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Abstract: Unexpected readmission to intensive care units (ICUs) endangers patients’ lives due to
premature patient transfers or prolonged stays at the care units. This can be mitigated by stratification
of the readmission risk at discharge times using state-of-the-art machine learning (ML) methods. We
fitted two alternative recurrent neural network (RNN) models based on long short-term memory
(LSTM) on the Medical Information Mart for Intensive Care (MIMIC-III) dataset and evaluated
them with an independent cohort from our hospital’s ICU (UKD). The first model processed all the
available time series data from each patient’s ICU stay, whereas the second model focused on the data
from the last 48 hours of the ICU stay prior to transfer. Our readmission prediction on MIMIC data
reached an area under the curve of receiver operating characteristic (AUC-ROC) of 0.82. Furthermore,
the model with the 48 h time frame outperformed the other model, as both models were applied to
the independent test cohort. The results suggest that the RNN model for time series forecasting holds
promise for future use as a clinical decision support tool, although follow-up studies with larger
cohorts as well as user studies should be conducted to assess the generalizability and usability of the
methods, respectively.

Keywords: readmission prediction; intensive care unit (ICU); recurrent neural network (RNN); long
short-term memory (LSTM); machine learning (ML); time series analysis; health forecasting

1. Introduction

According to different retrospective and review studies [1-3], the rates of readmission
to ICUs in hospitals in developed countries are quantified inconsistently in the range from
0.14 to 14.5 percent. Regardless of the inconsistent readmission rates, patients who are
readmitted to ICUs due to inappropriate discharge time are subject to life-threatening risks,
with respiratory and cardiac complications as the most common causes of readmission [1,4].
At the same time, prolonged stays at ICUs can also lead to increased mortality or poor
long-term prognosis for patients [5]. In particular, patients who undergo cardiac surgery
are prone to longer ICU stays due to the invasive nature of heart surgery and the resulting
increased risk of postoperative complications [6]. Therefore, it is important to find the

Eng. Proc. 2022, 18, 1. https://doi.org/10.3390/engproc2022018001 3
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optimal point in time for transfer, for this particular vulnerable group of patients. Inten-
sivists need to quantify patients’ readmission risks in order to determine this point in time
and avoid unplanned readmissions. This implies an increasing need for clinical decision
support tools which complement current discharge routines through the use of predictive
models taking advantage of artificial intelligence (AI).

Al in general and ML in particular have been widely used in many diagnostic and
prognostic domains, such as oncology [7,8] and computational neuroscience [9,10], to
provide clinical decision support tools, which either replace or complement established
diagnostic and prognostic routines. More specifically, time series analysis has been suc-
cessfully applied in many medical domains, including management of type 2 diabetes [11],
hospital admission prediction [12], age-related death prediction [13] and ICU readmission
prediction [3,14].

From a technical point of view, as related works suggest, a variety of techniques
ranging from simple probabilistic predictors such as logistic regression (LR) and ML-based
classifiers such as support vector machines (SVMs) to more sophisticated models such as
convolutional neural networks (CNNs) have shown their potential for the prediction of
readmission to ICUs [3,15,16].

In a previous study [17], currently under review, we trained a model with a recurrent
architecture on a subset of the MIMIC-III dataset, an open access dataset of time series data
from more than 50,000 care unit stays with different health conditions at a single center [18],
without any limitation on the time frames of the input time series data, and showed its
superiority to logistic regression and a feed forward network in predicting readmission.
In the current study, we analyze the performance of a recurrent neural network (RNN)
model processing health-related times series data, taking advantage of the long short-term
memory (LSTM) method with slight architectural enhancements compared to the previous
model, considering time series data from the last 48 h of patients” stays at ICUs, sampled in
60-minute intervals.

The main contribution of our work is to propose and evaluate two alternative ML-
based models, which are trained and fit using a publicly available dataset of health-related
time series data, with and without concrete time windows (in compliance with state-of-the-
art metrics in the domain) prior to patients’ discharge from ICUs. Moreover, as a further
contribution, the proposed models were evaluated using a real-world hospital cohort with
data from our own cardiovascular intensive care unit at UKD to assess how they would
generalize against new sets of unseen data.

In the next sections, first, a detailed overview of the patient data and methods is given,
and then the results of model training and evaluations are presented and discussed. Finally,
the relevance of the findings and possible future follow-ups will be discussed.

2. Materials and Methods

This section explains the methodology of the study. First, the details of the dataset
curation for training, validation and test steps will be elaborated, including the selection
criteria and cohort statistics, which will be followed by the description of the integrated
times series data. Then, the details of the training and validation step using 5-fold cross-
validation on the MIMIC-III dataset are discussed. Finally, the details of the test step on
an unseen set of data from a held-out MIMIC cohort as well as the UKD database are pre-
sented. The entire in-house-developed analysis pipeline is developed in the Python (V3.6.)
programming language. The LSTM models for time series data analysis are implemented
using the PyTorch library [19].

The inclusion criteria of subjects from both MIMIC and UKD datasets have been
defined as follows:

1.  Patients who were transferred from the ICU to a normal station and then returned
to the ICU within 48 h. Due to possible logistical reasons, patients whose first ICU
stay was less than 24 h are excluded. These patients are labeled as 'readmitted’.
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2. Patients who died during the hospital stay. The dead subjects are also labeled as
‘readmitted’.

3.  Patients who were transferred from the ICU to a normal station and then were not
returned to the ICU within 30 days. Those who did not return within 30 days after
transfer from ICU are labeled as 'non-readmitted’.

2.1. Patient Cohorts

For the training, we focused on the cases of patients from the MIMIC-III dataset
who visited cardiovascular care units. As a result, the training subject cohort consisted
of 11,513 patients, out of which 966 patients were labeled as readmitted and 10,547 were
labeled as non-readmitted. From the MIMIC dataset, the train subjects” ages ranged from 17
to 89 years (mean(M) = 66, standard deviation(SD) = 13.51). For anonymization purposes,
the real admission times are not attainable from the MIMIC dataset.

For test purposes, a cohort of 502 patients who visited the cardiovascular ICU at
the UKD were retrospectively analyzed. Among these, 100 patients were returned to the
ICU within the 48 h after discharge (labeled as ‘readmitted’) and 402 patients visited the
ICU just once, without being readmitted within 30 days after their discharge (labeled as

‘non-readmitted”). The ages of the subjects from the UKD database were quantified in the

range from 19 to 95 years (M = 67, SD = 12.25). The cohort corresponds to cardiovascular
ICU stays in the time period from January 2017 to December 2020. Due to the retrospective
character of the study, patient consent was waived.

2.2. Time Series and Patient Data

For each subject in the train or test cohort, 10 vital or laboratory variables (selected by
highly qualified cardiovascular surgeons) were captured during the patient’s stay at the
corresponding intensive care unit. To form the time series data for all the subjects, 60 min
time intervals have been taken into account. The missing values were extrapolated using
the mean value of the corresponding variable throughout the entire corresponding cohort.
Moreover, from the patients’ files, the age and weight values were extracted. Finally, the
length of stay (LoS) of each subject was quantified from the admission time entries from
the corresponding database (MIMIC or UKD) and added to the rest of the features to end
up with feature vectors of size 13. Table 1 provides the list of the 10 variables used for the
time series data analysis and the 3 extra patient variables.

Table 1. The input parameters including time series data from laboratory or vital values and informa-
tion from patient files (ABP: ambulatory blood pressure, LoS: length of stay). The table is adapted
from [17].

Lab Values Vital Signs Patient Information
Creatinine Body Temperature Age
Blood PH ABP Weight
Sodium Heart Rate LoS
Potassium Oxygenation
Hematocrit
Bilirubin

2.3. Preprocessing

Preprocessing of the input data is applied, similarly to our previous work [17], consist-
ing of the following steps: First, the time series features and patient variables are obtained
from the corresponding dataset (MIMIC or UKD). Then, all values are standardized and
missing data are replaced with the corresponding distribution’s mean value. In the last step,
the data are both re-sampled and oversampled before being processed by the corresponding
model. Figure 1 gives an overview of the preprocessing pipeline.
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Figure 1. Preprocessing pipeline. First, the data are extracted and standardized, and then the missing
data are filled in. Finally, re-sampling and oversampling are applied before the data are fed to the
models. This figure is adapted from previous work [17].

In the feature extraction step, the case IDs of the subjects who met our selection criteria
have been processed to acquire the feature values from the corresponding database using
appropriate queries. Then, the normalization is applied at two different levels. First, the
features which might have been stored in different units (such as weight) have been unified
and converted accordingly and cases with extreme and outlier values have been removed
from the cohorts. In the second step, we applied standardization around the mean value to
end up with normalized feature vectors. The standardization of each variable is applied as
defined in Equation (1):

N Si — HUx

Si= (1)
where §; is the standardized value, s; is the original value, yy is the mean of the variable
over the whole cohort x and ¢, is the standard deviation over x.

As required by the LSTM method, all the input feature vectors must be of equal size
before being analyzed. Thus, for all the timestamps without an actual measurement, the
missing value was filled in with zero (which is the mean value after standardization). More-
over, as the vital and lab values of patients are usually measured in fragmented timestamps,
the feature vectors extracted from the databases were non-uniformly distributed along
subject cohorts. Thus, to unify the entire cohorts, the time series parameters are resampled
to a frequency of one entry per hour. In case there exist more than one measurement
per hour, the mean of each hour is used as the value. Alternatively, if there is no record
for a time step, the mean over the whole cohort is used. Furthermore, the imbalance in
the label distribution (there are more non-readmitted cases than readmitted ones in both
cohorts) might result in the training of a deep learning model that is not able to predict
the minority class labels accurately [20]. Therefore, the data for training the LSTM models
were oversampled in order to have evenly distributed classes.

2.4. Model Training

In a previous study [17], we have shown the superiority of an RNN model based on
LSTM architecture to logistic regression and a feed forward network using the MIMIC-III
dataset. Therefore, in the current study, two alternative models with LSTM architecture
have been analyzed, compared and further evaluated on unseen sets of data from open
access and available in-house data. Both models are trained and validated using a subset
of the MIMIC-III dataset, which was selected randomly. The first model, which will be
denoted as the ‘cropped’ model from now on, applies a fixed window of the last 48 h to
each ICU stay. The second model, which will be denoted as "“uncropped’ in the next parts
of the text, applies no limits on the available time series data from each subject.
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As a special kind of recurrent neural network (RNN), long short-term memory (LSTM)
is able to learn long-term dependencies in time series data. The input to an LSTM is a batch
of arrays containing time series data. Although the LSTM model can handle inputs with
varying lengths, the input length has to be equal inside each batch. Thus, to pad each time
series with zeros until they have equal length, a PyTorch object is used.

To be able to capture non-linear relations between input variables and target labels,
a hidden layer with the size of 50 neurons is applied after the LSTM pipeline. The input
to the models are the time series data. For the cropped model, a fixed window of 48 h is
used, while, for the uncropped model, no constraint on the length of time series data is
applied. After processing the input time series batches, the three patient variables (age,
weight and LoS) are concatenated to the feature vectors. Then, a rectified linear unit (ReLU)
is applied as the activation function, while a dropout layer with a value of 0.3 is used for
regularization purposes. The final fully connected layer consists of 2 neurons, which are
then passed through to the softmax function, which quantifies the final class probabilities
(one for each label).

Figure 2 illustrates the architecture of the LSTM-based models. The x; input refers
to the i-th time step of all time series. Table 2 summarizes the hyperparameters for
model fitting.

score0

LSTM | orepout

scorel

Patient Info

Figure 2. LSTM models” architecture: First, the time series data are passed to the LSTM part. Then,
the patient information (age, weight and length of stay) is concatenated to the feature vectors from
LSTM output. Next, the ReLU and dropout are applied before the feature vectors are passed through
the hidden layers. Finally, the softmax function is used to assign probabilities for each binary label.

Table 2. The hyperparameters of the LSTM-based model. The table is adapted from [17].

Hyperparameters Values
optimization algorithm Adam
learning rate 0.003
loss function cross-entropy
batch size 32
epochs early stopping

2.5. Model Validation

The training cohort from the MIMIC dataset is first split into separate train and
validation cohorts with similar ratios of target labels. Then, to validate the model internally,
5-fold cross-validation is applied with random folds. As a result, the hyperparameters of
the best performing models are stored to be used for the corresponding test steps. The
training of each model continued until the area under the curve of precision recall (AUC-PR)
stopped increasing after several epochs. Subsequently, the model that achieved the highest
AUC-PR in the cross-validation was applied to the separate validation set. This procedure
was repeated 10 times and the mean and standard deviation of the performance metrics
were computed accordingly.



Eng. Proc. 2022,18, 1

6 of 10

2.6. Model Evaluation

Both of the trained models are evaluated against unseen cohorts from the MIMIC-III
and UKD datasets. To this end, two independent test cohorts have acted as representatives
of unseen data. To quantify the model performance on each of the held-out test cohorts,
each of the cropped and uncropped models, which were trained and fit in the validation
step, are applied to the independent test cohorts. Then, the performance of the models
is quantified and compared in terms of balanced accuracy, AUC-PR, precision, recall and
AUC-ROC.

3. Results

In this section, the results of the model validation and evaluation are presented.
First, the results obtained by different models in the training and validation phase will
be elaborated. Then, the models” performance on the test cohorts will be quantified
and compared.

3.1. Model Training and Validation

The results of the model training with five-fold cross-validation on the MIMIC dataset
are summarized in Table 3. Both cropped and uncropped models performed well on
held-out validation subsets within the training cohort, with AUC-ROCs of 0.877 and 0.859,
respectively.

Table 3. Evaluation metrics for the validation set from MIMIC database.

Balanced

Recall Precision AUC-PR AUC-ROC
Accuracy
cropped to 48 h 0.799 0.694 0.389 0.666 0.877
uncropped 0.778 0.649 0.389 0.636 0.859

3.2. Model Evaluation

The results of the evaluation steps on held-out cohorts from the MIMIC and UKD
databases are illustrated in Table 4 and Figures 3 and 4, comparing the models” perfor-
mance together and to an unskilled classifier. In general, we observe a remarkable gap
in the performance of the models as applied to the two groups of held-out data. Both
the cropped and uncrpopped models perform reasonably well on the held-out set from
MIMIC, with AUC-ROCs of 0.796 and 0.828, respectively. From the test results of the UKD
data, the cropped model (AUC-ROC = 0.554) performed better than the uncropped model
(AUC-ROC =0.517).

Table 4. Evaluation metrics for the test sets from UKD and MIMIC databases.

UKD
Balanced  po o Precision AUC-PR AUC-ROC
Accuracy
cropped to 48 h 0.514 0.06 0.318 0.223 0.554
uncropped 0.498 0.22 0.196 0.221 0.517
MIMIC
Balanced . .
Recall Precision AUC-PR AUC-ROC
Accuracy
cropped to 48 h 0.74 0.575 0.35 0.538 0.796
uncropped 0.766 0.628 0.477 0.571 0.828
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Figure 3. Results of the two alternative models’ predictions on the unseen cohort from MIMIC dataset:
(left) the precision—recall curve; (right) the receiver operating characteristic curve. The dashed lines
denote the performance expected by an unskilled classifier.
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Figure 4. Results of the two alternative models’ predictions on the unseen dataset from UKD:

(left) the precision-recall curve; (right) the receiver operating characteristic curve. The dashed lines
denote the performance expected by an unskilled classifier.

4. Discussion

Predicting the risk of readmission to intensive care units at discharge times through
the use of artificial intelligence can support healthcare systems to manage their resources
in a more efficient way. As unplanned readmissions might result in longer stays as well as
health hazards for patients [1,4], it is critical to provide quantification of the readmission
risks as an additional asset for decision making for the intensivists. Related works suggest
that different vital and laboratory values of patients sampled in the last 48 h prior to
the patient’s discharge from the intensive care unit contribute the most to the fact of
whether the patient will return to the care unit [21]. Thus, state-of-the-art time series
forecasting methods on health-related data from ICU stays could be of great importance for
the analysis of readmission risk for patients. Therefore, the motivation behind this study
has been to propose and evaluate two alternative models, based on time series forecasting,
for readmission prediction for patients visiting cardiovascular ICUs after heart surgery.

The first model analyzes all available vital and lab values for all the participating
subjects during their stays at the corresponding ICU. Alternatively, the second model
takes into account only the values in the last 48 h prior to discharge from the care unit.
As elaborated in the results, both of the alternate models performed reasonably well in
predicting patients who would be readmitted to the ICU when they were applied to an
unseen cohort from the MIMIC dataset. Furthermore, we showed that the model with
the 48 h time limit outperformed the other model in predicting readmissions for a cohort
of unseen cases from UKD, which conforms with the findings from related work [21].
The superiority of the model with a persistent number of timestamps can be justified, as,
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typically, data-driven ML-based methods perform more efficiently on data cohorts with
higher consistency [22]. Moreover, it signifies the relevance of the patients’ clinical factors
measured in the most recent timestamps prior to transfer for predicting readmission risks.

Overall, the findings reveal the predictive potential of the Al-based approach for
health forecasting after evaluating its performance on unseen datasets. However, there are
some drawbacks to the currently applied methodology, which should be mitigated in future
follow-ups. As for any other time series model, the methodology towards health forecasting
as described in this paper would also be affected by the issue of missing data. For this study,
we replaced missing measurements with the corresponding mean value throughout the
whole cohort. For the future follow-ups, we will consider alternative Al-based imputation
methods such as bidirectional recurrent imputation for time series (BRITS) [23], which
would most likely help to further improve the robustness of our methods. Furthermore,
most of the state-of-the-art ML-based models with deep architectures are less interpretable
due to their ‘black box” nature. Therefore, one of our future works will be to provide an
ML-based approach towards ICU readmission prediction in an explainable manner, i.e., by
following explainable AI (XAI) best practices. This will further help to give the medical
experts higher levels of interpretability and confidence in Al analyses.

The results of the evaluation step reveal the inconsistency between the time series
measurements from the two databases (MIMIC-III and UKD), also known as the dataset
shift problem [24]. This might reflect different protocols and standards for patient care and
discharge in the corresponding care units and should be diminished in the future using
appropriate transfer learning techniques or by training new models on larger cohorts which
better fit in protocols. Thus, we are gathering more annotated data to prepare a suitable
cohort of ICU stays at UKD for further follow-ups. Nonetheless, even these relatively
poor preliminary results on the data from UKD are slightly better than the performance
of an unskilled classifier. These findings identify room for improvement in readmission
prediction accuracy by the Al model. Although the Al performance might be considered
far from perfection, even highly experienced intensivists will not predict ICU readmissions
quite perfectly. Therefore, to further quantify how the proposed Al approach would
compete with experienced domain experts, we intend to conduct experiments in which
the performance of the Al model for ICU readmission prediction is compared to that of
a group of experienced intensivists. Nevertheless, it should be noted that the proposed
methods are designed as decision support tools for medical experts and therefore should
not be used as an autonomous system for decision making.

Another important aspect of any clinical decision support tool is usability. In this
regard, as part of the upcoming follow-ups, we intend to conduct proper empirical studies
to assess how a provided Al assistant user interface would satisfy user needs in terms of
experience and performance. Moreover, to account for better generalizability, the integra-
tion of datasets from other hospitals and intensive care units would be a useful next step
to take.

5. Conclusions

The aim of the study has been to train and evaluate a deep model with a recurrent
architecture to predict the readmission of patients who visited cardiovascular ICUs based
on times series data of vital and lab values. To this end, the RNN model based on the LSTM
method was trained with open access data and tested using independent hospital data. Our
findings revealed the potential of the proposed Al-based methodology to assist domain
experts at cardiovascular intensive care units for the better quantification of readmission
risks at discharge times. To further address the usability and generalizability aspects of the
methods, empirical user studies and experiments with data from other care units should
be conducted.

10
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Abstract: The radio spectrum is a finite and scarce resource needed to transport data generated by
existing and emerging wireless mobile networks and services. As the demand for wireless services is
increasing, operators look for ways to efficiently utilize their assigned spectrum. While operators
do regularly perform spectrum occupancy measurement using an external spectrum analyzer or
installing a dedicated sensing network to understand and plan the spectrum utilization level, both in
time and spatial dimensions, such a measurement-based approach is expensive, given the dynamic
and wide area covered by spectrum utilization. This paper proposes an indirect approach to assess
and predict the average spectrum utilization level using data traffic measured from base stations
of an operator network. K-Means clustering and deep learning algorithms, namely Convolution
Neural Network (CNN) and Long Short Term Memory (LSTM), are used to model and analyze the
current and future spectrum utilization in the 900 MHz frequency range. Data collected from 639 base
stations of a mobile operator are used to build the spectrum utilization model. The results show that
the CNN model trained on clustered data outperforms the model developed on non-clustered data
(with a Root Mean Square Error (RMSE) of 0.58), mainly for base station level prediction. In terms of
utilization level, the results also show that the operator does not optimally utilize the 900 MHz range.

Keywords: spectrum; utilization; prediction; time-series; clustering; K-Means; LSTM; CNN

1. Introduction

Over the last three decades, cellular data traffic has exploded due to the prolifera-
tion of attractive telecom services with requirements ranging from high throughput to
guaranteed low latency and low error rate. To respond to the demand, mobile network
operators (MNOs) continuously upgrade their networks, e.g., by deploying advanced net-
work technologies such as Advanced Fourth Generation Long Term Evolution (LTE+) and
Fifth Generation (5G) broadband cellular mobile networks. These networks are designed to
efficiently utilize the available spectrum and operate in the previously unutilized spectrum
in the GHz range.

As the radio spectrum is one of the key and finite resources to transport the grow-
ing traffic, there is an ever-increasing demand for it. Due to its favorable propagation
condition in providing high coverage and capacity, some bands (mostly sub-6 GHz) are
being intensively utilized at different times of the day and space (e.g., location and service
area), creating some sort of “scarcity”, in contrast with other bands [1]. In most cases, the
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non-uniformity of users” spatial distribution and usage patterns within various geograph-
ical areas and times limits the full utilization of the available radio spectrum assigned
for MNOs [2]. In order to increase the efficient use of spectrum bands, MNOs consider
different spectrum harvesting approaches, such as intra or inter-operator spectrum sharing
or spectrum refarming that rely on detailed knowledge about the spectrum usage in time
and space.

From the MNO'’s perspective, optimizing the spectrum usage focuses not only on
maintaining the quality of service but also on ensuring that the allocated spectral resources
can support the demands of subscribers. Thus, operators are expected to understand the
dynamics of their spectral resource utilization by continuously monitoring the use in terms
of space, time, and the number of channels (in a channelized band) that all users in a certain
territory may access. While conducting continuous spectrum measurement by dedicating
sensing networks is the most accurate approach to attaining such knowledge, it is costly
and resource intensive, given cellular traffic’s rising demand and dynamic nature. Rather,
an alternative approach is to exploit the correlation between spectrum use and transported
data/voice traffic information, which is already available in the operator’s network, to
understand, estimate, and predict the spectrum utilization.

From these aspects, several literature analyzed efficient spectrum/channel use in
spectral and temporal dimensions. Motivated by the lack of knowledge regarding spectrum
occupancy in South Africa, the authors of [3] measured the spectrum occupancy for Global
System for Mobile Communications (GSM) 900 and 1800 MHz bands. The results indicate
a maximum occupancy of 20% for UHF bands and different maximum utilization during
peak hours for the GSM 900 (92%) and 1800 (40%) MHz. Similarly, spectrum utilization in
Malaysia’s TV and cellular bands was carried out in [3] showing the maximum utilization
of 35%, 10%, and 26% in GSM900, GSM1800, and 3G bands, respectively, and 11% and 13%
utilization for TV broadcasting in VHF and UHF bands.

The practical prowess of time series modeling methodologies are considered for
predicting spectrum occupancy in different bands and applications. In this regard, ref. [4]
applied Autoregressive Integrated Moving Average (ARIMA) models, Lagrangian Support
Vector Machine, and an Elman network (simplified models of Recurrent Neural Networks
(RNNSs)) are used to predict spectrum occupancy in a TV and cellular bands. The results
show that the RNN technique outperforms the other models in prediction accuracy for
cellular networks, as it better captures the non-stationarity and several irregularities in the
data traffic. In contrast, the ARIMA model works efficiently in the TV band, since the traffic
pattern is stationary. A similar analysis is presented in [5] for GSM channel utilization
modeling and prediction with Seasonal ARIMA (SARIMA).

On the other hand, traffic volume and resource utilization mapping is presented
in [1,6]. Traffic-related measurements such as call success rate, call drop rate, and antenna
properties, including antenna height, transmit power, used/unused time, and frequency
bandwidth, are used in [6] to indirectly map system/network parameters into spectrum
utilization efficiency. Under a multi-MNOs environment, the analysis results showed a
heavy under-utilization of the spectrum. In [1], upper limits on the traffic volume and
the spectrum resource usage is evaluated for a single LTE cell to ensure seamless video
streaming in dense urban environments.

While these papers indicated: (1) the need for analyzing spectrum usage directly from
measurement or indirectly from voice/data traffic volume; and (2) the need for prediction
or classification models that are capable of understanding random spectrum usage, there is
still a limitation of capturing the spatial correlation within various geographical regions.

With the limitations in mind, the main objective of this paper is to develop a machine-
learning-based model that captures the spatio-temporal variation of spectrum utilization.
The model helps to understand (in an average sense) how the operator utilizes the different
spectrum bands allocated to it. For that, 100 days of voice traffic channel data (hourly based
frequency utilization per cell in percentage) are collected from 639 base stations operating
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at the 900 MHz frequency range. Based on the data, the approaches followed in this work
are as follows:

1.  Map channel utilization measurements into spectrum utilization using an industry
practiced utilization formula. Erlang B is used to validate the formula and the mapping
in both cases is found to be similar;

2. Temporal clustering with K-mean is applied to classify the spectrum utilization of
the 639 base stations. The clustering has two-fold advantages, first to understand the
spectrum utilization in decision making, such as load optimization [7] and second, to
improve prediction accuracy [8];

3. RNN (specifically, Long Short Term Memory (LSTM)) and Convolutional Neural
Network (CNN) are applied to predict future utilization on a per cluster level;

The indirect spectrum usage assessment is of low cost and requires fewer resources, as
it uses the operator’s already monitored /available data. With knowledge of the average
spectrum utilization, operators may follow multiple approaches, such as going for a new
frequency band in the case of “full utilization”; reframing frequency, half rate configuration
implementation, and spectral efficient technologies to improve the utilization in case of
moderate/medium utilization; or in the case of low utilization even allowing other users
to utilize its frequency in the context of cognitive radios or spectrum sharing with other
operators [9]. To the best of our knowledge, no prior work has investigated spectrum
utilization based on the operator’s data. Even though our analysis considers voice traffic at
900 MHz of the spectrum channel, it can easily be extended to different spectrum bands
and data traffic volume inputs with appropriate traffic-spectrum utilization mapping and
more complex learning architecture.

