case of Autodock-based virtual
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screening, the map files are generated for each ligand in the datasets. In the case of POAP,
the map files are directed to a common hub directory and so occupancy of space due to
redundant atom types in ligands is overcome. The number of threads to be used should be
mentioned when the Autodock Vina is used as a docking software. In the case of Autodock
and AutodockZn, the number of parallel jobs to be executed (which can be equal to the
number of CPU threads) should be defined by the user. The performance of POAP has
been tested using the virtual screening for the targets namely Human ROCK I, HTH-type
transcriptional regulator, Polyketide synthase, and PqsA (Anthranilate-coenzyme A ligase)
using the ligands from the chemical library, DrugBank. Since POAP does not have any
serial code, the speed-up (theoretical estimate) is directly proportional to the number of
processors used. The performance analysis of Autodock in a T5510 DELL workstation with
Intel Xeon(R) CPU E5-2620V2, 2.10 GHz clock speed (12 Cores, 24 threads) with 62.9 GB
RAM showed a 12.4-times speed-up when compared to serial mode (the number of parallel
jobs specified is 24). Similarly, the Autodock Vina showed 2.4-times speed when compared
to default mode (which is already multithreaded) and here, the number of jobs was set
to three.

5.10. GNINA

GNINA is a fork of SMINA [56] and Autodock Vina [16]. When compared to the
hybrid scoring function employed in Autdock Vina, it provides options to use various
built-in scoring functions (such as Vina, Vinardo) along with user-customized scoring
functions. More importantly, it provides a machine learning-based scoring function to rank
the complexes. The default scoring function (called “none” option) is the same as used in
Vina or Smina, while the rescoring (called “rescoring” option) allows the topmost ligand
poses to be ranked using machine learning-based scoring functions.

In particular, this scoring function is based on convolutional neural networks trained
using 3D protein–ligand complex structures (as reported in PDBBind or BindingDB) and cor-
responding experimental inhibition constants. They were trained to reproduce binding pose
and the binding affinity. There are multiple machine learning functions (namely, crossdock_
default2018, dense, general_default2018, redock_default2018, and default2017) provided by
GNINA, and these have been developed using different datasets. The CNN-based scoring
function outperforms the scoring function implemented in Vina in reproducing the binding
poses. The RMSDs for the predicted poses in the unseen examples are below 2 Å in as
many cases as 56%. Further, the binding prediction of poses within this cutoff improves to
79% if the redocking is performed.

When compared to Autodock Vina, the grid box center can be provided with the
help of a ligand file. For the conformational search, GNINA uses Monte Carlo sampling
scheme. The sampling is carried out over the ligand translational, rotational, and torsional
degrees of freedom. In the case of flexible docking, the sampling is also carried out over the
residue side-chain conformations. Unlike Smina, GNINA performs computing in single-
precision (32 bit) which allows the possibility of offloading the CNN scoring tasks to GPUs.
Even though GNINA can be used in massively parallel supercomputers and HPCs with
accelerators, there is no performance analysis or profiling when compared to other docking
softwares reported in the literature.

5.11. AUTODOCK-GPU

Autodock4.0 is one of the most widely used molecular docking softwares, but it is a
serial code which runs on a single thread so cannot be effectively used in high-performance
computing environments with multiple CPUs and GPUs. Autodock-GPU [66] is the version
of Autodock developed for multiple node parallel computers with GPU accelerators.
It is worth recalling that the above discussed MPAD4 was developed for multi-CPU
architectures. This program has been developed using the application programming
interface, OpenCL, as it allows portability to hybrid platforms with CPUs and GPUs. When
compared to Autodock4.0, the local search algorithm uses derivatives of energies with
respect to translations, rotations, and torsions (this implementation of gradient-based local

353



Pharmaceuticals 2022, 15, 63

search is referred to as ADADELTA). In the case of CPU+GPU architectures, the workflow
consists of a sequence of host and device functions. In analogy to biological gene, the state
of the protein–ligand complex is represented by a sequence of variables. In the case of
a rigid docking (where the protein framework is treated as a rigid body), the variables
represent positions, orientations, and conformation of the ligand. The number of variables
are 6+Nrot, where Nrot is the number of rotatable bonds. The docking is aimed at finding
the genotype which corresponds to the global minimum in the protein–ligand potential
energy surface and the ranking is dictated by the scoring function.

The performance of Autodock-GPU has been tested using the diverse data set of
140 protein–ligand complexes from Astex Diversity Set [67], CASF-2013 [68], and protein
databank. The reference docking calculations were performed using the single-threaded
Autodock4.2.6. The speedup performance was dependent on the minimization algorithm
used for the local search (whether Solis–Wets or ADADELTA), GPU type, and the type of
protein used in the docking. With the use of Solis–Wets local search algorithm, the speed-up
was 30 to 350 times in GPUs, with the M2000 showing the least performance and with
TITAN V showing the best. However, with the use of ADADELTA local search, the speed-
up was only 2 to 80 times improved, which has to be attributed to the computationally
expensive calculation of gradients and difficulties associated with the parallelization of this
local minimization step. In general, TITAN V cards showed 10 times higher speed-up when
compared to M2000 versions. The performance analysis in multiple-core CPUs showed a
similar trend where for the Solis–Wets search, the speed-up was in the range 5 to 33 times
(the number of cores employed 8–36), while for the ADADELTA local search the speed-up
was 2–20 times better.

5.12. Other VS Tools

The focus of this review was mostly about the open-source parallel VS softwares
which are summarized in Table 3 along with some important features. The details about
the year they were introduced and source URL pages are listed in Table 4. Many of these
softwares such as GeauxDock, Autodock-GPU, and GNINA, were introduced in recent
years and so their capacity in the lead compounds identification from huge chemical
libraries needs to be validated extensively. Meanwhile, many already existing virtual
screening softwares have contributed to successful lead compound identification and
lead optimization over the years. In particular, the softwares such as FlexX, DOCK (the
sequential version of above discussed Dock6), SLIDE, Fred (OpenEye), GOLD, LigandFit,
PRO_LEADS, ICM, GLIDE, LUDI, and QXP are worth mentioning [69]. Among these,
LigandFit and QXP employ Monte Carlo for sampling, while SLIDE and Fred employ
conformational ensembles approach. GOLD, ICM, and GLIDE, respectively, adopt genetic
algorithm, pseudo-Brownian sampling/local minimization, and exhaustive search for
sampling. Finally, Dock and FlexX use incremental build approach for identifying the
most stable binding mode/pose for the ligand. There are other VS softwares, such as
RosettaDock [70], Surflex [71], and LIDAEUS [72], which are not discussed here as the
review focuses on those with parallellism capability. It is also worth mentioning Spark-
VS [73] software, which uses Google’s MapReduce to run parallel virtual screening in
distributed cloud resources. The parallel efficiency of Spark-VS against a chemical library of
2.2 M compounds is reported to be 87% when compared to a public cloud environment [73].
This opens up another possibility of using cloud computing resources for parallel virtual
screening without a need to buy our own HPCs and accelerators.
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Table 4. Timeline for different parallel virtual screening software and source URLs (with accessed
dates in bracket).

No Year Parallel VS Source

1 2006 Dock5&6 http://dock.docking.org/ (1 August 2021)
2 2008 DOVIS2.0 http://www.bioanalysis.org/downloads/DOVIS-2.0.1-installer.tar.gz (15 December 2021)
3 2009 Autodock Vina http://vina.scripps.edu/ (1 August 2021)
4 2010 VSDocker http://www.bio.nnov.ru/projects/vsdocker2/ (15 December 2021)
5 2011 MPAD4 http//autodock.scripps.edu/downloads/multilevel-parallel-autodock4.2 (15 August 2021)
6 2013 vinaMPI https://github.com/mokarrom/mpi-vina (1 June 2021)
7 2013 vinaLC https://github.com/XiaohuaZhangLLNL/VinaLC (10 June 2021)
8 2016 GeauxDock http://www.brylinski.org/geauxdock (20 June 2021)
9 2018 POAP https://github.com/inpacdb/POAP (21 June 2021)
10 2021 Autodock-GPU https://github.com/ccsb-scripps/AutoDock-GPU (10 September 2021)
11 2021 GNINA https://github.com/gnina/gnina (1 November 2021)

6. Emerging Reconfigurable Architectures for Molecular Docking

In prior sections, we have focused exclusively on reviewing methods of virtual screen-
ing and molecular docking that target modern central processing unit (CPU) and graphics
processing unit (GPU) solutions (refer to Figure 3). At the same time, we know that
Moore’s law (transistor scaling) is terminating, which could motivate (or even necessitate)
the search for alternative computing platforms that can continue the performance trend
that molecular docking has come to rely upon. Among the many (so-called) post-Moore
technologies [74], reconfigurable architectures are perhaps the most noticeable, partially
because they are readily available today. A reconfigurable architecture, such as a field-
programmable gate array (FPGA) or coarse-grained reconfigurable array (CGRAs) [75] is a
system which aspires to retain some of the silicon plasticity that is lost when manufacturing
an application-specific integrated circuit (ASIC). In turn, users can leverage reconfigurable
systems to perfectly match the hardware to the application, which in turn can lead to
improvement in performance and reduction in energy costs. For example, the expensive
von Neumann bottleneck associated with the decoding of instructions in CPUs can be
virtually eliminated. Traditionally, reconfigurable architectures such as FPGAs have been
programmed using complex, low-level hardware description languages (HDLs) such as
VHDL or Verilog. This, in turn, has limited exposure of using these devices to specialized
hardware and is thus out of reach for typical HPC users. However, with the increase in
maturity of high-level synthesis (HLS) [76] tools in the past decade, today, programmers
can describe their hardware in abstract languages such as C/C++ and directive-driven
models (e.g., OpenCL [77] or OpenMP [78]) and automatically translate the code down to
specialized hardware. Modern HLS has, in turn, facilitated the accelerated use and research
of FPGAs in other HPC applications such as computational fluid dynamics, neuroscience,
and molecular docking.

Figure 3. A conceptual picture of different processors and accelerators, showing (a) CPUs, which are
latency-focused architectures with few processing units and large (and deep) memory hierarchies,
(b) a GPU, which is a throughput-focused architecture with more processing units (contra CPUs) and
a shallower memory hierarchy, and (c) FPGAs, which offer much more parallelism compared to both
CPUs and GPUs, with finer control over individual unit types (here shown in different controls), but
is harder to use.

Pechan et al. [79] evaluated and compared the use of FPGAs against both GPU and
CPU solutions of the popular Autodock software. They created a custom RTL-based three-
stage FPGA accelerator that computes the performance-critical sections of the Autodock
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algorithm. More specifically, the custom accelerator has four modules capable of exploiting
MLP (see Section 4.1), while LLP is exploited inside each module (through pipelining); the
accelerator relies on other methods to exploit HLP. They compared their solution against a
custom (CUDA-based) GPU solution (GT220 and GTX260) and a CPU (Intel Xeon 3.2 GHz)
version on the 1hvr and 2cpp protein pairs (from the Protein Data Bank). The overall
results showed that FPGAs outperformed the CPUs for both use-cases independent of the
number of dockings that were used. The GPU, however, had a clear advantage when a
large number of dockings were executed, and the FPGA was only preferable when a few
number of docking runs were executed. Recent work by Solis-Vasquez et al. [80,81] focused
particularly on using OpenCL HLS tools to create custom accelerators that target FPGAs.
Aside from disseminating their design process, they also vary several different architec-
tural properties in their accelerator. For example, they consider both floating-point and
fixed-point representation for various phases of the computation, which demonstrates an
advantage that FPGAs can provide over more general-purpose approaches. The accelerator
runs at a fairly high frequency (between 172 MHz and 215 MHz) on a Intel Arria 10, and
consumes a varying amount of resources (subject to their design-space exploration). They
compare their accelerator against the single-threaded Autodock software on five protein
targets, and show that they reach between 1.73× and 2.77× speed up.

Today, there is a remarkably small number of published work that leverages FP-
GAs in the Autodock software (for surveys using FPGAs on other molecular algorithms,
see [82,83]). Even more surprising is that (to the authors’ knowledge) CGRAs have been
largely unexplored in this domain. With both FPGAs and CGRAs emerging as performance
(and, more importantly, greener) alternatives to traditional CPUs and GPUs, we believe
that these systems will come to play a much larger role in molecular docking and virtual
screening in the future than they have so far.

7. The Advent of Quantum Computing for Molecular Docking

With the advent of publicly available quantum computers via cloud computing, such
as the IBM, Righetti, Google, and D-Wave quantum systems [84], quantum computing is
becoming a promising approach to support and accelerate molecular docking computations.

A study of a molecular docking implementation on a photonic quantum computer
was presented in [85]. The authors used a Gaussian boson sampler (GBS) which is a
special model of photonic quantum computer where the computation is realized via the
interference of identical photons that are passing through a circuit or a network of beam
splitters and phase shifters. In this work, the binding interaction graph between ligands and
receptor is used to generate the ligand orientations within the protein pocket. A simplified
pharmacophore representation is used, limiting the graph size from all-molecular model
of the ligand and receptor to a set of points having large influence on the interactions, i.e.,
negative/positive-charged atoms, hydrogen bond donor/acceptor atoms, hydrophobic
characteristics, and aromatic ring positions. The docking problem has been formalized by
mapping it to the identification of large clusters in a weighted graph. The GBS device was
used to search for the largest cliques while considering the graph weights. The method
shows very good results compared to solving the same problem in a classical way; however,
it cannot be used alone in a virtual screening process unless to pair it with classical data
postprocessing techniques (scoring) thus generating a hybrid-quantum approach.

The usage of quantum annealers to understand the capabilities of these devices to
improve the quality and the throughput of molecular docking methods is presented in [86].
In particular, the paper focused on a specific phase of the molecular docking, consisting
of ligand manipulation in terms of its rotatable bonds. The authors propose a quantum
annealing approach to molecular docking by formulating it as a high-order unconstrained
binary optimization (HUBO), which was possible to solve on the latest D-Wave annealing
hardware (2000Q and Advantage). The work demonstrated how a lot of simplifications
have to be taken into consideration during the problem formulation and embedding phase,
even with small molecules. The results show that despite that the current hardware is
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not yet mature to solve the molecular docking problem on real-life scales, there is a clear
positive trend in that direction.

8. Conclusions

The parallel implementation virtual screening algorithms in massively parallel comput-
ers with multiple CPUs and/or GPUs have the high potential to speed up the exploration
of gigantic chemical spaces (having compounds in the range 109 to 1012) in real time. In a
serial version of virtual screening software, it may take many years of CPU hours for such
tasks. The current regard for gigantic docking is the screening of billions of compounds
from ZINC15 and Enamine databases with the use of Autodock GPU in Summit HPC
computers in less than a day. The parallel implementations and reliable scoring functions
will increase the success rates in the lead compounds identification for drug discovery. This
makes the drug discovery less time-consuming and economically sustainable. Further, as
the chemical spaces are really huge, the drugs with entirely different scaffold geometry
can be identified. The speed-up of the virtual screening software is found to be dependent
on the number of factors: energy minimization algorithm, scoring function, biomolecular
target, and computer architecture. More elaborate studies will allow us to develop highly
optimized virtual screening software in the future. The implementation of VS for FPGAs
and quantum computing is still in its infancy, and a dedicated research is needed for
adopting such architectures for drug discovery projects.
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Abstract: A pharmacophore-based virtual screening methodology was used to discover new catechol-
O-methyltransferase (COMT) inhibitors with interest in Parkinson’s disease therapy. To do so,
pharmacophore models were constructed using the structure of known inhibitors and then they
were used in a screening in the ZINCPharmer database to discover hit molecules with the desired
structural moieties and drug-likeness properties. Following this, the 50 best ranked molecules were
submitted to molecular docking to better understand their atomic interactions and binding poses
with the COMT (PDB#6I3C) active site. Additionally, the hits’ ADMET properties were also studied
to improve the obtained results and to select the most promising compounds to advance for in-vitro
studies. Then, the 10 compounds selected were purchased and studied regarding their in-vitro
inhibitory potency on human recombinant membrane-bound COMT (MBCOMT), as well as their
cytotoxicity in rat dopaminergic cells (N27) and human dermal fibroblasts (NHDF). Of these, the
compound ZIN27985035 displayed the best results: For MBCOMT inhibition an IC50 of 17.6 nM was
determined, and low cytotoxicity was observed in both cell lines (61.26 and 40.32 µM, respectively).
Therefore, the promising results obtained, combined with the structure similarity with commercial
COMT inhibitors, can allow for the future development of a potential new Parkinson’s disease drug
candidate with improved properties.

Keywords: Parkinson’s disease; catechol-O-methyltransferase; inhibitors; bioinformatics; pharmacophore
modeling; molecular docking; cytotoxicity

1. Introduction

With the increasing life expectancy of the population, neurodegenerative disorders
(ND) such as Alzheimer’s and Parkinson’s disease (PD), are becoming more common
and recognized as a social problem to modern societies [1]. PD is characterized by a
progressive neurodegeneration in the central nervous system (CNS) that involves a loss
of dopaminergic neurons in the brain and nowadays is considered one of the main causes
of disability and mortality [2]. The current drug therapy mostly targets symptomatic
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relief, mainly aiming to restore dopaminergic function [2]. However, this strategy is not
capable of stopping the progression of the disease and the advance of neurodegeneration
and symptom aggravation [2]. To date, the most effective drug combination used in PD
treatment is levodopa (L-DOPA) combined with aromatic L-amino acid decarboxylase and
catechol-O-methyltransferase (COMT) inhibitors to restore dopaminergic brain levels [2].
However, their long-term administration is generally associated with harmful side effects
that affect the patient’s quality of life, and a loss in pharmacological effect is usually
observed over time [3]. Therefore, there is an increasing demand to develop novel PD
drug candidates. Considering the active role that COMT holds in L-DOPA metabolism,
both in the periphery and in CNS, converting more than 90% of administered L-DOPA
before reaching the brain, the discovery of a novel COMT inhibitor with low toxicity,
high inhibitory potency, and selectivity towards the CNS is of high interest. Specifically,
COMT is a magnesium-dependent enzyme that mediates the removal of a methyl group
from S-adenosyl-L-methionine (SAM) to a catecholic substrate, affording O-methylated
products and S-adenosylhomocysteine (AdoHcy) [4]. Physiologically, this enzyme appears
as two distinct isoforms, a soluble isoform (SCOMT) mainly expressed in the peripheric
systems, such as the liver, kidney, and intestines, and a membrane-bound (MBCOMT)
isoform with a major prevalence in the central nervous system (CNS) [5–7]. Despite the
high similarity shared by both isoforms, SCOMT has a higher enzymatic activity capacity,
whereas MBCOMT has a higher substrate affinity (Km), especially towards catecholamines
like dopamine and epinephrine [2,5]. Since the discovery of the pharmacological benefit of
COMT inhibition, several families of molecules have been reported in the literature. The
first generation was composed of molecules with a high structure similarity with known
COMT substrates, bearing a catechol moiety [8,9]. However, despite some promising
in-vitro results, in in-vivo testing, the compounds displayed a high toxicity and low
inhibitory potency [8]. So, a new group of inhibitors was proposed, mainly formed by
di-substituted catechols, where entacapone and tolcapone, commercial COMT inhibitors
used in a clinical setting at the moment, were included [9]. These compounds showed
enhanced potency, generally in the nanomolar range, especially caused by the presence
of electron-withdrawing groups at the ortho position to a hydroxyl group of the catechol
moiety [8]. Despite its clinical use and pharmacological properties, including the capacity
to cross the blood–brain barrier (BBB) and thus inhibit central COMT, tolcapone is also
associated with high hepatoxicity, limiting its use in more advanced cases of PD progression.
In contrast, entacapone, a strictly peripheric inhibitor, is less potent, but has less toxicity
and was considered as the first line of treatment for many years [10]. Recently, another
peripheric COMT inhibitor, opicapone, was approved for clinical use. This drug displays a
higher bioavailability than other commercial inhibitors and leads to stable and sustained
L-DOPA plasma levels for over 24 h periods, which allows for a big improvement in the
life quality of PD patients [11]. Regardless of the intense research to improve levodopa
bioavailability, only a couple of novel adjunct compounds acting through COMT inhibition
have been approved in the last few decades [3]. So, it is imperative to find new COMT
inhibitors with the ability to cross the BBB and promote a synergic effect (peripheral/central)
with a high safety profile. Considering the need to combine new technologies to support
the design of novel drugs, bioinformatics is gaining outstanding relevance in almost all
therapeutical areas. It is no different for COMT inhibition, and since the 1990s many
researchers have employed some of these tools to discover and/or aid in the design of
new molecules. In this context, Vidgren et al. were one of the first research groups to
employ the use of computational tools to study the molecular interactions of potential
inhibitors with the COMT catalytic site [12]. The acidity of both catechol hydroxyl groups
and the lipophilicity of the inhibitors side chains were demonstrated to play an important
role in the molecules’ binding affinity, later confirmed by the determination of the first
COMT crystal structure [13]. Lautala et al. [14], by comparing unsubstituted catechol and
pyrogallol, first-generation inhibitors, and their substituted derivatives, demonstrated
that the turnover rate modification of the molecules was inversely proportional to their
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binding affinity to the protein active site. Moreover, several research groups studied the
inhibitory potential of flavonoids through molecular docking [15], dynamic simulations [16],
and QSAR (quantitative structure–activity relationship) studies [17]. Similar strategies
were employed for the “second generation” inhibitors, as reported by Palma et al., who
applied molecular docking to understand the molecular interactions of nebicapone [18],
a nitrocatechol inhibitor, and the O-regioselectivity of the enzyme for BIA 3-228 and BIA
8-176, two other nitrocatecholic-type inhibitors [19]. Another class of inhibitors that was
studied was the bisubstrate inhibitors, molecules that target simultaneously both the SAM
and the substrate binding sites [20]. In fact, both Lerner et al. [21] and Paulini et al. [22]
used molecular docking to evaluate the effect of several substituents on the binding affinity
with COMT. Moreover, Lee et al., through homology modeling of the 3D structure of rat
COMT, developed several bisubstrate inhibitors performed molecular docking to analyze
putative binding affinities [23]. Furthermore, Ellerman et al. used structure-based drug
design (SBDD) methodologies to evaluate the binding affinity of multiple compounds
with the COMT 3D structure [24,25]. Recently, garcinol, a natural product with an in-
vitro effect identical to the one observed with tolcapone, was also studied in silico and
it was shown that it can form identical atomic interactions with COMT when compared
to tolcapone [26]. A slightly different approach was used by Jatana et al. by employing
pharmacophore modeling and ligand screening analysis to obtain molecules with a high
potential to interact with COMT [27]. All studies were performed with the soluble isoform
of mouse or human COMT. So, due to the difficulty of obtaining the 3D structure of
membrane proteins, bioinformatics approaches have been extensively used to explore the
conformational space of a ligand in the binding pocket of the selected target protein. At
present, more than 100 3D SCOMT crystal structures can be found in the Protein Data Bank
(https://www.rcsb.org/, accessed on 27 November 2021), and they provided essential
information about the atomic interactions formed between the protein active site and
substrates/inhibitors. Nevertheless, the MBCOMT structure has not been solved to date
and no structures between SCOMT and MBCOMT coupled to new molecules have been
reported in the literature. So, in this work, the resolution of the crystal structure of the
SCOMT variant [28] was the base for structure-based virtual screening and pharmacophore
modeling studies to find potential COMT inhibitors with increased selectivity towards
MBCOMT. This study, using a combination of structure- and ligand-based drug design
approaches to select new promising candidates to be studied in-vitro for both MBCOMT
inhibition and cell line cytotoxicity, aims to discover novel PD drug candidates with interest
for further studies.

2. Results
2.1. Pharmacophore Modeling

Employing a ligand-based molecular modeling strategy, a pharmacophore containing
the main structural moieties of the training set (Figure 1) was generated to find new
potential COMT inhibitor drug candidates. By merging the essential features of the selected
molecules (Figure 1), the model explored the number of hydrogen bond donors/acceptors
as well as the aromatic and hydrophobic groups involved in the interaction with the COMT
active site, generating a model very similar to the interactions performed by the commercial
COMT inhibitor tolcapone, as shown in Figure 2 [29].
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Figure 1. 2D structures of the selected COMT inhibitor training set.

(A) (B) 

 

Figure 2. (A) Pharmacophore model of tolcapone generated by LigandScout (hydrogen bond donor:
green sphere, hydrogen bond acceptor: red sphere, ionizable area: blue asterisk, and aromatic rings:
yellow); (B) 2D representation of the pharmacophore features of tolcapone.
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2.2. Database Searching

From the 10 best scored hypotheses, only the best scored model was selected to ad-
vance for further studies. The selected pharmacophore was loaded into the ZINCPharmer
software and a virtual screening of the ZINC purchasable database was performed, select-
ing the 100 best scored hit molecules. These 100 compounds were selected considering
literature data, with a focus on the knowledge of the main molecules with COMT inhibitory
effects (e.g., compounds presented in Figure 1). From an initial set of 21,777,093 compounds,
the compounds with RMSD (root-mean-square deviation) ranging from 0.5 to 1.5 Å were
the best ranked compounds, and commercial COMT inhibitors like tolcapone and opi-
capone were also considered hit molecules, improving the reliability of the obtained data.
In Supplementary Material Table S1 the RMSDs, molecular weight, and routable bonds of
some of the hit molecules selected are displayed.

2.3. Molecular Docking Studies

Molecular docking was used to better comprehend and validate the provisional re-
sults obtained in Section 2.2, filtering potential false negatives and studying in detail the
atomic interactions formed with the COMT active site. To do so, the 3D structure of
COMT (PDB#6I3C) co-crystallized with the cofactors SAM and Mg2+ ions and the inhibitor
3,5-DNC, identified as the reference compound, was used [28]. To date, this structure
has the best resolution of all the structures of COMT deposited in PDB (data checked on
27 November 2021). Structurally, the COMT catalytic site is surrounded by the “gatekeeper”
residues Trp143 and Pro174, which ensure the correct orientation of the substrate, the Mg2+

ions, and the SAM cofactors, as well as residues Lys144 and Glu199, which are involved
in substrate binding [30]. The methodology used was validated through a re-docking of
the co-crystallized reference COMT inhibitor 3,5-DNC into the protein active site through
AutoDock Tools software, obtaining an RMSD value of 1.6 Å and a binding energy of
−4.85 kcal/mol. These results indicate that the procedure used was able to reproduce
the crystallographic complexes in a very precise approach. The hit molecules were also
subjected to the same procedure and were ranked based on their molecular interactions
formed with the COMT active site by both hydrophobic and electrostatic interactions, as
summarized in Supplementary Material Table S2. In Table 1 the atomic interactions of
some of the most promising scoring molecules are displayed in more detail, as well as in
Figures 3–12. A special focus was brought to the molecules that could form interactions
with the most important amino acids of the protein active site, mainly with Lys144 and
Glu199 by hydrogen bonding and with Trp38, Trp143, and Trp174 by hydrophobic interac-
tions. Additionally, the binding energy values were also evaluated, namely, in comparison
with the reference compound 3,5-DNC.

2.4. ADMET Property Prediction

The ADMET properties were predicted for the 50 best scored compounds in the virtual
screening. Table 2 summarizes the results for the 10 most relevant selected molecules in
several categories, such as absorption, distribution, metabolism, excretion, and predicted
toxicity, obtained in the webserver pkCSM. These included the BBB (blood–brain barrier)
and CNS (central nervous system) permeability, which are considered important attributes
of a PD drug, where most of the tested compounds were in the lower limit of being
considered a permeable drug. The human intestinal potential absorption is indicative of
higher intestinal absorption, which is a factor to take into account in cases of oral drug
administration (the results were in most cases percentages above 80%, a very positive result).
Regarding the PgP (P-glycoprotein) interaction, a protein involved in cells’ internal efflux
mechanisms for xenobiotic substances, the compound properties both as a substrate and/or
inhibitor were assessed, yielding positive data due to low indications of an interaction with
these proteins. The inhibition of several cytochrome P450 enzymes was also predicted,
specifically for the CYP2C9, CYP2D6, CYP3A4, CYP1A2, and CYP2C19 variants, where
most compounds did not inhibit any of these enzymes, with the exception of CYP2C19,
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where almost half of the studied compounds inhibited this isoenzyme. For AMES toxicity,
which states the mutagenicity of a compound evaluated, we concluded that only a few
compounds were predicted as being potentially mutagenic. The compounds LD50 (median
lethal dose) and LOAEL (lowest observed adverse effect level) were predicted as being
similar to other clinically used drugs, such as some of the commercial COMT inhibitors.
Finally, hepatotoxicity was also studied, with only one negative result observed, for the
compound ZINC825166420. These results, despite being in-silico data, are very interesting,
with some very positive results that can potentially indicate some of the in-vitro and in-vivo
results. However, they can only be validated with further testing.

Table 1. Hit molecule predicted values of the binding affinities and main interactions with the target.

Compound Binding Energy Main Interactions

ZINC825166420 −7.48 Met40, Pro174, Glu199

ZINC1547205762 −7.39 Trp38, Met40, Pro174, Mg2+

ZINC98288 −6.98 Trp38, Met40, Lys144, Pro174, Glu199

ZINC95473053 −6.79 Trp38, Met40, Asp141, Trp143, Lys144, Asn170,
Pro174, Glu199, Mg2+

ZINC302226 −6.63 Met40, Pro174, Glu199, Mg2+

ZINC27985035 −6.26 Met40, Asp141, Lys144, Asn170, Pro174,

ZINC78496496 −6.12 Trp38, Met40, Pro174, Leu198, Glu199, Mg2+

ZINC38175059 −6.04 Trp38, Met40, Asp141, Lys144, Asn170, Pro174,
Leu198, Glu199

ZINC605706834 −6.24 Trp38, Trp143, Pro174

ZINC68675288 −5.90 Met40, Asn170, Pro174, Glu199

(A) (B) 

  

(C) 

 

Figure 3. (A) Binding modes of ZINC825166420 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC825166420.
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(A) (B) 

 

(C) 

 

Figure 4. (A) Binding modes of ZINC1547205762 with the crystal structure of human COMT
complexed with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of
ZINC1547205762.

(A) (B) 

 

(C) 

 

Figure 5. (A) Binding modes of ZINC98288 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC98288.
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(A) (B) 

  

(C) 

 

Figure 6. (A) Binding modes of ZINC95473053 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC95473053.

(A) (B) 

 

(C) 

 

Figure 7. (A) Binding modes of ZINC302226 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC302226.
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(A) (B) 

  

(C) 

 

Figure 8. (A) Binding modes of ZINC27985035 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC27985035.

(A) (B) 

 

(C) 

 

Figure 9. (A) Binding modes of ZINC78496496 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC78496496.
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(A) (B) 

 

 

(C) 

 

Figure 10. (A) Binding modes of ZINC38175059 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC38175059.

(A) (B) 

 

(C) 

 

Figure 11. (A) Binding modes of ZINC605706834 with the crystal structure of human COMT
complexed with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of
ZINC605706834.
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(A) (B) 

 

 

(C) 

 

Figure 12. (A) Binding modes of ZINC68675288 with the crystal structure of human COMT complexed
with SAM and Mg2+, (B) receptor–ligand interactions, (C) 2D representation of ZINC68675288.

After this analysis, based on binding energies and atomic interactions formed with the
COMT active site (Section 2.3), commercial availability, and the structure similarity with
commercial or previously reported COMT inhibitors, 10 compounds were selected to be
tested further.

2.5. In-Vitro MBCOMT Assays

Despite structural-based drug design tools being able to predict the binding modes
and affinity of new molecules to the targets with significant accuracy and efficiency [31], an
in-vitro validation of the best modeling results must be performed. Therefore, according to
the best hits given by the computational models, 10 compounds were chosen to perform the
enzymatic inhibition assay (Supplementary Material Table S3). As previously mentioned,
our group purchased the most promising compounds with purity above 99.5% according
to the manufacturer. The compounds used in this study are presented in Figure 13, with
the respective identification.

From these previous studies, a first screening of MBCOMT inhibitory effects allowed
us to select the compounds with the five best inhibitory profiles for concentration-response
studies to calculate IC50 values, which are presented in Table 3. From the analysis of
the results, the lowest IC50 was determined for the compound ZINC27985035, followed
by ZINC78496496.
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Figure 13. Structure and identification of the studied compounds.

Table 3. Estimated IC50 values (nM) for selected compounds with MBCOMT performed in this work
in comparison with previous ones reported in the literature. Values are means with 95% confidence
(n = 2 to 3).

Sample Compound IC50 (nM) Reference

Recombinant SCOMT
3,5-DNC 13.26

(10.7 to 16.44)
[32]

Entacapone 4.224
(2.949 to 6.050)

Brain MBCOMT Tolcapone 2
(1 to 2)

[33]

Liver MBCOMT Tolcapone 123
(52 to 292)

Liver SCOMT
Pyrazoline derivate 48

[34]
Entacapone 230

Recombinant MBCOMT

ZINC302226 1083
(879.9 to 1333)

This work

ZINC98288 943.8
(816 to 1092)

ZINC825166420 1538
(1254 to 1888)

ZINC27985035 17.6
(13.53 to 22.96)

ZINC78496496 470
(401.4 to 550.4)

2.6. Cytotoxicity Studies

The neuronal cytotoxicity is an important parameter to evaluate considering the target
organ of action of anti-Parkinsonian agents, namely, for potential COMT inhibitors. There-
fore, the effect of the selected compounds was evaluated against dopaminergic neuronal
cells (N27) by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
colorimetric assay, as previously described [35]. To do so, the cells were exposed to different
concentrations of the compounds during 48 h, and after the MTT assay (Supplementary
Material Figures S1 and S2), their half maximal inhibitory concentrations (IC50) were calcu-
lated by considering the data from concentration-response curves (Table 4). In addition,
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the cytotoxicity of these compounds to normal human dermal fibroblasts (NHDF) was
also assessed by the same methodology to obtain further data on the in-vitro safety to
non-tumoral cells existing outside of the CNS. The clinical drug 5-fluorouracil (5-FU) was
included in the study for comparative purposes.

Table 4. Estimated IC50 values (µM) for selected compounds in dopaminergic neuronal (N27) and
normal fibroblast (NHDF) cells a.

Compound N27 NHDF

ZINC302226 52.50 >100
ZINC98288 69.78 >100

ZINC825166420 16.98 12.14
ZINC27985035 61.26 40.31
ZINC78496496 >100 92.90

5-FU 4.28 5.16
a Cells were treated with different concentrations (0.1, 1, 10, 30, 50, and 100 µM) during 48 h. The cell proliferation
effects were determined by the MTT assay. The data shown are representative of at least two independent
experiments. 5-FU: 5-fluorouracil.

3. Discussion

Aiming to discover new compounds with potential interest in PD therapy, we em-
ployed a previously described crystal structure of SCOMT [28] to develop a pharmacophore
to find potential new COMT inhibitors with higher selectivity to MBCOMT. Then, we used
the pharmacophore developed to computationally find molecules of interest at the ZINC
purchasable database. Next, the 100 best scored compounds achieved in this database
search were evaluated for their drug-likeness properties and by molecular docking fol-
lowed by an analysis of relevant ADMET parameters. Considering the results of these
studies as well as commercial availability, 10 compounds were selected and acquired for
further in-vitro studies, taking into account the obtained binding energy and the main
interaction promoted with the target amino acids (Supplementary Material Table S2). There-
fore, by a combination of in-silico structure- and ligand-based drug design strategies, new
hit molecules were selected. In this context, it is important to mention that structural-
based drug design tools are being widely used to predict the position and affinity of new
molecules to the target protein with considerable accuracy and efficiency, among other
studies [31]. Nevertheless, despite extensive in-silico studies, the in-vitro validation of the
best predicted modeling results must be performed. To do so, we carried out experiments
to evaluate the inhibition of MBCOMT activity (Table 3) as well as the cytotoxicity (Table 4)
of the compounds with higher relevancy in dopaminergic and fibroblast cells, and we
observed interesting results that are discussed below.

COMT inhibitors can be divided into the “first generation,” associated with toxic prop-
erties and weak or nonselective activity, and the “second generation,” with nitrocatecholic
structure, which includes the inhibitors 3,5-dinitrocatechol (3,5-DNC), opicapone, nite-
capone, nebicapone, entacapone, and tolcapone [36,37]. The last two proved to be potent
COMT inhibitors with similar IC50s of approximately 250 nM [36]. Although entacapone
has been considered relatively safe, it only acts peripherally [10]. In contrast, tolcapone, the
only commercial COMT inhibitor able to cross the BBB, is used with caution due to safety
concerns regarding liver toxicity [38]. In this work, the MBCOMT inhibition potencies of
the five selected compounds were determined based on the sigmoidal curve of dose vs.
response drawn and expressed as IC50 values. As shown in Table 3, the majority of the
tested compounds in this work presented an IC50 value below 1000 nM, with the compound
ZINC825166420 presenting the highest IC50 (1538 nM), followed by ZINC302226. Although
the compound ZINC302226 was computationally predicted to be the strongest inhibitor
to be tested, it presented a relatively high IC50 value (1083 nM) compared to the reported
values for entacapone or tolcapone [2,5,6]. On the other hand, the compounds ZINC98288,
ZINC27985035, and ZINC78496496 had the lowest IC50 values (below 1 µM). In fact, the
derivative ZINC27985035 presented the lowest IC50 value achieved (17.6 nM), similar to
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that determined for 3,5-DNC when the recombinant SCOMT was used. However, if we
consider liver S- and MBCOMT as the protein source, the obtained value is much lower
than those reported for both entacapone and tolcapone, which share structural similarities
with ZINC27985035. A detailed analysis of the scientific literature also allowed for the iden-
tification of compounds with a structure similar to ZINC302226 [37] and ZINC78496496 [39]
as COMT inhibitors. For the last one, the only difference was the presence a chlorine group
instead of bromine. In addition, via a deep bibliographic search and analysis, we found that
the compound ZINC27985035, the structure with the highest MBCOMT inhibition in our
studies, has already been described as a COMT inhibitor [39,40]. Despite this, it is important
to mention that the structural similarity of ZINC302226 and ZINC78496496 to previously
described COMT inhibitors and that ZINC27985035 was already published as an inhibitor
of this enzyme can be considered a support to our in-silico strategy applied to discovering
new compounds targeting this enzyme. In addition, and more importantly, the inhibition
studies performed for these three compounds were performed against the enzyme isolated
from animal tissues and not for cell extracts of recombinant human MBCOMT. However,
we did not find any information in the literature concerning the compounds ZINC98288
and ZINC825166420 as COMT inhibitors. Therefore, taking into account the results de-
scribed in the present work and despite the inhibition levels observed in our assays and the
need for more studies, especially at the in-vitro and in-vivo levels, we consider that these
compounds may have potential interest in the context of PD and can be new skeletons for
further exploration in the medicinal chemistry of COMT inhibitors.

Concerning the cytotoxicity (Table 4), overall, with the exception of ZINC825166420,
it can be considered that the majority of the tested compounds did not exhibit relevant
cytotoxicity in both cell lines. The lowest IC50 values were observed for 5-FU, as expected.

Therefore, these results can be of high interest, revealing a marked selectivity when
considering the effects of the studied compounds on MBCOMT inhibition in comparison
with their cytotoxicity.

Overall, considering the pros and cons of the existing commercial COMT inhibitors,
with further structural optimization, pharmacokinetics, and bioavailability studies, these
molecules could have potential to improve the day-to-day life of PD patients. However,
more studies are needed to address this possibility.

4. Materials and Methods
4.1. Ligand Selection

From an initial set of 100 molecules with known COMT inhibitory properties, the
18 most promising compounds were selected to integrate into the study training set
(Figure 1) [9]. This selection was carried out based on the compounds’ structure and ex-
isting in-silico data regarding their interaction with COMT, including molecular docking
and molecular dynamics interactions with the protein active site [29] and the ADMET
(absorption, distribution, metabolism, excretion, and toxicity) property prevision, as well
as their in-vitro and in-vivo COMT inhibitory potency and bioavailability [9]. The 18 se-
lected most promising compounds, used as the training set, were drawn in ChemDraw
(v. 12.0), and their conformational energies were minimized using the MM2 force field
in Chem3D (v. 12.0) to improve the reliability of the obtained results. Moreover, the 3D
protein structure determined by X-ray diffraction of human SCOMT (PDB#6I3C) was re-
trieved from the Protein Data Bank (PDB) [28]. This COMT structure was determined
with an atomic resolution of 1.34 Å, contained 232 amino acids in a single chain, and was
co-crystallized with the cofactors Mg2+, SAM, and the inhibitor 3,5-DNC [28]. For this study,
the computational 3D protein structure was prepared using Chimera (v. 1.13), removing
the crystallographic water molecules, adding the hydrogen atoms, and minimizing the
conformational energy using the Amber ff99SB force field of Chimera [41]. At this point,
the structure was considered ready for protein–ligand docking.
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4.2. Pharmacophore Generation

Furthermore, the ligands were aligned using the alignment perspective tool in Lig-
andScout (v. 4.4), their key structural features were merged, and various pharmacophore
models were generated based on their multi-conformer [42]. To do so, the FAST settings
and the Pharmacophore RDF-Code Similarity algorithms were applied to obtain all the
hypotheses [42]. Additionally, the pharmacophore fit, the number of omitted structures,
and the atom overlaps were set to 4, limiting only the best scoring models for further
studies and rejecting the remaining worst scored models [43].

4.3. Virtual Screening and ADMET Virtual Filtration

Next, the obtained models were submitted for screening as a 3D query in the ZINCPharmer
search database (http://zincpharmer.csb.pitt.edu/, accessed on 14 September 2021), specif-
ically the ZINC purchasable subsection from a training set with over 21,777,093 com-
pounds [44]. This software provided the results based on the predicted binding affinity
of the database ligands against the protein (PDB#6I3C) using docking algorithms. To
filter the selection, only the ligands with all the desired structural moieties shared with
the training set were considered hit molecules. Moreover, to enhance the possibilities of
discovering potential new drug-like leads, the results were also subjected to a Lipinski’s
Rule of Five properties filter to improve the results obtained [45,46], analyzing the com-
pounds’ molecular weight, their logP, and the number of rotatable bonds and hydrogen
bond acceptor/donor groups. From there, 100 hit molecules were selected to be further
analyzed by molecular docking and to study their predicted ADMET properties to screen
for potential false positive.

4.4. Molecular Docking

To further improve the reliability of the model, a redocking of the top 100 hit molecules
was performed using the AutoDock Tools 4 software (v. 4.2.6) [47]. This study allowed for
the screening of potential false positive hits, as well as to better understand the ligands’
interactions with the COMT active site. The 3D grid box (x = 40; y = 40; z = 40) was
optimized to fit all the study hits using a grid spacing of 0.375 Å and was centered in the
protein active site, identified by the binding site of the inhibitor 3,5-DNC. The binding
poses were generated using the Lamarckian genetic computational algorithm. The hits
were ranked based on their binding energies and their binding free energy (∆G), expressed
in kcal/mol by the software, and their atomic interactions were further studied using the
PMV (v. 1.5.6) tool and the Discovery Studios (v. 4.5) program to better visualize and
identify the most important atomic interactions [29].

4.5. ADMET Property Analysis

The ADMET properties were predicted using the webserver pkCSM (http://biosig.
unimelb.edu.au/pkcsm/prediction, accessed on 3 October 2021) [48]. This server compares
the data from approved FDA drugs and experimental compounds to predict the compounds’
main pharmacokinetic features. These include the BBB and CNS permeability, the drug’s
potential human intestinal absorption, whether it is a P-glycoprotein substrate/inhibitor,
and its hepatoxicity, among other properties used to filter potentially toxic drugs.

4.6. Materials, Reagents, and Solutions for In-Vitro Studies

Ultrapure reagent-grade water was obtained with a Milli-Q system (Milipore/Waters).
Yeast nitrogen base (YNB), glucose, agar, yeast extract, peptone, glycerol, dithiotreitol
(DTT), protease inhibitor cocktail, S-adenosyl-L-methionine (SAM), epinephrine (bitar-
trate salt), DL-methanephrine hydrochloride, citric acid monohydrate, and glass beads
(500 µm) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). The tested
compounds ZINC302226, ZINC98288, ZINC825166420, ZINC27985035, and ZINC78496496
were purchased from MolPort (Riga, Latvia). All chemicals used were of analytical grade,
commercially available, and used without further purification.
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The five selected tested compounds (Table 5) to be studied were dissolved in DMSO
in a final concentration of 10 mM and stored at 4 ◦C with protection from light. From this
solution, several dilutions were prepared in order to obtain the final desired concentrations
to be tested. The final DMSO concentrations used were 1% (cytotoxic assays) and 5%
(enzymatic assays), concentrations with no significant effect on cytotoxicity studies and
enzyme bioactivity, as previously tested (data not shown).

Table 5. Compounds and concentrations to be used in the in-vitro studies of enzymatic activity and
cytotoxicity.

Compound
Concentrations for

Cytotoxicity Assays (µM)
Concentrations for

Bioactivity Assays (µM)

ZINC302226

0.1 to 100

0.125 to 10

ZINC98288 0.0315 to 10

ZINC 825166420 0.125 to 20

ZINC27985035 0.0078 to 0.5

ZINC78496496 0.125 to 10

4.7. In-Vitro MBCOMT Inhibition Assays

4.7.1. Biosynthesis and Recuperation of MBCOMT

The production of the human recombinant MBCOMT was performed according to the
procedure described by Pedro et al. [49]. Briefly, transformed Komagataella pastoris X33 with
the expression vector was grown for 72 h at 30 ◦C in yeast extract peptone dextrose (YPD)
medium plates with 200 µg/mL of Zeocin. A single colony was inoculated in 100 mL of
buffered minimal glycerol medium (BMGH) in 500 mL shake flasks. Cells were grown
at 30 ◦C and 250 rpm to a cell density of 600 nm (OD600) of 6.0 units. Afterwards, an
aliquot was introduced into 100 mL of buffered minimal methanol medium (BMMH) in
500 mL shake flasks, with an initial OD600 fixed to 1.0 unit. After 24 h of growth at 30 ◦C
and 250 rpm, cells were collected by centrifugation (1500× g, 10 min, 4 ◦C). The cells
were resuspended in lysis buffer (150 mmol L−1 NaCl, 10 mmol L−1 DTT, 50 mmol L−1

Tris, 1 mmol L−1 MgCl2, pH 8.0) supplemented with protease inhibitor cocktail. Then,
a mechanical treatment with glass beads (7 cycles of vortexing for 1 min with 1 min of
interval on ice) was applied to disrupt the cells. Cell suspensions were centrifuged (500× g,
5 min, 4 ◦C). The supernatant was removed, and the pellet obtained was resuspended in the
same lysis buffer, without DTT. The samples were stored at 4 ◦C until use for further assays.

4.7.2. MBCOMT Enzymatic Assay

The methylation efficiency of MBCOMT, alone or in the presence of the tested com-
pounds, was evaluated by the amount of metanephrine converted from the substrate
epinephrine, as described by Vieira-Coelho and Soares-da-Silva, with minor alterations [33].
Briefly, MBCOMT lysates with a fixed concentration of 1 mg/mL were preincubated at
37 ◦C for 20 min with increasing concentrations of the selected tested compounds (Table 5)
before the addition of the substrate epinephrine (after 15 min) in the presence of SAM,
EGTA, and sodium phosphate buffer (pH 7.8). The reaction was then stopped with 2 M of
perchloric acid. After 1 h at 4 ◦C, samples were centrifuged (6000 rpm, 10 min, 4 ◦C) and the
supernatant was filtered through a 0.22 µm cellulose acetate pore filter. The metanephrine
levels in the sample were determined by HPLC with coulometric detection, as previously
described [50]. All data analysis was performed using Prism 6 (GraphPad Software Inc.
San Diego, CA, USA).
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4.8. Cytotoxicity Studies

4.8.1. Cell Cultures

The cell lines used were normal human dermal fibroblasts (NHDF) and an N27 rat
dopaminergic neural cell line (N27), both obtained from American Type Culture Collection
(ATCC). The cultures were performed in 75 cm3 culture flasks in an incubator at 37 ◦C
under a humidified atmosphere with 5% carbon dioxide. The NHDF cell line was cultured
in Roswell Park Memorial Institute (RPMI) 1640 culture medium (Sigma Aldrich, St. Louis,
MO, USA) supplemented with 10% fetal bovine serum (FBS), 2 mM of L-glutamine, 10 mM
of HEPES, 1 mM of sodium pyruvate, and 1% antibiotic Ab (Sigma Aldrich; 10,000 U/mL of
penicillin G, 100 mg/mL of streptomycin, and 25 µg/mL of amphotericin B). The N27 cell
line was cultured in RPMI 1640 culture medium with 10% FBS, 2 mM of L-glutamine, and
1% antibiotic Sp (Sigma Aldrich; 10,000 U/mL of penicillin G, 100 mg/mL of streptomycin).
The medium was renewed every 2–3 days for NHDF and every day for N27 until cell
confluence was 90–95%. Then, cells were incubated for 2–3 min with a solution of trypsin
(0.5 g/L trypsin with 0.02 g/L of ethylene diamine tetra-acetic acid (EDTA)) to detach cells
from the bottom of the culture flask. Afterwards, the suspension of cells in trypsin solution
was diluted with an appropriate medium and centrifuged for 5 min at 125 G. Then, cells
were counted by Trypan-blue exclusion method using a Neubauer chamber, resuspended,
and seeded at 2 × 104 cells/mL density in 96-well culture plates (VWR) with a volume of
100 µL per well. The cells were kept in culture for a period of 48 h for cell adherence and
growth before cytotoxicity studies.

4.8.2. MTT Assay

The cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) colorimetric assay, performed as previously described [51]. For this, after
adherence and growth, cells were exposed during 48 h to the compounds under study
as well as 5-fluorouracil (5-FU; positive control) at different concentrations (0.1, 1, 10, 30,
50, and 100 µM) for dose-response studies. These solutions were prepared from stock
solutions at 10 mM in DMSO by dilution in the appropriate cell culture medium. Then, the
experimental medium was replaced with 100 µL per well of an MTT solution (1 mg/mL of
MTT concentration, 20% phosphate buffer saline (PBS), and 80% culture medium without
FBS and antibiotics). After 4 h of incubation, the MTT solution was replaced by DMSO to
solubilize formazan crystals. The absorbance of each well was measured at 570 nm using a
microplate spectrophotometer Bio-Rad xMark. The results are expressed as relative cell
viability (%) normalized to negative control and considering standard deviation. At least
two independent assays in quadruplicate were performed for each stimulus. Differences
between treatments were analyzed with Student’s t-test and the results were considered
statistically significant when the p-value < 0.05. Half maximal inhibitory concentrations
(IC50) were determined through sigmoidal dose-response curve fit considering a 95%
confidence interval.

5. Conclusions

PD is the second most common neurodegenerative disorder, and in most situations
its cause is unknown. Its prevalence is between 100 and 300/100,000 inhabitants, and the
number of PD patients is expected to double by 2030 [52]. The search for new drugs that
improve the patient’s quality of life and prevent the progression of the disease is ceaseless
on the part of the pharmaceutical industry. The advantage of the use of computational
chemistry in comparison with experimental laboratory methods is that it reduces expenses
derived from the purchase of materials as well as the production of polluting compounds,
and allows the research process to be accelerated, for example, in the preclinical stages
of drug development. In the present work, a set of molecules with potential interest in
PD acting as COMT inhibitors was discovered through a computational-based approach.
The five selected molecules for in-vitro studies revealed relevant and selective MBCOMT
inhibitory effects. In addition, cytotoxicity evaluation in dopaminergic (N27) and fibroblast
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(NHDF) cells evidenced that selected hits have relatively low toxicity. Within this group,
the best results were observed for the compound ZINC27985035, with an IC50 of 17.6 nM
determined for MBCOMT inhibition and low cytotoxicity observed in both cell lines (61.26
and 40.31 µM, respectively). Despite this compound having been previously described
as a COMT inhibitor, no studies have been performed on membrane COMT isoform. In
addition, the other four selected compounds have not been previously studied against
this target to our knowledge, which can open new medicinal chemistry possibilities in
the design of new COMT inhibitors. The relevant results obtained, combined with the
similarity in structure to the commercial COMT inhibitor entacapone, may allow the future
development of potential new drug candidates for PD with improved properties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15010051/s1. Table S1. Characteristics of the studied compounds;
Table S2. Virtual screening results of the hit molecules obtained in ZINCPharmer; Table S3. Results of
in vitro MBCOMT inhibition evaluation of the 10 best scored selected compounds by in silico studies;
Figure S1. Graphics of concentration-response studies in dopaminergic N27 cell line; Figure S2.
Graphics of concentration-response studies in normal human dermal fibroblasts (NHDF).
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Abstract: Piperlongumine (PPL) is an alkaloid extracted from several pepper species that exhibits
anti-inflammatory and anti-carcinogenic properties. Nevertheless, the molecular mode of action of
PPL that confers such powerful pharmacological properties remains unknown. From this perspec-
tive, spectroscopic methods aided by computational modeling were employed to characterize the
interaction between PPL and nucleotide-binding domain of heat shock protein 70 (NBD/HSP70),
which is involved in the pathogenesis of several diseases. Steady-state fluorescence spectroscopy
along with time-resolved fluorescence revealed the complex formation based on a static quenching
mechanism. Van’t Hoff analyses showed that the binding of PPL toward NBD is driven by equivalent
contributions of entropic and enthalpic factors. Furthermore, IDF and Scatchard methods applied to
fluorescence intensities determined two cooperative binding sites with Kb of (6.3 ± 0.2) × 104 M−1.
Circular dichroism determined the thermal stability of the NBD domain and showed that PPL caused
minor changes in the protein secondary structure. Computational simulations elucidated the mi-
croenvironment of these interactions, showing that the binding sites are composed mainly of polar
amino acids and the predominant interaction of PPL with NBD is Van der Waals in nature.

Keywords: heat shock protein; HSP70; nucleotide-binding domain; piperlongumine; fluorescence
spectroscopy; circular dichroism; molecular docking; molecular dynamics; molecular mechanics
Poisson–Boltzmann surface area

1. Introduction

Living organisms, regardless of their kingdom, are constantly subjected to stressful
situations and respond to these stimuli through changes in cellular metabolism, activating
their defence mechanisms [1]. The stress response includes heat shock proteins (HSPs),
which is one of the primary cellular protection responses [2,3].

HSPs are part of the large family of proteins known as molecular chaperones, so
called because they have the ability to interact reversibly with other proteins, helping in
formation, folding and trans-membrane transport [4]. HSP70 is the 70 kDa heat shock
protein, composed of a conserved N-terminal nucleotide binding domain (NBD) with
ATPase activity, a substrate binding domain (SBD) and a C-terminal domain. Among the
domains, NBD is a 40 kDa ATP binding domain [5] with a highly flexible chain.

The HSP70 was found to be over expressed in various cancers in response to the
stressful environment of tumors, leading to tumor protection and consequently to ther-
apeutic resistance. Recently, the set of functions of heat shock proteins (HSP) has been
extended based on studies that have shown that HSP70 is also found in the extracellular
environment and exhibits potent cytokine activity, with the ability to activate the nuclear
factor-kappaB (NF-κB) and consequently regulate the expression of pro-inflammatory
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cytokines [6–8]. Due to the involvement of HSP70 in the pathogenesis of several diseases,
this macromolecule has become a potential molecular target for the development of phar-
macotherapies [9]. Much effort has been dedicated to the search for small ligands that
are able to inhibit the chaperone function of HSP70, mostly through the interaction with
ADP binding site [5,10]. However, to the best of our knowledge the decrease of HSP70
inflammatory activity due to the binding of small ligands has not been investigated.

Piperlongumine (PPL) is a small molecule that has been reported to have a multitude
of biological activities such as anti-inflammatory, anti-carcinogenic, anti-atherosclerotic,
amongst others [11–14]. PPL is an alkaloid isolated from long pepper that is widely used in
Indian traditional medicine [15,16]. This molecule is characterized by the presence of elec-
trophilic motifs [12] including an α,β-unsaturated amide acting as a Michael acceptor (inset
of Figure 1) [17]. As a potential drug scaffold, PPL has no Lipinski or lead-like rule vio-
lations [18]. Biological studies have shown that the anti-inflammatory and anti-carcinogenic
activities of PPL are a consequence of the inhibition of NF-κB pathway [17,19–21].
However, to the best of our knowledge there are no studies to date regarding the molecular
interaction of PPL and NBD/HSP70.
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Figure 1. NBD fluorescence emission spectra obtained from titration experiments with increments in
the concentration of PPL (pH 7.4, T = 283 K, λexcitation = 295 nm). [NBD] = 4.0 µM; PPL titrations with
increments of −1.0 µM (a → y = 0 µM → 24 µM). Inset: Chemical structure of PPL.

In the present work we bring a detailed biophysical characterization of the interaction
of PPL with NBD to support further drug discovery efforts. The experimental character-
ization is based on multi-pronged spectroscopic approaches. Fluorescence and circular
dichroism spectroscopy were employed to disclose the number of binding sites, the mode
of binding, the binding affinity, the thermodynamic parameters of interaction and the
protein conformational changes due to these interactions. To have a complete description
of the complex, molecular docking and dynamics parameterized by experimental results
were employed to predict the binding sites and to disclose the molecular interactions in
the microenvironments.

2. Results and Discussion
2.1. Fluorescence Spectroscopy

Figure 1 shows the fluorescence emission spectra of Trp90 NBD domain at 330 nm
in the absence (a) and the presence of PPL (→y). Furthermore, Figure 1 shows PPL
fluorescence emission band at 450 nm while the molecule was added to the solution (→y).
The full-width half maximum (FWHM) of ±30 nm for the band of Trp90 and ±45 nm for
the band of PPL showed that PPL fluorescence emission intensity did not influence NBD
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fluorescence emission spectra intensity, which allows for further analyses of the quenching
mechanism. The interaction of NBD with PPL was monitored following the intensity of
Trp90 emission spectra at 330 nm. Analysis of the spectra revealed the NBD fluorescence
was quenched with the addition of PPL in the sample, demonstrating the existence of the
quenching effect upon the Trp90 emission.

The quenching mechanism may be classified as dynamic (diffusive encounters) or
static (complex formation) processes. It is possible to differentiate them by analysing
the dependence of Stern–Volmer constant (KSV) with temperature (Equation (1)) [22].
In general terms, static quenching reflects a decrease in KSV with the increase in temper-
ature, while dynamic quenching may provoke an increase in KSV with the increase in
temperature. Another method to determine the quenching mechanism involves comparing
the ratio of fluorescence signals (F0/F) with the ratio of the lifetime values (τ0/τ). For
dynamic quenching, the relation F0/F = τ0/τ has to be observed for the system, otherwise
collisions are not observed and the quenching is static [23]. The analysis of the bimolec-
ular quenching rate constant (kq) is another method that can also be used to confirm the
quenching mechanism. To have the system ruled by collisions (dynamic quenching), the
bimolecular constant cannot exceed the limit of 1010 M−1·s−1 [23].

F0

F
= 1 + KSV ·[PPL] = 1 + kq·τ0·[PPL] (1)

The Stern–Volmer plots (Figure 2) presented a linear response to the increment of
PPL concentration. At temperatures 283 K, 293 K and 303 K, the KSV constant showed a
noticeable decrease by the drop in slope of the linear regression, which is strong evidence
of the static quenching process [24]. The quenching mechanism obtained by steady-state
fluorescence results was confirmed by time-resolved experiments as a second experimental
method. In this experiment, the NBD tryptophan lifetime of excited states were measured
in the absence (τ0) and presence (τ) of different concentrations of PPL (Figure S1 and
Table S1). The ratio (τ0/τ) of fluorescence lifetime, plotted at the right ordinate of Figure 2,
remained close to unity and did not present equivalence with F0/F, which indicated
that PPL poorly affects the NBD tryptophan fluorescence lifetime and confirms that the
quenching mechanism is static [22]. To further confirm this result, the values of bimolecular
constants kq were calculated, all kq are in the order of magnitude of 1012 M−1·s−1 which
exceeded the limit of 1010 M−1·s−1 observed for dynamic quenching. In conclusion, these
results characterize the quenching mechanism as static, which means that a complex has
been formed by the PPL and NBD.

Table 1 shows the data for the Stern–Volmer constants and the bimolecular constant at
different temperatures.

Table 1. Stern–Volmer constant (KSV), bimolecular constants (kq) and binding constant (Ka) for the
complex NBD and PPL at 283, 293 and 303 K.

T (K) KSV (×104 M−1) Kq (×1012 M−1·s−1) Ka (×104 M−1)

283 1.9 ± 0.1 8.9 ± 0.1 2.5 ± 0.8
293 1.5 ± 0.1 6.9 ± 0.1 2.2 ± 0.5
303 1.0 ± 0.1 4.3 ± 0.1 1.8 ± 0.2

Once it was determined that a complex formation occurred, the association con-
stant also known as binding constant (Ka) was calculated. The variables Ka were obtained
by linearizing the function of the plot of Figure 3 using the double-logarithm equation
(Equation (2)) that relates the quenching fluorescence intensities to the total concentration
of PPL.

log

(

F0 − F

F

)

= n·log Ka − n·log





1

[PPL]−
(

F0−F
F0

)

·[NBD]



 (2)
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283 K, 293 K, and 303 K.

The results of Ka at different temperatures obtained for the first order model (n~1) are
shown in Table 1. The binding constants found for different temperatures are in the order
of magnitude of 104 M−1. As shown in Table 1, the affinity of the complex is influenced
by temperature, since the results of the binding equilibrium experiments showed that Ka

decreased while the temperature increased.

2.1.1. Thermodynamic Parameters

To obtain a description of the thermodynamic of complex formation, the thermody-
namic parameters ∆S (entropy variation) and ∆H (enthalpy variation) were determined by
linear regression of the data shown in Figure 4, using the Van’t Hoff equation (Equation (3)).
∆G (Gibbs free variation) was obtained according to Equation (4).

ln Ka = −
∆H

R·T
+

∆S

R
(3)

∆G = ∆H − T∆S (4)
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According to the results of the thermodynamic parameters gathered in Table 2, the
values of ∆G exhibited negative values at the three temperatures, which showed the
spontaneity of the complex formation process. Besides that, ∆H < 0 characterized the
complexation as an exothermic process. Furthermore, the positive values of ∆S may be
an effect of water molecules displacement due to PPL entrance into the protein [25]. The
thermodynamic balance of ∆H and T·∆S indicated the Van der Waals interactions as the
major contribution to the complexation [26].

Table 2. Thermodynamic parameters of the complex NBD-PPL at the temperatures of 283, 293
and 303 K.

T (K) ∆G (kJ·mol−1) ∆H (kJ·mol−1) ∆S (J·mol−1·K-1) T·∆S (kJ·mol−1)

283 −23.7 ± 1.3
−11.9 ± 0.9 42.4 ± 3.4

11.9 ± 0.9
293 −24.2 ± 1.3 12.4 ± 0.9
303 −24.6 ± 1.3 12.8 ± 1.0

2.1.2. Interaction Density Function (IDF)

As a second method, IDF was also applied in fluorescence data in order to obtain
a complete description of the system. Differently from the binding equilibrium model,
IDF does not make use of any model a priori [27] and the advantage of applying IDF is
the possibility of not only determining the number of binding sites but also identifying
cooperativity occurrence among them. IDF considers that, if the free ligand concentration
([PPL]free) is the same for two at different concentrations of total protein ([NBD]), the
average interaction density (Συi) will also be the same, and consequently the system
will have the same variation on the percentage of quenching (∆F). The percentage of
fluorescence quenching is given by Equation (5). Where F is the observed fluorescence
signal in the presence of PPL and F0 is the observed fluorescence signal for free protein.
Figure 5 shows the plot of ∆F per log [PPL] for two known concentrations of NBD adjusted
by a sigmoidal function.

∆F =
|F − F0|

F0
(5)
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Free ligand concentration and the average of interaction density are related to each
other through the expression of mass conservation (Equation (6)).

[PPL] = [PPL] f ree +
(

∑ νi

)

.[NBD] (6)

By means of the plot shown on Figure 5, the values of [NBD] and [PPL] for each
∆F were obtained. According to the IDF results, a Scatchard plot was built (Figure 6a).
This plot presented a concave function, revealing positive cooperativity between the NBD
binding sites [28]. Interestingly, we reported recently that the interaction of piperine with
NBD led to a cooperative mode of binding [29]. These results showed that different ligands
can induce similar modes of binding in NBD structure.

The number of sites (n) and the binding constant (Kb) were obtained using Hill’s
model, based on Equation (7). Another parameter obtained through this model was the
cooperativity, indicated by Hill’s coefficient (h) [30].

∑ νi =
n·(Kb[PPL] f ree)

h

1 + (Kb[PPL] f ree)
h

(7)

The Hill’s plot (Figure 6b) shows the variation of the average interaction density
(∑ νi) with the free ligand concentration ([PPL] f ree). With the mathematical fitting of these
results, the number of sites (n) and the binding constant (Kb) were found to be 2.2 ± 0.1 and
(6.3 ± 0.2) × 104 M−1, respectively. Besides that, the fitting also revealed the Hill’s coeffi-
cient (h) as 1.4 ± 0.1, confirming the cooperative binding of PPL toward NBD, previously
detected in Scatchard plot.

These results showed that both methods applied in the analysis of fluorescence quench-
ing (binding equilibrium model and IDF) are in agreement with respect to the order
of magnitude of Kb, since binding equilibrium model revealed the binding constant as
(2.2 ± 0.5) × 104 M−1.
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2.2. Circular Dichroism

Circular Dichroism (CD) is a suitable method to analyse secondary structure of pro-
teins in different conditions. In this way, CD experiments were performed to obtain both
the thermal structural stability of the domain NBD (Figure 7) and possible secondary
conformational changes due to the PPL interaction (Figure 8). Considering that NBD struc-
ture is predominantly composed by alpha-helices in solution with two CD characteristic
bands centred at 208 nm (π-π*) and at 222 nm (n-π*) [31], the wavelength of 222 nm was
followed to monitor the thermal transition (Figure 7b) of NBD. According to the results
obtained (Figure 7b), NBD experienced a transition from folded to unfolded state at ~314 K.
Similar results were obtained from calorimetric and spectroscopic methods applied to
bacterial HSP (DnaK) [32,33].
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(a) The plot shows the ellipticity [θ] versus temperature and (b) The plot shows the fraction folded
calculated with Equation (12).

Figure 8 shows the CD spectrum of pure NBD and in the presence of PPL at stoi-
chiometry of 1:12, the same stoichiometry reached in the IDF experiment. According to
the results, the deconvolution of pure NBD spectrum presented 38% of alpha-helices, 14%
of β-sheet, 20% of turn and 28% of coil, which is in a good agreement with the results
obtained by Zazeri et al. [29] at a similar temperature. After PPL addition, NBD underwent
some secondary conformational changes, being 33% of α-helices, 17% of β-sheet, 19% of
turn and 31% of coil. Interestingly, while the percentage of α-helices decreased by 5%, the
percentage of β-sheet increased by 3%. Despite the smaller secondary structural changes
found in this work compared to those reported by Zazeri et al. [29] for the interaction of
NBD and piperine, the same behavior for α-helices and β-sheet changes were observed.
Furthermore, although the results showed a maximum secondary structure change of 4%
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(related to α-helices), it is not statistically significant in terms of conformational changes,
such changes may modulate the biochemical activity [34].

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 8 of 16 
 

 

  
(a) (b) 

Figure 7. Denaturation curve of NBD monitored at 222 nm with a melting temperature of 314 K. 
(a) The plot shows the ellipticity [θ] versus temperature and (b) The plot shows the fraction folded 
calculated with Equation (12). 

Figure 8 shows the CD spectrum of pure NBD and in the presence of PPL at stoi-
chiometry of 1:12, the same stoichiometry reached in the IDF experiment. According to 
the results, the deconvolution of pure NBD spectrum presented 38% of alpha-helices, 
14% of β-sheet, 20% of turn and 28% of coil, which is in a good agreement with the re-
sults obtained by Zazeri et al. [29] at a similar temperature. After PPL addition, NBD 
underwent some secondary conformational changes, being 33% of α-helices, 17% of β-
sheet, 19% of turn and 31% of coil. Interestingly, while the percentage of α-helices de-
creased by 5%, the percentage of β-sheet increased by 3%. Despite the smaller secondary 
structural changes found in this work compared to those reported by Zazeri et al. [29] 
for the interaction of NBD and piperine, the same behavior for α-helices and β-sheet 
changes were observed. Furthermore, although the results showed a maximum second-
ary structure change of 4% (related to α-helices), it is not statistically significant in terms 
of conformational changes, such changes may modulate the biochemical activity [34]. 

 
Figure 8. Circular Dichroism of free NBD (solid lines) and NBD + PPL at the stoichiometry 1:12 
(dotted lines) at 293 K. 

2.3. Molecular Docking 
The structure of NBD obtained from PDB 1S3X was directly subjected to molecular 

docking that disclosed several possible pockets where PPL can interact with NBD (Fig-
ure S2), with energy ranked from (7.2 to 5.0 kcal). The analysis of the poses from cluster 
“a” to “g” (Figure S3) revealed that they are in the environment of the binding site ac-

Figure 8. Circular Dichroism of free NBD (solid lines) and NBD + PPL at the stoichiometry 1:12
(dotted lines) at 293 K.

2.3. Molecular Docking

The structure of NBD obtained from PDB 1S3X was directly subjected to molecu-
lar docking that disclosed several possible pockets where PPL can interact with NBD
(Figure S2), with energy ranked from (7.2 to 5.0 kcal). The analysis of the poses from cluster
“a” to “g” (Figure S3) revealed that they are in the environment of the binding site accessed
by the ADP molecule, represented in black. The next cluster analyzed was “h”, which is
not in the proximity of the ADP binding site, as shown in Figure S3. The next clusters
were not considered once they were less populated than the previous ones. For the next
analyses, we will consider the coordinates from cluster “a” and “h” as being Site 1 and 2,
respectively (Figure 9).
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Figure 9. Bind sites of NBD accessed by PPL: (a) NBD structure with PPL in Site 1 (red) and in Site 2
(green), in this picture ADP molecule is represented in black. (b) The amino acids composition of Site 1
and the interactions between PPL and NBD, where one hydrogen bond was found between Gly339
and PPL (blue dashed line). (c) The amino acids composition of Site 2 and the interactions between
PPL and NBD, where one hydrogen bond was found between Gln93 and PPL (blue dashed line).
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The composition of the bind sites was organized in Table 3, which shows that Site 1 is
rich in glycine and presents a generous number of polar amino acids (whether charged or
not). Ligplot software detected a hydrogen bond between PPL and the nitrogen atom of
Gly339 which is part of the backbone of NBD. It is worth noting that such analysis was
made based on a fixed pose calculated by molecular docking; a more holistic analysis of
hydrogen bonds will be presented based on molecular dynamics results.

Table 3. The characteristics of amino acids that compose the microenvironment of Sites 1 and 2 obtained by
molecular docking.

Binding Sites
Amino Acids

Non-Polar Positively Charged Negatively Charged Polar

1 Gly12, 202, 230, 338, 339 Lys271; Arg272, 342 Asp10, 366 Tyr15; Thr37; Ser340

2 Val94, 105; Met87; Pro91;
Trp90; Phe92 Lys88 - Asn65; Gln64; 93, 104;

Ser106

Site 2 presents an equilibrated balance of polar and non-polar amino acids. No neg-
atively charged residues were found in the environment, which favors the interaction
with PPL with protein since its structure presents charge delocalization that concentrates
negative charges in the extremities of the molecule [35]. Besides that, the interaction of PPL
with Site 2 includes one hydrogen bond with Gln93.

2.4. Molecular Dynamics

The equilibration and stability of the complexes formed by NBD and PPL in Sites 1
and 2 was verified through the parameters obtained from molecular dynamics (Figure 10).
The root mean square deviation (RMSD) of NBD with PPL in Site 1 and 2 remained
stable during the simulation, fluctuating around 0.25 nm. Similar behavior was found to
the RMSD calculated for PPL atoms when bound in Site 1 and 2, which remained stable,
fluctuating around 0.1 nm, i.e., PPL remained in the Sites 1 and 2 throughout the simulation.
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Another helpful parameter used to verify the stability of the protein-ligand com-
plex is the distance from the centre of geometry (COG) of protein to the COG of ligand.
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The distance calculated for the complex formed by NBD and PPL in Site 1 remained around
0.7 nm, as expected, since the molecule is located close to the centre of geometry of NBD
(Figure 9). For Site 2, the distance fluctuated around 2.5 nm, confirming that PPL remained
in the binding site located in the periphery of NBD (Figure 9).

The root mean square fluctuation (RMSF) of the residues of NBD free, bound to PPL
in site 1 and 2 was calculated to verify possible changes in the dynamics of the protein
caused by the interaction with ligand. No drastic change was observed in the RMSF of
NBD with PPL in Sites 1 and 2 when compared to RMSF of free NBD. A slight change was
observed for residues 78–87 that compose an α-helix close to Site 1. However, the change
in the dynamics is not necessarily due to the interaction of PPL in Site 1 since the dynamics
of such residues also presented low fluctuation in the analysis of NBD with PPL in Site 2.

The analyses of hydrogen bonds showed that in Site 1 PPL performs between 1 and
2 H-bond with residues of NBD 72% of the simulation time. Hydrogen bonds are less
observed in the interaction of PPL with Site 2. Molecular dynamics revealed that the
number of the H-bond was between 0 and 1 in 73% of the simulation time. Hydrogen
bonds give an enthalpic contribution to the thermodynamic balance. Application of the
Van’t Hoff model to the experimental data (Table 2) gave insight into an equilibrated
balance between entropic and enthalpic interactions. Molecular dynamics corroborated
this result since a moderate formation of H-bonds in both sites was detected.

Figure 11 shows the results of MMPBSA calculations applied to the trajectory from
molecular dynamics simulations. According to the results, the binding sites have similar
binding energy (−58 ± 3 kJ·mol−1 and −49 ± 3 kJ·mol−1 for Site 1 and 2, respectively).
Moreover, the results revealed the Van der Waals as the predominant interaction of the
complex, which reinforced the result obtained from Van’t Hoff analyses.
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3. Materials and Methods
3.1. Reagents

Piperlongumine (>97%) was purchased from Sigma-Aldrich Chemical Co. (Schnell-
dorf, Germany), as dibasic sodium phosphate (>99%) reagents, anhydrous citric acid
(>99%), and sodium chloride (>99%). Lyophilised Nucleotide Binding Domain of Heat
Shock Protein 70 kDa (>97%) was purchased from GenScript. Methanol was purchased
from Dynamics Química Contemporânea LTDA (Indaiatuba, SP, Brazil). All the materials
purchased were used as supplied. Ultrapure water was prepared by a Millipore water
purification system–Direct-Q UV-3 (Merck KGaA, Darmstadt, Germany). Lyophilized NBD
was reconstituted in a 50 mM phosphate buffer containing 150 mM sodium chloride, and
the pH was adjusted to 7.4 with anhydrous citric acid. Stock solutions of PPL were prepared
in methanol. The concentrations of PPL and NBD solutions were determined by UV-Vis
experiments performed on Biospectro spectrophotometer (Biospectro, Curitiba, PR, Brazil),
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using the extinction coefficient of 18,700 M−1·cm−1 at 326 nm for PPL and 20,525 M−1·cm−1

at 280 nm for NBD.

3.2. Experimental Methods

3.2.1. Steady-State Fluorescence Spectroscopy

Fluorescence experiments were performed on the Lumina (Thermo Fisher Scientific,
Waltham, MA, USA) stationary state spectrofluorimeter equipped with thermal bath and
Xenon lamp. A 100 µL quartz cuvette with 2 mm × 10 mm optical path was used in the
experiments. The widths of the excitation and the emission slits were adjusted to 10 nm.
The wavelength of 295 nm was used to excite the single tryptophan residue of NBD (Trp90).
The emission spectra were obtained in the range from 305 to 500 nm with a resolution
of 1.0 nm ± 5.0 nm. Each emission point collected was the average of 15 accumulations.
The software ScanWave was used to collect the measured data.

In the binding equilibrium experiments, aliquots of PPL (increment of 1.0 µM) were
added in NBD solution at 4.0 µM. Measurements were performed at 283 K, 293 K, and
303 K. In the interaction density function analysis, aliquots of PPL (increments of 1.0 µM)
were added in NBD solutions at 6.0 µM and 8.0 µM at a fixed temperature (293 K). In all
experiments, the final volume of methanol in the buffer was <1.0%.

The correction of the inner filter effects was done with Equation (8), where Fcorr and Fobs

are corrected and observed fluorescence intensities, and Aex and Aem are the absorbance of
the sample in a 10 mm optical path cuvettes at the excitation and the emission wavelengths,
respectively [22].

Fcorr = Fobs ·10
(5·Aex+Aem)

10 (8)

3.2.2. Time-Resolved Fluorescence

Fluorescence lifetime measurements were performed using a Mini-tau filter-based
fluorescence lifetime spectrometer coupled to a Time-Correlated Single Photon Counting
(TCSPC) system (Edinburgh Instruments, Livingston, UK). Aliquots of PPL were added in
the NBD solution from 0 to 24 µM. Experiments were carried out at 293 K.

The sample was excited at 295 nm using a picosecond pulsed light emitting diode
(LED), and fluorescence decay was collected using a 340 nm filter. The fluorescence decay
profile (Figure S1) was fitted using multiexponential decay (Equation (9)), where τi is the
lifetime of each component, and αi is the contribution of each component to total fluores-
cence decay. The average lifetime <τavg> was calculated using Equation (10) (Table S1).

IT =
n

∑
i=1

αi.e
−T
τi (9)

τavg =
α1τ1

2 + α2τ2
2

α1τ1 + α2τ2
(10)

3.2.3. Circular Dichroism

Circular dichroism spectra were recorded on a Jasco J-815 spectropolarimeter model
DRC-H (Jasco, Easton, MD, USA) equipped with a demountable quartz cell with a 0.01 cm
optical path length. The CD spectra were recorded from the 200 to 260 nm range with a scan
rate of 20 nm/min and a spectral resolution of 0.1 nm. For each spectrum, 15 accumulations
were performed. For the denaturation experiments, the spectra were recorded in the
temperature range of 280 and 340 K. The ellipticity θ collected in millidegrees was converted
to mean residue ellipticity [θ] (deg·cm2·dmol−1) using Equation (11) and the protein
denatured fractions were determined with Equation (12) where [θ]nat is the [θ] at 280 K and
[θ]den is [θ] at the 340 K. For the interaction experiments, the molar ratio NBD:PPL was 1:12,
the buffer spectrum was subtracted, and the temperature was kept at 293 K. The secondary
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structures percentages were calculated with CDPro applying the CONTIN method with
the SP43 protein library [36].

[θ] =
θ(mdeg)

10·[P]·l·n
(11)

f =
([θ]obs − [θ]den)

([θ]nat − [θ]den)
(12)

3.3. Computational Methods

3.3.1. Molecular Docking

PPL structure used in molecular docking was obtained from ab initio calculations from
our previous work [31]. The AutoDockTools [37] software of the MGL program Tools 1.5.4
was used to prepare the NBD (PDB 1S3X) by adding polar hydrogen atoms and Gasteiger
charges. The maps were generated by the AutoGrid 4.2 program [38] with a spacing of
0.541 Å, a dimension of 126 × 126 × 126 points, and grid center coordinates of 51.315, 42.946,
and 49.437 for x, y, and z coordinates, respectively. The AutoDock 4.2 program [37] was
used to investigate the NBD binding sites using the Lamarckian Genetic Algorithm (LGA)
with a population size of 150, a maximum number of generations of 27,000, and energy
evaluations equal to 2.5 × 106. All other parameters were selected as software defaults.
To generate different conformations, the total number of runs was set to 100. (Figure S2).
The final conformations were visualized on VMD [39]. The binding microenvironment was
generated by LigPlot [40].

3.3.2. Molecular Dynamics

The simulations of the complex NBD/PPL were performed with GROMOS53a6 force
field [41] by Gromacs v.5.1.4 [42]. The complex was placed in a rectangular box, solvated
with the simple point charge water (SPC) [43] and neutralized with NaCl in a concentration
of 150 mM. The energy minimization was performed with the steepest descent algorithm
with 5000 steps and a tolerance of 10 kJ·mol−1. The cut-off for small-range interactions
was set to 10 Å and the long-range electrostatic interactions were treated with particle
mesh Ewald (PME) [44]. Then, the heavy atoms were restrained with a force constant of
1000 kJ mol−1 nm−2 and the system was submitted to the first stage of equilibration for
100 ps in the NVT ensemble coupled to V-rescale thermostat at 293 K [45]. All bonds
were constrained with the LINCS algorithm [46]. Random velocities were generated by
the Maxwell–Boltzman distribution. The second stage of equilibration was performed in
the NPT ensemble for 100 ps of simulation coupled to Parrinello–Rahman barostat [47]
at 1 atm. Finally, the restrictions were turned off and the molecular dynamics simulations
were performed with steps of 2 fs using the leap-frog algorithm to integrate the equations
of motion. The hydrogen bonds were calculated by gmx hbond. The results presented are
an average of three independent simulations.

The free energy of the binding process of PPL toward NBD was calculated by
G_mmpbsa tool [48], using the molecular mechanics Poisson–Boltzmann surface area
(MM/PBSA) method applied to the snapshots obtained from molecular dynamics simu-
lations. The snapshots were extracted in intervals of 500 ps from the trajectory after the
system reached the equilibrium, which was verified by the root mean square deviation
(RMSD) and the distance from the center of geometry of NBD to PPL, obtained by the
programs gmx rms and gmx distance, respectively (Figure 10). The coarse grid-box (cfac)
was set as 2 and the finer grid-box (fadd) was set as 20. The concentration of positive and
negative ions was set as 0.150, being the positive and negative radii set as 0.95 and 1.81 Å,
which correspond to sodium and chloride atoms, respectively. The values for the vacuum
(vdie) and solvent (sdie) dielectric constants were set and 1 and 80, respectively. The solute
dielectric constant (pdie) was set as 4.
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4. Conclusions

Multi-pronged spectroscopic analyses aided by computational modeling elucidated
in detail the main features of the NBD/PPL interaction for the first time. Steady state
fluorescence spectroscopy and time-resolved fluorescence results revealed the complex
formation via static quenching mechanism. The use of binding equilibrium and IDF
methods to treat the fluorescence quenching resulted in a binding affinity with an order of
magnitude of 104 M−1. Besides that, IDF method revealed two cooperative binding sites
for PPL in NBD. Van’t Hoff analyses showed through the thermodynamic balance that the
complexation between NBD and PPL is an exothermic and spontaneous process, with Van
der Waals as the key interaction to stabilize the complex. Molecular docking and molecular
dynamics disclosed the main features of the microenvironments of interaction. In this
context, the microenvironments are rich in polar (charged or non-charged) amino acids.
Moreover, MMPBSA data reinforced the experimental results, confirming the equivalence
of the binding sites and that Van der Waals interactions were predominant in the complex
interaction. Although the environments disclosed by the analyses are highly polar, an
elevated number of H-bonds was not observed. Further chemical modifications on the PPL
structure aimed at increasing the affinity for the NBD binding sites would benefit from
the insertion of hydrogen bond donors to reach the acceptors present in these sites. In
conclusion, this work brings the key aspects involved in NBD and PPL interaction, which
will further the drug development of PPL.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14121298/s1, Figure S1: Time-dependent fluorescence decay of NBD with PPL concentration
range from 0 to 24 µM. [NBD] = 10 µM, T = 298 K and λexc = 295 nm, Figure S2: Molecular docking
clusters with their respective binding energy scores, Figure S3: Representation of the clusters a-h
calculated by molecular docking. ADP molecule is represented in black, cluster a, b, c, d, e, f, g and h
are represented in red, yellow, silver, tan, blue, orange and green, respectively, Table S1: Tryptophan
lifetime in different stoichiometries HSP70:PPL obtained through biexponential decay.
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Abstract: The mycolic acid biosynthetic pathway represents a promising source of pharmacological
targets in the fight against tuberculosis. In Mycobacterium tuberculosis, mycolic acids are subject
to specific chemical modifications introduced by a set of eight S-adenosylmethionine dependent
methyltransferases. Among these, Hma (MmaA4) is responsible for the introduction of oxygenated
modifications. Crystallographic screening of a library of fragments allowed the identification of
seven ligands of Hma. Two mutually exclusive binding modes were identified, depending on the
conformation of residues 147–154. These residues are disordered in apo-Hma but fold upon binding
of the S-adenosylmethionine (SAM) cofactor as well as of analogues, resulting in the formation of
the short η1-helix. One of the observed conformations would be incompatible with the presence
of the cofactor, suggesting that allosteric inhibitors could be designed against Hma. Chimeric
compounds were designed by fusing some of the bound fragments, and the relative binding affinities
of initial fragments and evolved compounds were investigated using molecular dynamics simulation
and generalised Born and Poisson–Boltzmann calculations coupled to the surface area continuum
solvation method. Molecular dynamics simulations were also performed on apo-Hma to assess the
structural plasticity of the unliganded protein. Our results indicate a significant improvement in the
binding properties of the designed compounds, suggesting that they could be further optimised to
inhibit Hma activity.

Keywords: Mycobacterium tuberculosis; mycolic acid methyltransferases; fragment-based ligand
discovery; binding energies; molecular modelling

1. Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains
one of the deadliest infectious agents worldwide: it claimed 1.5 million deaths in 2020,
and an estimated 10 million new cases were reported [1]. This remarkable efficacy as a
human pathogen relies in part on the structure of its thick, atypical, highly hydrophobic
cell wall [2], which limits antibiotic penetration [3], protects Mtb from the host immune
system [4,5], and provides important virulence factors [6,7]. This cell wall is formed by the
mycomembrane, or mycobacterial outer membrane, which surrounds arabinogalactan and
peptidoglycan [2]. The inner leaflet of the mycomembrane comprises mycolic acids (MAs)
covalently bound to arabinogalactan, whereas trehalose-bound mycolic acids are found in
the outer leaflet [8].
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Mycolic acids, long-chain 2-alkyl, 3-hydroxy fatty acids, are an idiosyncrasy of the
genus Mycobacterium [6], and, as such, their metabolism is a relevant target in the fight
against Mtb [9,10]. Indeed, isoniazid, one of the most widely used antitubercular drugs,
targets this biosynthetic pathway [11–13]. The biosynthesis of MAs starts with the synthesis
of C16–C18 fatty acids (FAs), by the multifunctional fatty acid synthase (FAS) I enzyme,
which are further elongated up to C48–C62 by the FAS-II multienzyme system, while
being decorated at two distinct positions by a set of eight MA S-adenosylmethionine
(SAM) dependent methyltransferases (MAMTs). The enzyme Pks13 condensates these
long modified FAs, called a meromycolic chain, with a C24–C26 long FA, also generated by
FAS-I [14]. The resulting decorated MAs are translocated to the periplasm by the membrane
transporter MmpL3 [15].

The introduction of decorations at the distal and proximal positions on the meromy-
colic chain necessitates the presence of cis double bonds. The exact mechanism that leads
to the presence of these double bonds is subject to debate [6]. These cis double bonds can
be converted at the distal and proximal positions into cyclopropane by MmaA2 [16] and
PcaA [17], respectively, into a trans double bond with a vicinal methyl by UmaA1 [18], or
hydrated into a hydroxylated compound by MmaA4/Hma [19,20]. The resulting hydrox-
ymycolates can be further modified to keto- and methoxy-MAs by MmaA3 [19,21,22]. The
catalytic mechanisms of CmaA2, MmaA4, and MmaA1 have been studied by QM/MM
steered molecular dynamics [23]. It would begin with the formation of a carbocation
at the olefin site that would spontaneously convert into a methyl alcohol in the case of
Hma/MmaA4 [23]. Deletion of individual genes encoding SAM-dependent MAMTs is
not lethal and affects the mycomembrane structure and/or virulence of Mtb to varying
extent [16–18,24]. On the other hand, simultaneous inactivation of all eight genes encoding
MAMTs resulted in a viable but highly attenuated and hyperinflammatory Mtb [25]. Fur-
thermore, chemical inhibition of MAMTs was found to be bactericidal [24,26]. All these
results suggest that MAMTs are attractive targets in the fight against TB.

Among these, MmaA4/Hma is particularly interesting, as it has been shown that it is
necessary and sufficient for the introduction of oxygenated modifications on MAs [19,20,27]
and that oxygenated MAs participate in the virulence of Mtb in mice [19], modulate IL12
production in macrophages [28], and trigger the differentiation of macrophages into foamy
macrophages in granulomas in vitro [29]. In continuation of our previous work on the 3D
structure of Hma in the presence of SAM and of cofactor analogues [26,30], we screened a
small library of fragments against Hma using X-ray crystallography. Molecular dynamics
simulations were performed for the experimentally observed bound fragments to estimate
their binding energies. Based on the observed structures, evolved fragments were designed
and their binding energies were also estimated.

2. Results
2.1. Crystallographic Structures of Fragment-Bound Hma

Soaking experiments at 20 mM were performed with 126 fragments (average molecular
weight 153 ± 29 Da, 0–3 hydrogen bond donors, 0–5 hydrogen bond acceptors, 1–3 cycles,
and 0–4 rotatable bonds), providing as many crystals that were flash cooled in a stream
of nitrogen gas at 100 K. Diffraction data could be collected for 109 crystals, resulting in
66 datasets with resolution better than 2.5 Å. After a preliminary refinement with dimple,
the PanDDA procedure [31,32] identified seven datasets corresponding to possible bound
fragments (Figure 1), which were further refined (Table 1). In the case of compound ZT260,
as low ligand occupation was observed, a second soaking experiment was performed
with 100 mM of compound. Four distinct binding sites were observed (Figure 2): two
binding sites are buried in a profound crevice, which has been shown to accommodate
the cofactor [30] and the substrate [26], and the other two are on the surface of the protein,
involving in one case residues of a neighbouring protein in the crystal.
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σ

Figure 1. Structures of the fragments bound to Hma.

Figure 2. Ribbon representation of the Hma protein (PDB ID 2FK8) in the presence of the S-adenosylmethionine cofactor,
represented as sticks with black carbon atoms, with all observed bound fragments represented as sticks with coloured
carbon atoms. The protein is represented as a ribbon coloured from blue at the N-terminus to red at the C-terminus and
secondary structure elements are labelled according to [30].
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Table 1. Data collection and refinement statistics.

ZT218 ZT260 ZT275 ZT320 ZT424 ZT585 ZT726

PDB code 7Q2B 7Q2C 7Q2H 7Q2D 7Q2E 7Q2F 7Q2G

Data Collection

Beamline ESRF, ID14-4 ESRF, ID14-4 ESRF, ID23-1 ESRF, ID29 ESRF, ID29 SOLEIL, PX1 ESRF, ID14-4

Spacegroup P3121 P3121 P3121 P3121 P3121 P3121 P3121

Unit cell a, c (Å) 57.29, 206.00 57.11, 205.90 56.62, 207.67 57.02, 207.35 55.77, 207.02 57.11, 204.46 57.06, 205.93

Resolution range (Å) 1 40.21–1.85
(1.96–1.85)

35.66–1.85
(1.96–1.85)

49.03–1.75
(1.86–1.75)

49.38–1.90
(2.02–1.90)

49.17–2.00
(2.12–2.00)

49.46–1.85
(1.88–1.85)

40.10–2.00
(2.12–2.00)

No. unique reflections 34,449 (5438) 33,875 (5254) 40,075 (6368) 31,853 (5032) 27,163 (4292) 33,526 (1649) 27,352 (4359)

Completeness (%) 99.8 (99.7) 98.4 (96.7) 99.5 (99.7) 100.0 (100.0) 99.6 (99.7) 98.3 (99.9) 99.9 (99.9)

Redundancy 6.0 (6.0) 5.1 (3.7) 8.9 (8.8) 11.4 (11.8) 6.7 (6.5) 5.9 (5.2) 7.5 (7.6)

<I/σ(I)> 11.5 (1.8) 15.1 (1.0) 13.7 (2.6) 16.2 (2.6) 17.3 (2.4) 7.2 (1.4) 11.4 (1.3)

Rmerge (%) 8.2 (95.5) 5.1 (109.3) 8.9 (75.8) 8.1 (90.9) 5.2 (70.8) 15.8 (116.7) 9.1 (133.9)

CC(1/2) 99.6 (75.2) 99.9 (59.1) 99.6 (89.0) 99.8 (89.2) 99.9 (84.2) 98.3 (53.1) 99.6 (81.4)

Refinement

Resolution range (Å) 40.25–1.85 35.66–1.85 49.03–1.75 49.38–1.90 49.17–2.00 49.46–1.85 40.10–2.00

No. reflections
(work/test) 29,899/1703 28,298/1619 35,907/2034 28,849/1645 26,984/1545 30,090/1718 20,616/1191

Rwork/Rfree 0.1668/0.2059 0.1792/0.2256 0.1782/0.2105 0.1856/0.2281 0.1847/0.2375 0.1894/0.2293 0.1926/0.2538

No. of non-hydrogen
atoms 2484 2472 2525 2440 2385 2480 2339

Protein 2298 2310 2305 2305 2281 2291 2264

Fragment 12 24 11 20 8 24 13

Solvent 174 138 209 115 96 165 62

Rms deviations

Bond length (Å) 0.007 0.004 0.003 0.005 0.005 0.004 0.008

Bond angles (◦) 1.338 1.233 1.164 1.225 1.296 1.199 1.226

Ramachandran plot

Most favoured (%) 98 98 98 96 98 98 97

Allowed/Outliers (%) 2/0 2/0 2/0 4/0 2/0 2/0 3/0
1 Values in parentheses are for the highest resolution shell.

2.1.1. Fragments ZT218, ZT260, ZT275, ZT320, and ZT585 Bind at the Substrate
Binding Site

Five fragments were found to bind Hma at the substrate binding site (Figure 2),
where the lipophilic moiety of S-adenosyl-N-decyl-aminoethyl (SADAE) has been ob-
served in Hma [26], as well as didecyldimethylammonium bromide (DDDMAB) and
cetyltrimethylammonium bromide (CTAB) in the structures of homologous CmaA1 and
CmaA2, respectively [33].

The binding modes of ZT218, ZT260, and ZT585 (Figure 1) share common features:
these fragments are buried between residues Ile204, Phe209, Tyr274, and Cys278 on one
side and residues Glu149, Ser178, and Leu214 on the other side (Figures 3 and 4). Water-
mediated hydrogen bonds are observed in all three structures, albeit at longer distance in
the case of ZT260: a water molecule, occupying an almost identical position in all three
structures, connects the fragments to Glu146OE2 (2.5–2.7 Å), Glu149OE2 (2.5–2.7 Å), and
Ser178OG (2.6–2.7 Å). In the case of ZT218, an additional water-mediated hydrogen bond to
the imidazole group of His150 is found (Figures 3 and 4). Protein residues interacting with
these fragments display a conformation almost identical to that observed in the structures of
Hma in the presence of the SAM cofactor or analogues. In the apo-Hma structure, residues
151–153 were found to be disordered, resulting in a dramatically different conformation for
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residues 147–150: the phenyl group of Phe148 in apo-Hma is approximately 12.5 Å from
the position it occupies in the structures of these complexes. The conformation of residues
147–150 observed in the apo-Hma structure would not be compatible with the binding of
these fragments. It is likely that the binding of ZT218, ZT260, and ZT585 fragments leads to
structuration of residues 147–153, resulting in folding of the helix η1, as already observed
upon binding of the SAM cofactor or analogues [26,30].

η

 

η

Figure 3. Detailed representation of binding of ZT218 (A, pink), ZT260 (B, beige), and ZT585 (C, yellow) at the substrate
binding site. The protein backbone is represented as a tube, the side chains of residues involved in ligand binding are shown
as sticks and labelled, water molecules as red spheres, and hydrogen bonds as blue dotted lines. Residues 148–151 forming
helix η1 are coloured orange.

η

η

 

Figure 4. 2D interaction maps of fragments ZT218 (A), ZT260 (B), ZT585 (C), ZT275 (D), ZT320 (E), and ZT424 (F) bound to
the Hma protein. Hydrogen bonds are represented with dashed black lines and their lengths are indicated. Residues/atoms
involved in van der Waals contacts are represented by notched semicircles (figure adapted from LigPlot+ [34]).
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Although ZT275 and ZT320 (Figure 1) also bind to Hma at the substrate binding
site (Figure 2), they induce a previously unobserved conformation for residues 147–154.
These two fragments establish van der Waals contacts with Phe148, Gly152, Phe209, and
Leu214 (Figures 4 and 5). The oxygen atoms of the sulphonamide group of ZT275 form a
hydrogen bond with the main-chain nitrogen atom of Phe148 (3.2 Å) and Ser178 (3.0 Å). In
the case of ZT320, the nitrogen atom of the amine moiety forms a hydrogen bond with the
oxygen atom of the main chain of Phe151 (2.8 Å, Figures 4 and 5). In both cases, binding
results in a modified conformation for residues 147–154. The three-residue long helix η1
(Phe148–His150), observed in the presence of the SAM cofactor or the ZT218, ZT260, or
ZT585 fragments, is pushed away from the fragment binding site, reorganises, and includes
Phe151. In this new position, Phe148 is about 10 Å away from the position it occupies
in the structure of the other complexes: the main-chain atoms are in a position similar
to that observed in the apo-Hma structure, but the position of the side chain is different,
as a result of a 110◦ rotation of the χ1 dihedral angle. In addition, Glu149 and His150
are found at the position where the adenine moiety of the cofactor resides when bound
to Hma [26,30]. Therefore, binding of ZT275 or ZT320 induces a new conformation that
would not be compatible with the presence of the cofactor.

η

χ

 

η

Figure 5. Detailed representation of binding of ZT275 ((A), pale green) and ZT320 ((B), turquoise) at
the substrate binding site. The protein is represented as a ribbon, the side chains of residues involved
in ligand biding are shown as sticks and labelled, water molecules as red spheres, and hydrogen
bonds as blue dotted lines. Residues 148–151 forming helix η1 are coloured orange.

2.1.2. Fragment ZT424 Binds at the Cofactor Adenine Site

Binding of ZT424 (Figure 1) is observed at the position where the adenine moiety of the
SAM cofactor and its analogues were located [26,30] (Figure 2). ZT424 establishes van der
Waals contacts with the side chains of Leu104, Trp132, His150, and Phe151 (Figures 4 and 6).
The bromine atom of ZT424 makes a weak halogen bond [35] with the main-chain oxygen
atom of Leu102 (4.0 Å), while the ring nitrogen atom of the fragment interact with a water
molecule (3.3 Å), which is also hydrogen bonded to the main-chain nitrogen atom of Leu104
(3.3 Å). The hydroxyl group of ZT424 makes a weak hydrogen bond with the main-chain
nitrogen atom of Trp132 (3.4 Å) and with the carboxylate group of Glu133 (3.4 Å). In this
structure, residues 147–154 display the same conformation as that found in the structures
of Hma in the presence of the SAM cofactor or analogues, as well as those obtained in the
presence of ZT218, ZT260, and ZT585.
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η

Figure 6. Detailed representation of binding of ZT424 (light pink) at the cofactor binding site. The
protein is represented as a ribbon, the side chains of residues involved in ligand biding are shown as
sticks and labelled, water molecules as red spheres, and hydrogen and halogen bonds as blue and
green dotted lines, respectively. Residues 148–151 forming helix η1 are coloured orange. The position
of ZT260, coloured beige, in the substrate binding site is also indicated for easier comparison with
Figures 4 and 5.

2.1.3. Fragments ZT260, ZT320, ZT585, and ZT726 Bind at the Protein Surface

Two fragment binding sites are observed on the surface of Hma (Figure 2). The first
is delineated by Arg40, Arg111, and Trp84. A second molecule of the ZT260 and ZT320
fragments is located at this position, as well as ZT726 (Figure 1). The planar aromatic
ring of ZT260, ZT320, and ZT726 is intercalated between the guanidinium groups of the
two arginine residues and forms a perpendicular aromatic–aromatic interaction with the
indole moiety of Trp84 (Figure 7). Broad, planar, and ill-defined electron density peaks
were observed at this position in several of the structures obtained in this study, but they
did not allow the unambiguous positioning of the corresponding fragments.

η

 

Figure 7. Detailed representation of binding of ZT260 (A), ZT320 (B), ZT726 (C), and ZT585 (D) at the
protein surface. The protein is represented as a ribbon, the side chains of residues involved in ligand
biding are shown as sticks and labelled, water molecules as red spheres, and hydrogen bonds as blue
dotted lines. Residues 148–151 forming helix η1 are coloured orange. In D, the symmetry-related
molecule is represented in beige and labelled in italics.
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A second surface binding site is also observed in the case of ZT585, located between
two protein molecules in the crystal, near helix α2 (Figure 7). ZT585 makes van der Waals
contacts with the side chain of Tyr184 and hydrogen bonding with the side chain of Glu218.
ZT585 is also hydrogen-bonded to the side chain of Glu207 and within van der Waals
distance of the main-chain atoms of Asn269 and Arg270, all belonging to a symmetry-
related molecule in the crystal. The binding of ZT585 induces significant conformational
changes. Indeed, in all Hma structures determined so far, the α2 helix comprises residues
183–188 and a two-residue long loop (residues 189–190) connects the α2 and α3 (residues
191–208) helices. In the presence of ZT585, the α2 helix is shortened at residues 183–185
and the α3 helix is extended with an additional turn at its N-terminus (188–208).

2.2. Chimeric Compounds

As several fragments bind to the substrate binding site, chimeric compounds were
designed to mimic the simultaneous binding of two fragments and thus improve binding
affinities. Superimposition of fragments suggested that chimeric compounds could be
derived from the fusion of ZT218 with ZT260 or ZT585. Indeed, replacement of the phenyl
ring of ZT218 with the aromatic core of ZT260 or ZT585 results in the series 218260x and
218585x (Figure 8). On the other hand, ZT275 could be merged with ZT320 to give the
compounds 275320x (Figure 8). Additionally, compound 320sadae was designed by the
addition of a lipophilic C7 chain to the aromatic nucleus of ZT320, in order to mimic
the binding of SADAE [26]. The chimeric compounds were manually positioned in the
appropriate structure of Hma using Coot.

η

α

α
α α

α
α

 

Figure 8. Chimeric compounds derived from merged fragments.
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2.3. Molecular Dynamics Simulations

2.3.1. Apo-Hma

In the crystallographic structure of apo-Hma, residues 151–153 were found to be disor-
dered [30] suggesting that the 146–155 loop, connecting strand β4 to helix αD, was mobile,
at least partially. In the presence of the SAM cofactor [30] and analogues [26], this loop
displays decreased mobility, and residues 148–150 form the short η1 helix. A similar con-
formation of the η1 helix was also observed in the structures of complexes of Hma with
ZT218, ZT260, and ZT585 bound in the substrate binding site and with ZT424 bound in the
cofactor binding site. On the other hand, a very different conformation was observed in the
presence of ZT275 and ZT320 in the substrate binding site. This new conformation would
not be compatible with cofactor binding, as Glu149 and His150 are displaced to the position
occupied by the adenine moiety. Molecular dynamics simulations were performed for
apo-Hma, using the two observed conformations of the loop, for a simulation time of 1.2 µs.
The calculations were performed in triplicate. The all-atoms root-mean-square fluctuation
(RMSF) per residue monitored throughout the simulation indicates that some parts of the
protein are indeed more flexible (Figure S1). In both cases, four regions of higher mobility
can be identified. Indeed, the N- and C-terminal extremities (residues 19–28 and 298–301,
respectively) and residues 152–155 and 182–195 display an average RMSF greater than 1.5 Å
for more than three consecutive residues. Residues 152–155 are part of the disordered loop
observed in the apo-Hma structure that folds upon cofactor binding and residues 182–195
are part of helices α2 and α3. These residues are displaced upon binding of ZT585 at the
protein surface (see above). Although the RMSF profiles are comparable for the two starting
conformations, residues 129–136 display greater mobility in the conformation compatible
with the presence of the cofactor (average RMSF of 1.5 Å compared to 0.9 Å).

The root-mean-square deviation (RMSD) from the starting conformation was also
analysed, after removing the global rotational and translational displacement and ignoring
the parts of the protein with the highest RMSF, i.e., residues 19–28, 152–155, 182–195, and
298–301. The variations of the RMSD in function of the simulation time (Figure S2) display
a homogeneous behaviour independent of the starting conformation. The RMSD converges
to about 1.2–1.7 Å after 0.2 µs in each case.