The remainder of the paper is organized as follows. The spectrum utilization concept
and its traffic mapping are discussed in Section 2. We present the clustering and prediction
approaches used in Section 3, followed by the results and discussion in Section 4. Finally,
we conclude the work in Section 5.

2. Spectrum Utilization Analysis
2.1. Spectrum Bands in Cellular Mobile Networks

Radio spectrum is divided into frequency/spectrum bands, e.g., in mobile systems
800 MHz, 900 MHz, 1800 MHz, 2100 MHz, and 2600 MHz bands are allocated for various
generations of mobile systems [9]. Each band has different propagation characteristics and
bandwidth that, in turn, determine mobile network coverage and capacity [2]. Operators
further divide the frequency bands into channels (also called carriers) and are used to
transport traffic and control information. As an example in GSM systems operating in
the 900 MHz band, the band is further divided into 124 duplex channels (or carriers) of
200 kHz bandwidth.

By systematically spacing base stations in a geographic area, each base station is
configured to operate on a certain group/cluster of channels. The configured channels
are reused by other base stations as many times as the resulting co-channel interference is
within the service requirement [10]. In mobile systems, channels are classified as a physical
channel and a logical channel. The physical channel corresponds to one timeslot on one
carrier/channel, while the logical channel reflects the specific type of information carried
by the physical channel, which could be either a traffic channel or a control channel. A
traffic channel in GSM is abbreviated by TCH and is used for either voice or data service.
For voice service, each timeslot can carry a full rate TCH of 9600 bit/s,two half-rate TCHs
of each 4800 bit/s rates, or one of the control channels.

2.2. Traffic Engineering

As previously stated, the main intention of this work is to use data available in opera-
tors” performance report systems (PRS) to estimate current and future channel utilization.
When viewed per base station level where measurement is available, channel utilization
level, among others, depends on the number of configured channels per base station; the
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specific geographic area; time of a day; users’ behaviors; service delivered; generation of
the cellular network; rate, i.e., full- or half rate, supported; and multiplexing scheme used.

Cognizant of these facts, as well as taking the availability of operator’s data and
operator’s understanding, the utilization study is a 2G network providing voice service.
The approach is, however, generalizable to other advanced networks and it is one area in
which we are working to publish the results in the future. Moreover, from the operator’s
PRS, one can collect the aggregate offered traffic, measured in Erlang, for the configured
channels per base station on an hourly basis and for both full-rate, Ty, and half-rate, Ty,,,
TCH channels. For this paper, data available per base station are TCH traffic both for half
and full rate, configured channels per base station, and each site’s longitude and latitude
to analyze the spatial behavior of its utilization. Six hundred and thirty-nine sites (base
stations) are used and one-month data with a granularity of 1 hour is collected.

Traffic engineering is then used to map the utilized channels, which in turn will be
compared with the configured channels to compute the percentage utilization. Channel
utilization, Cyy, is defined as:

T,
Ok x 100 (1)

e )

The operator understudy designed its voice service assuming Erlang B service with
a grade of service of 98% network availability [9]. Figure 1 shows the calculated spec-
trum/channel utilization, based on Equation (1), for a particular base station.
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Figure 1. Spectrum/channel utilization.

3. Methodology

As the spectrum utilization data are evaluated from the cellular traffic observed in
a timely basis, it is modeled as a non-linear and non-stationarity time series. In order
to capture the commonality in users” behaviors and distribution at different times and
locations, a cluster-level approach is considered when predicting the utilization. The
prediction model is developed using LSTM and CNN for clustered and non-clustered data.

3.1. Utilization Clustering with K-Means

As one of the most popular unsupervised clustering algorithms due to its simplicity
and linear complexity, K-Means is widely used in many application areas such as computer
vision, image processing, and business analytics [9]. The goal of the algorithm is to group
the unlabeled multidimensional data into K clusters by assigning each data point to one
unique cluster based on the provided features. With the objective of maximizing intra-
cluster similarities and minimizing the inter-cluster similarities in the spectrum usage, we
used Silhouette analysis to find the optimum number of clusters.
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The Silhouette index (SI) is used to distinguish the different unique patterns and
measures the distance between the time series and the centroid of the cluster they belong
to compared through comparison with other clusters. Base stations might have significant
load variation, as shown in Figure 2, due to changes in work or rest time in commercial and
residential regions, as well as variations in human behavior through time and in different
locations, among other factors. Based on the district pattern on the spectrum utilization
time series data, SI can be used to cluster the different spatially distributed base stations.
The SI for the time series dataset, y, and k the number of clusters, is defined as [9]:

SI(C) _ % Z 2 b(ck/yi) — “(Ckr]/i) (2)

creCYi€ck max(a(ck/yi)/ b(ck/yi))

where a(cy, y;) = ﬁ Lyec, lyi — yjl|,is the measure of similarity of the time series to its

. 1 . e e a1

own cluster and b(cy, y;) = mmcmérg o] Ljec ||yi — yjl|, is the measure of dissimilarity
Cm

from time series in other clusters.
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Figure 2. Different channel utilization observed at four base stations.

3.2. Spectrum Utilization Prediction Approach with Deep Learning

The remarkable achievement of deep learning prediction in relation to wireless net-
work problems, including its capability to capture complex nature and its processing of
time series information, was achieved with a “time-aware” architecture. Without explicitly
decomposing the different time series characteristics of spectrum utilization, deep learning
will model/learn its dynamic temporal behavior. We consider the two widely used deep
learning networks, CNN and LSTM, for the spectrum utilization problem.

3.2.1. Spectrum Utilization Modeling Using CNN

CNN is a type of deep neural network initially designed for image processing prob-
lems, but now it is applied to data that can be represented in a grid-like matrix form. In
CNN, time-series and textual data can be represented by a 1D vector and a 2D matrix
can be used to represent the pixels in the image data [11]. Unlike image processing, the
CNN-based time series analysis/prediction requires extracting information along the time
dimension, hence the reason we use the stack 1D CNN model.

To achieve the purpose of extracting features, two layers of a 1D-convolution layer
are used. Max pooling layer follows each convolution layer to shirk the input resolution
and assist the convolution layer to extract abundant temporal correlated features under the
various input resolutions. In addition, a flattening layer for data reshaping and two dense
layers are used sequentially to get the required output shape.
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3.2.2. Spectrum Utilization Modeling Using LSTM

LSTM network is an advanced recurrent neural network (RNN) and is designed to
learn order dependence in sequence prediction. The LSTM contains three parts, namely
the Forget gate, f;, Input gate, i;, Output gate, O;, and memory cell, C;, where each part
performs a separate function. The forget gate chooses whether the information coming
from the previous timestamp is to be remembered or is irrelevant and can be forgotten.
The input gate is used to quantify the importance of the new information carried by the
input. While in the output gate, the cell passes the updated information from the current
timestamp to the next timestamp. Even with its computational complexity for retaining
memory, it is easy to model complex non-linear feature interactions using the LSTM [12].

ft = o(Xe x Up + Hp_q x Wy) (©)

iy = o(X; x U; + Hi_y x W;) (4)

Cr = fi ©Ci_1 +ir © tanh(x; x U + Hy—1 x W) (5)
Oy =0 (Xy x Uy + Hy 1 X Wp) (6)

H; = O; ® tanh (Cy) (7)

For our real-valued prediction problem, three layers of LSTM networks are used with
ReLU, ¢(.) = R(z) = max(0, z), as an activation function.

4. Results and Discussion
4.1. Experimental Settings
4.1.1. Data Preprocessing

We considered a dataset from an operator measuring the spectrum utilization of GSM
900 in Ethiopia. The data were collected for 100 days, from 1 January to 10 April 2021, with
a granularity of 1 h for 639 base stations. Additionally, each site’s longitude and latitude
information was taken to analyze the spatial behavior of its utilization. The operator has 61
and 85 channels configured to handle GSM service at 900 Mhz and 1800 Mhz, respectively
(Tabel 1). The maximum cell capacity for GSM900 is 8TRX per cell and 12 TRX for DCS
1800 [9].

Table 1. GSM channel configuration.

Network Type Channel Type Frequency Number
GSM 900 BCCH 14
TCH 47
Guard band 1
GSM 1800 BCCH 24
TCH 61
Guard band 1

Data preprocessing techniques, such as handling missing values, standardization, and
outlier handling, are applied to the collected dataset. With that, five base stations with a
continuous missing value are excluded; the data set is divided into 80% of training data,
10% of validation data, and 10% of test data.

4.1.2. Hyperparameter Tuning

Hyperparameter tuning refers to finding the best parameters to get the best results
from models. Hyperparameters are set before training a machine learning model. These
hyperparameters need to be optimized to adapt the model to a dataset [6].

When building the LSTM model, how many hidden layers the model will include, the
number of LSTM cells that should be used in each layer, and what the dropout should be
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must be considered, in addition to other parameters. Similarly, the CNN model is defined
with various hyperparameters such as kernel size, filter size, hidden layer, optimizer
activation function, and Epoch. A grid search algorithm was used for selecting these
appropriate combinations of hyperparameters listed in Table 2 as it is critical for building a
model with better accuracy.

Table 2. Hyperparameters used in LSTM And CNN Models.

H . Value
yperparameters CNN LSTM
Hidden Layer 2 3

Number of Filters (64), (32) -

Kernel Size 3), (3 -
Hidden layer Neurons - (48), (32), (32)
Batch Size 64 128
Dropout 0.2% 0.2%
Maxpooling-1D 2 -
Dense layer (50),(24) -
Optimizer Adam Adam
Activation Function ReLU ReLU
Epoch 2000 100

4.1.3. Evaluation Metrics

The Model evaluation aims to estimate the generalization accuracy of a model on future
or test data. We jointly used two evaluation metrics to quantify our model performance:
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

N

1 .
MAE = =) |yi — 3il ®)
N i=1

RMSE = )

where N is the size of the evaluated set and 7; is the predicted utilization for ;.

4.2. Model Performances
4.2.1. Clustering with K-Means

As the utilization of the spectrum resource at a particular base station relates to the
number of channels allocated and the aggregated traffic requested from the users, its
temporal pattern resembles, to certain extent, the users’ behavior.

In the K-Means analysis, the closeness of the utilization pattern of a particular base
station to the mean traffic pattern of a cluster is evaluated for cluster membership. Using
preprocessed data, the K-Means algorithm clusters the data into an optimal cluster size
of five based on the minimum SI score. Figure 3 illustrates the utilizations pattern and
the spatial distribution of the corresponding base stations. The plots illustrate a distinct
variation in utilization pattern due to factors such as user behavior (the high call rate during
working hours indicated by the high picks) and a higher number of channel allocations
(reflected in 3rd cluster,from left to right). Aside from being an input for better spectrum
utilization through dynamic spectrum allocation, the clustering based approach averaged
out the different patterns observed at a base station level to four, simplifying network-
level predictions.
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Figure 3. The four clustered base stations based on their average spectrum utilization patterns.The
top-row plots representing the average utilization pattern of each cluster in five days duration, and
the bottom-row plots represents the spatially distributed base stations of each cluster.

4.2.2. Prediction Performance

The prediction for spectrum utilization at a cluster level and base station level was
made considering the two models: LSTM and CNN. Figure 4 and Table 3 present results
for cluster-level prediction that showed close performance between the LSTM and CNN
models in capturing characteristics of the GSM 900 spectrum usage. Similarly, results for
24 h base station level prediction are shown in Table 4 and Figure 5.

r-3

o
s

—&— Actual
- Modeled-CNN
—4— Modeled-LSTM

I

Avarage Utilization(%)
5

Spectrum Utilization Modeling Using LSTM and CNN

Hours

Figure 4. Actual vs. predicted plot for CNN and LSTM.

Table 3. Cluster level prediction performance.

150

200 20

Clustered Non-Clustered
RMSE MAE RMSE MAE
LSTM 0.8 0.845 1.197 1.057
CNN 0.585 0.26 0.767 0.521
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Table 4. Performance evaluation results for base station level prediction.

RMSE MAE MAPE MSE

LSTM-Prediction 13.34 010.325 7.684 1.434
LSTM-Prediction Clustered 2.4492 2.092 6.872 0.641
CNN-Prediction 7.114 5.058 4.433 0.589
CNN-Prediction Clustered 1.04 0.76 2.3821 0.201

Base Station Level Prediction

—— Actual
@ | LSTM-Pradiction
LSTM-Pradiction Clustered
CMN-Prediction
—— CNN-Pradiction Clusterad

Utilization{%)

3

Figure 5. Base station level prediction with both LSTM and CNN.

As noted, the prediction error produced by our LSTM model is much greater than the
CNN (RMSE of 0.58) in both cluster and base station levels, showing its limitation was
an inability to sufficiently learn the patterns (i.e., trend, seasonalities, and non-linearities)
inherent in the data.

Compared to the error generated by the cluster level prediction (RMSE of 1.04), the
base station level approaches in both models perform poorly. Especially during high
utilization, the prediction error is very significant, which will create network condition and
QoS degradation in case of prediction-based network resource allocation and optimization.

5. Conclusions

In wireless network planning and optimization, data-prediction-assisted analysis
provides the opportunity for operators to determine the extent to which the resources are
utilized and quality of service is attained. As spectrum is the scare resource in wireless
communication, it is important for MNOs to understand how the spectrum is utilized over
time and space.

In our paper, spectrum utilization data are modeled as time series data during model
development, and various strategies for enhancing the model’s performance are employed
to obtain a better model with the least amount of error. Since the utilization data in
practice are not typically measured, we exploit the traffic utilization relation. A cluster-
level approach is considered with the help of K-Means to provide network-level spectrum
utilization prediction CNN and LSTM algorithms. Based on the temporal pattern, the GSM
900 band utilization is clustered into four. To compare and evaluate the prediction accuracy,
four different metrics are used. As shown, the model developed for the cluster data using
the CNN outperforms the LSTM algorithm with an RMSE value of 0.58. Similarly, for
base-station-level prediction, CNN is found to be the best predicting model with an RMSE
value of 1.04.

We hope the presented results provide a new insight for MNOs to understand the
utilization level of the spectrum allocated to them that can also be extended to 3G and
beyond networks. Moreover, the presented approach is on a per-cluster level, which spans
a wider geographic area. How to obtain base-station-level knowledge and for a large
number of base stations is another area to explore in future work.
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Abstract: It is no longer possible to imagine our everyday life without time series data. This includes,
for example, market developments, COVID-19 cases, electricity prices, and other data from a wide
variety of domains. An important task in the analysis of these data is the detection of anomalies.
In most cases, this is accomplished by examining individual time series. In our work, we use the
techniques of cluster analysis to establish a relationship between time series and groups of time
series. This relationship allows us to observe the development of time series in their entirety, thereby
gaining additional insights. Our approach identifies outliers with a real-world reference and enables
the user to locate outliers without prior knowledge. To underline the strengths of our approach, we
compare our method with another known method on two real-world datasets. We found that our
solution needs significantly fewer calculations, produces more reasonable results, and can be applied
to real-time data. Moreover, our method detected additional outliers, whose occurrence could be
explained by real events.

Keywords: outlier detection; outlier detection in time series; time series analysis; time series cluster-
ing; time series cluster evaluation

1. Introduction

Outlier or anomaly detection in time series is the problem of identifying rare or
deviating observations in (univariate or multivariate) time series. Those observations
may occur once or form a sequence when arising multiple times in a row. Finding
anomalies in time series can be beneficial in a variety of applications, such as fraud
detection in stock markets [1,2], anomaly detection in network data [3,4], and the de-
tection of unusual time series in medical data [5,6]. The sheer number of possible ap-
plications of anomaly detection in time series makes it important for industry; there-
fore, it has been implemented in a number of business applications released by Google
(https://cloud.google.com/blog/products/data-analytics/ (accessed on 10 April 2022)),
RapidMiner (https:/ /rapidminer.com/glossary/anomaly-detection/ (accessed on 10 April
2022)), Microsoft, and IBM [7,8]. The broad diversity of applications and products indicates
a variation in the underlying data, which requires specific solutions in order to detect
meaningful anomalies. Furthermore, outliers may also be defined differently, depending
on the context at hand.

Most approaches focus on the detection of anomalous observations or subsequences in
a single time series. This is useful for many applications but does not include a comparison
to other time series from the same domain. However, assuming that time series from
the same context are influenced by similar framework conditions, such a comparison
becomes necessary. The idea of outlier detection by comparing time series is part of
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recent research and often applies Dynamic Time Warping (DTW) techniques [9,10] or the
Granger Causality [11,12]. Although, these approaches are able to identify anomalous data
points or even subsequences, they are limited to the comparison of only two time series
at a time. The comparison of one time series to a group of other time series at the same
time is, therefore, the next logical step; however, it also requires techniques to localize
corresponding groups. The latter is well researched and is referred to as cluster analysis in
time series.

In general, the goal of cluster analysis is to group objects with the objects in the same
group being as similar as possible to each other and the objects from different groups being
as dissimilar as possible. The similarity between two objects is usually expressed by a
distance function (e.g., Euclidean distance). The number of existing clustering algorithms
is very large; hence, which one should be used depends, among other things, on the given
data and performance requirements. There are also different approaches for the clustering
of time series. Examples of these are clustering using common methods with an explicit
distance function for time series, clustering of multiple time series at each point in time, or
using a clustering algorithm that was specifically developed for time series.

An example of a clustering algorithm developed for time series (based on K-means [13])
is the method of Chakrabarti et al. [14]. The authors claim that their algorithm can pre-
serve a certain consistency of clusters in consecutive points in time. A recent study by
Tatusch et al. [15], however, has shown, that the development of time-series adapted al-
gorithms is not implicitly required to preserve this consistency. Instead, it is sufficient to
find corresponding parameters for existing not-time-adjusted clustering algorithms. In a
different work, the authors also demonstrate the use of this technique to find behavioral
outliers in time series. Although the results are convincing, the given method is not appli-
cable to streaming data because it is decidedly computationally intensive. Furthermore,
the approach of Tatusch et al. [16] requires the user to set a threshold, which is based on
the time-series over-time stability. However, the construct of this stability measure is not
intuitive; therefore, it may be very difficult to find appropriate values for the threshold.

In this paper, we present an alternative approach based on a cluster over-time stability
evaluation measure called CLOSE [15] that is significantly less computationally expensive.
Moreover, the results are based on a much more intuitive threshold that incorporates
the cluster membership of time series. We compare the obtained results with those of
Tatusch et al. [16].

In the remainder of this section, we provide the necessary notations and definitions
(Section 1.1). In the next section, we first introduce a categorization of machine learning
methods to time series analysis. Based on this categorization, we present the related work
with the respective fundamental concepts and discuss the limitations in comparison to
our solution. In Section 3, we describe our method mathematically with examples for
every introduced definition. Then, we propose an optimization to reduce the number of
computations required and, thus, to improve the performance of our method. In Section 4,
we compare the results of our method with the results of Tatusch et al. [16], a solution
with a similar key idea. To ensure a fair comparison, we use the same data set and
hyperparameters as in [16]. Finally, we conclude and discuss possible future work in
Section 5.

1.1. Notation and Definitions

Since we compared our procedure with that of Tatusch et al. [16], we adapted the
definitions they provided.

Definition 1 (Time Series). A time series TSy = xy,...,Xy is an ordered set of n real-valued

data points of any dimension. The data points are ordered chronologically by time. The order is
represented by the corresponding indices of the data points.
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Definition 2 (Subsequence). A subsequence Sy ,j = Xk, ..., Xm of a time series TSy is an
ordered subset of m — k real-value data points of TS, withk < mandVx; € TSy : k <I <m :
X; € Sx,[k,m]'

Definition 3 (Data Set). A data set D = {TSy,..., TS} is a set of m time series of the same
length n and equivalent points in time.

Definition 4 (Cluster). A cluster C;; at time t withi € 1,..., p being an unique identifier, is
a set of similar data points, identified by a clustering algorithm. All clusters have distinct labels
regardless of time.

Definition 5 (Cluster Member). A cluster C;; at time t with i € 1,...,p being an unique
identifier, is a set of similar data points identified by a clustering algorithm. All clusters have distinct
labels regardless of time.

2. Related Work

The different nature of data and approaches has led to a variety of diverse definitions
of outliers; however, the general definition according to Douglas M. Hawkins is often used:
“An observation which deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism” [17]. The observations mentioned may
have been made at one point in time or over a period of time and refer to univariate or
multivariate time series. To capture the differences in both data and methods, Blazquez-
Garcia et al. [18] proposed a taxonomy that categorizes methods for anomaly detection
in time series by three axes: input data (i.e., univariate, multivariate), outlier type (i.e.,
point, subsequence, time series) and nature of the method (i.e., univariate, multivariate).
The latter describes whether a technique converts a multivariate time series into multiple
univariate time series before further processing of the data. In the following, the described
taxonomy is used to categorize the methods presented in the remainder of this section.

One method that can be categorized according to the described taxonomy under
methods of univariate nature with the support of point and subsequence outliers was
presented by Sun et al. [19]. The goal of the method is to detect anomalies in character
sequences. Therefore, a probabilistic suffix tree is first constructed from character sequences,
which is then used to estimate the probability of a point or subsequence being an anomaly.
Due to the fact that the method takes univariate character sequences as input, a time series
must first be converted into such a sequence, e.g., by SAX [20], in order to be processed in
the following steps. In contrast, our proposed method can process time series without first
having to convert them into a different (reduced) representation.

Alternatively, Munir et al. [21] introduced a method, that is multivariate in nature and
can be applied equally to both types of time series. It consists of two modules: a CNN-based
event predictor and a distance-function-based anomaly detector. As the name suggests,
the event predictor predicts the next event based on all given time series, and the anomaly
detector determines whether the deviation between the prediction and the occurred event
is higher than a certain threshold. Thus, the outlier type handled by this method is a point
in time. Compared to the supervised CNN-based event predictor, our proposed method is
unsupervised, so that a training phase is not required. Moreover, the approach presented
here has a white box character, which allows a more detailed analysis of outlier formation.

In contrast to the black box model of Munir et al. [21], Hyndman et al. [22] proposed a
white box method exclusively for anomaly detection in multivariate time series. In their
study, they extracted 18 features from each time series first. Then, principal components
were determined from the data points of these features. Finally, a density based multidimen-
sional anomaly detection algorithm [23] was applied to the first two principal components
to detect anomalous time series. Although the method has a good performance and accu-
racy compared to other presented models, the approach contains a number of drawbacks.
On one hand, the feature extraction from time series and the dimension reduction by PCA
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(Principal Component Analysis) can lead to a loss of important information. On the other
hand, principal components generally have a low interpretability. In this context, it can be
difficult to determine the impact of features on the outlier detection. Since we consider the
dimensions of the time series as a whole in our approach, there is no loss of information.
In addition, based on cluster transitions and the reasons for those transitions, our method
allows a detailed analysis of the occurrence of anomalous subsequences.

In response to the fact that several approaches (including those described here) focused
on the deviation of one time series from the others, Tatusch et al. [16] presented a method
for anomalous subsequence detection, which examines the behavior of a time series relative
to their peers. For this, all time series are first clustered per timestamp; then, the transitions
of time series between clusters are analyzed. If a time series or its subsequence frequently
moves to different clusters compared to its peers from previous clusters, it will obtain a
higher outlier score. According to this method, a time series or its subsequence is an outlier,
if the outlier score exceeds a threshold, which must be specified by the user. In other words,
if a time series changes its group often enough over time, it will be identified as an outlier.

As for any threshold that has to be set by a user, the approach of Tatusch et al. [16]
raises the question of what value to set it to. Thus, the problem arises that the outlier
score is not intuitive. While an outlier score of zero states that the corresponding time
series is consistently in the same clusters with its peers over time, an outlier score from an
interval I = [0, 1] can be much more difficult to interpret. Further, under the assumption
that all time series of a dataset D have the same length /, the proposed method requires K
computations to find all anomalous subsequences in D, where K is defined as:

(I-1)2+(1-1)
2

K= x| D|

Finally, Tatusch et al. [16] differentiate between two outlier types: outliers by distance
and intuitive outliers. Outliers by distance can be detected based on their outlier score,
and intuitive outliers are subsequences consisting of noise which can arise during clustering
per timestamp. This distinction is necessary to be able to categorize the latter type of
subsequences as outlier as well, since the outlier score for these would be zero.

In our work, we present an alternative definition of an outlier, which is also based on a
clustering of the time series per timestamp; however, it addresses the problems listed for the
approach of Tatusch et al. [16]. Thus, the threshold of our method is more intuitive, contains
no need to differentiate between any types of outliers, and the number of computations K,
based on the same assumptions as above, is smaller with:

K'=(1—-1)x|D|

For this purpose, the given time series are clustered per timestamp first. Then, scores
are calculated for each time series between consecutive timestamps, indicating the number
of peers with which the time series remains in the same cluster. Finally, a threshold is
defined to indicate how unique a path between two clusters in consecutive timestamps
must be for the corresponding subsequence to be classified as an anomaly.

3. Method

Building on the described fundamentals, this section first introduces further terminol-
ogy that is necessary to understand the method. This is followed by the definition of an
anomalous subsequence of a time series. Finally, a way to find all anomalous subsequences
within a time series is presented.

For a better illustration of the equations and corresponding calculations, we refer to the
example given in Figure 1, which represents multiple time series clustered per timestamp.
In the context of this work, data points defined as noise are considered as separate clusters.
Thus, the data points of the time series TS § are assigned to the clusters C,; and C,, at
timestamps one and two.
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Figure 1. Example: clustering per timestamp.