The possibility of a transition between the two conformations observed for residues
147–154 was also investigated. To this end, some distances were monitored during the
simulation. This was the case for the distance between the centre of mass of the aromatic
side chains of Phe148 and Phe160, which was measured to be 5.7 and 16.2 Å in the crystal-
lographic structures of the cofactor-compatible and cofactor-incompatible conformation,
respectively. Similarly, the distances from the centre of mass of the imidazole group of
His150 to the Cα atom of Gly131 or to the centre of mass of the aromatic ring of Tyr42
was also monitored. Initial values were 11.5 Å and 9.3 Å, respectively, in the cofactor-
compatible conformation, and 4.7 Å and 14.4 Å, respectively, in the cofactor-incompatible
conformation. Representative profiles of the variation of these distances over the course of
the simulation are shown in Figure S3.

2.3.2. Hma in the Presence of Fragments or of Chimeric Compounds

Molecular dynamics simulations were also performed with Hma in the presence of
fragments, starting from observed crystallographic structures, or chimeric compounds,
starting from manually generated structures. In the case of the fragments ZT218, ZT260, and
ZT585, for which water molecules mediate hydrogen bonds to the protein, two simulations
were performed, with or without these water molecules. Simulations were also performed
in the presence of the cofactor or analogues of the cofactor, starting from the coordinates of
the complexes found at the PDB [26,30].

2.4. Estimation of Binding Energies for Fragments and Chimeric Compounds

For the estimation of binding energies, 2000 consecutive frames were selected from
the trajectories of the molecular dynamics simulation, after an equilibrium was reached,
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visualised by the stabilisation of the main-chain RMSD. One frame out of two was used
for the calculation of the binding energies, according to the generalised Born method and
the Poisson–Boltzmann method coupled to the surface area continuum solvation method
(hereafter GBSA and PBSA, respectively). Both approaches approximate the enthalpic term
of the binding Gibbs energy and neglect the entropic term, which would be complicated
and time consuming to evaluate. Nevertheless, this simplification allows compounds to
be ranked in a drug design perspective and the impact of chemical modifications of the
ligand on binding to be assessed [36,37]. The PBSA approach is generally considered more
accurate in calculating absolute free energies, but it is more time consuming and appears
to be more dependent on the system under study, whereas the GBSA approach is better
at ranking binding affinities [37]. PBSA and GBSA terms were evaluated for all ligands
investigated, including the SAM cofactor and its analogues SAH, SADAE, and sinefungin,
which have been shown to bind Hma [26,30]. The binding energies evaluated using the
PBSA method are consistently lower than those obtained with the GBSA method (Table 2
and Figure S4). However, as a good correlation was found between the two methods
(R2 = 0.983, Figure S4), the values obtained with the GBSA method will be considered.

Table 2. Estimated binding energies and standard deviations (kcal/mol) for all ligands mentioned in
this study.

Ligand GBSA PBSA

ZT218 −22.8 ± 2.2 −11.9 ± 2.6

ZT218 * −22.2 ± 1.8 −10.2 ± 2.2

ZT260 −18.0 ± 1.8 −12.0 ± 2.1

ZT260 * −22.2 ± 1.8 −10.2 ± 2.2

ZT275 −17.9 ± 2.1 −7.0 ± 2.1

ZT320 −23.0 ± 2.1 −12.8 ± 2.2

ZT424 −18.9 ± 1.7 −9.7 ± 1.9

ZT585 −26.8 ± 1.7 −14.8 ± 2.0

ZT585 * −26.2 ± 1.7 −14.0 ± 2.0

ZT726 −19.2 ± 1.8 −11.4 ± 2.1

2182601 −29.9 ± 2.5 −10.7 ± 3.0

2182601 * −33.9 ± 2.2 −19.6 ± 2.2

2182602 −30.5 ± 1.8 −14.2 ± 2.1

2182602 * −31.5 ± 2.1 −15.6 ± 2.7

2753201 −24.9 ± 2.9 −12.5 ± 2.2

2753202 −18.9 ± 3.8 −5.3 ± 2.6

2185851 −32.4 ± 2.1 −12.2 ± 2.3

2185852 −32.3 ± 2.6 −13.2 ± 2.8

2185853 −34.4 ± 2.0 −14.5 ± 2.4

2185854 −34.3 ± 2.2 −18.2 ± 2.4

2185855 −35.1 ± 2.2 −18.6 ± 2.6

2185856 −35.0 ± 2.3 −19.7 ± 2.5

320sadae −35.7 ± 2.2 −20.3 ± 2.5

SAM −45.7 ± 4.9 −25.0 ± 4.1

SAH −40.2 ± 3.4 −21.8 ± 3.2

Sinefungin −39.6 ± 3.8 −24.8 ± 3.6

SADAE −67.7 ± 3.5 −35.8 ± 3.1
*An asterisk following the name of the fragment indicates that experimentally observed bridging water molecules
were conserved in the molecular dynamics simulations.
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As expected, the estimated binding energies for the fragments are significantly higher
(−17.9 to −26.8 kcal/mol) than the values obtained for the SAM cofactor and its analogues
(−39.6 to −67.7 kcal/mol). SAM, SAH (the reaction product), and sinefungin display
comparable values (−45.7, −40.2, and −39.6 kcal/mol, respectively) while SADAE shows
an extremely favourable binding energy (−67.7 kcal/mol). The chimeric compounds re-
sulting from the fusion of the fragments exhibit binding energies ranging from −18.9
to −35.7 kcal/mol, intermediate between values found with the original fragments or
the cofactor and its analogues. The most favourable chimeric compounds are 320sadae
(−35.7 kcal/mol), which combines ZT320 with a C7 alkyl chain reminiscent of the C10
alkyl chain of SADAE, and 218585x (−32.3 to −35.1 kcal/mol) resulting from the fusion of
ZT218 and ZT585. The chimeric compounds 218260x and 218585x show more favourable
binding energies (between −29.9 and –35.1 kcal/mol) than the individual original frag-
ments (−22.8 kcal/mol for ZT218, −18.0 kcal/mol for ZT260, and −26.8 kcal/mol for
ZT585), which is not the case for the chimeric compounds 275320x, which exhibit com-
parable binding energies (between −18.9 and −24.9 kcal/mol) to those found for ZT275
(−17.9 kcal/mol) and ZT320 (−23.0 kcal/mol).

3. Discussion
3.1. Crystallographic Screening

X-ray crystallography is a powerful technique for fragment screening, as high con-
centrations of fragments can be achieved in co-crystallisation or soaking experiments, as
long as the crystals are resistant to the treatment [38–40]. High concentrations are required
to provide clear electron density for bound fragments, despite the expected low affinity
resulting from their low molecular weights [41,42]. Nevertheless, weak binding is often
observed, and specific ligand detection procedures have to be used in order to detect those
fragments. In this regard, the use of the PanDDA procedure [31,43] was instrumental in
this study to visualise the binding of the ZT275, ZT320, ZT424, and ZT726 fragments that
were barely visible in conventional electron density maps.

Crystallographic screening of 126 fragments identified 7 bound fragments, correspond-
ing to a hit rate of 5.5%, in the lower range of what is usually observed in a fragment
screening [43–46]. Among the seven positive hits, five were found to bind in the substrate
binding site and one in the cofactor binding site at the adenine position.

3.2. Molecular Plasticity of Hma

Comparison of the structure of apo-Hma [30] with those of Hma in the presence of
the SAM cofactor or analogues [26,30] showed that the 146–155 loop was highly mobile in
the absence of ligands and stabilised upon binding of the cofactor or analogues. This is
also confirmed by our structures in the presence of the ZT218, ZT260, ZT424, and ZT585
fragments, since the 146–155 loop adopts a similar conformation to that observed in the
presence of the cofactor. Surprisingly, while the ZT275 and ZT320 fragments also bind at
the substrate binding site, albeit deeper in the crevice, they induce a different conformation
of the 146–155 loop. Notably, in this new conformation, Glu149 and His150 occupy the
position of the adenine portion of the cofactor. Hence, this new conformation is likely to be
incompatible with the presence of the cofactor.

Molecular dynamics simulation of apo-Hma, starting with either of the two conforma-
tions observed for the 146–155 loop, was run in triplicate for simulation time of 1.2 µs to
assess the structural plasticity of each conformation and the possible exchange between
them. RMSD analysis along the simulation indicates that both conformations reach an
equilibrium state with RMSD values of approximately 1.5 Å relative to the starting confor-
mation (Figure S2). The RMSFs along the protein backbone also display a homogeneous
behaviour: in addition to the N- and C-terminal ends, two regions display higher mobility,
namely, residues 147–156 and 188–200, as previously observed in the case of the other
mycolic acid methyltransferases CmaA2 and CmaA3, which are responsible for the cy-
clopropanation of MAs [47]. A notable exception occurs for residues 129–137 for which a
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greater mobility is observed in the case of the cofactor-compatible conformation (average
RMSF of 1.5 Å compared to 0.9 Å) (Figure S1). These residues border the cofactor binding
site and interact with its adenine moiety [30]. In the cofactor-compatible conformation of
apo-Hma, this site is filled with water molecules, and residues 129–136 are not restrained.
In the cofactor-incompatible conformation, this site is occupied by His150, which makes
a water-mediated hydrogen bond with the carboxylate group of Glu133. An additional
hydrogen bond is observed between the main-chain oxygen atom of His153 and the side-
chain nitrogen atom of Trp132 (2.9 Å). These interactions likely decrease the mobility of
residues 129–136. In the presence of the SAM cofactor or analogues, it is the adenine moiety
that similarly limits the mobility of residues 129–136 (Figure S1).

The crystallographic structures presented here indicate that the substrate binding
site of Hma is capable of adopting at least two distinct conformations, depending on
the ligand bound. Interestingly, one of these conformations is not compatible with the
presence of the SAM cofactor in its binding site, which, from the perspective of inhibiting
the enzyme activity, appears particularly interesting. It seems that there is no transition
between the two conformations, at least during the 1.2 µs of the simulation. However,
the evolution of inter-residue distances throughout the simulation of apo-Hma (Figure S3)
suggests that the cofactor-incompatible conformation displays less structural variability
than the cofactor-compatible conformation.

3.3. Computed Binding Energies of Fragments and Chimeric Compounds

As expected for low molecular weight fragments, the calculated binding energies
are rather high (−19.1 kcal/mol on average), suggesting that the interactions are indeed
tenuous. The explicit inclusion of experimentally observed water molecules involved in
the interactions with the fragment and the protein does not significantly alter the binding
energies. Indeed, although the presence of these water molecules might have an effect on
the position of the fragment during the dynamics, and thus indirectly affect the estimation
of binding energies, they do not directly contribute to the binding energy estimation, as the
calculation relies on an implicit solvent model.

Although five of the identified fragments bind to the substrate binding site, they can be
divided into two binding modes. Binding of the ZT218, ZT260, or ZT585 fragments induces
a conformation for residues 146–155 similar to that observed in the Hma structures obtained
in the presence of the SAM cofactor and analogues. Furthermore, from a steric point of view,
the binding of these fragments would not prevent cofactor binding. Thus, the inhibitors
derived from these fragments would compete with the enzyme substrate. On the other
hand, binding of ZT275 and ZT320 fragments induces a different conformation for residues
146–155, resulting in residues 149 and 150 occupying the position where the adenine part of
the cofactor is located. Thus, inhibitors derived from these fragments would simultaneously
prevent binding of the substrate and cofactor, in a manner similar to that observed for
SADAE [26,48]. However, unlike SADAE, which competes for binding with both substrate
and cofactor, the inhibitors derived from the ZT275 and ZT320 fragments would act as
competitive inhibitors for the substrate but as allosteric inhibitors for the cofactor.

Based on the observed structures, several chimeric compounds were designed by
fusion of the identified bound fragments. The 218260x and 218585x series were derived
from merging fragments ZT218 with ZT260, and ZT218 with ZT585, respectively, and
compounds 275320x resulted from merging ZT275 and ZT320. Binding energies of chimeric
compounds were evaluated in the same way as for those of original fragments. Among
those chimeric compounds, compounds 2753201 and 2753202 display binding energies of
the same order of magnitude as those of the original fragments (−18.9 and −24.9 kcal/mol).
This could be related to the low molecular complexity of these compounds, comparable to
that of the original fragments. The chimeric compounds 218260x and 218585x display much
more favourable binding energies (−31.5 and −33.9 kcal/mol, on average, respectively).

SADAE is a SAM analogue that was shown to inhibit Escherichia coli cyclopropane
fatty acid synthase (CFAS) both in vivo and in vitro [48], as well as Hma in vitro [26].
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Furthermore, SADAE also inhibited the growth of Mtb and M. smegmatis, indicating that
it is able to cross the cell wall of mycobacteria [26]. The efficacy of SADAE has been
attributed partly to the lipophilic C10 chain, which is thought to mimic the lipophilic
chain of CFAS and Hma substrates [26,48]. The calculated binding energy for SADAE
is extremely favourable, due to the numerous van der Waals interactions resulting from
the presence of the lipophilic chain. It should be noted, however, that for a compound
with such a degree of freedom, neglecting the entropic term is likely to lead to significant
approximations. The chimeric compound 320sadae was designed by adding a C7-chain to
ZT320 to occupy the substrate binding site. It exhibits the lowest binding energy (−35.7
kcal/mol), compared to other chimeric compounds, marginally better than the values
obtained for compounds of the 218585x series. Compared to the binding energy of the
original ZT320 fragment (−23.0 kcal/mol), the observed gain is, however, important, even
considering the uncertainty resulting from neglecting the entropic term.

These results suggest that at least two strategies are conceivable to inhibit Hma, and
potentially other mycolic acid methyltransferases, which share high structural similari-
ties [33,49]. First, elaborating from the ZT275 and ZT320 fragments would yield compounds
that simultaneously interfere with substrate binding, as they occupy the substrate binding
site, and prevent cofactor binding, as they induce structural modifications of the protein
that are not compatible with the presence of SAM. Secondly, the addition of a lipophilic
moiety would optimise the occupation of the substrate binding site, and would contribute
to improve the specificity of the compounds towards methyltransferases acting on long
aliphatic compound, such as lipids. In this regard, the functionalisation of the aliphatic
chain that would mimic reaction intermediates would further improve the inhibitors’
affinity and specificity.

4. Materials and Methods
4.1. Expression, Purification, and Crystallisation of Hma

The Hma protein was expressed and purified as previously described [26,48]. In sum-
mary, a pET15b plasmid (Novagen) containing the hma cDNA was used for transformation
of Escherichia coli BL21(DE3)pLysS bacteria. This construct exchanges the first three residues
of Hma with a 20-residue cleavable His-tag. Expression of the recombinant protein was
induced by the addition of 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 310 K
for 3 h. After sonication and centrifugation, the soluble fraction was loaded onto a nickel
affinity column (Amersham Biosciences, Amersham, UK) and the His-tagged protein was
eluted with a 5–500 mM imidazole gradient in a buffer consisting of 50 mM MES, pH
6.5, and 300 mM NaCl. A final size exclusion chromatography step, using a Sephadex
75 HiLoad column (Amersham Biosciences), yielded a pure protein for structural studies.

The purified Hma protein was crystallised at 285 K by vapor diffusion using the
hanging drop technique. The crystallisation conditions were optimised from those pub-
lished previously [26,30] to reproducibly provide sufficient quantities of good quality
crystals. A 3 µL droplet was prepared by mixing 2 µL of a 3–4 mg/mL of Hma solution
(MES 50 mM, NaCl 50 mM, pH 6.5) with 1 µL of reservoir solution (BisTris 50 mM, PEG
3350 4% (w/v), pH 6.5). Under these conditions, seeding of crushed crystal fragments
was necessary because the protein concentration in the drop was not sufficient to allow
spontaneous nucleation. This procedure yielded reproducibly 5 to 10 single crystals per
drop, bipyramidal in shape, and about 200 µm long in their largest dimension, suitable for
soaking experiments.

4.2. Fragments

A 352-fragment library was acquired from Zenobia Therapeutics. The molecular frag-
ments (average molecular weight 154 ± 29 Da, 0–3 hydrogen bond donors, 0–6 hydrogen
bond acceptors, 0–3 cycles, and 0–5 rotatable bonds) were formulated at 200 mM in pure
DMSO. Fragments were used without prior purification or characterisation.
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4.3. Crystallographic Screening

Crystallographic screening was performed by soaking Hma crystals overnight in
20 mM fragment solutions in 50 mM BisTris, PEG 3350 4% (w/v), pH 6.5, at 285 K. Soaked
crystals were cryoprotected by immersion for 2 min in the crystallisation solution supple-
mented with 20% (v/v) glycerol before cooling in a stream of nitrogen gas at 100 K.

Diffraction data were collected at ALBA (Barcelona, Spain, beamline XALOC), SOLEIL
(Saclay, France, beamline PX1), and European Synchrotron Radiation Facility (ESRF, Greno-
ble, France, beamlines ID14-1, ID14-2, ID23-1, ID23-2, and ID29), and processed with
XDS [50] and AutoProc [51]. Preliminary refinement was performed using the dimple
pipeline of the CCP4 Program Suite [52] starting with apo-Hma coordinates [30] before
identifying structures with potentially bound fragments with the PanDDA procedure [31].
These structures were further refined with REFMAC5 [53], Buster [54], and Coot [55]. The
fragment dictionaries were generated using MarvinSketch [56] and the Grade Server [57].

4.4. Molecular Dynamics Simulation

Available crystallographic structures of the apo protein and of complexes [26,30],
including those described here, as well as models of complexes generated in the presence of
the chimeric compounds, were used as starting point for molecular dynamics simulations.
The chimeric compounds were drawn and converted in 3D with MarvinSketch [56].

The tleap module for AMBER-20 [58] was used to generate a periodic cubic box
extending 10 Å around the protein, containing the structure of the protein, the ligand
if present, water molecules represented with the TIP3P model, and sodium cations to
neutralise the system. The GPU version of the PMEMD module available in AMBER-20
was used for energy minimisation and molecular dynamics calculations. An initial energy
minimisation was performed, with progressively reduced constraints on protein atom
positions, followed by a 150 ps equilibration MD and a 100 ns production run. In the case
of apo-Hma and of the SAM-Hma complex, the production simulations were extended to
1 µs. Analysis of trajectories, as well as monitoring of interactions and of inter-residue
distances along the trajectories were performed using CCPTRAJ [59].

4.5. Relative Binding Affinity Evaluation

Molecular dynamics (MD) simulation was coupled with the MM-GB/PBSA post-
processing method [60] to estimate the interaction energies of fragments, cofactor and
cofactor analogues, and chimeric compounds derived from the identified bound fragments.
This procedure relies on frames extracted from an all-atom molecular dynamics simulation
of a protein–ligand complex, after removal of solvent molecules, since these methods rely
on an implicit solvent model. The enthalpic term of the Gibbs free energy of binding is
approximated from the force-field energy, and the entropic term is usually neglected as it is
extremely time consuming to calculate [61]. Therefore, this procedure does not provide
true binding energies, but it can still estimate relative binding energies between ligands,
as the entropy term should be dominated by the protein contribution, which should be
comparable for the different ligands. The MMPBSA.py.MPI program [60] was used for
the calculations.

5. Conclusions

The crystallographic screening of a fragment library allowed for the identification of
7 fragments bound to Hma. The presence of bound fragments in the substrate binding
site of Hma induced two distinct conformations of residues 147–154. One of these confor-
mations would be incompatible with the presence of the SAM cofactor in its binding site.
Second generation chemical compounds were designed based on the observed positions
of the fragments. Binding energies of initial fragments, of second generations molecules
and of the SAM cofactor and analogues were estimated using MM-GBSA/PBSA methods.
Whereas bonding energies of fragments were high, as would be expected for low molecular
weight compounds, some of the second generations compounds displayed binding ener-
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gies close to that found for cofactor analogues. These results suggest that our compounds
could be further improved to inhibit Hma, and possibly other MAMTs. Additionally, our
findings allow to envision the possibility of allosteric inhibition of cofactor binding.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14121282/s1, Figure S1: Root-mean-square fluctuation along the MD simulation of apo-Hma.
The per residue main-chain atom fluctuations are average of three independent 1.2 µs simulations of
apo-Hma starting either from the cofactor-compatible conformation (orange) or from the conformation
observed in the presence of ZT275 or ZT320 that would be incompatible with the binding of the
cofactor (blue). For comparison, the per residue main-chain atom fluctuations of the structure of Hma
in complex with SAM (averaged from 2 independent 1.2 µs simulations) is shown in grey. Secondary
structures elements are indicated, labelled and coloured as in Figure 2. Figure S2: Evolution of
the root-mean-square deviation along the MD simulation of apo-Hma. RMS deviations (Å) were
computed using main-chain atoms of residues 29–151, 156–181, and 196–297 on the whole trajectory
and plotted as a function of time for the 1.2 µs simulation of apo-Hma starting either from the cofactor-
compatible conformation (blue) or from the cofactor-incompatible, ZT320-bound conformation
(orange). For clarity, only one in 10 values is plotted. A single representative curve is displayed for
each simulation performed in triplicate. Figure S3: Variations of selected inter-residues distances
along the simulation trajectory of apo-Hma. Distances were measured between the centre of mass
of the aromatic side chain of Phe160 and of Phe148 (blue) and between the centre of mass of the
imidazole group of His150 and either the Cα atom of Gly131 (orange) or the centre of mass of the
aromatic ring of Tyr42 (grey). Distances are plotted as a function of time for the simulation starting
from the cofactor-compatible conformation (top) and from the cofactor-incompatible, ZT320-bound
conformation (bottom). Simulations were performed in triplicate, curves from a single simulation
are shown. Figure S4: Comparison of binding affinities as evaluated using the GBSA or the PBSA
approach. The linear fit is indicated. Initial fragments are represented with red dots, chimeric
compounds with blue dots and SAM and analogues with green dots. An asterisk following the name
of the fragment indicates that experimentally observed bridging water molecules were conserved in
the molecular dynamics simulations. Abbreviation: SIN, sinefungin. A straight line is fitted to all the
points, passing at the origin. The square of the Pearson correlation coefficient is indicated.
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Abstract: Computational approaches have accelerated novel therapeutic discovery in recent decades.
The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multi-
target therapeutic discovery, repurposing, and design aims to improve their efficacy and safety by
employing a holistic approach that computes interaction signatures between every drug/compound
and a large library of non-redundant protein structures corresponding to the human proteome fold
space. These signatures are compared and analyzed to determine if a given drug/compound is
efficacious and safe for a given indication/disease. In this study, we used a deep learning-based
autoencoder to first reduce the dimensionality of CANDO-computed drug–proteome interaction
signatures. We then employed a reduced conditional variational autoencoder to generate novel
drug-like compounds when given a target encoded “objective” signature. Using this approach, we
designed compounds to recreate the interaction signatures for twenty approved and experimental
drugs and showed that 16/20 designed compounds were predicted to be significantly (p-value ≤ 0.05)
more behaviorally similar relative to all corresponding controls, and 20/20 were predicted to be more
behaviorally similar relative to a random control. We further observed that redesigns of objectives
developed via rational drug design performed significantly better than those derived from natural
sources (p-value ≤ 0.05), suggesting that the model learned an abstraction of rational drug design.
We also show that the designed compounds are structurally diverse and synthetically feasible when
compared to their respective objective drugs despite consistently high predicted behavioral similar-
ity. Finally, we generated new designs that enhanced thirteen drugs/compounds associated with
non-small cell lung cancer and anti-aging properties using their predicted proteomic interaction
signatures. his study represents a significant step forward in automating holistic therapeutic design
with machine learning, enabling the rapid generation of novel, effective, and safe drug leads for
any indication.

Keywords: computational drug design; deep learning; multiscale; polypharmacology; autoencoder;
docking; recurrent neural network

1. Introduction

Drug discovery—identifying chemicals with therapeutic effects against a particular
indication/disease that is safe for human use—is a long, laborious, and expensive process.
On average, $3 billion and about 15 years are required to bring a novel chemical entity
to the market using traditional approaches [1]. Computational methods are a popular
means of identifying potential leads through paradigms such as high-throughput virtual
screening [2–5], where simulations are run to assess the binding affinity of a library of
compounds against a therapeutic target of interest. The combinatorial explosion of binding
poses [6,7] and ligand conformations [6,8,9] and the chaotic nature of such dynamical
systems [10] prevent popular virtual screening methods from producing safe and effective
therapeutic leads a priori. These issues are exacerbated by the fact that virtual screening
studies usually consider a single protein target, whereas drugs ingested by humans go
through absorption, dispersion, metabolism, and excretion (ADME) and exert their effects
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(and side effects or toxicity (T)) via interactions with multiple targets and systems [3,11–15].
Furthermore, the chemical space explored by virtual screening is limited to a relatively
small selection of compounds when compared to the vastness of the small molecule
space [4,16], thus missing more effective and safer leads.

Computational methods are efficient, accurate, holistic (i.e., take into account the entire
interaction space of chemical entities), and have breadth in terms of chemical space exploration
necessary to overcome the limitations of traditional approaches [2,6,12,13,17–34]. To expand
compound libraries utilized in screening, combinatorial chemistry and machine-learning
design pipelines have been developed to generate libraries of compounds likely to bind
to a given target [35–37]. Some notable examples in machine learning include Insilico
Medicine’s Chemistry42 platform, which designs compounds to a binding pocket [38], or a
recent transformer-based network that utilized machine translation methods to generate
binding ligands for the amino acid sequence of a target protein [39]. However, to take full
advantage of these leads, additional screening and in vivo work must be performed to
identify off-target binding as these approaches do not address the multitarget nature of
drug interactions [11,13].

Various encoder–decoder models [40–42] for conditional [43] molecular generation on
multiple properties have been proposed [17,44–46], but in most cases, these properties are
limited to physiochemical ones. These models, however, do show great promise in their
ability to rapidly generate compounds with desired properties. The most sophisticated
conditional molecular generation performed thus far to our knowledge is inducing a
differential expression profile of several hundred genes [17]. In all these models, proteins,
the functional molecules that are primarily bound by human-ingested drugs to ensure
efficacy and ADMET, remain to be considered explicitly on a large scale. Determining
interactions between drug candidates and target proteins on a proteomic scale will offer
the most comprehensive predictions for bioactivity and safety as many on- and off-targets
will be considered simultaneously.

We developed the Computational Analysis of Novel Drug Repurposing Opportunities
(CANDO) platform for shotgun multitarget drug discovery, repurposing, and design to
overcome the aforementioned limitations of traditional single-target approaches [18–29].
The platform screens and ranks drugs/compounds for every disease/indication (and
adverse event) through the large-scale modeling and analytics of the interactions between
comprehensive libraries of drugs/compounds and protein structures. CANDO is agonistic
to the interaction scoring method used; two primary pipelines within the platform allow
for rapid screening and assessment of billions of drug/compound to protein interactions
with fast bioanalytic docking and machine learning affinity regression protocols. Machine
learning is also used to improve performance in conjunction with preclinical data in an
iterative manner. Finally, CANDO implements a variety of benchmarking protocols for
shotgun repurposing, i.e., to determine how every known drug is related to every other
in the context of the indications/diseases for which they are approved, which enables
the evaluation of various pipelines and protocols within and external to the platform for
their utility in drug discovery. The multiple fast and accurate interaction scoring/docking
protocols, the proteomic scale, and rigorous all-against-all benchmarking used within the
platform make it unique and ideal for the design of chemical entities that target a desired
proteomic space or objective.

Here, we describe the development and rigorous benchmarking of a multi-step deep
learning pipeline for drug design. These pipelines perform conditional drug design given a
desired proteomic interaction signature using a generative approach to explore the vastness
of the entire small molecule space, while evaluating the functional behavior of candidate
designs across the proteomic space. The CANDO platform’s benchmarking strategy is used
in a modified fashion to determine the performance of the designed compounds relative
to an objective drug. We show that the best generated designs were evaluated as being
equivalent or better than a variety of controls for twenty objective drugs. Our pipeline
represents a significant leap in automating holistic drug design with machine learning,
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with the ability to rapidly generate effective and safe drug candidates that accurately target
multiple proteins within a proteome as desired.

2. Results and Discussion
2.1. Behavioral Similarity of Designed Compounds to Their Objectives

We observed excellent performance of our Reduced Conditional Variational Autoen-
coder (RCVAE) proteome-scale design pipeline in all our benchmarking experiments
following training (see the methods Section 3.2). If this performance continues to hold
following synthesis and validation, it indicates that this pipeline will greatly enhance the
pharmaceutical discovery pipeline for novel treatments against a variety of simple and
complex indications. A critical aspect of verifying the utility of the designs generated
was to compare their predicted behavior (i.e., proteomic interaction signatures) to their
intended behavior, which was input to conditional generation. If the predicted behaviors
of designed compounds were highly similar to the conditional objective across objectives
relative to the corresponding controls, we concluded that the RCVAE design pipeline may
be used to accurately design compounds that possess any desirable bioactivity and subse-
quent function, given the extensive benchmarking and validation the CANDO paradigm
has undergone [18,21,26,29,47–50]. This is the primary motivation and goal for using the
CVAE architecture in terms of accelerating drug discovery: design with respect to arbitrary
numbers of on-, off-, and anti-targets (Figure 1).

Figure 1. Deep -learning architecture and pipeline for generative drug design. We used the
CANDO platform to predict interaction signatures for each compound in a training set against
a library of nonredundant protein structures representing the human proteome. The interaction
signatures have their dimensionality reduced in an autoencoder, which models the underlying
correspondence between protein structures as they behave in the proteome. The reduced signatures
are then used as labels for each training compound, which the generative conditional variational
autoencoder model learns to reconstruct given a target interaction signature. This pipeline allows
us to redesign behaviorally similar compounds to existing drugs based on their interaction signa-
tures, as well as to modulate interactions on a proteomic scale as desired to generate behaviorally
novel therapeutics.
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We evaluated the performance primarily by the median of each distribution, indicated
by the horizontal bars in the box plots in Figure 2. Lower root-mean-squared deviation
(RMSD) values indicate a greater reproduction of proteomic interaction signatures for
the intended and/or predicted behavior of any given compound, i.e., greater behavioral
similarity. Every set of redesigns performed significantly better (p-value of ≤ 0.05) than a
selection of random compounds according to this criterion. Additionally, despite being
comparatively close in predicted proteomic behavior, our redesigns maintained high levels
of structural diversity, as evidenced by their Tanimoto coefficients to our drug library
(average ≤ 0.39). For sixteen of the objectives (excluding sirolimus, cucurbitacin Q1,
digoxin, and myriocin), the redesigns significantly outperformed the corresponding top
100 and same indication controls. The top 100 control, which included several “me too”
compounds (or structural analogs) for each objective [24,51], is the most rigorous one we
could devise and illustrates that just generating 100 designs in many instances produces
more behaviorally similar compounds to a desired interaction signature than selecting the
most similar 100 compounds from a total of 13,194 (the size of the CANDO drug library).
The existence of structural analogs in the top100 control indicates bias in favor of already
effective compounds in an effort to break into a new market or retain market dominance by
generating new intellectual property. New drugs are often derivatives of existing ones with
small changes, which our design pipeline is able to overcome, particularly with a bit of extra
effort (see Section 2.4 below). Overall, these results indicate that the RCVAE design pipeline
produces compounds that accurately match the behavior of desired proteomic interactions
relevant to drug discovery. In other words, interactions related to therapeutic efficacy,
ADME, and toxicity are modulated precisely in the designed compounds, particularly for
objectives from the rational sources subset.

2.2. Relative Performance Gains of Designs Relative to Controls

The bottom panel of Figure 2 compares the relative performance gains for proteomic
objectives from the rational design and natural sources subsets relative to the controls.
Compounds in the natural sources subset were derived from massively parallel evolu-
tionary processes over eons of time. As a result, they exhibit evolutionary drift, resulting
in complex behaviors that are suboptimal from a therapeutic discovery perspective, i.e.,
unnecessary off-target interactions and/or individual interactions drifting away from
functional free energy minima [52]. In addition to verifying that our designs behave as
intended, our benchmarking also shows that the RCVAE design pipeline accomplishes this
replication of behavioral similarity through an abstraction of rational drug design. That
is, the similarities of redesigns to objectives from the rational design subset were greater
relative to those from the natural sources subset (Figure 2). Adopting an abstraction of
rational drug design is optimal for the impact of this platform on drug discovery because if
the model was merely replicating the molecular structure of design objectives and not pro-
teomic behavior specifically, the limitations of natural products (low synthetic accessibility,
poor ADMET [53]) would present themselves in the designs in addition to indicating that
the model may be over-trained. This discrepancy in the similarity of redesigned natural
products and rationally designed drugs, therefore, further supports the notion that the
RCVAE pipeline is able to intelligently design compounds with desirable bioactivities
across multiple targets.
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Figure 2. Performance of our deep learning drug design pipeline. To evaluate the performance of the RCVAE pipeline for
drug design, we compared redesigned compounds to three controls. The root-mean-squared deviations (RMSDs) between
redesigned and control interaction signatures for the rational design and natural sources subsets and the corresponding objective
signatures were used to evaluate the performance, as a proxy for behavioral similarity. In the top panels, the blue and green
box plots denote the distributions of RMSDs between predicted proteomic interaction signatures for 100 redesigns and the
ten corresponding objectives from the rational design (left) and the natural sources (right) subsets along the horizontal axis,
respectively. For each RMSD distribution box plot, the boxes indicate the first and third quartile ranges, the horizontal bar
indicates the median, and the whiskers indicate non-outlier ranges, with outliers plotted as dots. As a naive control, the red
box plots in both panels denote the distributions of the RMSDs between predicted proteomic interaction signatures for a set
of 100 randomly selected drug-like compounds taken from the ZINC database [54] and the corresponding objectives. Yellow
box plots denote the distributions of the CANDO-predicted top 100 most similar compounds by interaction signature and
their corresponding RMSDs; this is a more rigorous control, which checks to see if there exists any compound in the CANDO
library that could match or exceed the performance of the design pipeline. Purple box plots denote the RMSD distributions of
compounds approved for the same indication as the objective; this is a third control based on phenotype. Dots represent RMSD
values for outlier points for each distribution. Dashed lines show the average RMSDs of all compounds corresponding to a given
color. All redesign–control distribution pairs were significantly different as indicated by Kolmogorov–Smirnov (K-S) tests and
outperformed random controls. For 16/20 of the objective compounds, our redesigns were able to perform better than the top
100 and same indication controls (medians and distributions). The exceptions were four compounds from the natural sources
subsets (sirolimus, cucurbitacin Q1, digoxin, and myriocin), discussed further in Sections 2.2 and 2.4. The bottom panel displays
cumulative frequency graphs of percentage increases of similarities (“proximity”) to the objective for rational design and natural
sources subsets redesigns (see the Materials and Methods Section 3.3). Redesigns from the former subset were significantly more
accurate to the objective compound than the natural sources subset when compared to the naive control, with mean percentage
similarity increases of 33.4% and 32.9%, respectively (p-value ≤ 7.0 × 10−6). This indicates that not only does the design pipeline
generate compounds with the desired proteomic-scale behavior, but that it likely implements a learned abstraction of rational
drug design.
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2.3. Visualizing and Filtering Using t-SNE Plots

For all objectives, the redesigns greatly outperformed existing drugs approved for
the desired indication when compared to the objective signature. Despite this, some
Kolmogorov–Smirnov (K-S) tests indicated weaker statistical significance when differenti-
ating between the RCVAE design and the same indication distributions. To understand the
distributions of redesigned and control compounds and to provide an additional filtering
mechanism to evaluate the performance of our designs as illustrated in Figure 2, we visual-
ized the interaction signatures of all compounds (objectives, redesigns, and all controls)
evaluated in our benchmarking with t-SNE plots [55] (Figure 3).

Figure 3. t-SNE visualizations for the interaction signatures of objective compounds, redesigns, and various controls
with structural comparisons. t-SNE plots were generated for each of the twenty design objectives. The t-SNE algorithm
was run on the interaction signatures of the objectives (black stars) and 100 redesigns (blue and green circles), as well as the
100 random (red squares), top 100 (orange triangles), and same indication (purple hexagons) control compounds. (Color
coding is the same as in Figure 2.) Euclidean distances shown in t-SNE visualizations generally corroborate our findings
from Figure 2 when considering the RMSD due to the maintenance of proximal points and distributions. The exceptions
to this were for benzylpenicillin and paclitaxel, as Figure 2 shows greater proximity for designs than the top 100 control,
whereas t-SNE plots show better clustering for the top 100 set around the objective. The generally (14/20) greater proximity
of designed compound clusters to the objective point when compared to top 100, same indication, and random control
compounds corroborate the behavioral similarity of designed compounds to their objective in the predicted interaction
space, i.e., designed compounds are predicted to behave in the manner in which they were designed.

t-SNE plots generally corroborate the relative behavioral similarities between re-
designs and controls relative to their objectives. RCVAE pipeline designs tend to cluster
densely around the objective compound, as they are designed to do. The top 100 com-
pounds cluster around these designs, with a few structural analogs very close to their
objectives. Finally, the same indication and random compounds clustered the farthest
from the objective. As the same indication compounds represent a group of diverse drugs
approved for an indication that includes the objective, there is a general lack of clustering,
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and they are at greater distances from their objectives. Comparing the performance of the
designs relative to their objectives and controls using both Figures 2 and 3 indicates that
the t-SNE plots illustrated in the latter may be used to assess the confidence in and room
for improvement of the design pipeline performance for specific objectives.

2.4. Improving Cases with Sub-Optimal Performance

For eleven objectives, a handful of outliers in the top 100 or same indication controls
outperformed the design distributions (Figures 2 and 3). As noted above, structural analogs
create a bias when evaluating performance due to them having very similar behavioral
interaction signatures. We observed that the top 10 compounds (out of the top 100 controls,
covering almost all outliers) yielded an average Tanimoto coefficient of 0.51, in contrast
to an average of 0.39 for all designs, relative to their objectives. We further observed that
23/200 top 10 compounds, across all 20 objectives, had a Tanimoto coefficient ≥0.90 with
an average of 0.96, demonstrating the “me too” bias with the top 100 control. Unlike
the few top 100 outliers, the designs offer a larger and more diverse selection pool for
prospective validation.

Regardless, we further investigated the behavior of the RCVAE pipeline for one of
the objectives (cucurbitacin Q1) where an outlier was clearly better than the best designed
compound by expanding the number of designs generated by the RCVAE pipeline from 100
to 1000 compounds. We found that the RMSDs of the top 100 out of 1000 designs, far less
than the 13,194 compounds that were the source for the top 100 most similar compounds
control, ranged from 0.073 to 0.09. This placed the RMSD of the best designs well below the
lowest RMSD outlier of the top 100 control. Altogether, this indicates that the performance
of the RCVAE pipeline may be enhanced by increasing the number of designs generated
and selecting for behavioral similarity. Our design pipeline offers structurally diverse
lead compounds with the potential to match or exceed the behavioral similarity of the top
CANDO predictions from its known drug library for noisy objectives, such as compounds
from the natural sources subset.

2.5. Synthetic Feasibility of Designed Compounds

To viably demonstrate that our 2000 redesigns were synthetically feasible, we utilized a
high-throughput machine-learning-based approach to predict synthetic complexity scores,
called SCScore. SCScore utilizes a database of known synthetic reaction pathways for
training to make predictions of how easy or difficult it is to synthesize a novel compound.

As shown in Figure 4, predicted synthetic complexities for the RCVAE pipeline re-
designs are often comparable to their design objective, i.e., the objective compound’s scores
exist within the distribution of the scores for the redesigns. Low Tanimoto coefficients
(average 0.39) between designs and objective compounds indicate that the comparable
synthetic complexities of our redesigns are not due to a corresponding high structural
similarity. In other words, despite the high structural diversity of the generated designs,
the synthetic complexity for objective and designed compounds remains stable. This may
be explained by the maintenance of functionally relevant substructures of comparable
synthetic complexity that are present in any given objective and redesign that are combined
differently to produce similar behaviors and low structural similarity. We are studying this
phenomenon more thoroughly with larger datasets by investigating the redundancy of the
substructures of all approved drugs and redesigns for publication in a future study.
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Figure 4. Predicted synthetic complexity of designs compared to objective compounds. Synthetic complexity scores for
objective and RCVAE pipeline designed compounds as predicted by SCScore [56] serve as the basis for this comparison. Box
plots denote the distributions of predicted synthetic complexity scores for RCVAE redesigns of objective compounds (stars).
The scores of the objectives enable us to evaluate the synthetic feasibility of the redesigns relative to their corresponding
objective compounds. There is a greater occurrence of low-scoring natural sources objectives in predicted synthetic
complexity. This indicates that the SCScore software is biased by what is already well known or it may also highlight
a potential reason why RCVAE performs better for objectives from the rational design subset: it is somewhat plausible
that evolution optimizes for synthetic accessibility over binding free energies, hence the discrepancies in behavioral
similarities between the designs and their objectives for the two benchmarking (rational design and natural sources) subsets
(Figure 2). RCVAE designs are of similar synthetic complexity to their corresponding objective compounds as most objective
complexities lie within the box plot whiskers (not outliers), with some designs being more accessible than their objectives.

Additionally, predicted synthetic complexities are typically lower for objectives and
redesigns in the natural sources subset relative to the rational design one, indicating that the
SCScore software may be biased by what is already well known. As objectives in the natural
sources subset score similarly to their redesigns, it is somewhat plausible that evolutionary
optimization towards synthetic accessibility, at the expense of macromolecular interaction
free energies [52], may account for the diminished behavioral similarity of RCVAE designs
between objectives in the rational design and natural sources subsets correspondingly (see
Figure 2). A comprehensive analysis of this hypothesis with larger subsets is necessary to
validate or falsify this hypothesis.

It is useful to note that many RCVAE designs are more synthetically accessible than the
compound whose behaviors they replicate. As Figure 2 already indicates high behavioral
similarity between redesigns and their objectives, the RCVAE design pipeline may serve
the additional purpose of designing analogs to existing drugs that are more synthetically
feasible and therefore easier and less costly to produce. This is accomplished without
adding a synthetic complexity parameter to the condition vector for compound generation
(Figure 4).

Finally, we routinely used several other methods to evaluate RCVAE designs such as
the Quantitative Estimation of Drug-likeness (QED) [57], Synthetic Accessibility Score (SAS-
core) [58], and AiZynthFinder [59] to assess their chemical viability and drug-likeness. We
also compared our designs to benchmarks from GuacaMol [60]. These results corroborated
the outputs of our benchmarking and/or SCScore; future work will include a rigorous
evaluation of drug design technologies, much as we have done for repurposing [29].
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2.6. Applications to Aging and Non-Small Cell Lung Cancer

A fundamental tenet of CANDO is that evaluating all the possible interactions between
a human-ingested drug/compound and the macromolecules and systems it encounters
on a proteomic/interactomic scale is necessary to determine its safety and efficacy for
a given indication [18–29]. The RCVAE design pipeline represents a significant step for-
ward in early drug discovery as it allows for the virtually unlimited generation of novel
putative drug candidates to treat any indication/disease by combating it on a proteomic
scale. As a precursor to upcoming work, we generated designs for several objective com-
pounds/drugs associated with human or cell longevity (“aging”) [61–70] and approved
for Non-Small Cell Lung Cancer (NSCLC) [71–78]. We expect our pipeline to produce
redesigns that retain the proteome-scale behaviors of these objectives used to treat these
complex indications/diseases, while being structurally diverse.

Figure 5 illustrates the top redesigns for the thirteen objectives covering the two
indications ranked using two metrics based on the greatest similarity criterion: lowest
RMSD between corresponding interaction signatures and highest Tanimoto coefficient
between corresponding molecular fingerprints. Two classes of redesigns, all with the
greatest behavioral similarity to their objectives, emerged when performing the compar-
isons illustrated in Figure 5: designs that chemically/structurally resemble their objective
compound/indication (metformin, NAD+, resveratrol, curcumin, and RepSox for ag-
ing and gefitinib, erlotinib, afatinib, and dacomitinib for NSCLC, all with a Tanimoto
coefficient ≥0.39) and those that do not. The former class is intriguing as it implies the
existence of highly optimized structures for a given phenotype (indication), as shown
by the convergence of redesigns to known drugs. It also demonstrates that the RCVAE
design pipeline produces highly similar designs to known drugs to perform specific tasks,
only from their proteomic interaction behavior and without being exposed to any similar
structures in training. In other words, the proteomic-scale interaction information for a
compound is enough information for our design pipeline to reliably reconstruct a chem-
ically/structurally similar compound in some cases. The latter class demonstrates the
expanse and diversity of a chemical space not yet charted by medicinal chemists, capable
of replicating the interactions of known drugs. We are in the process of synthesizing the top
designs from these pipelines for these indications and validating them in corresponding
preclinical models via industry partners and collaborators.

2.7. Limitations and Future Work

To treat an indication in a comprehensive fashion, especially complex ones such as
aging or NSCLC, entirely novel drugs will likely need to be developed that go beyond
replicating the systemic effects of existing ones. This would require a thorough and
accurate description of the interaction networks responsible for disease etiology, as well as
compound behavior to ensure optimal efficacy and safety. The creation of these interaction
networks may be accomplished by multiscale modeling, literature/database analyses,
and/or high-throughput experimental studies, all of which may be incorporated within
CANDO. We are currently in the process of conditioning the RCVAE design pipelines and
comparing them to ones based on graph neural networks [79] using these more complex
interaction networks that go beyond the information present in the linear signatures.
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Figure 5. Analysis of the top designs generated for aging and Non-Small Cell Lung Cancer (NSCLC). The names,
chemical structures, and predicted Synthetic Complexity (SC) scores of the objective compounds for aging (left) and NSCLC
(right) are displayed in the top row of each panel (red border). The chemical structures of the most similar redesigns to each
objective based on their interaction signatures alongside three metrics for these redesigned compounds relative to their
objectives (RMSD of interaction signatures, Tanimoto coefficient, and predicted synthetic complexity) are displayed in the
row below (blue border). The chemical structures of the most similar redesigns using molecular fingerprints alongside the
same three metrics (RMSD, Tanimoto, and synthetic complexity) for these redesigns relative to their objectives are displayed
in the bottom row (green border). The designs generated using the RCVAE pipeline retain a fair amount of structural
diversity, as indicated by the fingerprint comparison scores (low Tanimoto coefficients) whilst maintaining high predicted
behavioral similarity in terms of interaction signatures (low RMSDs). Other methods for evaluating our designs such as QED
corroborated the above results [57]. These designs demonstrate the utility of our pipeline for designing novel compounds to
combat complex indications on a proteomic scale and may be pursued further via preclinical validation studies.

We are currently exploring other scoring protocols within the CANDO platform for
conditional generation to overcome the limitations of any specific interaction calculation
method. For example, the interaction scoring protocol used in this work has been shown
to have great utility in the context of evaluating proteomic behavioral similarity based on
benchmarking performance [18–29]. However, information on agonism/antagonism, and
downstream functional activity upon binding may be obtained via design pipelines that
utilize gene and protein expression data, which we are incorporating into CANDO. Public
gene expression data, available through the L1000 and Connectivity Map projects [80,81],
highlight important genes/proteins that are upregulated and downregulated following
exposure to a drug/compound. For example, if gene expression data suggest that certain
downstream genes are significantly upregulated in a given pathway following interac-
tion with a compound and that same compound is predicted to have strong interactions
with multiple proteins in that pathway, it can be inferred that those are likely to cause
activating/agonist behavior. The same can be inferred for downregulated genes and inhibi-
tion/antagonism. In addition, we are exploring the use of high-throughput robotic systems
such as DESI-MS to generate large-scale interaction and activity data [82–90]. CANDO
thus enables and illustrates the benefit of combining heterogeneous sources (gene, as well
as protein expression, protein pathway databases, high-throughput binding, and activity
data) to create novel types of interaction signatures/networks to produce design objectives
that tackle complex indications.

The CANDO platform enables the benchmarking of any arbitrary proteome/protein
library for its utility in drug discovery using a similar all-against-all process as described
in Section 3.3. The generation of highly accurate modeled protein structures such as those
predicted by Deepmind’s AlphaFold offer an attractive representation of the full human
proteome to perform such benchmarking, which we have completed and will publish
separately. This allows for conditional drug design using AlphaFold interaction signatures,
especially giving us greater coverage and control over particular proteins and pathways to
modulate with expert input for specific indications.
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The benchmarking and performance evaluation of our RCVAE drug design pipeline
were based on using known data as the ground truth or gold standard. While com-
putational experiments are an important first step and indicate promising, prospective
preclinical validation of the pipeline, its designs will require medicinal chemistry synthesis,
binding studies, and disease models assays at multiple scales, which we are currently
undertaking. Regardless, our combined work to date [18–29], including this study, indi-
cates that novel high-throughput methods for rapidly identifying relationships between
compounds, proteins, pathways, and cells are highly desirable for holistic drug discovery.
As CANDO is agnostic to the specific methods used for any of its protocols, should such
data become available, the RCVAE design pipeline described here would be well poised to
take advantage of them for maximum drug discovery efficiency.

3. Materials and Methods

Figure 1 illustrates our overall methodology to create a new drug design pipeline. We
employed the Computational Analysis of Novel Drug Opportunities (CANDO) platform
to generate proteomic interaction signatures for the compounds in the training set of
our learning-based model. The CANDO interaction signatures had their dimensionality
reduced in an autoencoder, which models the underlying correspondence between protein
structures as they function in the proteome. The reduced signatures were then used as labels
for each training molecule, which the generative Conditional Variational Autoencoder
(CVAE) model learns to reconstruct given a target interaction signature. We then used
CANDO to benchmark the performance of the designed compounds in the context of
their objectives and make predictions of novel designs for two indications for future
prospective validation.

3.1. Compound–Proteome Interaction Signature Generation Using the CANDO Platform

Multiple pipelines for multiscale therapeutic discovery, repurposing, and design have
been implemented in the CANDO platform [18–29]. Here, we utilized CANDO to simulate
the interactions between a given drug/compound and a library of protein structures to
generate the corresponding proteomic interaction signature.

The protein structure library used in this study is a set of 14,606 nonredundant struc-
tures derived from the Protein Data Bank (PDB) [91] corresponding to the human proteome
fold space (“nrPDB”)[92–97]. The compound–protein interaction scores in these signatures
are computed using the bioanalytic docking protocol BANDOCK, which compares query
compound structures to all ligands that are known or predicted to interact with a protein
binding site [22,27,29].

Potential binding sites on a protein are elucidated using the COACH algorithm, which
uses three different complementary algorithms and a consensus approach to consider the
sequence or substructure similarity to known PDB binding sites [98]. COACH has been
utilized extensively within the CANDO platform to accurately predict the binding behavior
of numerous compounds against numerous targets, as demonstrated by its benchmarking
performance in multiple studies (Section 3.3 and [18–29]). For each potential binding
site, the COACH output includes a set of co-crystallized ligands, which are compared to
a compound of interest using binary chemical fingerprinting methods that describe the
presence or absence of particular molecular substructures [99]. The maximum Tanimoto
coefficient between the binary fingerprints of the query compound and the set of all
predicted protein binding site ligands becomes the interaction score. The better the score,
the higher the likelihood of the interaction being correct due to the inferred homology.
Thus, if there are proteins with multiple binding sites and corresponding ligands, the
strongest interaction is used. If there are no matches, then the score returned is zero (i.e.,
no interaction). The final output is a vector of 14,606 scores comprising the interaction
signature between a given compound and the nrPDB library. Further detail on the pipelines
used to generate and benchmark the interaction signatures is given elsewhere in numerous
publications [18–29].
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3.2. Model Architecture and Data Generation

We selected a CVAE [45] architecture for generating novel molecular structures. Train-
ing data consisted of SMILES [100] strings labeled with predicted proteomic interaction
signatures based on the nrPDB library. The training set consisted of 300,000 compounds
selected at random from the ZINC database [54]. The 14,606 protein binding scores were
predicted for each compound. The dimensionality of the protein interaction signatures was
reduced to a 200-dimensional vector via a conventional autoencoder [101]. Following an
input layer with 14,606 neurons, the encoder consisted of 10 sequential, densely connected
layers with 10,000, 7750, 5500, 2250, 2000, 1250, 1000, 500, 250, and 200 neurons in each
layer, respectively. This was reversed in the decoder, and a final layer with 14,606 neu-
rons was used as the output to the network. The root-mean-squared deviation (RMSD)
between the input and reconstructed signatures was used as a loss metric. This model
was trained on 250,000 compounds until over-fitting was observed, which occurred after
15 epochs/iterations. Each epoch was validated on another 50,000 randomly selected
compounds. The model was then used to reduce the non-redundant signatures of the
training compounds. These became the labels for each SMILES string present in the CVAE
training data.

Before being input into the CVAE, SMILES strings were one-hot encoded [102,103],
resulting in a rank-2 tensor of size (sequence length × vocab length), where sequence
length is the maximum number of characters allowed per SMILES string and vocab length
is the unique number of characters represented in the input data. The reduced protein
signature, c, was appended to the end of the one-hot encoding repeated at each sequence
position (commonly referred to as time steps in the context of Long Short-Term Memory
(LSTM) cells [102,104,105]). Similar to [45], the tensor was fed sequentially through three
LSTM cells [104,105] to encode the original input. The encoder outputs to two parallel
layers, one representing the mean and one for the standard deviation of the latent vector.
The latent vector, z, consists of 200 dimensions and is sampled from the encoder output.
The latent vector is then repeated for the total number of time steps, and the protein
signature, c, is re-appended onto the resulting tensor in the prior fashion. This is input into
the decoder, which also consists of three LSTM cells. Finally, this is output to a matrix of
probabilities for each character in a SMILES string. Taking the maximum probability token
for each character slot, one-hot encoded SMILES strings denoting reconstructions of input
compounds are generated.

The loss metric used to train the CVAE is as follows:

E[log(P(X|z, c))]− DKL[Q(z|X, c)||P(X|z, c)] (1)

where E denotes the reconstruction error and DKL denotes the relative entropy or the
Kullback–Leibler divergence [106]. P(X|z, c) denotes the probability density function
approximated by the decoder for each character in a SMILES string given the latent and
conditional vectors. Q(z|X, c) denotes the probability density function approximated by
the encoder given the input SMILES strings and condition vector. The CVAE was trained
on 300,000 compounds until convergence. The Reduced CVAE (RCVAE) model pipeline is
depicted visually in Figure 1.

3.3. Benchmarking and Analysis of the RCVAE Design Pipeline Performance

The fundamental supposition and result of benchmarking the CANDO platform is
that compounds with similar interaction signatures will behave similarly. On a proteomic
scale, these behaviors take the form of efficacy and ADMET for a given indication. The
CANDO platform was benchmarked using known drug-indication associations [18–29]
derived from the Comparative Toxicogenomics Database [107] and, more recently, drug-
adverse events obtained from OFFSIDES [108,109] and SIDER [109]. We recently published
the best metrics to use for benchmarking drug repurposing platforms [29]. The results
of benchmarking and prospectively validating CANDO indicate that the proteomic-scale
interaction modeling of drugs elucidates their behaviors, and these behaviors correspond
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to treatments for indications for which these drugs are approved [18,21,26,29,47–50]. The
benchmarking of the platform using known associations in this comprehensive all-against-
all manner enables us to assess the correctness and utility of other parameters, such as the
protein library composition, solved vs. modeled structures, different molecular docking
and machine-learning algorithms, etc.

We performed several benchmarks of the RCVAE to verify its utility and robustness
beyond that of its performance based on metrics used in training. Our benchmark set
consisted of twenty approved or experimental objective drugs, comprised of subsets
of ten derived from rational design and natural sources, respectively (Figure 2). These
compounds and all related ones with a Tanimoto [110] coefficient ≥0.9 were omitted from
training. Proteomic interaction signatures were computed by CANDO, and output SMILES
strings were generated by the RCVAE design pipeline as described above. This resulted in
SMILES strings corresponding to 100 novel redesigns for each objective drug. One-hundred
compounds were selected at random from the curated ZINC database to serve as a naive
control. As a second, more rigorous control, the CANDO platform was used to generate
the 100 most similar compounds (“top 100”) from its 13,194-sized library to each objective
drug according to their proteomic interaction signatures. As a third control, the CANDO
platform’s indication prediction pipeline was used to predict a set of compounds for the
indication associated with each objective, i.e., the indication that the objective is approved
for (“same indication”) [27,107]. Proteomic interaction signatures were generated for all
compounds (designs and controls), which were then compared to that of the objective using
the RMSDs between them. The RMSD distributions are illustrated using box plots with
boxes depicting the first and third quartile ranges, horizontal bars depicting the median,
whiskers representing non-outlier ranges, and outliers explicitly plotted (Figure 2, Results
Section 2.1).

Kolmogorov–Smirnov (K-S) tests [111,112] were used to demonstrate statistical sig-
nificance [113] between samples for each redesign–control RMSD distribution pair for
each objective. We also compared the performance of the RCVAE design pipeline between
objectives from the rational design and natural sources subsets, respectively. To do this, we
computed the average RMSD between each naive control and the corresponding objective
and compared this to the RMSD of each redesign for an objective. This yielded a percent
increase of similarities to the objective for each redesign given by:

P =
< RMSDcontrol > −RMSDredesign

< RMSDcontrol >
(2)

where P denotes the percent increase (“proximity”), < RMSDcontrol > denotes the average
RMSD between the naive control and corresponding objective, and RMSDredesign denotes
the RMSD of the redesign when compared to the objective proteomic interaction signature.
This yielded 1000 total values of percent proximity increases for both the rational design
and natural sources subsets. The values for both subsets were then averaged and compared
using K-S tests (Figure 2, Results Section 2.1).

To better visualize the distributions of our redesigns and controls, t-distributed Stochas-
tic Network Embedding (t-SNE) plots [55] that show the clustering of similar interaction
signatures in two dimensions were generated with the interaction signatures of all objective,
redesign, top 100, and same indication compounds (Figure 3, results Section 2.3).

We also computed Tanimoto coefficients for all redesigns relative to their respective
objective compounds to determine structural diversity. Finally, we utilized SCScore [56], a
machine-learning platform to predict the synthetic complexity of our redesigns in relation
to the corresponding objectives (Figure 4, Results Section 2.5).

3.4. Generating Novel Designs for Prospective Validation

Design objectives for benchmarking were selected from a diverse set of indications
and approved/experimental statuses to ensure broad coverage of the proteomic interaction
signature space and to mitigate potential bias in the results. Regardless, the benchmark
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set was repeatedly used to parameterize the pipeline described here, which has the po-
tential to lead to overtraining. To address this and also to apply our design pipelines
to relevant real-world problems of sufficient complexity where the proteomic approach
would be relevant, we selected 13 (7 + 6) objective compounds that have shown promise
for aging/developmental intervention [114–118] and NSCLC [118–120] to redesign for
prospective validation (Figure 5, Results Section 2.6).

4. Conclusions

We utilized the RCVAE pipeline within the CANDO platform to take advantage of
multiscale compound–proteome interaction modeling and develop an attractive approach
to holistic drug design. We compared the predicted behaviors of the designed compounds
to those of known drugs/compounds and demonstrated that the RCVAE pipeline is capa-
ble of generating novel compounds with the desired specificity of binding on a proteomic
scale. We additionally demonstrated that compounds designed by our pipeline maintained
reasonable predicted synthetic complexities and were structurally diverse. We expect
the compounds designed using our pipeline for aging/developmental intervention and
NSCLC will serve as novel leads for safe and effective therapeutics following prospective
validation. The RCVAE design pipeline generates novel compounds that are synthetically
feasible and behaviorally desirable, simultaneously taking efficacy and ADMET into ac-
count by examining interactions on a proteomic scale, which is necessary to understand
the science of small molecule behavior and apply it to holistic therapeutic discovery.
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Abstract: Due to their potential in the treatment of neurodegenerative diseases, caspase-6 inhibitors
have attracted widespread attention. However, the existing caspase-6 inhibitors showed more or
less inevitable deficiencies that restrict their clinical development and applications. Therefore, there
is an urgent need to develop novel caspase-6 candidate inhibitors. Herein, a gated recurrent unit
(GRU)-based recurrent neural network (RNN) combined with transfer learning was used to build
a molecular generative model of caspase-6 inhibitors. The results showed that the GRU-based
RNN model can accurately learn the SMILES grammars of about 2.4 million chemical molecules
including ionic and isomeric compounds and can generate potential caspase-6 inhibitors after transfer
learning of the known 433 caspase-6 inhibitors. Based on the novel molecules derived from the
molecular generative model, an optimal logistic regression model and Surflex-dock were employed
for predicting and ranking the inhibitory activities. According to the prediction results, three potential
caspase-6 inhibitors with different scaffolds were selected as the promising candidates for further
research. In general, this paper provides an efficient combinational strategy for de novo molecular
design of caspase-6 inhibitors.

Keywords: gated recurrent unit; recurrent neural network; machine learning; transfer learning;
caspase-6; inhibitor; molecular design

1. Introduction

Caspase is a family of cysteinyl aspartate-specific proteases, which plays a critical role
in the cell regulatory networks controlling inflammation and programmed cell death [1].
Up to now, 11 functional caspase subtypes (i.e., caspase 1–10, 14) have been found in human
encode proteins, of which caspase-1, -4 and -5 are related to inflammatory response, caspase-
14 to keratinocyte differentiation and others to apoptosis. The apoptotic caspases are
further divided into two subcategories, namely apoptotic initiator and executioner caspases
according to their functions in apoptosis processes. The initiator caspases (caspases-2, -8,
-9, and -10) can be recruited and activated by either death receptors or apoptosomes, while
the downstream executioner caspases (caspases-3, -6, and -7) are responsible for the actual
cell destruction [2–4].

Accumulated evidence has suggested that the activation of caspase-6 is responsible
for neuronal apoptosis and amyloid β peptide (Aβ) deposition, which is highly involved in
age-dependent axon degeneration and neurodegenerative diseases, such as Huntington’s
disease and Alzheimer’s disease [5–7]. Due to the potencies in the treatment of neurode-
generative diseases, caspase-6 inhibitors have attracted intensive attention. Recently, a
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series of aza-peptides [8], acyl dipeptides [9,10], and non-peptide benzenesulfonyl chloride,
isatin sulfonamide [11–15], tetrafluorophenoxy methyl ketone [16], phenothiazin-5-ium
derivatives [17], heteroaryl propanamido hexanoic acid [18], vinyl sulfone [19], furoyl-
phenylalanine derivatives [20] have been identified as caspase-6 inhibitors with nanomolar
to micromolar potencies (Figure 1). However, the existing caspase-6 inhibitors showed
more or less inevitable deficiencies that restrict their clinical development and applications.
Therefore, there is an urgent need to develop novel caspase-6 candidate inhibitors [21].

Figure 1. Representative structures of caspase-6 inhibitors.

Over the last decade, deep learning (DL) technologies, such as convolutional networks
(CNN), restricted Boltzmann machines (RBM), recurrent neural networks (RNN), and
generative adversarial networks (GAN) have been gradually applied in drug design and
proven to be promising approaches for artificial intelligence-based drug design [22–24].
Recently, RNN-based molecular generative network has attracted particular attentions
duo to its unique features in de novo molecular design [25–27]. By using variational auto-
encoder (VAE), Gómez-Bombarelli et al. [28] proposed an RNN-based molecular generator
which was further applied in a set of drug-like molecules and exhibited excellent predictive
power when training jointly with a property prediction task. Winter et al. [29] designed
neural network-based translation model and used it to translate chemical structures (e.g.,
SMILES) into continuous and fixed-sized low-level encodings. Additionally, the models
can be used to predict several basic molecular properties for query structures without the
need for re-training or including labels.

Olivecrona et al. [30] applied an RNN-based deep learning method combined with
policy-based reinforcement learning to generate new molecules with potential activities
against dopamine receptor type 2. The results showed that more than 95% of the generated
compounds were predicted to be active. Jaques et al. [31] applied RNN and off-policy
reinforcement learning methods to generate new molecular structures with desirable
properties, such as cLogP and drug-likeness. Although a variety of generative models have
been developed for de novo molecular generation, the structural diversity or search space,
computational efficiency, and synthetic accessibility, conditional molecule generation, etc.
need to be further investigated [32,33].

In this paper, a gated recurrent unit (GRU)-based RNN network combined with
transfer learning and traditional machine learning were employed for de novo molecular
design of caspase-6 inhibitors. The results showed that the established generative RNN
model can generate efficiently potent caspase-6 inhibitors with the similar chemical space
distribution to the known caspase-6 inhibitors, which can be easily incorporated with the
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traditional molecular design methods. In addition, the Surflex-dock method was employed
for molecular activities prediction and ranking generated potential inhibitors. Collectively,
this paper provides an efficient combinational strategy for de novo molecular design of
caspase-6 inhibitors.

2. Methods
2.1. Datasets

Figure 2 shows the framework of the de novo design strategy of caspase-6 inhibitors,
which mainly consists of 3 parts: (1) the generative RNN network; (2) the ML-based
prediction model; (3) molecular docking-based ligand screening.

Figure 2. The flowchart of de novo molecular design of the caspase-6 inhibitors.

In this paper, about 2.4 million chemical molecules including ionic and isomeric
compounds were first retrieved from PubChem database [34]. Then, all of the known
caspase-6 inhibitors were removed from the dataset. In order to decrease the degree of
data heterogeneity, only the molecules with a number of heavy atoms between 10 and
100 and the length of canonical SMILES string less than 140 were selected. As a result,
a total of 2,393,029 molecules (SMILES strings) were retained for training the generative
RNN network.

To construct a prediction model of caspase-6 inhibitors, 1656 samples consisting of
577 caspase-6 inhibitors and 1079 non-inhibitors were derived from the recent literature
(Tables S1 and S2, Supplementary Materials) [9–15,35–45]. The activities of the collected
caspase-6 inhibitors were mainly detected by enzyme inhibition assays and fluorescent
plate reader assay.

2.2. Machine Learning Based Classification Models of Caspase-6 Inhibitors

Firstly, the 577 caspase-6 inhibitors and 1079 non-inhibitors were divided into a
training/validation set (433 positives/579 negatives) and an independent test set (144 pos-
itives/500 negatives) according to Table S1. Then, the positive and negative samples in
the training/validation set were further randomly divided into the training and validation
sets at a ratio of 6:4, respectively. The statistic information of the datasets refers to Table S2.
Lastly, a total of 200 fragmental and topological descriptors (Table S3, Supplementary
Materials) generated by RDKit toolkit [46] were used for the structural description of
the 1656 samples. Herein, five machine learning methods, i.e., support vector machine
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(SVM), k-nearest neighbor (KNN), Gaussian Naïve Bayesian (GNB), random forest (RF)
and logistic regression (LR), were used to construct binary classification models by the
Scikit-Learn toolkit [47]. The ROC (receiver operating characteristic), AUC (area under the
curve), Matthews correlation coefficient (MCC), accuracy (Acc), specificity (Spe), sensitivity
(Sen) and random accuracy (Random Acc) were used for model evaluations [48–50].

2.3. Generative RNN Modeling and Transfer Learning

The architecture of the generative RNN model is composed of one input layer, one
auto-embedding layer with 128 dimensions, three GRU layers with 512 neurons in each
layer, and one output layer with softmax activation function (Figure 3). The input layer
is responsible for receiving the sequential tokens of the SMILES string of a given sample
and the output layer for calculating the occurrence probability of the token at the next
position. In this paper, the RNN network was trained by an Adam optimizer [51], of
which the initial learning rate is set to 0.001 with a decay rate of 0.05 every 300 steps. The
batch size was set to 128 and the loss function was defined as negative log likelihood
function. After pretrained by the 2,393,029 SMILES strings from PubChem database, the
RNN network was further fine-tuned by using the 433 caspase-6 inhibitors in the training
and validation datasets.

Figure 3. The architecture of the GRU-based recurrent neural network.

2.4. Molecular Docking

Surflex-dock (Sybyl 8.1, Tripos Inc., MO, USA) [52] has been proved be an efficient
receptor-based drug design and virtual screening strategy, which employs a protomol to
guide the generation process of putative ligand binding poses. Herein, a crystal structure
of caspase-6 (PDB ID: 3OD5) was used for generating the protomol based on the residues
within the 8 Å distance to the co-crystallized ligand Ac-VEID-CHO, a peptidomimetic in-
hibitor of caspase-6. Before docking, the structures of the ligands were charged by MMFF94
method [53] and then optimized by a Tripos force field [54] with a conjugate gradient
minimizer. The maximum iteration steps and energy gradient were set to 10,000 times
and 0.05 kcal/mol·Å. To promote the precision of the docking procedure, 3 additional
starting conformations per ligand, self-scoring, ring flexibility, soft grid, pre- and post-dock
minimizations were also considered in this paper.

3. Results and Discussion
3.1. Performances of ML Predictors

Herein, ML modeling was performed and repeated 10 times based on the randomly
divided training (60%) and validation (40%) sets (Figure 4). It can be observed that most of
the ML models showed satisfactory prediction performances on the training and validation
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datasets. In consideration of the accuracy and balanced performances on the validation set,
the LR model was chosen as the optimal predictor, of which the means of AUC, MCC, Acc,
Spe and Sen are 0.90 ± 0.008, 0.80 ± 0.015, 0.90 ± 0.008, 0.92 ± 0.007, 0.88 ± 0.014 for the
training set, and 0.75 ± 0.012, 0.50 ± 0.025, 0.75 ± 0.013, 0.77 ± 0.023, 0.73 ± 0.025 for the
validation set, respectively (Tables S4 and S5, Supplementary Materials). It should be noted
that the differences in the prediction performances between the training and validation set
may be caused by over-fitting in some degree due to the small training dataset.

Figure 4. The performances of the 5 ML models on the training (a) and validation dataset (b). (SVM model: a radial basis
function (RBF) kernel was used, of which the C and γ were set as 1 and ‘auto’, respectively; LR model: the inverse of
regularization strength, tolerance for stopping criteria, maximum number of iterations, and penalty were set as 0.5, 0.001,
200, and “L1”, respectively. Herein, default parameters were used for the ML models if not specified.)

Then, five-fold cross-validation and an independent external test by using 644 samples
were also performed. The results showed that the optimal LR model achieved excellent
prediction performances, of which the Acc for the five-fold cross-validation and the inde-
pendent test are 0.78 ± 0.047 and 0.86, respectively (Table S6 and Table 1). Therefore, it can
be concluded that the resulting LR model is a good predictor of the caspase-6 inhibitors.

Table 1. The performance of the optimal LR model on the 644 test samples.

Confusion Matrix Performance

CP CN Acc Spe Sen MCC Random Acc

Independent
test set

PCP 102 49
0.86 0.90 0.71 0.60 0.647PCN 42 451

CP: condition positive; CN: condition negative; PCP: predicted condition positive; PCN: predicted condition
negative. For more details, please refer to Table S7 (Supplementary Materials).

3.2. The Generative RNN Modeling

Herein, 2,393,029 SMILES strings derived from Pubchem database were used for
pre-training of the RNN models. Firstly, the effect of the number of GRU layers on
the performance of the generative RNN model was investigated based on the network
architecture shown in Figure 3. It can be seen that, after 14,000 steps of iterations, the
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loss values of the RNN models with one, two and three GRU layers reach the state of
convergence (Figure 5a). At the mean time, the valid percentages of 128 SMILES strings
sampled by the 3 RNN models reached 0.85, 0.90 and 0.95, respectively. Moreover, no
significant improvement in the valid percentage was observed for the RNN models with
more than three GRU layers. Thus, the RNN model with three GRU layers was chosen for
the following transfer learning.

Figure 5. Performances of the pre-trained RNN models with different GRU layers (a) and the fine-tuned RNN model by
transferred learning of 433 caspase-6 inhibitors (b).

In this paper, the 433 caspase-6 inhibitors in the training and validation sets (Table S2)
were used for the transfer learning of the pre-trained RNN model. From Figure 5b, it
can be observed that, after 200 steps of fine-tuning, the loss value tends to converge and
the valid percentage of the sampled SMILES strings reached 99%. In order to evaluate
the performance of the refined RNN model in generating potential caspase-6 inhibitors, a
retrospective study was performed by using the 144 caspase-6 inhibitors in the test dataset
(Table S2), which the RNN model had never seen before. At first, a total of 50,000 valid
SMILES strings were randomly sampled by the fine-tuned RNN model. After structural
description using the RDKit toolkit, the 50,000 molecules were then predicted by the LR
predictor. Based on the predicted positive samples, the recall value of the 144 caspase-6
inhibitors was finally calculated. As shown in Table 2, it can be seen that the percentage of
the predicted positive samples remains at a relatively high level during the whole sampling
process. Additionally, it can be noticed that the recall value of the 144 caspase-6 inhibitors
increases gradually from the lowest value of 2.08% to the highest value of 13.19% (Table 2).
Accordingly, it can be concluded that the RNN model can generate efficiently the potential
caspase-6 inhibitors after transfer learning. It should be noted that the relatively low recall
value is mainly caused by the small sample size of the test caspase-6 inhibitors.

440



Pharmaceuticals 2021, 14, 1249

Table 2. The recall value of the 144 caspase-6 inhibitors.

Sampling Process I II III IV V VI VII VIII IX X

No. of SMILES strings 1000 2000 3000 4000 5000 10,000 20,000 30,000 40,000 50,000
The predicted positive

samples (%) 76.0 72.7 71.4 70.7 70.6 69.3 67.1 66.2 65.5 65.0

Recall (%) 2.08 2.08 3.47 5.55 6.94 8.33 10.41 11.80 13.19 13.19

3.3. The Distribution in Chemical Space of the Potential Caspase-6 Inhibitors

According to Table 2, a total of 6927 strings (69.3%) were predicted as positive samples
from the 10,000 SMILES strings generated. Herein, based on the properties of the H-
Bond acceptor/donor, rotatable bonds, aromatic/aliphatic cycles, heterocycle atoms and
molecular weight, the distribution of the potential 6927 caspase-6 inhibitors was explored
by using the t-distributed stochastic neighbor embedding (t-SNE) method.

As shown in Figure 6, it can be seen that the distribution of the generated potential
6927 caspase-6 inhibitors in the chemical space is highly overlapped with that of the known
577 caspase-6 inhibitors. Herein, three small clusters of the samples were selected randomly
to explore the structural features in detail. For each cluster, it can be observed that the
generated molecules have similar molecular scaffolds with the known caspase-6 inhibitors
(Figure 6). Thus, it can be inferred that the generated 6927 potential inhibitors have the
similar chemical space as the known 577 caspase-6 inhibitors. The structural modification
mainly involves substituent modification, scaffold hopping, and chiral transformation, etc.,
which are also the major means in traditional drug design.

Figure 6. The distribution in the chemical space of the 6927 generated molecules (grey) and 577 known caspase-6 inhibitors
(green: training samples; yellow: test samples).

3.4. Molecular Docking-Based Ligand Screening

Before docking-based screening of the caspase-6 inhibitors, the protocol of Surflex-
dock was first validated by re-docking a co-crystallized ligand Ac-VEID-CHO into the
binding pocket of caspase-6 (PDB: 3OD5). The results showed that the Surflex-dock can
reproduce the native ligand binding conformation with a docking score of 7.67 (Figure S1,
Supplementary Materials).

Based on the docking results of the 577 known caspase-6 inhibitors and the potential
6927 positive samples, the occurrence frequencies of the residues involved in the inter-
molecular interactions with the 577 caspase-6 inhibitors and 6927 potential inhibitors were
investigated, respectively. From Figure 7a, it can be clearly seen that the distributions in
the occurrence frequencies of the binding residues are quite similar between the two cases,
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especially for the binding residues with occurrence frequencies larger than 50%. Therefore,
it can be deduced that the potential 6927 inhibitors have similar binding modes with the
known 577 caspase-6 inhibitors.

Figure 7. The binding modes of the 577 known caspase-6 inhibitors and 6927 potential inhibitors. (a) The occurrence
frequencies of the binding residues involved in the intermolecular interactions with the binding ligands (the distance cutoff
was set to 5 Å). The residues with the occurrence frequencies larger than 50% are marked, and the catalytic dyad residues
His121 and Cys163 are colored in red. (b) Schematic diagrams of protein–ligand interactions of three representative samples.
H-bonds are represented as green dashed lines. The carbon, nitrogen, oxygen, sulfur atoms are colored in black, blue, red
and yellow, respectively.

Furthermore, the Surflex-dock method was employed for predicting and ranking the
generated potential inhibitors. Herein, take example for three representative positive sam-
ples (ID: 96, 2470 and 3262) with different scaffolds to explore the feasibility of molecular
docking-based ligand screening. The docking scores of the 3 positive samples are higher
than 9.0 (-logKD), which indicate potential inhibitory activities at nanomolar level. As
shown in Figure 7b, both of the sample 96 and 2470 can form strong H-bond interactions
with Arg220, while sample 3262 form 3 H-bonds with Arg64, His121 and Gln161. For
sample 2470 and 3262, strong π–cation interactions with Arg220 can be also observed.
Recent research has proved that Arg64, Gln161, and Arg220 are closely related with the
substrate-specificity of caspase-6, and that His121 is a key catalytic residue for substrate
hydrolysis [1]. Furthermore, all the three samples can form strong hydrophobic interac-
tions with the hotspot residues Tyr217, Val261, Cys264 and Ala269. Collectively, the three
potential caspase-6 inhibitors with nanomolar-level activities are promising candidates for
further research.
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4. Conclusions

In this paper, a GRU-based RNN network combined with transfer learning, ligand-
based and receptor-based molecular screening strategies was employed for de novo molecu-
lar design of caspase-6 inhibitors. The results showed that the established GRU-based RNN
model can accurately learn the SMILES grammars of 2.4 million chemical molecules includ-
ing ionic and isomeric compounds and is capable of generating novel potential caspase-6
inhibitors with similar chemical space after transfer learning of the known 433 caspase-
6 inhibitors. Based on the molecules generated by the RNN models, five ligand-based
ML together with the receptor-based docking methods were employed for screening the
potential caspase-6 inhibitors. The results showed that the obtained potential caspase-6
inhibitors are mainly generated by substituent modification, scaffold hopping, and chiral
transformation, etc. operations from the known inhibitors on the level of SMILES stings.
Three potential caspase-6 inhibitors with different scaffolds were finally selected as the
most promising candidates for the further research. In general, the framework presented
in this paper provides an efficient combinational strategy for de novo molecular design
of caspase-6 inhibitors. However, the efficiency and application domain of the proposed
molecular design pipeline still need to be tested by in vitro experiments.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/ph14121249/s1. Table S1: The statistic information of the known caspase-6 inhibitors dataset,
Table S2: The information of 1656 samples, Table S3: Definitions of 200 RDKit descriptors, Table S4:
The representative confusion matrices of five machine learning models on the training set, Table S5:
The representative confusion matrices of five machine learning models on the validation set, Table S6:
The 5-fold cross-validation results of the ML models, Table S7: The representative confusion matrices
of five machine learning models on test set, Figure S1: The result of molecular docking.

Author Contributions: Conceptualization, S.H., H.M. and X.P.; data curation, S.H. and Z.K.; funding
acquisition, X.P.; investigation, L.L.; methodology, M.Q. and L.X.; project administration, X.P.;
resources, Y.H.; validation, X.L.; writing—original draft, S.H. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors acknowledge the support of Key Projects of Technological Innovation and
Application Development of Chongqing (Project No. csts2019jscx-gksbX0099), Collaborative Fund of
Science and Technology Agency of Luzhou Government and Southwest Medical University (Project
No. 2019LZXNYDZ05), Graduate Scientific Research and Innovation Foundation of Chongqing
(Project No. CYB19042). Shuheng Huang acknowledges the financial support from the China
Scholarship Council.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Code, data, and pre-trained models are available from our GitHub:
https://github.com/ShuhengH/De-Novo-Caspase-6-Inhibitors-Design-by-GRU-Based-RNN-Combined-
with-Transfer-Learning-Approach (accessed date: 30 November 2020). Data is contained within the
article or Supplementary Material.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clark, A.C. Caspase Allostery and Conformational Selection. Chem. Rev. 2016, 116, 6666–6706. [CrossRef] [PubMed]
2. Slee, E.A.; Adrain, C.; Martin, S.J. Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition

phase of apoptosis. J. Biol. Chem. 2001, 276, 7320–7326. [CrossRef]
3. McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656.

[CrossRef]
4. Denecker, G.; Ovaere, P.; Vandenabeele, P.; Declercq, W. Caspase-14 reveals its secrets. J. Cell Biol. 2008, 180, 451–458. [CrossRef]

[PubMed]
5. Wang, X.J.; Cao, Q.; Zhang, Y.; Su, X.D. Activation and Regulation of Caspase-6 and Its Role in Neurodegenerative Diseases.

Annu. Rev. Pharmacol. Toxicol. 2015, 55, 553–572. [CrossRef]

443



Pharmaceuticals 2021, 14, 1249

6. LeBlanc, A.; Liu, H.; Goodyer, C.; Bergeron, C.; Hammond, J. Caspase-6 role in apoptosis of human neurons, amyloidogenesis,
and Alzheimer’s disease. J. Biol. Chem. 1999, 274, 23426–23436. [CrossRef]

7. Klaiman, G.; Petzke, T.L.; Hammond, J.; LeBlanc, A.C. Targets of Caspase-6 activity in human neurons and Alzheimer disease.
Mol. Cell. Proteom. 2008, 7, 1541–1555. [CrossRef]

8. Sexton, K.B.; Kato, D.; Berger, A.B.; Fonovic, M.; Verhelst, S.H.L.; Bogyo, M. Specificity of aza-peptide electrophile activity-based
probes of caspases. Cell Death Differ. 2007, 14, 727–732. [CrossRef]

9. Linton, S.D.; Karanewsky, D.S.; Ternansky, R.J.; Wu, J.C.; Pham, B.; Kodandapani, L.; Smidt, R.; Diaz, J.-L.; Fritz, L.C.; Tomaselli,
K.J. Acyl Dipeptides as reversible caspase inhibitors. Part 1: Initial lead optimization. Bioorg. Med. Chem. Lett. 2002, 12, 2969–2971.
[CrossRef]

10. Linton, S.D.; Karanewsky, D.S.; Ternansky, R.J.; Chen, N.; Guo, M.; Jahangiri, K.G.; Kalish, V.J.; Meduna, S.P.; Robinson, E.D.;
Ullman, B.R.; et al. Acyl Dipeptides as reversible caspase inhibitors. Part 2: Further optimization. Bioorg. Med. Chem. Lett. 2002,
12, 2973–2975. [CrossRef]

11. Chu, W.H.; Rothfuss, J.; d’Avignon, A.; Zeng, C.B.; Zhou, D.; Hotchkiss, R.S.; Mach, R.H. Isatin sulfonamide analogs containing a
michael addition acceptor: A new class of caspase 3/7 inhibitors. J. Med. Chem. 2007, 50, 3751–3755. [CrossRef]

12. Chu, W.H.; Rothfuss, J.; Chu, Y.X.; Zhou, D.; Mach, R.H. Synthesis and in Vitro Evaluation of Sulfonamide Isatin Michael
Acceptors as Small Molecule Inhibitors of Caspase-6. J. Med. Chem. 2009, 52, 2188–2191. [CrossRef]

13. Chu, W.H.; Rothfuss, J.; Zhou, D.; Mach, R.H. Synthesis and evaluation of isatin analogs as caspase-3 inhibitors: Introduction of a
hydrophilic group increases potency in a whole cell assay. Bioorg. Med. Chem. Lett. 2011, 21, 2192–2197. [CrossRef]

14. Limpachayaporn, P.; Schafers, M.; Schober, O.; Kopka, K.; Haufe, G. Synthesis of new fluorinated, 2-substituted 5-
pyrrolidinylsulfonyl isatin derivatives as caspase-3 and caspase-7 inhibitors: Nonradioactive counterparts of putative
PET-compatible apoptosis imaging agents. Bioorg. Med. Chem. 2013, 21, 2025–2036. [CrossRef]

15. Limpachayaporn, P.; Wagner, S.; Kopka, K.; Schober, O.; Schafers, M.; Haufe, G. Synthesis of 7-Halogenated Isatin Sulfon-
amides: Nonradioactive Counterparts of Caspase-3/-7 Inhibitor-Based Potential Radiopharmaceuticals for Molecular Imaging of
Apoptosis. J. Med. Chem. 2014, 57, 9383–9395. [CrossRef] [PubMed]

16. Leyva, M.J.; Degiacomo, F.; Kaltenbach, L.S.; Holcomb, J.; Zhang, N.; Gafni, J.; Park, H.; Lo, D.C.; Salvesen, G.S.; Ellerby, L.M.;
et al. Identification and evaluation of small molecule pan-caspase inhibitors in Huntington’s disease models. Chem. Biol. 2010, 17,
1189–1200. [CrossRef] [PubMed]

17. Pakavathkumar, P.; Sharma, G.; Kaushal, V.; Foveau, B.; LeBlanc, A.C. Methylene Blue Inhibits Caspases by Oxidation of the
Catalytic Cysteine. Sci. Rep. 2015, 5, 13730. [CrossRef] [PubMed]

18. Lee, H.; Shin, E.A.; Lee, J.H.; Ahn, D.; Kim, C.G.; Kim, J.H.; Kim, S.H. Caspase inhibitors: A review of recently patented
compounds (2013–2015). Expert Opin. Ther. Pat. 2018, 28, 47–59. [CrossRef] [PubMed]

19. Pakavathkumar, P.; Noel, A.; Lecrux, C.; Tubeleviciute-Aydin, A.; Hamel, E.; Ahlfors, J.E.; LeBlanc, A.C. Caspase vinyl sulfone
small molecule inhibitors prevent axonal degeneration in human neurons and reverse cognitive impairment in Caspase-6-
overexpressing mice. Mol. Neurodegener. 2017, 12, 22. [CrossRef] [PubMed]

20. Heise, C.E.; Murray, J.; Augustyn, K.E.; Bravo, B.; Chugha, P.; Cohen, F.; Giannetti, A.M.; Gibbons, P.; Hannoush, R.N.; Hearn,
B.R.; et al. Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6. PLoS ONE 2012, 7, e50864.
[CrossRef]

21. MacKenzie, S.H.; Schipper, J.L.; Clark, A.C. The potential for caspases in drug discovery. Curr. Opin. Drug Discov. Dev. 2010, 13,
568–576.

22. Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X.Q. Deep Learning for Drug Design: An Artificial Intelligence Paradigm for Drug
Discovery in the Big Data Era. AAPS J. 2018, 20, 58. [CrossRef] [PubMed]

23. Gawehn, E.; Hiss, J.A.; Schneider, G. Deep Learning in Drug Discovery. Mol. Inform. 2016, 35, 3–14. [CrossRef] [PubMed]
24. Sellwood, M.A.; Ahmed, M.; Segler, M.H.S.; Brown, N. Artificial intelligence in drug discovery. Future Med. Chem. 2018, 10,

2025–2028. [CrossRef]
25. Xue, D.Y.; Gong, Y.K.; Yang, Z.Y.; Chuai, G.H.; Qu, S.; Shen, A.Z.; Yu, J.; Liu, Q. Advances and challenges in deep generative

models for de novo molecule generation. Wiley Interdiscip. Res. Comput. Mol. Sci. 2019, 9, e1395. [CrossRef]
26. Grisoni, F.; Moret, M.; Lingwood, R.; Schneider, G. Bidirectional Molecule Generation with Recurrent Neural Networks. J. Chem.

Inf. Model. 2020, 60, 1175–1183. [CrossRef]
27. Amabilino, S.; Pogany, P.; Pickett, S.D.; Green, D.V.S. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular

Generation of Focused Libraries. J. Chem. Inf. Model. 2020, 60, 5699–5713. [CrossRef]
28. Gomez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernandez-Lobato, J.M.; Sanchez-Lengeling, B.; Sheberla, D.; Aguilera-

Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. ACS Cent. Sci. 2018, 4, 268–276. [CrossRef]

29. Winter, R.; Montanari, F.; Noe, F.; Clevert, D.A. Learning continuous and data-driven molecular descriptors by translating
equivalent chemical representations. Chem. Sci. 2019, 10, 1692–1701. [CrossRef]

30. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H.M. Molecular de-novo design through deep reinforcement learning. J.

Cheminform. 2017, 9, 48. [CrossRef]
31. Jaques, N.; Gu, S.; Bahdanau, D.; Hernández-Lobato, J.M.; Turner, R.E.; Eck, D. Sequence Tutor: Conservative Fine-Tuning of

Sequence Generation Models with KL-control. arXiv 2017, arXiv:1611.02796.

444



Pharmaceuticals 2021, 14, 1249

32. Benhenda, M. ChemGAN challenge for drug discovery: Can AI reproduce natural chemical diversity? arXiv 2017,
arXiv:1708.08227.

33. Sousa, T.; Correia, J.; Pereira, V.; Rocha, M. Generative Deep Learning for Targeted Compound Design. J. Chem. Inf. Model. 2021,
61, 5343–5361. [CrossRef]

34. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem
Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [CrossRef] [PubMed]

35. Wang, Y.; Huang, J.C.; Zhou, Z.L.; Yang, W.; Guastella, J.; Drewe, J.; Cai, S.X. Dipeptidyl aspartyl fluoromethylketones as potent
caspase-3 inhibitors: SAR of the P-2 amino acid. Bioorg. Med. Chem. Lett. 2004, 14, 1269–1272. [CrossRef] [PubMed]

36. Choong, I.C.; Lew, W.; Lee, D.; Pham, P.; Burdett, M.T.; Lam, J.W.; Wiesmann, C.; Luong, T.N.; Fahr, B.; DeLano, W.L.; et al.
Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-
based drug design. J. Med. Chem. 2002, 45, 5005–5022. [CrossRef] [PubMed]

37. Asgian, J.L.; James, K.E.; Li, Z.Z.; Carter, W.; Barrett, A.J.; Mikolajczyk, J.; Salvesen, G.S.; Powers, J.C. Aza-peptide epoxides: A
new class of inhibitors selective for clan CD cysteine proteases. J. Med. Chem. 2002, 45, 4958–4960. [CrossRef]

38. Lee, D.; Long, S.A.; Murray, J.H.; Adams, J.L.; Nuttall, M.E.; Nadeau, D.P.; Kikly, K.; Winkler, J.D.; Sung, C.-M.; Ryan, M.D.; et al.
Potent and selective nonpeptide inhibitors of caspases 3 and 7. J. Med. Chem. 2001, 44, 2015–2026. [CrossRef] [PubMed]

39. Wang, Y.; Guan, L.F.; Jia, S.J.; Tseng, B.; Drewe, J.; Cai, S.X. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors:
Peptidomimetic replacement of the P-2 alpha-amino acid by a alpha-hydroxy acid. Bioorg. Med. Chem. Lett. 2005, 15, 1379–1383.
[CrossRef]

40. Han, Y.X.; Giroux, A.; Colucci, J.; Bayly, C.I.; Mckay, D.J.; Roy, S.; Xanthoudakis, S.; Vaillancourt, J.; Rasper, D.M.; Tam, J.; et al.
Novel pyrazinone mono-amides as potent and reversible caspase-3 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1173–1180.
[CrossRef] [PubMed]

41. Wang, Y.; Jia, S.J.; Tseng, B.; Drewe, J.; Cai, S.X. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: Pep-
tidomimetic replacement of the P-2 amino acid by 2-aminoaryl acids and other non-natural amino acids. Bioorg. Med. Chem. Lett.

2007, 17, 6178–6182. [CrossRef]
42. Thompson, C.M.; Quinn, C.A.; Hergenrother, P.J. Total Synthesis and Cytoprotective Properties of Dykellic Acid. J. Med. Chem.

2009, 52, 117–125. [CrossRef]
43. Mott, B.T.; Ferreira, R.S.; Simeonov, A.; Jadhav, A.; Ang, K.K.H.; Leister, W.; Shen, M.; Silveira, J.T.; Doyle, P.S.; Arkin, M.R.; et al.

Identification and Optimization of Inhibitors of Trypanosomal Cysteine Proteases: Cruzain, Rhodesain, and TbCatB. J. Med. Chem.

2010, 53, 52–60. [CrossRef]
44. Rosse, G. Irreversible Inhibitors of Cysteine Proteases. ACS Med. Chem. Lett. 2013, 4, 163–164. [CrossRef] [PubMed]
45. Krause-Heuer, A.M.; Howell, N.R.; Matesic, L.; Dhand, G.; Young, E.L.; Burgess, L.; Jiang, C.D.; Lengkeek, N.A.; Fookes, C.J.R.;

Pham, T.Q.; et al. A new class of fluorinated 5-pyrrolidinylsulfonyl isatin caspase inhibitors for PET imaging of apoptosis.
MedChemComm 2013, 4, 347–352. [CrossRef]

46. Landrum, G. RDKit: Open-Source Cheminformatics. 2006. Available online: https://www.rdkit.org/ (accessed on 30 November
2020).

47. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

48. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,
arXiv:2010.16061.
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Abstract: In the last two decades, abnormal Ras (rat sarcoma protein)–ERK (extracellular signal-
regulated kinase) signalling in the brain has been involved in a variety of neuropsychiatric disorders,
including drug addiction, certain forms of intellectual disability, and autism spectrum disorder.
Modulation of membrane-receptor-mediated Ras activation has been proposed as a potential target
mechanism to attenuate ERK signalling in the brain. Previously, we showed that a cell penetrating
peptide, RB3, was able to inhibit downstream signalling by preventing RasGRF1 (Ras guanine
nucleotide-releasing factor 1), a neuronal specific GDP/GTP exchange factor, to bind Ras proteins,
both in brain slices and in vivo, with an IC50 value in the micromolar range. The aim of this
work was to mutate and improve this peptide through computer-aided techniques to increase its
inhibitory activity against RasGRF1. The designed peptides were built based on the RB3 peptide
structure corresponding to the α-helix of RasGRF1 responsible for Ras binding. For this purpose,
the hydrogen-bond surrogate (HBS) approach was exploited to maintain the helical conformation
of the designed peptides. Finally, residue scanning, MD simulations, and MM-GBSA calculations
were used to identify 18 most promising α-helix-shaped peptides that will be assayed to check their
potential activity against Ras-RasGRF1 and prevent downstream molecular events implicated in
brain disorders.

Keywords: Ras; RasGRF1; hydrogen-bond surrogate; computational residue scanning; molecular
dynamics; MM-GBSA; protein–protein interaction; ERK signalling; cocaine addiction; intellectual
disability (ID); autism spectrum disorder (ASD)

1. Introduction

Maladaptive signalling mechanisms in the brain have been demonstrated in several
psychiatric and neurological conditions. Amongst the most severe and poorly treated
brain disorders, cocaine and psychostimulant addiction is a poorly managed chronic
disease characterised by high relapse rates and compulsive drug use [1,2]. Most notably,
addictive drugs exploit cellular mechanisms and signalling pathways involved in normal
learning and memory processes [3–6]. Modulation of such learned associations between
drug-paired cues and the rewarding effects of these drugs significantly contribute to
persistently elicited drug-seeking behaviours and high rates of relapse [7–22]. The Ras (rat
sarcoma protein)–ERK (extracellular signal-regulated kinase) pathway is crucially involved
in both the acute and long-term effects of cocaine in experimental animal models, and
previous work has shown that brain-penetrating Ras–ERK inhibitors may ameliorate the
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associated symptoms. Particularly relevant was the observation that Ras-RasGRF1 (Ras
guanine nucleotide-releasing factor 1) interaction is responsible for the activation of the
ERK cascade downstream of neurotransmitter receptor systems. Indeed, we previously
showed that a cell-penetrating peptide, RB3, able to attenuate Ras-RasGRF1 binding could
reduce downstream ERK signalling in response to cocaine in a mouse model. Similarly,
RB3 was shown to ameliorate cellular effects and behavioural symptoms in two distinct
mouse models of intellectual disability (ID) and autism spectrum disorder (ASD) [23,24].

ERK signalling in most tissues responds to extracellular signals and regulates cell
proliferation, differentiation, and survival [25–27]. In this context, Ras proteins act as
binary switches in signalling pathways by cycling between inactive GDP- and active GTP-
bound states [28]. Kinetic studies highlighted that the activation of Ras protein, proceeding
from the conversion of Ras-GDP to Ras-GTP, initiates through the recruitment of the
guanine nucleotide exchange factors (GEFs), such as RasGRF1 and Sos (Son of sevenless
protein) [29–34], that catalyse GDP release and allow its replacement by GTP [35–40]. Then,
the GTP molecule binds to this complex, promoting the release of the GEF protein [41].
The RasGRF1 and Sos region responsible for Ras-specific nucleotide exchange activity
exhibits a Ras exchanger motif (Rem) domain of about 450 amino acids and a Cdc25
homology domain [42–46]. In addition, Sos requires allosteric activation through a second
Ras-binding site that bridges the Rem and Cdc25 domains [47,48]. When Sos is activated,
a helical hairpin belonging to the Cdc25 domain inserts between two flexible regions of
Ras, switch I (amino acids 25–40) and switch II (amino acids 57–75) [49–58], causing Ras
conversion to the transient state by opening the nucleotide-binding site of Ras for GDP
release [43] (Figure 1). After this event, Ras can promptly accommodate and bind GTP into
the nucleotide-binding site, thus exhibiting its active state. Therefore, a potential strategy
to inhibit Ras-GEF interaction should target the open—or transient—state of Ras protein
by designing modulators able to bind the nucleotide-exchange region.

Figure 1. Inactive and transient states of the Ras protein. On the left, a Ras protein (orange chain; PDB ID: 1XD2 [48]) bound
to GDP (grey ligand in stick format) exhibits its inactive state, where the Switch I region (highlighted by a blue circle) is
closed; on the right, after binding to a guanine nucleotide-exchange factor (Sos protein, green chain), Ras (orange chain;
PDB ID: 1XD2) exhibits a transient state, where the Switch I region is open to accommodate the GEF α-helix.

In contrast to Sos, which requires Ras binding to the allosteric site for activity, the
Cdc25 domain of RasGRF1 is active on its own [33,41,47,48]. The structure of the Cdc25
domain of RasGRF1 is very similar to that of Sos, registering 30% of sequence identity
between the two Cdc25 domains. The orientation and conformation of the RasGRF1 helical
hairpin resemble that of Sos in its active form, with an RMSD value of 2.3 Å for the helical
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hairpins after superposition on the Cdc25 domain core. Moreover, distance difference
matrices demonstrated that the main differences between RasGRF1 and Sos in its inactive
form have been identified in the helical hairpin, even in this case confirming that the
RasGRF1 Cdc25 domain is more similar to active Sos [59]. Therefore, the analysis of the
Ras-Sos complex might provide crucial insights, even for RasGRF1 interaction.

1.1. Mutational Studies on Sos and Design of a Peptide-Based Ras Inhibitor

To date, no complex structure of Ras-RasGRF1 is available in the Protein Data Bank [60];
thus, provided that Sos and RasGRF1 proteins share the Ras-specific nucleotide exchange
domain [59], Ras-Sos X-ray crystallographic complexes were exploited for a comparative analysis.

Over the last decades, several mutational studies were conducted on Ras and Sos
proteins to determine the key amino acids. In 1998, Boriack-Sjodin et al. [43] demonstrated
that the contacts between Ras and Sos are mainly mediated by the Switch I and Switch
II regions of Ras [43,49–58] and are essentially hydrophobic, polar, and charge–charge
contacts. Hall et al. [61] performed site-directed mutagenesis to deeply investigate these
contacts. The results shed light on the hydrophobic pocket of Sos protein, consisting of
residues Ile825, Leu872, and Phe929, which embed the side chain of Tyr64 of Ras through
hydrophobic contacts. In addition, the contribution of Tyr64 of Ras was explored by
applying a mutation to alanine (Y64A). The result was a 50-fold reduction in the apparent
binding affinities of Ras to Sos, but did not provide significant nucleotide dissociation.
Then, the authors performed another binding assay by using wild-type (WT) Ras and
mutated Phe929 of Sos to alanine (F929A). The Sos mutant reported a decrease of more than
50-fold in binding affinity for Ras. This data indicated that Tyr64 and Phe929 mediated
crucial contacts for the formation of a stable Ras-Sos complex.

On the other hand, polar and charged interactions showed to be not essential for
the binding affinity of Ras to Sos. Indeed, alanine mutations on Sos residues Arg826,
Thr935, and Glu1002 weakly impacted on Ras binding and activation. In addition, the
mutation of Ala59 of Ras to glycine (A59G) did not significantly affect the GDP-dissociation
rate, displaying more than 50% of the inhibitory effect on Sos-catalysed GTP dissociation.
Finally, the contribution of two Ras amino acids involved in the Switch I region were
investigated: Tyr32 of Ras that established hydrophobic contacts with Lys939 of Sos, and
Tyr40 of Ras that mediated stacking interaction with His911 of Sos. Tyr32 and Tyr40 of Ras
were mutated to Ser (Y32S) and Ala (Y40A), respectively. Both mutations decreased the
binding of Sos to Ras and accelerated the rate of intrinsic GDP/GTP exchange, suggesting
that these residues are important for Ras-Sos recognition and the nucleotide stabilization.
Consistent with these results, mutations of Sos Lys939 and His911 to alanine (K939A and
H911A, respectively) also caused a reduction in Ras-Sos binding. Furthermore, the Y40A
mutation had no significant effect on Sos-catalysed guanine nucleotide exchange, whereas
the disruption of the contact between Tyr32 of Ras and Lys939 of Sos reduced the sensitivity
of Ras to the exchange activity of Sos [43].

Several efforts have been reported in the literature to design and identify Ras inhibitors
to block the nucleotide exchange. However, to date, the current scientific insights on ERK
signalling in drug addiction has not been transferred into clinical treatments due to the
lack of drugs with relatively low IC50 values, toxicity, and ability to efficiently cross the
blood–brain barrier (BBB) [62].

In 2016, Papale and colleagues [63] designed and generated an active cell-penetrating
peptide, named RB3 [64], based on the interaction between Ras and a GEF protein; i.e.,
RasGRF1, able to attenuate cocaine-mediated activation of the Ras–ERK signalling cascade
in vivo. Subsequently, the same peptide was successfully used, in combination with the
KIM sequence containing RB1 peptide, to treat two genetic animal models of intellectual
disability and autism spectrum disorder, both characterised by an abnormally high ERK
signalling activity [23,24].

The cell-penetrating peptides have been shown to be promising for the treatment of
neuropsychiatric disorders, especially due to their low reported toxicity and tolerability [65,66].
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Although their biological activity spans a micromolar range, they usually show a poten-
tial advantage, as they are able to partially disrupt protein–protein interactions without
preventing the enzymatic activity.

The RB3 peptide was designed by using molecular graphics tools, on the basis of the
ternary complex consisting of Ras in its transient state bound to the Sos Cdc25 domain and
Ras in its inactive state complexed with a GDP molecule (PDB ID: 1XD2) [48]. The Cdc25
domain of Sos involved in this ternary complex was compared to the crystal structure of the
RasGRF1 Cdc25 domain (PDB ID: 2IJE [59]). The peptide sequence (amino acids 1173–1203
of the Cdc25 domain) includes an α-helix—from Met1181 to Glu1191—crucial for the GDP
exchange activity on Ras proteins, linked to two loops—from Pro1173 to Gly1180 and from
Gly1192 to Asn1203 (Figure 2).

Figure 2. RB3 peptide structure including a loop from Pro1173 to Gly1180, an α-helix from Met1181
to Glu1191, and another loop from Gly1192 to Asn1203.

Moreover, Papale and colleagues [67] added to the RB3 peptide sequence a portion
retrieved from the HIV TAT protein known to exhibit a translocating behaviour [68]. In
this way, the final structure of the cell-penetrating peptide was created able to cross the cell
membranes and the BBB [67]. Thus, the peptide sequence is below reported:

GRKKRRQRRR—PPCVPYLGMYLTDLVFIEEGTPNYTEDGLVN
TAT sequence RasGRF1 interacting region

Then, the RB3 peptide was tested in an ex vivo model of acute striatal brain slices to
investigate its inhibitory potential on ERK phosphorylation after stimulation with 100 µM
of glutamate. The result was a significant reduction of ERK activity, with an IC50 of 6 µM.
To deeply explore the effect of the RB3 peptide on Ras–ERK signalling pathway, Papale
and colleagues investigated whether RB3 may also affect the phosphorylation of two
well-characterised ERK substrates, (Ser10)-acetylated (Lys14) histone H3 (pAc-H3) and S6
ribosomal protein (pS6, Ser235/236 specific site) [69–71]. Even in this case, the peptide
was effective in decreasing the phosphorylation of Ac-H3, with an IC50 of 5.2 µM; and pS6
levels, with an IC50 of 3.69 µM [63].