The first term which will be relevant in the rest of this section is the cluster transitions
set ct. A single cluster transition of a time series TS, is a tuple of two cluster labels
indicating in which clusters two adjacent data points of TS, are located. Thus, a set of
cluster transitions ct has the following definition:

ct(TSy) = {(Cit, Cii1) | 3yt yri1 € TSy iyt € Ciy AYrr1 € Cipyr - 1)

For example, in Figure 1, the cluster transition sets of the time series T'S. are:

Ct(Tsc) = {(Cp,l/ Cu,Z)/ (CM,Z/ Cw,3)}‘

Given the description of the cluster transition set, we next define a multiset M that
contains all cluster transitions for all time series TS; of the data set D:

MD: U Ct(TS,'). (2)
TS;eD

Regarding Figure 1, the multiset Mp is:

Mp = {(Cp1,Cs2), (Cp1,Cs2), (Cpa, Cup),
(C41,Cu2), (Cy1,Cu2), (Cr1, Co),
(Cs2,Cuw3),(Cs2,Cuw3), (Cu2, Cua),
(Cu2,Cx3), (Cu2,Cx3), (Co2, Ca3) }ie

In combination with the equation for the cluster transition set, the given multiset
description is then used to define a conformity score, which indicates how often a particular
cluster transition p occurs in all time series of a data set D:

con formity_score(p, Mp) = Mp(p). (3)

With respect to this equation, the conformity score of the cluster transition (Cp,1, Cs2)
of the data set D presented in Figure 1 is:

conformity_score((Cpll,Cslz),MD) = MD((Cp,llcs,Z)) =2.

Using Equations (1)—(3), a set of anomalous transitions at for a time series TS, € D is
defined as follows:

at(TSy) = {p | p € ct(TSy) A conformity_score(p, Mp) < 7}, 4)

where ¢ is a threshold for the conformity score of a single cluster transition. Thus, if the
conformity score is less than or equal to o, then the corresponding transition is categorized
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as anomalous. Consequently, a subsequence S, | ,; of a time series TSy is anomalous if
and only if:

at(Sy,(km)) = ct(Sy,jkm))- (5)

According to Equations (4) and (5), the entire time series TS, of the data set D shown
in Figure 1 is anomalous due to:

ﬂt(TSc) = {(Cp,lr Cu,Z)r (CH,Z/ Cw,3)} = Ct(TSC)

Using Equation (5), anomalous subsequences of a time series TS, can be identified by
iterating over all possible subsequences of TS,. As an alternative to this approach, a set
of tuples can be derived based on the set of anomalous cluster transitions, where the first
element of each tuple indicates the beginning of an anomalous subsequence, and the second
one specifies the end of the corresponding subsequence. Given a lower number of required
iterations through a time series, this alternative is intended to optimize the performance of
the method presented in this paper. This first requires the definition of an order relation <:

(CityrCit,) < (Crr Crpy) 1 (ta < ty) A (t < tg). (6)

Based on the presented order relation, a set of tuples can be defined with respect to a
time series TS, where each tuple consists of two anomalous cluster transitions. The first
transition indicates the beginning of an anomalous subsequence of the time series TS;, and
the last one specifies the end of the corresponding subsequence. The formal description for
this set of anomalous transition boundaries atb is given by:

atb(TSy) = {(p,p") |(p, P’ € at(TSy))A
(p € ct(TSy) AP ¢ at(TSy) :p < p < p')A
(A(Cit, Cjpa1) € at(TSy) - p' = (Cpp-1,Cip))}-

In the case of the time series TS, from Figure 1, the set of anomalous transition
boundaries for o = 1 is:

L‘ltb(ng) = {((Cp,l/ Cu,Z)/ (CH,Z/ Cw,3))}'

Further, to obtain data point-based outlier boundaries for a time series TS, a mapping
dpy(Cis, Civ) = (y,y;) is required that maps cluster tuples to a tuple of data points based
on TSy, such that:

Yt € TSy Ayt € Cip Nyy € TSy NYp € Cj,t’-

Finally, the outlier boundaries set ob within a time series TS is defined as a element-
wise merge of tuples of the set of the anomalous transition boundaries, which is then
mapped to the data points of TSy:

Ob(TS]/) = {dpy(Cwﬂ-‘r Cz,t’+l)|v((cw,tr Cx,t+l)/ (Cy,t’rcz,t’+1)) € atb(TSy)}'

In this context, the set of outlier boundaries consists of tuples, where the first element
of each tuple marks the beginning of an anomalous subsequence, and the second one
indicates the end of that subsequence. Consequently, the outlier boundaries set of the time
series TS. = c1, ¢, c3 shown in Figure 1 for 0 = 1 is:

ob(TS.) = {dpc(Cp1,Cu3)} = {(c1,c3)}-

4. Experiments

In this section, we evaluate the method presented in this work. Since the method
for detection of outliers in time series (DOOTS (https://github.com/tatusch/ots-eval/
blob/main/doc/doots.md (accessed on 20 April 2022))) of Tatusch et al. [22] also detects
anomalous subsequences based on time series transitions between different clusters, we
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used their method for comparison with our approach. In addition, we used the identical
data sets and the same clustering method. This is intended to make the comparison of the
two methods as fair as possible. In both approaches, DBSCAN with euclidean distance was
used for timestamp-based clustering, with minPts and ¢ set differently for each data set
but equally for both methods. In order to identify the best cluster parameters, we made
use of the cluster over-time stability evaluation measure called CLOSE [15] and found that
these were the same as Tatusch et al. used in their study [16]. Furthermore, we used the
same thresholds for DOOTS as proposed in Tatusch et al. In order to make a meaningful
comparison with our method, we chose the conformity score threshold in a way to ensure
the results of both methods were as similar as possible. Overall, we used two real world
data sets to compare both methods.

4.1. Eikon Financial Data Set

One of the real world data sets Tatusch et al. used for the evaluation of their work
was an extract from the EIKON database. This database contains financial data from over
150,000 sources worldwide, and the information includes the previous 65 years. The extract
contained annual values from the features’ net sales and expected return for 30 (originally)
random selected companies. The values of both features were normalized by min-max-
normalization. The parameters used for the clustering by DBSCAN were ¢ = 0.15 and
minPts = 2.

Figure 2a shows the result of DOOTS [16] for the threshold T = 0.6, and Figure 2b
illustrates the result of our outlier detection method for the conformity score threshold of
o = 1. The black dashed boxes in Figure 2a mark intuitive outliers, which by definition
consist of noise, and the red boxes represent outliers found by analyzing cluster transitions
(outlier by distance). In contrast, in Figure 2b, each black dashed box highlights the
beginning of an anomalous subsequence and each red dashed box marks the remainder of
that subsequence.

The most noticeable fact when comparing the results of both methods is the dif-
ferent number of detected subsequences. While DOOTS [16] found only two anoma-
lous subsequences (S, 2008,2009] and Sk [2009,2013)), our solution identified four of them
(SGM,[2008,2009], SKR,[2008,2013], STJx,[2008,2000], and Sirps p012,2013))- A detailed analysis of
S77x,[2008,2009] and Syrps [2012,2013) sShowed that both of them had a unique cluster transi-
tion with a conformity score of one each. Since the threshold o was set to the same value,
both subsequences were identified as anomalous by our method.

The explanation for why Stx 2008 2009] and Sisps, [2012,2013) Were not considered anoma-
lous by DOOTS [16] is more complex. In the case of UPS, neither a subsequence score nor
the best score can be calculated, due to the lack of a cluster membership of the last data
point of the time series. The inclusion of such a case requires an additional case differentia-
tion. This can be seen as a disadvantage of the method of Tatusch et al. [16]. The reason
for the missing detection of Stjx 2008 2009] Was the small size of the cluster in which TJX
was located in 2008. Therefore, the calculation of the subsequence score for Sty 120082009]
resulted in 0.5. Since the best score for this subsequence was one, the outlier score for it
was (1 —0.5) = 1, thus lower than the threshold 7 of 0.6. From this case, the dependence of
the outlier detection result on the corresponding cluster sizes can be derived, which can be
considered as another disadvantage of the method of DOOTS [16].
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Figure 2. (a) Result of Tatusch et al. Colors: cluster memberships, red dashed boxes: outlier by dis-
tance, black dashed boxes: intuitive outliers. (b) Result of our method. Colors: cluster memberships,
red dashed boxes: outliers, black dashed boxes: preoutliers.

Most interesting with regard to the identification of UPS (2012-2013) and TJX (2008-
2009) as outliers is probably the realization that they can be explained by related events.
Unlike the companies with which UPS was clustered in 2012, UPS had to lower its expected
return in 2013. This was probably attributable to the crash of UPS Airlines Flight 1354
(https:/ /www.bbc.com/news/world-us-canada-23698279; accessed on 25 April 2022)
14 August 2013. TJX Companies is a multinational department store corporation that in
2009 was still struggling with the consequences of the recession triggered by the economic
crisis in 2008 (https:/ /www.bizjournals.com/denver/stories /2009 /07 /06 /daily63.html;
accessed on 25 April 2022). For this reason, sales fell sharply, as they did for all retail
traders. The reason why TJX was identified as an outlier here was that it was the only retail
company in the data set.

4.2. Airline On-Time Performance Data Set

The other real world data set that Tatusch et al. [16] used in their publication was
called “Airline on-time performance”. It was originally created for a challenge with the
goal to predict delayed and canceled flights. Therefore, the authors included flight data on
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all commercial flights in the USA between October 1987 and April 2008, resulting in a total
of 120 million records. Based on this data set, Tatusch et al. [16] generated one dimensional
time series with the feature “distance”. As described in their work, they took eight days of
every month and calculated the average distance for each airline in the data set. Before the
authors clustered the created data set with DBSCAN, they normalized the distances by
the min—-max normalization. The parameters for the applied clustering algorithm were
minPts = 3 and € = 0.03.

The result of DOOTS [16] for T = 0.4 is displayed in Figure 3a. Here, the black solid
lines represent outliers by distance, and the black dashed lines are both outliers by distance
and intuitive outliers. Our result for ¢ = 1 is shown in Figure 3b, where the black solid
lines mark anomalous subsequences. In both figures, the colors of the dots set at each time
point represent the cluster membership, with the red color representing noise found by
DBSCAN. The results of both methods show strong similarities regarding the detection of
anomalous subsequences, but there are also some differences. The most relevant of them
are discussed below.

0.8

0.4

Distance

e
5Y

0.2

0.1

Time Time

(@) (b)
Figure 3. Airline on-time performance data set. (a) Outlier detection result of the method of
Tatusch et al. (b) Result of our method.

Foremost, the subsequences S, (12 and Sy 34) of the time series marked as A in
Figure 3 were detected as anomalous by DOOTS [16], while they were not detected as such
by our method. In the context of our approach, these subsequences were not detected as
anomalous, because the number of equal cluster transitions and, therefore, the conformity
score of 54 (1) as well as of 5, 34 was higher than the threshold ¢ = 1. In contrast,
explaining the results of DOOTS [16] requires detailed calculations. First, the subsequence
score for 54 (1 5) is:

subseq_score(S 4 (1) = 3/4 = 0.75.

Given that the best score for the last cluster of S 4 [1 5) is one, the outlier score for this
subsequence is:
outlier_score(Sp 1) =1-0.75=025 < 7.

Based on this result, S 4 |; o] should not be labeled as anomalous. However, if we take
the subsequence S 4 (1 3), which in addition to S 4 |; 5] contains a further value at time = 3,
the subsequence score for S 4 (1 3) becomes smaller compared to S 4 |1 o) with:

subseq_score(S 4 (1,3) = 0.5 (0.5+0.1) = 0.3.
Since the best score for the corresponding cluster at time = 3 is one, the outlier score

for SA,[1,3] is:
outlier_score(Sp 1 3) =1-03=07> 1.
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Thus, the subsequence S 4 | 3), was marked as anomalous. The same type of calcula-
tions led to the detection of the subsequence S 4 35 as anomalous, which contained the not
anomalous subsequence S4 (3 4)-

The detection of 54 |1 5) and S 4 3 4 by DOOTS [16] leads to two possible conclusions.
On one hand, it can be concluded that the approach of Tatusch et al. [16] considers anoma-
lous subsequences in a broader context with respect to the length of a time series than our
method, which would be an advantage of DOOTS. On the other hand, this solution leads
to subsequences that are not anomalous within their interval being detected as anomalous.
This can be seen as a disadvantage of DOOTS [16]. In contrast, our method detects only
those subsequences that exhibit suspicious behavior within their time interval. However,
a broader context regarding our detection method can be achieved by additionally consid-
ering non-anomalous subsequences that are adjacent to detected anomalous subsequences.

A more general observation is that our method detected every subsequence of length
two as anomalous if it contained one or more noisy data points. The reason for this is that
the conformity score of such sequences was one and thus smaller or equal to the chosen
threshold ¢. In contrast, the solution of Tatusch et al. [16] follows a different approach.
Even if a subsequence of length two had a noisy data point, it does not mean that DOOTS
[16] would detect this subsequence as anomalous. In addition to the subsequence score,
the detection of outliers by the method of Tatusch et al. [16] also depends on the value
of the corresponding best score and whether both scores can be calculated for the given
subsequence. In summary, we can conclude that DOOTS [16] has a much more complex set
of rules than our method, whereby the results of both methods are similar.

5. Conclusions and Future Work

In this paper, we introduced a new approach for detecting outliers in multiple mul-
tivariate time series. For this purpose, we first clustered the time series data at each time
point and then calculated conformity scores for each subsequence of length two. Finally,
we determined whether the conformity scores were less than or equal to the specified
threshold and labeled them as outliers if they were.

Since we found only one alternative algorithm (called DOOTS) [16] based on a similar
idea, we compared the two in detail. The application of both methods led to similar results,
although our solution had a much simpler rule set and, therefore, required fewer calcula-
tions (the runtime estimation is provided in Section 2). On one hand, this simplified the
understanding of the origin of the outliers and, on the other hand, the better performance of
our method allows it to be used on real time data. In addition, our rule set seems to be more
consistent in contrast to DOOTS [16]. This statement is supported, among other things,
by comparing the thresholds of both methods. While for our method the same minimum
conformity score threshold was used in each dataset, the threshold set in DOOTS [16]
varied without much difference between the results of both methods. Furthermore, our
solution detected subsequences even if they ended with a noisy data point.

The most important drawback of our method is that the outlier detection result
depends highly on the result of previous clustering. This implies that a poor clustering
result would lead to a poor detection result of our method. Since the analysis of cluster
transitions is the core idea of our method, we have to rely on approaches such as CLOSE [15]
to obtain reasonable clustering results for our solution. Furthermore, while our method
can be applied to real-time data due to its performance, this requires prior clustering in
real-time with reasonable results for time series data. Here, CLOSE [15] provides good
results, but the procedure is not applicable to real-time data because of the high number of
needed computations. Given that, the most important aspect for future work is to optimize
CLOSE [15] for real-time application. In addition, the freely selectable threshold ¢ in our
work has a high impact on the detection result of our method. Every increment of ¢ leads to
a superset of detected outliers regarding the result of the previous threshold. Although in
this work we set this parameter to one for each dataset in order to obtain results that were
as similar as possible and thus comparable to DOOTS [16], the optimal value for ¢ can
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be determined in several ways, and each determination should depend on the dataset
in question. One way to determine the optimal ¢ is to count the cluster transitions that
occur, sort them in ascending order, and choose the value for ¢ at which the slope change is
greatest. However, the analysis of this and other possible methods is beyond the scope of
this work and should therefore be addressed in future work. Another aspect is that not
all detected anomalous subsequences may be useful in the context of given requirements.
Since this case requires further analysis, our method could be applied to multiple data sets
in which the outliers have already been labeled.
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Abstract: The increasing availability of time series datasets enabled by the diffusion of IoT archi-
tectures and the progress in the analysis of temporal data fostered by Deep Learning methods are
boosting the interest in anomaly detection and predictive maintenance applications. The analysis of
performance for these tasks relies on standard metrics applied to the entire dataset. Such indicators
provide a global performance assessment but might not provide a deep understanding of the model
weaknesses. A complementary diagnostic approach exploits error categorization and ad hoc visu-
alizations. In this paper, we present ODIN TS, an open source diagnosis framework for time series
analysis that lets developers compute performance metrics, disaggregated by different criteria, and
visualize diagnosis reports. ODIN TS is agnostic to the training platform and can be extended with
application- and domain-specific meta-annotations and metrics with almost no coding. We show
ODIN TS at work through two time series analytics examples.

Keywords: time series; anomaly detection; predictive maintenance; model evaluation; error diagnosis

1. Introduction

Time series datasets collect observations sampled at different times. Recording can
be continuous, when data are collected continuously in a given interval, or discrete, when
data are recorded at set time intervals [1]. Based on the number of observations at each
timestamp, the time series can be univariate or multivariate. Univariate time series log
values generated by a single sensor, whereas multivariate time series record signals from
multiple sensors simultaneously. Time series are used to study time-varying phenomena in
many fields: in the economy [2] (e.g., stock price trends), in medicine [3] (e.g., the progress
of health variables) or in industry [4] (e.g., the status or energy consumption of a machine).
Given a time series dataset, different tasks can be performed to predict a specific attribute or
event at a given timestamp or assign a label to a particular observation. The most common
tasks can be summarized as follows:

e (lassification: assigning a class label to a time series [5]. An example of this task is the
classification of the human heartbeat to detect diseases [6].

e  Forecasting: predicting future event/s. An example is to predict the future energy
consumption of an appliance based on historical data [7].

*  Anomaly Detection: identifying deviations from normal behavior [8-10]. An example
is the identification of anomalies in HVAC systems [11].

*  Predictive Maintenance: predicting when a piece of equipment is likely to fail and
deciding which maintenance activity to perform to obtain a good tradeoff between
maintenance frequency and cost [10]. This objective could be pursued with classi-
fication approaches (identify if the appliance will fail within n days) or regression
approaches (predict the Remaining Useful Life, RUL, of an appliance).

Eng. Proc. 2022, 18, 4. https://doi.org/10.3390/engproc2022018004 35

https:/ /www.mdpi.com/journal /engproc



Eng. Proc. 2022,18, 4

20f 10

The different tasks are usually evaluated by means of standard metrics such as the
Mean Absolute Error (MAE) or Precision and Recall. While these metrics are useful global
indicators of the model performances, they provide little insight into the weaknesses of the
models. For example, predicting a false positive close to a real anomaly is a less severe error
than predicting it at a very distant time. Furthermore, information collected but not used
during the model training phase could help understand the model performance. For exam-
ple, in an industrial application it could be interesting to analyze if the performances vary
across appliance versions or install locations. A similar analysis could be performed on any
other attribute not exploited for training but available at diagnosis time.

This paper introduces ODIN TS, the extension for anomaly detection and predictive
maintenance of the ODIN machine learning diagnosis tool. ODIN [12] is an open-source,
Python-based, black-box framework for error diagnosis initially conceived for generic
classification and computer vision tasks. Contrary to explainability techniques that aim
at "opening” the box by exploring the internals of the models (e.g., CNNs), black-box ap-
proaches study only the results of the model with regard to the input and its characteristics.
ODIN TS adds the implementation of the most widely adopted metrics for the anomaly
detection and predictive maintenance tasks and proposes new analyses for anomaly de-
tection, such as false positive error categorization. ODIN TS also enables the inspection
of the time series dataset and of the related predictions by means of a visualizer with
different functionalities.

The contributions of the paper can be summarized as follows:

*  We summarize the most widely used metrics for time series analysis.

e We describe their implementation in ODIN TS, an extensible framework for time series
analytics error diagnosis.

e We introduce the novel analysis and visualizations supported by ODIN TS and exem-
plify them in an anomaly detection and a predictive maintenance task.

The paper is organized as follows: Section 2 summarizes the most common metrics
used for time series analysis, Section 3 describes the proposed framework and its function-
alities, Section 4 presents some examples of how the tool can be employed, and Section 5
concludes and provides insight into the future work.

2. Related Work

The evaluation of inference models applies standard metrics to compute performance
indicators based on a comparison between the ground truth (what is expected) and the
model predictions. Table 1 presents a by-task summary of the metrics and performance
indicators found in the literature for time series analytics and provides a reference to the
definition of each index. Different works have focused on the evaluation of time series tasks
by proposing novel metrics and assessment procedures or by providing efficient implemen-
tations of the classical indicators. In [13], the authors presented a new benchmarking metric,
the Numenta Anomaly Benchmark (NAB) score, which augmented traditional indices by
incorporating time explicitly so as to reward early detection and introduced the concept of
an anomaly window. The work in [14] illustrated the benefits of decomposing performance
metrics based on the characteristics of the observations. As a use case, a model to detect
illicit use of computational resources was created and assessed. The evaluation considered
how the performances of the predictor changed in servers with a specific attributes (low
or high profile). Other contributions proposed novel time series evaluation frameworks.
The work [15] introduced Darts, a python framework for handling time series, which
implemented some state-of-the-art machine learning methods and provided off-the-shelf a
subset of the standard metrics reported in Table 1. Another example is the RELOAD tool
proposed in [16] to identify the most informative features of a dataset, run anomaly detec-
tion algorithms, and apply a set of evaluation metrics on the results. While both tools aim
to support training and evaluation with standard metrics, ODIN TS extends the support to
time series analytics with a black-box error diagnosis approach focused on the anomaly
detection and predictive maintenance tasks. It enables error categorization, predictions
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decomposition, and visualizations. The decomposition and visualization functionalities
exploit the meta-annotations of the data set, i.e., features not used during model training
that can contribute to the interpretation of the model results.

Table 1. Metrics and analysis found in the literature for time series based on the different tasks.
The value “yes” is used to indicate the metric applies to the specific task, whereas “n/a” is used to
indicate the contrary.

Anomaly Predictive Maintenance

Detection  Classification ~ Regression

Classification ~ Forecasting

Accuracy [17] yes n/a yes yes n/a
Precision [17] yes n/a yes yes n/a
Recall [17] yes n/a yes yes n/a
F1 Score [17] yes n/a yes yes n/a
Miss Alarm Rate [18] yes n/a yes yes n/a
False Alarm Rate [19] yes n/a yes yes n/a
NAB Score [13] n/a n/a yes n/a n/a
Mean Absolute Error (MAE) [15] n/a yes n/a n/a yes
Mean Squared Error (MSE) [15] n/a yes n/a n/a yes
Root Mean Squared Error (RMSE) [15] n/a yes n/a n/a yes
Matthews Coefficient [20] yes n/a yes yes n/a
Mean Absolute Percentage Error (MAPE) [15] n/a yes n/a n/a yes
Precision—Recall Curve [21] yes n/a yes yes n/a
ROC Curve [17] yes n/a yes yes n/a
Gain and Lift Analysis [22] yes n/a yes yes n/a
Residuals Analysis [23] n/a yes n/a n/a yes
Coefficient of Variation [15] n/a yes n/a n/a yes
Mean Absolute Ranged Relative Error n/a yes n/a n/a yes
(MARRE) [15]

Mean Absolute Scaled Error (MASE) [15] n/a yes n/a n/a yes
Overall Percentage Error (OPE) [15] n/a yes n/a n/a yes
Coefficient of Determination R2 [15] n/a yes n/a n/a yes
Rho-risk [15] n/a yes n/a n/a yes
Root Mean Squared Log Error (RMSLE) [15] n/a yes n/a n/a yes
Symmetric Mean Absolute Percentage Error (sMAPE) [15] n/a yes n/a n/a yes

3. The ODIN TS Framework

The ODIN TS framework supports the development of predictive maintenance and
anomaly detection tasks enabling designers to evaluate standard metrics on inputs and
outputs grouped by meta-annotation values, perform error categorization, evaluate the
confidence calibration error, and visualize a variety of diagnostic reports. ODIN TS also
includes a Visualizer module for the inspection of the dataset and of the model predictions.
ODIN TS is supported by the extension of classes in the Python-based ODIN framework,
and publicly released (https://github.com/rnt-pmi/odin (accessed on 15 June 2022)).

3.1. Dataset Input and Output Formats

ODIN TS supports the import of time series data, of ground truth (GT) annotations,
and the output of inference results. The artifacts should follow the guidelines common to
most publicly available datasets (summarized in Table 2):

*  Anomaly Detection Task

—  Time Series data: a CSV file with the column “timestamp” of the observation and
one additional column for each “signal”.

- Ground Truth: a JSON file containing a list of the “timestamp” in which the
anomalies appear.

—  Predictions: a CSV file where the first column specifies the “timestamp” and
the following column(s) the “confidence” value, or the reconstructed /predicted
“signal” values.
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e  Predictive Maintenance Task

-  Time Series data: a CSV with the columns “observation_id” for the unique
identifier of the observation, “unit_id” for the machine or appliance identifier,
and one additional column for each “signal”.

-  Ground Truth: it is embedded in the previous CSV file as an additional column
(“label”) with a Boolean value denoting if the machine is going to fail within n
timestamps (for classification) or with the RUL value (for regression).

-  Predictions: a CSV file (named “unit_id.csv”) for each machine or appliance
mentioned in the ground truth. The file contains one column with the identifier
of the observation and one column with the “confidence” score (for classification)
or with the RUL value (for regression).

In both cases if additional metaproperties are associated to the time series, these
are input as a CSV, where the first column is the identifier of the time series observation
(“timestamp” or “observation_id”), and there is one column per metaproperty.

Table 2. Dataset format for ODIN time series. The value “n/a” indicates that a field is not used.

Anomaly Detection Predictive Maintenance
Format Row Identifier Signals/Values Format Row identifier Signals/Values
Time Series csv timestamp a column per signal csv Obseg?: 1;):1171d, a column per signal
list of timestamps embedded label column (class)
Ground Truth ~ JSON n/a when the anomalies in TS CSV n/a or RUL column (reg)
occur
Properties Csv timestamp a column per property Ccsv obselj;attliogfld, a column per property
Predictions csv fimestamp confidence column or sy observation_id confidence column (class)

a column per signal or RUL column (regr)

3.2. Supported Types of Dataset Analysis

ODIN TS supports the following types of analysis of the observations and of the
ground truth annotations:

Distribution of classes. For classification, a plot displays the percentage of samples for
each category.

Distribution of properties. A plot displays the percentage of the observations associated
with each property value. For example, it visualizes if an observation is associated with a
certain period of the day (morning, evening, or night) or with a specific type of anomaly
(point, contextual, or collective).

Stationarity analysis. A stationary time series is one whose properties do not depend
on the time at which the series is observed. The implementation of ODIN TS uses the
Augmented Dickey-Fuller statistical test [24].

Seasonality, trend, and residual decomposition. These analyses expose the repeating
short-term cycles (seasonal) and the general movement over time (trend) of the series [25].
Residuals include everything not captured by the previous two types of decomposition.
Decomposition can be realized with an additive model (addition of the decomposed values
restores the original times series) or with a multiplicative one (the original series is obtained
by multiplying the decomposed values).

3.3. Supported Types of Prediction Analysis

ODIN TS implements all the metrics of Table 1. To the best of our knowledge, there is
no other framework that offers all of them off-the-shelf. Based on the implemented metrics,
ODIN TS implements multiple performance reports and types of prediction analysis,
summarized in Table 3.
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Table 3. Types of analysis in ODIN TS for the different tasks. The value “n/a” specifies the type is
not relevant for the specific task.

Predictive Maintenance

Anomaly Detection — -
Classification Regression

Summary report yes yes yes
Performance per threshold value yes yes n/a
Per property analysis yes yes yes
FP anomaly categorization yes n/a n/a
Error distance distribution yes n/a n/a
RUL variation distribution n/a n/a yes
Calibration analysis yes yes n/a

Summary report. A report that tabulates the results of all the metrics. The total shows
both the micro- and macro-averaged values: the first computes the value without distin-
guishing the categories; the latter computes the metrics for each class and then performs an
unweighted mean.

Performance per threshold value. The classification metrics of interest are computed and
shown in a graph for each value of the confidence threshold.

Per property analysis. The values of the metrics of interest are decomposed by property
value and contrasted with the average across all the property values. For example, the RUL
value prediction or probability of failure in the next N timestamps could be distinguished
per appliance brand or installation location.

FP anomaly categorization. The analysis of incorrectly predicted anomalies is supported,
including their categorization into the following cases:

e Affected: an FP anomaly prediction is assigned to this category if its timestamp lies
within an anomaly window. The anomaly window, introduced in [13], is an interval
centered at the GT anomaly timestamp. The window extension (i.e., between, number
of points) is a customizable parameter set by default to 10% of the data points divided
by the number of anomalies.

e Continuous: this category contains FP anomalies that occur at contiguous timestamps
outside the anomaly window.

*  Generic: all the other FP anomalies.

FP error distance distribution. A distribution plot of the distance (measured as a number
of timestamps) between an FP and the closest GT anomaly, color-coded with the FP anomaly
category (affected, continuous, or generic).

RUL variation distribution. Given that a machine or appliance degrades over time, the pre-
dicted RUL should decrease by 1 at each timestamp. In a perfectly consistent model, the
following formula should apply:

Jr—9r1=-1 1)

where 7; is the predicted RUL at time t, and ;_; is the predicted RUL at time ¢ — 1. This
type of analysis plots the distribution of the differences of the predicted RUL between the
current cycle and the previous one to assess the consistency of the model predictions.

Calibration analysis. It exploits the confidence histogram and the reliability diagram [26].
Both plots assign the confidence values to buckets (e.g., 0-0.1, 0.1-0.2, ..., 0.90-1) on the
abscissa. The confidence histogram shows the percentage of positive predicted samples
that fall into each confidence range. The reliability diagram indicates, for each confidence
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range, the average accuracy of the positive samples in that range. When a classifier is well-
calibrated, its probability estimates can be interpreted as correctness likelihood, i.e., of all
the samples that are predicted with a probability estimate of 0.6, around 60% should belong
to the positive class [27]. ODIN reports the Expected Calibration Error (ECE) (Equation (2))
and the Maximum Calibration Error (MCE) (Equation (3))

M

ECE= )" B%acc(Bm) —conf(Bu) (2)
m=1
MCE = max,e (1, my|acc(Bm) — conf (Bm)| 3)

where 1 is the number of samples in the data set, M is the number of buckets (each of size
1/M), and B,; denotes the set of indices of observations whose prediction confidence falls
into the interval m.

3.4. Supported Visualizations

ODIN TS allows one to visualize the dataset and the corresponding model predictions,
if provided. The dataset visualization offers the following functionalities:

e  Feature filter: one can choose which features to visualize of a multivariate dataset.

*  Aggregation: data can be aggregated by minute, hour, day, week, month, or year and
visualized at different granularity.

* Pagination: some datasets span a large interval. A pagination function with custom
data points size and step can be used to browse the dataset.

e  GTdisplay toggle: the GT annotations can be shown or hidden. For anomaly detection,
it can be a single point or an anomaly window. For predictive maintenance, it can be
the class labels or the RUL values.

If the predictions are available, the following functionalities can be used:

*  Predictions’ visualization and model comparison: the predictions are visualized along
with the GT. If multiple models are selected, their predictions are color-coded.

e FP errors’ visualization: the FP predictions are displayed and, in the case of FP
anomalies, color-coded by their type.

4. ODIN TS in Action

This section exemplifies ODIN TS at work on an anomaly detection and a predictive
maintenance case. The first example from the NAB datasets [13] used the “ambient tem-
perature system failure” data, which contain ~5000 hourly temperature measurements in
an office and feature two anomalies. To detect the anomalies, an LTSM model was trained
as in [9]. It comprised two LSTM modules with four hidden layers and a 0.2 dropout rate.
The training set included the first 30% of the data (of which 10% was used for validation)
while the remaining 70% was used for testing. The model was trained for 100 epochs, with a
batch size of 32 and an input window length of 30. The scenario was relatively small given
the few anomalies, but it was still useful to highlight some of the ODIN TS capabilities.

Figure 1 shows the distribution of the FP error categories. For the computation of the
“affected” errors, an anomaly window of length 34 was used. Most FPs were within a short
distance from the real anomalies (“affected”, in orange), which suggests that the anomaly
was perceived before its reported occurrence time and continued to be perceived shortly
after. Furthermore, the “continuous” FPs were more numerous than the generic ones, which
shows that the model tends to identify prolonged anomalies rather than instantaneous
exceptions. Figure 2 shows the distance of each FP from the closest anomaly to confirm that
the “affected” FPs were the closest to a GT anomaly. These errors are better appreciated in
Figure 3 in which the Visualizer helps show the findings of the analysis more intuitively.
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Figure 1. False Positive distribution plot.
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Figure 2. False positive distribution of the distance of each FP from the closest anomaly.

To illustrate a case of predictive maintenance, we used a NASA dataset of turbofan
engine degradation [28]. The dataset comprised samples from 100 engines, whose state
was represented by 24 variables. The GT consisted of the RUL at each inter-observation
interval (called “cycle”). The authors provided the dataset in two splits: training (with
20,631 observations among 100 machines) and testing (13,096 observations among 100 ma-
chines). In the testing split, the cycles for each machine ranged from 31 to 303. To predict
the RUL at each cycle, a two-layer LSTM was employed, with 128 and 64 hidden layers,
respectively, and the same dropout rate of 0.3. The LSTM was trained for 10 epochs with a
batch size of 150 and a window input length of 60 cycles.
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Figure 3. The ODIN TS Visualizer showing the actual data and the model predictions color-coded by
error type.

The model had an RUL estimation error of 20 cycles (provided by the MAE) and
an MAPE of ~0.17, which denote good performance. Further analysis helps understand
where the model can be improved. Figure 4 shows the residual analysis and enables a
visual interpretation of the deviation of the predictions from the GT. Two plots report the
predicted RUL on the X-axis. The Y-axis of the left plot reports the GT RUL value, while
the Y-axis of the right plot reports the standardized difference between the prediction
and the GT. Each color represents a different engine. From the analysis, it can be seen
that most errors occurred when the component was still in good condition (with an RUL
value greater than 100), which highlights the inability of the model to predict the engine’s
remaining life in the long term. In particular, the highest predicted RUL was 160, while
the corresponding GT value was 260. This suggests that the model is not able to learn
high RUL values properly. In scenarios where analysts are more interested in correctly
predicting the RUL when the engine is close to a failure, it makes sense to set a maximum
GT RUL value to reduce the relevance of large values during training [29].

Predicted VS Actual_LSTM Residuals_LSTM

200 4

150 4

Actual RUL
Residuals
i

100 -

T u T T T T T U U T U T T T T
o] 50 100 150 200 250 0 20 40 60 80 100 120 140 160
Predicted RUL Predicted RUL

Figure 4. Residuals analysis. The colors indicate the different engines.

Figure 5 illustrates the RUL variation distribution analysis, which shows that the
model predictions were not very consistent. The model sometimes increased the estimated
RUL by 10 cycles instead of decreasing it by 1. This finding can help improve the prediction;
for example, if the variation among consecutive cycles was high, one might interpolate or
average the RUL values of previous cycles to mitigate the noise.
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Figure 5. RUL variation distribution: the green bar represents a perfect variation of the RUL estima-
tion, the yellow bars an acceptable variation, and the red bars an inconsistent prediction.

5. Conclusions

This paper described the addition of time series analysis functions into a black-box
error diagnosis framework originally conceived for CV tasks. The novel version of ODIN
includes an ODIN TS module, which supports performance diagnosis for two analytics
tasks on time series: anomaly detection and predictive maintenance. ODIN TS implements
all the most widely adopted metrics for the addressed tasks and introduces new types of
analysis for anomaly detection, such as FP error categorization. ODIN TS also enables
the inspection of the dataset and of the predictions by means of a Visualizer with rich
functionalities. ODIN TS is implemented in Python and released as an open-source project,
which developers can easily extend with their own metrics, reports, and visualizations.
To conclude we have illustrated the tool at work on two use cases, so as to give a glimpse of
its utility. Future work will focus on extending the implemented metrics and on supporting
more tasks (e.g., time series classification and forecasting). We also plan to extend the
Visualizer with novel functions and to integrate a time series annotator for enriching the
GT or generating it from scratch (e.g., by annotating the anomalies in a dataset). Finally, we
plan to create automatic property extractors (e.g., for assigning to each anomaly the proper

type [8]).
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Abstract: Among several meteorological parameters, Cloud-Base Height is employed in many
applications to provide operational and real-time cloud-base information to the aviation industry,
to initialize Numeric Weather Prediction models and to validate climate models. Moreover, Cloud-
Base Height is also useful in the nowcasting (very short-term forecasting) of solar radiation. As
cloud movements mainly affect the solar irradiance availability, their characterization is extremely
important for solar power applications; an accurate estimation of the ground shadowing requires
the knowledge of cloud height and extent. In the present work, the Cloud-Base Height value is
estimated starting from sky images acquired from a single All Sky Imager. In order to fulfill this task,
a Convolutional Neural Network model is chosen and developed.

Keywords: convolutional neural network; CNN; all sky images; cloud-base height; machine
learning

1. Introduction

Cloud-Base Height (CBH) estimation is an increasingly crucial task: this parameter
is required in many applications [1]. It is exploited to validate climate models [2] and
to improve Numeric Weather Prediction (NWP) models [3]; for instance, it improves
the definition of the cloud-drift vector field, allowing a more effective modeling of the
atmosphere dynamics [4]. Moreover, CBH is also useful in the nowcasting (very short-term
forecasting) of solar resources [5] and photovoltaic power plant energy outputs [6]. As
clouds are the primary cause of intermittency in solar irradiance, they are of interest for
solar power applications: an accurate calculation of the ground shadowing requires the
knowledge of cloud height and extent [7].

In the scientific literature, several studies are aimed at estimating CBH through differ-
ent procedures. In [1], seven All Sky Imagers (ASIs) belonging to the Eye2Sky ASI network,
located in the city of Oldenburg, are exploited to estimate CBH. In detail, an independent
CBH estimation is derived considering each possible pair of ASIs, and then all the different
estimations are properly merged into a final and more reliable one. In [8], the authors
combined infrared satellite images and spectral information derived from meteorological
sounders to improve the accuracy of the cloud height estimation task. In [9], a method for
CBH estimation was developed starting from successions of images captured by ground-
based imagers with a hemispherical view of the sky. In [10], a model capable of detecting
and tracking individual clouds aimed at creating a 3D model providing cloud attributes
such as height, position, size, optical properties and motion was developed. In [11], a newly
developed temporal height-tracking (THT) algorithm to the backscatter profiles of two
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ceilometers led to retrieved cloud bases that are statistically consistent with each other and
ensured reliable detection of CBH, particularly when inhomogeneous cloud fields were
present and changing rapidly in time. However, in situ measurements of cloud properties
are essential, but they are quite expensive and typically limited in time and spatial location.
On the contrary, Machine Learning-based models are capable overcoming physical model
limitations, as for solar power plant energy estimation [12]. A CNN is a classification model
specifically designed to detect patterns within images. Since the goal of the work was the
evaluation of the possibility of using All Sky Imagers in order to detect the Cloud-Base
Height, and considering the complexity of the cloud characteristics, this approach was
considered ideal to approach this kind of problem. Therefore, the objective of the present
work is to estimate, with a Machine Learning algorithm, the CBH value starting from sky
images acquired from a single ASI. In order to fulfill this task, a Convolutional Neural
Network (CNN) model was chosen and developed.

2. Convolutional Neural Network

The method selected to fulfill the objective of the current work is the so-called CNN, a
classification model specifically designed to detect patterns within images. In the following,
the model is first described from a theoretical point of view. Then, all the characteristics of
the model implemented in the present work are discussed and explained.

2.1. General Description

CNN:s are classification Machine Learning models, nowadays involved, for example,
in image search services, self-driving cars, automatic video classification systems, etc. More-
over, their utilization is not restricted to visual tasks: they power many other applications
such as voice recognition or natural language processing.

The structure of CNNs derives from the studies of the brain’s visual cortex. Several
studies and experiments demonstrated that neurons dedicated to vision present a small
local receptive field, hence they process only information deriving from a limited region
of the visual field. Moreover, the receptive fields of different neurons may overlap, and
together they cover the entire visual field. This structure, capable of detecting complex
patterns in any region of the visual field, inspired the researcher to develop a Neural
Network architecture that gradually evolved into into the current CNN.

In further detail, the typical CNN structure consists of a sequence of convolutional
and pooling layers:

*  The convolutional layer is the crucial building block of CNNs: neurons in this type of
layer are not connected to every pixel in the input image but only to pixels in their
corresponding receptive fields. The weight of a neuron is represented by a filter (or
convolution kernel) that, when applied to the image, is able to extract features from it.
During the training phase, the convolutional layer learns the best suited filters for a
specific task.

®  The pooling layer has the goal of subsampling the input image in order to reduce the
computational load, the memory usage, and the number of network parameters to
be tuned. As in convolutional layers, each neuron is connected to a restricted region
of the previous layer. Moreover, neurons in this layer do not have weights: all they
perform is the aggregation of the inputs according to a specific aggregation function,
such as max or mean.

After being processed in the cascade of convolutional and pooling layers, the informa-
tion flow is flattened, i.e., it is structured in a suitable format to be further processed. The
last step of the classification process takes place in one or more dense layers, providing the
final output.

2.2. Adopted Structure

The CNN structure adopted is represented in Figure 1. The combination between a
convolutional and a pooling layer is exploited two times in order to grant a reasonably
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deep feature extraction from the input images. Then, the information flow is flattened and
delivered to the final dense layer, aimed at providing the output label corresponding to an
unlabeled input image.

D—:;________’__ﬂ

Convolutional Convolutional Flattening Output
+ +
Pooling Pooling

Figure 1. Adopted CNN structure.

Some characteristic parameters of the CNN structure need to undergo an optimization
procedure in order to grant the best possible performance on the considered case study.
In detail, a sensitivity analysis is carried out on the number of filters involved in the
convolutional layers. The dimension of the dense layer is kept fixed at 16 hidden neurons.
This study is aimed at selecting the configuration representing the optimal compromise
between model accuracy and complexity. The results of the sensitivity analysis depend
primarily on the amount of data involved in training and are reported in the results section.

3. Case Study and Available Data

The CBH is a crucial parameter in the characterization of the cloud features and
consequently on the determination of the attenuation of solar radiation on the ground.
Unfortunately, there are few instruments (ceilometers), which are very expensive, that are
able to detect, in an objective way, this parameter. The alternative, considered in this work,
is the exploitation of the atmospheric sounding obtained in the correspondence of some
airports by means of a radio sounding. This measurement is made with low frequency
(generally twice a day at 00 and 12 UTC) because of the weather balloon launch cost which
hosts the battery-powered telemetry instrument. In the presented case study, the problem
was also to have the radio sounding in proximity of the All Sky Imager. For this reason,
the observed dataset was not too large and, therefore, it has been necessary to consider
a reduced number of classes. In presence of a consistent dataset of CBH measurements
obtained from a ceilometer, it would be possible to increase the number of the classes.
Furthermore, in order to train a supervised Machine Learning model, a proper set of data
is required. More in detail, it is necessary to have some target data, i.e., representing the
quantity that the model is going to estimate, and some input data, i.e., the information on
which the estimation is performed. As input data, sky images from an ASI are used. On
the other hand, as target data, information derived from radio soundings is available.

3.1. Input Data

All available sky images are acquired through a whole-sky cam and constitute the
input to perform the estimation. The images cover two time periods, one comprised
between the months of May and September 2020 and one between January 2014 and
February 2015, and present an initial resolution of 1124 x 1124 pixels. In order to reduce
the computational burden of the estimation algorithm developed, the images are down-
sampled to a 256 x 256 pixels resolution.

3.2. Target Data

Target data consist of the CBH cloud cover depicted in each image. This value is
computed starting from the Pressure of Lifted Condensation Level (PLCL) values, recorded
through a radio sounding sensor. However, PLCL alone is not enough to properly estimate
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the CBH value because the atmosphere pressure is not constant throughout the year.
In order to address this issue, the difference between pressure at sea level and PLCL,
representative of the height of the bottom layer of the cloud, must be used to estimate the
CBH target value. In the presented case study, radio soundings are carried out once a day, at
12:00: therefore, the useful time frames for CNN training, i.e., those where both PLCL value
and the corresponding sky image are available, are not numerous; only 109 sky images with
a corresponding target label are available. The CNN is applied, in the present work, as a
classification method, while the CBH is a continuous variable; this means it cannot be used
as a target variable as it is. However, it was possible to divide the range of the registered
CBH values into classes corresponding to a range of values and to train the model to assign
each image to its corresponding class. Therefore, the available dataset is divided into 3
classes. The identification of more than 3 classes leads to a critical issue: the number of
samples inside each group becomes too small, strongly affecting the classification accuracy.
In that case, the algorithm would struggle in recognizing the classes because it does not
have a sufficient number of examples to infer their characteristic pattern. On the contrary,
if only 2 classes are defined, the range of CBH values corresponding to each class would
become too large, reducing the usefulness of the classification.

CBH classes within the interval comprised between the maximum (970) and the mini-
mum (670), can be defined according to different strategies leading to different partitioning
of samples. The strategies considered in the current work, and the relevant thresholds, are
represented in Figure 2 and are described as:

* Linear: the interval comprised between the maximum and the minimum registered
CBH values is divided in 3 evenly spaced intervals (770 and 870).

*  Logarithmic: the interval comprised between the logarithm (base 10) of the maximum
and the minimum registered CBH values is divided in 3 evenly spaced intervals (764
and 863).

*  Equal number of samples: the thresholds dividing CBH classes are set to make three
classes with an equal number of samples (848 and 875); this latter partitioning strategy
is defined in order to verify the results obtainable with balanced classes in terms of
the same number of samples.

Min Class 0 Class1 Class 2 Max

{a)ht o 20 0.0 00 * ) con

670 770 870 970

Min Class 0 Class 1 Class 2 Max

{b)!—t 2 001‘ i t ) coH

670 764 863 970

Min Class 0 Class 1 Class 2 Max

{C)’_t e .|H .! oo * :> CBH

670 848 5 970

Figure 2. Different strategies for CBH classes definition and relevant thresholds: (a) linear; (b) loga-
rithmic; (c) equal number of samples.

The different partitioning strategies lead to a different number of samples in each class,
as reported in Table 1:
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Table 1. Number of samples in each class according to different partitioning strategies.

Strategy Class 0 Class 1 Class 2
Linear 39 66 4
Logarithmic 15 70 24
Equal num samples 39 36 34

3.3. Oversampling

CNNs, in order to be trained, require a large amount of input images. However, in
our case study, the available dataset is not that large. In order to address this issue, an
oversampling is performed in order to obtain additional generated input samples, useful
to improve the training process of the model. Assuming a negligible time variation of the
vertical profile of atmosphere, it is possible to assign to a single radio sounding all the
images acquired in the surrounding time frames, as graphically represented in Figure 3.

Image 12:30 |,

.
.

Image 12:15
Image 12:00 —* CBH 12:00

Image 11:45 |~

Image 11:30 |’

Figure 3. Oversampling strategy adopted to enlarge the amount of training data available.

The impact of oversampling on class population is reported in Table 2:

Table 2. Samples per class of the adopted partitioning strategy after oversampling.

Strategy Class 0 Class 1 Class 2
Linear 201 330 19
Logarithmic 73 360 117
Equal num samples 201 182 167
4. Results

The performance evaluation is a crucial step to assess the capability of the model to
correctly identify the target classes. Here, the classification performances of a CNN are
presented and discussed according to specific evaluation metrics after the class definition
strategies previously listed in Section 3.2.

4.1. Evaluation Metrics

The evaluation metrics adopted in order to assess the model performances are pre-
sented in the following. The Global Accuracy (A) measures “how good” a classification
model is, returning the fraction of right predictions. It is calculated as in Equation (1):

TP
A_TP+TN+FP+FN M

where:

TP (True Positives) are samples correctly classified by the model as positive;

TN (True Negatives) are samples correctly classified by the model as negative;

FP (False Positives) are samples that the model incorrectly classifies as belonging to
class C, while they belong to a different class;
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*  FN (False Negatives) are samples belonging to class C that are incorrectly classified as
belonging to a different class.

Precision, also denoted as Positive Predictive Value (PPV), for a class C is calculated
as in Equation (2):
TP

Precision = PPV = TP+ EP (2)

Recall, also denoted as sensitivity, for a class C is calculated as it is stated in the
Equation (3):
TP

Recall = Sensitivity = TPLEN 3)

4.2. Linear Classes Definition

In this case, the classes are defined according to the linear strategy, meaning that
samples are defined according to linear partition strategies in the boundary thresholds of
the classes, as it is previously described in Section 3.2. The sensitivity analysis carried out
in order to identify the optimal network structure indicates the number of filters equal to
64 for both the first and the second convolutional layers. Figure 4 depicts the confusion
matrix representing the classification performances in the considered case. A generic cell in
row i and column j represents the number of samples belonging to class i that are assigned
to class j during classification. Table 3 represents the classification performance evaluated
through the metrics previously defined.

50
40

30

True label

20

10

Predicted label

Figure 4. Confusion matrix for the Linear Classes Definition.

Table 3. Classification performances in the Linear Classes Definition.

Class PPV Recall
0 - 0.00
1 0.60 1.00
2 - 0.00

In this case, the developed classification model is unable to recognize the presence of
two classes (classes 0 and 2) out of three. As a matter of fact, the only class appearing in the
model output is class 1, i.e., the most numerous one. The performance metrics numerically
confirm the coherent results represented by the confusion matrix.
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4.3. Logarithmic Classes Definition

In this case, the classes are defined according to the logarithmic strategy. The sensitivity
analysis carried out in order to identify the optimal network structure indicates the number
of filters equal to 64 for both the first and the second convolutional layers.

Figure 5 depicts the confusion matrix representing the classification performances in
the considered case. A generic cell in row 7 and column j represents the number of samples
belonging to class i that are assigned to class j during classification. Table 4 represents the
classification performance evaluated through the metrics previously defined.

50

True label

Predicted label

Figure 5. Confusion matrix for the Logarithmic Classes Definition.

Table 4. Classification performances for the Logarithmic Classes Definition.

Class PPV Recall
0 0.33 0.18
1 0.65 0.93
2 - 0.00

Unlike the previous case, the CNN recognizes the presence of two classes (classes 0
and 1) instead of only one. A small number of samples are assigned to class 0, but only
a couple of them really belong to that class. Evaluation metrics highlight coherently the
small number of correct classifications in class 0.

4.4. Classes with Equal Number of Samples

In this case, the classes are defined in a way that an equal number of samples belongs
to each class. The sensitivity analysis carried out in order to identify the optimal network
structure indicates the number of filters equal to 64 for both the first and the second
convolutional layers.

Figure 6 depicts the confusion matrix representing the classification performances in
the considered case. A generic cell in row i and column j represents the number of samples
belonging to class i that are assigned to class j during classification. Table 5 represents the
classification performance evaluated through the metrics previously defined.
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25
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0 1 2
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Figure 6. Confusion matrix for classes defined with an equal number of samples.

Table 5. Classification performance for classes with an equal number of samples.

Class PPV Recall
0 0.36 0.83
1 0.57 0.30
2 - 0.00

This last case demonstrates that, even with an equal number of samples, the classifica-
tion performances are slightly worsened compared with the logarithmic class definition.
Once again, the CNN recognizes the presence of only two classes out of three and a large
number of test samples are misclassified, as highlighted also by the performance metrics.
Finally, the Global Accuracy (A) for the different class definitions together with the other
evaluation metrics adopted in this work is reported in Table 6. In this study case, the
strategy of the logarithmic partition of the samples within classes scores the best result in
terms of global accuracy (0.63%), even if the limited amount of samples strongly affects
the classification precision PPV. On the contrary, linear class definition shows the worst
classification results with a global accuracy equal to 0.4, and it is unable to classify samples
belonging to class 0 and class 2, while the Equal Amount of Samples strategy indicates
almost comparable results (0.6) to the logarithmic partition of the samples within classes.
Finally, samples in class 2 are incorrectly classified, allegedly due to the lack of samples
belonging to that class, especially in the linear partition strategy.

Table 6. Classification performances for the different class definitions.