1.2. RB3 Peptide Modifications by Using Hydrogen-Bond Surrogates

In light of the above, the RB3 peptide was selected to enter a compound optimisation
process to increase the biological activity. This work aimed to provide insights on Ras-
RasGRF1 interaction and suggest novel potential modulators of this interaction based on the
RB3 peptide structure, which will be further investigated through biological assays. For this
purpose, multiple computational techniques were exploited to investigate modifications
of the RB3 peptide in order to potentially increase its inhibitory activity of Ras-RasGRF1
interaction. Scheme 1 lists the steps of the workflow that are described in detail in the
following sections.
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Scheme 1. Overview of the computational workflow performed to identify potential peptide-based
modulators to inhibit Ras-RasGRF1 interaction.

First, a computational alanine scanning of the Ras-Sos complex available from the Pro-
tein Data Bank [60] was performed and, in parallel, molecular dynamics (MD) simulations
on the three complexes (Ras-Sos, Ras-RasGRF1, and the Ras-RB3 peptide), were run to
identify the most stable and frequent interactions between protein partners. Surprisingly,
the RB3 peptide exhibited helicity loss, where the helical hairpin corresponding to RasGRF1
interacting region lost helicity propensity, generating instability within the complex. In
order to optimise the structure of this peptide and increase the inhibitory capacity of the
peptide, from the analysis of the literature, a potential strategy arose to solve this issue.
Indeed, in the literature, similar cases of helicity loss have been reported and faced by
exploiting the hydrogen-bond surrogate (HBS) approach [72]. This methodology was
developed especially for modulating biomolecular interactions, such as protein–protein
contacts, through small-molecular-weight protein secondary structure mimetics, when
designing small molecules could be a very challenging strategy [73–79]. The HBS approach
is based on the helix-coil transition theory for peptides, whereas α-helices composed of a
few amino acids are expected to be essentially unstable due to a low nucleation probabil-
ity [80,81]. This approach is expected to overwhelm the intrinsic nucleation propensities of
the amino acids by providing a preorganization of the residues upstream, which triggers
the helix formation initialization [82,83]. An example of a successful case of HBS use was
the HBS3 peptide [62,84], a synthetic α-helix that reduced the Ras nucleotide exchange
in vitro and modestly activated ERK in cells [62,84]. This peptide was basically built on
the Sos sequence able to bind the Ras protein, and incorporates the HBS strategy reported
in the literature [62,72,84]. On the other hand, in the literature, there is no evidence that
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the HBS methodology has been applied to the RB3 peptide. Thus, it appeared interest-
ing to investigate the employment of this strategy aiming at avoiding the helicity loss of
RB3 peptide.

In general, in an α-helix, the carbonyl group of the ith amino acid residue mediates
a hydrogen bond with the amine group of the (i + 4)th amino acid residue by generating
nucleation and stabilisation of the helical structure. Based on this evidence, the HBS
strategy for generation of artificial α-helices involves the replacement of one of the main
chain hydrogen bonds with a covalent linkage [73,85]. Indeed, to mimic the C=O · · · H-N
hydrogen bond as closely as possible, a covalent bond of the type C=X–Y–N is included,
where X and Y are usually carbon atoms that would be part of the ith and the (i + 4)th
residues. However, the analysis of the RB3 α-helix highlighted that the first amino acid
implicated in the helix H-bond ensemble does not establish a traditional hydrogen bond
with the (i + 4)th amino acid, while it forms a contact with the (i + 3)th amino acid by
creating the so-called 310-helix [86]. Therefore, in this work, the RB3 peptide was modified
by creating a C-C bond between the first (Tyr1178) and the fourth amino acid (Met1181),
hereafter called the 310-HBS RB3 peptide. An MD simulation of the complex Ras-310-
HBS RB3 peptide was run, highlighting a stable peptide helical conformation during the
entire trajectory.

Then, a computational residue scanning was run on the peptide to analyse and identify
the most promising mutations to be considered in terms of ∆∆Gaffinity and ∆∆Gstability.
The point-mutated peptides, in complex with the Ras protein, were exploited to run MD
simulations and MM-GBSA calculations to guide the selection of the most interesting
mutations. The resulting ones were further combined with each other in the 310-HBS RB3
peptide structure to obtain 48 combinatorial peptides. Thus, these latter were investigated
through MD and MM-GBSA to retrieve the calculated ∆Gbinding average values for each
couple Ras-combinatorial peptide. Finally, 18 combinatorial peptides were selected, and
they will enter an experimental follow-up to further explore their potential activity against
the Ras-RasGRF1 interaction. In the next sections of this manuscript, efforts to modify the
peptide structure to increase the biological activity will be described.

2. Results and Discussion
2.1. Sos and RasGRF1 Binding Interfaces Analysis

To date, no PDB structures of the Ras-RasGRF1 complex are available in the literature,
thus the Ras-Sos complex structure was exploited to collect key information useful to guide
and address the computational studies described herein. In order to deeply explore and
predict the hot-spot residues of the Sos Cdc25 domain (i.e., amino acids 924 to 957), all of
the six available PDB structures of the Ras-Sos complex (PDB IDs: 1XD2 [48], 1BKD [43],
1NVW, 1NVV, 1NVU, and 1NVX [47]) were examined by using the Robetta Computational
Interface Alanine Scanning Server [87,88]. In Table 1, the highest ∆∆G values from the
alanine mutations on the Sos binding interface are reported.

Table 1. Predicted ∆∆G values from the alanine mutations on Sos binding interface amino acids
retrieved by the Robetta Computational Interface Alanine Scanning Server [87,88].

∆∆G (kcal/mol)

Sos aa 1XD2 1BKD 1NVW 1NVV 1NVU 1NVX
Phe929 1.54 1.48 1.64 3.00 1.53 1.47
Thr935 2.97 1.59 1.11 n.a. 3.13 3.11
Lys939 n.a. n.a. n.a. 4.21 n.a. n.a.
Glu942 n.a. n.a. 1.10 n.a. n.a. n.a.
Asn944 2.51 2.63 2.35 2.66 2.63 2.70

n.a. = not available.

These predicted data were in accordance with mutational studies performed by
Hall et al. [61], whereas Phe929, Thr935, and Lys939 were highlighted as Sos interact-
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ing hot spots. In detail, from the computational alanine scanning, Phe929 and Thr935 were
shared by most of the six PDB complexes as hot spots, while Lys939 resulted from the PDB
1NVV analysis. As can be seen, this computational tool pointed out another Sos hot spot
not previously identified by Hall et al., Asn944, which was shared from all the six PDB
complexes. Another hot spot on Glu942 was retrieved from PDB 1NVW.

These identified hot spots, both from biological assays [61] and computational ala-
nine scanning, were considered equally important for the next steps, and were used for
comparison to RasGRF1 amino acids in order to investigate similarities between the two
GEF sequences (RasGRF1 and Sos). For this purpose, PDB 1XD2 [48], including Sos in
complex with the Ras protein, was chosen for the low resolution, while the only available
PDB structure of the RasGRF1 Cdc25 domain (PDB ID: 2IJE [59]) was used. However, the
latter PDB was from Mus musculus as organism. Hence, before proceeding with the protein
structure alignment between the Sos and RasGRF1 Cdc25 domains, a FASTA alignment
was performed while considering human and murine RasGRF1 sequences through the
Protein BLAST sequence alignment tool [89,90]. The resulted overall identity was 83.22%,
whereas within the RasGRF1 region involved in Ras binding (i.e., from residue 1173 to
1203 of mouse sequence), the only detected difference was between Ala1198 for human
and Val1187 for mouse, as illustrated in Figure S1 in the Supplementary Materials. These
two amino acids exhibited side chains with very similar chemical properties, thus the PDB
2IJE was considered suitable for proceeding with this study.

Therefore, both PDB protein structures (2IJE [59] and 1XD2 [48]) were aligned through
the “Protein Structure Alignment” tool of the Schrödinger suite, and the result is depicted
in Figure 3. As can be seen, the two α-helices of Sos and RasGRF1 are perfectly aligned.

Figure 3. Superposition of the RasGRF1 binding region (green chain, retrieved from PDB 2IJE [59]),
and the Sos binding region (pink chain, retrieved from PDB 1XD2 [48]) in complex with the Ras
protein (blue chain from PDB 1XD2).

Furthermore, Sos and RasGRF1 binding regions share several amino acids, as shown
in the sequence alignment of the Sos and RasGRF1 Cdc25 domains illustrated in Figure 4.
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Figure 4. FASTA sequence alignment between the Sos and RasGRF1 regions able to bind the Ras protein.

RasGRF1 amino acids corresponding to Sos hot spots are reported in Table 2. As
can be seen, the pairs Thr935-Thr1184 and Glu942-Glu1191 shared the same amino acid,
while Phe929 (Sos) and Tyr1178 (RasGRF1) both presented hydrophobic side chains, and
Asn944 (Sos) and Thr1193 (RasGRF1) shared polar uncharged side chains. Only Lys939 and
Phe1188 were very different amino acids, whereas lysine showed an electrically charged
side chain, while phenylalanine exhibited a hydrophobic side chain. The amino acids of
RasGRF1 highlighted in the above-described comparison were considered for the next
steps of the analysis.

Table 2. Correspondences of Sos hot-spot residues (from biological assays [61] and computational
alanine scanning) to RasGRF1 amino acids identified by performing protein structures alignment.

Sos aa Corresponding RasGRF1 aa

Phe929 Tyr1178
Thr935 Thr1184
Lys939 Phe1188
Glu942 Glu1191
Asn944 Thr1193

2.2. MD Simulations of Ras in Complex with Sos and RasGRF1 Binding Fragments

In order to investigate the importance of the computationally predicted hot spots not
reported in the literature; i.e., Glu942 and Asn944, and to explore the interactions between
the Ras-Sos complex, a MD simulation was run. For this purpose, PDB 1XD2 [48] was
chosen, and the simulation was run for a short time of 50 ns to observe and identify the
most stable and frequent contacts. The stability of the system was monitored during the
entire trajectory, thus registering the RMSD plot depicted in Figure S2 in the Supplementary
Materials. Then, the MD frames were clustered using the “Desmond trajectory clustering”
tool of the Schrödinger suite (Schrödinger Inc., New York, NY, USA, software release
v2018-4) by setting five clusters to be generated, and the frame centroids representative for
the clusters were analysed; i.e., frame 120, frame 540, frame 660, frame 780, and frame 820.
These five frames were investigated to identify the interactions between the Ras and Sos
proteins, where among the above-mentioned five Sos hot spots (please refer to Table 2),
four residues established stable interactions with Ras during the trajectory; i.e., Phe929,
Thr935, Glu942, and Asn944. The related interactions are listed in Table 3, and the H-bonds
are plotted against the simulation time in Table S1 in the Supplementary Materials.
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Table 3. Stable interactions established during MD trajectories of Ras-Sos and Ras-RasGRF1 complexes.

MD on Ras-Sos Complex MD on Ras-RasGRF1 Complex

Ras aa Sos aa 924–957 Interaction type RasGRF1 aa
1173–1203 Interaction type

Tyr64
Phe929 Hydrophobic Tyr1178 Pi–Pi stacking

Phe930 Hydrophobic Leu1179 Hydrophobic
Leu1183 Hydrophobic

Tyr40 - - Phe1188 Hydrophobic

Gln61
Ile932 Hydrophobic Tyr1178 1 H-bond
Thr935 1 H-bond Thr1184 1 H-bond

Ala59 Thr935 1 H-bond

Thr1184 1 H-bond
Leu1183 Hydrophobic
Val1187 Hydrophobic
Phe1188 Hydrophobic

Ser17 Glu942 1 H-bond
Glu1191 1 H-bond
Val1187 Hydrophobic

Ala18 Glu942 1 H-bond Glu1191 1 H-bond

Tyr32 Asn944 2 H-bonds
Gly1192 1 H-bond
Phe1188 Hydrophobic

Pro34 Thr940 Hydrophobic - -

Asp57 Lys939 1 H-bond + 1
salt bridge - -

Gly60 Leu934 Hydrophobic Leu1183 Hydrophobic
Lys147 - - Glu1191 1 H-bond + 1 salt bridge

Based on the previously described comparison between the Sos interacting region
and the RasGRF1 Cdc25 domain, an MD simulation of the Ras-RasGRF1 complex was
performed through the Schrödinger suite [91] to investigate whether the five putative
RasGRF1 key residues (Tyr1178, Thr1184, Phe1188, Glu1191, and Thr1193) were responsible
for contacting the Ras protein and stabilising the complex.

Therefore, the protein–protein complex was generated by using the previous aligned
structures involving PDBs 1XD2 [48] and 2IJE [59], where the RasGRF1 interacting region
(residues 1173 to 1203) was located within the binding pocket of the Ras protein through
performing a superimposition on the Sos chain, which was subsequently deleted. The
complex was minimised, and the MD was run by setting 50 ns as the simulation time.
The output was analysed, and the stability of the system was checked through the RMSD
plot (Figure S3 in the Supplementary Materials). The trajectory was clustered by setting
five clusters to be generated. Then, the MD frame centroids were analysed; that is, frame
40, frame 65, frame 110, frame 280, and frame 362. The most stable interactions between
Ras and RasGRF1 were observed, and they are reported in Table 3. In Table S2 in the
Supplementary Materials, the H-bonds are plotted against the simulation time. As can
be observed, most of these interactions were similarly established between Ras and the
corresponding Sos amino acids (please refer to Table 2) during the MD simulation. This
provided interesting information to take forward in this work.

2.3. MD Simulations of the Ras-RB3 Peptide Complex

After collecting information about interactions between Ras and its GEFs (Sos and
RasGRF1), other MD simulations were performed to explore the binding mode and the
established contacts between Ras and the parental (WT) RB3 peptide.

The core sequence of this peptide (without TAT portion) corresponds to RasGRF1
sequence 1173-PPCVPYLGMYLTDLVFIEEGTPNYTEDGLVN-1203. Therefore, the complex
Ras-RasGRF1 was used, and all those residues not included in the RB3 peptide sequence
were deleted. Thus, this new complex, the Ras-RB3 peptide, was processed by running
MD simulations of 500 ns each. The RMSD plot was generated, and it is depicted in Figure
S4a in the Supplementary Materials. This plot revealed a certain instability of the systems,
ranging from about 3.5 to 6.4 Å. Therefore, a second MD simulation was computed, and
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even in this case the RMSD plot (Figure S4b in the Supplementary Materials) showed
the same trend. On the other hand, the interactions between Ras and the peptide were
investigated for both trajectories. The MD frames of both simulations were grouped into
five clusters each, and the frame centroids were analysed to retrieve the most stable and
frequent interactions: (a) first MD → centroid frame 390, centroid frame 2340, centroid
frame 1400, centroid frame 3590, and centroid frame 4270; (b) second MD → centroid
frame 3610, centroid frame 4800, centroid frame 2660, centroid frame 620, and centroid
frame 1280. The observed contacts between the Ras protein and the RB3 peptide from the
above-listed frames are reported in Table 4.

Table 4. The most stable interactions between Ras and the RB3 peptide highlighted from the MD
trajectory analyses.

First MD Second MD

Ras aa RB3 aa Interaction type Ras aa RB3 aa Interaction type
Tyr40 Asp1185 1 H-bond Tyr40 Asp1185 1 H-bond
Tyr40 Phe1188 Pi–Pi stacking Tyr40 Phe1188 Pi–Pi stacking
Tyr32 Gly1192 1 H-bond Glu31 Gly1192 1 H-bond

Gln61 Tyr1182 1 H-bond Arg149 Glu1198 1 H-bond +
1 salt bridge

Gln25 Gly1192 1 H-bond

The two MD simulations shared only two interactions; i.e., one hydrogen bond
between Tyr40 of Ras and Asp1185 of the RB3 peptide, and a pi–pi stacking between
the aromatic ring of the Tyr40 side chain of Ras and the other aromatic ring of the Phe1188
side chain of the RB3 peptide. Furthermore, all the other interactions retrieved from the
MD simulations registered low stability during the entire trajectories.

Thus, a visual check of both simulations shed light on an important behaviour of
the RB3 peptide α-helix; i.e., a portion of the α-helix (from Met1181 to Thr1184) began to
lose helicity propensity after about 50/60 ns of simulation time, resulting in a misfolding
behaviour. Indeed, not surprisingly, the two above-mentioned interactions shared by both
simulations from the MD analyses were involved into the folded region of the peptide
over the entire trajectories; i.e., the residues from Asp1185 to Glu1191 not exhibiting the
misfolding. Figure 5 illustrates the misfolding of the RB3 α-helix after 50 ns of the first
MD simulation.

Therefore, a strategy to overcome this issue was implemented by applying the
hydrogen-bond surrogate approach, which had already provided successful experimental
evidence [62,73–79,84]. Thus, the RB3 peptide was processed by modifying the structure.
First, two portions of the peptide were deleted; i.e., the residues belonging to the two loops
of the peptide (residues 1171 to 1177 and 1194 to 1203), because they showed a lack of
crucial interactions according to mutational studies reported in the literature [43,61] and
the MD simulations of Ras-RasGRF1 (please refer to Table 3). Thus, residues 1171 to 1177
and 1194 to 1203 were considered not important for the purpose of this work, and were
deleted from the structure. Then, the analysis of the α-helix highlighted that Tyr1178, the
first amino acid implicated in the helix H-bonds ensemble, did not establish a traditional
hydrogen bond with the (i + 4)th amino acid, while it formed a contact with the (i + 3)th
amino acid, by creating the so-called 310-helix [86].

Hence, a MD simulation of 500 ns was performed on the Ras protein in complex
with the RB3 peptide modified by deleting the two loops at the N- and C-termini and
creating a covalent C-C bond between the carbonyl oxygen of the Tyr1178 backbone and
the amine hydrogen of the Met1181 backbone. The resulting peptide was termed 310-HBS
RB3 (Figure 6).
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Figure 5. (a) Frame 0 of the first MD simulation on Ras (blue chain) in complex with a RasGRF1 fragment (pink chain,
aa 1173 to 1203); (b) frame from the first MD simulation on Ras in complex with a RasGRF1 fragment after about 50 ns,
depicting the RB3 peptide losing helicity propensity in the portion from Met1181 to Thr1184.

Figure 6. (a) Structure of the 310-HBS RB3 peptide; (b) the 310-HBS RB3 peptide including a covalent C-C bond (green bond)
between the carbonyl oxygen of Tyr1178 backbone and the amine hydrogen of Met1181 backbone.

The analysis of the output revealed a stable trend for the α-helicity of the peptide,
which held its folded conformation. Even the RMSD plot (Figure S5 in the Supplementary
Materials) showed a certain stability of the system, thus the frames were analysed to
retrieve information about the most stable interactions, and the results were plotted as
depicted in Figure 7.
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Figure 7. (a) Histogram of the interactions established between the Ras protein binding region and the 310-HBS RB3 peptide;
(b) Plot illustrating the frequency of interaction occurrences between the Ras protein binding region and the 310-HBS
RB3 peptide.
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This newly designed 310-HBS RB3 peptide showed that it could establish some of the
key interactions identified in the previous MD simulation between the Ras and RasGRF1
proteins (please refer to Table 3) and other contacts with Ras amino acids (Tyr32 and Tyr40)
highlighted as key residues from mutational studies [61]. Finally, an MM-GBSA calculation
of the MD frame was computed to obtain the ∆Gbinding of the complex Ras-310-HBS RB3
peptide, which was −79.70 kcal/mol. This value was exploited as a reference for the
peptide optimisation process described in the following sections.

2.4. Computational Residue Scanning of the 310-HBS RB3 Peptide and MD Simulations of
Point-Mutated Peptides

In order to optimise the structure of the 310-HBS RB3 peptide, a computational residue
scanning was performed on the amino acids of the peptide by using the “Residue scanning”
tool of Bioluminate (Schrödinger Inc., software release v2018-4) [92]. The peptide was
point-mutated where each residue was substituted with all the standard amino acids,
and ∆∆Gaffinity and ∆∆Gstability values of the new complexes were computed. The aim
was to identify the most promising mutations in terms of ∆∆Gaffinity and ∆∆Gstability.
For this purpose, only mutations reporting both ∆∆Gaffinity and ∆∆Gstability values below
−3 kcal/mol were considered, according to the work of Beard et al. [92], which reported a
correlation between experimental results and the computationally predicted ones through
the Schrödinger suite. Indeed, the authors demonstrated that a difference of 3 kcal/mol
between the mutated and WT forms of a complex might be considered reliable in hot-spot
prediction. Finally, 16 mutations reported ∆∆Gaffinity and ∆∆Gstability values lower than
−3 kcal/mol, thus they were considered for the next steps of this work (Table 5).

Table 5. Computational residue scanning results for the peptide 310-HBS RB3, highlighting
16 promising mutations.

310-HBS RB3 Peptide aa Mutation
∆∆Gaffinity
(kcal/mol)

∆∆Gstability
(kcal/mol)

Thr1184
Arg −19.17 −3.67
Met −8.17 −3.18

Asp1185

Trp −12.56 −7.64
Tyr −9.19 −3.49
Phe −8.26 −4.26
Leu −7.77 −12.61

Phe1188 Arg −9.55 −4.12
Phe1188 His −8.25 −8.75
Ile1189 Met −3.59 −4.08

Glu1190 His −3.29 −4.13

Glu1191

Ile −6.97 −4.68
Leu −5.16 −3.79
Val −4.71 −4.08
Thr −4.32 −4.27

Thr1193
Arg −3.85 −5.84
Gln −3.56 −5.86

These 16 mutations were used to create as many complexes involving the Ras pro-
tein and the 310-HBS RB3 point-mutated peptides that underwent MD simulations. The
trajectory time was set at 100 ns for each system, since this timeframe was considered
suitable to detect potential misfolding of the peptides. Indeed, the previously described
MD simulations on the WT RB3 peptide exhibited misfolded conformation by losing α-
helicity after about 50/60 ns of simulation. From the analysis of the MD trajectories, all
the point-mutated peptides were able to keep the helical conformation, thus MM-GBSA
calculations were computed, and the related ∆Gbinding values are reported below in Table 6.
Table S3 in the Supplementary Materials lists the ∆Gbinding average values of the interaction
energies and the generalized Born solvation energy for the MD trajectories of the complexes’
Ras-point-mutated 310-HBS RB3 peptides. The stability of the systems was investigated by
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analysing the RMSD plots per each complex, resulting in suitable stationary shape for each
system (Table S4 in the Supplementary Materials).

Table 6. MM-GBSA calculation results based on MD simulations of the 16 point-mutated 310-HBS RB3 peptides in complex
with the Ras protein.

First Peptide Second Peptide Third Peptide

Point mutation T1184R T1184M D1185W
∆Gbinding average −89.51 kcal/mol −92.77 kcal/mol −103.50 kcal/mol

∆Gbinding Std. Dev. 12.50 15.53 8.90
∆Gbinding range −128.52 to −55.50 kcal/mol −134.237 to −39.51 kcal/mol −126.30 to −73.35 kcal/mol

Fourth Peptide Fifth Peptide Sixth Peptide
Point mutation D1185Y D1185F D1185L

∆Gbinding average −102.50 kcal/mol −94.84 kcal/mol −82.07 kcal/mol
∆Gbinding Std. Dev. 22.23 8.34 9.26

∆Gbinding range −145.44 to −40.67 kcal/mol −120.13 to −52.39 kcal/mol −109.19 to −32.63 kcal/mol
Seventh Peptide Eighth Peptide Ninth Peptide

Point mutation F1188R F1188H I1189M
∆Gbinding average −87.49 kcal/mol −69.58 kcal/mol −83.12 kcal/mol

∆Gbinding Std. Dev. 11.60 15.23 10.89
∆Gbinding range −120.32 to −57.76 kcal/mol −111.45 to −24.94 kcal/mol −122.63 to −44.93 kcal/mol

Tenth Peptide Eleventh Peptide Twelfth Peptide
Point mutation E1190H E1191I E1191L

∆Gbinding average −73.36 kcal/mol −78.65 kcal/mol −95.11 kcal/mol
∆Gbinding Std. Dev. 12.64 11.67 12.89

∆Gbinding range −110.79 to −39.82 kcal/mol −115.33 to −43.76 kcal/mol −140.50 to −49.67 kcal/mol
Thirteenth Peptide Fourteenth Peptide Fifteenth Peptide

Point mutation E1191V E1191T T1193R
∆Gbinding average −94.42 kcal/mol −84.50 kcal /mol −90.18 kcal/mol

∆Gbinding Std. Dev. 10.69 12.71 10.85
∆Gbinding range −121.24 to −58.75 kcal/mol −116.52 to −47.48 kcal/mol −119.87 to −59.72 kcal/mol

Sixteenth Peptide
Point mutation T1193N

∆Gbinding average −97.15 kcal/mol
∆Gbinding Std. Dev. 11.88

∆Gbinding range −127.15 to −53.43 kcal/mol

As previously mentioned, the ∆Gbinding of the complex between Ras and the WT 310-
HBS RB3 peptide (−79.70 kcal/mol) was used as a reference to select the most promising
mutations associated with ∆Gbinding values lower than the reference one. In light of the
above, from the MM-GBSA results, only three mutated peptides showed higher ∆Gbinding
values. Hence, the related mutations, F1188H, E1190H, and E1191I, were neglected. On the
contrary, the other 13 mutations were considered for creating combinatorial peptides, as
described in the next section.

2.5. Combinatorial Peptides Using 310-HBS RB3: Creation and MD Simulations

The most promising mutations on the 310-HBS RB3 peptide were combined with each
other to obtain 48 mutated peptides overall, as listed below in Table 7.
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Table 7. Combinatorial peptides designed based on computational residue scanning performed on
the 310-HBS RB3 peptide and MM-GBSA calculations on MD simulations.

Combinatorial Peptides

1. YLGMYLRWLVRMELGR
2. YLGMYLMWLVRMELGR
3. YLGMYLRYLVRMELGR
4. YLGMYLMYLVRMELGR
5. YLGMYLRFLVRMELGR
6. YLGMYLMFLVRMELGR
7. YLGMYLRLLVRMELGR
8. YLGMYLMLLVRMELGR
9. YLGMYLRWLVRMEVGR
10. YLGMYLRYLVRMEVGR
11. YLGMYLRFLVRMEVGR
12. YLGMYLRLLVRMEVGR
13. YLGMYLMWLVRMEVGR
14. YLGMYLMYLVRMEVGR
15. YLGMYLMFLVRMEVGR
16. YLGMYLMLLVRMEVGR
17. YLGMYLRWLVRMETGR
18. YLGMYLRYLVRMETGR
19. YLGMYLRFLVRMETGR
20. YLGMYLRLLVRMETGR
21. YLGMYLMWLVRMETGR
22. YLGMYLMYLVRMETGR
23. YLGMYLMFLVRMETGR
24. YLGMYLMLLVRMETGR

25. YLGMYLRWLVRMELGN
26. YLGMYLMWLVRMELGN
27. YLGMYLRYLVRMELGN
28. YLGMYLMYLVRMELGN
29. YLGMYLRFLVRMELGN
30. YLGMYLMFLVRMELGN
31. YLGMYLRLLVRMELGN
32. YLGMYLMLLVRMELGN
33. YLGMYLRWLVRMEVGN
34. YLGMYLRYLVRMEVGN
35. YLGMYLRFLVRMEVGN
36. YLGMYLRLLVRMEVGN
37. YLGMYLMWLVRMEVGN
38. YLGMYLMYLVRMEVGN
39. YLGMYLMFLVRMEVGN
40. YLGMYLMLLVRMEVGN
41. YLGMYLRWLVRMETGN
42. YLGMYLRYLVRMETGN
43. YLGMYLRFLVRMETGN
44. YLGMYLRLLVRMETGN
45. YLGMYLMWLVRMETGN
46. YLGMYLMYLVRMETGN
47. YLGMYLMFLVRMETGN
48. YLGMYLMLLVRMETGN

The 48 combinatorial peptides in complex with the Ras protein were processed by
running MD simulations of 100 ns each to investigate helix conformational stability and
the contacts formed with the Ras protein. All the trajectories were observed by generating
RMSD plots to ensure the reliability of the outputs, and the interaction frequency and
stability were analysed. Finally, MM-GBSA calculations of the MD simulations were
computed. Thus, all those combinatorial peptides not responding to the following criteria
were neglected:

1. ∆Gbinding value higher than the reference one (−79.70 kcal/mol);
2. Loss of helical conformation.

Finally, 18 combinatorial peptides overall fulfilled the above criteria by resulting in
promising ∆Gbinding values and exhibiting a helical trend during the whole MD trajectory.
Thus, Table 8 reports the MM-GBSA results of these 18 most promising combinatorial pep-
tides, which will be considered for the follow-up of this study by carrying out biological
assays. Table S5 in the Supplementary Materials lists the ∆Gbinding average values of the
interaction energies and the generalized Born solvation energy for the MD trajectories
of the complexes’ Ras-combinatorial peptides. The related RMSD plots and interaction
diagrams of these 18 selected peptides are reported in Tables S6 and S7, respectively, in
the Supplementary Materials. Based on the above-mentioned plots, these selected combi-
natorial peptides were able to mainly reproduce the key interactions of the 310-HBS RB3
peptide reported above in Figure 7 by establishing contacts with Ras key residues, espe-
cially Tyr32, Tyr40, and Tyr64, which were highlighted as crucial by previous experimental
assays [43,61].
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Table 8. MM-GBSA calculation results based on MD simulations of 310-HBS combinatorial peptides not misfolded during
the simulations in complex with Ras protein, and with ∆Gbinding values lower than the reference one (−79.70 kcal/mol).

First Peptide Third Peptide Eleventh Peptide

Peptide sequence YLGMYLRWLVRMELGR YLGMYLRYLVRMELGR YLGMYLRFLVRMEVGR
∆Gbinding average −83.46 kcal/mol −96.80 kcal/mol −91.39 kcal/mol

∆Gbinding Std. Dev. 9.00 9.84 11.55
∆Gbinding range −117.54 to −55.07 kcal/mol −123.01 to −52.38 kcal/mol −119.67 to −61.34 kcal/mol

Twelfth Peptide Fifteenth Peptide Sixteenth Peptide
Peptide sequence YLGMYLRLLVRMEVGR YLGMYLMFLVRMEVGR YLGMYLMLLVRMEVGR
∆Gbinding average −92.49 kcal/mol −79.79 kcal/mol −92.54 kcal/mol

∆Gbinding Std. Dev. 10.15 14.46 7.93
∆Gbinding range −129.87 to −56.49 kcal/mol −112.94 to −41.42 kcal/mol −116.28 to −65.18 kcal/mol

Eighteenth Peptide Nineteenth Peptide Twentieth Peptide
Peptide sequence YLGMYLRYLVRMETGR YLGMYLRFLVRMETGR YLGMYLRLLVRMETGR
∆Gbinding average −100.34 kcal/mol −102.63 kcal/mol −88.71 kcal/mol

∆Gbinding Std. Dev. 14.21 11.01 13.50
∆Gbinding range −137.53 to −65.42 kcal/mol −130.87 to −62.69 kcal/mol −125.02 to −50.94 kcal/mol

Twenty-third Peptide Twenty-fourth Peptide Twenty-fifth Peptide
Peptide sequence YLGMYLMFLVRMETGR YLGMYLMLLVRMETGR YLGMYLRWLVRMELGN
∆Gbinding average −85.53 kcal/mol −82.31 kcal/mol −97.24 kcal /mol

∆Gbinding Std. Dev. 11.35 10.37 14.17
∆Gbinding range −117.73 to −42.84 kcal/mol −116.03 to −40.57 kcal/mol −133.33 to −60.15 kcal/mol

Twenty-ninth Peptide Forty-second Peptide Forty-third Peptide
Peptide sequence YLGMYLRFLVRMELGN YLGMYLRYLVRMETGN YLGMYLRFLVRMETGN
∆Gbinding average −86.56 kcal/mol −89.59 kcal/mol −123.50 kcal/mol

∆Gbinding Std. Dev. 11.67 10.32 20.97
∆Gbinding range −124.70 to −56.47 kcal/mol −128.75 to −60.00 kcal/mol −161.49 to −75.91 kcal/mol

Forty-fourth Peptide Forty-fifth Peptide Forty-eighth Peptide
Peptide sequence YLGMYLRLLVRMETGN YLGMYLMWLVRMETGN YLGMYLMLLVRMETGN
∆Gbinding average −96.31 kcal/mol −86.04 kcal/mol −91.80 kcal/mol

∆Gbinding Std. Dev. 17.98 13.60 9.51
∆Gbinding range −137.97 to −57.81 kcal/mol −124.08 to −53.76 kcal mol −122.78 to −60.84 kcal/mol

Furthermore, other contacts appeared, especially with Asp57, Gly60, and Gln61 of Ras.
Indeed, these amino acids were involved in interactions with Sos and RasGRF1 according
to previous MD simulations, thus confirming that these designed peptides might bind
and inhibit the interaction between the Ras protein and the guanine nucleotide exchange
factors, Sos and RasGRF1. Figure 8 depicts the binding mode of the 310-HBS combinatorial
peptide forty-three, which reported the lowest ∆Gbinding average.

Figure 8. Frame of the MD simulation performed on the combinatorial peptide forty-three in complex
with the Ras protein, depicting the binding mode of the peptide.
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3. Methods
3.1. Protein Preparation

The 3D structures of the Ras-Sos complex (PDB IDs: 1XD2 [48], 1BKD [43], 1NVW,
1NVV, 1NVU, and 1NVX [47]) and RasGRF1 protein (PDB ID: 2IJE [59]) were retrieved
from the Protein Data Bank [60] and optimised using the “Protein preparation” tool of the
Schrödinger suite (Schrödinger Inc., New York, NY, USA) software release v2018-4) [93].
The bond orders for untemplated residues were assigned by using known HET groups
based on their SMILES strings in the Chemical Component Dictionary. Hydrogens were
added to the structure, zero-order bonds between metals and nearby atoms were added,
and formal charges to metals and neighbouring atoms were corrected. Disulfide bonds
were created according to possible geometries, and water molecules beyond 5.0 Å from
any of the HET groups, including ions, were deleted. Then, protonation and metal charge
states for the ligands, cofactors, and metals were generated [94,95]. Finally, PROPKA [95]
was run under pH 7.0 to optimise hydroxyl groups and Asn, Gln, and His states.

3.2. MD Simulations of Ras Protein in Complex with Sos, RasGRF1, RB3 Peptide, and the
Designed 310-HBS Peptides

In this work, 69 MD simulations were performed using Desmond [91,96–99], as
follows: 1 MD simulation of 50 ns for the Ras-Sos complex, 1 MD simulation of 50 ns
for the Ras-RasGRF1 complex, 2 MD simulations of 500 ns for Ras in complex with the
WT RB3 peptide, 1 MD simulation of 500 ns for Ras in complex with the 310-HBS RB3
peptide, 16 MD simulations of 100 ns for Ras complexed with the point-mutated 310-HBS
peptides, and 48 MD simulations of 100 ns for Ras in complex with the combinatorial
310-HBS peptides. All the trajectories were computed by applying the same MD settings
below described. The systems were created using TIP3P [100] as a solvent model, and the
orthorhombic shape box was chosen. The box side distances were set at 10 Å. The force
field OPLS3e [101] was applied, and the systems were neutralized by adding Na+ ions. The
outputs were further processed by performing MD simulations with the above-reported
simulation times.

The ensemble class NPT was chosen to maintain the number of atoms, the pressure,
and the temperature constant for the entire trajectories. The thermostat method employed
was the Nosé–Hoover chain with a relaxation time of 1.0 ps and a temperature of 300 K.
The barostat method applied was Martyna–Tobias–Klein, with a relaxation time of 2.0 ps
and an isotropic coupling style. The timestep for numerical integration was 2.0 fs for
bonded interactions, 2.0 fs for nonbonded-near (van der Waals and short-range electrostatic
interactions), and 6.0 fs for nonbonded-far (long-range electrostatic interactions). For
Coulombic interactions, a cut-off radius of 9.0 Å was tuned as a short-range method.
Pressure and temperature were set at 1.01325 bar and 300 K, respectively. Finally, the
systems were relaxed before beginning the simulations according to the following steps:

1. Minimization with the solute restrained;
2. Minimization without restraints;
3. 12 ps in the NVT ensemble with a Berendsen thermostat, temperature of 10 K, a fast

temperature relaxation constant, velocity resampling every 1 ps, and nonhydrogen
solute atoms restrained;

4. 12 ps in the NPT ensemble in a Berendsen thermostat and barostat, temperature
equal to 10 K and a pressure of 1 atm, a fast temperature relaxation constant, a slow
pressure relaxation constant, velocity resampling every 1ps, and nonhydrogen solute
atoms restrained;

5. 24 ps in the NPT ensemble with a Berendsen thermostat and barostat, temperature
of 300 K and a pressure of 1 atm, a fast temperature relaxation constant, a slow
pressure relaxation constant, velocity resampling every 1 ps, and nonhydrogen solute
atoms restrained;
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6. Final step of 24 ps of relaxation in NPT ensemble using a Berendsen thermostat and
barostat, a temperature of 300 K and a pressure of 1 atm, a fast temperature relaxation
constant, and a normal pressure relaxation constant.

3.3. MD Frame Clustering

In order to retrieve the key contacts between the protein partners during the entire
simulations, for the MD simulations performed for Ras-Sos, Ras-RasGRF1, and Ras-RB3
peptide complexes, the frames were clustered to identify the most representative centroids
to be analysed. The RMSD matrix calculation was set using the protein backbone as
reference, the frequency of frames analysis was set 10, and the hierarchical cluster linkage
method as average. Finally, for each MD trajectory, five clusters were generated; the
analysis was reported in the Results and Discussion section.

3.4. Computational Residue Scanning of Peptide 310-HBS RB3 in Complex with Ras

The 310-HBS RB3 peptide in complex with Ras (from PDB 1XD2 [48]) was used to
perform a computational residue scanning (Schrödinger Inc., software release v2018-4) to
perform point mutations on the peptide residues. The predicted changes in binding affinity
and stability were calculated according to Equation (1) [92]:

∆∆GA f f inity =
(

EMUT
A·B − EMUT

A − EMUT
B

)

−
(

EWT
A·B − EWT

A − EWT
B

)

(1)

where E is the calculated energy of each protein (A and B) or complex (A·B) after refinement
while considering the mutant form (MUT) and the wild-type (WT) of the protein. The result-
ing structures were refined by selecting side-chain prediction with backbone minimization.

For the purpose of the model, ∆∆Gstability was computed while representing the
unfolded ligand as a tripeptide, A-X-B, where X is the residue that is mutated, and A and B
are its neighbours, capped with ACE and NMA. The assumption was that the remaining
interactions in the unfolded state were negligible. Thus, ∆∆Gstability values were calculated
according to Equation (2):

∆∆GStability =
(

EMUT
L(u) − EMUT

L( f )

)

−
(

EWT
L(u) − EWT

L( f )

)

(2)

where E, in this case, is the calculated energy for the unfolded parent ligand (L(u)) and the
folded parent ligand (L(f)) while considering the mutant form (MUT) and the wild-type
(WT) of the protein [92]. The calculations were done with Prime MM-GBSA [102,103],
which employs an implicit (continuum) solvation model.

3.5. MM-GBSA Calculations of All the Complexes Used to Perform MD

The MD outputs of Ras protein in complex with 310-HBS RB3 peptide, the point-
mutated peptides, and the combinatorial peptides were used to compute MM-GBSA calcu-
lations through the command line. For this purpose, the Python script “thermal_mmgbsa.py”
was used. Overall, 65 MM-GBSA calculations were carried out using VSGB as a solvation
model, and OLPS3 FF was set for each MD trajectory. The ∆Gbinding values were computed
for each trajectory frame according to Equation (3):

∆Gbinding = EA·B (minimized) − EA (minimized) − EB (minimized) (3)

where E is the calculated energy of complex (A·B) or each protein (A and B) after minimiza-
tion [68]. Finally, the average of ∆Gbinding values of the entire trajectories was calculated;
the results were reported above in Tables 7 and 8 in the “Results and Discussion” section.

4. Conclusions

The above-described work was intended to investigate potential modifications of a
patented peptide, RB3 [64], to increase its inhibitory capacity of the Ras–ERK signalling
pathway involved in cocaine abuse. This peptide has been reported to work as an inhibitor
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targeting the interaction between Ras protein and the guanine nucleotide exchange fac-
tors [63]. In detail, assays carried out on an ex vivo model of acute striatal brain slices
reported an inhibitory activity of RB3 peptide against ERK phosphorylation by significantly
reducing the ERK activity, with an IC50 of 6 µM. The inhibitory potential of this peptide was
further explored by Papale and colleagues, who highlighted that this peptide was effective
in decreasing the phosphorylation of two ERK substrates, (Ser10)-acetylated (Lys14) histone
H3 (pAc-H3) and S6 ribosomal protein (pS6, Ser235/236 specific site) [69–71], with an IC50
of 5.2 µM for pAc-H3 and 3.69 µM for pS6 [63]. Due to the increasing interest in the RB3
peptide, it was chosen for to improve and modify the structure, aiming at increasing its in-
hibitory activity to reduce cocaine relapses in drug-addicted patients. The below-described
strategy allowed us to identify 18 peptides exploiting the peptide RB3 structure, including
amino acid mutations, and employing an artificial construct, the hydrogen bond surrogate,
to stabilise the helical conformation of the peptides. The MD simulations performed on
these molecules in complex with the Ras protein registered stable and frequent contacts
with key residues of the Ras protein, as known from the literature [43,61]. Furthermore,
MM-GBSA calculation of the MD trajectories reported promising ∆Gbinding average values,
where, for example, the combinatorial peptide forty-three showed a ∆Gbinding value of
−123.50 kcal/mol. Interestingly, the selected combinatorial peptides showed an important
interaction energy increase compared to the point-mutated ones, whereas the GB solvation
term reported positive values (see Tables S3 and S5 in the Supplementary Materials). Thus,
it seems that the presented combinatorial peptides’ interaction patterns were crucial for
the complex stabilisation, as also observed in the MD RMSD plots (see Table S6 in the
Supplementary Materials).

Therefore, the 16 selected combinatorial peptides were chosen, and the next step of
this work will be the biological screening of the ERK signalling pathway by measuring
the phosphorylation rate of the two ERK substrates, pAc-H3 and pS6 [69–71]. The results
of these assays will provide crucial information about the potential of these designed
peptides in inhibiting Ras activation, thus preventing molecular effects’ maladaptive be-
havioural manifestations associated with brain conditions in which this signalling pathway
is abnormally enhanced, such as cocaine abuse and certain forms of ID and ASD.
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.3390/ph14111099/s1, Figure S1. FASTA sequence alignment between RasGRF1 interacting region
from two different organisms (Homo sapiens and Mus musculus); Figure S2. RMSD plot of the MD
simulation performed on the Ras-Sos complex (PDB 1XD2); Table S1. Plots of the H-bonds established
between Ras and Sos during the MD simulation; Figure S3. RMSD plot of the MD simulation
performed on the Ras-RasGRF1 complex; Table S2. Plots of the H-bonds established between Ras
and RasGRF1 during the MD simulation; Figure S4. RMSD plots of first (a) and second (b) MD
simulations performed on the Ras-RB3 peptide complex; Figure S5. RMSD plot of the MD simulation
performed on the Ras protein in complex with the 310-HBS RB3 peptide; Table S3. ∆Gbinding
average values of the interaction energies and the generalized Born solvation energy for the MD
trajectories of the complexes’ Ras-point-mutated 310-HBS RB3 peptides; Table S4. RMSD plots of 100
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Abstract: We review the use of molecular dynamics (MD) simulation as a drug design tool in the
context of the role that the lipid membrane can play in drug action, i.e., the interaction between
candidate drug molecules and lipid membranes. In the standard “lock and key” paradigm, only
the interaction between the drug and a specific active site of a specific protein is considered; the
environment in which the drug acts is, from a biophysical perspective, far more complex than
this. The possible mechanisms though which a drug can be designed to tinker with physiological
processes are significantly broader than merely fitting to a single active site of a single protein. In this
paper, we focus on the role of the lipid membrane, arguably the most important element outside the
proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation,
concerning the transfection of drugs through membranes that act as biological barriers in the path
of the drugs, the behavior of drug molecules within membranes, how their collective behavior can
affect the structure and properties of the membrane and, finally, the role lipid membranes, to which
the vast majority of drug target proteins are associated, can play in mediating the interaction between
drug and target protein. This review paper is the second in a two-part series covering MD simulation
as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both
pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to
their research and computational scientists interested in exploring the possibility of a pharmaceutical
context for their research.

Keywords: molecular modeling; permeability; membrane disruption; membrane proteins; drugs;
antimicrobial peptides

1. Introduction

In the most breathtaking giant leap forward in life science since the determination
of the double helix structure of DNA, the general structure from the sequence problem
has now been solved for the case of an individual protein domain [1]. Additionally, in
2020, the Human Proteome project, after ten years of work, reported that their complete
high-stringency blueprint of the human proteome is 90.4% complete [2]; thus, an accurate
sequence of every human protein and the most common variants is in sight. Together, these
developments mean that we can now foresee being in possession of accurate structures
for the active sites of all human proteins and most common variants; with predicted
advances in computational power and the development of better algorithms, it is no longer
fantasizing to speculate that, in the near future, it could be possible to obtain a sufficiently
accurate estimate of the binding free energy for any given drug candidate molecule for
every single possible human protein active site it may encounter. This may represent
a Holy Grail of drug design; however, it does not mean the problem of computational
drug design will have become a solved problem—it leaves out the rest of the biophysical
landscape within which drug action takes place. This review paper explores the role that
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computational modeling, using the toolkit of molecular dynamics (MD) simulation, can
play regarding drug design outside of this “lock and key” paradigm, focusing on one
fundamentally important aspect: the lipid membrane.

In our previous review paper [3], part 1 of this series, we presented many examples of
how MD simulation has been used as a tool to provide mechanistic insight relevant to drug
delivery and how this insight has been used, in concrete practical terms; we now continue
the discussion of the role MD simulation has and will continue to play in pharmaceutical
research, focusing, in this review paper, on its role in drug design, specifically covering its
ability to elucidate a central element left out of the conventional drug design paradigm:
lipid membranes. As with part 1, this is a pedagogical review, with two separate target
audiences, pharmaceutical researchers interested in understanding the increasing role
MD simulation can play in their research, and computational researchers interested in the
possibility of developing a pharmaceutical context for their research.

In part 1, we reviewed what MD simulation is and the limitations of both the afore-
mentioned conventional “lock and key” approach to drug design [4,5] and the absorption,
distribution, metabolism, and excretion (ADME) approach to drug delivery [6–8] that has
led to the diminishing returns known as “Eroom’s law” [9]. We showed how MD simulation
can provide mechanistic insight needed for the development of advanced drug delivery
mechanisms. We argued that research has been hamstrung by the limited paradigm used
and that MD simulation has the power to bring into consideration the broader biophysical
context within which drug delivery occurs; we now proceed to argue the same for the case
of drug design. As discussed in part 1, drug design has been carried out within a limited
paradigm that only considered a compromise between the drug interaction with the active
site of a specific target protein and its solubility; increasingly sophisticated techniques are
being used to approximate the relative binding free energies of different drugs, in each case
a balance being reached between maximizing accuracy and minimizing the computational
resources used [10]. Although techniques have recently been developed to consider the
importance of binding kinetics [10–14], in addition to thermodynamics, this still does not
take the broader biophysical context in which the drug interaction with the protein occurs
into consideration, i.e., the environment beyond the immediate drug protein interaction;
additionally, it is possible for drugs to have an effect that does not even involve interaction
with a protein, i.e., a mode of action entirely external to the “lock and key” paradigm.

The elucidation of all aspects of the biophysical context of drug action is currently
beyond reach and even all aspects that MD simulation is capable of elucidating are beyond
the scope of a single review paper; we thus focus on an important element involved in
drug action left out of the “lock and key” paradigm: lipid membranes. Biomembranes,
complex fluid structures formed primarily from bilayers of phospholipids, are one of the
primary building blocks of life [15–18]. In all cases, drug access to its target and action
involves, in some fashion, interaction with biomembranes. Drug molecules must traverse
membranes that form biological barriers. The majority of proteins that are drug targets
are associated with biomembranes and the membrane plays a role in the interaction with
substrates, thus potential drug molecules; interactions of both target proteins and drugs,
with the membrane to which the protein is associated, play a role in the drug–target protein
interaction. Finally, there are cases where the mode of action of the drug does not even
involve interaction with a protein; the drug acts directly on a specific biomembrane rather
than with a protein. In all of these cases, MD simulation, a mature tool for the study of
biomembranes [19–27], can provide a window on the role the lipid membrane plays in drug
action; this review paper describes how MD provides mechanistic insight and includes
many examples where it has been successfully applied. We will first discuss the behavior
of drug molecules in the membrane, then how drugs transfect through membranes that
form biological barriers and how drugs can, collectively, at sufficient concentration, affect
the properties of the membrane. Finally, we will discuss the role the membrane plays
in the selection of substrates, thus potential drug molecules, for membrane associated
proteins. In all these areas, MD simulation has acted as a unique window capable of adding
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mechanistic insight that can be applied in drug design; we describe many case studies
where this has been used effectively.

While previous review papers have shown how MD simulation has helped elucidate
the role the lipid membrane plays in substrate and thus drug selection for membrane pro-
teins [28–32], drug membrane interactions [33–41], drug delivery [3,42–45], antimicrobial
peptides [46–54], and methodologies [28,55–60], this is the first review paper, that we are
aware of, focusing on the entirety of the use of MD simulation to incorporate the role
played by interactions with lipid membranes in drug design. This can be seen, in turn, as a
case study of the potential for MD simulation to expand the paradigm of drug design to all
aspects of the broader biophysical environment within which drug action occurs.

We now refer the reader to our discussion of the basics of the MD simulation method
in our previous review paper, i.e., “part 1” [3], or an equivalent discussion found in Braun
et al. [61], where its ability to provide an effective visualization of the system studied with
all atom resolution (also reviewed in [62–65]) and how coarse grained (CG) potential sets
can be used to effectively zoom out to study larger length and time scales (also reviewed
in [66–70]) are covered. However, the application of MD simulation to the study of the
more complex systems involved in drug action rather than drug delivery, that we cover in
this review, requires advanced MD simulation related methodologies not discussed in the
aforementioned references; these will now be described and examples of their use will be
encountered later, throughout the rest of the paper. As an aside, it is appropriate that we
now draw attention to the fact that the chemical structures of the lipids discussed in this
manuscript are shown in Figure 1.

2. Advanced Simulation Methods

In its pure form, MD simulation provides a window into the system, with all atom
resolutions, at a timescale of up to 1–2 µs and a box size of up to 15–20 nm, significantly
greater with CG models [3]. In our previous review paper [3], we discussed many examples
where this has been used in issues related to drug delivery, and how it is a valuable tool
when used its in pure form; however, significant limitations are encountered when one
addresses issues related to drug design rather than delivery.

When expanding what we consider in drug design the oversimplified “lock and key”
paradigm to the broader context of all the relevant biophysics, there are many challenges
that result from the added complexity. Within the context of biophysics, drug design can be
studied through the paradigm of the interaction of four different basic varieties of entities,
each of which present their own challenges: (1) small drug molecules, which, while simple
in structure, are often chemically/structurally novel as they are often synthetically created
molecules that do not naturally exist, thus in many cases new parameter sets must be
developed and extra challenges are encountered in attempting the development of CG
models; (2) specifically structured large biomolecules, e.g., proteins and nucleic acids,
that have a highly specific structure defined by a very rigid, steep, and complex energy
landscape that molecules that interact with them must negotiate; (3) large unstructured
molecules, e.g., polymers that, while without specific structure but with an uncomplicated
energy landscape governing their interactions, exhibit complex behavior that is difficult to
model due to topological effects that arise spontaneously due to their size and flexibility;
(4) lipid membranes, that are flexible, complex, and diverse entities with very complex
interactions with other elements. Clearly, one must adopt more advanced methodologies
rooted in MD simulation to explore this complex landscape and these will now be intro-
duced. Discussing this will, however, require the presentation of some mathematical and
physical (thermodynamic) constructs.
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Figure 1. Chemical structure of lipids mentioned in this paper.

Let us consider our window into a given physical system that is provided by MD
simulation: a set of molecules with periodic boundary conditions being simulated at
temperature T, e.g., a section of lipid membrane, protein, or other macromolecule or
molecular complex in solvent. Technically, this can be seen as a set N particles governed by
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a potential that is a function of the position of all particles: U(
→
r

N
);

→
r

N
is the position of

all particles, which can in turn be seen as a point in a 3N dimensional space with {
→
r

N
}

representing the entirety of this space, i.e., the set of all possible particle positions, known

as the conformation space, i.e., the system of N particles governed by potential U(
→
r

N
) can

be said to inhabit the space {
→
r

N
}. If we begin the simulation at a certain point in this space

→
r

N

0 and simulate, with a thermostat holding the system at constant temperature T, using
the MD simulation method described in our previous review paper “part 1” [3], then the
system will move around in this space following what can be called a trajectory. In any real

simulation there will be enough particles and U(
→
r

N
) will be sufficiently non-trivial so that

we can assume what is known as the ergodic hypothesis: given infinite time, the system

will eventually pass through all possible points in {
→
r

N
}. The relative amount of time

spent within a given 3N dimensional differential element d
→
r

N
will be equivalent to the

probability of the system being within that element that we will signify as P(
→
r

N
, T)d

→
r

N
.

For a system at constant temperature, i.e., a canonical ensemble [71],

P(
→
r

N
, T) =

e−γ

Zu(T)
γ =

U(
→
r

N
)

T
(1)

where Zu(T) is a normalization factor known as the partition function that is, for any
but the most trivial systems, impossible to determine analytically; in this equation, we

have assumed temperature to be in units that match U(
→
r

N
), thus have not included the

Boltzmann constant normally seen in this equation. A clever way around the impossible
to determine partition function makes use of the principle of detailed balance: given

two points in the conformation space
→
r

N

1 and
→
r

N

2 , the ratio of the transition probabilities

between these two points, W(
→
r

N

1 →
→
r

N

2 , T) and W(
→
r

N

2 →
→
r

N

1 , T) is equal to the ratio of
the probabilities of being at the two points:

W(
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r
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2 →
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N

1 , T)
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N

1 →
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N

2 , T)
=

P(
→
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1 , T)

P(
→
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2 , T)
(2)

Given

∆γ =
U(

→
r

N

2 )

T
−

U(
→
r

N

1 )

T
, (3)

an algorithm that satisfies all preceding relations, is: for a system at
→
r

N

1 considering

a transition to
→
r

N

2 , if ∆γ ≤ 0 the system moves to
→
r

N

2 otherwise the transition occurs
with probability e−∆γ. This can be continued indefinitely, following what is known as a
Markov chain, moving through conformation space sampling a set of states that will have

a distribution of P(
→
r

N
, T) in the limit of infinite steps. The result of carrying this out for

a finite number of steps is thus an approximation of P(
→
r

N
, T), that we will refer to as

P(
→
r

N
, T); as the number of steps in the Markov chain increases, the longer the trajectory,

the greater the accuracy of our approximation. The simulation of a system in this fashion is
known as a Monte Carlo (MC) simulation [72].

If one is able to concisely calculate P(
→
r

N
, T) over all {

→
r

N
} for any system, then one

will know everything that is to be known about that system and any property of that
system can be calculated; this is, however, impossible for all but the most trivial systems.
Yet, both MC and MD simulation are able to provide an incomplete estimate of this: the

above mentioned P(
→
r

N
, T); the longer the trajectory the more information, for the case of
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MD as well as MC simulation. Depending on how the algorithms are constructed, each
have their relative strengths and weaknesses and can be hybridized, particularly since MD
simulation has been shown to be superior at relaxing the local degrees of freedom, while
MC simulation, if designed properly, can more effectively relax the more global degrees
of freedom [73–76]. While MD simulation, if carried out on its own, can also provide
information related to dynamics, this information is usually of secondary importance; we

will only consider MC and MD simulation as means to provide a result for P(
→
r

N
, T) here.

The problem with both MC and MD simulation, or even the two hybridized, in their

basic forms, is that the approximation of P(
→
r

N
, T) (P(

→
r

N
, T)) will provide the most infor-

mation in the regions of the conformation space of the system where P(
→
r

N
, T) is greatest.

For many cases, for example, the aforementioned systems related to drug delivery [3], this
may be sufficient, i.e., the answer to the question “what does the system normally do?” may
be all we seek. There are many cases where this will not be sufficient, for example, when
calculating the free energy to cross certain barriers from one region of conformation space

to another. A useful schematic is to express
→
r

N
as a single dimension x rather than 3N

dimensions and plot U(
→
r

N
) as U(x), as shown in Figure 2. The energy landscape is very

rough with many peaks and valleys; with either MC or MD, in their basic form, crossing
a very high energy barrier will be an extremely unlikely event. If you have managed to

determine the global energy minimum, then you will only obtain results for P(
→
r

N
, T) in

the local valley of the global minimum. Even worse, usually, you cannot even be certain
you have found the global minimum and thus will only be exploring the vicinity of a

local minimum. In general, the primary concern is the region of {
→
r

N
} where you need to

obtain information regarding P(
→
r

N
, T). If you wish to calculate the free energy difference,

between two different local minima, then you will need to obtain a result for P(
→
r

N
, T) in

the region of conformation space along the path that connects them. For example, for the
affinity of a drug for a protein, we need to determine the free energy difference between the
drug in solution and the drug bound to the specific binding site of the protein that is being
targeted. Moreover, in many cases, what is of interest in the simulation is what is known
as a “rare event”; this corresponds to a transition through a region of conformation space

with low P(
→
r

N
, T). We will now discuss how approximate values of such free energies can

be calculated and rare events can be sampled more effectively, using advanced simulation
methods.

The most direct way to increase the region of space where P(
→
r

N
, T) is obtained, and

to ensure the rare events that we wish to observe are sampled, is to globally accelerate the
sampling. The simplest way to achieve this is to just artificially raise the concentration of the
molecules that would trigger the event. This is known as a flooding simulation [77]. Another
simple method is to perform an MD simulation at an artificially raised temperature, to
move the system through conformation space more quickly and through greater thermal
excitation push the system through energy barriers that would otherwise not be crossed.
Obviously, just simply raising the temperature will often be problematic as the alterations
to the system, e.g., passing through phase transitions, that happen in the real system
with elevated temperature, will often occur in the model, producing a false result. A way
around this is to anticipate the unphysical changes to the system the temperature rise

will invoke and add a bias potential to U(
→
r

N
) to block this from occurring while raising

the temperature; this method is known as temperature accelerated molecular dynamics
(TAMD) [78]. While TAMD has been used effectively in many cases, it suffers from the
problem that the bias potential may not completely alleviate the undesired temperature
effects. A safer but more complex method to achieve the same acceleration, but with a
guarantee of obtaining an unbiased result, is Replica Exchange.
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Figure 2. Schematic of the energy landscape of a system; with basic unbiased MD or MC simulation, if performed below a

certain temperature, only the region of the local minimum will be explored, thus a result for P(
→
r

N
, T) will only be obtained

here. Finding the free energy change to another region of conformation space, where the energy barrier must be crossed and

P(
→
r

N
, T) determined along the path, is not practically possible without the advanced biasing schemes we discuss.

In replica exchange [79–81], originally described as parallel tempering in the seminal

literature, the system of N particles governed by potential U(
→
r

N
) that inhabits the space

{
→
r

N
} being simulated at temperature T, using either MD or MC, can be simulated in

parallel with a set of other systems with the same set of particles, however, with other
parameters altered. The set of systems can be simulated as a single extended ensemble;
this can be seen as a metaverse of parallel universes, a concept that a broader segment
of the audience of this paper can understand intuitively now, due to the popularity of
recent movies and television shows that have featured such plot elements. Within this
new extended ensemble, switching the parameters between two, so to speak, universes
within the multiverse that we have created, can be seen as an MC step that can be made
with probability e−∆γ where γ is as above, however, now rather than alteration of particle

positions, i.e., a change in
→
r

N
, the change in γ, ∆γ, results from temperatures and/or

potential functions that governs the systems switching; a schematic of this algorithm is
found in Figure 3A. It can be demonstrated mathematically that not only does the collective
metaverse that we have created move to equilibrium, but each individual system, separately,
moves to equilibrium, thus systems with parameter sets that move more slowly through
conformation space are effectively pulled along by those that move more quickly. Initially,
this was performed with multiple systems that differed in thermodynamic parameters
of the system, like temperature and pressure [82]. Then, Bunker and Dünweg realized
that one could more precisely accelerate the dynamics by having the systems differ not

in a thermodynamic parameter, but rather a term in the interaction potential U(
→
r

N
);

specifically, they proposed eroding the repulsive core of the Lennard–Jones potentials,
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allowing for a finite acceptance of MC pivot moves hybridized with MD simulation in
the backbones of polymer chains [76] and referred to this as parallel excluded volume
tempering. Fukushini et al., then generalized this and applied it to protein structure
determination and coined the term by which this procedure is known today: Hamiltonian
replica exchange [83].

The aforementioned techniques globally accelerate the motion through conformation

space, thus the efficiency with which the quality of P(
→
r

N
, T) as an approximation of

P(
→
r

N
, T) is improved. There are, however, other techniques capable of focusing more

specifically on the local region of the conformation space where the system is located—
specifically allowing the system to escape the local minimum within which it is trapped.

For a system on a discrete space, that is where
→
r

N
is a set of specific points, or states, i.e.,

{
→
r

N
} → xi=1,N , Wang and Landau developed an algorithm [84] where an MC simulation

of a system on the discrete space is performed and the number of times the system samples
a certain state is recorded and periodically a bias is added to the potential, proportional
to the number of times a state has been sampled. Metaphorically, this can be seen as
filling up the energy wells that the system has already explored with sand, pushing the
system over energy barriers into new energy wells, and then filling them up and so on.
This algorithm was adapted to continuum systems, on which MD simulation can be
performed, as Statistical Temperature Molecular Dynamics (STMD) [85] and this has been
formally shown to be mathematically equivalent [86] to the better-known technique of
metadynamics [87–91]. An example of metadynamics at work is shown in Figure 4. An
alternative to metadynamics is the application of a specific alteration to the potential to
push the system out of a specific local minimum; this is possible when the form of the local
minimum can be approximated by an analytical function that can be cancelled out. This
technique is known as the addition of a flooding potential [92].

We have now described methods to globally accelerate the exploration of conformation
space and to, more specifically, escape from the local minima that constrain the system; this,
however, still often leaves a conformation space too large to explore to obtain a sufficiently

accurate result for P(
→
r

N
, T) in the region of conformation space that we are specifically

interested in. Often, this is the transition between two specific local minima, in particular,
calculating the free energy difference between them. A specific example of this is a ligand
in solution vs. the same ligand docked to a specific active site of a specific protein. The
most direct way to achieve this is to push the system through a path in conformation
space between the two local minima. There are two means to achieve this: (1) umbrella
sampling [93] and (2) steered MD [94,95].

In umbrella sampling, a set of what we refer to as windows are created along a path
in conformation space that connect the two local minima. This is achieved through the
introduction of a biasing force that is in the form of a harmonic interaction, i.e., a spring,
centered on a certain distance along the path in conformation space that connects the two
local minima. Histograms of the distribution in position along the path in conformation
space are determined for each window; a schematic of umbrella sampling is shown in
Figure 5. The free energy along any path in conformation space, known as the Potential of
Mean Force (PMF), can be determined from these histograms, if the overlap between their
tails is sufficient, through a technique known as Weighted Histogram Analysis Method
(WHAM) [96]. WHAM is itself an extension of a technique developed by Ferrenberg
and Swendsen [97,98] primarily for spin models [99], to specifically adapt it to systems
governed by a molecular mechanics potential. A specific example that elucidates the use
of umbrella sampling is the study by Nandy et al. [100], where it was used to study the
binding of PAMAM dendrimers of different generations to strands of ds-DNA; in the
supplementary information of this paper the overlapping set of histograms is shown. The
efficiency of the umbrella sampling algorithm can, in many cases, be significantly improved
through hybridization with the replica exchange algorithm [101]; the set of all windows
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can be treated as a single extended ensemble where exchanges of the force biases between
neighboring windows can be made through the aforementioned MC moves.

 

Figure 3. (A) Schematic representation of replica exchange (based on ref. [28]); (B) force bias/Jarzynsky, reproduced
with permission from ref. [94]; (C) RAMD, reproduced with permission from ref. [102]; (D) thermodynamics integration,
reproduced with permission from ref. [103].

Steered MD is another technique capable of determining the free energy change along
a path in conformation space that, in many cases, is significantly more computationally
efficient than umbrella sampling. It is based on an astounding, counterintuitive, piece of
theoretical statistical mechanics proposed by by Jarzynski in 1997, almost 20 years before
the computational power to apply this algorithm effectively became available; the relation
he derived [104,105], known as the Jarzynski equality, can be expressed as

〈e
−W

T 〉 = e
−∆F

T (4)

where 〈 〉 signifies the average over infinite samples, W is the work carried out along the
path in conformation space, i.e., the integral of the force along the path, and ∆F is the
difference in free energy between the two ends of the path. The free energy difference
between two points in conformation space, a property defined only for a system in equi-
librium, can actually be approximated from multiple samples of the work carried out
pulling the system from one to the other, a driven system, i.e., a measurement of the system
out of equilibrium. Steered MD involves simulating the system while pulling the system
along a path in conformation space to determine the work carried out along this path;
it is performed multiple times, each time a measurement of W is made. There are two
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fashions in which this pulling can be performed [94]: constant force, where the velocity is
measured along the path, or constant velocity, where the force is measured along the path;
this is shown as a schematic in Figure 3B. This algorithm was initially thought not to be
practical as, in its early use, it obtained very poor results for the free energy; however, more
recently, it was found that if you perform a much larger number of samples than previously
feasible, one is able to obtain a result for the free energy difference that, in many cases, is
significantly more accurate than that obtained using umbrella sampling using the same
computational resources. This algorithm is increasingly being used in drug design [95].

Figure 4. Schematic representation of metadynamics.

The above methods presuppose that the path in conformation space that the system
will traverse is known; however, this is not always the case. Often, the active site of a
protein is within an internal cavity and the path through channels and mobile loops of the
protein that a ligand takes to reach the active site, is unknown. In this case, a technique
to not only find the free energy along a path in conformation space must be found, but
the path itself must also be found. A technique capable of achieving this is Randomly
Accelerated Molecular Dynamics (RAMD) [106]; this involves starting the ligand in its
docked position, moving it in a random direction until it gets stuck, then picking another
direction and repeating until the ligand has left the protein, bouncing back and forth until it
wiggles out of the box it is in; an example of this is shown in Figure 3C. A modified version
of RAMD, known as τRAMD allows for the study of the residence time of ligands in the
binding pocket [107]. Two additional methods have been developed to find the optimal
pathway in complex multidimensional space that bear mentioning: the first is based on the
combined use of metadynamics and a path-searching algorithm [108] and the second is
based on what is known as a “string method” involving a swarm of trajectories [109,110].

All of the above methods to determine the free energy between two regions of confor-
mation space, usually two different local minima, involved moving the system through a
path in conformation space. While accurate, this is not always the most efficient method if
all you are interested in is a single quantitative approximation for the free energy difference
between the end points of the path and not the free energy along the path, i.e., the PMF.
While this information is often useful, as it provides insight into the kinetics in addition
to the thermodynamics of the system [10], it does not come without a price; if you is only
interested in the free energy difference between the end points of the path, there are more
efficient means to obtain an approximation of this. Instead of charting a path through
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conformation space, you can instead move through a space composed of different possible

forms of the interaction potentials, U(
→
r

N
), itself to determine this; if you start with, for

example a ligand bound to the active site of a protein, and that same ligand free in solution,
in each case you can gradually dissolve the interactions around the molecules to find the
free energy difference to the molecule in empty space: subtracting these from one another
determines the free energy difference between them. There are several different related
methods that follow this scheme, each with different advantages and disadvantages, includ-
ing Thermodynamics Integration (TI) [111], Free Energy Perturbation (FEP) [112–114], and
Bennett Acceptance Ratio (BAR) [115,116]. If one is also only interested in the difference of
the binding affinities of two different molecules and the absolute free energy of binding is
not important, then one can perform what is known as molecular alchemy, calculating the
free energy change along the path of metamorphosis from one molecule to the other, both
in solution and at the binding site and subtracting these two from one another, as shown in
the schematic in Figure 3D. These techniques in the context of drug design are discussed in
detail in a review paper by Limongelli et al. [10].

 

𝑈ሺ𝑟ேሻ

Figure 5. Schematic representation of umbrella sampling algorithm.

Finally, it bears mentioning that, as in other fields of computational science, an emer-
gent trend is the incorporation of the toolkit of novel computational tools widely known
as Machine Learning (ML) into hybrid MD algorithms; for a recent review (2020) of
achievements in the hybridization of MD with ML, see Noé et al. [117]. Recently, a hybrid
FEP + ML algorithm was found to provide a more accurate result, given the same expendi-
ture of computational resources, than the use of FEP alone, for the prediction of hydration
free energies [118]; a hybrid MD + ML algorithm was used to predict self-solvation free
energies and limiting activity coefficients [119].

3. Location and Orientation of Drug Molecules in the Lipid Bilayer

The beginning of the story of the role of lipid membranes in drug design is a discussion
of what individual drugs do when they initially interact with a lipid membrane, where in
the membrane they locate to and how they orient within the membrane; this is clearly a
result of both the nature of the lipid membrane, i.e., what particular phospholipids and
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other amphiphilic molecules make up the membrane formulation and the structure of the
drug molecule itself, i.e., location and relative dominance of polar, charged, and non–polar
regions of the molecule and the flexibility/rigidity of the molecule (Figure 6).

Figure 6. Chemical structure of drugs introduced in Section 3.

The partitioning of small molecules, including proposed drug candidates (see Table 1)
but also natural molecules (see Table 2) and other xenobiotic molecules (see Table 3),
into lipid bilayers has been extensively studied via a combination of experimental and
computational methods. How molecules interact with the membrane, i.e., how they
orient and the different regions within the membrane that they locate to, is determined by
their structure; MD simulation can provide significant insight into this specific selection.
Through simulations carried out on many different drug molecules, a wide range of drug
behavior in the membrane, i.e., location and orientation, has been observed.

Berendsen and coworkers [120,121] developed a classification scheme for the behavior
of molecules within the membrane according to the region of the membrane that they
locate to; they defined four separate regions, as shown in Figure 7: region (1) at the interface
between the bulk solvent phase and the lipid headgroups, i.e., the region of the headgroups
and the first shells of water adjacent to the membrane, region (2) just below the lipid
headgroups, region (3) at the position of the hydrophobic lipid tails, and region (4) at the
very center of the membrane core, between the two leaves of the bilayer. Through MD
simulations, it has been demonstrated that small hydrophobic molecules e.g., benzene or
toluene [122,123], and gases like xenon, O2, NO, CO, and CO2 [124–129] locate to region 4;
larger hydrophobic molecules, e.g., porphyrins, locate to region 3 [130,131]; amphiphilic
molecules, e.g., the majority of drug molecules, our primary interest in this review paper,
locate to region 2, their polar components interacting with the polar groups of the lipids and
water at the membrane surface and their hydrophobic components located among the hy-
drocarbon chains of the lipids, as shown in a study by Paloncýová et al., of drug molecules,
natural compounds, and other xenobiotics [132]. Mostly polar molecules, including some
drug molecules, locate to region 2. Finally, kanamycin A, a highly polar molecule with
potential application as an antibiotic, locates to region 1 [133]; antibacterial peptides and
saponins [134–136] also locate to this region prior to pore formation. It is possible for
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drugs to locate to the membrane in a fashion that spans more than one of these regions;
examples of this case are particularly interesting as they include several lipid molecules
with therapeutic potential. For example, N-arachidonylglycine and oleoyl-L-carnitine are
glycine transporter GlyT2 inhibitors that span over regions 2 to 4 [137]. Nevertheless,
even molecules that do not directly interact with the membrane can have a long–range
membrane association. For example, the concentration of polar molecules relative to the
bulk concentration may increase or decrease in the ~1 nm layer of water adjacent to the
lipid bilayer; also, acetylcholine is attracted to bilayers that contain negatively charged
lipids [138–140] and repulsed by bilayers composed of zwitterionic lipids, as determined
through both the MD simulation and experimental study [139]. The zwitterionic neuro-
transmitters GABA and glycine are attracted to bilayers that contain anionic lipids but
are, however, not affected by zwitterionic lipids [139]. Glutamate, another polar, anionic,
neurotransmitter, is repulsed from the vicinity of negatively charged lipids [139].

Figure 7. Location of the drugs and small molecules in four regions of a lipid bilayer. (A) Top panel: Snapshot of lipid
bilayer composed of POPC; Lower panel: corresponding density profiles showing location of lipids, water, phosphate
atoms, carbonyl atom (C35), and atoms of double bond of oleoyl chain (C9=C10) of POPC (see Figure 1). Data from 1000 ns
simulation of hydrated POPC bilayer with our OPLSaa lipid force field [141–143]. (B) Snapshots showing location of small
molecules in different regions of the bilayer: kanamycin A locates to region 1 (reproduced with permission from [133]),
indocyanine green locates to region 2 and 4, and entangled in PEG corona (reproduced with permission from [144]),
ubiquinone locates to region 3 and 4 (reproduced with permission from [145]).

Since drugs and lipids are generally small molecules without the structural complexity
often found in biomolecules, studies of drug molecule–lipid bilayer (membrane) interac-
tions are usually relatively straightforward to carry out, even given limited computational
resources; the systems studied, lipid membranes with small drug molecules, equilibrate
relatively quickly and can be studied effectively using relatively small systems. It is thus
not surprising that interactions of proposed drug molecules with lipid bilayers were among
the first topics to be studied using MD simulations of lipid membranes [19], for example the
studies by Tu et al. [146], Pasenkiewicz-Gierula et al. [147] and Bemporad et al. [148,149]
carried out in 1998, 2003, and 2005, respectively. More recently, a particularly notewor-
thy study by Abdiche and Myszka measured the liposome partitioning of 86 drugs and
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observed an astounding affinity range of ~1000 fold [150]. In another impressive study,
Natesan et al., proposed a theoretical method based on drug structure that allowed for
the prediction of the location of drug molecules within the bilayer [151]; this work was
performed using experimental results of 107 separate small molecules interacting with
lipid membranes. An extensive database was compiled that contains over 3600 cases
of compound–membrane interactions gathered from both experimental and theoretical
studies, known as the “Molecules on Membranes Database” (MolMeDB), [152]; MolMeDB
provides data concerning drug–membrane partitioning, penetration, and positioning.

As is the case for all phenomena studied through MD simulation, the precise values
for the parameters of the potential set used are of critical importance, thus the testing
and validation of the model are crucial [153–162]. Partition coefficients of the molecule
(log K) provide an important test of the potential set that can be directly correlated to
experimental measurements. For membrane partitioning of small molecules, comparative
studies have demonstrated that the best models predict the partition coefficients (log K)
with an accuracy of 0.5–0.8 log units [163]. This result thus provides us with a certain
degree of confidence in the accuracy with which MD simulation is capable of effectively
modeling the behavior of molecules in the membrane; the partition coefficient plays a
dominant role in the drug–membrane interaction.

Simulation studies using MD have demonstrated that the location of the drug molecule
is dependent on the hydration level or lipid composition; this relationship has also been
studied using MD simulation: a reduced hydration level can be simulated by reducing
the thickness of the solvent phase of the simulation box. For example, in a hydrated
bilayer, curcumin has been found to locate below the water–membrane interface and
orient parallel to the bilayer normal [164]. Interestingly, curcumin, in bilayers with low
hydration, locates outside the bilayer and adopts an orientation parallel to the membrane
surface, forming a carpet-like structure. Another MD simulation study determined that
the distribution of carprofen derivatives along the bilayer normal is bimodal, with the
first density maximum located at the position of the lipid headgroup and a second deeper
below the membrane–water interface [165]. When the bilayer is in the liquid disordered
phase, the second position has been found to be more frequent than in the liquid-ordered
phase. The location of ibuprofen is sensitive to cholesterol [166], thus also to the membrane
phase. In the DPPC bilayer with 25 mol% of cholesterol, ibuprofen locates slightly closer to
the water–membrane interface in comparison to the case of the pure DMPC bilayer (0.81
and 0.95 nm below the position of the phosphate group, respectively); in the bilayer with
50 mol% of cholesterol, ibuprofen, however, is found below the lipid headgroups, within
the hydrophobic bilayer core (regions 3 and 4).

Extra complexity to the drug molecule–bilayer interaction is added when a lipid
membrane with polymers conjugated to a set of the lipid headgroups is considered [167].
For example, lipids functionalized with poly(ethylene–glycol) (PEG) are most frequently
used to fabricate so-called stealth liposomes applied as drug carriers in drug delivery [168];
PEG forms a polymer mesh on the top of the membrane surface, the PEG corona covering
the liposome, where hydrophobic and amphipathic molecules may locate instead of within
the bilayer. Here, they are shielded, by the polymer, from unfavorable contact with the polar
solvent (water), in the same fashion as they would be if located within the membrane if the
PEG were not present, however, with a reduced free energy penalty to their normal location
within the membrane, leading them to locate instead within the PEG corona [144,168–170];
this can thus be seen as a potential additional compartment for small molecules.

The importance of lipid affinity and exact location in various membrane compartments
has also been demonstrated for antioxidants that protect lipids from peroxidation. Two
MD simulation studies have found evidence that that the functionalization of antioxidants
with lipophilic groups, incapable of free–radical scavenging, decreases the extent of lipid
peroxidation [171,172]. This effect results from the increased concentration of functionalized
antioxidants in the hydrocarbon phase (regions 3 and 4). Another study, combining MD
simulation with experiments, elucidated the mechanism of the effect of flavonoids on
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the antioxidant activity of tocopherol and ascorbic acid in lipid bilayers [173]; flavonoids,
quercetin in this case, synergistically increase the antioxidant activity of tocopherol and
ascorbic acid. Through MD simulation, it was demonstrated that the orientation and
location within the lipid bilayer of the three antioxidants differ: tocopherol locates below
the lipid headgroups (region 2) and is thus capable of translocating through the bilayer,
while ascorbic acid locates among the lipid headgroups (region 1), and quercetin prefers an
intermediate position (regions 2 and 3). Moreover, these three antioxidants can form non-
covalent complexes: quercetin–tocopherol, quercetin–ascorbic acid, tocopherol–ascorbic
acid, and tocopherol–tocopherol. The formation of these complexes was observed in MD
simulations and subsequently confirmed through explicit quantum mechanical calculations;
the formation of quercetin–tocopherol complexes was then also confirmed experimentally,
via fluorescence spectroscopy [173]. This formation of non–covalent complexes of the
molecules provides a rational explanation for the synergistic effect of using a mixture
of antioxidants: (1) the regeneration of tocopherol (a reaction transforming a tocopherol
radical back to its native form) is facilitated and (2) quercetin locates deeper within the
hydrocarbon phase when complexed with tocopherol.

Biomembranes provide a variety of local environments with physicochemical prop-
erties that vary considerably, dependent on the lipid composition; this allows for the
optimization of membranes for different roles [174–176]. Even within single biomembrane
domains, the lipid composition and properties may vary [177,178]. Here, MD simula-
tion of drug molecules in different membranes can be used as a tool to investigate how
drug molecules will interact with different biomembranes encountered in the body or
even different lipid domains. For example, Alves et al. [179] studied the well-known
chemotherapy agent doxorubicin in both a cholesterol rich, ordered, environment and in
a liquid-disordered cholesterol poor environment using a combination of experimental
analysis and MD simulation. They found evidence that the presence of cholesterol reduces
the effect on membrane fluidity, thus possibly increasing the density of doxorubicin in
cholesterol rich membrane domains, where the efflux P-gP protein is found, thus provid-
ing a possible explanation of the observed heightened vulnerability to efflux proteins of
doxorubicin. On the contrary, amantadine [180] and chlorzoxazone [181] are less soluble in
bilayers containing cholesterol.

Drug molecules can be functionalized to polymers to improve their bioavailability
and achieve passive targeting. A common choice is direct covalent conjugation to a PEG
polymer; however, other polymers have also been considered [43,182]. Conjugation to a
polymer will clearly alter the interaction between drug molecules and lipid membranes;
this can be studied through MD simulation. Tetraphenyl–porphyrin is a photosensitizer
used in photodynamic therapy for cancer treatment. In MD simulations, we observed that
tetraphenyl-porphyrin locates to regions 1 and 2 and orients within the lipid bilayer such
that the two hydroxyl groups that it possesses are located at the water–membrane interface;
PEGylated tetraphenyl–porphyrin, however, remains in the water phase. This result has
been validated through MD simulations performed with its initial position within the
membrane; it was seen to leave the membrane as the system equilibrated [183].

As we discussed above, for the case of tetraphenyl porphyrin, in addition to location in
the lipid bilayer, the orientation of the molecule with respect to the membrane normal will
also characterize its behavior. The antifungal drug itraconazole is a rigid and long molecule
with weakly polar groups distributed along its backbone (long axis of the molecule); as a
result of this particular structure, it adopts an orientation parallel to the membrane surface
and locates to the region of the upper segments of the lipid acyl tails (region 3), close to
the lipid headgroups (Figure 8) [184]. Due to the rigidity of the itraconazole molecule,
its presence can affect the orientation of other molecules in the bilayer. For example, the
fluorescent probe 1,6-Diphenyl-1,3,5-hexatriene (DPH) alters its orientation from parallel
to the lipid chains to parallel to the itraconazole molecules within the membrane [186]; this
change could lead to an incorrect interpretation of steady–state fluorescence anisotropy and
fluorescence lifetime measurements. Finally, in bilayers containing cholesterol, itraconazole
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molecules prefer bilayer regions depleted of cholesterol due to the incompatible orientation
of the cholesterol molecules parallel to the membrane normal [187]. For this reason,
cholesterol, typically present in liposome formulations used in drug delivery [188,189],
is not useful as a component of a vesicle used as a delivery mechanism for itraconazole.
Conversely, there are also drug molecules that are sufficiently lipophilic to locate within
the membrane that, however, do not adopt a specific orientation when there, i.e., their
orientation in the membrane is isotropic. For example, there are many tautomers of the
drug molecule piroxicam: six are uncharged (PxA, PxB, PxC, PxD, PxE, and PxF) [190] in
addition to zwitterionic, cationic, and anionic tautomers (see Figure 8C). Although, PxA
and zwitterionic tautomers are dominant, in vacuum and water solutions respectively,
the probability of occurrence of all possible tautomers, when in the environment of the
lipid headgroups (regions 2 and 3), is not known; MD simulation studies of four piroxicam
tautomers demonstrated that the orientation of the molecules differs significantly between
tautomers and, for most cases with the exception of the cationic tautomer, there are no
strong preferences for a specific orientation in the bilayer (Figure 8D) [185].

Figure 8. (A) Distribution of values of the angle between the vector representing the itraconazole long axis (red arrow at the
chemical structure of itraconazole) and the bilayer normal [184]. (B) Snapshot showing itraconazole molecules in a lipid
bilayer, purple spheres are phosphate groups of the POPC molecules [184]. (C) Chemical structures of piroxicam tautomers.
(D) Distribution of angles between the vector representing the piroxicam long and short axes (red arrows at the chemical
structure of PxA) and bilayer normal; PxA—black line, PxE—read line, zwitterionic—green line, cationic—blue line [185].
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Table 1. List of recent studies of drug–membrane interactions.

Application and Target Drugs and Pharmaceutics

High blood pressure treatment,
Angiotensin II AT1 receptor Losartan [191,192], Candesartan [193]

High blood pressure treatment,
β–adrenergic receptors, GPCR

Acebutolol [194], Alprenolol [148,195,196], AS408 [197], Atenolol [148,196,198,199],
Carazolol [200], Formoterol [201], Idacaterol and its analogs [201], Metoprolol [196],

Nadolol [196], Oxprenolol [194], Pindolol [148,196], Propranolol [194,196,202],
Salbutamol [199], Salmeterol [201]

High blood pressure treatment Amlodipine [198,203], Lisinopril [198], Debrisoquine [132]

Anticancer drug

Tamoxifen [204], Cytarabine [205], 5-Fluorouracil [206,207], Daunorubicin [208,209],
β-Lapachone [210], Minerval [211], Miltefosine [212], Tofacitinib [213], Edelfosine [214],
Miltefosine [214], Perifosine [214], Camptothecin [215,216], Pirarubicin, Ellipticine [217],
Perillyl alcohol [218], Cisplatin [219,220], Doxorubicin [179,217,221], 5-fluorouracil [206];

Previous reviews [222,223], Chlorambucil [199], Camptothecin [224], Ohmline [225]

Photosensitizer used in cancer
treatment

Tetra–phenylporphyrin [169,183], Hematoporphyrin [130], 1-BODIPY
(6,7-dibromo-2-ethyl-1,3-dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) [226],

Indocyanine green [144,170]

Potential anticancer drug Curcumin [164,227–229], Aplysiatoxin [230], Bryostatin [231], Phorbol [231],
12,13-dibutyrate [231], Prostratin [231]

Antibiotics

Imipenem [232], Doripenem [232], Ertapenem [232], Meropenem [232], Ciprofloxacin
[233,234], Ciprofloxacin ternary copper complex [235], Daunorubicin [209], Idarubicin [209],

Levofloxacin [236–238], Clarithromycin [236], Isoniazid N′-acylated derivatives [239],
Rifampicin [234,240], Mangostin [241], Trimethoprim [242], Negamycin [243]

Potential antibiotic Kanamycin A [133], nTZDpa and its derivatives [244], Cholic acid derived
amphiphiles [245], γ-terpineol [246], Bithionol [247]

Antimicrobial compound Chlorhexidine [248–250], Triclosan [251], Octenidine [250]

Antiparasitic Praziquantel [252]

Antiviral drugs Darunavir [253], Amantadine [254–256], Spiro[pyrrolidine-2,2′-adamantane] [254,255],
20,30-dideoxyadenosine (Didanosine) [242], Saffron [257]

Antifungal drug Itraconazole, [184,186,187,258], Nystatin [259], Amphotericin B [260]

Rheumatoid arthritis Lapatinib [213]

Nonsteroidal antiinflammatory
drugs, inhibitor of cyclooxygenase-1

and -2

Ketoprofen [261–264], Aspirin [199,229,261,265–271], Piroxicam [185,261],
Ibuprofen [132,166,199,203,265,270,272–277], Indomethacin [277], Diclofenac [132,270],

Xanthone derivatives (KS1, KS2, KS3) [278], Indomethacin [279], Carane derivatives [147],
Carprofen [165], Phenylbutazone [199]

Steroids Danazol [280], Hydrocortisone [281]

Antiinflammatory drugs Colchicine [282],

Pain medication Paracetamol [283–285]

Pain medication, opioid receptors Morphine [132], Fentanyl [132], Fentanyl and its analogues [286], Codeine [287]

Local anesthetics Benzocaine [288–290], KP-23 [147], Dibucaine [291], Lidocaine [289,292,293], Articaine [289],
Tetracaine [294,295], Prilocaine [296], Dyclonine, Butamben [290]

General anesthetic
Xenon [124,125], Chloroform [292,297–301], Halothane [146,298,302,303], Isoflurane
[297,299,304,305], Phenyl-ethanol [306], Desflurane [305,307], Sevoflurane [305,308],

Propofol [305,309,310], Diethyl ether [298,308], Enflurane [298], Ketamine [311]

Antihistamine Cetirizine [199], Cimetidine [199], Doxylamine [199], Icotidine [199]

Fibrotic skin disorders p-aminobenzoic acid [132,290]

Statins Atorvastatin, Cerivastatin, Fluvastatin, Rosuvastatin, Lovastatin,
Pravastatin, Simvastatin [312–317]
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Table 1. Cont.

Application and Target Drugs and Pharmaceutics

Antidepressant Amitriptyline [318], Fluoxetine [319,320], Thioridazine [321], Sertraline [199],
Bupropion [199], Imipramine [199]

Antipsychotic Clozapine [318,322], Haloperidol [322], Promazine [199], Chlorpromazine [199],
Olanzapine [199], Alprazolam [199],

Neuroleptics Trifluoperazine, Haloperidol decanoate, Clozapine, Quetiapine,
Olanzapine, Aripiprazole, Amisulpride [323]

Alzheimer disease Pregnanolone sulfate, Pregnanolone glutamate [324], Carbazoles [325]

Anticonvulsant and muscle relaxant Carbamazepine [326–328], Nordazepam [199], Lamotrigine [199], Chlorzoxazone [132]

Cardiac arrhythmias Dronedarone [312]

P2Y1 antagonist BPTU [329]

Urea cycle disorders 4-phenylbutyrate

Immunosuppressant Cyclosporine A and E [330]

Cardiac Ca2+ pump inhibitors CDN1163, CP-154526, Ro 41-0960 [331]

Eye drops components Cetalkonium chloride, Poloxamer 188 [332]

Vaccine adjuvant Cobalt porphyrin phospholipid [333], Lipidated nicotine [334]

Other potential drugs
Baicalin [282], Emodin [282], Siramesine [335], HMI and HMI-1a3 [336], Peptide mimicking
GM1 [337], AMG3 [338], 1,8-naphthyridine derivatives [339], Protein kinase inhibitors [340],

Bile salt export pump inhibitors [341]

Pulmonary surfactants form a complex structure on the inner lung surfaces, the
alveoli, including the only monolayer in the human body at the boundary between the
pulmonary liquids and air. For drugs designed to treat lung conditions that are delivered
through pulmonary administration, e.g., corticosteroid and salbutamol inhalers for the
treatment of asthma, this monolayer is the first barrier that they encounter. Pulmonary
surfactant monolayers are composed predominately of DPPC (85%), and the remaining
components are POPG (11%) and cholesterol (4%). A study by Hu et al., comprised a set of
MD simulations of a lung surfactant monolayer models at five different surface tensions,
representing various stages of monolayer expansion and compression, demonstrated that
the nonsteroidal anti-inflammatory drug ketoprofen changes its location in the monolayer
depending on the degree of monolayer compression [263]. In expanded monolayers with a
surface area per lipid of 0.9 nm2, ketoprofen locates to the water–membrane interface; in
the condensed monolayer, with a surface area per lipid of 0.52 nm2, ketoprofen locates to
the hydrocarbon phase, beneath the headgroups of the monolayer. In other studies that
were performed on monolayers mimicking pulmonary surfactants at surface pressures
of 55 and 43 mNm−1, the antibiotic levofloxacin located to the water–membrane inter-
face with a tendency to locate deeper within the monolayer when the surface pressure
was increased [238]. Moreover, levofloxacin aggregated in the hydrocarbon phase of the
monolayer.

488



Pharmaceuticals 2021, 14, 1062

Table 2. List of recent studies of natural compound–membrane interactions.

Function Compounds

Antioxidants

Quercetin [132,173,282,342–348], Biochanin [183], Argenteane [132,171],
α-Tocopherol [173,349–352], Ascorbic acid [173], Carbazoles [172], Anthocyanin derivatives
(Hemiketal, Chalcone, Pyranoanthocyanin, Aglycone, A4, A5, A7, A-4′7) [353], Trolox [354],

PBN [354], Quinones [145,355], Menaquinone [356,357], Lutein [358], Glutathione [359],
Flavonoids [360–370], Liponitroxides [371]

Amino acids
L-phenylalanine [372–375], L-Tyrosine [374], L-Phenylglycine, Phenylacetic acid [374,376],

Tryptophan [376–378], Glycine [139,284], Glutamate [139], Aginine [379], Alanine [379],
5-aminolevulinic acid and its esters [380], L-dopa [138,199,381,382]

Nucleotides ATP [383], UMP [384], DNA [385], ADOMET [381]

Sugars and carbohydrates Trehalose [386], Gastrodin [387], Mannitol [199], 1,3,7-trimethyluric acid [388]

Neurotransmitters

Dopamine [138,389–397], Serotonin [138,378,389,396,398–402], Adenosine [138],
Melatonin [138,229,378,389,403–405], Epinephrine [138], Norepinephrine [138], Trace

amines (Tyramine and phenethylamine) [406], Acetylcholine [139], GABA [139],
Histamine [138,393,407]

Hormones Testosterone [132,408], Levothyroxine [409], Resolvins [410], Progesterone [326,327]

Vitamins D2, D3 [411,412]

Alcohols and product of
fermentation

Methanol [274,413,414], Ethanol [149,242,284,387,414–420], Propanol [414,421],
Isopropanol [284], Buthanol [414,417,422], Caprate [423], Glycerol [424], Isopropanol [416],

Thymol [425]

Natural polymers Lignin [426–428], Polyphenols [429], Cellulose [430,431], Polysialic acid [432]

Gabaergic ketones Carvone, Menthone, Pulegone, Dihydrocarvone, Thujone [433]

Taste and aroma Menthol [342,434], Terpenoids [435], Coumarin [132,284,436,437], Limonene [132],
4-ethylphenol (wine/beer aroma) [406], Tannins (wine) [438], Catechin [282]

Caffeine and its derivatives Caffeine [132,439], Rosmarinic acid [440–442], Caffeic acid [441,443], Chlorogenic acid [441],
Paraxanthine [132], Caffeic acid derivatives [444]

Pigments Violacein [445,446], Marennine [447]

Bile salts [280,423,448]

Steroids Betulin [449], Saponins [450,451], Glycyrrhizic acid (saponin) [252,452,453], Withaferin-A
and Withanone [454]

Lipids N-arachidonylglycine and oleoyl-L-carnitine [137], sn-2-arachidonoylglycerol [455],
Triolein [456]

Osmolyte in Extremophiles Trimethylamine-N-oxide [457]

Toxin Veratridine [458]

Oxidation product 4-hydroxynonenal [459]

Metabolites 5-phenylvaleric acid [203], Ligustrazine [282], Ferulaic acid [282], Imperatorin [282],

Phenolic compounds Artepillin C [460], Chlorogenic acid and Isochlorogenic acid [461],
Proanthocyanidins [462,463], Oleuropein aglycone [464], Other [465–469]

The orientation and location of drug molecules in lipid membranes is clearly only the
beginning of our story. Once molecules enter a biomembrane they can do three different
things: (1) pass out of the membrane again, possibly on the other side, the membrane
merely forming a biological barrier on their way to their eventual destination, (2) act
collectively to instigate large scale alteration or even disruption of the membrane structure,
or (3) interact with proteins that are associated with the membrane. These three phenomena
are all of clear relevance to molecules designed to act as drugs. In the rest of this review
article, we will discuss the use of MD simulation to elucidate each of these in the context of
drug design.
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Table 3. List of recent studies of xenobiotic–membrane interactions.

Application Xenobiotic

Antiseptic Picloxydine, Octenidine, Miramistin [470], Polyhexamethylene Biguanide [471]

Insecticide Parathione [132], Fipronil [472], Dibutyl succinate [203]

Former Drugs d-sotalol, cisapride [473], piracetam (status varies among countries) [474], ORG-12962 [199]

Toxic xenobiotic Polybrominated-diphenyl-ethers [475], Bisphenol [476], Perfluoroalkyls [477], nitroaromatic
explosives (TNT,2A, and 24DA) [478–481], 1,4-Dioxane [482], Benzo[a]pyrene [483]

Nanomaterials
Graphene [484–487], Carbon Dots [488], Phosphorene Oxide Nanosheets [489], Gold

Nanoparticles [490–492], Titanium Dioxide Nanoparticles [493], Generic Nanoparticles
(coarse grained) [494], Fullerene [495–498], Previous reviews [499]

Polymers

Poly(ethyleneoxide)-Poly-(propylene oxide) [500], polyethylenimine [501],
Poloxamer [502,503], Pluronics [504,505], poly(ethyleneglycol)-desferrioxamine/
gallium [506], PEG functionalized with carbochydrates [507] and peptides [508],

poly(2-methyloxazoline) [509], Polyethylenimine and Polylysine [510]

Ionic liquid Choline-glycine [511], Cholinium-phenylalaninate [512], Imidazolium-IL [bmim][Cl] [513]

Fluorescent labels [514–529]

Fragrance Musk xylene [132]

2-aminoethoxydiphenyl borate (inhibitor of IP3 receptors and TRP channels) [530]

Organic solvents
Pentanol [422], Hexanol [422], Heptanol [422], Acetic acid [149,415,417],

Tolune, Phenol [284,417], Styrene [417], Ethylbenzene [417], Benzaldehyde [531],
Benzene [149,415,417], Hexane [415]

Other

Lauryl Ether Sulfate [532], Dodecyl Sulfate [533], CyMe4-BTPhen [534], Acetone [420],
DMSO [417,420,535], bis-(3-hydroxy-4-pyridinonato) zinc(II) complex [536], calix[4],
resorcinarenes [537], dihydropyrimidine analogues [538], Choline carboxylates [539],

Synthetic xanthophylls [540], Triton X-100 [541,542], Benzoic acid [284,287,387],
Methane [379], Borneol [282,543], Osthole [282,543], Isopulegol [544],

Benzylpiperidine [545], Benzimidazole derivatives [546], Aldehydes [547]

Inorganic Water [149,284,379,417,548–555], Ammonia [274,284,416,417,549], Urea [284,287,417,549],
Na+ [379,556], Dithionite [550]

Gases
Gases [557], Oxygen [417,557,558], Ozone [558], Carbon dioxide [242,284,416],

Propane [284], Fluoromethane [284], Ethylene [415], NO2 [558], SO2 [558], Butadiene [285],
Gas bubbles [559]

4. Translocation through the Membrane

For all drugs, there is a ubiquitous membrane interaction they need to perform in
every case: transfection, or translocation, through biomembranes that form biological
barriers that need to be crossed in order to reach the target site for their action (Figure 9).
This process has been studied intensively using MD simulations; for previous extensive
reviews, see references [34,560–563]. Unsurprisingly, the permeation of small molecules
through the lipid bilayer was among the first membrane-related topics studied through
MD simulation, e.g., in 2004, Bemporad et al. [149] studied permeation of small organic
molecules like benzene or ethanol, and in older studies, Marrink and Berendsen (1994)
studied permeation of water [564]. A significant amount of work has been performed to
predict the permeability of small molecules through lipid bilayers using various molecu-
lar modeling methods and theoretical tools [565–574]; this includes new computational
methodologies, developed specifically for the study of membrane permeability [575–577].
A web server and database PerMM is dedicated to gathering experimental and computa-
tional data related to small molecule membrane partitioning and translocation [578]. For
a recent review of the development of experimental methods used for studying passive
diffusion through membranes, see reference [579].
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Figure 9. Chemical structure of the chemical compounds introduced in Section 4.

Regarding the study of drug translocation through the lipid bilayer, the main limita-
tion is the time scale that is possible to reach with MD simulations with all atom resolution;
this typically is not sufficient to allow for the observation of the entire translocation process
without some form of force bias. Translocation in MD simulations can be observed for tiny
molecules, e.g., gases [557] or water [548,552,555] in numbers allowing for the observation
of a sufficient number of events to allow for a statistically significant result; for larger
molecules, only single cases of translocation can be observed, e.g., [550,580–585]. Mem-
brane transfection represents a transition through an energy barrier, as shown in Figure 10;
the force biased methods discussed earlier in this review are thus the tools needed to
effectively study this. The transition rate will be directly proportional to the height of the
energy barrier and force biased methods are an effective means to calculate this. For the
case of membrane translocation, the umbrella sampling method [93,586,587] is the most
frequent choice to perform this calculation; umbrella sampling calculations show a profile
of the potential of mean force (PMF) along selected transition pathways, which, for the
case of membrane permeability, is normal to the bilayer surface (Figure 10). The recent
review by Lee and Kuczera provides insight into methods used for the calculation of free
energies of translocation through lipid bilayers [57].
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Figure 10. (A) Free energy profiles along the bilayer normal of zwitterionic (dashed line) and neutral
(full line) ciprofloxacin molecules; the membrane center is at z = 0. Snapshots of ciprofloxacin
molecule in the bilayer center: (B) uncharged, (C) zwitterionic form. Lipids are not shown for clarity.
Reproduced with permission from ref. [233].

As discussed previously, the computational cost of an umbrella sampling calculation
is relatively high, but through clever tweaks to the algorithm this cost can be reduced;
membrane transfection can be seen as a near perfect testbed for the comparison of variants
of umbrella sampling and other algorithms for the study of transitions through energy
barriers. Nitschke et al., developed a number of shortcuts regarding the calculation of the
energy barrier to membrane transfection using umbrella sampling, including decreasing
the size of the bilayer, parallel use of multiple solutes, and decreasing the cutoff radius for
the Lennard–Jones interactions; this did not significantly affect the quantitative results of
the calculations while reducing the computational resources required by up to a factor of
40 [274]. Other methodological studies have determined that adding the so-called flooding
potential [92] to the force field allows for improved conformational sampling of the solute
before umbrella sampling, thus improving the accuracy of the calculation of the free energy
barrier [203]; this was discussed earlier in the paper. A comparison of the four methods
used to obtain the free energy profiles (umbrella sampling, replica-exchange umbrella sam-
pling, adaptive biasing force, and multiple-walker adaptive biasing force) for three solutes
(urea, benzoic acid, and codeine) found no benefit in implementing the more advanced
algorithms, i.e., no improvement in the quantitative accuracy of the results for a given
expenditure of computational resources [287]. In another study, three methods were com-
pared: metadynamics, umbrella sampling, and replica-exchange umbrella sampling [379].
Comparisons were performed for six compounds: arginine, sodium ion, side-chain analog
of alanine (methane), alanine with neutral termini, zwitterionic alanine, and water. In
partial disagreement with the previous result, this study found a significant deviation
in the free energy profiles for the case of charged molecules: arginine, sodium ions, and
zwitterionic alanine, while for neutral molecules such as methane and zwitterionic alanine,
no significant differences were observed [379]. The reason for the discrepancy observed
for charged molecules was the slow relaxation of electrostatic interactions between lipid
headgroups and the solute. The only method available that allowed for sufficient sampling
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was replica-exchange umbrella sampling. Recently, Bennett et al., combined MD simu-
lations with ML to study transfer free energies, i.e., free energy difference between two
environments [571]. They calculated free energies of transfer from water to cyclohexane for
15,000 small molecules using MD simulations and next used obtained data to train the ML
algorithm. The mean absolute error of the obtained prediction in comparison to MD data
was only ~4 kJ/mol.

A qualitative insight into the mechanism of drug translocation through a lipid bilayer,
i.e., following what the molecule actually does in a physical sense as it passes through
the membrane, can also be obtained through MD simulation. For example, Chipot and
Comer demonstrated subdiffusive behavior in small molecules translocating through the
membrane, with a mean squared displacement proportional to time t as t0.7 [413] rather
than the expected linear relationship. Cramariuc et al., proposed that the translocation of
ciprofloxacin, a fluoroquinolone antibiotic, is facilitated through the collective entrance
into the membrane of dimers, or even larger column-like stacks of ciprofloxacin molecules
(Figure 11A,B) [233]. The column-like stacks of ciprofloxacin molecules have also been
observed by Li et al. [343]. Complexed to form dimers, or larger aggregates, negatively
and positively charged groups of ciprofloxacin neutralize each other and thus provide an
easy avenue for proton translocation; this leads to the collective transformation of all the
ciprofloxacin molecules to their uncharged form. Interestingly, in studies of the antibiotic
mangostin (Figure 11C), the formation of a transmembrane aggregate of 16 molecules of the
drug was observed [241]; MD simulations can find evidence of general trends connecting
drug structure to permeability. For example, performing simulations of 49 compounds,
Dickson et al., derived a simple correlation between passive permeation and the number
of hydrogen bonds between solute and the surrounding molecules, i.e., water and lipids,
with a correlation coefficient of 0.63 [588,589].

Figure 11. (A) Snapshots of MD simulation showing a stack of neutral ciprofloxacin entering
the lipid bilayer. (B) Electrostatic potential maps at the molecular van der Waals surface in a
dielectric continuum corresponding to the water phase calculated using the DFT method and chemical
structure of ciprofloxacin. (C) Snapshots of MD simulation showing transmembrane arrangement of
mangostin molecules and its chemical structure. A and B reproduced with permission from ref. [233];
C reproduced with permission from ref. [241].
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The translocation of the drug molecules through lipid bilayers may be facilitated
using additional molecules that assist the translocation of the drug through the membrane.
Well known examples of such molecules include ionophores facilitating the translocation
of ions, e.g., K+ [590], K+ and Mg2+ [591], Cl− [592–594] and positively charged doxoru-
bicin [221]. Other examples are so-called molecular umbrellas, capable of transporting
hydrophilic cargo through lipid bilayers [595–597] or hydrophobic cargo through aqueous
solution [598]. In a similar spirit, the use of conjugated antioxidants with antiretroviral
drugs has been proposed to increase drug penetration into the central nervous system [599].
Additionally, peptides, including antimicrobial peptides, were proposed as an effective
enhancer [600,601]. Recent MD simulations demonstrated that glycyrrhizic acid enhanced
the translocation of the antiparasitic drug praziquantel through a lipid bilayer by lowering
the free energy barrier associated with the hydrophobic center of the membrane along
with a rearrangement of the lipid headgroups [252]. Similarly, studies of menthol, as an
enhancer of translocation, found a large decrease in the free energy barrier in the bilayer
center for the translocation of quercetin [342]. Additionally, graphene quantum dots have
also been found to decrease the free energy barrier against the translocation of doxoru-
bicin and deoxyadenosine [484]. Interestingly, carbon dioxide increases the permeability
of ethanol, 20,30-dideoxyadenosine, and trimethoprim through the POPC bilayer [242].
Recently, cyclic peptides have been proposed as potential enhancers of drug permeation
through lipid bilayers [602]. The cyclic peptide (Trp-D-Leu)4-Gln-D-Leu has the ability to
assemble into tube-like structures in lipid bilayers; this has been demonstrated to possibly
be capable of acting as an enhancer for the antitumor drug 5-fluorouracil [206]—the drug
is believed to pass the bilayer through the tube created by the peptide as free energy
calculations indicate the presence of only a small 5 kJ/mol barrier against such a transloca-
tion. In coarse-grained simulations of lidocaine translocation through a lipid bilayer, two
enhancers, ethanol and linoleic acid, were shown to have a synergistic effect on lidocaine
permeability [603]. Finally, Gupta et al. [604] performed extensive screening of possible
enhancers through a massively parallel array of umbrella sampling calculations using the
coarse-grained MARTINI model [605,606] to obtain approximate results for the free energy
barriers to translocation for each case (Figure 12) [604].

The effect of the lipid composition of the membrane on its permeability to a broad
range of molecules has also been studied though MD simulation. The presence of choles-
terol, a major component of the cell membrane, is known to reduce the permeability
of the membrane to various solutes [607–609]; this phenomenon has been examined
through MD simulation. For example, in POPC bilayers, the addition of 33 mol% of
cholesterol has been found to reduce the permeability of the membrane to 9-anthroic acid
and 2’,3’-dideoxyadenosine by a factor of ten; however, the permeability to hydrocortisone
is reduced by a remarkable factor of 600 [281]. In a lipid bilayer mimicking the cell mem-
brane, with an asymmetric distribution of phospholipid types, i.e., the formulation of the
two leaves of the membrane differed, the permeability was found to be lower by 5–6 orders
of magnitude in comparison to that of a pure DOPC bilayer [219]. The permeability of this
lipid bilayer was further reduced by an order of magnitude when 33 mol% of cholesterol
was added to both leaflets [219]. In cancer cells, the cell membrane asymmetry frequently
vanishes; thus, comparison of symmetric and asymmetric models of the cell membrane,
are of significant interest. A comparison of the permeability to cisplatin of symmetric
and asymmetric bilayers found a decrease in permeability in a membrane designed as
a model of a cancer cell membrane by a factor of 11. It has also been shown through
MD simulation studies that the addition of DOPE, representing a lipid type that does not
form a lamellar structure, to a DOPC bilayer, reduces the permeability regarding small
molecules (molecular weight less than 100 Da); however, for larger molecules the effect is
the opposite [284]. Simulations of lipid bilayers containing products of lipid oxidations
have found a decrease in permeability for the case of oxysterols [550] and tail oxidized
phosphatidylcholine [481].
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Figure 12. Snapshots of the stratum corneum model with selected enhancers: Oleic Acid (OLE), Palmitic Acid (PLA), Geranic
Acid (GRA), Undecanoic acid (UND), DMSO (DMS), Geraniol (GOL), Glycerylmonooleate (GMO), Isopropyl palmiate (ISP),
Limonene (LEM), and Octyl pyrrolidone (OCP). Reproduced from ref. [604].

From the standpoint of pharmaceutical research, the most interesting are studies
of membranes that form a boundary with an extracellular environment, including bac-
terial membranes [415,610–616], the stratum corneum, i.e., the most external layer of the
skin [617–626], membranes present in the eyes [557,627–631], and the ocular mucous mem-
brane [632], or lung surfactant monolayers [263,558,633–638]. Specifically, MD simulations
have been used in studies of enhancer effects on the permeability of the stratum corneum
(e.g., [544]). For example, studies of the effects of the terpene derivative borneol on the
enhancement of stratum corneum permeability for osthole [543] and gastrodin, catechin,
quercetin, emodin, imperatorin, ligustrazine, ferulaic acid, colchicine, and baicalin found
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that borneol facilitates drugs permeation via a destabilization of the condensed and ordered
arrangement of ceramides and free fatty acids [282]. Another study found evidence that
the destruction of the stratum corneum, caused by ethanol, leads to the extraction of lipids
from the membrane and subsequently the formation of the pore–like structures that allow
for benzoic acid to translocate through the membrane [387]. Next, extensive studies, using
umbrella sampling methods, of the permeability of the stratum corneum for water, oxygen,
ethanol, acetic acid, urea, butanol, benzene, dimethyl sulfoxide (DMSO), toluene, phenol,
styrene, and ethylbenzene identified the locations of the free energy barriers to transit
through the stratum corneum for these compounds [417]. The umbrella sampling method
has also used been used for studies of the permeation of p–aminobenzoic acid, benzocaine,
and butamben through a lipid bilayer in the gel phase composed of ceramide, one of the
main components of the stratum corneum [290].

In recent studies, Liu et al., calculated the time of entry of 79 drugs into the lipid
bilayer, mimicking the lipid composition of the COVID-19 envelope with and without the
spike protein and five bilayers mimicking the lipid composition of the: (1) plasma mem-
brane, (2) lysosome, (3) endoplasmic reticulum, (4) Golgi apparatus, and (5) mitochondrial
membranes [639]. The set of 79 drugs was selected from the currently approved drugs as
potential antiviral therapeutics [640]. These calculations demonstrated that the presence of
the spike protein significantly reduces the time required for drugs to enter the lipid bilayer.

Important membrane-based systems that form barriers that, for the treatment of many
conditions, drugs must pass, include the blood–brain barrier and the membrane lining
the gastrointestinal tract. Intestinal permeability is essential for pharmacokinetics and
is widely studied through both experimental and theoretical methods [641–644]. The
blood–brain barrier is another significant intraorganismal barrier considered in treating
numerous diseases, e.g., Parkinson’s disease [645,646] and even in screening potential
drugs against SARS-CoV-2, capable of infecting brain tissue [647,648]. Steered MD sim-
ulations have found a correlation between experimental parameters that describe drug
permeability through the blood–brain barrier and both the maximum force needed for
pulling molecules through it and the overall non-equilibrium work performed during
the pulling simulation [199]. Studies have been performed for 26 compounds in simple
DOPC and DOPC–Cholesterol bilayers. In another study, unconstrained MD simulations
were performed at elevated temperature to observe the spontaneous translocations of
drug molecules through a multicomponent asymmetric lipid bilayer [416]. These studies
produced results in agreement with the experimental data. Additionally, propionylated
amylose has been used as a carrier for hydrophobic drugs designed to cross the blood–brain
barrier. Amylose forms a helical structure that captures hydrophobic drugs and transports
them through hydrophilic environments; however, when the drug-loaded amylose helix
enters the membrane–water interface (region 1) the drugs are released [649]. Lipid mem-
branes are, however, only one component of the structure of the blood–brain barrier; in fact,
the most important elements are tight junctions controlling the entrance to the paracellular
compartments. The main proteins forming these junctions belong to the claudin family.
Since these junctions are large and complex, relatively few MD simulation studies of them
have been performed; one example is a recent study of Claudin-5 [650].

It is commonly assumed that small molecules transform into their uncharged (union-
ized) form when they translocate through lipid bilayers, due to the prohibitively high free
energy barriers for transporting charged species through a membrane (Figure 10). This
assumption can be justified by, e.g., QM calculations performed in a polarizable continuum
that demonstrates that proton transfer from the NH3+ to the COO− group in the zwitteri-
onic drug molecule will occur, so long as the dielectric constant is lower than 20 [233]; thus,
molecules become neutral in the lipid headgroup region when the dielectric constant drops
from 78.4 (water phase) to 12–18 (water–membrane interface) [651]. In order to understand
the translocation process, one should thus perform calculations using both the uncharged
and charged forms of the molecule. In recent studies, Yue et al., performed free energy cal-
culations for uncharged and charged states of drugs and compared them with simulations
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where dynamic protonation was applied [202]. These calculations demonstrated that the
free energy profile obtained with a more realistic dynamic protonation approach cannot be
modeled as a simple superposition of the two other profiles; free energy barriers do not
directly correspond to those observed in the simulation of the uncharged/charged form of
the molecule; this assumption is thus an oversimplification.

Another methodological issue related to translocation and partitioning of small
molecules into the lipid bilayer is the absence of explicit polarizability in the majority
of the force fields commonly used for the simulation of biomolecules, i.e., potential sets
used in the model. Jämbeck and Lyubartsev proposed a scheme to calculate free energy
profiles through simulations with the partial charges in the potential set derived from QM
calculations performed in a polarizable continuum; the calculations were performed twice
with the dielectric constant set to 78.4 and 2.04, in order to mimic both water and hexane,
respectively [292]. Based on these calculations, the authors define polarization correction
terms for calculations of free energy differences between water and the environment of the
membrane core.

A combination of atomistic and coarse-grained (CG) simulations have been applied to
study the permeability of both planar lipid bilayers and a model of a small liposome with
a radius of 10.1 nm, to 5-aminolevulinic acid and its esters [380]. In the first step, the free
energy profile of solute translocation through a planar lipid bilayer was calculated for both
coarse-grained and atomistic models. These calculations found a qualitative agreement
between both models. In the second step, free energy profiles were calculated for the coarse-
grained model of a liposome and compared with a coarse-grained model of a flat bilayer,
demonstrating significant differences in the free energy barrier against translocation. In
another coarse-grained study of liposomes, encapsulation and translocation between the
outer and inner liposome leaflets, for the local anesthetic prilocaine, was observed [296].
Coarse-grained simulations have also been successfully used in the study of nanoparticles
partitioning into lipid bilayers, e.g., [652,653] or where large-scale screening is performed
for hundreds of drugs [654–658]. It should be noted that the MARTINI model was recently
reparametrized (MARTINI 3) [659] to fix problems related to the imbalance of interactions
between beads of various sizes leading to unrealistically strong interactions, e.g., protein–
protein interactions [660–662].

5. Effect of Drug Molecules on Membrane Properties
5.1. Drug Molecules Can Do More in the Membrane than Merely Locate, Orient or Pass Through

In many cases, once drug molecules locate to the membrane, they gather in sufficient
numbers to alter the structure of the membrane itself; designing drugs to affect the function
of membrane proteins via an indirect modification of the properties of the membrane
environment of the protein has been proposed. This mechanism is clearly theoretically
possible as it is well known that the function of membrane proteins is modulated by their
membrane environment [21,663–667]. Additionally, drugs can have a mode of action that
involves solely the disruption of specific membranes; the desired activity of the drug does
not, in any fashion, involve affecting the behavior of proteins. Regarding this tantalizing
possible drug design strategy, it must, however, be determined whether this kind of affect
can be induced with a realistic concentration of the drug molecule; the same question is
relevant when alteration of a membrane structure is considered as an unwanted side effect
(Figure 13).

This question was first addressed, through experimental studies of the anesthetic
isoflurane in physiologically relevant concentrations of 1 and 5 mM in 4 membrane types,
using multiple methods including fluorescence microscopy, fluorescence recovery after
photobleaching, and patch-clamp measurements, among others. The results of these studies
indicated that isoflurane, at this concentration, significantly decreases the extent of lipid or-
dering [304]. In erythrocyte ghosts, i.e., erythrocytes with their contents removed, the effect
of the presence of a 1 mM concentration of isoflurane was found to be more substantial than
that of 52.2 mM of ethanol. In another experimental study, the anesthetic phenyl-ethanol
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was shown to affect the properties of hippocampal membranes at a drug/membrane-
volume ratio as low as 0.008% [306]; this indicates that the modification of membrane
properties as a mechanism of drug action could actually be feasible. Finally, some drugs
accumulate in specific cellular organelles, e.g., cationic amphiphilic drugs accumulate
in lysosomes, organelles with an internal pH of ~4–5, perturbing the lysosomal mem-
brane [668,669], thus decreasing cellular viability [670]. Among these drugs are numerous
psychotropic drugs, which have shown potency as anticancer therapeutics [671,672].

Figure 13. Chemical structure of drugs introduced in Section 5.

From what has been discussed so far in this review paper, regarding the use of MD
simulation to study the behavior of drug molecules in lipid membranes, it should be clear
that MD simulation can also act as a tool to study the effect on membrane properties of
drug molecules that have entered the membrane; MD can model a small microcosm of
the large scale global structural changes being made to the membrane. Through MD, it is
also possible to measure changes to global properties of the membrane due to the presence
of specific new foreign molecules; how this is determined through analysis of the MD
trajectory is described in the following section.

5.2. Relevant Aside: Membrane Properties That Can Be Measured in MD Simulations

When studying the effect that drug molecules can have on lipid membranes, MD
simulations can provide insight into numerous global structural, elastic, and dynamical
properties of lipid bilayers [673,674]; however, in the context of drug–membrane interac-
tions, one usually only calculates a few specific parameters. The results for the surface
area per lipid molecule and membrane thickness provide information regarding the lipid
bilayer size. The surface area per lipid molecule is easily calculated from MD simulations
by dividing the simulation box size in the membrane plane by the number of lipids in a
single leaflet of the bilayer. There is no unique definition of bilayer thickness; however,
thickness can be estimated from the so-called P–P distance, the distance between the av-
erage positions along the membrane normal of the phosphorus atoms of the phosphate
groups in opposite leaflets. Both of these parameters, the area per lipid and P–P distance,
can be obtained from both X-ray and neutron scattering experiments [675–677]. Order
parameters can be defined and calculated to describe the extent of ordering in the hydro-
carbon chains; the most frequently used is the SCD deuterium order parameter (Figure 14)
that can also be measured experimentally through NMR spectroscopy [678,679]. Thickness
and surface area are both global parameters, i.e., they represent the large-scale structure of
the membrane; thus, their values will usually not be significantly affected by the presence
of drug molecules at low concentration. Nevertheless, through MD simulations, these
parameters can be calculated for the local region of the membrane around a specific drug
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molecule, i.e., by looking at a tiny microcosm of the membrane we can study the effect of a
high concentration of many drug molecules entering the membrane.

Figure 14. (A) Profile of the order parameter SCD for lipids located in three zones: distances 0–1,
1–2, >2 nm from a drug molecule (reproduced with permission from ref. [187]). (B) Profile of the
lateral pressure in bilayers composed of DPPC, DPPC and cholesterol and DPPC and other steroids
(reproduced with permission from ref. [680]).

One more useful parameter is the profile of the lateral pressure (pressure in the
direction parallel to the membrane surface) along the bilayer normal [680,681]. It has been
hypothesized by Cantor (1997) [682–684] that changes in the lateral pressure profile of the
bilayer may affect the structure of membrane proteins, affecting their functionality. The
local pressure inside a lipid bilayer can reach a value of as high as 1000 bar (Figure 14);
it is thus clearly plausible that the lateral pressure from the membrane can affect protein
structure. Finally, MD simulations can provide information that describes the properties
of the water–membrane interface. For example, increased membrane hydration due to
the presence of nonsteroidal anti-inflammatory drugs has been suggested as a possible
cause of some of the side effects of these drugs [261,278]. Moreover, it has been shown that
changes in the orientation of the lipid headgroups, involved in signaling, can affect the
binding behavior of peripheral membrane proteins [685,686]; the design of drugs to alter
the orientation of lipid headgroups can thus be seen as a drug design strategy to alter their
signaling and thereby the related metabolic pathways.

5.3. Unwanted Side Effects of Drugs Due to Their Alteration of Membrane Properties

While the possibility of drugs designed to affect membrane properties is indeed
an attainable goal, where MD simulation has been brought to bear as a design tool, a
more common issue remains the undesired effects that drug molecules can have on the
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biomembranes they encounter, i.e., drug toxicity (aka side effects); MD simulation has
also played a role in elucidating such phenomena. The most frequent effect that drugs
have been found to have on biomembranes is a local decrease of the extent of ordering in
the acyl tails of the lipids. Examples of such drugs include, e.g., acebutolol, oxprenolol,
propranolol [194], and aminoadamantane [255]. A less frequent effect is an increase in the
extent of lipid ordering; for example, the drug itraconazole increases the ordering of the
acyl tails in the upper part of the chain, close to the water–membrane interface (regions 2
and 3) [186].

In most cases, for example, the aforementioned itraconazole, the mechanism of action
of the drug is related to the inhibition of enzymes, channels, or receptors rather than their
effect on a specific lipid membrane; alterations of the membrane properties caused by the
drug are thus not relevant or even possibly an unwanted side effect. For example, gly-
cyrrhizic acid is a saponin found in licorice root that is proposed as a potential component
of drug delivery formulations, due to its ability to form complexes with a wide range of
hydrophobic molecules. Using MD simulations, it has been demonstrated that glycyrrhizic
acid locates inside the lipid bilayer (region 1 and 2) and significantly decreases the extent of
lipid tail ordering, even at low concentration (Figure 15) [452,453]; this phenomenon could
limit the pharmaceutical applications of this compound. Moreover, the gastrointestinal
toxicity that has been observed in many nonsteroidal anti-inflammatory drugs, designed
primarily as inhibitors of prostaglandin–endoperoxide synthase, is, at least in part, the
result of the effect the drug has on membranes [687–689]. Furthermore, the cardiotoxicity
of nonsteroidal anti-inflammatory drugs is in part induced by drug–lipid interactions [690].
In addition to demonstrating that certain molecules have unwanted effects on lipid mem-
branes, as described above, MD simulation has found evidence of innocence on the part of
several drug molecules; for example, lipid-like potential drugs N-arachidonylglycine and
oleoyl-L-carnitine have been shown not to affect membrane properties [137].

Figure 15. Snapshot of a lipid bilayer with a single glycyrrhizic acid molecule (a), and profiles of order parameter for lipids
near and far from glycyrrhizic acid molecule (b). Reproduced with permission from ref. [453].

5.4. Drug Membrane Interaction Can Play a Role in the Mechanism of Drug Action—Case
of Anesthetics

Now, we address the possibility that drugs could influence the membrane structure
in a fashion that is desirable, i.e., an element of a drug’s mechanism of action could be a
direct alteration of the membrane’s properties; MD simulation can be used in the same
fashion to elucidate such positive effects in addition to the negative effects described in
the previous section. The very first instance of the proposal of a mechanism of drug action
that solely involved an interaction with the lipid membrane, rather than the active site of
a protein, was the case of the theorized mechanism of action of general anesthetics. This
hypothesis originates from the correlation between the efficacy of different anesthetics and
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their respective oil–water partition coefficients (the Meyer–Overton correlation [691,692]);
it was later found that their efficacy has an even stronger correlation with their membrane–
water partition coefficients [693]. Thus, unsurprisingly, several MD simulation studies
of the interaction between general anesthetics and lipids have been undertaken [694].
For example, results obtained from MD simulations of chloroform in DOPC and DSPC–
cholesterol bilayers, representing liquid disordered and liquid-ordered phases respectively,
have demonstrated a difference in the fashion with which the addition of chloroform
affects their properties [695]. In the DOPC bilayer, chloroform induced a small increase
in the extent of tail ordering, while, in the DSPC–cholesterol bilayer, it was seen to have
the opposite effect, inducing a pronounced reduction in the extent of tail ordering; it is
hypothesized that the preference for chloroform to interact with flexible acyl chains and
not with rigid cholesterol molecules leads to this effect. As a result, the number of direct
cholesterol–cholesterol contacts increased while the number of cholesterol–DSPC contacts
decreased.

In MD simulation studies, four anesthetics, desflurane, isoflurane, sevoflurane, and
propofol, were shown to have negligible influence on bilayer properties when present in
a POPC bilayer [305]. Additionally, chloroform, halothane, diethyl ether, and enflurane
in a DPPC membrane, at a temperature of 310 K, were shown to have a negligible effect
on the extent of acyl tail ordering, with the exception of the case of diethyl ether, where a
small increase in the extent of lipid ordering was observed [298]. The presence of diethyl
ether and sevoflurane in the membrane leads to a decrease in the extent of ordering of
the acyl tails for the case of both DPPC and PSM bilayers; this effect is more pronounced
for the case of bilayers that contain ~50 mol% of cholesterol [308]. Interestingly, evidence
has been found that aspirin, one of the most frequently used analgesics, can also disrupt
liquid-ordered domains or prevent their formation altogether [271]. The results of MD
simulations have indicated that aspirin molecules affect the structure of the acyl tails of the
lipids up to a depth of 1 nm into the bilayer with 30 mol% of cholesterol; coherent inelastic
neutron scattering experiments have demonstrated liquid-ordered domain disruption, i.e.,
transition from the liquid ordered to the liquid disordered phase [266]. The local anesthetics
lidocaine and articaine have also been found to decrease the extent of ordering of the acyl
tails when in their charged (ionized) form; the results, however, indicate that, in their
neutral form, their effect on the membrane structure is negligible [289].

Several experimental studies have been carried out that support the conclusions of
the above MD simulations. For example, it has been demonstrated that the addition of
chloroform loosens the structure of membranes in both gel and liquid-ordered phases [696].
Recent studies performed using multiple experimental techniques (Super–Resolution Mi-
croscopy dSTORM, Patch–Clamp, Fluorescence Resonance Energy Transfer) have demon-
strated that both chloroform and isoflurane disrupt lipid domains (rafts) that contain
the ganglioside GM1 [299]. Another anesthetic, propofol, at concentrations in the range
1 µM to 5 µM, has also been found to destabilize nanodomains in cellular membranes
via Binned Imaging Fluorescence Correlation Spectroscopy [309]. Thus, the significant
perturbations of the structure of bilayers in the liquid ordered phase, observed in MD
simulation studies [271,308], are in agreement with experimental observations.

The aforementioned studies mainly focused on the effect of anesthetic molecules on
the properties of the lipids related to the ordering behavior of the hydrocarbon chains
of the lipids, i.e., order parameter, phase behavior, bilayer thickness, and surface area
per lipid; this is, however, not the entire story. In 1997, Cantor proposed that general
anesthesia is related to an alteration of the lateral pressure profile [683], a parameter not
easily measured experimentally but relatively easy to calculate from MD simulations. An
MD simulation study of ketamine, in a POPC bilayer, found evidence that the presence of
the drug molecule could possibly give rise to a significant alteration to the lateral pressure
profile with only a very limited alteration to the membrane structure, e.g., the global
properties of the membrane discussed previously: membrane thickness, surface area, or the
extent of ordering of the acyl chains [311]. Another MD simulation demonstrated that two
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other anesthetics, diethyl ether and sevoflurane in (1) DPPC, (2) DPPC–cholesterol 50 mol%
(3) PSM, and (4) PSM–cholesterol 50 mol% bilayers, were found to significantly affect the
lateral pressure profile [308]. It has also been demonstrated, through MD simulation, that
the anesthetic chloroform (CHCl3) and the relatively similar molecule carbon tetrachloride
(CCl4), a non–anesthetic, affect the membranes in strikingly different fashions, as measured
by the effect on the lateral pressure and electrostatic potential profiles of the presence of
one or the other of these two molecules in the membrane [300]. Experimental studies have
also been carried out that provide evidence of the activation of transmembrane proteins
as a result of alterations to the lipid composition, e.g., using the mild detergent Triton
X-100 [541,542], the relationship between lateral pressure profile and lipid composition
was investigated both experimentally [697] and through MD simulation [698]. A few
MD simulation studies found specific effects due to direct lipid interaction on protein
behavior e.g., [699–705]; in most cases, the cholesterol molecules in the membrane were,
however, most frequently shown to play the role of modulating the behavior of membrane
proteins [706–710].

The entry of certain molecules into the biomembrane can affect its properties in a more
complex fashion than just altering the aforementioned parameters: it can affect the extent
to which undulations are present in the membrane structure. In MD simulation studies of
lipid bilayers using the coarse-grained MARTINI potential, it was found that the addition
of chloroform can decrease the degree to which undulations are present in a membrane
that contains ordered and disordered domains [301]. In the bilayer free of the anesthetic,
the ordered domains in opposite leaflets were not registered, i.e., they were not across
from one another. In this case, the bilayer was characterized by clearly visible undulations;
the addition of chloroform led to the rearrangement of the bilayer, and ordered domains
became registered and the bilayer thus became flat.

Although the above discussed computational and experimental studies demonstrate
the possible membrane–mediated mechanisms of action of molecules designed as gen-
eral anesthetics, namely the disruption of ordered lipid domains, such drug–membrane
interactions cannot explain the sensitivity of the potency of anesthetic molecules to drug
stereochemistry or single point mutations on the proteins involved in anesthesia [711].
Moreover, binding sites for anesthetics have been found from crystal structures of the mem-
brane proteins [712–714], docking calculations [715], and MD simulation [307]. For these
reasons the membrane mediated mechanism of anesthesia is frequently questioned [711],
however, the above discussed studies provide clear evidence of anesthetic induced effects
on membrane properties; additionally, evidence that the properties of the membrane in-
fluence protein functionality exist. Thus, a membrane-associated mechanism of action
for general anesthetics cannot be discarded as one of the mechanisms involved in what
is, admittedly, a complex process. Nevertheless, the interpretation of the Meyer–Overton
correlation as an indication of a membrane-mediated mechanism is incorrect; we return to
this issue later, in Section 6.2.1; this point will become clearer to the reader when they have
read this section.

5.5. Can Drugs Prevent Amyloid Formation via the Modification of Membrane Properties?

The formation of amyloid plaques deposited on the extracellular membranes of neu-
rons is one of the primary features of Alzheimer’s disease [716]. This phenomenon is
affected by specific lipids including cholesterol, sphingomyelin, and gangliosides [717,718]:
lipid types typically present in the outer leaflet of the cell membrane. Amyloid fibers at a
membrane surface have thus been frequently studied using MD simulations, e.g., [719–730],
however, a surprisingly small fraction of this work has been performed in the context of
drug design [731,732]. Khondker et al., proposed designing drugs with a mode of action
that involved modulating membrane properties to affect the aggregation of amyloid-β25-
35 at the bilayer surface [229]. They wished to study the modulation of the membrane
thickness, ordering, and other properties, as possible modes of drug action; thus, they
selected three molecules to study: curcumin, acetylsalicylic acid, and melatonin. Using MD

502



Pharmaceuticals 2021, 14, 1062

simulations, they demonstrated that curcumin decreases membrane thickness, decreasing
the extent of membrane ordering and rigidity; however, acetylsalicylic acid increases mem-
brane thickness, thereby increasing membrane ordering and rigidity while melatonin does
not affect the membrane properties at all; it was thus verified that these three molecules
represent the needed set of examples of molecules that affect membranes in different ways.
It was then determined experimentally that the decrease in the volume fraction of the
cross-β sheets was ~70% for the case of curcumin in the membrane; evidence was thus
found that decreasing membrane thickness in the vicinity of the amyloid-β25-35 molecules
could possibly be a mechanism of drug action for the treatment of Alzheimer’s disease.

5.6. A Clear Case of Drug Membrane Interaction as Mechanism of Action—Antimicrobial Agents

Antimicrobial agents represent a clear case of an established therapy where the global
alteration of the properties of specific membranes is the clear mechanism of drug action. In
general, biomembranes have a high degree of stability under physiological conditions and
possess the capacity to adapt to extreme changes in their environment via changes in the
lipid composition, e.g., [733–736]; evolution has provided biomembranes with several tools
to preserve themselves over a wide range of conditions. They are, however, not completely
invulnerable: numerous chemical agents and certain external conditions can disrupt their
structure. The lipid bilayer structure emerges from weak, nonspecific, interactions and,
additionally, the structure of biomembranes is formed by the cell, in driven processes and
can include lipids that do not spontaneously form bilayers; it is thus unsurprising that they
have vulnerabilities to several sources of disruption. The structure of a lipid bilayer can
be compromised through the formation of pores that perforate the membrane, due to the
presence specific molecules or physical stimuli, e.g., electric field [737], ultrasound [738,739],
and charge imbalance [740,741]. Finally, a lipid bilayer can be dissolved completely at the
molecular level by, e.g., detergents [742,743] or organic solvents [744].

Procaryotic (bacterial) and eurkaryotic (animal, i.e., patient) membranes differ sub-
stantially regarding the lipids of which they are composed. The extracellular leaflet of
a eukaryotic cell membrane is comprised of cholesterol, saturated phospholipids, and
sphingolipids, while procaryotic membranes contain mainly phosphatidylethanolamines,
phosphatidylglycerols, and cardiolipin. This substantial difference, combined with the fact
that some molecules can disrupt a cell membrane catastrophically enough to lead to cell
death, opens the door to a tantalizing opportunity: the design of molecules that severely
disrupt the structure of bacterial membranes while leaving eukaryotic membranes, i.e.,
the membranes of the cells of the patient being treated, relatively intact: they act as an
antibiotic. The bacterial membrane is, however, not the only possible target for peptides
designed to destroy specific lipid membranes. A recent development is the emergence
of a second important target: cancer cells. The overall lipid composition of the cancer
cell resembles that of normal cells, however, the asymmetric distribution of lipid classes
between the inner and outer leaflets, normally found in eukaryotic cell membranes [745],
is lost; they instead display a substantial concentration of phosphatidylserine in the outer
leaflet. The selective disruption of lipid membranes rich in phosphatidylserine becomes a
possible mode of action for cancer therapy: anticancer peptides [746,747] or drugs affecting
the membranes of cancer cells [748].

Peptides that selectively compromise bacterial but not eukaryotic (host/patient) mem-
branes, are a large and diverse group of potential drugs with a long history of research [749].
Currently, the term “antimicrobial peptides” is used as an umbrella term for peptides that
display a wide range of different activities against different pathogens. For example,
the APD3 database (2016) of natural antimicrobial peptides includes 2169 antibacterial,
172 antiviral, 961 antifungal, 185 anticancer, 307 hemolytic, 80 antiparasitic, 11 spermicidal,
27 insecticidal, and four anti-protist peptides [750]. The current number of antimicrobial
peptide sequences deposited in “DBAASP v3: the database of antimicrobial/cytotoxic
peptides” is 16,633 (01.02.2021); this number includes over 12,000 synthetic peptides [751].
Interestingly, over 3200 peptides have been the subject of MD simulations. Finally, dbAMP
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database contains over 12,000 entries [752]. There are at least six other databases dedicated
to antimicrobial peptides [753–758] (for review, see [759,760]). Surprisingly, the number
of clinical studies of antimicrobial peptides is, as of yet, relatively low (only 76) and the
majority of these have ended in failure [761]; so far, only seven peptides have been ap-
proved for clinical use by the FDA [762]. However, the literature concerning antimicrobial
peptides is extensive; prior comprehensive reviews of various aspects of antimicrobial and
anticancer peptides have been published [763–785], including reviews focused specifically
on computational studies [46–54]; we provide only a brief overview of this topic. Table 4
includes all antimicrobial peptides discussed in this paragraph.

Molecular dynamics simulations are frequently used to provide information regard-
ing (1) peptide conformation (e.g., % of helicity) [786–798], (2) peptide location (at the
membrane interface or inserted into the bilayer core), and (3) orientation in the mem-
brane [783,787–790,792–794,796,799–806]. As we stated previously, simulations can also
provide information regarding the effects of the peptides on membrane properties, in-
cluding (1) the extent of ordering in the acyl tails, (2) the overall membrane thickness,
and (3) curvature [793,794,799,800,807] as well as the formation of membrane defects [794].
MD simulations and other computational methods, combined with complementary ex-
perimental methods, can be used to design more effective antimicrobial [783,798,808–811]
and anticancer peptides [747,789,812–814]. For designing new peptides, an understand-
ing of the interactions between peptides and lipids is of particular interest. The results
of MD simulations can provide explicit information concerning, for example, (1) hydro-
gen bonds, (2) hydrophobic contacts, and (3) electrostatic and Van der Waals interaction
energies [792–794,799,800,815]. For example, studies of pardaxin in the membrane have
demonstrated the importance of cationic residues and phenylalanine residues on peptide
association with lipids [806]. Finally, MD simulations allow for the study of the effect of
chemical modification on the peptides (e.g., amidation) [787] and the effect of helical kink
on peptide insertion into the bilayer [816,817].

The above discussed studies considered only peptides statically located at a mem-
brane; the main mechanism through which antimicrobial peptides kill cells is, however,
the formation of transmembrane pores. Simulating pore formation is computationally
expensive; thus in a few older studies, to avoid long simulations, antimicrobial peptides
were initially placed in the lipid bilayer core [818–820] or simulations were performed
using the coarse-grained MARTINI model [821–825]. A few studies set out to elucidate
the entire process of pore formation; however, the protocol of the MD simulations was
altered e.g., by running simulations at an artificially high temperature or through a biased
selection of the initial configuration. For example, Sun et al., modeled the formation of
transmembrane pores, created by melittin, by initializing the simulated membrane with ar-
tificially created defects already in place [826,827]. The N-terminus of the peptide stabilized
these defects, resulting in their transformation into small pores following the recruitment
of two additional peptides. Wang et al., performed MD simulation at temperatures in
the range 80–120 ◦C; this allowed for the observation of pore formation by the peptide
maculatin [828]. Interestingly, they observed the formation of every variety of possible
oligomers, from dimers to octamers. In simulations of the antimicrobial peptide pleuro-
cidin, using a model with all atom resolution, the formation of a small pore composed of
two helices was observed; however, in much longer coarse-grained simulations a larger
number of helices were seen to be recruited to form a single pore [829].

Unbiased MD simulations of transmembrane pore formation were used to design a
new 14 residue long peptide, LDKL, which was then modified to include input from the
analysis of known antimicrobial peptides [830]. The final peptide, LDKA, contained only
four amino acid types: (1) leucine, (2) aspartic acid, (3) lysine, and (4) alanine. Large pores
formed by the LDKA peptide consisted of two overlapping pores formed separately in
both membrane monolayers and occurred at low peptide/lipid ratios (1:1000). The ability
of the peptide to kill both Gram-positive and Gram-negative bacteria without harming
erythrocytes has been confirmed experimentally [830].

504



Pharmaceuticals 2021, 14, 1062

The results of MD simulations of magainin 2 in its native form and its covalently
bound dimer, provided evidence for the formation of a disordered toroidal pore. The
concentration of the peptide necessary for pore formation was substantially lower for the
dimeric than the native form of magainin [831].

Calculations of the free energy of collective pore formation using umbrella sampling
(Figure 16A) found that six melittin molecules can stabilize a pore; formation is associated
with a small free energy (activation) barrier of ~10 kJ/mol. For seven peptide molecules,
the barrier is absent; however, after pore formation, one molecule was seen to be diffusing
away from the pore. When the number of melittin molecules is lower than six, the free
energy barrier becomes significant, but five peptide molecules were also able to form a
stable pore [832]. In another study, the free energy for the insertion of a single melittin
molecule into a bilayer containing 0 to 6 peptide molecules was calculated (Figure 16B,C),
a pore composed of three or more peptide molecules was seen to form [833]. The free
energy barrier is reduced when a larger number of peptides is present in the bilayer and
almost disappears, i.e., is close to 0 kJ/mol, when six peptides are present in the membrane.
Atomistic MD simulation studies have also found that synthetic polycations [834], itra-
conazole [258], and DMSO [258] induce a decrease in the free energy barrier against pore
nucleation.

Figure 16. (A) Snapshots of stages of pore formation along the collective variable ξ. Reproduced with permission from
ref [832]. Snapshot demonstrating the insertion of a single helix into the membrane (colored by residue polarity) where
pores formed of (B) 3 and (C) 5 helices are present. Reproduced with permission from ref [833].

It is worth noting that the results of calculations of the free energy of pore formation
are strongly dependent on the force field used [258,835]; other methodological issues
related to the simulation of membrane active peptides are (1) the size of the simulation box,
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(2) electrostatic interaction treatment, (3) initial conditions, and (4) the simulation protocol
used [836].

Peptoids, N-substituted glycine oligomers, are a possible alternative class of molecules
to antimicrobial peptides with the advantage of increased flexibility in functionalization
via the presence of an amide bond [837]. Peptoids have not been studied with theoretical
methods in the context of their membrane activity, but rather in the context of their
applications in nanotechnology, e.g., the study by Jin et al., in 2016 [838]. Recently, a
coarse-grained force-field created within the MARTINI framework [605] for peptoids
was developed [839]. Nevertheless, the interactions between peptoids and membranes
have been investigated experimentally [840]. These studies have found that antimicrobial
peptoids increase the permeability of bacterial membranes; this effect is increased via
cyclization [841]. Moreover, peptoids have recently been found to be potent antiviral
agents and have been successfully tested for activity against the SARS-CoV-2 virus [842].

Another class of drug molecules derived from peptides that has been proposed for
use as an antimicrobial agent are the β2,2-amino acid derivatives. In a simulation study
carried out by Koivuniemi et al., MD simulations of these derivatives interacting with both
prokaryotic and eukaryotic model membranes found evidence of important differences
in their behavior in the two membrane types [843]. Additionally, antimicrobial peptides
can have their desired properties enhanced through the introduction of non–natural amino
acids, e.g., the azoALY peptide derived from ALY (full sequence: ALYLAIRKR) by func-
tionalization of the sole tyrosine residue present with an azobenzene group [844]. Both MD
simulations and experimental studies have found evidence that this modification results in
a peptide with an enhanced interaction with lipid bilayers. Finally, peptides conjugated
with dendrimers have been proposed as a novel form of potential antimicrobial compound;
MD simulations have demonstrated the presence of strong interactions between these
molecules and bilayers composed of POPG [802].

In the above discussed studies, the bacterial membranes were modeled as simple
mixtures of either PC or PE with PG lipids, in spite of the fact that lipopolysaccharides
(LPS) are known to be present in bacterial membranes; aspects of the membrane structure,
behavior, and interactions with other molecules resulting from the presence of LPS in the
membrane were not explored. The reason for this is that when LPS molecules are included
in the membranes, the size of the system and timescale needed for system equilibration
becomes too large for the system to be tractable for MD simulation with a model with all
atom resolution. Theoretical studies have, however, been carried out that indicate LPS
plays a protective role against antibacterial peptides, e.g., magainin [845].

Antimicrobial peptides are not the only group of chemical compounds capable of
selectively disrupting the bacterial membrane; for example, recent studies of potential
antibiotics kanamycin A [133] and bithionol [247], provide evidence that these drugs have
an affinity towards model membranes that mimic the bacterial membrane and either do
not interact with, or only weakly affect, model membranes designed to mimic eukaryotic
membranes. Another set of potential antimicrobial compounds were synthetized on the
basis of cholic acid esterified with three glycine and an aliphatic alcohol of length 1, 6,
or 12 carbons; MD simulations found evidence of the presence of strong interactions
between these compounds and bilayers composed of lipopolysaccharides from Gramm–
negative bacteria [846]. The strongest effects on bilayer properties were observed for
the compound with the six-carbon long alcohol. Membrane perturbation by antibiotics
(e.g., fluoroquinolones and aminoglycosides) was proposed as an additional bactericidal
mechanism for these drugs [847]; recent studies of aminoglycosides, macrolides, and
fluoroquinolones determined that these antibiotics have a disordering effect on bacterial
membranes; however, they found no evidence of large-scale membrane disruption or
pore formation [848]. Interestingly, colchicine, a drug frequently used in chemotherapy, is
capable of inducing pore formation in lipid bilayers [849].

506



Pharmaceuticals 2021, 14, 1062

5.7. Other Effects on Lipid Layers—Pulmonary Surfactants and Indirect Effect on
Membrane Proteins

Drug molecules have also been shown to affect the properties of lipid monolayers, e.g.,
disrupting lung surfactants [264]. To condense pulmonary surfactant monolayers doped
with ketoprofen, higher surface pressures were necessary in comparison to the case of the
pure monolayer [263]. The difference was found to increase with decreasing surface area
per lipid. This observation was in qualitative agreement with data obtained from Langmuir–
Blodgett monolayer experiments. A similar result was obtained for pulmonary surfactant
monolayers doped with levofloxacin [238]. The increase was more significant when the model
was simulated with an elevated value for surface pressure. Additionally, the presence of
levofloxacin in the membrane had a disordering effect on the acyl tails; again, the effect was
more substantial for the model simulated with a higher surface pressure. Glycerol is often
used in the formulation of pulmonary drugs and the liquid medium in electronic cigarettes.
It has been demonstrated, both experimentally and through MD simulation, that glycerol
affects lipid monolayers and bilayers; its presence leads to significant monolayer expansion,
even at the low w/w concentration level of 1% [424].

Table 4. Antimicrobial peptides.

Peptide Source Refs.

Alamethicin Fungus, Trichoderma viride [818]

Aurein Frog, Litoria aurea [787,791]

azoALY Synthetic with non–natural
amino acids [844]

Bombinins Toad, Bombina variegata [783,850,851]

Cathelicidins Innate immunological system [792,808,852]

Clavanin A Tunicate, Styela clava [799]

Crabrolin Wasp, Vespa crabro [786,798]

Daptomycin Actinobacteria, Streptomyces
roseosporus [853–855]

Dermcidin Human sweat [801]

Designed peptides Synthetic [795–797,856–866]

Esculentin 2 Frog, Glandirana emeljanovi [867]

Gramicidins Gram–Positive bacteria,
Bacillus brevis [853,868]

Kalata B1 Cyclotide from Oldenlandia
affinis (plant) [869]

LDKL, LDKA Synthetic [830]

LL-3 Human [793]

Maculatin Frog, Litoria aurea [828]

Magainin 2 African clawed frog Xenopus
laevis [822,831,870,871]

Melittin Honeybee, Apis mellifera [807,818–820,822,824–
827,832,872–876]

MSI-103 Synthetic [796]

Nisin Lactic acid bacteria [877]

Pardaxin Fish, Pardachirus marmoratus [800,806]
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Table 4. Cont.

Peptide Source Refs.

PGLa African clawed frog Xenopus
laevis [788,796]

Pleurocidin Fish, Pleuronectes americanus [871]

Polymyxins Gram–positive bacteria e.g.,
Paenibacillus polymyxa [853,878]

Thanatins Insect defense peptides [815]

Trichogin Fungus, Trichoderma
longibrachiatum [879]

β-Defensin Innate immunological system [794]

Cecropin Moth Hyalophora cecropia [789]

Peptoids Synthetic [837–841]

6. Role of Membrane in Substrate (Drug) Selection of Membrane Proteins
6.1. Membrane Proteins: The Majority of Drug Targets

In addition to direct drug–membrane interactions, lipid membranes also play a role in
the interaction between substrates and membrane–associated proteins, with both substrate–
membrane and protein–membrane interactions playing roles in the substrate, and thus the
drug selection mechanism of membrane-associated proteins. Since membrane–associated
proteins are, in fact, the majority of drug targets [880,881], this issue should be central to
drug design. However, it can be argued that, so far, it has not received the attention it
deserves (Figure 17).

Figure 17. Chemical structure of drugs introduced in Section 6.

Membrane associated proteins can be subdivided into three categories: (1) multi–
pass (integral) membrane proteins, where the ligand/substrate binding site is frequently
within the membrane core (39% of membrane proteins [882]), (2) bitopic (single-pass)
membrane proteins with one or more domains outside the membrane but anchored to
the membrane through a single trans-membrane helix, with the functional domain, thus
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the active site, located outside the membrane (36% of membrane proteins [882]), and
(3) peripheral membrane proteins, with no permanent association with the membrane (16%
of membrane proteins [882]); however, for catalytic activity that involves interaction with a
membrane, catalysis occurs at the membrane surface.

There is what can arguably be described as a fourth variety of membrane associated
proteins that we, however, do not discuss in this review paper as they have not been
studied to as significant an extent: 9% of membrane proteins are covalently bound with
lipids; a common example is a glycosylphosphatidylinositol (GPI) molecule bound to the C
terminus of the protein, known as a GPI-anchor [882]. As is the case with bitopic membrane
proteins, the functional domain of the protein is located completely outside the membrane
but is bound to a lipid membrane through an anchor.

The term “multi-pass” to describe integral membrane proteins refers to the structure
of the trans-membrane domain, composed of several (up to 14 [883]) α-helices as the
protein threads back and forth through the membrane; another class of integral membrane
protein exists with a β–barrel rather than a set of α-helices as the trans-membrane domain.
However, such proteins are not common [884] and have not been used as drug targets, thus
they are not discussed in this review; yet, it should be mentioned that β-barrel membrane
proteins are predominately found in bacterial membranes, e.g., the outer membrane of
gram negative bacteria (in eukaryotic cells only in mitochondria and chloroplasts), thus
could possibly in the future be potential targets for antibiotics, though, as far as we are
aware, this is not yet the case.

A mechanistic understanding of the role the lipid plays in the substrate selection
of membrane proteins is a key element of the design of drugs that target them, and MD
simulation has a central role to play in obtaining this; we now discuss examples where MD
simulation has obtained insight relevant to drug design, for all three varieties of membrane
associated proteins.

In contrast to multi-pass (integral) membrane proteins, where considerable work has
been performed, in particular the GPCR class of membrane proteins e.g., [885–899] (for
review see references: [31,900–903]), that are a very hot topic, peripheral and bitopic (single
pass) membrane proteins, which constitute 43–45% of transmembrane proteins [883], are
underrepresented in MD simulation studies.

One of the reasons for this is that obtaining experimental insight into the nature of
the membrane–protein interaction for weakly membrane associated proteins is extremely
challenging. Obtaining structures from x-ray crystallography or cryo-EM, while less
straightforward than for the case of water-soluble proteins, is still possible for integral
membrane proteins within membrane-like nanodiscs [904–906] or a detergent environ-
ment [907–909]; obtaining such information for the more weakly associated proteins directly
from experiment is challenging and rarely achieved. The rare cases of success in this re-
gard represent a Herculean effort: one must work with incomplete structures combining
fragments originating from several PDB entries and, frequently, the assistance of theo-
retical methods is necessary (e.g., homology modeling [910–912] and modeling of short
loops [913]). Moreover, extracellular domains of bitopic receptors are heavily glycosylated
and the precise sequences of these complex carbohydrate branches have, in most cases, not
been determined. The few MD simulation studies of glycosylated receptor proteins that
have been carried out have demonstrated that glycosylation determines the behavior of
these receptors [914–916]. Interactions of these latter two classes of membrane proteins
with lipids differ significantly in comparison to multi-pass (integral) membrane proteins
since interactions with the lipid headgroups become dominant over interactions with the
membrane core. As mentioned in the beginning of this review, the solution of the structure
from sequence problem by the Alphafold project [1] completely changes the game; initial
results show promise for even the structure of bitopic membrane proteins, so there may
soon be rapid progress in this area.
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6.2. Multi-Pass (Integral) Membrane Proteins

6.2.1. Our Discussion Follows the Framework of Vauquelin

Multi pass membrane proteins are the class of membrane proteins that have been
experimentally and computationally studied the most in their context as drug targets,
primarily due to their functions as receptors (40% of multi pass membrane proteins), chan-
nels and transporters (another 24%), and enzymes (yet another 16%). The importance of
this group of proteins may be exemplified by the Nobel prizes awarded for the study of
various aspects of an important family of 901 (in human) integral membrane proteins [917],
the G coupled receptors, including Nobel prizes in Medicine and Physiology: 1967 (stud-
ies of rhodopsin), 1988 (discovery of β-blockers), 1994 (discovery of G-protein), 2004
(odorant receptors), and even a Nobel prize in Chemistry: 2012 (3D structure of GPCRs)
(GPCR) [918–922]. Issues relating to the design of drugs to target integral membrane
proteins are covered in several already published reviews [923–926].

In describing the role played by MD simulation in the study of multi-pass membrane
proteins, in their context as drug targets, we will follow the categorization scheme de-
veloped by Vauquelin, presented in ref [927], shown as a schematic in Figure 18, i.e., we
draw attention to the contribution that MD simulations and related methods have made
towards understanding drug–membrane–target protein relationships using their classifica-
tion scheme, as a framework for our discussion. The scheme is summarized (see Figure 18)
as: (1) the effective increase in both the kinetics and affinity due to drug accumulation in
the membrane and the resultant reduced dimensionality of drug diffusion (Figure 18A–C);
(2) how the membrane affects the entry of the ligand into the binding site (Figure 18D);
(3) the role the membrane plays in the ligand interaction with the protein (Figure 18E);
and (4) the possible design of hybrid drugs connecting orthosteric and allosteric pockets
(Figure 18F). Our discussion will now follow this framework in order.

(1) The accumulation of drug molecules in membranes significantly increases the
local concentration of the drug molecule in the vicinity of the targeted membrane pro-
teins in comparison to bulk solution, thus increasing the apparent affinity of the drug
for the active site and making the drug kinetics more favorable (Figure 18A).

Due to the high affinity of drugs for the lipid membrane, the release of the drug
from the membrane environment is slow and the local concentration of the drug remains
enhanced in relation to its bulk concentration in the solvent medium. This results in drug
molecules being predominantly confined to the two-dimensional environment of the mem-
brane that the protein is associated with, rather than the three-dimensional environment
of the bulk solution around the protein. Thus, as a result of geometry alone, diffusion
confined to two dimensions is significantly more limited in comparison to diffusion in three
dimensions; the drug is more likely to remain in the vicinity of the protein with an increased
chance of binding again as a result of locating preferentially to the lipid membrane as
opposed to being randomly distributed in the bulk solution. This phenomenon is known
as “rebinding” and has been documented experimentally [928] and considered in models
of drug kinetics [929]. In order to take this into account, micro–pharmacokinetic models,
which consider local drug concentration, have been proposed.

Extensive studies of ligands of the β2-adrenergic receptor have demonstrated that
lipophilic drugs that accumulate on the lipid bilayer are characterized by a higher rate of
drug−target protein association (Kon) in comparison to the more hydrophilic drugs with the
same pharmacophore [930]. On the other hand, the dissociation rate (Koff) was not found to
be dependent on drug lipophilicity [930], as lipids do not affect protein–drug interactions
inside the binding site. Subsequent studies that used fluorescently labeled propranolol
found an accelerated accumulation of the drug on the cell membrane and suggested that
the actual affinity of propranolol for the β2-adrenergic receptor was significantly less than
previously anticipated, based on a standard measurement assuming a uniform distribution
of the drug in the volume of a sample [931].
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Figure 18. Accumulation of drugs in the membrane and its consequences for drug–protein interactions. Based on Figure 2
from ref. [927].

In addition to the kinetics of binding, this phenomenon will affect the effective affinity,
of the binding site, for the ligand; it will be a factor that is missed by conventional docking
and scoring studies that do not take the membrane into account. While this will not affect
the enthalpic term of the binding affinity, it will have a marked effect on the entropic
component; bias of drug molecules to confinement to a two-dimensional plane rather than
the three-dimensional bulk medium lowers the entropic penalty of binding. Techniques that
use MD simulation with a force bias, that we discussed previously, can be used to obtain
a quantitative estimation of this effect. For example, a deconvolution of the membrane
and protein binding contributions, i.e., separating the contributions to affinity due to the
membrane and the binding site, performed for β2 adrenergic receptor ligands, improved
the accuracy of the results of a structure–activity relationship analysis [932].

We can now, in light of the discussion of the activity of membrane proteins, re-
turn to our discussion of the mechanism of action of anesthetics. The aforementioned
Meyer–Overton correlation is the result that more lipophilic anesthetics have a tendency to
produce stronger effects. The correlation can be most easily explained through a micro-
pharmacokinetic model. However, this interpretation, while the most elegant, does not
support a membrane mediated mechanism for the action of anesthetics but rather suggests
the involvement of membrane proteins; nevertheless, the possibility that modification of
the membrane properties plays some role in a more complex mechanism of action for
anesthetics is not excluded.

(2) The accumulation of drugs in the membrane will affect the entry pathway of
a ligand into the binding site as this will create a bias, increasing the likelihood that
drugs approach the protein from within the lipid membrane (Figure 18D).
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As discussed previously, the accumulation of ligand molecules in the membrane will
increase both the entrance frequency and apparent affinity of ligands for the active site; this
is, however, not the only effect of the preferential location of ligands to the membrane: the
path taken to enter the protein will also be affected, resulting in further inaccuracy in the
standard “lock and key” paradigm that does not take the membrane into account. In many
cases, the active site is entirely within the membrane core, with entry being made from the
lipid phase into an opening between trans-membrane helices. In fact, the direct entry of a
ligand from a membrane into a receptor can be anticipated based on the crystal structure
of the receptor. For example, for the case of the sphingosine 1–phosphate receptor 1 the
extracellular opening is blocked by the N–terminus and extracellular loops [933]; the entry
location for ligands is rather from within the membrane core to a receptor deep within the
lipid phase of the membrane between trans membrane (TM) helices TMI and TMVII. For
the protein Opsin, the retinal binding site opens directly into the membrane core at two
points between TM1–TM7 and TM5–TM6 [934]. The two openings and the central cavity,
constitute a channel through the protein, with a length of 7 nm and a width of 1.16–0.32 nm.
The entry of a ligand into the binding pocket has been studied via MD simulations, in
some cases using force bias methods and these will be discussed in detail later in this
section. Membrane mediated ligand entry/exit pathways to the binding pocket have been
discussed in previously published review articles for the case of GPCRs [935,936], but
also for the larger group of membrane proteins that includes GPCRs, ion channels, and
transporters [41].

(3) Drug partitioning into the membrane can alter the conformation of the drug
molecule, thus affecting its interaction with the binding site of the target protein.

When immersed in the hydrophobic environment of the membrane core, the situation
is roughly equivalent to immersion in a non-polar solvent. Many molecules exist that
are soluble in both polar and non-polar solvents and achieve this through changing their
conformation; it is thus possible for a molecule to exist that first enters the membrane,
then alters its conformation within the membrane core and, only at this point, with its
new conformation adopted within the hydrophobic environment of the membrane core,
has a structure with a high affinity for a specific binding site of a membrane protein
(Figure 18E). Through MD simulations, we can directly observe such behavior, for example,
the candesartan antagonist of the GPCR AT1 receptor changes conformation after entry into
the membrane [193]. Another example is the cannabinoid analog AMG3. This molecule is
in possession of six flexible bonds, thus allowing for significant conformational change;
MD simulations of AMG3 in a lipid bilayer were used to find the optimal conformation for
binding to both the CB1 and CB2 receptors [338].

(4) The exosite model (Figure 18F) assumes that the drug molecule is composed
of two linked component ligands: the first binding to the orthosteric pocket and the
second to the allosteric site [937].

The allosteric sites are frequently located at the protein–lipid interphase and allow
for increased specificity in comparison to a drug that targets only the orthosteric (binding)
pocket. Due to the highly conserved structure of orthosteric pockets, e.g., among GPCRs, it
is difficult to find a highly selective ligand based on this criterion alone; an inclusion of the
allosteric site into the computational drug design approach allows for the necessary target-
ing specificity. The use of the allosteric site in addition to the orthosteric pocket in drug
design has been referred to as the “exosite model” and “the design of bitopic ligands/drugs”
by two separate research communities [938,939]. Modeling methods, including MD simu-
lations, are one of the tools used in the design of bitopic drugs [900,940,941]; however, in
these studies lipids are only considered as a passive component and their complete role in
substrate selection is not fully elucidated.

6.2.2. Exploring the Complex Pathways to the Active Sites of Integral Membrane Proteins

The time scale that can be investigated through MD simulations is a limiting factor for
a direct observation of ligand entry into the binding site of receptors or enzymes; only a
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few studies have thus addressed this problem with unbiased MD simulations. A study of
histamine entry into the H4 receptor found evidence of two possible entry pathways [407],
one of which overlaps with the previously determined Na+ entry pathway [556]. In
extensive simulations of alprenolol, an inhibitor of the β2 adrenergic receptor, the entrance
of the drug into the binding pocket of the receptor was observed 12 times; entry, however,
occurred from the water phase despite strong preferences observed for the drug molecule
to locate to the lipid phase and remain there for the majority of the simulation [195];
in this case, the membrane acts as a drug reservoir, and its mechanism described in
Figure 18A. The ligand entrance into the protein binding site, directly from within the
lipid core of the membrane, was demonstrated for the example of the cannabinoid sn-2-
arachidonoylglycerol (2-AG) and the CB2 receptors [455]. The entrance gate for the ligand
locates between TM6 and TM7. The entry of the ligand into the sphingosine-1-phosphate
receptor-1 was characterized using multiple, microsecond long simulations [942]. The
entry path began in the vestibule at the top of TM7, then preceded to enter the protein
between TM7 and TM1. A similar MD study of the binding and activation of Orexin–A
was also carried out [943]. In studies of the dopamine D3 receptor, a set of 1000 short 20 ns
simulations of systems, where dopamine was initially located in the water phase, found
only 22 cases of direct entrance of dopamine into the binding pocket of the receptor [394].
In 736 cases, the dopamine molecule located to the membrane, settling among the lipids
but not in contact with the protein; in another 180 cases, it located to the protein–lipid
interface and in the remaining 62 cases located to the protein surface exposed to the water
phase. These numbers closely correspond to the surface area of the membrane occupied by
lipids and protein in the studied model; thus, this provides evidence that the protein has
no inherent properties that attract the ligand, i.e., the relative number of binding events
correspond to the relative surface areas, an unexpected result.

Flooding simulation was used to study the interaction between the Gloeobacter vio-
laceus ligand-gated ion channel and the general anesthetic desflurane [307]. These studies
demonstrated that the desflurane molecule enters a binding site, with a structure known
from X-ray crystallography [712], via a membrane-mediated pathway. Moreover, simula-
tions revealed an additional binding site not anticipated in previous studies. In this case,
desflurane entered the binding site directly from the lipid core (Figure 19). In another
flooding simulation study, menthol, a small compound extracted from mint that acts as a
local anesthetic, bound to the α4β2 nicotinic acetylcholine receptor, to a binding site located
at the lipid–protein interface via a membrane–mediated pathway [434]. In other flooding
simulations of two anesthetics, chloroform and isoflurane, the molecules first entered the
lipid bilayer and then subsequently diffused to the allosteric binding sites of the vanilloid-1
receptor (TRPV1) [297]. These studies identified five binding sites for chloroform and
three for isoflurane, in spite of the fact that the overall affinity of the aforementioned drug
molecules toward TRPV1 was relatively small.

In some cases, MD simulations determined only a fragment of the drug entry pathway
or merely demonstrated the accumulation of the drug in the vicinity of possible entry
points. For example, multiple 500 ns MD simulations of the drugs clozapine and haloperi-
dol, acting as ligands of the dopamine D2 and D3 receptors, determined the pathway
between the binding site and the receptor vestibule, where drugs were placed into the
initial structure; however, the pathway between the vestibule and membrane remains
unknown [322]. Amantadine is a drug used to treat influenza. At the molecular level,
amantadine inhibits the M2 transmembrane proton channel, preventing virus budding.
Through MD simulation, it has been demonstrated that the more hydrophobic derivative
of amantadine, spiro[pyrrolidine2,2′-adamantane], has a tendency to aggregate around the
M2 channel to a greater extent than amantadine; this could be the mechanism behind the
experimentally observed higher binding affinity of spiro[pyrrolidine2,2′-adamantane] for
the M2 protein in comparison to the case for amantadine [254]. Simulations of candesartan,
an antagonist of the GPCR AT1 receptor, an integral membrane protein, found evidence that
that the drug approaches the opening between helices 4 and 5 from where entry into the

513



Pharmaceuticals 2021, 14, 1062

binding site has a high probability [193]. This study then made the important observation
that the two-dimensional diffusion coefficient of the drug, in the plane of the membrane,
calculated from the MD simulation trajectories, was in excellent agreement with the dif-
fusion coefficient measured experimentally using liposomes as a membrane model. This
result further supports the 2D model of drug diffusion when approaching the previously
discussed receptor. Finally, Kiriakidi et al., suggest that lipids affect the conformation of the
candesartan molecule, potentially affecting the affinity of the drug for the binding site. Yet,
for two lipid-like drugs, N-arachidonylglycine, and oleoyl-L-carnitine, the only possible
pathway to access the binding site is from within the membrane. Extensive MD simula-
tions of the glycine transporter GlyT2 embedded into the lipid bilayer found evidence for
numerous possible drug interactions with the protein; unfortunately, this study was unable
to determine the specific binding site responsible for receptor inhibition [137].

Figure 19. Partitioning of desflurane into the membrane and Gloeobacter violaceus ligand-gated ion
channel studied using a flooding simulation. Snapshots of the simulated model at the (A) beginning and
(B) end of the simulation. Desflurane molecules were colored according to their location: blue—water
phase, green—lipid bilayer, red—ion channel. Reproduced with permission from ref. [307].

As stated above, the timescales involved limit the extent to which unbiased MD
simulation can elucidate the interaction between potential ligands and integral membrane
proteins. As a result, several groups have made use of a variety of force bias, and other
enhanced sampling techniques to gain further insight; the situation is similar to that
regarding membrane translocation discussed earlier, though the specific methods that are
optimal differ. Studies of the β-adrenergic receptor using RAMD found five possible exit
pathways of the receptor antagonist carazolol [200]. The most frequent entry/exit pathway
was passing through the extracellular opening, i.e., the opening exposed to the solvent,
at the top of the receptor; however, in 30% of runs, carazolol exited the binding pocket
through clefts between the transmembrane helices. The most frequently utilized alternate
pathway was the cleft between the TM4 and TM5 helices (TM4–TM5); other pathways pass
between helices: TM5–TM6, TM1–TM2, TM1–TM7, and TM6–TM7 (see Figure 20). For
the case of dopamine, D3 receptor RAMD simulations revealed an alternative pathway
that passed through a lateral gate between helices TM5 and TM6 [394]. Subsequent free
energy calculation using the umbrella sampling algorithm [93] demonstrated that there
is no energy barrier along this pathway. Temperature accelerated molecular dynamics
simulation was applied to the study of protease-activated receptor-1, a GPCR activated
by the binding of a peptide; it was determined that an exit/entry patch of a ligand from
the binding pocket directly faces into the membrane hydrocarbon core [944]. The two
observed exit/entry points were located between helices TM4, TM5, TM6, and TM7. These
simulations also found evidence for a third possible entry/exit pathway located between
the extracellular loops of the receptor and the water phase.
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Figure 20. Entry/exit pathways of carazolol observed in the RAMD simulations. Left and right panels show sets of
simulations with different acceleration magnitudes. The color scale is from yellow at the beginning of the simulation to blue
at the end of the simulation. The starting conformation of the receptor is shown in a cartoon representation. Reproduced
with permission from ref. [200].

Most drugs bind to the orthosteric binding pockets of proteins where their natural
ligands bind; however, it is possible for proteins to be modulated by a drug binding to
an allosteric site, e.g., for the GPCR family, 7 allosteric pockets facing into the membrane
hydrocarbon core have been found in 12 GPCRs [945]. Yet, the most recent studies of M5
muscarinic acetylcholine receptor revealed the presence of three allosteric sites including
one novel site [946]. Recent studies provide an example of such an allosteric modulator of
the β2-adrenergic receptor: compound AS408 was shown to bind between transmembrane
helices TM3 and TM5 at the surface, directly facing the membrane core, thus stabilizing the
inactive conformation of the receptor [197]. In MD simulations, Yuan et al., demonstrated
the binding of the P2Y1 receptor antagonist, BPTU, to the extra-helical site between helices
1 and 3 [329]. The binding took place via the lipid bilayer in three steps: first, BPTU enters
the water–membrane interface from the water phase; next, BPTU forms an initial set of
interactions with the extracellular loop 2 of the receptor; finally, the drug translocates to
the binding site. Similarly, the binding site for ZM241385 in adenosine receptor type 2A
was identified at the protein–lipid interface [947]; in this case, lipids stabilized the binding
pose of the ligand.

6.3. Bitopic Membrane Proteins

6.3.1. Proteins with a Tenuous, but Permanent Connection to a Specific Lipid Bilayer

As described above, for the case of bitopic proteins, the protein is tethered to the mem-
brane through a single transmembrane helix, but with the functional domain/domains,
thus active site/sites, located outside the membrane; there is, however, considerable evi-
dence that the lipid membrane plays a role in substrate selection [381]. Monk et al., [948]
in the very first complete structure of a bitopic protein to be determined, already found
evidence that the trans–membrane helix and linker segment controls the orientation of the
catalytic domain relative to the membrane, thus indicating a role for the membrane in catal-
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ysis; bitopic proteins cannot be thought of as merely a catalytic domain loosely attached
to the membrane like a balloon with the linker segment as a piece of string attaching it
to a the trans membrane helix acting like a pin in a cork board: the linker segment and
trans-membrane helix play an active role in positioning the catalytic domain relative to the
membrane.

We will now focus on four cases where MD simulation has seen considerable success
in elucidating the role the membrane plays in substrate selection (thus drug affinity) for
bitopic membrane proteins: (1) cytochrome P450, (2) the membrane bound isoform of
catechol-o-methyltransferase (MB–COMT), (3) monoamine oxidase, and (4) tropomyosin
receptor kinase B. In many cases, for example MB–COMT, these are proteins with water–
soluble in addition to bitopic, membrane bound, isoforms.

6.3.2. Cytochrome P450

Cytochrome P450 (CYP) is a family of 41 (in humans) bitopic membrane enzymes
responsible for both the catabolism (synthesis) and anabolism (degradation) of a variety
of small molecules [949]. For example, the synthesis of cholesterol, steroid hormones,
bile acids, vitamin D3, and second messengers derived from polyunsaturated lipids is
performed by CYPs. CYPs are also responsible for the degradation of small molecules,
e.g., neurotransmitters, and various xenobiotics, including about 50% of all approved
drugs [950–954]. A review of MD simulation studies of CYPs is given in ref. [955].

The catalytic domains of proteins belonging to the cytochrome P450 family have been
studied extensively, in a water environment without the trans-membrane helix present,
using MD simulation and related molecular modeling methodologies in the context of both
drug design (e.g., [956,957]) and their mechanism of catalysis (e.g., [958]). It has been argued
that these studies can elucidate the catalytic mechanism of membrane bound proteins,
since the catalytic site is placed in an internal pocket of the protein and does not interact
directly with the membrane. An analysis of the conformation of the active site of CYP 3A4
in both membrane bound and water-soluble forms reveals a lack of significant difference,
the volume of the binding site was, however, larger in the water-soluble simulations [959].

The majority of known crystal structures of CYP P450 are only partial structures,
containing only the catalytic domain. The only complete protein structure (including
linker, transmembrane helix, and attached membrane) belonging to this family is yeast
lanosterol 14α-demethylase [948]. The structure of lanosterol 14α-demethylase suggests
that the transmembrane helix affects the orientation of the catalytic domain towards the
lipid bilayer. Unsurprisingly, numerous MD simulation studies have been dedicated to
elucidating the orientation of the catalytic domain relative to the membrane surface and its
specific interactions with lipids: for example, this was achieved for CYP 2C9 [960]; CYP
17A1 [961]; CYP1A2, 2A6, 2C9, 2D6, 2E1, and 3A4 [326,962,963] through MD simulations,
then subsequently validated experimentally. Interestingly, the orientation of the catalytic
domains of CYP 2C9 and CYP 2C19 were found to differ from each other significantly,
in spite of the relatively high extent of sequence similarity; through MD simulation it
was determined that the difference was induced by only three residues located at the
membrane–protein interface [964]. Interestingly, truncation of the transmembrane helix in
CYP 19A1 and 17A1 did not change the orientation of the catalytic domain significantly;
however, mutations in the transmembrane helix of CYP 17A1 destabilized the interaction
between the membrane and catalytic domain of the protein [965]. MD simulations also
demonstrated that lipid composition, e.g., the addition of cholesterol [966] or charged
lipids [967], affects the orientation of the extra-membrane domain with respect to the
membrane surface. Additionally, the choice of force field (parameters set) may have a
measurable, but not significant, effect on the orientation of the domains of the protein that
are outside the membrane [968].

The active site of CYP enzymes is located inside the protein, thus substrates and
products enter/exit the active site through numerous possible channels [969] (Figure 21).
Such channels have been observed in crystal structures [969], MD simulations [969], RAMD
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calculations [970,971], and steered MD simulations [972]. The channels found can be
subdivided into seven classes: channel 1, channel 2, channel 3, channel 4, channel 5,
the solvent channel and the water channel; in turn, channel 2 has 7 subclasses. The
aforementioned channels open towards the membrane core, membrane–water interface,
and directly into the solvent phase (water) (Figure 21).

Figure 21. (A) Snapshots of five CYP enzymes simulated attached to the membrane (left) and simulated in water (right)
with open (minimum radius 1.5 Å) channels shown. Reproduced with permission from ref. [962]. (B) Snapshots of the
models of membrane-bound CYP 2C9 and (C) visualization of the channels observed in MD simulations of these models.
Reproduced with permission from ref. [960].

Free energy calculations have demonstrated that the substrate may enter/exit via
various channels; however, the free energy barriers encountered traversing the channels,
i.e., largest barrier along the pathway for each case, differ by up to 8 kJ/mol [388]. An MD
simulation study that compared the aforementioned channels in the human and human
parasite Trypanosoma brucei versions of CYP51s provided evidence that subtle differences in
structure exist which could possibly be taken advantage of to design a drug to specifically
target the parasite enzyme [973], i.e., design drugs based on transit through the channels,
selecting a drug that has a lower free energy barrier for traversing the channels of the form
of the enzyme in the parasite than that present for the host.
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The interactions of CYPs with lipids affects the behavior of the entry channels signifi-
cantly. In studies of CYP 1A2, the authors demonstrated that the probability of the opening
of a specific channel is dependent on contact with the membrane, with the radius of the
channel regulated through interactions with lipids in the membrane [974]; through very
subtle conformational change in the protein, the membrane facing channels 2b, 2d, and 4
are enlarged, i.e., “opened”, when the protein is in contact with the membrane while the
water facing channel 2c is enlarged when the protein is in the water phase. For the case
of the protein CYP 2B4, free energy calculations have determined that the transition from
the open to the closed state is associated with a free energy change of 10 Kcal/mol for the
membrane-bound protein and 25 Kcal/mol for the protein in solution [975]. Moreover, for
the case of CYP 17A1, the membrane facilitates the opening of the entry channels [961].
This opening of channels or catalytic pockets is also observed in peripheral membrane
proteins (discussed in more detail in the following section) due to interactions with the
lipid membrane, e.g., simulations have observed this occurring for the phospholipase
A2 [976,977], dihydroorotate dehydrogenase [978], monoglycosyltransferase [979], and
other proteins that we will later discuss.

Combined experimental and simulation studies of CYP 2B4 reveal the presence of a
sphingomyelin binding region on the protein and a protein-induced increase in the level of
cholesterol and sphingomyelin in nanodiscs incubated with micelles containing lipids [980].
Putting these together, the authors concluded that CYP 2B4 induces the formation of
ordered raft-like domains in its environment as lipids are exchanged between the micelles
and the nanodisks. In turn, at the ordered membrane, the thermal stability of CYP 2B4 is
significantly increased. The lipid environment also affected the affinity of hydrophobic
substrates for CYP 2B4: highest in the raft-like environment and lowest in water solution.
The behavior of CYPs may also be modulated due to the formation of heterodimers with
cytochrome b5 or cytochrome P450 reductase [981,982].

The results of older MD simulation studies have provided evidence that the location
and membrane orientation of the entry channels of CYP 2C9 correspond well with possible
substrate positions [272]. In recent unbiased MD simulations, spontaneous events of the
entry into the catalytic pocket of CYP 2D6, by substrates paracetamol and butadiene, from
the water–membrane interface, were seen [285]. In eight observed events of paracetamol
entry into the catalytic pocket, three possible channels were used; thus, there is no specificity
for the entry pathway for this compound. For butadiene, only two events of entry occurred,
both through channel 2c. Using a combination of extensive, unbiased MD simulations and
RAMD, the entrance pathway from the membrane to the binding site was determined for
testosterone [408]; umbrella sampling calculations along this pathway revealed the free
energy landscape.

Through MD simulations, the effect of point mutations on the enzymatic activity of
CYP 2C19 was analyzed, providing evidence for a possible mechanism responsible for
the reduction of the affinity of the enzyme for the substrate, e.g., local deformation of the
secondary structure of the protein results in a change in the shape and the dynamics of
the catalytic pocket that, in turn, gives rise to the formation of a new stable network of
hydrogen bonds [983]. A study of CYP 1A1 found that point mutations may facilitate the
interactions of organic pollutants with the protein [984], while CYP 2D6 is characterized
by a high degree of genetic polymorphism that leads to several possible phenotypes [985].
The results of MD simulations of a few variants of CYP 2D6 indicated that a decrease, or
even a complete loss, of enzymatic activity may arise from a decrease in the frequency of
channel openings, decreased minimal diameters of channels, or decreased catalytic site
volume [986]. On the other hand, an increase of active site volume facilitates enzyme
activity. MD simulations have been used to design mutations of CYP 3A4, designed to
enhance the rate with which it epoxides carbamazepine [328]. Finally, interactions of the
drugs progesterone and carbamazepine [326,327] and atorvastatin and dronedarone [312]
have been studied using a combination of experimental methods and MD simulations.
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6.3.3. Catechol-O-methyltransferase

The enzyme catechol-O-methyltransferase (COMT) is an exciting example of a protein
that has two isoforms: a water–soluble form (S–COMT) that is generally thought to per-
form its catalysis in solution but with the capacity to act also as a peripheral membrane
protein and a membrane–bound isoform (MB–COMT), a bitopic protein [987]. The dif-
ference between S–COMT and MB–COMT is a 26 residue long transmembrane α–helix
and a 24-residue long linker segment connecting the catalytic domain with the trans-
membrane segment. The function of COMT is the catabolism of catechols (Figure 22),
including the neurotransmitters dopamine, epinephrine, and norepinephrine. Inhibitors
for COMT are thus used to treat Parkinson’s disease together with the dopamine precursor
L–DOPA [645,646]; the goal is to prevent dopamine deficiency in neurons, and the role
of COMT inhibitors is to avoid L–DOPA degradation before it is converted to dopamine.
Importantly, in the central nervous system, MB–COMT is the dominant form of the en-
zyme; thus, selective inhibition could possibly be profitable for patients. In our studies
of MB–COMT, we found evidence, through MD simulation, that a group of inhibitors
specific for MB–COMT is characterized by a clear orientation, when in the lipid membrane,
with the catechol group oriented outwards and towards the water phase (Figure 22) [381].
The catalytic activity of COMT first involves the binding of the S-adenosyl methionine
(ADOMET) cofactor, then an Mg++ ion is bound to form the binding pocket (Figure 22). As
part of the same study, a simulation of the entire MB–COMT in the lipid membrane in both
holo- and apo- (with and without ADOMET cofactor bound) states was performed and
it was determined that the binding of ADOMET leads, i.e., orients, the catalytic surface
towards the lipid headgroups, through the creation of a membrane binding patch similar
to that found in peripheral membrane proteins, where the substrates are methylated at the
membrane–water interface. Through MD simulation, the catalytic mechanism, unique to
the membrane bound isoform of COMT, has been determined, presenting the tantalizing
possibility of designing drugs that selectively target MB–COMT over S–COMT. Through
datamining, other examples of proteins where the same mechanism can be exploited have
been found.

6.3.4. Monoamine Oxidase

Monoamine oxidase (MAO) A and B are bitopic proteins involved in the degrada-
tion of monoamines, particularly monoamine neurotransmitters: dopamine, serotonin,
epinephrine, norepinephrine, histamine, and trace amines, as well as the catabolism of
xenobiotics. As a result of this role, they are a drug target for inhibition in the treatment of
Parkinson’s and Alzheimer’s disease and major depressive disorder [988–990]. Not sur-
prisingly, MAO inhibitors are frequently studied using computational modeling methods
including docking calculations, free energy calculations, and hybrid quantum mechan-
ics/molecular mechanics (QM–MM) simulations, e.g., [991–993]. A recent example is the
study of MAO–A and MAO–B inhibition by naturally occurring flavonoids that originate
from medicinal plants [994]. Quantum mechanics/molecular mechanics simulations have
also been used to elucidate the mechanism of enzymatic reaction catalyzed by MAO–A
(e.g., [995]) and MOA–B (e.g., [996,997]); for a review of this topic, see ref. [998].

Simulations of MAO–A at the membrane−water interface provided evidence of the
opening of a channel for the substrate and the reaction products that was not seen to occur in
simulations performed without the lipid membrane, i.e., the channel remained closed [999].
For the case of MAO–B, the lipid bilayer was found to control the behavior of the two loops
at the entrance of the active site, allowing for the opening of a channel [1000]. The other
channel-facing membrane was observed in simulations of the MOA–B dimer [1001]. These
studies also found evidence of changes in protein dynamics induced by the membrane,
potentially affecting MOA–B activity.
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Figure 22. (A) Schematic of the catalytic mechanism of MB–COMT. (B) The behavior of MB–COMT selective vs. non–
selective inhibitors in the membrane. (C) Quantitative experimental and computational results for the interactions of the
ADOMET and catalytic domain of COMT in complex and separately with lipids: (C1) the free energy changes calculated
computationally with umbrella sampling methods; (C2) quartz crystal microbalance (QCM) frequency changes during
interaction of COMT with the lipid bilayer; (C3) dissociation constant from liposomes determined by isothermal calorimetry.
Reproduced with permission from ref. [381]. Copyright 2018 the Royal Society of Chemistry.

It has been attempted, through experimental mutagenesis studies, to engineer MAOs
from Aspergillus niger to act on larger substrates like benzyl-piperidine, thus transforming
it into a device to synthesize chiral pharmaceuticals based on the benzo-piperidine scaffold;
simulations were carried out to assist this endeavor [545] and residues in the channels
leading to the catalytic pocket and residues inside the pocket were mutated in silico. The
MD simulations demonstrated that increased hydrophobicity of the entrance channel and
alteration of shape and size of the binding pocket provided the most efficient version of
the enzyme.

6.3.5. Tropomyosin Receptor Kinase B

The tropomyosin receptor kinase B (TRKB) belongs to the tyrosine kinase receptor
family of proteins: a set of bitopic membrane proteins that operate as dimers with their
trans–membrane α-helices paired in a crisscross orientation (see Figures 23 and 24); their
main function is to pass signals through the cell membrane [1002,1003]. The specific tyro-
sine kinase receptor TRKB is the main receptor of brain-derived neurotrophic factor (BDNF)
and plays an important role both in neuron survival and the growth and differentiation of
new neurons and synapses; it can thus be seen, on the scale of overall brain function, as an
agent that promotes neuron plasticity, the increase of which, through a combination of drug
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and talk therapies, is currently seen as one of the most promising routes, following a mech-
anistic biophysical paradigm, for the treatment of clinical depression. Thus, combating the
inhibition of TRKB activation by BDNF is a possible strategy for drug therapy [1004].

Figure 23. Transmembrane domain of TRKB dimer formed by the crisscross oriented helices forms a pocket for antidepres-
sant binding. (A) Antidepressant fluoxetine is embedded in the crevice between the two helices of the TRKB transmembrane
domain. Protein backbone shown in white cartoon and protein residues and fluoxetine in licorice representation. (B) Binding
site for antidepressants at the outer opening of the crossed dimer is stabilized by the phospholipids. Protein backbone
shown as green cartoon, the phospholipids in licorice and fluoxetine in vdW representations.

Figure 24. Schematic representation of how cholesterol and antidepressants regulate the activity of TRKB receptors through
driving the orientation of its transmembrane helices. The rise of cholesterol content in the membrane increases its thickness.
This forces the transition of TRKB transmembrane dimers towards the states with shorter C-terminal distances between the
ends of the helixes (red rectangles). In turn, the C-terminal distances determine the arrangement of TRKB kinase domains
(shown in orange) and the phosphorylation states of tyrosine 816 (black and yellow stars for native and phosphorylated
states, respectively). The antidepressant fluoxetine (shown in blue), when bound to the pocket, preserves the stable
transmembrane dimer conformation in a similar fashion to that observed at moderate cholesterol level and optimal for
receptor activation.
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A recent study of TRKB by Casarotto et al., that utilized numerous experimental and
computational methods demonstrated a possible mechanism through which the antide-
pressant fluoxetine can increase the extent to which TRKB is activated by BDNF, resulting
in the desired increase in neuronal plasticity [320]. The angle between the two alpha helices
of the TRKB dimer, arranged in the crisscross orientation mentioned above (see Figure 23),
is determined by the thickness of the hydrophobic core of the lipid membrane; the two
identical alpha helices each have the same fixed hydrophobic length and cholesterol is
known to affect the thickness of a lipid membrane, thus the level of cholesterol in the lipid
membrane will alter this angle. The angle between the helices determines the distance
between the intracellular ends of the helices that, in turn, controls the positioning of the
intracellular domains of the proteins; this mechanism switches the protein between the
active or inactive states. Through a combination of experimental methodologies, Casarotto
et al., found that TRKB activation is affected by the level of cholesterol in the neuronal
membranes where the TRKB receptors reside; the study reveals a bell-shaped dependence
between the level of cholesterol in the membrane and the extent to which TRKB activation
by BDNF occurs: both low and high levels of cholesterol were found to inhibit BDNF
receptor activation, while a moderate level of cholesterol was found to be optimal, i.e., the
level of TRKB activation had a maximum at a certain level of cholesterol in the membrane.
The same bell-shaped dependency was also observed in a direct binding assay of BDNF
to TRKB [1005]. It can thus be surmised that BDNF activation is dependent on the angle
between the two trans-membrane helices with a certain finite angle being optimal. It was
then found that the presence of the antidepressant fluoxetine caused the extent of TRKB
activation not to decrease when the cholesterol level in the membrane was raised above the
formerly optimal level, i.e., the inhibitory effect of elevated cholesterol level was negated
by the presence of fluoxetine.

Next, Casarotto et al., performed MD simulations of a TRKB dimer in a membrane
with the antidepressant fluoxetine present; they made a truly startling discovery: a binding
site for the fluoxetine molecule was found to exist at the point the two helices crossed; when
a fluoxetine molecule was bound to this site, the fluoxetine molecule effectively jammed
the two transmembrane helices like a rock in a pair of scissors, as shown in Figure 23. The
study thus demonstrates how MD simulation has connected a set of experimental results to
provide a complete picture of a hypothesis of the mechanism of action of the antidepressant
fluoxetine, shown as a schematic in Figure 24. Mutagenesis experiments were then carried
out to verify this; the fluoxetine binding site, found from MD simulation, was removed
and the effect of fluoxetine on the cholesterol dependence of TRKB activity was found to
disappear, as expected.

This mechanism also explains why antidepressants start activating TRKB only after
2 weeks of postnatal development: data from lipidomics indicates that, at the end of
the second week of postnatal development, the level of cholesterol in the synaptic mem-
branes of rodents drastically increases [1006], exactly the time when, in separate studies,
antidepressants were found to start to become capable of activating TRKB [1007,1008].

The revolutionary potential of this possible discovery and the key role MD has played
in it cannot be understated and already have been widely commented upon in the neuro-
science community [1009–1012]; attempts have already been made to find small molecules
which directly activate TRKB [1013] or positively stimulate BDNF signaling [1014].

6.4. Peripheral Membrane Proteins

6.4.1. Proteins That Live in the Cytoplasm, but Work at the Membrane Surface

We finally come to the last category of membrane-associated proteins, and arguably the
most difficult to study of all: peripheral membrane proteins. While these proteins have no
permanent association with the membrane, the activity of the protein takes place at a lipid
membrane; interaction with the lipid membrane plays a clear role in its activity. Peripheral
membrane proteins are considered as possible drug targets [1015], in particular, the protein
domains known to specifically bind lipid headgroups at the membrane surface [1016]; for
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example, it has been demonstrated that domains that bind phosphatidylinositols could be
a possible drug target in cancer therapy [1017,1018].

Peripheral membrane proteins are frequently studied through MD simulations, but fre-
quently without association with the lipid bilayers involved in their activity. For example,
galectins, an important class of protein that recognizes carbohydrates, including glycolipids,
have been studied in the context of protein–ganglioside carbohydrate headgroup interac-
tions [1019,1020] or in the context of interactions with potential inhibitors [1021,1022]; the
lipid bilayer has, however, not been included in any computational studies of galectins.

We will now outline a few examples of peripheral membrane proteins, including
domains that recognize phosphatidylinositols and phosphatidylserine, protein toxin, and
protein kinase C (PKC) where MD simulation has elucidated key elements of their mecha-
nism of action.

6.4.2. Protein Kinase C

Protein kinase C (PKC) plays many important roles in human physiology and aspects
of its activity are thus also involved in several pathologies, including heart failure, cancer,
Alzheimer’s disease, and diabetes [1023–1025]. The catalytic activity occurs at the surface
of a biomembrane, when activated by di-acyl-glycerol (DAG) in the membrane. In many
cases moderate activation has been found to be beneficial while prolonged activation
detrimental. PKC is thus a drug target for controlled activation and a detailed mechanistic
understanding of the factors that modulate its activity and the role the membrane plays
in mediating the DAG induced activation is pharmaceutically relevant. For a review of
the use of computational methods for the development of ligands of PKC, see Katti and
Igumenova (2021) [1026].

A set of MD simulation studies of the C1 and C2 domains of PKC have demonstrated
the importance of specific lipids in regard to the docking of the protein to the lipid bilayer;
specifically, the importance of anionic lipids has been demonstrated [1027–1030]. In other
studies, PKC and its activator aplysiatoxin have been studied using MD simulations of this
complex interacting with a lipid bilayer, in order to describe the binding mode of this po-
tential anticancer drug [230]. In another computational study of PKC, the C1B domain was
placed at the water–membrane interface and docked to four potential activators bryostatin,
a bryostatin analog, phorbol 12,13–dibutyrate, and prostratin [231]; long MD simulations
demonstrated that the C1B domain adopted a different orientation and positioning for
each of the activators. These differences originated from variation in activator interactions
with both water and lipids.

A series of experimental assays were carried out on different DAG mimics based
on hydrophobic isophthalic acid derivatives (HMIs) [1031–1034]. Among these, the HMI
known as HMI-1a3 (Figure 25) was found to be a particularly effective activator of PKC,
however its application is limited due to its low solubility. An analog of HMI-1a3 with a
phenyl ring substituted with pyrimidine (PYR-1gP) was synthesized that, unlike HMI-1a3,
had an acceptable solubility profile, but this was found in experimental assays not to be
effective as a PKC activator. An MD simulation study was carried out by Lautala et al., to
determine the cause of this; they found that one of the reasons for this observed low potency
to be a drastic change in the orientation of the functional group involved in binding from
exposed to the water phase to embedded into the bilayer; this results from the formation of
an internal H-bond that increase its effective hydrophobicity [336].

6.4.3. The Binding Domains of PIPs

Phosphatidylinositols (PIPs) are a class of lipid of particular importance in cellular sig-
naling [1035]. There are 8 PIP headgroup types characterized by different behaviors at the
membrane surface, e.g., orientation in the membrane [1036]. There are 14 known protein
domains that bind PIPs [1037–1039] including: (1) pleckstrin homology (PH), (2) FYVE (the
first letter of the first four proteins in which domain was identified), (3) phox homology
(PX), (4) epsin N-terminal homology (ENTH), (5) FERM (F stands for 4.1 protein, E for
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ezrin, R for radixin and M for moesin), (6) PROPPINS (b-propellers that bind polyphospho-
inositides), (7) Tubby, and (8) BAR (name from first letter of proteins: Bin, Amphiphysin,
Rvs) domains and others not discussed in this paper.

Figure 25. Maps showing orientation-position relations of the hydroxyl groups of HMI-1a3 and
PYR-1gP. Reproduced with permission from ref. [336].

The PH domain is the most common PIP binding domain, there are at least 329
different PH domains present in 284 human proteins [1040]. The PH domain is built from
100–150 residues and binds various PIPs. Unsurprisingly, it is the most frequently studied
among PIP binding domains. A few MD simulation studies provide insight into PH domain
interactions with PIP headgroups and details of interactions with lipids in the bilayer in
addition to the orientation of the domain towards the membrane surface [1041–1048] or
characterized dynamics of bound domain at the membrane surface [1030]; for example,
Yamamoto et al., characterized PH domains originating from 13 different proteins [1049].
Interactions of PH domains with lipid bilayers were also studied through computational
free energy calculations. For example, it has been shown that the PH domain from the GRP1
protein has stronger binding to a lipid bilayer with PIP3 than a bilayer with PIP2 [1050]. In
another study of the GRP1 PH domain, it was shown that in the canonical binding mode,
the free energy difference between the bound and unbound state is about 9 kcal/mol, while
in an alternate, non–canonical, binding mode, it is about 7 kcal/mol [1047]. Moreover, it
has been shown that the GRP1 PH domain has the ability to bind multiple PIP3 molecules
simultaneously, increasing the strength of the binding to the lipid bilayer [1051]. Finally,
MD simulations have demonstrated that the binding of the PH domain to the membrane
could possibly be facilitated by phosphatidylserine; however, for stable binding, PIP is
necessary [1048].

The ACAP1 protein, recently studied with MD simulations, is in possession of two
PIP binding domains: the BAR and PH domains [1052]; the orientation of the PH domain
at the membrane surface is affected by the BAR domain. The PH domain of ACAP1 has
two binding pockets for PIP2 headgroups (pocket 1 and pocket 2); free energy calculations
determined that the PIP2 occupancy of pocket 1 decreases the free energy of binding to the
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membrane by 1 kcl/mol in comparison to when PIP2 is not present, while the occupancy
of pocket 2 decreases the free energy of binding by 3.5 kcl/mol.

The over-expression of Grb2-associated binding protein 1 (GAB1) occurs in numerous
cancers, thus drugs designed to inhibit the activity of GAB1 are studied, including drugs
that target the PH domain. Extensive modeling studies, including virtual screening of
five million compounds and MD simulations of the five most promising molecules, have
demonstrated that selected molecules strongly bind to the PH domain and induced signifi-
cant changes to the protein conformation [1053]. Next, it has been shown experimentally
that these potential drugs have tumor-specific cytotoxicity against two breast cancer cell
lines. The ceramide transfer protein contains both PH and START domains, and dimer-
ization of these domains leads to protein inhibition. Docking calculations, combined with
MD simulation, allowed for the selection of a few possible protein inhibitors, which bind
to the PH–START domain interface, increasing the strength of the association between
these two domains [1054]. The protein AKT1 kinase, also in possession of one or more PH
domains, has been studied, using docking calculations and MD simulation, to understand
the effect of the cancerous E17K mutation [1055]. It has been observed that inhibitor 7,
known to be ineffective for the case of this mutation being present, is characterized by a
much lower affinity towards the mutated version of the protein. Moreover, mutation leads
to conformational changes in the protein.

The FYVE domain that contains only 70–80 amino acids, has been identified in
30 human proteins. The FYVE domain only binds PIP3 and not the other PIPs, i.e., it
is specific for PIP3. The PX domain is present in 49 human proteins and binds several
different PIPs [1056]. Studies of these two domain interactions with lipid bilayers, carried
out through MD simulation, have demonstrated that, after binding with a lipid bilayer
and PIP3, both domains lose their flexibility that is observed when the domains are in the
water phase [1057]. This effect was more pronounced for the FYVE domain. Both domains
remained firmly bound to the PIP3 molecule and both domains penetrate the bilayer core,
the FYVE domain via the N-terminal hydrophobic loop and the PX domain via two loops:
α1α2 and β1β2. In another MD simulation study, phospholipase D2 (PLD2) that has both
PX and PH domains, was shown to interact with PIP2 predominantly via these specific
domains [1058]. Moreover, a second anionic lipid, POPA, was found to participate in the
protein-membrane interactions.

The FERM domain was included in a few MD simulation studies of the proteins
talin [1059–1061] and focal adhesion kinase (FAK) [1062,1063]. Studies of FAK showed a
strong effect of PIP2 on the protein orientation at the membrane surface [1063]. Studies
of talin elucidated how talin, in cooperation with PIP2, affects the interaction of dimers
of the transmembrane helices of integrins leading to dimer dissociation, the first step in
integrin activation [1059,1060]. MD simulation also found a change in the FERM domain
conformation [1059]; the FERM domain is composed of four units F0, F1, F2 and F3
which are organized in a linear fashion (Figure 26) as seen in its crystal structure (PBD ID
3IVF) [1064] that is, however, missing loop F1 which was approximated computationally.
Due to the presence of the loop F1, the FERM domain became V-shaped (Figure 26).
Additionally, a study that combined MD simulations with multiple experimental methods,
demonstrated that FERM in talin is more compact and nonlinear [1061] (Figure 26).

The mechanism through which PROPPINS docks to the membrane has been studied
using coarse-grained and atomistic MD simulations; the study demonstrated the impor-
tance of the loop 6CD for protein binding to the membrane [1065]; a combination of
experimental and theoretical studies revealed the presence of two phosphoinositide bind-
ing sites in the β-propeller domain [1066]. Coarse-grained MD simulations were used in
studies of the aggregation of the ENTH domains at membrane vesicles and membrane
tubes, i.e., cylinders formed from lipid membranes [1067]. These studies found evidence
that the formation of dimers and larger oligomers occurs within membrane tubes. Finally,
MD simulation studies of the tubby domain have demonstrated that it is in possession of
two binding sites for PIP2 [1068].
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Figure 26. Conformation of talin FERM domain (A) extended conformation from crystal structure
(PBD ID 3IVF) and after CG simulations [1059], (B) compact conformation [1061].

6.4.4. Other Examples

Coagulation factor X is one of several proteins involved in the initiation of the coag-
ulation cascade; its activity is dramatically increased when it binds to a membrane that
contains negatively charged lipids, in particular phosphatidylserines. The GLA domain
is responsible for the binding of factor X to the lipid bilayers, its characteristic feature is
posttranslational modification of glutamic acid residues, which transform the glutamic
acid sidechain into γ-carboxyglutamic acid (GLA); GLA is in possession of two carboxylic
groups with the ability to strongly bind divalent cations, predominately Ca++. Through
MD simulation, evidence has been found that GLA residues with bound Ca++ ions bind
directly to phosphatidylserine [1069]. Altogether, 7 GLA residues participate in interac-
tions with lipid bilayers and short loops insert three hydrophobic residues directly into the
bilayer core.

Protein toxins, including bacterial toxin, have specific requirements to recognize
and enter cells [1070], i.e., certain molecules must be present in the membrane. Cholera
toxin is a protein, which requires gangliosides, e.g., GM1, to be present in the membrane
in order for it to bind and is a potential drug target; for example, peptide mimicking
GM1 carbohydrates prevent the binding of toxin to intestinal cells [337]. Through MD
simulation, the mechanism of toxin docking to the lipid bilayer has been studied, including
its interactions with lipids, in particular GM1 and the effects of the toxin binding on the
overall properties of the lipid bilayer [525,1071]. Docking studies have proposed three
possible drug candidates with sufficient potency to prevent the binding of the toxin with
ganglioside; MD simulations were used next to evaluate the stability of the binding of
drug candidates with toxin [1072]. Two compounds, A6225 and A16503, formed a stable
complex with the toxin. Cardiotoxin CTII, a component of cobra venom, is known to
disrupt mitochondrial membranes. Through MD simulation, the interactions of CTII with a
lipid bilayer composed of lipids present in the outer mitochondrial membrane [1073] were
elucidated. In particular, residues involved in interactions with cardiolipin were identified.
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The enzymes responsible for the metabolism and transportation of lipids, are often
peripheral membrane proteins not explored as a drug target although proposed as a target
for antiviral therapy against flaviviruses [1074]. Examples of MD simulation studies of
enzymes that catalyze the metabolism of lipids include monogalactosyl-diacyl-glycerol syn-
thase 1 [1075], phosphatidylinositol phospholipase Cγ and its cancerous mutation [1076],
and lysophosphatidic acid acyltransferase [1077]. Glutathione peroxidase 4 is an enzyme
responsible for the removal of lipid hydroperoxides, thus preventing lipid oxidation; MD
simulations have recently been used to elucidate the process through which a substrate
enters into the active pocket of the enzyme from the membrane surface [1078]. Lipid
transporters are proteins that shuttle lipids between two separate membranes, thus acting
as peripheral membrane proteins when loading/unloading their cargo and water-soluble
proteins when transporting it through the cytoplasm. Lipid transporters studied through
MD simulation include the mammalian phosphatidylinositol transfer protein; these studies
provided insight into the mechanism and energetics of the loading/unloading of PIPs
into the binding cavity of the protein [1079] and studies of the UPS1 protein transporting
phosphatidic acid between the inner and outer mitochondrial membrane [1080].

As a large group of peripheral membrane proteins recognize specific lipids, it is also
possible to develop drugs that bind to specific lipids, thus preventing the recognition of
these lipids by specific peripheral membrane proteins. An example of such a strategy is the
study of siramesine, a small compound characterized by its high affinity to phosphatidic
acid [335].

7. Conclusions

Through a detailed discussion of how MD simulation can be used to elucidate the
roles the interaction with lipid membranes play in drug action, we hope we have pro-
vided the reader with an intuitive understanding of the broader landscape within which
drug molecules act, beyond the limiting paradigm of ADME and “docking and scoring”.
Xenobiotics are foreign molecules travelling through the body, uninvited intruders that
become involved in the complex melee that is physiology on the molecular length scale. A
drug molecule is a xenobiotic with a specific purpose, designed by its maker, like a foreign
agent with a mission to perform a specific task travelling across the countryside to reach
the city where they must perform it. In the previous review paper, we discussed the role
MD simulation can play in providing mechanistic insight relevant to the development
of the mechanisms through which this agent can reach their destination; now we have
discussed how MD simulation can aid in the design of a more complex set of tasks for the
agent than possible within the confines of the “docking and scoring” paradigm. Through
MD simulation, (1) drug molecules can be rationally designed to perform more complex
tasks than merely fitting to a specific protein and (2) even if the target is the active site of
a specific protein, far more is involved in the determination of the effective affinity of a
specific drug molecule structure for a specific active site than can be investigated through
the “lock and key” paradigm. While there are many possible factors other than the role
played by lipid membrane interactions that MD simulation can address, we hope that
this provides a case study that expands the intuitive picture the reader has of the scope of
computational drug design and the role the specific toolkit of MD simulation can play.

Lipid membranes are fundamental structures with no less complex or important a role
in molecular level physiology than proteins; the mechanisms through which small drug
molecules can interact with them are equally complex. Drug molecules must cross them,
can affect their properties through collective action, and can have their interactions with
target proteins mediated by them; a comprehensive inclusion of the role the drug structure
plays in its interaction with lipid membranes and the use of MD simulation to model this
interaction is clearly a component of the future of drug design.

In the beginning of the paper, we mentioned that we can envision a time in the future
when, through the combined solution of the human proteome and the general structure
from sequence problem, a program can exist that could input any molecular structure and
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output its binding affinity for every active site of every protein in the human proteome.
Hopefully, when reading this review paper, the reviewer can see that even this fantastic
device would merely be one component of the advanced computational toolkit of drug
design of the future. This information would form a starting foundation that then would
be combined with MD simulation able to investigate the broader context of the protein
environment, or possible modes of action of a specific drug molecule that involve different
elements of physiology than active sites of proteins. The lipid membrane is an important
component of this where we have shown that MD simulation can play a leading role. As
in all cases, the computational effort must be matched with complementary experimental
techniques that themselves are undergoing revolutionary upgrades as we speak. As recent
events have shown, the health challenges to humanity are mounting, but so is our arsenal
in combating them and MD simulation as a component of computational drug design will
grow in importance, with the increase in computational power and data stored.
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The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition
of Lipid Peroxidation. Antioxidants 2020, 9, 430. [CrossRef]

370. Kosina, P.; Paloncýová, M.; Rajnochová Svobodová, A.; Zálešák, B.; Biedermann, D.; Ulrichová, J.; Vostálová, J. Dermal Delivery
of Selected Polyphenols from Silybum marianum. Theoretical and Experimental Study. Molecules 2019, 24, 61. [CrossRef]

371. Laudadio, E.; Galeazzi, R.; Mobbili, G.; Minnelli, C.; Barbon, A.; Bortolus, M.; Stipa, P. Depth Distribution of Spin-Labeled
Liponitroxides within Lipid Bilayers: A Combined EPR and Molecular Dynamics Approach. ACS Omega 2019, 4, 5029–5037.
[CrossRef]

372. Griffith, E.C.; Perkins, R.J.; Telesford, D.M.; Adams, E.M.; Cwiklik, L.; Allen, H.C.; Roeselová, M.; Vaida, V. Interaction of
L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface. J. Phys. Chem. B 2015, 119, 9038–9048. [CrossRef]

373. Perkins, R.; Vaida, V. Phenylalanine Increases Membrane Permeability. J. Am. Chem. Soc. 2017, 139, 14388–14391. [CrossRef]
374. 3Perkins, R.J.; Kukharchuk, A.; Delcroix, P.; Shoemaker, R.K.; Roeselová, M.; Cwiklik, L.; Vaida, V. The Partitioning of Small

Aromatic Molecules to Air-Water and Phospholipid Interfaces Mediated by Non-Hydrophobic Interactions. J. Phys. Chem. B 2016,
120, 7408–7422. [CrossRef]

375. Nandi, S.; Ghosh, B.; Ghosh, M.; Layek, S.; Nandi, P.K.; Sarkar, N. Phenylalanine Interacts with Oleic Acid-Based Vesicle
Membrane. Understanding the Molecular Role of Fibril–Vesicle Interaction under the Context of Phenylketonuria. J. Phys. Chem.

B 2021, 125, 9776–9793. [CrossRef]
376. MacCallum, J.L.; Bennett, W.F.D.; Tieleman, D.P. Distribution of Amino Acids in a Lipid Bilayer from Computer Simulations.

Biophys. J. 2008, 94, 3393–3404. [CrossRef]
377. Cardenas, A.E.; Anderson, C.M.; Elber, R.; Webb, L.J. Partition of Positively and Negatively Charged Tryptophan Ions in

Membranes with Inverted Phospholipid Heads: Simulations and Experiments. J. Phys. Chem. B 2019, 123, 3272–3281. [CrossRef]
378. Robinson, M.; Turnbull, S.; Lee, B.Y.; Leonenko, Z. The effects of melatonin, serotonin, tryptophan and NAS on the biophysical

properties of DPPC monolayers. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183363. [CrossRef] [PubMed]
379. Pokhrel, N.; Maibaum, L. Free Energy Calculations of Membrane Permeation: Challenges Due to Strong Headgroup-Solute

Interactions. J. Chem. Theory Comput. 2018, 14, 1762–1771. [CrossRef] [PubMed]
380. Genheden, S.; Eriksson, L.A. Estimation of Liposome Penetration Barriers of Drug Molecules with All-Atom and Coarse-Grained

Models. J. Chem. Theory Comput. 2016, 12, 4651–4661. [CrossRef] [PubMed]
381. Magarkar, A.; Parkkila, P.; Viitala, T.; Lajunen, T.; Mobarak, E.; Licari, G.; Cramariuc, O.; Vauthey, E.; Róg, T.; Bunker, A.

Membrane bound COMT isoform is an interfacial enzyme: General mechanism and new drug design paradigm. Chem. Commun.