Class Definition Strategy Linear Logarithmic Equal Number of Samples
Class PPV Recall PPV Recall PPV Recall
0 - 0.00 0.33 0.18 0.36 0.83
1 0.60 1.00 0.65 0.93 0.57 0.30
2 - 0.00 - 0.00 - 0.00
Global Accuracy 0.60 0.63 0.40

5. Conclusions

The present work aims at estimating the CBH (Cloud-Base Height) value through
a CNN (Convolutional Neural Network) model processing sky images acquired from a
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single ASI. The CBH value for each of the training images is estimated starting from the
PLCL (Pressure of Lifted Condensation Level) value recorded by radio soundings and
the pressure at sea level. Moreover, the model output was not a specific CBH value but a
class corresponding to a range of possible CBH values. In total, three classes were defined
according to different strategies, namely: linear, logarithmic, and an equal number of
samples partition in each group. In order to increase the number of available training
samples, an oversampling procedure was carried out. The final best classification accuracy
is 63% with the logarithmic classes definition. The reduced number of samples does not
allow generalized conclusions to be drawn, even if the classification obtained with the
logarithmic class definition seems to be the most promising. Future works will aim at
adding more data and will combine the here-presented information contained in sky images
with additional exogenous parameters (i.e., from sensors located in situ) to further improve
the accuracy of the model.

Author Contributions: Conceptualization, E.O., AN., E.C., and D.R.; methodology, E.O. and A.N,;
software, A.N.; validation, E.C. and D.R.; formal analysis, E.O.; investigation, E.O. and A.N.; resources,
E.C. and D.R,; data curation, A.N.; writing—original draft preparation, E.O.; writing—review and
editing, E.C. and D.R.; visualization, E.O., AN., E.C., and D.R,; supervision, E.O., E.C., and D.R;;
project administration, E.O. and E.C.; funding acquisition, E.C. and D.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been partly financed by the Research Fund for the Italian Electrical System
with the Decree of 16 April 2018.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

Blum, N.B.; Nouri, B.; Wilbert, S.; Schmidt, T.; Liinsdorf, O.; Stithrenberg, J.; Pitz-Paal, R. Cloud height measurement by a network
of all-sky imagers. Atmos. Meas. Tech. 2021, 14, 5199-5224. [CrossRef]

Costa-Surés, M.; Calbd, J.; Gonzalez, J.A.; Martin-Vide, J. Behavior of Cloud-Base Height from ceilometer measurements. Atmos.
Res. 2013, 127, 64-76. [CrossRef]

Hogan, R.J.; O’Connor, EJ.; lllingworth, A.J. Verification of cloud-fraction forecasts. Q. J. R. Meteorol. Soc. ]. Atmos. Sci. Appl.
Meteorol. Phys. Oceanogr. 2009, 135, 1494-1511. [CrossRef]

Kassianov, E.; Long, C.N.; Christy, J. Cloud-base-height estimation from paired ground-based hemispherical observations. J. Appl.
Meteorol. 2005, 44, 1221-1233. [CrossRef]

Rodriguez-Benitez, EJ.; Lopez-Cuesta, M.; Arbizu-Barrena, C.; Fernandez-Le6én, M.M.; Pamos-Urefia, M.A.; Tovar-Pescador,
J.; Santos-Alamillos, EJ.; Pozo-Vazquez, D. Assessment of new solar radiation nowcasting methods based on sky-camera and
satellite imagery. Appl. Energy 2021, 292, 116838. [CrossRef]

Nespoli, A.; Niccolai, A.; Ogliari, E.; Perego, G.; Collino, E.; Ronzio, D. Machine Learning techniques for solar irradiation
nowcasting: Cloud type classification forecast through satellite data and imagery. Appl. Energy 2022, 305, 117834. [CrossRef]
Nguyen, D.A_; Kleissl, ]. Stereographic methods for Cloud-Base Height determination using two sky imagers. Sol. Energy 2014,
107, 495-509. [CrossRef]

Heidinger, A.K.; Bearson, N.; Foster, M.].; Li, Y.; Wanzong, S.; Ackerman, S.; Holz, R.E.; Platnick, S.; Meyer, K. Using sounder data
to improve cirrus cloud height estimation from satellite imagers. J. Atmos. Ocean. Technol. 2019, 36, 1331-1342. [CrossRef]
Savoy, EM.; Lemaitre, ].C.; Dev, S.; Lee, Y.H.; Winkler, S. Cloud-Base Height estimation using high-resolution whole sky imagers.
In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26-31 July
2015; pp. 1622-1625.

Nouri, B.; Kuhn, P; Wilbert, S.; Hanrieder, N.; Prahl, C.; Zarzalejo, L.; Kazantzidis, A.; Blanc, P; Pitz-Paal, R. Cloud height and
tracking accuracy of three all sky imager systems for individual clouds. Sol. Energy 2019, 177, 213-228. [CrossRef]

Martucci, G.; Milroy, C.; O’'Dowd, C. Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers. J.
Atmos. Ocean. Technol. 2010, 27, 305-318. [CrossRef]

Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power
forecast. Renew. Energy 2017, 113, 11-21. [CrossRef]

53






engineering
proceedings

Proceeding Paper

A Hybrid Model of VAR-DCC-GARCH and Wavelet Analysis
for Forecasting Volatility '

Maryam Nafisi-Moghadam and Shahram Fattahi *

check for
updates

Citation: Nafisi-Moghadam, M.;
Fattahi, S. A Hybrid Model of
VAR-DCC-GARCH and Wavelet
Analysis for Forecasting Volatility.
Eng. Proc. 2022,18, 6. https://
doi.org/10.3390/engproc2022018006

Academic Editors: Ignacio Rojas,
Hector Pomares, Olga Valenzuela,
Fernando Rojas and Luis

Javier Herrera
Published: 20 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Economics, Razi University, Kermanshah 6714414971, Iran; nafisi1988@gmail.com

* Correspondence: sh_fatahi@yahoo.com

t Presented at the 8th International Conference on Time Series and Forecasting, Gran Canaria, Spain,
27-30 June 2022.

Abstract: The purpose of this study is to investigate the time-varying co-movement between the
volatility of gold, exchange rate, and stock market returns in Iran, using weekly data from 27 Septem-
ber 2013 to 3 December 2021. The results of the wavelet-based random forest show that the perfor-
mance of VAR-DCC-GARCH model is better than that of DCC-GARCH model in predicting financial
market volatilities. Furthermore, the results of the VAR-DCC-GARCH model indicate that a positive
and relatively high conditional correlation exists in the daily exchange rate and gold-return volatility.
The conditional correlation is lower between the exchange rate—stock market returns and the daily
gold-stock market returns. In short and long terms, there is no correlation between the exchange rate
and the stock market volatilities as well as gold and stock market volatilities, while the correlation
between the paired markets exists in the medium term.

Keywords: financial market volatility; VAR-DCC-GARCH; wavelet-based random forest; forecasting

1. Introduction

Among the important topics of financial economics are the modeling of volatility, the
interdependence of volatility in financial markets, and forecasting. Volatility in financial
markets occurs when these markets are at risk [1]. With the spread of information in finan-
cial markets, the correlation between markets and their volatility has increased. Investors
predict price changes based on the price changes of other markets. In other words, an
increase in the return of a market may change the return of the other markets at the same
time. This change is called the “Spillover Effect”. Therefore, besides accurate modeling and
forecasting of financial market volatility, examining their dependence can help investors,
risk managers, and traders to create sustainable profits [2].

The exchange rate is determined by the trade balance or current account balance
of countries. Since the exchange-rate changes affect international competition and trade
balance, these changes affect real incomes and input prices. An increase in the input cost
leads to a decrease in profit firms and a decline in stock price [3]. On the other hand,
the exchange rate is determined by the supply and demand of financial assets such as
equities and bonds, since expectations of relative changes in domestic currency have a
significant effect on the price of financial assets. Bodnar and Gentry [4] show that the
relationship between firm profitability and exchange-rate changes depends on the nature
and type of industrial activity. An increase in the exchange rate leads to a decline in the
price of exported goods in the importing country, and if demand is high in the importing
country, the export rate will increase and the exporting company will benefit. Conversely,
an increase in the exchange rate will make imported goods more expensive and reduce the
value of the importing company (Unless the importer’s firms can transfer the price increase
to the end consumer). The empirical literature provides conflicting findings of the dynamic
relationship between the exchange rate and the stock market. Aggarwal [5], Kim [6], Doong
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et al. [7], and Dahir et al. [3] showed a positive relationship between the exchange rate
and the stock market index. Erdogan et al. [8] showed that there were significant volatility
spillover effects on the Islamic stock market to the foreign exchange market. According
to Gavins [9] and Zhao [10], there is no relationship between exchange rates and stock
prices. Hashim et al. [11] showed a negative relationship between the exchange rate and
the stock market.

Since individuals hold their financial assets in a combination of cash, gold, currency,
bonds, and equities, changes in each market can affect individuals” investment portfolios.
Rising inflation, exchange-rate fluctuations, or political instability can lead to some form of
market excitement and increase demand for gold. Various studies have been conducted
on the relationship between gold prices and stock indices, some of which are as follows:
Gilmore et al. [12] showed that there is a cointegration between the gold price, the stock-
market price of gold, and the US stock index. Mishra et al. [13] showed that there is no
correlation between the gold price and stock index in India. Srinivasan [14] investigated
the causal nexus between gold price, stock price, and exchange rate in India using ARDL.
He showed that there exists no causality from gold price to stock price or vice versa in the
short run. Arouri et al. [15] examine the relationship between the global price of gold and
the Chinese stock market over the period of 22 March 2004 through to 31 March 2011 in
China. For this purpose, they used VAR-GARCH and other multivariate GARCH models
such as DCC and CCC. Their research results show that past gold returns play an important
role in explaining the dynamics of conditional returns and stock-market volatility. Jain and
Biswal [16], using a DCC-GARCH model, showed that falling gold and crude oil prices
were causing the Indian stock market to decline. Yousaf and Ali [17] showed that there
are return and volatility spillovers between the gold and emerging Asian stock markets
during the global financial crisis. Moreover, several studies in the literature exist about
the relationship between gold and the exchange rate. Sjaastad [18] found that since the
dissolution of the Bretton Woods international monetary system, floating exchange rates
among the major currencies have been a major source of price instability in the world gold
market. Qureshi et al. [19] using a wavelet approach showed that gold acts as a consistent
short-run hedge against the exchange rate. Wang et al. [20] argued that gold can partly
hedge against the depreciation of the currency in the long run.

The purpose of this paper is to investigate the correlation between the volatility of gold,
foreign exchange, and stock markets in Iran, using weekly average data from 27 September
2013 to 3 December 2021. For this purpose, this study compares two approaches, VAR-DCC-
GARCH and DCC-GARCH, using out-of-sample evaluation by the wavelet-based random
forest (WRF) model. Then, the co-movement of the volatility is analyzed using a continuous
wavelet (CWT) in the timescale. Iran had been subjected to sanctions, a sharp increase
in liquidity, and structural problems that caused inflation. Therefore, investors generally
turned to invest in stocks, buying foreign currency, and gold. Given the increasing volatility
in the underlying markets, this paper contributes to the literature on the Iranian financial
market in the following ways:

1. It shows whether a conditional correlation exists in the weekly exchange rate, gold,
and stock market returns by using DCC-GARCH and VAR-DCC-GARCH.

2. Itreveals that performance of VAR-DCC-GARCH model is better than that of DCC-
GARCH model using out-of-sample prediction by WRE.

3.  Itidentifies the time-varying nature of the correlation among the Iranian financial
market’s volatilities indexes using CWT.

4. This study helps investors identify the optimal portfolio by identifying asset-return
volatility and portfolio diversification.

2. Materials and Methods
2.1. VAR-DCC-GARCH

In the VAR-DCC-GARCH model, the VAR method is used to estimate the conditional
mean equation of the DCC-GARCH model. In this study, we consider the conditional mean
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equation VAR(1) according to the Schwartz and Akaike criterion. The conditional mean
equation is written as Equation (1):

1
Rt =y + PR,y + +ewithey = D i M

Ry is the 4 x 1 vector of returns of each variable, t is time, 4 denotes a 4 x 1 vector of
P11 P12 P13 P14
P21 P22 P23 P24

P31 P32 P33 P34

P41 Pr2 P43 Paa
the influence of each variable with own-lagged and the other. ¢; is a residual of mean

equation for four returns variables. #; indicates a 4 x 1 vector of independenctly and
identically distributed random vectors, and

Dfl/ZZdW(Wer/h?f\/@) @)

where /1; indicate the conditional variance of returns variables. The conditional variance
equation of the DCC-GARCH model is written as Equation (3):

constants, and @ = is a 4 x 4 matrix of parameters measuring

H; = DiRDy 3)

The H; matrix is an MGARCH process that can be modeled using dynamic conditional
correlation (DCC) [21,22]. According to Engel’s [21] model, a DCC model is defined as (4):

1 1 , 1 1
Ry = dzag(qfl o AN t)gtdzag (‘7121 po NN t> 4)
where ¢; is the positive symmetric definite matrix of N x N and

ot =(1—a—B)o+au_1u’1+po1 )

Uy = \/S%, 0, anonconditional variance matrix of ut, « and f is nonnegative numerical
iit

parameters that satisfy o + 8 < 1.

2.2. Wavelet-Based Random Forest

In this paper, we consider wavelet-based random forest as a prediction approach.
WREF is built based on maximal overlap discrete wavelet transform (MODWT) function
and random forest algorithm learning approach. The model structure is flexible and
efficient [23].

The wavelet-based random forest (WRF) is based on the method originally proposed
by Breiman [24]. The WRF has two stages: The first stage is the bootstrap aggregation,
or bagging samples, which is performed with two-thirds of the inputs. Second, for each
node of the individual decision tree, a random selection of decision trees is chosen, and
those variables belonging to the best split will be allowed to grow. To identify the best
split, the Gini impurity function, first introduced by Breiman et al. [25], is used to minimize
the effect of impurities and maximize homogeneity of the selected subsets. Each tree will
undergo this process of selecting the best subset and minimizing impurity until it is halted
by reaching the best possible training performance for each training process [26].

We use this model to be able to select the best model for evaluating volatilities. The
WREF performances are measured with three error metrics including root-mean-squared
error (RMSE), mean-squared error (MSE), and mean-absolute error (MAE).

1 & 2
MSE = p Y (0 —P)
i=1

(6)
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2.3. Continuous Wavelet Analysis

Continuous wavelet transform is a method used to investigate the relationship between
two time series. In mathematics, a continuous wavelet function for the time series xt whose
integral is squared, is defined by the scale a > 0 and the place BER as relation (10):

X(a,b):\}a/_o:ox(t)lp*<tab>dt (10)

In this relation, (t) is a continuous function in both time and frequency domains. We
use Morlet wavelet to define the ¢(t) function as follows:

IIJM(t) _ il (eiwt _ efw/Z)eft/Z (11)

i

where M (t) is the continuous Morlet function, ¢ is time, and w is frequency.

3. Discussion

The study employs weekly data on the Tehran Price Index, gold price, and Unofficial
Free Exchange Rate (US Dollar) in the period from 27 September 2013 to 3 December 2021.
The weekly return of the above variables can be defined as follows:

yt =100 [In(p) —In(p;-1)] (12)

where pt represents each variable under study. The descriptive statistics for the return
series are shown in Table 1. Accordingly, the mean returns on TEPIX, USD, and gold are
0.87, 0.55, and 0.636, respectively. All of the returns series exhibit positive skewness and
asymmetry. According to the Jarque-Bera test, the null of normality is strongly rejected for
all returns series.

Table 1. Descriptive statistics.

TEPIX USD Gold
Mean 0.87 0.5507 0.636
Maximum 15.71 16.80 15.88
Minimum —10.74 —10.87 —11.71
Sd 3.29 2.96 3.12
skewness 0.91 1.28 0.85
kurtosis 6.51 10.22 7.59
Jb 260.08 976.08 399.15

The results of Pearson’s correlation coefficient are shown in Table 2. Accordingly, the
unconditional correlation between the returns on TEPIX-USD, TEPIX-gold and USD- gold
returns are positive. Since this analysis is straightforward and does not consider the effect
of time on the correlation between the series of returns, the conditional correlation method
is used.
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Table 2. Pearson’s correlation coefficient.

Gold Dollar TEPIX
gold 1
USD 0.777 1
TEPIX 0.1899 0.1552 1

This study employs the VAR-DCC-GARCH and DCC-GARCH method to calculate the
volatility of all returns. In order to estimate VAR-DCC-GARCH, it is necessary to determine
the optimal lag. In this research, it is chosen a VAR(1) for the mean equation using Akaike
and Schwartz Bayesian criteria. The results of this estimation model are reported in Table 3.

Table 3. Determination of optimal Lag.

Akaike Bayes Hannan-Quinn
1 13.045 13.305 13.148
2 13.092 13.442 13.231
3 13.151 13.591 13.325

The results of estimating the mean equation are presented in Table 4. ¢11, @22, ¢33
are the coefficients of own-mean spillover. ¢1; and ¢33 are significantly positive. In other
words, the lag of the return of the time series has a direct effect on the current indicators
of the returns of the total stock index TEPIX and gold. ¢y, is significantly positive. This is
not unexpected, because the exchange rate is controlled by the Iranian government. The
coefficient of ¢,1 and ¢3; indicate unidirectional and positive return spillover from USD
and gold to TEPIX. In other words, when the prices of USD and gold rise, investors tend to
increase their investment in the stock market. Moreover, the gold—USD return results (¢p3;
@32) indicate unidirectional and positive return spillover from USD to gold. This indicates
that when the returns of USD increase, investors tend to increase their investment in gold
as well.

Table 4. Estimates of conditional mean VAR-DCC-GARCH model.

Coefficient p-Value

o 0.327 0.02

o1 0.5058 0.000

TEPIX P12 0.087 0.24
P13 —0.005 0.94

e 0.362 0.000

o1 0.0678 0.000

USD . ~0.0591 0.000
- 0.2856 0.000

e 0.470 0.003

a1 0.1376 0.004

gold - ~0.097 0.23
- 0.1924 0.01

In the following, the variance equations of the VAR-DCC-GARCH and DCC-GARCH
are estimated.

Table 5 present the results of the variance equations of the VAR-DCC-GARCH and
DCC-GARCH model. In this study, ()1, (2o, and Q)3 indicate intercept of TEPIX, USD, and
gold, respectively. GARCH parameters (x and 3) in two models are statically significant,
and the « and 3 coefficients in the estimated equations are non-negative and satisfy the
condition & + 3 < 1. The sum of coefficients in two models are in close unity, implying that
shocks are strongly persistent. In other words, this condition guarantees that the volatility
of the previous period affects the volatility of the current period.
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Table 5. Estimates of conditional variance VAR-DCC-GARCH model.

VAR-DCC-GARCH DCC-GARCH
Coefficient p-Value

o 0.358 0.21 1.07 0.14

TEPIX o 0.1399 0.05 0.29 0.03
By 0.808 0.000 0.527 0.01

o 0.47 0.11 0.47 0.18

USD o 0.216 0.003 0.44 0.05

Ba 0.719 0.000 0.56 0.000

s 0.1599 0.08 0209 0.05

gold o5 0.1703 0.001 0.309 0.001

Bs 0.8234 0.000 0.689 0.000

« 0.095 0.006 0.028 0.02

bce B 0.639 0.02 0.956 0.000

For conditional correlation analyses, we use VAR-DCC-GARCH model. The estimated
conditional correlation graphs in VAR-DCC-GARCH between the returns of variables are
used in this paper. Therefore, Figures 1-3 show the dynamic conditional correlation trend
between USD-TEPIX, gold-TEPIX, and USD-gold, respectively.

0.5 |

\ ‘-N""-\/ P ey __ . A I'.' ] uJ .'\" J|‘;\
0.0 ";"N!\:H—" ""\\f\’n AW lw s' ff]r.L ]rl\'n Jj /
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Sep-2013 Dec-2017 Jan-2020 Dec-2021

Figure 1. Dynamic conditional correlation between USD-TEPIX in VAR-DCC-GARCH model.
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Figure 2. Dynamic conditional correlation between gold-TEPIX in VAR-DCC-GARCH model.
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Figure 3. Dynamic Conditional Correlation between USD—gold in VAR-DCC-GARCH model.

The dynamic conditional correlation volatility between USD-TEPIX in the range of
—0.2657 and 0.7558. The mean correlation coefficient of volatility is 0.1068. These volatilities
are positive for most years. Figure 2 shows the dynamic conditional correlation between
the returns of gold and TEPIX. The mean correlation coefficient volatility in the period
under study is 0.12098. The highest and lowest correlation coefficients between gold-TEPIX
are 0.7458 and —0.3338, respectively. Figure 3 shows the dynamic conditional correlation of
the returns of USD and gold. The mean correlation coefficient is 0.67409. The highest and
the lowest correlation coefficients are 0.8626 and 0.3924, respectively.
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The results show that the correlations between gold-TEPIX, USD-TEPIX, and gold—
USD are positive. In addition, the correlation between gold-USD is the biggest than
the others. It means that investing in the stock market can be considered as an appro-
priate investment against gold and USD and vice versa. Moreover, these figures show

that co-movement between conditional correlations variables exist from early 2018 to
December 2021.

3.1. Forecasting Performance

In this section, the wavelet-based random forest is used to select the best model
for forecasting. In fact, we compare out-of-sample forecasting of two approaches, VAR-
DCC-GARCH and DCC-GARCH, using the wavelet-based random forest (WRF). For this
purpose, the time series of volatilities are calculated using the VAR-DCC-GARCH and
DCC-GARCH methods, then these volatilities in the financial markets are predicted using
the wavelet-based random forest. Table 6 shows the performance metrics of the WRF
modeling approach employed in this study. Comparing the RMSE, MSE, R-squared, and
MAE, it indicates that the VAR-DCC-GARCH model outperforms the DCC-GARCH model.

Table 6. Model performance metrics.

VAR-DCC-GARCH DCC-GARCH
MSE RMSE R-Sq MAE MSE RMSE R-Sq MAE

USD Train 19.40 44 0.93 1.8 66.85 8.17 0.88 3.2
Test 3.4 1.8 0.98 1.16 13.03 3.6 0.97 2.11
old Train 10.5 3.2 0.97 1.62 28.61 5.35 0.93 2.44

& Test 3.5 1.87 0.98 1.21 9.46 3.07 0.97 1.96
TEPIX Train 3.47 1.86 0.89 0.96 22.52 474 0.86 2.20
Test 13.27 3.64 0.95 227 50.7 7.07 0.94 3.96

3.2. Results of Wavelet Coherence Estimation

Applying volatilities extracted from VAR-DCC-GARCH model, the wavelet approach
is used to examine the interconnected relationships between markets. The results of the
coherence estimation are shown in Figures 4-6. The color of the graph shows the strength of
coherency, ranging from blue (low coherency) to red (high coherency). Therefore, the more
the color spectrum trends to red, the higher the correlation. The horizontal axis represents
the time scale and the vertical axis represents the frequency. The graphs also show the
frequency of the period (short, medium, and long term). In this way, the shortest period is
4 days and the longest is 256 days.

Period
16

i

128

Sep-2015 Dec-2017 JTan-2020
Time

Figure 4. The continuous wavelet power spectrum of volatilities in USD-TEPIX.
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Figure 5. The continuous wavelet power spectrum of volatilities in gold-TEPIX.
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Figure 6. The continuous wavelet power spectrum of volatilities in gold—USD.

Figure 4 shows the correlation wavelet of volatilities in USD-TEPIX. According to
the Figure, the color blue dominates for the most part in the short run, so there is no high
correlation in the short run between volatilities in USD-TEPIX. However, in the medium
term, despite the orange and red color spectrum between 2014 and 2015, it can be said that
the correlation between USD-TEPIX volatilities has increased in the medium term. In the
long run, there is correlation from 2016 to 2021.

The wavelet correlation analysis in gold—TEPIX volatilities is presented below in
Figure 5. In the short run, given that the blue color spectrum is predominant in most of the
periods, there is a low correlation between volatilities in the pairs of gold and TEPIX. In the
medium term, given the dominance of the orange and yellow spectrum, especially in the
period between 2017, there is a correlation between the volatility of the two markets. In the
long run, there is correlation between the volatility of these two markets.

Finally, Figure 6 shows the correlation wavelet analysis on USD-gold volatilities.
According to this figure, in the short and medium term from early 2016 to January 2020,
given the dominant red color spectrum, a high correlation is observed in the volatilities
of the returns of gold-USD. In the long run, the correlation trend in the volatilities of
gold-USD has been increasing.

4. Conclusions

This study investigated the time-varying co-movement between the volatility of gold,
exchange rate, and stock market returns in Iran. To do so, we first modelled the conditional
correlations of financial markets using VAR-DCC-GARCH and DCC-GARCH models.
Then, we compared the out-of-sample forecasting of these models. Finally, the CWT was
used to study the co-movement between financial markets’ volatilities. The results of the
wavelet-based random forest model showed that the forecasting performance of VAR-
DCC-GARCH model is better than that of DCC-GARCH model. Furthermore, there are
positive correlations between the returns of gold-TEPIX and USD-TEPIX, as well as the
returns of USD—gold. On the other hand, the correlation between the returns of USD-gold
is higher than the other paired markets. This result implies that investors can use stocks
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as a suitable investment against gold and USD to increase profitability and reduce risk
in their portfolio, and vice versa. In addition, the existence of gold and USD in their
portfolio can significantly eliminate the benefits of portfolio diversification and increase
their portfolio risk. The results of the wavelet analysis showed that the correlation process
of the volatilities in the returns of gold-USD is increasing in the medium and long term.
This result helps investors to maximize profitability in the short, medium, and long terms
by choosing different assets in their portfolios.
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Abstract: A large amount of health and well-being data is collected daily, but little of it reaches its
research potential because personal data privacy needs to be protected as an individual’s right, as
reflected in the data protection regulations. Moreover, the data that do reach the public domain
will typically have under-gone anonymization, a process that can result in a loss of information
and, consequently, research potential. Lately, synthetic data generation, which mimics the statistics
and patterns of the original, real data on which it is based, has been presented as an alternative
to data anonymization. As the data collected from health and well-being activities often have a
temporal nature, these data tend to be time series data. The synthetic generation of this type of data
has already been analyzed in different studies. However, in the healthcare context, time series data
have reduced research potential without the subjects’ metadata, which are essential to explain the
temporal data. Therefore, in this work, the option to generate synthetic subjects using both time series
data and subject metadata has been analyzed. Two approaches for generating synthetic subjects are
proposed. Real time series data are used in the first approach, while in the second approach, time
series data are synthetically generated. Furthermore, the first proposed approach is implemented
and evaluated. The generation of synthetic subjects with real time series data has been demonstrated
to be functional, whilst the generation of synthetic subjects with synthetic time series data requires
further improvements to demonstrate its viability.