2018, 54, 3440–3443. [CrossRef] [PubMed]
382. Megariotis, G.; Romanos, N.; Avramopoulos, A.; Mikaelian, G.; Theodorou, D.N. In silico study of levodopa in hydrated lipid

bilayers at the atomistic level. J. Mol. Graph. Model. 2021, 107, 107972. [CrossRef] [PubMed]
383. Garcia, A.; Pochinda, S.; Elgaard-Jørgensen, P.N.; Khandelia, H.; Clarke, R.J. Evidence for ATP Interaction with Phosphatidyl-

choline Bilayers. Langmuir 2019, 35, 9944–9953. [CrossRef]
384. Sasidharan, S.; Pochinda, S.; Elgaard-Jørgensen, P.N.; Rajamani, S.; Khandelia, H.; Raghunathan, V.A. Interaction of the

mononucleotide UMP with a fluid phospholipid bilayer. Soft Matter 2019, 15, 8129–8136. [CrossRef] [PubMed]
385. Kato, A.; Tsuji, A.; Yanagisawa, M.; Saeki, D.; Juni, K.; Morimoto, Y.; Yoshikawa, K. Phase separation on a phospholipid membrane

inducing a characteristic localization of DNA accompanied by its structural transition. J. Phys. Chem. Lett. 2010, 1, 3391–3395.
[CrossRef]

386. Link, K.A.; Spurzem, G.N.; Tuladhar, A.; Chase, Z.; Wang, Z.; Wang, H.; Walker, R.A. Cooperative Adsorption of Trehalose to
DPPC Monolayers at the Water-Air Interface Studied with Vibrational Sum Frequency Generation. J. Phys. Chem. B 2019, 123,
8931–8938. [CrossRef]

387. Gupta, R.; Badhe, Y.; Rai, B.; Mitragotri, S. Molecular mechanism of the skin permeation enhancing effect of ethanol: A molecular
dynamics study. RSC Adv. 2020, 10, 12234–12248. [CrossRef]

388. Paloncýová, M.; Navrátilová, V.; Berka, K.; Laio, A.; Otyepka, M. Role of Enzyme Flexibility in Ligand Access and Egress to
Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. J. Chem. Theory Comput.

2016, 12, 2101–2109. [CrossRef]
389. Postila, P.A.; Róg, T. A perspective: Active role of lipids in neurotransmitter dynamics. Mol. Neurobiol. 2020, 57, 910–925.

[CrossRef]
390. Orłowski, A.; Grzybek, M.; Bunker, A.; Pasenkiewicz-Gierula, M.; Vattulainen, I.; Männistö, P.T.; Róg, T. Strong preferences

of dopamine and l -dopa towards lipid head group: Importance of lipid composition and implication for neurotransmitter
metabolism. J. Neurochem. 2012, 122, 681–690. [CrossRef]

391. Shen, C.; Xue, M.; Qiu, H.; Guo, W. Insertion of Neurotransmitters into a Lipid Bilayer Membrane and Its Implication on
Membrane Stability: A Molecular Dynamics Study. Chem. Phys. Chem. 2017, 18, 626–633. [CrossRef] [PubMed]

542



Pharmaceuticals 2021, 14, 1062

392. Mokkila, S.; Postila, P.A.; Rissanen, S.; Juhola, H.; Vattulainen, I.; Róg, T. Calcium Assists Dopamine Release by Preventing
Aggregation on the Inner Leaflet of Presynaptic Vesicles. ACS Chem. Neurosci. 2017, 8, 1242–1250. [CrossRef] [PubMed]

393. Juhola, H.; Postila, P.A.; Rissanen, S.; Lolicato, F.; Vattulainen, I.; Róg, T. Negatively Charged Gangliosides Promote Membrane
Association of Amphipathic Neurotransmitters. Neuroscience 2018, 384, 214–223. [CrossRef] [PubMed]

394. Lolicato, F.; Juhola, H.; Zak, A.; Postila, P.A.; Saukko, A.; Rissanen, S.; Enkavi, G.; Vattulainen, I.; Kepczynski, M.; Róg, T.
Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chem. Neurosci. 2020, 11, 1914–1924.
[CrossRef] [PubMed]

395. Parkkila, P.; Viitala, T. Partitioning of Catechol Derivatives in Lipid Membranes: Implications for Substrate Specificity to Catechol-
O-methyltransferase. ACS Chem. Neurosci. 2020, 11, 969–978. [CrossRef] [PubMed]

396. Biswas, B.; Singh, P.C. Restructuring of Membrane Water and Phospholipids in Direct Interaction of Neurotransmitters with
Model Membranes Associated with Synaptic Signaling: Interface-Selective Vibrational Sum Frequency Generation Study. J. Phys.

Chem. Lett. 2021, 12, 2871–2879. [CrossRef]
397. Megariotis, G.; Romanos, N.A.; Theodorou, D.N. Molecular simulations of dopamine in a lipid bilayer. AIP Conf. Proc. 2021, 2343,

130007.
398. Peters, G.H.; Wang, C.; Cruys-Bagger, N.; Velardez, G.F.; Madsen, J.J.; Westh, P. Binding of serotonin to lipid membranes. J. Am.

Chem. Soc. 2013, 135, 2164–2171. [CrossRef]
399. Josey, B.P.; Heinrich, F.; Silin, V.; Lösche, M. Association of Model Neurotransmitters with Lipid Bilayer Membranes. Biophys. J.

2020, 118, 1044–1057. [CrossRef]
400. Dey, S.; Surendran, D.; Enberg, O.; Gupta, A.; Fanibunda, S.E.; Das, A.; Maity, B.K.; Dey, A.; Visvakarma, V.; Kallianpur, M.; et al.

Altered Membrane Mechanics Provides a Receptor-Independent Pathway for Serotonin Action. Chem.—A Eur. J. 2021, 27, 1–10.
[CrossRef]

401. 4Bochicchio, A.; Brandner, A.F.; Engberg, O.; Huster, D.; Böckmann, R.A. Spontaneous Membrane Nanodomain Formation in the
Absence or Presence of the Neurotransmitter Serotonin. Front. Cell Dev. Biol. 2020, 8, 601145. [CrossRef]

402. Engberg, O.; Bochicchio, A.; Brandner, A.F.; Gupta, A.; Dey, S.; Böckmann, R.A.; Maiti, S.; Huster, D. Serotonin Alters the Phase
Equilibrium of a Ternary Mixture of Phospholipids and Cholesterol. Front. Physiol. 2020, 11, 578868. [CrossRef]

403. Choi, Y.; Attwood, S.J.; Hoopes, M.I.; Drolle, E.; Karttunen, M.; Leonenko, Z. Melatonin directly interacts with cholesterol and
alleviates cholesterol effects in dipalmitoylphosphatidylcholine monolayers. Soft Matter 2014, 10, 206–213. [CrossRef]
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730. Kurochka, A.S.; Yushchenko, D.A.; Bouř, P.; Shvadchak, V.V. Influence of lipid membranes on α-synuclein aggregation. ACS

Chem. Neurosci. 2021, 12, 825–830. [CrossRef]
731. Doig, A.J.; Derreumaux, P. Inhibition of protein aggregation and amyloid formation by small molecules. Curr. Opin. Struct. Biol.

2015, 30, 50–56. [CrossRef]
732. Mrdenovic, D.; Zarzycki, P.; Majewska, M.; Pieta, I.S.; Nowakowski, R.; Kutner, W.; Lipkowski, J.; Pieta, P. Inhibition of Amyloid

β-Induced Lipid Membrane Permeation and Amyloid β Aggregation by K162. ACS Chem. Neurosci. 2021, 12, 531–541. [CrossRef]
[PubMed]

733. Barrero-Sicilia, C.; Silvestre, S.; Haslam, R.P.; Michaelson, L.V. Lipid remodelling: Unravelling the response to cold stress in
Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci. 2017, 263, 194–200. [CrossRef] [PubMed]

734. Hassan, N.; Anesio, A.M.; Rafiq, M.; Holtvoeth, J.; Bull, I.; Haleem, A.; Shah, A.A.; Hasan, F. Temperature Driven Membrane
Lipid Adaptation in Glacial Psychrophilic Bacteria. Front. Microbiol. 2020, 11, 824. [CrossRef]

735. Siliakus, M.F.; van der Oost, J.; Kengen, S.W.M. Adaptations of archaeal and bacterial membranes to variations in temperature,
pH and pressure. Extremophiles 2017, 21, 651–670. [CrossRef]

736. Bejaoui, F.; Salas, J.J.; Nouairi, I.; Smaoui, A.; Abdelly, C.; Martínez-Force, E.; Youssef, N. Ben Changes in chloroplast lipid contents
and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J. Plant Physiol. 2016, 198, 32–38.
[CrossRef] [PubMed]

737. Kotnik, T.; Rems, L.; Tarek, M.; Miklavcic, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
Annu. Rev. Biophys. 2019, 48, 63–91. [CrossRef]

738. Koshiyama, K.; Kodama, T.; Yano, T.; Fujikawa, S. Molecular dynamics simulation of structural changes of lipid bilayers induced
by shock waves: Effects of incident angles. Biochim. Biophys. Acta-Biomembr. 2008, 1778, 1423–1428. [CrossRef]

739. Man, V.H.; Li, M.S.; Wang, J.; Derreumaux, P.; Nguyen, P.H. Interaction mechanism between the focused ultrasound and lipid
membrane at the molecular level. J. Chem. Phys. 2019, 150, 215101. [CrossRef]

740. Gurtovenko, A.A.; Vattulainen, I. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane
ionic charge imbalance: Atomistic molecular dynamics study. J. Am. Chem. Soc. 2005, 127, 17570–17571. [CrossRef]

741. Lin, J.; Dargazany, R.; Alexander-Katz, A. Lipid Flip-Flop and Pore Nucleation on Zwitterionic Bilayers are Asymmetric under
Ionic Imbalance. Small 2017, 13, 1603708. [CrossRef]

742. Lete, M.G.; Monasterio, B.G.; Collado, M.I.; Medina, M.; Sot, J.; Alonso, A.; Goñi, F.M. Fast and slow biomembrane solubilizing
detergents: Insights into their mechanism of action. Colloids Surf. B Biointerfaces 2019, 183, 110430. [CrossRef]

743. Lichtenberg, D.; Ahyayauch, H.; Alonso, A.; Goñi, F.M. Detergent solubilization of lipid bilayers: A balance of driving forces.
Trends Biochem. Sci. 2013, 38, 85–93. [CrossRef] [PubMed]

744. Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Słota, R. The effect of organic solvents on selected microorganisms
and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [CrossRef] [PubMed]

745. Clarke, R.J.; Hossain, K.R.; Cao, K. Physiological roles of transverse lipid asymmetry of animal membranes. Biochim. Biophys.

Acta-Biomembr. 2020, 1862, 183382. [CrossRef] [PubMed]
746. Chang, W.; Fa, H.; Xiao, D.; Wang, J. Targeting phosphatidylserine for Cancer therapy: Prospects and challenges. Theranostics

2020, 10, 9214–9229. [CrossRef] [PubMed]
747. Ma, R.; Kwok, H.F. New opportunities and challenges of venom-based and bacteria-derived molecules for anticancer targeted

therapy. Semin. Cancer Biol. 2020. [CrossRef] [PubMed]
748. Bernardes, N.; Fialho, A.M. Perturbing the dynamics and organization of cell membrane components: A new paradigm for

cancer-targeted therapies. Int. J. Mol. Sci. 2018, 19, 3871. [CrossRef]
749. Nakatsuji, T.; Gallo, R.L. Antimicrobial peptides: Old molecules with new ideas. J. Invest. Dermatol. 2012, 132, 887–895. [CrossRef]
750. Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016,

44, D1087–D1093. [CrossRef]
751. Pirtskhalava, M.; Amstrong, A.A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal,

A.; Hurt, D.E.; Tartakovsky, M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource
for development of new therapeutics. Nucleic Acids Res. 2021, 49, D288–D297. [CrossRef]

752. Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. DbAMP: An integrated resource for exploring antimicrobial
peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res. 2019,
47, D285–D297. [CrossRef] [PubMed]

753. Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of
antimicrobial peptides. Nucleic Acids Res. 2016, 44, D1094–D1097. [CrossRef]

754. Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE 2013, 8, e66557.
[CrossRef]

755. Seebah, S.; Suresh, A.; Zhuo, S.; Choong, Y.H.; Chua, H.; Chuon, D.; Beuerman, R.; Verma, C. Defensins knowledgebase: A
manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res.

2007, 35, D265–D268. [CrossRef]
756. Mulvenna, J.P.; Wang, C.; Craik, D.J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 2006, 34,

D192–D194. [CrossRef]

556



Pharmaceuticals 2021, 14, 1062

757. Hammami, R.; Ben Hamida, J.; Vergoten, G.; Fliss, I. PhytAMP: A database dedicated to antimicrobial plant peptides. Nucleic

Acids Res. 2009, 37, D963–D968. [CrossRef]
758. Das, D.; Jaiswal, M.; Khan, F.N.; Ahamad, S.; Kumar, S. PlantPepDB: A manually curated plant peptide database. Sci. Rep. 2020,

10, 2194. [CrossRef] [PubMed]
759. Liu, S.; Fan, L.; Sun, J.; Lao, X.; Zheng, H. Computational resources and tools for antimicrobial peptides. J. Pept. Sci. 2017, 23,

4–12. [CrossRef] [PubMed]
760. Santos-Silva, C.A.D.; Zupin, L.; Oliveira-Lima, M.; Vilela, L.M.B.; Bezerra-Neto, J.P.; Ferreira-Neto, J.R.; Ferreira, J.D.C.; Oliveira-

Silva, R.L.; de Pires, C.J.; Aburjaile, F.F.; et al. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives
in the Omics Era. Bioinform. Biol. Insights 2020, 14, 1177932220952739. [CrossRef]

761. Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an updated data repository of
antimicrobial peptides. Sci. Data 2019, 6, 148. [CrossRef] [PubMed]

762. Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020, 9, 24.
[CrossRef]

763. Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of
antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev. 2021, 13, 1–35. [CrossRef]
[PubMed]

764. Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480.
[CrossRef] [PubMed]

765. Roncevic, T.; Puizina, J.; Tossi, A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? Int. J. Mol. Sci. 2019,
20, 5713. [CrossRef] [PubMed]

766. Guha, S.; Ghimire, J.; Wu, E.; Wimley, W.C. Mechanistic Landscape of Membrane-Permeabilizing Peptides. Chem. Rev. 2019, 119,
6040–6085. [CrossRef]

767. Bhandari, D.; Rafiq, S.; Gat, Y.; Gat, P.; Waghmare, R.; Kumar, V. A Review on Bioactive Peptides: Physiological Functions,
Bioavailability and Safety. Int. J. Pept. Res. Ther. 2020, 26, 139–150. [CrossRef]

768. Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple
Fields. Front. Microbiol. 2020, 11, 582779. [CrossRef]

769. Datta, S.; Roy, A. Antimicrobial Peptides as Potential Therapeutic Agents: A Review. Int. J. Pept. Res. Ther. 2021, 27, 555–577.
[CrossRef]

770. Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current
synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021, 7820–7880. [CrossRef] [PubMed]

771. Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against
superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [CrossRef] [PubMed]

772. Boparai, J.K.; Sharma, P.K. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept.

Lett. 2020, 27, 4–16. [CrossRef]
773. Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post

feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [CrossRef]
774. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G. Physicochemical features and peculiarities of interaction of

amp with the membrane. Pharmaceuticals 2021, 14, 471. [CrossRef]
775. Felício, M.R.; Silva, O.N.; Gonçalves, S.; Santos, N.C.; Franco, O.L. Peptides with dual antimicrobial and anticancer activities.

Front. Chem. 2017, 5, 5. [CrossRef]
776. Roque-borda, C.A.; da Silva, P.B.; Rodrigues, M.C.; Azevedo, R.B.; Di Filippo, L.; Duarte, J.L.; Chorilli, M.; Vicente, E.F.; Pavan,

F.R. Challenge in the discovery of new drugs: Antimicrobial peptides against who-list of critical and high-priority bacteria.
Pharmaceutics 2021, 13, 773. [CrossRef]

777. Gradisteanu Pircalabioru, G.; Popa, L.I.; Marutescu, L.; Gheorghe, I.; Popa, M.; Czobor Barbu, I.; Cristescu, R.; Chifiriuc, M.C.
Bacteriocins in the era of antibiotic resistance: Rising to the challenge. Pharmaceutics 2021, 13, 196. [CrossRef]

778. Stiltner, J.; McCandless, K.; Zahid, M. Cell-penetrating peptides: Applications in tumor diagnosis and therapeutics. Pharmaceutics

2021, 13, 890. [CrossRef] [PubMed]
779. Gaspar, D.; Salomé Veiga, A.; Castanho, M.A.R.B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013, 4,

294. [CrossRef] [PubMed]
780. Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front.

Cell. Infect. Microbiol. 2016, 6, 194. [CrossRef] [PubMed]
781. Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating

mechanistic insights to design. Front. Neurosci. 2017, 11, 73. [CrossRef] [PubMed]
782. Sani, M.A.; Separovic, F. Antimicrobial Peptide Structures: From Model Membranes to Live Cells. Chem.—A Eur. J. 2018, 24,

286–291. [CrossRef]
783. Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J.

Microbiol. 2017, 55, 1–12. [CrossRef]
784. Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical

potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [CrossRef] [PubMed]

557



Pharmaceuticals 2021, 14, 1062

785. Hammond, K.; Ryadnov, M.G.; Hoogenboom, B.W. Atomic force microscopy to elucidate how peptides disrupt membranes.
Biochim. Biophys. Acta-Biomembr. 2021, 1863, 183447. [CrossRef] [PubMed]

786. Aschi, M.; Bozzi, A.; Luzi, C.; Bouchemal, N.; Sette, M. Crabrolin, a natural antimicrobial peptide: Structural properties. J. Pept.

Sci. 2017, 23, 693–700. [CrossRef] [PubMed]
787. Mura, M.; Wang, J.; Zhou, Y.; Pinna, M.; Zvelindovsky, A.V.; Dennison, S.R.; Phoenix, D.A. The effect of amidation on the

behaviour of antimicrobial peptides. Eur. Biophys. J. 2016, 45, 195–207. [CrossRef]
788. Ulmschneider, J.P.; Smith, J.C.; Ulmschneider, M.B.; Ulrich, A.S.; Strandberg, E. Reorientation and dimerization of the membrane-

bound antimicrobial peptide pgla from microsecond all-atom MD simulations. Biophys. J. 2012, 103, 472–482. [CrossRef]
789. Ramos-Martín, F.; D’Amelio, N. Molecular basis of the anticancer and antibacterial properties of cecropinXJ peptide: An in silico

study. Int. J. Mol. Sci. 2021, 22, 691. [CrossRef]
790. Pourmousa, M.; Karttunen, M. Early stages of interactions of cell-penetrating peptide penetratin with a DPPC bilayer. Chem.

Phys. Lipids 2013, 169, 85–94. [CrossRef]
791. Mura, M.; Dennison, S.R.; Zvelindovsky, A.V.; Phoenix, D.A. Aurein 2.3 functionality is supported by oblique orientated α-helical

formation. Biochim. Biophys. Acta-Biomembr. 2013, 1828, 586–594. [CrossRef] [PubMed]
792. Sahoo, B.R.; Fujiwara, T. Membrane mediated antimicrobial and antitumor activity of cathelicidin 6: Structural insights from

molecular dynamics simulation on multi-microsecond scale. PLoS ONE 2016, 11, e0158702. [CrossRef] [PubMed]
793. Zhao, L.; Cao, Z.; Bian, Y.; Hu, G.; Wang, J.; Zhou, Y. Molecular dynamics simulations of human antimicrobial peptide LL-37 in

model POPC and POPG lipid bilayers. Int. J. Mol. Sci. 2018, 19, 1186. [CrossRef]
794. Zhang, L. Disulfide Bonds Affect the Binding Sites of Human β Defensin Type 3 on Negatively Charged Lipid Membranes. J.

Phys. Chem. B 2020, 124, 2088–2100. [CrossRef] [PubMed]
795. Pandit, G.; Biswas, K.; Ghosh, S.; Debnath, S.; Bidkar, A.P.; Satpati, P.; Bhunia, A.; Chatterjee, S. Rationally designed antimicrobial

peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Biochim. Biophys. Acta-Biomembr.

2020, 1862, 183177. [CrossRef] [PubMed]
796. Reißer, S.; Strandberg, E.; Steinbrecher, T.; Elstner, M.; Ulrich, A.S. Best of Two Worlds? How MD Simulations of Amphiphilic

Helical Peptides in Membranes Can Complement Data from Oriented Solid-State NMR. J. Chem. Theory Comput. 2018, 14,
6002–6014. [CrossRef]

797. Ermondi, G.; Vallaro, M.; Camacho-Leal, M.P.; Potter, T.; Visentin, S.; Caron, G. Charged cyclic hexapeptides: Updating molecular
descriptors for permeability purposes. Eur. J. Pharm. Sci. 2018, 122, 85–93. [CrossRef]

798. Aschi, M.; Perini, N.; Bouchemal, N.; Luzi, C.; Savarin, P.; Migliore, L.; Bozzi, A.; Sette, M. Structural characterization and
biological activity of Crabrolin peptide isoforms with different positive charge. Biochim. Biophys. Acta-Biomembr. 2020, 1862,
183055. [CrossRef]

799. Duay, S.S.; Sharma, G.; Prabhakar, R.; Angeles-Boza, A.M.; May, E.R. Molecular Dynamics Investigation into the Effect of Zinc(II)
on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J. Phys. Chem. B 2019, 123, 3163–3176.
[CrossRef]

800. Jafari, M.; Mehrnejad, F.; Aghdami, R.; Chaparzadeh, N.; Razaghi Moghadam Kashani, Z.; Doustdar, F. Identification of the
Crucial Residues in the Early Insertion of Pardaxin into Different Phospholipid Bilayers. J. Chem. Inf. Model. 2017, 57, 929–941.
[CrossRef]

801. Song, C.; de Groot, B.L.; Sansom, M.S.P. Lipid Bilayer Composition Influences the Activity of the Antimicrobial Peptide Dermcidin
Channel. Biophys. J. 2019, 116, 1658–1666. [CrossRef]

802. Fernandez, J.; Acosta, G.; Pulido, D.; Malý, M.; Copa-Patiño, J.L.; Soliveri, J.; Royo, M.; Gómez, R.; Albericio, F.; Ortega, P.; et al.
Carbosilane Dendron-Peptide Nanoconjugates as Antimicrobial Agents. Mol. Pharm. 2019, 16, 2661–2674. [CrossRef]

803. Grasso, G.; Muscat, S.; Rebella, M.; Morbiducci, U.; Audenino, A.; Danani, A.; Deriu, M.A. Cell penetrating peptide modulation
of membrane biomechanics by Molecular dynamics. J. Biomech. 2018, 73, 137–144. [CrossRef]

804. Irudayam, S.J.; Berkowitz, M.L. Binding and reorientation of melittin in a POPC bilayer: Computer simulations. Biochim. Biophys.

Acta-Biomembr. 2012, 1818, 2975–2981. [CrossRef] [PubMed]
805. Lee, H.; Kim, H.R.; Larson, R.G.; Park, J.C. Effects of the size, shape, and structural transition of thermosensitive polypeptides on

the stability of lipid bilayers and liposomes. Macromolecules 2012, 45, 7304–7312. [CrossRef]
806. Jafari, M.; Mehrnejad, F.; Doustdar, F. Insight into the interactions, residue snorkeling, and membrane disordering potency of a

single antimicrobial peptide into different lipid bilayers. PLoS ONE 2017, 12, e0187216. [CrossRef]
807. Liu, J.; Xiao, S.; Li, J.; Yuan, B.; Yang, K.; Ma, Y. Molecular details on the intermediate states of melittin action on a cell membrane.

Biochim. Biophys. Acta-Biomembr. 2018, 1860, 2234–2241. [CrossRef]
808. Waghu, F.H.; Joseph, S.; Ghawali, S.; Martis, E.A.; Madan, T.; Venkatesh, K.V.; Idicula-Thomas, S. Designing antibacterial peptides

with enhanced killing kinetics. Front. Microbiol. 2018, 9, 325. [CrossRef]
809. Ashrafuzzaman, M.; Tseng, C.Y.; Tuszynski, J.A. Charge-based interactions of antimicrobial peptides and general drugs with

lipid bilayers. J. Mol. Graph. Model. 2020, 95, 107502. [CrossRef]
810. Cao, Z.; Liu, L.; Hu, G.; Bian, Y.; Li, H.; Wang, J.; Zhou, Y. Interplay of hydrophobic and hydrophilic interactions in sequence-

dependent cell penetration of spontaneous membrane-translocating peptides revealed by bias-exchange metadynamics simula-
tions. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183402. [CrossRef] [PubMed]

558



Pharmaceuticals 2021, 14, 1062

811. Walrant, A.; Bauzá, A.; Girardet, C.; Alves, I.D.; Lecomte, S.; Illien, F.; Cardon, S.; Chaianantakul, N.; Pallerla, M.; Burlina,
F.; et al. Ionpair-π interactions favor cell penetration of arginine/tryptophan-rich cell-penetrating peptides. Biochim. Biophys.

Acta-Biomembr. 2020, 1862, 183098. [CrossRef] [PubMed]
812. Capozzi, E.; Aureli, S.; Minicozzi, V.; Rossi, G.C.; Stellato, F.; Morante, S. Designing effective anticancer-radiopeptides. A

Molecular Dynamics study of their interaction with model tumor and healthy cell membranes. Biochim. Biophys. Acta-Biomembr.

2018, 1860, 2348–2355. [CrossRef]
813. Ma, R.; Wong, S.W.; Ge, L.; Shaw, C.; Siu, S.W.I.; Kwok, H.F. In Vitro and MD Simulation Study to Explore Physicochemical

Parameters for Antibacterial Peptide to Become Potent Anticancer Peptide. Mol. Ther.-Oncolytics 2020, 16, 7–19. [CrossRef]
814. Song, J.; Zhang, W.; Kai, M.; Chen, J.; Liang, R.; Zheng, X.; Li, G.; Zhang, B.; Wang, K.; Zhang, Y.; et al. Design of an acid-activated

antimicrobial peptide for tumor therapy. Mol. Pharm. 2013, 10, 2934–2941. [CrossRef] [PubMed]
815. Sinha, S.; Zheng, L.; Mu, Y.; Ng, W.J.; Bhattacharjya, S. Structure and interactions of a host defense antimicrobial peptide thanatin

in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci. Rep. 2017, 7, 17795. [CrossRef]
816. Brožek, R.; Kabelka, I.; Vácha, R. Effect of Helical Kink on Peptide Translocation across Phospholipid Membranes. J. Phys. Chem.

B 2020, 124, 5940–5947. [CrossRef] [PubMed]
817. Tuerkova, A.; Kabelka, I.; Králová, T.; Sukeník, L.; Pokorná, Š.; Hof, M.; Vácha, R. Effect of Helical Kink in Antimicrobial Peptides

on Membrane Pore Formation. Elife 2020, 9, e47946. [CrossRef] [PubMed]
818. Mihajlovic, M.; Lazaridis, T. Antimicrobial peptides in toroidal and cylindrical pores. Biochim. Biophys. Acta-Biomembr. 2010, 1798,

1485–1493. [CrossRef]
819. Mihajlovic, M.; Lazaridis, T. Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides.

Biochim. Biophys. Acta-Biomembr. 2012, 1818, 1274–1283. [CrossRef]
820. Lyu, Y.; Zhu, X.; Xiang, N.; Narsimhan, G. Molecular Dynamics Study of Pore Formation by Melittin in a 1,2-Dioleoyl-sn-glycero-

3-phosphocholine and 1,2-Di(9Z-octadecenoyl)-sn-glycero-3-phospho-(1′-rac-glycerol) Mixed Lipid Bilayer. Ind. Eng. Chem. Res.

2015, 54, 10275–10283. [CrossRef]
821. Sun, D.; Forsman, J.; Woodward, C.E. Amphipathic membrane-active peptides recognize and stabilize ruptured membrane pores:

Exploring cause and effect with coarse-grained simulations. Langmuir 2015, 31, 752–761. [CrossRef]
822. Santo, K.P.; Berkowitz, M.L. Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: Results

from coarse-grained simulations. J. Phys. Chem. B 2012, 116, 3021–3030. [CrossRef]
823. Hu, Y.; Sinha, S.K.; Patel, S. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating

Bilayer Properties with Pore-Formation Thermodynamics. Langmuir 2015, 31, 6615–6631. [CrossRef] [PubMed]
824. Santo, K.P.; Irudayam, S.J.; Berkowitz, M.L. Melittin creates transient pores in a lipid bilayer: Results from computer simulations.

J. Phys. Chem. B 2013, 117, 5031–5042. [CrossRef] [PubMed]
825. Li, J.; Lu, X.; Ma, W.; Chen, Z.; Sun, S.; Wang, Q.; Yuan, B.; Yang, K. Cholesterols Work as a Molecular Regulator of the

Antimicrobial Peptide-Membrane Interactions. Front. Mol. Biosci. 2021, 8, 638988. [CrossRef]
826. Sun, D.; Forsman, J.; Woodward, C.E. Multistep Molecular Dynamics Simulations Identify the Highly Cooperative Activity of

Melittin in Recognizing and Stabilizing Membrane Pores. Langmuir 2015, 31, 9388–9401. [CrossRef] [PubMed]
827. Sun, D.; Forsman, J.; Woodward, C.E. Molecular Simulations of Melittin-Induced Membrane Pores. J. Phys. Chem. B 2017, 121,

10209–10214. [CrossRef]
828. Wang, Y.; Chen, C.H.; Hu, D.; Ulmschneider, M.B.; Ulmschneider, J.P. Spontaneous formation of structurally diverse membrane

channel architectures from a single antimicrobial peptide. Nat. Commun. 2016, 7, 13535. [CrossRef]
829. Talandashti, R.; Mehrnejad, F.; Rostamipour, K.; Doustdar, F.; Lavasanifar, A. Molecular Insights into Pore Formation Mechanism,

Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-
Grained Molecular Dynamics Simulation Study. J. Phys. Chem. B 2021, 125, 7163–7176. [CrossRef]

830. Chen, C.H.; Starr, C.G.; Troendle, E.; Wiedman, G.; Wimley, W.C.; Ulmschneider, J.P.; Ulmschneider, M.B. Simulation-Guided
Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. J. Am. Chem. Soc. 2019, 141, 4839–4848. [CrossRef]

831. Lorenzón, E.N.; Nobre, T.M.; Caseli, L.; Cilli, E.M.; da Hora, G.C.A.; Soares, T.A.; Oliveira, O.N. The “pre-assembled state” of
magainin 2 lysine-linked dimer determines its enhanced antimicrobial activity. Colloids Surf. B Biointerfaces 2018, 167, 432–440.
[CrossRef]

832. Miyazaki, Y.; Okazaki, S.; Shinoda, W. Free energy analysis of membrane pore formation process in the presence of multiple
melittin peptides. Biochim. Biophys. Acta-Biomembr. 2019, 1861, 1409–1419. [CrossRef]

833. Lyu, Y.; Xiang, N.; Zhu, X.; Narsimhan, G. Potential of mean force for insertion of antimicrobial peptide melittin into a pore in
mixed DOPC/DOPG lipid bilayer by molecular dynamics simulation. J. Chem. Phys. 2017, 146, 155101. [CrossRef] [PubMed]

834. Awasthi, N.; Kopec, W.; Wilkosz, N.; Jamróz, D.; Hub, J.S.; Zatorska, M.; Petka, R.; Nowakowska, M.; Kepczynski, M. Molecular
Mechanism of Polycation-Induced Pore Formation in Biomembranes. ACS Biomater. Sci. Eng. 2019, 5, 780–794. [CrossRef]

835. Bennett, W.F.D.; Hong, C.K.; Wang, Y.; Tieleman, D.P. Antimicrobial Peptide Simulations and the Influence of Force Field on the
Free Energy for Pore Formation in Lipid Bilayers. J. Chem. Theory Comput. 2016, 12, 4524–4533. [CrossRef] [PubMed]

836. Yesylevskyy, S.; Marrink, S.; Mark, A.E. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin
and the TAT Peptide with Lipid Bilayers. Biophysj 2009, 97, 40–49. [CrossRef]

837. Simon, R.J.; Kania, R.S.; Zuckermann, R.N.; Huebner, V.D.; Jewell, D.A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe,
C.K.; et al. Peptoids: A modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 1992, 89, 9367–9371. [CrossRef]

559



Pharmaceuticals 2021, 14, 1062

838. Jin, H.; Jiao, F.; Daily, M.D.; Chen, Y.; Yan, F.; Ding, Y.H.; Zhang, X.; Robertson, E.J.; Baer, M.D.; Chen, C.-L. Highly stable and
self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids. Nat. Commun. 2016, 7, 12252. [CrossRef]
[PubMed]

839. Zhao, M.; Sampath, J.; Alamdari, S.; Shen, G.; Chen, C.L.; Mundy, C.J.; Pfaendtner, J.; Ferguson, A.L. MARTINI-Compatible
Coarse-Grained Model for the Mesoscale Simulation of Peptoids. J. Phys. Chem. B 2020, 124, 7745–7764. [CrossRef]

840. Landry, M.R.; Rangel, J.L.; Dao, V.P.; Mackenzie, M.A.; Gutierrez, F.L.; Dowell, K.M.; Calkins, A.L.; Fuller, A.A.; Stokes, G.Y.
Length and Charge of Water-Soluble Peptoids Impact Binding to Phospholipid Membranes. J. Phys. Chem. B 2019, 123, 5822–5831.
[CrossRef]

841. Andreev, K.; Martynowycz, M.W.; Ivankin, A.; Huang, M.L.; Kuzmenko, I.; Meron, M.; Lin, B.; Kirshenbaum, K.; Gidalevitz, D.
Cyclization Improves Membrane Permeation by Antimicrobial Peptoids. Langmuir 2016, 32, 12905–12913. [CrossRef]

842. Diamond, G.; Molchanova, N.; Herlan, C.; Fortkort, J.A.; Lin, J.S.; Figgins, E.; Bopp, N.; Ryan, L.K.; Chung, D.; Adcock, R.S.;
et al. Potent antiviral activity against HSV-1 and SARS-CoV-2 by antimicrobial peptoids. Pharmaceuticals 2021, 14, 304. [CrossRef]
[PubMed]

843. Koivuniemi, A.; Fallarero, A.; Bunker, A. Insight into the antimicrobial mechanism of action of β2,2-amino acid derivatives from
molecular dynamics simulation: Dancing the can-can at the membrane surface. Biochim. Biophys. Acta-Biomembr. 2019, 1861,
183028. [CrossRef]

844. Sessa, L.; Concilio, S.; Walde, P.; Robinson, T.; Dittrich, P.S.; Porta, A.; Panunzi, B.; Caruso, U.; Piotto, S. Study of the interaction of
a novel semi-synthetic peptide with model lipid membranes. Membranes 2020, 10, 294. [CrossRef]

845. Nourbakhsh, S.; Yu, L.; Ha, B.Y. Modeling the Protective Role of Bacterial Lipopolysaccharides against Membrane-Rupturing
Peptides. J. Phys. Chem. B 2021, 125, 8839–8854. [CrossRef]

846. Mitra, M.; Asad, M.; Kumar, S.; Yadav, K.; Chaudhary, S.; Bhavesh, N.S.; Khalid, S.; Thukral, L.; Bajaj, A. Distinct intramolecular
hydrogen bonding dictates antimicrobial action of membrane-targeting amphiphiles. J. Phys. Chem. Lett. 2019, 10, 754–760.
[CrossRef] [PubMed]

847. Dalhoff, A.A. Membrane Interactions of Antibacterial Agents. Trends Clin. Microbiol. 2018, 1, 4–48.
848. Khondker, A.; Bider, R.C.; Passos-Gastaldo, I.; Wright, G.D.; Rheinstädter, M.C. Membrane interactions of non-membrane

targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. Biochim. Biophys. Acta-Biomembr. 2021, 1863,
183448. [CrossRef] [PubMed]

849. Ashrafuzzaman, M.; Khan, Z.; Alqarni, A.; Alanazi, M.; Alam, M.S. Cell surface binding and lipid interactions behind
chemotherapy-drug-induced ion pore formation in membranes. Membranes 2021, 11, 501. [CrossRef]

850. Annaval, T.; Ramos-Martin, F.; Herrera-Leon, C.; Adelaide, M.; Antonietti, V.; Buchoux, S.; Sonnet, P.; Sarazin, C.; D’Amelio, N.
Antimicrobial Bombinin-like Peptide 3 Selectively Recognizes and Inserts into Bacterial Biomimetic Bilayers in Multiple Steps. J.

Med. Chem. 2021, 64, 5185–5197. [CrossRef]
851. Petkov, P.; Lilkova, E.; Ilieva, N.; Litov, L. Self-association of antimicrobial peptides: A molecular dynamics simulation study on

bombinin. Int. J. Mol. Sci. 2019, 20, 5450. [CrossRef]
852. Savini, F.; Loffredo, M.R.; Troiano, C.; Bobone, S.; Malanovic, N.; Eichmann, T.O.; Caprio, L.; Canale, V.C.; Park, Y.; Mangoni, M.L.;

et al. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183291. [CrossRef] [PubMed]

853. Huang, H.W. DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides. Biochim. Biophys.

Acta-Biomembr. 2020, 1862, 183395. [CrossRef]
854. Mescola, A.; Ragazzini, G.; Alessandrini, A. Daptomycin Strongly Affects the Phase Behavior of Model Lipid Bilayers. J. Phys.

Chem. B 2020, 124, 8562–8571. [CrossRef] [PubMed]
855. Liu, B.; Karttunen, M. Lipopeptide daptomycin: Interactions with bacterial and phospholipid membranes, stability of membrane

aggregates and micellation in solution. Biochim. Biophys. Acta-Biomembr. 2018, 1860, 1949–1954. [CrossRef] [PubMed]
856. Ramos-Martín, F.; Herrera-León, C.; Antonietti, V.; Sonnet, P.; Sarazin, C.; D’amelio, N. Antimicrobial peptide k11 selectively

recognizes bacterial biomimetic membranes and acts by twisting their bilayers. Pharmaceuticals 2021, 14, 1. [CrossRef]
857. Grishin, S.Y.; Domnin, P.A.; Kravchenko, S.V.; Azev, V.N.; Mustaeva, L.G.; Gorbunova, E.Y.; Kobyakova, M.I.; Surin, A.K.;

Makarova, M.A.; Kurpe, S.R.; et al. Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of
Ribosomal S1 Protein of P. aeruginosa? Int. J. Mol. Sci. 2021, 22, 9776. [CrossRef]

858. Shi, J.; Chen, C.; Wang, D.; Tong, Z.; Wang, Z.; Liu, Y. Amphipathic peptide antibiotics with potent activity against multidrug-
resistant pathogens. Pharmaceutics 2021, 13, 438. [CrossRef]

859. Aguiar, L.; Pinheiro, M.; Neves, A.R.; Vale, N.; Defaus, S.; Andreu, D.; Reis, S.; Gomes, P. Insights into the membranolytic activity
of antimalarial drug-cell penetrating peptide conjugates. Membranes 2021, 11, 4. [CrossRef]

860. Ohgita, T.; Takechi-Haraya, Y.; Okada, K.; Matsui, S.; Takeuchi, M.; Saito, C.; Nishitsuji, K.; Uchimura, K.; Kawano, R.; Hasegawa,
K.; et al. Enhancement of direct membrane penetration of arginine-rich peptides by polyproline II helix structure. Biochim.

Biophys. Acta-Biomembr. 2020, 1862, 183403. [CrossRef]
861. Strandberg, E.; Bentz, D.; Wadhwani, P.; Bürck, J.; Ulrich, A.S. Terminal charges modulate the pore forming activity of cationic

amphipathic helices. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183243. [CrossRef]
862. Wu, E.; Jenschke, R.M.; Hristova, K.; Wimley, W.C. Rational Modulation of pH-Triggered Macromolecular Poration by Peptide

Acylation and Dimerization. J. Phys. Chem. B 2020, 124, 8835–8843. [CrossRef] [PubMed]

560



Pharmaceuticals 2021, 14, 1062

863. Bansal, S.; Su, W.C.; Budamagunta, M.; Xiao, W.; Ajena, Y.; Liu, R.; Voss, J.C.; Carney, R.P.; Parikh, A.N.; Lam, K.S. Discovery and
mechanistic characterization of a structurally-unique membrane active peptide. Biochim. Biophys. Acta-Biomembr. 2020, 1862,
183394. [CrossRef] [PubMed]

864. Lima, B.; Ricci, M.; Garro, A.; Juhász, T.; Szigyártó, I.C.; Papp, Z.I.; Feresin, G.; Garcia de la Torre, J.; Lopez Cascales, J.; Fülöp,
L.; et al. New short cationic antibacterial peptides. Synthesis, biological activity and mechanism of action. Biochim. Biophys.

Acta-Biomembr. 2021, 1863, 183665. [CrossRef] [PubMed]
865. Das, P.; Sercu, T.; Wadhawan, K.; Padhi, I.; Gehrmann, S.; Cipcigan, F.; Chenthamarakshan, V.; Strobelt, H.; dos Santos, C.; Chen,

P.Y.; et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed.

Eng. 2021, 5, 613–623. [CrossRef]
866. Chakraborty, A.; Kobzev, E.; Chan, J.; De Zoysa, G.H.; Sarojini, V.; Piggot, T.J.; Allison, J.R. Molecular Dynamics Simulation of

the Interaction of Two Linear Battacin Analogs with Model Gram-Positive and Gram-Negative Bacterial Cell Membranes. ACS

Omega 2021, 6, 388–400. [CrossRef]
867. Malik, E.; Phoenix, D.A.; Badiani, K.; Snape, T.J.; Harris, F.; Singh, J.; Morton, L.H.G.; Dennison, S.R. Biophysical studies on the

antimicrobial activity of linearized esculentin 2EM. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183141. [CrossRef] [PubMed]
868. Abel, S.; Marchi, M. Deciphering the structure of the gramicidin A channel in the presence of AOT reverse micelles in pentane

using molecular dynamics simulations. J. Phys. Chem. B 2021, 124, 11802–11818. [CrossRef]
869. Nawae, W.; Hannongbua, S.; Ruengjitchatchawalya, M. Defining the membrane disruption mechanism of kalata B1 via coarse-

grained molecular dynamics simulations. Sci. Rep. 2014, 4, 3933. [CrossRef]
870. Rashid, M.M.O.; Moghal, M.M.R.; Billah, M.M.; Hasan, M.; Yamazaki, M. Effect of membrane potential on pore formation by the

antimicrobial peptide magainin 2 in lipid bilayers. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183381. [CrossRef]
871. Amos, S.B.T.A.; Vermeer, L.S.; Ferguson, P.M.; Kozlowska, J.; Davy, M.; Bui, T.T.; Drake, A.F.; Lorenz, C.D.; Mason, A.J.

Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial
Inner Membranes. Sci. Rep. 2016, 6, 37639. [CrossRef]

872. Hong, J.; Lu, X.; Deng, Z.; Xiao, S.; Yuan, B.; Yang, K. How Melittin Inserts into Cell Membrane: And Disturbance on the
Membrane. Molecules 2019, 24, 1775. [CrossRef]

873. Irudayam, S.J.; Pobandt, T.; Berkowitz, M.L. Free energy barrier for melittin reorientation from a membrane-bound state to a
transmembrane state. J. Phys. Chem. B 2013, 117, 13457–13463. [CrossRef]

874. Manna, M.; Mukhopadhyay, C. Cause and effect of melittin-induced pore formation: A computational approach. Langmuir 2009,
25, 12235–12242. [CrossRef]

875. Leveritt, J.M.; Pino-Angeles, A.; Lazaridis, T. The structure of a melittin-stabilized pore. Biophys. J. 2015, 108, 2424–2426. [CrossRef]
[PubMed]

876. Pal, S.; Chakraborty, H.; Chattopadhyay, A. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implica-
tions in Membrane Lysis. J. Phys. Chem. B 2021, 125, 8450–8459. [CrossRef]

877. Koch, D.C.; Schmidt, T.H.; Sahl, H.G.; Kubitscheck, U.; Kandt, C. Structural dynamics of the cell wall precursor lipid II in the
presence and absence of the lantibiotic nisin. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 3061–3068. [CrossRef] [PubMed]

878. Jefferies, D.; Hsu, P.C.; Khalid, S. Through the Lipopolysaccharide Glass: A Potent Antimicrobial Peptide Induces Phase Changes
in Membranes. Biochemistry 2017, 56, 1672–1679. [CrossRef] [PubMed]

879. Afanasyeva, E.F.; Syryamina, V.N.; De Zotti, M.; Formaggio, F.; Toniolo, C.; Dzuba, S.A. Peptide antibiotic trichogin in model
membranes: Self-association and capture of fatty acids. Biochim. Biophys. Acta-Biomembr. 2019, 1861, 524–531. [CrossRef]

880. Arinaminpathy, Y.; Khurana, E.; Engelman, D.M.; Gerstein, M.B. Computational analysis of membrane proteins: The largest class
of drug targets. Drug Discov. Today 2009, 14, 1130–1135. [CrossRef]

881. Yin, H.; Flynn, A.D. Drugging Membrane Protein Interactions. Annu. Rev. Biomed. Eng. 2016, 18, 51–76. [CrossRef]
882. Alballa, M.; Butler, G. Integrative approach for detecting membrane proteins. BMC Bioinform. 2020, 21, 575. [CrossRef] [PubMed]
883. Dobson, L.L.; Remenyi, I.; Tusnady, G.E.; Reményi, I.; Tusnády, G.E. The human transmembrane proteome. Biol. Direct 2015, 10, 31.

[CrossRef]
884. Garrow, A.G.; Agnes, A.; Westhead, D.R.; Agnew, A.; Westhead, D.R. TMB-Hunt: An amino acid composition based method to

screen proteomes for beta-barrel transmembrane proteins. BMC Bioinform. 2005, 6, 56. [CrossRef] [PubMed]
885. Potterton, A.; Husseini, F.S.; Southey, M.W.Y.; Bodkin, M.J.; Heifetz, A.; Coveney, P.V.; Townsend-Nicholson, A. Ensemble-Based

Steered Molecular Dynamics Predicts Relative Residence Time of A 2A Receptor Binders. J. Chem. Theory Comput. 2019, 15,
3316–3330. [CrossRef]

886. Zhang, X.; Sun, H.; Wen, X.; Yuan, H. A Selectivity Study of FFAR4/FFAR1 Agonists by Molecular Modeling. J. Chem. Inf. Model.

2019, 59, 4467–4474. [CrossRef] [PubMed]
887. Perez-Aguilar, J.M.; Kang, S.G.; Zhang, L.; Zhou, R. Modeling and Structural Characterization of the Sweet Taste Receptor

Heterodimer. ACS Chem. Neurosci. 2019, 10, 4579–4592. [CrossRef] [PubMed]
888. Bellucci, L.; Felline, A.; Fanelli, F. Dynamics and structural communication in the ternary complex of fully phosphorylated V2

vasopressin receptor, vasopressin, and β-arrestin 1. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183355. [CrossRef] [PubMed]
889. Azhagiya Singam, E.R.; Tachachartvanich, P.; La Merrill, M.A.; Smith, M.T.; Durkin, K.A. Structural Dynamics of Agonist and

Antagonist Binding to the Androgen Receptor. J. Phys. Chem. B 2019, 123, 7657–7666. [CrossRef]

561



Pharmaceuticals 2021, 14, 1062

890. An, X.; Bai, Q.; Bing, Z.; Liu, H.; Zhang, Q.; Liu, H.; Yao, X. Revealing the Positive Binding Cooperativity Mechanism between
the Orthosteric and the Allosteric Antagonists of CCR2 by Metadynamics and Gaussian Accelerated Molecular Dynamics
Simulations. ACS Chem. Neurosci. 2020, 11, 628–637. [CrossRef]

891. Lei, T.; Hu, Z.; Ding, R.; Chen, J.; Li, S.; Zhang, F.; Pu, X.; Zhao, N. Exploring the Activation Mechanism of a Metabotropic
Glutamate Receptor Homodimer via Molecular Dynamics Simulation. ACS Chem. Neurosci. 2020, 11, 133–145. [CrossRef]

892. Yang, J.F.; Williams, A.H.; Penthala, N.R.; Prather, P.L.; Crooks, P.A.; Zhan, C.G. Binding Modes and Selectivity of Cannabinoid 1
(CB1) and Cannabinoid 2 (CB2) Receptor Ligands. ACS Chem. Neurosci. 2020, 11, 3455–3463. [CrossRef]

893. Reis, M.H.; Antunes, D.; Santos, L.H.S.; Guimarães, A.C.R.; Caffarena, E.R. Shared Binding Mode of Perrottetinene and
Tetrahydrocannabinol Diastereomers inside the CB1 Receptor May Incentivize Novel Medicinal Drug Design: Findings from an
in Silico Assay. ACS Chem. Neurosci. 2020, 11, 4289–4300. [CrossRef] [PubMed]

894. Ji, B.; Liu, S.; He, X.; Man, V.H.; Xie, X.Q.; Wang, J. Prediction of the Binding Affinities and Selectivity for CB1 and CB2
Ligands Using Homology Modeling, Molecular Docking, Molecular Dynamics Simulations, and MM-PBSA Binding Free Energy
Calculations. ACS Chem. Neurosci. 2020, 11, 1139–1158. [CrossRef]

895. Poudel, H.; Leitner, D.M. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J.

Phys. Chem. B 2021, 125, 6522–6531. [CrossRef]
896. Shang, Y.; Yeatman, H.R.; Provasi, D.; Alt, A.; Christopoulos, A.; Canals, M.; Filizola, M. Proposed Mode of Binding and Action of

Positive Allosteric Modulators at Opioid Receptors. ACS Chem. Biol. 2016, 11, 1220–1229. [CrossRef]
897. Bortolato, A.; Deflorian, F.; Weiss, D.R.; Mason, J.S. Decoding the Role of Water Dynamics in Ligand-Protein Unbinding: CRF1R

as a Test Case. J. Chem. Inf. Model. 2015, 55, 1857–1866. [CrossRef] [PubMed]
898. Provasi, D.; Bortolato, A.; Filizola, M. Exploring molecular mechanisms of ligand recognition by opioid receptors with metady-

namics. Biochemistry 2009, 48, 10020–10029. [CrossRef]
899. Kaszuba, K.; Róg, T.; Bryl, K.; Vattulainen, I.; Karttunen, M. Molecular dynamics simulations reveal fundamental role of water

as factor determining affinity of binding of β-blocker nebivolol to β-adrenergic receptor. J. Phys. Chem. B 2010, 114, 8374–8386.
[CrossRef]

900. Ribeiro, J.M.L.; Filizola, M. Insights From Molecular Dynamics Simulations of a Number of G-Protein Coupled Receptor Targets
for the Treatment of Pain and Opioid Use Disorders. Front. Mol. Neurosci. 2019, 12, 207. [CrossRef] [PubMed]

901. Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled
receptors: Structure- and function-based drug discovery. Signal Transduct. Target. Ther. 2021, 6, 7. [CrossRef] [PubMed]

902. Tautermann, C.S.; Seeliger, D.; Kriegl, J.M. What can we learn from molecular dynamics simulations for GPCR drug design?
Comput. Struct. Biotechnol. J. 2015, 13, 111–121. [CrossRef]

903. Odoemelam, C.S.; Percival, B.; Wallis, H.; Chang, M.W.; Ahmad, Z.; Scholey, D.; Burton, E.; Williams, I.H.; Kamerlin, C.L.; Wilson,
P.B. G-Protein coupled receptors: Structure and function in drug discovery. RSC Adv. 2020, 10, 36337–36348. [CrossRef]

904. Denisov, I.G.; Sligar, S.G. Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 2017, 117, 4669–4713. [CrossRef]
905. Denisov, I.G.; Sligar, S.G. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 2016, 23,

481–486. [CrossRef]
906. Pollock, N.L.; Lee, S.C.; Patel, J.H.; Gulamhussein, A.A.; Rothnie, A.J. Structure and function of membrane proteins encapsulated

in a polymer-bound lipid bilayer. Biochim. Biophys. Acta-Biomembr. 2018, 1860, 809–817. [CrossRef]
907. Loll, P.J. Membrane proteins, detergents and crystals: What is the state of the art? Acta Crystallogr. Sect. FStructural Biol. Commun.

2014, 70, 1576–1583. [CrossRef]
908. 9Stetsenko, A.; Guskov, A. An Overview of the Top Ten Detergents Used for Membrane Protein Crystallization. Crystals 2017, 7,

197. [CrossRef]
909. Caffrey, M. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins

and complexes. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 3–18. [CrossRef]
910. Hameduh, T.; Haddad, Y.; Adam, V.; Heger, Z. Homology modeling in the time of collective and artificial intelligence. Comput.

Struct. Biotechnol. J. 2020, 18, 3494–3506. [CrossRef]
911. Haddad, Y.; Adam, V.; Heger, Z. Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Comput.

Biol. 2020, 16, e1007449. [CrossRef]
912. Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives.

Chem. Biol. Drug Des. 2019, 93, 12–20. [CrossRef]
913. Barozet, A.; Bianciotto, M.; Vaisset, M.; Siméon, T.; Minoux, H.; Cortés, J. Protein loops with multiple meta-stable conformations:

A challenge for sampling and scoring methods. Proteins Struct. Funct. Bioinform. 2021, 89, 218–231. [CrossRef]
914. Kaszuba, K.; Grzybek, M.; Orłowski, A.; Danne, R.; Róg, T.; Simons, K.; Coskun, Ü.; Vattulainen, I. N-Glycosylation as determinant

of epidermal growth factor receptor conformation in membranes. Proc. Natl. Acad. Sci. USA 2015, 112, 4334–4339. [CrossRef]
915. Polley, A.; Orłowski, A.; Danne, R.; Gurtovenko, A.A.; Bernardino de La Serna, J.; Eggeling, C.; Davis, S.J.; Róg, T.; Vattulainen, I.

Glycosylation and Lipids Working in Concert Direct CD2 Ectodomain Orientation and Presentation. J. Phys. Chem. Lett. 2017, 8,
1060–1066. [CrossRef]

916. Mobarak, E.; Håversen, L.; Manna, M.; Rutberg, M.; Levin, M.; Perkins, R.; Róg, T.; Vattulainen, I.; Borén, J. Glucosylceramide
modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Sci.

Rep. 2018, 8, 13600. [CrossRef]

562



Pharmaceuticals 2021, 14, 1062

917. Almén, M.S.; Nordström, K.J.V.; Fredriksson, R.; Schiöth, H.B. Mapping the human membrane proteome: A majority of the
human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009, 7, 50. [CrossRef]

918. Lefkowitz, R.J.; Kobilka, B.K. The Nobel Prize in Chemistry 2012; Royal Swedish Academy of Sciences: Stockholm, Sweden, 2012.
919. Royal Swedish Academy of Sciences. The Nobel Prize in Physiology or Medicine 1967 Ragnar Granit, Haldan Keffer Hartline and

George Wald for Their Discoveries Concerning the Primary Physiological and Chemical Visual Processes in the Eye. Available
online: https://www.nobelprize.org/prizes/medicine/1967/ (accessed on 18 October 2021).

920. Royal Swedish Academy of Sciences. The Nobel Prize in Physiology or Medicine 1988 Sir James W. Black, Gertrude B. Elion
and George H. Hitchings for Their Discoveries of Important Principles for Drug Treatment. Available online: https://www.
nobelprize.org/prizes/medicine/1988/ (accessed on 18 October 2021).

921. Royal Swedish Academy of Sciences. The Nobel Prize in Physiology or Medicine 1994 Alfred G. Gilman and Martin Rod-
bell for Their Discovery of G-proteins and the Role of These Proteins in Signal Transduction in Cells. Available online:
https://www.nobelprize.org/prizes/medicine/1994/ (accessed on 18 October 2021).

922. Axel, R.; Buck, L.B. The Nobel Prize in Physiology or Medicine 2004; Alberta Aromatherapy Institute: Edmonton, AB, Canada, 2004.
923. Vauquelin, G.; Packeu, A. Ligands, their receptors and . . . plasma membranes. Mol. Cell. Endocrinol. 2009, 311, 1–10. [CrossRef]
924. Vauquelin, G. Cell membranes . . . and how long drugs may exert beneficial pharmacological activity in vivo. Br. J. Clin. Pharmacol.

2016, 673–682. [CrossRef]
925. Vauquelin, G. Rebinding: Or why drugs may act longer in vivo than expected from their in vitro target residence time. Expert

Opin. Drug Discov. 2010, 5, 927–941. [CrossRef]
926. Lappano, R.; Maggiolini, M. G protein-coupled receptors: Novel targets for drug discovery in cancer. Nat. Rev. Drug Discov. 2011,

10, 47–60. [CrossRef]
927. Vauquelin, G. On the ‘micro’-pharmacodynamic and pharmacokinetic mechanisms that contribute to long-lasting drug action.

Expert Opin. Drug Discov. 2015, 10, 1085–1098. [CrossRef]
928. Vauquelin, G.; Charlton, S.J. Long-lasting target binding and rebinding as mechanisms to prolong in vivo drug action. Br. J.

Pharmacol. 2010, 161, 488–508. [CrossRef]
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Abstract: Continuing the work developed by our research group, in the present manuscript, we per-
formed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as
inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed
structures were subjected to docking calculations, molecular dynamics simulations, and free energy
calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, in-
side the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic
studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the
free energy data calculated through the MM-PBSA method, corroborated these results. This suggests
that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as
template molecules to be synthesized and experimentally evaluated against smallpox.

Keywords: Variola virus; thymidylate kinase; smallpox; docking; molecular dynamics

1. Introduction

Despite the declaration of the World Health Organization (WHO) that the Variola virus
was eradicated from the world by the 1980s, smallpox is still a matter of concern. Moreover,
many studies on the development of drugs against this disease have been reported in the
literature [1–16]. This is due to the fact that Variola virus strains may have been stored in
clandestine sites around the world, and their potential use for bioterrorist purposes cannot
be ignored [17,18]. Furthermore, the recreation of this kind of virus has proven to be easy to
carry out, considering the current technologies [19]. As viruses can survive long periods in
nature, there is no guarantee that smallpox will never return as a natural pandemic [20,21].
It is also important to mention that since the 1980s the public vaccination campaigns against
smallpox do not exist anymore [4,7,9], a fact that makes all of the world’s population under
40 years of age particularly vulnerable.

Currently, there is only one drug approved by the Food and Drug Administration
(FDA) of the United States for the treatment of smallpox. This drug, named tecovirimat
(Figure 1), acts as an inhibitor of the protein complex needed for the survival of extracellular
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viruses, and thereby prevents its spread throughout the body from the infected cells [1,2,10].
However, despite the fact that it was approved by the FDA, tecovirimat is still in phase
II of clinical trials and has not been tested in humans yet, due to the lack of patients with
smallpox. It has been effective in laboratory tests to protect animals against monkeypox
and rabbitpox as well as presented low toxicity to humans [1,2,10,22,23].

Figure 1. Structures of tecovirimat, cidofovir, and ribavirin.

The risk of smallpox resurgence either, as a natural pandemic or consequence of a
terrorist attack, combined with the huge number of non-immunized people in the world,
and the scarcity of drugs to combat this disease, highlight the importance of the search for
new drugs against it.

It is known from the literature that the Variola virus belongs to the genus Orthopoxvirus,
which, similar to all poxviruses, are capable of encoding their own thymidine and thymidy-
late kinases (TK and TMPK) [24]. Caillat et al. [24] have detailed the sequence alignment
of TMPKs from different Orthopoxviruses (vaccinia virus, smallpox, cowpox, camelpox,
and monkeypox) and showed that those enzymes present highly similar amino acid se-
quencing, which are practically identical, except for a few residues. The majority of the
different residues among the viral enzymes belong to the protein loops [24]. Therefore,
the crystallographic structure of the Vaccinia virus TMPK (VaccTMPK) can be used as a
template for modeling the structure of the Variola virus TMPK (VarTMPK), which is not
available yet in the protein data bank (PDB) (https://www.rcsb.org/).

Moreover, the study by Caillat et al. [24] included data on practical experiments
using compounds such as brivudine monophosphate to test their inhibition of VaccTMPK
and human TMPK (HssTMPK). HssTMPK and VaccTMPK are only 42% similar in their
amino acid sequence alignments and the dimer interface arrangements of both enzymes
are different, as well as their active site geometry [24–26]. Due to these differences, as
stated by the authors, VaccTMPK is able to accommodate more voluminous compounds,
such as brivudine monophosphate, which stabilizes the enzyme and is phosphorylated.
The specificity of the bond with brivudine monophosphate shows that selective antipox
agents can be developed based on this finding. Therefore, these antivirals can also be
investigated for their use in the treatment of TMPK-related diseases from other viruses of
the Orthopoxvirus genus [24].

According to the literature, TMPK is responsible for the synthesis of thymidine
5′-triphosphate (TTP) based on the phosphorylation of thymidine 5′-monophosphate
(TMP) [27,28]. TTP participates in DNA synthesis (as a building block) and its levels are
controlled during the different phases of the cell cycle. Since TMPK is important for the
biosynthesis of TTP, the enzyme is considered a molecular target for the development of
antiviral drugs against many diseases, and the interruption of the metabolism of TTP can
be used to stop the development of said illnesses. In addition to its direct effect on the
metabolism of TTP, TMPK also interacts directly with the DNA synthesis process, since
it plays an important role in the activation of DNA precursor nucleoside analogues. As a
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result, its inhibition directly affects the synthesis of genetic material, thus provoking the
deactivation (death) of the virus [25,29,30].

Previously, we proposed VarTMPK as a potential target to the design of potential
selective inhibitors and studied the behavior of known antivirals inside it, thus pointing to
the relevant residues to be targeted in the drug design [7]. Next, we proposed the structures
of 10 potential VarTMPK inhibitors based on theoretical studies of another series of antivi-
rals [4,8,24,26]. The best ranked compounds after docking and MD simulations studies
were, then, selected to design a new series of compounds based on alterations of their struc-
tural features, having in mind the synthetic viability and selectivity towards VarTMPK [9].
A few compounds of this new series presented promising theoretical results [9].

In the present work, we performed the theoretical study of 10 new compounds whose
design was based on structural modifications of the antivirals cidofovir and ribavirin
(Figure 1), seeking the application of these new compounds against the Variola virus.
Cidofovir and ribavirin were chosen to serve as templates for this study, since they have
already been extensively studied and validated for diseases caused by Orthopoxviruses.
Therefore, they have much data available in specialized databanks [31,32].

Maintaining the main idea of our previous studies [4,7,9], the objective of this work
was to minimize the structural complexity of the template compounds, in order to make
the synthesis of these structures more feasible and less cumbersome.

To analyze the binding modes and selectivity of the proposed compounds inside
VarTMPK and HssTMPK, the molecular docking method was used [33,34]. In order to
assess their dynamical behavior and corroborate the docking achievements, molecular
dynamics (MD) simulations rounds were performed on the best poses obtained from
docking. Finally, free energy calculations, applying the molecular mechanics Poisson-
Boltzmann surface area (MM-PBSA) method, were performed on the most promising
compounds to verify the effectiveness, reliability, and selectivity of their binding inside
each enzyme [35–45].

2. Results
2.1. Docking Calculations

Table 1 lists the active site residues of VarTMPK and HssTMPK. It is possible to see
that seven of these 14 residues are different. This 50% difference highlights the possibility
of designing selective inhibitors for VarTMPK.

Table 1. Active site residues of VarTMPK and HssTMPK. The non-matching amino acids are shown
in red.

VarTMPK Asp13, Lys14, Ser15, Lys17, Thr18, Arg41, Leu53, Asn65, Phe68,
Cys69, Arg72, Arg93, Tyr101, Ala102

HssTMPK Asp15, Arg16, Ala17, Lys19, Ser20, Arg45, Leu57, His69, Phe72,
Ser73, Arg76, Arg97, Phe105, Thr106

Similar to our previous works [4,9], the ionization states of the compounds used
in this study corresponded to the predominant microspecies at physiological conditions
(pH = 7.4). According to the chemicalize server (www.chemicalize.com), our compounds
except compound 1, are 100% in the neutral form at pH 7.4. The dominant microspecies
for compound 1 predicted by chemicalize (www.chemicalize.com) is the one negatively
charged in the phosphate group, with 74% of prevalence at pH 7.4. Moreover, according to
the chemicalize server (www.chemicalize.com), all of our compounds meet the Lipinski’s
criterion of drug likeness [46], as shown in Table 2.
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Table 2. Calculated values of acute toxicity, carcinogenicity (in mouse), and Lipinski’s rule of the
compounds and antivirals.

Structure
Acute Toxicity

(Algae)
Carcinogenicity

(Mouse)
Meets Lipinski’s

Rule?

1 1.10 negative Yes
2 0.30 positive Yes
3 0.15 positive Yes
4 0.22 positive Yes
5 0.51 positive Yes
6 0.25 positive Yes
7 0.38 positive Yes
8 0.31 positive Yes
9 0.37 positive Yes
10 0.60 positive Yes

Cidofovir 1.19 Positive Yes
Ribavirin 0.54 negative Yes

The docking studies were meant to identify the compounds with better interactions
and higher selectivity towards VarTMPK. The best poses for each compound were selected
in accordance with the best (more negative) interaction energies inside VarTMPK and
HssTMPK (intermolecular and hydrogen bond) and the best superposition onto TDP. As
shown in Figure 2, the poses selected in the docking studies present an optimal superposi-
tion onto TDP for both VarTMPK and HssTMPK. These poses were analyzed according to:
Their interaction energy values with the enzymes (Einteraction) and the cofactor (Ecofactor);
the H-bond energies between the compounds and the enzymes (Hbond); and, finally, the
amino acids involved in the interactions with the compounds in both enzymes. The re-
sults obtained for those parameters are summarized in Table 3. Figure 3a–j shows the
interactions observed between the proposed compounds inside VarTMPK and HssTMPK.
The active site residues of both enzymes are shown in red and the red spheres represent
water molecules.

2.2. Molecular Dynamics Simulations

The best poses of compounds 2, 3, 4, 5, 6, 8, and 9 were selected for additional rounds
of MD simulations, since they were pointed as more selective towards VarTMPK by the
docking studies. The results are shown in the plots of root-mean-square deviation (RMSD)
and number of H-bonds formed during the MD simulations, for their complexes inside
VarTMPK and HssTMPK, shown in Figures 4 and 5, respectively.

In order to validate our MD protocol, we performed three rounds of MD simulations
for the complexes of compound 2 with both enzymes. The obtained plots of RMSD are
shown in Figures S1–S6 of the Supplementary Material.

2.3. MM-PBSA Calculations

According to the literature, one of the limitations of docking studies lies in determin-
ing the affinities of ligand-protein complexes using calculations based solely on the poses
generated for these complexes. In this regard, the MM-PBSA method tends to improve the
results related to the binding energy, which is due to the fact that MM-PBSA provides more
accurate results when the affinities between the ligand and protein are determined. More-
over, this is achieved by calculating the free binding energy associated with the formation
of ligand-protein complexes [47] and decomposing it in the contributing components, as
proposed before by Bren et al. [44,45]. Table 4 shows the average binding energy values
calculated for compounds 2, 3, 4, 6, and 9 complexed with VarTMPK and HssTMPK, while
Figure 6 illustrates the favorable and unfavorable energy contributions of compounds 3
and 6 inside VarTMPK.
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Figure 2. Best molecular docking poses for the prototypes inside VarTMPK and HssTMPK: (a) VarTMPK/compound 1,
(b) HssTMPK/compound 1, (c) VarTMPK/compound 2, (d) HssTMPK/compound 2, (e) VarTMPK/compound 3,
(f) HssTMPK/compound 3, (g) VarTMPK/compound 4, (h) HssTMPK/compound 4, (i) VarTMPK/compound 5,
(j) HssTMPK/compound 5, (k) VarTMPK/compound 6, (l) HssTMPK/compound 6, (m) VarTMPK/compound 7,
(n) HssTMPK/compound 7, (o) VarTMPK/compound 8, (p) HssTMPK/compound 8, (q) VarTMPK/compound 9,
(r) HssTMPK/compound 9, (s) VarTMPK/compound 10, (t) HssTMPK/compound 10.

Table 4. MM-PBSA results for compounds 2, 3, 4, 6, and 9.

Binding Energies kJ.mol−1

Compound VarTMPK HssTMPK

2 −133.69 ± 6.92 −36.60 ± 3.71
3 −189.90 ± 3.05 −90.79 ± 3.56
4 −59.50 ± 4.37 −33.50 ± 4.41
6 −206.04 ± 12.98 −100.85 ± 2.24
9 −81.72 ± 2.58 −43.16 ± 4.36
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Figure 3. Interactions observed for the best poses obtained inside the VarTMPK and HssTMPK active sites: (a) Compound
1, (b) compound 2, (c) compound 3, (d) compound 4, (e) compound 5, (f) compound 6, (g) compound 7, (h) compound 8,
(i) compound 9, (j) compound 10.
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Figure 4. RMSD of the systems formed by the enzymes (in black) and compounds (in red): (a) VarTMPK/compound 2,
(b) HssTMPK/compound 2, (c) VarTMPK/compound 3, (d) HssTMPK/compound 3, (e) VarTMPK/compound 4,
(f) HssTMPK/compound 4, (g) VarTMPK/compound 5, (h) HssTMPK/compound 5, (i) VarTMPK/compound 6,
(j) HssTMPK/compound 6, (k) VarTMPK/compound 8, (l) HssTMPK/compound 8, (m) VarTMPK/compound 9,
(n) HssTMPK/compound 9.
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Figure 5. H-bonds between (a) VarTMPK/compound 2, (b) HssTMPK/compound 2, (c) VarTMPK/compound 3,
(d) HssTMPK/compound 3, (e) VarTMPK/compound 4, (f) HssTMPK/compound 4, (g) VarTMPK/compound 5,
(h) HssTMPK/compound 5, (i) VarTMPK/compound 6, (j) HssTMPK/compound 6, (k) VarTMPK/compound 8,
(l) HssTMPK/compound 8, (m) VarTMPK/compound 9, (n) HssTMPK/compound 9.

Figure 6. Main interactions of the complexes VarTMPK/compound 3 (left) and VarTMPK/compound 6 (right) calculated
by MM-PBSA.
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3. Discussion

As can be seen, Table 2 shows the toxicity and mouse carcinogenicity values of the
investigated structures and the antivirals used as precursors. In short, with respect to the
proposed compounds, it is important to point out that the acute toxicity values in algae
calculated for all the structures were lower than the value found for cidofovir (1.19), which
is not toxic. Furthermore, except for compounds 1 and 10, all the structures had lower
toxicity values in comparison with those of ribavirin (0.54).

According to the literature, the cavity of HssTMPK acquired through the software
Molegro virtual docker (MVD)®, presents a volume of 90.112 Å3, which is greater than the
value of 76.288 Å3 observed for the cavity of VarTMPK. It is important to point out that the
HssTMPK cavity is more outspread and narrower. Therefore, it is expected to have issues
in the entrance and/or permanence of larger inhibitors in the binding site [7].

The results in Table 3 show that all the compounds are capable of binding to the active
sites of both enzymes. This is reflected by the negative values of Einteraction observed for all
of them. Comparing the docking results obtained, we can state that compounds 2, 3, 4, 5, 6,
8, and 9 form more stable complexes with VarTMPK. This enables us to infer that they might
show higher affinity for the active site of this enzyme, since the systems formed among
these compounds and the viral enzyme presented lower values of Einteraction, Ecofactor, and
H-bond energy. Regarding the ∆Einteraction values, determined based on the difference
between Einteraction inside VarTMPK (lower value) and HssTMPK, the compounds listed
above ranked: 2 (−62.85 kcal.mol−1) < 5 (−55.40 kcal.mol−1) < 9 (−45.90 kcal.mol−1) < 4
(−38.57 kcal.mol−1) < 3 (−35.41 kcal.mol−1) < 6 (−27.85 kcal.mol−1) < 8 (−11.32 kcal.mol−1).

The best pose of compound 1 interacts with three active site residues of VarTMPK and
two active site residues of HssTMPK, as shown in Figure 3a. Among these residues, Arg93
from VarTMPK and Arg97 from HssTMPK are equivalent between both enzymes.

Regarding compound 2 (Figure 3b), we observed interactions with three residues from
VarTMPK, of which two belong to the active site, while for HssTMPK, an interaction with
only one residue was observed, which also belongs to the active site.

Compounds 3 (Figure 3c) and 4 (Figure 3d) interact with the same number of residues
inside both enzymes. However, for VarTMPK, two interacting residues belong to the
active site versus only one for HssTMPK. Residues Arg93 from VarTMPK and Arg97 from
HssTMPK are the only equivalent interacting residues observed.

Figure 3e shows that compound 5 interacts with two active site residues from VarTMPK
and one from HssTMPK. No matching interacting residues were observed.

According to Figure 3f, compound 6 interacts solely with one active site residue from
VarTMPK and has no interaction with the HssTMPK active site residues. On the other hand,
for compound 7, Figure 3g shows interactions with two active site residues from VarTMPK
and one from HssTMPK. Arg93 from VarTMPK and Arg97 from HssTMPK were the only
equivalent interacting residues observed.

Regarding the complexes formed with compound 8 (shown in Figure 3h), we can
see interactions with two active site residues from VarTMPK and one from HssTMPK. In
this case, Asp13 from VarTMPK and Asp15 from HssTMPK are the equivalent interacting
residues observed.

Figure 3i shows that compound 9 interacts with three active site residues from
VarTMPK, and two from HssTMPK. The equivalent interacting residues observed are:
Asp13 (VarTMPK) and Asp15 (HssTMPK), and Arg72 (VarTMPK) and Arg76 (HssTMPK).

Finally, Figure 3j shows that compound 10 interacts with four active site residues from
VarTMPK, and only one from HssTMPK. The equivalent residues observed are Arg93 from
VarTMPK and Arg97 from HssTMPK.

The RMSD plots for the multiple MD simulations, performed for the systems en-
zyme/compound 2 (Figures S1–S6), showed the same behavior for all dynamics, with
no variation above 0.1 nm. This validates our MD simulations protocol for the systems
under study.
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Comparing the RMSD plots in Figure 4 for both enzymes, it is possible to see that for
all the systems, the RMSD values never passed 0.4 nm for the enzyme (black lines) and 0.2
nm for the ligands (red lines) during the simulated time. However, for most of the systems,
both the enzyme and compounds presented more fluctuations inside HssTMPK. Inside
VarTMPK, this fluctuation never passed 0.05 nm for compounds 2, 3, 4, 6, and 9.

Compounds 5 and 8 were the only ones showing a similar or more instable behavior in-
side VarTMPK compared to HssTMPK (see Figure 4g,h,k,l). This does not corroborate with
the docking results and suggests that these compounds are not selective towards VarTMPK.

In addition, we analyzed the number of H-bonds formed during the MD simulations
for the complexes inside VarTMPK and HssTMPK (Figure 5). The H-bonds profiles of the
complexes with compounds 2 (Figure 5a,b), 3 (Figure 5c,d), 4 (Figure 5e,f), 6 (Figure 5i,j),
and 9 (Figure 5m,n) show that these compounds were capable of keeping at least three
H-bonds with VarTMPK during the whole simulated time, presenting a profile better or
similar to HssTMPK. Conversely, the H-bond graphs of the complexes with compounds 5
(Figure 5g,h) and 8 (Figure 5k,l) show a more unstable behavior with the prevalence of no
more than two H-bonds during the whole simulation, presenting a worse (compound 5) or
similar (compound 8) profile compared to HssTMPK.

The results regarding the formation of H-bonds can be correlated to the RMSD ob-
served during the MD simulations, and point to compounds 2, 3, 4, 6, and 9 as more
selective towards VarTMPK. For this reason, these compounds were selected for the
determination of their binding energies inside VarTMPK and HssTMPK based on the
MM-PBSA calculations.

Regarding the MM-PBSA calculations, the results in Table 4 show that for all com-
pounds, the mean binding energy values of the complexes formed with VarTMPK were
lower than the values determined for the complexes formed with HssTMPK. These data
confirm the results obtained by the docking and MD simulations, which suggested the
selectivity of these compounds towards VarTMPK.

Moreover, the results in Table 4 show that compounds 3 and 6 stand out among
the others in terms of binding energy with VarTMPK, which are the most stable ones.
Furthermore, the difference related to HssTMPK was higher than 90 KJ/mol in both cases,
suggesting a high selectivity towards VarTMPK.

A possible explanation for the high free energy values of the complexes between
VarTMPK and compounds 3 and 6, is the presence of the trifluoroacetate group (–COOCF3)
attached to the tetrahydrofuran ring. The presence of three fluorine atoms—a chemi-
cal element with high electronegativity and with isolated and free electron pairs on its
structure—likely favors the selective interactions inside VarTMPK. Therefore, these interac-
tions can help in maintaining the complexes formed between VarTMPK and compounds 3
and 6—thus contributing to the higher stability of these systems.

4. Materials and Methods
4.1. Compounds Studied

The 2D structures of the compounds studied in this work are shown in Figure 7.
As mentioned above, they are all derivatives from the antivirals cidofovir and ribavirin,
designed to better explore the potential selective interactions with residues of the active
site of VarTMPK.

The ionization states of each compound in Figure 7 at physiological pH (7.4)—as well
as the drug likeness criteria established according to the Lipinski’s rule of five [48]—were
calculated with the aid of the Chemicalize databank (https://chemicalize.com) [46]. Their
toxicity and carcinogenicity in mice were calculated with the online program PreADMET
(https://preadmet.bmdrc.kr/adme-prediction/).

The tridimensional structures of these compounds, and the calculation of their atomic
charges, were done through the Recife model 1 (RM1) semiempirical model [49,50], using
the Spartan 08® Suite software.
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Figure 7. Structures of the studied compounds.

4.2. Applied Protocols

In previous works [4,7,9], the tridimensional structures of VarTMPK and HssTMPK
that were used for our studies include, respectively, the homology model complexed with
TDP and the Mg2+ cofactor, constructed by Guimarães et al. [7], and the crystallographic
structure of HssTMPK complexed with TDP and Mg2+, available in the protein data bank
(PDB) under the code 1E2G [51]. According to Guimarães et al. [7], the Ramachandran
plot of the homology model showed that 99.5% of the residues were situated in the most
favored regions.

The docking protocol used, as well as its validation by re-docking studies, was the
same as employed by Guimarães et al. [7]. The MolDock algorithm [52] from the Molegro
virtual docker (MVD®) was used to perform the energy calculations of the ligands inside
VarTMPK and HssTMPK. The binding site was restricted to spheres with radii of 6 and
10 Å, respectively, around TDP, and all the residues inside these spheres were set to be
flexible. The coordinates were centered on x = 8.95, y = 22.41, and z = 0.69 for VarTMPK,
and x = 13.92, y = 75.19, and z = 25.05 for HssTMPK [7]. The best poses for each ligand in
the viral and human enzymes were selected for further MD simulations.

The protocol comprising the application of MD simulations rounds to the best poses
selected from the docking studies was based on our most recent work [9]. Each lig-
and was parameterized in order to be recognized by the OPLS-AA force field [53]. The
enzyme/ligand complexes were put inside cubic boxes of 450 nm3 containing around
13,000 Tip4P type water molecules under periodic boundary conditions (PBCs), using
the GROMACS 5.1.4 software [54]. The energy minimization steps used were: (1) Steep-
est descent with position restraint (PR) of the ligand; (2) steepest descent without PR;
(3) conjugate gradients; and, lastly, (4) quasi Newton Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm [55], with a minimal energy of 1 kcal.mol−1. Thereafter, the systems
were submitted to temperature (NVT) and pressure (NPT) balancing phases in order to
attain equilibrium. The equilibrated systems were, then, submitted to 500 ps of MD at
310 K with a PR for the entire system, except for water molecules, in order to ensure the
equilibrium of solvent molecules, and finally, 100,000 ps of free MD simulations at 310 K
without PR, with 2 fs of integration time, and a cutting radius of 10 Å for long-distance
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interactions [9]. All the Glu and Asp residues were assigned with negative charges, and
the Lys and Arg residues were assigned with positive charges. As mentioned above, the
visual molecular dynamics (VMD) software [56] was used to analyze the MD results of the
systems. In order to validate our MD simulations protocol, three MD simulations were
performed for the systems VarTMPK/compound 2 and HssTMPK/compound 2.

The MM-PBSA method was employed to predict the free binding energies of the
ligands inside the VarTMPK and HssTMPK. This study allows us to infer whether the
binding process is spontaneous (freeing energy) or nonspontaneous (requiring energy),
thus enabling us to point to the prototype that is more interesting and promising regarding
the selective inhibition of VarTMPK. The determination of the free energy of formation
of the complexes, in association with the MD simulations, take into consideration three
energetic terms in the calculation of binding energy: (1) Changes in the potential energy of
the system in a vacuum; (2) polar and apolar solvation of the different species; and (3) the
entropy related to the formation of the complexes during the gaseous phase [9,36,37,44,45].
For all the enzyme/ligand complexes, MM-PBSA calculations were performed using the
g_mmpbsa tool [37] from the GROMACS package. In order to consider non-correlated
frames, the structures for the free energy calculations were obtained at 500 ps each after the
stabilization of the systems [9].

The parameters used for the docking, MD simulations, and MM-PBSA calculations
performed in this work are summarized in Table 5.

Table 5. Parameters used in the docking and MD studies.

Docking

Software Used in
Energy

Calculations

Algorithm Used in
Energy

Calculations
Radius of the

Anchoring Area
Enzyme Site
Coordinates

No. of
Repetitions

No.
of Poses

HssTMPK VarTMPK
Molegro

virtual docker
(MVD®)

MolDock [52] 6–10 Å
x = 8.95

y = 22.41
z = 0.69

x = 13.92
y = 75.19
z = 25.05

10 30

Molecular
Dynamics

Force Field

Software Used in
Coordinate

Parameters and
Topologies

Software
Used in

Construction of
Cubic Boxes *

Simulation Stage Parameters Software Used to
Analyze MD Results

1st 2nd

OPLS-AA [53]
AnteChamber
PYthon Parser

InterfacE
(AcPype) [57]

GROMACS 5.1.4
[54]

t = 500 ps
T = 310 K

w/
position

restriction

t = 100.000 ps
T = 310 K

Visual molecular
dynamics (VMD) [56]

* Parameters of cubic boxes: 450 nm3/1300 H2O/Tip4P molecules.

5. Conclusions

According to the docking studies, it was found that only compounds 1, 7, and 10 did
not demonstrate selectivity towards VarTMPK. The MD simulations studies corroborated
the docking results for compounds 2, 3, 4, 6, and 9, implying that the complexes formed
between each of them and VarTMPK are more stable when compared to the same complexes
with HssTMPK. This was also observed in the further MM-PBSA calculations of the binding
energies that showed lower binding values for these compounds inside VarTMPK than
inside HssTMPK. Moreover, the MM-PBSA studies pointed to compounds 3 and 6 as the
most promising selective inhibitors of VarTMPK with the higher difference in binding
energies. This is probably due to the presence of the—COOCF3 group on these compounds
that could be favoring their stabilization inside VarTMPK.

In conclusion, our results suggest that five of the 10 proposed compounds, derived
from the antivirals cidofovir and ribavirin, can be excellent alternatives for the develop-
ment of new drugs against smallpox. Since TMPK is highly conserved amongst other
Orthopoxviruses, similar to the vaccinia and monkeypox viruses, the same theoretical
approach used here can be done with the TMPKs of those viruses as a proof of concept.
Furthermore, the experimental evaluation of these compounds should be first performed
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against those viruses as a primarily model to check their potential in vitro. This would
help in confirming the activity of those compounds before moving to the more complicated
evaluation against the Variola virus, which will demand both an authorized laboratory and
a stricter safety protocol.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ph14101027/s1, Figure S1: RMSD of the first MD simulation for the system HssTMPK/Compound
2, Figure S2: RMSD of the second MD simulation for the system HssTMPK/Compound 2, Figure
S3: RMSD of the third MD simulation for the system HssTMPK/Compound 2, Figure S4: RMSD of
the first MD simulation for the system VarTMPK/Compound 2, Figure S5: RMSD of the second MD
simulation for the system VarTMPK/Compound 2, Figure S6: RMSD of the third MD simulation for
the system VarTMPK/Compound 2.
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Abstract: Aging is considered an inevitable process that causes deleterious effects in the functioning
and appearance of cells, tissues, and organs. Recent emergence of large-scale gene expression datasets
and significant advances in machine learning techniques have enabled drug repurposing efforts
in promoting longevity. In this work, we further developed our previous approach—DeepCOP, a
quantitative chemogenomic model that predicts gene regulating effects, and extended its application
across multiple cell lines presented in LINCS to predict aging gene regulating effects induced by
small molecules. As a result, a quantitative chemogenomic Deep Model was trained using gene
ontology labels, molecular fingerprints, and cell line descriptors to predict gene expression responses
to chemical perturbations. Other state-of-the-art machine learning approaches were also evaluated
as benchmarks. Among those, the deep neural network (DNN) classifier has top-ranked known
drugs with beneficial effects on aging genes, and some of these drugs were previously shown
to promote longevity, illustrating the potential utility of this methodology. These results further
demonstrate the capability of “hybrid” chemogenomic models, incorporating quantitative descriptors
from biomarkers to capture cell specific drug–gene interactions. Such models can therefore be used
for discovering drugs with desired gene regulatory effects associated with longevity.

Keywords: library of integrated network-based cellular signatures (LINCS); longevity; gene regulating
effects; gene descriptors; molecular fingerprints; machine learning; deep neural network; drug repurposing

1. Introduction

Aging is an ultimate, intrinsic risk factor for all degenerative conditions, and the
incidence of age-associated diseases, such as Alzheimer’s, Parkinson’s, dementia, and
osteoporosis (among many others), increases dramatically as we age. Moreover, humans
are likely to suffer from conditions, such as vision impairment, chronic diseases, and
cancers in older ages, all of which can greatly reduce the quality of life. Numerous studies
were conducted in recent years to reverse the biological aging clock in animals, and a
recent work has successfully demonstrated restored vision in mice by switching certain
cells to a “younger” state [1]; thus, promising the possibility to regenerate tissues and
organs in mammals, and encouraging researchers to explore longevity beyond laboratory
animals. For example, mTOR inhibitors marked a milestone in anti-aging drug discovery
and produced an FDA-approved drug, rapamycin, which extended the life spans of several
model organisms. Rapamycin succeeded in increasing the lifespans by nearly three-fold in
mice [2] and was proven to prolong life in yeast, worms, and flies [3]. However, there are
objections to rapamycin, including warnings that such an immunosuppressive drug could
lead to the development of malignancies, such as skin cancer (noted in an FDA statement).
Moreover, irreversible side effects, such as diabetes [4], are also main concerns that have
prevented the use of rapamycin at a larger scale. In recent years, a variety of similar studies
have proposed geroprotector candidates that could potentially promote life spans [5–7].

587



Pharmaceuticals 2021, 14, 948

For example, acarbose [8], initially used to treat diabetes, showed significant effects in
improving the health and life spans of mice.

Recent developments in genomics and transcriptomics have led to a vast collection of
large-scale gene expression datasets. Connectivity Map (CMap) [9], introduced in 2006, is
aimed to link connections among genes, drugs, and diseases, by comparing gene signatures
with reference perturbations; thus, it is a great resource when developing drug candidates
with desired efficacies. CMap data have greatly been used in the bioinformatics field,
especially in drug discovery applications, to retrieve novel chemicals that share similar
regulatory effects on gene expressions with known perturbations. The NIH Library of
Integrated Network-based Cellular Signatures (LINCS), inspired by the success of CMap,
was funded as a next generation platform, using a more advanced approach at a lower cost,
producing high-throughput gene expression profiles that have outpaced CMap. LINCS,
with data stored in NCBI Gene Expression Omnibus (GEO), describes over 1 M gene
perturbations, inflicted by thousands of small molecules at a variety of conditions and
across multiple cell lines. With the increasing availability in gene expression profiles, we
now have the opportunity to study how small molecules affect genes in human cells and to
utilize the available gene expression data to predict drug responses, offering tremendous
value for drug discovery and repurposing. For example, the limited biological knowledge
on the recent COVID-19 outbreak made it difficult to choose appropriate treatments;
however, querying differentially expressed genes in similar diseases (SARS-CoV-2) against
CMap, to detect similarly behaved drug candidates without any prior knowledge, was
shown to be an efficient therapeutic strategy [10]. In addition, rapidly emerging machine
learning technologies provide powerful computational tools to discover the underlying
biological mechanisms in a variety of domains. Thus, our previous study, DeepCOP, has
proven the capacity of deep learning models in predicting gene expression regulating
effects using LINCS perturbation datasets [11].

In this work, we propose repurposed anti-aging drug candidates by analyzing their
regulation effects on the expression of pro-longevity and anti-longevity genes from the
LINCS dataset. While simply querying LINCS is still a valid method to repurpose the
existing drugs, this approach is limited to a very small portion of the chemical space
with only about 5000 compounds. Moreover, most of the experiments described in the
CMap/LINCS depository were designed to measure perturbation responses in cancer
cell lines; thus, making it challenging to study longevity effects of drugs in normal, non-
tumorous cell lines. Thus, it is essential to build more general machine learning models
that can harness the existing data from LINCS and apply to larger chemical space and
non-cancer cell lines.

Herein, we hypothesize that deep neural network (DNN) could learn from high di-
mensional features, including gene ontology terms, small molecule descriptors, cell line
mutation, and methylation data to produce reliable predictions on drug–gene regulation ef-
fects across multiple cell lines. To build testable computational models to predict regulating
effects on unknown data, we applied assorted classification approaches, including DNN,
random forest (RF), Naïve Bayes, and logistic regression. We tested the drug (D)–gene (G)
regulation effects on external normal cell lines using the pre-trained DNN models. We
identified 13 small molecules from the LINCS dataset that demonstrated potential ability
to regulate aging gene expressions with the desired effects. We further demonstrated that
the efficacy of these repurposed drugs on longevity is supported by some examples from
the literature.

2. Results and Discussion
2.1. Sample Distributions

We have labeled the upregulated and downregulated D–G–C interactions with the
top/bottom 5% Z-score cut-off in LINCS for each cell line. This results in a comparably
much smaller proportion in positive samples then the negatives. In addition, LINCS
experiments are not distributed evenly across cell lines, so that the sample size differs from
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different cell lines. For example, cell line A375 contains 73,610 unique D–G–Cs, labeled
as positive samples with top 5% threshold, while the remaining 1.2 million D–G–Cs with
unknown regulating effects form the negative set. Table 1 demonstrates the unique drugs
and genes in each cell line for the upregulated models.

Table 1. Sample distribution for each cell line in upregulated models; positive samples are defined as the top 5% gene
signatures, while negative samples are the remaining 95%. Unique numbers of drugs and aging genes are summarized
below. For example, cell line A375 contains 73,610 unique D–G–Cs as positive samples with the top 5% threshold, while the
remaining 1.2 million D–G–Cs with unknown regulating effects form the negatives. (#: Counts.)

Cell Lines A375 A549 HUH7 PC3 VCAP HL60 U266 NOMO1

Positive samples 73,610 196,027
See supple-

mentary
data

See supple-
mentary

data

See supple-
mentary

data

2138 735 1145
Negative samples 1.2M 3.4M 27,022 19,677 11,248

# Unique genes 729 729 729 729 729
# Unique drugs 1731 4875 40 28 17

2.2. CMAP LINCS Dataset Querying Results

By diving into the positive samples from the model 1 dataset labeled as upregulated
D–G–C pairs, we ranked compounds that interact with the most pro-longevity genes across
all LINCS cell lines. For each small molecule in the positive samples of model 1, we built a
pool of (drug)–(pro-longevity gene)–(cell line) pairs and selected the molecules with the
most interactions. To avoid chemicals that only upregulated pro-longevity genes within
a small range of cell lines, or chemicals that only interacted with a few certain genes, we
calculated the unique number of pro-longevity genes and cell lines to ensure the diversity
and robustness of the selected chemicals. Only pairs that covered above 100 pro-longevity
genes and more than five cell lines were included for the final ranking. Table 2 shows
the top 10 small molecules that upregulate the most pro-longevity genes across all LINCS
cell lines.

Table 2. Top-ranked 10 small molecules that upregulate the most pro-longevity genes across all cell lines in LINCS. (#: Counts.)

Rank Drug # Interactions # Unique Pro-Longevity Genes # Unique Cell Lines

1 Trichostatin-a 926 218 10
2 AT 7519 871 226 7
3 CGP-60474 843 200 6
4 Alvocidib 743 218 6
5 PHA-793887 730 244 7
6 Emetine 714 225 6
7 Narciclasine 711 239 6
8 Zibotentan 700 218 7
9 Oxetane 673 214 6
10 Mitoxantrone 632 201 6

Conversely, positive samples in model 2 indicate downregulated D–G–C interactions
for anti-longevity genes. We ranked small molecules that downregulated the most anti-
longevity genes in model 2, using the same filter as Table 2, and obtained the 10 top-ranked
chemicals, as shown in Table 3.

Table 3. Top-ranked 10 small molecules that downregulate the most anti-longevity genes across all cell lines in LINCS. (#: Counts.)

Rank Drug # Interactions # Unique Anti-Longevity Genes # Unique Cell Lines

1 AT-7519 585 201 7
2 BI-2536 536 207 9
3 Emetine 520 205 6
4 Narciclasine 510 212 6
5 CGP-60474 497 177 6
6 Oxetane 494 177 7
7 Trichostatin-a 454 198 6
8 Alvocidib 445 174 6
9 LSM-3353 433 215 6
10 BMS-345541 426 176 6
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We observed seven identical drugs AT 7519, CGP-60474, trichostatin-a, alvocidib,
narciclasine, oxetane, emetine in both tables, which showed not only upregulation ef-
fects with pro-longevity genes, but also downregulation effects with anti-longevity genes
across multiple cancer cell lines in LINCS. In addition, PHA-793887, zibotentan, and mitox-
antrone showed potential in upregulating pro-longevity gene expression, while chemical
BI-2536, LSM-3353, and BMS-345541 showed downregulated expressions on anti-longevity
genes. In total, we can repurpose 13 unique small molecules in LINCS perturbations
for longevity purpose.

Figure 1 shows the top 10 ranked small molecules with D–G (pro-longevity genes)–C
interactions from model 1, and Figure 2 illustrates D–G (anti-longevity genes)–C inter-
actions on the top 10 ranked small molecules from model 2. The color indicates the
occurrence on different cell lines. From green to blue, the line connecting longevity genes
with repurposed chemicals demonstrates a higher occurrence on different LINCS cell lines.
For example, drug BI-2536 connects with anti-longevity gene RAD51 with downregulat-
ing effects in 9 cancer cell lines, while drug trichostatin-a promotes pro-longevity gene
expressions (GDI1, ZNF224, MAP3K13, EPHB1, ZNF500, PPFIA3) in 10 cancer cell lines.

–

–

Figure 1. Top 10 small molecules that upregulate pro-longevity genes across all LINCS cell lines.
Pro-longevity genes are shown on chromosomes bands, repurposed chemicals are shown on the drug
band. Colors of interactions indicate the relationship occurrence on different cell lines. Green D–G
(pro-longevity genes) links indicate the interactions were captured in less than six cell lines; pairs
found in above five cell lines are labeled in blue.

2.3. Model Performance

We estimated the accuracy parameter, AUC score, precision, and recall values for each
model, as shown in Table 4. A skewed class distribution in models 3–8 failed accuracy
on evaluation of the model performance. Another commonly used interpretation metric,
ROC curve, was employed in binary classification problems [12] to diagnose the trade-off
between sensitivity and specificity, and a higher ROC value indicates the trained model is
better in distinguishing between categories. However, area under the ROC curve could be
misleading when the one class significantly outweighs the other [13]. AUC score and ROC
visualization could be deceptively appealing in this scenario. Instead, precision and recall
provide a straightforward evaluation, focusing on the comparably small positive class
based on the imbalanced dataset [13], given the concept of the precision-recall curve (PRC)
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being the indictor of true positives in all positive predictions. Our results demonstrate
that DNN outperformed the other benchmark approaches including RF, Naïve Bayes, and
ridge regression for every model, despite the selected features in terms of the APR score
with an acceptable drop in AUC and accuracy. We also found that by concatenating the
cell line methylation beta values and binarized mutation status, the deep neural network
is more capable at extracting useful features from high-dimensional feature sets through
the learning process and results in better performance than learning with single cell
line annotation resource. Deep neural network models (model 1–2) have outstanding
APR scores and, thus, encourage making reliable predictions in further investigations on
unknown datasets. ROC and precision recall curves are shown in Figure 3 for model 1 and
model 2, and curves for the rest of the DNN models are provided in the supplementary
figures.

–

–

Figure 2. Top 10 small molecules that downregulate anti-longevity genes across all LINCS cell lines.
Anti-longevity genes are shown on chromosomes bands, repurposed chemicals are shown on the
drug band. Colors of interactions indicate the relationship occurrence on different cell lines. Green
D–G (anti-longevity genes) links indicate the interactions were captured in less than six cell lines;
pairs found in above five are labeled in blue.

Table 4. Model performance on overall accuracy, Area under the ROC curve (AUC), and area under the precision-recall
curve (PRC) for the positive class on deep neural network(DNN), random forest, naïve bayes and logistic regression models.

Model Evaluation DNN Random Forest Naïve Bayes Logistic Regression

1
Accuracy 0.73 0.71 0.54 0.62

AUC 0.82 0.71 0.54 0.62
APR 0.82 0.78 0.55 0.68

2
Accuracy 0.73 0.66 0.54 0.59

AUC 0.8 0.66 0.54 0.59
APR 0.78 0.71 0.54 0.64

3
Accuracy 0.95 0.94 0.6 0.95

AUC 0.89 0.64 0.76 0.63
APR 0.46 0.39 0.12 0.44
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Table 4. Cont.

Model Evaluation DNN Random Forest Naïve Bayes Logistic Regression

4
Accuracy 0.95 0.95 0.59 0.95

AUC 0.84 0.58 0.74 0.56
APR 0.4 0.29 0.1 0.33

5
Accuracy 0.95 0.94 0.68 0.95

AUC 0.85 0.64 0.78 0.65
APR 0.46 0.4 0.14 0.46

6
Accuracy 0.95 0.95 0.54 0.95

AUC 0.81 0.58 0.72 0.57
APR 0.39 0.29 0.09 0.35

7
Accuracy 0.95 0.95 0.58 0.95

AUC 0.88 0.64 0.75 0.64
APR 0.46 0.4 0.11 0.45

8
Accuracy 0.95 0.95 0.58 0.95

AUC 0.84 0.58 0.74 0.56
APR 0.4 0.3 0.1 0.54

Overall samples of Dሺiሻ ൌ  Pool൫Dሺiሻ൯ ൌ  Dሺiሻ െ GሺAging geneሻ െ CሺNormal cell lineሻ

Figure 3. ROC and precision curves for model 1 ((a): PRC, (b): ROC) and model 2 ((c): PRC,
(d): ROC). While the AUC score dropped compared with models 3–8, the dramatic increase in the
APR score (positive class) gained confidence in predicting the positives in further exploration.

2.4. Prediction on Normal Cell Lines

Newly generated pairs with top-ranked repurposed chemicals and longevity genes
were predicted with our best-performed models—model 1 to predict upregulating effects
and model 2 for downregulating the effects on normal cell lines, NHBEC and HGEC6B. In
each drug candidate pool (Equation (1)), we generated D (drug candidate)–G (longevity
genes)–C (normal cell line) connections as input for the pre-trained deep neural network
models, and explored the positive predictions with desired regulation effects, respectively.
We summarized the total positive predictions along with the number of corresponding
aging genes for each drug candidate in model 1 and model 2, respectively, in Figure 4. The
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prediction results confirmed the efficacy of the potential desired aging gene regulation
effects on normal cell lines.

Overall samples of D(i) = Pool(D(i)) = D(i)− G(Aging gene)− C(Normal cell line) (1)

– –

“ ” “ ” “ ” “ ” “ ”

– –
at ‘BI 6′

– –

 

 

 

Figure 4. Bar charts on positive predictions for repurposed drugs in CMAP LINCS dataset, for
normal cell lines, NHBEC and HGEC6B, using model 1(a) and model 2(b). Orange bars demonstrate
the total number of positive predictions for each drug candidate, and blue bars illustrate the number
of unique aging genes among positive predictions.

Table 5 shows the proportion of positive predictions against the D–G–C pool for each
promising drug candidate. We observed an above 80% positive prediction rate for drugs
“BI-2536”, “CGP-60474”, “oxetane”, “alvocidib” and “PHA-793887” in both model 1 and
model 2, demonstrating their great potential to upregulate pro-longevity gene expression
and downregulate anti-longevity gene expression in normal cells. All of the D–G–C
connections in BI-2536 pool were predicted positive in model 2, meaning that ‘BI-2536′

downregulated all of the anti-longevity genes we collected from GenAge.

Table 5. Percentage of positively predicted D (drug candidates)–G (aging genes)–C (normal cell line)
pairs for each promising drug candidate in model 1 and model 2. Highlighted repurposed drugs
showed great potential in regulating aging gene expressions on normal cell lines in both models.
Drugs in bold achieved high positive rate (above 80%) on both models.

Drug Model 1 Positive Rate Model 2 Positive Rate

AT 7519 78% 45%
BI-2536 81% 100%
Emetine 87% 66%

Narciclasine 80% 4%
CGP-60474 92% 87%

Oxetane 95% 82%
Trichostatin-a 88% 68%

Alvocidib 87% 83%
LSM-3353 82% 75%

BMS-345541 88% 33%
PHA-793887 80% 97%
Zibotentan 60% 56%

Mitoxantrone 92% 52%

2.5. Repurposed Drugs

We finally identified 13 molecules that helped to promote pro-longevity gene expres-
sions, inhibit anti-longevity gene expressions, or act in both desired ways. Structures of
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repurposed molecules are shown in Figure 5. While performing experimental validations
on these 13 molecules in longevity studies in model organisms is out of the scope for this
paper, previous research has uncovered a number of relevant traits of those chemicals with
our repurposed objectives. Table 6 summarizes the evidence that supports our findings.

“ ”

Figure 5. Molecular structures of repurposed drug candidates for longevity purpose.

Among 13 discovered longevity-promoting chemicals, four (AT 7519, alvocidib, CGP-
60474, and PHA-793887) are indicated as cyclin-dependent kinase (CDK) inhibitors. Inter-
estingly, previous studies have shown inhibition on CDK-2 resulted in tolerance towards
environmental stress and promoted anti-aging in Caenorhabditis elegans [14,15]. Moreover,
“BI-2536” inhibits tumor growth in vivo by inducing apoptosis on cancer cells as an in-
hibitor of polo-like kinase 1 [16]. Experiments have found the effectiveness in anti-aging
on emetine dihydrochloride treated to leukemic mice [17]. In addition, narciclasine was
proven to attenuate diet-induced obesity by promoting oxidative metabolism [18] while
trichostatin-a, a histone deacetylase (HDAC) inhibitor, was proven to increase lifespans by
promoting hsp22 gene expression on Drosophila melanogaster [19]. Zibotentan was designed
and tested on castration-resistant prostate cancer patients as an endothelin A receptor
antagonist [20], it is also proven to prevent hypertension and maintains cerebral perfu-
sion [21]. A study conducted among 42 women with breast cancer showed great potential
in mitoxantrone as a treatment for advanced breast cancer with mild side effects compared
to traditional treatments, such as chemotherapy [22].

Table 6. Summary of previous research findings for repurposed pro-longevity drugs.

Repurposed Drug Traits Evidence

AT 7519 Inhibitor of CDKs /
BI-2536 Inhibits tumor growth [16]
Emetine Increases lifespan of leukemic mice [17]

Narciclasine Attenuates diet-induced obesity [18]
CGP-60474 Inhibitor of CDKs /

Oxetane / /
Trichostatin-a Increases lifespan by promoting hsp22 gene expression [19]

Alvocidib Inhibits metastasis of human osteosarcoma cells [23]
LSM-3353 / /
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Table 6. Cont.

Repurposed Drug Traits Evidence

BMS-345541 Inhibitor of kB-kinase (IKK) /
PHA-793887 Inhibitor of pan-CDK /
Zibotentan Inhibits blood vessel growth [21]

Mitoxantrone Treatment of advanced breast cancer [22]

3. Materials and Methods
3.1. Datasets

Connectivity map (CMap) is a pilot project that aims to characterize cellular responses
under pharmacologic perturbagens, thus, fulfilling the underdeveloped space in disease-
associated gene functions, and contributing toward drug development by estimating
off-target activities and eliminating unfit candidates at early stages. To date, the CMap
LINCS dataset encompasses more than 1.5 million gene expression signatures related to up
to 5000 small molecules and more than 10,000 genes across a total of 77 cancer cell lines [9].
Such a vast amount of gene expression information enables computational approaches,
such as the deep neural network, to learn data patterns, to predict gene regulation ef-
fects [11], and drug side effects [24]. In this work, we collected L1000 high-throughput
gene expression data from LINCS phase I dataset; the dataset contains perturbation data
points on gene expression level under small molecular treatments at different conditions,
such as dosages, cell line cultures, and time points. To reduce the data size and to maintain
consistency across multiple cell lines, only perturbations with 24-h treatment were kept,
and samples with molecular dose units other than “µM” were excluded.

Aging-related genes were downloaded from the GenAge (the Aging Gene Database)
source, which labels pro- and anti-longevity genes in various model organisms, including
(but not limited to) Caenorhabditis elegans, Drosophila melanogaster, and Zaprionus paravittiger.
GenAge has been developed through manual curation by experts and several collabo-
rated associations. In this work, we collected a total of 2205 genes from GenAge that
are considered to have either pro- or anti-longevity effects in 10 different model organ-
isms, including Caenorhabditis elegans, Mus musculus, Saccharomyces cerevisiae, Drosophila
melanogaster, Mesocricetus auratus, Podospora anserina, Schizosaccharomyces pombe, Danio
rerio, and Caenorhabditis briggsae. These aging-related genes identified from the model
organisms were mapped to 889 human genes in total, where 397 were labeled with pro-
longevity effects and 492 with anti-longevity effects, respectively (these datasets are down-
loadable online through https://genomics.senescence.info/download.html (accessed on
17 September 2021)). Out of a total of 889 collected aging genes, 729 were successfully
mapped to the LINCS dataset and were further investigated in our models.

Only filtered LINCS perturbations that contained 729 aging-related genes were kept
for further machine learning modeling and prediction. To label gene expression regulations,
we used the left–right percentile method on the Z-score with a threshold of 5% for each
cell line. Only the top 5% of gene expression values were considered as upregulation
samples in the upregulation models, and the bottom 5% of gene expression values were
marked as downregulated in the downregulation models, while the remaining 95% samples
were treated with ‘unknown’ effects (Figure 6). In the training models that predicted
upregulation effects, the above defined upregulation samples were treated as positive
samples, while the remaining 95% were treated as negative samples. In the training models
that predicted downregulation effects, the above defined downregulation samples were
treated as positive-, while the remaining 95% were treated as negative samples. Figure 7
features gene expression Z-score distribution and data sampling in upregulation and
downregulation models.
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Figure 6. Data pipeline in collecting and labelling LINCS perturbations. Only perturbations include
aging genes were kept for further analysis. The left–right percentile method was applied to label
upregulation and downregulation effects with 5% threshold on the Z-score for each cell line.

ples were treated with ‘unknown’ effects (Figure 

–

Figure 7. Z-score normal distribution. Positive samples were selected from the top 5% gene expres-
sions perturbations for each cell lines in models predicting up/non-upregulation effects. Similarly,
the bottom 5% perturbations were identified as the positives in models predicting down/non-
downregulation effects.

3.2. Gene Descriptors

Gene ontology (GO) terms have been commonly used for gene annotations in recent
drug discovery applications [25,26]. The GO terms consist of a set of categories that
describe the gene functions as in cellular components, biological processes, and molecular
functions. R package “ontologySimliarity” was built for comparing gene semantic similarity
as encapsulated by the GO annotations, including nearly 20,000 terms that relate to all
branches of gene ontology. The gene ontology descriptors for the 729 aging related human
genes in LINCS were generated to a list of binary integers using one-hot encoding with R
package “ontologySimliarity”. Only GO terms that shared with at least three age-related
gene domains were selected to reduce the feature size, which resulted in 946 GO features
in the final standard dataset of aging-related genes. Our previous works [11,27] already
illustrated the efficacy of using GO terms as gene descriptors in machine learning models,
especially with deep learning architectures.
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3.3. Molecular Fingerprints

The molecular fingerprints were encoded into 0|1 binary vectors to encode chemical
structures, where 1 indicated a specific substructure was found in a given molecule. In this
paper, Morgan fingerprints [28] were generated for small molecules in the LINCS phase I
dataset using the python library “RDKIT”. The Morgan fingerprints were calculated
by counting the path through each atom in the chemical given a specific radius and a
bit number. By increasing the radius, more fragments can be included in the Morgan
fingerprint computations and can output a larger chemical feature space. We set the
radius to 2 in this work and generated 2048 Morgan fingerprints for each molecular using
canonical SMILES.

3.4. Cell Line Features

Gene mutations play an important role in cancer genetics and can be utilized to
represent cell line functionalities, as previous studies have demonstrated significant per-
formance of mutation features in machine learning approaches [29,30]. We collected copy
number alternations and coding variants in “pan-cancer” from the Genomics of Drug
Sensitivity in Cancer public platform, and a total of 735 mutation markers were labeled for
each cell line. The mutation annotation dataset for pan-cancer is freely downloadable at
https://www.cancerrxgene.org/downloads (accessed on 17 September 2021).

Besides mutation markers, DNA methylation levels also contributed to drug response
prediction applications [31,32]. Its impact in regulating gene expression determines organ
functionalities and may cause severe diseases, such as cancer. The 450K BeadChip array
provides high-throughput methylation data at more than 450K CpG sites, at a low cost,
making it feasible for machine-learning algorithms to learn and extract informative features.
We collected methylation profiling from the NCBI gene expression omnibus (GEO) series
GSE68379, where a total of 1028 cell lines were tested with the methylation level for each
CpG island. Ranging from 0 to 1, beta value was calculated as a ratio of methylated
intensity verses the sum of methylated and unmethylated intensity at the probe level. The
formular of beta value B at the specific j CpG site is defined as Equation (2):

B(j) =
max

(

yj,methylated, 0
)

max
(

yj,methylated, 0
)

+ max
(

yj,unmethylated, 0
)

+ α
(2)

where yj,q stands for jth probe intensities in q status. α is the added in denominator to avoid
computational error. As recommended by Illumina [33], beta value is used in this work to
represent the methylation level for cell lines. We used R package “FCBF” to select limited
informative methylation beta values from 450 K CpG sites. The fast correlation based filter
(FCBF) algorithm [34] selected the most relevant features towards histology sites of LINCS
cancer cell line. Figure 8 shows the corresponding number of selected variables under a
variety of (cell line)–(cancer histology sites) correlations. By choosing a correlation cut-off
at 0.6, we obtained 1183 subset methylation levels for each cell line.

3.5. Querying Camp LINCS Dataset

To retrieve aging-related drug (D)-gene and (G)-cell line (C) combinations, we queried
perturbations with the aging-related genes in the LINCS phase I dataset. Samples were
consequently labeled through 5% left–right percentiles as upregulation effects and downreg-
ulation effects, respectively. Human pro-/anti-longevity genes extracted from the GenAge
platform were used as input samples to query against CMAP LINCS dataset signatures.
Drugs that upregulated pro-longevity gene expression or downregulate anti-longevity
gene expression across multiple cell lines were identified and could be repurposed for
promoting longevity. Top chemicals, ranked by the number of D–G–C interactions, showed
great potential in increasing lifespans in humans, as supported by previous studies.
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Figure 8. Histogram of correlation values and the corresponding variable counts using FCBF. Corre-
lations were calculated between CpG sites and cancer histology categories.

3.6. Machine Learning Models and Deep Neural Network

Machine learning (ML) models have demonstrated unprecedented performance in re-
cent computational biology applications [35–37]. ML approaches are programmed without
explicit knowledge to self-extract informative features by learning the parameters, such
as weights, and illustrate patterns towards the output. The pervasive applications in ML
have changed our day-to-day lives, e.g., via object recognition applied in auto-driving cars,
recommender systems on social media, and in-depth understanding on drug behavior. The
capable solutions that trained models can learn are generally divided into regression and
classification problems, where a regression model predicts the true numeric value given
a set of features, and a classification model gives a category the input sample belongs.
Commonly deployed classification algorithms include logistic regression, random forest
(RF), and neural network (NN), each with pros and cons. It is notable that in the family of
ML, deep learning (DL) plays an important part and is capable of learning more complex
patterns with neurons, just as human brains. The advantage of DNN lies in absorbing
datasets with high dimensions and recognizing nonlinearity; thus, providing solutions to a
vast range of practical problems.

To better illustrate D–G–C relationships and have a clear evaluation on the feature
power, here we differentiated the sample size and feature sets, respective to up- and
downregulation effects predictions, and designed the following eight models. The selected
feature set in each model is: model 1, model 2, model 3, and model 4: gene descriptor, drug
descriptor, cell line mutation status, cell line methylations; model 5 and model 6: gene
descriptor, drug descriptor, cell line mutation status; model 7 and model 8: gene descriptor,
drug descriptor, cell line methylations.

Due to the harsh filter on the sample selection process of determining up- or down-
regulation effects, only the top 5% samples were labeled as positive samples from LINCS
for each model. Such severe imbalanced datasets challenged the ML approaches and could
be difficult in measuring model performance for future predictions. To avoid models from
being heavily influenced only by the majority class, we randomly selected the same number
of negative and positive samples in model 1 and model 2. We used samples across all the
cell lines in LINCS for models (1–2), and compared them with the remaining models (3–8)
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that used the imbalanced dataset extracted from two cell lines “U266” and “NOMO1”,
which contained less data points and, thus, were easier for traditional machine learning
benchmarks to train (details are provided in Table 7).

Table 7. Detailed model layouts on predictive labels, sample cell lines, used feature set, and whether
the negative class is being downsampled. For example, model 3 was trained with gene ontology term,
drug descriptors, both cell line mutation status, and methylation values on perturbation responses
on cell lines “U266” and “NOMO1”. The positive samples from model 3 were D–G–C interactions
with the top 5% upregulated gene expression signatures, whereas the negative samples were the
remaining 95% perturbation data.

Model Predictive Direction Cultured Cell Lines If Balanced Sample Feature

1 Up/Non-upregulation Includes all cell lines True, Type 1
2 Down/Non-downregulation Includes all cell lines True, Type 1

3 Up/Non-upregulation U266, NOMO1 False, Type 1
4 Down/Non-downregulation U266, NOMO1 False, Type 1

5 Up/Non-upregulation U266, NOMO1 False, Type 2
6 Down/Non-downregulation U266, NOMO1 False, Type 2

7 Up/Non-upregulation U266, NOMO1 False, Type 3
8 Down/Non-downregulation U266, NOMO1 False, Type 3

Feature definitions: Type 1: gene ontology descriptors + drug fingerprints + cell line mutational status + cell line
methylation levels. Type 2: gene ontology descriptors + drug fingerprints + cell line mutational status. Type 3:
gene ontology descriptors + drug fingerprints + cell line methylation levels.

We then compared DNN model performance with commonly used classification
solving algorithms including RF, Naïve Bayes, and logistic regression. Due to the large
feature size, L2 norm(ridge) regulation was applied in logistic regression models to avoid
coverage failure and overfitting, by taking the squared value of trained weighs as the
penalty term in the cost function. DNN was constructed with four layers (one input layer,
two hidden layers, and one output layer), and the information was randomly dropped
by 50% in forward propagation. Selu and Rule activation functions were used for the
internal hidden layers, adding complexity and non-linearity to the model, followed by a
SoftMax activation for the final output layer, to transfer values into possibilities. The neural
numbers of the hidden layers were identical as those from the initial input feature list.
Figure 9 illustrates the DNN structure with the number of neurons and activation functions
for model 1 and model 2. For more robust evaluation results, early stopping and three-fold
cross validation (CV) were applied in the DNN model to avoid overfitting. We initiated the
model with hyperparameters, such as layer numbers identical with our previous studies
that demonstrate decent performance, and slightly revised them by watching validation
results in such a manner where model complexity must decrease when overfitting and
increase when underfitting.

3.7. Model Evaluation

To evaluate the performance on the developed models, we computed the overall
accuracy score, area under the ROC curve (AUC) parameter, as well as precision and
recall values for each model. Accuracy is simply calculated as the correct prediction
proportion on the whole dataset, whereas the receiver operating characteristic curve
(ROC) visualizes the model performance at all classification thresholds by comparing
true positive rate (TPR) versus the false positive rate (FPR). Accuracy and AUC score are
commonly used in evaluating machine-learning models and offer fairly accurate insight
on model performance. However, both values are easily dominated by the majority
group in the imbalanced datasets and could achieve misleading high scores. To address
this issue, we introduced precision and recall as supplementary evaluations. Precision
(Equation (3)), also known as positive predictive value, signifies the proportion of positive
samples that are predicted positive. Recall (Equation (4)), also referred as true positive
rate or sensitivity, evaluates the proportion of true positives out of all predicted positive
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samples. Overall, precision and recall estimate the prediction power on the positives,
which is highly important in our case, given that future repurposed drug candidates are
based on the positive predictions and a false positive is more disastrous and costly than a
false negative. As an alternative visualization of ROC curve on imbalanced datasets, the
precision-recall curve (PRC) illustrates the trade-off on precision and sensitivity on every
possible cut-off. A reasonable PRC curve should be above the diagonal line, with the area
under the curve more than 0.5.

–

Figure 9. Deep neural network structure for model 1 and model 2. Features of models 1–2 were
contributed by gene ontology terms (946 bits), molecular fingerprints (2048 bits), cell line mutation
status (735 bits), and cell line methylation beta level (1183 bits), forming the length of 4788 bits in total.
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Precision = true positive/(true positive + false positive) (3)

Recall = true positive/(true positive + false negative) (4)

3.8. Prediction on Normal Cell Lines

Given the fact that all data in LINCS are for cancer cell lines, it is essential to run com-
putational predictions for repurposing drugs with expected pro-longevity effects in normal,
non-cancerous cells. The determining factor in choosing normal cell lines for prediction
is the availability of features that are identical with our trained models. Two normal cell
lines “NHBEC” and “HGEC6B” were tested for methylations in beta values using the same
technology—Illumina 450K BeadChip arrays—and were annotated with identical CpG
sites, as in GSE92843 and GSM2438425, respectively. As for the mutational status, these
two normal cell lines were simply annotated as having ‘none’ in the prediction models.

We tested the regulation effects on the top 10 ranked promising drugs that we previ-
ously queried from LINCS on these two normal cell lines, “NHBEC” and “HGEC6B”, with
our best performed models, and provided the probabilities on desired regulating effects
with pro-/anti-longevity genes. These 10 potential pro-longevity chemicals were paired
with age genes under two normal cell lines, forming in total 7940 D–G–C pairs to be tested
with up/non-upregulating (Equation (5)) and 9840 D–G–C down/non-down (Equation
(6)), respectively. Figure 10 illustrates a flowchart for applying the longevity prediction
models to these two normal cell lines. The mutational profiling for normal cell lines was
labeled “0” in feature representation, and the methylation beta levels were collected from
the Gene Expression Omnibus (GEO) “GSE92843” and “GSM2438425”.

10 (promising drugs)× 397 (pro − longevity genes)× 2 (cell lines) = 7940 (5)

10 (promising drugs)× 492 (anti − longevity genes)× 2 (cell lines) = 9840 (6)

–
– –

– –

Figure 10. Predictions on normal cell lines with aging related genes and promising drug candidates
queried from LINCS. Positive predictions will be of interest with desired regulating effects towards
pro-/anti-longevity genes.

4. Conclusions

It is estimated that the anti-aging global market value was over 60 billion US dollars
annually in 2020 [38]. Machine learning tools can utilize substantial transcriptional pertur-
bation data from resources, such as CMap and LINCS, and transfer them into predictive
models and actionable knowledge on modulation of longevity genes. In this study, we
labeled gene expression changes using the left–right percentile at a 5% threshold for each
drug–gene–cell perturbation in the LINCS datasets and analyzed the labeled samples
with known human aging-related genes. We created several machine-learning models to
classify the direction of gene expression changes by using combined descriptive features of
small molecules and genes along with information on cell line mutations and methylation

601



Pharmaceuticals 2021, 14, 948

levels. The deep neural network models outperformed the other K-machine learning
methods and demonstrated promising accuracy in predicting up- or down-gene-regulating
effects on perturbations beyond the scope of the original LINCS dataset. In addition, we
demonstrated that the longevity models, while trained from cancer cell lines, are applicable
to normal cell lines, and the models predicted a list of drug candidates that could have
potential to be repurposed as pro-longevity agents. Quantitative predictions on all possible
combinations of D (repurposed drug)–G (aging gene)–C (normal cell line) demonstrated
the desired regulating effects on normal cells for the repurposed drugs with high positive
rates. As a result, we identified 13 repurposing drug candidates that could potentially
promote longevity by regulating aging-related gene expressions towards the desired di-
rection, either upregulating pro-longevity genes, downregulating anti-longevity genes, or
both. Interestingly, some of the proposed drug candidates were previously reported with
aging-related functionalities in a number of model organisms. For example, one of the
repositioned drug candidates, trichostatin-a, was found efficient at promoting anti-aging
gene expression among fruit flies [19].

Our study utilized knowledge transferring from high-throughput gene expression
profiling to testable data models, and achieved accurate performance in validating reg-
ulation effects, despite the severe imbalance of the data classes. In comparison to our
previous model, DeepCOP [11], which is limited to only drug and gene descriptors, our
current model has incorporated additional cell line descriptors that allow knowledge to
be transferred from one set of cells (for example, cancer cells) to another set of cells (such
as normal cells) using a single unified DNN. This task would not have been possible
with DeepCOP models, where separate, disconnected DNN models were built for each
individual cell line.

The limitations of this study include the possible improved methodologies in NN
schemes and the lack of experimental validation of repurposed chemicals. One noticeable
NN scheme—the graph convolutional neural network (GCN)—was presented in various
studies, from drug discovery [39] to gene interactions [40]. In bioinformatics applications,
two major types of graph structures were applied [41]: molecular structures and interaction
networks. A multi-relational interaction network could be explored in GCN models
using our preprocessed dataset that contains three domains—cells, genes, and drugs.
Experimental validations should also be considered in future studies, in conjunction with
docking simulations and ADMET estimations (a work in progress) using our in-house drug
development platforms [42].
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AUC curve. Figure S10: Model 7 PR curve, Figure S11: Model 8 AUC curve, Figure S12: Model 8
PR curve, Table S1: Sample distribution in down-regulated models, Table S2: Sample distribution in
up-regulated models.
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APR area under precision recall curve
AUC area under the roc curve
CDK cyclin-dependent kinase
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CV cross validation
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GEO gene expression omnibus
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LINCS library of integrated network-based cellular signature
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RF random forest
ROC receiver operating characteristic curve
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Abstract: Alzheimer’s disease (AD) is a progressive neurological disorder that affects 50 million
people. Despite this, only two classes of medication have been approved by the FDA. Therefore,
we have planned to develop therapeutics by multitarget approach. We have explored the library of
2029 natural product-like compounds for their multi-targeting potential against AD by inhibiting
AChE, BChE (cholinergic pathway) MAO-A, and MOA-B (oxidative stress pathway) through in silico
high-throughput screening and molecular dynamics simulation. Based on the binding energy of these
target enzymes, approximately 189 compounds exhibited a score of less than −10 kcal/mol against all
targets. However, none of the control inhibitors exhibited a binding affinity of less than −10 kcal/mol.
Among these, the top 10 hits of compounds against all four targets were selected for ADME-T analysis.
As a result, only F0850-4777 exhibited an acceptable range of physicochemical properties, drug-
likeness, pharmacokinetics, and suitability for BBB permeation with high GI-A and non-toxic effects.
The molecular dynamics study confirmed that F0850-4777 remained inside the binding cavity of
targets in a stable conformation throughout the simulation and Prime-MM/GBSA study revealed that
van der Waals’ energy (∆GvdW) and non-polar solvation or lipophilic energy (∆GSol_Lipo) contribute
favorably towards the formation of a stable protein–ligand complex. Thus, F0850-4777 could be a
potential candidate against multiple targets of two pathophysiological pathways of AD and opens
the doors for further confirmation through in vitro and in vivo systems.

Keywords: Alzheimer’s disease; multitarget; molecular dynamics simulations; natural-like com-
pounds; virtual screening

1. Introduction

Neurological disorders including Alzheimer’s disease (AD) have a significant nega-
tive impact on the mental, psychological, physical, and economic health of patients and
their caregivers [1,2]. Almost 50 million people are affected globally from Alzheimer and
other dementias [2]. AD is the second leading cause of death among high-income coun-
tries, and the seventh leading cause of death worldwide, ranking sixth in Saudi Arabia
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(currently over 130,000 cases) [3,4]. Patients with AD exhibit memory loss, agitation, dys-
phoria, apathy, aberrant motor behavior, problems with speaking or writing, and cognitive
impairments [1].

Alzheimer’s disease has a very intricate etiology, and several reports have hypoth-
esized that the four major pathophysiological pathways (oxidative stress, amyloid-beta
pathway, tau pathway, and cholinergic pathway) are responsible for the progression of
AD [5–11]. These pathways include the formation of senile plaques through amyloid-beta
(Aβ) plaque deposition [8], the agglomeration of neurofibrillary tangles after tau neu-
rofibrillary degeneration [12], the disruption of cholinergic activity [11], and oxidative
stress [10,13].

Oxidative stress is promoted by an increased production of hydrogen peroxide
through the catalytic action of monoamine oxidases (MAO-A and MAO-B) on the pri-
mary amine deamination of major neurotransmitters [13], which results in tissue damage,
especially in brain cell and disrupts the blood–brain barrier, which could lead to AD [10]. It
has also been well established that during AD, there is deterioration of cholinergic neuron-
rich regions, resulting in the decline of acetylcholine (ACh) levels, which are believed to
be associated with memory loss, agitation, and apathy [11,14]. Moreover, cholinesterase
enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have been
found to further decrease the concentration of acetylcholine (ACh) by hydrolyzing it [8,9].

Until now, the US Food and Drug Administration (FDA) has approved two classes
of medications to treat AD: (1) cholinesterase inhibitors (donepezil, galantamine, and
rivastigmine) and (2) an NDMA receptor antagonist (memantine). However, although
these drugs relieve some symptoms and have beneficial effects on cognition and function,
they do not treat neuropsychiatric symptoms and do not slowdown or stop the progression
of the disease. Moreover, these medications have several side effects including nausea,
vomiting, loss of appetite, headache, constipation, confusion, and dizziness [15,16].

At present, there is a lack of disease-modifying medications or a complete cure for AD.
The enzymes that promote the pathways responsible for the progression of AD include
AChE, BChE, MAO-A, and MOA-B, which would need to be targeted individually or in
combination [5,6,17–21]. Advances in computing have recently allowed for the develop-
ment of various cheminformatics approaches for the faster screening and optimization of
bioactive compounds through enzyme inhibition [22–27].

Since nature has an endless resource of bioactive compounds, it would be econom-
ical and safe to obtain bioactive moieties to produce novel multitarget agents against
Alzheimer’s disease [18,28]. Due to the popularity and therapeutic potential of natural
products and their derivatives, Life Chemicals Inc. have recently developed proprietary of
synthetic compounds, namely, natural product-like compounds, based on cheminformatics
and substructure searches (www.lifechemicals.com). However, a “one disease, one target,
one drug” strategy is limited by its inability to completely cure complex diseases, such as
neurodegenerative diseases or mood disorders [29,30]. These limitations have driven us
to explore the development of therapeutics using multiple targeted approaches aimed at
several different pathological cascades of AD simultaneously.

In the present study, we explored a library of natural product-like compounds for
their multi-targeting (AChE, BChE, MAO-A, MOA-B) potential against AD through in
silico high-throughput screening and ADME-T analysis. Furthermore, the validation of
the best hit via molecular dynamics simulation was also conducted. To the best of our
knowledge, this study is the first to explore this library of natural product-like compounds
for multi-targeting against AD.

2. Results and Discussion
2.1. Virtual Screening Analysis

Although the process of drug discovery is time-consuming and expensive, new drugs
are needed to fulfill unmet clinical needs [31]. The number of drug or lead-like molecules
available in different databases is estimated to be as high as 1 × 1024. Moreover, the
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structures of potential drug target molecules are increasingly being added to the Protein
Data Bank on a regular basis. Thus, to deal with such a large number of molecules and to
assist in the drug discovery process, computer-aided drug discovery techniques, such as in
silico virtual screening, play a significant role owing to their faster speed and lower cost
compared to in vitro high-throughput screening [32]. In the present study, we employed in
silico virtual screening, molecular docking, and molecular dynamics simulation to identify
a novel inhibitor against multiple targets of Alzheimer’s disease such as AChE, BChE,
MAO-A, and MAO-B.

All natural-like compounds in the library and three control inhibitors (Tacrine, Harmine,
and Safinamide) against the target proteins (AChE, BChE, MOA-A, and MOA-B) were
subjected to docking analysis, generating 10 binding combinations. Based on the bind-
ing energy (∆G), 189 out of 2029 compounds exhibited binding energy score of −10 to
−12.9 kcal/mol, −10 to −12.6 kcal/mol, and −10 to −13.6 kcal/mol against AChE, BChE,
and monoaminoxidases, respectively. The control inhibitors, such as Tacrine, exhibited
a binding affinity of −8.5 kcal/mol and −8.4 kcal/mol against AChE and BChE, respec-
tively. Harmine got binding affinity of −8.7 kcal/mol for MOA-A and Safinamide showed
−9.5 kcal/mol of binding affinity against MOA-B. Among these 189 compounds, the top
10 hits of compounds against all four targets were selected (Table 1) for further analysis.

Table 1. Molecular docking scores of best hit natural product-like compounds against AChE, BChE,
MAO-A and MAO-B.

S. No.
ID

Number
Targets/
Formula

Docking Energy (kcal/mol)

AChE
(1acj)

BChE
(4bds)

MAO-A
(2z5x)

MAO-B
(2v5z)

1 F0870-0001 C24H15NO6 −12.9 −12.6 −11.5 −13.6
2 F1094-0205 C26H23NO4 −12.9 −11 −10.8 −12.6
3 F3293-0320 C22H13NO7 −12.4 −11.1 −12.3 −13.4
4 F1094-0201 C26H19NO4 −12.3 −11.2 −12.3 −11.5
5 F0850-4777 C24H18O5 −12.2 −10.7 −13.6 −12.5
6 F3385-6048 C27H21NO8 −12.2 −11.1 −13.2 −12.6
7 F1094-0200 C25H17NO4 −12.1 −11.2 −11 −13.2
8 F1865-0198 C23H15NO6 −12 −10.9 −12.6 −13.3
9 F3139-1101 C24H16O4 −12 −10.3 −12.4 −13.6

10 F3139-1218 C26H18O6 −11.8 −10.4 −12.9 −13.3
11 Tacrine C13H14N2 −8.5 −8.4 ND ND
12 Harmine C13H12N2O ND ND −8.7 ND
13 Safinamide C17H19FN2O2 ND ND ND −9.5

ND: Not determined.

2.2. Prediction of Physicochemical, Pharmacokinetics Properties, Drug-Likeness, and Toxicity
Potentials

Natural product-like compounds’ physicochemical properties drug-likeness and phar-
macokinetics were evaluated using the SwissADME tool [33]. Among the top 10 hits
analyzed against targets of Alzheimer’s disease (AChE, BChE, MOAA, and MOAB), five
compounds (F0870-0001, F3293-0320, F3385-6048, F1865-0198, and F3139-1218) were found
to be unsuitable for BBB permeation. However, all of the compounds had a molecular
mass of less than 500 g/mol, showed high gastrointestinal absorption, and showed zero
violation of Lipinski’s rule. Moreover, five other compounds (F1094-0205, F1094-0201,
F0850-4777, F1094-0200, and F3139-1101) were found to be suitable for BBB permeation
including the acceptable range of other parameters (Table 2). Considering the analyzed
physicochemical properties and absorption potential, further toxicological investigation
was carried out and found that only three compounds (F0850-4777, F3293-0320, and F3385-
6048) exhibited no toxicity for all the tested parameters (Table 3). The results showed that
F0850-4777 (3-(2-methoxyphenyl)-4-oxo-4H-chromen-7-yl 4-methylbenzoate) has a higher
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affinity towards all the target proteins and found acceptable range of physicochemical prop-
erties, drug-likeness, and pharmacokinetics (Figure S1). This confirmed its amelioration
of Alzheimer’s disease and was selected for molecular docking and molecular dynamics
simulation analysis.

Table 2. Physicochemical properties, drug-likeness, and pharmacokinetics of best hit natural product-like compounds.

Pharmacokinetics Physicochemical Properties Drug-Likeness

S. No. ID Number BBB-P GI-A MW
Clog-

P
HBA HBD RB TPSA L-V FSP3

1 F0870-0001 NO High 413.37 3.29 7 2 3 113.77 0 0.04
2 F1094-0205 YES High 413.47 6.32 5 0 3 59.75 0 0.3
3 F3293-0320 NO High 403.34 3.25 7 0 6 119.4 0 0.04
4 F1094-0201 YES High 409.43 5.79 5 0 2 59.75 0 0.15
5 F0850-4777 YES High 386.39 4.51 5 0 5 65.74 0 0.08
6 F3385-6048 NO High 487.46 4.99 9 0 6 96.67 0 0.18
7 F1094-0200 YES High 395.4 5.48 5 0 2 59.75 0 0.12
8 F1865-0198 NO High 401.37 5.34 6 0 5 102.37 0 0.04
9 F3139-1101 YES High 368.38 5.12 4 0 5 56.51 0 0

10 F3139-1218 NO High 426.42 4.45 6 0 5 78.88 0 0.07

Molecular weight (MW), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), rotatable bonds (RB),
cLogP value (clogP), topological polar surface area (TPSA), Lipinski’s rule violation (L-V), human gastrointestinal absorption (GI-A),
blood–brain barrier permeation (BBB-P) and fraction Csp3 (FSP3).

Table 3. Toxicity potential of 10 hits compounds.

S. No. Compound Mutagenic Tumorigenic
Reproductive

Effect Irritant

1 F0850-4777 None None None None
2 F0870-0001 None None Low None
3 F1094-0200 None None High None
4 F1094-0201 None None High None
5 F1094-0205 None None High None
6 F1865-0198 None None High None
7 F3139-1101 None None None High
8 F3139-1218 None None High None
9 F3293-0320 None None None None

10 F3385-6048 None None None None
Toxicity assessment has been performed by DataWarrior tool.

2.3. Molecular Docking Analysis

Based on the virtual screening against a library of natural product-like compounds,
F0850-4777 has been identified as the most potent inhibitor against multiple targets (AChE,
BChE, MAO-A, and MAO-B) of AD. Further analysis by molecular docking between F0850-
4777 and target proteins enabled us to closely examine the amino acid residues and the
nature of interactions responsible for the formation of a stable protein–inhibitor complex.
The interactions of F0850-4777 with the active site of AChE, BChE, MAO-A and MAO-B
are shown in Figures 1–4, respectively.
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Figure 1. Interaction of target protein, AChE with F0850-4777 and their respective control lig-
ands. (A) Position of F0850-4777 and Tacrine in AChE. (B) Interactions between AChE and Tacrine.
(C) Superimposed image of F0850-4777 and Tacrine in AChE. (D) Interactions between AChE and
F0850-4777.

 

Figure 2. Interaction of target protein, BChE with F0850-4777 and their respective control ligands.
(A) Position of F0850-4777 and Tacrine in BChE. (B) Interactions between BChE and Tacrine (C).
Superimposed image of F0850-4777 and Tacrine in BChE. (D) Interactions between BChE and F0850-
4777.
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Figure 3. Interaction of target protein, MAO-A with F0850-4777 and their respective control ligands.
(A) Position of F0850-4777 and Harmine in MAO-A. (B) Interactions between MAO-A and Harmine.
(C) Superimposed image of F0850-4777 and Harmine in MAO-A. (D) Interactions between MAO-A
and F0850-4777.

 

β
β

Figure 4. Interaction of target protein, MAO-B with F0850-4777 and their respective control ligands.
(A) Position of F0850-4777 and Safinamide in MAO-B. (B) Interactions between MAO-B and Safi-
namide. (C) Superimposed image of F0850-4777 and Safinamide in MAO-B. (D) Interactions between
MAO-B and F0850-4777.
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2.3.1. Analysis of the Interaction between AChE and F0850-4777

Acetylcholinesterase (AChE) is an essential enzyme that catalyzes the hydrolysis of
acetylcholine, which is critical for memory and cognition [34]. The inhibition of AChE activ-
ity is a major therapeutic intervention in the treatment of Alzheimer’s disease (AD), which
is characterized by cholinergic deficiency. The majority of the drugs approved for the treat-
ment of AD, such as Tacrine, donepezil, and rivastigmine, are AChE inhibitors [15,16,35].
The inhibitors of AChE activity bind to its catalytic active site (CAS), characterized by
the presence of a long, narrow, and hydrophobic gorge, harboring a catalytic triad of
Ser200, Glu327, and His440 [36]. The residues Trp84 and Phe330 play a significant role
in stabilizing the transition state during the catalytic reaction. Furthermore, it has been
recently demonstrated that a secondary noncholinergic function of AChE, associated with
the peripheral anionic site (PAS), is involved in the pathogenesis of AD. PAS is formed
by aromatic amino acid residues such as Tyr70, Asp72, Tyr121, Trp279, and Tyr334 lining
the rim of the gorge [37]. Through its PAS, AChE co-localizes with Aβ peptide deposits in
patients with AD and forms a stable Aβ-AChE complex, which in turn promotes fibrilloge-
nesis and aggregation [38,39]. Thus, these observations suggest that both the CAS and PAS
of AChE can be targeted as therapeutic interventions for AD.

In the present study, molecular docking analysis between AChE and F0850-4777
revealed that the ligand was bound to the central active site cavity of AChE (Figure 1).
The binding pose of F0850-4777 at the active site of AChE was further compared with
the binding mode of a control ligand, that is, Tacrine. Both F0850-4777 and Tacrine were
found to occupy the same site located in the deep cavity of AChE (Figure 1A,B). The AChE-
Tacrine complex was stabilized by one conventional hydrogen bond between the Lig:NH
and Arg289:O atoms. In addition, five hydrophobic interactions (with Tyr121 and Trp279)
and eight van der Waals’ interactions (Tyr70, Glu278, Leu282, Phe288, Phe290, Ser291,
Phe331, and Tyr334) further stabilized the AChE-Tacrine complex (Figure 1C). Conversely,
the AChE-F0580-4777 complex was mainly stabilized by hydrophobic interactions. F0850-
4777 formed one Pi-Sigma interaction with Phe330, three Pi-Pi stacked interactions with
Trp84 and Tyr121, five Pi-Pi T-shaped interactions with Tyr121, Phe330 and Tyr334, and two
Pi-alkyl interactions with Tyr121 and Trp279 (Figure 1D and Table S1). In addition, several
amino acid residues, such as Tyr70, Gly118, Glu199, Glu278, Phe290, Phe331, His440,
Gly441, Ile439, and Tyr442 formed van der Waals’ interactions. It should be noted that
F0850-4777 interacts with many CAS residues of AChE, including Trp84, Phe330, and
His440, and PAS residues of AChE, such as Tyr121, Trp279, and Tyr334. Interestingly, the
amino acid residues of AChE commonly interact with F0850-4777 as well as Tacrine includes
Tyr121, Glu278, Trp279, Phe290, and Phe331. Moreover, the docking energy and the
corresponding binding affinity were estimated to be −8.5 kcal mol−1 and 1.72 × 106 M−1

for the AChE-Tacrine interaction, respectively, and −12.2 kcal mol−1 and 8.87 × 108 M−1

for the AChE-F0850-4777 interaction, respectively. The binding affinity of F0850-4777 for
AChE was approximately 515.7-fold higher than that of the control inhibitor Tacrine and
RMSD value between best pose of Tacrine and F0850-4777 was found to be 1.345 Å.

2.3.2. Analysis of the Interaction between BChE and F0850-4777

Butyrylcholinesterase (BChE), also known as pseudocholinesterase, is responsible for
the hydrolysis of choline esters (e.g., butyrylcholine, succinylcholine, and acetylcholine)
and non-choline esters (e.g., cocaine, acetylsalicylic acid, and heroin) [40,41]. BChE is a
multifaceted enzyme expressed in different regions of neurons; it co-regulates cholinergic
neurotransmission and is also partially involved in the development of the nervous sys-
tem [42–46]. The fact that the biochemical properties of BChE are altered in AD makes it a
potential target for use in therapeutic interventions [47–50]. Structurally and functionally,
BChE is similar to AChE, which has a catalytic serine buried in a deep gorge. The catalytic
triad of BChE is formed by Ser226, His438 and Glu352 [51]. The anionic site of BChE
contains Trp82, which interacts with the cationic quaternary nitrogen of choline [52]. In
addition, Asp70 and Tyr332 guide the positively charged substrates such as butyrylcholine
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to the active site located at the bottom of the gorge [53]. Furthermore, Leu286 and Val288,
which line the acyl pocket within the active site gorge, hold the acyl group of choline in
place during catalysis [52]. The acyl pocket of BChE is larger due to the presence of amino
acid residues with smaller site chains (Leu286 and Val288) compared to the AChE acyl
pocket lining Phe330.

Evaluating the interaction between BChE and F0850-4777 along with the control
inhibitor (Tacrine) confirmed that both ligands occupied a similar position inside the
binding cavity of BChE (Figure 2A,B). The BChE-Tacrine complex was stabilized by one
conventional hydrogen bond between Lig:NH and the active site residue His438:O atoms.
In addition, Tacrine formed four Pi-Pi stacked hydrophobic interactions with Trp82, and
two Pi-Pi stacked interactions with His438. In addition, there were two Pi-alkyl (with Trp82
and Trp430) and one alkyl hydrophobic interaction with Ala328. Furthermore, the BChE
and Tacrine complex was stabilized by six van der Waals interactions with Gly116, Glu197,
Tyr332, Gly439, Tyr440, and Met437 (Figure 2C). Conversely, the BChE and F0850-4777
complex was stabilized by one carbon hydrogen bond with the Ser287:O atom, and seven
hydrophobic interactions with Trp82, Pro285, and Tyr332 (Figure 2D and Table S2). In
addition, several amino acid residues such as Asp70, Gly116, Tyr128, Glu197, Thr284,
Ser287, Ala328, Phe329, His438, Gly439, and Tyr440 formed van der Waals’ interactions. It
is worth noting that F0850-4777 interacts with some of the important amino acid residues
of BChE such as Asp70, Trp82, and His438. Interestingly, the amino acid residues of
BChE commonly engaged in interactions with F0850-4777 and Tacrine includes Trp82,
Gly116, Glu197, Ala328, His438, Gly439, and Tyr440. Moreover, the docking energy and the
corresponding binding affinity were estimated to be −8.4 kcal mol−1 and 1.45 × 106 M−1

for the BChE-Tacrine interaction, respectively, and −10.7 kcal mol−1 and 7.04 × 107 M−1

for the BChE-F0850-4777 interaction, respectively. We found that the binding affinity of
F0850-4777 for BChE was approximately 48.6-fold higher than that of the control inhibitor
Tacrine and RMSD value between best pose of Tacrine and F0850-4777 was found to be
1.401 Å.

2.3.3. Analysis of the Interaction between Monoamine Oxidases and F0850-4777

Monoamine oxidases A and B (MAO-A and MAO-B) are located on the outer mem-
brane of mitochondria. They catalyze the oxidation of amines to imines, which are then
hydrolyzed non-enzymatically to the corresponding aldehydes or ketones [54]. MAO-A me-
tabolizes serotonin, dopamine, and norepinephrine, whereas MAO-B oxidizes dopamine,
benzylamine, and phenylethylamine [55,56]. MAO-B has also been reported to form a
neurotoxin (1-methyl-4-phenyl-pyridinium), which causes Parkinson’s disease, from 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine [57]. Thus, monoamine oxidases are excellent
targets for the development of novel therapeutics against Parkinson’s, Alzheimer’s, and
other neurodegenerative diseases.

Structurally, MAO-A and MAO-B share 70% identical amino acid sequences, and both
contain an FAD-binding domain, a substrate-binding domain, and a membrane-binding
domain [58,59]. The catalytic sites of both monoamine oxidases are mainly hydrophobic
and are lined with aromatic and aliphatic amino acid residues. A conserved lysine residue
(Lys305 in MAO-A and Lys296 in MAO-B) interacts with a water molecule, which is
attached to the N5-atom of the flavin co-factor [60]. The amino acid residues Tyr407 and
Tyr444 in MAO-A, and Tyr398 and Tyr435 in MAO-B are conserved in all MAOs and are
located on opposite sides of the covalently bound substrates and inhibitors [61,62]. It has
been shown that these tyrosine residues orient the substrate for oxidation, or enhance the
nucleophilicity of the amine [63].The selectivity of these enzymes in substrate binding
sites is defined by the presence of Ile335 in MAO-A and Tyr326 in MAO-B [64]. Another
difference between the two enzymes is the size of the substrate-binding site. In MAO-A,
the volume of the substrate-binding site is 400 Å3, whereas in MAO-B, there is a smaller
hydrophobic “entrance cavity” positioned between the surface and main substrate-binding
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site. Depending on the substrate, the two cavities in MAO-B are fused together because of
the rotation in Ile199 to form a larger cavity of 400 Å3 [60].

Analysis of the Interaction between MAO-A and F0850-4777

Molecular docking analysis between MAO-A and F0850-4777 revealed that the ligand
was bound to the central active site cavity of MAO-A (Figure 3). The binding pose of F0850-
4777 at the active site of MAO-A was further compared with the binding mode of a control
ligand, that is, Harmine. Both F0850-4777 and Harmine were found to occupy the same
site located in the deep cavity of MAO-A (Figure 3A,B). The MAO-A-Harmine complex
was stabilized by two carbon hydrogen bonds (Gly67:CA-Lig:O and Lig:C-Gly443:O), and
five hydrophobic interactions with Tyr407 and Tyr444. In addition, Harmine formed eight
van der Waals’ interactions with Ala68, Tyr69, Ile180, Asn181, Gln215, Met350, Phe352,
and Met445 to further stabilize the MAO-A-Harmine complex (Figure 3C). Conversely,
the MAO-A and F0850-4777 complex was stabilized by one conventional hydrogen bond
(Tyr407:HH-Lig:O) and one carbon hydrogen bond (Lig:C-Tyr69:O). In addition, F0850-4777
formed three Pi-Pi stacks (Tyr407 and Tyr444), and seven Pi-alkyl hydrophobic interactions
(with Val210, Cys323, Ile335, Leu337, and Met445). In addition, F0850-4777 formed two
Pi-Sulfur interactions with Cys323 and Cys406 (Figure 3D and Table S3). Furthermore, the
MAO-A-F0850-4777 complex was stabilized by van der Waals’ interactions with several
amino acid residues such as Arg51, Thr52, Gly67, Ala68, Ile180, Phe208, Gln215, Met350,
Phe352, Gly443, and Glu446. Interestingly, the amino acid residues of MAO-A commonly
interacted with F0850-4777 and Harmine with Gly67, Ala68, Tyr69, Ile180, Gln215, Met350,
Phe352, Tyr407, Gly443, and Tyr444. Moreover, the docking energy and the corresponding
binding affinity were estimated to be −8.7 kcal mol−1 and 2.40 × 106 M−1 for the MAO-
A-Harmine interaction, respectively, and −13.6 kcal mol−1 and 9.44 × 109 M−1 for the
MAO-A-F0850-4777 interaction, respectively. The binding affinity of F0850-4777 for MAO-
A was approximately 3933.33-fold higher than that of the control inhibitor Harmine and
RMSD value between best pose of Harmine and F0850-4777 was found to be 1.840 Å.

Analysis of the Interaction between MAO-B and F0850-4777

An insight into the interaction between MAO-B and F0850-4777 along with the control
inhibitor (Sulfinamide) confirmed that both the ligands occupied a similar pose inside the
binding cavity of MAO-B (Figure 4A,B). The MAO-B-Sulfinamide complex was stabilized
by two conventional hydrogen bonds (Lig:H-Leu171:O, and Lig:H-Gln206:OE1). In addi-
tion, Sulfinamide formed two Pi-Sigma hydrophobic interactions with Leu171:CD2, and
Tyr398 along with one Pi-Pi T-shaped interaction with Tyr326, and two Pi-alkyl interactions
with Ile199 and Ile316. In addition, there was one Pi-Sulfur interaction with Cys172:SG.
Furthermore, the MAO-B and Sulfinamide complex was stabilized by ten van der Waals’
interactions with Tyr60, Pro104, Trp119, Leu164, Leu167, Phe168, Ile198, Gly205, Phe343,
and Tyr435 (Figure 4C). Conversely, the MAO-B and F0850-4777 complex was stabilized
by one conventional hydrogen bond with Tyr435, and two carbon hydrogen bonds with
Tyr60, and Gly434 (Figure 4D and Table S4). In addition, F0850-4777 formed two Pi-Sigma
hydrophobic interactions (with Leu171:CD2 and Ile199:CA), two Pi-Pi-stacked interactions
with Tyr398, one Pi-Pi T-shaped interaction with Tyr326, two Pi-Pi stacked interactions
with Tyr398, one Pi-alkyl interaction with Tyr326, and two alkyl interactions with Leu171
and Ile199. Moreover, F0850-4777 also formed three Pi-Sulfur interactions with Cys172:SG,
Cys397:SG, and Met436:SD residues. Several amino acid residues, such as Arg42, Gly58,
Ser59, Phe168, Ile198, Gln206, Phe343, and Glu437, were found to form van der Waals’
interactions. Interestingly, the amino acid residues of MAO-B commonly engaged in the
interaction with F0850-4777 as well as Sulfinamide were Tyr60, Phe168, Leu171, Cys172,
Ile198, Ile199, Gln206, Tyr326, Phe343, Tyr398, and Tyr435. Moreover, the docking en-
ergy and the corresponding binding affinity were estimated to be −9.5 kcal mol−1 and
9.28 × 106 M−1 for the MAO-B-Sulfinamide interaction, respectively, and −12.5 kcal mol−1

and 1.47 × 109 M−1 for the MAO-B-F0850-4777 interaction, respectively. We found that
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the binding affinity of F0850-4777 for MAO-B was approximately 158.41-fold higher than
the control inhibitor Sulfinamide and RMSD value between best pose of Sulfinamide and
F0850-4777 was found to be 2.880 Å.

2.4. Analysis of Molecular Dynamics Simulation

2.4.1. Root Mean Square Deviation (RMSD) Analysis

In molecular dynamics simulations, the measurement of RMSD provides an estimate
of the stability and dynamic nature of the protein–ligand complex. RMSD is measured
as the deviation in the structure of a protein or protein–ligand complex from its initial
pose, which eventually gives an insight into the stability of protein–ligand complex during
simulation. Here, we report the behavior of RMSD of AChE, BChE, MAO-A, and MAO-
B alone or in complex with F0850-4777 during molecular dynamics simulation under
physiological conditions (Figure 5). The RMSD of AChE and BChE in the absence of
F0850-4777 increased sharply for the initial 2 ns, and then stayed consistent for the rest
of simulation, while the RMSDs of AChE-F0850-4777 and BChE-F0850-4777 complexes
fluctuated within the acceptable limits throughout the simulation (Figure 5A,B). Moreover,
the RMSD of MAO-A and MAO-B in the absence of F0850-4777 fluctuated slightly during
0–15 ns, and thereafter remained constant for the remaining simulation time, while the
RMSDs of MAO-A and MAO-B in the presence of F0850-4777 followed a consistent path
throughout the simulation (Figure 5C,D). The average RMSD values of AChE, BChE,
MAO-A, and MAO-B in the absence and presence of F0850-4777 estimated during 20–
100 ns were 2.33 ± 0.16 Å, 2.08 ± 0.12 Å, 1.70 ± 0.09 Å, 1.98 ± 0.10 Å, 2.15 ± 0.11 Å,
2.06 ± 0.07 Å, 5.81 ± 0.34 Å, and 5.33 ± 0.41 Å, respectively. It is worth noting that none
of the fluctuations in RMSD were more than the acceptable limit of 2.0 Å. These results
suggest that the overall structures of target enzymes (AChE, BChE, MAO-A, and MAO-B)
did not change significantly due to the binding of F0850-4777, and the protein–ligand
complexes remained stable throughout the simulation.

Figure 5. Behavior of root mean square deviation (RMSD) of (A) AChE, (B) BChE, (C) MAO-A, and
(D) MAO-B alone or in complex with F0850-4777.

2.4.2. Root Mean Square Fluctuation (RMSF) Analysis

During molecular dynamics simulation, the measurement of protein RMSF is signifi-
cant to access the local conformational changes in the side chains of a protein occurred due
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to ligand binding. In this study, we monitored the RMSF of F0850-4777 bound with AChE,
BChE, MAO-A, and MAO-B (Figure 6A). It is generally observed that the residues at the
N and C-terminal or loop regions display higher fluctuations. The average RMSF values
of AChE, BChE, MAO-A, and MAO-B in the presence of F0850-4777 were 0.98 ± 0.06 Å,
0.79 ± 0.04 Å, 1.04 ± 0.09 Å, and 1.16 ± 0.11 Å, respectively. These results indicate that
the RMSF of AChE, BChE, MAO-A, and MAO-B did not deviate significantly in the pres-
ence of F0850-4777 and the average values remained within the acceptable limits, thereby
indicating that the overall conformation of target proteins was conserved.

α β

α β
α β

α β α
β

Figure 6. (A) Average root mean square fluctuation (RMSF) values of AChE, BChE, MAO-A, and
MAO-B in the presence of F0850-4777; (B) the variation in Rg of F0850-4777 bound with different
proteins (AChE, BChE, MAO-A, and MAO-B); (C) SASA of target proteins AChE, BChE, MAO-A,
and MAO-B bound to F0850-4777.

2.4.3. Analysis of Radius of Gyration (Rg) and Solvent Accessible Surface Area (SASA)

The dependency of radius of gyration (Rg) and solvent accessible surface area (SASA)
of a ligand on simulation time give information about the behavior of the ligand inside the
binding pocket of the enzyme. The Rg values describe the RMSD of an atom’s width from
the common center of mass. The Rg may also be used to determine whether the complex
remains folded during the MD simulation. The variation in Rg of F0850-4777 bound with
different proteins (AChE, BChE, MAO-A, and MAO-B) as a function of simulation time
is presented in Figure 6B. The results show that the Rg values of different protein–ligand
systems fluctuated within the acceptable limit throughout the simulation. The average Rg
values of AChE, BChE, MAO-A, and MAO-B bound with F0850-4777 were estimated as
5.23 ± 0.28 Å, 5.21 ± 0.24 Å, 5.25 ± 0.19 Å, and 5.24 ± 0.27 Å, respectively.

The solvent accessible surface area (SASA) measures the exposure of a protein to
the solvent, thereby indicating if the protein is in native conformation upon the binding
of a ligand. Here, we measured SASA of target proteins AChE, BChE, MAO-A, and
MAO-B bound to F0850-4777 (Figure 6C). It is evident that the SASA of AChE-F0850-4777,
BChE-F0850-4777, MAO-A-F0850-4777, and MAO-B-F0850-4777 complexes varied slightly
with the acceptable limits. The average SASA values of F0850-4777 bound with AChE,
BChE, MAO-A, and MAO-B were 185.4 ± 5.63 Å2, 110.0 ± 4.39 Å2, 19.6 ± 1.01 Å2, and
250.7 ± 4.73 Å2, respectively. These results suggest that F0850-4777 remained inside the
binding cavity of AChE, BChE, MAO-A, and MAO-B in a stable conformation.
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2.4.4. Secondary Structure Analysis

The interaction between a ligand and protein often leads to changes in the protein’s
secondary structural elements (SSE). Thus, evaluating the variation in SSE during simu-
lation is critical to verify the establishment of a stable complex between the ligand and
protein. In this study, we monitored the variation in the total SSE (α-helix + β-sheet) of
AChE, BChE, MAO-A, and MAO-B in the presence of F0850-4777 during the simulation
(Figure 7: Panel I). We found that the total SSE of AChE, BChE, MAO-A, and MAO-B
in complex with F0850-4777 was 40.09 ± 2.62 % (α-helix: 26.92 ± 2.41 % and β-sheets:
13.17 ± 1.03 %), 38.71 ± 3.43 % (α-helix: 26.57 ± 2.76 % and β-sheets: 12.14 ± 2.04 %),
42.33 ± 3.12 % (α-helix: 25.81 ± 2.59 % and β-sheets: 16.52 ± 1.74 %), and 40.87 ± 2.63 %
(α-helix: 25.94 ± 2.12 % and β-sheets: 14.93 ± 1.55 %), respectively. It is worth noting that
the SSE of all the targeted proteins in combination with F0850-4777 remained consistent
throughout the simulation, suggesting a stable interaction between proteins and ligand.

 
α βFigure 7. (Panel I) Variation in total secondary structural elements (α-helix + β-sheet) of AChE, BChE,

MAO-A and MAO-B in the presence of F0850-4777 during simulation. (Panel II) Total number of
contacts formed between F0850-4777 and (A) AChE, (B) BChE, (C) MAO-A, and (D) MAO-B during
simulation.

2.4.5. Contact between F0850-4777 and Target Proteins

The formation of a stable protein and ligand complex was established by determining
the total number of contacts formed between them during the simulation (Figure 7: Panel
II). It is clear that during simulation, the total number of contacts between F0850-4777 and
AChE, BChE, MAO-A, and MAO-B varied between 2–13, 2–13, 1–12, and 0–9, respectively.
On average, AChE, BChE, MAO-A, and MAO-B formed 7, 6, 6, and 4 contacts with F0850-
4777 respectively. These results confirmed that F0850-4777 remained in the binding pockets
of target proteins throughout the simulation.

The overall interaction between target proteins and F0850-4777 over the simulation
was also determined and represented in Figure 8. We found that the interaction between
AChE and F0850-4777 through amino acid residues such as Tyr70, Asp72, Tyr121, Trp279,
Phe290, Phe330, Phe331, and Tyr334 remained consistent throughout the MD simulation
(Figure 8A). Similarly, the interaction between BChE and F0850-4777 through Met81, Trp82,
Leu286, Phe329, Tyr332, and His438 remain intact during the MD simulation (Figure 8B).
The amino acid residues of MAO-A forming a stable contact with F850-4777 during MD
simulation were Tyr407, Tyr444, and Lys520 (Figure 8C). Furthermore, the interaction
between MAO-B and F850-4777 through amino acid residues such as Leu171, Tyr188,
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Ile198, Gln206, Lys296, Tyr326, Tyr398, and Tyr435 remain stable throughout the MD
simulation (Figure 8D). Furthermore, the stability of ligand inside the binding pocket of
their respective protein targets was evaluated by monitoring RMSF of the ligand, as shown
in Figure S2. It was observed that none of the RMSF values exceeded 2 Å, confirming the
stability of the protein–ligand complexes.
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Figure 8. Interactions of F0850-4777 with (A) AChE, (B) BChE, (C) MAO-A, and (D) MAO-B.

2.4.6. Analysis of Free Energy (Prime-MM/GBSA) Calculations

Free energy calculation by Prime-MM/GBSA is an accurate method to evaluate
protein–ligand stability in the presence of a solvent. In this study, the Prime-MM/GBSA of
targeted proteins and F0850-4777 was calculated and the results are presented in Table 4.
As evident from Table 4, AChE has the lowest ∆GBind energy (−30.35 ± 3.28 kcal mol−1),
followed by MAO-B (−29.38 ± 2.99 kcal mol−1), BChE (−23.39 ± 3.07 kcal mol−1), and
MAO-A (−20.64 ± 2.93 kcal mol−1). Principally, van der Waals’ energy (∆GvdW) and
non-polar solvation or lipophilic energy (∆GSol_Lipo) contribute favorably towards the for-
mation of a stable protein–ligand complex, while covalent (∆GCovalent) and polar solvation
energies (∆GSolv or ∆GSolGB) oppose the formation of a stable protein–ligand complex.

Table 4. Free energy calculation of targeted proteins and F0850-4777 complexes using Prime/MM-GBSA.

Proteins
∆EMM ∆GSolv or

∆GSolGB
∆GSelf-contact ∆GH-bond

∆GSA
or ∆GSol_Lipo

∆GPacking ∆G or ∆GBind
∆GCoulomb ∆GvdW ∆GCovalent

AChE 1.25 ± 0.87 −19.24 ± 1.52 0.65 ± 0.05 6.18 ± 0.54 0 −0.16 ± 0.04 −15.81 ± 1.22 −3.22 ± 0.28 −30.35 ± 3.28

BChE −0.54 ± 0.04 −20.17 ± 1.41 1.16 ± 0.06 9.65 ± 0.69 0 0 −13.49 ± 1.07 0 −23.39 ± 3.07

MAO-A −6.14 ± 0.39 −17.21 ± 1.19 3.79 ± 0.06 12.71 ± 1.06 0 −1.20 ± 0.03 −11.65 ± 0.08 −0.94 ± 0.03 −20.64 ± 2.93

MAO-B −3.97 ± 0.23 −17.80 ± 1.14 −0.05 ± 0.01 9.39 ± 0.57 0 −0.18 v −16.28 ± 1.09 −0.49 ± 0.02 −29.38 ± 2.99

All the energies are in kcal mol−1. ∆EMM, ∆GCoulomb, ∆GvdW, ∆GCovalent, ∆GSolv or ∆GSolGB, ∆GSelf-contact, ∆GH-bond, ∆GSA or ∆GSol_Lipo,
and ∆G or ∆GBind stands for minimized molecular mechanics energy, coulomb energy, van der Waals’ energy, covalent binding energy,
solvation energy, energy due to self contact, energy due to H-bonds, lipophilic energy, and binding energy, respectively.

3. Materials and Methods
3.1. Hardware and Software Used

The three-dimensional coordinates of the target enzymes (AChE, BChE, MAO-A
and MAO-B) were downloaded from the PDB database (http://www.rcsb.org/pdb/).
PyRx-Python Prescription 0.8 [65] using Autodock-Vina [66] with the Lamarckian genetic
algorithm as a scoring function was used for molecular docking. Molecular interactions
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for the best scoring ligand were separately analyzed by Discovery Studio 2020 (BIOVIA)
software package. Molecular dynamics was performed on an Intel Xenon workstation-
E3-1245-8C, 3.50 GHz processor with 28 GB RAM. The workstation was powered by a
NVIDIA Quadro P5000 GPU card. Desmond (Shchrodinger-2020, LLC, NY, USA) was
employed to conduct molecular dynamics simulation.

3.2. Ligands Preparation

The natural product-like compound library from Life Chemicals (www.lifechemicals.com)
was screened to identify novel inhibitors of the targeted enzymes. The library contains
2029 compounds (accessed November 2020). The ligands were downloaded in sdf format
and converted to Autodock suitable pdbqt format along with density function theory (DFT)
optimization of the minimum energy conformer using the inbuilt function in PyRx. The
energy of all the ligands was minimized in PyRx using universal force field (UFF).

3.3. Protein Target Preparation

The three-dimensional coordinates of AChE (PDB Id: 1ACJ), BChE (PDB Id: 4BDS),
MAO-A (PDB Id: 2Z5X), and MAO-B (PDB Id: 2V5Z) were downloaded from the PDB
database (http://www.rcsb.org/pdb/). The target proteins were prepared for molecular
docking by native ligand and non-essential water molecules, assigning hydrogen polarities,
calculating Gasteiger charges to protein structures, and converting protein structures from
the pdb file format to pdbqt format. Energy minimization and geometry optimization of
all structures were performed using a built-in tool in PyRx. Subsequently, the targeted
proteins were exploited for the binding pockets from crystal structures and were further
evaluated using the Uniprot.

3.4. Molecular Docking

Molecular docking was performed using the PyRx-Python 0.8 virtual screening tool
coupled with AutoDock 4.2, employing the Lamarckian genetic algorithm method [67,68].
All of the ligands were individually docked with each of the targeted enzymes as sep-
arate docking runs. The grid dimensions for AChE were selected through discovery
studio visualizer (BIOVIA) from the attributes of docked ligand (control inhibitor) in
its specific target protein and set to 60 × 60 × 60 Å centered at 4.6 × 70.1 × 65.9 Å,
whereas grid dimensions for BChE, MAO-A, and MAO-B were set to 33 × 33 × 33 Å
centered at 140.1 × 122.2 × 38.9 Å, 126 × 126 × 126 Å centered at 30.9 × 28.8 × 14.9 Å,
and 126 × 126 × 126 Å centered at 53.5 × 147.8 × 24.4 Å, respectively, as discussed in
previous reports [69,70]. The results were clustered according to the root-mean-square
deviation (RMSD) criterion and in the current study we selected the ligands with lower
than 3Å RMSD modes between the best docked pose of natural product-like compound
and reference inhibitor. The docking was performed with the “exhaustiveness” set to 8.
All other docking parameters were set to the default values of the software. The binding
affinity (Kd) of ligands for the target enzyme was calculated from the binding energy (∆G)
using the following relation [71,72]:

∆G = −RT lnKd (1)

where R and T were the Boltzmann’s gas constant and temperature respectfully.
The ligands with the minimum binding energy were selected for further analysis. The

best pose of each “protein–ligand complex” was generated and analyzed using Discovery
Studio 2020 (BIOVIA).

3.5. Prediction of Physicochemical, Pharmacokinetics Properties, Drug-Likeness, and Toxicity
Potentials

About the 10 top best hits from the total 2029 compounds were analyzed against
cholinesterases and monoamine oxidases were assessed for their physicochemical proper-
ties, drug-likeness, and pharmacokinetics using the SwissADME (http://www.swissadme.ch)
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web-based tool. The tool was used to assess the molecular weight, the number of hydrogen
bond donors and acceptors, rotatable bonds, cLogP value, topological polar surface area,
Lipinski’s rule violation, human gastrointestinal absorption (HIA), and blood–brain barrier
(BBB) permeation to finalize the bioactive compound for further computational analy-
sis [33]. The fraction of sp3 carbon atoms (Fsp3), a key factor for drug-likeness, was also
analyzed through SwissADME [73]. Moreover, various aspects and effects of the toxicity,
including the tumorigenicity, mutagenicity, and irritability of the selected compounds,
were also tested using the Orisis Datawarrior tool [74]. In the Orisis Datawarrior tool’s
analysis, the predicted toxicity values were depended on comparing the precalculated
investigated molecules with the tested molecule’s structures.

3.6. Molecular Dynamics (MD) Simulation

MD simulation of the best scoring ligand was performed in complex with their
respective targeted enzymes (AChE, BChE, MAO-A, and MAO-B) in triplicates using
“Desmond (Schrodinger-2020, LLC, NY, USA)” as described earlier [26,75]. The protein–
ligand complex obtained in the AutoDock Vina is imported to the Maestro interface of
the Schrodinger’s software. Prior to MD simulation, the protein–ligand complex was
optimized by adding missing hydrogen atoms, assigning proper protonation state of
the ligand and other parameters using Protein preparation wizard. The protein–ligand
complex was placed at the center of an orthorhombic box, keeping a distance of at least
10 Å from the sides of the box. TIP3P water molecules were added to solvate the simulation
box, and proper counterions were also added to neutralize the system. The physiological
conditions were mimicked by adding 150 mM NaCl. The energy of the whole system was
minimized with 2000 iteration and convergence criteria of 1 kcal/mol/Å, using OPLS3e
forcefield. The production MD simulation run was performed for 100 ns employing NPT
ensemble at 298 K and 1 bar. Temperature and pressure were maintained with the help
of Nose-Hoover Chain thermostat and Matrtyna–Tobias–Klein barostate [76,77]. A 2 fs
time step was fixed, and at every 10 ps, energies and structures were documented in
the trajectory. The parameters such as root mean square deviation (RMSD), root mean
square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA),
secondary structure analysis, and protein–ligand interactions were analyzed to establish
the stability of protein–ligand complexes. The results are presented as mean ± standard
deviation of the three independent experiments.

3.7. Free Energy (Prime-MM/GBSA) Calculations

The binding free energy of each protein–ligand complex was estimated using Prime
module (Schrodinger, LLC, NY, USA) employing the MM-GBSA approach, as described
previously [75,78]. In this approach, free energy was computed on the final 10 ns MD
simulation trajectories, once equilibration had been reached. Briefly, first, the docked
complexes were subjected to local optimization through molecular mechanics (MM) in
Prime, and then their energies were minimized with OPLS-AA (2005) force field with the
generalized Born surface area (GBSA) continuum solvent model. The binding free energy
(∆GBind) is estimated as:

∆GBind = ∆EMM + ∆GSolv_GB + ∆GSA (2)

∆EMM = EComplex −
(

EProtein + ELigand

)

(3)

where EComplex, EProtein, and ELigand are the respective values of minimized energies of
protein–ligand complex, protein, and ligand.

∆GSolv_GB = GSolv_GB (Complex) −
(

GSolv_GB (Protein) + GSolv_GB (Ligand)

)

(4)

where GSolv_GB (Complex), GSolv_GB (Protein), and GSolv_GB (Ligand) are the respective values of
free energies of solvation of protein–ligand complex, protein, and ligand.
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∆GSA = GSA (Complex) −
(

GSA (Protein) − GSA(Ligand)

)

(5)

where GSA (Complex), GSA (Protein), and GSA (Ligand) are the respective values of surface area
energies of protein–ligand complex, protein, and ligand.

In the Prime-MM/GBSA method, the free energy is calculated as:

∆GBind = ∆GCoulomb + ∆GvdW + ∆GCovalent + ∆GH−bond + ∆GSol_Lipo + ∆GSolv_GB + ∆GPacking + ∆GSelf−contact (6)

4. Conclusions

Using high-throughput screening and the molecular dynamics simulation study, we
concluded that the F0850-4777 compound, out of 2029 natural product-like compounds,
showed the best binding affinity against all the four targets and exhibited the finest drug-
likeness, pharmacokinetics and physiological properties which can cross the BBB as well
as high absorption through GI tract with non-toxic potential. The findings of this study
suggest that the F0850-4777 can be a potential candidate against multiple-targets of two
pathophysiological pathways pertaining to AD. In this study, neuroprotective potentials
of candidate drug were explored only via in silico approaches and open the window for
confirmation of its therapeutic efficacy through in vitro and in vivo systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14090937/s1, Table S1: Molecular docking parameters for the interaction of target protein,
acetylcholinesterase with F0850-4777 and their respective control ligands; Table S2: Molecular dock-
ing parameters for the interaction of target protein, butyrylcholinesterase with F0850-4777 and their
respective control ligands; Table S3: Molecular docking parameters for the interaction of target pro-
tein, monoamine oxidase-A with F0850-4777 and their respective control ligands; Table S4: Molecular
docking parameters for the interaction of target protein, monoamine oxidase-B with F0850-4777 and
their respective control ligands; Figure S1: (A) structure of F0850-4777 (3-(2-methoxyphenyl)-4-oxo-
4H-chromen-7-yl 4-methylbenzoate), (B) acceptable range (pink color region) for pharmacokinetics
properties of F0850-4777, (C) description of BOILED-Egg image for F0850-4777 to predict gastroin-
testinal absorption (HIA) and brain penetration (BBB); Figure S2. RMSF of ligand (F0850-4777) inside
the binding pocket of their respective protein targets.
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Abstract: The unprecedented pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is threatening global health. SARS-CoV-2 has caused severe disease with significant mortality
since December 2019. The enzyme chymotrypsin-like protease (3CLpro) or main protease (Mpro) of
the virus is considered to be a promising drug target due to its crucial role in viral replication and its
genomic dissimilarity to human proteases. In this study, we implemented a structure-based virtual
screening (VS) protocol in search of compounds that could inhibit the viral Mpro. A library of >eight
hundred compounds was screened by molecular docking into multiple structures of Mpro, and the
result was analyzed by consensus strategy. Those compounds that were ranked mutually in the
‘Top-100’ position in at least 50% of the structures were selected and their analogous binding modes
predicted simultaneously in all the structures were considered as bioactive poses. Subsequently,
based on the predicted physiological and pharmacokinetic behavior and interaction analysis, eleven
compounds were identified as ‘Hits’ against SARS-CoV-2 Mpro. Those eleven compounds, along
with the apo form of Mpro and one reference inhibitor (X77), were subjected to molecular dynamic
simulation to explore the ligand-induced structural and dynamic behavior of Mpro. The MM-GBSA
calculations reflect that eight out of eleven compounds specifically possess high to good binding
affinities for Mpro. This study provides valuable insights to design more potent and selective
inhibitors of SARS-CoV-2 Mpro.

Keywords: SARS coronavirus; SARS-CoV-2 main protease; structure-based virtual screening; molec-
ular dynamic simulation; hit identification

1. Introduction

The current global pandemic, so called COVID-19 (COronaVIrus Disease 2019), has
spread rapidly since it initially emerged in Wuhan in China, in late 2019 [1–4]. The virus
called ‘severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)’ is responsible for
the outbreak of this pandemic [5]. SARS-CoV-2 belongs to the β coronavirus subgroup
of the Coronaviridae family and was found to be related to acute respiratory syndrome
coronavirus (SARS-CoV) [6], which previously emerged in China in February 2003 and
caused an outbreak in China and spread to several other countries [5,6]. SARS-CoV-2
specifically infects humans by causing an atypical pneumonia, which possesses specific
mild to severe symptoms including dry cough, fatigue, fever, shortness of breath, severe
progressive pneumonia, multiorgan failure, and eventually death [1]. The World Health
Organization (WHO) has declared a state of global health emergency since the outbreak of
SARS-CoV-2. According to the World Health Organization (WHO) Coronavirus (COVID-
19) dashboard (https://covid19.who.int/, accessed on 30 June 2021), there have been
181,344,224 confirmed cases of COVID-19 globally, including 3,934,252 deaths worldwide,
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reported to the WHO [7]. Moreover, during the summer of 2020 and spring of 2021, a huge
spike was seen in COVID-19 cases [8,9].

SARS-CoV-2 is a positive-sense single-stranded RNA (+ssRNA) virus, with a sin-
gle linear RNA sequence with ~30,000 nucleotides [10–12]. The SARS-CoV-2 virion is
50–200 nanometers in diameter [6], comprising four structural proteins, known as the S
(spike), E (envelope), M (membrane), and N (nucleocapsid) proteins, which are encoded by
the 3′ end, whereas two viral replicase polyproteins, called pp1a and pp1b, are encoded by
the 5′ end of the genome. The N protein holds the RNA genome, while the viral envelope
is composed of S, E, and M proteins. S proteins are glycoproteins that are divided into
two functional parts (S1 and S2), which are involved in viral attachment and fusion with
the membrane of a host cell. pp1a and pp1b proteolytically cleave into 16 non-structural
proteins (nsp1 to nsp16) by the main protease and the papain-like protease. nsp5, also
called chymotrypsin-like protease (3CLpro) or main protease (Mpro) located in the pp1a, is
essential in the replication and maturation of coronavirus, while the papain-like protease is
a deubiquitinase [13–20].

At present, specific antiviral or targeted therapies against SARS-CoV-2 do not exist.
However, supportive care, which is augmented by the combination of broad-spectrum
antibiotics, antivirals, corticosteroids, and convalescent plasma, is the main treatment
approach for COVID-19 [18,19]. The scientific community is involved in extensive research
worldwide to formulate suitable therapeutics to control the effects of SARS-CoV-2. Many
efforts have been applied to screen existing drugs as potential treatments to eradicate this
infection. Since the beginning of the pandemic, several antiviral drugs have been tested
in clinical trials against COVID-19, including remdesivir (which was originally designed
for the Ebola virus [21]), anti-malarial drugs including chloroquine and hydroxychloro-
quine [22,23], anti-rheumatoid arthritis drug ‘tocilizumab’ [24,25], and anti-HIV drugs
lopinavir/ritonavir [26], among others [27,28]. Nevertheless, the efficacy of some drugs
remains controversial. This is the case with a clinical trial involving lopinavir/ritonavir,
which reported that no benefits were observed with this treatment compared to standard
care [26].

Vaccines against COVID-19 are now available to control the infection [29]; however,
there is still an urgent need to discover specific drugs that can target SARS-CoV-2 in
patients suffering from COVID-19 due to various emerging variants of the virus. The
important targets of SARS-CoV-2 have been identified [30,31] that may be exploited to
develop novel therapeutics. Since Mpro is one of the key targets of coronavirus, therefore
Mpro can be targeted to develop antiviral agents. Mpro cleaves polyproteins to produce
non-structural proteins that are part of the replicase–transcriptase complex. The advantages
of targeting Mpro are that it specifically exists in the virus and not in humans, it has high
sequence identity (i.e., >96%) with SARS-CoV, and it is highly conserved among related
viruses [32–35].

Mpro is composed of three domains. The domains I and II are composed of 8–101
and 102–184 residues, respectively. These domains acquire a β-barrel shape and resemble
chymotrypsin, while domain III (201-306 residues) mainly comprises α-helices. The cleft of
domain I and II constitutes the substrate binding region, which consists of the conserved
His41 and Cys145 catalytic dyad, where Cys and His act as a nucleophile and a proton
acceptor, respectively. Additionally, two deeply buried subsites, called S1 and S2, and
three shallow subsites (S3–S5) are also present in the structure. The S1 subsite consists of
Phe140, Gly143, Cys145, His163, Glu166, and His172, while S2 consists of Thr25, His41,
and Cys145. These residues are mainly involved in hydrophobic and electrostatic interac-
tions. The shallow subsites (S3–S5) are composed of His41, Met49, Met165, Glu166, and
Gln189. Despite the high genomic similarity of SARS-CoV-2 with the other members of the
coronavirus family, their binding sites have differences in shape and size, which gives us
an opportunity to explore more diverse chemical scaffolds by enhanced sampling [32–36].
The three-dimensional (3D-) structure of Mpro is depicted in Figure 1a. Herein, we have
applied target-specific virtual screening of our in-house compound database with the aim
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to obtain structurally diverse and potential inhibitors of SARS-CoV-2. Several compounds
were identified with high inhibitory potential for Mpro, and subsequently, could be tested
as a treatment against COVID-19.
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(b) (c) 

Figure 1. Cont.
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Figure 1. (a) The 3D structure of Mpro is shown in complex with X77 (green stick model). The active site residues are
displayed in orange stick models. The S1–S5 subsites are highlighted. The protein–ligand binding interactions of compounds
1, 3, 6, 8, 10–13, 17, 18, and 28 are shown in 2D format in (b–l), respectively. Hydrogen bonds are depicted in dotted arrows.
The green and blue colored arrows represent side chain acceptor/donor and backbone acceptor donor atoms, respectively.

2. Results and Discussion
2.1. Validation of Docking Method by Re-Docking and Cross-Docking

Prior to the virtual screening of our in-house database, re-docking and cross-docking
of co-crystallized ligands were performed in order to scrutinize the efficiency of the docking
method and to select the most appropriate protein file for virtual screening. The re-docking
results of twenty protein–ligand complexes showed that 50% of ligands were re-docked
with RMSD values of 0.29–1.94 Å, while 30% of ligands were re-docked with RMSD ≤ 3 Å.
However, only four ligands showed RMSD in the range of 4 to ≥7 Å. Therefore, 80% of lig-
ands were correctly re-docked in their X-ray-determined conformations. Thus, the docking
method was found efficient in predicting the experimentally determined orientations of
compounds. RMSD ≤ 3.0 Å is usually considered satisfactory in re-docking experiments;
therefore, the results are acceptable. The re-docking results are shown in Table S1.

The cross-docking results (Table S2) showed that 40% of the ligands (ligands in 6Y2F,
6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) were correctly ranked between first and
third position when docked in their cognate proteins, while two ligands (ligands contained
in complexes with PBD codes: 7BRR and 6WNP) were ranked at fifth and seventh position
in their X-ray structure. This indicates that MOE accurately ranked 50% of the ligands in
good position; therefore, MOE was used in structure-based virtual screening (SB-VS) of our
in-house database. The cross-docking results showed that eight proteins (PDB codes: 6Y2F,
6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) are appropriate for docking studies;
therefore, those proteins were used in the virtual screening experiment.
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Analysis of Virtual Screening Accuracy

The predictive accuracy of virtual screening was scrutinized by the ranking or the
enrichment of known inhibitors (KIs, embedded in the in-house dataset) at the top-ranking
position of docked libraries (Table S3). The result was examined by analyzing the percent
enrichment factor (%EF) and receiver operating characteristic curves (ROC curves). These
matrices are widely used to compare virtual screening results. The results showed that
MOE successfully identified KIs in 6W79, 7BQY, 6ZRT, 7JU7, and 6W63 with %EF in the
range of 33% to 73% at a top-100 position (Table S3), whereas 6W79 showed %EF of 53%
at a top-50 position. Moreover, the ROC curve shows an AUC of 0.79–0.84 for 7JU7, 6Y2F,
6WTK, 6LU7, 7BQY, 6W63, and 6ZRT, and 0.90 for 6W79. The %EF and AUC of 6W79 were
the highest among all the selected proteins. The ROC curve is displayed in Figure S1.

2.2. Selection of Hits after Consensus Approach

The virtual screening of >800 compounds was carried out on multiple structures of
Mpro (PDB codes: 6Y2F, 6WTK, 6W79, 7BQY, 6ZRT, 7JU7, 6LU7, and 6W63) with the aim of
finding out the most potential inhibitors. Later, the consensus approach was used to select
the compounds that are ranked among the top 100 positions in all the proteins. We observed
that thirteen (1–13) and eight compounds (14–18, 28–30) were mutually ranked at a top-100
position in 8/8 and 7/8 proteins, respectively, whereas nine compounds (19–27) were
ranked at a top-100 position in ≥50% of the proteins. Therefore, a total of thirty compounds
were selected, and their pharmacokinetic behavior was studied by SwissADME [37] and
ADMETsar [38]. The docking results are tabulated in Table S4.

2.3. Pharmacokinetic Analysis

The physicochemical properties of the selected compounds showed that the molecular
weight of compounds is in the range of 290 to 635 g/mol. A total of 19/30 compounds pos-
sess ≤5 rotatable bonds (RBs), while 11/30 compounds possess 6–10 RBs in their structures.
The compounds have 3–13 hydrogen bond acceptor atoms (HBA) and 0–9 hydrogen bond
donor atoms (HBD). The molar refractivity (MR) and topological polar surface area (TPSA)
of these compounds are in the range of 74.33–169.9 and 62.32–226.83 Å2, respectively. These
results were compared with the physicochemical properties of selected KIs. Those KIs
possess 1–8 HBA atoms, 0–7 HBD atoms, and 1-22 RBs, while 4/15 KIs possess a molecular
weight in the range of 549 to >681. Similarly, the TPSA of KIs was found to be in the range
of 20 to >197 Å2. The KIs including remdesivir, lopinavir and ritonavir also have molecular
weight > 600, RB = 15–23 and TPSA in the range of 120 to 203 Å2. According to Veber’s
rule of drug-likeness [39], TPSA and the number of RBs discriminate between orally active
compounds and those that are not orally active for a large dataset of compounds in rats [40].
Therefore, compounds with ≤10 RBs and TPSA ≤ 140 Å2 are predicted to have good oral
bioavailability [40], while the Ghose filter further improves the predictions of drug-likeness
by the following rules: the partition coefficient (LogP) of the compound should be in the
range of −0.4 to +5.6, MR = 40 to 130, molecular weight = 180 to 480, and number of
atoms from 20 to 70 (including HBDs and HBAs). The predicted partition coefficient (LogP
octanol/water) of the selected (30) hits was in the range of +0.25 to 4.74, suggesting their
solubility in a hydrophobic medium. The LogPo/w of selected KIs is in the range of 0.7
to >5. Similarly, most of the hits demonstrated good to moderate solubility in a water
medium.

The predicted pharmacokinetic properties of the selected hits further helped us to
choose more appropriate compounds. The admetSAR showed that all the hits passed
human intestinal absorption, while SwissADME showed that 17/30 compounds (1, 6,
12–14, 16–19, 22–28, 30) had high gastrointestinal absorption (GIA) ability. Similarly, all the
compounds (except 16 and 27) exhibited no blood–brain barrier penetration. Additionally,
all compounds (except 15, 22–27, and 30) did not have substrate-like properties for P-
glycoprotein (P-gp), while compounds 11, 15, 19–27, and 30 displayed inhibitory potential
against P-gp. Furthermore, most of the compounds were found to be non-inhibitors of
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cytochrome p450 enzymes (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4). The skin
permeation (LogKp) of ligands was found in the range of −5.30 to −10.61 cm/s, showing
that these compounds are not permeable through the skin.

The drug-likeness properties of selected hits were calculated based on the Lipinski
rule of five [41] and Ghose [42], Veber’s [39], Egan’s [43], and Muegge’s rules [44]. The
compounds 1, 6, 12–14, 16–18, 26, 28 and 30 followed all the drug-likeness criteria given by
Lipinski, while compounds 1, 4–6, 9, 12–14, 16–18, and 28 fulfilled the Ghose rules of drug-
likeness. Similarly, compounds 1, 6, 12–14, 16–18, 26–28, and 30 followed Veber’s, Egan’s,
and Muegge’s rules of drug-likeness. Comparing these results with the drug-likeness
of KIs shows that 4/15 KIs (including O6K, telaprevir, boceprevir and N3) violate two
rules of Lipinski’s drug-likeness criteria, while the known drug, remdesivir, also showed
two violations of Lipinski’s rule (MW > 500, HBA > 10), three violations of Ghose rules
(MW > 480, MR > 130, number of atoms > 70) and Muegge’s rules (MW > 600, TPSA > 150,
HBA > 10), two violations of Veber’s rules (Rotors > 10, TPSA > 140), and one violation
of Egan’s rules (TPSA > 131.6). This shows that the selected hits possess comparable
drug-likeness with remdesivir. Usually, substrates of biological transporters or natural
products do not follow the above-mentioned rules of drug-likeness [45]. Moreover, recently
several molecules were approved by the FDA in 2020. Among those approved drugs,
several compounds fail on one or the other drug-likeness pharmacokinetic principle, and
do not obey Lipinski, Ghose, Veber, Egan, and Muegge’s filters, although this does not
question the approval of these molecules. Therefore, it is critical to first look for a potent
molecule, and once potency is validated, then to look for improved kinetics [46].

The bioavailability score of the compounds was in the range of 0.17–0.56, indicating
moderate bioavailability. Among all the selected hits, only a few compounds (1, 2, 4, 7, 9,
10, 12, 14) showed few PAINS alerts, whereas the rest of the compounds did not show any
PAINS alerts. Moreover, compounds 1, 6, 12–14, 16–18 passed the lead-likeness criteria,
while compounds 2, 3–5, 7–11, 15, and 19–30 displayed few violations (i.e., MW > 300,
rotors > 7, XlogP 3 > 3.5). The calculated synthetic accessibility of the compounds was
in the range of 2.70 to 6.30, which reflects that these compounds are synthesizable. The
bioavailability score, lead-likeness, and synthetic accessibility of compounds were com-
pared with remdesivir, which showed that the compounds possess comparable scores.
The bioavailability score of remdesivir is also 0.17 and synthetic accessibility = 6.33, and
remdesivir depicted two violations in lead-likeness (i.e., MW > 350, Rotors > 7). The
predicted physiological properties, pharmacokinetic profiles, drug-likeness, and medicinal
properties of the selected compounds are tabulated in Tables S5–S9.

2.4. Interaction Analysis

After sequence and structural alignment of eight Mpro structures (used in VS), the main
pharmacophoric features required for optimal binding were deduced. We observed that
His41, Phe140, Gly143, Cys145, His163, His164, Glu166, Gln189, and Thr190 play important
roles in the stabilization of protein–ligand binding by providing hydrogen bonds or hy-
drophobic interactions. Thus, the interactions of the selected ligands with those important
residues were scrutinized. The docked view of compound 1 (2-(3,4-dihydroxyphenyl)-
3,5,7-trihydroxy-4H-chromen-4-one) showed that the compound binds at S1, S2 and S3
subsites, and its hydroxyl groups and the carbonyl moiety formed H-bonds with multiple
important residues including Phe140 of S1, Cys145 of S1 and S2, His163 of S1, and His164
of S3. Similarly, the substituted -OH moieties of compound 2 (1R,2R,3S,4S,6S)-6-((E)-3-
(3,4-dihydroxyphenyl) acryloyloxy)-2,3,4-trihydroxycyclohexyl 3,4,5-trihydroxybenzoate)
formed multiple H-bonds with the side chains of Cys145 (S1 and S2 subsites) and Met165
of S3, and with the main chain carbonyl oxygen of Glu166. Moreover, Glu166 formed
bidentate interactions with the -OH group and dihydropyranone oxygen of compound
3 (2-(2,4-dihydroxyphenyl)-5,7-dihydroxy-3-((2R,3S,4S,5R,6R)-4,5,6-trihydroxy-2-(hydroxy
methyl)-tetrahydro-2H-pyran-3-yloxy)-4H-chromen-4-one), whereas one of the -OH groups
of compound 3 mediated H-bonds with Leu141, while the substituted pyran -OH groups of
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compound 4 (1,3,8-trihydroxy-6-(((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-methyl-tetrahydro-
2H-pyran-2-yloxy) methyl) anthracene-9,10-dione) interacted with Glu166 and Gln192.
Similarly, the -OH and the carbonyl oxygen of compound 5 (2-(2,4-dihydroxyphenyl)-5,7-
dihydroxy-3-methyl-4H-chromen-4-one) mediated H-bonding with Leu141 and Cys145,
respectively. However, the substituted -OH groups of compound 6 ((S)-3-(3-acetyl-2,5-
dihydroxybenzyl)-6,8-dihydroxy-3,4-dihydroisochromen-1-one) formed H-bonds with
Asn142, Thr190, and Gln192. Similarly, Thr190 and Glu166 mediated H-bonds with the
-OH groups of compound 7 (1,6-dihydroxy-3-methyl-8-((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-
6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxy) anthracene-9,10-dione). Interestingly,
compound 8 ((S)-4,5-dihydroxy-9-((2R,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-
tetrahydro-2H-pyran-2-yl)-2-(((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydro-2H-
pyran-2-yloxy) methyl) anthracen-10(9H)-one) mediated the highest number of H-bonds
with the side chains and backbone atoms of Gly143, Leu141, Ser144, His163, Cys145,
Thr190, and Gln192. Therefore, this molecule was considered to be the most promising
inhibitor. Moreover, compound 9 (1,3,8-trihydroxy-6-(((1R,2R,3R,4S,5S)-2,3,4-trihydroxy-5-
methylcyclohexyloxy) methyl) anthracene-9,10-dione) formed multiple interactions with
Ser144, Thr190, and Gln192. Like compound 8, compound 10 (1,6-dihydroxy-3-
(hydroxymethyl)-8-(2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-tetrahydro-2H-
pyran-2-yloxy) methyl) anthracene-9,10-dione) also mediated several interactions with key
residues including His163, Thr190, and Gln192, whereas His41 provided H–π interaction
to the compound. Similarly, compound 11 ((E)-((2R,3R,4R,5R,6R)-3,4,5-trihydroxy-6-(7-
hydroxy-5-methyl-4-oxo-2-(2-oxopropyl)-4H-chromen-6-yl)-tetrahydro-2H-pyran-2-yl)
methyl 3-(4-hydroxyphenyl) acrylate) displayed H-bonding with Asn142, Glu166, and
Arg188. The compounds 12 ((E)-N′-(3,4-dihydroxybenzylidene)-2-phenylacetohydrazide)
and 13 ((E)-3-(2,4-dihydroxyphenyl)-2-(1,3-dioxoisoindolin-2-yl) acrylic acid) formed H-
bonds with Glu166 and Arg188, while compounds 14 ((2R,3S)-2-(3,4-dihydroxyphenyl)-
3,4-dihydro-2H-chromene-3,5,7-triol) and 16 (4,11-dibutyl 5,10-bis(2-hydroxyphenyl)-3,12-
dithiatricyclo[7 .3.0.02,6]dodeca-1,4,6,8,10-pentaene-4,11-dicarboxylate) interacted with
Glu166 and Ser144, and Gly143 and Ser144, respectively. The binding mode of compound
15 ((E)-((2R,3R,5R,6R)-3,4,5-trihydroxy-6-(7-methoxy-5-methyl-4-oxo-2-(2-oxopropyl)-4H-
chromen-6-yl)-tetrahydro-2H-pyran-2-yl) methyl 3-(4-hydroxyphenyl) acrylate) demon-
strated that Gln192, Thr190, and His163 stabilized the compound in the active site of Mpro

through multiple H-bonds, while Thr190 and Gln192, and residues Glu166 and Gln192,
provided H-bonds to the compounds 17 (3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-
methoxy-4H-chromen-4-one) and 18 ((E)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-hydroxyphenyl)
acrylic acid), respectively. Compound 19 ((R)-3-((R)-6-(2,2-bis(4-fluorophenyl)ethyl)-4-
methoxy-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinolin-5-yl)-6,7-dimethoxyisobenzofuran-
1(3H)-one) formed a H-bond with the main chain nitrogen of Glu166, while the amino
nitrogen and -OH group of Ser144 and main chain nitrogen of Cys145 stabilized compound
20 (3-{4-[2-carboxy-2-(1,3-dioxo-2,3-dihydro-1H-isoindol-2-yl)eth-1-en-1-yl]phenyl}-2-(1,3-
dioxo-2,3-dihydro-1H-isoindol-2-yl)prop-2-enoic acid) through H-bonding, whereas com-
pounds 21 ((E)-((2R,3R,5R,6R)-3,4,5-trihydroxy-6-(7-hydroxy-5-methyl-4-oxo-2-(2-oxopropyl)-
4H-chromen-8-yl)-tetrahydro-2H-pyran-2-yl)methyl 3-(4-hydroxyphenyl)acrylate), 22 ((R)-
2-((R)-5-((R)-4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-7,8-dihydro-[1,3]
dioxolo[4,5-g]isoquinolin-6(5H)-yl)-2-(9H-fluoren-3-yl)ethanamine), 23 ((R)-{6-[2,2-bis(4-
fluorophenyl)ethyl]-4-methoxy-2H,5H,6H,7H,8H-[1,3]dioxolo[4,5-g]isoquinolin-5-yl}[2-
(hydroxymethyl)-3,4-dimethoxyphenyl]methanol) and 24 ((S)-6-((1-(4-bromobenzyl)-1H-
1,2,3-triazol-4-yl)methyl)-4-methoxy-5-((R)-5-methoxy-4-methyl-1,3-dihydroisobenzofuran-
1-yl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline) formed a single H-bond with Cys145,
His164, and Glu166, respectively. Moreover, compounds 25 (8-benzyl-N-cyclohexyl-14-
methyl-7-oxo-5-phenyl-2,3,4,8,18-pentaazatetracyclo [8.8.0.02,6.012,17] octadeca-1(10),3,5,11,
13,15,17-heptaene-9-carboxamide) and 26 ((9R,13R)-4-bromo-N9-{[(2R)-oxolan-2-yl]methyl}-
14-phenyl-8-oxa-14,15,17-triazatetracyclo [8.7.0.02,7.012,16] heptadeca-1(17),2,4,6,10,15-
hexaene-9,13-diamine) were stabilized by Glu166 and His163, and Gly143, respectively,
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while compounds 27 ((9R,13R)-N9-benzyl-4-fluoro-14-phenyl-8-oxa-14,15,17-triazatetracyclo
heptadeca-1(17),2(7),3,5,10,15-hexaene-9,13-diamine), 28 (4-((3-(3-bromophenyl)-[1,2,4]
triazolo[3,4-b][1,3,4]thiadiazol-6-yl)methoxy)phenol) and 30 (4-[(9R,13R)-13-amino-9-
(benzylamino)-8-oxa-14,15,17-triazatetracyclo [8.7.0.02,7.012,16] heptadeca-1(17),2(7),3,5,10,
15-hexaen-14-yl]benzoic acid) mediated H-bonds with Glu166, Ser144, and Gly143, re-
spectively. The docked view of compound 29 ((S)-4,5,9-trihydroxy-2-(hydroxymethyl)-9-
((2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)-tetrahydro-2H-pyran-3-yloxy) anthracen-
10(9H)-one) depicts that Glu166 and Phe140 mediated multiple H-bonds with the -OH moi-
eties of 29, and His41 mediated π–π interaction with this compound. The protein–ligand
interactions of 1–30 hits are tabulated in Table S10. The binding modes of compounds
depict that these compounds mainly bind at S1 and S2 subsites of the active site of Mpro;
however, His164 and Met165 of the S3 subsite, a few residues at the entrance of the active
site loop (near S1 subsite including Leu141 and Asn142), and some residues of domain
3 (including Arg188, Thr190, and Gln192) also play important roles in the binding of
compounds. Based on the pharmacokinetic profile, drug-likeness, and interaction analysis,
eleven compounds (1, 3, 6, 8, 10, 11, 12, 13, 17, 18, and 28) were considered to be good
inhibitors; thus, their dynamic behavior was studied by molecular dynamic simulation.
The docked orientations and 2D-structures of 11 hits are shown in Figure 1b–l. The chemical
structures of compounds 1–30 are shown in Figure S2.

2.5. Molecular Dynamic Simulation

2.5.1. Convergence of Mpro Free and Inhibited States

The X-ray structure of Mpro (PDB code: 6W79, reported by Mesecar et al. [47]) in
complex with the broad-spectrum non-covalent inhibitor (X77) was selected for MD simu-
lation as a positive control. The dynamic behavior and structural stability of Mpro in the
apo form and inhibited states were analyzed through molecular dynamic simulation. The
stability of all the complexes was analyzed by calculating the RMSD (alpha carbon, Cα)
of all the complexes from the output generated trajectories after 100 ns. The apo–Mpro

(Figure 2) was stable during the simulation except for the fraction between 96 and 100 ns.
The apo–Mpro showed an acceptable range of fluctuation and gained stability till 100 ns
(showed a smooth and straight graph). This behavior indicates that the free state of the
protein was stable. However, the reference complex, Mpro–X77, showed that the RMSD
gains equilibrium after 80 ns and is increased up to 100 ns. On the other hand, compound
1 formed several key interactions with the protein, and therefore showed a considerable
increase in the RMSD after 25 ns, which affected the overall stability of the complex. A
drastic deviation in the RMSD was observed from 20–80 ns during the simulation, whereas
the RMSD for the Mpro–compound 3 complex was found stable till 20 ns, excluding the
substantial convergence at the 25–45 ns period where the RMSD of the complex increased
significantly. Shortly after the increase in the RMSD, no convergence was seen. Similarly,
the Mpro–compound 6 complex depicted a major stability drift between 20 and 60 ns, while
the RMSD remained increased till 100ns. Interestingly, the Mpro–8 complex revealed a sub-
stantial convergence in the stability until the simulation time. At different levels, significant
convergence was observed in the RMSD of the Mpro–8 complex. The Mpro–10 complex
showed a small drift in the convergence at 80 ns; however, the system remained stable.
The Mpro–11 complex showed drastic shifts in the stability at several intervals of 15–25,
30–60, and 65–85 ns, which significantly affected the stability of the complex. Moreover,
the stability of the Mpro–12 complex was also affected due to a continuous increase in the
RMSD after 40 ns. In contrast, the Mpro–13 complex mediated friction between 30 and 40 ns;
however, it showed minimal effect on the system’s stability. Similarly, the RMSD of the
Mpro–17 complex was stable up to 50 ns; however, it increased at 50–60 and 75–90 ns. We
observed that the Mpro–8 complex depicted a rapid increase in the RMSD between 20 and
90 ns (and therefore destabilized the system); however, after a drastic increase, the RMSD
was stabilized after 90 ns. The Mpro–28 complex remained relaxed until 55 ns; however, the
RMSD was increased after 55 ns and remained elevated throughout the simulation. The
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sudden increase indicates the fluctuation in the stability of the complex. Altogether, the
results indicate that Mpro–3, Mpro–8, Mpro–11, Mpro–18, and Mpro–28 complexes attained
more variation as compared to the apo–Mpro, while Mpro–8, Mpro–11, and Mpro–28 com-
plexes were found unstable till the end of simulation and reached a maximum RMSD of
7 Å, 4 Å, and 3.9 Å, respectively, as compared to apo–Mpro and Mpro–X77 complex. During
the simulation, no destruction in the simulated complexes (both apo and ligand-bound
forms) was observed, which confirms the significance of the simulation. The RMSD graphs
of all the complexes are shown in Figure 2.

 
Figure 2. The RMSD plots of apo–Mpro and ligand-bound form of Mpro. The average RMSD of apo–Mpro and inhibited
Mpro was 2.8 Å and <3.9 Å, respectively.

2.5.2. Root Mean Square Fluctuation (RMSF)

RMSF was calculated to observe the fluctuation in different regions of Mpro upon
ligand binding during the simulation. The main purpose was to see the effects of ligand
binding on the flexibility of each residue of protein. The RMSF graphs of all complexes
and apo–Mpro are shown in Figure 3. The results show that compound 8 increased the
flexibility of all regions of the Mpro–8 complex as compared to the apo–Mpro, Mpro–X77
complex, and complexes of the rest of the selected hits from the in-house database. The
apo–Mpro showed the lowest RMSF as compared to the ligand-bound states, reflecting that
the protein is not very flexible in the un-ligated state. The average RMSF of all the systems
was found in the range of 1.5 Å. The Mpro–3, Mpro–8, Mpro–11, and Mpro–28 complexes
exhibited high flexibility, while the flexibility of Mpro–10 and Mpro–13 complexes was
low. The loops in the protein structure fluctuated the RMSF at different regions. The
Mpro–1, Mpro–6, Mpro–12, Mpro–17, and Mpro–18 complexes depicted lower flexibility due
to the differential dynamics upon ligand binding. The secondary structures with loops
are responsible for the fluctuation in the RMSF at different levels, justifying the residual
flexibility. The flexibility of complexes with the selected eleven hits varies as compared to
the apo–Mpro and X77-inhibited states (Figure 3).
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Figure 3. RMSF graphs of apo–Mpro, Mpro–X77, and Mpro in complex with selected hits. The RMSF of free state was in
range of 0.5 Å to 1.3 Å. Compound 8 attained highest RMSF (between 1.5 Å and 3.5 Å), while the complex with X77 showed
RMSF between 1.0 Å and 1.8 Å.

The total energy of the apo–Mpro was stable (energy = −5600 kcal/mol), while the
Mpro–X77 exhibited slightly lower energy (−5400 kcal/mol) as compared to apo–Mpro. The
Mpro–8, Mpro–11, Mpro–18, and Mpro–28 complexes revealed a similar energy pattern (in the
range of −5400 kcal/mol to −5200 Kcal/mol), whereas the Mpro–10 and Mpro–13 complexes
possess slightly higher total energy (between −5500 kcal/mol and −5700 kcal/mol) than
the apo–Mpro. The Mpro–1, Mpro–3, Mpro–6, Mpro–12, and Mpro–17 complexes showed
increased total energy ranging from −5600 kcal/mol to −5800 kcal/mol (Figure 4). The
inhibited states of Mpro shared similar patterns and variations as compared to the apo
form, therefore showing the effects of deviation on the structure of the protein created by
each inhibitor.

−
−

−
− −

− −

 

Figure 4. The difference of total energy of Mpro is shown in the apo–Mpro and inhibited states. The x-axis and y-axis depict
time (nanoseconds) and the total energy of the protein during the simulation (Kcal/mol), respectively.
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2.5.3. Protein Motions and Trajectories Clustering

The dynamic impact of eleven hits on the structure of Mpro is shown in Figure 5.
The structural changes in each complex due to the protein–ligand binding was observed
through principal component analysis (PCA). The significant dominant motions (Figure 5)
are shown in the first three eigenvectors, while the others indicated localized fluctuation.
In the apo–Mpro, a total of 48% of variances were contributed by the first three eigenvectors
to the total observed motion. Unlike the apo–Mpro, the inhibited states showed different
behavior of motion. In inhibited states, compounds 8 and 12 showed 60%, compounds
18, 1 and X77 reflected 57% and 55%, respectively, whereas compounds 6, 28, and 11
showed 52–50% of total motion. The total motion of compounds 3 and 17 was 40%, while
compounds 10 and 13 demonstrated least motion of 38% and 26%, respectively. These
structural behavior clearly demonstrated the structural rearrangement of the protein upon
ligand binding.

Figure 5. First 10 eigenvector fractions are shown. Each eigenvector contribution (in percentage, %) is acquired from
covariance matrix plotted against the corresponding eigenvector from MD trajectory of each complex.

The reliability of attributed motions was achieved by plotting the two initial eigen-
vectors of each trajectory against each other. During the simulation production run, the
flipping over conformation was shown by color blue to red. The dots represented each
frame from blue to red. To understand the conformational transformation of the complexes,
a 2D subspace was mapped from the trajectories using PC1 and PC2. Figure 6 clearly
shows that each complex acquired two conformational states on the subspace differentiated
by the colors (blue and red). The unstable conformational state (shown in blue) can be
easily separated in neared convergence to obtain a stable conformational state (shown in
red). Subsequently, the apo–Mpro showed more energetic conformation, while the inhibited
states showed stable energy conformation with different periodic jumps. The Mpro–X77
complex reflected very stable lower energy conformation as compared to apo–Mpro, while
the rest of the inhibitors followed the same pattern and acquired stability with lower
energy states.
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Figure 6. The PCA analysis of apo–Mpro and inhibited states of Mpro. Principal component 1 (PC1) and principal component
2 (PC2) were plotted against each other using the backbone carbon atoms.

2.5.4. Metastable to Native State Transition Pathway

The transition states of the apo–Mpro and inhibited Mpro complexes were studied
using the free energy landscape (FEL). The FEL plot was constructed from the first two
eigenvectors of the trajectory time to explore the transition mechanism from the metastable
state to the native state. The lowest energy states of each complex were examined to
investigate the structural changes. The apo–Mpro showed a significant change in the energy
states as compared to the inhibited states (represented by red, yellow, green, and blue in
Figure 7). The highest energy levels and the metastable stage in the plots are shown by
red and blue colors, respectively. The apo–Mpro was stable as compared to the inhibited
states because the red color (high energy state) is more prominent in the inhibited states
(X77, 1, 3, 6, 8, 10–13, 17–18, and 28). The compounds 3, 8, 6, 11, 18, and 28 showed the
highest transition states due to the interaction with the active site domain of Mpro. The
apo–Mpro acquired only one state with no energy barriers, and similarly, compound 13
showed a pattern like apo–Mpro due to the sliding of compound 13 from the active pocket
because of weak interactions. Moreover, compound 10 acquired two states with a stable
energy level for the maximum time (shown in yellow). The reference ligand, X77, remained
mostly in the high energy state, which confirmed the effect on the stability of the protein
structure due to the rearrangement of the bonds upon binding with X77. Figure 7 depicts
that the apo–Mpro remains in the green and yellow energy states, while ligand-inhibited
complexes are found in the high energy state (red) for most of the simulation time. The
inhibition of Mpro by the selected hits is evident by FEL, which clearly shows the structural
rearrangement of the protein upon binding with small drug-like molecules. The ligand-
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bound complexes (inhibited states) displayed more conformational transitions as compared
to the free state. Various metastable states showed conformational changes in the Mpro

structure in the ligand-inhibited complexes. The protein structure was ensembled at a
distinct nanosecond time scale. In Figure 7, the crucial areas in the structures are shown in
shaded form. The X and Y coordinates were obtained from the metastable states from all
the trajectories with their respective frame number and time (ns), which are tabulated in
Table 1.

 

Figure 7. The free energy landscape (FEL) of free state and inhibited states is shown. High and low
energy states are shown in distinct colors in the plot. The minimal, intermediate, and the high energy
states are presented in dark blue, yellow, and red, respectively. The time of the metastable states
(ns) and frame number is presented in green and purple, respectively. The metastable states and the
native structures of Mpro are depicted in cartoon model in blue and red, respectively.
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Table 1. The X and Y coordinates of metastable states with frame number and time (ns).