Keywords: time series; synthetic data; shareable data; privacy

1. Introduction

Time series data are defined as a class of temporal data objects, a collection of chrono-
logical observations [1]. Time series data tend to be large in size and with high dimension-
ality. Time series data are characterized by their numerical and continuous nature, always
considered as a whole, instead of a numerical field.

The motivation to investigate synthetic time series generation (STSG) is born from the
VITALISE H2020 project [2]. One of the main objectives of this project is to provide virtual
transnational access to data generated from several living labs (LLs) throughout Europe and
beyond. To provide this transnational access, synthetic data generation (SDG) techniques
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have been incorporated into the controlled data processing workflow to generate shareable
data for external researchers in compliance with the General Data Protection Regulation
(GDPR) [3]. LLs are research infrastructures that enable research studies to take place in
real-life environments. Those research studies generate data that are potentially interesting
for the research community. However, given that these data contain human personal
or sensitive information, they are stored internally in LL infrastructures and cannot be
externally shared outside the original research context.

Traditionally, anonymization techniques have been used to allow sensitive data to
be made publicly available whilst preserving privacy, but traditional anonymization tech-
niques tend to suppress useful data because many of them add noise to the real data
or delete attributes from them. In this scenario, SDG is presented as a game-changing
anonymization technique, as it has the potential to create data without erasing potentially
interesting data.

In this context, a workflow to make LL data accessible for external researchers by
generating synthetic data (SD) has been proposed by Hernandez et al. [4]. As explained in
the proposed workflow, SD is created with a clear purpose, enabling researchers to develop
algorithms and analyses locally using it. Subsequently, the locally developed algorithms
and analyses are remotely executed with the real data stored in LL infrastructures. This
approach enables external researchers to conduct and validate experiments with GDPR
compliance.

When evaluating SD quality, the following three dimensions are most commonly
considered: privacy, utility, and resemblance. The main aim of the use case mentioned
above is to remotely develop algorithms with SD to test them with real data later. Therefore,
the utility dimension will be more relevant than resemblance when generating SD. Once
the privacy of SD is ensured, in the context described above, more importance should be
given to the utility dimension of the SD in contrast to its resemblance with real data.

2. Related Work

SDG has been gaining importance for privacy-preserving data publishing. It enables
the creation of artificial data with a high statistical resemblance to real data without con-
taining potentially private data [5]. In this context, Hernandez et al. reviewed the SDG
approaches proposed as an alternative to anonymization techniques for health domain
applications [6]. Furthermore, there are also studies in which STSG has been researched
and used [7-14].

In 2018, Norgaard et al. [7] proposed the use of a supervised generative adversarial
network (GAN), which is a variation in the originally proposed GAN approach [15]. In 2019,
Yoon et al. [8] presented a time series specific GAN model, named Time-GAN, whose focus
was on preserving the temporal dynamics of data. TimeGAN has later been used in the
medical time series context by Dash et al. [9]. In 2020, Wang et al. [10] proposed a privacy-
preserving augmentation and releasing scheme for time series data via a GAN (PART-GAN).
This approach added differential privacy to the conditional temporal GAN (CT-GAN) [16],
an approach that was proposed for generating videos. In addition, in 2020, an update
on the Synthetic Data Vault (SDV) [11], a Python package used for generating synthetic
data, added a specific model for generating time series data. This model is a probabilistic
autoregressive (PAR) model, but its mathematical principles are still unpublished. In 2021,
Hyun et al. [13] proposed NeuralProphet, a neural network variation in the forecasting
tool Prophet [17], as a method for STSG to create synthetic diabetic foot patients. In 2022,
Li et al. [14] presented the transformer-based time-series GAN (TTS-GAN) based on a
transformer-encoder architecture.

Although the number of proposed STSG approaches is considerable, most of them do
not consider the metadata of the subjects, as they are focused on generating highly realistic
sequences of data. Furthermore, some of the approaches mentioned above transform time
series data into the latent space, without analyzing the option to transform the generated
synthetic time series back to the data format of the real data.
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3. Proposed Approaches

This section presents two approaches for generating synthetic subjects containing
temporal data. The first approach assumes that time series data do not require further
transformations to ensure patient privacy. The second approach requires time series data
to be synthesized. Thus, well-performing STSG techniques that consider the metadata
of subjects are required. On this section, both approaches are presented on a general
theoretical basis and the specific data generation models that have been used are specified
in Section 4.

3.1. Synthetic Subjects with Real Time Series Data

This approach, as depicted in Figure 1, has been proposed to generate useful partially
synthetic multi-subject datasets containing time series data. The approach of adding time
series data to synthetically generated patients, by using synthetic tabular data generation
techniques, was inspired by Schiff et al. [18], who proposed to enrich synthetic patients’
data with real time series data. In their approach, tabular data of synthetic patients are
generated from a dataset, creating patients that have their illnesses labelled with diagnostic
codes. Then, time series data, which are also labelled with diagnostic codes and do not
have any relationship with the first dataset, are added to enrich patients” information. This
process is carried out by comparing the diagnostic codes of both datasets. Our approach
improves Schiff et al.’s proposed approach, by linking (with a meaningful relationship)
time series data with synthetically generated tabular subject metadata, starting from real
cohort data containing such links.

Subject - Add'mg ttm:e - S:'Dthof&
Metadata »| series stats »| metadata
to metadata stats
A
Synthetic
S.I_l::l]:d patllet|_1t & Synthetic
1= it .
. real time subjects
Series series
coupling

Figure 1. Workflow for generating a synthetic patient containing real time series data.

The first and obvious step in this approach is to perform a basic exploratory data anal-
ysis. Then, data preprocessing is performed to remove missing values and inconsistencies,
such as negative age values. The next step is to extract meaningful statistics from each time
series and append them in a table to each subject’s metadata.

Once the multi-subject tabular data, including subject metadata and basic time series
statistics, have been created, synthetic tabular data generation (STDG) techniques [6] are
applied to generate a synthetic patient table with synthetic metadata and synthetic time
series statistics. The last step is to couple the synthetic statistics with the statistics of real
time series. This process matches each synthetic patient with the fitting time series.

3.2. Synthetic Subjects with Synthetic Time Series Data

The second approach depicted in Figure 2 could be considered the ideal approach, as
its outcome is a fully synthetic dataset. This approach can be understood as an evolution of
the approach introduced in Section 3.1, since it incorporates STSG techniques.
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to metadata stats
\
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Series Generation time series subjects
coupling

Figure 2. Workflow for generating a synthetic patient containing synthetic time series data.

The process of generating synthetic subjects and synthetic statistics is the same as
the previously explained approach. However, in this approach, time series data are syn-
thetically generated instead of using the real time series. Once STSG techniques have
been applied, the same basic statistics computed from the real time series are extracted.
Considering the statistics generated with the synthetic patients and the statistics obtained
from the synthetic time series data, the best fitting synthetic time series is selected for each
synthetic subject, using a distance-based metric.

4. Implementation

Attempts have been made to implement the approaches presented in Section 3, but the
quality of synthetic time series generated for the approach presented in Section 3.2 are not
yet suitable for the target use. Thus, the approach introduced in Section 3.1, the approach
that generates synthetic patient datasets and then couples them with the real time series
data, has been implemented. In this section, the steps followed for the implementation of
this approach are explained.

4.1. Dataset Selection

To implement the proposed approach, a dataset with a high patient volume, simple
metadata, and manageable time series data that is not extremely long has been chosen. The
treadmill maximal exercise tests (TMET) database [19,20] was selected from PhysioNet [21]
as it fulfills the aforementioned requirements.

The TMET database is an ensemble of cardiorespiratory measurements acquired dur-
ing 992 treadmill maximal graded exercise tests (GET) performed in the Exercise Physiology
and Human Performance Lab of the University of Malaga. During maximal effort tests,
heart rate (HR), oxygen uptake (VO2), carbon dioxide elimination (VCO?2), respiration
rate (RR), and pulmonary ventilation (VE) were measured on a breath-to-breath premise
alongside the treadmill speed. All these measures are measured and time-stamped (Time)
every 2-5s.

The dataset is composed of two files. The first one contains all the subjects’ metadata
and environmental metadata (humidity and temperature) in a tabular format. It contains
data from 992 effort tests from 857 subjects, as there are subjects with several tests. These
metadata are organized as shown in Table 1. The second file contains the results obtained
from the treadmill experiments, i.e., the time series data. The mean length of these effort
tests is 580 data rows; being each row, a measurement taken every two seconds. The
time series data are organized as shown in Table 2. In this approach, each test has been
considered as a subject.
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Table 1. Subject metadata variables.

Age Weight Height Humidity = Temperature Sex ID ID_test

Table 2. Time series variable organization.

Time Speed HR vO2 VCO2 RR VE ID_test ID

4.2. EDA and Data Preprocessing

Before applying the proposed approach to the selected dataset, an exploratory data
analysis (EDA) has been carried out to identify missing values and inconsistencies.

Once these undesired values have been identified, a criterion to decide how to treat
them has been established. If missing values are found in the time series data, a threshold
of 30 data points, a 5% of the mean length of time series data, has been established to
decide if the time series must be kept or rejected. Therefore, if a time series contains less
than 30 missing values, imputation is made by linear interpolation. However, if more
than 30 missing values are found, the time series, and the subjects they are related to, are
excluded. In case missing values are found in the metadata, the exclusion of the subject,
and its related time series, has been considered.

The exploratory analysis found that the environmental data were missing for 30 sub-
jects. Those subjects were excluded from the dataset. No unexpected values were found on
the metadata. The time series data analysis found that 942 HR datapoints and 4871 VO2 and
VCO2 datapoints had missing values. Following the criteria described above, 12 subjects
were excluded due to the amount of missing data in the time series.

Upon completing the preprocessing stage, 950 subjects remained in the dataset from
the original 992 subjects.

4.3. Time Series Feature Extraction

Before selecting the appropriate statistics that need to be extracted, it is important to
consider the nature of the tests from which the time series data were obtained. For the
selected dataset, the data were obtained from a treadmill test. The treadmill effort test
began at a speed of 5 km/h, a speed that increased 1 km/h per minute until the subject
went beyond exhaustion [21]. Once the subject’s maximal effort had been reached, the
treadmill speed was reduced to 5 km/h, and the recovery was recorded for 200 s.

Considering that each test has a different duration and maximal speed, the following
statistics have been selected: maximal speed, test duration (last time value), and maximal,
minimal, and mean values of the physiological variables (HR, VO2, VCO2, RR, and VE).
These statistics have been extracted for each time series, identified with the ID_test variable,
and appended to the corresponding subject in the metadata table.

4.4. Synthetic Subject Generation

The synthetic subject, and the synthetic time series statistics, have been generated
by applying a STDG technique. Specifically, the Synthetic Data Vault (SDV) [11] Python
package has been used. Using this approach, the generation of a cohort of synthetic subjects
with their metadata and the statistics that their effort test should have were enabled. SDV
contains several STDG models, from which the tabular variational auto encoder (TVAE)
model with default parameters has been used to generate SD.

4.5. Time Series Coupling with Synthetic Subject

Considering that the synthetically generated statistics and the statistics extracted from
the real time series do not have the same values, a strategy to couple the real effort test to
the synthetic subjects is proposed. The mean value of all Euclidean distances between each
synthetic time series statistics and all real time series statistics is computed. Then, the time
series that brings the lowest value is selected.
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Firstly, all the statistics are normalized to avoid some variables being more influential
than others when calculating the mean of the distances. Subsequently, distances between
each pair of statistics are calculated to compute the sum of all the distances. The ID_test of
the best fitting, lowest distance sum valued, time series data are appended to each synthetic
subject. Once all the synthetic subjects are assigned a time series, another dataset containing
those time series is created. Finally, new identifiers linking synthetic subjects with the time
series data are created. The pseudocode of this coupling can be observed in Algorithm 1.

Algorithm 1. Coupling method.

def coupler(synth_row):

i="null’

Tid = ‘null’

for row in stats:
curr = stats(row)
temp = curr — synth_row
dst = sum(absolute(temp))
if dst<iori=="null":

i=dst
Tid = stats (‘ID_test’)
return Tid

assigned_ID =[]
for row in synth_stats:
Test = coupler (synth_stats (row))
assigned_ID.append(Test)
synth_info ['ID_test’] = assigned_ID

4.6. Validation of Subjects

To validate the metadata of the cohort of synthetic subjects, some standardized metrics
and methods proposed by Hernandez et al. [22] have been used.

Firstly, the mean and standard deviation values for each variable of real data and SD
have been obtained. These values are collected in Table 3. From there, it can be observed
that the mean and standard deviation values of the attributes of SD are similar to those of
real data.

Table 3. Mean and standard deviation (mean + std) values for real data and SD (where SD is

generated using SDV).
Variable Real Data SD

Age 28.95 +10.19 27.67 £9.94

Weight 73.14 + 11.96 7212 +£11.56

Height 174.82 £7.99 174.39 £7.73
Humidity 48.14 + 8.54 454 4+ 6.86
Temperature 22.82+2.79 2392 +£15

Sex Male (n = 806) Male (n = 810)

Female (n = 104) Female (n = 110)

A dimensionality reduction method, specifically principal component analysis (PCA),
has been used to analyze whether the dimensional properties of the real cohort are pre-
served in the synthetic one. Figure 3 indicates that the generated cohort of synthetic subjects
is quite similar in dimensionality. There are only a few points that differ from the cohort of
real subjects.
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Figure 3. PCA plot of real data (blue) and SD (orange).

Figure 4 shows the pairwise Pearson correlation (PPC) matrices for both the cohort of
real subjects and the cohort of synthetic subjects. From there, it can be observed that the
correlations between the attributes are very similar for both cohorts. A few correlations
in the cohort of synthetic subjects are weaker than the correlations from the cohort of
real subjects.

Real Data SD
1.0

0.8

-0.4
-0.2

-0.0

Figure 4. Pairwise PPC matrices for real data (left) and SD (right).

A pairwise distance has been computed between each pair of real and synthetic
subjects to evaluate how private the cohort of synthetic subjects is. The Hamming distance
metric is used for this, which represents the proportion of attributes that are different
between the two sets of records. Therefore, the higher the pairwise distance is, the better
the privacy is preserved, since fewer attributes of the SD subjects are exactly equal to the
attributes of the real subjects.

After computing the Hamming distance for each pair of real data and SD subjects, the
distribution of those pairwise distances has been analyzed. As shown in Figure 5, most of
the pairwise distance values are higher than 0.9, which indicates that for most synthetic
subjects, the attributes are different from the real subject. This result indicates that privacy
has been quite well preserved in the cohort of synthetic subjects.
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Figure 5. Distribution of pairwise Hamming distances between real data and SD.

5. Conclusions

The main conclusion derived from this work is that the proposed approach for the
generation of synthetic subjects with real time series data can be used to generate a synthetic,
thus shareable dataset. Hence, it can be demonstrated that with the selected dataset, the
proposed methodology can be used to generate synthetic patients and then combine them
with real time series data. Furthermore, the generated cohort of synthetic subjects preserves
the privacy of the cohort of real subjects, while maintaining correlations and dimensional
properties.

However, the developed work has a few limitations. Firstly, more evaluation with
other time series datasets should be performed to validate the generalizability of the
approach used. Secondly, despite some trials implementing the second proposed approach
described in Section 3.2 (using the SDV PAR for STSG), the results obtained with this model
and applied to the selected dataset did not meet the minimum similarity requirements
to present them. More favorable results may be obtained using this approach with other
datasets. Thirdly, the privacy of the generated subject cohort has not been extensively
analyzed, nor has the quality of the coupling. A more extensive evaluation of the generated
synthetic cohorts should be carried out to compare different STDG or STSG techniques to
select the ones that yield better results. Fourthly, this approach has been generated with
only one cohort of subjects and temporal data. More research with more cohorts of subjects
and time series data should be carried out to validate the generalizability and improve the
approach used and the other proposed approach.

The limitations mentioned above can be taken as guidelines for future work. Firstly,
other missing time series data imputation techniques, such as forecasting, will be incorpo-
rated into the data processing step. Secondly, a strategy to evaluate the coupling process
will be ideated, for example, using some forecasting analysis methods. Then, the approach
utilized will be evaluated with more datasets. In addition, the second approach, in which
synthetic time series data are generated, will be implemented and validated, together with
better performing STSG techniques and more datasets to generate multivariate time series.
Concerning this approach, a method to validate the temporal nature of synthetic time
series will be established, since the time series data will be fully synthetic. Furthermore,
a complete strategy to evaluate the subject’s resemblance and privacy will be defined.
For multivariate resemblance, the comparison of eigenvalues, the percentage of variance
explained by each component and coordinates of the PCA analysis will be considered. In
terms of privacy, the use of Wilcoxon signed-rank tests, the analysis of re-identification
risks and computation of similarity to real data will be considered. Finally, it is intended to
incorporate the proposed approaches in the VITALISE controlled data processing workflow
presented by Hernandez et al. [4]. This workflow enables researchers to develop algorithms
and perform analyses locally using SD and then request their execution remotely with the
real data.
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Abstract: The objective of this work is to analyze the price dynamics and the level of association
between the Brent crude oil prices and heating oil (HO), i.e., US diesel. The data series are obtained
from daily future contract prices of Chicago Mercantile Exchange (CME) group exchanges and
the Intercontinental Exchange (ICE). A continuous evaluation of the Detrended Cross-Correlation
Analysis (DCCA) between Brent crude oil prices vis-a-vis HO is proposed by means of the rolling
window approach, allowing a dynamic analysis of their cross-correlations covering two periods,
namely from January 2018 to December 2019 (before the COVID-19 pandemic) and from January
2020 to December 2021 (during the COVID-19 pandemic). The results indicate that there is a strong
evidence of contagion in cross-correlation due to the initial impact of the pandemic, but the HO-Brent
correlation fully recovered after approximately 200 days. However, lower time scales (1) are also
sensitive to supply shortages in the short term and can be most reliable for agents that might not
take long positions. Measuring this dynamic cross-correlation can provide useful information for
investors and agents in the oil and energy markets.

Keywords: cross-correlation; DCCA method; oil derivatives; energy

1. Introduction

Since the first propositions about the relationship between oil prices and economic
activity proposed by Hamilton [1], a significant number of researchers have dedicated
themselves to exploring the connection between variations in its price and its effects on
global economic activities. According to Zhang, Lai and Wang [2], oil is a resource known
for large price fluctuations, where prices increases usually cause an increase in inflation
and harm the economies of importing countries. On the other hand, price drops usually
cause economic recessions and political instability in exporting countries, as their economic
development can be jeopardized or delayed. In addition to price levels, another relevant
factor is their volatility, since a relatively small increase can cause considerable economic
losses [3]. Oil price variations are influenced by several factors. The dynamics between
supply and demand is one of the main factors that affect price movement, which is also
sensitive to exogenous factors such as the weather and irregular events [4,5] and also to
political aspects and the expectations of market agents [6,7]. Such factors make the price
movement non-linear and non-stationary, which makes its analysis more challenging and
an important strategy for importers, exporters, investors and governments. While crude oil
prices have historically been a fundamental component of economic analysis, the variation
in crude oil prices also affects a country’s economy and politics [8]. For this reason, it is
pertinent to understand how crude oil prices relate to its derivatives. In this context, the
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objective of this work is to analyze the relationship between Brent crude and heating oil (US
diesel) prices, covering two periods. The first period (P1) precedes the COVID-19 crisis and
includes data from January 2018 to December 2019. The second (P2) addresses the period
from January 2020 to December 2021, covering the COVID-19 crisis period. The present
study expands the existing literature, empirically examining the relationship between the
price of oil and its derivatives in light of a continuous evaluation by means of adoption of
the rolling window approach [9-11] applied to the DCCA (Detrended Cross-Correlation
Analysis) method [11-20]. Such a perspective becomes relevant as the price of oil and its
derivatives is the basis for decision-making in many countries. Indeed, in practical terms,
the knowledge of the level of association between the prices of these products can help in
the anticipation and formulation of strategies for companies and consumers. This paper
is organized as follows: in Section 2, the data are introduced and the DCCA method and
statistical test are presented. In Section 3, the results of the DCCA analysis are discussed.
Finally, in Section 4, the main conclusions are outlined.

2. Methods
2.1. Data Characteristics

In this study, we use time series (TS) to represent daily prices of future market set-
tlements related to the first available contract (C1) from CME group exchanges (NYMEX)
and the ICE exchange for the HO and Brent, respectively. Each contract of the selected
pair represents the most negotiated future contracts for diesel and crude oil worldwide. In
general, price imbalances in the crude oil market tend to rapidly transfer to its derivatives.
The reason is that the HO-Brent differential, also known as "crack-spread’, can be applied
as a representation of the refinery margin to buy crude oil and produce diesel /heating oil.

In order to analyze the price dynamics of such pairs, we considered two distinguished
periods, P; and P,, where the first denotes the two-year period prior to the COVID-19
outbreak (January 18 to December 2019) and the second denotes the two-year period after
the COVID-19 outbreak (January 20 to December 2021).

2.2. Detrended Cross-Correlation Analysis

In recent years, the concept of fractals in TS has been investigated by means of the
Hurst exponent (H) and Auto-Regressive Fractional Integrated Moving Average (ARFIMA)
processes [7,21-30]. Several computational algorithms have been proposed to explore this
field [31-36]. For example, when it comes to non-stationary TS, the Detrended Fluctuation
Analysis (DFA) and its respective scaling coefficients yield satisfactory results to avoid the
spurious detection of correlations or self-similarity [31,32]. This process is related to the
Brownian and fractional Brownian motions, which allow us to quantify the long-range
dependence in the analyzed TS.

A generalization of the DFA method was proposed by Podobnik and Stanley in
2008 [37], the so-called Detrended Cross-Correlation Analysis (DCCA), which is based
on the detrended covariance between two TS. This method provides the quantification of
long-range cross-correlations in the presence of non-stationarity. Considering two long-
range cross-correlated TS y; and y/; of equal length N, the values can be approached in the
integrated form:

k
Ye=)yi 1)
i-1
k
Y=Y vi ()
im1

where k = 1,..., N. The entire TS are fractioned into N — n overlapping boxes with n + 1
values. The box starting at the position i and landing at the position i + n is defined as
the “local trend”. Moreover, we can define the Yj ; and Y’y ; (i < k < i+ n) as the ordinate
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points of the linear least-squares fit. For each box, it is possible to calculate the covariance
of the residual as follows:
i+n

fheca(n,i) = ﬁ kZ:;i(Yk — Yiei) (Y = Y)) 3)

Hence, the detrended covariance is calculated by summing over all overlapping N — n

boxes of size n as: -
1 = .
Fheca(n) = = Y. fbeca(n,i) (4)
N—n

When a long-range cross-correlation appears between the two TS, then Fpcca ~ nt,
where A ~ (Hpra + H'pra)/2. The A exponent quantifies the long-range power-law
correlations, but does not quantify the level of cross-correlation [37-39]. For this matter,
Zebende [39] proposed the DCCA cross-correlation coefficient, defined by:

F I%CCA /
Ppcca = Foralyi) praly'i} ®)

These coefficient values are interpreted similarly to Pearson’s correlation and can be
summarized as follows: (a) —1 < ppcca < 1, (b) ppcca = 1 for a perfect cross-correlation,
(¢) ppcca = 0 for no cross-correlation presented between the TS, and (d) ppcca = —1 for a
perfect anti-cross-correlation.

2.3. Rolling Window Approach and the Statistical Test for Appcca

Different statistical tests have been adopted to evaluate the detrended cross-correlation
coefficients [30,38,40,41]. In this work, we applied the statistical test proposed by Guedes
et al. [9] to evaluate Appcca. This test allows us to analyze two distinct moments separated
by a phenomenon, such as the economic crisis caused by the COVID-19 pandemic. The
coefficient is represented by:

Appcca(n) = pngCA(n) - pglCCA(n) (6)

where szcc 4(n) and Pglcc 4 (n) are the DCCA coefficients for the periods P; and P, re-
spectively. The subsequent test consists in calculating the probability distribution function
(PDF) of the Appcca(n), supposing that they obey a normal distribution and follow the
below steps [9]:

*  Generate two TS with long-range cross-correlation by ARFIMA process [37];
e Divide the TS for periods P; and P, and shulffle these pairs;

e Estimate ppcca(n) and the periods’ difference Appcca(n);

*  Repeat step 2 several times;

e Obtain the distribution of Appcca(n), and

*  (Additional step) Evaluate the normality of the distribution.

In general, the PDF of Appcca(n) converges to a normal distribution, as shown by [9].
However, we decided to conduct D’Agostino and Pearson’s normality test [42,43] to verify
the normality of the distribution. Hereafter, the following contagion hypothesis is tested
with a T-test for the mean of the Appcc (1) parametric group and the Wilcoxon signed-rank
test for the non-parametric group:

Hy: Appcca(n) = (Appcca) (contagion does not exist);

Hy: Appcca(n) # (Appcca) (contagion exists);

where (Appcca) is the sample mean, which is approximately equal to zero. Thus, for each
PDF defined by window size N (in this study, W1 = 50 days, W2 = 100 days, W3 = 150 days,
W4 =200 days, W5 = 250 days) and n time scales, we can obtain the positive critical point
defined as Ap. (1) for 90%, 95%, and 99% confidence levels as follows:
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SD

(Appcca) £ Zal/Zﬁ 7)

where Z,; /» is the value for the chosen confidence level «, SD is the standard deviation,
and N is the sample size.