Complex Name X Coordinates Y Coordinates Frame No Time ns

Apo–Mpro 1.859 −0.699 3750 37.5
Mpro–X77 29.197 −20.599 9032 90.32

Mpro–1
−73.840 3.321 2052 20.52
−71.395 1.503 2151 21.51

Mpro–3
1.713 −50.468 5524 55.24
6.430 −46.903 5726 57.26

Mpro–6 34.503 34.145 8389 83.89

Mpro–8
7.810 45.191 5881 58.81

136.017 −19.440 9146 91.46
Mpro–10 28.891 3.061 7158 71.58

Mpro–11
−89.371 −31.716 1634 16.34
−86.385 −25.418 1737 17.37

Mpro–12 −54.007 −18.018 1135 11.35
Mpro–13 −29.833 3.606 3052 30.52

Mpro–17
27.298 −4.897 6648 66.48
33.972 −6.394 7047 70.47

Mpro–18 −91.981 0.876 1558 15.58
Mpro–28 37.636 −1.614 7546 75.46

2.5.5. Dynamic Cross-Correlated Map Analysis

The dynamic cross-correlation matrix (DCCM) was constructed to elaborate the func-
tional displacements of the protein’s interactive atoms as a function of time. The apo–Mpro

reflected more positive correlation motion during 100 ns of simulation, while the dominant-
negative correlation motion of the loop was observed. The inhibited Mpro demonstrated
variation in correlated motion, where maximum residues of the inhibited Mpro showed
positive correlation motion compared to the apo–Mpro. The correlation motion of all the
systems is graphically presented in Figure 8. The overall motions in each system are
dominated by the correlated motions. In the X77-inhibited Mpro, the β1 and β2 displayed
negative correlation motion and
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β4 regions acquired apparent positive correlation motion. The compounds 6, 10, and 13
showed similar patterns as compared to the apo–Mpro, while they displayed insignificant
positive correlation motion in
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and β4 regions of Mpro. Furthermore, compound 28 showed a weak negative correlation
motion in β1 and
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1 regions, and slight positive correlation motion at β4. Hence, the
internal dynamics of the protein have substitution effects upon ligand binding with the
protein. The results indicate that dynamic variability and conformational changes were
caused by small inhibitors, therefore revealing the affinity of ligands toward Mpro.
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Figure 8. The DCCM plot of apo– and inhibited states of Mpro is shown. The positive (green, yellow, and red) and the
negative correlation motion (dark blue, light blue, and cyan) are shown in different colors. The incline in color (from one to
another) indicates a slow decline in the correlation motion.

2.5.6. Binding Free Energy Calculations

The binding free energy of each ligand was estimated to quantitatively compare the
energy differences of the selected hits (from the in-house database) with X77. The binding
free energy was computed from the last 1000 frames of the 100 ns of MD trajectory. MM-
GBSA analysis was performed for each system by calculating each contributing energy,
such as van der Waals (∆VDW), total electrostatic energy (∆EET), polar and non-polar
contributions (∆EGB), and non-polar solvation energy (SASA) (Table 2). The MM-GBSA
results showed variation in energies among X77 and the eleven molecules. The effect is
high in terms of total and electrostatic energies. The reference inhibitor, X77, exhibited
∆VDW (−46.7396 Kcal/mol), ∆EEL (−7.2011 Kcal/mol), ∆EGB (22.3537 Kcal/mol), and
∆SASA (−5.6612), with the total energy (∆GTOTAL) of −37.2483 Kcal/mol, while com-
pounds 11 and 28 reflected total energies of −33.6485 and −33.6723 Kcal/mol, respectively,
which varies slightly from X77, with a decrease in the ∆VDW (compound 11 = −39.9829,
comp. 28 = −41.1238 Kcal/mol) and an increase in the ∆EEL (compound 11 = −15.1839,
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compound 28 = −7.7362 Kcal/mol). Both 11 and 28 exhibited the highest binding free
energy among the eleven hits. Furthermore, compounds 3, 8, and 18 showed ∆GTOTAL
of −26.9034 Kcal/mol, −26.5848 and −24.7101 Kcal/mol, respectively, which reflects
the good affinity of these compounds for Mpro. Compounds 1, 3, and 17 also showed
appropriate binding potential with Mpro by making stable complexes with ∆GTOTAL of
−22.7848 Kcal/mol, −22.9067 Kcal/mol, and −22.0295 Kcal/mol, respectively. How-
ever, compounds 10 and 13 reflected the lowest total binding free energies (compound
10 = −6.4968 Kcal/mol and 13 = −9.4012 Kcal/mol) due to poor binding interactions
within the active site of Mpro.

Table 2. The MMGBSA analysis of X77 and eleven hits for Mpro.

Complex
Name

Kcal/mol

∆VDW ∆EEL ∆EGB ∆SASA ∆G TOTAL

Mpro–X77 −46.7396 −7.2011 22.3537 −5.6612 −37.2483
Mpro–1 −27.9473 −11.8236 20.6925 −3.7064 −22.7848
Mpro–3 −36.3657 −28.7266 43.2732 −5.0843 −26.9034
Mpro–6 −34.5680 −15.4295 31.3375 −4.2467 −22.9067
Mpro–8 −41.0277 −15.6216 36.141 −6.0766 −26.5848

Mpro–10 −10.8292 −5.7753 11.5464 −1.4387 −6.4968
Mpro–11 −39.9829 −15.1839 25.9731 −4.4549 −33.6485
Mpro–12 −25.5687 −13.1445 22.4730 −3.8878 −20.1279
Mpro–13 −15.3599 −5.7322 13.8263 −2.135 −9.4012
Mpro–17 −25.1406 −18.6810 25.3125 −3.5204 −22.0295
Mpro–18 −33.2958 −9.3268 22.2269 −4.3144 −24.7101
Mpro–28 −41.1238 −7.7362 19.6643 −4.4767 −33.6723

The ∆SASA energy of compound 8 was significantly higher than the Mpro–X77 com-
plex, indicating that 8 has greater impact on the structure of the protein. The total energies
of compounds 1, 3, 6, 8, 11–12, 17–18, and 28 indicate that these compounds exhibit in-
hibitory potential by specifically binding with the active site of the SARS-CoV-2 Mpro.

3. Materials and Methods
3.1. Preparation of Protein’s Structures for Docking

The re-docking and cross-docking experiments were carried out in order to examine
the efficiency of the docking method. For re-docking, twenty protein–ligand complexes
were taken from Research Collaboratory for Structural Bioinformatics Protein databank
(RCSB-PDB). The complexes were chosen based on good resolution (<2.5 Å, Table S11).
Only water molecules within the 3 Å of co-crystallized ligand molecule were retained
in the protein files, while the rest were removed. Moreover, other heteroatoms (other
than ligands) were also deleted from each file. The protein files were imported in MOE
interface [48], where proteins were prepared for docking by adding hydrogen atoms and
molecular charges using MOE Protonate 3D tool. Each protein was parameterized by MOE
Potential setup using Amber12:EHT force field.

Preparation of Compound Database for Docking

For re-docking and cross-docking, the ligands were extracted from the selected pro-
teins (Table S11), their atom types were corrected, hydrogen atoms were added and partial
charges were applied using MOE Potential setup (Amber12:EHT force field) [48,49]. Subse-
quently, each ligand was minimized with Amber12:EHT force field (eps = r, and Cutoff (8,
10)) with RMS gradient of 0.1kcal/mol/Å. Each ligand was imported into MOE database
for re-docking, cross-docking, and virtual screening experiments. For virtual screening, the
chemical entities were collected from our institute (Natural and Medical Sciences Research
Center, University of Nizwa, Oman) [50], which has a diverse set of compounds, originat-
ing from natural and synthetic sources. Virtual screening was conducted on our in-house
molecular database, comprising >800 chemical compounds. The structures of compounds
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in the library are given in SMILE format in the Supplementary Materials. Moreover, fifteen
known inhibitors (KIs) were also added in our in-house database as positive controls
(Table S11). The 3D-structure of each ligand (in mol2 format) was imported into MOE
compound database, where Wash module of MOE was used to add hydrogen atoms and
partial charges (based on Amber12:EHT force field) on each structure, and the structures
were minimized with the same parameters as discussed above.

3.2. Structure-Based Screening by Molecular Docking

After the preparation of protein and ligand files, molecular docking was performed by
Triangle Matcher docking algorithm and London dG scoring function [48,51,52]. The active
site/ligand binding site was defined on the co-crystallized ligand in each protein. For re-
docking, the ligands were extracted from each protein and re-docked in its cognate binding
protein (with the above-mentioned settings), and the results were quantified by calculating
root mean square deviation (RMSD) between the docked and X-ray conformation of
each ligand. Similarly, cross-docking was performed by docking all the twenty (extracted)
ligands in each of twenty proteins and results were examined by ranking (at top position) of
compounds in their native X-ray crystal structure. By default, thirty docked conformations
of each ligand were obtained. The virtual screening of in-house database was performed
on those PDB files that displayed good results in cross-docking experiment.

Analysis Measures and Conformational Sampling after Virtual Screening

The inhibitor with the most potential against SARS-CoV-2 Mpro was chosen after
virtual screening by consensus approach. The in-house library was docked in eight protein
structures individually. Later, each docked library was sorted based on the docking
score, and those compounds that were ranked mutually in ‘Top-100’ position in at least
50% of the structures were declared as potential ‘Hits’. The optimal binding modes of
the selected compounds were chosen through conformational sampling. The docked
orientation of each compound found analogous in all the proteins was considered as the
possible binding mode. The interactions of ligand were visualized by Protein–Ligand
Interaction Fingerprints (PLIF) [48] of MOE, which calculates several types of interactions
between protein and ligands including H-bonds, water-mediated protein–ligand bridging,
ionic interactions, surface contacts, metal ligation, and arene attraction in 2D format.

3.3. Prediction of Pharmacokinetic Properties

After virtual screening, the pharmacokinetic (ADMET: absorption, distribution, metabolism,
excretion, and toxicity) behavior of the selected compounds was studied through Swis-
sADME [37] and admetSAR [38], which predicts ADMET properties and drug-likeness of
small molecules by using physicochemical descriptors.

3.4. Molecular Dynamic Simulation

The atomic coordinates of PDB ID: 6W79 [47] were chosen for the molecular dynamic
simulation studies. Thirteen systems were generated for MD simulation, including apo
form of 6W79 (apo–Mpro), 6W79 in complex with co-crystallized ligand (Mpro–X77), and
6W79 in complex with docked conformations of eleven hits. The apo–Mpro and Mpro–
X77 complex were used as positive controls. The possible overlaps/clashes in the initial
structure were eliminated by minimizing the structure with 10,000 cycles of steepest
descent [53] (macromolecule was frozen), followed by 20,000 cycles of conjugate gradient
method [54]. LEaP module of AMBER20 [55] was used to add the missing hydrogen atoms.
To keep the systems neutral, counter-ions from OPC model [56] were added. A truncated
octahedral box of the OPC water model [57] was added to all the systems with a 10 Å buffer
(8 Å cut-off was used to compute the pairwise interactions, the van der Waals, and direct
Coulomb forces). Long-range electrostatic forces were treated with the particle mesh Ewald
(PME) algorithm [58]. The intermolecular interactions were calculated by ff19SB [59]. In
preparation runs, Langevin thermostat [60] was used with 1 ps−1 friction constant, while
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Berendsen thermostat [61] was used in the production runs. MD simulation was accelerated
using the PMEMD CUDA version in GPU cores. Before running MD production, all the
systems were heated for 400 ps, followed by equilibration of up to 2000 ps in the NVT
ensemble at 300 K. The conditions applied in the simulation of all systems are given in
Table 3.

Table 3. The conditions used in the molecular dynamics of apo– and inhibited states of Mpro.

S. No.
System Composition

(Complexes)
Temperature (K) Force Fields Water Model Time (ns)

1 Full length apo–Mpro 300 FF19SB Octahedral OPC 100
2 Mpro–X77 (6W79) 300 FF19SB+Gaff2 Octahedral OPC 100
3 Mpro–1 300 FF19SB+Gaff2 Octahedral OPC 100
4 Mpro–3 300 FF19SB+Gaff2 Octahedral OPC 100
5 Mpro–6 300 FF19SB+Gaff2 Octahedral OPC 100
6 Mpro–8 300 FF19SB+Gaff2 Octahedral OPC 100
7 Mpro–10 300 FF19SB+Gaff2 Octahedral OPC 100
8 Mpro–11 300 FF19SB+Gaff2 Octahedral OPC 100
9 Mpro–12 300 FF19SB+Gaff2 Octahedral OPC 100

10 Mpro–13 300 FF19SB+Gaff2 Octahedral OPC 100
11 Mpro–17 300 FF19SB+Gaff2 Octahedral OPC 100
12 Mpro–18 300 FF19SB+Gaff2 Octahedral OPC 100
13 Mpro–28 300 FF19SB+Gaff2 Octahedral OPC 100

3.4.1. Post-Dynamic Evaluation

The coordinates of all the simulated systems were extracted from the generated
trajectories after every 1 ps and analyzed by PTRAJ [62] module of the AMBER20. The
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), and radius
of gyration (Rg) of all the systems were calculated by CPPTRAJ module of AMBER20 on
Cα atoms via Equations (1)–(3).

RMSD =

√

∑
N
i=0[mi ∗ (Xi − Yi)2]

M
(1)

In RMSD calculation, N = the number of atoms, mi = the mass of atoms, Xi = the target
atom i vector coordinate, Yi = the reference atom i vector coordinate, and M = the total
mass.

RMSF(i) =
√

〈(xi − 〈xi〉)
2〉 (2)

The RMSF of selected atom i was calculated as: the atomic positions averages over the
total input frames (denoted by x).

Rg =

√

√

√

√

1
N

i=0

∑
N

(ri − rm)2 (3)

The Rg of N number of atoms was calculated: the atomic position was denoted by ri,
and the mean position was denoted by rm of all the atoms. The Altona and Sundaralingam
method [63] was used to calculate the five-membered ring pucker. Standard deviation
and averages were reported in the analysis utilities, with proper cyclic averages being
computed for periodic values (torsions). Furthermore, the total energy of all the systems
(apo– and inhibited states) was calculated.

3.4.2. MD Trajectories Unsupervised Clustering and Free Energy Landscape

Principal component analysis (PCA, focuses on matrix covariance) was used to demon-
strate atom movement and protein loop dynamics. The internal motions of the systems
were analyzed by PCA approach of CPPTRAJ. The atomic coordinates of eigenvectors
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and the positional covariance matrix were calculated. The orthogonal coordinate trans-
formation was used to obtain the eigenvalue diagonal matrix by the diagonalizing of the
matrix. The principal components were obtained based on eigenvalues and eigenvectors
to emphasize the motion of the atoms in MD simulation trajectories. The isolated first
principal components, PC1 and PC2, showing the largest variation in the data, were utilized
for the free energy landscape (FEL) using Equation (4) from 100 bins of the data population.
The energies were calculated in kcal/mol at 300 ◦K.

Gi = −KBT
(

Ni

NMax

)

(4)

where KB = Boltzmann’s constant, T = specified temperature, Ni = bini population, and
NMax = most populated bins. The artificial barrier population size of 0.5 was applied to the
bins with no population.

3.4.3. Dynamic Cross-Correlation Analysis (DCC)

The dynamic cross-correlation map (DCCM) method was used to obtain the Cα atom’s
time subordinate movements caused by the attachment of a small molecule (inhibitor) with
the protein. The correlation matrix was derived by observing the Cα atoms’ correlated and
anti-correlated motions of each system. DCCM was calculated by Equation (5).

Cij = 〈∆ri × ∆rj〉/(〈∆r2
i 〉〈∆r2

j 〉)
2

(5)

where Cij = time correlated data between the atoms i and j in a protein. We used 0.002 ns
interval to construct the matrix of Cα from the 10,000 snapshots. The positive and nega-
tive values indicate the correlated and anti-correlated motion during the MD simulation,
respectively, in the matrix plot.

3.4.4. MM/GBSA Free Energy Calculation

In MD simulation, free energy calculations give quantitative production of protein–
ligand binding energies. The binding energy (Gbind) was calculated by Equation (6).

Gbind = GR+L − (GR + GL) (6)

where GR+L represents the Mpro in complex with inhibitors, while GR and GL represent the
apo–Mpro and inhibited Mpro, respectively.

In the generalized born surface area (MM/GBSA) approach, each free energy term in
Equation (6) was calculated using Equation (7).

G = Ebond + EVDW + Eelec + GGB + GSA − TSS (7)

where Ebond represents bond angles and dihedral energy, Evdw and Eelec indicate the
contribution of van der Waals and electrostatic energy, respectively, while the related polar
and non-polar contribution of solvation energy are reported as GGB and GSA. T and Ss
show the absolute temperature of the system and the solute entropy, respectively.

The performance of the MMGBSA algorithm is based on the specificity of the forcefield
and inhibitor’s partial charges, the specificity of protein–inhibitor complex, MD simulation,
inner dielectric constant, and the docking pose number based on top scoring. Here,
the binding free energies of each system were calculated by MM/PB(GB)SA model of
GBSA. The solvent probe of 2 Å radius was used, and the radii were used to optimize the
topology files.

3.4.5. Data Analysis

The results were analyzed by MOE [48], UCSF Chimera [64], and Pymol [65]. The
average structures were extracted from structure ensembles of the lowest energy. All the
analysis graphs were plotted using Origin pro [66] and GnuPlot [67].
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4. Conclusions

The main protease or chymotrypsin-like protease of SARS-CoV-2 is considered to
be a potential anti-viral drug target. We have employed an efficient structure-based
virtual screening protocol to search for novel inhibitors of SARS-CoV-2. The binding
potential of several compounds was tested on multiple structures of Mpro, and consensus
strategy was applied to select the most promising binders. Based on the physiological and
pharmacokinetic behavior and protein–ligand binding pattern, eleven compounds were
identified as good inhibitors of Mpro. Therefore, the structural and dynamic behavior of
Mpro upon binding with those eleven compounds was further explored through molecular
dynamic simulation. Based on the MM-GBSA calculations, two compounds (11 and 28)
were retrieved with the highest binding affinities for Mpro, whereas six compounds (3, 8,
18, 6, 1, and 17) showed good binding affinities for Mpro. Based on our in silico findings,
we suggest that these compounds can inhibit the replication of SARS-CoV-2 by specifically
inhibiting its Mpro enzyme. Therefore, these compounds can act as potential anti-viral
candidates against SARS-CoV-2. However, further in vitro testing is required to confirm
these in silico results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14090896/s1, Table S1: Re-docking results of MOE, Table S2: The cross-docking analysis
of MOE, Calculation of Enrichment Factor (EF) and %EF, Table S3: % Enrichment Factor and AUC of
VS, Figure S1: The receiver operating characteristic (ROC) curve of MOE on eight proteins, Table S4:
Docking scores and rank of selected hits, Figure S2: The chemical structures of compounds 1–30, Table
S5: Physicochemical properties of selected hits (1–30), Table S6: Solubility of selected hits (1–30), Table
S7: Pharmacokinetic properties of selected hits, Table S8: Drug-likeness and medicinal properties of
selected hits (1–30), Table S9: The ADMET results of admetSAR server, Table S10: Interaction analysis
of selected hits (1–30), Table S11. Protein–ligand complexes used in re-docking and cross-docking.
The structures of compounds in the in-house library are given in SMILE format in the Supplementary
Materials.
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Abstract: In recent years, a number of machine learning models for the prediction of the skin
sensitization potential of small organic molecules have been reported and become available. These
models generally perform well within their applicability domains but, as a result of the use of
molecular fingerprints and other non-intuitive descriptors, the interpretability of the existing models
is limited. The aim of this work is to develop a strategy to replace the non-intuitive features by
predicted outcomes of bioassays. We show that such replacement is indeed possible and that as few
as ten interpretable, predicted bioactivities are sufficient to reach competitive performance. On a
holdout data set of 257 compounds, the best model (“Skin Doctor CP:Bio”) obtained an efficiency
of 0.82 and an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of
charge for academic research. The modeling strategies explored in this work are easily transferable
and could be adopted for the development of more interpretable machine learning models for the
prediction of the bioactivity and toxicity of small organic compounds.

Keywords: skin sensitization; toxicity prediction; in silico prediction; machine learning; random
forest; conformal prediction; bioactivity descriptors

1. Introduction

Substances that can induce allergic contact dermatitis after repeated contact to the
skin are called skin sensitizers [1,2]. In order to prevent the induction of skin sensitization,
exposure to skin sensitizers must be minimized [3–8]. The ability to detect and predict skin
sensitizers is therefore of significant importance for several sectors of industry to develop
safe and efficacious functional small molecules [9].

Until recent years, strategies to assess the risk of small molecules to induce skin sen-
sitization relied on animal experiments. Historically, an important animal experiment to
address skin sensitization potential is the guinea pig maximization test (GPMT), which was
used to determine the percentage of test animals that develop contact allergy symptoms
after repeated exposure to the test substance. Typically, a substance was classified as a
sensitizer if at least 15% of the guinea pigs developed allergic symptoms. The GPMT
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was later replaced by the murine local lymph node assay (LLNA) [10], an animal model
measuring the proliferation rate of cells in the draining lymph node in mice. The LLNA is
still regarded as the gold standard among the animal experiments to assess skin sensiti-
zation potential as it provides advantages concerning animal welfare (compared to other
animal models) and additional information to quantify the skin sensitization potency of
compounds (based on the EC3 value, defined as the substance concentration that induces a
3-fold stimulation of proliferation) [11,12].

Ambitious efforts are ongoing to fully replace animal experiments, and a diverse set
of alternative experimental and theoretical methods have been developed [13,14] to assess
skin sensitization potential and, to a limited degree, skin sensitization potency [15]. Among
others, these approaches include non-animal testing methods (i.e., in vitro and in chemico
assays) [16–19] and in silico methods [18–21].

Several OECD-validated non-animal testing methods address three out of four key
events of the adverse outcome pathway of skin sensitization induction: The first key event,
or molecular initiating event, describes the so-called haptenization, which is the covalent
binding of the substance to skin proteins or peptides. This is experimentally assessed by the
direct peptide reactivity assay (DPRA) [22]. The second key event, which is the activation
of keratinocytes [23], is covered by the KeratinoSens and LuSens assays, while the third key
event, which is the activation of the skin’s dendritic cells [24], is addressed, among others,
by the U937 cell line activation test (U-SENS) and the human cell line activation test (h-
CLAT). As all of these assays cover certain aspects of the adverse outcome pathway; none
of them is suitable as a standalone methodology for the prediction of the skin sensitization
potential of small molecules.

Computational methods that predict skin sensitization can be classified into expert
systems, similarity-based approaches, and (quantitative) structure–activity relationship
(QSAR) approaches [20]. These approaches offer fast predictions at low cost, enabling their
use also in early stages of research and development, where a large number of candidate
compounds may be under investigation. To be accepted as a component of regulatory risk
assessment, computational methods have to fulfill certain quality criteria. For example,
according to the OECD [25], a model should have a defined endpoint, an unambigu-
ous algorithm, a defined applicability domain, appropriate measures of goodness-of–fit,
robustness, and predictivity, and, if possible, a mechanistic interpretation.

No particular non-animal testing method or individual computational model has so
far yielded a level of performance, robustness, interpretability, and coverage to be accepted
as a standalone approach for skin sensitization prediction in the regulatory context. The
most promising strategy to advance alternative testing methods is the combination of ex-
perimental and computational tools [26] within defined approaches, integrated approaches
for testing and assessment (IATAs; for a review of IATAs and defined approaches see
Ref. [27]), or in “weight of evidence” considerations [28].

In our previous work [29], we presented Skin Doctor CP, a random forest (RF) model
for the prediction of LLNA outcomes for small molecules that complies with the above-
mentioned OECD principles to the furthest possible extent. The Skin Doctor CP model is
trained on a set of 1278 compounds annotated with binary LLNA outcomes (i.e., skin sensi-
tizer and skin non-sensitizer). To the best knowledge of the authors, this data set represents
the largest collection of high-quality LLNA data in the public domain at present. The data
set has been characterized regarding its composition and chemical space coverage [29]. The
RF model derived from this data set is wrapped into an aggregated Mondrian conformal
prediction (CP) framework, which ensures predictivity and robustness by a mathematically
founded measure of reliability [30–32]. More specifically, the CP framework guarantees an
observed prediction error of the model close to the error rate ε set by the user (this is as long
as the randomness assumption of the samples holds true; an assumption that is also made
for any classical machine learning model). The CP framework will only return a predicted
class membership for a substance if the prediction lies within the desired confidence level
1-ε. The measure of reliability offered by the CP approach can guide the use of Safety
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Assessment Factors of different levels and serve as a powerful, mathematically founded
alternative to applicability domain definitions [33].

Depending on the available data and computational capacities, different variants of
CP may be developed [34]. In the case of LLNA prediction, the data available for model
development are limited and imbalanced; hence, the use of an aggregated CP framework is
advised. The aggregated CP framework repeats the framework several times with different
proper training and calibration sets [35]. This reduces the variance in the model predictions
and allows every datapoint of the training set to be used for model development. It is
therefore best suited for modeling small data sets.

To address data imbalance in addition to data scarcity (such as in the case of the LLNA
data modeled in our previous study), the combination of the aggregated CP framework
with Mondrian CP is advised. Mondrian CP is tailored to describe imbalanced data as it
treats each of the classes independently and ensures the validity of their predictions [36–38].
This is especially beneficial in toxicity prediction, where the toxic class is usually the
minority class and therefore more difficult to predict [39].

In addition to the OECD requirement for a model to produce results with defined
reliability (which we address by using a CP framework), model interpretability is a further
key factor to consider. Model interpretability depends on the types of descriptors employed
in model building. Most of the existing models for the prediction of the skin sensitization
potential of compounds, including our Skin Doctor CP models, rely on molecular finger-
prints [29,40–42]. Interpreting these fingerprints can prove challenging, but in general,
some links between chemical patterns and the biological outcomes can be identified [43].

In an attempt to generate predictive models from physically meaningful (and hence
more intuitive) descriptors, we previously investigated the capacity of physicochemical
property descriptors to produce predictive models for the prediction of the skin sensitiza-
tion potential [44]. However, the models trained on physicochemical property descriptors
do not perform as well as those trained on molecular fingerprints, and their interpretation
is still challenging due to the high number of descriptors required to obtain models with
an acceptable performance.

Recent studies have shown that in silico models for the prediction of complex in vivo
endpoints can benefit from the inclusion of measured or predicted biological data (i.e.,
in vivo and/or in vitro data) into the feature set. More specifically, descriptive models
have been built on small sets of hand-picked biological descriptors relevant to the endpoint
of interest [45], as well as on large sets of screening data that may or may not be directly
related to the endpoint of interest [46–50]. There are several examples of in silico models,
nearest neighbor approaches in particular, that are trained on predicted bioactivities [51,52].
For example, the RASAR models [53] are RF models that predict nine health hazard end-
points (including the skin sensitization potential) based on the distances of a compound of
interest to its nearest active and inactive neighbors in reference data sets for 19 toxicological
outcomes. Another computational approach utilizes a reasoning framework to build an
information-rich network based on assay knowledge, assay data, and predicted bioactiv-
ities [54]. The visualization of this network can provide guidance to researchers for the
assessment of the safety profile of small molecules.

Recently, Norinder et al. [55] presented a CP framework that utilizes predicted bioactiv-
ities as input for in silico models for bioactivity and cytotoxicity prediction. This approach
has the advantage of improving a model’s predictivity by the use of bioactivity data with-
out the need to perform additional experimental testing for a compound of interest. A
similar methodological framework was successfully applied to three in vivo toxicological
endpoints (i.e., genotoxicity, drug-induced liver injury, and cardiological complications) by
some of us [56].

The aim of this work is to investigate the capacity of predicted bioactivities to produce
simple, interpretable machine learning models for the prediction of the skin sensitization
potential of small organic compounds without compromising on performance. In order
to reach this goal, we explored strategies to replace the molecular fingerprints (MACCS
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keys) used in Skin Doctor CP by a small set of predicted bioactivities. We selected these
predicted bioactivities using Lasso regression from a panel of 372 published CP models
for compound toxicity prediction [56] plus three new, additional models for assays of
direct relevance to skin sensitization (i.e., DPRA, KeratinoSens assay, and h-CLAT). The
final classifiers for the prediction of the skin sensitization potential of compounds were
trained on 1021 compounds. They utilize only 10 predicted bioactivity descriptors but
perform comparably to the Skin Doctor CP models. The best model (“Skin Doctor CP:Bio”)
is available free of charge for academic research purposes.

2. Materials and Methods
2.1. Data Sets and Data Processing

2.1.1. Binary LLNA Data

This work is based on the identical LLNA data set that was used for the development
of Skin Doctor CP [29]. The random split into a training set (80%) and a test set (20%)
was also preserved. The chemical structures were processed with a refined preprocessing
protocol that was developed by Garcia de Lomana et al. [56]. This protocol includes
the removal of solvents and salts, annotation of aromaticity, neutralization of charges,
and mesomerization. Substances containing (i) different components with non-identical
SMILES or (ii) fewer than four heavy atoms or (iii) elements other than H, B, C, N, O, F, Si,
P, S, Cl, Se, Br, and I were removed from the data set.

The use of the new structure preprocessing protocol led to the rejection of 7 compounds
of the training set (and none of the test set) because they do not fulfill the requirements
for molecules to be composed of at least one carbon atom and to consist of at least four
heavy atoms. The processed training set consists of 1021 compounds and the test set of
257 compounds.

2.1.2. Non-Animal Data on Skin Sensitization

For the calculation of additional bioactivity descriptors, chemical information, and
binary assay data for 194 compounds measured in the DPRA, 190 compounds measured
in the KeratinoSens assay and 160 compounds measured in the h-CLAT were collected
from Alves et al. [57]. The chemical structures were preprocessed following the proto-
col described above. Preprocessing resulted in the removal of one particular substance
(formaldehyde) that is present in all three data sets. The final KeratinoSens assay, h-CLAT,
and DPRA data sets comprised 189, 159, and 193 compounds, respectively.

2.1.3. Data for Chemical Space Analysis

In preparation for chemical space comparison, the 7030 cosmetics and 4036 agro-
chemicals included in the CompTox Chemicals Dashboard [58] and the 2509 approved
drugs included in DrugBank [59] were downloaded and processed following the protocol
described above. This resulted in a data set of 4488 cosmetics, 2433 agrochemicals, and
2227 approved drugs (the significant reductions are related to the fact that many of the
listed cosmetics and agrochemicals are either inorganic salts or without a defined molecular
structure).

2.2. Descriptor Calculation and Normalisation

A set of 750 bioactivity descriptors related to 375 predicted binary assay outcomes
was calculated for all compounds of the LLNA data set and the three reference data
sets (the number of bioactivity descriptors is double that of the predicted binary assay
outcomes because the predicted class probabilities of the active and the inactive class were
included in the descriptor set independently from each other). More specifically, class
probabilities for 372 bioactivity assays were calculated with aggregated Mondrian CP
models that we trained on bioactivity assay data collected from ToxCast [60], eMolTox [61],
the eChemPortal [62], and literature, following the identical protocol published by Garcia de
Lomana et al. [56]. In addition, predicted class probabilities for three assays relevant to skin
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sensitization prediction (i.e., DPRA, KeratinoSens assay, h-CLAT) were computed using
Mondrian CP models generated by applying the identical model generation framework
as described for the other assays [56] to the three corresponding data sets retrieved from
Alves et al. Prior to modeling, the standard scaler of the preprocessing module of scikit-
learn [63] was used (with default settings) to normalize all bioactivity descriptors. The
standard scaler was trained on the LLNA training set only and applied to the full LLNA
data set (training and test set). In addition, MACCS keys were calculated with RDKit
version 2020.09.1 [64] for all compounds in the LLNA data set.

2.3. Model Development

2.3.1. Aggregated Mondrian Conformal Prediction Modeling

In preparation for model generation, each training set was divided into a proper
training set (80%) and a calibration set (20%) by stratified random splitting utilizing the
train_test_split function of the Model_selection module of scikit-learn (data shuffling
was enabled prior to data set splitting). Then, a RF model was generated (with the
RandomForestClassifier function of scikit-learn; all parameters kept default, except for
n_estimators = 500 and random_state = 43) and applied to the corresponding calibration
and test set.

From the prediction probabilities obtained for the calibration set and the test set,
non-conformity scores (α-values) were calculated following Equation (1):

αi = 0.5 −
P̂(yi|xi)− maxy 6=yi

P̂(y
∣

∣xi)

2
(1)

where P̂(yi|xi) is the class probability for class i returned by the model, and maxy 6=yi
P̂(y|xi)

is the maximum class probability for any other class returned by the model.
The non-conformity scores of the calibration set were sorted class-wise (following the

Mondrian conformal prediction protocol), and the relative ranks of the non-conformity
scores of each compound of the test set in relation to these lists were retrieved as so-called
p-values.

Within the aggregated CP framework, the procedure was repeated for 20 times with
different stratified random splits into a proper training and calibration set, altering the
random state of the train_test_split function from 0 to 19. For every compound in the
test set, a p-value was derived during each run. The median over the p-values obtained
during all 20 runs was processed as the final p-value of the compound. The p-values denote
the probability of a compound belonging to the corresponding activity class. The model
assigns a compound to a specific activity class if the corresponding p-value exceeds the
selected error significance level ε.

2.3.2. Measurement of Model Performance

In this work, the classical performance measures (i.e., accuracy (ACC), Matthews corre-
lation coefficient (MCC) [65], correct classification rate (CCR), sensitivity (Sens), specificity
(Spec), negative predictive rate (NPV), and positive predictive rate (PPV)) are calculated
based exclusively on compounds that were assigned by the CP models to exactly one
activity class, i.e., “sensitizer” or “non-sensitizer”. This is to enable the application of
classic performance measures to CP and, at the same time, to ensure the comparabil-
ity of the classical performance measures and the results reported for classical non-CP
models elsewhere.

In contrast, the CP-specific performance measures (i.e., validity and efficiency) are cal-
culated for all models based on the full sets of compounds to fulfill the common definition
of these measures and enable the comparison with other CP models. Validity is defined as
the percentage of predictions that include the true class, independently of the prediction of
the other class (i.e., it includes “true” predictions as well as “both” predictions). A model is
deemed to be valid if the validity is close or equal to the expected value of 1-ε. Efficiency
can be understood as an equivalent to the term coverage for non-CP models. It is defined
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as the percentage of distinct predictions (i.e., predictions that predict exactly one class to
be true).

2.3.3. Feature Selection and Parameter Optimization

For feature selection (Figure 1), 10-fold cross-validation (CV) was performed on
the training set using the scikit-learn StratifiedKFold function (Model_selection module;
n_splits = 10, shuffle = True, random_state = 43).

ε

 

Figure 1. Schematic representation of the workflow for feature selection.

First, the relative importance of each feature within each fold of the CV was investi-
gated. Therefore, hyperparameters for a Lasso classifier were optimized by a 10-fold CV
within each fold of the outer CV. This was achieved with the scikit-learn LassoCV function
(Linear_model module; random_state = 43, cv = 10, max_iter = 3000, n_alphas = 200). The
optimized Lasso classifier was then used to obtain the Lasso coefficients of all bioactivity
descriptors within the corresponding fold. The relative importance of each descriptor was
calculated as the absolute value of the mean Lasso coefficient calculated over all folds of
the CV run.

Second, the optimum number of bioactivity descriptors for model generation was
determined. To do so, the 10-fold CV on the training data was repeated, this time without
feature selection with Lasso. Instead, a varying number of the most important bioactivity
descriptors (i.e., 1 to 66 descriptors; selected based on their coefficients obtained with Lasso)
were selected for model building. The mean performance during 10-fold CV in dependence
of the number of descriptors was used to select the number of features for the final model.

3. Results and Discussion
3.1. Identification of the Optimum Number of Bioactivity Descriptors for Model Building

In order to identify the most suitable number of bioactivity descriptors n for model
building, we investigated, within a 10-fold CV framework, the performance of models as a
function of the number of descriptors used (reflecting model interpretability/complexity).
Within each CV fold, we performed Lasso regression to rank the descriptors by their
corresponding Lasso coefficients (Table S1) and selected the n most important descriptors
for model building. In Figure 2, we show the improvement of model performance as more
bioactivity descriptors are added. In particular, for the first 10 descriptors, a steep increase
in MCC and efficiency is observed (see section “Measurement of model performance” of the
Methods for important information on how, and in particular on what data, the individual
performance measures are calculated). Beyond 10 descriptors, the improvements in model
performance are minor and reach a plateau at approximately 25 descriptors. This led us to
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the conclusion that models based on the 10 most relevant bioactivity descriptors offer the
best balance between model performance and complexity (Table 1). Validity is close to the
expected value of 1-ε for all the significance levels (i.e., ε = 0.05, 0.10, 0.20, and 0.30) and
numbers of descriptors (in this experiment, 1 to 66) investigated.

ε ε

 

𝜀 = 0.05 𝜀 = 0.10 𝜀 = 0.20𝜀 = 0.30
ε

ε

Figure 2. Mean performance of 10-fold CV as a function of the number of bioactivity descriptors
selected for model building at the significance level (A) ε = 0.05, (B) ε = 0.10, (C) ε = 0.20, (D)
ε = 0.30. The horizontal, dashed line indicates the validity expected from the selected significance
level ε; the vertical, dashed line marks the performance of models trained on 10 descriptors.

Table 1. Ten-fold CV Performance of Models Based on 10 Bioactivity Descriptors 1.

Error
Significance ε

Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.95 (0.03) 0.38 (0.06) 0.88 (0.06) 0.76 (0.12) 0.88 (0.05) 0.87 (0.08) 0.89 (0.08) 0.92 (0.06) 0.85 (0.11)
0.10 0.89 (0.03) 0.61 (0.06) 0.83 (0.05) 0.66 (0.10) 0.83 (0.05) 0.83 (0.10) 0.83 (0.08) 0.88 (0.07) 0.77 (0.09)
0.20 0.79 (0.05) 0.86 (0.04) 0.76 (0.06) 0.51 (0.12) 0.76 (0.06) 0.75 (0.09) 0.77 (0.08) 0.82 (0.07) 0.69 (0.07)
0.30 0.69 (0.07) 0.92 (0.03) 0.74 (0.06) 0.47 (0.11) 0.74 (0.06) 0.72 (0.08) 0.75 (0.07) 0.79 (0.06) 0.67 (0.06)

1 Standard deviation in parentheses.

3.2. Investigation of the Ten Most Relevant Bioactivity Descriptors

With 10 identified as the optimum number of bioactivity descriptors for model build-
ing, we reiterated the above-mentioned descriptor selection process on the full training set
and analyzed the relevance and biological meaning of the 10 descriptors with the highest
absolute Lasso coefficients averaged over the 10 folds of the CV (Table 2).
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The bioactivity descriptor ranked first by the Lasso model is the ToxCast assay “BSK
KF3CT ICAM1 down” (Lasso coefficient 0.074). This feature describes the expression
of ICAM1 in human keratinocytes. This ToxCast assay is observed to correlate with
predictions for other keratinocytes and foreskin assays from the ToxCast BSK family
(Kendall τ correlation coefficients between 0.77 and 0.79). The ICAM1 readout is also known
as CD54, which is a readout of the skin sensitization-related h-CLAT. The underlying model
shows good predictivity (validity = 0.80, efficiency = 0.83, MCC = 0.41 at the significance
level of 0.20) The nine further bioactivity descriptors all have similar Lasso coefficients,
between 0.036 and 0.051 (validities between 0.74 and 0.87; efficiencies between 0.51 and
0.87; MCCs between 0.30 and 0.98, respectively). Among these are the three assays that we
added to the descriptor set because of their direct relevance to skin sensitization: DPRA,
KeratinoSens assay, and h-CLAT. As expected, a direct correlation between a positive
outcome in any of these three assays and the probability of a compound being a skin
sensitizer is identified by the Lasso model. The fact that these assays do not show a
high correlation with any other bioactivity descriptors within our full set of descriptors
underlines the fact that these descriptors may add important additional information on
the skin sensitization potential of compounds. The models predicting these bioactivity
descriptors are built on comparably small data sets (<200 compounds). This is reflected by
a higher deviation of the significance of these models from the expected value of 0.80 at the
investigated significance level of 0.20, compared to the other models. The MCCs of these
models are between 0.30 and 0.54.

The ToxCast assay “ATG NRF2 ARE CIS up” describes the activation of NRF2 in
human liver cells. Being the fundamental concept of keratinocyte activation analysis via
KeratinoSens and LuSens assay, Nrf2 activation is known to play a vital role in the regula-
tion of cellular cytoprotective responses, metabolism, and immune regulation. Included
in the top-10 features are also the ToxCast assays “BSK 3C E-selectin down” and “BSK
4H uPAR down”, both of which describe inflammation-related biological processes in the
endothelium environment. As such, these assays might encode aspects of the immunologi-
cal response of the human body. “BSK 3C E-selectin down” correlates with other assays
associated with inflammation and immune reaction and which are often located in the
endothelium. While it shows a positive correlation with the skin sensitization potential
(which might indicate an activation of compounds or increased bioavailability), “BSK
4H uPAR down” is one out of only two bioactivity descriptors (among the top-10 fea-
tures) that show negative correlation with the skin sensitization potential. This assay may
therefore report processes involving the deactivation of a compound or the reduction of
its bioavailability.

The chromosome aberration assay may not be directly linked to skin sensitization, but
it may be relevant to the detection of reactive compounds. The feature is weakly correlated
with other assays that are linked to the detection of reactive molecules (e.g., mammalian cell
gene mutation assay or AMES mutagenicity assay). Chromosome aberration predictions
show no strong correlation with any other descriptors in the set of models.

3.3. Coverage of the Chemical Space Relevant to the Development of Cosmetics, Drugs
and Agrochemicals

In order to develop an understanding of to what extent the LLNA data set, which we
will use to develop the in silico models, represents drugs, cosmetics, and agrochemicals in
the feature space defined by the ten selected bioactivity descriptors, a principal component
analysis (PCA) was performed on the LLNA data set and the reference sets. As shown in
the PCA scatter plot in Figure 3 (PCA loadings plot provided in Figure S1), the LLNA data
set covers well the areas in feature space populated by cosmetics, approved drugs, and
agrochemicals.
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Figure 3. PCA quantifying the coverage of the LLNA data by the reference sets of (A) cosmetics, (B) approved drugs, and
(C) agrochemicals in the feature space of the 10 selected bioactivity descriptors. The percentages in parentheses report the
variance explained by the respective principal component (PC).

3.4. Analysis of the Distribution of Sensitizers and Non-Sensitizers in the Feature Space of the Ten
Selected Bioactivity Descriptors

To investigate the distribution of sensitizers and non-sensitizers within the feature
space of the ten selected bioactivity descriptors, another PCA was performed, this time
exclusively on the compounds of the LLNA data set (Figure 4). Three characteristic areas
can be identified in the scatter plot resulting from this PCA (Figure 4A): Area 1, covering
mainly sensitizers; Area 2, covering mainly non-sensitizers; and Area 3, showing intense
mixing of sensitizers and non-sensitizers.

 

Figure 4. LLNA data set analyzed by PCA in the feature space of the ten selected bioactivity descriptors. (A) Scatter plot
colored by the binary skin sensitization potential; (B) loadings plot of the ten descriptors. The percentages in parentheses
report the variance explained by the respective principal component (PC). Note that the axis sections differ for panels (A,B).

The corresponding loadings plot (Figure 4B) places the bioactivity descriptors for
the three skin sensitization assays (h-CLAT, DPRA, and KeratinoSens assay) and the
chromosome aberration assay in quadrant 2 (upper left). All four of these assays contribute
positively to PC2 and, to a lower degree, negatively to PC1. Since a positive outcome
in one or several of the skin sensitization assays should be correlated with a positive
skin sensitization potential, this is in agreement with the PCA scatter plot showing a
high accumulation of sensitizers in the upper left region. Since a positive outcome in the
chromosome aberration assay is likely correlated with a reactive compound, it is also within
the expectations that it will shift a compound towards this Area 1 in the PCA scatter plot.
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For the remaining six bioactivity descriptors, higher PC1 and PC2 values are expected
for compounds that are active in the corresponding assay. Thus, all ten bioactivity de-
scriptors contribute positively to PC2. This means that every compound predicted to be
positive in those bioactivity assays is moved towards Area 1 or 3 in the scatter plot. This
comes along with the increased probability of a compound to be a skin sensitizer (i.e., to be
located in Area 1). At the same time, every negative predicted assay outcome moves the
compound towards Area 2, where we mainly expect non-sensitizers to be located, or Area
3, where no prevalence in activity is detected. This positive contribution to PC2 is higher
for KeratinoSens, DPRA, chromosome aberration, h-CLAT, and ATG NRF2 than for the
other five bioactivity descriptors. In Area 3, we observe intense mixing of skin sensitizers
and non-sensitizers, hence posing a significant challenge to classification.

3.5. Model Based on Ten Selected Bioactivity Descriptors

Following the identification of the optimum model setup, a final, aggregated Mondrian
CP model based on the ten selected bioactivity descriptors was derived from the full
training set and evaluated on the holdout data set. From here on, we refer to this model as
the SkinDoctor CP:Bio model.

3.5.1. Performance on the Test Set

Within the standard deviation expected from CV, the SkinDoctor CP:Bio model was
valid at all four significance levels investigated (Table 3). The efficiencies of the model
ranged from 0.39 to 0.95 and the MCCs ranged from 0.72 to 0.49, depending on the
significance level.

Table 3. Performance of the model based on ten selected bioactivity descriptors on the test set.

Error Significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.95 0.39 0.86 0.72 0.86 0.84 0.88 0.88 0.84
0.10 0.89 0.56 0.81 0.62 0.81 0.85 0.77 0.88 0.74
0.20 0.81 0.82 0.76 0.53 0.77 0.80 0.74 0.83 0.69
0.30 0.70 0.95 0.74 0.49 0.75 0.78 0.72 0.82 0.67

Class-wise performance analysis (Table 4) showed that the SkinDoctor CP:Bio model
was valid for sensitizers and non-sensitizers at all significance levels investigated. The
largest difference in validity between the two classes (0.08) was observed at the significance
level of 0.30. Efficiency was in general similar for both classes (largest difference 0.04).

Table 4. Class-wise performance of the model based on ten selected bioactivity descriptors on the
test set.

Error Significance ε Class Validity Efficiency

0.05
Non-sensitizer 0.95 0.38

Sensitizer 0.93 0.41

0.10
Non-sensitizer 0.87 0.55

Sensitizer 0.92 0.58

0.20
Non-sensitizer 0.79 0.82

Sensitizer 0.83 0.82

0.30
Non-sensitizer 0.67 0.94

Sensitizer 0.75 0.95

3.5.2. Comparison of the New Model with the Skin Doctor CP Model

The previously developed Skin Doctor CP model [29] is trained on MACCS keys
(166 features), whereas the Skin Doctor CP:Bio model is trained on ten selected bioactivity
descriptors. All other differences in the data and protocols used for model building and
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testing are minor (Table S3), thus enabling a direct, comparative assessment of the two
feature types and their impact on model performance and behavior.

On the holdout data set of 257 compounds measured in the LLNA (none of these
compounds is part of the training set of either model), both the Skin Doctor CP model and
the Skin Doctor CP:Bio model were valid at all significance levels investigated. For the sake
of clarity, we focus our discussion here on the commonly applied significance level of 0.20;
performance data on all significance levels are provided in Table S4. At the significance level
of 0.20, the Skin Doctor CP and Skin Doctor CP:Bio models yielded validities of 0.82 and
0.81, respectively. The efficiencies (0.78 vs. 0.82) and MCCs (0.55 vs. 0.53) obtained for the
Skin Doctor CP and Skin Doctor CP:Bio models were also comparable. The differences in
performance between the two models are slightly above the standard deviation observed
for the 10-fold CV experiments but small enough to consider the performance of the two
models similar.

3.6. Combination of Bioactivity Descriptors with MACCS Keys in an Attempt to Improve
Model Performance

MACCS keys encode structural patterns of molecules and thus information that is
very different from that encoded by the bioactivity descriptors. The use of MACCS keys in
combination with the ten selected bioactivity descriptors could hence yield better models.
However, a RF model derived from the combined set of MACCS keys and the ten selected
bioactivity descriptors (n_estimators = 500; all other parameters default) did not yield
better performance on the test set.

Therefore, we generated a model trained exclusively on MACCS keys plus a model
trained exclusively on the ten selected bioactivity descriptors (both models with
n_estimators = 500; all other parameters default), and, based on a simple set of rules
(see Figure 5), combined both models to form a consensus model. This set of rules follows
the idea that only unambiguous predictions by the single models (i.e., predictions assigning
a compound to exactly one class) are considered. If one model returns an unambiguous
prediction or if both models return an unambiguous prediction and are in agreement, the
unambiguous prediction is reported as the final result. In all other cases, the consensus
model does not return a prediction.

 

ε

ε

Figure 5. Architecture of the consensus model.
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Table 5 reports on the performance of this consensus model at different error signifi-
cance levels. Note that because the consensus model does not fulfill the definitions of a
pure CP model, validity and efficiency cannot be calculated for this model.

Table 5. Performance of the consensus and the combined models on the test set.

Consensus Model Based on a Set of Rules

Error significance ε
1 Coverage ACC MCC CCR Sens Spec NPV PPV

0.05 0.51 0.86 0.72 0.86 0.84 0.88 0.88 0.84
0.10 0.71 0.79 0.59 0.80 0.83 0.77 0.88 0.70
0.20 0.89 0.77 0.54 0.78 0.82 0.73 0.85 0.68
0.30 0.83 0.78 0.56 0.79 0.85 0.72 0.88 0.68

Combined Model Based on Mean p-Values

Error significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.97 0.24 0.89 0.77 0.89 0.92 0.86 0.94 0.82
0.10 0.93 0.46 0.86 0.72 0.87 0.94 0.80 0.95 0.76
0.20 0.82 0.79 0.77 0.56 0.78 0.85 0.72 0.87 0.69
0.30 0.71 0.95 0.75 0.50 0.76 0.80 0.72 0.84 0.66

1 Error significance of the underlying model, not of the combined model itself.

When running the two CP models underlying the consensus approach at a significance
level of 0.20, the consensus approach reached a coverage of 0.89 and an MMC of 0.54. Hence,
compared to the Skin Doctor CP:Bio model (efficiency 0.82 and MCC 0.53 at a significance
level of 0.20), the consensus model obtained only slightly better coverage while maintaining
the MCC.

A second, combined, model was constructed by averaging the p-values returned for
each class by the model based on MACCS keys and the model based on bioactivity descrip-
tors. The model was valid to over-predictive at the four significance levels investigated. At
the significance level of 0.20, the validity was 0.82. The efficiency at this significance level
was 0.79 (vs. 0.82 for the Skin Doctor CP:Bio model) and the MCC was 0.56 (vs. 0.53 for
the Skin Doctor CP:Bio model). Hence, compared to the Skin Doctor CP:Bio model, this
combined model obtains a slightly higher MCC, at the cost of efficiency.

In order to obtain a better understanding of the advantages and disadvantages of the
two combined models over the single models, we investigated the relationship between
classification performance (MCC) and coverage. From Figure 6, it can be seen that the
combined models tend to obtain better MCC values at a given coverage than the single
models. At higher coverages, the combined model based on averaged p-values has slightly
better MCCs than the combined model based on the set of rules. A further advantage of
the combined model based on p-value averaging is that users can select a confidence level;
this is not possible with the combined model based on the set of rules.

Overall, the p-value averaging approach seems to be preferable over the rule-based
approach. Compared to the single model (i.e., the Skin Doctor CP:Bio model), the advan-
tages of the combined approach with respect to performance are outweighed by the fact
that the single model has much lower complexity and, hence, better interpretability.
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Figure 6. Relationship between MCC and coverage for the individual and the combined models.

3.7. Investigation of the Influence of Experimental Skin Sensitization Assay Results on Predictivity

Feature selection with Lasso and the RF algorithm identified the three bioactivity de-
scriptors derived from the three skin sensitization-specific assays (i.e., DPRA, KeratinoSens
assay, h-CLAT) as important for modeling the LLNA. In order to obtain a better under-
standing of the role and significance of these three bioactivity descriptors, we investigated
them from different perspectives.

First, we determined the (5-fold) CV performance of the CP models for the DPRA,
KeratinoSens assay, and h-CLAT descriptors on the (i) 194 compounds measured in the
DPRA, (ii) 190 compounds measured in the KeratinoSens assay, and (iii) 160 compounds
measured in the h-CLAT. The KeratinoSens and h-CLAT models (Table 6) were valid at a
significance level of 0.2 (validities of 0.82 and 0.87, respectively) while the DPRA model
showed a slight underperformance (validity 0.74). The efficiencies of the models were fairly
low (0.51 to 0.71) in comparison to most of the other CP models for bioactivity prediction.
We assume that the low efficiency is related to the fact that the training sets for these
CP models are small (<200 compounds). The other evaluated performance measures are
within expectations (e.g., MCC between 0.30 and 0.54). Overall, we conclude from these
results that the predicted assay outcomes from these three models could make a substantial
contribution to models predicting the skin sensitization potential.

Table 6. Five-fold CV performance of the CP models for DPRA, KeratinoSens assay, and h-CLAT at the significance level
of 0.20 1.

Assay to be
Predicted

No. Compounds
in Data Set Validity Efficiency ACC ACC

(Sensitizers)
ACC (Non-
Sensitizers) F1 Score MCC

DPRA 194 0.74 (0.09) 0.71 (0.14) 0.64 (0.07) 0.60 (0.06) 0.69 (0.20) 0.64 (0.07) 0.30 (0.18)
KeratinoSens 190 0.82 (0.11) 0.51 (0.08) 0.67 (0.19) 0.66 (0.24) 0.68 (0.23) 0.64 (0.19) 0.31 (0.35)

h-CLAT 160 0.87 (0.03) 0.56 (0.56) 0.78 (0.05) 0.76 (0.15) 0.75 (0.29) 0.74 (0.06) 0.54 (0.08)
1 Standard deviation in parentheses.

Second, we investigated (by 10-fold CV on the full LLNA data set) whether the high
importance attributed by Lasso to the skin sensitization-specific assays could be a result of
overlaps in the training or test data of the LLNA model (SkinDoctor CP:Bio model) and
the training data of the DPRA/KeratinoSens assay/h-CLAT models. For the overlapping
compounds, the p-values used as bioactivity descriptors should be accurate (since the
experimental value of the in vitro assays is known) and therefore more informative. In
order to investigate this, we determined the performance of the SkinDoctor CP:Bio model in
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dependence of the number of compounds overlapping between the LLNA data set (i.e., the
test data within each fold) and the training data of the DPRA/KeratinoSens assay/h-CLAT
models. We found that six compounds of the LLNA data set were present also in exactly
one of the DPRA/KeratinoSens assay/h-CLAT training sets, 45 compounds were present
in exactly two of these assays, and 132 compounds in each of these three assays. Note that
the number of compounds present in the LLNA data set and in exactly one of the three
non-animal assay data sets is too low to make any meaningful observations, for which
reason this case was not further pursued. For the remaining two subsets of compounds,
the performances of the models were comparable to each other as well as to the subset
containing the compounds that are not present in any of three assay data sets (Table 7).
For this reason, we are confident that the importance attributed to the predicted DPRA,
KeratinoSens assay, and h-CLAT outcomes is genuine and not a result of a bias in the data.

Table 7. Performance of the SkinDoctor CP:Bio model during 10-fold CV on the full LLNA data set in dependence of the
number of skin sensitization assays for which experimental data are available.

Error
Significance ε

Validity Efficiency MCC Validity Efficiency MCC Validity Efficiency MCC

For Compounds Exclusive to the
LLNA Data Set

For Compounds Present in the LLNA Data Set Plus Exactly
Two Three

of the DPRA/KeratinoSens Assay/h-CLAT Training Sets

0.05 0.97 0.33 0.77 0.98 0.44 0.79 0.98 0.45 0.77
0.10 0.91 0.56 0.64 0.96 0.62 0.74 0.93 0.65 0.67
0.20 0.81 0.83 0.52 0.91 0.84 0.66 0.86 0.81 0.51
0.30 0.69 0.94 0.45 0.82 0.93 0.68 0.73 0.93 0.42

Third, we tested the capacity of a model trained only on DPRA, KeratinoSens assay,
and h-CLAT assay data to predict the outcomes of the LLNA. This experiment is particularly
interesting because a number of existing in silico models for the prediction of the skin
sensitization potential are trained exclusively on data from these three assays [66–68].

In five-fold CV, our CP model trained exclusively on DPRA, KeratinoSens assay, and
h-CLAT assay data descriptors (n_estimators = 500; all other parameters default) was valid
at all error significance levels investigated (Table 8), but its efficiency (0.21 at ε = 0.05;
0.88 at ε = 0.30) and MCC (0.48 at ε = 0.05; 0.37 at ε = 0.30) were substantially lower than
those of the CP model derived from the ten selected bioactivity descriptors. These results
indicate that the bioactivity descriptors derived from other assays add relevant, additional
information to the models that is needed to obtain good classifiers.

Table 8. Test set performance of the classifier trained exclusively on predicted values of the DPRA, KeratinoSens and
h-CLAT assays.

Error Significance ε Validity Efficiency ACC MCC CCR Sens Spec NPV PPV

0.05 0.94 0.21 0.71 0.48 0.72 0.92 0.52 0.88 0.63
0.10 0.90 0.40 0.75 0.51 0.76 0.82 0.69 0.84 0.67
0.20 0.80 0.70 0.72 0.44 0.72 0.76 0.69 0.81 0.61
0.30 0.72 0.88 0.68 0.37 0.69 0.71 0.66 0.78 0.59

3.8. Impact of the Limitation of the Available Experimental Data on Model Performance

Most of the freely available models for the prediction of the skin sensitization potential
of small molecules are trained on LLNA data, and the evaluation reports for many of these
models indicate that their performance is comparable [29,40,44,57]. It is plausible that the
observed plateauing of model performance is related to the limited quantity and quality of
the data available for model development. In order to investigate whether our classifiers
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could benefit from additional LLNA data, we investigated the relationship between model
performance and the size of the training data.

As expected, and shown in Figure 7, the performance of models increases with the
number of training instances, regardless of the type of descriptors used. The MCCs of the
models based on bioactivity descriptors improve from an average of 0.41 to an average of
0.50, respectively. Consistent with our initial CV experiments, the use of more than ten
bioactivity descriptors yields minor improvements in model performance that we believe
are outweighed by higher model complexity.

ε

 
Figure 7. Performance of the RF classifier (n_estimators = 500; all other parameters default) underly-
ing the CP model as a function of the number of instances the model was trained on.

The MCC of the model based on MACCS keys improves from 0.28 (when trained on
115 compounds) to 0.47 (when trained on 1150 compounds), indicating that the models
trained on MACCS keys require substantially more training data than the models trained on
bioactivity descriptors to obtain good performance. In this particular case, the MACCS keys
model reaches a comparable performance to the model based on bioactivity descriptors
only when all the available LLNA data are used for modeling. This leaves the MACCS keys
model clearly more data-hungry than the models based on predicted bioactivities, with
the benefit of showing the potential to surpass the model based on predicted bioactivities
given the availability of sufficient amounts of data.

4. Conclusions

In this work, we report on the development and validation of a new machine learning
model for the prediction of the skin sensitization potential of small organic molecules: Skin
Doctor CP:Bio. Whereas the previously reported models are mostly based on molecular
fingerprints (which in general are difficult to interpret), Skin Doctor CP:Bio utilizes just
ten bioactivity descriptors to reach competitive performance. Most of these bioactivity
descriptors are known to be directly or indirectly linked to skin sensitization, which adds
to the interpretability of the model and supports its meaningfulness.

At the significance level of 0.20, Skin Doctor CP:Bio obtained an efficiency of 0.82 and
an MCC of 0.53 on the holdout data set of 257 compounds. These results demonstrate
the good performance of the model and, hence, the relevance of the selected bioactivity
descriptors. Analysis of the LLNA training data projected into the new feature space
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proves that cosmetics, drugs, and agrochemicals are well embedded in the data, hence
corroborating the relevance of the model to different industries.

In an attempt to further improve model performance and coverage, we explored
different strategies to exploit the information contained in molecular fingerprints (MACCS
keys) and biological descriptors. The models obtained from these experiments showed
minor improvements in performance that are outweighed by the costs of higher model
complexity and limited interpretability.

An important observation to make was that models based on MACCS keys are clearly
more data-hungry than models based on predicted bioactivities. Only when using all of the
available LLNA data, the model based on MACCs keys was able to catch up with the model
based on predicted bioactivities. This highlights the relevance of the presented approach
to the development of strategies to address the many questions in biology, pharmacology,
and toxicology where measured data are scarce. We believe that the modeling strategies
presented in this work could be easily adopted to address many of these research questions.
The Skin Doctor CP:Bio model is available free of charge for academic research purposes.
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Abbreviations

ACC accuracy
CCR correct classification rate
CP conformal prediction
CV cross validation
DPRA direct peptide reactivity assay
GPMT guinea pig maximization test
h-CLAT human cell line activation test
IATA integrated approach for testing and assessment
LLNA local lymph node assay
MCC Matthews correlation coefficient
NPV negative predictive rate
PC principal component
PCA principal component analysis
PPV positive predictive rate
(Q)SAR (quantitative) structure activity relationship
RF random forest
Sens sensitivity
Spec specificity
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Abstract: Methods for dimensionality reduction are showing significant contributions to knowledge
generation in high-dimensional modeling scenarios throughout many disciplines. By achieving a
lower dimensional representation (also called embedding), fewer computing resources are needed
in downstream machine learning tasks, thus leading to a faster training time, lower complexity,
and statistical flexibility. In this work, we investigate the utility of three prominent unsupervised
embedding techniques (principal component analysis—PCA, uniform manifold approximation
and projection—UMAP, and variational autoencoders—VAEs) for solving classification tasks in the
domain of toxicology. To this end, we compare these embedding techniques against a set of molecular
fingerprint-based models that do not utilize additional pre-preprocessing of features. Inspired by
the success of transfer learning in several fields, we further study the performance of embedders
when trained on an external dataset of chemical compounds. To gain a better understanding of
their characteristics, we evaluate the embedders with different embedding dimensionalities, and
with different sizes of the external dataset. Our findings show that the recently popularized UMAP
approach can be utilized alongside known techniques such as PCA and VAE as a pre-compression
technique in the toxicology domain. Nevertheless, the generative model of VAE shows an advantage
in pre-compressing the data with respect to classification accuracy.

Keywords: manifold learning; machine learning; rdkit; embeddings; Tox21; principal component
analysis; autoencoder

1. Introduction

Chemical (or molecular) representation is an important topic in cheminformatics [1]
and quantitative structure–activity relationships (QSARs), as QSAR model quality depends
largely on the predictive features defined by the task at hand, i.e., mapping a feature space
(X) onto a target chemical or biological activity (y). Besides using molecular descriptors,
which are numerous and sometimes hard to explain [2], the development of deep learn-
ing [3–5] and big data [6–9] gave rise to the utilization of various representations such as
molecular fingerprints [10] and NLP-based methods like Mol2Vec [11]. With the advent
of graph neural networks, researchers also started to learn from molecular images them-
selves [12]. More and more researchers are utilizing diverse representations to compare
and find suitable features for solving the modeling problem [13–16] as no single feature
set appears to be the optimal one. Hence, sometimes, combinations of features are also
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utilized [16]. Another difficulty in machine learning (and consequently cheminformatics)
is the so-called curse of dimensionality, a term coined by Richard Bellman [17], which
refers to various problems that arise when working with high-dimensional data (such
as fingerprints) including increased chances of overfitting and spurious results. With
high dimensionality, distances and densities (such as neighborhoods) might no longer be
representative [18]. A well-established strategy, besides feature selection, to cope with
this issue is dimensionality reduction, i.e., transforming the data into a low-dimensional
space such that the resulting low-dimensional representation preserves certain proper-
ties of the original data. Such an approach has proven to be highly useful for numerous
downstream machine learning tasks like classification [19], anomaly detection [20], and
recommender systems [21]. Generally speaking, algorithms for dimensionality reduction
can be categorized into three main groups, namely, matrix factorization, neighbor graphs,
and deep learning-based approaches. Matrix factorization algorithms include approaches
such as latent Dirichlet allocation [22], non-negative matrix factorization [23], and linear
autoencoders [24]. However, the most commonly used approach is principal component
analysis (PCA) [25]. It is founded on eigenvalue and eigenvector decomposition of sym-
metric semipositive definite matrices, and hence constitutes a clean linear orthogonal basis
transformation to maximize variance explanation of both samples and variables. Indeed,
the derived low-dimensional space—often referred to as scores—is a linear mapping of
the original features. However, the systematic part of the original data is furthermore
a linear mapping of the scores. In this way, PCA is a mathematically transparent and
chemically interpretable tool for mapping data to a low-dimensional space and translating
between this space and the original feature space. The linearity of PCA is what makes the
method mathematically more concise than some nonlinear methods, but at the price of
variance maximization as well as the inability to capture nonlinear phenomena in single
dimensions. When it comes to nonlinear methods for dimensionality reduction, there are
a number of noteworthy approaches, such as locally linear embedding [26], Laplacian
eigenmaps [27], or t-SNE [26]. One of the most effective and commonly used methods
that also falls into this category is uniform manifold approximation and projection for
dimension reduction or UMAP [28]. It is a nonlinear method that works by utilizing
local manifold approximations and combining their local fuzzy simplicial set represen-
tations in order to create a topological representation of the high-dimensional data. It
then minimizes the cross-entropy between topological representations, thus optimizing
the layout of the data representation. UMAP was employed already in understanding
patterns in chemical/structural [29,30] and biological data [31,32] by transferring them to a
lower dimensional space. More recently however, the category of nonlinear dimension-
ality reduction approaches has been extended with deep learning-based algorithms. The
most prominent approach here is the traditional autoencoder model [33]. Autoencoders
are (typically nonlinear) neural network architectures that learn to copy their input onto
their output by passing the input through an intermediate bottleneck layer. As they were
originally proposed, there has been a number of adaptations of the original autoencoder
with variational autoencoders or VAEs [34] as one of the latest state-of-the-art methods.
Autoencoders are often applied in cheminformatics for tasks like chemical space navigation
and de novo molecular generation [4,29,35] or prediction [36]. The aim of this work is thus
to evaluate chemical space information generated from fingerprints and investigate the
impact of generating embeddings in an unsupervised manner using prominent linear and
nonlinear methods. That is, we specifically look into the utility of PCA, UMAP, and VAE
(hereinafter embedders) as pre-compression techniques for solving classification tasks with
12 binary toxic outcomes.

2. Results and Discussion
2.1. Setting the Baseline

Before presenting the results of embeddings as predictive features, we present here the
baseline models trained on raw fingerprints. The results are shown in Table 1. Furthermore,
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we compared the results to recent work [37] where the results are also presented by means
of MCC and trained on fingerprints (like in the present study). The limitations of this
comparison are as follows: (a) the train–test splits are not the same; (b) there is a difference
in fingerprint parameters; (c) we limited hyperparameter optimization, as our aim was
to compare the results of the embeddings; (d) we used average values of the predictions
on the test set for several random states; and (e) Zhang et al. use a Bayesian optimization
instead of the grid-search we used. We also want to note that the classification results
from Zhang et al. [37] show higher MCC values than the results in this work. Besides
the mentioned differences, in our work, instead of using nested-CV, we report on a true
external test set. The purpose of this comparison is to present the expectations towards the
individual labels in Tox21.

Table 1. A comparison of our baseline results trained on fingerprints to a similar study from Zhang et al. [37]. The
results from Zhang are denoted with a “Z“, while the respective classifiers are as follows: L—lightGBM, R—random
forests, S—support vector machines, X—XGBM, D—deep neural networks. The classifiers from this work are k-nearest
neighbor classifier (KNN), logistic regression (LR), and random forests classifier (RFC), which are represented by their mean
values per classifier, respectively. Additionally, the mean and max of all classifiers in this work are compared. The best
baseline models in our work are marked with an superscript “a“, while the best models from Zhang are marked with an
superscript “b“.

Label (endpoint)
Mean
(all)

Max
(all)

KNN LR RFC Z-L Z-R Z-S Z-X Z-D

NR-AR 0.52 0.62 a0.59 0.4 0.56 0.50 0.62 0.43 0.60 b0.68
NR-AR-LBD 0.57 0.63 0.61 0.48 a0.62 0.60 0.71 0.60 b0.73 0.72

NR-AhR 0.44 0.47 a0.45 0.44 0.43 0.52 b0.61 0.47 0.54 0.59
NR-Aromatase 0.29 0.35 a0.32 0.25 0.29 0.28 b0.52 0.32 0.50 0.48

NR-ER 0.29 0.34 a0.33 0.24 0.29 0.37 0.42 0.32 0.40 b0.44
NR-ER-LBD 0.35 0.47 0.37 0.26 a0.42 0.45 0.56 0.36 b0.59 0.58

NR-PPAR-gamma 0.18 0.26 0.14 0.18 a0.22 0.32 0.50 0.30 b0.52 0.47
SR-ARE 0.28 0.36 0.25 a0.31 0.29 0.46 0.49 0.36 0.46 0.48

SR-ATAD5 0.24 0.26 a0.25 0.22 0.24 0.37 b0.59 0.36 0.53 0.55
SR-HSE 0.18 0.25 0.15 0.18 a0.20 0.31 b0.37 0.21 0.40 b0.37

SR-MMP 0.44 0.47 0.44 a0.47 0.43 0.63 b0.65 0.54 0.64 0.63
SR-p53 0.22 0.26 0.21 a0.24 0.23 0.42 b0.57 0.37 0.52 0.55

2.2. Embedding Chemical Spaces

In this section, the classification results of models trained on embeddings (inter-
nal/external) are presented and discussed. For the purpose of training the models, the
fingerprints were subjected to transformations into low-dimensional spaces by either
PCA, UMAP, or VAE. Visual examples of the transformations (CS1 and CS2) are shown in
Figure 1 for both data sets.
ure 1 for both data sets. 

 
(a) (b) (c) 

Figure 1. Exemplary visualization of CS1 (red) and CS2 (blue) show in 2D embedded space generated from molecular
fingerprints by means of (a) principal component analysis (PCA), (b) uniform manifold approximation and projection
(UMAP), and (c) variational autoencoders (VAEs).
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Our first observation by visually inspecting Figure 1 is that the three studied embed-
ding algorithms produce greatly different data representations owing to the underlying
differences in how they operate. Furthermore, we observe that CS1 covers a larger chemical
space in comparison with CS2 owing to the difference in data set size. Additionally, some
areas of CS1 data space are barely covered in CS2, making it harder to transfer knowledge
for these compounds. This behavior appears more pronounced in UMAP and VAE data
representations. Finally, UMAP and VAE appear to produce a number of smaller observ-
able clusters in comparison with PCA. This is an inherent consequence of UMAP, where
indeed the underlying graphs of the samples are pruned, while PCA is a linear mapping,
making it impossible to introduce discrete clusters if they are not directly present in the
raw data.

2.3. Impact of Embedding Size and Information Content

In this section, we want to evaluate the contribution of the number of latent variables
(dimensions) and the data input size for creating embeddings from the external data set
prior to solving the classification tasks (see Figure 2). The embedding approaches were
varied in input size (200–30,000 compounds from CS1) and number of dimensions (2–15
latent variables) and evaluated for three random states, three different classifiers (RFC,
KNN, LR), and three embedders (PCA, UMAP, VAE) as described in the Materials and
Methods section. The results are depicted in Figures 2–4.
remains steady for all different sizes of CS1. 

   
(a) (b) (c) 

 

Figure 2. Dependence of classification results or transferred embeddings of CS2 by means of Matthews correlation
coefficient (MCC) on the log-size of CS1 and dimensions of the PCA embeddings. The three figures represent three
classifying algorithms, namely, (a) RFC, (b) KNN, and (c) LR.

The results for PCA (Figure 2) show on average an increase in the predictive quality
of the models with a growing number of dimensions (principal components). The effect
of information content by means of CS1 size is shown to be negligible as the MCC score
remains steady for all different sizes of CS1.

Models embedded with UMAP (Figure 3) show distinctively different patterns com-
pared with PCA. For KNN and RFC, there is a clear trend for increasing dimensions and
information content, while there seems to be some randomness in LR with an existing
trend for model improvement when increasing dimensions and information content. The
third embedding algorithm, VAE, shows similar patterns to UMAP (see Figure 4). An
observable difference to UMAP is that, for RFC and KNN, it seems to approach a plateau,
while UMAP shows a steady increase. All machine learning methods show a clear increase
of model quality with an increase of dimensions and CS1 data size.

PCA by definition only extracts linear features, and the ability to capture nonlinear
behavior relies on the upstream use of nonlinear classifiers. Here, we indeed see that
nonlinear phenomena are captured using kNN or RFC in contrast to logistic regression.
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On the other hand, PCA is powerful in filtering off stochastic white noise, simply because
of the nature of white noise where there is no dependency across features. Indeed, this
phenomenon is observed for the PCA embedding as the performance is insensitive towards
the size of training data as well as classifier type, simply pointing out that the principal
components’ directions are well defined even for small data set. It is interesting to observe
that, with UMAP, we see a saturation regarding the number of dimensions (6, 8, 10, and
15 perform similarly), while with VAE, we observe the effect, but to a lesser extent. VAE
seems to benefit more from input data size in comparison with UMAP, which we attribute
to deep learning methods typically requiring larger data sizes for learning [38]. In further
evaluations, we compared only the results on maximum dimension size (15) and maximum
set size (30,000 compounds in CS1).

   
(a) (b) (c) 

 

   

Figure 3. Dependence of classification results or transferred embeddings of CS2 by means of MCC on the log-size of CS1
and dimensions of the UMAP embeddings. The three figures represent three classifying algorithms, namely, (a) RFC,
(b) KNN, and (c) LR.

   

   
(a) (b) (c) 

 

Figure 4. Dependence of classification results or transferred embeddings of CS2 by means of MCC on the log-size of CS1
and dimensions of the VAE embeddings. The three figures represent three classifying algorithms, namely, (a) RFC, (b) KNN,
and (c) LR.

2.4. Internal versus External Knowledge

To evaluate whether the external knowledge (from CS1) is beneficial for the classi-
fication task in CS2, we list the MCC score of each embedding algorithm, trained (a) on
external data from CS1 and (b) on internal data from CS2, in Table 2. One has to keep in
mind that CS1 size was varied, while CS2 is fixed.
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Table 2. Comparison of external and internal embeddings for PCA, UMAP, and VAE. Each cell
represents the mean MCC score across nine different machine learning models (three random states
× three classifiers). Values marked with an asterisk (*) highlight cases where, on average, models
trained using external knowledge outperformed models trained on internal knowledge. Additionally,
results marked with a quotation mark (‘) highlight cases where using external or internal knowledge
yielded equal results (when rounded off to two decimal places).

Label
PCA UMAP VAE

IN EX IN EX IN EX

NR-AR 0.45 0.43 ‘ 0.47 ‘ 0.47 0.45 0.44
NR-AR-LBD 0.45 0.43 * 0.45 * 0.53 ‘ 0.43 ‘ 0.43

NR-AhR ‘ 0.33 ‘ 0.33 * 0.34 * 0.35 ‘ 0.34 ‘ 0.34
NR-Aromatase 0.22 0.18 0.18 0.15 ‘ 0.21 ‘ 0.21

NR-ER 0.22 0.21 ‘ 0.23 ‘ 0.23 ‘ 0.27 0.24
NR-ER-LBD 0.31 0.26 ‘ 0.26 ‘ 0.26 ‘ 0.28 ‘ 0.28

NR-PPAR-gamma ‘ 0.14 ‘ 0.14 * 0.09 * 0.11 0.11 0.09
SR-ARE * 0.19 * 0.21 * 0.19 * 0.2 * 0.19 * 0.2

SR-ATAD5 0.16 0.13 * 0.12 * 0.16 * 0.14 * 0.15
SR-HSE * 0.09 * 0.11 ‘ 0.08 ‘ 0.08 * 0.07 * 0.1

SR-MMP ‘ 0.36 ‘ 0.36 ‘ 0.32 ‘ 0.32 * 0.35 * 0.36
SR-p53 0.19 0.18 0.16 0.14 * 0.15 * 0.17

Our results have a few important takeaways. In comparison with PCA, both UMAP
and VAE were able to achieve better results overall when fitted on external knowledge
versus fitting on internal knowledge. With external knowledge, PCA achieved better
results on two labels and equal results (rounded on two decimals) on three. UMAP and
VAE performed similarly as both approaches performed better when trained on external
knowledge on five labels and performed equally to respective models trained on internal
knowledge on five labels (out of 12 labels in total). It is important to note that, even
though UMAP and VAE showed similar performance overall, they performed differently
for different labels. For example, UMAP showed a strong improvement in MCC score for
NR-AR-LBD when using external knowledge, whereas VAE did not improve in comparison
with VAE trained on internal knowledge. There was only one label (SR-ARE) for which all
three embedding algorithms yielded better results when trained on external knowledge.

2.5. Should We Embed? Does Embedding Win over Baseline?

Figure 5 and Table 3 compare the MCC score of all embedders (internal and external)
to the fingerprint baseline model (FPR-BL) on each classification task. From Figure 5, it is
clear that the fingerprint baseline model performs better overall for most of the labels.

Table 3 shows that the embedders do not increase in the score in general. However, for
the NR-ER label, VAE embedders show an increase in MCC score. To present embedding
capabilities, we compared the maximum values per embedder in Table 3. Each value is the
maximum of nine machine learning experiments (three classifiers × three random states).
For easier comparison, we set the FPR-BL maximum per label to 100%. The results show
that 3 out of 12 labels embedded features can reach or surpass the baseline, namely, NR-AR,
NR-AR-LBD, and NR-ER. With PCA, both internally and externally, the maximum value
never reached those of the baseline, while with externally trained UMAP, only one target
performed on par with the baseline. With the variational autoencoder, the baseline was
reached three times. This shows the dominance of VAE over other embedders given the
constraints in our experiments. In conclusion, by embedding molecular fingerprints, we can
obtain a comparable and sometimes improved classification accuracy with toxicological
models compared with no embedding. The main advantage in applying embedding
techniques on the molecular fingerprints in this way is a reduced model complexity, by
utilizing smaller feature sets, without the need to sacrifice predictive accuracy.
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Figure 5. Comparison of machine learning classifications mean + error bar across all feature sets: FPR-BL = fingerprint
baseline, PCA = principal component analysis (EX = external, IN = internal), UMP = uniform manifold approximation and
projection, VAE = variational autoencoders. Each bar present nine runs (three classifiers × three random states).

Table 3. Classification results across all data sets and labels expressed by maximum values of the MCC. The fingerprint-
based model maxima (FPR-BL) were set as 100%, while the embedding models referred to these 100%. Results assigned
with an asterisk (*) outperformed baseline.

Label (endpoint) FPR-BL PCA-EX PCA-IN UMAP-EX UMAP-IN VAE-EX VAE-IN

NR-AR 100 95 99 96 96 97 * 100
NR-AR-LBD 100 92 98 * 100 97 98 * 102

NR-AhR 100 84 85 90 86 83 85
NR-Aromatase 100 65 82 75 74 84 75

NR-ER 100 83 85 86 95 * 103 * 101
NR-ER-LBD 100 70 90 79 88 90 83

NR-PPAR-gamma 100 81 82 68 81 78 75
SR-ARE 100 74 69 70 69 63 63

SR-ATAD5 100 63 99 92 84 75 88
SR-HSE 100 82 77 56 90 65 55

SR-MMP 100 92 87 83 83 93 89
SR-p53 100 99 95 79 87 85 93

2.6. Insights into Latent Representations

The embedders compress information in an unsupervised way, thus the resulting
output is based on the efficacy of the utilized approach; underlying data; and, to an extent,
how well the hyperparameters are tuned. Therefore, it is difficult to predict whether
utilizing the same compression techniques would be beneficial for use cases that are
different from our problem of predicting 12 toxic outcomes. To better understand how the
classification tasks can profit from compression, we calculated silhouette coefficients on
the calculated embeddings within the data sets, s (Equation (1)), in the latent space (for 2D
and 3D latent spaces as well as using external embeddings):

s(i) =
b(i)−a(i)

max{a(i), b(i)}
, i f |Ci| > 1

s(i) = 0, i f |Ci| = 0
(1)

In this equation, a(i) is the mean distance between a molecule i and all other molecules
in the same cluster and b(i) is the mean distance of molecule i to all molecules in any other
cluster. For each label, the coefficients are plotted in Figure 6. The average silhouette
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coefficients per label were correlated to the predictive quality (MCC), as shown in Table 4.
Besides that, we compared the baseline models (raw fingerprints) and the imbalance ratio
with respect to the MCC results of the classifiers that utilize embeddings. The results show
that the predictive quality correlates almost perfectly (0.98+) with the baseline models,
which means that achieving a good classification on raw data (i.e., fingerprints) will most
likely also lead to good results after embedding.

𝑠ሺ𝑖ሻ =  𝑏ሺ𝑖ሻ − 𝑎ሺ𝑖ሻmaxሼ𝑎ሺ𝑖ሻ, 𝑏ሺ𝑖ሻሽ , 𝑖𝑓 |𝐶|  1𝑠ሺ𝑖ሻ =  0, 𝑖𝑓 |𝐶| = 0

 

Figure 6. Top: Silhouette plots for best (top left) and worst (top right) performing clustering, which are VAE with NR-AR
and UMAP with SR-HSE, respectively. The gray and green masses are points in two classes (0 and 1) with their silhouette
coefficients, respectively. The dashed red line is the average value of both. The scatter plot visualizes their coordinates in the
2D embedded space. The number is their center points for each class (0 and 1). We notice that, for the best clustering, the
silhouette coefficient tends to be higher, and points that belong to NR-AR label visually agglomerate together. Conversely,
the silhouette coefficient seems to be negative for the worst clustering, and the points belonging to SR-HSE label are visually
indistinguishable from other points. Silhouette coefficients for externally embedded CS2 data (bottom) by means of the
three embedders (PCA, UMAP, VAE) calculated per label, which are presented by the color map. We see that VAE gains a
higher silhouette coefficient on most tasks than UMAP or PCA, indicating a better separation.
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Table 4. Correlation of average classification results of the embedded classifiers (PCA-EX, UMAP-EX.
VAE-EX) with the imbalance ratio (Pos class %) and baseline fingerprints classifiers (FPR-BL) with
their respective silhouette coefficients—s(PCA), s(UMAP), and s(VAE).

PCA-EX UMAP-EX VAE-EX

s(PCA) 0.74
s(UMAP) 0.86

s(VAE) 0.85
Pos class % 0.11 0.02 0.13

FPR-BL 0.98 0.98 0.99

Nevertheless, there is also a high correlation between the calculated silhouette coeffi-
cients and the predictive quality of embedded classifiers. This indicates that, even though
the embedders distribute the classes without prior knowledge, they still seem to keep more
relevant information regarding the given classification task. This turned out to be more
relevant for the nonlinear methods (i.e., UMAP and VAE) than for PCA.

3. Materials and Methods

In this section, we present the data for conducting the study, the machine learning
methods used for solving the classification tasks, the embedding techniques utilized, and
the overall modeling pipeline.

3.1. Data

The data for the classification experiment (here named compound set 2 or CS2) were
downloaded from the Tox21 public repository [39]. The chosen set is the 2014 Tox21
challenge subset with 12 toxicological endpoints related to stress response and nuclear
receptor panels. This dataset was studied in many works and was subject to a plethora
of reports on the outcomes [3,15,40,41]. Hence, it represents a baseline dataset for QSAR
classification as it is imbalanced, chemically diverse, and large (~10k compounds), but
has also several endpoints with different predictive capabilities (modeling challenges).
Owing to the mentioned challenges this dataset offers, it has been subject to numerous
studies in advanced machine learning methods [3,40], balancing methods [15,42], as well as
novelties in chemical representation such as conformational resampling [41] and multitask
learning [3]. We subjected the data to preprocessing as they consist of duplicated structures,
which was reported previously [15]. During preprocessing, we removed structures that
did not have valid SMILES or identifiers [7] and they were additionally converted to their
canonical SMILES. Furthermore, we removed duplicates by both their IDs and SMILES. We
removed inorganic compounds and metal-containing compounds as well as fragments. The
procedure is inspired by [15,43] to keep the active part of the compounds. For the predictive
tasks, Morgan fingerprints (FPR) were calculated for the 8314 structures by means of
the RDKit library [44]. Owing to the possibility of colliding bits in fingerprints [45,46],
we set the fingerprint vector length to 5120 bits and the radius to 2. In order to foster
reproducibility, we made the scripts that are used for data preprocessing and feature
engineering available already in our recent work [16].

The compounds used for generating external embeddings were retrieved from [47]
and consist of 68,679 compounds. This compound set 1 (i.e., CS1) was preprocessed in the
same manner as the Tox21 dataset described above. After preprocessing and duplicate
removal, a total of 54,820 structures remained. During modeling, the structures present in
both sets (CS1 and CS2) were removed from CS2 to avoid a target leak.

3.2. Machine Learning Methods

The task at hand is to predict the labels in Tox21, which are binary classes. For this, we
employed three common classifiers, namely a random forests classifier (RFC) [48], logistic
regression (LR) [49], and a k-nearest neighbor classifier (kNN) [50]. These algorithms
are conventional tools when conducting machine learning studies and represent different

679



Pharmaceuticals 2021, 14, 758

inductive biases (e.g., assuming that the relationship between input attributes and the
output of a LR algorithm is linear)). As the datasets are imbalanced, which makes them
challenging when trying to avoid random classification issues [51], we employed penaliza-
tion and optimization techniques to improve classification outcomes. In our experiments,
we first randomly split the data into a train and test set with a 3:1 ratio (i.e., 75% of the
data are part of the train set). To penalize the models for misclassification of the minor
class (active compounds), we employed the Matthews correlation coefficient (MCC) [52] as
a scoring function, as it was shown in our previous studies to work well for imbalanced
sets [13,53]. MCC is defined by Equation (2), where TP, TN, FN, and FP are the elements of
the confusion matrix given in Table 5.

MCC =
TP·TN − FP·FN

√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(2)

Table 5. Elements of the confusion matrix that show the possible outcomes when predicting labels in Tox21.

Experimental/Model Positive (Model) (1) Negative (Model) (0)

Positive (Experimental) (1) TP (experimentally active and
predicted active)

FN (experimentally active, but
predicted as inactive)

Negative (Experimental) (0) FP (experimentally inactive, but
predicted as active)

TN (inactive experimentally and
predicted)

The models were tuned with respect to their hyperparameters, which were found
using exhaustive grid-search evaluated by cross-validation [54]. All models were trained
with the scikit-learn library for Python [55].

3.3. Transfer Learning with Embeddings

3.3.1. Principal Component Analysis (PCA)

PCA [25] is an algorithm for dimensionality reduction based on the maximization of
variance in a lower-dimensional projected space. In that regard, PCA can be perceived as a
linear autoencoder [56]. The mathematics of PCA is described in many textbooks, but in
short, the original data (X~(n,p)) are represented by the product of two matrices, namely
the scores (T~(n,k)) and the loadings (P~(p,k)), Equation (3):

X = TPT + E (3)

where E~(n,p) is the residual matrix and n, p, and k are the number of samples, variables, and
components, respectively. The parameters are estimated to capture as much of the variance
in the original data in a least squares sense, and further to be orthogonal matrices, i.e.,

{T, P} = argmaxT,P

(

‖X − TPT‖2
2

)

(4)

The combination of vectors of T and P are referred to as principal components, and
used in various ways in, e.g., exploratory data analysis to map the multivariate sample
distribution as well as interrogating feature2feature correlation structure, as well as—like
in this work—to represent the data in a few meaningful features used for further analysis.
A rewrite of Equation (4) above shows that the score space (T) is a linear mapping by the
orthogonal basis represented by P: T = XP, and hence a rotation of the coordinate system
as depicted in Figure 7.
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ሼ𝑇, 𝑃ሽ = 𝑎𝑟𝑔𝑚𝑎𝑥்,ሺ‖𝑋 − 𝑇𝑃்‖ଶଶሻ

Figure 7. An example of dimensionality reduction by means of PCA. Instances/points in a 3D space
(original space) are transformed into a 2D space of two latent variables called principal components
(PC1 and PC2).

3.3.2. Uniform Manifold Approximation and Projection (UMAP)

The recent work of McInnes et al. [28] has tackled the problem of dimensionality
reduction by generalizing linear approaches like PCA in order to be sensitive to a possible
nonlinear structure in data. By applying a completely new field of mathematics, which
is based on Riemannian geometry and algebraic topology, they developed the uniform
manifold approximation and projection (UMAP) algorithm.

Using every available data point, UMAP first creates a graph with respect to the
distances on the underlying topology and to the k-neighborhood of each element (as
seen in Figure 8). The Laplacian eigenmaps dimensionality reduction method is then
applied on that graph. The resulting graph is further modified by a forced directed
graph layout algorithm, which minimizes the cross-entropy between this modified graph
and the original one. In this manner, the resulting low-dimensional data representation
is optimized to well preserve both the local and global structure of the original data.
The main advantage of UMAP over PCA is that it is able to capture a more complex
(nonlinear) structure in high-dimensional data, which is a desirable characteristic in our
use-case. UMAP is able to achieve this by initially constructing a high-dimensional graph
representation of the original data, followed by optimizing a low-dimensional graph to
be as structurally similar to the original as possible. In this manner, the resulting low-
dimensional data representation is able to well preserve both the local and global structure
of the original data.

Figure 8. Visual explanation of how UMAP works. It first computes a graph representation of the input data, which is then
used to learn embeddings that preserve the structure of the graph representation. Figures is redrawn based on ref. [57].

3.3.3. Variational Autoencoders (VAE)

Since the work of Kramer [58], autoencoders have become a popular alternative to
PCA in providing an effective method to reduce the dimensionality of data. This type
of neural network is defined by a two-part architecture, which consists of an encoder
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and a decoder. In its simplest form, it has only one hidden layer (i.e., the information
bottleneck), which is a low-dimensional representation of the original data. It is trained
in an unsupervised manner to encode the data in a way that keeps the information loss
minimal when the decoder attempts to recreate the input from the hidden layer. One
popular extension of this approach is to use variational inference when extracting the
latent representation [59]. The main difference lies in the fact that the network does not
encode the input as a single point. Rather, it makes strong assumptions that the input
data can be represented as a probability distribution like Gaussian and encodes the mean
and variance of the data separately. As seen in Figure 9, the decoder of the variational
autoencoder then samples the latent representation to produce a probability distribution of
the low-dimensional representation. Such a probabilistic approach allows the variational
autoencoder to be a generative model, i.e., the decoder is capable of creating completely
new data that are similar to the observed data used for training the model.

 

Figure 9. Architecture illustration of the variational autoencoder. Encoder compresses the input X into a latent representation
Z. VAE is different to a standard autoencoder as it assumes that the input data have an underlying probability distribution
(e.g., Gaussian) for which they try to optimize parameters. The decoder then attempts to reconstruct the original input from
the representation by minimizing the reconstruction loss.

3.3.4. Embedder Training

The embedders are trained on molecular fingerprints. For this purpose, we created
two sets of embedders: (1) embedders created with the external data set (CS1), which are
then consecutively used to encode CS2, which results in the transformed representation
of CS2 (hereinafter, external embeddings (EX)); and (2) embedders that were created on
the respective pre-split train set of CS2 and used to encode the pre-split test set of CS2
(hereinafter, internal embeddings (IN)). Both procedures are shown in Figure 10. The two
sets of embeddings were used for solving the classification task of the 12 toxicological labels
alongside commonly used fingerprints. We have fitted the three embedding techniques
(i.e., PCA, UMAP, VAE) on the fingerprints from the CS1 set in eight different data sizes
of randomly selected compounds (200, 500, 1000, 2000, 5000, 10,000, 20,000, and 30,000
compounds) and embedding dimensions (i.e., number of latent variables: 2, 4, 6, 8, 10, and
15). The concept of how to train and apply embedders on chemical spaces is shown in
Figure 11. The Tox21 dataset was transformed with each of the embedders subsequently
and used in the machine learning prediction for each of the 12 toxicological endpoints. The
full experimental matrix consists of 18,288 individual machine learning experiments (see
Table 6).
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Figure 10. In external transfer learning, an embedder (PCA, UMAP, VAE) is fit on fingerprints on an external set of
fingerprints (CS1). The same model (pre-trained embedder) is then utilized to encode fingerprints from CS2. In internal
transfer learning, the embedder is fit on the pre-split train set of CS2 and used to encode the test set of CS2. The embeddings
of CS2 were utilized for training predictive classification tasks.

 

Figure 11. Schematics of chemical space transformation from fingerprint through a pre-trained embedder model. The
transformation can either be conducted from an external data set to the data set of interest or within the data set of interest,
but split into the train and test set.
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Table 6. Experimental matrix. See abbreviations below the table.

Predictive Variables Classifier Seed Embedder Emb. Dim.
CS1

Data Size
N

Models

Fingerprints (raw data) RFC, KNN, LR 1–3 N/A N/A N/A 144

Internal emb. RFC, KNN, LR 1–3 PCA, UMAP, VAE 2–15 N/A 9072

External emb. RFC, KNN, LR 1–3 PCA, UMAP, VAE 2–15 200–30,000 9072

CS1—compound set 1, Seed—random state in machine learning, RFC—random forests classifier, KNN—k-nearest neighbours classifier,
LR—logistic regression, emb—Embeddings.

3.3.5. Modeling

A modeling pipeline was created and written in the programming language Python
(v3.6.0). The pipeline is set as follows: (1) data for CS1 and CS2 are loaded, where CS2 in-
volves the Tox21 modeling data (fingerprints—FPs, labels/endpoints) and CS2 fingerprints;
(2) FPs columns for both CS1 and CS2 below 5% variance are removed; (3) removal of
structures from CS2 which appear in CS1; (4) train and apply embedders; and (5) optimize
classification models and apply them on embedded data, as shown in Table 6.

4. Limitations and Future Outlook

This study includes several limitations. First there are many other chemical repre-
sentations besides fingerprints. Among those, interesting results may be revealed from
approaches such as Mol2Vec [11] or graph-based methods [12]. The fingerprints parameters
(5120-bit length and radius 3) do not have an optimal representation, but are rather based
on suggestions from past research [46]. We limited also the embedded data set sizes owing
to computational performance issues in training thousands of models. Therefore, with just
a few latent variables uses compared with fingerprint, we might have experienced some
information loss. Furthermore, there is a plethora of machine learning methods; here, we
used only three that are well described and different by their paradigms in learning. The
hyperparameters space for either machine learning or embedding algorithms can also be
further explored for each individual method as well as the methods for choosing them,
like Bayesian optimization [16,37]. These methods can also be applied to smaller labeled
datasets, which is one of our aims in future research.

5. Conclusions

In this work, we evaluated the effects of pre-compression techniques on chemical
space information generated from fingerprints and utilized in the domain of toxicology.
Specifically, we focused on prominent linear and nonlinear techniques like PCA, UMAP,
and VAE and showed their utility when using QSAR models, which are related to stress
response and nuclear receptors. We showed that, with external knowledge that is trans-
ferred via a pre-trained embedder, we can classify toxicity outcomes with a reasonable
model quality. The quality of the prediction, however, depends to a large extent on the class
separation within each of the 12 toxic outcomes. The results of the silhouette coefficients
suggest that nonlinear methods can achieve a much higher performance than PCA. More-
over, our research revealed that, for the utilized data sets, VAE exhibits much better results
when compared with PCA and UMAP. Nevertheless, the recently popularized UMAP
approach can still be employed for pre-compression as it shows the ability to maintain
high-dimensional relationships.

Author Contributions: Conceptualization M.L., T.D. and H.H.; Data curation M.L.; Formal analysis
H.T.N.T.; Funding acquisition E.L. and R.K.; Investigation M.L.; Methodology T.D., H.H., E.L. and
M.A.R.; Project administration R.K.; Software H.T.N.T.; Supervision E.L. and R.K.; Visualization
H.T.N.T.; Writing—original draft M.L., T.D., H.H., E.L. and M.A.R.; Writing—review & editing M.A.R.
and R.K. All authors have read and agreed to the published version of the manuscript.

684



Pharmaceuticals 2021, 14, 758

Funding: The Know-Center is funded within the Austrian COMET Program-Competence Centers for
Excellent Technologies under the auspices of the Austrian Federal Ministry of Transport, Innovation,
and Technology; the Austrian Federal Ministry of Economy, Family, and Youth; and by the State of
Styria. COMET is managed by the Austrian Research Promotion Agency FFG. This work is partially
supported by the H2020 project TRUSTS (GA: 871481) and the “DDAI” COMET Module within
the COMET.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets were retrieved from https://tripod.nih.gov/tox21/
assays/index.html (compound set 2) and https://zenodo.org/record/4248826 (compound set 1).

Acknowledgments: We thank Esben Jannik Bjerrum, PhD D for fruitful discussions that helped
improve the quality of our research. Open Access Funding by the Graz University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: A review and practical

guide. J. Cheminform. 2020, 12, 56. [CrossRef] [PubMed]
2. Ghasemi, F.; Mehridehnavi, A.; Pérez-Garrido, A.; Pérez-Sánchez, H. Neural network and deep-learning algorithms used in

QSAR studies: Merits and drawbacks. Drug Discov. Today 2018, 23, 1784–1790. [CrossRef] [PubMed]
3. Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci.

2016, 3. [CrossRef]
4. Prykhodko, O.; Johansson, S.V.; Kotsias, P.-C.; Arús-Pous, J.; Bjerrum, E.J.; Engkvist, O.; Chen, H. A de novo molecular generation

method using latent vector based generative adversarial network. J. Cheminform. 2019, 11, 74. [CrossRef]
5. Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility

for drug-like molecules. J. Chem. Inf. Model. 2013, 53, 1563–1575. [CrossRef] [PubMed]
6. Capuccini, M.; Ahmed, L.; Schaal, W.; Laure, E.; Spjuth, O. Large-scale virtual screening on public cloud resources with Apache

Spark. J. Cheminformatics 2017, 9, 15. [CrossRef]
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Abstract: α-Glucosidase is considered a prime drug target for Diabetes Mellitus and its inhibitors
are used to delay carbohydrate digestion for the treatment of diabetes mellitus. With the aim to
design α-glucosidase inhibitors with novel chemical scaffolds, three folds ligand and structure based
virtual screening was applied. Initially linear quantitative structure activity relationship (QSAR)
model was developed by a molecular operating environment (MOE) using a training set of thirty-two
known inhibitors, which showed good correlation coefficient (r2 = 0.88), low root mean square
error (RMSE = 0.23), and cross-validated correlation coefficient r2 (q2 = 0.71 and RMSE = 0.31). The
model was validated by predicting the biological activities of the test set which depicted r2 value
of 0.82, indicating the robustness of the model. For virtual screening, compounds were retrieved
from zinc is not commercial (ZINC) database and screened by molecular docking. The best docked
compounds were chosen to assess their pharmacokinetic behavior. Later, the α-glucosidase inhibitory
potential of the selected compounds was predicted by their mode of binding interactions. The
predicted pharmacokinetic profile, docking scores and protein-ligand interactions revealed that
eight compounds preferentially target the catalytic site of α-glucosidase thus exhibit potential α-
glucosidase inhibition in silico. The α-glucosidase inhibitory activities of those Hits were predicted
by QSAR model, which reflect good inhibitory activities of these compounds. These results serve as
a guidelines for the rational drug design and development of potential novel anti-diabetic agents.

Keywords: α-Glucosidase; QSAR modeling; homology modeling; molecular docking; ADMET profiling

1. Introduction

Diabetes mellitus (DM) is one of the most prominent metabolic, chronic and per-
sistent diseases illustrated by hyperglycemia, which itself poses a great global health
challenge [1,2]. The morbidity rate of DM is expected to exceed up to 10.4% by 2040 glob-
ally [3]. DM is linked with impaired production of insulin or due to improper response of
body cells towards insulin. Several complications including hypertension, kidney failure,
loss of vision, neuropathy, cardiovascular diseases (CVDs) and atherosclerosis are associ-
ated with inadequate production of insulin or due to prolonged hyperglycemia. DM is
classified into Type I DM (T1DM) and Type II DM (T2DM). T1DM is also known as insulin
dependent DM, which is caused by environmental, genetic and autoimmune factors. T-cell
mediated autoimmune damage of β-cells of the pancreas is responsible for this type and
illustrated by complete scarcity of insulin. One of the significant complications of this
disease is ketoacidosis. Patients are susceptible to other diseases like Grave’s disease, Addi-
son’s disease, Celiac sprain and autoimmune hepatitis [3]. T2DM is non-insulin dependent
diabetes or adult onset diabetes associated with insulin resistance in peripheral tissues
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or relative deficiency of insulin. It is a progressive and most common type of disease.
β-Cells are not damaged in this case; however, obesity is associated in most individuals
and ketoacidosis rarely occurs. Most of the time, patients remain asymptomatic and have
an enhanced risk of serious macrovascular and microvascular complications. Moreover,
autooxidation of glucose and enhanced oxidative stress are also associated with T2DM.
The risk of T2DM increases due to increased age, weight, improper physical activity and
sedentary lifestyle [4]. In the advance stage of T2DM more complications occur as free
radicals are formed, which cause insulin resistance and the dysfunction of β-cells.

Enhanced production of glucose is directed by α-glucosidase in the body; therefore,
its level can be controlled by discovering its inhibitors [5,6]. α-Glucosidase is a lysosomal
exo-glycosidase that catalyzes the breakdown of complex sugar like starch and disaccha-
rides to glucose that are further absorbed by gut and subsequently raises postprandial
hyperglycemia. Thus, α-glucosidase is the pathological hallmark of this disease. Further-
more, this enzyme has been linked in tumor metastasis in association with collagen type I
and IV. In DM patients, inhibition of α-glucosidase efficiently lowers the risk of colorectal
cancer and cerebrovascular events [7,8].

Many drugs like sulfonylureas, meglitinides, biguanides and thiazolidinediones and
α-glucosidase inhibitors are most potent hypoglycemic agents [9]. Metformin, miglitol,
acarbose, voglibose and glibenclamide are clinically used drugs for the management of
diabetes. They are highly expensive and put a financial burden on patients, which results
in huge economic loss. Their detrimental side effects also created an alarming situation
like dropsy, increase in weight, resistance against drug, liver disorder, renal tumors, acute
hepatitis, hepatic injury and hypoglycemia [10]. Thus, design and discovery of novel
α-glucosidase inhibitors with reduced cost and lower side effects are urgently needed to
control DM [11–13].

Computational drug designing approaches have proven effective in delivering novel
chemical scaffolds in the market against several drug targets [14–16]. Due to our interest
in finding novel leads against α-glucosidase [17–19], ligand and structure based virtual
screening strategies were applied in this study to target α-glucosidase enzyme. The study
comprises of ligand based QSAR modeling, structure-based virtual screening, pharmacoki-
netic profiling, and QSAR-based prediction of biological activities of new scaffolds against
α-glucosidase. In-silico techniques have proven effective in the discovery of chemical
agents against specific drug target with high binding affinity and specificity [15]. Several
potent drugs including Captopril (Angiotensin-converting enzyme inhibitor, treats con-
gestive heart failure and hypertension), Nelfinavir (HIV-protease inhibitor), Zanamivir
(neuraminidase inhibitor of influenza viruses), Dorzolamide (carbonic anhydrase inhibitor),
Cinanserin (potent inhibitor of 3C-like protease of SARS), Saquinavir, Indinavir, and Riton-
avir (anti-HIV/AIDS drugs) were successfully designed by computational methods which
are available on the market [20–23]. In addition, computer-aided drug designing (CADD)
has delivered numerous novel anti-cancer compounds such as Erlotinib (EGFR kinase
inhibitor, suppresses Non-small cell lung carcinoma and pancreatic cancer), Sorafenib
(VEGFR inhibitor, treat thyroid, renal and liver cancer), Lapatinib (for the management of
ERBB2-postive breast cancer), Abiraterone (inhibits androgen production to treat metastatic
castration-resistant prostate cancer or hormone-refractory prostate cancer) and Crizotinib
(ALK inhibitor, to treat Non-small cell lung carcinoma) [24–39].

Keeping the successful applications of CADD in mind, we employed both ligand and
structure-based methods to design novel α-glucosidase inhibitors.

2. Results and Discussion
2.1. QSAR Modeling

QSAR models are widely used to predict the biological activities of compounds in
silico [40,41]. Molecular Operating Environment (MOE) use descriptor-based technique to
develop linear QSAR model and give two values, i.e., predicted pIC50 and residual value.
Initially 192 2D-descriptors were calculated for thirty-two known α-glucosidase inhibitors

690



Pharmaceuticals 2021, 14, 482

(αGI1-αGI4, αGI6-αGI15, αGI17-αGI20, αGI22-αGI24, αGI26-αGI31, αGI33-αGI34,
αGI36-αGI38) via QuaSAR-Descriptor module and QuaSAR-contingency was used to
select the appropriate descriptors. Out of 192, nine descriptors (apol, bpol, a_acc, a_heavy,
logP(o/w), logS, TPSA, Weight and wienerPol) were suggested as best descriptors for our
data by contingency analysis. Partial least square (PLS) regression method was applied on
training set to develop model. Model adequacy was measured as the square of correlation
coefficient (r2), root mean square error (RMSE), cross–validated r2 (r2

LOO or q2) and cross–
validated RMSE. The developed model showed good correlation coefficient (r2 = 0.88) and
low root mean square error (RMSE = 0.23), suggesting the strength of the model. Cross
validation was performed using leave-one-out (LOO) cross validations scheme which
resulted acceptable cross-validated correlation coefficient (q2 = 0.71 and RMSE = 0.31).
The biological activities of the test set [six molecules (αGI5, αGI16, αGI21, αGI25, αGI32,
αGI35)] were predicted by the model which showed r2 value of 0.82. The model accurately
predicted the activities of test set. The chemical structures, biological activities, predicted
activities and residual values of αGIs are summarized in Table 1. The correlation plots of
training and test set are shown in Figure 1. The 2D linear regression model is shown in
the equation below, which is statistically significant and explain 88% of the variability of
the IC50 coefficient, characterized by usefulness of the model to predict the α-glucosidase
inhibitory activity of test set compounds.