3. Results and Discussion

Figure 1 shows the ppcca (1) behavior for HO-Brent during periods P; and P, for ev-
ery presented time scale (1) and different sliding window sizes (W1-W5). From Figure 1a,c,
one can note that considering a window size of 50 and 100 days, the prices showed a weaker
relation during the beginning of 2019, which is not applied to larger sizes of W, and it is an
indication of short-term effects. Moreover, we can notice that all the window sizes (W1-W5)
exhibited a fall in cross-correlation in the period that preceded the COVID-19 outbreak.

Regarding the COVID-19 period (P,), Figure 1b,d,f,h,j allow us to observe a loss of
cross-correlation from March to April of 2020, when both markets presented an intense fall
in prices due to lockdowns worldwide, especially the US market. Moreover, a considerable
amount of market agents took a bearish (selling) position in these contracts due to the
lack of global demand predictability during this period. However, one of the reasons for
the price dissolution likely may have come from the specific characteristics of the diesel
market. For example, heating oil—as the name suggests—can be used for heating purposes
during severe US cold winters. Differently, the same product in Europe—namely gasoil—is
applied for driving, such as gasoline for the US market. Therefore, during the lockdowns
and with a lack of driving demand for fuel, the HO’s price movement may have diverged
from that of crude oil, gasoline, and gasoil.

Moreover, the 50-day and 100-day rolling windows are shown in Figure 1b,d, which
showed another strong price dissolution between May and June of 2020. In addition,
one can also observe that shorter window sizes are sensitive to short-term effects, which
one can note during the year 2021. These effects are related to the US Gulf diesel supply
shortage presented during the cold weather at the beginning of 2021 and also during the Ida
hurricane effects in the second half of 2021 [44]. This might suggest that short-term supply
shortages of diesel in the US Gulf can affect the HO-Brent cross-correlation, similarly to the
restricted demand period caused by COVID-19. However, the supply short-term effects
are not observed when using larger rolling window sizes, which is not the case for the
initial pandemic effects that are displayed for every tested window. In general, the larger
windows presented a cross-correlation recovery for the pair after the first half of 2020 until
the end of 2021. One can also note that the greater time scales (1) diverge from the lower
time scales and cannot encapsulate the complete price dynamics of both periods, since both
markets are mostly interdependent in the long term compared to the short term [10].

Table 1 summarizes the descriptive statistics for the Appcc 4 distributions as a function
of n with different sizes of W. As suggested by Guedes et al. [9], the observed mean values
are approximately close to zero and the standard deviation (SD) decreases for greater W
sizes. However, mostly skewness and kurtosis diverged from values observed from normal
distributions, i.e., Kurtosis ~ 3 and Skewness ~ 0 for different combinations of n and W,
which tends to affect the normality of the distributions. For this reason, we conducted
D’Agostino and Pearson’s normality test and the results are shown in Table 2. It can be
seen that all the applied window sizes (W) presented non-normality for most tested time
scales (n).
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Figure 1. The Brent-HO ppcca TS comparison of P; vs. P, for W1 to W5.
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Table 1. The Brent-HO descriptive summary of Appcca for W1 to W5.
Descriptive Statistics
Statistics n=4 n=_8 n=16 n=32 n==64
W1 =50
Mean 0.0469 0.0478 0.0606 - -
SD 0.0519 0.0585 0.0949 - -
Skewness 0.7747 1.3477 2.7715 - -
Kurtosis 0.4957 1.3932 9.5141 - -
W2 =100
Mean 0.0336 0.0314 0.0233 0.0012 -
SD 0.0513 0.0519 0.0492 0.0546 -
Skewness 0.3688 0.4340 —0.6524 —0.0903 -
Kurtosis —0.3147 0.0274 0.0166 —0.3943 -
W3 =150
Mean 0.0276 0.0289 0.0216 0.0033 -
SD 0.0475 0.0422 0.0330 0.0232 -
Skewness 0.8434 1.1727 1.3479 1.2184 -
Kurtosis —0.0618 0.8768 2.4628 1.5078 -
W4 =200
Mean 0.0213 0.0245 0.0197 0.0071 0.0062
SD 0.0393 0.0351 0.0261 0.0215 0.0199
Skewness 0.9908 1.3799 1.6650 1.4585 1.6720
Kurtosis —0.3018 0.9029 2.9319 2.2209 1.8339
W5 =250
Mean 0.0165 0.0211 0.0170 0.0030 —0.0043
SD 0.0335 0.0308 0.0242 0.0232 0.0310
Skewness 1.1137 1.3311 1.2920 —0.1065 —0.4814
Kurtosis —0.2545 0.6427 1.8523 0.4632 0.8582

Table 2. The Brent-HO normality test of Appcca for W1 to W5. Significance level of 95% (p-value < 0.05)

rejects the null hypothesis of normality.

D’Agostino and Pearson’s Normality Test

Statistics n=4 n=38 n=16 n=232 n=64
W1 =50
X2 24.1151 59.8950 171.8440 - -
p-value 580 x 107 9.86 x 10~1*  4.84 x 10-38 - -
W2 =100
X2 6.7952 7.873 0.9515 9.0797 -
p-value 0.0335 0.0195 0.6214 0.0107 -
W3 =150
X2 24.8080 46.5804 68.8323 54.3651 -
p-value 410 x107% 7.8 x 10~ 113 x 10~®  1.57 x 10712 -
W4 =200
X2 32.8813 57.2596 88.2648 72.4758 79.9174
p-value 724 x 1078 368 x 1071® 682 x 10720 443 x 10718  3.89 x 10~
W5 =250
X2 38.6335 52.6530 61.0372 2.7892 14.8160
p-value  4.08 x 107°  3.69 x 101> 557 x 10~ 0.2479 0.0010
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Thus, the contagion hypothesis can be tested for each Appcca distribution. Table 3
depicts the significance test, where the T-test is applied to parametric (normal) distributions
and the Wilcoxon signed-rank test for non-parametric (non-normal) distributions. One can
note that there is evidence of a contagion predominance for time scales n < 32, which suggests
short-term effect spillover when comparing P; and P,. However, there is no strong evidence
of the contagion effect for values of n > 32 days, which suggests that the market imbalances
caused by COVID-19 did not affect the HO-Brent cross-correlation in the long term as much
as the short term. Figure 2a—c confirms the alternative hypothesis (Appcca(n) # 0), where it
is possible to notice a prevalence of Appcca (1) > 0 for the first 150 days of comparison. The
Appcca(n) overpasses the critical limits for most parts of the periods (see Table 4). On the
other hand, from Figure 2d,e, one can observe that greater values of n and W tend to smooth
the curves and have no clear pattern. However, for every time scale (1), the correlations
are shown to be lower during the beginning of P, if compared to the same period in Pj, in
addition to the lower Appcca(n) in the last 50 days of the curves, which indicates that the
HO-Brent fully recovered in terms of correlation after 200 days of the COVID-19 outbreak.

Table 3. The Brent-HO significance test of Appcca for W1 to W5. Significance level of 95% (p-value < 0.05)
rejects the null hypothesis of Appcca = 0.

t-Test or Wilcoxon Signed-Rank Test for Significance at Differences

Statistics n=4 n=8 n=16 n=232 n =64
W1=50
Statistic W =2924 W=1744 W =2325 - -
p-value 1.03 X 107% 642X 1073% 2,67 x 10732 - -
W2 =100
Statistic W = 5951 W = 6600 t=7.5491 W = 16,146 -
p-value 237 x 10718 273 x 1071 794 x 10713 0.9683 -
W3 =150
Statistic W = 7050 W = 4865 W = 4547 W = 15,694 -
p-value 616 x 10715 425x 1072 290 x 10~ 0.6706 -
W4 =200
Statistic W =9763 W = 3956 W =2472 W=11,748  W=15046
p-value 412 x 1078 1.62 X 1025 1.18e-31 0.0001 0.3280
W5 =250
Statistic W = 11094 W = 3623 W =3942 t=2.0720 W =12,846
p-value 1.36 X 10~° 781 x 107% 143 x 10°% 0.0393 0.0043

Table 4. The Brent-HO critical values of Appcca with 90%, 95% and 99% confidence level (CL) for
W1 to W5.

Critical Values n=4 n=8 n=16 n=232 n==64
CL =95%
W1 0.1321 0.1464 0.2342 -
W2 0.1229 0.1189 0.1111 0.0885 -
W3 0.1059 0.0971 0.0747 0.0363 -
W4 0.0863 0.0834 0.0651 0.0429 0.0500
W5 0.0751 0.0736 0.0584 0.0436 0.0511
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Figure 2. The Brent-HO Appcca TS for different time scales (n).

4. Conclusions

This work employed Detrended Cross-Correlation Analysis in the study of the future
contract price dynamics between the US diesel (HO) and Brent crude oil during the periods
pre- and post-COVID-19. The results indicate that there is strong evidence of contagion in
cross-correlation due to the initial impact of the pandemic, but the HO-Brent correlation
fully recovered after approximately 200 days. However, lower time scales (1) are also
sensitive to supply shortages in the short term and can be most reliable for agents that
might not take long positions. Therefore, this indicates that, despite the pair being highly
correlated, the initial global lack of crude oil demand generated by the lockdowns caused a
fall in crude oil prices, but the same dynamics appeared in the US diesel market only after
a delay.
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Abstract: To provide reliable services, mobile network operators (MNOs) continuously collect vital
mobile network performance data to monitor and analyze the functioning of their radio access net-
works (RANSs). RAN is a critical infrastructure for mobile networks and its performance is measured
by key performance indicators (KPIs) such as accessibility, retainability, availability, integrity, and
mobility. The standard practice is that network managers utilize KPIs to identify failures or unusual
events that can significantly degrade the quality of service delivery and the end-users’ experiences.
However, taking corrective steps based on monitored performance parameters is a reactive approach
that contributes to network and service degradations until corrective actions are taken. With the mon-
itoring and automation of RAN infrastructure performance in mind, this paper presents the Markov
chain, a widely used probabilistic modeling approach, as a systematic method for jointly predicting
network accessibility and retainability status, two of the crucial RAN performance measures. The
novel joint prediction is proposed to have a single operation for both accessibility and retainability.
Real-time hourly KPIs data was collected from 1530 cells (base stations) run by an operator’s network
in Addis Ababa, Ethiopia, for 4 months, from 1 November 2020 to 28 February 2021. The cells are
scattered across the capital city, where factors such as land use, settlement patterns, and customers
behaviors differ. To capture the spatial variation of the KPIs without escalating the computational
complexity much, the dataset is separated into six clusters using the K-mean clustering approach.
The Markov chain KPIs status prediction models are formulated on a cluster level. The results reveal
that the proposed models can predict the KPIs status with 94.61 percent accuracy. Because the data is
already available and can be collected at any time using the operator’s network management system
(NMS), this is a cost-effective technique to proactively improve mobile network performance.

Keywords: accessibility; retainability; Markov chain; K-mean clustering

1. Introduction

The demand for dependable mobile network services is growing and is projected to
continue to grow in the coming years. To meet this rising service demand, mobile network
operators (MNOs) are expanding their networks and use a centralized network manage-
ment system (NMS) to monitor the performance of the radio access network (RAN) and
core network, two critical components of mobile network infrastructure. NMS is a network
monitoring and control tool, with fault management and performance management its two
essential functionalities [1]. Fault management is the need for fault-free operation and has
three aspects, namely fault identification, fault isolation, and fault correction. The fault
identification is conducted with the help of network alarms, while fault isolation of the
network’s remaining components from the failure is needed so that the isolated network
can continue to function normally. Fault correction requires repairing or replacing failed
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components. Performance management, on the other hand, includes network monitoring
to observe network activities and network control to take mitigations that increase network
performance. Some of the network manager’s performance concerns include determining
the amount of capacity utilization, traffic monitoring, throughput status, and reaction time
status, among others [1].

Although the NMS offers critical information through various management sub-
systems, most operators find it challenging to manage the data collected from the system
and take corrective actions in a timely manner. Operators select key performance indicators
(KPIs) and monitor them at hourly, daily, weekly, or monthly intervals to discover problems
or unusual events that might drastically affect service delivery and end-user experience.
KPIs are further grouped to assess network performance, and the widely used performance
measures are accessibility, retainability, availability, integrity, and mobility. NMS holds vast
amounts of historical network performance data, from which possible trends and patterns
can be revealed using cutting-edge data mining techniques.

In mobile networks, Markov chain is used for call admission control [2], quality of
experience (QoE) modeling [3], quality of service (QoS) modeling [4], efficient resource
utilization [5], prediction of user mobility [6], handover management, and network oper-
ation status monitoring [7]. In [8,9], Markov chain is proposed to forecast radio resource
controller (RRC) setup success and call setup success rates (CSSR) for the Long-term Evo-
lution (LTE) mobile network. The status or state as per Markov’s terminology of a cell
(base stations) is classified as “Good/High,” “Moderate/ Acceptable,” or “Bad/Low” based
on the RRC success rate. Data collected from an operator’s network is used to create the
Markov chain-based models for RRC and CSSR future state predictions. A given cell is
in one of the three states depending on the time of a day, the cell’s geographic location,
network capacity, and other user- and network-related factors. In addition to the Markov
chain, cluster-based approaches, decision trees, and artificial neural networks were em-
ployed in [10-12] to estimate a network accessibility-related parameters. These and papers
such as [13-15] addressed related performance measures for various generations of cellular
mobile systems.

This paper’s primary goal is to forecast mobile network accessibility and retainability
status using real-time data gathered from the NMS of a major network operator in the
capital city of Addis Ababa, Ethiopia. Specifically, the data were collected on an hourly
basis from 1530 cells for 4 months’ duration, from 1 November 2020 to 28 February 2021.
The states of these two critical RAN performance parameters are defined based on the
International Telecommunication Union’s (ITU’s) recommendations for network accessibility
and retainability. As the cells are scattered across different geographic regions of the capital city,
K-mean clustering technique is used to group cells having spatially correlated performances.
The per-cluster averaged data are used to construct the Markov chain prediction model. Two
approaches are used for the model formulation, and one is a separate approach so that two
Markov models are built for accessibility and retainability. In the joint modeling, a single
model is used to predict both parameters. Using either of the two approaches, we can compute
the state of the network and the number of transitions until a steady-state is reached. The
essential contributions of the research are mentioned here.

e In contrast to prior attempts, we established four states [16], namely “Idle,” “Good,”
“Acceptable,” and “Bad” states, to conform to the ITU’s recommendations. Further-
more, the Markov chain is constructed to jointly estimate accessibility and retainability
in a single operation, yielding a model with 16 states. Four-state separate estimation
is employed as a benchmark for comparison. Incorporating ITU’s recommendations
for state definition and the joint prediction proposal are the unique contributions of
this research.

e  Previous models only operate for a single cell, leaving out the correlated nature of
accessibility and retainability in the spatial domain. Including more cells, however,
increases the number of combined states; thus, the Markov model may not scale as the
number of cells increases. As an alternative to replicating the prediction method as
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many times as the number of cells, we employed K-mean clustering to identify related
cells. The Markov chain is then applied to the per-cluster averaged data. Prediction
aids in analyzing the status of the considered mobile network.

The remaining paper is organized as follows. Section two discusses fundamental
concepts and formulas in accessibility and retainability. Section three introduces some
basic concepts of discrete Markov chains. Section four presents and discusses the results
obtained. Finally, Section five concludes the paper by identifying possible future directions.

2. Accessibility and Retainability KPIs

KPIs obtained from network counters can be grouped into accessibility, retainability,
integrity, mobility, and other factors in order to manage and track the performance of
the network [17]. According to ITU, service accessibility is “the ability of a service to be
obtained, within specified tolerances and other given conditions, when requested by the user.”
Service retainability is “the ability of a service, once obtained, to continue to be provided under
given conditions for a requested duration” [18].

2.1. Accessibility

The accessibility KPI is expressed in probabilities, which indicate how likely a user is
able to access the mobile service during specific service times and conditions. Accessibility
measures the network’s performance during call setup or before establishing a bearer [19].
For data availability reason, this paper focuses on the Third Generation (3G) mobile net-
works. RRC, radio access bearer (RAB), Enhanced Universal Terrestrial RAN RAB (ERAB),
and CSSR are critical accessibility parameters, as presented below.

e  RRC setup success rate (RRC SSR) evaluates the call success rate in a cell or cluster.
The formula for this KPI is:

Number of RRC setup success

RRC SSR =
number of RRC connection attempt

x 100%. (1)

o  RAB setup success rate (RAB SSR) evaluates the success rate of assigning a RAB during
a call setup procedure. The formula for this KPI is given as follows:

Number of RAB setup success

RABSSR =
number of RAB setup attempt

x 100%. )

e (CSSRis used to evaluate the call setup success at the cell or cluster level. This KPI
is calculated based on RRC SSR and RAB SSR for the case of third generation (3G)
networks and ERAB SSR for the case of LTE networks.

Accessibility = CSSR = RRC SSR x RAB SSR x 100%. (3)

2.2. Retainability

Retainability assesses a network’s performance after RAB is established and indicates
the proportion of calls that serve the essential service without call drops.

Number of RAB abnormal release
d total number of RAB release

Retainability = (1 — ) x 100%. 4)

Equation (4) fraction shows the call drop rate (CDR) value.

3. Discrete-Time Markov Chain

A Markov chain is a particular class of a stochastic process with random variables
designating the states or outputs of the system [7,20]. The probability of the system
transitioning from its current state to a future state depends only on the current state. The
collection of states forms a state space of alphabet size N. Let {ay, a2, ..., ay} designate
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the state space and let a sequence of states Sy,...,S5; ..., generated by the system in time,
where S, € {ay, ap, ..., ay} and n in S, indicates the discrete-time index.

For the Markov chain fulfilling the memoryless assumption, the transition probability
is expressed as [21]:

P(Syy1 =aj|Sy=0ai,Sy_1=1ay, Sp2=4ag, ....) )
=P(Sy11=4aj|Sh =a;),

where 1 < i,j < N. We learn from the Markov property that only the most recent state
matters to predict the next or future state. From Equation (5), the transition probability
from state a; to state a; is designated as:

Pl']‘ = P(Sn-i-l = aj‘Sn = El,‘). (6)

For all 7 and j, the summation of all transition probabilities in a row must be equal to
one, i.e.,

Y opii=1 @)
=1

3.1. Transition Probability Matrix

The collection of the transition probabilities P;; forms the probability transition matrix
(TPM), P (See Equation (8)). Each entry of the matrix shows the probability that the system
will transition or remain in the same state. P is a square matrix with the same dimension as
the number of states.

Py P Pz .. Py
Py P»n Px .. Py

e ®)
Pnvi Pn2 Pns . Pun

The transition probability P;; is computed from empirical data by counting the number
of transitions from state i to state j and dividing the result by the count of all transitions
from state i [7].

3.2. Initial (Probability or State) Distribution

The initial state distribution is usually expressed as a probability distribution vector, U
of dimension 1 x 7, as shown in Equation (9), with entries that indicate the probability that
the system is in a given state at a given initial time. Each entry of the vector is non-negative
and the sum of the all entries should be unity.

U=[Py, Py ..., Pyl 9)

Without accurate knowledge of the initial distribution, the system can be considered
to be in one state with absolute certainty, i.e., probability of unity.

3.3. Steady-State Distribution

One of the fascinating aspects of systems that obey the Markov chain is that, after
a sufficient number of iterations/transitions, the chain converges to a steady-state, sta-
ble, equilibrium, or static distribution [7]. A steady-state condition is one in which the
probability of the next state is the same regardless of the present state.

With knowledge of the transition matrix P and the initial probability vector U, the
probability distribution of the chain after k transitions in the future is given by [7].

u® = ypk (10)
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Pk is the result of multiplying the transition matrix k times by itself. Each element of

u®), designated as Pl.g-k), is the probability of going from state i to state j in k iteration. As

we keep iterating through state transitions by applying P¥, the probability vectors U*)

converge to some fixed value, say 7). That is called the steady-state distribution and
mathematically written in the form as in Equation (11) below.

lim U®) = UP* = 7. (11)
k—rc0
We note from Equation (11) that the Markov chain probabilistically predicts the system’s
future state based on knowledge of state space, initial distribution, and transition matrix.

3.4. Transition Diagram

A transition diagram, which illustrates all of the system’s transitions, is another way
to display the TPM. A directed arrow shows the presence of a transition from one state to
another state, and each node represents a state of the Markov chain. The edge represents
the current state, and the arrow points towards the next state [7].

4. Results and Discussions

This section covers data collection and accessibility and retainability status prediction
using a four- and sixteen-state Markov chain model.

4.1. Data Collection and Preprocessing

The performance report system (PRS) installed in the operator’s network was used to
collect real-time hourly data from 1530 cells for 4 months’ duration.

e Linear interpolation is used to fill data gaps caused by factors such as cell outages and
connection problems among cells and central radio network controller (RNC).

e Ifnovoice or data service attempts are made in a cell for one hour, the accessibility and
retainability values are zero. This situation is handled separately, and the accessibility
or retainability status is “Idle.” Figure 1 shows RRC and RAB attempt values for
Cluster 6 throughout a week, and both values are zero at midnight.

- ™~
RRC attemp and RAB attemp for call setup

"
Pt
=]
&

5
o
&

Number of attempts
[:1]
[=]
[=]

=]

[=

o0
500
00
15:00
000

=11
S8 8
— B

11:00
16:00
21:00

L= f=
2888
e A

2200

23
= &

13:00
2300
400
500
400
1500

000
5:00

10000

=
I

1:00
600
11:00

20000
16:00
2100

22
Time {(hours)
=—CS5E RRC Attempt =——=(S5R RAB Afttempt

.

Figure 1. One-week RRC and RAB attempts.

o  The data are split into two, with 60% utilized for training and 40% for model vali-
dation/testing. The training data are used to generate the transition matrix, and the
process of constructing such a matrix from data are described in [7]. Combinations of
70/30 and 80/20 are also utilized for comparison purposes.

o  The system predicts the next probability vector given the current state probability
distribution and the transition matrix. The operation is then continued until a steady-
state condition is reached. Following step/iteration prediction, results are compared
to the validation data to assess prediction accuracy.
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4.2. Clustering

It takes time to analyze individual cell performance and patterns. In this research,
we suggest K-mean clustering as a method for grouping cells with similar accessibility
and retainability properties. Model construction and prediction are based on per-cluster
averaged accessibility and retainability. The Elbow approach in K-mean clustering is used
to identify the number of clusters by changing the parameter from 2 to 18. Each cell was
randomly assigned to several clusters to vary the centroid of each center. The procedure
was repeated until the cluster variation in the data could no longer be reduced by adjusting
the cluster centroid. We discovered that a clustering value of 6 is adequate. Hourly data
acquired from each cell varies from 0% to 100%; however, if no voice or data service
requests are received in a cell for 1 h, all counter values for that hour are zero, as illustrated
in Figure 1.

4.3. KPI Threshold for States Definition

Operators set threshold values for several KPIs based on the ITU’s recommenda-
tions, considering variables such as capital expenditures, operational expenses, QoS, and
customer satisfaction. Tables 1 and 2 display a threshold value for the considered oper-
ator’s accessibility and retainability. Based on the values in the two tables, the states of
accessibility and retainability are generated.

Table 1. Possible values of call setup attempt and CSSR.

Call Setup Attempt Value State of a Cell
>0.0 CSSR > 98.0% Good (G)
>0.0 95.0% < CSSR < 98.0% Acceptable (A)
>0.0 0.0% < CSSR < 95.0% Bad (B)
=0.0 - Idle (I)

Table 2. Possible values of RAB setup success and CDR.

RAB Setup Attempt Value State of a Cell
>0.0 0.0% < CDR < 1.0% Good (G)
>0.0 1.0% < CDR < 3.0% Acceptable (A)
>0.0 3.0% < CDR Bad (B)
=0.0 - Idle (I)

4.4. Separate Prediction

As indicated above, the accessibility and retainability predictions at the cluster level
can be made separately and jointly. Four states are required for the separate case. Hence,
the corresponding transition matrices are 4 x 4. The state transition probability diagram for
the sixth cluster is given in Figure 2 below, which is obtained after developing the model.

0.1111 08333 0.9780

(b)

Figure 2. Transition probability diagram of cluster 6. (a) Accessibility. (b) Retainability.
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Note that there are missing arrows in the two figures. As an example, there is no arrow
in Figure 2a pointing from state A to state I, indicating that such a transition does not exist
or the system has never landed in an idle state if it was initially in the Acceptable state.

4.5. Joint Prediction

The different state combinations of accessibility and retainability can be seen via joint
estimation. For example, a Bad state of in accessibility and a Bad state in retainability can
occur at the same time. When all possible combinations are considered, the total number of
states rises to 16, and the resulting transition matrix is shown in Figure 3.

II 1G A B GI GG ©GA GB Al AG AA AB BI BG DBA BB
II (T 00625 00625 00625 0.0625 0.0625 0.0625 00625 00625 00625 00625 00625 0.0625 0.0625 00625 00625 0.0625 )
IG| 00000 0.1176 00000 0.0000 0.0000 0.7647 0.0588 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0588 0.0000 0.0000
IA | 00000 0.0000 00000 0.0000 0.0000 1.0000 00000 0.0000 00000 00000 0.0000 00000 O0.0000 0.0000 0.0000 0.0000
IB | 00625 00625 00625 00625 00623 00625 00625 0.0625 00625 00625 00625 00625 00625 0.0625 00625 0.0625
GI| 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625
GG| 00000 00020 00006 00000 00000 09707 0.0048 00024 0.0000 0.00%0 00000 00000 00000 0.0030 00006 0.0000
GA| 00000 00000 00000 00000 0.0000 1.0000 0.0000 0.0000 0.0000 00000 0.0000 0.0000 00000 O0.0000 0.0000 0.0000
GB| 00000 00000 00000 00000 0.0000 1.0000 0.0000 00000 0.0000 00000 00000 0.0000 00000 O0.0000 0.0000 0.0000
AT| 00625 00625 00623 00625 00623 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625
AG| 00000 00000 00000 00000 00000 08333 00000 00000 0.0000 01667 00000 0.0000 00000 0.0000 00000 0.0000
AA| 00625 006235 00625 00625 0.0625 00625 0.0625 00625 0.0625 00625 0.0625 00625 0.0625 00625 0.0625 0.0625
AB| 00625 00625 00625 00625 00625 00625 0.0625 00625 0.0625 00625 0.0625 00625 00625 00625 0.0625 00625
BI| 00625 00625 00623 00625 00623 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625 00625
BG| 00000 00000 00000 00000 00000 10000 00000 00000 0.0000 00000 00000 0.0000 00000 O0.0000 00000 0.0000

BA 0.0000 0.0000 0.0000 00000 00000 1.0000 O0.0000 O0.0000 0.0000 0.0000 00000 00000 00000 O0.0000 O0.0000 O0.0000

BB \-0.0625 0.0625 0.0623 00625 00625 0.0625 0.0625 0.0625 00625 00625 00625 00625 00625 0.0625 0.0625 0.0625-/‘

Figure 3. Sixteen-state TPM of cluster 6.