Table 1. The chemical structures, α-Glucosidase inhibitory activities, QSAR-predicted activities, and residual values of
[α-Glucosidase known Inhibitors (αGIs)] used in QSAR modeling.

αGIs R1 R2 IC50 (µM) pIC50 Predicted Residual

αGI1 H 26.7 4.57 4.46 0.11

αGI2 H 39.8 4.40 4.33 0.07

αGI3 H 96.9 4.01 4.02 −0.01

αGI4 H 20.1 4.69 4.65 0.04

αGI5 * H 100 4.00 3.83 0.17

αGI6 H 100 4.00 3.88 0.12
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Table 1. Cont.

αGIs R1 R2 IC50 (µM) pIC50 Predicted Residual

αGI7 H 100 4.00 4.07 −0.07

αGI8 H 100 4.00 3.89 0.11

αGI9 OH 60.8 4.21 4.11 0.10

αGI10 H 45.7 4.34 4.35 −0.01

αGI11 OH 96.7 4.01 4.15 −0.14

αGI12 OH 100 4.00 4.09 −0.09

αGI13 OH 95.4 4.02 4.02 0.00

αGI14 OH 86.3 4.06 4.01 0.05

αGI15 H 30.8 4.51 4.29 0.22

αGI16 * OH 25.2 4.59 4.90 −0.31

αGIs R IC50 (µM) pIC50 Predicted Residual

αGI17 29.14 4.53 4.99 −0.46

αGI18 7.58 5.12 4.85 0.27

αGI19 1.1 5.95 5.60 0.35
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Table 1. Cont.

αGIs R1 R2 IC50 (µM) pIC50 Predicted Residual

αGI20 4.26 5.37 4.99 0.38

αGI21 * 3.15 5.50 5.01 0.49

αGI22 6.1 5.21 5.00 0.21

αGI23 4.58 5.33 5.35 −0.02

αGI24 16.1 4.79 4.95 −0.16

αGI25 * 36.46 4.43 4.01 0.42

αGI26 24.14 4.61 4.87 −0.26

αGI27 29.14 4.53 4.71 −0.18

αGI28 4.58 5.33 5.08 0.25

αGI29 16.1 4.79 4.70 0.09

αGI30 6.46 5.18 5.06 0.12

αGI31 34.14 4.46 4.64 −0.18

αGI32 * 11.14 4.95 5.09 −0.14

αGI33 10.58 4.97 4.87 0.10
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Table 1. Cont.

αGIs R1 R2 IC50 (µM) pIC50 Predicted Residual

αGIs 34–38

αGI34 133.57 3.87 3.72 0.15

αGI35 * 500 3.30 3.40 −0.10

αGI36 500 3.30 3.68 −0.38

αGI37 68.46 4.16 3.93 0.23

αGI38 61.86 4.20 4.00 0.20

* Test Set Compounds.

Figure 1. Graphical presentation of correlation between actual and predicted α-glucosidase in-
hibitory activities of training and test set compounds. R2 of training and test set are 0.883 and
0.820, respectively.
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One metric to measure a descriptor’s relative importance in a QSAR model is to
compute the product of the magnitude of a regression coefficient times the range in values
adopted by its descriptor across the training set. This metric is a measure of the variability
of dependent variable of the QSAR upon the descriptor. The relative importance of
descriptors is: a_heavy = 1.000, Weight = 0.773, and wienerPol = 0.718, TPSA = 0.471,
a_acc = 0.424, logP(o/w) = 0.355, logS = 0.244, apol = 0.242, bpol = 0.207. The data shows
that the weight, and wienerPol descriptors are the most important factor because of their
correlation coefficient > 0.5, followed by TPSA, a_acc and logP.

The positive coefficient of descriptor in model reflects that increasing the number of
heavy (polar) atoms, hydrogen bond acceptor atoms, logP(o/w), bpol (Sum of the absolute
value of the difference between atomic polarizabilities of all bonded atoms in the molecule
(including implicit hydrogens) with polarizabilities) and topological polar surface area
(Å2) will increase the activity of compounds. The descriptors a_heavy, logP(o/w), bpol
and TPSA are physical properties which can be calculated from the connection table (with
no dependence on conformation) of a molecule while a_acc belongs to pharmacophore
feature/atom type descriptors.

The negative coefficient of descriptors shows that decreasing some of the physical
properties including apol, logS, molecular weight and one of the adjacency and distance
matrix descriptors, i.e., wiener polarity number will be beneficial to enhance the activity of
the compounds.

pIC50 = 3.39574 − 0.08965 (apol) + 0.09305 (bpol) + 0.49740 (a_acc)
+0.71639 (a_heavy) + 0.40979 (logP(o/w)) − 0.37591 (logS)
+0.02502 (TPSA) − 0.03659 (Weight) − 0.24818 (wienerPol)

(1)

r2 = 0.88, RMSE = 0.23, q2 = 0.71, RMSE(LOO) = 0.31, N(train) = 32; N (test) = 6

where apol = Sum of the atomic polarizabilities (including implicit hydrogens) with polariz-
abilities, bpol = Sum of the absolute value of the difference between atomic polarizabilities
of all bonded atoms in the molecule (including implicit hydrogens) with polarizabilities,
a_acc = hydrogen bond acceptor atoms (not counting acidic atoms but counting atoms
that are both hydrogen bond donors and acceptors such as –OH), a_heavy = number of
heavy atoms, logP(o/w) = Log of the octanol/water partition coefficient (including implicit
hydrogens), logS = Log of the aqueous solubility (mol/L), TPSA = Polar surface area (Å2)
calculated using group contributions to approximate the polar surface area from connection
table information only, Weight = molecular weight (including implicit hydrogens) in atomic
mass units with atomic weights, wienerPol = wiener polarity number (half the sum of
distance matrix entries with a value of 3), r2 = Correlation coefficient, RMSE = Root mean
square error, q2 = Cross-validated r2, RMSE(LOO) = Cross-validated RMSE.

2.2. Structure-Based Screening of Filtered Compounds against α-Glucosidase

Previously we have generated the 3D-coordinates of S. cerevisiae α-glucosidase by ho-
mology modeling [17–19], which is composed of 579 residues. According to Ramachandran
plot, the model possesses excellent stereochemical properties. Out of 579, 444 (86.7%), 63
(12.3%) and 3 (0.6%) residues lied in the most favored, additionally allowed and generously
allowed regions, respectively. While two residues (0.4%) (Ala278 and Thr566) are present
in disallowed regions which are not a part of active site. ERRAT showed 93.52 quality
factor of the model, while in verify3D plot, 95.5% residues showed average 3D-1D score of
0.2. The stereochemical and geometric properties of the model is good and can be used in
the structure-based filtration of compounds. The structural geometry and topology of the
model was found to be similar to the structural topology of its template (Figure 2). The cat-
alytic residues are conserved among S. cerevisiae isomaltase and S. cerevisiae α-glucosidase.
The sequence alignment of the model and the template is shown in (Figure S1, Supporting
Information). The substrate molecule (isomaltose taken from PDB ID 3AXH [22]) was
manually docked to deduce the important catalytic residues of protein. Asp214, Glu276,
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and Asp349 constitutes the catalytic triad for substrate catalysis, where Asp214 and Glu276
serves as nucleophile and proton donor, respectively and Asp349 stabilized the transition
state of substrate molecule. The lining of the active site is composed to Asp68, Tyr71,
Val108, His111, Phe157, Phe158, Phe177, Gln181, Arg212, Thr215, Ala278, Phe300, Arg312,
His348, Gln350, Asp408, Arg439, and Arg443 that mediates multiple hydrophilic and
hydrophobic interactions with the substrate and the competitive inhibitor of α-glucosidase
‘acarbose’. Moreover, we have recognized that ten water molecules (1021,1026, 1056, 1058,
1061, 1087, 1102, 1122, 1174, and 1228) in the active site play important role in protein-
substrate/protein-inhibitor bridging (Figure 3).

Figure 2. The superimposed view of model (coral ribbons) and templates [3AXH (golden ribbon) and 3A47 (Cyan ribbon)]
shows the structural topology of the model is similar to its templates. The active site residues are shown in stick model. The
substrate molecule (isomaltose) is depicted in green stick model.

For structure-based screening, ZINC database [22] was filtered according to the physic-
ochemical properties of the substrate molecule (isomaltose) and 6609 compounds were
matched with the given parameters. A dataset of 6609 compounds with 38 known inhibitors
(αGIs used in QSAR modeling) was docked in the active site of S. cerevisiae α-glucosidase to
determine their binding potential with α-glucosidase enzyme. The known inhibitors (αGIs)
were embedded in the screening library to test the screening accuracy of docking method.
The virtual screening accuracy was tested by using two metrics namely enrichment factor
(EF) and Receiver operating characteristic-curve (ROC-curve). The analysis of EF and
ROC-curve is discussed in Supporting Information. MOE showed >7, >47 and >78%EF in
top 1%, 5% and 10% screened library. Additionally, ROC-curve shows area under the curve
(AUC) value of 0.94, reflecting good virtual screening performance of MOE. The ROC-curve
and the correlation of inhibitory activities of known inhibitors with their docking score is
displayed in Figures S2 and S3, Supporting Information.
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Figure 3. The binding mode of substrate is shown in the active site of enzyme. The binding interactions are highlighted in
box. Hydrogen bonds are shown in green lines.

The docked library was ranked according to the docking score and top 10% of the
screened compounds (>600) were selected for post-docking filtration. Based on docking
ranks, scores and calculated protein-ligand interaction fingerprints (PLIF), 202 compounds
were considered ‘best’ and their pharmacokinetics (absorption, distribution, metabolism,
excretion and toxicity) profiling was carried out by computational tools [SwissADME
(http://www.swissadme.ch/ accessed on 15 December 2020) and admetSAR (http://lmmd.
ecust.edu.cn/admetsar2 accessed on 15 December 2020)].

2.3. ADMET Analysis of Selected Hits

The top ranked docked compounds (202 best hits) were selected for their ADMET
prediction which showed that 142/202 compounds exhibited acceptable pharmacoki-
netic properties (named as compounds 1–142, Table S1, Supporting Information). Those
compounds do not penetrate blood brain barrier (BBB), display high human intesti-
nal absorption (HIA), revealed no AMES toxicity and carcinogenicity. The calculated
oral toxicity showed that these compounds fall in category III of acute oral toxicity
(LD50 = >500 mg/kg to <5000 mg/kg), indicating that the compounds are non-toxic. The
predicted RAT acute toxicity reflect that the compounds show low in vivo toxicity up to
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the dose of ≥2 mol/kg. The synthetic accessibility (SA) values of these compounds are
also ≤5 indicating that these compounds are easily synthesizable.

2.4. Protein-Ligand Interaction Analysis of 142 Compounds

According to ADMET profile, compounds 1–142 were retrieved as good inhibitors.
The modes of binding of all those (142) compounds were analyzed in the active site of
α-glucosidase to select the potential inhibitors of α-glucosidase. The compounds were
sorted on the basis of higher number of hydrogen bonding pattern within the active site,
and compounds with number of hydrogen bonds ≥ 3, were selected. Subsequently eight
molecules (20, 28, 48, 63, 94, 112, 135 and 140) were retrieved as ‘Hits’ which specifically
interacted with one or two residues of catalytic triad (Asp214-Glu276-Asp349). Therefore,
based on docking scores and binding interactions, those ‘Hits’ were considered as most
active inhibitors. The predicted protein-ligand interactions of 142 compounds are shown
in Figure 4. The docking ranks, scores, and molecular interactions of each compound are
summarized in Table S2 (Supporting Information).

Figure 4. The predicted interaction pattern of compounds 1–142. The binding interactions are shown in 3-color-scale (green
through red colour scheme) where red and green indicates least and high number of bonds, respectively, HB = Hydrogen
bonds, II = ionic interactions, WB = water bridging.
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2.5. The Binding Potential of High Active Hits

The analysis of binding interactions reflect that eight compounds (20, 28, 48, 63, 94, 112,
135 and 140) can act as potential inhibitors of α-glucosidase enzyme. Those compounds
exhibited good binding interactions within the active site of enzyme. The docked view of
compound 20 showed that Glu276 and Asp214 of catalytic triad (CT) and Thr215 formed
hydrogen bonds with the amino group of the compound. Moreover, the side chains of
Asp68, Asp214 and Glu276 mediated ionic interaction with the amino and the nitrile
groups of the compound. Additionally, a water molecule was involved in the protein-
ligand bridging. These interactions are responsible for the higher binding affinity of the
compound [docking score (DS) = −18.35 kcal/mol and docking rank (DR) = 34). The
triazolopyrimidine ring of compound 28 (DS= −18.04 kcal/mol, DR = 46) interacted with
the side chain of Asp349 of CT, while the hydroxyl group of the compound formed H-bonds
with the side chains of Asp214 and Arg212. Moreover, Asp349 and Phe157 provide ionic
and π-π interactions to the compound, respectively. The morpholine ring of 48 (DR = 77,
and DS = −17.50 kcal/mol) interacted with Asp214 and Arg439 through H-bonds, while
Asp214 also mediated ionic interaction with the compound. The amino group of the
compound 63 (DR = 99, and DS = −16.99 kcal/mol) formed H-bonds with the side chains
of Asp214 and Thr215, while the sulfone moiety of 63 interacted with the amino group of
Thr215 via H-bond. The docked view of compound 94 (DS = 16.47 kcal/mol, DR = 143)
showed that the thioxoimidazolidinone moeity of 94 interacts with multiple residues
including Asp68, Asp214 and His111 through H-bonds. Additionally, two water molecules
also stabilize the compound by H-bonding. The binding mode of compound 112 showed
that the triazolopyridine ring of the compound mediated ionic interactions with Asp349,
while the substituted hydroxyl group of the compound formed H-bonds with Glu276 and
Arg212. The compound depicted DS and DR of −16.27 kcal/mol and 167, respectively.
The docked view of 135 showed that one of the nitrile group formed H-bond with His348,
while amino group and piperidine nitrogen of the compound mediated H-bonds Asp68
and Glu276, respectively. Moreover, the side chains of Asp68 and Glu276 also offered
ionic interaction to the compound. The compound exhibited DS = −16.02 kcal/mol and
DR =194. The binding mode of compound 140 (DS = −15.95 kcal/mol, DR = 200) depicted
that the hydroxytetrahydropyrimidinone ring of 140 binds with Asp214, Asp349, Arg212
and His348 through H-bonds.

The binding interactions reflect that these compounds possess strong binding poten-
tial with α-glucosidase. The chemical structures of the selected hits, and their binding
interactions with the active site residues are shown in Table 2 and docking results are
tabulated in Table S2. The 3D-structures of selected hits are given in Table S3. The binding
modes of the selected hits are depicted in Figure 5. Therefore, by using virtual screening,
we selected most appropriate binders of α-Glucosidase enzyme. Thus, this study will be
useful in the identification of novel and more potent anti-diabetic compounds.

Table 2. The Chemical Structures and Binding Interactions of Eight Hits.

Comp Chemical
Formula

Chemical Structure
Interactions with Active Site Residues

HB II WB

20 C25H31N5O2 ASP214, GLU276,
THR215

ASP68, ASP214,
GLU276 HOH1174
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Table 2. Cont.

Comp Chemical
Formula

Chemical Structure
Interactions with Active Site Residues

HB II WB

28 C23H23ClN5O4 ASP349, ASP214,
ARG212 ASP349 none

48 C19H21BrN3O2S ASP214, ARG439 ASP214 HOH1026

63 C18H20F2N2O4S ASP214, THR215 none none

94 C17H14BrN3O3S ASP68, ASP214,
THR215, HIS111, none HOH1102,

HOH1174

112 C24H27FN5O4 GLU276, ARG212 ASP349 none

135 C20H19BrFN5 GLU276, ASP68,
HIS348

GLU276,
ASP68

HOH1026,
HOH1228

140 C21H20ClF3N2O5 ASP349, ASP214,
ARG212, HIS348 none none

HB= Hydrogen bonds, II = Ionic interactions, WB = water bridging.
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Figure 5. The binding modes of compounds 20, 28, 48, 63, 94, 112, 135 and 140 are depicted in the active site of α-glucosidase.
Ligands are shown in green stick model, H-bonds are displayed in black lines, the active site residues are presented in
orange stick model.
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2.6. Prediction of α-Glucosidase Inhibitory Activities of Compounds (20, 28, 48, 63, 94, 112, 135
and 140) by QSAR Model

The ADMET profile, and predicted binding interactions of compounds 1-142, led
us to identify eight new compounds as good inhibitors of α-glucosidase, therefore their
α-glucosidase inhibitory activities were predicted by QSAR model. Prior to the prediction,
the model was validated by a set of thirty-two compounds (regarded as Test set 2). The com-
pounds in Test set 2 were randomly selected from literature with α-glucosidase inhibitory
activities. The developed QSAR model predicted their activities with r2 value of 0.62, indi-
cating that the QSAR model can accurately predict the α-glucosidase inhibitory potential
of compounds. The results are shown in Table S4 and Figure S4.

The predicted activities (pIC50 values) of compounds 20, 28, 48, 63, 94, 112, 135 and
140 are 5.57, 6.79, 4.04, 4.53, 4.71, 5.85, 5.39, and 4.72, respectively. It reflects that these
compounds will serve as better inhibitors when tested in vitro.

3. Methods and Materials
3.1. Selection of Data Set for QSAR Analysis

A set of thirty-eight structurally diverse compounds (αGIs) with α-glucosidase in-
hibitory activities was retrieved from literature [42–45]. αGIs covers a good range of
inhibitory activities. αGI1- αGI16, αGI17- αGI33, and αGI34- αGI38, are reported by
Wang et al. 2017, Taha et al. 2008, and Alhassan et al. 2018, respectively [42–45]. Based
on the diversity of structure and the activity, the data was segregated into training and
test sets of 32 and 6 compounds, respectively. The training set was used to develop QSAR
model whereas test set was used for the validation of the generated model. The range of
biological activities and chemical diversity of compounds was evenly spanned in both
sets. The IC50 values were converted into negative logarithmic scale (pIC50= −logIC50)
which cover an interval of 3 log units (Table 1). The 3D-cordinates of compounds were
built by MOE [46]. Partial charges were applied on compounds and their structures were
minimized by MMFF94 force field until gradient was reached to 0.1 kcal/mol/Å2 [46].

The Generation and Validation of QSAR Model

QSAR modeling was performed on MOE. Initially 192 2D-descriptors were calculated
for each compound of training set. The best descriptors were selected by using MOE
“QuaSAR-Contingency” applications. Descriptors with contingency coefficient above 0.6
and Cramer’s, uncertainty, and correlation coefficients above 0.2 were selected for QSAR
which proposed nine 2D-descriptors including apol (Sum of the atomic polarizabilities),
bpol (Sum of the absolute value of the difference between atomic polarizabilities of all
bonded atoms in the molecule), a_acc (Number of hydrogen bond acceptor atoms), a_heavy
(Number of heavy atoms), logP(o/w) (Log of the octanol/water partition coefficient), logS
(Log of the aqueous solubility (mol/L)), TPSA (topological polar surface area (Å2) c),
Weight (molecular weight) and wienerPol (Wiener polarity number) as “best” for our
dataset. These descriptors are widely used to predict biological activity and ADMET
properties of dataset [46]. QSAR model was built by selecting the inhibitory activities of
compounds (as descriptor variable) and calculated descriptors as model fields. Regression
analysis was performed on the training set, and r2 and RMSE values of the fit were obtained.
The generated QSAR model was validated by cross validation by leave-one-out method.
QSAR fit was used to validate the model by cross validation method. The predictive
activities and the residual values of each compound of training set was assessed. Residual
value, Z-score and predicted values were calculated for validation and cross-validation of
model. The results were interpreted by drawing correlation plot between predicted values
(actual activity) on x-axis versus predicted IC50 values on y-axis. The developed model
was used to predict the biological activities of test set and test set 2 compounds in terms of
correlation coefficient (r2) between the experimental and predicted activities of test set. The
developed QSAR model was used for the prediction of biological activities of selected Hits.
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3.2. Filtration of ZINC Database for Virtual Screening

A dataset from ZINC database [47] was selected for virtual screening against α-
glucosidase. Compounds were searched by using filter parameters calculated by the physic-
ochemical properties of substrate molecule (molecular weight = 150–500,
range of xlogP= −4 to 5, number of rotatable bonds = 0–8, maximum topological surface
area = 150, number of hydrogen bond donor and acceptor = 0–10, polar desolvation = −400
to 1 kcal/mol, apolar desolvation = −100 to 40 kcal/mol and net charge = −4 to 5). 6609
compounds were matched with the filter parameters that were selected and imported into
MOE database, their protonation states were set according to neutral pH, partial charges
were applied, and energy was minimized (as described above).

3.3. Docking Based Screening

The crystallographic structure of Saccharomyces cerevisiae α-glucosidase is unavailable.
Thus, α-glucosidase model was generated in our previous studies [17–19]. The homology
model was used in the screening of 6609 compounds (collected from ZINC database) and
38 known inhibitors by MOE docking suit [46]. The protonation state of protein model
was assigned according to neutral pH, partial charges were applied, and 3D-coordinates
of the model was minimized by MMFF94x force field by retaining all heavy atoms fixed
until RMSD gradient was reached to 0.1 kcal/mol/Å2. Triangle matcher docking algorithm
was used with London dG scoring function and GBVI/WSA rescoring method. Force-field
based scoring function was applied for post-docking refinement. Later, protein-ligand
interaction fingerprint (PLIF) of MOE was used to calculate the binding interactions of
compounds within the active site of α-glucosidase. PLIF calculates hydrogen bonding,
ionic and hydrophobic interactions [46].

3.4. Pharmacokinetic (ADMET) Analysis

Pharmacokinetic properties of compounds were calculated by SwissADME (http:
//www.swissadme.ch/ (accessed on 15 December 2020)) and admetSAR servers (http:
//lmmd.ecust.edu.cn/ (accessed on 15 December 2020)). These servers are widely used
to calculate the absorption, distribution, metabolism, excretion and toxicity (ADMET) of
compounds. They predict the drug likeness, lead likeness and synthetic feasibility of com-
pounds. These servers predict the ADMET/drug likeness/lead likeness/pharmacokinetics
of compounds via different similarity searching methods or ADMET-QSAR models which
are developed by the structures of several drugs or drug like compounds (curated from
literature). For ADMET calculation, SMILE format of each compound was uploaded on
servers and the obtained results were saved in tabular form.

4. Conclusions

α-Glucosidase inhibitors are class of oral medications which have a promising role
in the management of glycemic control in T2DM. In the present study, computational
techniques including QSAR modeling and structure-based virtual screening were used to
identify potent inhibitors of α-glucosidase. The developed linear QSAR model displayed
high predictability with correlation coefficient value (r2 = 0.88). The test set validated the
model with significant r2 (0.82) values. Additionally, virtual screening of 6609 compounds
was performed by molecular docking on S. cerevisiae α-glucosidase homology model.
The best binders were further screened by ADMET profiling and interaction analysis.
Eventually eight compounds were selected with high binding affinity for α-glucosidase.
Results indicates that those in-silico identified α-glucosidase inhibitors can block the
biological activity of α-glucosidase when tested in vitro.
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Abstract: The mammalian target of rapamycin (mTOR) is a serine/threonine kinase portraying a
quintessential role in cellular proliferation and survival. Aberrations in the mTOR signaling pathway
have been reported in numerous cancers including thyroid, lung, gastric and ovarian cancer, thus
making it a therapeutic target. To attain this objective, an in silico investigation was designed,
employing a pharmacophore modeling approach. A structure-based pharmacophore (SBP) model
exploiting the key features of a selective mTOR inhibitor, Torkinib directed at the ATP-binding
pocket was generated. A Marine Natural Products (MNP) library was screened using SBP model
as a query. The retrieved compounds after consequent drug-likeness filtration were subjected to
molecular docking with mTOR, thus revealing four MNPs with better scores than Torkinib. Successive
refinement via molecular dynamics simulations demonstrated that the hits formed crucial interactions
with key residues of the pocket. Furthermore, the four identified hits exhibited good binding free
energy scores through MM-PBSA calculations and the subsequent in silico toxicity assessments
displayed three hits deemed essentially non-carcinogenic and non-mutagenic. The hits presented in
this investigation could act as potent ATP-competitive mTOR inhibitors, representing a platform for
the future discovery of drugs from marine natural origin.

Keywords: mTOR kinase; marine natural products; ATP-competitive inhibitors; structure-based
pharmacophore modeling; virtual screening; molecular docking; molecular dynamics simulations;
binding free energy; in silico ADMET

1. Introduction

The growth factors, nutrients and energy levels in cells are key determining factors
of cellular growth and proliferation [1]. Dysregulation of the phosphoinositide 3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) axis has been heavily implicated in
tumorigenesis and the progression of numerous cancers, including lung, thyroid, ovarian
and gastric cancer [2–5]. Therefore, targeting mTOR signaling represents an attractive
therapy in cancer. mTOR is a serine/threonine kinase (UniProt ID: P42345), first discovered
in budding yeast Saccharomyces cerevisiae [6] and functions as a cardinal regulator of cell
growth, proliferation, metabolism, energy homeostasis, angiogenesis and survival [7,8].
In mammalian cells, mTOR exists in two evolutionarily conserved complexes: mTORC1,
which regulates protein synthesis through the phosphorylation of p70S6K1, and 4E-BP1
and mTORC2, which regulate cell survival and proliferation through the phosphoryla-
tion of AKT/PKB [9,10]. The mTORC1 comprises regulatory-associated protein of mTOR
(RAPTOR), lethal with SEC13 protein 8 (LST8), proline-rich substrate of 40 kDa (PRAS40)
and domain-containing mTOR-interacting protein (DEPTOR), while mTORC2 consists

707



Pharmaceuticals 2021, 14, 282

of rapamycin-insensitive companion of mTOR (RICTOR), LST8, stress-activated protein
kinase interacting protein 1 (SIN1), DEPTOR and protein observed with RICTOR (PRO-
TOR) [6]. Deregulation of mTORC1/ mTORC2 both upstream and downstream is impli-
cated in various cancers, including breast, ovarian, prostate and lung cancer [11].

Currently, numerous pharmacological possibilities have been developed to inhibit
mTOR, resulting in three generations of mTOR inhibitors. Rapamycin and its analogs
(rapalogs) belong to the first generation of mTORC1 inhibitors, approved for different
cancer treatments [12]. In spite of being approved, these inhibitors cause the stabilization
of the disease and not tumor regression, thereby behaving as cytostatic and not as cytotoxic.
Additionally, their continued use results in copious adverse effects causing suppression
of the immune system, reduction in male fertility and hematological toxicity [13]. The
second generation of mTOR inhibitors act as ATP-competitive inhibitors of the catalytic
kinase domain controlling the activity of both mTORC1 and mTORC2 [14]. Various
resistant mutations interfering with mTOR drug binding are observed in rapalogs as well
as ATP-competitive kinase domain inhibitors. The third generation of mTOR inhibitors
consist of bivalent drugs binding simultaneously to the regulator and mTOR catalytic sites
thereby supplementing to eliminate the resistant mutations [15,16]. In recent years, several
second generation of mTOR inhibitors were identified as selective ATP-competitive kinase
domain inhibitors including INK-128, OSI-027 and CC-223. Moreover, dual mTOR/PI3K
inhibitors, including BEZ235, PF-04691502 and GSK2126458, were also discovered as
effective inhibitors. Nevertheless, these inhibitors exhibit detrimental effects including
thrombocytopenia, depression, weight loss, skin rash and mucositis [17,18]. Hence, there
is an emergent need to discover potent mTOR kinase domain inhibitors as therapeutic
candidates for cancerous ailments.

Natural products are predominant sources of active ingredients in medicine, demon-
strating varying structural diversity and exhibiting greater potential druggable pharma-
cophores than synthetic molecules [19,20]. Moreover, lead compounds of natural origin
have proven to show significant inhibitory activities on mTOR kinase domain in the past
and this provided a structural basis for identifying natural products as potent mTOR in-
hibitors [21–23]. Natural products from marine resources have recently shown therapeutic
potential in the development of anti-cancer drugs [24–30]. It is noteworthy to mention that
7 compounds from marine organisms have been approved as pharmaceuticals for market-
ing, 23 compounds are in various phases of clinical trials and about 1000 compounds are
undergoing preclinical studies [25]. Four marine compounds, namely cytarabine (Cytosars),
trabectedin (Yondeliss), eribulin mesylate (Halavens) and the conjugated antibody brentux-
imab vedotin (Acentriss), are currently utilized as anti-cancer therapeutics [25]. Marine
natural extracts have also exhibited significant anti-cancer effects in recent years [24,31–34].

The aforementioned perspectives prompted us to identify natural compounds from
marine resources as potential therapeutics targeted to mTOR for treatment in cancer. In
accordance with it, we have carried out an in silico study to identify mTOR inhibitors
via structure-based pharmacophore modeling approach. We have used pharmacophore-
based virtual screening followed by molecular docking to select candidates from a Marine
Natural Product (MNP) library. Subsequently, the drug-like marine compounds showing
the best docking scores and molecular interactions with the kinase domain of mTOR
were further refined by molecular dynamics (MD) simulations and Molecular Mechanics
Poisson–Boltzmann Surface Area (MM-PBSA) analysis. The compounds demonstrating
good binding affinity scores, as revealed by MM-PBSA were confirmed as final hits and
reported in this study as potential ATP-competitive mTOR kinase domain inhibitors for
cancer therapeutic treatment.

2. Results
2.1. Structure-Based Pharmacophore Model

A structure-based pharmacophore was generated from the crystallographic structure
of mTOR kinase complexed with PP242 inhibitor, in which the key features of PP242 binding
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with mTOR were exploited. Accordingly, a total of six pharmacophore models were gener-
ated with hydrogen bond donor (HBD), hydrogen bond acceptor (HBA) and hydrophobic
(Hy) as common indispensable features (Table 1). The Pharmacophore_01 with five features
(1 HBA, 2 HBD and 2 Hy) and with the highest selectivity score of 9.2973 was observed to
be the best pharmacophore model among the six generated pharmacophores and hence
selected for further analysis. Upon meticulous examination, Pharmacophore_01 displayed
requisite features complementing the key residues for binding—Asp2195, Gly2238, Val2240
and Ile2356. The HBA feature complements with the essential residue Val2240, where
PP242 is responsible for forming a hydrogen bond. The pyrazolopyrimidine scaffold of
PP242 also maps on to the two HBD features by hydrogen bonding with two vital residues—
Asp2195 and Gly2238. A previously published study suggests HBA and HBD as crucial
features required for mTOR inhibition [21]. Moreover, the two Hy features complement
the PP242 binding with Ile2356 residue via π-alkyl interactions. The Hy pharmacophoric
feature was also reported as an essential feature in an earlier study on nanomolar mTOR
inhibitors [35]. Therefore, Pharmacophore_01 was escalated for further analysis (Figure 1).

Table 1. Structure-based pharmacophore models with their generated features.

Pharmacophore
Models

Number of
Features

Feature
Set *

Selectivity
Score

Pharmacophore_01 5 ADDHH 9.2973
Pharmacophore_02 4 DDHH 7.7825
Pharmacophore_03 4 ADDH 7.7825
Pharmacophore_04 4 ADDH 7.7825
Pharmacophore_05 4 ADHH 6.8689
Pharmacophore_06 4 ADHH 6.8689

* A: hydrogen bond acceptor (HBA); D: hydrogen bond donor (HBD); H: hydrophobic (Hy).
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Figure 1. Structure-based pharmacophore model- Pharmacophore_01. (A) Pharmacophore model
generated at the catalytic site of mTOR with co-crystallized ligand, PP242. (B) Pharmacophore
features mapped with the key residues of the binding pocket. (C) Interfeature distance between the
mapped pharmacophore features. HBA (hydrogen bond acceptor); HBD (hydrogen bond donor) and
Hy (hydrophobic).

2.2. Decoy Set Validation of the Structure-Based Pharmacophore Model

The selected model Pharmacophore_01 was evaluated for its efficiency in retrieving
active mTOR compounds from a given database of active and inactive molecules. This
validation was prompted by screening an external database (D) of 300 compounds, with
50 active compounds (A). With 61 hits retrieved from the database (Ht), active compounds
obtained were 49 (Ha). The goodness of fit (GF) score was calculated as 0.80, thereby
confirming that Pharmacophore_01 can predict active compounds from a given dataset
reasonably well (Table 2).
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Table 2. Decoy set validation of Pharmacophore_01 from an external database composed of active and inactive mTOR in-
hibitors.

S. No. Parameters Values

1 Total number of compounds in the database (D) 300
2 Total number of active compounds in the database (A) 50
3 Total number of hits retrieved by pharmacophore model from the database (Ht) 61
4 Total number of active compounds in the hit list (Ha) 49
5 % Yield of active ((Ha/Ht) × 100) 80
6 % Ratio of actives ((Ha/A) × 100) 98
7 False negatives (A-Ha) 1
8 False positives (Ht-Ha) 12
9 Goodness of fit score (GF) 0.80

2.3. Drug-Like Marine Compounds Retrieved by Virtual Screening

The validated model Pharmacophore_01 mapped 3019 compounds from the Marine
Natural Products (MNP) library of 14,492 compounds. Subsequent filtering of mapped com-
pounds by Lipinski’s Rule of Five (Ro5) and absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties led to further reducing the amount to 135 compounds.
These 135 marine drug-like compounds along with reference inhibitor PP242 were esca-
lated for molecular docking with mTOR crystallographic structure and their interactions
with residues Leu2185, Asp2195, Ile2237, Gly2238, Trp2239, Val2240, Thr2245, Met2345,
Leu2354, Ile2356, and Asp2357 were scrutinized (Figure 2).Pharmaceuticals 2021, 14, x FOR PEER REVIEW 5 of 19 
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2.4. Molecular Docking of Retrieved Marine Drug-Like Compounds with mTOR Kinase

The molecular docking process demarcates on the binding affinity, mode of ligand
binding in the target protein pocket and also elucidates the interactions of compounds
with essential residues. The performance of GOLD software was evaluated by re-docking
the co-crystallized ligand PP242 into mTOR binding pocket, resulting in an acceptable
RMSD of 0.71 Å (Figure S1). Docking of screened 135 marine drug-like compounds with
mTOR kinase domain was then carried out along with reference inhibitor PP242. A total of
four marine compounds demonstrated higher Gold scores than PP242 reference inhibitor.
The reference compound displayed a lower Gold score of 63.20 as compared with marine
compounds hereafter referred to as MNP1, MNP2, MNP3 and MNP4 exhibiting higher
Gold scores of 65.48, 65.41, 64.72 and 63.75, respectively (Table 3). The four compounds also
demonstrated interactions with the aforementioned residues of the ATP-binding pocket of
mTOR kinase domain. A total of 15 molecules exhibited lower docking scores than Torkinib
and, therefore, were not considered for further evaluation. However, it was observed that
these 15 marine molecules also target similar residues of the mTOR pocket, as seen for
the above four compounds (Table S1). Therefore, these four marine compounds and the
reference PP242 inhibitor were taken forward for MD simulations to confirm on their
stabilities with the mTOR binding pocket.

Table 3. The docking scores and intermolecular interactions of reference PP242 and Marine Natural Product (MNP) library
compounds with mTOR kinase domain (PDB ID: 4JT5).

Compound
No.

MNP ID
(CAS No *)

Gold
Score

Hydrogen Bond
Interactions

Hydrophobic and van der Waals Interactions

1
(MNP1) 200936-85-2 65.48 Val2240, Asp2357

Leu2185, Lys2187, Leu2192, Asp2195, Tyr2225, Val2227, Ile2237,
Gly2238, Trp2239, His2242, Cys2243, Asp2244, Thr2245,

Met2345, Arg2348, Ile2356, Phe2358

2
(MNP2) 230295-94-0 65.41 Asp2195, Trp2239,

Val2240

Leu2185, Lys2187, Leu2192, Met2199, Tyr2225, Val2227, Ile2237,
Pro2241, His2242, Cys2243, Met2345, Arg2348, Ile2356,

Asp2357, Phe2358

3
(MNP3) 149636-93-1 64.72 Trp2239, Val2240

Leu2185, Lys2187, Glu2190, Leu2192, Asp2195, Tyr2225, Ile2237,
Trp2239, Val2240, Pro2241, His2242, Cys2243, Met2345, Arg2348,

Ile2356, Asp2357, Phe2358

4
(MNP4) 200936-84-1 63.75 Asp2195, Val2240,

Asp2357

Ile2163, Leu2185, Leu2192, Met2199, Tyr2225, Val2227, Ile2237,
Trp2239, Pro2241, His2242, Cys2243, Asp2244, Thr2245, Met2345,

Arg2348, Ile2356
5

(PP242)
Reference

(1092351-67-1) 63.20 Asp2195, Gly2238,
Val2240

Ile2163, Leu2185, Lys2187, Met2199, Tyr2225, Ile2237, Trp2239,
Cys2243, Thr2245, Met2345, Ile2356, Asp2357, Phe2358

* CAS: Chemical Abstracts Service.

2.5. Binding Mode and Binding Free Energy Analysis of Identified Marine Compounds by
Molecular Dynamics Simulations

MD simulations employing GROningen Machine for Chemical Simulations (GRO-
MACS) package were executed for the four identified marine compounds docked with the
mTOR kinase to comprehend the dynamic behavior at the atomistic level. Simulations were
also supplemented with the calculation of binding free energies for the identified hits by
MM-PBSA methodology and the compounds were ranked as hits accordingly (Table S2). To
gain insight into the binding mode of identified compounds inside the mTOR ATP-binding
pocket, the representative structures from the last 5 ns of stable MD trajectories were
extracted and subsequently superimposed. Upon scrupulous analysis, it was observed that
the identified compounds exhibited a similar binding mode as the PP242 co-crystallized
ligand of mTOR (Figure 3).
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2.6. Characteristic Binding Interaction and Binding Free Energy Analysis of the Confirmed Marine
Hits with mTOR ATP-Binding Pocket Residues

2.6.1. mTOR-Hit1 Interaction

The marine compound MNP2 acquired from the docking analysis (Table 3) exhibited
the highest BFE of −101.187 ± 17.842 kJ/mol, as investigated by MM-PBSA calculations
and, therefore, referred to as Hit1 (Table S2). The estimated BFE gives insight on the diverse
components of interaction energy contributing to Hit1 binding. Both electrostatic and van
der Waals components contribute a major role in the binding of Hit1 with the ATP-binding
pocket of mTOR, where the van der Waals contribution (−151.961 ± 11.779 kJ/mol) is
higher than the electrostatic component (−101.485 ± 16.574 kJ/mol). The solvent accessible
surface area (SASA) provides a slightly favorable contribution towards the binding of Hit1
with mTOR (−17.534 ± 0.909 kJ/mol). Energy decomposition analysis led to the identifica-
tion of vital residues contributing to the binding of Hit1 with mTOR (Figures 4A and 5A,
Table S2). It was observed that the major contribution for Hit1 binding was from van
der Waals interaction with residue Trp2239 (−8.5 kJ/mol) and hydrophobic interaction
with residue Ile2356 (−7.9 kJ/mol) which was consistent with its binding mode (Figure
5B). The binding of Hit1 in the mTOR ATP-binding pocket is rendered by hydrogen bond
interactions (Figures 4A and 5B) with Asp2195 (bond length: 1.72 Å) and Asp2357 (bond
length: 1.96 Å). Additionally, the benzene ring of Hit1 interacted with key residues Tyr2225
(bond length: 4.25 Å), Ile2237 (bond length: 4.70 Å), Val2240 (bond length: 4.94 Å) and
Ile2356 (bond length: 4.47 Å) via π-alkyl hydrophobic interactions. Moreover, mTOR
residues Ile2163, Leu2185, Lys2187, Val2198, Gly2238, Trp2239, Met2345 and Phe2358 form
van der Waals interactions with Hit1 (Figure 5B).

2.6.2. mTOR-Hit2 Interaction

The marine compound MNP3 (hereafter referred to as Hit2) attained from docking
analysis (Table 3), demonstrated with BFE of −101.041 ± 20.457 kJ/mol, was observed to be
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comparable with the BFE of Hit1 (Table S2). Similar to Hit1, contribution of van der Waals
(−165.824 ± 15.257 kJ/mol) and electrostatic (−70.466 ± 12.892 kJ/mol) components for
the binding of Hit2 with mTOR played a major role than the corresponding SASA energy.
The contribution of SASA energy component (−21.107 ± 0.998 kJ/mol) for Hit2 binding
was observed to be higher than that of Hit1 with mTOR ATP-binding pocket. The major
residues contributing to Hit2 binding with mTOR were also observed to be similar to Hit1
contributing residues (Figure 5C), with Trp2239 (−9.3 kJ/mol) and Ile2356 (−7.0 kJ/mol)
forming hydrophobic bonds with Hit2 (Figure 5D). Elucidating on the binding interaction
of Hit2 predicted by MD analysis, it was noticed that Hit2 formed three hydrogen bonds
(Figures 4B and 5D) with residues Lys2187 (bond length: 1.75 Å), Thr2245 (bond length: 1.80
Å) and Asp2357 (bond length: 2.45 Å). Moreover, the bromo-phenoxy group interacts with
residues Leu2185 (bond length: 4.50 Å), Ile2237 (bond length: 3.77 Å) and Trp2239 (bond
length: 5.45 Å) via alkyl and π-alkyl hydrophobic interactions. Additional interactions with
residues Ala2248 (bond length: 5.18 Å) and Ile2356 (bond length: 4.37 Å) also hold Hit2
in the mTOR hydrophobic pocket via π-alkyl bonds. Furthermore, the residues Ile2163,
Thr2164, Glu2190, Asp2195, Gly2238, Val2240, Cys2243, Asp2244, Met2345 and Phe2358
assist in holding Hit2 in the mTOR binding pocket firmly via van der Waals interactions
(Figure 5D).
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(MNP) library with key residues of mTOR ATP-binding pocket via hydrogen bonds. The compounds
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2.6.3. mTOR-Hit3 Interaction

The marine compound MNP1, exhibiting the highest dock score of 65.48 (Table 3)
presented with the BFE of −91.924 ± 12.264 kJ/mol (Table S2) and, therefore, ranked and
referred as Hit3. It was observed that the van der Waals component was responsible for
majorly contributing (−171.314 ± 11.172 kJ/mol) to Hit3 binding with mTOR than electro-
static (−17.958 ± 10.086 kJ/mol) and SASA (−19.290 ± 1.055 kJ/mol) energy components.
The van der Waals contribution was observed to be the highest for Hit3-mTOR interaction
than mTOR interactions with other hits (Table S2). Additionally, the contribution of this
component is 10-fold higher than electrostatic component (−17.958 ± 10.086 kJ/mol) for
Hit3-mTOR binding. Emphasizing the major residues contributing to the binding energy
of Hit3 with mTOR, van der Waals interaction via Ile2356 (-9.2 kJ/mol) and hydrophobic
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interactions via Trp2239 (−11.1 kJ/mol) and Met2345 (8.9 kJ/mol) were seen to have a
greater impact on binding (Figure 5E,F). Hydrogen bond analysis of the predicted bind-
ing mode demonstrated with Hit3 forming two bonds (Figures 4C and 5F) with residues
Val2240 (bond length: 2.05 Å) and Asp2357 (bond length: 2.37 Å). Moreover, Hit3 in-
teracts with Leu2185 (bond length: 5.0 Å) from the inner hydrophobic pocket and with
Met2345 (bond length: 5.13 Å) of mTOR hydrophobic chamber via alkyl interactions. Two
π-alkyl bonds are formed with residue Trp2239 (bond length: 4.32 Å and 4.90 Å) of the
hydrophobic chamber. Besides above interactions, van der Waals bonds with residues
Ile2163, Met2199, Tyr2225, Val2227, Ile2237, Gly2238, Thr2245, Leu2354, His2355, Ile2356
and Phe2358 contribute to the BFE obtained for Hit3 (Figure 5F).
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2.6.4. mTOR-Hit4 Interaction

The marine compound MNP4 (hereafter referred to as Hit4) with lowest dock score
among obtained hits (Table 3) demonstrated a BFE of −86.049 ± 14.961 kJ/mol (Table S2).
Similar to other hit compounds, the van der Waals component of BFE also contributed greatly
to Hit4-mTOR binding (−169.882 ± 11.839 kJ/mol). Correspondingly, the contribution of
SASA energy component for Hit4 binding (−19.569 ± 0.780 kJ/mol) was in comparable
range with SASA energy for Hit3 binding (−19.290 ± 1.055 kJ/mol). The interaction energy
of individual residues towards Hit4-mTOR binding revealed Trp2239 (−8.5 kJ/mol) and
Ile2356 (−8.1 kJ/mol) as the major contributing residues via hydrophobic and van der Waals
interactions, respectively, as also observed in the above hits (Figure 5G,H). The binding
interaction of Hit4 with mTOR revealed that Hit4 interacts with Asp2195 (bond length:
2.03 Å), Val2240 (bond length: 2.40 Å) and Asp2357 (bond length: 2.83 Å) via hydrogen bonds
(Figures 4D and 5H). Similar interactions with Asp2195 and Val2240 via hydrogen bonds
were also observed in reference structure bonding with mTOR kinase (Figure S2). Elucidating
on the hydrophobic interactions of Hit4 with mTOR kinase domain residues, it was observed
that Hit4 interacts with hydrophobic chamber residue Ile2163 (bond length: 4.69 Å) and
inner hydrophobic pocket residue Leu2185 (bond length: 4.52 Å) via alkyl bonds. Moreover,
three π-alkyl bonds (bond lengths: 4.82 Å, 5.22 Å and 5.24 Å) and one π-sigma bond (bond
length: 3.73 Å) with hydrophobic chamber residue Trp2239 also contribute to Hit4-mTOR
interaction. Furthermore, residues Met2199, Tyr2225, Val2227, Ile2237, Pro2241, His2242,
Cys2243, Met2345, Ile2356 and Phe2358 also participate in positioning Hit4 firmly in mTOR
binding pocket via van der Waals interactions (Figure 5H).

2.7. Evaluation of Drug-Likeness, ADME and Toxicity Properties of Identified mTOR Hits

Knowledge of the drug-likeness and ADME properties of final hits is vital, prior
to their consideration as a lead candidate in drug development and/or their usage as
anti-cancer drugs. These properties for the final hits were assessed using DS and tabulated.
Furthermore, the Toxicity Prediction (TOPKAT) module in DS was used to evaluate the
toxicity properties of identified hits. Given the structural information of a compound as
a query, TOPKAT relies on the concept of Quantitative Structure–Toxicity Relationship
(QSTR) models for computing toxicity properties, including AMES mutagenicity and rodent
carcinogenicity, based on the National Toxicology Program (NTP) dataset. According to
the U.S. NTP protocol, a compound’s carcinogenicity is assessed by testing it in female
and male sexes of mouse as well as rat. As per the calculations, all hits were observed to
obey the Lipinski’s Ro5 and displayed molecular weight of less than 500 Da with predicted
octanol/water partition coefficient logP of less than 5.0 and estimated hydrogen bond
donors and acceptors of less than 5 and 10, respectively (Table S2). The hits also followed
the Veber’s rule except for Hit2 with 10 rotatable bonds. Additionally, the identified hits
satisfied the ADME properties demonstrating low blood–brain barrier (BBB) penetration,
no inhibition of CYP2D6, good human intestinal absorption (HIA) as well as good aqueous
solubility (Table S3). The results from TOPKAT analysis suggested that our identified hits
demonstrated non-carcinogenicity in both sexes of rat models, while Hit2 appeared to be
carcinogenic in mouse male (Table S4). According to the TOPKAT AMES mutagenicity
analysis, Hit2 was displayed as being a mutagen while other hits were observed to be
non-mutagenic (Table S4).

2.8. Novelty and Source Documentation of Identified mTOR Inhibitors

As a final assessment, the source of the identified marine hits was evaluated. For
this purpose, the PubChem chemistry database (https://pubchem.ncbi.nlm.nih.gov/,
(accessed on 11 February 2021)) was searched with Chemical Abstracts Service (CAS)
numbers/MNP IDs of the respective hits as queries to identify if our hits have already
been reported in the literature for mTOR kinase or other target proteins. From PubChem
literature analysis, it was found that the compound Hit1 (7-Hydroxyceratinamine) is a
cyanoformamide-containing metabolite originating from a Micronesian sponge, Aplysinella
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sp [36]. In addition, Hit2 was found to be a marine alkaloid isolated from the sponge
Psammaplysilla purpurea [37]. The source for Hit3 could not be identified while Hit4 was
recognized as a phytolide of the Colletotrichum boninense fungal origin [38]. As per the
literature analysis, the four identified hits have not been reported as inhibitors of mTOR
kinase. Therefore, the identified hits in the present study provide valuable alternatives as
therapeutic candidates for further lead optimization.

3. Discussion

Kinase proteins act as chief regulatory entities in cellular biology. Moreover, their
hyperactivation leads to several pathologies, including cancer. Therefore, kinases have
become essential pharmacological targets and the discovery of small molecule drugs is
a predominant scientific activity to mitigate the cancerous ailments. The mammalian
target of rapamycin, mTOR is a dual specificity protein kinase which phosphorylates
serine/threonine as well as tyrosine residues. The deregulation of mTOR is associated with
diabetes, obesity, aging and various types of cancer [39–43]. The PI3K/AKT/mTOR path-
way has been largely implicated in the tumorigenesis and progression of aforementioned
cancers. Specific mTOR inhibitors are currently in various stages of clinical trials [44]. The
mTOR inhibitors appear to be well tolerated combined with adverse effects, including
myelosuppression, metabolic abnormalities, stomatitis and skin reactions, among other
abnormalities [45]. These inhibitors can be classified into first generation allosteric in-
hibitors such as rapamycin and its analogues [46] and second generation ATP-competitive
inhibitors. Several ATP-competitive mTOR inhibitors have been discovered and being
tested in clinical trials including selective inhibitors like CC-223, INK-128 and OSI-027 [47].
Unlike the former category of inhibitors, the ATP-competitive mTOR inhibitors block the
ATP-binding catalytic site as well as reduce the activity of mTORC1 and mTORC2 com-
plexes and hence has become an effective strategy to suppress both the ATP and allosteric
sites. Encouraged from these efforts, we pursued our research strategy to identify natural
product compounds as mTOR ATP-competitive inhibitors by applying structure-based
pharmacophore modelling. Such a pharmacophore strategy works towards exploiting the
key interactions between the protein residues and the bound co-crystallized ligand [48].

Marine extracts have displayed a great potential as an essential source of new drugs.
Marine environments remain extensively unexplored despite being a huge source of bioac-
tive compounds against cancer. Aquatic habitats have produced a variety of marine-derived
alkaloids, triterpenoids and peptides. Intriguingly, a purple sponge extract of Turkish
marine origin was shown to display promising activity against a panel of tyrosine kinases
and cell lines including A549, A375, KMS-12PE and K562 cancer cell lines [32]. Similarly,
the brown algae-derived polysaccharide, Fucoidan, was shown to exert anti-cancer ef-
fects not only through cell cycle arrest but also by indirectly killing cancerous cells by
activation of natural killer cells and macrophages. Fucoidan was also shown to demon-
strate inhibitory activity against cancer A549, MCF-7, PC-3 and SMMC-7721 cells [31]. In
addition, Fascaplysin which is a bis-indole of a marine sponge demonstrated anticancer
activity as CDK4 inhibitor in lung cancer cell line [46]. The antitumor potential of marine
algae-derived compounds has also been extensively reviewed recently [24]. We therefore
designed our study to target the mTOR dysregulation in cancer using marine-derived
bioactive natural products employing a series of computational methods. Using a structure-
based pharmacophore approach, we have developed a pharmacophore model from mTOR
protein structure co-crystallized with ligand PP242 (Figure 1). Torkinib/PP242 is a selective
ATP-competitive inhibitor of mTOR with promising anti-cancer activity over numerous
cancer types [49]. A total of 14,492 compounds of marine origin were screened with the
pharmacophore model as a query, deriving 3019 compounds as candidates mapping the
pharmacophore model. Subsequently, a drug-like database was prepared employing Lip-
inski’s Ro5 and ADMET rules, thereby retrieving 135 compounds (Figure 2). Molecular
docking-based interaction screening of these 135 compounds resulted in the identification
of four compounds with higher docking scores than PP242 and similar interactions with
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the ATP-binding pocket of mTOR (Table 3). Escalating the identified four compounds to
molecular dynamics simulations for observing their behavior at the atomistic level gave
insights into the critical residues required for the specific mTOR inhibition.

The structure-based pharmacophore and MD analysis of the mTOR-PP242 crystal
structure revealed that the inhibitor targets key residues Asp2195, Gly2238 and Val2240
via hydrogen bonds entailing essential pharmacophoric features including HBD and HBA
(Figure 1B and Figure S2A). It has been elucidated in previous studies that hydrogen bonds
with Asp2195 and Val2240 are indispensable for mTOR inhibitory activity [50–56]. In the
current study, Hit1 was observed to retain the hydrogen bonding interaction with Asp2195
(Table 3, Figure 4A), while Hit4 interaction with both residues was preserved even after
30 ns of production simulation run (Table 3, Figure 4D). Additionally, our hits formed
hydrogen bonds with catalytic hydrophilic residue Asp2357 of the mTOR ATP-binding site
which offers a level of specificity for our hits towards mTOR than PI3K (Figure 4) [51–55].
The compound Hit2 also formed additional hydrogen bonds with residues Lys2187 and
Thr2245 (Figure 4B) and interactions with these residues were also reported in previously
published studies [22,51,52,55]. A recent study reported natural products as mTOR ATP-
binding site and rapamycin binding site inhibitors derived from three databases—Marine
Natural Products Library, SuperNatural II and ZINC natural products—and also provided
experimental evidence against mTOR for eleven compounds [23]. However, the marine
compounds identified from their studies as mTOR inhibitors are distinct from our proposed
marine natural product hits. In addition to the aforementioned hydrogen bonds, our hits
are also characterized by several hydrophobic and van der Waals interactions (Figure 5). In
particular, interaction with residue Trp2239 of the hydrophobic chamber was observed via
π-stacking bonds or van der Waals interaction for our hits, similar to Torkinib interaction
with mTOR (Figure 5 and Figure S2B). Earlier studies reported that Trp2239 is not present
in canonical protein kinases such as PI3K and interaction with this residue provides for
mTOR inhibitor specificity over PI3K [56,57]. All of these results suggest that our hits may
be selective mTOR inhibitors. From our per-residue contribution analysis, Trp2239 was
observed to contribute the highest for Hit3 binding (−11.1 kJ/mol) (Figure 5E) followed by
Hit2 (−9.3 kJ/mol) (Figure 5C), Hit1 (−8.53 kJ/mol) (Figure 5A) and Hit4 (−8.52 kJ/mol)
(Figure 5G) binding with mTOR. The Trp2239 contributed the highest energy for binding
of Hit3 among the four identified hits forming strong interactions via π hydrophobic bonds
as observed (Figure 5F), thus suggesting a higher level of selectivity of Hit3 binding with
mTOR. In a recently published review, the significant residues involved in ligand selectivity
towards mTOR over PI3K were reviewed in detail and reported as Arg770, Glu2190 and
Cys2243 [50]. Our identified Hit2 displayed bonds with Glu2190 and Cys2243 via van der
Waals interactions (Figure 5D), while Cys2243 was also observed to support Hit4 via van der
Waals interactions in the ATP-binding pocket of mTOR (Figure 5H). The above-mentioned
analyses indicate that our identified marine hits have better binding affinity, as computed
from MM-PBSA binding free energy scores, and also seem to confer comparable selectivity
towards mTOR as the previously identified selective inhibitor, Torkinib. Correspondingly,
the identified hits also portray the essential pharmacophoric features required for mTOR
inhibition, similar to Torkinib (Figures 1 and 6).

As a final analysis, the four identified marine hits were scrutinized for their physic-
ochemical, pharmacokinetic and toxicity properties to evaluate their in vivo disposition
prior to their consideration as therapeutic anti-cancer drugs. The drug-likeness properties
and ADME results demonstrated that the identified hits satisfied the Ro5 criteria, could
be absorbed easily in the human intestine, show good aqueous solubility, do not inhibit
the CYP2D6 enzyme and do not penetrate the BBB (Table S3). Despite presenting with
good Ro5 properties, Hit2 displayed with the upper limit value (i.e., 10) in the case of
Veber’s rule of rotatable bonds. In addition, the hits were identified as non-carcinogenic in
rodent NTP models and non-AMES mutagenic, except for Hit2, which showed carcino-
genicity in the mouse male NTP model and also showed AMES mutagenicity (Table S4).
Although Hit2 exhibited with a BFE of −101.041 kJ/mol (Table S2) and presented with
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key intermolecular interactions with mTOR (Figures 4B and 5D), it cannot be considered
as a therapeutic candidate for further drug optimization, owing to its toxicity properties.
Overall, we believe the potentiality of Hit1, Hit3 and Hit4 as alternatives and their scaffolds
can be further explored for developing efficient ATP-binding site mTOR inhibitors for
cancer therapeutics. Though the in vitro studies of our identified marine hits are further
required to clinically substantiate these findings, structure-based pharmacophore modeling
and virtual screening strategy can be very useful to design potent molecules as mTOR
inhibitors in future drug discovery studies. In addition, our study characterizes a platform
for future discovery of novel natural chemotherapeutic drugs from marine natural habitat.
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4. Materials and Methods
4.1. Structure-Based Pharmacophore Model Generation

Receptor-based pharmacophore model delves into the catalytic site of the target pro-
tein bound with its inhibitor to identify essential pharmacophoric features effective for
inhibition [58]. The structure of mTOR target protein bound with its ATP-site inhibitor
PP242 (PDB ID: 4JT5, 3.45 Å) was retrieved from Research Collaboratory for Structural
Bioinformatics (RCSB) Protein Data Bank (PDB) and considered for the generation of a
structure-based pharmacophore model [56]. PP242 (also known as Torkinib) is a potent
and specific inhibitor of mTOR kinase domain proven to be more effective than traditional
mTOR inhibitor rapamycin [14,59]. Subsequently, the residues within 9 Å around PP242
were considered and Receptor-Ligand Pharmacophore Generation module embedded in Dis-
covery Studio (DS) v.2018 was employed for model generation. The model with the highest
selectivity score was chosen for subsequent validation.

4.2. Validation of Generated Pharmacophore Model

Given a particular dataset, pharmacophore validation is a quintessential criterion for
ensuring efficient retrieval of active target protein compounds. Accordingly, the model
chosen from the above-mentioned criteria was validated by Güner–Henry approach (decoy
set) approach [60] for evaluating the robustness of the pharmacophore model on the basis
of goodness of fit (GF) score in the range of 0 (null model) and 1 (ideal model) [58,61,62].

GF =

(

Ha

4HtA

)

(3A + Ht) ×

{

1 −
Ht − Ha

D − A

}

The decoy set approach was instigated by evaluating the selected pharmacophore
model on an external dataset (D) of 300 compounds obtained from the same biological
assay [63]. This dataset was divided into 50 compounds exhibiting IC50 < 100 nmol/L,
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referred to as active (A) mTOR inhibitors, with the remaining compounds being inactive.
The Ligand Pharmacophore Mapping was executed for dataset screening, complemented with
FAST algorithm and the GF score was calculated.

4.3. Virtual Screening of Marine Natural Product Library

The validated pharmacophore model was escalated to screen the Marine Natural Prod-
uct (MNP) library composed of 14,492 compounds (http://docking.umh.es/downloaddb,
(accessed on 11 December 2020). The DS module Ligand Pharmacophore Mapping was em-
ployed in pursuit of identifying scaffolds mapping the pharmacophoric features. The
compounds obtained from screening were further subjected to filtering by Lipinski’s Rule
of Five (Ro5) [64], Veber’s rules [65] and pharmacokinetics by absorption, distribution,
metabolism, excretion and toxicity (ADMET) for retrieval of drug-like compounds. Accord-
ingly, the Filter by Lipinski and Veber Rules and ADMET Descriptors modules within DS were
recruited for evaluation. The Ro5 and Veber’s rules collectively oversee the physiochemical
properties for efficient retrieval of compounds with molecular weight ≤500 kDa, number
of hydrogen bond donors ≤5, compound’s lipophilicity (logP) ≤5, number of hydrogen
bond acceptors ≤10 and the number of rotatable bonds ≤10. The drug-like compounds so
obtained were subjected to molecular docking with the mTOR kinase domain along with
PP242 as reference inhibitor.

4.4. Molecular Docking of Drug-Like Compounds with mTOR Kinase Domain

Molecular docking methods explore the binding conformations adopted within the
catalytic sites of macromolecular protein targets, thereby evaluating the vital phenomena
for the intermolecular recognition process [66]. The drug-like compounds obtained from
the above filtering criterion were subjected to molecular docking in Genetic Optimisation
for Ligand Docking (GOLD) v5.2.2 automated docking software [67]. The compounds were
evaluated on the basis of the GOLD default scoring function—Gold score [68]. This fitness
score functions by scoring the summation of protein-ligand van der Waals interaction
energy and hydrogen-bonding energy. The retrieved 3D crystallographic structure of
mTOR (PDB ID: 4JT5) complexed with PP242 ATP-competitive inhibitor was prepared by
utilizing the Clean Protein module in DS. Protein preparation was further carried out by
adding the missing residues and hydrogen atoms. The water molecules were removed
along with the bound PP242 ligand. Prior to docking, the performance of GOLD docking
was assessed by re-docking the native PP242 ligand into mTOR. The drug-like compounds
were subjected to minimization employing Minimize Ligands module in DS, preceding
docking. Subsequently, molecular docking of drug-like compounds with mTOR was
followed by applying the same docking parameters utilized for PP242 docking allowing
for generation of 50 conformers per ligand. Clustering of the obtained conformations was
carried out to obtain the largest cluster and each compound in the cluster was examined on
the basis of higher Gold score than reference compound PP242, binding mode within the
mTOR catalytic site and molecular interactions with the key residues of the mTOR kinase
domain. The selected potential compounds acquired from this strategy were refined by
MD simulations.

4.5. Molecular Dynamics Simulation of Identified Hits

MD simulation studies of compounds identified from above docking were extensively
carried out to decipher the molecular dynamics in water and comprehend the interaction
of hit compounds with vital residues of mTOR active site at the atomistic level. The docked
structures of these marine hits in complex with mTOR were used as initial coordinates
for simulations with GROMACS v2018 [69]. The mTOR and hit compounds were applied
with CHARMm27 force field [70] and topologies generated with SwissParam [71] fast force
field generation tool, respectively. The dodecahedron water box was utilized to solvate
the systems with TIP3P water model and further neutralized with Na+ counter ions. The
steepest descent energy minimization was performed to dodge bad contacts and this was
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followed by a two-fold equilibration. The NVT (constant number of particles, volume and
temperature) equilibration at 300 K with a V-rescale thermostat supplemented with NPT
(constant number of particles, pressure and temperature) equilibration at 1 bar pressure
with a Parrinello-Rahman barostat [72] was orchestrated, each for 1000 ps. The LINear
Constraint Solver (LINCS) [73] and SETTLE algorithms [74] were applied to monitor bond
constrains and the geometry of water molecules. The long-range electrostatic interactions
were calculated by means of Particle Mesh Ewald (PME) [75] and the equilibrated systems
were subjected to production simulation runs of 30 ns. The acquired MD results were
visualized and interpreted manually in visual molecular dynamics (VMD) [76] and DS. The
binding free energy (BFE) scores were further computed for hit compounds by MM-PBSA
executing g_mmpbsa tool implemented in GROMACS [77]. For this purpose, 40 frames of
mTOR-ligand complexes were selected evenly from the last 10 ns of MD trajectories and
the BFE ∆Gbind was computed as per the below equation.

∆Gbind = Gcomplex −
(

Gprotein + Gligand

)

5. Conclusions

A structure-based pharmacophore model, exploiting the crystal structure of mTOR
serine/threonine kinase with its bound selective inhibitor Torkinib revealed fundamental
pharmacophoric features required for mTOR inhibition at its ATP-binding pocket. A sys-
tematic virtual screening strategy with the model as a query, retrieved 3019 compounds
from the Marine Natural Products library and subsequent filtering via Lipinski’s Ro5, Ve-
ber’s rule, and ADMET was able to acquire 135 drug-like compounds. Molecular docking of
these compounds at the ATP-binding site of mTOR procured four marine compounds with
higher dock scores than Torkinib and significant binding interactions with key residues of
the pocket. These compounds also presented with good binding free energy scores and
the energy contribution of essential residues unveiled that our hits can inhibit mTOR via
Glu2190, Trp2239 and Cys2243 deemed requisite for selective inhibition over PI3K. The
in silico ADME and toxicity analysis suggests three out of the four identified hits with
acceptable pharmacokinetic profile for their in vivo disposition. Additionally, the biological
origin of these hits was identified as marine fungus and sponge. Overall, we believe that
our hits provide scaffolds for future drug optimization studies and, therefore, recommend
these hit compounds from marine natural habitat as therapeutics for the treatment of cancer.
The identification of marine-derived natural compounds embodies an essential platform
for future drug discovery studies against various protein targets implicated in cancers.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424
-8247/14/3/282/s1, Figure S1: Overlay of the docked pose (orange) PP242 inhibitor of mTOR
kinase with its crystal structure conformation (green) in PDB ID: 4JT5. Figure S2. (A) 3D and (B)
representation of interaction between PP242 and catalytic residues of the ATP-binding pocket of
mTOR. The compounds and interacting residues are represented as sticks. The hydrogen bonding
interactions are shown as green dashed lines, the hydrophobic interactions are shown as pink and
purple spheres and the van der Waals interactions are displayed as light green spheres. Table S1. The
docking scores and intermolecular interactions of reference PP242 and Marine Natural Product (MNP)
library compounds with mTOR kinase domain (PDB ID: 4JT5). Table S2. Binding free energy scores
of identified Marine Natural Product (MNP) library hits with mTOR calculated through MM-PBSA
methodology. Table S3. Lipinski’s and ADME properties of identified marine hits to determine their
drug-likeness. Table S4. Toxicity properties of identified marine hits to determine their drug likeness.
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Abstract: To establish a computer model for evaluating the binding affinity of phenylalkylamines
(PAAs) to T-type Ca2+ channels (TCCs), we created new homology models for both TCCs and a
L-type calcium channel (LCC). We found that PAAs have a high affinity for domains I and IV of
TCCs and a low affinity for domains III and IV of the LCC. Therefore, they should be considered
as favorable candidates for TCC blockers. The new homology models were validated with some
commonly recognized TCC blockers that are well characterized. Additionally, examples of the TCC
blockers created were also evaluated using these models.

Keywords: T-type calcium channel blocker; homology modeling; computer-aid drug design; virtual
drug screening; L-type calcium channel

1. Introduction

As the only type of voltage-gated Ca2+ channels that are activated at or near resting
membrane potentials, T-type Ca2+ channels (TCCs) play an important role in regulat-
ing [Ca2+]i homeostasis in a variety of tissues, including pancreatic β-cells and tumor
cells [1–4]. Therefore, TCC antagonists could be potentially useful for the treatment of
chronic diseases associated with Ca2+ dysregulation [5–7]. For this reason, it is imperative
to develop more selective TCC antagonists for prospective clinical applications. Since
many existing TCC blockers, such as mibefradil, also show inhibitory effects on L-type
calcium channels (LCCs), the most important task in developing new TCC blockers is
to enhance their selectivity to TCCs over LCCs. To achieve this, we established TCC–
phenylalkylamine interaction models based on the specific amino acid sequences in the
P-loop of TCCs, and α1C LCCs for characterizing the drug molecules’ affinities for TCCs
and LCCs, respectively.

TCCs have a close evolutional relationship with LCCs. A recent report from a cryo-
electron microscopy study reveals that the frame of the α1G (Cav3.1) pore domain structure
is similar to that of α1S (Cav1.1) [8]. This similarity allowed us to confidently adopt the
global structure of the calcium channel CavAb model, constructed based upon Arcobacter
butzleri crystallization [9], in the establishment of our TCC model. One of the most
remarkable differences between all types of TCCs and LCCs is a lysine residue located
adjacent to the critical glutamic acid/aspartic acid residue in domain III. The existence
of a positively charged lysine (K3p49) may swing the aspartic acid (D3p50) away from the
center of the calcium filter and change the preferred calcium ion and drug binding sites
from domains III and IV for LCCs to domains I and IV for TCCs. Therefore, we used the
ZMM molecule modeling program [10–12] to create four-domain TCC models, in which
the binding affinities of drugs to TCCs and α1C LCC were determined by scoring their free
energy in binding to the channels [13].

The new TCC models are adopted from a drug–protein interaction framework for
modeling CavAb blocking by phenylalkylamines (PAAs) [9]. This is rational because
many TCC blockers are PAAs or their derivatives, and because PAAs block CavAb [9,14].
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It is proposed that PAAs bind to LCCs in an inverse V-shaped configuration, with the
ammonium group towards the P-helices, and the nitrile group bound to the calcium ion
coordinated by the selectivity filter glutamates in domains III and IV of the LCC [15].
We reason that this is also true for TCC blockers, except that the calcium ion is coordinated
in the cavity between domains I and IV, since the depolarization confirmed that the pore
domains of CaV3.1 and CaV1.1 are superimposed [8]. As a result, the two rings of the
flexible PAA molecule [15] will make hydrogen bonding contacts with the mobile side
chains of relevant amino acids from domains I and IV of TCCs. This strategy allowed
us to create computer models for simulating the interactions between drugs and channel
receptors for LCC and TCCs, respectively.

2. Results
2.1. Homology Modeling of TCCs and α1C LCC

Using the bacterial calcium CavAb open channel 3D structure as the input, ZMM
generated the first template of the calcium channel, which was then modified with S5-P-
loop-S6 segments of α1C, and α1G, α1H, and α1I (Table 1) to create corresponding protein
structures of Cav1.2 LCC and Cav3.1, Cav3.2, and Cav3.3 TCCs, respectively (Figure 1A–D).
For cross-validation of ZMM-generated 3D structure models, we also performed ab initio
modeling of α1C and α1G calcium channels. Since there is a considerable overlap of
PAA inhibition between LCC and TCCs [9], the allosteric structures of LCC and TCCs
are more likely to be similar. Comparing two different homology modeling tools, ZMM
generates more consistent 3D models of the domain III S5-P-loop-S6 segment of α1C and
α1G (Figure 1E,F) than the ab initio method (Figure 1G,H).
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Figure 1. Top views of homology modeling results from ZMM for α1C, α1G, α1H, and α1I. (A–D)
The structures of α1C, α1G, α1H, and α1I, respectively; blue, green, brown, and yellow represent
domains I, II, III, and IV, respectively; the four selectivity-determining amino acids (glutamic acid or
aspartic acid) in the P-loop are colored red and displayed as spheres; ZMM generates more consistent
3D structure than the ab initio modeling method for α1C and α1G; (E) the predicted 3D structure
of the α1C domain III generated by ZMM, the glutamic acid is represented by red spheres; (F) the
predicted 3D structure of the α1G domain III generated by ZMM, the lysine is represented by red
spheres; (G) the most representative structure selected by Calibur clustering analysis [16] of α1C
domain III, the glutamic acid is represented by red spheres; (H) the most representative structure
selected by Calibur clustering analysis of α1G domain III, the lysine is represented by red spheres.

2.2. Further P-Loop Remodeling of TCCs

After determining the globe structure of TCC 3D models, we focused on the variability
of the P-loop structure, which is the major drug–ligand interaction segment. The Rosetta
P-loop remodeling module [17] was utilized to estimate the variability of P-loop 3D struc-
tures on every domain of TCCs. After inputting a perturbation to the original structure,
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the remodeling process was conducted by sampling the possible locations of a given length
of an amino acid sequence in three-dimensional space. Using the ZMM generated α1G
structure as the reference, the energy-based clustering method [18] was used to determine
the P-loop remodeling results with the lowest root-mean-square-displacement (RMSD)
score. We found that for α1G, domain II had a clear variation between two different homol-
ogy modeling methods in sample sizes 500 and 20,000 (Figure 2). It showed that the central
P-loop helix segment is in the horizontal position rather than the diagonal position found
in other domains. As a result, the selectivity-determining glutamic acids E2p50 may have a
larger vertical distance from other glutamic acids/aspartic acids (E1p50, D3p50, and D4p50) in
α1G TCCs. This may exclude glutamic acid E2p50 as a Ca2+ binding candidate, leaving the
Ca2+ to bind either E1p50 to D4p50 or D3p50 to D4p50 in TCCs. Additionally, to validate the
normality of the remodeling data, we conducted a nonparametric test for the α1G P-loop
remodeling data and confirmed that all the sampling processes (500 and 20,000) came from
the same distribution (see Supplementary Table S2, Supplementary Figure S2 for statistical
results).

Table 1. Comparison of numerical results of P-loop electrostatic potential at the four different
domains with different lengths of amino acid sequences. TCC: T-type calcium channel.

Channel Domain Channel Type
AA Sequence

Alignment
PyGBe [19] (Esol,

Ecoul)

α1G I T L E G W V D −11, −407
Domain I α1H I T L E G W V D −110, −408

α1I I T L E G W V E −116, −409
Reduced TCC T L E G W V −87, −323

α1G L T Q E D W N K −217, −631
Domain II α1H L T Q E D W N V −262, −631

α1I L T Q E D W N V −487, −633
Reduced TCC T Q E D W −164, −425

α1G A S K D G W V D −107, −392
Domain III α1H S S K D G W V N −113, −425

α1I A S K D G W V N −105, −394
Reduced TCC S K D G W −101, −303

α1G S T G D N W N G −132, −568
Domain IV α1H S T G D N W N G −164, −574

α1I S T G D N W N G −177, −574
Reduced TCC T G D N W −86, −393

2.3. Local Electrostatic Potentials of the Selective P-Loop of TCC Domains and the Impact of K3p49

A previous study indicated that when a calcium ion enters the selectivity filter region
of a LCC, it binds to the selectivity-determining glutamic acids (E3p50, E4p50) in domains III
and IV [15]. Consequently, the phenylalkylamine molecules will bind to domains III and
IV due to the interaction between the nitrile nitrogen and Ca2+ [15]. In contrast, all TCCs
have a lysine (K3p49) located at the 5′ end adjacent to D3p50 in domain III. It is reported
that the replacement of lysine (K3p49) with Phe or Gly causes the activation curve to shift
to the right [8], which indicates that the lysine in the position adjacent to aspartic acid
(D3p50) plays a significant role in the kinetic/dynamic mechanism of Ca2+ interaction with
the inner environment of the central cavity of TCCs. This positively charged lysine alters
the negative charge field distribution of D3p50 to attract Ca2+ (Supplementary Figure S1).
It is possible that the lysine (K3p49) swings aspartic acid (D3p50) away from the original
Ca2+ binding position, thus causing the Ca2+ to bind glutamic acid or aspartic acid in other
domains, probably to domains I and IV since domain II has a configuration deviation. As a
result, the phenylalkylamine may also switch its binding region from domains III and IV to
domains I and IV.
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Figure 2. Comparison of the P-loop conformation differences before and after Rosetta P-loop remod-
eling. (A) Homology modeling of P-loop structures of α1G domain I (A1), domain II (A2), domain III
(A3), and domain IV (A4) generated by ZMM; (B) Rosetta P-loop remodeling results of α1G domain
I (B1), domain II (B2), domain III (B3), and domain IV (B4) with the sampling size equal to 500;
(C) Rosetta P-loop remodeling results of α1G domain I (C1), domain II (C2), domain III (C3), and
domain IV (C4) with the sampling size equal to 20,000.

To determine the effect of lysine (K3p49) on overall electrostatic potential (E) for given
TCC homology models, we calculated the electrostatic potential (E) for the tailed P-loop
of domain I to IV. Table 1 shows that the combined electrostatic potential (Ecoul) becomes
more negative in each domain as the number of testing amino acids is reduced from seven
to five. In TCCs, Ecoul for domain I is more negative than that for domain IV in the five
amino acid-reduced sequence, indicating a possible switching of the Ca2+ binding site from
domains III and IV to domains I and IV.

We used Coulomb’s electric force equation to quantitively analyze the influence of
lysine on the electrical attraction force between Ca2+ and aspartic acid (D3p50). According
to the equation in Section 4.2, lysine (K3p49) has the least effect on the Ca2+-D3p50 attraction
when K3p49 is located on the opposite side of the Ca2+ and when D3p50 is at the center. When
a = 4.3 Å and b = 3.8 Å [8] (calculated in PyMOL.2.3.3 for ZMM results), Coulomb’s force
equation (found in Section 4) yields: F(Ca, D, attraction) = 2.489 × 10−9 N and F(Ca, K, repellent) =
0.702 × 10−9 N; thus, lysine, at a minimum, reduces the attraction force between Ca2+ and
aspartic acid by more than 28%. The attraction force between Ca2+ and D3p50 will reduce
further or reverse into a repellent force as the distance from the Ca2+ to K3p49 decreases;
therefore, the preferred binding position of Ca2+ will likely be switched to domains I and
IV in TCCs. This limits the PAA binding region on TCCs to domains I and IV. We could
use the amino acid structure of domains I and IV to evaluate the affinities of the PAAs (and
their derivatives) for TCCs (using models established for α1G, α1H, and α1I) and use the
amino acid structure of domains III and IV for evaluating their binding affinities to LCC
(using the model of α1C).
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2.4. Model Predictions and Vina Screening Output of Some Current T-Type Ca2+ Channel Blockers

Mibefradil is reported to have an inhibitory effect on both LCC and TCCs [20]. The α1C
model predicts that one hydrogen atom from the nitrogen (N3) on the cyclopentadiene
connects to methionine (M4i27) on domain IV of α1C LCC, as shown in Figure 3A,B. This is
consistent with the prediction of another model in a previous study [9]. In contrast, the
α1C homology model does not predict that hydrogen bonds to NNC 55-0396. NNC 55-0395
inhibits both L- and T-type calcium channels [14]. The α1C homology model predicts that
NNC 55-0395 has one hydrogen bond that connects nitrogen (N3) to the glycine (G3p49)
on P-loop domain IV. For NNC 55-0397, the α1C homology model also predicts that RO
40-5966, a hydrolyzed metabolite of mibefradil [20], has one hydrogen atom from the
hydroxy group of the benzene ring bound to the glycine (G4p49) at domain IV. No hydrogen
bond has been found between the LCC and the TCC blocker SKF-96365.
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Figure 3. Models of ligand–receptor interactions of mibefradil and NNC 55-0396. (A) The predicted
binding sites of mibefradil on α1C. The H-bond formed between the ammonia (N3) on the cyclopen-
tadiene of mibefradil and methionine (M4i27) on domain IV. The relative locations of surrounding
amino acid residues of the α1C L-type calcium channel (LCC) are shown by the arch–dash symbols.
(B) The predicted 3D binding sites of mibefradil on α1C domain IV from a side view. Red spheres
represent the position of glutamic acid E4p50. Mibefradil is represented by the green ring structure.
(C) The predicted binding sites of NNC 55-0396 on α1G domain IV. The H-bond formed between
the central ammonium of NNC 55-0396 and asparagine (N1i20) on domain I. (D) The predicted
3D binding sites of NNC 55-0396 on α1G. NNC 55-0396 is represented by the green ring structure.
Red spheres represent the position of glutamic acid E4p50. For A and C, carbon, nitrogen, oxygen,
and fluorine elements are represented by black, blue, red, and green, respectively; for B and D, the
blue and orange ribbon helices represent S5 and S6, respectively. The ribbon helix structures linking
S5 and S6 are P-loops. The yellow ball represents the position of the calcium ion.

Using TCCs as templates, we have revealed some current TCC blockers of α1G, α1H,
and α1I. The α1G model predicts that the fluorine atom from the compound NNC 55-0395
forms a halogen bond to glycine (G1p51) in domain I. Our α1G model also predicts a binding
site of NNC 55-0396 to asparagine (Nli20) in domain I (Figure 3C,D). For NNC 55-0397, the
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fluorine atom from the compound forms a halogen bond with valine (V1p46) at the P-loop
of domain I. For mibefradil, one oxygen atom from the side chain of the compound forms
hydrogen bonds with asparagine (N1o4) at S5 of domain I. For RO 40-5966, one hydrogen
atom from the nitrogen (N3) on the cyclopentadiene forms a hydrogen bond with alanine
(A1i27) in domain I. For SKF-96365, the center oxygen atom forms a hydrogen bond with
asparagine (N1o4) at S5 of domain I.

Our α1H model predicts that one hydrogen atom from the nitrogen (N3) on the
cyclopentadiene of NNC 55-0395 interacts with valine (V1p46) at the P-loop of domain I to
form a bond. The fluorine atom from NNC 55-0396 forms a halogen bond with isoleucine
(I1i8) from the α1H S6 of domain I. For NNC 55-0397, one hydrogen atom from the nitrogen
(N3) on the cyclopentadiene forms a bond to asparagine (N4p51) at the P-loop of domain
IV. The hydrogen atom from the nitrogen (N3) on the cyclopentadiene of mibefradil finds
asparagine (N1o4) to form a bond at S5 of domain I. For RO 40-5966, the fluorine atom from
the compound forms a halogen bond with histidine (H4i29) at S6 of domain IV. One oxygen
atom from the side chain of SKF-96365 forms a hydrogen bond with asparagine (N1o4) at
S5 of domain I.

Our α1I homology model predicts that NNC 55-0395 forms a halogen bond between
the fluorine atom from the compound and isoleucine (I1i8) at S6 of domain I. The hydrogen
atom from NNC 55-0396 forms a bond to asparagine (N1o4) at S5 of domain I. For NNC
55-0397, one hydrogen atom from the nitrogen (N3) on the cyclopentadiene interacts with
valine (V1p46) at the P-loop of domain I to form a bond. For mibefradil, there is a halogen
bond formed between a fluorine atom from the compound and a hydrogen atom from
asparagine (N4p53) at the P-loop of domain IV. For RO 40-5966, one hydrogen atom from
the ammonia on the cyclopentadiene interacts with asparagine (N1o4) at S5 of domain I
to form a bond. Our model does not predict the hydrogen bond formed when docking
SKF-96365 to α1I.

A comparison of the predicted binding affinity Kd and experimental measurements of
IC50 for given TCC blockers are listed in Supplementary Table S4. Table 2 summarizes the
predicted binding affinity results for all existing TCC blockers.

2.5. Evaluation of New Compounds

The Vina [13] models were employed for evaluating the binding affinity of the testing
compounds. We randomly selected 300,000 compounds from PubChem and used these as
the database to train our recurrent neural networks (RNNs) [21] with the given compound
properties.

After performing virtual screening, we found that the compounds TC 7, TC 4, and TC 2
satisfied our screening criteria for α1G, α1H, and α1I, respectively. Compound TC 7 has the
highest binding affinity, as well as a lower (water–octanol partition coefficient) logP and a
higher Quantitative Estimation of Drug-likeness (QED) than existing TCC blockers. The 3D
binding plots between TC 7 and α1G are shown in Supplementary Figure S3. The predicted
binding affinities between existing TCC blockers and screened compounds on TCCs and
α1C LCC are shown in Figure 4. Our results show that these screened compounds have
smaller logP and Synthetic Accessibility Scores (SAS) but larger QED values than those of
selected TCC blockers (as seen in Table 3). More structures and chemical properties for the
13 identified compounds can be found in Supplementary Figures S5–S17.

730



Pharmaceuticals 2021, 14, 141

Table 2. Predicted Gibbs free energy ∆G of phenylalkylamines (PAAs) on calcium channels (N/A:
not available).

Receptor Drug ID ∆G (kcal/mol) Binding Domain

α1C

NNC 55-0395 −6.0 IV

NNC 55-0396 N/A N/A

NNC 55-0397 −6.4 IV

Mibefradil −6.4 IV

RO 40-5966 −5.7 IV

SKF-96365 N/A IV

α1G

NNC 55-0395 −6.5 I

NNC 55-0396 −8.1 I

NNC 55-0397 −7.4 I

Mibefradil −6.8 I

RO 40-5966 −7.3 I

SKF-96365 −5.6 I

α1H

NNC 55-0395 −6.6 I

NNC 55-0396 −7.7 I

NNC 55-0397 −7.0 IV

Mibefradil −7.4 I

RO 40-5966 −7.4 IV

SKF-96365 −5.4 I

α1I

NNC 55-0395 −6.6 I

NNC 55-0396 −7.7 I

NNC 55-0397 −7.5 I

Mibefradil −6.5 IV

RO 40-5966 −6.9 I

SKF-96365 N/A N/A

−
−

α

−
−
−
−
−
−

α

−
−
−
−
−

α α α

α

α

Figure 4. Predicted Gibbs free energy of select T-type Ca2+ channel (TCC) blockers and computer-
designed compounds of different receptors. Blue—α1C, brown—α1G, gray—α1H, and yellow—α1I.
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Table 3. The chemical properties of computer-designed compounds and selected TCC blockers. SAS:
Synthetic Accessibility Scores, QED: Quantitative Estimation of Drug-likeness.

Compound Name logP SAS QED

NNC 55-0365 6.8147 3.678636 0.273518

NNC 55-0396 6.0345 3.716436 0.351695

NNC 55-0397 6.2805 3.718535 0.337773

Mibefradil 5.2709 3.71918 0.367183

TC 1 6.1671 4.433975 0.402836

TC 2 5.3351 5.24865 0.408449

TC 3 4.8963 4.777741 0.474028

TC 4 5.0404 4.731275 0.441386

TC 5 5.5879 4.951457 0.415026

TC 6 4.4585 4.79633 0.469604

TC 7 3.6902 4.806084 0.63381

TC 8 6.2697 4.851381 0.242332

TC 10 4.1891 4.542497 0.312353

TC 11 5.372 3.089346 0.276759

TC 12 4.9472 3.971406 0.248549

TC 13 5.7028 4.449589 0.406663

TC 15 4.73 3.921747 0.368816

3. Discussion

A TCC (Cav3.1) 3D structure has already been modeled with cryo-electron microscopy [8];
however, this structure is constructed based on a splice variant containing a deletion of 133
amino acids within the I-II linker. Electrophysiological characterization of these variants
(Cav3.1-∆8b) shows 1.5-2-fold conductance increases when compared with the full-length form
in human and rat preparations. Both activation and steady-state inactivation curves are shifted
in the human preparation [8]. In addition, the pore diameter estimated from Cav3.1-∆8b is
smaller than the biophysical measurement [8]. These alterations in TCC electrophysiological
properties suggest that the conformation of the cryo-electron microscopy structure is not the
same as the full-length Cav3.1 TCC. Therefore, the 3D structure of Cav3.1-∆8b may not be the
most suitable template for the general modeling of TCCs, especially for PAA binding, which
is highly dependent on the position of Ca2+ interacting with the selectivity filter of TCCs.
In this study, we chose to use CavAb as the model template since this channel is blocked by
PAA and therefore is suitable for establishing a model for evaluating PAAs that inhibit TCCs
selectively over LCCs.

Increasing evidence indicates the pathological role of TCCs in the progression of
different diseases [6]. It is crucial to develop selective TCC blockers to establish new
treatments for these diseases. Unfortunately, lacking the TCC X-ray crystallization structure
hampers the progress of creating new TCC blockers. In practice, it is very difficult to find
or design a compound that selectively blocks TCCs but not LCCs, since most current TCC
blockers exhibit a certain level of inhibitory effects on LCCs. For example, mibefradil, the
first launched TCC inhibitor, was quickly recognized to cross inhibit LCC [20]. Here, we
provide a new strategy by which the specificity of candidate compounds for binding TCCs
but not LCCs can be pre-screened with new computer-based models. This is desirable for
designing and developing compounds that more selectively block TCCs than LCCs.

We chose to build models for the interaction between TCCs and PAAs since the
binding mechanism of these compounds to LCCs has been studied extensively [9,15,22–26].
Based upon the critical single amino acid lysine (K3p49) difference between LCCs and TCCs,
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we have created a strategy that can distinguish the affinity of PAAs to TCCs and LCCs,
respectively. The models have been validated by measuring the affinities of existing TCC
blockers to LCCs and TCCs. We also used these models for evaluating the specificities of
novel PAAs and phenylalkylamine derivatives in terms of their binding affinities to TCCs
and LCCs.

Using ZMM, we simultaneously created α1G, α1H, and α1I TCC and a1C LCC struc-
tures with four domains, each containing three segments: segment 5, a P-loop, and segment
6. In contrast, the ab initio modeling method failed to produce a suitable calcium channel
structure compared to ZMM.

The selectivity of the calcium channel is dependent on the critical glutamate residues
located in the selectivity filter of the P-loop of the α1 subunit in each domain. In this region,
there are two negatively charged glutamic acid residues likely to attract one Ca2+ in the
space close to domains III and IV [15]. When a phenylalkylamine molecule approaches
a calcium channel from the cytoplasmic side, its nucleophilic nitrile nitrogen reaches the
Ca2+, while the other parts of the molecule form affiliated interactions with the amino
acids in the P-loop and segments 5 and 6 in domains III and IV of the calcium channel.
This causes a physical blockage of ion flow through the channel. In the case of TCCs, there
is a lysine (K3p49) located adjacent to D3p50 in domain III, and the ionized electric potential
distribution of the aspartic acid is altered by lysine, which attenuates the electric attraction
of aspartic acid (K3p49) to Ca2+ at the minimum binding distance (4.3 angstroms) and may
swing K3p49 away from the selectivity filter. Based on this analysis, we suggest that Ca2+

will not bind to domain III but to domain I of TCCs. This prediction is consistent with the
Cav3.1 structure estimated with cryo-electron microscopy [8], which showed the electron
density of the top Ca2+ ion is closest to Glu354 of Cav3.1 (E1p50, Table 4). Additionally,
Rosetta P-loop remodeling shows that the P-loop of domain II is in a more horizontal
confirmation than that of other domains, rendering the glutamic acid (E2p50) further away
from the Ca2+ binding site. Since the movements of PAAs will follow the location of
Ca2+ docking, our models are built for evaluating the affinity of candidate compounds
binding to domains I and IV. The compounds that are predicted to have a higher affinity
to bind domains I and IV of TCCs but not domains III–IV of LCC (α1C) are considered
to be ideal selective TCC blocker candidates. This strategy screens out the compounds
that are unlikely to bind LCC and TCCs as well as the compounds that are likely to bind
both LCC and TCCs. To test whether Ca2+ docking is consistent on domains I and II
across different TCCs, a molecular dynamics study should be conducted with modified
membrane conditions and simulation environments [27].
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Previous studies suggest that the nitrile and isopropyl groups in devapamil and
some other PAAs serve to guide the drug to the position of Ca2+; this function persists if
the nitrile is replaced with other elements with high electronegative potentials, such as
oxygen or sulfur [15]. In many molecules discussed here, including mibefradil, the nitrile is
replaced with a methoxy acetyl side chain or a similar side chain with a high electronegative
potential. These molecules behave presumably like those of molecules with nitrile in their
alkaline chain. Some of the molecules, such as RO 40-5966 and SKF-96365, do not share
the binding mechanism described by our model, and therefore their inhibitory effects on
Ca2+ channels may not be explained by our new models. For example, by using the input
template SKF-96365, we obtained 14 unique structures (as seen in Supplementary Table S3,
Figure S4), which had negative binding affinities to our TCC models.

Although our models are designed to select compounds that are likely to bind domains
I and IV of TCCs, this does not exclude the possibility that PAAs or their derivatives might
inhibit TCCs via binding to domains I and II, domains II and III, or even domains III and
IV. The goal of our models was to increase the likelihood of success in screening selective
TCC blockers based on their chemical structures.

Our α1C model has a similar channel pore size (selectivity filter region) as CavAb [9];
however, α1G, α1H, and α1I may have smaller diameters than CavAb, since the unitary
conductance of TCC currents is smaller than that of LCC. Further statistical analyses of
P-loop remodeling data show that a minimal structural difference exists in the P-loop
region remodeling data (see Supplementary Materials for details of the statistical analysis).

The Vina screening results of α1C identify no binding location for NNC 55-0396 or
SKF-96365. The predicted α1C binding amino acid for NNC 55-0397, as well as mibefradil,
matches the experimental results, which show the inhibitory effect of NNC 55-0397 and
mibefradil on LCCs. Although RO 40-5966 has a lower ∆G than mibefradil when binding
to α1C, the predicted binding location is closer to the center of the channel filter region
than mibefradil, which indicates a stronger blocking effect on the rate of Ca2+ influx than
mibefradil.

Although the Kd values predicted by Vina have some gaps compared to the experi-
ment data, they do follow the same order of magnitude (Supplementary Table S4). To obtain
a more accurate Gibbs free energy for PAAs binding to TCCs, at least two consecutive
steps must be conducted: first, the flexible docking process [28]; second, the free energy
calculation between ligand and receptor [29]. These two steps require an extensive com-
putational cost and the final Kd value is very sensitive to the initial input of the receptor
structures. Recently deposited human α1G structures offer a good template for developing
TCC blockers [8]; however, they have some uncommon regions missing, which could
affect PAA binding. Therefore, we argue that it is less likely that the Gibbs free energy
of mibefradil/NNC 55-00396 between the prediction and the experiment is matched by
choosing different docking programs or conducting a molecular dynamics simulation to
find the free energy.

Our work only focuses on the first step of the drug development process in silico,
providing a strategy for predicting the comparative potency of candidate compounds to
TCCs versus LCCs. Neither are used for evaluating the pharmacological effects of these
compounds on other types of cation channels. Since the strength of the pharmacological
effects of PAAs and their derivatives on blocking calcium channels are increased by the
appearance of a calcium cation in the channel pore [15], it is unlikely that these PAAs and
their derivatives will exhibit a strong inhibitory effect on other cation channels.

4. Materials and Methods
4.1. Homology Modeling of the α1 Subunit

Three classes of calcium channel families have been discovered: CaV1.X, CaV2.X, and
CaV3.X. The X represents the subdivisions of the sequence homology of the α1 subunit in
each class. The models of drug–channel interactions built upon the structural differences in
the relevant S5, P-loop, and S6 regions of α1G, α1H, α1I TCCs, and α1C LCC, respectively.
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The protein templates were obtained from BAM [30] using truncated inputs of human α1G,
α1H, α1I, and α1C (UniProt id: O43497) amino acid sequences (see Table 4 for details).
The crystallization structure (PDB id: 5kmh) for the depolarization status of the calcium
channel protein, originally extracted from Arcobacter butzleri [9], was employed as the
structure template of our model. The multi-domain protein structures of human α1G, α1H,
α1I, and α1C were built using the ZMM molecular modeling software. The forcefield of
specific amino acids was simulated by using the Assisted Model Building with Energy
Refinement (AMBER) program. The final structure of the target peptides was optimized by
using the Monte Carlo minimization protocol. The maximum iteration time for finding
the global minimum was set to 5000. During the energy optimization, structural similarity
between target and template was maintained by a flat-bottom parabolic energy penalty
function that allows for penalty-free deviations of alpha-carbons up to 1 atom distance
from their respective positions in the template, and a penalty was imposed with a force
constant of 10 kcal mol-1A-2 for larger deviations [15]. The homology models for human
α1H (UniProt id: O95180), α1I (UniProt id: Q9P0X4), and α1C (UniProt id: Q13936) were
also built with this method.

4.2. Local Electrostatic Potential Calculation

To calculate the electric double layer-related local electrostatic potential while a chan-
nel protein interacted with a surrounding water molecule, we generated the corresponding
meshes using MSMS (v2.6.1) [31] and set the probe radius to 1.4 and the density to 3.0
for quality control. For truncated amino acid sequences, the local electrostatic poten-
tial/binding energy is derived from the summation of the solvation energy and Coulomb
energy, i.e., Gcomplex = Gsolution + GCoulomb. The GCoulomb for LCC and TCCs in the P-loop
region was calculated by using PyGBe with pre-defined parameters (Supplementary Table
S1). To compare the influence provided by a single lysine, we used Coulomb’s law to
calculate the electric attracting force between Ca2+ and aspartic acid:

F(Ca,D) = ke
qCaqD

a2 ,

where ke is Coulomb’s constant 8.99 × 109 N·m2·C−2; a is the distance between Ca2+ and
aspartic acid; q is the point charge for Ca2+, aspartic acid (D), and lysine (K), respectively.
The effect of the repellent force on Ca2+ by lysine in the direction of the Ca2+ and the
aspartic acid attracting force is defined by

F(Ca,K) = ke
qCaqK

r2 · cos θ,

where θ is the angle between the lines from Ca2+ to aspartic acid and from Ca2+ to lysine; r
is the distance between Ca2+ and lysine, which is calculated by

r = a· cos θ±
√

b2 − (a· sin θ)2 ,

where b is the distance from aspartic acid to lysine. When the angle between Ca2+ and as-

partic acid, and lysine and aspartic acid (φ) is less than 90◦, r = a· cos θ +
√

b2 − (a· sin θ)2 ;

whenφ is equal to 90◦, r = a· cos θ; whenφ is larger than 90◦, r = a· cos θ –
√

b2 − (a· sin θ)2 .
Therefore, the electric force between Ca2+ and aspartic acid is

F(Ca, D, K) = F(Ca,D) − F(Ca,K) = ke
qCaqD

a2 − ke
qCaqK

r2 · cos θ.

4.3. Ab Initio Modeling

The ab initio modeling modules from Rosetta were employed to find the three-
dimensional structure of target fragmental peptides by sampling and assembling a large
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candidate pool containing 22,000–27,000 decoy structures for every inputted amino acid
sequence [32]. The output results of ab initio modeling were analyzed using the Calibur
and energy-based clustering methods.

4.4. P-Loop Remodeling

The P-loop region of α1G was remodeled using a Rosetta loop modeling module
combined with the FastRelax protocol. Twenty-seven amino acids in the P-loop were
selected from domains I, II, III, and IV of the TCCs. The modeling used phenylalanine as
the starting amino acid and tyrosine, tryptophan, proline, and isoleucine as the ending
amino acids. The effective sample size used for subsequent statistical analysis was validated
by two groups of data for every remodeled domain. The first group contained 500 output
structures, and the second group had 20,000 output structures. The results were analyzed
using the Calibur and energy-based clustering methods.

4.5. Compound Generation

We used the de novo drug generation package “chemical vae” developed by Gomez-
Bombarelli et al. [21] to create a data-driven RNN for new compound production. The dataset
we used to train the RNN was prepared by randomly sampling approximately 250,000
compounds from PubChem. The maximum length of encoding for the SMILES-based
compounds was set to 120 characters. To analyze the compounds using the RNN, one
fully connected layer of width 200 was used. To convert a predicted compound back to
the original data type, three layers of gated recurrent units with a hidden dimension of 500
were used. The variational loss of the RNN was annealed according to a sigmoid schedule
after 35 epochs, running for 130 epochs while property prediction training the RNN, such
that the RNN trained on the PubChem data set with objective properties including: logP,
SAS [33], and QED [34]. We kept the other hyperparameters to train the RNN unchanged
from the reference [21]. To transfer the predicted compound back to SMILES-based data, we
set the Gaussian noise value to 5 and the iteration time to 1000. Once the 2D structure had
been obtained, we converted it into a 3D structure via the online program Frog 2.1 [35,36].
The program OpenBabel 2.4.1 [37] was used to add the hydrogen atom and set the pH equal
to 7.35 for select compounds.

The 2D structure of mibefradil was employed as a redesigned template for new
compounds. Based on its structure, we recreated 129 PAAs and their derivatives. Their cor-
responding 3D structures (involving up to 800 isomers) were created by Frog 2.1. We used
the same program to find the 3D structures for NNC 55-0395, NNC 55-0396, and NNC
55-0397, and combined them with SKF96365 and RO 40-5966, whose 3D structures were
downloaded from PubChem, for use as reference compounds for testing and validating
the faithfulness of our TCC models.

Some of the candidates of screening compounds may contain oxygen, which replaces
the role of nitrile; this structural formula has been reported in certain PAAs such as
falipamil, BRL-32872, and tiapamil [15].

4.6. Virtual Drug Screening

Virtual drug screening was conducted by using AutoDock Vina [13] with user-defined
configuration scripts on the Tulane supercomputer Cypress. The search box was placed in
the center of the protein model. The number of mesh elements in the X, Y, and Z directions
was set to 60, 124, and 102 for α1C and 58, 48, and 50 for α1G, α1H, and α1I, respectively,
when simulating the ligand–receptor interaction for existing TCC blockers. The number of
mesh elements in the X, Y, and Z directions was increased to 126 when conducting virtual
screening for newly designed compounds. To achieve repeatable docking results using
Vina, the seed number was fixed at –1460306363. As the grid number for every direction
was set to the maximum, Vina had to search a very large three-dimensional space. To find
the local minimum, the exhaustiveness was set to 2000 for new compound screening cases
and 8 for existing TCC blocker screening cases. The number of predictable binding models

737



Pharmaceuticals 2021, 14, 141

expressed as the output was limited to 3 for new compound screening cases and 20 for
existing TCC cases.

The Vina output results were checked using PyMOL to ensure the binding locations
for existing and newly designed compounds. The predicted binding affinity for the testing
compound was calculated as:

Kd = exp

(

−∆G ·kcal ·mol−1

0.001986 ·kcal ·mol−1·K−1·310 K

)

,

where ∆G is the Gibbs free energy predicted by Vina.
The 2D ligand–receptor interaction plot was created using LigPlot+ [38].

4.7. Data Analysis

The Anderson–Darling normality test and the Kruskal–Wallis one-way ANOVA test
(Supplementary Table S2) were conducted on the generated homology modeling data from
Rosetta ab initio modeling and P-loop remodeling in Anaconda Spyder (3.2.8) using a
Python 3.6 environment.

5. Patents

All the new identified compounds in this study are patented by the Office of Tech-
nology Transfer and Intellectual Property Development at Tulane University (Patent ID:
US62/859,519).

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/2/141/s1. Figure S1. The negatively charged lysine affects the electric potential distribution
of aspartic acid in the x-y plane. (A) The Dist. of ED (0,0) without K; (B) the Dist. of ED (0,0) after
adding the lysine EK (3.8, 0), Figure S2. The predicted versus theoretical RMSD plots for group
sampling size 500 and 20,000. (A,B,C,D) Domains I to IV for 500 sampling size group; (E,F,G,H)
Domains I to IV for 20,000 sampling size group Figure S3. The predicted 3D binding plots between
TC 7 and α1G. An alkyl bond (4.31 angstroms) has been formed between TC 7 (green) and the
sidechain of V1i24 (red) at domain I. The sidechain of E1p50 is colored as blue and one Ca2+ is colored
as yellow; Figure S4. Based on the 2D structure of SKF-96365, 10 structures have been found using the
Deep-Learning based de novo drug design approach, Figure S5. 2D structure and chemical properties
of the redesigned phenylalkylamine analog, TC 1, Figure S6. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 2, Figure S7. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 3, Figure S8. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 4, Figure S9. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 5, Figure S10. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 6, Figure S11. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 7, Figure S12. 2D structure and chemical properties of
the redesigned phenylalkylamine analog, TC 8, Figure S13. 2D structure and chemical properties of
redesigned phenylalkylamine analog, TC 10, Figure S14. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 11, Figure S15. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 12, Figure S16. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 13, Figure S17. 2D structure and chemical properties of the
redesigned phenylalkylamine analog, TC 15. Table S1. Numerical parameter settings for running
PyGbe, Table S2. Normality test for P-loop remodeling data (α1G) from two groups with different
sampling sizes, Table S3. The structures and properties of computer-designed compounds using
Deep-Learning (D: distance; C: count; F: frequency). Table S4. Predicted binding affinity (Kd) by Vina
versus experimental measurement of IC50 of given TCC blockers (unit: micromolar).
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