4.6. State Prediction

After creating the transition matrices and knowing the current/initial state distribution,
the next state and steady state distributions are predicted using Equation (10). If the current
state is (assumed to be) in a Good state, then the value of 71 is,

my=[IGAB]=[0100 ] (12)

Then, using Equations (10) and (12), the next accessibility probability is 771 for one of
the clusters when computed, and the result is:

0.1111 0.8333 0.0000 0.0556

0.0095 0.9780 0.0089 0.0036

0.0000 0.8333 0.1667 0.0000 (13)
0.0000 1.0000 0.0000 0.0000

= [ 00095 09780  0.0089 0.0036 |

0100] x

According to the result, the system has a 0.95 percent chance of going to the Idle state,
a 97.80 percent chance of staying in a Good state, a 0.89 percent chance of going to the
Acceptable state, and a 0.36 percent chance of going to the Bad state.

Equation (11) is used to find the steady-state distribution calculated iteratively until
the next and previous state values are equal. Tables 3 and 4 display the steady-state results
for the four-state Markov chain regarding accessibility and retainability. Table 5 depicts the
cluster 1 steady-state distribution using the sixteen-state Markov chain. For both scenarios,
70% of the data are used as a training set.
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Table 3. Steady-state vector of accessibility using four-state Markov chain.

Steady-State Vector of Accessibility

Cluster ; G A B
1 0.0000 0.9926 0.0060 0.0015
2 0.0000 0.9722 0.0149 0.0129
3 0.0000 0.9911 0.0079 0.0010
4 0.0000 0.9782 0.0179 0.0040
5 0.0000 0.9916 0.0055 0.0030
6 0.0109 0.9722 0.0114 0.0055

Table 4. Steady-state vector of retainability using four-state Markov chain.

Steady-State Vector of Retainability

Cluster

I G A B
1 0.0000 0.9980 0.0020 0.0000
2 0.0000 0.9955 0.0035 0.0010
3 0.0000 1.0000 0.0000 0.0000
4 0.0000 0.9980 0.0020 0.0000
5 0.0000 0.9965 0.0030 0.0005
6 0.0000 0.9901 0.0079 0.0020

Table 5. Steady-state vector of Cluster 1 using sixteen-state Markov chain.

Steady-State Vector

Cluster
[II IG TA IB GI GG GA GB AI AG AA AB BI BG BA BB]
[0.0000 0.0000 0.0000 0.0000
1 0.0000 0.9926 0.0000 0.0000
0.0000 0.0040 0.0020 0.0000
0.0000 0.0015 0.0000 0.0000]

In Table 3, the maximum value in the Good state from the six clusters is 99.26% in
cluster 1, and the minimum value is 97.22% in clusters 2 and 6. The maximum value of
the Bad state is 1.29% in cluster 2, and the minimum value is 0.1% in cluster 3. From this
cluster, one cell is at the top in the Good state, and cluster 2 cells are at the top in the Bad
state. Though cluster 6 cells are the least in the Good state, they are not at the top in the
Bad state because, next to the Good state, cluster 6 cells have a high probability (1.09%) of
being in the Idle state. So, if optimization or maintenance work is needed, the schedule and
priority should be given based on the steady-state vector values of each cluster.

Steady state distribution for the sixteen-state Markov chain follows the same approach.
Cluster 1’s steady-state outcome is shown in Table 5. The first letter stands for accessi-
bility, while the second stands for retainability, and 99.26% of the time, accessibility and
retainability were in the Good state, while for 0.4% of the time accessibility was in the
Acceptable state and retainability was in the Good state. Furthermore, for 0.2% of the time,
accessibility and retainability were both in the Acceptable state, while 0.15% of the time,
accessibility was Bad, and retainability was in the Good state. As a result, the table provides
cell information relating to accessibility and retainability, allowing operators to quickly sort
cells that perform poorly in either or a combination of the two performance measures.
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4.7. Evaluation Metric

The accuracy of a model was assessed using Equation (14) [21], which calculates the
percentage of correctly forecasting the next state given the current state.

Correct predictions

Total number of examples X 100%. (14)

Accuracy =

Table 6 below shows the accuracy results for different combinations of training data
proportion, clusters, four vs sixteen states modeling and the two KPIS considered. As
an example, we note that a minimum value of 96.09% prediction accuracy is achieved in
cluster 2 in predicting accessibility when 60% training set is used, while 96.87% prediction
accuracy is achieved in cluster 5 in predicting retainability when the 80% training set is
used. A 94.61% prediction accuracy is achieved in cluster 6 in predicting both accessibility
and retainability when 80% of the data are used for training and when the modeling is the
case of the sixteen-state Markov chain.

Table 6. Prediction accuracy for sixteen-state Markov chain.

Accessibility Retainability [(Column 3 x Accessibility and
Cluster Training Set Accuracy Using Accuracy Using Column 4)/100] (%) Retainability Accuracy
Four States Four States ’ Using Sixteen States
60% 98.7837 99.1312 97.9254 97.8280
1 70% 98.3796 98.8426 97.2410 97.1065
80% 98.0870 98.2609 96.3811 96.1739
60% 96.0904 98.6968 94.8381 95.5691
2 70% 96.7593 98.3796 95.1914 96.1806
80% 96.1739 97.7391 93.9995 95.4783
60% 98.5230 100.0000 98.5230 98.5230
3 70% 98.4954 100.0000 98.4954 98.4954
80% 98.6087 100.0000 98.6087 98.6087
60% 98.5230 100.0000 98.5230 98.5230
4 70% 98.3796 100.0000 98.3796 98.3796
80% 98.6087 100.0000 98.6087 98.6087
60% 97.7411 98.4361 96.2126 97.0460
5 70% 97.3380 97.9167 95.3101 96.4120
80% 96.1739 96.8696 93.1633 94.7826
60% 96.5248 98.0886 94.6798 94.7871
6 70% 96.8750 98.0324 94.9689 95.0231
80% 96.6957 97.7391 94.5095 94.6087

5. Conclusions

In this paper, the two important mobile network KPI parameters of accessibility and
retainability are predicted by formulating the Markov chain in four states and sixteen
states. The sixteen-state Markov chain is formulated in a bid to jointly estimate both KPIs
in a single operation. Moreover, in order to capture the spatial behaviors of these KPIs,
K-mean clustering is applied to cluster the data from 1530 cells into 6 clusters. States are
created based on threshold values set by operators and the developed models are validated
by splitting the data for training and testing. We hope the approach provides significant
insight on how to use data available within an operator’s NMS to better understand the
status of a network.
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This work might be improved in some ways. Conducting the prediction for a large
number of cells in a computationally efficient manner and to obtain per-cell level infor-
mation is one research area. The clustering and joint approach may not scale well as the
number of cells grows. Moreover, applying the approach for other KPIs, network types,
and services is an area worth exploring. Finally, future research should employ the hidden
Markov model for status modeling and prediction.
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Abstract: Widespread deployment of spectrally efficient mobile networks, advancements in mobile
devices, and proliferation of attractive applications has led to an exponential increase in mobile data
traffic. Mobile Network Operators (MNOs) benefit from the associated revenue generation while
putting efforts to meet customers’ expectations of delivered services. Having a clear knowledge of
the traffic demand is critical for network dimensioning, optimization, resource allocation, market
planning, and the like. As the traffic demand, among others, is a function of customers’ behavior and
settlement patterns, land use, and time of the day, capturing traffic characteristics in both temporal
and spatial dimensions is needed. Moreover, other parameters, such as the number of users and
data throughput, inherently contain traffic-related information, necessitating a multivariate approach
for understanding the traffic demand. Realizing the multidimensional and multivariate nature of
the mobile data traffic, in this paper, we propose a multivariate and hybrid Convolutional Neural
Network and Long Short-Term Memory network (CNN-LSTM) data traffic prediction model. The
model is built on mobile traffic data collected from a Network Operator for Long-Term Evolution
(LTE) network. The results confirm that the proposed model outperforms its univariate counterparts
in Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) by 58% and 50%,
respectively. Moreover, the model is further compared with CNN-only univariate and multivariate
models, which it also outperforms. The comparisons substantiate the achievable improvements
because of the hybrid and multivariate nature of the prediction algorithm.

Keywords: mobile data traffic; multivariate prediction; temporal; spatial; CNN; LSTM

1. Introduction

The global need for mobile data traffic is increasing for a variety of reasons, includ-
ing the continuous growth of smarter mobile phones, emergence of machine-to-machine
connections, and the availability of appealing and data-intensive applications [1]. Con-
stant optimization, capacity enhancement, and efficient utilization of scarce resources
are approaches by Mobile Network Operators (MNOs) to maintain service quality and
avoid capacity crunch because of this ever-growing data demand. Moreover, network
densification, traffic offloading, spectral efficiency improvement, and using more radio
spectrum are techniques to improve the poor quality of service (QoS) that rises due to
capacity crunch [2]. MNOs select the appropriate method based on their customer demand
and financial capability. Current and future data traffic demand knowledge is one critical
input for the design and implementation of the above-mentioned approaches.
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Time-series prediction methods play a vital role to forecast future demands for several
real-world applications, including mobile data traffic demand. Data prediction models
are broadly grouped as conventional and computational intelligence models [3]. Autore-
gressive Integrated Moving Average (ARIMA) and its extensions such as Seasonal ARIMA
(SARIMA) are conventional methods. Computational intelligence techniques, on the other
hand, include machine learning and deep learning-based models such as Long Term Short
Memory (LSTM) and Convolutional Neural Network (CNN) networks. The time-series
prediction method can be deveoped based on univariate or multivariate variables (or fea-
tures). In the univariate case, there is one observation (a dependent feature, which in our
case is data traffic) available for different time instants, while in the multivariate case there
are multiple observations observed over different time instants. Multivariate time series
prediction becomes popular in many real-world applications such as energy, finance, and
weather and smoothens model building by increasing the model’s performance [4].

Several researchers used machine learning methods, such as deep learning and data
clustering, and multivariate approaches to model the dynamics of mobile data traffic in
temporal and spatiotemporal domains. Based on data collected from an operator’s network,
ref. [3] proposed LSTM and Gated Recurrent Unit (GRU) to capture the dynamics in mobile
data traffic. By comparing with Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Artificial Neural Network (ANN), the authors demonstrated the performance gain by
using the proposed model. Similar to [3], ref. [5] also applied LSTM and Recurrent Neural
Network (RNN) to predict data traffic demand of a 4G network run by an operator. In both
papers, the prediction is done on a per-base-station basis and in temporal dimension only.

To separately estimate the linear and non-linear part of mobile data traffic, ref. [6]
proposed a hybrid model using Double SARIMA (DSARIMA) and LSTM in which the
DSARIMA handles the linear part whereas the LSTM predicts the nonlinear part of data
traffic. To capture correlation among temporal traffic data taken from different bases stations
that are spatially separated, K-Means clustering is used to group the base stations having
similar data traffic. The result shows that the hybrid model outperforms the DSARIMA
and LSTM-only models. A similar clustering-based approach was also used in [7] to assess
the effectiveness of different time series prediction models for efficient deployment of
base stations.

A multivariate and LSTM-based prediction approach is proposed in [8] to collect
scheduling information of users. The multivariate features considered are: number of
resource blocks, transport block size, and modulation and coding schemes. The results show
the effectiveness of the LSTM network in capturing temporal variation for multivariate
input features. Though for different applications, refs. [9-11] demonstrated the capability
of multivariate and hybrid CNN-LSTM model to predict residential energy consumption
and forecasting particulate matter, respectively. Univariate models are used as a benchmark
for comparison and the results confirm that multivariate features greatly improve the
model performance.

In summary, in a bid to improve prediction accuracy, from the survey we understood
the need to incorporate multiple variables, data clustering, and blend LSTM and CNN
to capture traffic dynamics in spatiotemporal dimensions. In this work, a hybrid CNN-
LSTM mobile data traffic-prediction model that takes multiple traffic-related variables is
proposed. A total of 4 months of Long-Term Evolution (LTE) network data traffic that
is collected from the network operator is used to build and validate the model. To the
best of our knowledge, there is no prior work that applies a hybrid CNN-LSTM model for
such types of neural networks. Understandably, the multivariate features are technology-
and application-dependent. Hence, we used our experience and availability of data to
determine the features.

The remainder of the paper is organized as follows. The characteristics of mobile
data traffic and associated data preprocessing are described in Section 2, followed by the
discussions of mobile data traffic prediction approaches in Section 3. Section 4 contains the
results and discussion, while the conclusion of the paper is presented in Section 5.
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2. Analysis of Mobile Data Traffic
2.1. Mobile Data Traffic Characteristics

Mobile data traffic exhibits different properties in both time and spatial domains.
Trend and seasonality are used to demonstrate the temporal properties of time-series data.
The trend shows a long-term increase or decrease in the data, whereas seasonality is a
repeating pattern with a fixed period such as daily, weekly and yearly. Figure 1 illustrates
sample downlink data traffic, measured in Gigabytes, from two LTE radio base stations,
called eNodeBs, measurement taken for a duration of 9 days. We observe that, even if
the average daily traffic differs for different days, there is a daily seasonality observed in
the data.

- Site A
- Site B

Traffic Volume (GB)

3 100 125 150 175
Hours

o
]
s

Figure 1. Data traffic pattern for sample LTE sites located at A and B.

2.2. Data Traffic in Spatial Dimension

We observe from Figure 1 a variation in data traffic demand at the two locations,
motivating the need for additional investigation of the traffic pattern in the spatial di-
mension. Since mobile users constantly move within a given cellular network, the traffic
pattern across neighboring base stations are correlated or complemented, such that devel-
oping in both the spatial and temporal dimensions would provide better information for
telecom operators [12]. Spatiotemporal data traffic prediction incorporates different user
behavior such as mobility and network behavior, such as the number of handovers in the
network [13].

For spatial analysis, a grid-based or cluster-based approach can be used. In the former
approach, a given service area is partitioned into (usually) uniform grids, and eNodeBs
that fall into one cell of a grid are considered as one unit. However, because of the non-
uniform distribution of eNodeBs, it is difficult to formulate models for large areas with
fine-granularity grids.

The clustering approach is another option to incorporate all eNodeBs. In this approach,
eNodeBs with similar traffic load patterns are grouped together and those eNodeBs within
the same cluster have similar characteristics. The eNodeBs can be clustered based on either
geographical location, also called spatial clustering, or on temporal behavior [6,7]. The
assumption in spatial clustering is that neighboring eNodeBs exhibit similar temporal
properties. In temporal-based clustering, the clustering is done based on temporal behavior
irrespective of geographical location [6]. Considering more than one eNodB in time series
clustering incorporates the spatial information of the data traffic. After clustering the base
stations, the data traffic prediction model is developed per cluster level. In this paper, we
have applied the temporal-based clustering approach.

2.3. Multivariate Features Selection

The data used in this paper is collected from an operator’s LTE network for 4 months
from October 2020 to January 2021 in an hourly granularity. The multivariate dataset
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incorporates eight features: download downlink (DL) traffic, which is the traffic to be
predicted; DL throughput; average and maximum number of users in a cell; number of
attempted, successful, and setup failure Radio Access Bearers (RABs); uplink (UL) data
traffic; and location information of the eNodeBs.

Pearson’s-based correlation analysis is applied to select features and the result of the
correlation analysis is illustrated in Figure 2. A correlation threshold value of 0.5 and
above is used to select features. Moreover, for features whose correlation coefficient values
are closer, e.g., cell average user of 0.83 value and cell maximum user of 0.82, only one
is considered. Among the multivariate features DL traffic, a number of successful RABs,
cell average user, and UL traffic are selected as they are highly correlated with downlink
data traffic.

10
DL Traffic -
0.8
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Cell Ave User 06
Cell Max User 04
UL Traffic 02
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-0.0
User DLThr-0.28 028 035 031 029 028
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UL Traffic -
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L]
-
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A

=
>
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=
]
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RAB SuccEst
Cell Ave User

RAB Setup Failure -

Figure 2. Feature correlation results.

2.4. Data Preparation for CNN-LSTM Model

In data preparation, missing values in the multivariate dataset are imputed with the
Kalman filter, preserving the strong seasonality and trend of the data traffic. The features
in the dataset are scaled with a standard scaler so all data points fall within a certain
range. Since some machine learning algorithms that use distance metrics are affected by
the span of the value found in the dataset, feature scaling is critical for improving model
performance. Furthermore, the time series prediction problem is framed as supervised
learning makes it suitable to train and test deep learning models.

2.5. Time Series-Based Clustering

Clustering a dynamic dataset differs from static data since the former changes over
time. Different approaches such as Hierarchical Clustering, K-Means Clustering, and
Fuzzy C Means Clustering are used for time series data clustering. Each method has its
advantages and disadvantages. Among those methods, K-Means Clustering is used in
several works for fast convergence even for a large number of datasets [14]. In this work,
K-Means clustering is used to group the eNodeBs according to the daily data traffic volume
and four distinct clusters are obtained based on K-Means clustering for the dataset.
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3. Mobile Data Traffic Prediction Methods

Deep learning models such as LSTM, GRU, and CNN are becoming popular in dealing
with sequential or time-series data such as text, speech, and often images [15]. The basics
of LSTM and CNN networks that are used to develop the proposed model are revised in
the following subsections.

3.1. One Dimensional CNN Model

CNN models are typically employed to analyze spatial or multidimensional data.
However, one-dimensional CNN (1D CNN) can also be used to analyze texts and time-
series data [16]; 1D CNN can extract salient and representative features of time-series data
by performing 1D convolution operations using multiple filters [17]. Figure 3 shows the
difference between 1D CNN and 2D CNN. The kernel (filter) in 2D moves in both directions
while it moves only in one direction for 1D CNN. The input for 2D CNN is an image, while
multivariate time series features can be inputs for 1D CNN.

(Islide , ) slide

Feature 1
| Feature 2 i
g Feature 3 .
Feature 4
(Inputs) (Inputs)
Kernel

Time
—_—

Kernel N o

Figure 3. 2D and 1D CNN model input type and kernel slide direction [18].

3.2. LSTM Model

RNN is designed for handling sequential data by feeding the output of the previous
layer as an input to the next layer, allowing the network to capture the dependency of
sequential data [19]. LSTM is a type of RNN network that was modeled to solve short-
term dependency problems as well as exploding and vanishing gradient problems. LSTM
network has three gates (Forget gate f;, Input gate i; and Output gate o;) that decide which
information to add or remove from the cell state, and the Cell state, C;, memory stores
the desired information. The mathematical expression for the LSTM network at time ¢, is
described as follows:

fr=0(Ws- X+ Up-hyq + by) (1)
ip=0(W;- X¢+U;-hy_1+b;) (2)

Sy = tanh(W, - X + U; - by 1 + be) 3)
Ci=itOSt+ fr © 511 (4)

0t =0(Wy-Xs+Uy-hy_ 1+ V,-Cr+by) (5)
hi = 0; ® tanh (Cy) (6)

where tanh(-) and ¢ are activation functions while i;, f;, and o represent input gate, the
forget gate, and the output gate values at time ¢, whereas b;, b fs b., and b, are bias vectors
for the input gate, forget gate, cell state, and output gate, respectively. X; is the input vector
to the memory cell at time t while the parameters Wf, Wi, We, W, llf, u;, u., U,, and V, are
weight matrices for gates and cell state.
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3.3. Proposed CNN-LSTM Model

The CNN model is well known for its ability to automatically learn and extract features
from raw sequence or time-series data. It is possible to combine this capability of the CNN
model with the LSTM model. The LSTM network captures long-term and short-term
dependency of temporal features more efficiently. The CNN model accepts input data
sequences and extracts important feature information, whereas the LSTM model connected
in tandem interprets and provides an output [20]. This combination of CNN and LSTM
models is called a CNN-LSTM model. The general approach followed in this paper is
illustrated in Figure 4.

1D
U CNN . Max i Flatten | '
i pooling Layer

Figure 4. Proposed CNN-LSTM Hybrid Model.

Common performance evaluation metrics for regression models are Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE). In this work, RMSE and MAPE
are used as evaluation metrics, and the formula for those metrics are:

1 n
RMSE = [~} (i — §:)? @)
i=1
n .0
MAPE = -y~ Y1) ®)

iz Y

where ; and y; corresponds to the actual and predicted values and 7 is the number of
predicted instances.

4. Experimental Results and Discussion
4.1. Clustering

Among different clustering methods, in this work K-Means clustering is selected.
Elbow method and silhouette score are used to determine the optimal number of clusters
in K-Means clustering and to evaluate the goodness of a clustering technique, respectively.
For our data, the optimal number of clusters is selected to be four and the sites are grouped
into four clusters, as shown in Figure 5. We note how sites from various geographical areas
are grouped into the same cluster because of similarities in their traffic patterns. Moreover,
some base stations found in the same locations are grouped into different clusters.
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Figure 5. 4G eNodeBs geographical distribution in each cluster.

4.2. Per Cluster Time-Series Predictions

Figure 6 shows the actual and predicted values of mobile data traffic, using multi-
variate features in Figure 6a, and univariate feature Figure 6b. In both cases, the predicted
data traffic has a similar pattern, in terms of daily seasonality, when compared with the
actual data traffic. Comparing predicted results in (a) and (b), we note that including
multiple features in a multivariate manner helps to capture the irregularities and edges that
occur during peak hours. The improved result with multivariate features also demonstrates
the ability of the deep learning model, CNN-LSTM, to extract salient information from
complex data required for prediction. Table 1 depicts a comparison in terms of RMSE

and MAPE.
20 W [/ J
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Figure 6. Mobile data traffic prediction with CNN-LSTM model (a) multivariate features (b) univari-

ate feature.
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The proposed model performance is compared with the CNN-only model with uni-
variate and multivariate features models as also summarized in Table 1. The result confirms
the performance improvements because of the hybrid CNN-LSTM model as well as the
consideration of multivariate features.

Table 1. Model performance comparison.

Features RMSE MAPE
Proposed CNN-LSTM Model, Multivariate 0.81 2.97
Proposed CNN-LSTM Model, Univariate 1.28 4.48
CNN Model Multivariate 1.34 4.44
CNN Model Univariate 1.53 6.20

Furthermore, the impact of filling the missing values and input time steps are analyzed.
The results in Figure 7 and Table 2 show the model performance with and without imputing
the missing values in the datasets. The model output shows that, while the model captures
traffic variation for the imputed dataset well, not filling in the missing values degrades the
prediction result.

AA LTE Data Traffic Prediction_CNN-LSTM_MV

— Actual
40 1 — Predicted
Predicted_Not_imputed
I\,
_ Y V\ AN MJ‘ A/\,‘ h
o |
8 A v
o
£
]
= V \ // /
£
8
e
10
0
0 20 0 &0 80 100 120 140

Hours

Figure 7. Model prediction for with and without imputation of missing value.

Table 2. Effect of filling missing value.

CNN-LSTM RMSE MAPE
With missing values imputation 2.01 6.88
Without missing values imputation 4.56 19.01

The effect of the input time steps while developing a prediction model is investigated
with two input time steps of 24 h and 168 h. Figure 8 and Table 3 illustrate the data traffic
prediction for the CNN-LSTM model using 168 h input time steps compared to the actual
data traffic, and it captures the data traffic variation well, including for irregular shapes
and sharp edges at both ends. However, this modest performance improvement comes at
the expense of computational time. The model with 168 input time steps took more time to
train the model.

Table 3. Model performance comparison for 24 and 168 input time steps.

Input Time Step RMSE MAPE
24h 0.81 2.97
168 h 0.78 2.69
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5. Conclusions

Due to the increasing demand for mobile data traffic, the cellular network capacity is
changing continuously and predictive models become inevitable in capturing the dynamics
of mobile data traffic. In this paper, a deep learning-based model, CNN-LSTM, is proposed
for mobile data traffic prediction using multivariate features. The hybrid CNN-LSTM
networks leverage the power of the CNN model to extract salient features in the complex
and nonlinear dataset as well as an LSTM to capture long—short dependency for time series
data. The study shows the prediction capability of the CNN-LSTM model for mobile data
traffic demand along with multivariate input features as compared to univariate features.

Future studies could include investigating the impact of other variants of clustering
methods on model performance improvement. Furthermore, incorporating more specific
multivariate features such as the amount of spectrum used and RAB attributes such as max-
imum source data, traffic type, and maximum bit rate might increase model performance
and further improve the prediction accuracy.
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Abstract: COVID-19 pandemic has become the greatest worldwide threat, as it has spread rapidly
among individuals in most countries around the world. This study concerns the problem of weekly
prediction of new COVID-19 cases in Italy, aiming to find the best predictive model for daily infection
number in countries with a large number of confirmed cases. We compare the forecasting performance
of linear and nonlinear forecasting models using weekly COVID-19 data for the period between 24
February 2020 until 16 May 2022. We discuss various forecasting approaches, including a Nonlinear
Autoregressive Neural Network (NARNN) model, an Autoregressive Integrated Moving Average
(ARIMA) model, a TBATS model, and Exponential Smoothing on the collected data and compared
their accuracy using the data collected from 23 March 2020 to 20 April 2020, choosing the model with
the lowest Mean Absolute Percentage Error (MAPE) value. Since the linear models seem to not easily
follow the nonlinear patterns of daily confirmed COVID-19 cases, Artificial Neural Network (ANN)
have been su